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Preface

Artificial Intelligence (AI) has increasingly interweaved itself into our daily lives, revolutionizing

industries and altering our interaction with technology. Within the vast AI landscape, advanced

artificial intelligence models have emerged as formidable tools that push the boundaries of what once

was conventionally considered achievable. Over time, AI has seen remarkable progress, driven by

improvements in machine learning algorithms, deep neural networks, natural language processing,

computer vision, and more. These advancements have set the stage for the creation of sophisticated

AI models that display superior performance in intricate tasks, surpassing conventional methods.

This book presents ten articles accepted for publication in the Special Issue titled ”Advanced

Artificial Intelligence Models and Their Applications” of the MDPI Mathematics journal.

The compilation of research papers explores the most recent developments in AI models and

highlights their applications across diverse domains. The research topics encompass SQL injection

attack detection, image classification, object tracking, vehicle routing and cross-docking, music

generation, human capital investment, writer recognition, remote sensing image indexing, and

optimization algorithms. These collective works underscore the varied applications of advanced

AI models, demonstrating their potential to tackle complicated problems spanning different fields.

The application of deep learning, self-supervised learning, optimization algorithms, and other AI

methodologies has been instrumental in enhancing performance, efficiency, and decision making

across various sectors.

The compilation is anticipated to be intriguing and valuable for those engaged in artificial

intelligence, pattern recognition, machine learning, and computer vision, and those with an apt

mathematical background who are keen to familiarize themselves with recent strides in artificial

intelligence. As the Guest Editor of the Special Issue, I extend my gratitude to the authors for their

quality contributions, the reviewers for their insightful comments that improved the submitted work,

and the administrative staff of MDPI publications for their support in bringing this project to fruition.

A special note of appreciation goes to Ms. Estelle Wang, the Managing Editor of the Special Issue, for

her excellent cooperation and invaluable assistance.

Tao Zhou

Editor
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Article

Lightweight Target-Aware Attention Learning Network-Based
Target Tracking Method
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* Correspondence: lifusheng@uestc.edu.cn
† These authors contributed equally to this work.

Abstract: Siamese network trackers based on pre-trained depth features have achieved good perfor-
mance in recent years. However, the pre-trained depth features are trained in advance on large-scale
datasets, which contain feature information of a large number of objects. There may be a pair of
interference and redundant information for a single tracking target. To learn a more accurate tar-
get feature information, this paper proposes a lightweight target-aware attention learning network
to learn the most effective channel features of the target online. The lightweight network uses a
designed attention learning loss function to learn a series of channel features with weights online
with no complex parameters. Compared with the pre-trained features, the channel features with
weights can represent the target more accurately. Finally, the lightweight target-aware attention
learning network is unified into a Siamese tracking network framework to implement target tracking
effectively. Experiments on several datasets demonstrate that the tracker proposed in this paper has
good performance.

Keywords: target features; siamese trackers; lightweight network; target tracking

MSC: 68T45

1. Introduction

Visual target tracking is a branch in the field of computer vision, and thanks to the
development of deep learning techniques, especially the application of neural networks [1],
target tracking has entered a new phase. In the target tracking task, the target being
tracked is arbitrary, and the traditional trackers designed based on manual features [2]
perform generally in target modeling. Thanks to the powerful generalization ability of
depth features, which can model all kinds of targets well, depth feature-based trackers [3–5]
have achieved excellent results in recent years.

Although the existing depth feature-based trackers perform well, we find that the
pre-trained depth features still have some interference when modeling arbitrary targets.
This is because, firstly, the targets being tracked are arbitrary, and if the dataset used to
train the depth feature model does not contain such targets, that is, the depth feature model
has not learned information about such targets, then when extracting the target features,
it can only rely on the existing information for speculation, which often brings a lot of
uncertainties and leads to more disturbances in the model. Secondly, even if the deep
feature model has learned such targets, and when the general tracker uses the last layer
or layers to extract the target features, it will lead to more disturbing factors in the feature
model because of the huge amount of data. Finally, the existing pre-trained deep feature
models are created mainly for the target recognition task, where its main task is to identify

Mathematics 2022, 10, 2299. https://doi.org/10.3390/math10132299 https://www.mdpi.com/journal/mathematics
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all similar targets that appear in each frame. The target tracking task, on the other hand, is
different and is to identify the same target in subsequent frames, so the tracker based on
pre-trained features may be wrong in the face of interference from similar targets in the
same frame.

Some trackers use the designed lightweight network as the memory module and use
the target appearance information in each frame to update network parameters, to achieve
good appearance memory performance. In this paper, a lightweight target-aware attention
learning network is designed to learn the most effective channel features of the target online,
using the target information in the first frame template to learn a series of channel features
with weights, and by recombining these channel features. A compact and effective deep
feature is obtained, which can better distinguish the object from the background compared
to the pre-trained features. At the same time, a new attention learning loss function is
developed to optimize the training of the proposed network using the Adam optimization
method. Different from other methods, the lightweight network designed in this paper
does not require complex parameters and is easy to implement. It only needs to learn the
most salient features through the reliable information of the first frame of the target and
does not need to use too much memory temporarily, which is beneficial for the efficient use
of hardware resources. Finally, the lightweight target-aware attention learning network is
unified into the Siamese tracking network framework to effectively achieve target tracking.
Figure 1 shows that our tracker yields better tracking performance when compared with
other trackers.

Figure 1. Comparison of our tracker with other trackers for Bolt (top), Basketball (bottom).

The main contributions of this article are described in summary as follows:

(1) A lightweight target-aware attention learning network is designed to learn the most
effective channel features of the target online. The new network mines the expressive-
ness of different channels to the target by the first frame template.

(2) A new attention learning loss function is developed to optimize the training of the
proposed network using the Adam optimization method. The loss function effectively
improves the modeling capability and tracking accuracy of the network by introducing
the gradient information during training.

(3) The lightweight target-aware attention learning network is unified into the Siamese
tracking network framework to effectively achieve target tracking. Moreover, the
proposed method performs better against other trackers.

2. Related Work

There are a large number of researchers who have made many contributions in the
field of visual tracking, and many excellent trackers have been proposed. In this section,
we discuss some trackers that are similar to our work.

2
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2.1. Lightweight Network-Based Tracker

Real-time target tracking is a very relevant research element. However, when the
tracking speed increases, the tracking accuracy is bound to be affected. Therefore, many
researchers have researched how to increase the tracking speed without affecting the
tracking accuracy. Zhao et al. [6] use a pruned convolutional neural network to construct
the tracker, which is trained by a mutual learning method to further improve the localization
accuracy. Cheng et al. [7] propose a real-time semantic segmentation method based on
extended convolution smoothing and lightweight up-sampling on the basis of a lightweight
network, which can achieve high segmentation accuracy while maintaining high-speed
real-time performance. Zhao et al. [8] design a lightweight memory network, which only
needs reliable target frame information to fine-tune network parameters online, so as to
enhance the memory ability of the target appearance. At the same time, it can maintain
good discriminant performance without a complicated update strategy. Unlike them, this
paper designs a lightweight network for online learning of the most salient features of the
target and achieves redundant feature channel trimming by back-propagating the weights
to determine the importance of the feature channels.

2.2. Siamese Network-Based Tracker

In recent years, the combination of Siamese networks and target tracking has led
target tracking to enter a new stage. Bertinetto et al. [9] propose a new structure of fully
convolutional Siamese networks. In the initial offline phase, deep convolutional networks
are regarded as a more general similarity learning problem, and then the simple online
estimation of the problem during tracking can achieve very competitive performance,
and the frame rate at runtime far exceeds the requirements of real-time performance.
Li et al. [10] developed a model consisting of a Siamese network and a region proposal
network, which discards the traditional multi-scale testing and online tracking, divides
the network into template branches and detection branches, and uses a large amount of
data for offline training to achieve a good tracking result. Gao et al. [11] propose a Siamese
Attentional Key-point Network for target tracking, by designing a new Siamese lightweight
hourglass network and a novel cross-attentional module to obtain more accurate target
features, and propose a key-points detection approach to accurately locate target location
and scale regression.

3. Proposed Method

3.1. Basic Siamese Network for Visual Tracking

Siamese networks are originally applied to template matching problems and are later
introduced into object tracking. It is composed of two networks with the same structure
and the same weight. These two networks are used to extract the depth feature of the target
and the depth feature of the search area, and finally the cross-correlation calculation is used
to find the highest response value in the search area. The position of this point is the final
target position. Moreover, the whole process can be expressed by the following formula:

f (z, x) = ϕ(z) ∗ ϕ(x) + b · 1 (1)

where z represents the initial frame position, x represents the position of the search region,
b · 1 denotes the deviation value, and * represents the convolution operation.

As shown in Figure 2, the proposed tracker contains a pre-trained feature extraction
network, a lightweight target-aware attention learning network, and a Siamese network
matching module. The VGG feature extraction network is a very deep convolutional
network for image classification and achieves the state-of-the-art performance on the
ImageNet challenge dataset. It is trained offline in this paper, and the proposed lightweight
target-aware attention learning network is trained online by using the given first frame
target information, and then the cross-correlation operation of the Siamese network is used
to locate target. The attention learning loss function used to train the lightweight target-
aware attention learning network is redesigned on the basis of the MSE loss function, and

3
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the Adam optimization method is used for training, and the feature channel is determined
according to the gradient value information of back propagation. The importance weight
is weighted to the original depth feature to represent the target, and finally the template
matching method of the Siamese network is used to locate the target. The calculation
process is shown in Formula (2):

fnew(z, x) = (ϕ(z)� α) ∗ ϕ(x) + b · 1 (2)

where z denotes the template image, x denotes the image of the search region, b · 1 denotes
the deviation value of each, α is the channel attention weight vector of the feature channel,
� denotes the Hadamard product, ∗ denotes the convolution operation, and fnew(z, x)
denotes the response score.
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Figure 2. Overview of our network architecture for visual tracking.

3.2. Attentional Learning Loss Function

Most of the trackers based on correlation filtering use recurrent samples to train re-
gression models, while Chen et al. [12] propose to use single-layer convolution to solve
the linear regression problem and use the gradient-descent training method to solve the
regression problem in target tracking, which this paper is inspired by. In the linear regres-
sion model of the work [12], the objective is to learn a linear function using the training
samples X ∈ Rm×n and the corresponding regression objective Y ∈ Rm. Each element xi in
each row of the model X represents a training sample with feature dimensionality and the
corresponding regression target xi is the first element of the model Y. Then, the objective
is to learn the coefficients w of a regression function by minimizing the objective function
f (x) = wT · x during the offline training process.

arg min
w

‖X ∗ w − Y‖2 + λ‖w‖2 (3)

In Equation (3), ‖·‖ is the Euclidean parametrization, and λ is the regularization
parameter to prevent overfitting.

The gradient values generated during the training of neural networks can be a good
indication of the channel saliency feature information for different target classes [13], and
this paper attempts to introduce this idea into a Siamese network-based tracker used for
training to generate a set of weights that can represent the contribution of different feature
channels to modeling, to enhance the target modeling capability of pre-trained depth
features. To this end, this paper redefines its input based on Equation (3), which can be
expressed by minimizing the following function:

arg min
w

∑
i

((
Zi · w′

i
) ∗ Xi − Yi

)2
+ λ′ ∑

i
w′

i
2 (4)
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where · is the dot product operation, ∗ denotes the convolution operation, Z is the template
depth feature, X is the search area depth feature; they are obtained from the same frame,
and Z is located at the center of the X, λ′ is regularization parameter, w′ is the regression
weight vector obtained by the network training, the dimension is the same as Z and X.

The comparison results of the target response maps are shown in Figure 3. Figure 3a
shows the weighted features of the feature channels after learning using the attention
learning loss function, and Figure 3b shows the target-specific diagnosis extracted directly
using the original features.

Figure 3. Comparison of the before and after learning characteristics of attentional learning loss.

Finally, the regression weights w′ are mapped by the sigmoid function to obtain the
channel weights corresponding to the sample images.

αi =
1
/(

1 + e−w′
i

)
(5)

where αi denotes the i-th value in α, and α ∈ [0, 1], w′
i denotes the i-th value in w′.

In summary, the loss function generates the gradient information by training the target
information in the first frame. The gradient information is used to generate the weights
of the different channels of the feature to the target information expression. The feature
channel is determined according to the gradient value information of back propagation
under the attentional learning loss function. The importance weight is weighted to the
original depth feature to represent the target. Finally, the template matching method of the
Siamese network is used to locate the target. However, the loss function is used under the
assumption that the error between the model output and the groundtruth value obeys a
Gaussian distribution. When this condition is not satisfied, the loss function is limited in
its usefulness.

3.3. Lightweight Target-Aware Attention Learning Network

In a pre-trained deep model-based classification network, each feature channel con-
tains a specific target feature pattern, and all feature channels together construct a feature
space containing a priori information about different objects. The pre-trained network iden-
tifies object classes mainly through a subset of these feature channels, so the importance of
each channel should not be calculated equally when used to track the target representation.

As shown in Figure 4, the lightweight target-aware attention learning network pro-
posed in this paper is built on a single-layer convolutional network, which is used in
the same way as a general neural network, and its kernel is set to match the size of the
target template. However, to obtain better object appearance features, the lightweight
target-aware attention learning network proposed in this paper only uses the given first
frame object information for training and does not require complex offline training, while
using the more advanced Adam Optimization method to obtain network parameters.

5
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Figure 4. Lightweight target-aware attention learning network.

(1) Parameter learning process.

A search area of size X is intercepted around the given first frame target as an initial
training sample, w′

i is a set of initial target feature channel weights with an initial value of 1.
In the subsequent learning process, the gradient value information is calculated to update its
value online according to the difference between the response values and labels of different
channels. The larger the gradient value is, the smaller the contribution of the feature
channel to the target model. Equation (4) is used to guide the online learning process, and
the Adam optimization method is used to optimize the network by empirically setting the
learning rate to, the momentum to 0.9, the weight decay to 1000, and the maximum number
of iterations to 100. Compared with the traditional gradient descent (SGD) optimization
method, the Adam optimization method is an improvement and extension of it, with high
computational efficiency and small memory occupation. Moreover, the learning rate of
the SGD optimization method is fixed, while the Adam optimization method can update
the learning rate of the third training process adaptively based on the average of the
first two training weights, which can improve the performance of the network on sparse
gradient problems.

(2) Obvious characteristic of the lightweight target-aware attention learning network.

The network designed in this paper is implemented on a single-layer convolutional
network, which learns the optimal representation of the target appearance by adjusting
a certain number of feature channel weights through simple single-layer convolutional
operations, using the proposed attention learning loss function to learn online, thus gener-
ating an optimal set of channel modeling parameters. This approach is computationally
simple, does not require complex model computation strategies, does not take up too many
valuable memory resources, and is easy to implement. Moreover, the number of parame-
ters in the network is small, which facilitates fast computation and achieves real-time fast
online tracking.

4. Experiment and Analysis

Our tracker is implemented on a PC with an i7-9700 3.0 GHz and a single NVIDIA
GeForce RTX 2060 GPU with Pytorch. The algorithm proposed in this chapter uses the
VGG-16 [14] neural network as the feature extraction network for the target and the search
region, and the outputs of the Conv4-1 and Conv4-3 layers are used for target appearance
modeling. The number of channel dimensions of the outputs is 512. Then the feature passes
through the lightweight network and its feature channels are given different weights,
and the number of channels is reduced to 380. Moreover, the kernel of the lightweight
target-aware attention learning network is set to match the size of the target template.
For the designed lightweight target-aware attention learning network, online training is
performed using the attention learning loss function only in the first frame of each video
sequence, setting the maximum number of iterations to 100, the momentum setting to 0.9,
and the convergence loss threshold to 0.01. To handle scale variations, we also search for
the object over three scales (0.957, 1, 1.047), and update the scales by scale weights (0.99,
1, 1.005). To evaluate the performance of the proposed algorithm, this section is tested on
the OTB-50 [15] and OTB-100 [16] dataset, TC-128 [17] dataset, UAV123 [18] dataset set,
VOT2016 [19] dataset and LaSOT dataset [20].

6
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4.1. Ablation Studies

To better explain the validity of the proposed method, the ablation experiment of this
work is analyzed on the OTB-100 dataset using one-pass evaluation. Our algorithm con-
tains the base Siamese-based tracker and the proposed lightweight target-aware attention
network. Figure 5 shows the precision and success rate of baseline without the proposed
attention network and our method.

From Figure 5, we can see that when the proposed attention network is added, the
accuracy and success rate of the tracking algorithm are improved. The network removes
redundant and partial background information from the features to achieve superior
tracking performance by online mining of different channels of the target depth features
for their ability to represent the target information. The experimental results in Figure 5
show that the proposed attention network contributes to the performance of the tracking
algorithm.

Figure 5. The ablation studies on the OTB-100 dataset.

4.2. OTB Dataset Experiments

In this paper, experiments are conducted on the popular OTB-50 and OTB-100 datasets
in the field of target tracking, which consist of 50 and 100 fully annotated videos, respec-
tively. In this paper, the accuracy maps in one-pass evaluation (OPE) are used to evaluate
different trackers and are compared with 10 advanced trackers SiamFC, attention-based
trackers MemTrack [21] and MemDTC [22], correlation filter-based trackers KCF [23], Sta-
ple [24], DSST [25] and SRDCF [26], deep learning and correlation filter-based tracker
CF2 [27], CREST [28], and CSR-DCF [29] were compared for the results. As shown in
Figures 6 and 7, the performance of the proposed tracker (Ours1) in this chapter is at the
advanced level in both benchmark tests. Specifically, the proposed algorithm obtained
success rate scores of 0.655 and 0.643 on OTB-50 and OTB-100, respectively, and the pro-
posed algorithm gained 4.6% and 6.0% improvement over the Siamese network-based
tracking method SiamFC, which confirms the advantages of the lightweight target-aware
attention learning network and attention learning loss function proposed in this paper.
CF2 algorithm uses the depth features of three layers in the VGG-16 network for target
modeling to improve the discriminative power of the model, and obtains success rate
scores of 0.603 and 0.562 for OTB-50 and OTB-100, respectively, and the performance of the
proposed algorithm in this paper is 5.2% and 8.1% higher than that of the CF2 algorithm
without using more depth features. The CREST algorithm achieves a higher success rate
than the CF2 algorithm on the OTB-50 dataset and performs better than the algorithm
proposed in this paper in terms of both success rate and accuracy; the reason for this is
that the CREST algorithm introduces a residual network to extract the depth features of
the target, and the residual network structure can be used to build a deeper network to
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improve the accuracy of the features and alleviate the gradient disappearance problem
caused by the deep network.

Figure 6. Success and precision rates on the OTB50 dataset.

Figure 7. Success and precision rates on the OTB100 dataset.

For object-tracking algorithms, the real-time performance should also be used as one
of the criteria for evaluating tracker performance. In Table 1, we compared the operational
performance of some of the advanced trackers in terms of Precision score (%), Success
rate (%), and Speed (FPS) on the OTB-100 dataset. Table 1 shows the results of our tracker
compared with 7 advanced trackers including BaSiamIoU [30], ATOM [31], CFML [32],
CREST [28], CSR-DCF [29], SRDCF [26], and SiamFC [9]. From Table 1, we can note that
ATOM draws on the IoU-Net idea and proposes IoU modulation and IoU predictor to solve
the scale challenge in the tracking process, achieving better tracking performance in terms
of Precision score and Success rate. However, the speed performance of ATOM is not as
satisfactory as our tracker. Meanwhile, although SiamFC is capable of reaching 102.3 FPS in
speed, it is not able to adapt to changes in target appearance during tracking, resulting in
lower tracking accuracy. Our tracker achieves 83.3% in Precision score and 64.3% in Success
rate in 59 FPS. Overall, our tracker strikes a balance between Precision score, Success rate,
and Speed. Therefore, for some scenes with higher requirements on tracking speed, SiamFC
algorithm is a better choice, while for some scenarios where tracking accuracy is more
preferred, ATOM algorithm should be chosen. Our method is more suitable for applications
that require a certain degree of tracking accuracy and tracking speed.

8
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Table 1. The real-time performance of the advanced trackers on the OTB-100 dataset. In the table,
red, green and blue indicate the top three scores respectively.

Tracker Precision Score (%) Success Rate (%) Speed (FPS)

Ours 83.3 64.3 59
BaSiamIoU 83.9 70.8 50

ATOM 87.9 66.7 30
CFML 85.3 64.9 32

SiamFC 77.2 58.3 102.3
CREST 83.4 62.0 1.8

CSR-DCF 79.9 57.9 8.5
SRDCF 79.2 60.0 4.2

(1) Challenge analysis of the OTB dataset

This part shows the success rate plots on the OTB-50 dataset for multiple challenge
scenarios, as it contains 50 videos with relatively high tracking complexity in the OTB-100
dataset, which include: scale variation (SV), low resolution (LR), occlusion (OC), distortion
(DF), motion blur (MB), fast motion (FM), in-plane rotation (IR), out-of-plane rotation (IR),
out-of-field (OV), background clutter (BC), and illumination variation (IV).

More details of the performance of the proposed algorithm are shown in Figure 8.
Overall, the proposed algorithm performs well in all 11 challenges. For the attributes of
motion blur, distortion, and low resolution, the proposed algorithm outperforms the tracker
SiamFC, which is also based on Siamese networks. The SiamRPN algorithm combines
Siamese networks and region proposal network and has good tracking precision and speed,
but the algorithm proposed in this paper has better performance under the background
clutter challenge, indicating that the algorithm in this paper can extract the key features of
the target. For exceeding the visual field, the proposed algorithm performs much better
than the other nine compared trackers, which is attributed to the proposed lightweight
target-aware attention learning network model and the attention learning loss function. In
addition, the proposed algorithm performs better than most neural network-based trackers
under the background clutter challenge, which indicates that the proposed lightweight
target-aware attention learning network and attention learning loss function can effectively
modify the pre-trained depth features to remove redundant information while enhancing
the feature channels that are more important to the target representation, and thus it
can improve the feature representation of the target. Overall, the proposed algorithm in
this paper achieves good performance under several challenging attributes of the OTB-
50 dataset.

(2) Qualitative experimental analysis of the OTB dataset

To qualitatively evaluate the proposed method, Figure 8 shows some tracking results of
the proposed algorithm and other tracker on eleven challenging video sequences. SiamRPN
is a deep learning-based algorithm, CF2 is a correlation filtering-based algorithm, where
the SiamRPN algorithm also introduces region suggestion networks into the tracking, and
SiamFC is a Siamese network-based algorithm, similar to the proposed algorithm in this
paper. the proposed algorithm is similar.

In these six video sequences, there are many different challenges, including deforma-
tion (Bird1, MotorRolling, Skiing), occlusion (Soccer, Tiger), out-of-field (Bird1, Soccer), and
background clutter (Football1, MotorRolling). SiamFC and the proposed algorithm can
re-find the target after its occlusion disappears, while other trackers are unable to locate the
target again due to untrustworthy samples introduced during model updates. CF2 and
CREST drift rapidly in scenes where the target is out of view, and SiamFC and CF2 are
unable to adapt to the challenge of scale changes in Bird1 and MotorRolling sequences. As
the tracking task progresses, CREST, CF2, and SiamFC all lose targets one-by-one as the
tracking drifts. In contrast, the algorithm proposed in this paper can adapt well to these
challenges due to the introduction of a lightweight target-aware attention learning network
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and an attention learning loss function to learn the channel weight information of the target.
As in these scenarios in Figure 9, the performance of the proposed algorithm is significantly
better than other trackers.

Figure 8. Comparison of 11 attribute challenge results.
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Figure 9. Visualization of tracking results for focused challenge scenarios.

4.3. TC-128 Dataset Experiments

In this paper, the proposed method is evaluated on the Temple-Color (TC-128) dataset
containing 128 videos. The evaluation method follows the guidelines in the OTB dataset
and uses the accuracy plots in the one-time evaluation method (OPE) to compare the
different trackers.

(1) Quantitative evaluation on TC-128 dataset: The proposed algorithm is compared
quantitatively with 10 other trackers, including ECO [33], CREST [28], HCFTstar [34],
CF2 [27], CACF [35], KCF [23], DSST [25], LOT [36], and CSK [37].

As shown in Figure 10, the proposed algorithm is in the top two positions among
all trackers in terms of accuracy and success rate. Compared with the CF2 algorithm
based on deep learning, the proposed algorithm achieves a higher success rate of 5.0%
on TC-128, probably because CF2 uses unprocessed pre-trained deep features, while the
proposed algorithm learns the most effective target channel weights through the designed
lightweight target-aware attention learning network, so that the features better represent
the appearance of the target. Moreover, the success rate of the proposed algorithm on
TC-128 is 1.2% higher than that of CREST which learns linear regression on a single-layer
convolutional network. It can also be seen that the CREST algorithm, which uses only one
layer of depth features for target modeling, outperforms the CF2 algorithm, which uses
multiple layers of depth features, which illustrates the great advantage of linear regression
modeling on the network. The tracking robustness of the proposed algorithm is greater
than that of the tracker CACF, which introduces contextual information. It can also be
seen from the figure that trackers that use manual features to model targets such as KCF
have significantly lower performance than other trackers that use depth features. The
ECO algorithm combines color features and depth features to represent the target, and
is sensitive to the color features of the target, so the performance on the TC-128 dataset
designed for color features is better than the algorithm proposed in this paper. (2) Challenge
analysis of TC-128 dataset: In this section, the success rate of the tracker associated with
the work in this paper is tested on the TC-128 dataset for 11 challenging videos, including
scale variation (SV), low-resolution (LR), occlusion (OC), distortion (DF), motion blur
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(MB), fast motion (FM), in-plane rotation (IR), out-of-plane rotation (IR), out-of-field (OV),
background clutter (BC), illumination variation (IV).

Figure 10. Success and precision rates on the TC-128 dataset.

Figure 11 shows the results of the proposed algorithm and other state-of-the-art track-
ers under 11 attribute challenges, and it is clear that the proposed algorithm outperforms
the other trackers in overall performance. Thanks to the channel weight learning effect
of the lightweight target-aware attention learning network, the proposed algorithm out-
performs other trackers in the case of background clutter, motion blur, and deformation.
ECO outperforms the proposed algorithm in deformation challenge scenarios due to the
use of multi-feature fusion, but the proposed algorithm outperforms other trackers in
several challenge scenarios with background clutter, motion blur, and out-of-field. In these
scenarios, the targets often experience severe appearance changes or complex background
disturbances, so the compared tracker experience tracking failures, while these compared
tracker use sample update models that may contain noise, which prevents the tracker
from obtaining an accurate model of the target appearance and leads to tracking failures.
In contrast to these trackers, the lightweight target-aware attention learning network is
introduced in this work to improve the modeling capability of depth features, allowing the
tracker to adapt to target tracking tasks in complex scenes.

4.4. UAV123 Dataset Experiment

To further illustrate the performance of the proposed algorithm, the performance of
the proposed algorithm is evaluated on the UAV (UAV123) dataset in this paper. Compared
with typical visual object tracking datasets including OTB and TC-128, the UAV123 dataset
provides low-altitude aerial video for target tracking. UAV123 is also one of the largest
target tracking datasets, which contains 123 video sequences with over 110,000 images and
an average sequence length of 915 frames. The UAV123 dataset has become increasingly
popular due to real-life applications that are becoming increasingly popular, such as
navigation, wildlife monitoring, crowd surveillance, etc. An algorithm that strikes a
good balance between accuracy and real-time speed would be more practical for tracking
these targets.

As shown in Figure 12, the proposed algorithm is tested on the UAV123 dataset in
this paper to compare with 10 other trackers, including SRDCF [26], CREST [28], CF2 [27],
SiamRPN [10], DSST [25], Struck [38], ECO [33], TADT [39], KCF [23], and CSK [37]. Thanks
to the lightweight target-aware attention learning network introduced in the Siamese
network framework, the proposed algorithm is higher than the TADT algorithm in terms of
accuracy and success rate. Moreover, the success rate of the proposed algorithm on UAV123
is 5.8% higher than that of CREST which learns linear regression on a single convolutional
layer. The performance of the CREST algorithm using only one layer of depth features
outperforms that of CF2 and SRDCF using multiple layers of depth features. Trackers using
manual features, such as DSST and KCF, have significantly lower performance than other
trackers using depth features.
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Figure 11. Comparison of 11 attribute challenge results.
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Figure 12. Success and precision rates on the UAV-123 dataset.

4.5. VOT2016 Dataset Experiment

The VOT dataset is a very popular dataset in the field of target tracking, and it uses two
metrics, accuracy and robustness, to evaluate the performance of the trackers, as well as the
average overlap metric (EAO) to rank the tracker. In this paper, the proposed algorithm is
compared with other trackers on the VOT2016 dataset for experiments, and the compared
trackers include SiamRPN++ [40], SiamRPN [10], TADT [39], DeepSRDCF [41], MDNet [42],
SRDCF [26], HCF [27], DAT [43], and KCF [23]. The results of these tracker are obtained
from the official results, and Figure 11 show the results of all tracker’ ranking results.

As can be seen from Figure 13, thanks to the proposed lightweight target-aware
attention learning network and the weight learning approach of the attention learning
loss function, the proposed algorithm ranks third among all the compared trackers and
performs better than the TADT algorithm that uses the regression loss function and the
scale loss function for feature layer filtering. The performance of the proposed algorithm is
weaker than that of SiamRPN and SiamRPN++ tracker, which also shows that SiamRPN
introduces a region suggestion network to provide an accurate suggested target area and
a classification regression mechanism to determine the target location and obtain a more
accurate target scale through regression calculation. SiamRPN++ algorithm, on the other
hand, introduces a deeper neural network to extract target features based on the SiamRPN
algorithm, so it performs far ahead of the other tracker, which also shows that deep neural
networks are more powerful in feature representation.

Table 2 shows some more detailed information comparing all the tracker, including the
average overlap (EAO), overlap (Overlap), and failure (Failures), and the top three metrics
on individual results are marked in red, green, and blue, respectively. As can be seen from
the table, the proposed algorithm performs well overall in all three metrics, which reflects
the ability of the proposed attention learning loss function and lightweight goal-aware
attention learning network to learn reliable target features. The last column of the table
shows the failure rate of the algorithm tracking, and it can be seen that the proposed
algorithm ranks fourth place, which is not very far from the second-place SiamRPN and
the third-place TADT, and there is still room for improvement.
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Figure 13. EAO score ranking of the compared trackers VOT2016 dataset.

Table 2. Overall performance on VOT2016 dataset, the top three trackers are marked with red, green
and blue, respectively.

Tracker EAO Overlap Failures

Ours 0.306 0.546 20.180
SiamRPN++ 0.479 06356 11.586

SiamRPN 0.341 0.580 20.138
TADT 0.300 0.546 19.973

DeepSRDCF 0.275 0.522 20.346
MDNet 0.257 0.538 21.081
SRDCF 0.245 0.525 28.316

HCF 0.219 0.436 23.856
DAT 0.216 0.458 28.353
KCF 0.153 0.469 52.031

4.6. LaSOT Dataset Experiment

To further demonstrate the effectiveness of our method, the performance of the pro-
posed algorithm is evaluated on the LaSOT dataset in this work. Compared with the
above tracking dataset, LaSot dataset has a larger salce and more complex challenges for
the tracker during the tracking process. LaSOT considers the connection between visual
appearance and natural language, not only labeling the bounding box but also adding rich
natural language descriptions. It contains 1400 video sequences with an average sequence
length of 2500 frames and the test dataset contains 280 video sequences, with 4 videos
per category.

As shown in Figure 14, our method achieved the third place in precision and success
rate. Compared with the tracking algorithms based on the correlation filter, our method also
obtains a good performance. However, the performance of our method is not competitive
enough with the state-of-art tracking methods on the LaSOT dataset. The reason for this
phenomenon is that our algorithm is not able to solve the challenge of target disappearance
reproduction during long-term tracking.
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Figure 14. Success and precision plots of OPE on LaSOT dataset.

4.7. Discussions

The Siamese network tracker based on pre-trained depth features has achieved good
performance in recent years. The pretrained depth features are trained in advance on
large-scale datasets, and therefore contain feature information of a large number of objects.
However, for a tracking video, the object being tracked is always the same, so the pre-
trained features contain some redundant features. To remove redundant and interfering
information from pre-trained features and learn more accurate target information, this work
presents a novel tracking method with the proposed lightweight target-aware attention
learning network. This lightweight target-aware attention learning network uses reliable
information that the ground truth of the target is given in the first frame of each video
to train the weights of the network online and obtains gradient value information by
backpropagation to determine the effect of different feature channels in the target feature
layer on the target, and remodel the channel of the template feature by weighting this
contribution. Then the compact and effective deep feature is obtained, which can better
distinguish the object from the background. The network is the single-convolutional layer
network which is relatively easy to implement and compared to complex convolutional
neural networks, there are fewer parameters in the network. It is worth improving that
although our method can refine the target features, it does not have the ability to deal with
target failure, so its performance is constrained by the target disappearance reproduction
challenge in long-term tracking.

5. Conclusions

In this paper, a novel Siamese network-based target tracking method is proposed to
address the problem that different feature channels often have different importance for the
target representation, which enhances the feature tracking target by designing a lightweight
target-aware attention learning network and using a redesigned attention learning loss
learning function to learn the most effective feature channel weights for the target using
the Adam optimization method representation. This lightweight target-aware attention
learning network uses reliable information from the first frame of each video sequence
to train the weights of the network online, and obtains gradient value information by
back propagation to determine the contribution of different feature channels in the target
feature layer to model the target, and re-models the target by weighting this contribution
to the channels of the template features. The network is relatively easy to implement
and the small number of parameters facilitates fast computation. Finally, the proposed
algorithm is evaluated on OTB, TC-128, UAV123, VOT2016, and LaSOT datasets, and
both quantitative and qualitative analyses show that the method achieves satisfactory
performance, demonstrating the effectiveness of the proposed lightweight target-aware

16



Mathematics 2022, 10, 2299

attention learning network and attention learning loss function in a Siamese network
framework-based tracker.
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Abstract: In a chaotic system, deterministic, nonlinear, irregular, and initial-condition-sensitive
features are desired. Due to its chaotic nature, it is difficult to quantify a chaotic system’s parameters.
Parameter estimation is a major issue because it depends on the stability analysis of a chaotic system,
and communication systems that are based on chaos make it difficult to give accurate estimates or a
fast rate of convergence. Several nature-inspired metaheuristic algorithms have been used to estimate
chaotic system parameters; however, many are unable to balance exploration and exploitation.
The fruit fly optimization algorithm (FOA) is not only efficient in solving difficult optimization
problems, but also simpler and easier to construct than other currently available population-based
algorithms. In this study, the quantum fruit fly optimization algorithm (QFOA) was suggested
to find the optimum values for chaotic parameters that would help algorithms converge faster
and avoid the local optimum. The recommended technique used quantum theory probability and
uncertainty to overcome the classic FA’s premature convergence and local optimum trapping. QFOA
modifies the basic Newtonian-based search technique of FA by including a quantum behavior-based
searching mechanism used to pinpoint the position of the fruit fly swarm. The suggested model
has been assessed using a well-known Lorenz system with a specified set of parameter values and
benchmarked signals. The results showed a considerable improvement in the accuracy of parameter
estimates and better estimation power than state-of-the art parameter estimation approaches.

Keywords: chaotic system; fruit fly optimization algorithm; quantum-inspired computation;
parameter estimation

MSC: 68T20

1. Introduction

Chaos theory studies nonlinear dynamic systems. Chaos is the interaction between
regularity and probability-based unpredictability [1]. Weather and climate, biological
and ecological processes, the economy, social structures, and other natural phenomena
all exhibit chaotic regimes. The primary feature of chaos is its ability to generate a wide
range of complex patterns. For use as cryptographic secret keys, relevant mathematical
models may produce a vast amount of data. Confusion and diffusion are two key features
of cryptography, and chaos theory has the unique quality of having a direct connection to
both features. Furthermore, the deterministic but unexpected dynamics of chaotic systems
may be a powerful tool in the development of a superior cryptosystem [2,3].

The fundamental benefit of chaos is that unauthorized users see chaotic signals as
noise [2]. Chaotic-based encryption techniques are utilized for military, mobile, and private
data [3]. These applications demand real-time, rapid, secure, and reliable monitoring.
Most chaos-based secure communication systems use chaos synchronization [4]. Chaos
synchronization is vital for achieving security after information has been transferred [5].

Mathematics 2022, 10, 4147. https://doi.org/10.3390/math10214147 https://www.mdpi.com/journal/mathematics
19



Mathematics 2022, 10, 4147

Therefore, many cryptographic algorithms have adopted popular chaotic models that
depict chaos by employing mathematical models, such as a logistic map.

Chaos-based secure communication has issues. Due to the limitations of chaos theory
and techniques for creating chaos, attackers may sometimes determine the chaotic system
employed in encryption through state reconstruction. Second, transmission and sampling
delays make chaotic synchronization difficult. Due to the limits of digital computer ac-
curacy, computer chaotic maps are always periodic. Therefore, chaos-based public-key
cryptography has collisions [6]. Finally, picking the input parameters limits chaos theory.
The techniques used to determine these characteristics rely on the data dynamics and the
desired analysis, which is often complicated and inaccurate. Due to a chaotic system’s
complicated nature, many practical characteristics are unknown and difficult to quantify [7].
Parameter estimation is a major issue.

Two parameter estimation methods exist. One is the synchronization method [3,8],
which proposes updating parameter estimation based on chaotic system stability. Its
methodologies and sensitivities rely on the considered system; hence, updating may be chal-
lenging due to the complexity of the chaotic system. Another method is through metaheuris-
tic algorithms. Metaheuristic algorithms are intelligent optimization algorithms [9,10].
It translates parameter estimation into a multidimensional optimization problem using
sample data from the original system. It is easier to implement than synchronization.
Metaheuristic algorithms are popular for estimating chaotic system parameters [11,12].
Metaheuristic techniques require starting system settings. In many circumstances, the
original values cannot be retrieved, making reconstruction and management of the chaotic
system difficult. Most of these approaches are also used to estimate chaotic system parame-
ters. Few apply to complex chaotic systems [13].

The fruit fly optimization algorithm (FOA) is simple and easy to comprehend com-
pared with other sophisticated algorithms. FOA only requires adjusting the population
size and maximum generation number. Traditional intelligent algorithms need at least
three parameters. The influence of numerous factors on algorithm performance is hard to
examine; hence, they are generally determined via several tests. An incorrect parameter
will impair algorithm performance and complexity [14]. However, there is still a lot of
potential for development of FOA variations to obtain greater performance, particularly
for complicated practical issues related to convergence speed or avoiding being trapped
into the local optimum.

When it comes to population-based optimization methods, variability in the popu-
lation and unpredictability in the search process are two factors that often play a pivotal
role. By using quantum mechanics instead of Newtonian dynamics, the quantum-behaved
particle swarm optimization (QPSO) increases the particles’ capacity to escape the local
optimum. Classical quantum mechanics is the theoretical underpinnings of quantum the-
ory, which aims to appropriate some of the mysteriousness of quantum behavior processes.
Integrating quantum theory into the original FA, the quantum firefly algorithm (QFA)
is able to combat the loss of variety [15]. Quantum mechanics may be used to explain
how fruit flies navigate the environment in search of food; their actions are characterized
by a wave function of uncertainty. A quantum-behaved approach can avoid premature
convergence and help escape from the local optimum.

1.1. Problem Statement and Motivation

Chaotic systems are very sensitive to initial parameter choices. Long-term system
behavior prediction is difficult. Synchronization and chaos control in nonlinear systems
depend on exact parameter values in chaotic systems; if one of these values is uncertain,
the system will not perform as intended. Some parameters are unknown or difficult to
quantify due to the complexity of chaotic systems (such as secure communication). If
we wish to control or synchronize chaotic systems, we must estimate unknown system
parameters. Too many factors may cause the parameter estimation algorithm for 3D chaotic
systems to become more complex, which in turn increases the amount of effort required
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to calculate the results. This is why most algorithms struggle to find the global optimum.
As a result of its effectiveness, FA has been used to tackle a wide range of optimization
issues, leading to significant progress in a short period of time. The motivation is to take
insights from quantum theory to improve upon the FA for estimating the parameters of a
3D chaotic system.

1.2. Contribution and Methodology

The work presented in this paper is an extension of the work introduced in Ref. [16],
where quantum mechanics was used in the fruit fly optimization algorithm to make it
easier for particles to get out of the local optimum, so that the chaotic system parameters
could be estimated. In this paper, the QFOA was adopted to solve the parameter estimation
problem of the Lorenz chaotic system to achieve the synchronization with the aim of
transmitting data correctly. Fitness function based on the mean square error was utilized to
find the minimum error between the original and estimated ones in different directions.
To achieve high performance in terms of time and accuracy, the suggested model selected
only some samples from the received signal to check the synchronization early. QFOA
variables were tuned to estimate the unknown chaotic system parameters. Then, these
estimated parameters were used later, inside the well-known fourth-order Runge–Kutta
algorithm, to build the estimated original signal (a chaotic signal with a known structure)
to yield synchronization.

The rest of this paper is organized as follows: Section 2 provides a background
and literature review of some studies related to estimating the parameters of the chaotic
system; Section 3 presents the proposed methodology based on the analysis of the previous
techniques; Section 4 reports a complete evaluation of the proposed methodology, along
with the results and the discussion; and the final section contains the conclusion based on
the previous sections and future directions for research.

2. Background and Related Work

This section offers some important background related to the proposed model and
includes a literature review on parameters estimation of the chaotic system as one of
the most important techniques to achieve chaotic synchronization concerns on wireless
communication networks.

2.1. Preliminaries
2.1.1. Chaos Theory

Chaos theory is an alternative description and explanation of the behavior of nonlinear
dynamical systems [17]. In mathematical language, a dynamical system is classified as a
chaotic system [18–21] if it has the following properties:

• Sensitive to initial conditions—each point in a system is arbitrarily near other points
with drastically different behavior. Qualitatively, two paths with a starting separation
δX0 diverge.

|δX(t)| ≈ eλt|δX0| (1)

λ is the Lyapunov exponent. One positive Lyapunov exponent indicates chaotic
behavior, whereas more than one indicates hyperchaotic behavior.

• Topological mixing—implies system evolution, so that every area or open set of
its phase space will overlap. This assumption has profound implications for one-
dimensional systems.

• Periodic orbit density—each space point is arbitrarily near periodic orbits and is
regular. Not meeting this requirement may prevent topological mixing systems from
becoming chaotic. In chaos theory, the butterfly effect is the sensitivity of a system to
starting conditions. Small changes in a dynamical system’s starting state may have
huge long-term effects. Time makes such systems unpredictable.
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2.1.2. Lyapunov Exponents

The Lyapunov exponents help investigate chaotic or hyperchaotic dynamical systems.
Lyapunov exponents categorize dynamical systems so that we can see their behavior. A
dynamical system is chaotic if it has one positive Lyapunov exponent, and hyperchaotic if
it has more [22–24]. Consider two locations in space, X0 and X0 + ΔX0, which form orbits
using an equation or set of equations. Sensitive dependency may only occur in particular
parts of a system; hence, this separation depends on the beginning value, Δx(X0,t). For
chaotic points, Δx(X0,t) acts unpredictably. The mean exponential rate of divergence of
two near orbits is defined as [25].

