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Abstract: Benthic biofilms are pioneering microbial aggregates responding to effluent discharge from
wastewater treatment plants (WWTPs). However, knowledge of the characteristics and linkage of
bacterial communities and water-soluble organic matter (WSOM) of benthic biofilms in effluent-
receiving rivers remains unknown. Here, we investigated the quality of WSOM and the evolution of
bacterial communities in benthic biofilm to evaluate the ecological impacts of effluent discharge on a
representative receiving water. Tryptophan-like proteins showed an increased proportion in biofilms
collected from the discharge area and downstream from the WWTP, especially in summer. Biofilm
WSOM showed weak humic character and strong autochthonous components, and species turnover
was proven to be the main factor governing biofilm bacteria community diversity patterns. The
bacterial community alpha diversity, interspecies interaction, biological index, and humification index
were signally altered in the biofilms from the discharge area, while the values were more similar in
biofilms collected upstream and downstream from the WWTP, indicating that both biofilm bacterial
communities and WSOM characters have resilience capacities. Although effluent discharge simplified
the network pattern of the biofilm bacterial community, its metabolic functional abundance was
basically stable. The functional abundance of carbohydrate metabolism and amino acid metabolism
in the discharge area increased, and the key modules in the non-random co-occurrence network
also verified the important ecological role of carbon metabolism in the effluent-receiving river. The
study sheds light on how benthic biofilms respond to effluent discharge from both ecological and
material points of view, providing new insights on the feasibility of utilizing benthic biofilms as
robust indicators reflecting river ecological health.

Keywords: biofilm resilience; water-soluble organic matter; microbial community; co-occurrence network

1. Introduction

The ecological health of urban rivers and internal lakes have been cumulatively
affected by anthropogenic activities. A major impact of urbanization is inputs from wastew-
ater treatment plants (WWTPs) [1]. With the increasing scale of treated sewage, effluent
discharge has become one of the most important sources of river replenishment. WWTPs
release a multitude of nutrients, dissolved organic matter (DOM), and micropollutants, e.g.,
pharmaceuticals and personal care products [2,3]. Synthetic chemicals and nutrients mix
and enter the receiving waterbodies, triggering eutrophication and altering biogeochemical
cycling in fluvial ecosystems [4]. Effluent-receiving waterbodies have been regarded as
environmental sensitive regions and have attracted intensive research concerns [5].

Effluent discharge has multidimensional impacts on the ecosystem and functioning
of receiving waters. Primarily, effluent input alters the trophic level and constituents of
DOM molecules [6], whereafter pelagic algae and communities change in response to
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trophic level variation and affect primary production. The effects of effluent discharge
on other biota, including benthic biofilm, macrophytes, and invertebrates, have also been
reported [7]. These effects are likely to be governed by hydrological parameters such as
wetting/drying alteration [8], seasonal variation [9]. and dilution of effluent discharge [10].
IN the study [11], the impacts of effluent and hydrological stresses on river functioning
were investigated, and it was observed that even highly diluted WWTP effluents can affect
the structure of the biofilm community and river ecosystem functions.

Benthic biofilms are assemblages of living and dead algae, microbes, and organic
debris, constituting the basis of the benthic food web [12,13]. Benthic biofilms have been
considered pioneer microbial aggregates in response to effluent discharge [12]. The architec-
ture and functioning of biofilms are constantly changing following variations in dissolved
oxygen, organics, hydrodynamics, etc. [14]. The total biomass, microbial composition,
photosynthesis of algae, and assimilation of organic matter are accordingly modified as a
consequence [15]. Existing studies have shown that benthic biofilms can restrain pollutants,
e.g., heavy metals, pharmaceuticals and brominated flame retardants released from histori-
cal events and transfer the contaminants to higher trophic levels [16,17]. Hence, biofilms
are often used as indicators to evaluate ecological changes in aquatic environments by
assessing their respiratory rate [18] or soluble reactive phosphorus uptake capacity [11].
Biofilms adapted to anthropogenic disturbances typically show higher resistance to effluent
discharge [4,11]. Water-soluble organic matter (WSOM) is the most active component in
biofilm organic matter, comprising carbohydrates, amino acids, and organic acids. Efflu-
ent discharge has been verified to promote extracellular enzyme activities, e.g., leucine
aminopeptidase and amino glucosidase in benthic biofilms, facilitating the conversion of
complex organic matter and its subsequent uptake and utilization by microbes [19,20].

A number of studies have demonstrated the complicated and bidirectional relationship
between organic carbon and bacteria communities in rivers. River organic carbon serves
as a carbon source and nutrient for heterotrophic bacteria and some algae, and can be
metabolized by micro-organisms in the aquatic environment [21]. Different from the organic
contents in other matrices, such as sediments, the organic compounds in biofilm may affect
the microbial community structure and modify the food web character and energy transfer
efficiency [12]. Chromophore DOM (CDOM) is an optically active part in the bulk DOM
pool that can intensely absorb light in the ultraviolet and blue spectral regions, and exhibits
remarkable changes in the quantity and quality of diverse biogeochemical processes [6].
Avila et al. unveiled the dynamic succession between CDOM and the microbial community
in a small river dominated by effluent discharge and confirmed a remarkable response
of actinomycetes and protein components [22]. Zhang et al. explored the relationships
between phytoplankton communities and CDOM in a tropical lake and found that CDOM
could affect bacterial community structure by participating in the metabolism of specific
bacterial communities. Similar results were observed by analyzing the connection between
phytoplankton community and CDOM in a eutrophic lake [23]. Nonetheless, most studies
have focused on the characteristics and association between planktonic communities and
DOM in streams, while the bacterial community structure and interspecific interactions
of organic compounds in adherent aggregates, e.g., benthic biofilms, have been largely
ignored. An analysis linking the microbial community and WSOM components in benthic
biofilms may help to bring forward biological indicators for assessing freshwater quality
and ecosystem fitness.

In the past decade, the rapid development in bioinformatics has afforded technical
support to decipher responses of microbial community assembly and metabolic functions
to environmental stresses [23,24]. Burdon et al. confirmed the resilience of microbial
communities to effluent discharge and found that the buffering capacity of microbial
communities is vulnerable to impact by environmental fluctuations [2]. Recently, co-
occurrence network analysis has been employed to explain the interspecific interactions
of microbial communities in suspended particulates, soils, and sediments. These studies
manifest that microbial communities usually have non-random co-occurrence patterns
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and a modular structure, implying the vital role of biological interactions in adjusting the
fluvial ecosystem functioning [25–27]. Unfortunately, no studies have been performed to
evaluate microbial interactions in river biofilms in response to effluent discharge; thus, the
co-occurrence patterns between bacterial communities and biofilm WSOM have not been
elucidated yet.

In this case study, we investigated how benthic biofilm bacterial communities and
biofilm WSOM alter in response to effluent discharge in an effluent-receiving river. We
hypothesized that the stress of effluent discharge has a considerable impact on the co-
occurrence patterns of benthic biofilm bacterial communities, as well as their linkage
with WSOM, especially CDOM. We also hypothesized a higher proportion of metabolic
functions on account of nutrient and micropollutant inputs in the discharging area. These
results will contribute to unraveling the overall impacts of allochthonous inputs such as
effluent discharge on river biofilm properties and ecological functions, providing insights
in the search for appropriate pollution indicators in effluent impacted areas and revealing
the potential of benthic biofilm as an indicator of the ecological response of effluent-
receiving rivers.

2. Materials and Methods
2.1. Study Site, Experimental Design, and Water Characteristics

The North City WWTP of Jiangning District (31◦58′ N, 118◦50′ E) uses an oxidation
ditch process that treats the sewage of >40 thousand P.E. from domestic sources. On average,
70 thousand cubic meters of wastewater are treated per day and the effluent is discharged
into the Qinhuai River, located in Nanjing, Jiangsu Province, China, as illustrated in Figure 1.
The water level and temperature of the Qinhuai River show significant seasonal differences
(Table S1). Nearly 75% of the annual precipitation is concentrated during the May-to-
September rainy season (summer) [28]. The area of interest has a straight channel with few
tributary confluences, and the WWTP effluent discharge is the main external input to the
reach, endowing the area with superiority for evaluating the effects of wastewater effluent
on ecosystem functioning.
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Figure 1. Location of sampling sites in Qinhuai River receiving effluent from North City wastewater
treatment plant (WWTP) in Jiangning District, Nanjing, China.

Eleven sampling sites were selected along the reach. The sites were categorized into
three areas according to their relative positions to the effluent outfall shown in Figure 1.
U1 to U3, 1, 0.5, and 0.2 km upstream from WWTP effluent discharge, are referred to
as the Upstream group; D1 to D4, 0, 0.2, 0.5, and 0.7 km downstream the discharge, are
referred to as the Discharge area group; D5 to D8, 1, 1.5, 2, 3 km, downstream from
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the discharge, are referred to as the Downstream group. The values of pH, temperature
(T, ◦C). and dissolved oxygen (DO) were measured using a portable meter (HQ30d, HACH
Company, Loveland, CO, USA) at each sampling site in December 2019 and September
2020, respectively. Water and benthic biofilms were collected on 26 December 2019 (winter,
averaged water temperature: 10.3 ◦C) and 8 September 2020 (summer, averaged water
temperature: 26.8 ◦C) (Table S1). Total nitrogen (TN) and total phosphorus (TP) were
measured to reflect the trophic conditions at varying sampling sites [29]. Three parallel
water samples were collected and analyzed at each site.