λ = lim
t → ∞

|ΔX0| → 0

1
t

ln
∣∣∣∣Δx(X0,t)

ΔX0

∣∣∣∣ (2)

The Lyapunov exponent, λ, is used to differentiate orbits. If λ < 0, the orbit attracts a
stable fixed point or periodic orbit. The more negative the exponent, the better the stability.
If λ = 0, the system is steady state. A conservative system has this exponent and are
Lyapunov stable. In this case, orbits would stay apart. For λ > 0, the orbit is chaotic. Nearby
points diverge to any arbitrary separation.

To define sphere trajectories, we require linearized systems or variational equations.
→
x =

→
F (

→
x ), where

→
x = (x1, x2, . . . . . . , xn) and

→
F = ( f1, f2, . . . . . . , fn). Any ordinary

numerical differential equation solution may create ∅(
→
x0). Formally, partial derivatives

explain how these perturbations respond. Consider the Lorenz system [26–28]:⎧⎨⎩ .
y

.
x = θ1(y − x)
= θ2x − y − xz
.
z = −θ3z + xy

(3)

θ1, θ2, and θ3 are Lorenz parameters. To set up the linearized system for the above equations,
the right-hand Jacobian is needed.

J =

⎡⎢⎢⎣
∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

⎤⎥⎥⎦ (4)

J =

⎡⎣ −θ1 θ1 0
θ2 − Z −1 −x

y x −θ3

⎤⎦ (5)

J =

⎡⎣δx1 δy1 δz1
δx2 δy2 δz2
δx3 δy3 δz3

⎤⎦ (6)

The ith equation’s x variation component is δxi. Column sums are the x, y, and z
coordinates of the evolving variant. The rows represent the vector coordinates of the
original x, y, and z variations. Linear equations:

⎡⎢⎣
.
δx1

.
δy1

.
δz1.

δx2
.
δy2

.
δz2.

δx3
.
δy3

.
δz3

⎤⎥⎦ =

⎡⎢⎢⎣
∂ f1
∂x

∂ f1
∂y

∂ f1
∂z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂z

⎤⎥⎥⎦
⎡⎣δx1 δy1 δz1

δx2 δy2 δz2
δx3 δy3 δz3

⎤⎦ (7)
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⎡⎢⎣
.
δx1

.
δy1

.
δz1.

δx2
.
δy2

.
δz2.

δx3
.
δy3

.
δz3

⎤⎥⎦ =

⎡⎣ −θ1 θ1 0
θ2 − Z −1 −x

y x −θ3

⎤⎦⎡⎣δx1 δy1 δz1
δx2 δy2 δz2
δx3 δy3 δz3

⎤⎦ (8)

2.1.3. Chaos Synchronization

Chaos synchronization occurs when two (or more) chaotic systems (identical or non-
identical) adapt a characteristic of their motion to the same behavior, owed to force or
coupling. This includes trajectories and phase locking. Complete, projective, and antiphase
synchronization have been explored [29]. These three synchronization types are usually of
interest for master-slave configurations, i.e., two connected systems. However, for a more
general case of networks, the less regular synchronization regimes such as multi-clustering
and synchronization of groups of nodes are of relevance. See [30,31] for more details.

Complete synchronization means having equivalent state variables over time. Gen-
eralized synchronization for master-slave systems implies a functional relation between
connected chaotic oscillators, x2(t) = F[x1(t)].:

1. Complete Synchronization

Considering the following master and slave systems:

.
x = θ(x), (9)

.
y = ψ(y) + u(x, y), (10)

State vectors x, y ∈ R is the vector controller for f, g: Rn → Rn. The system error
dynamics are:

e(t) = y(x)− x(t), (11)

The systems are said to be in complete synchronization if:

lim
t→∞

‖e(t)‖ = 0 (12)

2. Anti-Phase Synchronization

In this type, given the same master-slave systems, the error dynamics for the systems
are defined as:

e(t) = y(x) + x(t) (13)

The systems are said to be in anti-synchronization if Equation (12) is satisfied.

3. Projective Synchronization

In this type, given the same master-slave systems, the error dynamics for the systems
are defined as:

e(t) = y(x)− αx(t) (14)

where α 	= 0 is the constant, called a scaling factor. The systems are said to be in pro-
jective synchronization if Equation (12) is satisfied. By setting appropriate values for α,
synchronized systems may be scaled to desired levels and proportionally grow. Complete
synchronization and anti-synchronization are specific examples of projective synchroniza-
tion where α = 1 and α = −1. Greater mathematical complexity and chaos characterize the
Lorenz map because of its higher dimension. As one-dimensional chaotic maps need fewer
computing processes, they are better suited for applications that need to run with minimal
latency. More basic chaotic maps, however, have serious security flaws. This shortcoming
arises because of the restricted chaotic range, reduced chaotic complexity, and accelerated
rate of degradation of dynamic behavior [32,33].

Several approaches for chaotic synchronization have been presented. Active nonlinear
control and adaptive mode control have been widely employed for synchronization in
recent literature [29]. Based on the Lyapunov stability theory, active nonlinear control
has gained popularity in recent years. Adaptive control assumes that there is a controller
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with a fixed structure and complexity for each potential plant parameter value, which
can achieve the required performance with suitable controller parameter values. All
these strategies are not applicable if the parameters of the chaotic system are unknown.
Chaos control and synchronization focus on estimating the unknown parameters of chaotic
dynamical systems. Parameter identification may be transformed into a multi-dimensional
optimization problem using an objective function [34–36].

2.1.4. Chaotic Maps

Chaotic maps are differential equations that describe chaotic discrete dynamics [18].
Chaos can only be detected in deterministic, continuous systems with a three-dimensional
phase space or more. Low-dimensional chaotic systems are resource-efficient. The logistic
map is a typical low-dimensional system [37]. Chaos is degenerative in these systems. It
is hard to give the output sequence a long period. High-dimensional chaotic systems are
more nonlinear. However, they have the drawbacks of excessive resource consumption
and low-speed performance. Therefore, a large-period, high-dimensional, digital chaotic
system with high speed and minimal resources is needed. Chen, Rossler, and Henon are
3D chaotic systems utilized in wireless communication [38].

1. Chen Chaotic System

Chen identified a classical chaotic attractor in a basic 3D system [38]:⎧⎨⎩ .
y

.
x = a(y − x)

= (c − a)x − xz − cy
.
z = xy + bz

(15)

x, y, and z are state variables, whereas a, b, and c are parameters. Chen chaotic-based
encryption relies on secret keys. An invader cannot guess the wireless key. As Chen
chaotic systems are sensitive to beginning circumstances and system characteristics, two
near-initial conditions lead to diverse paths, as shown in Figure 1a.

 
(a) (b) (c) 

Figure 1. 3D view of (a) Chen chaotic, (b) Rossler chaotic, and (c) Henon chaotic map.

2. Rossler Chaotic System

Rossler is a basic chaotic dynamical system with one non-linear term with standard
system equations [39]: ⎧⎨⎩

.
x = a(y − x)

.
y = x + ay

.
z = b + xz − cz

(16)

x, y, and z are state variables; a and b are fixed; and c is the control parameter. Rossler
attractor parameters are a = 0.2, b = 0.2, and c = 5.7. Figure 1b shows the Rossler chaotic
attractor. This system is the minimum for continuous chaos for at least three reasons: (1) Its
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phase space has minimal dimensions, (2) Nonlinearity is minimal because there is a single
quadratic term, and (3) It generates a chaotic attractor with a single lobe, unlike the Lorenz
attractor, which has two.

3. Henon Chaotic System

The Henon chaotic map is a chaotic discrete-time dynamical system. The map simpli-
fies the Lorenz model’s Poincare portion. The plane will either approach the Henon odd
attractor or diverge to infinity. ⎧⎨⎩

.
x = a − (

y2 + bz
)

.
y = x
.
z = y

, (17)

The Henon chaotic map parameters are a = 1.4 and b = 0.3. The conventional Henon
map is chaotic (Figure 1c).

2.1.5. Quantum Fruit Fly Optimization Algorithm

Optimizing means picking the best element (based on some criteria) from a group of
options or finding the least or maximum output for an experiment [34]. Heuristic methods
are intelligent search strategies that speed up the process of obtaining a satisfying or
near-optimal solution in bio-inspired procedures. A heuristic approach is simpler than an
analytical one. However, precision is lost. Metaheuristics are iterative processes that help
identify near-optimal solutions. Metaheuristics combine heuristic approaches to improve
their performance [10,40]. Recent metaheuristic algorithms include the FOA [41]. FOA is
inspired by fruit fly foraging. FOA has fewer adjusting parameters, less computational
quantity, and offers great global search and convergence abilities. FOA is two-phased. The
first step is smelling. In this phase, flies travel toward food by smelling it. Second phase
begins when they are closer to the food supply: the vision stage. The fruit flies utilize their
eyesight to come closer to the food. This phase repeats until the fruit fly eats the food. The
steps of FOA include [42,43]:

(1) The random initial position of a fruit fly. Init X_axis; Init Y_axis.
(2) A fruit fly’s sense of smell searches randomly for food.{

Xi = Xaxis + Random Value R1
Yi = Yaxis + Random Value R2

(18)

(3) As the food’s location is unknown, the distance (Dist) to the origin is inferred before
calculating the decision value of smell concentration (S).{

Disti =
√

X2
i + Y2

i
Si =

1
Disti

(19)

(4) The smell concentration decision value (S) is inserted in the Fitness function to calcu-
late the fruit fly’s Smelli.

Smelli = Function(Si) (20)

(5) Determine the fruit fly swarm’s strongest smell (seek for the maximum value)

[bestSmell bestIndex] = max(Smell) (21)

(6) Using the best smell concentration and x, y coordinates, the fruit fly swarm flies to
the position. ⎧⎨⎩

Smellbest = bestSmell
X_axis = X(bestindex)
Y_axis = Y(bestindex)

(22)
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(7) If the smell concentration is better than the previous iteration of smell concentration,
execute Step 6.

Quantum theory assigns the fruit fly swarm to move in quantum space. The delta
potential well model increases the uncertainty that fruit flies recognize and migrate to food.
All quantum objects have wave-like features and may be in several locations at once; hence,
they are characterized in quantum theory by the wave function (x, t), rather than by their
position x and velocity v. A location’s likelihood of hosting the item in quantum space
is determined by the strength of the wave function at that location, as shown below in
module form [15].

|ψ(x, t)|2dxdydz = Qdxdydz (23)

Qdxdydz is the object’s probability of appearing at (x, y, z) at time t. Thus, |ψ(x, t)|2 is the
probability density function meeting the equation:∫ +∞

−∞
|ψ|2dxdydz =

∫ +∞

−∞
Qdxdydz = 1 (24)

Schrödinger’s equation describes object motion in quantum physics.

i�
∂

∂t
ψ(X, t) = Ĥψ(X, t) (25)

Ĥ = − �

2m
∇2 + V(t) (26)

� is the Planck Constant, Ĥ is the Hamiltonian operator, m is the object mass, and V(t)
denotes the potential field of the object. Fruit flies search for food in the delta potential well,
where they move in quantum space. Quantum behavior replaces fruit fly foraging and
random search in quantum space. Both fruit fly smell and vision become more uncertain,
increasing population diversity. One-dimensional space was used for simplicity. If food
source location is x, its potential energy in the one-dimensional delta potential well is:

V(x) = −γδ(x − ρaxis) = −γδ(y) (27)

where the location of the fruit fly swarm, ρaxis, is in the center of the delta potential
well. According to Schrödinger’s equation, the following normalized wave function can
be obtained:

ψ(y) =
1√
L

e−|y|/L (28)

L is the delta potential well length. Thus, the probability density function is:

Q(y) = |ψ(y)|2 =
1
L

e−|y|/L (29)

This equals

y = ± L
2

ln
1
u

(30)

u is a random number (0, 1). Thus, we can determine the fruit fly’s food source location:

x = ρaxis ± L
2

ln
1
u

(31)

The model assumes that a 1D delta potential well is on each dimension at the swarm
center attractor point, and osphresis-based search has quantum properties. The fruit fly’s
quantum-behaved foraging is shown by the wave function, not randomly. The employed
QFOA model included swarm location initialization, osphresis-based search, and vision-
based search. The employed QFOA model used quantum-behaved searching instead of
random osphresis-based searching. In the osphresis-based search process, Mosp, new food
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source locations (Xaxis, Yaxis) were generated in the delta potential well. FOA’s quantum-
behaved searching mechanism is:⎧⎨⎩Xi = Xaxis ± Lx,i

2 ln 1
rx

Yi = Yaxis ± Ly,i
2 ln 1

ry

(32)

where i = 1, 2, . . . , Mosp, rx and ry are random [0, 1] values. Lx,i and Ly,i are delta potential
well characteristic lengths of the corresponding dimension, determined by the fruit fly’s
last search location, based on their olfactory senses.{

Lx,i = 2b|Xaxis − Xi|
Ly,i = 2b|Yaxis − Yi| (33)

i is the iteration number and b controls the quantum searching range.

b = b1 logsig
(

10 ·
(

0.5 − g
Gmax

))
+ b2 (34)

b1 and b2 restrict the value range to b ∈ [b2, b1 + b2].

2.2. Related Work

Several works on estimating chaotic system parameters have been recently
published [13,44,45]. Real-world estimation is difficult for parameters of a complex 3D
chaotic system. Most gradient-based methods are sensitive to initial conditions, trapping
them in local minima. Estimating 3D chaotic parameters using soft computing techniques
at a suitable cost function, is one solution, such as global optimization algorithms. Several
cases of chaotic system parameter estimation using optimization algorithms have been
reported [44,46,47]. The following section summarizes these algorithms.

Li et al. [35] combined the artificial bee colony algorithm (ABC) and differential
evolution (DE) to estimate chaotic system parameters. Gao et al. [48] proposed chaos
firefly optimization (CFA) for identifying Lorenz chaotic system parameters. Using chaotic
search to update the standard Firefly algorithm improved optimization accuracy and speed.
Recent pioneering work has combined the cuckoo search (CS) algorithm and orthogonal
learning to estimate Lorenz and Chen chaotic system parameters [49]. He et al. also
used particle swarm optimization (PSO) to estimate Lorenz system parameters [50]. This
technique does not sufficiently explore the solution space. Small populations produce poor
results. Li et al. [51] introduced the chaotic ant swarm (CAS) algorithm to determine chaotic
system parameters.

Gholipour et al. [52] estimated chaotic system parameters with the artificial bee colony
algorithm. Wei and Yu [53] presented a hybrid cuckoo search (HCS) algorithm inspired
by differential evolution. The presented HCS offers two novel mutation strategies to
fully exploit the neighborhood. Three chaotic systems with and without time delays
were simulated and compared to other optimization methods to test HCS. Experimental
results showed HCS’s superiority in chaotic system parameter estimation due to its high
calculation accuracy, fast convergence speed, and strong robustness. In [54], the authors
introduced a two-stage estimation technique that combined the guaranteed approach and
swarm intelligence.

Zhuang et al. [55] presented a new hybrid Jaya–Powell method for estimating the
parameters of a Lorenz chaotic system. The proposed Jaya–Powell algorithm combines
the Jaya algorithm, which seeks the relatively global optimum, with the Powell algorithm,
which seeks the relatively local optimum, to provide a more precise and efficient estimate.
This algorithm’s searching technique makes it easier to strike a middle ground between
exploration and exploitation throughout the optimization process. The suggested Jaya–
Powell algorithm does not need the careful adjustment of appropriate parameters as it
does not rely on any algorithm-specific parameters. Compared with seven benchmark
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methods, the proposed hybrid Jaya–Powell algorithm provided more precise estimates and
converged more quickly.

The work presented in [56] explored how to use several metaheuristic algorithms for
the recognition of parameters in a fractional-order financial chaotic system. The algorithms
that have been put into place are the ant colony optimizer, grey wolf optimizer, whale
optimization algorithm, and artificial bee colony optimizer. As an objective function, mean
square error was used to estimate the system’s parameters. Zhang et al. [57] offered a novel
method of parameter estimation that made use of numerical differentiation to streamline the
preparation of observational data. Given the noisy observations on a subset of dependent
variables, numerical differentiation may be used to approximately determine the values
of the dependent variables and their derivatives. The parameter estimation issue may be
simplified by substituting these approximations into the original system. The precision and
efficiency of their technology are shown by numerical examples.

Encouraged by recent developments in data assimilation, Carlson et al. [58] built a
dynamic learning technique to estimate missing parameters of a chaotic system using just a
subset of available data. The authors convincingly proved, under plausible assumptions
that this approach converged to the right parameters when the system under issue was the
standard three-dimensional Lorenz system. They computationally showed the effectiveness
of this technique on the Lorenz system by recovering any correct subset of the three non-
dimensional parameters of the system, provided that an appropriate subset of the state
was observable. Over the last two decades, studies on how to synchronize a Lorenz
chaotic system have been more prominent. Model reference adaptive control (MRAC)
synchronization scheme design has been the primary focus of the majority of the research.
For this problem, C. Peng, and Y. Li [59] suggested two system identification strategies.
The observer–Kalman filter identification method was the first method used. The second
kind of discretization was the bilinear transform. The new approach significantly improved
the accuracy of the discovered parameters, which were therefore already very near to
actual values.

Rizk-Allah et al. [60] presented a unique approach to parameter estimation for the
chaotic Lorenz system, using a modified form of particle swarm optimization (PSO). The
suggested technique, a memory-based particle swarm optimization (MbPSO) algorithm,
modeled the parameter estimation of the Lorenz system as a multidimensional issue. To
change the population’s orientation and improve search efficiency, MbPSO added two
additional variables to the classic PSO. The results showed that the suggested algorithm
performed much better than the original PSO, when particle memories were linked to
those of other particles. The primary goal of the study [61] was to apply a deep learning
technique to the problem of estimating the parameters of chaotic systems, such as the
Lorenz system. In this research, the authors used the k-means technique to build out the
workflow of a deep neural network (DNN)-based approach. The DNN approach works
well for difficult, nonlinear problems. Using the proposed approach, 98% of correct training
data and 73% of test data were predicted.

The parameter identification for the discrete memristive chaotic map was the primary
topic of the research presented by Peng et al. [62], in which a novel intelligent optimization
technique called the adaptive differential evolution algorithm was suggested. To handle
the hyperchaotic and attractors that coexist in the investigated discrete memristive chaotic
maps, the identification objective function had two unique components: time sequences
and return maps. It was shown via numerical simulations that the suggested approach
outperformed the other six existing algorithms and maintained the ability to correctly
identify the original system’s properties, even when subjected to noise interference.

Although chaotic system parameter estimation has been studied for decades, it can
still be improved. According to the review, past studies focused on: (1) Estimating a
single chaotic system parameter and (2) Not addressing the best optimization technique
for exploration and exploitation in a unified framework. Most bio-inspired optimization
techniques for chaotic system parameter estimation combine two or more algorithms to
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improve exploration and exploitation. To the best of our knowledge, little attention has
been paid to developing a bio-inspired parameter estimation technique for a chaotic system
with few training samples.

3. Materials and Methods

Let
.
X = F(X, X0, θ0) be a continuous nonlinear chaotic system, where X = (x1, x2, . . . , xN)

′

∈ Rn is the chaotic system’s state vector,
.
X is X’s derivative, the resulting solution is param-

eterized by the initial value X0, and θ0 = (θ1,0, θ2,0, . . . , θd,0)
′ are the original parameters. If

the system’s structure is known, the estimated system may be expressed as
.
X̃ = F(X̃, X0, θ̃),

where X̃ = (x̃1, x̃2, . . . , x̃N)
′ ∈ Rn is the state vector and θ̃ =

(
θ̃1, θ̃2, . . . , θ̃d

)′
is a collection

of estimated parameters. Based on X, the fitness function is [49,51]:

f
(

θ̃n
i

)
= ∑W

i=0

[
(x1(t)− x̃n

i,t(t))
2 + . . . + (XN(t)− x̃n

i,N(t))
2
]
, (35)

where t = 0, 1, . . . . . . W and i is the ith state vector. Estimating chaotic system parameters
aim to reduce fitness function by minimizing θ̃n

i . Dynamic instability makes chaotic systems
difficult to estimate. Due to the problem’s many variables and various local search optima,
typical optimization in the local optima is difficult [63,64].

A chaos communication system comprises of transmitter, receiver, and channel (noise)
performance. In the transmitter, the modulation methods utilized to combine the message
signal and chaotic carrier are crucial for system security. As a signal must be sent to the
receiver, there is a possibility that intruders may receive the signal. Even if intruders do
not know the structure or parameters of a chaotic system, they may use signal processing
or sophisticated algorithms to extract the message from the transmitter signal. In chaotic
masking, the signal is directly added to the chaotic signal; thus, the fluctuation may be
recognized by non-linear dynamic forecasting techniques or power spectrum analysis, if
the message amplitude/frequency is high enough. Mixing the message should remove
any pattern or information from the sent signal. The carrier chaotic signal will be distorted
by channel noise before reaching the receiver. Message recovery requires chaotic synchro-
nization at the receiver. Demodulation is an issue in chaotic communication systems. The
recommended solution uses a few signal samples instead of large samples that need more
calculation. The communication channel is assumed to be free noise, as the emphasis is on
estimating the chaotic system’s unknown parameters, not channel attacks.

As discussed later, in a quantum model of FOA, each fruit fly represents a particle
that has a state depicted by a wave function, instead of position and velocity. The dynamic
behavior of the fruit fly is different from that of the fruit fly in standard FOA algorithms;
that is, the accurate values of x and v cannot be simultaneously calculated. Its searching per-
formance is better than the original particle swarm optimization algorithm. The quantum
particle swarm optimization algorithm is a global convergence guarantee algorithm. The
capabilities of a QFOA algorithm to enhance convergence speed and low optimization ac-
curacy were achieved through: (1) A mutation operator to increase the diversity of particles
in a population (the delta potential well concept to speed up the convergence speed); (2) An
operator based on evolutionary generations to update a contraction expansion coefficient
(objective or fitness function for global optimization); (3) An elitist strategy to remain the
strong particles.

3.1. At the Transmitter Side

The original signal was hidden using a known 3D Lorenz chaotic signal. Lorenz used
θ1 = 10, θ2 = 28, and θ3 = 8/3. This system shows chaotic behavior [65]. Three phases
applied chaotic masking. First, we used the fourth-order Runge–Kutta (RK4) to solve the
3D Lorenz chaotic system equation to create the chaotic signal. RK4 examines iterative
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steps in four places [66,67]. Runge–Kutta was run three times for each point in phase space
with h = 0.01 [49–52].
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The second stage involved sampling the original input to create a discrete signal or
accumulating an analogue or continuous signal [47]. Sampling is described by the following
arithmetic statement, where δ(t) represents the impulse train of period Ts [68]:

Sampled Signal xs(t) = x(t) · δ(t) (47)

δ(t) = a0 + ∑∞
n=1(an cos(nwst) + bn sin(nwst)) (48)

a0 =
1
Ts

∫ T
2

−T
2

δ(t)dt =
1
Ts

δ(0) =
1
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(49)
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(50)
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30



Mathematics 2022, 10, 4147

xs(t) =
1
Ts

[x(t) + 2 cos(nwst).x(t) + 2 cos(n2wst).x(t) + 2 cos(n3wst).x(t) + . . .] (54)

After sampling the original signal, downsampling reduced the signal’s sampling rate
by M. When a signal is downsampled, only every Mth sample is taken and all others
are discarded. Downsampling balances a dataset by matching the majority class (3D
original signal) with minority class samples (3D chaotic signal). In the third stage, the
downsampled original signal

→
x d(t) was added, or masked, to the chaotic oscillator output

at the transmitter before transmission. The transmitter is represented as follows:

→
c (t) = K(

→
x c(t)), (55)

→
c (t) is the chaotic system’s output after applying RK4.

→
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→
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→
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→
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→
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→
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⎤⎦,
→
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⎡⎣xd
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⎤⎦ (57)

Before transmitting the signal via the channel, upsampling and interpolation were
used to rebuild it. The upsampling procedure increases the sampling rate by an integer
factor M (interpolation factor) by adding M-1 evenly spaced zeroes between each pair of
samples. Mathematically, upsampling is provided by the following equations, where l = 0,
±1, ±2, . . . . The impulse train [n] represents the sampling function.

xU [n] =
{

xm
[ n

M
]
. n = 0,±M,±2M, . . .

0 otherwise
(58)

xU [n] = xm[n]p[n] = ∑+∞
J=−∞ xm[l]δ[n − lM] (59)

p[n] = ∑+∞
τ=−8 δ[n − lM] (60)

After upsampling, interpolation was used to create new data points within a specified
range. If the sampling instants are near enough, the signal can be accurately recreated by
low-pass filter interpolation. Low-pass filtering xU [n] reconstructs xm[n]. The interpolated
signal xT [n] is calculated as [69]:

xT [N] = xU [n] ∗ h[n] (61)

h[n] denotes the impulse response of the low-pass filter:

h[n] =
MΩC

2π
sinc

(
nΩC

π

)
(62)

ΩC is the cutoff frequency of the discrete time filter. So, the equivalent interpolation formula
can be written as:

xT [n] = ∑+∞
J=−∞ xm[lM]hT [n − lM] (63)

xT [n − lM] =
MΩC

2π
sinc

[
ΩC
π

(n − lM)

]
(64)

h[n] is the impulse response of the interpolating filter. The interpolation using the sinc
function is commonly referred to as band limited interpolation.

3.2. On the Receiver Side

On the receiver side, the received signal (masked original signal) was downsampled.
To use chaotic communications, two identical chaotic oscillators were needed in the trans-
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mitter (or master) and receiver (or slave). Unknown receiver-side parameters (θ̃1, θ̃2, θ̃3)
needed to be approximated. The quantum fruit fly optimization algorithm (QFOA) es-
timates the 3D Lorenz chaotic system’s unknown parameters. The fundamental QFOA
includes a setup step and a cycle of smelling, evaluating, and flocking [15,43,70]. The
QFOA control parameters were set, including the maximum number of generations and
population size, and the fruit fly swarm’s location was randomized. As the original FOA
can only solve continuous optimization issues, it was adapted to tackle synchronization in
chaos-based communication networks. Each fly picked randomly from the search space
group, including θ̃1, θ̃2, and θ̃3. As stated in [71], the search space for unknown chaotic
system parameters is [9 11], [20 30], and [2 3]. Given these initial answers, QFOA repeated
the following steps [72]:

- These solutions were input to a predefined chaotic receiver system. The RK4 was used
in the 3D Lorenz equations to create chaotic signals (one for each fruit fly).

- Each fly determined food concentration using the mean square error between the
predicted chaotic signal and the downsampled received signal (smelling process).

- Each fly shared its position with others. The flies compared their solutions to choose
the best one.

- Flies migrated to the solution with the lowest fitness value, which became the new
best solution (vision process).

This stage outputs the 3D Lorenz chaotic system’s ideal parameters. The second stage
of synchronization used these characteristics as inputs. RK4 was used again to create
the estimated 3D chaotic signal. The third stage received this estimated signal and the
downsampled received signal. We then subtracted the two signals to get the sampled
signal. The original signal was reconstructed using upsampling and interpolation. Perfect
synchronization is key to reconstructing the original signal. Table 1 provides the link
between QFOA parameters and the parameters estimation problem of the chaotic system.

Table 1. The link between QFOA parameters and the parameters estimation problem of the chaotic system.

QFOA Parameters Chaotic Synchronization Problem

Number of iterations The search process’s best solution iteration count.
Number of swarms m m = 25.

Initial location The initial solution is randomly selected from each parameter’s search space.
Smell concentration Mean square error (Objective or fitness function).

Vision Smell concentration-based parameter selection.

4. Results

This section analyses the model’s efficiency. Experiments were performed to test
the model’s reliability in estimating chaotic system parameters. The suggested approach
optimized synchronization with the Lorenz chaotic system and speech signal. The 20 to
30 dB weaker speech signal was combined with the chaotic mask signal to create a broadcast
signal. Table 2 shows the experiment’s algorithm settings. The recommended model was
implemented in MATLAB R2017b (9.3.0.713579) 64-bit. The model was constructed using a
laptop with an Intel (R), Core (TM) i5-8250U CPU@ 1.60 GHZ @ 1.80 GHz, 8 GB, and 64-bit
operating system, with a x64 processor.

In the proposed chaotic parameters estimate model, various statistical parameters
were employed to evaluate model performance. These evaluations included [45] the mean
(average) of best fitness values and standard deviations. For a robust model, these means
(mean of best fitness) needed to be as low as possible, where optimum fitness quantifies
the difference between estimated and sent signals. Standard deviations (Std.) shows how
measurements for a group are spread apart from the average (mean) or anticipated value. A
low standard deviation suggests that most data points are near to the mean (more reliable).
A large standard deviation suggests the data points are widely scattered (less reliable).
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Table 2. The parameters of the optimization algorithms (Reference parameters collected from
previous studies).

Algorithm Parameters Values

Fruit fly (FOA) Number of swarms
Maximum number of iterations

25
50

Cuckoo search (CS)
Number of swarms
Probability rate
Maximum number of iterations

25
0.20
50

Practical swarm (PSO)

Number of swarms
Inertia weight
Acceleration coefficient
Maximum number of iterations

25
0.8
1.5
50

Genetic algorithm (GA)

Number of swarms
Crossover rate
Mutation rate
Maximum number of iterations

25
0.7
0.3
50

Firefly algorithm (FA)

Number of swarm
Initial brightness of each fly
Absorption coefficient of light
Step size (α)
Maximum number of iterations

25
1
1
1

50

4.1. Experiment 1: Comparison with Existing Methods

The first batch of tests compared the proposed model to comparable techniques [44]
that used the GA, PSO, and CS to find the 3D Lorenz chaotic system characteristics solely
using chaotic signals. Default swarm parameters were utilized. Table 3 shows that the sug-
gested model is superior to the prior techniques. QFOA’s calculated parameters matched
the original parameters’ real values. According to [49], the 3D Lorenz chaotic system’s
initial parameters are θ1 = 10, θ2 = 28, and θ3 = 8/3, allowing complete synchronization
between the master and slave chaotic systems. The estimated parameters matched the
CS-based model, but the QFOA outperformed in terms of the optimal function’s mean
and standard deviation. Most data points were close to the mean with a low standard
deviation (more reliable). QFOA was more effective and resilient than other chaotic system
parameter estimation strategies. The model and system responses were synchronized. This
gain was due to the proposed model’s higher coverage and exploration of the searching
space, which improved parameter estimate accuracy and led to the discovery of optimum
chaotic parameter values compared with existing techniques.

Table 3. Comparison of statistical results for the Lorenz system, in case of only using chaotic signal.

Models
Means of
the Best
Fitness

Std. Dev. of
the Best
Fitness

θ1 θ2 θ3

QFOA 9.53 × 10−9 5.83 × 10−9 10.00 28.00 2.6666
CS 1.71 × 10−4 1.69 × 10−4 10.00 28.00 2.6664

PSO 0.118 0.269 9.998 27.99 2.6665
GA 1.332 2.784 10.027 28.01 2.6691

4.2. Experiment 2: Effect of QFOA Iteration

The second set of experiments investigated the effect of the QFOA number of iterations
on the proposed model to identify the correct parameters of the 3D Lorenz chaotic system
using only chaotic signals and masking voice signals with the chaotic signals. QFOA was
performed 30 times every iteration, with 50 iterations total and W = 30 for data sampling.
Default swarms were utilized. After 20 iteration, the parameters θ1, θ2, and θ3 converge to
the actual values. QFOA reached stable values in 25 iterations. As the fitness function value

33



Mathematics 2022, 10, 4147

declines rapidly to zero, indicating that QFOA may converge quickly to the global optimum.
These few iterations did not require complex calculations. By adjusting the location of the
QFOA swarms by modifying the number of iterations, the algorithm could reach an ideal
balance between exploitation and exploration. At the same time, elitism in population
iteration may have sped up the convergence and assured continual optimization. This
highlights the remarkable efficiency of QFOA in accomplishing global optimization.

4.3. Experiment 3: Effect of Number of Swarms

The third set of experiments was implemented to find a suitable number of QFOA
swarms that helped to reduce computational effort without sacrificing estimation precision.
For the three-dimensional Lorenz system, the proposed model was run by setting the
QFOA swarm numbers as 10, 30, and 100, respectively. In general, tiny populations provide
poor outcomes. As the population grows, outcomes improve, but more fitness tests are
needed. Beyond a certain point, outcomes are not significantly influenced. When there are
too few swarms, the solution space is not sufficiently searched, resulting in unsatisfactory
outcomes. Considering search quality and computational effort, a population size between
30 and 60 is suggested. A larger population size is suggested for estimating additional
parameters. Size 25 performed well. Considering processing costs and estimating accuracy,
a large population size is unnecessary.

4.4. Experiment 4: Influence of the Data Sampling W

The fourth series of experiments tested how data sampling affected model accuracy.
To reduce the amount of parameter setting combinations, the model changed one parameter
W at a time, while leaving other parameters (number of swarms, number of iterations, etc.)
at default values. The impact of modifying these variables was also considered. General
factors for selecting W were minimum fitness mean and highest estimate accuracy. All
scenarios were run 30 times for comparison. Table 4 lists the estimation results and the
means of the best fitness values for different data sampling W. As shown, the estimation
accuracy declined as W increased. Moving from 30 samples to 100 decreased the mean of
fitness values by 36%, whereas moving from 100 samples to 200 decreased the mean of
fitness values by 45%. These three groups of input data may have provided a satisfactory
estimate, but the 30 samples of data had the least variation. Different inputs impacted
the first iteration, but for all instances, it took roughly 25 iterations for the algorithm
to converge to zero, indicating these three conditions could all acquire quite accurate
anticipated outcomes. As expected, chaotic parameter estimate accuracy falls as W rises.
The crucial sensitivity of the nonlinear system to starting circumstances and parameters
made the fitness function more difficult as W increased. To decrease estimate bias in target
nonlinear systems, it is vital to sample enough data.

Table 4. Statistical results for the extended Lorenz chaotic system with varied data sampling.

Number of
Samples

Means of
the Best
Fitness

θ1 θ2 θ3

W = 30 9.45 × 10−9 10.00 28.000 2.6667
W = 100 1.49 × 10−8 10.00 27.998 2.6666
W = 200 2.18 × 10−8 9.99 27.997 2.6666

4.5. Experiment 5: Comparison with another Quantum Metaheuristic Algorithm

The fifth series of tests compared the proposed model with a comparable strategy that
used the quantum firefly (QFA) algorithm to determine the ideal chaotic parameters of
the 3D Lorenz chaotic system exclusively using chaotic signal and masking speech sounds
with chaotic signal. Both techniques were performed 30 times to compare fitness means
and standard deviations. Default swarms were utilized. Table 5 shows that the estimated
chaotic parameters while masking speech signals with chaotic signals are similar to the
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QFA-based model. The mean fitness values and standard deviations of QFOA were 37 and
66% lower than in QFA.

Table 5. Statistical results for the Lorenz system.

Model
Means of
the Best
Fitness

Std. Dev. of
the Best
Fitness

θ1 θ2 θ3

Masking QFOA 1.04 × 10−8 6.27 × 10−9 10.00 28.00 2.6667
voice signal
with chaotic

signal
QFA 1.61 × 10−8 1.85 × 10−8 10.00 27.99 2.6666

Chaotic only QFOA 9.53 × 10−9 5.79 × 10−9 10.00 28.00 2.6667
QFA 1.42 × 10−8 1.18 × 10−8 10.00 28.00 2.6667

In general, the quantum-inspired firefly algorithm (QFA) ensured the diversification of
firefly-based generated solution sets, using the superstitions quantum states of the quantum
computing concept. However, it suffered from premature convergence and stagnation;
this was mainly dependent on the ability of the employed potential field to handle move-
ment uncertainty. The suggested QFOA algorithm, inspired by the delta potential field,
presented the most balanced computational performance in terms of exploitation (accuracy
and precision) and exploration (convergence speed, and acceleration). The advantage of
such models, on the one hand, is that they are “exactly solvable”, e.g., the spectrum and
eigenvectors are explicitly known; on the other hand, many interesting physical features are
retained, despite the simplification involved in approximating short-range with zero-range.
Thus, QFOA was more effective and resilient than QFA in estimating chaotic parameters.

4.6. Experiment 6: Estimation Accuracy with Different Chaotic Systems

The sixth group of experiments was conducted to determine the efficiency of the
proposed model regarding the different chaotic systems, including the 3D Chen and 3D
Rossler chaotic systems in cases of only using the chaotic signal. The algorithm was run
30 times and the default parameters of QFOA were used. Table 6 shows that the estimated
parameters derived by QFOA were close to the original parameters for chaotic systems.
As stated in [44], the original parameters of 3D Chen chaotic system were θ1 = 35, θ2 = 3,
and θ3 = 28; whereas, as stated in [73], the original parameters of 3D Rossler chaotic system
were θ1 = 0.2, θ2 = 0.4, and θ3 = 5.7, through which perfect synchronization could be
obtained between the master and slave chaotic systems. In the search process, fruit flies
modified their places based on individual and swarm experiences. This expanded the
solution search space and prevented premature convergence. This also improved the
algorithm’s convergence speed. Generalized synchronization was possible with certain
parameters [74].

Table 6. Estimation accuracy for different chaotic system using default QFOA parameters.

Chaotic
Systems

θ1 θ2 θ3

Lorenz 10.000 28.0000 2.6667
Chen 35.000 2.9999 27.999

Rossler 0.2000 0.3999 5.6999

Computer simulations of the three 3D chaotic systems and comparisons with other
metaheuristic approaches proved the suggested method’s efficiency. The impact of data
sampling, iterations, and swarms on estimating accuracy was also studied. Theoretical
study and computer simulation led to the following conclusions: (1) A shorter data sample
length improves estimate accuracy because a longer sample length complicates the objective
function. (2) The highest number of iterations improves estimating accuracy by moving
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the swarms. Thus, exploitation and exploration balance each other. (3) Many swarms
will investigate enough space for study, improving estimate accuracy. These swarms are
computationally intensive. To decrease estimate bias in chaotic systems, use the right data
sampling, iterations, and swarms.

For our simulations, we used some of the most famous chaotic systems as examples.
The number of parameters for these chaotic systems was not large, and the system was
not complex. At present, the most studied chaotic neural network systems have many
parameters, and the weight of these systems affects the complexity of the network. However,
the suggested simpler model may be adapted to deal with chaotic neural network systems
and other complicated chaotic systems. In our case, instead of searching for only three
chaotic parameters, which represented the final solution picked from the search space
based on a quantum-inspired particle’s movement, more parameters could be correctly
estimated by increasing the number of fruit flies. Therefore, there is a trade-off between
computational cost and required best fitness evaluation function that must be balanced.

4.7. Industrial Application Case: Financial Chaotic System

Due to the nonlinear nature of the financial markets, chaos models using nonlinear
dynamics have been a popular topic in recent years. Uncertainty in the market environment
has a particularly negative impact on the financial system. Therefore, describing the
financial chaos model with random elements is more practical. Due to deterministic
instability, financial chaos, such as the extreme turbulence of the financial market and the
financial crisis, occurs during the functioning of the financial system, which has significant
detrimental effects on economic development and social stability. Controlling the financial
system from a chaotic to a periodic state is as simple as modifying the controller settings.
As a first step, we theoretically obtained a range of values for the controller parameters by
analyzing the financial system’s dynamic equations and controllers. Later, we investigated
the effects of these parameters on the system.

5. Conclusions

Chaotic synchronization is key for chaotic signals in a communication system. On the
receiver end, the chaotic system’s parameters are unknown; thus, the task is to determine
the ideal values to retrieve the message signal. Using the fruit fly optimization technique,
this article improved chaotic synchronization in chaos-based wireless networks. In this
study, parameter estimation for a three-dimensional Lorenz chaotic system was set up
as a multi-dimensional optimization problem and solved using the quantum fruit fly
optimization method. Quantum theory was employed by the FOA model and replaced
the osphresis-based search of FOA with a quantum behavior-based searching mechanism.
The quantum fruit fly optimization technique improved parameter estimation accuracy by
carefully exploiting the search space and converging, which suggested that the algorithm
could estimate optimum parameter values. Furthermore, it enhanced the exploration
of optimal solutions by sharing information regarding parameter values. The difference
between the proposed model and existing metaheuristic algorithms was the use of fruit fly
optimization to produce better quality solutions and convergence speed, i.e., establishing
an optimal trade-off between exploration and exploitation. This model may be extended to
other chaotic systems.

The results and discussion of this study led to the following conclusions (important
results): (1) Numerical simulations indicate the proposed approach can accurately predict
chaotic system parameters. The suggested model is faster and more accurate than current
techniques. This outcome is due to balancing exploitation and exploration in the search
space. (2) Even with the original signal added to the chaotic signal, the current algorithm
can still identify it well, especially for the Lorenz system. (3) As with final estimated results,
30 samples of data has the highest accuracy and least variation, proving that the amount of
input data affects algorithm stability.
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For future work, the proposed model should be applied to different chaotic systems,
such as in high-dimensional, hyper chaotic systems, and time-delay chaotic systems. Imple-
mentation and testing in a real testbed are important in the field of wireless communication.
Real deployment tests can bring up issues that did not come up in simulation. To work
well in real implementations, changes to the proposed model may be required.
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Abstract: With the emergence of big data, the efficiency of data querying and data storage has become
a critical bottleneck in the remote sensing community. In this letter, we explore hash learning for
the indexing of large-scale remote sensing images (RSIs) with a supervised pairwise neural network
with the aim of improving RSI retrieval performance with a few binary bits. First, a fully connected
hashing neural network (FCHNN) is proposed in order to map RSI features into binary (feature-to-
binary) codes. Compared with pixel-to-binary frameworks, such as DPSH (deep pairwise-supervised
hashing), FCHNN only contains three fully connected layers and incorporates another new constraint,
so it can be significantly accelerated to obtain desirable performance. Second, five types of image
features, including mid-level and deep features, were investigated in the learning of the FCHNN to
achieve state-of-the-art performances. The mid-level features were based on Fisher encoding with
affine-invariant local descriptors, and the deep features were extracted by pretrained or fine-tuned
CNNs (e.g., CaffeNet and VGG-VD16). Experiments on five recently released large-scale RSI datasets
(i.e., AID, NWPU45, PatternNet, RSI-CB128, and RSI-CB256) demonstrated the effectiveness of the
proposed method in comparison with existing handcrafted or deep-based hashing methods.

Keywords: neural network; binary hash code; image retrieval; remote sensing

MSC: 68T09

1. Introduction

Nowadays, we are living in a period of big remote sensing data [1] because numerous
Earth observation sensors provide a huge amount of remote sensing data for our lives;
therefore, the development of fast and accurate content-based image retrieval (CBIR) meth-
ods is becoming increasingly important in the remote sensing community. In order to make
better use of big data, machine learning methods are essential [2]. In 2007, Salakhutdinov
and Hinton [3,4] proposed a hash learning method in the field of machine learning. Since
then, the hashing method has been widely studied and applied in the fields of computer
vision, information retrieval, pattern recognition, data mining, etc. [2]. Hash learning
methods convert high-dimensional data into the form of binary codes through machine
learning methods. At the same time, the transformed binary codes retain the neighboring
relationships in the original high-dimensional space. In recent years, hash learning meth-
ods have rapidly developed into a research hotspot in the field of machine learning and
big data.