2.2. Biofilm Harvesting and Water-Soluble Organic Matter (WSOM) Extraction

Benthic biofilms were collected following the protocols reported by Wang et al. [30].
The main steps of collection include: rock selection, biofilm scraping, sample preservation,
and transportation. The detailed collection method is available in SI. Prior to extraction,
20 g of biofilm samples in wet weight were lyophilized using a freeze dryer (Christ ALPHA
1-2 LD plus, Marin Christ Co., Osterode am Harz, Germany). To improve the extraction
efficiency, we ground the lyophilized biofilm and passed it through a 100-mesh sieve to
remove impurities. Biofilm WSOM was extracted using a leaching-centrifugation method
according to the protocols of previous studies [31,32]. Pre-treated biofilm was packed
into sterilized conical bottles at a material-to-water (g:g) ratio of 1:3. Then the samples
were shaken for 16 h at ambient temperature. Afterwards the leachate was transferred to
50 mL sterilized centrifugal tubes and then centrifuged at 4000× g r/min for 30 min. The
supernatant was filtered through a 0.45 µm sterile acetate membranes, and the generated
filtrate was defined as biofilm WSOM and stored at −4 ◦C prior to analytical approaches.

2.3. Spectral Analyses of Biofilm WSOM

Dissolved organic carbon (DOC) concentrations in bulk WSOM solutions were mea-
sured using a total organic carbon analyzer (Multi N/C2100, Analytik Jena, Jena, Germany).
The DOC concentration in biofilm WSOM were normalized to mg/g shown in Table S2.
UV-vis absorption spectra were measured by a spectrophotometer (UV-1800, Shimadzu,
Japan). The excitation–emission matrices (EEMs) of CDOM in WSOM were measured using
a fluorescence spectrophotometer (F7000, Hitachi, Japan). Detailed information on spectral
analysis is provided in SI. Parallel factor analysis (PARAFAC) was performed using the
DOM Fluor toolbox in MATLAB (R2017a) software [33]. The relative contents of fluorescent
components were obtained via Fmax values analyzed by PARAFAC. Several UV-visible
spectra-derived parameters were calculated to demonstrate the aromaticity (SUVA254), hy-
drophobicity (E254/E204), and molecular weight (SR) of biofilm WSOM. We also calculated
parameters including biological index (BIX), humification index (HIX), and fluorescence
index (FI) to describe the fluorescent characteristics of biofilm WSOM as described in the
Table S3.

2.4. Microbial Community Analysis
2.4.1. DNA Extraction and PCR Amplification

For each biofilm sample, DNA extraction was executed through the E.Z.N.A.® Soil
DNAKit (Omega Bio-tek, Norcross, GA, USA), following the manufacturer’s instruc-
tions. Agarose gel electrophoresis was used to analyze the quality of the extracted
DNA. 16S rRNA gene amplification and Illumina MiSeq sequencing were performed
at Biozeron Science and Technology Ltd. (Shanghai, China). The bacterial primers 341F
(5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′) were
used to amplify the V3−V4 regions of the bacterial 16S rRNA gene. The PCR conditions
were as follows: DNA denaturation for 5 min at 95 ◦C with 27 cycles, at 95 ◦C for 30 s,
55 ◦C for 30 s, and 72 ◦C for 45 s, with a final extension of 10 min at 72 ◦C.
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2.4.2. Sequence Analyses and Functional Prediction

Sequence analyses were carried out via Quantitative Insights Into Microbial Ecology
version 2 (QIIME2 version 18.6) software [34]. A single-end sequence data denoising
method called the Divisive Amplicon Denoising Algorithm program (DADA2, v1.10) was
implemented for processing valid data from BIOZERON Co., Ltd. (Shanghai, China) [35].
We then used the ‘classify-sklearn’ option to assign classification identities to these represen-
tative sequences via the ‘qiime feature-classifier’ command, referred to here as Amplicon
Sequence Variants (ASVs). These ASVs have more than 99% similarity to the SILVA128
reference comparison database used in classification identities. Information on the sequence
reads corresponding to each sample has been uploaded to the NCBI SRA database for public
access (bioengineering number: PRJNA717165). Prediction of potential microbial function
was performed by an improved metagenome inference method of PICRUSt [36]. Functional
gene predictions were performed based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. The Nearest Sequenced Taxon Index (NSTI) was used to evaluate the
prediction accuracy of PICRUSt, with lower values indicating higher prediction accuracy.

2.5. Statistical Analyses

The richness, Pielou, and Shannon indices were calculated in R (version 3.6.2) using
the vegan and picante packages. Non-metric multidimensional scaling (NMDS) based
on Bray–Curtis distance was performed to decipher the clustering of benthic biofilm bac-
terial communities among different groups, together with non-parametric multivariate
analysis of variance (Adonis) analyzing the significant differences of microbial commu-
nities. The dissimilarity indices including the Sørensen dissimilarity index (βSOR), the
Simpson dissimilarity index (βSIM), and the nestedness resultant dissimilarity index (βNES)
of benthic biofilm bacterial communities were calculated in R, employing the function
‘beta-multi.R’ [37]. The null model was used to quantify the contribution of ecological
processes to the microbial assemblage by vegan, ape, and picante packages [38,39].

One-way ANOVA and Tukey’s post hoc test were performed to uncover the differences
between groups using SPSS v26 software. STAMP (v.2.1.3) software was used to perform a
two-sided Welch’s t-test on the functional abundance map predicted by KEGG to discover
the metabolic pathways with significant differences between groups. The ‘ggcor’ package
was applied to test the correlation between microbial community and spectral indicators
via mantel analysis. To integrate spectral information and biological data in the biofilm,
redundancy analysis (RDA) was performed using the vegan package in R.

Molecular ecological networks (MENs) corresponding to different seasons were con-
structed to elucidate the correlation between CDOM fluorophores and bacterial communi-
ties using an online MENA pipeline based on a Random Matrix Theory (RMT) bioinformat-
ics approach. To reduce the network complexity, we only selected ASVs that are present in
all samples of the same group for network construction. A random network of 100 ASVs
corresponding to each empirical network was built to test the statistical significance of
the empirical networks [40,41]. The details of network construction are referred to in [42].
Gephi was applied for analyzing network visualization and modularity.

3. Results
3.1. Spectral Characteristics of Biofilm WSOM

Table S2 summarizes the organic carbon concentrations in biofilm WSOM at varying
sampling sites. The normalized DOC concentration of biofilm WSOM ranged from 141.4
to 360.4 mg C/g. The averaged DOC concentration of biofilm WOSM in the Upstream
group, Discharge area group, and Downstream group were 175.5, 223.9, and 296.3 mg C/g,
respectively. In terms of the UV-visible spectra-derived parameters, the averaged values of
SUVA254 and SR were 2.96 and 1.91 in winter and were 0.52 and 1.27 in summer, respectively,
with significant seasonal differences (p < 0.05 and p < 0.001) (Table S4).

PARAFAC modeling can identify and verify four fluorescent components, providing
a total of 95.72% variability within the data (Figure 2a). The model was compared with
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available models in the Openflour database, finding a 95% similarity. We found that C1
presented characteristics such as terrestrial humic-like fraction, with high-molecular-weight
and photo-labile character [43,44]. C2 also exhibits humus-like properties associated with
microbial activity and can be reprocessed in situ by the microbial community [45]. C3
was classified as an intermediate, between humic-like and amino acid-like moiety [46]. C4
serves as a tryptophan-like protein material associated with microbial activity or wastewa-
ter discharge [47]. The variation of the percentage of each fluorescent component is shown
in Figure 2b. In winter, humic-like fraction (C1 and C2) dominantly accounted for 70% of
the total fluorescent components, while in summer, the Upstream group was dominated by
humic-like and amino acid-like intermediates (63%), and the Discharge area and Down-
stream groups were dominated by tryptophan-like proteins (45% and 39%). The percentage
of tryptophan-like proteins (C4) in the three areas was 12%, 45%, and 39% in winter and
11%, 14%, and 27% in summer, respectively.
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Figure 2. (a) Four main components of the spectrum identified by parallel factor analysis (PARAFAC).
Insets visualize the excitation and emission loadings of the four components and (b) the relative
percentages of each component based on Fmax value.

The fluorescent characters of biofilm WSOM exhibit different variations in response to
effluent discharge shown in Figure 3a–c. BIX and HIX are significantly different among
three areas (p < 0.001 and p < 0.05), but FI is not. In addition, we found that there was a
distinct boundary of BIX-HIX values among three areas (Figure 3d), with the Upstream
group clearly isolated from the other two areas, while overlapping was observed between
the Discharge area and Downstream groups.

6



Int. J. Environ. Res. Public Health 2022, 19, 1994

Int. J. Environ. Res. Public Health 2022, 19, 1994 7 of 19 
 

 

Figure 2. (a) Four main components of the spectrum identified by parallel factor analysis (PARA-
FAC). Insets visualize the excitation and emission loadings of the four components and (b) the rel-
ative percentages of each component based on Fmax value. 

The fluorescent characters of biofilm WSOM exhibit different variations in response 
to effluent discharge shown in Figure 3a–c. BIX and HIX are significantly different among 
three areas (p < 0.001 and p < 0.05), but FI is not. In addition, we found that there was a 
distinct boundary of BIX-HIX values among three areas (Figure 3d), with the Upstream 
group clearly isolated from the other two areas, while overlapping was observed between 
the Discharge area and Downstream groups. 