Traditionally, the representation of remote sensing images (RSIs) is described by a real
number vector with thousands of dimensions. Traditional remote sensing image retrieval
methods usually describe images by using real vectors with thousands of dimensions.
Each dimension can be stored in computer memory by floating-point data with four bytes,
which may lead to the following issues: (1) The storage of a large-scale dataset requires
many hard disks; (2) exhaustively searching for relevant images in a large-scale dataset
is computationally expensive. When a 4096-dimensional feature of the fully connected
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layer in a deep network is expressed and stored, it takes 4096 × 4 bytes of storage space.
Since one byte is equal to eight bits, the storage space of a 4096-dimensional real vector is
4096 × 4 × 8 bits. In contrast, when hash learning is used to map deep features, supposing
that the deep features are mapped to 64 bits through hashing coding, the storage space
used is eight bytes. In this case, in comparison with the storage space of 4096 × 4 × 8 bits,
the hash learning method can greatly reduce the hard disk storage space of data and
greatly improve the computational efficiency of image retrieval. To address the above issue,
hashing-based approximate nearest neighbor search, which is a highly time-efficient search
with a low storage space, is becoming a popular retrieval technique due to the emergence
of big data. Hash mapping [5] represents an image as binary codes that contain a small
number of bits, such as 32 bits (4 bytes), thereby significantly helping in the reduction of
the amount of memory required for storage.

2. Related Work

Hashing-based retrieval methods can generally be divided into two categories: data-
independent and data-dependent methods. As a popular data-independent method, ran-
dom projection without training data is usually employed to generate hash functions, such
as locality-sensitive hashing (LSH). Due to the limitation of data-independent hashing
approaches [6], many recent methods based on an unsupervised or supervised manner
were proposed in order to design more efficient hash functions. In the remote sensing
community, there are only a few works on hash-based RSI retrieval. Demir and Bruzzone
investigated two types of learning-based nonlinear hashing methods, namely, kernel-based
unsupervised hashing (KULSH) and the kernel-based supervised LSH method (KSLSH).
KULSH extended LSH to nonlinearly separable data by modeling each hash function as
a nonlinear kernel hyperplane constructed from unlabeled data. KSLSH defined hash
functions in the kernel space such that the Hamming distances from within-class images
were minimized and those from between-class images were maximized. Both KULSH
and KSLSH were used on bag-of-visual-words (BOVW) representations with SIFT descrip-
tors [7]. Li and Ren [8,9] proposed partial randomness hashing (PRH) for RSI retrieval
in two stages: (1) Random projections were generated to map image features (e.g., a 512-
dimensional GIST descriptor) to a lower Hamming space in a data-independent manner;
(2) a transformation weight matrix was used to learn based on training images. In KULSH,
KSLSH, and PRH, the image representations (BOVW or GIST) were based on handcrafted
feature extraction.

Benefiting from the rapid development of deep learning, Li et al. [10,11] investi-
gated a deep hashing neural network (DHNN) and conducted comparisons of the binary
quantization loss between the L1 and L2 norms. As an improved version of DPSH (deep
pairwise-supervised hashing) [12], the DHNN improved the design of the sigmoid function
and could perform feature learning and hash function learning simultaneously. Rather than
designing handcrafted features, the DHNN could automatically learn different levels of
feature abstraction, thereby resulting in a better description ability. However, the learning
of the DHNN was time-consuming because deep feature learning and hash learning were
performed in an end-to-end framework.

2.1. Convolutional Neural Network Hashing (CNNH)

CNNH combines the extraction of depth features and the learning of hash functions
into a joint learning model [13,14]. Unlike the traditional method based on handcrafted
features, CNNH is a supervised hash learning method, and it can automatically learn the
appropriate feature representation and hash function from the pairwise labels by using
the feature learning method of the neural network. CNNH is also the first deep hashing
method to use paired label information as an input.

The CNNH method consists of two processes:
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(1) Using the data samples to learn the hash function of the information.

Given n images, X ={x1, x2, · · · , xn}, and the similarity matrix S is defined as follows:

Sij =

{
+1 xi, xj are similiar
−1 xi, xj are disimiliar

(1)

The hash function that needs to be learned is defined as:

H(X) = {h1(x), h2(x), · · · , hc(x)} (2)

where H(X) is an n by q binary matrix, and hk(x) ∈ {−1, 1}q is the k-th hash function in
the matrix (the length of the function is q) and is also the hash code of the image xk.

Supervised hashing uses the similarity matrix S and the data sample X to calculate a
series of hash functions, that is, to decompose the similarity matrix S into HHT through
gradient descent, where each row of H represents each the approximate hash codes corre-
sponding to an image. The objective function of the above process is as follows:

min
H

n

∑
i=1

n

∑
j=1

(
sij − 1

q
Hi HT

j

)2
= min

H

∥∥∥∥ S − 1
q

HHT
∥∥∥∥2

F
(3)

where ‖·‖F is the Frobenius norm and H is the hash coding matrix.

(2) Learning the image feature representation and hash functions.

A convolutional network is used to learn the hash codes, and the learning process uses
the cross-entropy loss function. The network has three convolutional layers, three pooling
layers, one fully connected layer, and an output layer. The parameters of each layer are as
follows: The numbers of filters of the first, second, and third convolutional layers are 32, 64,
and 128 (with the size of 5 × 5); a dropout operation with a ratio of 0.5 is used in the fully
connected layer.

After training the network, the image pixels can be used as inputs in order to obtain
the image representation and hash codes. However, CNNH is not an end-to-end network.

2.2. Network-in-Network Hashing (NINH)

Rather than the paired labels used by the CNNH method, the NINH network uses
triplets of images to train the model, which makes it an end-to-end deep hash learning
method, and the layer is deeper than that of CNNH [15]. NINH integrates the feature
representation and the learning of hash functions in a framework that allows them to
promote each other and further improve performance.

Given the sample space of X, we define the mapping function as F:X→ {0, 1}q. The
triplet information is (X, X+, X−) and satisfies the following: The similarity between X and
X+ is greater than that between X and X−. After mapping, the similarity between F(X) and
F(X+) is greater than that between F(X) and F(X−).

The NINH method consists of three parts:

(1) The loss function.

The triplet-ranking hinge loss function is composed of three images, wherein the
first image and the second image are similar, and the first image and the third image are
dissimilar. The function is defined as:

Ltrilet (F(X), F(X+), F(X−)) =
max(0, 1 − (‖F(X)− F(X−)‖H − ‖F(X)− F(X+)‖H))

(4)

where F(X), F(X+), F(X−) ∈ {0, 1}q, ‖·‖H represents the Hamming distance.

(2) The feature representation.
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The CNN model is used to extract an effective feature representation from the input
image. The CNN model that we used is an improved NIN (network-in-network) [16]
network. The improvement of the network is the introduction of the convolution kernel,
and the size of a convolutional layer is 1 × 1. In addition, an average pooled layer is used
instead of the fully connected layer.

(3) The hash coding.

The feature-to-hash code mapping is performed by using the divide-and-encode mod-
ule to reduce the redundancy between hash codes. At the same time, the sigmoid function
is used to restrict the range of the output to [0,1], thereby avoiding discrete constraints.

2.3. Deep Pairwise-Supervised Hashing (DPSH)

DPSH based on pairs of images is used to compensate for the large workload of
triplets [12,17]. Although the CNNH and DPSH methods are both based on pairs of
information, the processes of feature learning and hash function learning are performed
in two phases in the CNNH method. The two processes are independent of each other,
and the DPSH method is an end-to-end deep learning framework that can perform feature
learning and hash coding learning at the same time. The DPSH method mainly includes:

(1) Feature learning.

A convolutional neural network with a seven-layer structure is used for feature learning.

(2) Hash coding learning.

A discrete method is used to solve the NP-hard discrete optimization problem. For
a set of binary hash codes B = {bi}n

i=1, the likelihood function L of the paired samples is
defined as follows:

p
(
li,j | B

)
=

{
sigmoid

(
Ψi,j

)
li,j = 1

1 − sigmoid
(
Ψi,j

)
li,j = 0

(5)

where sigmoid(Ψi,j) =
1

1+e−ψi,j
, ψi,j =

bT
i bj
p , and the value of p is 2. By taking the negative

log-likelihood function L[·] of the paired li,j, the following optimization problem can
be obtained:

min
B

ζ = − log p(L | B) = − ∑
li,j∈L

log p
(
li,j | B

)− ∑
li,j∈L

(
li,jΨi,j − log

(
1 + e−Ψi,j

))
(6)

Although existing methods cover handcrafted and CNN-based features, hash-based
RSI retrieval still needs to be developed because the related works are scarce. For example,
CNNH is an early representative model that combines deep convolutional networks with
hash coding. It firstly decomposes the similarity matrix of samples in order to obtain
the binary code of each sample, and then uses convolutional neural networks to fit the
binary code. The fitting process is equivalent to a multi-label prediction problem. Although
it has achieved significant performance improvements in comparison with traditional
hand-designed-feature-based methods, it is still not an end-to-end method, and the image
representation that is learned cannot be used, in turn, to update the binary code. Therefore,
it still cannot fully exploit the powerful capabilities of deep models. To better tap into
the potential of deep models, in this study, we propose a fully connected hashing neural
network (FCHNN) to map the BOVW, pretrained, or fine-tuned deep features into binary
codes with the aim of improving the RSI retrieval performance and learning efficiency. The
main contributions are as follows: (1) An extended BOVW representation based on the
affine-invariant local description and Fisher encoding is introduced, and this representation
is competitive with deep features after hashing. (2) The FCHNN with three layers is
proposed for pairwise-supervised hashing learning. The framework of the proposed
feature-to-binary method has more advantages than that of a pixel-to-binary method (e.g.,
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DPSH) in terms of the retrieval performance and efficiency. (3) In comparison with DSPH,
another constraint is incorporated into the objective function of the FCHNN to accelerate
the speed with which the desired results are obtained.

3. Proposed Method

The FCHNN consists of two parts: (1) feature extraction and (2) hashing learning
based on a feature-to-binary framework, as shown in Figure 1. The proposed framework
is beneficial for studying different types of features (either handcrafted or deep-based
features). Based on the feature extraction, the FCHNN implements the hash coding of
five types of features. These five types of features are Fisher vectors based on the affine-
invariant local description, activation vector features extracted from the full connection
layer based on pretrained and fine-tuning strategies, and activation vectors extracted
using the CaffeNet and VGG-VD16 models, respectively. In order to be consistent, the
Fisher vector also uses 4096-dimensional features. In the learning of the FCHNN, the
same pair information as that used in DPSH is used for supervised learning, and the
optimized learning process of the fully connected network is completed through random
gradient descent.

Figure 1. Framework of the proposed feature extraction and the FCHNN: (a,b) feature extraction
stages; (c) the learning of the FCHNN.

A. Feature Extraction

To give a comprehensive analysis of RSI representation and to investigate the generality
of the FCHNN for different features, five types of feature extraction were employed.

Mid-Level Features: Mid-level representation consists of the detection of affine-
invariant points of interest, extraction of SIFT descriptors, and Fisher encoding with GMM
clustering. The interest-point detector selects a multi-scale Hessian implemented with the
VLFeat toolbox [18], and a 128-dimensional SIFT descriptor is extracted for each point of
interest. The SIFT descriptors are then transformed into RootSIFT [19] and 64-dimensional
PCA-SIFT [20]. In the stage of Fisher encoding, a 4096-dimensional (2 × 32 × 64) Fisher vector
can be obtained based on the PCA-SIFT and 32 GMM (Gaussian mixture model) clusters.

Deep Features: Two types of pretrained convolutional neural networks (CNNs),
namely, CaffeNet and VGG-VD16, were employed to extract deep features. Both CNNs
were implemented with MatConvNet [21] and trained on the ImageNet dataset. Both
CaffeNet and VGG-VD16 included three fully connected layers. Given an input image and
a CNN model, we extracted a 4096-dimensional activation vector from the antepenultimate
fully connected layer as the deep features.

With the use of the fine-tuning strategy proposed by [22], the fine-tuned CaffeNet and
VGG-VD16 could also be obtained by retraining the corresponding pretrained CNN on
a training dataset until convergence. Given an input image and a fine-tuned CNN, 4096-
dimensional activation vectors could also be obtained, similarly to the feature extraction
using the pretrained CNN.
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B. FCHNN

Architecture: As shown in Figure 1, the FCHNN consisted of three fully connected
layers, with the aim of mapping the image features into a set of binary codes (0 or 1).
The first two fully connected layers (denoted by FC1 and FC2) of the FCHNN contained
4096 neurons. Both FC1 and FC2 were followed by a nonlinear operation called rectified
linear units (ReLU). The last fully connected layer (denoted as FC3) was the binary output
containing N neural nodes. N corresponded to the desired number of bits after hashing.
The architecture of the FCHNN was similar to that of the last three fully connected layers
of AlexNet, except for the number of output nodes. The FCHNN has the following
characteristics: (1) It is a feature-to-binary rather than pixel-to-binary framework; (2) it is
general for both handcrafted and deep features; (3) the use of fewer layers can significantly
improve its learning speed.

Object Function: Given n training images, Z = {zi}n
i=1, where zi is a vector (image

features shown in Figure 1) of the ith image. A set of pairwise labels L =
{

li,j
}

that satisfy
li,j ∈ {0, 1} is constructed to provide the supervised information. li,j = 1 indicates that
zi and zj are similar (within-class samples); otherwise (li,j = 0), zi and zj are dissimilar

(between-class samples). The FCHNN aims to map zi to binary codes bi ∈ {−1, 1}d with
d bits, causing bi and bj to have a low Hamming distance if li,j = 1 or a high Hamming
distance if li,j = 0.

Here, we adopt the same definition as that in Equation (5). Inspired by deep hashing
neural networks (DHNNs), we parameterize Equation (5) as p = sd, where s is the sim-
ilarity factor and d is the length of the hash codes. This operation can not only enhance
the flexibility of the algorithm, but can also enable the algorithm to have optimal perfor-
mance when facing hash codes of different lengths. To solve the optimization problem of
Equation (6), its discrete form can be rewritten as follows:

min
B,A

ζ = − ∑
li,j∈L

(
li,jΛi,j − log

(
1 + eΛi,j

))
s.t. ai = bi ∀i = 1, 2, · · · , n

ai ∈ R
c×1 ∀i = 1, 2, · · · , n

bi ∈ {−1, 1}c ∀i = 1, 2, · · · , n

(7)

where Λi,j =
aT

i aj
sd and A = {ai}n

i=1 .
By taking the negative log-likelihood of the pairwise labels li,j in L, the following

objective function can be formed:

min
B,A

ζ = − ∑
li,j∈L

(
li,jΛi,j − log

(
1 + eΛi,j

))
+ α

n

∑
i=1

‖bi − ai‖2
2 (8)

where A = {ai}n
i=1; ai = WT f (zi; θ) + v, and θ denotes the FC1 and FC2 parameters of

the FCHNN; f (zi; θ) denotes the FC2 output, W ∈ R4096×d denotes a weighted matrix
containing the fully connected weights between FC2 and FC3, v ∈ Rc×1 is a bias vector,
and α is a hyper-parameter.

Equation (8) aims to make the FCHNN’s output and the final binary code bi as similar
as possible. In addition, we introduce another constraint into the objective function, and
Equation (8) can be rewritten as follows:

min
B,A

ζ = − ∑
li,j∈L

(
li,jΛi,j − log

(
1 + eΛi,j

))
+ α

n

∑
i=1

‖bi − ai‖2
2 + β ∑

li,j∈L

(
Ψi,j − li,j

)
bT

i ai (9)

46



Mathematics 2022, 10, 4716

where bT
i ai should be as large as possible, while Ψi,j − li,j should be as small as possible.

The third term, which can significantly accelerate the learning speed in order to obtain
desirable results, considers the performance of the final hash codes. Thus, we can obtain:

min
B,W,v,θ

ζ = − ∑
li,j∈L

(
li,jΛi,j − log

(
1 + eΛi,j

))
+

alpha
n

∑
i=1

∥∥∥bi − WT f (zi; θ) + v
∥∥∥2

2
+ β ∑

li,j∈L

(
Ψi,j − li,j

)
bT

i

(
WT f (zi; θ) + v

) (10)

where B, W, v and θ are the parameters that need to to be learned.
Learning: The learning of the FCHNN is summarized in Algorithm 1. In each it-

eration, a mini-batch of training images is collected from the entire training set in or-
der to alternately update the parameters. In particular, bi can be directly optimized by
bi = sign(ai) = sign(WT f (zi;θ) + v). For W, v and θ, we first compute the derivatives of
the objective function for ai:

∂ζ

∂ai
=

n

∑
j=1

(
Λi,j − li,j

)
aj + 2α(ai − bi) + β

n

∑
j=1

(
Ψi,j − li,j

)
bj (11)

Then, W, v and θ can be updated through back-propagation, as in [23,24].

Algorithm 1: Learning for the FCHNN

Input: Training samples Z = {zi}n
i=1 and pairwise labels L =

{
li,j

}
Output: B, W, v, and θ
FCHNN initialization: All fully connected weights are randomly initialized
by a Gaussian distribution with a mean of 0 and variance of 0.01.
Repeat: Sampling a minibatch of samples randomly from Z, each sample Zi in the
minibatch performs:
(1) Calculation of f (Zi; θ) by using forward propagation
(2) Computation of ai = WT f (zi; θ) + v
(3) Computation of the binary code of Zi by using bi = sign(ai)
(4) Computation of derivatives for Zi
(5) Update of W, v, and θ via back-propagation
Until a fixed number of iterations is reachd

Output of the FCHNN: The model obtained after the network learning of the FCHNN
can be applied to the mapping of image features other than those in the training set. For
any given input image, first, we can extract the corresponding image features as the input
of the FCHNN, extract the output of the FCHNN through forward propagation, and do the
following:

bi = sign
(

WT f (zi; θ) + v
)

(12)

where bi represents the final hash codes.

4. Experiments and Discussion

Extensive experiments were conducted on five recently released large-scale datasets,
namely, AID [25], NWPU [26], PatternNet [27], RSI-CB128 [28], and RSI-CB256 [28], as
shown in Figure 2. AID contains 30 RSI scene classes collected from multi-source-based
Google Earth imagery, including 10,000 RGB images with 600 × 600 pixels. Each class
consists of different numbers of images, ranging from 220 to 420; the spatial resolution of
this dataset ranges from 0.5 to 8 m. NWPU contains 45 RSI scene classes collected from
Google Earth, including 31,500 RGB images with 256 × 256 pixels. Each class contains
700 images, and the spatial resolution of this dataset ranges from 0.2 to 30 m in most
cases. PatternNet contains 38 RSI classes collected from Google Earth imagery or the
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Google Maps API, including 30,400 RGB images with 256 × 256 pixels. Each class contains
800 images, and the spatial resolution of this dataset ranges from 0.062 to 4.693. RSI-CB is
composed of RSI-CB128 and RSI-CB256, which are two large-scale RSI datasets collected
from Google Earth and Bing Maps. RSI-CB128 contains 45 RSI scene classes, including more
than 36,000 RGB images with 128 × 128 pixels. RSI-CB256 contains 35 RSI scene classes,
including more than 24,000 RGB images with 256 × 256 pixels. The resolution of RSI-CB
(both RSI-CB128 and RSI-CB256) ranges from 0.22 to 3 m.

Figure 2. Datasets. From top to bottom: AID, NWPU, PatternNet, RSI-CB128, and RSI-CB256.

A. Experimental setup and evaluation strategy

Each dataset was randomly divided into five parts—four parts for training and one for
testing. Given a dataset, the fine-tuning process of CaffeNet or VGG-VD16 was performed
on the training set with a workstation with a 3.4 GHz Intel CPU and 32 GB of memory, and
an NVIDIA Quadro K2200 GPU was used for acceleration. The fine-tuning parameters,
such as the learning rate, batchSize, weightDecay, and momentum, were set to 0.001, 256,
0.0005, and 0.9, respectively.

For the FCHNN, we used a validation set to choose the hyper-parameters s, α, and
β, and we found that good performance could be achieved by setting s = 2, α = 50, and
β = 1, which were then used for all dataset experiments with d = 16, d = 32, and d = 64,
where s = 2 was the similarity factor. After the feature vectors were normalized, they
needed to be dot-multiplied by 500. In the experiment, to better adapt the Fisher vector to
the FCHNN, we found that scaling up the Fisher vector by a certain ratio could improve
the accuracy of hash retrieval. Thus, 500 was the empirical value that we obtained after
a series of comparative analyses. Of course, if we did not scale up the Fisher vector, we
could also obtain a considerable retrieval effect.

To evaluate the retrieval performance, each image (represented by binary codes) in the
testing dataset was used as a query to sequentially compute the Hamming distance between
the query and training images in order to obtain the ranking results, which were then used
to compute the average precision. The final mean average precision (mAP) [18,29,30] was
the averaged result over all queries. Precision–recall curves were also used to plot the
tradeoff between precision (Precision = TP/(TP + FP)) and recall (Recall = TP/(TP + FN)),
where TP is a true positive, FP is a false positive, and FN is a false negative.
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B. Evaluation of the retrieval performance

Given a training dataset with multiple classes, the optimization of the FCHNN was
based on supervised learning with back-propagation (BP) by computing the derivatives of
a defined objective function. The supervised information could be obtained with pairs of
images (similar or dissimilar) from the training dataset; meanwhile, the objective function
was based on pairwise images (labels).

Unlike DPSH and DHNNs, the FCHNN has a small-sized network architecture and
learns the linear–nonlinear transformation with multiple layers for mid-level or deep
features, rather than the original image. There are two differences between DPSH [31]
and the proposed FCHNN in terms of optimization: (1) Firstly, the weighted sigmoid
function is selected to allow the FCHNN to have better performance; (2) secondly, the
FCHNN introduces another constraint term in order to improve the convergence of the
network learning.

Table 1 and Figure 3 show comparisons of the hash retrieval performance (mAP) on
five datasets, on which four methods were compared; these were PRH [8], KULSH [32],
KSLSH [32], and DPSH [24,31]. PRH is a method of learning hash functions by using a lo-
cally random strategy. Firstly, images are mapped to Hamming space in a data-independent
manner by using a random projection algorithm. Secondly, learning transforms the weight
matrix from the training data of remote sensing images in a more efficient way. However,
this method only extracts GIST features; it is a hash coding method based on handcrafted
features. For a comprehensive comparative analysis, we further combined PRH with BOW
and Fisher vector coding in order to extract mid-level features and use them for hash
coding. KULSH [32–34] is based on the LSH method, and it is for achieving fast process-
ing of kernel data with arbitrary kernel functions. KULSH [35] only exploits the BOVW
method. Similarly, in order to ensure the comprehensiveness of our comparative research,
we also combined the KULSH method with the GIST features and the Fisher vector coding
method as the middle-layer expression, and then with hash coding. KSLSH [32,36] is a
limited supervised method that uses similar and dissimilar pairwise information, achieves
high-quality hash function learning based on sufficient training datasets, and, finally, maps
data to Hamming space. The distance within similar data is the smallest, and the distance
within dissimilar data is the largest in the Hamming space.

In general, the PRH, KULSH, and KSLSH methods are hash coding methods that use
handcrafted features. Deep pairwise-supervised hashing (DPSH) is a deep hashing method
that implements both feature learning and hash coding learning in a complete framework,
and it uses pairwise image information. The FCHNN is our proposed method.

As we can see in Table 1 and Figure 3, the deep hash method had obvious performance
advantages over the handcrafted-feature-based methods; compared with the DPSH method,
the proposed FCHNN method obtained a higher retrieval accuracy, and the FCHNN had
good generality, making it suitable for the hashing of both artificial design features and
depth features. Among the five types of features, the features extracted from the fine-tuned
VGG-VD16 model achieved the highest accuracy, which was better than that of the features
extracted from the pre-trained VGG-VD16 model. So, it was verified that the fine-tuning
strategy could effectively improve the retrieval results.

49



Mathematics 2022, 10, 4716

Figure 3. Comparison of five types of features in RSI retrieval based on five datasets. All results are
given as the mean average precision (mAP). (a) AID dataset, (b) NWPU45 dataset, (c) PatternNet
dataset, (d) RSI-CB128 dataset, and (e) RSI-CB256 dataset.

Table 1. Comparison of the hash retrieval performance (mAP) on the AID, NWPU45, PatternNet,
RSI-CB128, and RSI-CB256 datasets.

Methods
Coding
Length

(bit)
AID NWPU45 PatternNet RSI-CB128 RSI-CB256

PRH
(GIST) [8]

16 0.0712 0.0405 0.0872 0.0754 0.0836
32 0.0541 0.0349 0.0968 0.0831 0.0978
64 0.0559 0.0376 0.1304 0.0957 0.1072

PRH
(BOVW) [8]

16 0.1052 0.0737 0.1746 0.1363 0.1677
32 0.1244 0.0863 0.2604 0.1893 0.2158
64 0.1561 0.1041 0.3077 0.2502 0.2969

PRH
(FV-AI) [8]

16 0.1558 0.0955 0.3253 0.1957 0.2636
32 0.1894 0.1310 0.4244 0.2631 0.3468
64 0.2357 0.157 0.5336 0.3149 0.4525
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Table 1. Cont.

Methods
Coding
Length

(bit)
AID NWPU45 PatternNet RSI-CB128 RSI-CB256

KULSH
(GIST) [32]

16 0.0413 0.0241 0.0304 0.0293 0.0402
32 0.0370 0.0232 0.0343 0.0289 0.0439
64 0.0384 0.0233 0.0299 0.0313 0.0367

KULSH
(BOVW) [32]

16 0.0410 0.0267 0.0431 0.0311 0.0373
32 0.0378 0.0257 0.0329 0.0366 0.0447
64 0.0394 0.0252 0.0356 0.0366 0.0447

KULSH
(FV-AI) [32]

16 0.0933 0.0296 0.1323 0.0347 0.0410
32 0.1458 0.0270 0.1874 0.0429 0.0457
64 0.1983 0.0319 0.3366 0.0366 0.0539

KSLSH
(GIST) [32]

16 0.1804 0.0744 0.3391 0.2573 0.3711
32 0.2118 0.0816 0.4037 0.2885 0.4113
64 0.2387 0.0904 0.4356 0.3122 0.4627

KSLSH
(BOVW) [32]

16 0.2993 0.1734 0.5154 0.4342 0.4592
32 0.3354 0.2527 0.6208 0.5163 0.5499
64 0.3691 0.2861 0.6950 0.5546 0.5849

KSLSH
(FV-AI) [32]

16 0.5343 0.3432 0.8351 0.6085 0.7372
32 0.6115 0.4209 0.8851 0.6732 0.7936
64 0.6531 0.4724 0.9281 0.7142 0.8279

DPSH [17]
16 0.6183 0.3656 0.5589 0.6061 0.7015
32 0.8805 0.6066 0.8866 0.8106 0.8701
64 0.9246 0.7481 0.9940 0.8438 0.9104

FCHNN
(FV-AI)

16 0.6894 0.5713 0.7281 0.6066 0.7036
32 0.9127 0.7320 0.9248 0.8961 0.9775
64 0.9154 0.9035 0.9934 0.9593 0.9902

FCHNN
(P-CaffeNet)

16 0.6733 0.6235 0.7299 0.6514 0.7272
32 0.9181 0.7223 0.9077 0.9007 0.9769
64 0.9300 0.8749 0.9901 0.9668 0.9918

FCHNN
(F-CaffeNet)

16 0.7328 0.6793 0.8461 0.6812 0.7691
32 0.9386 0.7463 0.9471 0.9141 0.9827
64 0.9432 0.9131 0.9938 0.9782 0.9930

FCHNN
(P-VGG-VD16)

16 0.6845 0.5905 0.7491 0.6551 0.7313
32 0.9245 0.7366 0.8893 0.9016 0.9823
64 0.9374 0.8890 0.9925 0.9756 0.9864

FCHNN
(F-VGG-VD16)

16 0.7825 0.7417 0.9264 0.7023 0.7666
32 0.9568 0.8582 0.9689 0.9177 0.9820
64 0.9583 0.9509 0.9963 0.9845 0.9950

C. The effect of the number of iterations in the process of network learning

We compared the image retrieval accuracy (mAP) of five types of features for remote
sensing image retrieval tasks on five large-scale datasets, and the mAP value was based on
the result of 64-bit hash coding. We obtained the following conclusions: (1) The experiments
on the five datasets showed that the proposed FCHNN method was able to obtain relatively
stable precision in 40 iterations; (2) the features extracted by the fine-tuned VGG-VD16
model had the highest retrieval accuracy among the five types of features; the accuracy of
the two fine-tuned CNN models was generally higher than that of the pre-trained model,
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which further validated the effectiveness of the fine-tuning strategy; (3) as the number of
FCHNN iterations increased, the accuracy was improved.

D. The effect of the training size

Because Table 1 showed that features extracted from the fine-tuned VGG-VD16 model
(i.e., F-VGG-VD16) were able to achieve the highest accuracy, we also employed the F-VGG-
VD16 model to perform experiments on the five datasets in order to study the impacts of
different training sizes on the training accuracy, as shown in Table 2. Clearly, as the training
size increased, the performance of the model also gradually increased. This is consistent
with the general knowledge in deep learning, which holds that larger datasets can lead to
better performance of a model.

Table 2. Effects of the training size on the model performance.

Training Size 1
Dataset

AID NWPU45 PatternNet RSI-CB128 RSI-CB256

20% 0.3723 0.3197 0.4503 0.3927 0.4103
40% 0.5564 0.5321 0.6057 0.5881 0.6117
60% 0.7927 0.7769 0.8122 0.8233 0.7975
80% 0.9583 0.9509 0.9963 0.9845 0.9950

1 Training size: the percentage of the number of training samples with respect to the total number of samples.

E. Comparison with other methods

As shown in Figure 4, we compared the PR curves of the FCHNN and DPSH methods
for the five datasets. The red curve represents the DPSH method and the green curve
represents the FCHNN method. The input of the FCHNN was the best of the five features,
that is, features extracted from the fine-tuned VGG-VD16 model (F-VGG-VD16). The
results of the two methods used for the comparison were based on 64-bit hash coding.
The experiments on the five datasets showed that the FCHNN was able to obtain better
retrieval accuracy than that of DPSH.

Figure 4. Cont.
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Figure 4. PR comparisons between the FCHNN and DPSH. (a) AID, (b) NWPU45, (c) PatternNet,
(d) RSI-CB128, and (e) RSI-CB256.

5. Conclusions

We proposed a hash neural network model called the FCHNN that has three layers of
fully connected layers in order to achieve efficient storage and retrieval of remote sensing
images. The first two layers of the network contain 4096 neurons, and the last layer of
the network contains N neurons. Through the supervised learning of pairwise images,
hash coding mapping of different types of features, including mid-level representations
based on low-level feature extraction, pre-trained deep features, and fine-tuned depth
features, can be realized, and bit–bit binary can be achieved. The FCHNN is a network of
features transmitted into binary code. In comparison with end-to-end networks of pixel-to-
binary frameworks, the FCHNN has a higher learning efficiency and retrieval precision.
Experiments on five large-scale remote sensing image datasets showed that the FCHNN
has good versatility in the hash mapping of different types of features. The deep features
extracted from the fine-tuned VGG-VD16 model achieved the best retrieval performance
when used as input for the FCHNN.

In the face of massive amounts of remote sensing data, data storage and retrieval
based on high-level features have a low efficiency and high computational complexity.
In comparison with CNNH, DPSH, and other models, our proposed model (FCHNN)
has great advantages. On the one hand, the FCHNN only contains three layers of fully
connected layers, and it uses the supervised information of pairwise labels to learn the
hash function. In comparison with the end-to-end deep hash learning method based on
label pairs, its learning speed is faster; on the other hand, the FCHNN is a network based
on feature-to-binary encoding, and it can obtain a higher retrieval precision. In addition,
the FCHNN can not only learn artificially designed features, such as the Fisher vector
encoding, but can also learn deep features, which have good universality. Importantly, in
consideration of storage space, when mapping 4096-dimensional features to 64 bits, the
FCHNN requires only eight bytes. Therefore, our model has good application prospects in
the storage and retrieval of remote sensing images.
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Abstract: Writer recognition based on a small amount of handwritten text is one of the most challenging
deep learning problems because of the implicit characteristics of handwriting styles. In a deep con-
volutional neural network, writer recognition based on supervised learning has shown great success.
These supervised methods typically require a lot of annotated data. However, collecting annotated
data is expensive. Although unsupervised writer recognition methods may address data annotation
issues significantly, they often fail to capture sufficient feature relationships and usually perform less
efficiently than supervised learning methods. Self-supervised learning may solve the unlabeled dataset
issue and train the unsupervised datasets in a supervised manner. This paper introduces Self-Writer,
a self-supervised writer recognition approach dealing with unlabeled data. The proposed scheme
generates clusterable embeddings from a small fixed-length image frame such as a text block. The
training strategy presumes that a small image frame of handwritten text should include the writer’s
handwriting characteristics. We construct pairwise constraints and nongenerative augmentation to
train Siamese architecture to generate embeddings depending on such an assumption. Self-Writer is
evaluated on the two most widely used datasets, IAM and CVL, on pairwise and triplet architecture. We
find Self-Writer to be convincing in achieving satisfactory performance using pairwise architectures.

Keywords: writer recognition; self-supervised learning; embeddings; dimension reduction; clustering;
twin network

MSC: 68TXX

1. Introduction

Handwriting is considered a distinctive human characteristic that can prove someone’s
authenticity through pattern recognition. Handwriting contains numerous distinctive
features that exhibit the writer’s unique handwriting characteristics, such as the slope of
letters, shape of letters, rhythmic repetition of the letters, cursive or separated writing,
spacing between letters, etc. [1]. Furthermore, handwriting techniques and features differ
enormously from one individual to another, known as inter-class variance. The unique
writing characteristics of an individual serve to make handwriting a behavioral biometric
modality that authorizes recognition and verification of writers from handwritten scripts.
The contemporary studies have indicated writing to be a remarkably reliable and helpful
behavioral biometric mechanism that is used in diverse application disciplines, including
forensic analysis [2], analysis of historical documents [3,4] and security [5].

There are two modes to implement writer identification: verification and recognition.
The writer verification system performs a one-to-one comparison and determines whether
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the same person has written two different texts or not. At the same time, the writer
recognition system performs a one-to-many search with handwriting data of known authors
in an extensive database. The system should display a list of possible authors for the
unknown text samples following the comparison. Due to the enormous variety of human
handwriting, writer recognition is more complicated than writer verification.

Furthermore, these two modes can be executed both online and offline. The online
technique uses the spatial characteristics of the writing, which are taken in real time by
using digitizing acquisition equipment (e.g., Anoto pen). These characteristics are sent for
further processing and analysis via a particular transducer device. Then, the processing
device converts dynamic writing movement characteristics such as stroke order, altitude,
velocity, trajectory, pen pressure, writing duration, etc., into a signal sequence. Offline-
based recognition, however, is a static technique that commonly uses digitized handwritten
images as input data. Because online techniques utilize a good number of features, it is
likely to perform better than the offline approach. However, online recognition methods
require additional devices that are costly and unavailable in most scenarios. This triggers
us to exploit the offline recognition approach, knowing that it poses significant research
challenges due to the availability of only digitized handwritten text images.

Deep learning (DL) frameworks have been intensively explored in supervised writer
recognition and have been shown to outperform several benchmark datasets [1,6,7]. How-
ever, supervised writer recognition methods require a significant amount of labeled data.
Additionally, obtaining manual labeling is costly compared to obtaining unlabeled data,
which is readily available in abundance. Unsupervised writer recognition may solve the
data annotation label issue. So far, unsupervised algorithms are not particularly effective at
training neural networks because of their inability to capture the visual semantics needed
to tackle real-world problems the way strongly supervised methods do. However, self-
supervised learning may convincingly address the unlabeled dataset issue by training the
unsupervised dataset in a supervised manner.

Self-supervised learning is a variant of the unsupervised learning method wherein
the supervised task is performed from the unlabelled data. To learn from self-supervision,
the technique must go through two stages: initialization of the network weights using
pseudolabels [8,9], and completion of the actual task by using supervised learning [10,11].
Self-supervised learning allows us to take advantage of a range of labels provided for free
with the data. Producing a handwritten document dataset with clean labels is costly. In ad-
dition, unlabeled handwritten text is constantly generated. One strategy to take advantage
of this considerably more significant amount of unlabeled data is to appropriately define
the learning objectives so that the data itself provides supervision. Self-supervised learning
has been quite successful in the field of speech recognition for a long time, and includes
processes such as Wav2vec [12] and natural language processing (NLP), as evidenced
by Collobert–Weston 2008 model [13], Word2Vec [14], GloVE [15], and, more recently,
BERT [16], RoBERTa [17], and others.

This paper introduces Self-Writer: a clusterable embedding-based, self-supervised
writer recognition directly from unlabeled data. The term “embedding” refers to the
process of creating vectors of continuous values. Currently, triplet [18], and pairwise
loss [19] techniques can be used to generate embeddings in the context of DL. Three parallel
inputs pass across the network in a triplet loss architecture: anchor, positive, and negative.
Concerning the anchor, the positive input has an identical class, whereas the negative
input has a distinct class. A pair of information flows across the network in pairwise
architecture belonging to the same or separate classes. Furthermore, we insist on making
the training process for DL architecture self-supervised. The system, however, requires
manuscripts of handwritten text and needs to ensure that the manuscripts comprise only
one individual’s handwritten text. The manuscripts come in lines of handwritten text and
are further windowed into smaller frames, such as a word or text block, for training the DL
framework. The construction of the training approach is illustrated in Figure 1. To the best
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of our knowledge, this is the first attempt that exploits self-supervised learning strategy in
writer recognition. In this paper, we make the following contributions.

Handwritten document of writer P Handwritten document of writer Q Handwritten document of writer P

Embedder

Text Blocks

Figure 1. The figure demonstrates a set of handwritten documents with an unknown number of
writers (in the example, two writers, p and q). Handwritten documents are segmented into a form of
line, and further line-segmented images are windowed into smaller image frames, considering that
all the frames of a single document belong to a single class. A DL-based embedding method also
identifies feature similarities and relationships in handwritten documents. Clusterable embeddings
are generated as a result of the technique.

• We introduce a self-supervised strategy of writer recognition based on generating
clusterable embeddings, named Self-Writer. The training procedure learns directly
from the unlabeled data.

• To train the Siamese architecture, we use a hypothesis-based pairwise constraint and
nongenerative augmentation. The AutoEmbedder framework and nongenerative augmen-
tation concentrate on the actual feature relationship instead of the hypothetical constraints.

• Two intercluster-based strategies—triplet and pairwise architectures—evaluate the
proposed policy and conclude that a DL architecture can distinguish writers from
pseudolabels depending on feature similarity.

We write the rest of the paper as follows. The recent literature regarding writer
identification tasks is presented in Section 2. Section 3 explains the structure of the training
strategy as well as the challenges and adaptations. Empirical setup regarding the evaluation
of the proposed pipeline, datasets, and the investigation of the architectures’ performance
is outlined in Section 4. In Section 5, we sketch the pros and cons of the proposed approach.
Finally, Section 6 concludes the paper.

2. Related Work

Writer recognition utilizing deep learning strategies has gained profound attention
by researchers to address distinctive writer recognition and verification tasks. Over the
past few years, significant research has been done on offline writer recognition, and many
decent solutions are available in this domain. Among them, the techniques exploiting the
hidden Markov model (HMM), Gaussian mixture model (GMM), deep neural networks
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(DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs)
were the most prominent. The robustness of modern deep learning architectures provides
an excellent structure for the latest writer recognition systems [20].

Before the proliferation of neural network approaches, Gabor filters and XGabor fil-
ters, and scale-invarient feature transform (SIFT) were mostly used to extract feature data.
The majority of the research efforts applied wavelets [21], graph relations [22], statistical
analysis [23,24], and HMM-based [25] models after feature extraction. By exploiting the
weighted histogram of GMM scores and a similarity and dissimilarity Gaussian mixture
model technique, Khan et al. [1] introduced an offline writer recognition system. Because
the weighting process penalizes irrelevant descriptors, this technique achieves substantially
better performance than the traditional averaging of negative loglikelihood values. In [26],
a novel approach for writer identification is presented, based on the LDA model with
n-grams of author texts and cosine similarity. For language-independent writer recognition,
Sulaiman et al. [7] presented a mixture of handcrafted and in-depth features, extracting
both LBP and convolutional neural network (CNN) features from overlapped frames and
encoding the local information by using the VLAD technique. However, these methods
showed a decent performance but were less accurate than modern neural network archi-
tectures because of their weak feature-extraction capability. Due to deep learning, various
complex computer vision tasks such as visual reasoning are developed [27,28].

With the improvement of neural network architectures, more accurate approaches
have been proposed in the writer recognition domain. Christlein et al. [29] presented a
three-step pipeline for writer recognition: feature extraction with CNN, aggregating local
features into one global descriptor and normalizing the descriptor. The authors aimed to
investigate complicated and deep CNN architectures and some new findings such as the
advantage of Lp-pooling over max pooling, and the normalization of activation following
convolutional layers of the network. Zhang et al. [30] suggested a writer recognition
framework by using the recurrent neural network (RNN) model for directly dealing with
online handwriting raw data. Their framework outperforms the handcrafted feature-based
and CNN-based techniques due to its robustness. In [31], Semma et al. employ FAST key
points and the Harris corner detector to identify points of interest in the handwriting and
extract key points from handwriting and feeding small patches around these key points to
a CNN for feature learning and classification. Xing et al. [6] proposed DeepWriter, a text-
independent writer recognition based on a deep, multistream CNN. The main drawback
of the paper is that when the number of writers is increased, the model’s accuracy is
significantly reduced. Fiel et al. [32] presented the feature vector generation for each writer
by using a CNN to identify writers by analyzing their handwritten texts. The feature vector
approach uses preprocessing techniques such as binarization, text line segmentation, and
sliding windows, and extracts images from the ICDAR 2011, 2013 dataset. However, this
study shows poor results on the other datasets. Sheng He et al. [33] proposed multitask
learning to provide a deep adaptive learning method for writer recognition based on single
word pictures. This method improved the existing features of CNN by recognizing the content
to analyze a writer’s recognition, and exploited deep features. In the evaluation, they used
the CVL and IAM datasets that contain segmented word pictures with labels for both word
and writer. Furthermore, the authors proposed FragNet [34], a two-pathway network defined
by a feature pyramid, which is used to extract feature maps, and fragment pathway, which is
trained to predict the writer identity based on fragments extracted from the input image and
the feature maps on the feature pyramid. The main drawback of the FragNet model is that
it requires word image or region segmentation, which is challenging on highly cursive script
documents. Nevertheless, writer recognition based on single-word images has not yet shown
satisfactory performance. Deep learning achieves few-shot learning through meta-learning by
using previous experience. In [35], the authors proposed a deep learning method that uses
meta-learning to learn and generalize from a small sample size in image classification.

The attention mechanism has been widely used in recent years and has overcome
few-shot learning. This technique was typically used with CNN or RNN to improve deep
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feature extractions in writer identification. Zhang et al. [36] introduce a new residual Swin
transformer classifier (RSTC) that integrates both local and global handwriting styles and
produces robust feature representations with single-word pictures. The transformer block
models local information with interacting strokes while holistically encoding with the identity
branch and global block features’ global information. Chen et al. [37] proposed the letters
and styles adapters (LSA) to encode different letters, which were inserted between CNN and
LSTM. To aggregate features, they also introduced hierarchical attention pooling (HAP).

Apart from the aforementioned methodologies, unsupervised writer recognition is
still an underresearched domain. Very few researchers have worked on this and achieved
significant results. Christlein et al. [38] trained a residual network by using deep surro-
gate classes, and the learned activation features without supervision outperformed the
descriptors of cutting-edge methods for writer recognition. To study the impact of inter-
linear spacing, the authors wanted to evaluate single handwritten lines rather than whole
paragraphs. In addition, a few semisupervised learning methods have been introduced
as well for writer recognition. With the aim of improving writer recognition performance,
Chen et al. [39] suggested a semisupervised feature learning. Their method trains both
unlabeled and labeled data at the same time. The authors also proposed a data augmenta-
tion method called weighted label smoothing regularization (WLSR). The proposed WLSR
method depends on the similarity of the sample space between the original labeled samples
and additional unlabeled samples and can regularize the baseline of a CNN to enable the
learning of more discriminated features.

Due to the difficulties of extensive data labeling for supervised deep neural networks
as well as the ineffectiveness of unsupervised learning, self-supervised learning has become
a promising research area for deep neural networks. Deep neural networks are usually
trained through backpropagation by utilizing some objective function. However, it is
challenging to estimate what objective function extracts suitable feature relations that could
guide good neural networks without labels. Self-supervised learning addresses this issue
by presenting different self-supervision tasks for networks to solve. Using self-supervision
makes it easier to measure the performance captured by using an objective function similar
to those used in supervised learning without requiring any labels. Many such tasks have
been proposed in the last few years. For example, in the case of NLP, one can hide a
word from a sentence and ask the network to predict the missing word. In addition, many
computer vision-based self-supervised learning tools have been proposed in the last few
years [10,40]. In [41,42], the authors use time as a source of supervision in videos, simply
predicting the frames in a video. Self-supervision can also operate with a single image. One
can hide a portion of the image given the task to the network to generate pixels of the hidden
part [43,44] or recover color after grayscale conversion [40,45]. Another approach is to create
a synthetic categorization task where one can create a surrogate class by altering a single
image multiple times through translations, color shifts, and rotations [46]. Furthermore,
in [47], in order to detect 3D symmetry from single-view RGB-D images, the author uses
weak supervision to detect objects.

In recent years, self-supervised learning has shown great success in NLP such as
BERT [16], RoBERTa [17], and Glove [15]; in the field of speech recognition, Wav2Vec [12]
has had success, and in the field of computer vision [10,48] has worked well. However, none
of the research was conducted on writer recognition in a self-supervised manner. Moreover,
the generation of abundant, unlabeled, handwritten text from different individuals drives
us to solve the writer recognition problem in a self-supervised manner based on the inter-
feature relationships of data, all without relying on the labels.

3. Methodology

This section presents the proposed self-supervised writer recognition pipeline in more
detail. The generation of clusterable embeddings, in this paper, is established on self-
supervised learning. First, a self-supervision task is created depending on the following
assumption: in most cases, whenever a writer starts writing, he/she writes on a blank
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manuscript. As a result, most manuscripts include one individual’s handwriting. However,
some individuals might contain multiple manuscripts, or some may be impure, i.e., a
manuscript might contain the writings of numerous individuals. Nevertheless, the impu-
rity ratio would be sufficiently low in the most general handwritten manuscripts. As a
result, one of the most prevalent neural network pipelines, the Siamese network [43], is
used to investigate such a strategy. To extract embeddings, we use the AutoEmbedder
framework [19] as a DL architecture. These generated embedding points work to extract
features of the writer’s handwriting characteristics, which helps to recognize the writer.
The basic workflow of Self-Writer is illustrated in Figure 2.
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Figure 2. Overall procedure of Self-Writer. First, each manuscript is segmented into lines and assigned
a pseudo label for each script. Additionally, an OpenCV-based Python script is used to preprocess
the line images. Furthermore, a cluster network is constructed from the manuscript’s line segments,
using a nonoverlapping sliding window approach to generate smaller text blocks. Finally, depending
on the requirements of the Siamese network, the cluster network is used to construct training data
batches. The pairwise architecture receives two input data; either a can-link pair or a cannot-link
pair. However, it demands an equal number of can-link and cannot-link pairs in a batch of training
data. On the other hand, triplet architecture receives three input data; a pair of can-link data and
cannot-link data, and then the DL architecture or the embedder is trained on randomly augmented
training data.
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The methodology section is organized as follows. First, we explain the preprocessing
step in Section 3.1. In Section 3.2, the self-supervision task is discussed, followed by the
problem formulation and assumptions in Section 3.3. Furthermore, the construction of
pairwise constraints is defined in Section 3.4. In Section 3.5, uncertainties in the pairwise
constraints are discussed. Finally, a detailed description of the DL framework, training
procedure, and data augmentation schema is presented in Sections 3.6 and 3.7.

3.1. Data Preprocessing

In our experiment, handwritten texts are considered to be manuscripts. Furthermore,
we require line segmentation of the handwritten scripts. Researchers, such as [49–51], have
introduced different line segmentation techniques. However, the IAM [52], and CVL [53]
datasets already provide line segmentation schema. However, some lighting, background,
and noise issues are observed in the line images. First, we apply a supplementary OpenCV-
based Python script [54] to eliminate unwanted data such as noise removal, background
elimination, etc. Figure 3 represents (i) the raw version of the image and (ii) the enhanced
version. The preprocessing part aims to enhance image quality and improve image read-
ability information. Afterward, we resize line-segmented images with a height of 112 pixels
while maintaining the aspect ratio. Note that the fixed-size representation of line images
may distort the writer’s handwriting characteristics. Then, we segment the line images into
smaller text blocks by using a non-overlapping sliding window approach. Finally, we have
scaled the dataset in the range [0,1].

Figure 3. Raw line segmented images of the IAM dataset and an enhanced version of the image after
applying a supplementary OpenCV-based python script.

3.2. Self-Supervision Task

Self-supervised learning has various forms based on the domain. Self-Writer aligns
with contrastive self-supervised learning strategies [55]. In order to learn from self-
supervised learning, the system must define a self-supervision task. In general, self-
supervised learning receives supervision signals by utilizing the underlying structure of
the data. Self-supervised learning takes advantage of the data’s structure. As a result, it can
leverage a wide variety of supervisory signals across large datasets based on cooccurring
modalities without relying on labels. Because our proposed writer recognition method is
based on self-supervised learning, we require handwritten scripts to get the supervision
signals from the data by considering each manuscript as a different individual assigning
a pseudo label. Furthermore, the documents are windowed into smaller text blocks to
train the DL architecture in a supervised manner based on the pseudo label. The self-
supervised task of the DL architecture is to generate clusterable embedding of the text block
of manuscripts. The self-supervision task leads us to a supervised loss function. However,
the final performance of the self-supervision task is usually unimportant to us. Instead,
we are more interested in learning the intermediate representation of data. We validate in
Section 4.3 that the self-supervision task holds excellent semantic or structural meanings
and be helpful for the DL framework to recluster data based on feature similarities instead
of the hypothetical assumption.

3.3. Paper’s Assumptions

The proposed strategy aims to resolve handwriting recognition in a self-supervised
manner depending on some hypothetical assumptions. Table 1 illustrates the mathematical
notations employed in this work to make it easier for readers. To understand the problem
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statement, consider D as a dataset of handwritten text in manuscripts, where Xk represents
a single manuscript containing an individual’s handwriting. Consider xi to be a smaller
text block of the manuscript, with xi ∈ Xk. M number of nonoverlapping text blocks are
extracted from a specific manuscript, Xk. Because a manuscript is associated with a single
person, the smaller text blocks are also associated with that person. Based on this criterion,
we created a cluster network known as pairwise constraints between two text blocks. If
two text blocks are from the same script, they are considered in the same cluster. On the
contrary, two text blocks from different scripts are considered different clusters. A set of
clusters C can be formed based on the pairwise relationship, where each cluster ci ∈ C
belongs to a particular manuscript.

Considering most manuscripts contain one person’s handwriting, we can consider
that most clusters ci hold a single person’s data. However, a single individual can have
multiple manuscripts, and the individual’s data may be spread across multiple clusters.
As a result, the challenge is to find optimal cluster relationships such that no two clusters
contain data from the same individual.

Table 1. A summary of the mathematical notations used in the paper is provided.

Notation Description

D A set of manuscripts of handwritten text. We assume that most
manuscripts contain handwriting of an individual.

X A single handwritten manuscript, X ∈ D.

xi A text block, generated by taking non-overlapping sliding window
approach from a line segmented images of a manuscripts, xi ∈ Xk.

M The numbers of possible text blocks in a manuscript. Therotically, M ×
|xi| = |Xk|

C A set of clusters. Those clusters are constructed by utilizing the hypo-
thetical cluster network. Because cluster correlation is established on
manuscripts relations, it can consider |X| = |C|

ci Represents a subset of the entire set of clusters. ci illustrates a cluster
constructed by the interrelationship of text blocks on the document Xk.

N The number of writers in X, considering the ground truth.

α The pairwise [19] architecture’s distance hyperparameter. In other archi-
tectures, may denote the state of connectivity between any two cluster
nodes.

The DL framework aggregates numerous clusters into a single cluster that holds all of an
individual’s embeddings. We imply that if a DL function may accurately extract features from
text blocks, it can provide an optimal reasoning of similarities and dissimilarities between text
blocks. Furthermore, a suitably trained DL architecture can successfully recluster the data
based on feature relationships rather than the number of hypothetical clusters.

3.4. Pairwise Constraints

The proposed approach uses a cluster network to train the DL embedding architecture,
also known as pairwise constraints. A pairwise constraint specifies a pairwise relation
between input pairs. Let us consider two input data xi and xj as two random text blocks.
There are two possibilities: (i) text blocks may belong to the same manuscript (can-link
constraints), or (ii) text blocks may belong to different manuscripts (cannot-link constraints).
Mathematically, we can represent it as follows,

∀xi ∈ Xk and ∀xj ∈ Xk; xi, xj ∈ ck

∀xi ∈ Xk and ∀xj 	∈ Xk; xi, xj 	∈ ck,
(1)
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where ck is a separate cluster of the same class and Xk is a specific manuscript.
In the problem’s current state, the writer’s label or ground truth is unknown for all

handwritten scripts, considering each document belongs to a distinct individual. As a
result, the number of manuscripts, |D| is the same as the number of unique pseudolabels.

The cluster constraints defined in (1) are used to train the DL framework. We define a
ground regression function based on pairwise criteria derived in Equation (1) to properly
introduce the intercluster and intracluster relation to a DL framework. The function is
described as follows:

P(xi, xj) =

{
0 if xi, xj ∈ ck

α if xi ∈ cp and xj ∈ cq.
(2)

In Equation (2), the Pc(., .) function returns the distance constraints between embed-
ding (generated from text blocks) pair. In general, the function implies that embedding
pairs belong to the same cluster when their distance is zero; otherwise, they must be sepa-
rated by α. However, embedding pairs from distinct clusters may be separated away by a
distance greater than α, as defined in the AutoEmbedder framework in Equation (4). The
pairwise constraints described in Equation (2) are used to train a DL framework.

3.5. Uncertainty of Pairwise Constraints

The cluster assignment of writers is uncertain due to two primary concerns: (i) the
cluster assignment is unspecified concerning ground truth, and (ii) the manuscript Xk
might be impure. Impurity, with regard to manuscripts, refers to a script that includes
the handwriting of more than one writer. Theoretically, the number of writers considered
ground truth labels, defined as |N|, is less than the number of cluster assignments according
to the pseudo label, where |N| < |C| and |C| = |X|. Due to such circumstances, the training
dataset established on pairwise attributes often perceives an “error in can-link constraints”
and “impurity in can-link constraints”, as defined below,

• Error in cannot-link constraints: Consider that the input pair xi and xj belong to two
different classes, xi ∈ cp and xj ∈ cq, where cp 	= cq. Because the cluster assignment
is based on manuscripts, the number of manuscripts outnumbers the actual number
of writers. In consideration of the ground values, the hypothesis cp 	= cq might be
incorrect, and the input pair could belong to the same author.

• Impurity in can-link constraints: The main idea of the dataset is that a handwritten
manuscript Xk comprises only one person’s writing. In general, a manuscript may
incorrectly identify writing and contain the writing of numerous individuals in a
single manuscript. Let the input pair xi and xj belong to same script, xi, xj ∈ ci. The
manuscript might be impure, so the cluster assignment ci may be wrong, and the
input pair may belong to different individuals.

As our handwritten manuscripts contain a single individual’s handwriting, the task of
DL is to eliminate the error in cannot-link constraints based on the feature space relationship.
As a result, if the features can be prioritized to a DL architecture, it may apparently combine
appropriate clusters from inaccurate cannot-link constraints. However, impurity in can-
link constraints can be considerably reduced in further segmentation procedures, such as
sentence segmentation.

3.6. AutoEmbedder Architecture

We employ a pairwise constraint-based AutoEmbedder architecture as a DL frame-
work to recluster handwritten text blocks. Moreover, we present further improvements to
the network’s overall training procedure to enhance learning progress. To train AutoEm-
bedder architecture, we use pairwise constraints specified by function P(., .) in Equation (2).
The architecture adheres to Siamese network constraints, which can be stated as follows:

S(xi, xj) = ReLU(||M(xi)− M(xj)||, α). (3)

65



Mathematics 2022, 10, 4796

In Equation (3), S(., .) denotes a Siamese neural network (SNN) with a pair of inputs.
The architecture shares a single DCNN, M(, ., ), which maps higher-dimensional input into
meaningful lower-dimensional clusterable embeddings. The distance between generated
embedding pair is calculated by using Euclidean distance and passed through a thershold
ReLU activation fuction, which is derived in Equation (4):

ReLU(x) =

{
x if 0 ≤ x < α

α if x ≥ α.
(4)

The threshold value α in Equation (4) indicates the cluster margin of the network.
As a consequence of the cluster margin α, S(.,.) function produces output in range [0,α].
Figure 4 illustrates the overall architecture of AutoEmbedder using a Siamese neural
network. The generic AutoEmbedder framework is trained by using the L2 loss function.
The AutoEmbedder framework is trained for each data batch with an equal amount of
can-link and cannot-link constraints. However, the problem is easily handled in a triplet
architecture because each triplet includes a combination of cannot-link (anchor-negative)
and can-link (anchor-positive) pairs.

Figure 4. The training architecture of AutoEmbedder using a Siamese neural network (SNN). The
subnetwork of SNN is weight-sharable, and the activation function is Relu, which is described in
Equation (4). The architecture calculates pairwise distance output based on the generated embed-
dings pair.

3.7. Augmenting Training Data

In terms of the ground truth, both can-link and cannot-link cluster connections may
include faulty assumptions. Therefore, a simple augmentation schema is applied to prevent
the DL framework from overfitting faulty cluster associations. Even though there are a
variety of augmentation approaches available, we prefer to combine the augmentation
process described in Table 2.

Here, the augmentation pipeline includes the nongenerative online augmentation of
half of the training batch data with an augmentation probability of 0.5. However, in a
“Oneof” block, the transformations are defined along with their probabilities. The block
normalizes the probability of all transformations within the block and applies one trans-
formation on the image based on normalization. In this way, there is more efficiency in
applying suitable transformations. The block also has a probability parameter, which indi-
cates the probability of undertaking the block or not. Furthermore, all the transformations
are defined according to their probabilities, and they are illustrated in Table 2.
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Table 2. The table presents the augmentation pipeline associated with transformation definitions
along with their probabilities.

Oneof
Blocks

Transformations Description
Probability of
Transformations

Probability of
Oneof Blocks

Augmentation
Probability

Oneof
Flip Flip the input either horizontally,

vertically 0.5
0.5

Crop and Pad Randomly crop input image and pad
images based on image size fractions. 0.5

Oneof

Downscale Decreases image quality by downscaling
and upscaling back. 0.3

0.5

0.5

Gaussian Blur Apply a Gaussian filter with a random
kernel size to blur the input image 0.3

Motion Blur Apply motion blur to the input image
using a random-sized kernel. 0.3

Oneof

Multiplicative
Noise

Multiply images to a random number or
array of numbers. 0.3

0.5
Random
Brightness
Contrast

Randomly change brightness and contrast
of the input image. 0.3

Gaussian Noise Apply gaussian noise to the input image. 0.3

Oneof
Pixel Dropout Set pixels to 0 with some probability. 0.5

0.5
CoarseDropout Coarse drop out of the rectangular regions

in the image 0.5

In the case of erroneous data pairs, augmenting image frames makes the AutoEmbedder
network less confusing. The architecture may be enhanced by augmenting it while disregard-
ing erroneous data pairs caused by different transformations. Furthermore, augmenting data
causes data variation, which allows the network to extract more useful features from the data.
Algorithm 1 presents the pseudocode of the pairwise training process.

Algorithm 1: Self-Writer training algorithm
Input: Subset of training dataset X, DL model with initial weights M, Number of

iterations epochs, Training batch size batchSize, Distance hyperparameter α
Output: Trained Embedding DL model.
Initialize a siamese network with ,ReLU(S(., .), α);
iter ← 0;
while iter < epochs do

foreach Xbatch ∈ X do

Initialize empty lists, I, I′, Y ← {}, {}, {};
counter ← 0;
foreach x ∈ Xbatch do

I ← append x in I, ;
if counter mod 2 then

I′ ← randomly choose and append a can-link text block from X ;
Y ← append 0 in Y;

else

I′ ← randomly choose a cannot-link text block from X ;
Y ← append α in Y;

counter ← counter + 1;

I ← randomly choose half of data and augment them;
I′ ← randomly choose half of data and augment them;
S ← Train S with I, I′, Y
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4. Results

This section evaluates the proposed self-supervised writer recognition method called
Self-Writer. As the architecture objective is to generate clusterable embedding, the K-means
algorithm is used to measure the purity of the embedding clusters. In Section 4.1, we
present the evaluation metrics. A brief description of the dataset is provided in Section 4.2.
Section 4.3 discusses the implementation details and the training procedure of our proposed
Self-Writer. Finally, the result analysis is presented in Section 4.3.

4.1. Evaluation Metrics

To measure the clustering effectiveness of generated embeddings of the Self-Writer
schema, three well-known metrics, normalized mutual information (NMI), accuracy (ACC),
and adjusted rand index (ARI), are used. The evaluation metrics are discussed below.

• Normalized Mutual Information: The normalized mutual information can be mathe-
matically defined as

NMI(c, c′) = I(c, c′)
max(H(c), H(c′))

, (5)

where c and c′ are the ground truth and predicted cluster, respectively. I(.) define the
mutual information between c and c′, and H(.) denotes the entropy.

• Accuracy: Accuracy refers to the unsupervised clustering accuracy, expressed as

ACC(c, c′) =
(

max
∑n

i=1 l
(
ci = m(c′i)

)
2

)
, (6)

where li defines the ground truth labels, ci denotes the cluster assignment produced
by Self-Writer, and m(.) ranges over all possible one-to-one mapping of the labels and
clusters, from which the best mapping is taken.

• Adjusted Rand Index: The adjusted rand index is calculated by using the con-
tengency [56]. The ARI can be expressed as

ARI =
∑ij (

nij
2 )−

[
∑i (

ai
2 )∑j (

bj
2 )
]
/(n

2)

1
2

[
∑i (

ai
2 ) + ∑j (

bj
2 )
]
−
[
∑i (

ai
2 )∑j (

bj
2 )
]
/(n

2)
. (7)

Here, nij, ai, and bj are the values of the contingency table produced by the Self-Writer.

All three metrics produce a result in between the [0, 1] range. The higher value of
these indices indicates a better correlation between ground truth and cluster prediction.

4.2. Datasets
4.2.1. IAM

The IAM is one of the most prominent and renowned English handwritten datasets,
containing 1539 scanned handwritten scripts with 657 distinct writers using various pens.
The manuscripts are scanned at 300 dots per inch (DPI) with 256 gray levels. However,
the dataset comes with different forms such as manuscripts, sentences, words, and lines
that provide different handwriting and word-recognition protocols. Out of 657 writers,
356 writers contribute only a single handwritten script. Each writer provided a number of
documents ranging from one document (356 writers) to the most oversized (59 documents
from one writer). Due to the variance of patterns of each writer, we consider the writers
who provided more than equal four manuscripts and conducted the experiment with the
first four manuscripts of the writers.

4.2.2. CVL

Another recent handwriting dataset for writer recognition is the CVL [53] handwriting
dataset containing 1606 handwritten scripts with 310 distinct writers using different color
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pens. A total of 282 writers contributed five manuscripts samples (four in English and one
in German), and the rest contributed seven manuscripts (six in English and one in German).
The dataset is also different from the IAM dataset. However, unlike the IAM dataset, the
CVL dataset is well distributed. In this experiment, we also consider all the manuscripts
for each writer.

4.3. Results and Comparison

To analyze the embeddings based on the proposed strategy, AutoEmbedder (pairwise
architecture) and a triplet architecture are implemented. Except for these two techniques,
the most popular DL approaches for writer recognition do not adhere to the training
characteristics discussed in the study. They often operate supervised learning strategies.
Hence, they are omitted in this experiment.

For both DL frameworks, we use DenseNet121 [57] as baseline architecture. Further-
more, both DL architectures are connected with a dense layer containing 16 nodes. As
a result, both architectures generate 16-dimensional embedding vectors. For the triplet
network, we have added l2-normalization on the output layer, as it is suggested to increase
the framework’s accuracy [58], and valid triplet is generated manually. The pairwise ar-
chitecture is trained by using default L2-loss also known as the mean square error (MSE),
while semihard triplet loss [18] is used to train the triplet architecture. The training pipeline
is illustrated in Figure 5.

Text Block1

Text Block3

Text Block2

Augmentation

Em
be

dd
er R16

Augmentation probability = 0.5

Figure 5. The same data processing pipeline is used to train both pairwise and triplet frameworks.
The DL frameworks receive half of the inputs randomly augmented with an augmentation probability
of 0.5.

The evaluation phase ensures that both frameworks are trained by using an identical
dataset. Because the proposed approach is self-supervised and deals with unlabeled
datasets, the frameworks get the exact dataset for training and testing purposes. However,
the labels for the training process are unspecified and initiated on the paper’s hypothetical
premises. A dataset such as this is referred to as a training dataset. Considering the ground
truth values of writers with the same dataset is referred to as the ground dataset. We used
a batch size of 64 to train both frameworks. The training is carried out with the Adam [59]
optimizer with a learning rate of 0.0005.

The training phase of Self-Writer includes high computational complexity, including
online data augmentation. In addition, computing NMI, ACC, and ARI metrics required
quadratic time complexity. As a result, we have decided to restrict the number of writers to
150. We trained on a subset of the dataset rather than the entire dataset. In order to test the
ground truth data, two random samples of each text segment are chosen. The model was
trained over 400 epochs.

Figure 6 compares the triplet and pairwise networks during training on two distinct
datasets, with writers equal to 25 and impurity equal to 0. The triplet architecture learns
from the training dataset in a seamless manner and overfits immensely on the augmented
training data. The benchmark of the ground dataset is also anticipated because the metrics
of triplet architecture increase at first and then drop dramatically due to overfitting. From
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Figure 6’s triplet architecture on two different datasets, it can be conceded that it only
remembers the features related to the hypothetical labels.

Sc
or

e
Sc

or
e

Epoch Epoch

Architecture: Triplet 
Dataset: IAM

Architecture: Triplet 
Dataset: CVL

Architecture: Pairwise 
Dataset: IAM

Architecture: Pairwise 
Dataset: CVL

Figure 6. Graphs illustrating the metrics of the training and ground dataset containing 25 writers
with an impurity of 0. The first row represents the triplet network and the second row represents the
pairwise network, respectively.

In contrast, the pairwise framework produces an adequate performance with some
inconsistencies. Generally, DL frameworks generate more accuracy on training data than
validation data. However, the performance of the ground dataset is mostly superior to the
training data in our method. Nevertheless, after 300 epochs, the performance on the ground
dataset started to decrease gradually. The architecture started getting overfitted on training
data due to the limited number of writers. Furthermore, for reducing overfit on training
data, we increase the number of writers to 50, shown in Figure 7. The triplet framework
still gradually overfits training data. Furthermore, the ground dataset’s accuracy started to
drop due to memorizing feature relationships based on hypothetical labels. However, the
pairwise framework performed a steady performance on ground datasets.

The performance of the training method comprehensively depends on the impurity
of training data. Increasing the impurity ratio reduces the architecture’s performance.
Benchmarks were conducted with impurity = 0.1 and 0.05, while considering writers =
50, as shown in Figures 8 and 9. The training architecture continues to overfit the triplet
architecture. On the other hand, pairwise architecture gradually memorizes the training
dataset based on feature relation.
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Figure 7. Graphs illustrating the metrics of pretext task and ground dataset containing 50 writers
with the purity of 0. The first row represents the triplet network and the second row represents the
pairwise network, respectively.
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Figure 8. Graphs illustrating the metrics of the pretext task and ground dataset containing 50 writers
with a purity of 0.05. The first row represents the triplet network and the second row represents the
pairwise network, respectively.
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The semihard triplet loss function is designed to minimize the embedding distance
between positive and anchor data and strictly distance the embeddings of negative and
anchor data. As the triplet architecture is trained over semihard triplet loss and heavily
adheres to the aforementioned criteria, the architecture overfits hypothetical constraints
while ignoring the real feature-dependent relationships.

In contrast, instead of overfitting training data, the pairwise architecture learns to
extract features. The reason lies in AutoEmbedder’s training strategy as L2-loss does not
take into consideration the pseudolabel; instead, it learns aggregately from a batch of
data. Therefore, the framework can obtain feature similarities because it is not precisely
supervised using L2-loss. As a result, the architecture can recluster the data in hyperspace
depending on the feature similarities.
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Dataset: IAM

Architecture: Triplet 
Dataset: CVL

Architecture: Pairwise 
Dataset: IAM

Architecture: Pairwise 
Dataset: CVL

Figure 9. Graphs illustrating the metrics of the pretext task and the ground dataset containing 50
writers with impurity 0.1. The first row represents the triplet network and the second row represents
the pairwise network, respectively.

With pairwise architecture-based AutoEmbedder, we further investigate several writ-
ers and impurity conditions. Tables 3 and 4 show the IAM and CVL datasets’ evaluation
metrics on the training and ground datasets. The table represents a comprehensive sum-
mary of the performance variance in the training dataset depending on the number of
writers and impurity. On any dataset, the AutoEmbedder-based paired architecture retains
a marginal performance with impurity = 0. Furthermore, increasing the number of writers
and the impurity ratio causes a reduction in the architecture’s performance. Although the
number of writers is held constant at 25 and 50, a slight fluctuation is observed in both
datasets. Increasing the number of writers by 50 resulted in an inconsistent improvement
in performance.
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Table 3. The table illustrates the pairwise architecture in the IAM dataset across four-speaker groups:
25, 50, 100, and 127. The table also analyzes two segmentation impurities, 0 and 0.1, for each group of
writers to illustrate the shortcomings of the faulty assumption.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

NMI ACC ARI NMI ACC ARI NMI ACC ARI

25 writers Pretext task 0.801 0.463 0.334 0.791 0.422 0.352 0.778 0.430 0.372
Ground task 0.956 0.948 0.912 0.898 0.854 0.848 0.856 0.807 0.792

50 writers Pretext task 0.849 0.452 0.351 0.845 0.432 0.348 0.834 0.424 0.345
Ground task 0.988 0.969 0.934 0.958 0.943 0.897 0.903 0.861 0.801

100 writers Pretext task 0.841 0.419 0.309 0.7895 0.394 0.310 0.731 0.398 0.312
Ground task 0.901 0.841 0.813 0.876 0.823 0.801 0.851 0.816 0.794

127 writers Pretext task 0.836 0.404 0.301 0.779 0.396 0.294 0.711 0.382 0.299
Ground task 0.898 0.817 0.798 0.847 0.794 0.776 0.816 0.787 0.741

Table 4. The table illustrates the pairwise architecture in the CVL dataset across four-speaker groups:
25, 50, 100, and 150. The table also analyzes two segmentation impurities, 0 and 0.1, for each group of
writers to illustrate the shortcomings of the faulty assumption.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

NMI ACC ARI NMI ACC ARI NMI ACC ARI

25 writers Pretext task 0.786 0.372 0.228 0.811 0.384 0.246 0.771 0.368 0.250
Ground task 0.943 0.910 0.908 0.899 0.862 0.857 0.907 0.850 0.810

50 writers Pretext task 0.800 0.368 0.231 0.800 0.362 0.246 0.800 0.374 0.268
Ground task 0.974 0.941 0.919 0.930 0.901 0.845 0.914 0.867 0.816

100 writers Pretext task 0.786 0.352 0.228 0.764 0.340 0.219 0.744 0.336 0.214
Ground task 0.908 0.871 0.819 0.894 0.846 0.770 0.861 0.811 0.784

150 writers Pretext task 0.753 0.337 0.216 0.727 0.312 0.178 0.703 0.297 0.154
Ground task 0.846 0.793 0.764 0.824 0.781 0.743 0.816 0.775 0.725

In order to investigate the appropriate feature relationship between text blocks, the
architecture requires a significant amount of handwriting characteristics variations from
users. Limiting the number of writers to 25, the architecture struggles to find more appro-
priate feature relationships and observes a reduction in performance. By increasing the
number of writers to 50, the feature variances in training data are balanced and observed a
performance improvement.

5. Discussion

The pairwise architecture with training strategy performs well in the writer recognition
process. However, throughout the study, the architecture has several difficulties that must
be addressed. First, training the architecture with less handwriting variation results in
overfitting, as observed while the number of writers’ dataset is 25. Secondly, as the system is
fully segmentation-dependent, the target lies in developing an optimal audio segmentation
procedure. Resolving these challenges would benefit the architecture for a wide range
of writer recognition and evaluation usage. Furthermore, due to the use of Siamese
architecture, the architecture has an identical subnetwork, increasing the computation
throughout the process. Thus, the training strategy required a long period of time.

Apart from the limitations, the self-writer strategy requires no pretraining on large
handwritten datasets, which is often observed in other writer recognition methods. Fur-
thermore, the Self-Writer strategy requires comparatively less per-writer data than the
other writer recognition methods. From an overall perspective, the Self-Writer keeps the
requirement of labeled data to a minimum.
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6. Conclusions

This paper presents Self-Writer, a self-supervised writer recognition system that gener-
ates clusterable embeddings depending on the writers’ unique handwriting characteristics.
Self-Writer deals with unlabeled data and is trained with pseudolabels. Self-supervised
learning has its various forms based on the domain; self-writer aligns with contrastive
self-supervised learning strategies. We evaluate such a strategy with two relevant DL
architectures, pairwise and triplet. The empirical results demonstrate that the pairwise
architecture-based AutoEmbedder, as an embedding architecture, performs better than
triplet architecture for our proposed self-supervised writer recognition. Furthermore, the
architecture performs well regarding the number of writers and handwritten text segmen-
tation errors in unlabeled data. However, depending on the writers’ variations, the method
requires clean documents and robust line segmentation techniques to generate clusterable
embeddings. Therefore, a segmentation technique and VLAD encoding might be an ex-
tended version of the proposed work. In addition, to evaluate the clusterable embedding,
we use the K-means algorithm. However, locally weighted and multidiversified ensemble
clustering, which enhances the clustering robustness by fusing the information of multiple-
based clusterings, might be an extended version of the proposed work. Nevertheless,
we firmly believe that such a comprehensive and hypothetical technique for generating
hypothetical labels to train writer recognition systems will assist researchers in developing
new strategies.
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Abstract: Selecting candidates for a specific job or nominating a person for a specific position takes
time and effort due to the need to search for the individual’s file. Ultimately, the hiring decision
may not be successful. However, artificial intelligence helps organizations or companies choose
the right person for the right job. In addition, artificial intelligence contributes to the selection of
harmonious working teams capable of achieving an organization’s strategy and goals. This study
aimed to contribute to the development of machine-learning models to analyze and cluster personality
traits and classify applicants to conduct correct hiring decisions for particular jobs and identify
their weaknesses and strengths. Helping applicants to succeed while managing work and training
employees with weaknesses is necessary to achieving an organization’s goals. Applying the proposed
methodology, we used a publicly available Big-Five-personality-traits-test dataset to conduct the
analyses. Preprocessing techniques were adopted to clean the dataset. Moreover, hypothesis testing
was performed using Pearson’s correlation approach. Based on the testing results, we concluded
that a positive relationship exists between four personality traits (agreeableness, conscientiousness,
extraversion, and openness), and a negative correlation occurred between neuroticism traits and the
four traits. This dataset was unlabeled. However, we applied the K-mean clustering algorithm to
the data-labeling task. Furthermore, various supervised machine-learning models, such as random
forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), and AdaBoost, were used
for classification purposes. The experimental results revealed that the SVM attained the highest
results, with an accuracy of 98%, outperforming the other classification models. This study adds
to the current literature and body of knowledge through examining the extent of the application of
artificial intelligence in the present and, potentially, the future of human-resource management. Our
results may be of significance to companies, organizations and their leaders and human-resource
executives, in addition to human-resource professionals.

Keywords: Big Five personality test; artificial intelligence; human resources; employee selection;
teamwork; machine learning

MSC: 68T01

1. Introduction

Recently, the world has witnessed tremendous developments in artificial intelligence
(AI) techniques, which are necessary for management science because of their predictive
accuracy, classification, ease of analysis, and time-saving features. Traditional methods
were used in the past, based on handwriting as an analytical tool for personality or the
manual observation of some personal traits [1].

The application of artificial intelligence (AI) for human-resource management through
the use of the Big Five personality test can be a powerful tool for making data-driven
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decisions and improving efficiency. By analyzing the results of the Big Five personality
test, human-resources professionals can identify patterns and trends in personality traits
and predict which candidates will be likely to be successful in specific job roles. Addi-
tionally, AI algorithms can be used to identify training-and-development needs, analyze
employee-performance data, and identify factors that contribute to high levels of employee
engagement and retention. Overall, the use of AI in human-resource management has the
potential to greatly enhance decision-making and improve the overall effectiveness of HR
processes [2,3].

When candidates submit their applications for a specific job to a company, the first
expectation of the human-resources manager is that they select the right candidate for
potential placement. A common approach is to require a certificate and experience from
the applicant. Most organizations focus on specific criteria, including creativity, commu-
nication, the ability to analyze, speed of intuition, and the ability to overcome the types
of challenges associated with the position. In addition, leadership skills are often sought.
These include firmness, administrative discipline, and the ability to direct others toward
the organization’s goals [4–6].

The Big Five model, sometimes referred to as the five-factor model, is currently
the theory of personality that has the greatest level of acceptance among psychologists.
According to this idea, an individual’s personality may be broken down into five primary
components, sometimes known by the acronym OCEAN (openness, conscientiousness,
extraversion, agreeableness, and neuroticism) [7].

The Big Five personality test may be carried out by any organization. However, the
test does not exclude or withhold some jobs from some people; the goal is more significant
and profound. Some organizations are interested in developing a team with a high capacity
for carrying out specific tasks to achieve company goals [8–10]. Figure 1 shows Big Five
personality traits.

Big Five 
Traits 

Agreeableness

Extraversion

ConscientiousnessOpenness

Neuroticism

Figure 1. Big Five personality traits.

In modern psychology, the Big Five personality test examines the essential categories of
individual personality included in OCEAN [11], which determine individuals’ personalities
and explain their behaviors. The OCEAN categories include the following:

• Openness to new experiences: This trait characterizes people who enjoy the arts and
new adventures. People with a high score on this characteristic are often inquisitive,
less traditional, and more inventive.
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• Conscientiousness measures people who are organized, productive, and accountable.
High-scoring results for this trait are often obtained by meticulous and highly reliable
individuals. Low scores are given to people who exhibit low performance and are
uninterested in their jobs.

• Extraversion evaluates sociability and an individual’s source of energy and excitement.
Furthermore, in a manner that could be compared with a spotlight, those who score
well on this characteristic often inspire others to succeed.

• Agreeableness measures trustworthiness, candor, and getting along with people. Low
scores for this trait are often indicative of less trustworthy and more dissatisfied
individuals. These tend to be more argumentative, which may reduce their chances of
being hired [12].

• Neuroticism assesses an individual’s emotional stability, impulsivity, and anxiety in
the face of pressure. People who go absent without leave (AWOL) from work, use
harsh language, or behave negatively after an intense meeting will likely have a higher
score for this trait.

This approach, which is recommended in this study, has two advantages:

1. A quicker and less expensive way to determine job applicants’ personalities.
2. A faster process means there is no need to spend significant time determining appli-

cants’ behavior, reducing the need to spend significant money on interviews [13,14].

It was mentioned in [15] that it is necessary to investigate personality with more focus
and with a fuller consideration of the particulars of expansion and revolution than have
been employed hitherto. To highlight the issue in this study, it is indicated by Verma and
Bandi [16] that 69% of employees’ inadequate qualities are due to poor hiring decisions.
The explanations for this include deficiencies in the understanding of candidates’ profiles
and their alignment with companies’ cultures, in addition to the subjective assessment
of candidates’ hard and soft skills. This is because the employment process is typically
conducted by human recruiters, who individually check CVs and other sources to find
applicants. As individuals have narrow capabilities, performing all the necessary tasks
is not easy, and generally entails more time from each individual recruiter. Other issues
include human limitations, such as prejudices, biases, and time constraints, which can
influence how a recruitment procedure operates [17] and may lead a company to lose
applicants who are better suited [18]. Indeed, AI and machine learning may help to solve
this problem by making human-capital management more smart and effective. Thus, the
purpose of study is to enlarge upon and fill the gap in the current research by examining
how AI will help organizations to select their human capital to increase the effectiveness of
their recruitment.

The rest of the article is broken up into the following sections. The next part presents
a literature review of the existing studies. Section 3 provides the methodology, which
examines the data collection and sources, as well as the technique used for the analysis. The
results are discussed in Section 4, while the discussion of these results and their connection
to the motivation behind the study are presented in Section 5. The conclusion and potential
directions for future research are presented in Section 5.

2. Literature Review

In the current era, technological advancements have made it possible to obtain and
analyze data to acquire information about human behavior [19]. For example, the analysis
of the Big Five personality traits has been applied in different fields, such as health care, ed-
ucation, online-behavior analysis, and human-resource management. Alamsyah et al. [20]
identified prospective employment applicants based on a personality measurement using
an ontology model with the help of social-media data. They selected five Twitter users
whose data were available on social media as samples.. Furthermore, through their ap-
proach, they found that the personality measurement using this model revealed that each
job applicant had different personality traits, such as openness, extraversion, agreeableness,
and conscientiousness.
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Another study, presented by Laleh et al. [21], analyzed the behavior of users and
customers on social-media platforms such as Twitter and Facebook. The users’ text data,
such as likes, follow-ups, and online posts were collected in order to track their activities.
The aim was to determine which customers were targeted and attracted by the promotion of
particular companies’ products, thus increasing these companies’ profits. Some companies
also use online social media posts for behavioral and psychological analysis. Qin et al. [22]
presented a deep-learning model based on an artificial neural network, BP, to predict
OCEAN personality traits. The textual analysis and deep-learning model were trained and
tested on a dataset collected from the Sina Weibo website. The results showed that the
model can predict the efficiency of the OCEAN personality test, achieving an accuracy of
74%.

Some studies have been conducted on the academic field. For instance, John et al. [23]
used questionnaires to test students’ performances. Another study, by Curtis et al. [24],
tested the relationship between personality traits and employee aging. The study found
that neuroticism may be negatively related to the tested individuals’ general cognitive
ability, capacity, and smooth thinking.

In health care, Dymecka et al. [25] tested the influence of self-efficacy and the Big Five
personality characteristics on emergency-telephone-number operators’ stress during the
COVID-19 epidemic. One hundred emergency-telephone operators participated in the
research and provided the data. The authors discovered that the operators of emergency
telephone numbers suffered from a considerable amount of stress. All the Big Five per-
sonality characteristics and self-efficacy were linked to the amount of stress experienced.
Self-efficacy and emotional stability were significant predictors of reported stress in a
sample of emergency-telephone-number operators using stepwise regression.

Furthermore, Muntean et al. [26] tested doctors’ stress. The authors tested doctors
exposed daily to several stressors; their levels of occupational stress were thoroughly
examined. In mental health, Chavoshi et al. [27] studied the relationship between depressive
symptoms and the Big Five personality traits. The results showed an association between
neuroticism and depressive symptoms that was significantly positive, whereas the link
between extraversion, conscientiousness, and openness was significantly negative [28].

Xu et al. [29] studied how the geographic environment influences human personality
at the provincial level. The authors studied the association between the Big Five person-
ality characteristics and the measurement of mountainous areas. They investigated the
differences in the personalities of inhabitants of mainland China in relation to geographical
region by exploring the relationships between the Big Five personality characteristics and
indices of mountainous areas. Priyadharshini et al. [30] applied the Big Five personality
test in the selection of decision makers and leaders in various investment, military, and
government sectors, in which decisions determine the fates of countries or other sectors,
and the failure or success of their projects.

There are some similarities between the Big Five test and the Myers–Briggs Type
Indicator (MBTI).. The MBTI is a personality model that is rarely used in personality
computing. Unlike the Big Five and HEXACO, the MBTI defines personality according to
types rather than traits; in other words, the human personality is solely defined by a specific
personality type or class, rather than through different scores for multiple traits. The Myers-
Briggs Type Indicator (MBTI) classifies people into one of four categories: extraversion or
introversion, sensing or intuition, thinking or feeling, and judging or perceiving. This is a
technique that is usually used in the process of assisting persons in better comprehending
their personal communication preferences, as well as the manner in which they engage
with other people. Knowledge of the Myers-Briggs Type Indicator (MBTI) may assist
individuals in adapting their interpersonal styles to suit a variety of settings and audiences.
In psychology, the MBTI applies four binary criteria and categorizes individuals into one of
16 distinct personality types. The MBTI has long since been replaced by approaches such
as the Big Five traits, which are more reliable, valid, and complete. These approaches are
considerably more descriptive of the underlying reality (e.g., most individuals are neither
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drastically introverted nor extroverted, but rather somewhere in the center) than categorical
characteristic dimensions such as those deployed by the MBTI. The Big Five is not the
only contemporary theory of personality. Its most notable rivals are the honesty–humility,
emotionality, extraversion, agreeableness, conscientiousness, and openness-to-experience
(HEXACO) model. However, HEXACO and the Big Five are relatively similar; HEXACO’s
additional honesty–humility element is the primary distinguishing feature [28], which adds
a sixth dimension to personality analysis, [31].

3. Methodology

Many modern psychologists who study personality point to the Big Five personality
traits as evidence that there are at least five fundamental aspects of human nature [32].
Extraversion, agreeableness, openness, conscientiousness, and neuroticism are the five
main characteristics of a person’s character. In modern management methods, knowledge
of personality traits is essential. Therefore, career professionals and psychologists use this
information in a personality career test for recruitment and candidate assessment [33]. This
study developed a machine-learning approach to Big Five personality test dataset to give
decision makers in organizations or businesses detailed information on the personalities
of applicants and more insight into how they react in different situations, which can help
in selecting occupations for employees. The proposed methodology has seven phases, as
follows:

1. Dataset collection.
2. Data preprocessing.
3. Feature selection.
4. Clustering algorithms.
5. Data splitting.
6. Training machine-learning models.
7. Evaluation of the results.

Figure 2 shows the structure of the methodology.

Figure 2. Architecture of the proposed methodology.