 
Figure 3. (a–c) Fluorescence parameters of biofilm water-soluble organic matter (WSOM). Asterisks 
represent the difference between two groups (* p < 0.05; *** p < 0.001; NS represents no significant 
difference) and p-values represent the overall group difference. (d) Values of biological index (BIX) 
and humification index (HIX) of biofilm WSOM in different areas: different colors represent differ-
ent areas, and the horizontal and vertical coordinates indicate the values of BIX and HIX, respec-
tively. 

3.2. Dynamics, Diversity and Assembly Mechanisms of Bacterial Communities 
Figure S1 illustrates the taxonomic composition and relative abundance of bacterial 

communities at the phylum level in biofilm collected in varying seasons. The results show 
that Proteobacteria (42.7–65.9%), Actinobacteria (4.8–16.1%), Bacteroidetes (5.2–19.0%) 
and Chloroflexi (3.6–12.6%) represent the dominant phyla. The microbial α-diversity as-
pects in Figure 4a,b indicate that the Richness and Shannon indexes are remarkably dif-
ferent among the Upstream, Discharge area, and Downstream groups (p < 0.05), with the 
highest values in the Discharge area group. The averaged Peilou index was highest in the 
Discharge area group, with no remarkable difference observed among the three areas (Fig-
ure 4c). NMDS analysis presented the differences in bacterial communities grouped by 
sampling time (Figure 4d). Additionally, the Adonis analysis exhibited statistically signif-
icant differences in bacterial communities among sampling areas (F = 0.02) and between 
different seasons (F = 0.031). 
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3.2. Dynamics, Diversity and Assembly Mechanisms of Bacterial Communities

Figure S1 illustrates the taxonomic composition and relative abundance of bacterial
communities at the phylum level in biofilm collected in varying seasons. The results show
that Proteobacteria (42.7–65.9%), Actinobacteria (4.8–16.1%), Bacteroidetes (5.2–19.0%) and
Chloroflexi (3.6–12.6%) represent the dominant phyla. The microbial α-diversity aspects in
Figure 4a,b indicate that the Richness and Shannon indexes are remarkably different among
the Upstream, Discharge area, and Downstream groups (p < 0.05), with the highest values
in the Discharge area group. The averaged Peilou index was highest in the Discharge area
group, with no remarkable difference observed among the three areas (Figure 4c). NMDS
analysis presented the differences in bacterial communities grouped by sampling time
(Figure 4d). Additionally, the Adonis analysis exhibited statistically significant differences
in bacterial communities among sampling areas (F = 0.02) and between different seasons
(F = 0.031).

The process of biodiversity change was clarified via two patterns of biome beta diver-
sity: nestedness and turnover. The discrepancy indices of bacterial communities grouped
by sampling area and season are shown in Table S5. The mean βSOR value among the
three areas was 0.82, with a strong contribution of spatial turnover (βSIM = 0.79) and a
small contribution of nestedness (βNES = 0.02). Similar results were also observed for
samples grouped by season. We subjected the samples from the Discharge area group and
the Downstream group to a resampling procedure in which 100 random samples were
taken from six inventories and the mean value β value was calculated, so that the different
number of samples from different areas (eight vs. six) was comparable (Table S6). β’SOR
in the Upstream group (0.76) is lower than that in the Discharge area group (0.81) and
the Downstream group (0.82), which is mainly systematic in the difference of β’SIM, while
β’NES is almost constant (Table S6). Additionally, we quantified the relative contribution of
each microbial ecological process in the assembly among seasons (Figure S2a) and areas
(Figure S2b). The ecological processes include homogeneous selection, variable selection,
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dispersal limitation, homogenizing dispersal, and ecological drift. In winter, variable selec-
tion (45.5%) and homogeneous selection (52.7%) accounted for a comparable proportion,
while in summer there was lower variable selection (27.3%) and higher homogeneous
selection (69.1%). In the grouping by area, homogeneous selection was the dominant factor
driving the assembly of bacterial communities in the Upstream group (73.3%) and the
Discharge area group (78.6%), whilst in the Downstream group, variable selection (46.4%)
and homogeneous selection (50.0%) performed comparably.
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3.3. Functional Prediction of Bacterial Communities

The average NSTI value of all samples was 0.18, indicating that these samples provided
an appropriate data set for accurate predictions. By comparing the abundance of KEGG
categories predicted by PICRUSt in level-2 metabolic pathways, significant functional dif-
ferences in distinct sampling areas could be observed (Figure S3). Amino acid metabolism,
carbohydrate metabolism, and membrane transport were the three predicted functions with
the highest abundance in benthic biofilms, and the values were higher in the Discharge area
group than in the groups collected upstream and downstream. We performed a two-by-two
comparison of the predicted functions in metabolic pathways at level-3 and discovered
that the carbohydrate metabolism (TCA cycle, C5-branched dibasic acid metabolism, and
inositol phosphate metabolism), biosynthesis of other secondary metabolites (clavulanic
acid biosynthesis), and metabolism of cofactors and vitamins (nicotinate and nicotinamide
metabolism) in the Upstream group were significantly different from those in the Discharge
area group and the Downstream group (p < 0.05, Figure 5a–c). In contrast, only the amino
acid metabolism (phosphonate and phosphinate metabolism) was significantly different
between the Discharge area group and the Downstream group.
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3.4. Key WSOM Parameters Affecting Bacterial Community Composition

Mantel and RDA analysis were employed to determine the association of biofilm
WSOM parameters with bacterial community composition. As shown in Figure 6a, WSOM
parameters show more diverse and remarkable correlations with taxonomic compositions
in winter. FI and C3 have been confirmed as key factors affecting the composition of
bacterial communities in winter (p < 0.05), while in summer the key factors are SUVA254,
SR, and C4 (p < 0.05, Figure 6b). RDA analysis manifested similar results, as shown in
Figure 6c,d.

The results of the both RDA models proved to be significant (p < 0.05) based on the
screening of VIF < 5. In winter, humic-like and amino acid-like intermediates (C3) posed the
greatest influence on bacterial community composition, while in summer, tryptophan-like
proteins (C4) exhibited the strongest impact. We also found that FI was a common key
factor influencing the composition of bacterial communities in both seasons.
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3.5. Co-Occurrence Network Analysis

An RMT-based model was employed to analyze the phylogenetic characters and to
determine the symbiotic relationship between bacterial communities and fluorophores. A
total of 2564 edges and 443 nodes were obtained in the network derived from samples
collected in winter, with a 0.515 modularity encompassing six modules (Figure 7a,b). For
the network derived from samples collected in summer, 330 nodes and 1692 edges with
a modularity of 0.434 was observed encompassing seven modules (Figure 7c,d). Positive
correlations prevailed in both networks derived from winter (76%) and summer (74%). The
parameters of the topological network and the random network are shown in Table S7,
and the reliability and non-randomness of the empirical network structure is verified by
comparing it with the random network analysis [48]. In both networks, Proteobacteria,
Bacteroidetes, Acidobacteria, and Chloroflexi occupy the dominant nodes in the network
(Figure 7a,c), and are also the predominant bacterial phylum in benthic biofilm bacterial
composition, as shown in Figure S1.

Modularity reflects the connectivity within and between clusters, and nodes have
closer interactions with each other within the module than with nodes in other modules.
There are six modules in the winter network, among which C1, C2, and C4 belong to
Module IV, and C3 is affiliated with Module III. Among the seven modules in the summer
network, C1, C2, and C3 are grouped into Module IV, and C4 belongs to Module III. By
integrating the observations in Figures 6 and 7, we speculate that Module II containing C3
in winter, and Module III comprising C4 in summer serve as the key modules reflecting the
impacts of effluent discharge on benthic biofilms.
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4. Discussion
4.1. Effluent Discharge Alters the Nature of Biofilm WSOM

To date, the response of biofilm WSOM to effluent discharge in receiving waterbod-
ies remains unknown. The content of WSOC in biofilm matrix in the discharge area
displayed an increase in both seasons (Table S2), implying that effluent discharge could
facilitate carbon storage in benthic biofilms. During conventional wastewater treatment
processes, high-molecular-weight and aromatic substances are difficult to degrade and a
certain amount will be stored in the effluent and discharged to receiving waterbodies [49].
Combined with the variations of SUVA254, E254/E204, and SR, it can be inferred that the
effluent discharge changed the nature of benthic biofilm WSOM in the Discharge area and
the Downstream groups, whereas there are no clear patterns of changes seasonally nor
regionally (Table S4). It is difficult to explain such results within the context of an absence
of knowledge about the nature of the effluent; therefore, we speculate that the phenomenon
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could be ascribed to the fluctuating operating conditions of the WWTPs [6,12,49]. Taken
together, the findings confirm that the aromaticity, molecular weight, and hydrophobicity
of biofilm WSOM in the Downstream group have difficulty recovering to the original state
of the Upstream group after receiving effluent.

It is interesting to observe that the fluorescent properties of the biofilm WSOM exhib-
ited a clear resilience responding to effluent discharge. HIX values were signally higher
(p < 0.05) and BIX values were significantly lower (p < 0.001) in the Discharge area group
than in the Downstream group (Figure 3). The effluent discharge increased the humifica-
tion state and decreased the proportions of autochthonous component in benthic biofilms.
Changes in protein-like and aliphatic fractions degraded by micro-organisms have been
reported to facilitate the humification processes of organic compounds [50]. Meanwhile, the
enzymatic processes during biodegradation may promote the enhancement of condensed
aromatic structures or the production of structures with increased conjugation, bringing on
an increase in HIX [51]. However, unlike the response of DOM in receiving waterbodies,
the BIX values of biofilm WSOM exhibited a significant decrease, implying a decline in the
input of autochthonous DOM sources [52]. The distinct change between the BIX values in
these two studies can be attributed to the adsorption features of biofilm, implying that the
biofilm may store allochthonous DOM from effluents. Although the discharge increased the
HIX values while decreasing the BIX values, the biofilm in the effluent-receiving river was
found to exhibit weak humic character and strong autochthonous components dominated
by microbial metabolism [52]. Interestingly, the changes in BIX and HIX indices in the
Downstream group show opposite trends (Figure 3d), suggesting that the benthic biofilm
WSOM in the downstream area is inclined to recover to the original state in the absence of
effluent discharge.

The fluorescent properties of biofilm WSOM differed significantly in response to sea-
sonal changes. The benthic biofilm CDOM in winter is dominated by humic-like materials,
whereas intermediate humic-like and amino acid-like dominate in the Upstream group and
tryptophan-like proteins occupy the highest fluorescent fractions in the Discharge area and
the Downstream groups in summer. The relatively lower proportion of humic-like fractions
might be attributed to the high temperature and humid conditions in summer, during
which humic-like substances are easily to be released from biofilm WSOM, and winter
provides a perfect ecological niche for micro-organisms to release DOM characterized by
native protein-like compounds [53]. The protein components of the effluent entrainment
increased the amount of tryptophan-like proteins in the benthic biofilm, and this tendency
was more pronounced in the warm season. Previous studies have shown that microbes
can change the composition of DOM, and the proportion of humic substances is increased
through the conversion of protein-like substances [54]. The higher microbial activity in
summer may facilitate the conversion process and favor the release and detachment of
humic-like fractions. Meanwhile, tryptophan-like proteins are usually associated with an-
thropogenic activities [6] and some studies have demonstrated a higher removal efficiency
of tryptophan-like proteins by WWTP in warmer condition than in colder ones [55]. It
must be pointed out that tryptophan-like compounds still dominate the biofilm WSOM in
summer, so we consider that the impacts of effluent discharge on the ecological health of
rivers cannot be ignored, especially in warmer seasons.

4.2. Response of Biofilm Bacterial Communities to Effluent Discharge

The bacterial diversity indices were found to increase in the discharge area and
experienced a decrease downstream (Figure 4), with significant changes in the richness
and Shannon indices (p < 0.05). Studies regarding the effects of effluent discharge on
biofilm bacterial communities gave contradictory results, possibly due to either increasing
or decreasing microbial diversity and enzyme activity [5,56,57]. In this study, the Discharge
area and the Downstream groups had distinct responses to effluent discharge, reflected
by the more vulnerable diversity and abundance of bacterial communities, while the
diversity of bacterial communities in the Downstream group approached to the status
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observed in the Upstream group, implying that microbial ecological reconstruction of
bacterial community occurred responding to effluent discharge [4]. Additional evidence
on the effects of effluent discharge could be found in the co-occurrence network analysis
(Figure S4). The discharge increased the diversity of the biofilm bacterial community,
interfered with microbial interactions, and reduced the modularity in the Discharge area
group. In the Downstream group, there was a recovery in both bacterial interspecies
interaction and network modularity.

Figure 4d shows a specific clustering mode among seasons and sampling areas.
Pascual-Benito et al. [57] reported a higher microbial diversity in effluent-receiving rivers
under high-flow and low-temperature conditions in winter. However, we describe the
results of greater differences in bacterial communities across areas under the influence of
effluent discharge than seasonal differences (Figure 4d). Considering the relatively lower
value of F (0.02) among sampling areas than among seasons (0.031), the ecological impacts
of effluent discharge on biofilms in different areas are worthy of being discussed. The
assembly pattern analysis suggests an estimated beta diversity βSOR value of bacterial com-
munities among different areas or seasons, with a strong contribution of spatial turnover
and a small contribution of nestedness (Table S5). The results suggest that diversity patterns
of biofilm in effluent-receiving rivers are primarily caused by species turnover rather than
species loss [58]. Turnover is achieved through migration, attachment, and growth, and
dispersal refers to the movement of microorganisms in space, especially those absorbed
into the biofilms [59]. Typically, the attachment of planktonic cells to the media surface
triggers biofilm formation and fundamentally regulates the microbial assembly process [60].
The higher beta diversity can be explained by more diverse environmental conditions. For
example, water flow, turbulence, and bottom landscape topography regulate microbial dis-
persal and colonization patterns, while also producing microhabitats with distinct stresses
and mass transfer efficiencies [13]. The increase in βSOR suggests that effluent-borne mi-
croorganisms, DOM, and nutrients may be partially adsorbed into the benthic biofilm,
resulting in the formation of more complex microhabitats in the discharge area and the area
downstream WWTP.

4.3. Variations in Metabolic Functions of Bacterial Communities

Effluent discharge affects the original ecosystem functions of rivers, altering the
availability of genes related to the carbon cycle and possibly carrying foreign co-energy
genes, bringing unknown pressures to riverine ecosystems [23]. The metabolic function of
bacteria communities in effluent-receiving rivers is more stable; however, it is important
to note that the predicted functional abundance of carbohydrate metabolism and amino
acid metabolism increased in the Discharge area group (Figure S3). This may imply that
the benthic biofilm bacterial community has a higher rate of carbon turnover and enhanced
utilization of carbon sources in areas directly receiving effluent [61]. The membrane
transport function was also proven to exhibit a high abundance in this area, suggesting
that bacterial cells had active transporter proteins that can transport organic matter and
nutrients to facilitate bacterial metabolic processes [24].

In this study, significant differences were observed between alanine/aspartate/glutamate
metabolism and nicotinate/nicotinamide metabolism in Upstream group and Discharge
area group (Figure 5). Both metabolic pathways are closely related to the degradation
of carbohydrates [62]. The involvement of carbohydrate metabolism, cofactors and vita-
min metabolism, and other secondary metabolites was higher in the Discharge area and
Downstream groups compared to the Upstream group, indicating that the biodegradation
activity was higher in areas less affected by effluent discharge [61]. However, the effluent
discharge ultimately enhanced the carbohydrate and amino acid metabolism in the Dis-
charge area group, suggesting that the adverse effects of WWTP discharge on the metabolic
functions of the benthic biofilm bacterial community may be limited to specific metabolic
functions. Another promising finding was that little difference in the metabolic functions of
the bacterial community could be found between the Discharge area and the Downstream
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groups. The results could be ascribed to the partial adaptation of biofilms in response to
effluent discharge.

4.4. Roles of Bacteria in Shaping Biofilm WSOM

Here, we found significant seasonal patterns, including commonalities and anisotropies,
associated with effluent discharge on biofilm WSOM properties and bacterial community
composition. In winter, humic-like and amino acid-like intermediates were significantly
correlated with bacterial community composition (Figure 6a,b). C3 is mainly comprised of
low-molecular-weight and highly aromatic substances [63]. Existing studies have found
that bacterial communities are inclined to utilize low-molecular-weight substances [6],
and aromaticity is significantly associated with community succession dynamics [64]. The
aforementioned two points may help explain why the C3 fraction acts as a key factor shap-
ing the composition of the biofilm bacterial community harvested in winter. In summer,
tryptophan proteins, aromaticity, and molecular weight were significantly associated with
bacterial community (Figure 6c,d). The aromaticity and molecular weight of biofilm WSOM
were remarkably lower in summer compared to winter (p < 0.01 and p < 0.001) (Table S4).
We speculate that the seasonally variable biofilm WSOM properties may determine their dis-
tinct capacities in shaping biofilm bacterial community composition. The close association
of tryptophan proteins with microbial activity has been reported in previous studies [6,47].
At this stage of understanding, we believe that certain factors, e.g., molecular weight and
aromaticity in biofilm WSOM, might govern the bacteria community structure, regardless
of the sampling seasons.

It is worth noting that FI values showed a significant correlation with changes in
bacterial community composition in both seasons, although FI values did not show signal
variations among seasons and areas. The results provide additional evidence that the
microbial-derived organic matter of biofilm WSOM remains largely stable [65]. The value of
FI has been strongly correlated to the relative contribution of microbial-derived versus plant-
derived organic matter. The FI values of all samples ranged from 2.40 to 3.04, indicating that
biofilm WSOM predominantly originated from microbial activity [66]. It can be assumed
that microbial-derived organic matter produced by microbial metabolism occupies an
important position in biofilms, especially in the process of shaping microbial communities.

4.5. Co-Occurrence Patterns Relate to Seasonal and Spatial Variation

The interactions between microbial communities in turn affect their adaptation to
external environmental changes, and the co-occurrence networks constructed based on
different areas can reveal the ecological interactions between biofilm bacterial communi-
ties [25]. In different areas of the network (Figure S4), the average path distance followed
the sequence: Upstream group < Discharge area group < Downstream group (Table S8),
reflecting more efficient information processing and material transfer among bacteria in-
fluenced by discharge [27]. The value of modularity was highest in the Upstream group
and lowest in the Discharge area group, demonstrating that microbial interactions are
stronger in the Upstream group and effluent discharge disrupts original interspecies in-
teractions of bacteria, as in [67]. Compared to the Upstream group, the networks from
the Discharge area and Downstream groups had fewer nodes and edges, and the average
degree decreased along the effluent-receiving river, demonstrating that effluent discharge
simplified the network pattern of benthic biofilms [48]. Previous studies have suggested
that a more connected network could improve the efficient utilization of carbon and that a
highly connected network may also provide more functional redundancy [68,69]. Effluent
contains plentiful carbon, nitrogen and some toxic substances, which might possibly limit
the complexity of microbial co-occurrence networks in the Discharge area and the Down-
stream groups. Consequently, effluent discharge may potentially diminish the stability and
disturbance resistance of benthic biofilm communities.