3.1. Dataset Collection

Open Psychometrics collected this dataset from participants worldwide through an
online model [34]. This dataset contains information from 1,015,342 individuals who
answered the questionnaire, which comprised 50 questions. It is publicly available on
Kaggle [35]. Figure 3 shows the countries with 10,000 or more participants. A large number
of participants were from the following countries: USA, with 545,912 participants; the UK,
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with 66,487; Canada, with 61,805; Australia, with 49,753; the Philippines, with 19,844; and
India, with 17,482. Some countries had few participants. These included Yemen, with
14 participants, and Burundi, with one participant.

 

Figure 3. The distribution of participants on the dataset.

3.2. Data Preprocessing

This dataset needed processing because it had missing values. When no value was
stored for a particular feature in the dataset, the “dropna” method was used to clean the
dataset. The dataset also contained some unwanted features; therefore, we focused on the
responses to questions that only related to personal traits. Next, MinMaxScaler was used
to scale the data. It modifies attributes by scaling each attribute to a specified range. The
default range is between 0 and 1. Subsequently, principal-component analysis (PCA) was
used to reduce the dimensionality of the data and k-means for clustering to label the data.
The following sections explain the rest of the preprocessing.

3.2.1. Correlation Testing Using Pearson’s Approach

The Pearson correlation coefficient (named after Karl Pearson) can be used to summa-
rize the strength of the linear relationship between data samples. Python software 3.9 was
used to find correlations between features. It is expressed by Equation (1), below.

r =
∑(x − mx)

(
y − my

)√
∑(x − mx)

2 ∑
(
y − my

)2
(1)

The range of the correlation is between −1 and +1. When the correlation value is closer
to zero, there is no linear trend between the two variables. When the correlation is close to
1, the correlation is more positive, which means that a change in one variable affects the
other variable. A correlation closer to −1 is similar, but instead of increasing, one variable
decreases as the other increases [36]. The heatmap shows that the diagonals are all “1,” dark
blue, because these squares correlate each variable with itself (indicating a perfect correla-
tion). For the rest of the values, the larger the number and the darker the color, the stronger
the correlation between the two variables. The plot is also symmetrical about the diagonal,
since the same two variables are paired together in these squares. To make the heatmap
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in Figure 4 more comprehensible, we combined the personality traits into five variables
using the mean value of 50 variables and tested the correlations. Figure 4 shows a positive
relationship between conscientious personality (CSN) and open personality (OPN), of 0.4.
Furthermore, there was a positive relationship between extraversion personality (EXT)
and agreeableness personality (AGR), of 0.4. In addition, there was a positive relationship
between the AGR and the CSN, of 0.36. When we compared the correlations between any
personality trait and neuroticism personality traits, we found a weak correlation, as shown
in Figure 4.

 

Figure 4. Correlations between personality traits.

3.2.2. Feature Selection

The dataset used in this study had 50 features, and each group of personal traits had
10 positive and negative questions. These groups had strong internal correlations. To de-
velop our model, we used a subset from the dataset of 20,000 (20 k) samples, because of the
limitations of computer configurations. However, PCA was applied. Principal-component
analysis is an unsupervised learning approach used to decrease the dimensionality of
data features and is extensively employed as a dimensionality-reduction algorithm [37–39].
Reducing the dimensionality of input dataset features used to train and test a predictive
model achieves a higher performance level. From another perspective, it makes large
datasets easy to process and classify in less calculation time. The main objective of the PCA
algorithm is to wrap high-dimensional features into a set of lower-dimensional spaces and
then reconstruct them. The PCA can be calculated by Equation (2), where x is the mean and
xi a set of input features. Table 1 shows results of PCA method when selecting significant
features.

xj = xi − x (2)
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where i and j are simply index variables that are used to refer to different data features
within a dataset.

Table 1. Results of PCA.

Extraversion Neuroticism Agreeableness Conscientiousness Openness Clusters

0.60 0.48 0.62 0.64 0.66 4
0.68 0.42 0.64 0.62 0.54 0
0.58 0.52 0.56 0.56 0.62 0
0.52 0.54 0.64 0.54 0.62 3
0.70 0.46 0.60 0.64 0.72 4

3.2.3. Clustering Algorithm

Clustering is the process of gathering data into groups based on patterns of similarity
and distance. In this study, the dataset was not labeled; for this reason, we applied clustering
to label the data. The use of k-means clustering is a simple way to divide a dataset into K
groups that do not overlap. To implement k-means clustering, we must first assume how
many clusters we require [40,41]. The k-means algorithm then locates each observation in
one of the K clusters. The number of clusters was determined using the Elbow method.

Elbow method for clustering determination
The Elbow method is one of the most popular methods for determining the optimal

value of k, referring to the number of clusters. The idea behind the Elbow method is based
on how the arm is made. However, the structure of the Elbow method may change based
on how the parameter “metric” is set. The Elbow method used a k-means algorithm to
determine the k number of clusters by setting in the range (k = 2 to 9) to find groups in
unlabeled data. The method detected five clusters, as shown in Figure 5.

Figure 5. Elbow-method plot.

The k-means algorithm grouped the data by dividing the samples into n groups with
the same degree of variation. This was achieved by minimizing what is called inertia, or
within-cluster sum-of-squares. The aim was to discover a centroid with the least amount of
inertia or within-cluster sum-of-squares. The following is an explanation of how k-means
works:
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• Step 1: Calculate the value “K,” which denotes the number of clusters. In this in-
stance, we chose K = 5 (agreeableness, extraversion, openness, conscientiousness,
neuroticism).

• Step 2: Initialize a cluster by choosing, for instance, five different centroids at random
from fresh data points. If “K” is equal to 5 and there are five centroids, cluster
initialization occurs.

• Step 3: Calculate the distance between each point and the centroid. For instance,
calculate the distance between the first point and the centroid.

• Step 4: Assign each point to the closest cluster and then measure the distance between
the initial point and the centroid.

• Step 5: As the new centroid, compute the mean of each cluster. Each cluster’s mean
should be used to update the centroid.

• Step 6: Repeat steps 3–5 with the new cluster center. Repeat until reaching a halt, indi-
cating convergence (no more changes), as well as the maximum number of repetitions.
The process is complete when the clustering does not change during the preceding
round.

The algorithm created groups based on the similarity between the answers, and it was
arranged in five clusters. The next step was training and testing output-cluster data based
on machine-learning models.

3.3. Machine-Learning Models

Supervised learning is a machine-learning method that is applied using labeled
datasets. The models based on this method must determine the mapping function connect-
ing the input variable (X) to the output variable (Y). After the data were labeled, using a
k-means clustering algorithm, we trained and tested several machine-learning algorithms
to obtain a high-accuracy model to predict measurements of different personality traits.
Random forest (RF), linear support vector machine (LSVM), K-nearest neighbor (KNN),
and AdaBoost algorithms were applied to divide the dataset into the following classes:
Class 0, Class 1, Class 2, Class 3, and Class 4.

3.3.1. Support Vector Machine (SVM) Method

Support-vector-machine classification is a supervised-learning algorithm that uses
support-vector machines to classify feature values into different categories. This algorithm
is particularly useful for linearly separable data, meaning the feature values can be easily
separated into distinct categories based on their features. One of the main advantages of
SVM classification is its ability to handle high-dimension data and large datasets. It can
also handle cases in which the data are not linearly separable by using kernel functions to
transform the data into a higher-dimensional space, in which they become separable.

Support-vector-machine classification works by finding the hyperplane in a high-
dimensional space that maximally separates different classes. In predicting personality
traits, SVM classification can be used to identify patterns in the data indicative of specific
traits. For example, a hyperplane separating individuals high in openness from those low
in openness may be identified through SVM classification, allowing for accurate predictions
of an individual’s openness level. In this research, the radial basis function (RBF) was
employed to classify the data [42].

K
(
X, X′) = exp (−‖X − X′‖2

2σ 2 ) (3)

where ‖X − X′‖2) is Euclidean distance between the input variables.

3.3.2. AdaBoost Method

AdaBoost (adaptive boosting) classification is a machine-learning technique. It works
by iteratively training weak classifiers, which are models that perform slightly better than
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chance, and then combining them into a single strong classifier (Freund and). The weak
classifiers are trained on different subsets of the data, with a greater weight given to
misclassified samples in order to focus on improving their classification. One of the key
benefits of AdaBoost classification is that it can be applied to a wide range of classification
problems, including binary and multi-class classification. It has also been shown to perform
well in cases in which the data are unbalanced.

AdaBoost classification can be used to predict personality traits in order to identify
patterns in the data indicative of specific traits. For example, a classifier combining multiple
weak learners that can accurately predict an individual’s openness level may be identified
through AdaBoost classification.

3.3.3. K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is a classification technique that is both one of the easiest
and one of the most essential in ML. In the fields of pattern recognition, data mining, and
intrusion detection, supervised learning is one of the strategies that is used the most often.
Because it does not make any fundamental assumptions about the manner in which data
are distributed, it is entirely superfluous in the context of real-world scenarios [43,44]. The
KNN algorithm’s goal is to determine the class label that should be applied to a particular
query point by locating the points that are geographically the most similar to that location.
We determined that the k value should be set to 3.

Ai =
√
(c1 − c2) + (d1 − d2) (4)

The k value is employed to locate and compute the points in the feature vectors that
are closest to each other. As a result, the value must stand out. Furthermore, c1 − c2 and
d1 − d2 are feature vectors for finding the closest point

3.4. Evaluation Metrics

A model was evaluated by testing an algorithm on an unseen dataset that was not
used during the training step to analyze the model performances. In these experiments,
we used several standard micro averages of a metric, such as confusion matrix, accuracy,
f1-score, precision, and recall. The classification results were also quantified using the ROC
metric, which calculated the false-positive and false-negative samples, as illustrated in the
representation graph below. A confusion matrix shows four categories of results: (1) true
positive (TP), (2) false negative (FN), (3) false positive (FP), and (4) true negative (TP). The
equations for these metrics are as follows:

Accuracy =
TP + TN

FP + FN + TP + TN
× 100 (5)

Precision =
TP

TP + FP
× 100 (6)

Recall =
TP

TP + FN
× 100 (7)

F1 − score = 2 ∗ precision × Sensitivity
precision + Sensitivity

× 100 (8)

3.5. Experimental Results

This section presents the empirical results from experiments conducted to classify
participants’ personal traits into Class _0, Class_1, Class _2, Class _3, and Class_4. The
participants belonging to Class_0 were identified as having the same medium score mea-
surements for three traits, extraversion, agreeableness, and openness, and low scores for
conscientiousness and neuroticism. Class_1 means the participant has a high score for
neuroticism and a low score for conscientiousness, openness, extraversion, and agreeable-
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ness. Class_2 means the participant has a high agreeableness score and a medium score
for other traits. Class_3 means that the participant has a low conscientiousness score and
similar scores for other traits. Class_4 means that the participant has identical scores for
openness and agreeableness and the same medium scores for the other three traits. We
used 20,000 samples as a subset of the Big Five personality-test dataset.

The training and testing of the used dataset were carried out by using two different
data-split approaches: traditional data splitting and cross-validation splitting.

3.5.1. Traditional Data Spilt

The samples were split as follows. In total, 70% were placed in the training set and
30% were used to test various machine-learning models to detect and classify participants’
personal traits. These models included KNN, SVM, RF, and AdaBoost. Performance
evaluation of each model was conducted using weighted-measurement metrics, such as
precision, recall, f1-score, and accuracy. In addition to these metrics, a confusion matrix
was also applied. Figure 6 shows the confusion matrix for the best model-classification
results.

Figure 6. Confusion matrix for the SVM model.

Based on the results of the confusion metric, the SVM model obtained 95 misclassified
samples out of the 6000, which were used as a testing set. The model’s performance
was reliable and could be applied to classify the participants’ personality traits accurately.
Table 2 summarizes the classification results of the traditional data-splitting models.

Table 2. Testing results of the proposed machine-learning models using traditional data splitting.

Classifier
Name

Precision % Recall % F1-Score %
Testing
Accuracy %

Training
Accuracy %

KNN 92.88 92.85 92.85 92.85 96.1

RF 95.7 95.7 95.7 95.7 1.00

SVM 98.42 98.41 98.41 98.41 98.73

AdaBoost 68.69 68.35 68.17 68.35 69.00
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Table 1 and the confusion matrix in Figure 6 analyze the performances of the proposed
models. By comparing the results of the evaluation metrics, we found that the SVM
classifier proved its effectiveness and efficiency with an accuracy of 98%. Furthermore, it
outperformed the other classifiers in classifying and predicting participants’ personality
traits using different categories, as described in the previous section. Furthermore, poor
performance was observed using the AdaBoost model. The ROC curve for the SVM
classifier is shown in Figure 7 shows ROC of SVM method in the training and testing
evaluation method.

Figure 7. The ROC of the SVM model using traditional data split.

3.5.2. Cross-Validation Spilt

Cross-validation is a statistical method used to evaluate the performances of machine-
learning models. It involves dividing a dataset into separate training and testing subsets
and using the training subset to fit the model. The model is then evaluated on the testing
subset to assess its performance. This process is repeated multiple times, with different
subsets of the data used as the training and testing sets each time. In this study, we
implemented a common k-fold cross-validation method to ensure the accuracy of our
results, as shown in Table 1.

In this experiment, we used five-fold cross-validation, which is a resampling pro-
cedure used to evaluate the performance of our proposed machine-learning models. It
involves dividing the dataset into five subsets (folds), training the model on four folds,
and evaluating its performance on the remaining fold. This process is repeated five times,
with a different fold used as the test set in each iteration. The performance measure is
then averaged across all five iterations to estimate the model’s performance with unseen
data. The testing results of the KNN, RF, SVM, and AdaBoost classifiers using the five-fold
cross-validation are presented in Tables 3–6. The experiential results clearly show that SVM
classifier provided the best performance and outperformed other classifiers.
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Table 3. The results of KNN classifier using five-fold cross-validation.

K-Fold
Iteration

Precision % Recall % F1-Score %
Testing
Accuracy %

Training
Accuracy %

Fold 1 92.9 92.9 92.9 92.9 96.1

Fold 2 93.5 93.5 93.5 93.5 96.0

Fold 3 93.4 93.4 93.4 93.4 95.9

Fold 4 92.1 92.1 92.1 92.1 96.4

Fold 5 93.3 93.3 93.3 93.3 96.0

Mean 93.0 93.0 93.0 93.0 96.1

Table 4. The results of the RF classifier using five-fold cross-validation.

K-Fold
Iteration

Precision % Recall % F1-Score %
Testing
Accuracy %

Training
Accuracy %

Fold 1 96.1 96.1 96.1 96.1 1.0

Fold 2 95.7 95.7 95.7 95.7 1.0

Fold 3 96.1 96.1 96.1 96.1 1.0

Fold 4 95.6 95.6 95.6 95.6 1.0

Fold 5 95.3 95.3 95.3 95.3 1.0

Mean 95.8 95.8 95.8 95.8 1.0

Table 5. The results of the SVM classifier using five-fold cross-validation.

K-Fold
Iteration

Precision % Recall % F1-Score %
Testing
Accuracy %

Training
Accuracy %

Fold 1 98.3 98.3 98.3 98.3 98.9

Fold 2 98.5 98.5 98.5 98.5 98.8

Fold 3 98.7 98.7 98.7 98.7 98.9

Fold 4 98.5 98.5 98.5 98.5 98.8

Fold 5 98.1 98.1 98.1 98.1 99.0

Mean 98.4 98.4 98.4 98.4 98.9

Table 6. The results of the AdaBoost classifier using five-fold cross-validation.

K-Fold
Iteration

Precision % Recall % F1-Score %
Testing
Accuracy %

Training
Accuracy %

Fold 1 68.3 68.3 68.3 68.3 67.6

Fold 2 66.2 66.2 66.2 66.2 67.5

Fold 3 73.6 73.6 73.6 73.6 73.5

Fold 4 63.8 63.8 63.8 63.8 64.3

Fold 5 69.1 69.1 69.1 69.1 69.5

Mean 68.2 68.2 68.2 68.2 68.5

4. Discussion

In this study, we presented a personal-traits-testing model based on machine-learning
techniques that can help organizations and government agencies to select appropriate
employees for specific jobs or to form a working team to perform a specific task. The
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compatibility of team qualities contributes significantly to the success of large businesses
and the achievement of their strategic goals. The model was designed based on a stan-
dard dataset collected from the responses of individuals worldwide. Machine-learning
techniques were used in the data analysis, clustering, and classification. For the clustering
task, the k-means algorithm successfully sorted the data into five clusters, each containing
similar personal patterns from the participants. These clusters were agreeableness, consci-
entiousness, extraversion, openness, and neuroticism. To the best of our knowledge, no
other study has applied the same idea and dataset. However, some previous studies were
identified in the literature review, such as social-identity personality traits based on social-
media data [15,21], and in other domains, such as healthcare (using questionnaires [24])
and education [22]. Table 7 shows a comparison of the proposed system’s results with those
of previous studies. Figure 8 shows ROC of SVM method in cross validation method.

Table 7. Comparison of results and those of previous systems.

References Method Accuracy %

Ref. [45] ANN 85.06
Ref. [46] ANN 71

Proposed system SVM 98

Figure 8. The ROC of the SVM model using five-fold cross-validation.

The application of information technology in the management of human resources
has developed steadily in different countries, along with the level of information technol-
ogy. Human-resource-management information systems have the potential to reduce the
amount of information transmitted, as well as the amount of time this requires. Addition-
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ally, it has the potential to release human-resource personnel from mundane administrative
tasks, and change the mode of service that human-resources departments provide, trans-
forming into a management role involving the provision of decision-making support and
solutions

5. Conclusions

This study concluded that behavioral tests must be applied in human-resources man-
agement and performance management to motivate qualified employees toward achieving
organization’s strategic goals. The study analyzed behavioral data collected from 20,000
participants through a publicly available dataset on the Kaggle platform. We obtained the
Big Five personality-test results to cluster the participants by type of behavior. Supervised
machine-learning models were used to analyze the responses to the questions according to
personal traits. The algorithm was able to divide the individuals into a group of clusters;
each cluster was a set of similar personality traits.

The findings of the study were as follows:

• The internal correlation test of the groups for every ten questions showed a positive
correlation.

• There was a positive relationship between the following four traits: agreeableness,
conscientiousness, extraversion, and openness.

• The relationship between one personality trait, neuroticism, and the other four person-
ality traits was negative.

• This test helps to identify participants’ psychological and behavioral traits in any
domain.

• Companies and organizations prefer participants who can integrate and adapt to their
work teams.

• This test can be a source of safety for organizations in preventing violent behavior.

Machine-learning models, such as SVM, RF, KNN, and AdaBoost, were used to
classify personalities based on psychological traits, derived from the participants’ responses,
with satisfactory results. By comparing the evaluation-metrics results, we found that the
SVM classifier proved effective and efficient, with an accuracy of 98%. Furthermore, it
outperformed the other classifiers in classifying and predicting the participants’ personality
traits using different categories. Finally, poor performance was evident when using the
AdaBoost model.

The proposed personal-traits-testing model can be adopted. Its accuracy rate is high,
and it can save time and effort compared to personal interviews and direct questions
to determine the characteristics of the candidates. The answers to these questions may
be untrue and hide aspects of a candidate’s true personality. Organizations can apply
this proposed methodology to evaluate employees’ personality traits during their work
on strategic plans. Achieving the goals that maintain an organization’s image requires
people with specific personal and behavioral skills. Analyses of user preferences and
behavioral predictions based on user data may provide some useful reference points for
optimizing information structure and improving service accuracy. These can be learned
from the data. However, the OCEAN user-personality-model-identification algorithms still
have certain limitations. The machine-learning algorithm is one modern approach with
a comparative advantage. This algorithm may be quickly adapted to meet a broad range
of directional issues, which makes it a competitive option. When we began to write this
paper, one of our primary objectives was to improve the identification process used by the
OCEAN personality model via the application of a neural-network approach. The plan for
advancing this direction of study is to develop a model based on deep-learning algorithms.
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Abstract: Deep learning technology has been extensively studied for its potential in music, notably
for creative music generation research. Traditional music generation approaches based on recurrent
neural networks cannot provide satisfactory long-distance dependencies. These approaches are
typically designed for specific tasks, such as melody and chord generation, and cannot generate
diverse music simultaneously. Pre-training is used in natural language processing to accomplish
various tasks and overcome the limitation of long-distance dependencies. However, pre-training is
not yet widely used in automatic music generation. Because of the differences in the attributes of
language and music, traditional pre-trained models utilized in language modeling cannot be directly
applied to music fields. This paper proposes a pre-trained model, MRBERT, for multitask-based
music generation to learn melody and rhythm representation. The pre-trained model can be applied
to music generation applications such as web-based music composers that includes the functions
of melody and rhythm generation, modification, completion, and chord matching after being fine-
tuned. The results of ablation experiments performed on the proposed model revealed that under the
evaluation metrics of HITS@k, the pre-trained MRBERT considerably improved the performance of
the generation tasks by 0.09–13.10% and 0.02–7.37%, compared to the usage of RNNs and the original
BERT, respectively.
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1. Introduction

In the past decade, artificial intelligence has made breakthroughs due to the intro-
duction of deep learning, which allows the use of various artificial intelligence models in
different fields. Representation learning has been in the spotlight because it significantly
reduces the amount of data required to train a model through semi-supervised and self-
supervised learning, and, more importantly, it overcomes the limitations of traditional
supervised learning that requires annotated training data. Representation learning has
achieved excellent results in computer vision [1], natural language processing [2], and
music generation [3,4].

Deep learning-based music technology has been extensively studied for its potential
in music. This includes music generation [3,4], music classification [5,6], melody recogni-
tion [7,8], and music evaluation [9,10]. These functions rely on learning and summarizing
knowledge from music corpus, rather than obtaining it from music theory. Among them,
music generation research is notable because it involves performing a creative task. Mu-
sic generation tasks can be categorized into three categories, namely autoregressive [11],
conditional [12], and sequence-to-sequence (Seq2Seq) generation [13]. In autoregressive
generation, the current value is predicted based on the information from previous values.
For music, each predicted note becomes a consideration when predicting the following
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notes, and a piece of music can be generated by looping this process. In conditional gener-
ation, contextual information is used to predict the missing value. When predicting the
missing values in random positions of music, contextual information from both left and
right directions should be considered. Thus, music completion can be realized. In Seq2Seq
generation, a novel sequence based on the given sequence is generated. Seq2Seq generation
involves two processes: understanding the given sequence and then generating a new
sequence subsequently using the understood content. Seq2Seq generation can be applied
in music to generate matching chords based on a given melody.

The above-mentioned traditional music generation models are typically designed to
accomplish only one of the aforementioned three categories and cannot be generalized to
other tasks. Inspired by natural language modeling, music generation requires a model that
can be applied to multitasking without requiring large training resources [2]. Bidirectional
encoder representations from transformers (BERT) [14] is a language representation model
in natural language modeling that is used to pre-train deep directional representations
from unlabeled text by jointly conditioning on both left and right contextual information
in all layers. The pre-trained model can be fine-tuned with only an additional output
layer to create state-of-the-art models for numerous tasks without substantial task-specific
architecture modifications. Therefore, this paper will also focus on the application of
representation models in music generation.

Compared to traditional music generation models, pre-trained model-based automatic
music generation models exhibit several advantages. First, pre-trained models can learn
better representations of music than traditional music generation models. Traditional
music generation models utilize PianoRoll [15] as the representation, which is similar to
one-hot encoding. Therefore, PianoRoll exhibits the same sparse matrix problem as one-hot
encoding, and contextual information is ignored. However, music in the pre-trained model
is mapped into n-dimensional spaces, which is a non-sparse representation by considering
the contextual information from two directions [14]. Second, pre-trained models can handle
long-distance dependencies. Traditional models [16–18] of music generation typically
utilize recurrent neural networks (RNNs) and their variants, such as long short-term
memory (LSTM) and gate recurrent unit (GRU), to generate music because of their ability
to memorize temporal information. However, RNNs exhibit vanishing gradients caused
by backpropagation through time (BPTT) and cannot handle long-distance dependences.
Although LSTM and GRU alleviate the long-distance dependency problem by adding
memory cells and gates, their effect is limited because of BPTT [19]. BERT, based on
the multihead attention mechanism, can link long-distance notes and consider global
features [20]. Finally, pre-trained models can process data in parallel, whereas RNN-
like models run recurrently, which not only causes vanishing gradients but also wastes
computing resources. Because the transformers in BERT run in parallel mode, all tokens in
the sequence are embedded into them without waiting for the data of the previous time step
to be processed [20]. However, applying traditional natural language pre-trained models
directly for music representation learning cannot provide the desired results. The problem
is that there is no concept of rhythm in natural language, but the rhythm is as important as
the melody in music. Therefore, an approach for learning musical representation that takes
into account both the melody and rhythm is needed for use in music generation.

In this paper, a modification of BERT, namely MRBERT, is proposed for the pre-training
of the melody and rhythm for fine-tuning music generation. In pre-training, the melody
and rhythm are embedded separately. For exchanging the information of the melody and
rhythm, semi-cross attention instead of merging, as performed in traditional methods, is
used, which prevents features loss. In fine-tuning, the following three generation tasks
are designed: autoregressive, conditional, and Seq2Seq. Thus, a pre-trained model is
fine-tuned with the output layers corresponding to the three types of generation tasks to
realize multitask music generation.

The contributions of this paper are as follows: (1) A novel generative pre-trained
model based on melody and rhythm, namely MRBERT, is proposed for multitask music
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generation, including autoregressive and conditional generation, as well as Seq2Seq genera-
tion. (2) In pre-training for representation learning, the melody and rhythm are considered
separately, based on the assumption that they have strong dependencies on themselves and
weak dependencies between each other. Experimental results have also shown that this
assumption is reasonable and can be widely applied to related research. (3) The proposed
MRBERT with three generation tasks allows users to generate melodies and rhythms from
scratch through interaction with the user, or to modify or complete existing melodies and
rhythms, or even to generate matching chords based on existing melodies and rhythms.

2. Related Work

This section describes BERT [14] first as a well-known representation learning model
and then two music representation learning studies, MusicBERT [21] and MidiBERT [22],
based on BERT are introduced.

BERT is a language representation model that is designed to learn deep bidirectional
representations from unlabeled text. It did this by conditioning on both the left and right
context in all layers of the model. BERT is able to achieve state-of-the-art results on a wide
range of natural language processing tasks, including question answering and language
inference, by being fine-tuned with only one additional output layer. It has been shown to
perform particularly well on a number of benchmarks, including the GLUE benchmark, the
MultiNLI dataset, and the SQuAD question answering dataset. The main contribution of
BERT is that it proves the importance of bidirectional pre-training for representation learn-
ing. Unlike previous language modeling approaches that used a unidirectional language
model for pre-training [2] and used a shallow concatenation of independently trained
left-to-right and right-to-left language modeling (LM) [23], BERT used a masked language
model (MLM) to enable pre-trained deep bidirectional representations.

Due to BERT’s success in natural language processing tasks, researchers have started
to apply representation learning to music data. Two representative studies in this area are
MusicBERT and MidiBERT.

MusicBERT is a large-scale pre-trained model for music understanding and consists
of large symbolic music corpus containing more than 1 million pieces of music and songs.
MusicBERT designed several mechanisms, including OctupleMIDI encoding and a bar-
level masking strategy, to enhance the pre-training of symbolic music data. Furthermore,
four music understanding-based tasks were designed, two of which were generation tasks,
melody completion and accompaniment suggestion; the other two were classification tasks,
genre and style classification.

MidiBERT used a smaller corpus than MusicBERT and focused on piano music. For
the token representation, it used the beat-based revamped MIDI-derived events [24] token
representation and borrowed Compound words [25] representation to reduce the length
of the token sequences. Furthermore, MidiBERT established a benchmark for symbolic
music understanding, including not only note-level tasks, melody extraction, and velocity
prediction but also sequence-level tasks, composer classification, and emotion classification.

Unlike these two studies, the proposed MRBERT model is a pre-trained model that can
be used for music generation tasks. In the MRBERT, a music corpus called OpenEWLD [26],
which is a leadsheet-based corpus that contains the necessary information for music gener-
ation, such as the melody, rhythm, and chords, is used. The MRBERT differs from other
models in that melody and rhythm are divided into separate token sequences. Additionally,
the embedding layer of the traditional BERT and the attention layer in its transformer are
modified to better fit the pre-training of the melody and rhythm. Finally, the MRBERT
was designed to differentiate from the prediction and classification tasks of traditional
methods by using three generation tasks, which are used to evaluate the performance of
the pre-trained model for music generation.
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3. Automatic Music Generation Based on MRBERT

In this paper, the MRBERT is proposed to learn the representations of the melody and
rhythm for automatic music generation. First, the token representation is described. The
structure and the pre-training of the MRBERT is explained and, finally, the strategies of
fine-tuning are described.

3.1. Token Representation

The melody, rhythm, and chords are extracted from OpenEWLD [26] music corpus
for pre-training and fine-tuning. The OpenEWLD music corpus consists of songs in
the leadsheet, as displayed in Figure 1A. In Figure 1B, the leadsheet is converted from
MusicXML to events through Python library music21. Figure 1C reveals that events
include Instruments, Keys, Timesignatures, Measures, ChordSymbols, and Notes, where
only information related to the melody, rhythm, and chords are extracted. For example,
“G4(2/4)” indicates that the pitch of the note is G in the fourth octave, and the duration of
the note is 2/4. The next step is to separate the melody and rhythm sequences, as displayed
in Figure 1D. The chord sequences are extracted from ChordSymbols to prepare for the
Seq2Seq generation task in the fine-tuning, as presented in Figure 1E. For example, “C”
represents the chord that continues with the melody until the next chord occurs.

Figure 1. Pipeline of token representation. (A) A example leadsheet in music corpus; (B) The
events converted from MusicXML; (C) Extracted events related to the melody, rhythm and chords;
(D) Generated melody sequence and rhythm sequence; (E) Generated chord sequence.

3.2. Pre-Training of MRBERT

The MRBERT is a pre-trained model for the learning representations of the melody
and rhythm. As displayed in Figure 2, the melody (m1, m2, __, . . . , mn) and rhythm
(r1, r2, __, . . . , rn) sequences are input to the embedding layers, where the “__” represents
the random masked tokens. The tokens of the melody sequences and rhythm sequences are
embedded by the corresponding token embedding layer. The position embedding layer,
which is shared by the melody and rhythm, adds the position feature on them. Through the
embedding layers, the melody embedding eM and the rhythm embedding eR are obtained.
Next, eM and eR are input to the corresponding transformer, which exchanges information
through semi-cross attention. Semi-cross attention is proposed to realize the information
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exchange between the melody and rhythm. As presented in formula (1), the cross query of
eM is obtained from the dot-production of the query of the melody qM with the activated
query of the rhythm qR by using softmax. The use of the key kM and value vM is similar
to that of the self-attention. For the rhythm, the query of the melody qM is required for
calculating the cross query of eR. Finally, the melody hidden states hM and rhythm hidden
states hR output by the transformers are passed through the melody prediction layer and
rhythm prediction layer to predict the masked melody m′ and rhythm r′.

Semi Cross AttentionM = so f tmax

(
qM·(so f tmax

(
qR))kMT

√
dk

)
vM

and

Semi Cross AttentionR = so f tmax

(
qR·(so f tmax

(
qM))

kRT
√

dk

)
vR

(1)

Figure 2. Pipeline of pre-training of MRBERT.

The pre-training strategy of this paper refers to the MLM proposed by BERT, which
follows that 15% of the tokens in the sequence are randomly masked: (1) 80% of the selected
tokens are replaced by MASK; (2) 10% are replaced by randomly selected tokens; (3) the
remaining 10% remain unchanged. Furthermore, to enhance the performance of the pre-
training, this paper refers to BERT-like models and other related studies, drops the next
sentence prediction pre-training task, and uses dynamic masking [27].
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3.3. Fine-Tuning of Generation Tasks

To address the diverse generation tasks, the MRBERT is fine-tuned with three down-
stream tasks, namely autoregressive, conditional, and Seq2Seq generation. Furthermore,
after fine-tuning for each task, joint generation can be achieved by executing the three
generation methods simultaneously.

3.3.1. Autoregressive Generation Task

To accomplish the autoregressive generation task, its generation pattern should be
known, which can be summarized as a unidirectional generation similar to a Markov
chain [28] P(ti|t1, t2, t3, . . . , ti−1), where the probability of the token ti depends on t1 to
ti−1. Autoregressive generation reveals that the tokens are predicted in order from left
to right, and the current token is predicted based on the previous tokens. First, <BOS>
(the beginning of the sequence, which is a special token in vocabulary) is passed into the
MRBERT. Next, the output layers, which are a pair of fully connected layers, predict the
melody and rhythm based on the hidden state from the MRBERT. Finally, the predicted
melody and rhythm are used to calculate the cross-entropy loss for backpropagation. When
backpropagation ends, the input token sequences are incremented by one time step, and
the model predicts the melody and rhythm of the next time step until <EOS> (the end of
the sequence, a special token corresponding to <BOS>) is generated. The ground truth
label data are easily obtained by shifting the input sequences to the right by one time
step. The pre-trained model and output layer continuously shorten the gap between the
prediction and the label data through fine-tuning. After fine-tuning, whenever the melody
and rhythm are generated, generations are added to the end of the sequence to form a new
input, as displayed in Figure 3.

 
Figure 3. Pipeline of autoregressive generation. The orange arrows represent the predicted melody
and rhythm should be continuously added to the end of the input.

3.3.2. Conditional Generation Task

Unlike in autoregressive generation, in conditional generation, not only previous
tokens but also future tokens are considered when predicting unknown tokens. The
model should consider the bidirectional contextual information of the unknown tokens.
To realize this task, a generation pattern such as a denoising autoencoder [29] is used,
P
(
tj
∣∣t1, t2, . . . , tj−1, tj+1, . . . , ti

)
, where the unknown token tj should be predicted based

on the known tokens. Fine-tuning for conditional generation is highly similar to pre-
training. However, since multiple tokens are masked, when predicting one of the tokens,
it is assumed to be independent of the other masked tokens. To address this problem,
shorter sequences are used and only a pair of melody and rhythm tokens is masked in
fine-tuning. The cross-entropy loss is calculated by the predictions (melody or rhythm) and
ground truth labels, which are then used for fine-tuning. After fine-tuning, the MRBERT
and the output layer of the conditional generation fill in the missing parts according to
the contextual information obtained from the given melody and rhythm as displayed in
Figure 4.
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Figure 4. Pipeline of conditional generation. The underline represents the missing part of the music.

3.3.3. Seq2Seq Generation Task

When the melody and rhythm are created, chords should be added to make it sound less
monotonous. This generation pattern can be summarized as P

(
t1, t2, . . . , ti

∣∣ t′1, t′2, . . . , t′i
)
,

where t′ represents the given tokens, and t represents the tokens that should be predicted.
The probability of t for the position 1 to i is based on the given t′ of 1 to i. In fine-tuning,
the melody and rhythm sequences are input into the MRBERT, and the chords of the
corresponding position are predicted by the output layer of the Seq2Seq generation. The
cross-entropy loss calculated from the predicted chords and ground truth label data is
used for fine-tuning. After fine-tuning, the MRBERT can accept the melody and rhythm,
and subsequently generate chords through the output layer of the Seq2Seq generation, as
displayed in Figure 5. The continuous output of the same chord symbol indicates that the
same chord is continuing until a different symbol appears.

Figure 5. Pipeline of Seq2Seq generation. Melody and rhythm can be of any length, and the length of
the generated chords vary accordingly.

3.3.4. Joint Generation

Users can use the MRBERT with three generation tasks interactively, as displayed
in Figure 6. A simulated use case reveals how the three generation approaches operate
simultaneously. First, the melody and rhythm can be generated under the autoregressive
generation task. Next, the user can adjust the tokens in the generated melody and rhythm
through conditional generation. Finally, the chords are matched to the generated melody
and rhythm through the Seq2Seq generation task.

Figure 6. Human–interactive use case of automatic music generation.

Among the predictions provided under the aforementioned three tasks, in addition
to the prediction with the highest probability, other candidates and their corresponding
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probabilities are also given because, in music, a fixed answer rarely exists. Although the
high-probability prediction is the most reasonable for analyzing after the model has learned
the music corpus, it may not be the most appropriate. Users can choose the candidate they
think is the most suitable.

4. Experiments

The MRBERT was first trained to convergence through the pre-training task MLM.
Next, ablation experiments were conducted on three generation tasks based on the pre-
trained MRBERT. BERT, which is a traditional language pre-trained model, was used as the
baseline for the ablation experiments.

4.1. Dataset

The EWLD (Enhanced Wikifonia Leadsheet Dataset) is a dataset of music leadsheets
containing various metadata about composers, works, lyrics, and features. It is designed
specifically for musicological and research purposes. OpenEWLD [26] is a dataset extracted
from EWLD, containing only public domain leadsheets, which is used as the dataset for
training in this paper. As shown in Figure 1, each leadsheet contains the melody, rhythm,
and chords required for training. A total of 502 leadsheets from different composers are
included in OpenEWLD, and 90% of these were selected for training, with the remaining
10% used for evaluation.

4.2. Experimental Environment

The ablation experiment includes w/o cross-attn. (BERT + separate embedding), which
used separate embedding and original self-attention instead of semi-cross attention; w/o
separate embed. (BERT), that is, the melody and rhythm shared a common embedding layer
and only used self-attention (w/o means “without”). Furthermore, experimental results
on RNNs (and BiRNNs) without any pre-training techniques were also listed to detail the
effect of pre-training. HITS@k [21] (k = 1, 3, 5, and 10), which can calculate the proportion
of the correct answer included in the k candidates, was used as the evaluation metrics.
HITS@k was calculated as shown in formula (2), where n represents the number of samples;
I(·) is an indicator function that returns 1 if the rank of the correct answer is less than k,
and 0 otherwise.

HITS@k =
1
n ∑n

i=1 I(ranki ≤ k) (2)

Table 1 presents the hyperparameters of the MRBERT (with ablation model) in pre-
training and fine-tuning. During pre-training, most of the hyperparameters were set to the
same values as those in RoBERTa-base [27], with slight differences in the Number of Layers,
Learning Rate Decay, Batch Size, Max Steps, and Warmup Steps. The Number of Layers in the
MRBERT was set to 6×2 because it has two sets of transformer blocks corresponding to
the melody and rhythm separately, while ensuring that the number of parameters in the
model is on the same level as in the ablation experiments. In terms of the Learning Rate
Decay, power was used rather than linear, that is to make the change in the learning rate
smoother and more conducive to convergence. While the settings of the Batch Size, Max
Steps, and Warmup Steps were adjusted according to the music corpus used.
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Table 1. Hyperparameters for pre-training and fine-tuning of MRBERT (with ablation model).

Parameters MRBERT w/o Cross-Attn. w/o Separate Embed.

1 Number of Layers 6 × 2 3 12 12
Hidden size 768 768 768

FFN inner hidden size 3072 3072 3072
Attention heads 12 12 12

Attention head size 64 64 64
Dropout 0.1 0.1 0.1

Batch Size 32 32 32
Weight Decay 0.01 0.01 0.01

Max Steps 10 k 10 k 10 k
Warmup Steps 1 k 1 k 1 k

Learning Rate Decay power power power
Adam ε 1 × 10−6 1 × 10−6 1 × 10−6

Adam β1 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98

2 Melody Vocab Size 68 + 4 = 72 4 68 + 4 = 72 -
Rhythm Vocab Size 17 + 4 = 21 17 + 4 = 21 -

Melody + Rhythm Vocab Size - - 68 + 17 + 4 = 89
Chord Vocab Size 795 + 4 = 799 795 + 4 = 799 795 + 4 = 799

1 Hyperparameters for pre-training. 2 Hyperparameters for fine-tuning. 3 6 transformer layers of melody and 6
transformer layers of rhythm. 4 4 represents the number of special tokens: <BOS>, <EOS>, <UNK>, <PAD>.

In fine-tuning, the Melody Vocab Size, Rhythm Vocab Size, and Chord Vocab Size determine
the dimension of the probability distribution given by the output layer. The melody and
rhythm have 72 and 21 candidates, respectively, which contain four special tokens (<BOS>,
<EOS>, <UNK>, <PAD>). In the ablation experiment of w/o separate embed., since the melody
and rhythm share an embedding layer, the number of candidates is 89. Furthermore, the
number of chord candidates reached 799.

4.3. Results of Autoregressive Generation

When evaluating autoregressive generation, the pre-trained MRBERT with the output
layer of the autoregressive generation task predicts the next melody and rhythm at each
time step based on the previous. Figure 7 displays the generated melody and rhythm.

 

Figure 7. Leadsheets of the generated melody sequence.

Table 2 presents the generated melody and rhythm, and the probabilities of the pre-
dictions at each time step. The top prediction of the rhythm occupies a higher proportion,
whereas the probabilities of all the melody predictions are balanced. The model is more
confident in the rhythm prediction. This result is consistent with the analysis results of the
music data. Music typically has obvious rhythm patterns, whereas the progression of the
melody is complex and changeable.
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Table 2. Details of autoregressive generation.

Time
Step

Pitch Probabilities of Melody Rhythm Probabilities of Rhythm

1 <BOS> <BOS>
2 Rest Rest:0.100 G4: 0.098 F4: 0.092 D4: 0.089 1/4 1/4: 0.309 1/8: 0.263 1/2: 0.146 1/16: 0.054
3 A4 A4: 0.111 G4:0.104 D4: 0.095 Rest: 0.095 1/4 1/4: 0.519 1/8: 0.205 1/2: 0.114 3/4: 0.046
4 G4 G4: 0.127 E4: 0.114 A4: 0.087 F4: 0.079 1/4 1/4: 0.501 1/8: 0.202 1/4: 0.104 3/4: 0.054
5 E4 E4: 0.132 A4: 0.098 F4: 0.081 D4: 0.072 1/8 1/8: 0.364 1/4: 0.364 1/2: 0.097 3/4: 0.070
6 G4 G4: 0.161 A4: 0.153 D4: 0.079 B4: 0.069 1/8 1/8: 0.427 1/4: 0.356 1/2: 0.073 3/8: 0.042
7 A4 A4: 0.187 E4: 0.146 B4: 0.080 D4: 0.077 1/4 1/4: 0.423 1/8: 0.398 1/2: 0.065 3/8: 0.037
8 E4 E4: 0.152 A4: 0.136 G4: 0.125 D4: 0.104 1/8 1/8: 0.465 1/4: 0.308 1/2: 0.076 3/4: 0.049
9 G4 G4: 0.157 E4: 0.147 A4: 0.118 D4: 0.112 1/8 1/8: 0.412 1/4: 0.313 1/2: 0.072 3/8: 0.061

10 A4 A4: 0.164 D4: 0.100 E4: 0.089 C5: 0.066 1/8 1/8: 0.355 1/4: 0.344 1/2: 0.110 3/8: 0.056
11 C5 C5: 0.125 G4: 0.107 D4: 0.093 F4: 0.087 1/8 1/8: 0.385 1/4: 0.370 1/2: 0.112 3/8: 0.038
12 G4 G4: 0.177 A4: 0.148 E4: 0.139 D4: 0.088 1/8 1/8: 0.569 1/4: 0.267 1/2: 0.056 3/8: 0.045
13 A4 A4: 0.163 E4: 0.113 D4: 0.106 Rest: 0.086 1/8 1/8: 0.405 1/4: 0.338 1/2: 0.071 3/8: 0.048
14 E4 E4: 0.131 A4: 0.108 F4: 0.085 D4: 0.074 1/4 1/4: 0.453 1/8: 0.319 1/2: 0.082 3/8: 0.029
15 F4 F4: 0.148 A4: 0.102 G4: 0.090 C5: 0.086 1/8 1/8: 0.497 1/4: 0.263 1/2: 0.075 3/4: 0.046
16 G4 G4: 0.212 A4: 0.142 E4: 0.116 D4: 0.088 1/8 1/8: 0.519 1/4: 0.259 1/2: 0.082 3/8: 0.031
17 A4 A4: 0.156 E4: 0.116 D4: 0.088 F4: 0.076 1/8 1/8: 0.445 1/4: 0.349 1/2: 0.056 3/8: 0.039
18 F4 F4: 0.144 E4: 0.104 G4: 0.087 C5: 0.079 1/8 1/8: 0.452 1/4: 0.286 1/2: 0.093 3/8: 0.045
19 G4 G4: 0.148 A4: 0.134 E4: 0.103 D4: 0.099 1/8 1/8: 0.489 1/4: 0.329 1/2: 0.065 3/8: 0.034
20 E4 E4: 0.139 A4: 0.120 C5: 0.093 F4: 0.077 1/8 1/8: 0.495 1/4: 0.296 1/2: 0.082 3/8: 0.041

Table 3 presents the ablation experimental results of HITS@k in the autoregressive
generation task. For the melody prediction, in HITS@k (k = 1, 3, 5, and 10), the MRBERT
achieved the average of 51.70%, 2.77% higher than w/o cross-attn., and 3.65% higher than
w/o separated embed., and 7.94% higher than the RNN. For the rhythm prediction, it achieved
the average of 81.79%, 0.37% higher than w/o cross-attn., and 0.78% higher than w/o separated
embed., and 2.56% higher than the RNN.

Table 3. Ablation experimental results of the autoregressive generation task.

Model
HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%)

Mel. Rhy. Mel. Rhy. Mel. Rhy. Mel. Rhy.

MRBERT 15.87 51.53 42.03 83.01 61.53 92.81 87.36 99.81
w/o cross-attn. 14.74 51.44 38.96 82.65 57.45 91.88 84.58 99.80

w/o separate embed. 14.27 51.16 38.14 82.17 55.90 90.91 83.88 99.79

RNN 12.51 48.24 33.60 79.28 50.28 89.67 78.63 99.72

The experimental results revealed that the MRBERT outperformed the models of the
ablation experiment in all metrics, especially in the melody prediction. Since w/o cross-attn.
utilized separate embedding, the performance is slightly higher than that of w/o separated
embed. Furthermore, pre-training considerably improved the prediction of the melody
and rhythm.

4.4. Results of Conditional Generation

In the conditional generation, the melody and rhythm dropped at random positions
were used as the evaluation data. The pre-trained MRBERT with the output layers of the
conditional generation predicted the missing part of the melody and rhythm based on
a given melody and rhythm. Figure 8 displays the predictions of the model and correct
answers for the missing parts of the head, middle, and tail of a piece of music. The leadsheet
reveals that the missing part in the middle of the bar (or measure) could be easily predicted,
but misjudgments occurred at the position at which the bar was switched.
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Figure 8. Leadsheets of conditional generated results and reference.

Table 4 presents the details of the predictions in Figure 8. The model presents strong
confidence in the rhythm prediction with a high accuracy, whereas the probabilities of the
melody candidates did not differ considerably. Although the model predicted F4 as G4,
F4 appeared as the second candidate immediately after. Furthermore, the rhythm 1/8 was
accurately predicted at this time but the probability of the first candidate did not have an
absolute advantage because, during the bar switching stage, the prediction of the rhythm
fluctuates, which is a normal phenomenon.

Table 4. Details of conditional generation.

Masked Pitch Sequence Probabilities of Pitch Masked Rhythm Sequence Probabilities of Rhythm

<BOS>, D4, E-4 1, F4, G4, . . .
E-4: 0.276; G4: 0.130; B-4: 0.118;
A-4: 0.114; F4: 0.087; Rest: 0.069 <BOS>, 1/6, 1/6, 1/6, 1/2, . . . 1/6: 0.626; 3/16: 0.098;

1/4: 0.094; 1/2: 0.048

. . . , C5, B4, A4, G4, F#4, . . . A4: 0.229; Rest: 0.164; G4: 0.160;
C5: 0.141; B4: 0.096; D5: 0.033

. . . , 1/8, 1/8, 1/8, 1/8, 1/8,
. . .

1/8: 0.785; 1/4: 0.109;
3/8: 0.040; 1/2: 0.038

. . . , G4, F4, F4, F4, <EOS> G4: 0.280; F4 2: 0.127; A4: 0.116;
E4: 0.105; D4: 0.086; F#4: 0.083

. . . , 3/8, 1/8, 1/2, 1/2,
<EOS>

1/8: 0.280; 1/2: 0.197;
1/4: 0.086; 3/8: 0.080

1 The underline “__” indicates the covered pitch or rhythm. 2 Model predicted G4, but the correct answer is F4.

Table 5 presents the ablation experimental results of HITS@k in the conditional gen-
eration task. For the melody prediction, in HITS@k (k = 1, 3, 5, and 10), the MRBERT
achieved the average of 54.86%, 1.49% higher than w/o cross-attn., and 5.22% higher than w/o
separated embed., and 9.95% higher than the BiRNN. For the rhythm prediction, it achieved
the average of 81.85%, 0.55% higher than w/o cross-attn., and 2.09% higher than w/o separated
embed., and 3.16% higher than the BiRNN.

Table 5. Ablation experimental results of the conditional generation task.

Model
HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%)

Mel. Rhy. Mel. Rhy. Mel. Rhy. Mel. Rhy.

MRBERT 18.67 51.14 45.86 82.78 65.05 93.69 89.84 99.79
w/o cross-attn. 18.07 50.93 43.94 82.02 63.35 92.55 88.10 99.69

w/o separate embed. 15.69 48.61 40.27 80.11 57.68 90.73 84.91 99.57

BiRNN 13.07 48.11 34.91 78.48 51.95 89.03 79.71 99.12

The experimental results revealed that the MRBERT outperformed the other ablation
models, and the accuracy of the rhythm prediction was higher than that of the other models.
Compared to the autoregressive generation, since information from two directions was
considered in the conditional generation, the accuracy was slightly higher.

4.5. Results of Seq2Seq Generation

In the Seq2Seq generation, the melody with the chords was used as the evaluation
data. Figure 9 shows an example of the real chords and predicted chords based on the
pre-trained MRBERT with the output layer of the Seq2Seq generation. The predicted chords
contained “F,” “BbM,” and “C7.” They were all included in the real chords.
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Figure 9. Leadsheets of given melody sequence with generated chords and reference chords.

Table 6 presents the ablation experimental results of HITS@k in the Seq2Seq generation
task. The MRBERT achieved the average of 49.56%, 0.61% higher than w/o cross-attn., and
1.83% higher than w/o separated embed., and 5.14% higher than the BiRNN.

Table 6. Ablation experimental results of Seq2Seq generation task.

Model HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%)

MRBERT 22.94 45.90 57.42 71.97
w/o cross-attn. 22.61 45.24 56.75 71.18

w/o separate embed. 22.15 43.46 55.12 70.17

BiRNN 19.70 39.96 51.50 66.51

The experimental results revealed that the MRBERT outperformed the other ablation
models in the Seq2Seq generation task. Separate embedding also improved the performance
even when predicting the chords rather than the melody and rhythm.

5. Discussion

This paper has conducted ablation experiments for three kinds of tasks, autoregressive
generation, conditional generation, and Seq2Seq generation, and has evaluated them at
multiple levels by setting different k in HIST@k. The following has been demonstrated
by the experimental results: First, pre-trained representation learning can improve the
performance of the three kinds of tasks. This is evident in the fact that the performance
of the RNN and BiRNN is significantly lower than that of the models using pre-training
techniques in all tasks. Second, it is effective to consider the melody and rhythm separately
in representation learning. From the ablation results, it can be seen that the model using
separate embedding performs better in HITS@k in each task than that not using separate
embedding. Third, the assumption that there are weak dependencies between the melody
and rhythm is reasonable. The performance of the MRBERT using both separate embed-
ding and semi-cross attention together is slightly higher than that using only separate
embedding.

This paper and other music representation learning studies are inspired by language
modeling in natural language processing, so this method can only be applied to symbolic
format music data. In fact, a large amount of music exists in audio format, such as mp3,
wav, etc. This requires the model to be able to handle continuous spectrograms rather
than discrete sequences. There have been some studies in computer vision that explore
the application of representation learning in image processing [30–32], which is very
enlightening for future work.

6. Conclusions

This paper proposed MRBERT, a pre-trained model for multitask music generation.
During pre-training, the MRBERT learned representations of the melody and rhythm by
dividing the embedding layers and transformer blocks into two groups and implementing
information exchanging through semi-cross attention. Compared to the original BERT,
the MRBERT simultaneously considered the strong dependencies of the melodies and
rhythms on themselves and the weak dependencies between them, which allows it to
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learn better representations than the original BERT. In the subsequent fine-tuning, the
corresponding content was generated according to the tasks. Three music generation
tasks, namely autoregressive, conditional, and Seq2Seq generation, were designed to help
users compose music, making the composition more convenient. Unlike traditional music
generation approaches designed for a single task, these three tasks included multiple
functions of melody and rhythm generation, modification, and completion, as well as
chord generation. To verify the performance of the MRBERT, ablation experiments were
conducted on each generation task. The experimental results revealed that pre-training
improves the task performance, and the MRBERT, using separate embedding and semi-
cross attention, outperformed the traditional language pre-trained model BERT in the
metric of HITS@k.

The proposed method can be utilized in practical music generation applications,
including melody and rhythm generation, modification, completion, and chord matching,
such as web-based music composers. However, to generate high-quality music, a music
corpus composed of leadsheets is used as the training data. These leadsheets must clearly
label the melodies, rhythms, and corresponding chords. The problem is that it is difficult
to collect this type of data, which limits the expansion of the data volume. In the future,
although the application of pre-training techniques in music will continue to be explored, it
is equally important to extend the generation tasks to unlabeled music symbolic data and
audio data.
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Abstract: Background: Manufacturing companies optimize logistics network routing to reduce
transportation costs and operational costs in order to make profits in an extremely competitive
environment. Therefore, the efficiency of logistics management in the supply chain and the quick
response to customers’ demands are treated as an additional source of profit. One of the warehouse
operations for intelligent logistics network design, called cross-docking (CD) operations, is used to
reduce inventory levels and improve responsiveness to meet customers’ requirements. Accordingly,
the optimization of a vehicle dispatch schedule is imperative in order to produce a routing plan with
the minimum transport cost while meeting demand allocation. Methods: This paper developed a
two-phase algorithm, called sAIS, to solve the vehicle routing problem (VRP) with the CD facilities
and systems in the logistics operations. The sAIS algorithm is based on a clustering-first and routing-
later approach. The sweep method is used to cluster trucks as the initial solution for the second phase:
optimizing routing by the Artificial Immune System. Results: In order to examine the performance of
the proposed sAIS approach, we compared the proposed model with the Genetic Algorithm (GA) on
the VRP with pickup and delivery benchmark problems, showing average improvements of 7.26%.
Conclusions: In this study, we proposed a novel sAIS algorithm for solving VRP with CD problems
by simulating human body immune reactions. The experimental results showed that the proposed
sAIS algorithm is robustly competitive with the GA on the criterion of average solution quality as
measured by the two-sample t-test.

Keywords: logistics management; artificial immune systems; vehicle routing problem; cross-docking

MSC: 68W01; 90B06; 97R40

1. Introduction

The concept of a smart city includes a high degree of information technology (IT)
integration and communication, which is the same concept as supply chain management
today, which relies on the use of various ITs and techniques. One of the important ele-
ments of smart cities is smart logistics, aiming to help manufacturers gain performance
from reusable transport packaging, such as pallets, racks, and bins, as well as tracking
packages. By building Internet of Things (IoT) monitoring technology, smart logistics IT
systems can be integrated into virtually any transportation asset to track its location in
real-time, optimize inventory planning, and monitor environmental conditions, especially
when the world enters the fifth-generation mobile communication technology or even
the six-generation mobile communication technology in the future [1–3]. However, even
with advanced IT today, logistics costs are still an important part of a global company’s
worldwide operation management to construct an enterprise’s competitive edge over com-
petitors, especially when dealing with post-COVID-19 supply chain disruptions. Intelligent
logistics network functions allow companies to quickly respond to customer requirements
and create their own competitive advantage over competitors in the design of smart lo-
gistics by using IT, such as radio frequency identification, to track shipments in real-time.
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Moreover, logistics costs weigh significantly on a company’s total costs. The authors of [4]
identified the logistics costs from three different aspects of a case company: (1) the share of
procurement costs reduced from approximately 0.65 (2013) to 0.45% (2015); (2) the share of
production costs increased from approximately 50 (2013) to 65% (2015); and (3) the share of
sales costs increased from approximately 7 (2013) to 8.5% (2015). As a result, in order to
increase overall profits, lower operational costs, and improve a company’s service level, a
well-designed and highly cost-efficient logistics mechanism becomes essential. The paper
focuses on controlling transport costs by optimizing routes and scheduling of vehicles,
which is known as the vehicle routing problem (VRP) [5].

VRPs are a fundamental activity in the fields of transportation systems, distribution
channel design, and logistics networks. The study of the VRPs is indeed vital in optimizing
the physical flow of goods in the logistics operation in order to reduce transport costs
and increase supply chain network performance. Among numerous studies of the VRPs,
the problem with optimal routes and scheduling of vehicles, considering both pickup
and delivery processes simultaneously, is called the VRP with cross-docking (VRPCD).
Kulwiec (2004) pointed out that the cross-docking (CD) facility is an important supply
chain strategy. They classified the CD facility into six different types. One of the CD
operations is “Truck/Rail Consolidation.” [6]. Both suppliers’ and retailers’ sides of the
supply chain have to be considered at the same time in the process of transporting goods.
Therefore, CD facilities are an important element in a synchronized supply chain as well as
in sustainable logistics management. Generally, there would be no interruption between
upstream and downstream operations as long as the physical flow of goods in the pickup
process is simultaneously delivered at the CD depot and then delivered to customers after
the consolidation process. Therefore, no inventory was stocked, and no delay in customer
orders occurred at the facility. As a result, the construction of a CD system in the logistics
network makes companies able to: (1) facilitate the efficiency and effectiveness of supply
chain management; (2) lower space requirements and reduce transportation costs; and (3)
better control the distribution process [7]. Figure 1 shows a simple layout of the CD depot.

Figure 1. A layout of a typical CD facility.

Studying an efficient heuristics methodology is essential to acquiring an optimal or
near-optimal solution within a reasonable amount of computation time because the VRP is
a well-known non-deterministic polynomial-time-hard (NP-hard) problem. As the global
pandemic of the new coronavirus (COVID-19) has shaken the world since 2020, the study
of the human immune system has piqued the interest of many researchers. The Artificial
Immune Systems (AIS) is the simulation algorithm of human body defense systems and
is applied to solve many research fields, such as clustering/classification, fault detection,
combinatorial optimization, and learning problems [8–12].
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The AIS has presented numerous studies on solving optimization problems. The
results showed that their algorithm was a feasible and effective method for the VRP. For
example, the authors of [13] applied clonal selection to tackle the VRP by using clonal
selection operators, super mutation operators, and clonal proliferation to improve global
convergence speed. The results indicate that their algorithm has a remarkable reliability of
global convergence and avoids prematurity when solving the VRP effectively.

This paper aims to propose a two-phase optimization approach based on an artificial
immune system combined with the sweep method, called sAIS, to solve the vehicle routing
problem with the CD facilities in the logistics network as an important element of smart
city infrastructure. The two-phase approach begins with the grouping method to fulfill
vehicle capacity constraints and is followed by the optimization engine to find near-optimal
solutions for each truck routing sequence while utilizing a minimum number of trucks.
The experimental results showed that the proposed sAIS algorithm is robustly competitive
with the GA on the criterion of average solution quality.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature, and Section 3 defines the VRPCD formulation. Section 4 details the methodology
and procedure of our proposed sAIS heuristic algorithm, following a number of experimen-
tation examples presented in Section 5. Section 6 concludes the research with a summary
based on the computational results.

2. Related Works

The CD system is a lean supply chain model of transporting raw materials or products
from pickup to delivery without ever storing them in the warehouse. It can significantly
reduce inventory levels, required space, handling costs, and lead times, as well as customer
response times. Packages are unloaded from inbound trucks immediately after arriving at
the depot, followed by a sorting, repacking, and dispatching process as shown in Figure 2,
then loaded onto outbound trucks for delivery to retailers in a distribution channel [14–18].
The primary objective is to avoid a high inventory level and reduce handling costs so
that there will be no inventory being stored in the depot. This is the same concept as the
Toyota Production System or lean operations. A well-designed CD operation can provide
companies with significant benefits, including decreased inventory levels, low storage
space requirements, low transportation costs, a fast response to customer requirements,
and better control of the distribution process. Both receiving and shipping processes must
be considered simultaneously, to enable the CD facility to be integrated into the logistics
network effectively. Lee, Jung, and Lee (2006) first proposed that the most important
process for CD operations is the pickup phase, in which all trucks must arrive at the depot
at the same time in order to control the start time of warehouse operations [17].

Figure 2. The selection process of antibodies.
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Before the CD system served as a mathematical constraint, Dantzig and Ramaser (1959)
initially introduced the VRP concept as a solution to the “Truck Dispatching Problem.” In
their study, a linear programming model was designed to acquire a near-best solution for
the truck scheduling problem, which was concerned with the optimum routing of a fleet of
delivery trucks supplied by the terminal [19]. Following that, numerous research proposals
were made to address the developing VRPs in their study. The VRPs have been studied for
many decades. The VRP is a set of customers with known demands who are serviced by a
fleet of trucks from one or more depots to a number of geographically dispersed locations
and customers based on optimally designed routes [20–24].

There are many solving methods for variants of the VRP proposed in the literature.
The authors of [25] dealt with capacitated VRP and distance restrictions by using an integer
programming method that used a constraint relaxation approach and sub-tour elimination.
The author of [26] proposed tour-partitioning heuristics to solve the pickup and delivery
VRPs, whereas the authors of [27] developed a hybrid heuristic method based on the
Genetic Algorithm (GA) with neighborhood search to solve the basic VRPs. They showed
that the hybrid GA had a significant improvement over the pure GA and was competitive
with the simulated annealing approach [28] and the Tabu search approach [29–31] in their
experiment results. The authors of [32,33] proposed hybrid ant colony optimizations (ACOs)
to solve the VRPs with time windows and found that they were applicable and effective in
practical problems. The authors of [34] used an ACO approach for the multiple VRPs with
pickup and delivery along with time windows and heterogeneous fleets and applied it to
large-scale problems. The authors of [18] developed a matheuristic approach consisting of
two phases: adaptive large neighborhood search (ALNS) and setting partitioning to solve
VRPCD. The authors of [35] proposed a particle swarm optimization approach to solve
VRPCD and carbon emissions reduction. Moreover, sustainable logistics management is a
popular research topic nowadays to follow the United Nations’ sustainable development
goals [36].

Following the same concept to simulate an ant’s behavior as ACO, Jerne (1974) pro-
posed the first AIS model to simulate the immune system as a mathematical formulation
to solve optimization problems, which had an interaction network of lymphocytes and
molecules that had variable regions [37]. Following Jerne’s research, Farmer, Packard,
and Perelson (1986) proposed the dynamic immune network, which could simulate and
solve classification problems, showing the AIS can be extended to solve big data pre-
diction problems nowadays as machine learning pioneers [38]. Kephart (1994) pub-
lished a paper on the AIS from a biological point of view to auto-distinguish computer
viruses [39]. Hunt et al. (1999) devoted themselves to developing clonal selection algo-
rithms and proposing high-frequency variations [40]. Lately, Mrowczynska et al. (2017)
used AIS to predict road freight transportation [41]. Mabrouk, Raslan, and Hedar (2022)
proposed an immune system programming with local search (ISPLS) algorithm with a tree
data structure to be used in the meta-heuristics programming approach to develop new
practical machine learning tools [42]. As a result of many years of development, the AIS
has become a well-known meta-heuristic that is widely applied to solve combinatorial
optimization and abnormal detection problems.

The AIS mainly simulates the relationship between antigens and antibodies, and the
core idea of immune reactions includes antibodies’ reproduction, clonal expansion, and
immune memory properties in the biological immune system. Organisms have two kinds
of immunity: the innate immune system and the adaptive immune system. The innate
immune system is capable of recognizing molecular patterns in pathogens and signaling
other immune cells to start fighting against the pathogens. Adaptive immune systems can
maintain a stable memory of known patterns. Living organisms use the immune system
to defend their bodies from invasion by outside substances. Lymphocytes are parts of the
immune system, which includes T and B cells. Both types of lymphocytes have surface
receptors capable of recognizing molecular patterns present on antigens (binding with
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epitopes). When the receptors bind to epitopes and exceed a threshold, a lymphocyte
becomes activated.

Activation triggers a series of reactions that can lead to the elimination of pathogens.
During the infection response, the immune system’s B cells produced antibodies. Pathogens
are bound by antibodies called antigens. Antigens and antibodies can bind together when
complementary shapes exist. After binding, the antibody disables the pathogens so that
the immune system can easily destroy them. Figure 2 depicts how to select immune system
antibodies [43–46].

There are four types of immune mutations running inside the human body: IgM, IgG,
IgE, and IgA [47–50]. In this paper, we simulate each mode having a different mathematical
function. First, the calculation of affinity is the total correlations between the antigen-
antibodies and antibodies-antibodies in our mathematical programming model. If the
affinity value of a new string in IgM mode is smaller than that of the old one, a total of
four kinds of immune mutations, including IgG mode, IgE mode, and IgA mode, are
randomly selected to operate in the next step of mutation in the same generation for
optimization purposes.

1. Somatic Hypermutation Simulation Function:

• IgM mode: Inverse mutation is used in the IgM mode. In the sequence s, ran-
domly selected two positions, i and j. Inverse the sequence of cells between the
i and j positions in the neighbor of s. It should be noted if |i − j| < 2 it cannot
be mutated;

• IgG mode: Pairwise mutation is used in the IgG mode. In the sequence s,
randomly selected two positions, i and j. Swap these two cells in the neighbor
of s;

• IgA mode: Insertion mutation is used in the IgA mode. In the sequence s,
randomly selected two positions, i and j. Insert the cell i to the position j in the
neighbor of s;

• IgE mode: Both the swap and insertion mutations are used in the IgE mode. In
the sequence s, randomly selected two positions, i and j. A new sequence s’ is
provided by swapping i and j. Then, in the sequence, s’ randomly selected i’
and j’ to be a cell and a position, respectively. Inserting cell i at position j in the
neighbor of s’.

2. Affinity Maturation Simulation Function

Affinity is a positive or negative correlation between an antigen and an antibody.
When the affinity is higher, it can generate a better fit between the interacting surfaces
of the antibody and antigen. After somatic hypermutation, some variant antibodies with
higher affinities may be produced. Then, in the next response, the cells will have a greater
affinity. This phenomenon is called affinity maturation;

3. Elimination Simulation Function

The human body’s bone marrow generates billions of B cells into circulation every day.
Those B cells are saved in a catalog, where there is limited storage space for the B cells. The
B cells are dead within a certain period if they meet the specific antigen. Hence, the B-cell
catalog is not static, and newly produced antibodies are continually tested against antigen
infection. Therefore, new antibodies are generated and old ones are deleted.

3. VRPCD Formulation

The VRP is traditionally illustrated as a graph network with vertices denoting terminal
points and arcs as vehicle routes, as shown in Figure 3. The basic notations for all VRPs are
shown as follows:

G = (V , E ∪ A),

where V = {v0, . . . , vn} is a vertex set; v0 represents the central warehouse from which
deliveries are made;
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Figure 3. A simple illustration of the VRP routing network.

A = {(vi, vj): i 	= j, vi, vj ∈ V} represents the directed arc set;
E = {(vi, vj): i < j, vi, vj ∈ V} is a set of undirected edges.
Lee, Jung, and Lee (2006) addressed the constraints of vehicle routing with the one

CD warehouse problem. The CD facility plays a key role in synchronizing the distribution
process on both sides of the supply chain [17]. As simulated, the CD facility can be treated
as the home depot as in the traditional VRPs, except that the model of CD specifies the
simultaneous arrival of each vehicle from the receiving trip. Therefore, several assumptions
are made. First, we have n nodes, denoting a total number of suppliers and retailers, who
are serviced by m vehicles. Every truck must depart and come back to the depot (i = 0),
with the simultaneous arrival of trucks from pickup routes. Second, for each customer,
only one truck is assigned and associated with a cost amount of Cij. Every customer has a
homogeneous demand d, which is related to the capacity limit qk for truck k. Additionally,
a constraint of the planning time horizon T specifies that the total distance traveled by
vehicles cannot exceed it. Two types of costs are considered: transportation costs and
operational costs. The objective of this research in the mathematical programming model is
to find optimized routing solutions by using a minimum number of trucks to service and
complete the assignment. The following presents the basic notations of the VRPCD model.

Decision Variables:

Xijk: a binary variable representing the route from i to j is serviced by vehicle k, where

Xijk =

{
1, if vehicle k is in the tour from i to j;
0, otherwise.

Notation of Variables:

Yijk: loaded quantity of vehicle k from pickup trip i to j;
Zijk: unloaded quantity of vehicle k from delivery trip i to j;
tcijk: the transportation cost of vehicle k from customer i to j;
etijk: time for vehicle k to move from i to j;
δik: service time required by vehicle k to load/unload the quantity demanded at i;
m: number of vehicles;
n: number of customers;
ck: fixed cost of vehicle k;
qk: maximum capacity for each vehicle k;
T: planning horizon;
P: set of unit demand from each pickup stop;
D: set of unit demand from each delivery stop;
DTjk: departure time of vehicle k at node j;
ATk: arrival time at the depot of vehicle k.
Objective Function:
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Minimize Z =
n

∑
i=0

n

∑
j=0

m

∑
k=1

tcijXijk+
m

∑
k=1

n

∑
j=1

ckX0jk (1)

Subject to:

s
n

∑
i=0

m

∑
k=1

Xijk = 1, for j = 1, 2, . . . , n; (2)

n

∑
j=0

m

∑
k=1

Xijk = 1, for i = 1, 2, . . . , n; (3)

n

∑
i=1

Xihk =
n

∑
j=1

Xhjk, for k = 1, 2, . . . , m; h = 1, 2, . . . . . . , n; (4)

n

∑
j=1

X0jk ≤ 1, for k = 1, 2, . . . , m; (5)

n

∑
i=1

Xi0k ≤ 1, for k = 1, 2, . . . , m; (6)

Yijk + Zijk ≤
n

∑
i=1

Qi

n

∑
j=1

Xijk, for k = 1, 2, . . . . . . , m; (7)

Yjik − Yijk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pj, if j ∈ P, i = 1, 2, . . . . . . , n,
0, if j ∈ D, i = 1, 2, . . . . . . , n,

− n
∑

i=1
Pi, if j ∈ 0, i = 1, 2, . . . . . . , n;

(8)

Zijk − Zjik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if j ∈ P, i = 1, 2, . . . . . . , n,
di, if j ∈ D, i = 1, 2, . . . . . . , n,

n
∑

i=1
di, if j ∈ 0, i = 1, 2, . . . . . . , n;

(9)

n

∑
i=0

n

∑
j=0

δikXijk +
n

∑
i=0

n

∑
j=0

etijkXijk ≤ T, for k = 1, 2, . . . , m; (10)

DTjk =
(
etij + DTik + δj

)
Xijk, for k = 1, 2, . . . . . . , m; (11)

ATk = (eti0 + DTik)Xi0k, for k = 1, 2, . . . . . . , m; (12)

ATa = ATb, for a 	= b. (13)

Equation (1) is the objective function whose goal is to minimize both transportation
costs and fixed costs. The constraints of each customer being serviced by only one vehicle
are described in Equations (2) and (3), while Equation (4) represents that each vehicle
arriving at the node must also leave from the same node. Equations (5) and (6) state the
constraints of each vehicle being only permitted to start from and return to the cross-
docking depot and being used to serve at most one route, respectively. The loaded and
uploaded demand from pickup and delivery processes cannot exceed the vehicle quantity
limit detailed by Equation (7), while Equations (8) and (9) each represent the quantity limit
for pickup and delivery en route. The total distance visited and time traveled cannot exceed
the planning horizon, which is limited by Equation (10). The departure and arrival times
are functioned by Equations (11) and (12), respectively. The vehicles’ simultaneous arrival
at the CD hub is stated by Equation (13).
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4. Proposed sAIS Algorithm

4.1. Clustering Method

In order to minimize total cost, each dispatched vehicle must serve the maximum
number of customers within its capacity limit while traveling the shortest distance possible.
In this research, we simulate this practical strategy to solve the problem of generating
vehicle route sequences with one CD operation in the supply chain. Moreover, for faster
convergence, we use a two-phase algorithm to solve VRPCD.

In the initial route-generating phase, we use the sweep method as the first phase to
provide the initial solution for the second phase of sAIS. Usually, the sweep method is
applied to a polar coordinate system, and the center of the coordinate system serves as the
depot of the VRP. In this case, for each traveling distance of route Oi (i = 1, 2, . . . , n, where n
denotes the number of customers), the ith customer’s Ci served as the first customer in the
cluster. Next, search for the closest customer from Ci + 1 to Ci by increasing the angle, and
add it to the same cluster without exceeding vehicle capacity. When a customer cannot be
added to the current cluster due to a vehicle capacity limit, this customer becomes the first
customer in the next cluster. After all customers are clustered, we calculate the objective
value of this route. After O1, O2, . . . , On, were calculated, we chose the minimum distance
of n routes as the initial solution of the AIS algorithm. Figure 4 illustrates an example of
the clustering process for 12 nodes.

Figure 4. An illustration of clustering by the sweep method.

The total cost is accumulated by the fixed cost of vehicles used (operational cost) and
transportation costs as vehicles travel from one customer to another. In some cases, the
aggregated service time consumed by each customer is also considered. Overall, the shorter
the distance traveled by vehicles, the lower the total cost incurred. Figure 5 exemplifies
the hierarchies of the proposed two-phase algorithm for 10 customers with homogeneous
demand served by 2 vehicles as well as the chromosome encoding format in this study.
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Figure 5. An illustration of 10 nodes with homogeneous demand served by 2 vehicles.

4.2. AIS Procedure

As mentioned previously, the AIS was successfully implemented to solve combina-
torial optimization and abnormal detection problems. For data representation, we used
chromosomes to denote routing sequences. All suppliers and retailers were assigned a
unique number. We made the variation field of each cell, and its dimensions (length of
chromosome) equivalent to the suppliers’ (for pickup routes) or customers’ (for delivery
routes) numbers to be served, as shown in Figure 5. Therefore, the cells’ chromosomes rep-
resent the nodes of the positions to be visited. In the meantime, the suppliers’ or customers’
sequences also mean the routing of orders. First, somatic hypermutation will be selected to
make cells evolve, which can search for any feasible cells in the solution field. Next, we
calculate the affinities between the antigen-antibodies and antibodies-antibodies according
to the objective function. After iterations, the relationship between antigens and antibodies
has a greater affinity. Moreover, elimination is a mechanism that will delete worse cells
with each iteration. With affinity maturation and elimination, the cells will mutate toward
the better-quality field of solution. In this case, each iteration individually will preserve the
best cell, which means a higher affinity value.

In the proposed sAIS optimization algorithm, the principles of each antibody mutation
have four parts. The basic components of the sAIS applied in the VRPCD are shown
as follows:

• Antigen: the antigen mimics the equations of the VRPCD model, which represent the
formulas for the objection function and constraint functions;

• Antibody: The antibody is the candidate solution for the VRPCD model. The strings
of solutions refer to the visiting sequence of suppliers or customers. The antibodies
are feasible sets of models for the problem;

• Cell: the cell represents the ID of suppliers or customers;
• Population size: the number of antibodies (feasible solutions of the VRPCD model)

that are used per iteration;
• Number of clones for each cell: number of times antibodies are reproduced per iteration;
• Stopping criterion: the sAIS optimization procedure will not be terminated until the

maximum number of iterations is reached.

The proposed sAIS optimization approach has a mechanism with the inside operation processes:

1. Somatic Recombination
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Somatic recombination is one of the gene rearrangement processes that involves
cutting out small regions of DNA and then putting the remaining pieces of DNA back
together in an error-prone way in the adaptive immune system. For every iteration of
our proposed algorithm, we randomly create a new set of antibodies by using the somatic
recombination process in order to search for optimized solutions;

2. Somatic Hypermutation

There are five types of immune mutations that we use in our proposed sAIS algorithm.
Each type has a different function. If the cost of objection function of antibodies in IgM is
larger than the cost of the old ones, we randomly selected one of four kinds of immune
mutations to operate in the next step of mutation in the same iteration. In addition to the
traditional four types of immune mutations, we proposed a new immune mutation, called
IgG2, to further improve the performance of the sAIS optimizations:

• IgM mode: In the vehicle’s route of sequence s, randomly select two suppliers or
customers, i and j. Inverse the sequence of suppliers or customers between i and j as
shown in Figure 6. It is noted that if |i − j| < 2 it is not allowed to be mutated;

• IgG mode: In the vehicle’s route of sequence s, randomly select two suppliers or
customers, i and j. Swap these two suppliers or customers in the neighbor of s;

• IgA mode: In the vehicle’s route of sequence s, randomly select two suppliers or
customers, i and j. Insert the suppliers or customers i to the sequence’s jth position in
the neighbor of s as shown in Figure 7;

• IgG2 mode: In the vehicle’s route of sequence s, let i1, i2, j1, and j2 be randomly selected
as four suppliers or customers in the sequence. Swap i1 to j1 and i2 to j2 in the neighbor
of s as shown in Figure 8;

• IgE mode: Both the IgG mode and the IgA mode are applied in this mutation. In the
vehicle’s route of sequence s, randomly select two suppliers or customers, i and j. A
new sequence s’ is provided by swapping i and j. Then, in the sequence s’ randomly
selected i’ and j’ will be suppliers and customers, respectively, and have a position in
the sequence. Inserting the suppliers or customers i to the sequence position j in the
neighbor of s’;

Figure 6. The operation of IgM mode.

Figure 7. The operation of IgA mode.

Figure 8. The operation of IgG2 mode.

3. Affinity Maturation

Affinity means the total cost of the vehicles routed from the objection function of the
VRPCD model. Some mutant antibodies with lower costs may be generated after several
iterations of somatic hypermutation. Then, from iteration to iteration, the cost of producing
antibodies will steadily decrease. This phenomenon is called affinity maturation;
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4. Elimination Process

The antibodies will be stored in a limited list per iteration. Except for the best antibody,
the antibodies that were produced and mutated per iteration were deleted from previous
iterations. As a result, antibodies will search for alternative solution spaces for the VRPCD;

5. Escape Criterion

We designed an escape criterion for searching the antibody in the global optimization
to prevent the search from entering the same solution space and remaining in the local optimum.

Figure 9 and Algorithm 1 show the proposed procedure of the sAIS algorithm.

Algorithm 1: The proposed sAIS algorithm.

1. Initialization: Create a population of p antibodies randomly (p is the size of the
antibody population)

2. For each iteration do:
3. For each antibody do:
4. Somatic recombination
5. Calculate affinity of the antibody
6. Somatic hypermutation:
7. IgM
8. Decode the new string
9. If the objective function (new) < the objective function (old):
10. antibody = new string;
11. else:
12. Choose IgG, IgE, IgA or IgG2
13. Decode the new string
14. If the objective function (new) < the objective function (old):
15. antibody = new string
16. else:
17. antibody = antibody
18. Eliminate antibodies except the best antibody in the population
19. Reserve the best antibody in the population to affect velocity
20. If the objective function (new) = the objective function (old):
21. Count++
22. If count attain list length:
23. Generate the new antibodies randomly
24. End For Loop
25. If stopping criteria = false:
26. Continue
27. else:
28. Break
29. End For Loop
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Figure 9. The processes of the proposed sAIS flowchart.

5. Computational Experiments

First, a preliminary investigation of the optimal parameter settings for the proposed
algorithm is presented here. Next, 60 VRPPD benchmark problems were retrieved from the
VRP Web (http://www.bernabe.dorronsoro.es/vrp/ accessed on 3 February 2023) as the
criteria to evaluate the performance of the proposed heuristics. The comparison set is based
on the GA algorithm, which is functioned by the customized software Palisade Evolver
(https://www.palisade.com/evolver/) industrial edition 5.5.1, the Genetic Algorithm
Solver plug-in for Microsoft Excel 2016.

5.1. Preliminary Tests

In the preliminary experiment, the design of experiments (DOE) was conducted to
decide the optimal parameter settings for the sAIS optimization. The size of the population
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and escape list were acquired through the experimentation methodology. One randomly
selected instance from the 60 testing problems was used to execute the experiment method-
ology. The parameter of population size, after an initial trial-and-error process, was located
in the interval of [100, 500], and we used the set of {100, 200, 300, 400, and 500} to run the
single factor factorial design experiment at 5 levels. Figure 10 shows the mean plot of the
population size factor from the results of the experiments. The variable y is the objective
function’s minimized value (fitness value), as is the y-axis in Figures 10 and 11.

Figure 10. The mean plot of population size for a one-factor factorial design.

Figure 11. The mean plot of the escape list for a one-factor factorial design.
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When the length of the escape list is attained, the AIS algorithm will jump out of the
present field. The DOE also determined the length from large numbers in the interval [300,
700], and we chose {300, 400, 500, 600, and 700} as the 5 levels for the single factor factorial
design experiment. Figure 8 shows the mean plot of the escape list factor from the results
of the experiment.

It is found that the sAIS method can generate a better-quality solution when the
population size and escape list factors are assigned to 300 and 500. According to the
literature review, the maximum iteration was set at 100,000 trials as the termination criterion
in our experiments. These settings were used in the following experiment for the sAIS
algorithm. On the other hand, the population size of genes in the GA method was set at 50;
the mutation rate is 0.06; and the crossover rate is 0.15. The maximum iteration number
was 5000 trials with 30 replications for each instance.

5.2. Experiment Results

A total of 60 benchmark datasets with homogeneous demands were used in our
experiment. Each instance is replicated for 30 runs for both the sAIS algorithm and the GA
method. The solution from the sweep method, which generates proper clusters for shipment
grouping of vehicles, is then picked up as the initial solution for both the sAIS and the GA
methods. The comparison of performance between the two methods is computed based
on the average improvement rate (AIR), as shown in Equation (14). The experimentation
results are given in Table 1.

Average Improvement Rate (AIR) =

∣∣∣AISAverage Cost − GAAverage Cost|
GAAverage Cost

× 100%. (14)

Table 1. Performance comparisons between sAIS and GA.

No.
Instances

GA sAIS

AIRAverage
Cost

Average
Time (s)

Average
Cost

Average
Time (s)

1P1 1683.22 604.5 1563.57 120.64 7.11%
2P1 1831.25 624 1671.51 111.38 8.72%
3P1 2075.44 624 1971.64 108.68 5.00%
4P1 1446.27 604.5 1439.02 126.73 0.50%
5P1 1515.79 624 1508.69 116.22 0.47%
6P1 1895.14 624 1819.36 112.09 4.00%
7P1 1790.83 643.5 1580.49 123.12 11.75%
8P1 1826.89 624 1659.31 104.11 9.17%
9P1 2429.49 624 1651.10 111.32 32.04%

10P1 1735.36 624 1488.57 103.91 14.22%
11P1 1859.02 643.5 1651.24 136.64 11.18%
12P1 2244.29 624 2031.68 136.61 9.47%
13P1 1604.56 624 1538.53 138.81 4.12%
14P1 1853.96 643.5 1680.49 140.23 9.36%
15P1 2091.15 663 1971.21 131.98 5.74%
16P1 1393.43 702 1363.70 170.57 2.13%
17P1 1487.11 663 1457.43 143.20 2.00%
18P1 1972.85 624 1799.52 137.73 8.79%
19P1 1120.58 624 1076.95 179.50 3.89%
20P1 1181.41 643.5 1170.37 164.43 0.93%
21P1 1641.65 624 1519.44 135.39 7.44%
22P1 1243.36 624 1132.10 176.54 8.95%
23P1 1246.59 663 1221.70 157.51 2.00%
24P1 1685.82 663 1550.75 137.61 8.01%
25P1 1035.99 643.5 1021.97 172.06 1.35%

122



Mathematics 2023, 11, 811

Table 1. Cont.

No.
Instances

GA sAIS

AIRAverage
Cost

Average
Time (s)

Average
Cost

Average
Time (s)

26P1 1132.80 663 1116.50 170.57 1.44%
27P1 1721.06 643.5 1460.14 137.45 15.16%
28P1 1242.39 624 1202.44 183.15 3.22%
29P1 1338.65 663 1284.38 163.36 4.05%
30P1 1747.52 643.5 1616.69 138.48 7.49%
31P1 991.99 663 960.42 112.47 3.18%
32P1 1291.67 663 1202.92 113.12 6.87%
33P1 1721.57 663 1626.53 100.73 5.52%
34P1 971.77 663 956.98 117.75 1.52%
35P1 1180.81 624 1140.58 101.94 3.41%
36P1 1746.42 624 1554.76 101.45 10.97%
37P1 1070.18 604.5 944.67 109.23 11.73%
38P1 1274.88 624 1143.66 119.46 10.29%
39P1 1767.73 624 1553.02 115.70 12.15%
40P1 1090.22 643.5 1001.72 123.07 8.12%
41P1 1276.28 624 1212.92 101.59 4.96%
42P1 1679.75 624 1640.76 121.74 2.32%
43P1 1153.37 624 975.59 123.60 15.41%
44P1 1356.32 643.5 1166.58 111.69 13.99%
45P1 1723.25 624 1573.59 104.94 8.68%
46P1 1195.50 624 1083.37 103.39 9.38%
47P1 1373.71 643.5 1233.93 100.70 10.18%
48P1 1697.67 663 1618.59 114.34 4.66%
49P1 1286.97 702 1264.74 113.89 1.73%
50P1 1278.76 663 1264.71 101.67 1.10%
51P1 1741.72 643.5 1662.47 140.89 4.55%
52P1 1314.23 663 1154.11 138.25 12.18%
53P1 1451.27 624 1305.02 132.65 10.08%
54P1 1952.70 624 1742.00 124.55 10.79%
55P1 1308.87 624 1192.67 137.26 8.88%
56P1 1418.42 643.5 1333.62 136.96 5.98%
57P1 1888.41 624 1792.38 132.35 5.09%
58P1 1344.08 624 1153.09 139.39 14.21%
59P1 1371.34 663 1311.74 140.85 4.35%
60P1 1822.68 663 1760.34 136.58 3.42%

Avg. AIR 639.275 129.37 7.26%
Std. of AIR 0.0521
Max. AIR 32.04%
Min. AIR 0.47%

As listed, the 60 benchmark problems were sorted into 20 subgroups with three
instances in each, based on the node coordinates assigned. Instances within one group are
given identical node coordinates, except for the position where the cross-docking facility
is located. Each set of the 60 instances contains 100 nodes, comprising both pickup and
delivery customers. Each node is associated with a known demand of 10 units, while each
vehicle dispatched is constrained by a capacity limit of 100 units. Examples of optimized
routing sequences are shown in the Appendix A.