Positive correlations in Figure 7 suggest that the interactions are chiefly symbiotic or
mutually beneficial. The microbe-organic networks in different seasons were dominated by
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positive correlations. Generally speaking, a more positive microbe-organic correlation is
beneficial for the degradation of refractory substances [70]. Proteobacteria, one of the domi-
nant phyla in the network, can degrade humic substances and tend to form filamentous
structures, facilitating the growth of such bacteria in biofilms [71]. Bacteroidetes, another
dominant phylum, generally hold special importance for benthic biofilms and some mem-
bers of these phylum can degrade biopolymers, contributing to the high-molecular-weight
fraction of organic matters [72].

Moreover, modules can be considered as functional units, in which the same functional
unit can perform the same ecological function with a high degree of in-connection between
microbial communities within the same module [73]. Here, bacterial communities and
biofilm WSOM components formed a strong network of modules, with a total of six
modules in winter and seven modules in summer (Figure 7). By taking advantage of
the key modules, we can acquire more information on the interactions between bacterial
communities and fluorescent compounds. For example, in Module III of the network
derived from samples collected in winter, genus Kineosporiaceae was able to convert cellulose
and glucose to acetate, butyric acid, and carbon dioxide under anoxic conditions [74]. Genus
Lacihabitans was proven capable of degrading a multitude of organic compounds including
cellulose, chitin, and starch [75]. Similarly, in the network derived from samples collected
in summer, genus Nocardioidaceae in Module IV was capable of depredating toxic pollutants,
alkanes, crude oil, and derivatives [76]. The family Beijerinckiaceae is able to fix nitrogen
and metabolize carbon. As a consequence, the pollutant degradation capacity of benthic
biofilm bacterial communities in summer may also be amended in response to effluent
discharge [77]. Genus Aeromans is an important pathogenic agent for fish and is harmful to
aquatic ecosystems [78]. These findings support the notion that carbon metabolism remains
a key ecological function of benthic biofilms in effluent-receiving rivers, and we speculate
that there is an enhancement of the degradation of toxic pollutants in summer. Meanwhile,
the production of pathogenic bacteria needs to be guarded against. Note that due to the
lack of controlled experiments, these results need to be treated with caution. Simulation
experiments need to be conducted to clarify the ecological impact of effluent discharge on
effluent-receiving rivers in future work.

5. Conclusions

In highly urbanized areas, river benthic biofilms are pioneering microbial aggregates
responding to effluent discharge from WWTPs. Our study reveals the optical properties
of benthic biofilms WSOM in a representative effluent-receiving river. The diversity, func-
tion, and assembly of bacterial communities and their co-occurrence patterns were also
investigated. After receiving effluent, WSOM in benthic biofilms showed weak humic
character and strong autotrophic components. In the Discharge area, the fluorescence
characteristics of CDOM and bacterial community diversity exhibited a signal alteration.
Both the interspecies interaction of bacteria and the fluorescent nature of biofilm WSOM
gradually recover to the conditions exhibited when less affected by effluent discharge.
Species turnover was the main factor governing the formation of biofilm diversity patterns.
Functional predictions showed that amino acid metabolism and carbohydrate metabolism
increased significantly after receiving effluent discharge. Additionally, amino acid-like
and humic-like intermediates and tryptophan proteins were found to be key factors af-
fecting bacterial community composition in winter and summer, respectively. The key
ecological functions present in the benthic biofilm in the effluent-receiving river were
further elucidated by combining the key modules in co-occurrence networks. Future
studies will be performed with a focus on WWTPs with different effluent standards to
demonstrate the universality of benthic biofilms as an indicator of the ecological response
of effluent-receiving rivers.
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Abstract: In this paper, two trophic lakes: Lake Taihu and Lake Yanghe, and three alpine lakes:
Lake Qinghai, Lake Keluke, and Lake Tuosu, were investigated to discover the connections between
environmental factors and the phytoplankton community in lakes with differences in trophic levels
and climatic conditions. Three seasonal data, including water quality and phytoplankton, were
collected from the five lakes. The results demonstrated clear differences in water parameters and
phytoplankton compositions in different lakes. The phytoplankton was dominated by Bacillariophyta,
followed by Cyanobacteria and Chlorophyta in Lake Qinghai, Lake Keluke, and Lake Tuosu. It was
dominated by Cyanobacteria (followed by Chlorophyta and Bacillariophyta in Lake Yanghe) and
Cyanobacteria (followed by Chlorophyta and Cryptophyta in Lake Taihu). The temperature was an
essential factor favoring the growth of Cyanobacteria, Chlorophyta, and Bacillariophyta, especially
Cyanobacteria and Chlorophyta. The pH had significantly negative relationships with Cyanobacteria,
Chlorophyta, and Bacillariophyta. Particularly, a high pH might be a strong and negative factor for
phytoplankton growth in alpine lakes. A high salinity was also an adverse factor for phytoplankton.
Those results could provide fundamental information about the phytoplankton community and
their correlated factors in the alpine lakes of the Tibetan Plateau, contributing to the protection and
management of alpine lakes.

Keywords: phytoplankton; environmental factors; connections; eutrophic lakes; alpine lakes

1. Introduction

The phytoplankton community, as a crucial primary producer, has profound influences
on the geochemical cycling and the function of aquatic ecosystems [1]. In many eutrophic
aquatic systems around the world, the phytoplankton community is dominated by several
bloom-forming species, and the blooming of phytoplankton threatens those aquatic systems.
Previous studies have suggested that the phytoplankton, dominated by cyanobacteria,
affect the zooplankton structure and weaken the zooplankton biodiversity [2]. Additionally,
the toxic species have adverse effects on other aquatic organisms, and the toxins accumulate
in their body [3]. Thus, the exploration of environmental factors influencing the structure
and dynamic of phytoplankton in eutrophic lakes has caught the attention of scientists
worldwide [4–6]. Lakes located in Tibetan Plateau, such as Lake Qinghai, are neglected since
they have low phytoplankton abundance and present no phytoplankton blooms. However,
endemic fish and rare birds live in those lakes, and the alteration of the phytoplankton may
affect the survival of rare fish and birds. Climate change may lead to a severe situation in
those alpine lakes, as they are more susceptible to climate change. Therefore, it is critical
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to reveal phytoplankton structures and their driving factors in both trophic lakes and
alpine lakes.

The factors affecting the growth of phytoplankton have been deeply explored in
temperate and subtropical lakes. Temperature and nutrients are considered the most im-
portant factors regulating the growth of phytoplankton [1,7–9]. High temperature favors
phytoplankton by increasing the growth rate and shifting the phytoplankton with higher
optimum temperature species, such as cyanobacteria [10–12]. The effect of nutrients on
cyanobacteria has been investigated in the long term. P has been identified as a limited
nutrient factor in freshwater systems [13–16]. However, some buoyant species, including
Microcystis, Cylindrospermopsis, Anabaena, Aphanizomenon, and Gloeotrichia, are not likely lim-
ited by P, because the buoyant species can vertically migrate, consume excess phosphorus at
the sediment–water interface, and then rise to the water surface to form blooms [17–21]. N
is also a critical factor for the growth of cyanobacteria. N loading may promote Microcystis
blooms by not only the enhancement of growth [22–25] but also the synthesis of protease
inhibitors, discouraging zooplankton grazing [26,27]. Additionally, the N2-fixing cyanobac-
teria, such as Anabaena, Aphanizomenon, Aphanothece, Cylindrospermopsis, and Gloeotrichia,
exhibit great flexibility in the N sources to form blooms and N fixation, making N sufficient
to allow biomass to be continuously produced [9,17,28,29]. Temperature and nutrients are
also essential factors for phytoplankton growth in high-latitude lakes [30,31]. A nine-year
study of a mountain lake in Austria demonstrated that long-term phytoplankton changes
were mainly attributed to the increasing temperature, while nutrients acted as modulating
factors regulating the short-term phytoplankton changes [30]. A study of Lake Qinghai
suggested that the increase in P load under climate change and overgrazing favored the
growth of P-limited phytoplankton [31]. Nevertheless, some environmental factors such as
salinity may have been neglected in the previous study. Considering that phytoplankton
blooms are seldom reported in brackish lakes, the bloom-forming cyanobacterium is re-
stricted in saltwater. However, freshwater blooms are found in many coastal areas [32,33].
Thus, salinity may not be a decisive factor in bloom formation. It is urgent to explore the
potential factors influencing the phytoplankton community in both fresh and brackish lakes
under climate change.

Lake Taihu and Lake Yanghe are eutrophic lakes located in subtropical and temperate
areas, respectively. Lake Qinghai, Lake Keluke, and Lake Tuosu are alpine lakes located
in the Tibetan Plateau. These five lakes have different climate conditions, presenting
many differences in both environmental factors and the phytoplankton community. The
comparisons between them could reveal the potential factors regulating the phytoplankton
community. The exploration of the phytoplankton structure and the correlated factors
is essential for understanding phytoplankton succession in different lakes, especially in
the alpine lakes in the Tibetan Plateau. This study aimed to reveal the differences in
phytoplankton communities of different lakes and explore the correlated factors regulating
the growth of different phytoplankton phyla.

2. Materials and Methods
2.1. Study Area and Sampling Locations

Lake Taihu is located at the center of the Yangtze River Delta in Eastern China
(30◦56′–31◦33′ N, 119◦56′–120◦54′ E) (Figure 1), with an annual average air temperature of
15–17 ◦C. It has a surface area of approximately 2338 km2, a mean water depth of 1.9 m,
and a maximum depth of 2.6 m [34]. Lake Taihu serves as a critical water resource for
drinking, irrigation, aquaculture, and many industries, as well as recreation and tourism.
Nonetheless, Lake Taihu has suffered from high nutrient loads and eutrophication in
recent decades [35].

Lake Yanghe is located in Qinhuangdao City in Northern China (39◦59′–40◦12′ N,
119◦10′–119◦15′ E) (Figure 1), with an annual average air temperature of 11 ◦C. It has a
drainage area of 755 km2, a mean water depth of 5.7 m, and a maximum depth of over
40 m (Li et al. 2020). Lake Yanghe is a hydraulic project on the Yanghe River, supplies
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industrial and domestic water to Qinhuangdao City, and provides flood control for Funing
Country and Beidaihe downstream. In recent years, nutrients from surface runoffs have
greatly increased due to industrial and economic development in the area, leading to the
continued outbreak of cyanobacterial blooms in the summer. This has negatively influenced
its function as a drinking water source.

Figure 1. Sampling sites of Lake Qinghai, Lake Keluke, Lake Tuosu, Lake Taihu, and Lake Yanghe
in China.

Lake Qinghai is located in Qinghai Province in Northwest China (36◦32′–37◦15′ N,
99◦36′–100◦47′ E) (Figure 1), with an area of about 4260 km2, a maximum depth of 30 m,
and a mean surface elevation of 3194 m [36,37]. This area is characterized by an alpine
and continental climate, with an annual average temperature of 1.2 ◦C [37]. Lake Keluke
(37◦15′–37◦20′ N, 96◦51′–96◦58′) and Lake Tuosu (37◦04′–37◦13′ N, 96◦50′–97◦03′E) are
located in Qinghai Province in Northwest China (Figure 1), with an annual average air
temperature of 11 ◦C [38]. Lake Keluke has an area of about 56.7 km2, a mean water depth
of 4 m, and a maximum depth of 13.3 m. Lake Tuosu has an area of about 145 km2 and a
maximum depth of 25 m [38].

2.2. Sample Collection and Processing

Water samples of five different lakes were taken in the spring, summer, and autumn.
Water samples of Lake Taihu and Lake Yanghe were collected in the spring, summer, and
autumn of 2014. Lake Taihu samples were collected from 12 locations (Figure 1) on 16 April,
22 July, and 24 September 2014. Lake Yanghe samples were collected from 6 locations
(Figure 1) on 15 May, 21 August, and 14 October 2014. Water samples of Lake Qinghai,
Lake Keluke, and Lake Tuosu were collected in the spring, summer, and autumn of 2018.
Water samples of Lake Qinghai were collected on 28 and 29 May, on 20 and 21 August, and
on 23 and 24 October from 10 sites (Figure 1). Water samples of Lake Keluke were collected
on 1 June, on 18 August, and on 22 October from 5 sites (Figure 1). Water samples of Lake
Tuosu were collected on 2 June, on 19 August, and on 22 October from 4 sites (Figure 1).
Surface water samples (2 L) were taken at a 0.5-m depth if the water depth was less than
2 m and were taken at 0.5 m, 1 m, 2 m, 3 m, and 4 m if the water depth was less than
5 m [39]. All the samples were stored in polyethylene barrels at 4 ◦C in the dark before
laboratory analysis. Water temperature, pH, and salinity were measured in situ at each
site using a YSI 6600 multi-probe sonde (YSI, Yellow Springs, OH, USA). An appropriate
amount of water samples was filtered through GF/C glass fiber filters (Whatman, Kent,
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UK). Meanwhile, total nitrogen (TN) and total phosphorus (TP) were measured using the
Chinese standard methods of HJ/T 636-2012 and GB/T 11983-1989, respectively.

Water samples (100 mL) taken from each sampling site were treated with Lugol’s
iodine solution to fix phytoplankton species. Phytoplankton was settled in 20 mm × 20 mm
chambers and identified/enumerated by light microscopy following commonly used
monographs on phytoplankton [40,41]. The Shannon–Wiener index (H) based on the
number was calculated for phytoplankton [42]. The biodiversity of phytoplankton in
the five lakes was calculated according to Bacillariophyta, Cyanobacteria, Chlorophyta,
Cryptophyta, Pyrrophyta, Euglenophyta, and Chrysophyta.

2.3. Statistical Analysis

All data were statistically processed using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA,
2008). The frequency of the water parameters and phytoplankton abundance approximated
normal distributions. Pearson correlations were adopted to assess the relationships between
environmental factors and phytoplankton. Additionally, the regression models were fitted
to the water parameters and phytoplankton with significant relationships.

3. Results
3.1. Water Parameters and Nutrients in the Five Lakes

Table 1 exhibited the seasonal changes of the water parameters and nutrient levels.
Lake Taihu had the highest average temperature of the three seasons, followed by Lake
Yanghe, Lake Tuosu, and Lake Keluke, and lowest in Lake Qinghai (p < 0.05). The autumn
had lower water temperatures than in the spring in the northern lakes, including Lake
Qinghai, Lake Keluke, Lake Tuosu, and Lake Yanghe, with a higher temperature than that
in the spring for Lake Taihu. Lake Qinghai and Lake Tuosu had the highest pH in the five
lakes (p < 0.05), followed by Lake Keluke and Lake Taihu (p < 0.05). Lake Yanghe had the
lowest pH in the five lakes (p < 0.05). There were significant differences in the salinity in the
five lakes. Lake Tuosu had the highest salinity in the five lakes, followed by Lake Qinghai
and Lake Keluke. Lake Taihu and Lake Yanghe had the lowest salinity in the five lakes.
The inflow rivers had a lower temperature, pH, and salinity compared to Lake Qinghai.
This is also true in Lake Tuosu.

There was a clear seasonal pattern in TN in Lake Yanghe and Lake Taihu. The mean TN
in Lake Yanghe were 2.7 ± 0.02 mg/L, 0.1 ± 0.01 mg/L, and 0.5 ± 0.1 mg/L in the spring,
summer, and autumn, respectively. The mean TN in Lake Taihu were 2.8 ± 0.7 mg/L,
0.6 ± 0.5 mg/L, and 0.5 ± 0.4 mg/L in the spring, summer, and autumn, respectively. The
TP concentrations of the five lakes were all lower than 0.1 mg/L. Lake Taihu, Lake Qinghai,
and Lake Keluke had higher TP compared to Lake Yanghe and Lake Tuosu. There were not
many differences in TP concentrations of Lake Keluke and Lake Tuosu in different seasons.
There were clear seasonal differences in Lake Qinghai, Lake Taihu, and Lake Yanghe. The
TN was higher in the inflow rivers than the main lakes of both Lake Qinghai and Lake
Tuosu, while it had an opposite pattern about TP in the inflow rivers and the main lakes in
the two lakes.

3.2. Phytoplankton Composition and Biodiversity in the Five Lakes

The composition of phytoplankton differed among the five lakes (Figure 2). The
dominant phylum in Lake Qinghai, Lake Keluke, and Lake Tuosu was Bacillariophyta in
the spring, summer, and autumn. In Lake Qinghai, the phytoplankton abundance was
3.7 × 105 cells/L, 2.0 × 105 cells/L, and 1.5 × 105 cells/L. In the spring, summer, and au-
tumn, Bacillariophyta accounted for 65%, 59%, and 39%, and Cyanobacteria accounted for
21%, 9%, and 37%, respectively. In Lake Keluke, it was 1.2 × 105 cells/L, 4.2 × 105 cells/L,
and 2.0 × 107 cells/L. Bacillariophyta accounted for 56%, 40%, and 50% of phytoplankton,
and Cyanobacteria accounted for 24%, 31%, and 28% in the spring, summer, and autumn, re-
spectively. In Lake Tuosu, it was 2.9 × 104 cells/L, 6.9 × 104 cells/L, and 5.6 × 104 cells/L.
Bacillariophyta accounted for 88%, 47%, and 82% of phytoplankton, and Cyanobacteria
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accounted for 9%, 22%, and 4% in the spring, summer, and autumn, respectively. The
phytoplankton abundance of Lake Yanghe was 5.2 × 106 cells/L, 2.3 × 108 cells/L, and
3.1 × 108 cells/L in the spring, summer, and autumn, respectively. The dominant phylum
of Lake Yanghe was Cyanobacteria in all three seasons, except for the spring. Chlorophyta
accounted for 52% of phytoplankton in Lake Yanghe in the spring, and Cyanobacteria
accounted for 89% and 98% of phytoplankton in Lake Yanghe in the summer and au-
tumn, respectively. The dominant phylum of Lake Taihu was Cyanobacteria, which ac-
counted for 35%, 44%, and 43% of phytoplankton in the spring (3.4 × 108 cells/L), summer
(2.6 × 108 cells/L), and autumn (1.5 × 108 cells/L), respectively. The dominant species
was Microcystis sp. in Lakes Taihu and Yanghe and was Synedra sp. In Lake Qinghai, Lake
Keluke, and Lake Tuosu. The Bacillariophyta species (Navicula sp. And Cyclotella sp.);
the Chlorophyta species (Monoraphidium sp., Schroederia sp., Oocystis sp., Scenedesmus sp.,
Chlamydomonas sp., and Closterium sp.); and the Cyanobacteria species (Anabeana sp. and
Oscillatoria sp.) were discovered in all five lakes.