The computational results showed that the solution quality of the sAIS method is
superior to the GA, outperforming each with an average improvement rate and lowest
improvement rate of 11.98% and 9.47%, respectively, on the basis of average solution quality.
In addition, the sAIS optimization, which has the lowest cost, was able to discover new,
better solutions than the GA did in all 60 benchmarks, even though the computation time
of the sAIS algorithm method takes longer; however, it is still a reasonable amount of
time. Moreover, the maximum rate of improvement on average solution quality is 30.03%,
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whereas the minimum rate is acquired at 1.28%, indicating that the performance of the
sAIS method is robust and competitive with the GA method. Nevertheless, all problems’
average improvement rate was better able to discover new solutions than the GA did.

Finally, a one-sided, two-sample t-test was conducted to verify the performance of the
two methods. The hypothesis test is:

H0: μGA − μsAIS = 0

HA: μGA − μsAIS > 0

the results showed that the t-value = 2.09 and the p-value = 0.019. Because the p-value is
less than the 0.05 significant level, we reject the null hypothesis and conclude that μGA is
significantly greater than μsAIS. That is, the total cost, including transportation costs and
operational costs, generated by the sAIS approach is smaller than the total cost generated
by the GA in our experiments.

6. Conclusions and Future Research

In this research, a novel sAIS algorithm is proposed to approach the combinatorial
optimal solution of the VRPCD. The primary objectives of this work include the integration
of the operation of cross-docking and the optimal vehicle routing schedule into the design of
supply chain optimization. A significant development lies in the synchronization between
upstream suppliers and downstream retailers, where both sides of the supply chain are
simultaneously considered to collaborate on the physical flow of goods in each inbound
and outbound process. Manufacturers can reduce logistics costs by building IoT monitoring
technology into smart logistics IT systems to track its location in real-time, reduce inventory
levels in warehouses, monitor environmental conditions, and optimize the routing sequence
for trucks for smart city infrastructure.

The computational results show that the sAIS model is effective for solving the VRPCD.
The effectiveness of the method comes from the two-phase mechanism. In the initial route
generation phase, the initial solution was generated by the sweep method before being
input into the route’s optimization phase with the AIS algorithm. The combination of the
two-phase approach ensures that the sAIS method yields quality solutions.

A total of 60 benchmark problems were deployed to investigate the applicability of
the proposed sAIS method. The experimental results showed that the sAIS method was
able to produce significant improvements over the GA, surpassing each testing problem.
Additionally, the sAIS method was able to discover better solutions than the GA method
for all 60 benchmark problems, and the sAIS’s search time is faster than the GA. It found
sAIS to be a useful methodology. As artificial intelligence research rapidly increases, more
simulations from human body systems could be used to improve the solution quality of the
AIS optimization, and the AIS optimization could be applied to other research problems
in the operations research field, such as multiple-criteria decision-making problems or
supplier selection problems, etc.
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Appendix A

Examples of optimized routing sequences are shown in the appendix.
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Abstract: In recent years, the latest maintenance modelling techniques that adopt the data-based
method, such as machine learning (ML), have brought about a broad range of useful applications.
One of the major challenges in the automotive industry is the early detection of component failure
for quick response, proper action, and minimizing maintenance costs. A vital component of an
automobile system is an air pressure system (APS). Failure of APS without adequate and quick
responses may lead to high maintenance costs, loss of lives, and component damages. This paper
addresses classification problem where we detect whether a fault does or does not belong to APS.
If a failure occurs in APS, it is classified as positive class; otherwise, it is classified as negative class.
Hence, in this paper, we propose broad embedded logistic regression (BELR). The proposed BELR
is applied to predict APS failure. It combines a broad learning system (BLS) and logistic regression
(LogR) classifier as a fusion model. The proposed approach capitalizes on the strength of BLS
and LogR for a better APS failure prediction. Additionally, we employ the BLS’s feature-mapped
nodes for extracting features from the input data. Additionally, we use the enhancement nodes of
the BLS to enhance the features from feature-mapped nodes. Hence, we have features that can
assist LogR for better classification performances, even when the data is skewed to the positive
class or negative class. Furthermore, to prevent the curse of dimensionality, a common problem
with high-dimensional data sets, we utilize principal component analysis (PCA) to reduce the data
dimension. We validate the proposed BELR using the APS data set and compare the results with
the other robust machine learning classifiers. The commonly used evaluation metrics, namely
Recall, Precision, an F1-score, to evaluate the model performance. From the results, we validate
that performance of the proposed BELR.

Keywords: artificial intelligence; automotive; condition monitoring; machine learning; predictive
maintenance

MSC: 68T07

1. Introduction

Air Processing System (APS) is a critical component in any brake system of heavy-
duty vehicles. It plays an essential role in gauging brakes, controlling suspensions,
shifting gears, etc. The effects of faulty APS are numerous. For instance, a faulty APS
can cause improper functioning of gears, brakes, and suspension. These may lead to
unpleasant/undesired situations such as total breakdown of the vehicles, which may lead
to high maintenance costs and sometimes, in a critical situation, loss of life. To mitigate
this side effect, the proper functioning of APS should be ensured; hence, its monitoring
is vital. APS is said to be working properly when the APS supplies compressed air to its
major components in an efficient, adequate, and timely manner.

Mathematics 2023, 11, 1014. https://doi.org/10.3390/math11041014 https://www.mdpi.com/journal/mathematics
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Typically, in an automobile, the main components of APS are control units, circuit
protection valves, and air dryers. A circuit-protection valve controls various circuits. Some
of the circuits are a service brake circuit, a parking brake circuit, an auxiliary circuit, etc. It
simply does this by activating them using different pre-set pressures. Furthermore, the air
dryer removes excess moisture from the inlet air generated at the compressor. The control
units dictate when to activate the compressor based on the pressure level in the APS. The
control units consist of pressure sensors and temperature sensors.

APS failure detection is a key area of research [1,2]. It is a problem to detect whether an
APS failure is the cause of a complete system breakdown or not. APS failures can result in
huge maintenance costs and sometimes life-threatening situations. In recent years, machine
learning-based techniques for APS failure detection are becoming increasingly popular.
This is partly due to the large historical data set and the emergence of Industry 4.0 and the
Industrial Internet of Things (IIoT). The core problems for APS failure detection/prediction
are associated with:

• High volume of missing values in the data.
• Strongly imbalanced distribution of classes.

Figure 1 presents the missing values and imbalanced class distribution for APS failure
data sets. From the figures, we notice many missing values in the data set. Hence, to tackle
the problem, we cannot use the commonly used deletion method, as the missing value are
many and deletion methods will cause large chunks of the data to be deleted. This will
leave no or fewer data to be explored or used for the machine learning task. It is obvious
from Figure 1 that the number of negative class cases is far higher than the number of
positive class cases. Hence, the data set is highly imbalanced.

 
(a) (b) 

Figure 1. The distribution of the data set: (a) shows the class distribution and the imbalance of class
distribution for the complete data set; (b) shows the percentage of missing values in each feature of
the data set.

The two problems, namely class imbalance and missing values, can affect the perfor-
mance of any machine learning algorithm if proper care is not taken [3,4]. Many researchers
have worked on various techniques for handling missing data in APS data sets [1,5]. The
existing techniques combined the classical data imputation methods with the traditional
machine learning methods. However, the impact of modern data imputation methods
is not explored. This could improve the performance of the machine learning method
significantly. Additionally, a using modern machine learning method such as flat structure
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neural networks can enhance performance when the data is skewed to the positive class or
negative class.

Additionally, a deep neural network with traditional classifiers can be used for many
classification tasks. For instance, in [6], a deep neural network is trained together with a
classifier where highly efficient features are extracted from raw data by a deep neural
network, and a classifier, logistic regression [7], is used for classification. However, using
a deep neural network requires high computation resources, and it takes a long time
to train. Instead of using deep structure, some researchers have investigated random
vector functional-link neural networks (RVFLNN). Chen and Liu [8] proposed BLS based
on the concept of RVFLNN and obtained a promising result in classification accuracy
and learning speed. The BLS network [8,9] is different from the deep neural network
in many aspects, and its structure can be constructed widely. Additionally, the BLS
network adopted incremental learning, which has quick remodelling without needing to
re-train the network from scratch, provided that the performance of the initial network
is not acceptable. In essence, the BLS network can be trained quickly and has good
generalization performance. Additionally, BLS is regarded as a universal approximator
with sufficient nodes in the network.

This paper explores the strength of a broad learning system and logistic regression
for APS failure prediction. The BLS network is a flat structure neural network. It has a
feature-mapped layer and a feature-enhancement layer. In addition, another common issue
in a typical real-life big data set is high dimension. The high dimensional data set can
affect the machine learning algorithm’s performance. Additionally, it will increase the
computational cost. To handle this, we explore principal component analysis (PCA) [10].
PCA is the widely used dimensionality reduction algorithm. Hence, to prevent the issue of
the curse of dimensionally [11], we use PCA to reduce the dimension of the data set.

Furthermore, to the best of our knowledge, previous studies on APS failure detection
have not investigated the performance of a flat structure neural network. A typical flat
structure neural network example is a broad learning system. It has a broad layer structure
where nodes are connected widely. More details of the network will be given in Section 3.

Generally, many machine learning models have difficulty handling imbalanced class
distribution problems. However, the proposed approach can perform well under imbal-
anced class distribution problems. The proposed BELR does not require an additional or
external method for imbalanced class distribution, as the feature-mapped nodes can extract
features discriminative enough to enhance a classifier to separate classes from each other.
The feature can be further enhanced by feature-enhancement nodes to uniquely classify
each of the classes.

In summary, our method performance is reliable under challenging data sets such
as the APS data set, which has an imbalance distribution problem. The idea of a missing
mechanism is formalized in [12,13] where the study of missing data such as Missing at
random (MAR), Missing not at random (MNAR), and Missing completely at random
(MCAR) are presented in details. The data we employ in this paper have missing values
across the feature set. A total of 169 features have missing values out of 170 features.
Figure 2 shows the pattern of missing values in the data set across the features. From
the Figure, the purple color represents the missing values, while the white or clear space
represents where values exist in the data.

Additionally, the distribution of the data set and missing data is presented in [14]. In
addition, Figure 2 shows the pattern of the missing values. From the idea in [12,13] and
from the literature, the pattern of the missing values in the APS data set may be missing
completely at random (MCAR). In our paper, the focus is not to categorize the pattern of
the missing value in the APS data set. However, an appropriate method can be selected
based on missing data mechanism in the data set. Thus, to prevent the destruction of the
data set that could come from some missing value imputation method, we employ KNN
imputer. In other words, we impute the missing value using the KNN technique [15]. Other
methods such as imputation based on generative adversarial network (GAN) [14] could
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be explored. In [16], median imputation is explored for the problem of missing value. In
this paper, we explore KNN imputation concept to tackle the problem of missing value.
Figure 3 shows the pipeline of the proposed approach.

Figure 2. Pattern of the missing values in the data set across the features.

In summary, the contributions of this paper are summarized as follows:

• We propose broad embedded logistic regression (BELR). It is the fusion of broad learning
system and logistic regression. We apply the proposed BELR to predict APS’s failure.

• We propose a hybrid objective function based on the classical logistic regression
objective function.

• We impute the missing value using the KNN algorithm.
• We propose and explore feature-mapped nodes of the BLS to extract discriminative

features from the input data and enhancement nodes for further separation of the two
classes such that the skewed distribution data set cannot affect the performance of the
proposed broad embedded logistic regression (BELR).

• We explore principal component analysis (PCA) for dimensionality reduction and
combine BLS and logistic regression classifier for the prediction of air pressure
failure detection.

The rest of the paper is presented as follows. Section 2 presents related work on APS
failure prediction from the literature. In Section 3, we describe the broad learning system
(BLS) and give the mathematical model of the BLS. Additionally, Logistic regression (LogR)
is discussed. Section 4 presents the experiment where the APS data set is described, and
the numerical results are presented. In addition, in Section 4, the performances of the
comparison algorithms and results are discussed. Section 5 gives the conclusion.
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Figure 3. The Flow Chart of the Experimental Process.

2. Related Work

Diagnosis of transportation systems is a common task in the automotive industry. The
problem is commonly handled using data analysis and machine learning methods. In this
section, we focus on related works to APS failure prediction. Additionally, we present
related work on the imbalanced classification problem from the literature.

2.1. APS Failure Prediction

First, standard machine learning approaches for APS failure prediction have been
applied to the mentioned task. There are works on APS failure prediction. For instance,
in [16,17], the failure of APS of heavy-duty vehicles is studied. In the paper, the weighted
loss function is employed to improve the performance of the network architecture used.
In addition, in [18], a fuzzy-based machine learning algorithm is utilized for air pressure
failure prediction. The fuzzy-based algorithm was combined with a relaxed prediction
horizon for better air-pressure failure-prediction performance. Furthermore, APS failure
prediction was analyzed by [16,19] using various machine learning algorithms, namely
Support vector machines (SVM), Multi-Layer Perception (MLP), and Naive Bayes. The
author extracts a feature from the raw data set using the feature engineering method
namely histogram. In addition, feature ranking was implemented in their feature-selection
approach. In the work, the preprocessing method used for the missing value replacement
is KNN imputation, where the nearest neighbour in each feature column replaces the
missing value. The metric used in terms of cost is based on total misclassification by the
algorithm. In the metric, f p is set as a false positive, which predicts the failure wrongly,
and f n is set as a false negative, which is missing a failure. In their proposed approach,
missing a failure has a cost of 500, while the cost of falsely predicting a failure is given
by 10. In their approach, a mean cost of 0.6 was achieved. The mean cost is given by

1
Number o f test sample (10 ∗ f p + 500 ∗ f n).
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Additionally, to consider imbalance class issues, in some works, weighted data classi-
fiers are used for APS failure prediction [14], logistic regression (LogR), and SVM classifiers.
In their method, class-specific weights were integrated into the classifier. The value of
the weight for each class is chosen such that it is inversely proportional to the number of
samples in a class. Other classical machine learning methods have been applied to the APS
data set. For instance, the performance of many machine learning techniques on the APS
data set was investigated in Refs. [20–22]. The problem is a binary classification task. In
their approach, they resolve the class imbalance problem with the aid of SMOTE (Synthetic
Minority Oversampling Technique) algorithm to balance the positive class and negative
class examples. Additionally, the author performs feature engineering before applying
the machine learning algorithm. Besides, a new method for predicting APS failure was
proposed in Ref. [23]. The method maximizes Area Under the Curves (max AUC) by
utilizing a linear decision boundary. It is specifically designed to handle imbalance class
distribution in the data set.

From all the previous studies on APS failure prediction, most authors focus on ex-
ploring the classical machine learning algorithms such as SVM, KNN, NB, LogR, etc. In
summary, to the best of our knowledge, no work on APS failure prediction has used the
neural network or flat structure-based machine learning methods, namely extreme learning
machine (ELM) [24–26] and broad learning system (BLS) [8,26–29]. However, ELM and BLS
algorithms are popular among researchers, and they are widely used in many applications.
This is partly because they are universal approximators; with sufficient hide nodes, they
can estimate any functions. Additionally, they are fast and easy to implement. Hence, in
this work, we proposed to combine a broad learning system (BLS) and logistic regression
(LogR) to predict APS failure. The background details of BLS and LogR are given in the
next sections.

2.2. Broad Learning System (BLS) and Logistic Regression (LogR)
2.2.1. Broad Learning System (BLS)

The concept of BLS [8] is a new technique. BLS and other variants [8,30,31] connect
hidden nodes of a neural network broadly. As shown in Figure 4, the nodes are put
together in a broad flat structure. A BLS network contains two hidden layers, namely the
enhancement layer and feature-mapped layer.

Figure 4. A typical structure of a BLS network.

The concept introduced in the BLS framework is promising. It is an efficient, simple
learning algorithm. Due to the efficient feature-extraction capacity of the nodes in the
feature-mapped layer and enhancement layer of the BLS, the original BLS and hybrid
methods, where feature-mapped layer of BLS and other techniques are combined, have
been used in many applications. However, much work has not been completed using
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neural network-based algorithms to predict APS failure in the case of APS failure. In view
of the points and that BLS’s feature-mapped nodes and enhancement nodes can extract
effective features from the input data, which can enhance the performance of a classifier,
we combine BLS and logistic regression (LogR) to study APS failure prediction. Thus, we
propose broad embedded logistic regression (BELR) for APS failure prediction.

2.2.2. Operation of BLS Networks

This subsection gives background knowledge on the operation of a BLS network.
This paper proposed BLS for solving the air pressure system failure classification prob-
lem. In this paper, the classification problem is formulated as nonlinear logistic re-
gression, where the input of a logistic regression algorithm is the feature from the BLS
network. The final output is the sign of the predicted value or the probability of the
predicted output. In other words, if the sign is positive, then the predicted value belongs
to the positive class. Otherwise, the predicted class is negative. Let x ∈ RD be the input
data to the BLS network, where D is the dimension of the input data, and o ∈ R be the
output of a BLS network. In this section, for smooth and clear presentation, we present
the input x augmented with 1 as χ = [xT, 1]T.

(a) Feature-mapped nodes

The BLS network has two main layers, namely feature-mapped layer and enhancement
layer. The feature-mapped layer is to extract features from input data. For the feature-
mapped layer, there are n groups of the feature-mapped nodes. These n groups are
concatenated together to form one main feature extraction. The output of the main feature-
extraction group is passed to the output layer, and another layer is called the enhancement
layer. Each group from the n groups is used to extract distinctive features. Each group has
it on a specific number of nodes. For instance, in this paper, fi represents the i-th group
of the feature-mapped nodes. Hence, for n groups of features-mapped nodes, the total
number of features-mapped nodes is the following:

f =
n

∑
i=1

fi (1)

It should be noted that fi for i = 1, . . . n may not be equal. For each group of the feature-
mapped node, which is the i-th group of features-mapped nodes, there is an associated
learned projection matrix, and the i-th learned projection matrix is given by:

Ψi =

⎛⎜⎝ψi,1,1 · · · ψi,1,(D+1)
...

. . .
...

ψi, fi ,1 · · · ψi, fi ,(D+1)

⎞⎟⎠ (2)

where Ψi ∈ R fi×(D+1). It is designed to generate features from the input data. The i-th
group of mapped features gi are obtained by projecting the input data with the matrix Ψi.
They are given by the following:

gi = [gi,1, · · · , gi, fi
]T

= Ψiχ ∀ i = 1, · · · , n,
(3)

where gi,u is the u-th feature of the u-th group, where i = 1, · · · , n, and u = 1, · · · , fi.
In the classical BLS, Ψi

′s is constructed based on sparse optimization steps. There
are many ways to achieve these steps. One way is to solve sparse optimization problems
based on the alternating direction method of multipliers ADMM [32] algorithm. In
Section 2.2.3-(a), we present the construction procedure of Ψi

′s. In the classical BLS
scheme, a linear operation is applied on gis. It should be noted that gis is not χ but
features-extracted from χ. Similarly, a nonlinear operation can be applied on gi’s as well.
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In this paper, we apply a linear operation on gi’s, that is, this paper follows the classical BLS
framework. The outputs from the n group of the feature-mapped nodes are gathered as

g = [gT
1 , · · · , gT

n ]
T ∈ R

f (4)

Additionally, we let

q = [gT, 1]
T ∈ R

f+1 (5)

for a smooth mathematical model presentation and as the augmented vector of g.

(b) Enhancement nodes

Like the feature-mapped nodes, the enhancement nodes of the BLS network have
m groups of enhancement nodes. In the enhancement layer, the j-th group of enhancement
nodes has ej nodes. The total number of enhancement nodes in the BLS network is given by

e =
m

∑
j=1

ej (6)

In addition, the output of j-th group of enhancement nodes is given by

Hj =
[
Hj,1, . . . Hj,ej

]T
= ξ

(
Wj q

)
(7)

where j = 1, · · · , m and Wj is the weight that connects the output of feature-mapped nodes
to the input of the enhancement nodes together. It should be known that, in the original
BLS framework, Wj is a randomly generated. The elements of Wj are denoted as

Wj =

⎛⎜⎝ wj,1,1 · · · wj,1, f+1
...

. . .
...

wj,ej ,1 · · · wj,ej , f+1

⎞⎟⎠. (8)

It should be known that ξ(·) is the activation function for enhancement nodes. Each
group of enhancement nodes can have its activation function. In the original BLS algorithm,
the hyperbolic tangent is employed as the activation function for all the enhancement
nodes. This paper uses hyperbolic tangent as the activation function for all enhancement
nodes. We gather all the enhancement node outputs together as

η = [hT
1 , · · · , hT

m]
T ∈ R

e (9)

(c) Network Output

For a given input vector x, the output of the network is

o =
[
gT

∣∣∣ηT
]
β (10)

where β is the output weight vector. The number of elements in β is equal to f + e. Hence,
its components are given by

β = [β1, . . . , β f+e]
T (11)

2.2.3. Construction of Weight Matrices and Vectors

Given N training pairsDtrain = {(xk, yk) : k = 1, . . . , N}}, where xk = [xk,1, · · · , xk,D]
T

is a D dimensional training input and yk is the corresponding target output as the training
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set. Consider that the training data matrix is formed by packing all the input xk
′s together.

The augmented data matrix denoted as X is given by

X =

⎛⎜⎝xT
1
...

xT
N

∣∣∣∣∣∣∣
1
...

1

⎞⎟⎠ (12)

(a) Construction of the Projection Matrix Ψi

For each group of features-mapped nodes, one important thing in the framework of
BLS is building the projection matrix Ψi. An important question then arises as follows:
how to build the projection matrix? The approach presented here follows the procedures
of [8,33]. In the BLS, a random matrix Pi ∈ R(D+1)× fi is generated first for each group of
features-mapped nodes. Afterwards, we can obtain a random-projection data matrix Qi,
given by

Qi = XPi (13)

The projection matrix Ψi is the result of the sparse approximation problem given by

min
Ψi

{
‖ QiΨi − X ‖2

F +ρ ‖ Ψi ‖1

}
(14)

where in (14), the term ρ ‖ Ψi ‖1 is to enforce the solution of (14) to be a sparse matrix.
Additionally, ρ is a regularization parameter for sparse regularization. In addition, F is the
popular Frobenius norm and ‖ . ‖1 is norm 1.

(b) Construction of the Weight Matrices of the Enhancement Nodes

To some degree, the construction step of Wj
′s is a bit straightforward. For instance, as

detailed in [8,33,34], the traditional BLS algorithm and other variants randomly generate
the weight matrices for each group of the enhancement nodes. Similarly, this paper follows
the same procedure to generate Wj

′s.

(c) Construction of Output Weight Vector

This section gives the procedure to construct the output weight vector β. Given the
projection matrix Ψi′s ∀ i = 1, · · · , n of the feature-mapped nodes, and the training data
matrix X, the i-th training data feature matrix for all training samples is given by

Zi =

⎛⎜⎝ zT
i,1

...
zT

i,N

⎞⎟⎠ = XΨT
i (15)

where zi,k = [zi,k,1, · · · , zi,k, fi
]T, and

zi,k,u =
D

∑
ι=1

ψi,u,ιxk,ι + ψi,u,D+1 (16)

Let Z be the collection of all training data feature matrices. Hence, we have

Z = [Z1, · · · , Zn] (17)

In this way, Z is an N × f matrix, denoted as

Z =

⎛⎜⎝Z1,1 · · · Z1, f
...

. . .
...

ZN,1 · · · ZN, f

⎞⎟⎠ =

⎛⎜⎝ZT
1
...

ZT
N

⎞⎟⎠ (18)
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where the k-th row vector ZT
k of Z is the inputs of the enhancement nodes (the outputs of

the feature-mapped nodes) for the k-th training input vector xk. To handle input biases, we
augment one vector into Z , given by

Z′ =

⎛⎜⎝ZT
1 1
...

...
ZT

N 1

⎞⎟⎠ =

⎛⎜⎜⎝
Z′T

1
...

Z′T
N

⎞⎟⎟⎠ (19)

Furthermore, given Z , the enhancement node outputs of the j-th enhancement group
for all training data are given by

Hj = ξ
(
Z′ WT

j

)
=

⎛⎜⎜⎝
hT

j,1
...

hT
j,N

⎞⎟⎟⎠ (20)

for j = 1, · · · , m, where
hj,k = [hj,k,1, · · · , hj,k,ej

]T (21)

and

hj,k,v = ξ

(
f+1

∑
τ=1

wj,v,τZ ′k,τ

)
(22)

Packing all the enhancement node outputs together, we have

H = [H1, · · · , Hm] (23)

where H is a N ×
(

∑m
j=1 ej

)
= N × e matrix.

Define A = [Z|H]. The output weight vector β can be calculated based on least
square techniques:

arg min
β

‖Aβ− y ‖ρ
ρ +� ‖ β ‖λ

λ (24)

where y = [y1, · · · , yN ]
T is the collection of all training outputs. Equation (24) means that

we can have different cost functions by setting different values of ρ, ρ, λ. It should be noted
the value of ρ and λ are not necessarily the same. In this paper, to explore BLS for air
pressure failure prediction, we reformulate the objective function (24) like that of logistic
regression. In the next subsection, we give background details of logistic regression (LogR).

2.2.4. Logistic Regression

Logistic regression (LogR) is a widely used and popular probabilistic statistical classi-
fication technique. It is designed for binary classification problems. Logistic regression is
detailed in [35]. The technique aims to maximize the likelihood function given by

JLogR =
N

∏
k=1

tyk
k {1 − tk}1−yk ; tk = σ

(
wTxk

)
(25)

where σ(z) = 1
1+exp−z and xk is the k-th input vector. We can further modify (25) as a

minimization problem. With manipulations, we turn (25) to a well-known cross-entropy
error function (26). By taking the negative logarithm of the likelihood function (25), we
arrive at

J(w) = − log
(

JLogR
)
= −

N

∑
k=1

{yk log(tk) + (1 − yk) log(1 − tk)} (26)

The gradient descent can be used to optimize the error function (25) to obtain an
optimal output weight w.
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3. The Proposed Technique

In the proposed approach, we capitalize on the strength of a broad learning system
(BLS) and logistic regression (LogR). Figure 5 shows the structure of the fused BLS network
with logistic regression classifier.

Figure 5. The Flowchart of the proposed network and procedure.

In Figure 5, input X is passed to the feature-mapped layer, where the feature Zn is
extracted and obtained. This feature is further enhanced to obtain an enhanced feature
Hm. Both features are combined as A = [Zn|Hm]. The concatenated features are then
passed to the logistic regression classifier for making the decision. The fusion of logistic
regression and broad learning system, with the effectiveness of the feature-extraction layer
and enhancement layer improves the performance of the network. For instance, when the
feature nodes extract features from the input X, the enhancement nodes further enhance
the features such that the distance between the positive class and negative class is widened.
Hence, it able to separate between class even when the two classes are in balance.

In our approach, we incorporate the objective function of BLS (24) into the objec-
tive function of LogR (25). In other words, for the proposed broad embedded logistic
regression model, we assume a non-linear relationship between the input of the logistic
regression classifier and the output of logistic regression classifier. For easy notation and
explanation, we let

A =
[
A1, · · · ,A f+e

]
=

⎡⎢⎣ a1,1 . . . a1, f+e
...

. . .
...

aN,1 · · · aN, f+e

⎤⎥⎦
Additionally, the probability that yk = 1 is given by pk. In other words, when the

model predicts that yk = 1, the prediction probability is given by pk. Hence, we formulate
the relationship between feature A obtained from the BLS network and the output weight
β = [β1, . . . , β f+e]

T. In addition, we add a bias term β0 and A0 = [1, 1, 1 . . . 1]T into the
relationship. Hence, for k-th input, we have

lk = ak,0β0 +
f+e

∑
r=1

ak,rβr = logb
pk

1 − pk
(27)

where lk is the log-odds for the k-th. Furthermore, it should be noted that b is an additional
generalization, it is the base of the model.
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For a more compact notation and to take the bias term into consideration, we specify
the feature variables A and β as ( f + e + 1)—dimensional vectors. They are given by

A =
[
A0,A1, · · · ,A f+e+1

]
β = [β0,β1, . . . , β f+e+1]

T (28)

where A0 = [a1,0, . . . aN,0]
T , A1 = [a1,1, . . . aN,1]

T , . . . , A f+e+1 =
[

a1, f+e+1, . . . aN, f+e+1

]T
.

Hence, we rewrite the logit, lk as

lk =
f+e

∑
r=0

ak,rβr = logb
pk

1 − pk
(29)

Now, solving for the probability pk that the model predicts yk = 1. yields.

pk =
elk

1 + elk
= σ(lk) (30)

where b is substituted by e and it is exponential function and where σ(.) is the sigmoid
function. With (30), we can easily compute the probability that yk = 1 for a given observa-
tion. The optimum β can be obtained by minimizing the negative log-likelihood of (30).
Hence, the log-likelihood may be written as follows:

J =
N
∑

k=1
{−yk log(pk)− (1 − yk) log(1 − pk)}+ ρ ‖ β ‖λ

λ

=
N
∑

j=1
{−yk log(σk)− (1 − yk) log(1 − σk)}+ ρ ‖ β ‖λ

λ

(31)

where
σk =

1
1 + exp(lk)

=
1

1 + exp(∑
f+e
r=0 ak,r βr)

(32)

We employ gradient descent to optimize the proposed objective function (31). We
name our proposed technique broad embedded logistic regression (BELR).

From (26) and (31), it should be noted that the traditional logistic regression can
only manage the linear relationship between dependent variables and independent
variables effectively. In other words, the classical logistic regression does not consider
any possible nonlinear relationship between the dependent variable and independent
variables. Unlike the classical logistic regression classifier, where the raw data are used
as its input directly, in this paper, from (31), the output of the feature-mapped node and
enhancement node of BLS is the input of the logistic regression classifier. In other words,
enhanced features serve as the input of the logistic regression classifier. This improves
the performance of the algorithm.

In addition, the objective function (31) of the proposed approach contains the regular-
izer ρ ‖ β ‖λ

λ, where λ can be chosen or set to different values to have different scenarios
and to improve the performance of the network. For instance, for λ = 1, the output weight
of the proposed method will have a sparse solution. This setting can allow the network
to automatically select a relevant feature from A, which may enhance the network perfor-
mance. Similarly, if λ is set to 2, the output weight will have dense values and the values
will be small. This will prevent the network from overfitting. In this paper, our focus is not
to have a sparse solution. Hence, in our experiment, we utilize λ = 2.

4. Experiment and Settings

In this section, we compare the proposed BELR with other linear and non-linear
algorithms, namely the original logistic regression (LogR), Random Forest classifier (RF),
Gaussian Naive Bayes (GNB), K-nearest neighbour (KNN), and Support Vector Machine
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(SVM). We use four evaluation metrics in our comparison. Table 1 presents the evaluation
metrics used to evaluate the performance of the comparison algorithms.

Table 1. The METRICS FOR THE MODELS comparison.

Evaluation Metrics Equivalent Equation

Precision TP
(TP+FP)

Recall TP
(TP+FN)

F1-Score 2 ∗ (Precision ∗ Recall)
(Precision+Recall)

Accuracy The fraction of the predictions the model
executed correctly TP+TN

(TP+TN+FP+FN)

From the Table, False Positive (FP) is the number of examples which are predicted
to be positive by the model but belong to the negative class. False Negative (FN) is the
number of examples which are predicted to be negative by the model but belong to the
positive class. True Positive (TP) is the number of examples which are predicted to be
positive by the model and belong to the positive class.

Furthermore, for a fair comparison, in all the comparison algorithms, we use standard
settings for all the parameters suggested in the scikit-learn machine learning package [36].
Additionally, we use APS data set [37,38]. This benchmark data set is commonly used to
evaluate machine learning algorithms, specifically for APS failure prediction tasks. There
are two problems with the data set. First, the data set contains a high number of missing
values. Second, the data set has a high imbalance in class distribution.

In some papers, median imputation has been used to fill missing data. For instance,
in [16], the median imputation technique was utilized to handle missing values. However,
median imputation can cause destruction to the data. Hence, we employ a robust imputer,
namely the KNN imputation method. Thus, we replace the missing values in each column
using KNN. The data set used in this paper is quite challenging, as it has the issue of
imbalanced class distribution. Our proposed BELR has a comparable good performance.
This may be attributed to the ability of feature-mapped layer (nodes) to extract features
from the input data and enhancement layer (nodes) for further enhancement of the feature
such that the classes are separated from each other. Hence, this improves the performance
of BELR under skew data set. This is validated when we compare the original logistic
regression classifier and the proposed BELR.

After filling the missing data using KNN imputer, we use cross validation method to
fit the comparison models. Furthermore, inside cross-validation, we extract features by
using BLS on training set, then fit logistic regression on a feature from the training set, then
used the test set to estimate quality metrics.

The total data points are split into 10-fold using stratified method of scikit-learn
machine learning package and run each algorithm 10 times. For instance, in the first run
we combine nine samples of the divided data as the training set and the remaining one
sample for test set. We repeat this process 10 times using different set of data points as the
training set and test set. Table 2 summarize the details of the data set used in the first run.
In the experiment, we present the average performance of each compared algorithm.

Table 2. Details of the data set and further details of the data set.

Total Number of Data Points No Rows of Training Data No Rows of Test Data

76,000 68,400 7600

Training Set Test Set

Negative Case Positive Case Negative Case Positive Case

67,162 123 7462 137
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From the table, the ratio of positive case to negative case in the training set is 0.001831,
and for the test set, it is 0.018360. It should be noted that we have used stratified method
of scikit-learn, a machine learning package, in our cross-validation methods. It takes into
consideration the imbalance class of the data to split the data into 10-fold.

The Comparison of the Performance of the Compared Algorithms

In the subsection, we compare the proposed BELR and the original logistic regres-
sion (LogR), Random Forest classifier (RF), Gaussian Naive Bayes (GNB), K-nearest
neighbour (KNN), and Support Vector Machine (SVM). The average performance in
terms of the metrics listed in Table 1 is presented for the comparison algorithms. First, to
prevent the effect of the curse of dimensionality, we use principal component analysis
(PCA) to reduce the dimension and select an important feature from the input data. A
total of 81 principal components are created after applying the PCA technique with a
covariance value of 0.95. The initial dimension of input data is 170; however, after apply-
ing PCA, the dimension is reduced to 81, which is almost 50% of the feature variables
compared to the initial feature variables. After applying PCA, we then apply comparison
algorithms on the feature from PCA. We use 10-fold cross-validation concept. In the
experiment, the total number of data point is 76,000. For each fold, there are 7600 data
points after applying stratified cross-validation, ensuring that each fold has the same
proportion of observations with a given categorical value. In the first run, we take one
group (7600 data points) as the test set and the remaining nine groups (9 × 7600 data
points) for training of the model. In the second run, we pick another 76,000 data points
(a new group) as the test set and the remaining nine groups (9 × 7600 data points) to
train the models. The process continues until we reach the 10th run or trial. The training
set contains 67,162 negative cases and 123 positive cases. Similarly, the test set contains
7462 negative cases and 137 positive cases. Table 2 shows the details. From the experi-
ment, the results obtained are presented in Table 3.

Table 3. The performance of comparison algorithms under certain metrics.

Score (%) GNB LogR RF SVM KNN BELR

Precision 32.45 77.81 82.6 92.05 80.23 80.91

Sensitivity (Recall) 79.35 57.89 57.67 27.78 55.78 62.25

F1-Score 46.06 66.39 67.92 42.68 65.81 70.39

Accuracy 96.64 98.94 99.01 98.65 98.95 99.05

From Table 3, we notice that GNB has a recall of 79.35, and the performance looks
better than the rest of the algorithms. However, GNB has a very poor performance in
precision. It has a precision score of 32.45. In addition, it has a very poor performance in
F1-score, with a score of 46.06.

For other algorithms, it is notice that SVM has a very good score in precision but
a very poor score in recall. This resulted in a poor value of F1-score. However, LogR,
RF, KNN, and the proposed BELR have good precision and recall scores from the Table.
Their performances in terms of precision are relatively equal. The proposed BELR has the
best average score in terms of Sensitivity (Recall). In addition, when we compared the
performance of the compared algorithms in terms of average F1-score, the proposed BELR
has the best F1-score, as shown in Table 3. Other scores for other evaluation metrics are
presented in the Table. We use boxplot to present the average F1-score of all the compared
algorithms. Figure 6 presents the average F1 score of the performance of the compared
algorithms. It is noticed that the proposed BELR has a better F1 score from the box plot.
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Figure 6. The average F1-score of the compared algorithms.

Overall, we notice that the performance of the proposed BELR is better than the other
comparison algorithms under an imbalanced data set.

5. Conclusions

This paper proposes broad embedded logistic regression (BELR) for classification
problems, specifically for APS failure prediction. In addition, its performance is studied
under an exceedingly difficult data situation and an imbalanced class distribution problem.
The feature-mapped nodes and enhancement nodes of the BLS are employed to handle
imbalance data set due to the ability of the two types of nodes to generate/extract features
that can uniquely separate two classes from each other. Hence, it improves the classification
capacity of logistic regression classifier.

Furthermore, the APS data set has a problem of missing data, and in this paper we
explore KNN imputation method to solve the problem of missing data using KNN_imputer
from Sklearn. Sklearn is a machine learning package commonly used for processing data,
building machine learning model. It should be noted that other missing data imputation
methods such as generative adversarial network (GAN), etc., could be explored.

The performance of the proposed algorithm is better than other comparison algorithms,
namely Gaussian Naive Bayes (GNB), Random Forest, K-nearest neighbor (KNN), Support
Vector Machine (SVM), and Logistic Regression (LogR). The performance of the comparison
algorithms is evaluated using popular and commonly used metrics in the literature, namely
average F1-score, average Recall, average Precision, and average Accuracy. In terms of the
F1-score, the performance of the proposed algorithm is the best among the comparison
algorithms. The Table and the Figures presented in the experimental section validate that
the proposed BELR performances are comparable with other algorithms.
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Abbreviations

ML Machine learning
APS Air Pressure System
BELR Broad Embedded Logistic Regression
BLS Broad Learning System
LogR Logistic Regression
PCA Principal Component Analysis
RVFLNN Random Vector Functional-link neural networks
IIoT Industrial Internet of Things
SVM Support Vector Machine
MLP Multi-layer Perceptron
SMOTE Synthetic Minority Oversampling Technique
ELM Extreme Learning Machine
KNN K-Nearest Neighbour
ADMM Alternating Direction Method of Multipliers
RF Random Forest
GNB Gaussian Naïve Bayes
ROC Receiver Operating Characteristics
max AUC Maximizes Area Under the Curves
MAR Missing at random
MNR Missing not at random
MCAR Missing completely at random
GAN Generative Adversarial Network
f Total number of feature-mapped nodes in the BLS network
e Total number of enhancement nodes in the BLS network
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Abstract: With the rapid increase in data scale, real-world datasets tend to exhibit long-tailed class
distributions (i.e., a few classes account for most of the data, while most classes contain only a few
data points). General solutions typically exploit class rebalancing strategies involving resampling
and reweighting based on the sample number for each class. In this work, we explore an orthogonal
direction, category splitting, which is motivated by the empirical observation that naive splitting of
majority samples could alleviate the heavy imbalance between majority and minority classes. To
this end, we propose a novel classwise splitting (CWS) method built upon a dynamic cluster, where
classwise prototypes are updated using a moving average technique. CWS generates intra-class
pseudo labels for splitting intra-class samples based on the point-to-point distance. Moreover, a
group mapping module was developed to recover the ground truth of the training samples. CWS can
be plugged into any existing method as a complement. Comprehensive experiments were conducted
on artificially induced long-tailed image classification datasets, such as CIFAR-10-LT, CIFAR-100-LT,
and OCTMNIST. Our results show that when trained with the proposed class-balanced loss, the
network is able to achieve significant performance gains on long-tailed datasets.

Keywords: deep learning; class-imbalance learning; feature clustering; long-tailed classification;
classwise splitting

MSC: 68T07

1. Introduction

With the emergence of large-scale and high-quality datasets, such as ImageNet [1]
and COCO [2], deep neural networks (DNNs) have achieved resounding success in many
visual discriminative tasks, including image recognition, object detection, and semantic
segmentation. Most existing datasets are carefully well-designed and maintain a roughly
balanced distribution over different categories. However, real-world datasets typically
exhibit long-tailed data distributions [3,4], where a few classes occupy plenty of samples but
the others are associated with only a few samples. Learning in such a real-world scenario is
challenging due to the biased training of high-frequency ones, which undoubtedly hinders
the practical applications of DNNs with significant performance degradation [5,6].

To tackle the imbalanced problem, early rebalancing strategies mainly focus on resam-
pling [7,8] and reweighting [9,10] to pay more attention to minority classes. The intuition
behind the above methods is to adjust the training data distribution based on impor-
tance estimation. Then, logit-based regularization was introduced to calibrate the shifted
distribution between the training test data, encouraging the large margins for minority
classes. These strategies could improve recognition performance for minority categories;
however, the majority categories easily suffer from relatively lower accuracy because of
over-emphasizing minority samples. Recently, it was indicated that the mismatch between
representative and classifier learning plays a vital role in long-tailed recognition [11–13].
Thus, a two-stage training strategy was developed to decouple feature and classifier learn-
ing and has led to significant improvement over joint training. Motivated by this finding,
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the recent state-of-the-art performance has been attained through either self-supervised
pretraining to obtain high-quality representations or employing ensemble experts for fair
classifiers, implicitly increasing the training cost [14].

In this work, we argue that better representations and fair classifiers could be jointly
obtained by decomposing majority classes into smaller ones. We observe that a naively
trained model on decomposed classes with roughly balanced distribution has better recog-
nition performance with respect to the original label space. This motivates our work to
incorporate decomposed classes (called the classwise splitting trick) into the end-to-end
training mode, while maintaining the original label space for long-tailed recognition. To
this end, we exploit three simple techniques to balance both representations and classifiers.
We first explore online clustering to split majority classes for balancing representative
learning. Then, intra-class clusters are maintained via the moving average approach to
reduce computational costs. Finally, a group mapping module is formulated to recover the
original label space for balancing classifier learning. Please refer to Figure 1 for an overall
framework of our work.

The main contributions can be summarized as follows: (1) We design a novel frame-
work to improve the classification of long-tailed datasets by proposing a classwise splitting
(CWS) method. (2) Our framework can achieve significant performance improvement by
clustering majority categories into several subclasses, assigning pseudo-labels, and then
mapping the predictions to the real labels. (3) Experiments show that our framework
can be used as a generic method for visual recognition by outperforming the previous
state-of-the-art performances on long-tailed CIFAR-10 and CIFAR-100 datasets [15].

Figure 1. Overall architecture of the classwise splitting (CWS) method. The framework contains three
parts: a feature-extracting module, a feature clustering module, and a label-mapping module. During
training, the feature-extracting module uses the backbone network to extract the features of input
images, and then the feature clustering module assigns pseudo-labels to the features according to
their intra-class distances, and finally the feature mapping module maps the pseudo-labels to real
labels. During inference, the feature clustering module will be removed.

2. Related Works

Most of the previous efforts on long-tailed datasets could be divided into two regimes:
resampling [7,8] and reweighting [9,10].