Table 1. Means and standard deviations of several water parameters of lakes and inflow rivers of
five lakes in China.

Lakes and Rivers (n) Seasons
Water Parameters

Temperature (◦C) pH Salinity (ppt) TN (mg/L) TP (mg/L)

Qinghai (6)
Spring 17.9 ± 2.3 9.2 ± 0.09 10.5 ± 0.7 2.7 ± 1.2 0.06 ± 0.05

Summer 17.5 ± 0.1 9.2 ± 0.01 9.5 ± 1.1 1.8 ± 0.8 0.01 ± 0.004
Autumn 7.0 ± 3.5 9.4 ± 0.2 8.6 ± 2.9 3.5 ± 3.0 0.04 ± 0.04

Mean 14.6 ± 5.5 9.3 ± 0.1 9.6 ± 1.8 2.6 ± 1.8 0.04 ± 0.04
Qinghai (IR) (4) Spring 12.3 ± 3.4 8.5 ± 0.3 0.26 ± 0.1 7.0 ± 9.6 0.004 ± 0.003

Summer 16.5 ± 0.8 8.6 ± 0.3 0.28 ± 0.07 5.8 ± 4.9 0.02 ± 0.02
Autumn 8.1 ± 0.9 8.6 ± 0.1 0.24 ± 0.09 7.0 ± 3.6 0.02 ± 0.01

Mean 12.5 ± 4.0 8.6 ± 0.2 0.26 ± 0.09 6.6 ± 6.6 0.01 ± 0.01

Keluke (5)
Spring 20.6 ± 4.0 8.5 ± 0.2 10.2 ± 20.4 5.1 ± 8.0 0.05 ± 0.05

Summer 21.2 ± 0.8 8.4 ± 0.3 3.0 ± 3.8 3.9 ± 1.1 0.05 ± 0.03
Autumn 6.0 ± 0.6 8.2 ± 0.4 7.7 ± 11.7 7.5 ± 7.3 0.06 ± 0.05

Mean 15.9 ± 7.6 8.4 ± 0.3 6.9 ± 13.1 5.5 ± 6.0 0.05 ± 0.04

Tuosu (3)
Spring 20.3 ± 0.9 9.2 ± 0.03 22.2 ± 0.4 0.3 ± 0.4 0.02 ± 0.002

Summer 23.1 ± 1.2 8.8 ± 0.3 8.5 ± 7.4 2.0 ± 0.4 0.02 ± 0.003
Autumn 10.1 ± 0.3 9.1 ± 0.02 13.9 ± 6.7 1.6 ± 0.3 0.02 ± 0.01

Mean 17.8 ± 5.9 9.0 ± 0.2 14.9 ± 7.8 1.3 ± 0.8 0.02 ± 0.008
Tuosu (IR)(1) Mean 16.1 ± 6.8 8.6 ± 0.2 0.77 ± 0.1 2.2 ± 0.05 0.01 ± 0.004

Yanghe (6)
Spring 17.1 ± 0.7 5.7 ± 0.8 0.17 ± 0.08 2.7 ± 0.02 0.01 ± 0.001

Summer 26.9 ± 0.7 8.4 ± 0.2 0.16 ± 0.005 0.1 ± 0.01 0.01 ± 0.002
Autumn 15.5 ± 0.1 6.5 ± 0.6 0.18 ± 0.001 0.5 ± 0.1 0.03 ± 0.01

Mean 19.8 ± 5.2 6.9 ± 1.3 0.17 ± 0.04 1.1 ± 1.2 0.02 ± 0.01

Taihu (12)
Spring 17.4 ± 0.2 6.8 ± 0.3 0.30 ± 0.04 2.8 ± 0.7 0.09 ± 0.11

Summer 30.6 ± 0.4 7.4 ± 0.4 0.24 ± 0.03 0.6 ± 0.5 0.01 ± 0.003
Autumn 23 ± 0.4 6.9 ± 0.3 0.22 ± 0.02 0.5 ± 0.4 0.04 ± 0.03

Mean 23.7 ± 5.5 7.0 ± 0.4 0.25 ± 0.04 1.3 ± 1.2 0.05 ± 0.07

n indicates the number of sampling sites; IR indicates inflow rivers.

There were clear differences in phytoplankton biodiversity of the five lakes. In Lake
Qinghai, the phytoplankton biodiversity was 0.19 ± 0.30, 0.38 ± 0.37, and 0.39 ± 0.46 in the
spring, summer, and autumn, respectively. In Lake Keluke, the phytoplankton biodiversity
was 0.87± 0.56, 0.75± 0.67, and 0.72± 0.45, respectively. In Lake Tuosu, the phytoplankton
biodiversity was 0.41± 0.39, 1.25± 0.19, and 0.66± 0.30 in the spring, summer, and autumn,
respectively. In Lake Yanghe, the phytoplankton biodiversity was 0.91 ± 0.18, 0.10 ± 0.07,
and 0.34 ± 0.43 in the spring, summer, and autumn, respectively. In Lake Taihu, the
phytoplankton biodiversity was 0.38 ± 0.33, 0.51 ± 0.37, and 0.41 ± 0.39, respectively.

25



Int. J. Environ. Res. Public Health 2022, 19, 3135

Figure 2. Phytoplankton composition based on the abundance in different seasons in Lake Qing-
hai (QH), Lake Keluke (KL), Lake Tuosu (TS), Lake Yanghe (YH), Lake Taihu (TH), and the inflow
rivers (IR) of Lake Qinghai and Lake Tuosu. The error bars indicate the standard deviations of
phytoplankton abundance in each lake.

3.3. Correlations between Water Parameters and Phytoplankton in the Five Lakes

The phytoplankton had significant relationships with temperature based on the an-
nual average data from Lake Qinghai, Lake Keluke, Lake Tuosu, Lake Yanghe, and Lake
Taihu (Figure 3). Bacillariophyta, Cyanobacteria, Chlorophyta, and phytoplankton abun-
dance had significantly positive relationships with temperature under R2 = 0.59, 0.70,
0.71, and 0.74 (p < 0.05). Additionally, the ratio of Bacillariophyta/phytoplankton had a
significantly negative relationship with temperature (p < 0.01), and the ratio of Cyanobacte-
ria/phytoplankton had a significantly positive relationship with temperature (p < 0.01).

The phytoplankton had a significant relationship with pH based on the annual
average data from the five lakes in China (Figure 4). Bacillariophyta, Cyanobacteria,
Chlorophyta, and phytoplankton abundance had significantly negative relationships with
pH under R2 = 0.58, 0.82, 0.80, and 0.81 (p < 0.01). Additionally, the ratio of Bacillario-
phyta/phytoplankton had a significantly positive relationship with the pH (p < 0.01). The
ratio of Cyanobacteria/phytoplankton had a significantly negative relationship with the pH
(p < 0.01). Additionally, phytoplankton had a significant relationship with salinity based on
the annual average data from the five lakes in China (Figure 5). Bacillariophyta, Cyanobac-
teria, Chlorophyta, and phytoplankton abundance had significant negative relationships
with salinity (p < 0.05) (Figure 5).
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Figure 3. Relationships between temperature (T) and phytoplankton based on the annual average data
of each site of Lake Qinghai, Lake Keluke, Lake Tuosu, Lake Yanghe, and Lake Taihu. (A–D) showed
the relationships between T and phytoplankton, and (E–H) showed the relationships between T
and phytoplankton composition. Bacillariophyta, Chlorophyta, Cyanobacteria, and phytoplankton
abundance were transformed by Log (X + 1). P-i indicates the i/phytoplankton ratio based on
abundance. H-phytoplankton represents the biodiversity of phytoplankton.
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Figure 4. Relationships between pH and phytoplankton based on the annual average data of each
site of Lake Qinghai, Lake Keluke, Lake Tuosu, Lake Yanghe, and Lake Taihu. (A–D) showed the
relationships between pH and phytoplankton, and (E–H) showed the relationships between pH
and phytoplankton composition. Bacillariophyta, Chlorophyta, Cyanobacteria, and phytoplankton
abundance were transformed by Log (X + 1). P-i indicates the i/phytoplankton ratio based on
abundance. H-phytoplankton represents the biodiversity of phytoplankton.
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Figure 5. Relationships between salinity and phytoplankton based on the annual average data of
each site of Lake Qinghai, Lake Keluke, Lake Tuosu, Lake Yanghe, and Lake Taihu. (A–D) showed
the relationships between salinity and phytoplankton, and (E–H) showed the relationships between
salinity and phytoplankton composition. Bacillariophyta, Chlorophyta, Cyanobacteria, and phyto-
plankton abundance were transformed by Log (X + 1). P-i indicates the i/phytoplankton ratio based
on abundance. H-phytoplankton represents the biodiversity of phytoplankton.
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4. Discussion

The temperature was one of the most essential factors regulating the growth of phyto-
plankton [1,7]. In the present study, phytoplankton abundance had a significantly positive
relationship with water temperature. Additionally, the lakes with higher temperatures gen-
erally possessed higher phytoplankton abundance, such as Lake Taihu and Lake Yanghe.
Thus, the temperature was a crucial factor promoting the growth of phytoplankton in the
five lakes. Previous studies demonstrated that higher temperatures favored the growth
of Cyanobacteria [10–12]. This is consistent with the result in the present study that the
lakes with higher temperatures generally had higher Cyanobacteria abundance and a
Cyanobacteria/phytoplankton ratio. Lake Taihu and Lake Yanghe had higher average
water temperatures compared to Lake Qinghai, Lake Keluke, and Lake Tuosu. Hence,
Lake Taihu and Lake Yanghe had higher average Cyanobacteria abundance and a higher
Cyanobacteria/phytoplankton ratio than Lake Qinghai, Lake Keluke, and Lake Tuosu.
Additionally, the Cyanobacteria/phytoplankton ratio exhibited a significantly positive
relationship with temperature.