Resampling. Resampling is a data-level method widely used to address the problem
of imbalanced classification. It adjusts the training data distribution by undersampling the
majority categories or oversampling the minority categories [16]. However, it is difficult to
reconcile the classification performance of the majority and minority categories. Oversam-
pling can easily lead to the overfitting of samples, while undersampling can lead to the loss
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of some useful information. The more imbalanced the dataset, the more pronounced the
shortcomings of the resampling strategy.

Reweighting. Reweighting is a class-level method that is widely used to address the
problem of imbalance learning by modulating the weighting factors of categories in the
data [17]. The common reweighting methods include focal loss [18], class-balanced (CB)
loss [19], and label-distribution-aware margin (LDAM) loss [20]. Among them, focal loss
applies a moderation term to cross-entropy loss, focusing on learning the minority cate-
gories in the imbalanced dataset. CB loss introduces the effective number to approximate
the expected volume of samples of each category instead of the label frequency. LDAM
loss addresses the overfitting of the majority categories by regularizing the margins.

Two-stage Training Strategy. The two-stage training strategy was initially used to
solve the conflict problem arising from different rebalancing strategies. Due to the overlap-
ping effects between different rebalancing strategies, directly combining two rebalancing
strategies for long-tailed data classification tasks will significantly reduce the model’s gener-
alization ability [20,21]. Kang et al. [13] applied this strategy to decoupling training, which
divides the original joint training method into two stages of training, greatly reducing the
degree of coupling between different modules of the model, and allowing the network
to search for parameters with stronger generalization ability during the training process.
Here, inspired by this strategy, we also adopted a similar approach to [22] to achieve this
goal.

Clustering For Classification. Clustering is a typical unsupervised learning method,
whose core idea is to divide the whole sample set into multiple disjoint subsets by compar-
ing the distances of samples in a low-dimensional space, so as to complete the classifica-
tion [23,24]. The imbalance classification task based on clustering has been widely studied
in recent years [25,26]. Singh et al. [27] use the distance between a minority class sample and
its respective cluster centroid to infer the number of new samples. Swarnalatha et al. [6,28]
divide each class into smaller subclasses, and then classify them based on feature metrics
to achieve compactness. Indeed, clustering-based methods have proven to be helpful
in addressing class imbalance problems in the past. However, they mainly obtain fine
subclasses by clustering the samples directly, and the subclass centers are usually invariant
in the subsequent training tasks. These static clustering methods may limit the upper
optimization of network parameters. Therefore, inspired by previous research, we embed
clustering techniques into the training process of deep neural networks, using the extracted
features for dynamical clustering to obtain pseudo-labels, which in turn are used to train
deep neural networks. Finally, a mapping network is used to establish the correspondence
between the pseudo-labels and the real labels.

3. Method

Preliminaries. Given a training set D = {(xi, yi)}N
i=1 with N training samples, the xi

represents the i-th training sample and yi represents the corresponding label. The total
number of training samples is N = ∑C

c=1 Nc, where C denotes the total number of categories
and Nc denotes the number of training samples of the c-th class. The general assumption
of long-tailed distribution is that the classes are sorted in decreasing order of the sample
number. Assume that the training sample numbers of the c1 and c2 classes are denoted as
Nc1 and Nc2 , respectively, then Nc1 > Nc2 if c1 < c2. In this case, the target of the recognition
task for long-tailed distributed data is to learn a deep neural network f (·, θ) with parameter
θ, which can achieve good recognition performance on a balanced test set.

Given a training sample xi, the network predicts its label y′i = f (xi, θ), where the
prediction error between y′i and the ground truth yi is calculated using a cost function
L(y′i, yi), e.g., a cross-entropy (CE) loss. To train the network f (·, θ), we optimize θ by
minimizing L(y′i, yi) over the whole training set D:

θ∗ = arg min
θ

F(θ;D) ≡
N

∑
i=1

L( f (xi; Θ), yi) (1)
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Naively solving Equation (1) produces an imbalanced feature distribution that has
biased decision boundaries toward common classes. Therefore, we are motivated to learn a
balanced feature extractor by splitting majority classes into sub-classes. Such artificially
balanced label distributions can also balance the weights of the classifier for sub-classes,
then we can transform this pseudo label space into the original one via a mapping module.
The proposed framework is shown in Figure 1.

Our proposed method mainly contains three modules: a feature-extracting module, a
feature clustering module, and a label-mapping module. In order to realize the collaborative
training of multiple modules, we combine unsupervised learning (clustering techniques)
with supervised learning to propose a two-stage classification algorithm. In the first stage,
the feature-extracting module uses a backbone network to extract features from input
images, and the feature clustering module uses clustering technique to assign pseudo-
labels to these features, which are used in the training of the feature-extracting module. We
use the pseudo-labels as input to the label-mapping module and then use ground truth
labels to train this module.

3.1. Feature Clustering Module

The role of the feature clustering module is to cluster the features into a specified
number of subclasses and assign unique pseudo-labels to them. Specifically, during training,
a CNN backbone is used to extract the embeddings of training samples. Then features
belonging to the same category are divided into several subclasses according to their
distance away from the sample center, which is achieved by a dynamic clustering strategy.
Finally, each subclass would be given a pseudo-label for calculating loss. The dynamic
clustering can be described as follows:

dt =
max|Si − SCt|

SN
(2)

if |Si − SCt| ∈ (ndt, (n + 1)dt], n ∈ [0, 1, . . . , SN − 1]

⇒ Si ← Pn
(3)

where SCt denotes the sample center of a certain category in the t-th batch. Si denotes
the i-th sample of this category. SN denotes the subclass number of this category. The
maximum distance between the samples and sample center is equally divided into SN
intervals and the length of each interval is dt.

During training, samples are fed into the framework in batches. In each batch, the
following operation is repeated for each category of samples: the sample center is first
calculated based on the features of all the samples, then the maximum distance between the
sample and the sample center is computed; subsequently, the maximum distance is divided
into several intervals. Eventually, the distance between each sample and the sample center
is counted to decide which interval it belongs to so that a unique pseudo-label is assigned
to that sample accordingly. Notably, the subclass number is taken as a hyperparameter
whose value is related to the total sample number of the category. The sample center and
subclass number are determined as follows:

Sample Center. The mini-batch training strategy is widely used for vision tasks, which
leads to an expensive cost for the cluster center calculation. To efficiently calculate the
sample center, an exponential moving average method is utilized, which makes the sample
center of each category in each batch closer to the overall situation of the corresponding
category in the dataset. The sample center is calculated as follows:

SCt =

{
y1 t = 1

αyt + (1 − α)SCt−1 t > 1
(4)

where α (0 < α < 1) indicates the attenuation degree of the weight. yt denotes the
average value of the features of a certain category in the t-th batch. SCt denotes the
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exponential moving average value of the features of a certain category in the t-th batch, i.e.,
sample center.

Subclass number. The determination of the subclass number depends on the degree
of data imbalance and the intra-class distance. On the one hand, our method aims to
generate more subclasses for majority categories, especially for heavily imbalanced data.
On the other hand, we experimentally analyzed the effect of the subclass number and
obtained the following conclusions: the larger the subclass number, the smaller the intra-
class distance of the samples, which will reduce the classification accuracy. Therefore, when
determining the subclass number, we will perform a cluster analysis on this category. The
subclass number should be as large as possible without the intra-class distance being too
small. The ablation experiments of this parameter are detailed in Section 4.

3.2. Label-Mapping Module

To map the pseudo-label space to the real label space, we formulate a label-mapping
module following the feature-extracting module, which a three-layer perceptron is em-
ployed. In the training process, because the feature clustering module will cluster each
category of samples into several subclasses, the total number of pseudo-labels will be
greater than the number of real labels. Therefore, in order to map all pseudo-labels of sam-
ples of the same category to its real label, the input dimension of the three-layer perceptron
should be equal to the number of pseudo-labels, and the output dimension should be equal
to the total number of real labels.

3.3. Two-Stage Training Strategy

Given that the feature-extracting module and the label-mapping module are relatively
independent networks, a two-stage training approach is implemented to update the weight
parameters of the entire framework. The two stages involve separate training processes,
each focusing on updating the weight parameters of a specific module.

In the first stage, the pseudo-labels generated by the feature clustering module are
utilized as the ground truth for the backbone network. The loss is calculated based on
the comparison between the predicted pseudo-labels and the generated pseudo-labels,
allowing for the update of the weight parameters in the feature-extracting module. This
stage aims to optimize the feature extraction process to ensure accurate and discriminative
feature representation. Similarly, in the second stage, the real labels are employed as the
ground truth for the three-layer perceptron in the label-mapping module. The loss is
computed by comparing the predicted labels with the true labels, facilitating the update
of weight parameters in the label-mapping module. This stage focuses on fine-tuning the
label-mapping process to ensure effective alignment between the pseudo-labels and the
true labels.

The first and second stages are performed alternately, allowing for iterative refinement
of the framework. Notably, the loss function remains consistent across both stages of
training, ensuring that the overall objective remains unchanged. By adopting this two-stage
training method, we can effectively optimize the feature extraction and label-mapping
processes within the framework, improving the overall performance and accuracy of
the model.

4. Experiments and Discussions

4.1. Datasets and Experimental Settings

Long-tailed CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 are commonly used
datasets in long-tailed classification problems; these datasets consist of 60,000 images, with
the training dataset containing 50,000 samples and the test dataset containing 10,000 sam-
ples [29]. To obtain the long-tailed version of the CIFAR dataset and ensure fairness,
we follow [30] to split the existing dataset. Specially, we use the imbalance ratio factor
β = Nmin

Nmax
to control the imbalance degree of the dataset, where Nmax and Nmin represent

the most and the least frequent class numbers from the training samples, respectively. In
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our experiments, the imbalance factors are set to 0.05, 0.02, 0.01, and 0.1, respectively. Our
framework was verified on the long-tailed versions of CIFAR-10 and CIFAR-100 datasets
with different imbalance factors. Notably, the test set remains unchanged. The distribution
of the long-tailed CIFAR-10 dataset is shown in Figure 2.

Figure 2. The distribution of the long-tailed CIFAR-10 dataset with imbalance factors of 0.01 and 0.1.

OCTMNIST. OCTMNIST [31] is a new medical dataset built from the previous retinal
OCT image classification dataset, which contains 109,309 images. For a fair comparison,
we selected four types of data for training and testing. The training dataset is naturally
imbalanced, while the test dataset exhibits a balanced distribution in terms of the number
of samples. OCTMNIST is an application-oriented dataset from the real world, which can
better demonstrate the effectiveness of our method.

Baselines. We compare our method with previous state-of-the-art techniques and
their combinations: (1) Cross-entropy (CE) loss [32], which does not change the loss of
samples; (2) focal loss [18], which increases the loss for hard samples and down-weights
well-classified samples; (3) LDAM loss [20], which regularizes the minority categories to
have larger margins; (4) resampling [33], which resamples the samples according to the
inverse of the effective number of samples in each category; (5) reweighting [34], which
reweights the samples according to the inverse of the effective number of samples in each
category; (6) DRW [20], which makes the model learn the initial feature representation and
then performs reweighting or resampling. The above three loss functions (i.e., CE loss, focal
loss, and LDAM loss) were employed in the experiments, each of which was combined with
three training methods (i.e., reweighting, resampling, and DRW). The parameter settings of
reweighting and resampling methods were consistent with [19].

Implementation Details. We used PyTorch [35] to implement and train all the models
in the work, and we used ResNet [36] architecture for all datasets. For the long-tailed
CIFAR-10 and CIFAR-100 datasets, random initialization was used for our model, which
adopts ResNet-32 as the backbone network. The networks were trained for 200 epochs
with stochastic gradient descent (SGD) (momentum = 0.9). Following the training strategy
in [19], the initial learning rate was set to 0.1 and then decayed by 0.01 at 160 epochs and
again at 180 epochs. Furthermore, we used a linear warm-up of the learning rate in the first
five epochs. We trained the models for the long-tailed CIFAR-10 and CIFAR-100 datasets
on a single NVIDIA RTX 3090 with a batch size of 128.

4.2. Classification Experiment Results

Tables 1 and 2 show the test accuracy of our framework on the long-tailed CIFAR-
10 and CIFAR-100 datasets under different combinations of loss functions and training
methods. The loss curves along with training are shown in Figure 3.

Clearly, without incorporating loss functions and training methods that can mitigate
the data imbalance, our framework can achieve comparable performance to the previous
state-of-the-art techniques. For example, on the long-tailed CIFAR-10 dataset with the
imbalance factor set to 0.1, our framework has a classification accuracy of 87.91%, which
almost exceeds the classification accuracy of all other methods and their combinations
on this dataset. Compared to the long-tailed CIFAR-10 dataset with the imbalance factor
being set to 0.1, our framework improves the baseline performance more significantly on
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the dataset, with the imbalance factor set to 0.01. For example, on the dataset (imbalance
factor = 0.01), the performance improvement of the baseline (CE loss plus none) is up to
about 4%, while the performance improvement of this baseline is only 1.5% on the dataset
(imbalance factor = 0.1). This means that the more imbalanced the data distribution, the
more significant the effect of our framework. The experiments show that our framework
can significantly improve the performance of most combinations of loss functions and
training methods in the baseline.

Table 1. The test accuracy on the long-tailed CIFAR-10 datasets between our method and the baseline.

Dataset Imbalanced CIFAR-10

Imbalance Factor 0.05 0.02 0.01 0.1

Loss Rule Baseline CWS Baseline CWS Baseline CWS Baseline CWS

CE None 83.27 85.12 78.22 79.44 71.07 75.2 86.39 87.91
CE Resampling 83.16 84.93 76.90 78.89 71.31 75.33 86.79 87.99
CE Reweighting 83.48 84.88 78.20 79.17 72.2 75.85 86.44 87.41
CE DRW 85.14 85.94 80.33 81.24 74.64 76.79 86.43 88.14

Focal None 82.67 84.07 76.71 78.69 71.07 73.52 86.66 87.83
Focal Resampling 85.55 85.09 76.70 78.24 70.48 73.93 86.16 87.36
Focal Reweighting 83.15 83.83 79.27 80.15 70.61 75.65 87.1 87.6
Focal DRW 85.75 84.86 80.25 80.85 75.3 76.89 87.45 87.98

LDAM None 84.00 84.84 78.83 79.31 73.93 75.96 86.96 87.17
LDAM Resampling 83.34 83.24 78.40 78.38 73.1 75.86 86.29 86.98
LDAM Reweighting 82.77 83.96 78.68 78.81 73.74 73.98 86.07 86.57
LDAM DRW 85.43 85.33 81.92 80.94 77.68 77.33 88.16 87.24

Baseline: the model without our method; CWS: the model with our method; loss: the loss function of the model;
rule: the training method of the model. There are several baselines due to the variety of loss functions and the
training method. For each baseline, our method can be combined with it. The values in bold indicate that, under
the identical conditions, the accuracy of the model with our method is higher than the model without our method.

Figure 3. The loss curves of baseline (reweighting plus focal loss) trained on long-tailed CIFAR-10
(imbalance factor = 0.1) with or without the CWS method.

Notably, when there is a large number of categories, it is difficult to determine the
subclass number. An inappropriate subclass number can easily lead to non-convergence of
the model. For example, our framework combining LDAM loss and the resampling method
does not work well on the long-tailed CIFAR-100 dataset. This is because for datasets with a
large number of categories, resampling and clustering may result in the absence of samples
in some subclasses.
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Table 2. The test accuracy on the long-tailed CIFAR-100 datasets between our method and the
baseline.

Dataset Imbalanced CIFAR-100

Imbalance Factor 0.05 0.02 0.01 0.1

Loss Rule Baseline CWS Baseline CWS Baseline CWS Baseline CWS

CE None 50.79 52.29 43.71 46.35 38.32 40.28 55.7 57.98
CE Resampling 51.48 48.86 43.13 39.75 33.44 34.6 55.06 54.71
CE Reweighting 48.28 53.28 45.32 44.92 33.99 37.93 57.12 58.61
CE DRW 53.05 52.84 46.84 47.59 41.85 41.88 57.54 58.51

Focal None 51.08 52.42 44.32 44.28 38.71 40.67 55.62 57.91
Focal Resampling 50.06 49.43 43.07 39.31 37.88 33.69 56.03 55.43
Focal Reweighting 47.49 53.05 35.65 44.96 36.02 38.69 57.99 57.87
Focal DRW 52.43 53.36 45.19 45.62 38.65 41.87 57.64 58.29

LDAM None 51.65 54.05 44.32 46.12 39.6 42.64 56.91 58.1
LDAM Resampling 51.06 - 43.43 - 39.43 - 56.4 -
LDAM Reweighting 48.20 50.04 36.69 40.92 29.13 34.24 53.69 56.23
LDAM DRW 53.52 54.21 47.89 46.80 42.04 43.28 58.71 58.75

The meanings of baseline, CWS, loss, and rule are the same as in Table 1. ‘-’ in the CWS column indicates that the
model does not converge. The values in bold indicate that, under the identical conditions, the accuracy of the
model with our method is higher than the model without our method.

To validate the effectiveness of our proposed algorithm in real applications, we report
the experimental results of the algorithm on the medical dataset OCTMNIST. Figure 4
shows the classification results of our proposed method on the OCTMNIST dataset after
combining it with different backbone networks. It can be seen that our method has achieved
optimal ACC and considerably good AUC. Compared with ResNet-50, the accuracy of our
proposed method has obtained a nearly 7.5% improvement, while our method only adds
two MLP parameters based on ResNet-32. Therefore, this can effectively demonstrate the
effectiveness of our proposed method.

Figure 4. The test accuracy of baselines (focal loss plus different training method) or combinations of
baselines and the CWS method on the long-tailed CIFAR-10 (imbalance factor = 0.1) with different
attenuation factors α. (RS: resampling, RW: reweighting).

4.3. Ablation Experiment Results

To choose an appropriate subclass number, we performed a series of ablation experi-
ments on the long-tailed CIFAR-10 and CIFAR-100 datasets, and some of the experimental
results are shown in Tables 3 and 4. It can be seen that the performance of our framework is
not proportional to the subclass number. When the subclass number increases, the classifi-
cation accuracies of some combinations of baselines and the CWS method increase (e.g., CE
plus none, focal plus reweighting), while those of some combinations slightly decrease (e.g.,
CE plus resampling, LDAM plus resampling). This is because a large subclass number leads
to too little discriminability between subclasses. When the subclass number increases to a
certain extent, the combinations (e.g., LDAM plus resampling) cannot converge because
some subclasses have no samples after clustering. Thus, considering the stability and
performance of the framework, the subclass numbers for the long-tailed CIFAR-10 are set
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to [5, 3, 2, 2, 1, 1, 1, 1, 1, 1]. That is, the samples in the largest category were clustered into
five subclasses, and those in the smallest category remained as one category. We repeated
each element in [5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] ten times as the subclass number for each
category in the long-tailed CIFAR-100 dataset, i.e., [5, 5, . . . , 5, 3, 3, . . . , 3, 2, 2, . . . , 2, 1, 1, . . . , 1].

We also performed a series of ablation experiments for the attenuation factor α of the
exponential moving average in Equation (4), and the experimental results are shown in
Figure 4. It can be seen that when the attenuation factor is set to 0.99, our framework com-
bined with other loss functions or training methods can achieve the highest performance.
Thus, the attenuation factor α is set to 0.99 in our classification experiments.

Table 3. The test accuracy on the long-tailed CIFAR-10 (imbalance factor = 0.01) with different
subclass numbers.

Subclass Number

[5,3,2,2,1,1,1,1,1,1] [10,8,6,5,3,2,2,1,1,1] [30,24,18,15,3,3,2,2,1,1] [50,40,30,25,9,9,1,1,1,1]

M
et

ho
d

CE plus CWS 75.20 76.10 77.48 78.28
CE plus Resampling plus CWS 75.33 74.68 77.14 77.55
CE plus Reweighting plus CWS 75.85 76.87 78.49 -

CE plus DRW plus CWS 76.79 77.82 78.09 -

Focal plus CWS 73.52 74.12 76.58 77.54
Focal plus Resampling plus CWS 73.93 75.26 77.15 78.19
Focal plus Reweighting plus CWS 75.65 76.27 77.44 -

Focal plus DRW plus CWS 76.89 76.90 77.35 -

LDAM plus CWS 75.96 75.69 76.27 -
LDAM plus Resampling plus CWS 75.86 72.73 - -
LDAM plus Reweighting plus CWS 73.98 73.54 76.21 -

LDAM plus DRW plus CWS 77.33 77.08 77.05 -

The meanings of baseline, CWS, loss, and rule are the same as in Table 1. ’-’ indicates that the model does not
converge.

Table 4. The test accuracy on the OCTMNIST dataset. We compared a large number of baseline
networks with larger parameter quantities than our proposed method.

Method AUC ACC

ResNet-50 (28) 93.9 74.5

ResNet-50 (224) 95.1 75.0

auto-sklearn 88.3 59.5

AutoKeras 95.6 73.6

Google AutoML Vision 96.5 73.2

Ours (ResNet-32 plus CWS) 94.7 82.5

The values in bold indicate that, under the identical conditions, the accuracy of our method is higher than other
methods.

5. Discussion and Conclusions

In this paper, we propose a novel method to enhance the classification performance of
long-tailed datasets by introducing a classwise splitting (CWS) strategy. The core concept
revolves around clustering the sample features into multiple subclasses based on their intra-
class distance. The method consists of three main modules: the feature extraction module,
the feature clustering module, and the label-mapping module. The feature extraction mod-
ule is responsible for extracting informative features from input images. These extracted
features are then fed into the feature clustering module, which performs clustering to
group them into distinct subclasses. Additionally, the feature clustering module assigns
pseudo-labels to the samples within each subclass. Finally, the label-mapping module is
employed to map the pseudo-labels to the corresponding ground truth labels. Experimental
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results conducted on the CIFAR-10-LT, CIFAR-100-LT, and OCTMNIST datasets validate the
effectiveness of our proposed method in tackling long-tailed image classification tasks. The
results demonstrate that our approach significantly improves the classification accuracy of
long-tailed datasets. By introducing the classwise splitting strategy and leveraging the three
modular components, our method demonstrates promising potential in addressing the chal-
lenges posed by long-tailed datasets and achieving enhanced classification performance.

The method we proposed, based on the idea of dynamic reclustering, is a general
visual framework designed for long-tailed distribution data. The experimental results have
demonstrated that our framework can be effectively combined with existing rebalancing
strategies, such as resampling, reweighting, focal loss, and LDAM, indicating its strong
generality. This means that our framework can be applied to other similar long-tailed
distribution tasks.

Moreover, our method introduces a learnable label-mapping network that can effi-
ciently fit a mapping function from pseudo-labels to ground truth labels with a small train-
ing cost. This idea holds heuristic significance for other unsupervised and semi-supervised
learning tasks, as it provides inspiration for achieving an efficient label-mapping in these
scenarios.

However, it is worth noting that the proposed framework’s learnable label-mapping
network may not perform well in joint learning scenarios. The experimental results have
revealed that the upper limit of this method is dependent on the initial subdivision of sub-
classes. The improper subdivision of subclasses can significantly impact the performance
of the final model. Therefore, using our framework requires a two-stage training strategy
to ensure the stability of feature extraction and the feasibility of subsequent downstream
task training. Extensive experimentation is necessary to identify the most suitable subclass
number for each class.

In the future, we will explore ways to automatically determine the optimal number
of subclasses and investigate approaches for joint training to further reduce training costs.
By addressing these challenges, we aim to enhance the efficiency and effectiveness of the
framework.
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Abstract: SQL injection attacks are one of the most common types of attacks on Web applications.
These attacks exploit vulnerabilities in an application’s database access mechanisms, allowing at-
tackers to execute unauthorized SQL queries. In this study, we propose an architecture for detecting
SQL injection attacks using a recurrent neural network autoencoder. The proposed architecture was
trained on a publicly available dataset of SQL injection attacks. Then, it was compared with several
other machine learning models, including ANN, CNN, decision tree, naive Bayes, SVM, random
forest, and logistic regression models. The experimental results showed that the proposed approach
achieved an accuracy of 94% and an F1-score of 92%, which demonstrate its effectiveness in detecting
QL injection attacks with high accuracy in comparison to the other models covered in the study.

Keywords: SQL injection attacks; recurrent neural network (RNN) autoencoder; ANN; CNN; decision
tree; naive Bayes; SVM; random forest; logistic regression

MSC: 68T99

1. Introduction

Structured query language (SQL) is a programming language used to manage, or-
ganize, and manipulate relational databases. It also allows the user or an application
program to interact with a database by inserting new data, deleting old data, and changing
previously stored data. Structured query language injection attacks (SQLIAs) pose a severe
security threat to Web applications [1]. These attacks involve the malicious execution of
SQL queries on a server, enabling unauthorized access to and retrieval of restricted data
stored within databases [2]. Figure 1 illustrates the basic process of an SQLIA.

Figure 1. SQL injection attack process adopted from [3].

Attackers can exploit Web applications by injecting SQL statements or sending special
symbols through user input to target the database tier and gain unauthorized access to
valuable assets [3]. Due to the absence of proper validation in some Web applications, which
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is usually the programmer’s fault, attackers can bypass authentication mechanisms and
gain access to databases, enabling them to retrieve or manipulate data without appropriate
authorization [2].

In recent years, researchers have proposed many detection methods, including ma-
chine learning algorithms and deep neural network models. Deep neural networks, also
known as deep learning, are a rapidly evolving research area within the field of machine
learning. They were developed to bring machine learning closer to its original goal of
achieving artificial intelligence. Deep learning involves training complex models that can
learn the underlying patterns and representations of large datasets. This has proven to
be a powerful technique for interpreting various forms of data, including text, images,
and sounds. Deep learning has also been successfully applied to Web security detection,
highlighting its potential impact on a broad range of applications [4]. However, one of
the major drawbacks of using neural networks is their tendency to make overconfident
predictions. This means that they have a high degree of certainty in their predictions, even
when they are incorrect [5,6]. Even though the models perform well on test data from the
same distribution as the training data, they do not know the limits of their knowledge and
make erroneous guesses outside that domain. This pitfall arises because neural networks
learn highly nonlinear functions that do not output calibrated probability estimates for
unfamiliar data [7]. To address this issue, researchers have developed various techniques
for estimating predictive uncertainty in neural networks. Lakshminarayanan et al. [7] intro-
duced deep ensembles, where multiple models are independently trained on the same data
and their predictions are averaged to capture model uncertainty. Mishra et al. [5] evaluated
Bayesian neural networks (BNNs) as a technique that can provide accurate predictions
along with reliably quantified uncertainties. Amodei et al. [6] suggested using model
rollouts/lookahead during training to avoid reward hacking, improve safety, and reduce
overconfidence. In summary, while neural networks have shown great promise in many
applications, it is important to be aware of their tendency to make overconfident predictions
and the potential pitfalls of overfitting. Estimating predictive uncertainty using techniques
such as deep ensembles can help mitigate these issues and improve the reliability of neural
network predictions.

Detection of SQL injection attacks is crucial to ensure the security and integrity of Web
applications and their associated data. To address this issue, a deep learning architecture
based on the recurrent neural network (RNN) autoencoder model is proposed for detecting
SQL injection attacks. The RNN autoencoder is a special case of the RNN-based encoder–
decoder (RNN-ED) model. The autoencoder consists of an encoder RNN that encodes
the input sequence into a hidden state and a decoder RNN that decodes the hidden state
back into the original input sequence. The encoder and decoder RNNs are trained jointly
using backpropagation to minimize the reconstruction error between the input and output
sequences [8].

The aim of this study was to develop an architecture based on a recurrent neural
network (RNN) autoencoder to detect SQL injection attacks. Moreover, the proposed
approach that addresses this attack is discussed and compared with other approaches. The
research questions were:

Q1: Is the proposed RNN autoencoder-based architecture effective for detecting SQL
injection attacks?

Q2: How can the RNN autoencoder be optimized to improve its performance in detecting
SQL injection attacks?

Q3: Can an RNN autoencoder outperform other SQL injection attack machine learning
detection models?

The main contributions of this paper are as follows:

• Proposing an SQLIA detection architecture based on a recurrent neural network (RNN)
autoencoder algorithm;

• Comparing the proposed architecture and different machine learning techniques used
for detecting and preventing SQLIAs.
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The paper is structured as follows: Section 2 reviews the related research in this area.
The methodology is discussed in Section 3. Experiment results and the discussion are
shown in Section 4. The last section provides the conclusion and discusses future work.

2. Literature Review

This section explores a variety of ML and DL techniques found in the literature for the
detection of SQL injection attacks.

Ketema [1] used a deep learning convolutional neural network (CNN) to build a
model to prevent an SQLI using a public benchmark dataset. The model was trained
using deep learning with different hyperparameter values and five different scenarios. The
model achieved an accuracy of 97%. Roy et al. [9] presented a method for detecting SQL
injection attacks using machine learning classifiers. The authors used five ML classifiers
(logistic regression, AdaBoost, naive Bayes, XGBoost, and random forest) to classify SQL
queries as either legitimate or malicious. The proposed model was trained and evaluated
using a publicly available dataset of SQL injection attacks on Kaggle. The results of the
study showed that the best performance was achieved by the naive Bayes classifier, with
an accuracy of 98.33%. Finally, the authors performed a comparison with previous work.
Overall, the study demonstrated the potential of machine learning classifiers in improving
the accuracy and efficiency of SQL injection attack detection.

S.S. Anandha Krishnan et al. [10] proposed a machine learning-based approach for
detecting SQL injection attacks. The authors argued that traditional signature-based ap-
proaches are ineffective against advanced attacks, and machine learning can help address
this issue. The authors first described the various types of SQL injection attacks and their
impact on Web applications. They then outlined the proposed framework, which consisted
of preprocessing the data, feature extraction, model training, and evaluation. The results
showed that the CNN classifier model performed better than the other classifiers in terms
of accuracy, precision, recall, and F1-score. Rahul et al. [11] proposed a novel method
of protecting against SQL injection and cross-site scripting (XSS) attacks by augmenting
the Web application firewall (WAF) with a honeypot. The WAF filters incoming traffic
using established patterns, while the honeypot is designed to attract attackers and cap-
ture information about their attack methods, which is then used to improve the WAF’s
ability to detect and prevent future attacks. The proposed method was evaluated through
experiments, and the results suggested that the combination of a honeypot and WAF can
effectively protect Web applications from these types of attacks.

Zhang et al. [4] proposed a method for detecting SQL injection attacks using a deep
neural network. The authors stated that traditional methods of SQL injection attack de-
tection have limitations, prompting the development of their new approach. The authors
gathered a dataset of clean and malicious queries and used it to train a deep neural network
classifier with several layers. They then compared the result of the proposed method with
the traditional machine learning algorithms, including KNN, DT, and LSTM algorithms.
Liu et al. [12] proposed a new approach called DeepSQLi for the automated detection of
SQL injection vulnerabilities in Web applications using deep semantic learning techniques.
DeepSQLi uses a deep neural network to learn the semantic meanings of SQL queries
and identify potential injection vulnerabilities. The model is trained using a dataset of
benign and malicious SQL queries and leverages multiple layers of convolutional and
recurrent neural networks. The experimental results showed that DeepSQLi outperformed
SQLmap, and more SQLi attacks could be identified faster while using a lower number of
test cases. Chen et al. [3] presented a novel approach for detecting and preventing SQL
injection attacks on Web applications using deep learning algorithms. The authors trained
and evaluated the performance of a convolutional neural network (CNN) and a multilayer
perceptron (MLP) and compared them in terms of accuracy, precision, recall, and F1-score
metrics. The experimental results showed that the CNN and MLP models both performed
well for SQL injection attack detection.
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In summary, deep learning-based approaches have shown great promise in detecting
SQL injection attacks. These approaches can learn the underlying patterns in the input data
and detect any anomalies, making them more effective in detecting disguised attacks. In
this research, our goal was to explore the effectiveness of the proposed RNN autoencoder
in detecting SQL injections.

3. Materials and Methods

The proposed architecture is depicted in Figure 2.

Figure 2. Steps of the proposed architecture.

The architecture consists of the following steps:

• Loading and preprocessing the dataset;
• Splitting the dataset into training and testing sets;
• Building the autoencoder model, which consists of an input layer, an encoder layer, and

a decoder layer. The encoder layer reduces the dimensionality of the input data, while
the decoder layer reconstructs the original input from the encoded representation;

• Training the autoencoder model on the preprocessed training data;
• Extracting the encoded data from the trained autoencoder model for use in the

RNN model;
• Building the RNN model, which consists of an LSTM layer and a dense output layer;
• Training the RNN model on the encoded data;
• Evaluating the model using a set of evaluation techniques.

3.1. Data Preprocessing

The Kaggle dataset [13] was utilized in this research to train, evaluate, and compare
the performance of the RNN autoencoder with several classifiers. The dataset was prepared
by collecting different SQL injection queries from multiple websites. The dataset contained
30,919 SQL query statements of the form “SELECT FROM” and related variations. Each
statement had a binary label, with 1 indicating malicious and 0 benign.

In order to enhance the accuracy of our trained models, we performed data cleaning
on the selected dataset. This involved removing any null values and eliminating duplicate
records. The removal of missing or null values is crucial, as it prevents the model from
learning incorrect relationships or making predictions based on incomplete data. After
completing the cleaning process, the dataset consisted of a total of 30,907 records, with
19,529 normal statements and 11,378 malicious statements. The statistics for the dataset are
depicted in Figure 3. Each record contained two main features: “Query”, which represented
the statement itself, and “Label”, which indicated whether the statement was normal (0) or
malicious (1).
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Figure 3. Distribution of benign and SQL injection attacks in the dataset.

Stratified sampling was applied, which ensured that the training and testing sets had
similar proportions of each class. This is important for imbalanced datasets like the SQL
injection dataset, where the number of malicious queries is much lower than the number of
benign queries [14].

3.2. Data Splitting

The dataset was divided into two parts: 80% for training and 20% for testing. This
division allowed us to train the proposed approach with the majority of the data and assess
its performance with unseen samples.

3.3. Building and Training RNN Autoencoder Model

We developed an architecture for an RNN autoencoder that combines an autoen-
coder and a recurrent neural network (RNN) for SQL injection attack detection. Figure 4
illustrates the architecture of the proposed model.

Figure 4. The RNN autoencoder architecture for SQL injection attack detection.

As shown in Figure 4, the proposed architecture consists of two main parts: the
autoencoder and the RNN. The autoencoder contains an input layer, an encoder, and a
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decoder. The encoder takes the input data and compresses it into a lower-dimensional
latent space, which is then fed to the decoder. The decoder then reconstructs the input data
from the encoded representation. The size of the latent space can affect the performance of
the autoencoder and RNN model, as a smaller latent space may lead to loss of information,
while a larger latent space may lead to overfitting. The dimensionality of the latent space
in an autoencoder is a crucial hyperparameter that should be carefully tuned [15]. In this
research, we experimented with different values for the latent space using a grid search
technique to find a value that resulted in a good balance between representation power and
computational efficiency. The result of the hyperparameter tuning process showed that 64
was the optimal value for the latent space hyperparameter, which meant that the encoder
layer compressed the input data into a 64-dimensional latent space. The RNN was designed
to take the compressed representation of the input data learned by the autoencoder and use
it to make binary classification predictions [16]. The RNN consisted of an LSTM layer and
a dense layer, which takes the encoded data from the autoencoder as input and processes
it through an LSTM layer, from where it is then fed to a dense layer to make a prediction
with the output.

3.4. Model Evaluation

After training the RNN autoencoder model on the training set, we applied it to the
testing set and calculated various performance metrics, such as the ROC curve, accuracy,
precision, recall, and F1-score, to measure the effectiveness of the RNN autoencoder in
detecting SQLIAs. The mathematical representation of these metrics was as follows.

The accuracy metric measures the percentage of correctly classified samples [17], and
it is calculated as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Precision, another important metric, represents the probability that a sample will be
correctly classified [17]. It is calculated as follows:

Precision =
TP

TP + FP
(2)

Recall, also known as sensitivity or the true-positive rate, indicates the proportion of
positive samples that are correctly classified [17]. The recall score is calculated as follows:

Recall =
(TP)

(TP + FN)
(3)

The F1-score is a combined metric that considers both precision and recall, providing
a balanced measure of model performance [18]. It is calculated as follows:

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

TN is the true-negative rate. It indicates the number of correctly predicted normal
requests. TP is the true-positive rate. It indicates the number of correctly predicted
malicious requests. FN is the false-negative rate. It indicates the number of incorrectly
predicted normal requests. FPis the false-positive rate. It indicates the number of incorrectly
predicted malicious requests.

4. Results and Discussion

This section provides a description of the experimental results. The Python environ-
ment was used to implement the system. Table 1 summarizes the performance of the RNN
autoencoder in terms of the evaluation metrics.
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Table 1. Performance metrics for the proposed model.

Performance Metrics Result

Accuracy 94%
Precision 95%

Recall 90%
F1-Score 92%

The results from Table 1 show that the RNN autoencoder performed better in terms
of prediction accuracy. The RNN autoencoder achieved an accuracy of 94% and an F1-
score of 92%. Further, we used the receiver operating characteristic (ROC) curve to check
the performance of the proposed approach. The ROC curve is a graph that shows the
relationship between the true-positive rate (TPR) and false-positive rate (FPR) for different
classification thresholds [19].

The AUC curve for the RNN autoencoder model is shown in Figure 5. We obtained the
value of 0.94, which indicated that our model could successfully separate 94% of positive
and negative rates.

Figure 5. Receiver operating curve (ROC) for our proposed approach.

Regarding RQ1, based on the results provided, it appears that the proposed RNN
autoencoder model performed well in correctly identifying instances of SQL injection
attacks in the dataset and can be effective for the detection of SQL injection attacks.

Regarding RQ2, one of the most used methods to optimize RNN autoencoders to
improve their performance in detecting SQL injection attacks is to adjust the hyperparame-
ters of the model, such as epochs [19]. To find the optimal number of epochs to train the
model, we experimented with various numbers of epochs and checked how they affected
the accuracy. In the first iteration, we used 10 epochs.

With 10 epochs, we obtained an accuracy of 88%. From Figure 6, we can infer that the
validation error decreased. Next, we set the number of epochs to 50.
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Figure 6. Loss in SQL injection dataset using 10 epochs.

As shown in Figure 7, the accuracy of the model increased to 94% with 50 epochs.
Next, we tried to increase the number of epochs to 100.

Figure 7. Loss in SQL injection dataset using 50 epochs.

As shown in Figure 8, with 100 epochs, the accuracy increased to 95% but the validation
error also increased. This may cause overfitting. Using a small number of epochs, the
model cannot capture the underlying patterns in the data, and this may cause underfitting.
Furthermore, training the model using many epochs may lead to overfitting, where the
model even learns noise or unwanted parts of the data [20]. Therefore, from the this
experiment, we deduced that we could stop the training process early at around 50 epochs
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to obtain better performance from the model without underfitting or overfitting. Then, a
grid search technique was used to find the optimal combination of hyperparameters, such
as the activation function. Table 2 summarizes the choices for the different hyperparameters
after using the grid search.

Figure 8. Loss in SQL injection dataset using 100 epochs.

Table 2. Values for several hyperparameters.

Hyperparameters Value

Number of hidden layers 3
Hidden layer size (neurons) 64 units

Optimizer Adam
Loss function Binary cross-entropy

Activation function ReLU and sigmoid
Number of epochs 50

Batch size 128

The proposed model achieved the best performance when trained for 50 epochs using
the Adam optimizer, a batch size of 128, the ReLU activation function for the encoder layer,
and the sigmoid activation function for the decoder layer in the autoencoder and output
layer in the RNN.

We compared the performance of the proposed approach with the performance of
several classifiers, including the ANN, CNN, decision tree, naive Bayes, SVM, random
forest, and logistic regression classifiers. The results are presented in Figure 9.

The results in Figure 9 show that the RNN autoencoder and the ANN were effective in
detecting SQL injection attacks, achieving a high accuracy of 94% and F1-score of 92%. The
RF, LR, and DT models also performed well, achieving accuracy scores of 92%, 93%, and
90%, respectively, and F1-scores of 89%, 90%, and 87%. The CNN model had the highest
accuracy of 96% and an F1-score of 49%, indicating its potential for detecting SQL injection
attacks. However, the naive Bayes and SVM models had lower accuracy and F1-scores,
achieving accuracy scores of 82% and 75%, respectively, and F1-scores of 80% and 49%.
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Figure 9. The comparison of evaluation metrics for different ML algorithms.

Regarding RQ3, the results indicated that the RNN autoencoder approach outper-
formed some of the other algorithms, including the logistic regression, decision tree, ran-
dom forest, SVM, and naive Bayes algorithms, in terms of accuracy, precision, recall, and
F1-score. The RNN autoencoder approach also performed comparably to some of the other
algorithms, including the CNN and ANN models, in many NLP tasks, but each architecture
has its strengths and weaknesses. According to a study by Yin et al. [21], CNNs perform
better at tasks that require local feature extraction, such as sentiment analysis, while RNNs
perform better at tasks that require an understanding of longer-term dependencies, such
as question answering. They found that both CNNs and RNNs are sensitive when hyper-
parameter values are varied depending on the task. Banerjee et al. [22] developed CNN
and RNN models with similar architectures for classifying radiology reports and found
that RNNs were the more powerful model to encode sequential information. However, the
study noted that CNNs required less hyperparameter tuning to prevent overfitting and
were more stable, while RNNs needed more careful regularization.

In this research, since the SQL queries could contain longer-term dependencies, it made
sense that the RNN autoencoder model achieved comparable accuracy to the CNN model.
The added memory and sequencing modeling of the RNN likely helped it perform well
with the longer query texts, but it may require additional tuning to match the performance
of CNNs in some cases. This may explain why the CNN model slightly outperformed the
RNN model.

In summary, our results are consistent with previous findings that indicate that RNNs
are well suited for longer textual sequences but may require additional tuning to maximize
performance compared to CNN models. The strong accuracy of 94% demonstrates the
promise of the RNN autoencoder architecture for detecting SQL injection attacks. The key
advantage of the RNN autoencoder is that it can learn a compressed representation of the
input data, allowing it to capture the underlying patterns and relationships in the data
more effectively than traditional methods.

5. Conclusions and Outlooks

A deep learning architecture model based on an RNN autoencoder was proposed
for detecting SQL injection attacks. The autoencoder was trained to learn a compressed
representation of the input data, while the RNN used this compressed representation to
make binary classification predictions. In this study, the RNN autoencoder was trained
with different optimization techniques on a public SQL injection dataset. The performance
of the model was evaluated using standard evaluation metrics, such as accuracy, precision,
recall, and F1-score. Additionally, an ROC curve was calculated to evaluate the model’s
performance. The experimental results showed that the proposed approach achieved
an accuracy of 94% and an F1-score of 92%, indicating that the RNN autoencoder is a
promising method for detecting SQL injection attacks. As part of future research, we plan
to explore the use of a more complex architecture for the RNN autoencoder to detect SQL
injection attacks. Additionally, we acknowledge that the dataset used in this study was
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relatively small, and we recommend expanding the dataset and implementing the models
in real-world scenarios in future investigations.
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Abbreviations

The following abbreviations are used in this manuscript:

SQL structured query language
SQLIA SQL injection attack
RNN-ED RNN-based encoder–decoder
IDSs intrusion detection systems
ML machine learning
DL deep learning
NB naive Bayes classifier
DT decision tree
LR logistic regression
RF random forest
SVM support vector machine
CNN convolutional neural network
ANN artificial neural network
MLP multilayer perceptron
RNN recurrent neural network
LSTM long short-term memory
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