The nutrients were another vital factor regulating the growth of phytoplankton. In
the present study, TN had a high concentration in the five lakes, and there were not many
differences in TP concentration. A previous study revealed that the growth of the dominant
phytoplankton was not nutrient-limited under P enrichment ≥ 0.20 mg·L−1 (P) and N
enrichment ≥ 0.80 mg·L−1 (N) [8]. Therefore, the growth of the dominant phytoplankton
in all the lakes was not N-limited. In other words, TN does not shape the differences in
phytoplankton abundance in the five lakes. Phosphorus is one of the limiting factors for
phytoplankton growth in all five lakes, since the TP was much lower than 0.20 mg·L−1

in those lakes. Thus, TP does not shape the differences in phytoplankton abundance in
the five lakes. However, the high nutrient level in Lake Qinghai, Lake Keluke, and Lake
Tuosu, located in the Tibetan Plateau, should be stressed under climate change. In recent
years, the lakes in the Tibetan Plateau are undergoing an increase in temperature and
precipitation. The rising temperature may result in a blooming of phytoplankton, especially
Cyanobacteria, in those lakes with enough nutrients. The increase in precipitation may
induce more nutrient input, especially TP, in the lakes of the Tibetan Plateau. This has been
confirmed in Lake Qinghai that the TP increased but TN decreased in the inflowing rivers,
contributing to the alleviation of the P deficiency in Lake Qinghai and the promotion of the
growth of phytoplankton [31].

In the present study, the pH had significantly negative relationships with Bacillario-
phyta, Cyanobacteria, Chlorophyta, and phytoplankton. This may be caused by a relatively
high phytoplankton abundance and low pH in Lake Taihu and Lake Yanghe, as well as
relatively low phytoplankton abundance and high pH in other lakes. A previous study
suggested that the natural phytoplankton biomass decreased in high pH (9.5) incubation,
while the phytoplankton biomass increased in pH 8–9 incubation [43]. In Lake Taihu and
Lake Yanghe, the mean pH was low (pH = 7.0 and 6.9, respectively), and the phytoplankton
could grow well if the pH increased from 7.0 to 9.0, since the blooming of the phytoplankton
was associated with an increase in pH [44]. This would be explained by the blooming of
the phytoplankton, which depletes the dissolved CO2 concentration and, therefore, results
in an increase in pH [45–47]. This is consistent with previous studies that the pH increased
with increasing the cell densities of Cyanobacteria, and the Cyanobacteria blooms were
associated with high pH [44,48,49]. In Lake Yanghe, the Cyanobacteria accounted for 98%
of the total phytoplankton when the Cyanobacteria abundance reached 2.2 × 108 cells/L,
and the pH reached 8.7 in the summer. However, the high pH may not favor the growth of
phytoplankton. Additionally, Microcystis aeruginosa and Scenedesmus quadricauda were at
the stationary phase under high pH values (10.0), and both algae resumed growing when
the pH was decreased using HCl [50]. Additionally, Touloupakis et al. [51] confirmed that
the light conversion efficiency of Cyanobacteria decreased linearly with the increase in pH
at a range of 7.5–11. Therefore, a high pH (high OH−) could cause an adverse effect on the
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phytoplankton growth [52], and the phytoplankton cannot grow well in Lake Qinghai and
Lake Tuosu at high pH values (both mean pH ≥ 9.0).

High salinity was an adverse factor for phytoplankton growth, since it can cause
oxidative stress to algal cells, resulting in cell death [53,54]. This is consistent with the results
in the present study. The Bacillariophyta, Cyanobacteria, Chlorophyta, and phytoplankton
all had significantly negative relationships with salinity. However, the low phytoplankton
abundance in some brackish lakes should not be simply attributed to high salinity. Recently,
more and more studies have revealed that freshwater phytoplankton blooms occur in
brackish waters [32,33]. Additionally, indoor cultivation has implied that the freshwater
strain Microcystis aeruginosa, a typical blooming species, acclimated to a salinity gradient
that could reach 7.5 [52]. In the present study, Lake Keluke had a salinity lower than
the maximum tolerance salinity based on indoor cultivation but a low phytoplankton
abundance. Hence, the low phytoplankton abundance of Lake Keluke should not be simply
attributed to high salinity. In Lake Tuosu, nevertheless, the salinity reached 11.3 ± 9.2 and
could have an adverse effect on many phytoplankton species.

The factors elaborated above are imperative to phytoplankton, especially for phy-
toplankton of the alpine lakes in the Tibetan Plateau. The lakes in the Tibetan Plateau
experience a warm and wet climate [55,56], leading to changes in the water temperature,
nutrients, and salinity and eventually facilitating the growth of phytoplankton [57]. Particu-
larly, phytoplankton blooms may occur in those brackish lakes with enough nutrients under
climate change. The brackish lakes in the Tibetan Plateau should receive priority for man-
agement, since some rare fish and birds live in those lakes. Their simple and fragile food
chains could be altered under climate change. Buffer zones may be an effective approach
for those alpine lakes to alleviate diffusive pollutions from agriculture and livestock.

5. Conclusions

The phytoplankton community was dominated by Bacillariophyta, followed by Cyanobac-
teria and Chlorophyta in the alpine lakes, including Lake Qinghai, Lake Keluke, and Lake
Tuosu. It was dominated by Cyanobacteria, followed by Chlorophyta and Bacillariophyta
in Lake Yanghe. Additionally, it was dominated by Cyanobacteria, followed by Chloro-
phyta and Cryptophyta in Lake Taihu. The temperature was a crucial factor influencing
the growth of Cyanobacteria, Chlorophyta, and Bacillariophyta, especially Cyanobacteria
and Chlorophyta. The pH had significantly negative relationships with Cyanobacteria,
Chlorophyta, and Bacillariophyta. Moreover, it could be a strongly negative factor for
phytoplankton growth in alpine lakes. Salinity had significantly negative relationships
with Cyanobacteria, Chlorophyta, and Bacillariophyta. It was also an adverse factor for
phytoplankton when it was very high.
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Abstract: Frequent outbreaks of harmful algal blooms (HABs) represent one of the most serious
outcomes of eutrophication, and light radiation plays a critical role in the succession of species.
Therefore, a better understanding of the impact of light radiation is essential for mitigating HABs. In
this study, Chlorella pyrenoidosa and non-toxic and toxic Microcystis aeruginosa were mono-cultured
and co-cultured to explore algal responses under different nutrient regimes. Comparisons were
made according to photosynthetically active radiation (PAR), UV-B radiation exerted oxidative
stresses, and negative effects on the photosynthesis and growth of three species under normal
growth conditions, and algal adaptive responses included extracellular polymeric substance (EPS)
production, the regulation of superoxide dismutase (SOD) activity, photosynthetic pigments synthesis,
etc. Three species had strain-specific responses to UV-B radiation and toxic M. aeruginosa was
more tolerant and showed a higher adaptation capability to UV-B in the mono-cultures, including
the lower sensitivity and better self-repair efficiency. In addition to stable µmax in PAR ad UV-B
treatments, higher EPS production and enhanced production of photosynthetic pigments under UV-B
radiation, toxic M. aeruginosa showed a better recovery of its photosynthetic efficiency. Nutrient
enrichment alleviated the negative effects of UV-B radiation on three species, and the growth of
toxic M. aeruginosa was comparable between PAR and UV-B treatment. In the co-cultures with
nutrient enrichment, M. aeruginosa gradually outcompeted C. pyrenoidosa in the PAR treatment and
UV-B treatment enhanced the growth advantages of M. aeruginosa, when toxic M. aeruginosa showed
a greater competitiveness. Overall, our study indicated the adaptation of typical algal species to
ambient UV-B radiation and the stronger competitive ability of toxic M. aeruginosa in the UV-radiated
waters with severer eutrophication.

Keywords: Microcystis aeruginosa; Chlorella pyrenoidosa; ultraviolet B radiation; photosynthetic efficiency;
adaptation capability; nutrient enrichment

1. Introduction

With the rapid economic development and pollutant discharge, eutrophication has
seriously affected aquatic ecosystems over the last several decades [1,2]. Frequent outbreaks
of harmful algal blooms (HABs) represent one of the most serious outcomes of eutrophica-
tion [3,4] and many studies have investigated the effects of environmental factors, such as
temperature, light, and nutrients, on the growth of typical species and the development
of HABs [5,6]. These factors could partly explain the underlying mechanism of HAB
formation and the seasonal succession of species. For a long time, cyanobacteria gained
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much attention from environmental degradation and human health perspectives [7–9].
Especially, many scholars have focused on Microcystis in recent years, which is a dominant
cyanobacterial genus in many eutrophic waters and often exhibits a greater threat to the
microcystins produced by toxic species [10–12].

Light could directly affect the photosynthesis and growth of cyanobacteria [13,14],
which were closely associated with light intensity, exposure time, and light wavelength.
Especially, other than necessary photosynthetically active radiation (PAR; 400–700 nm),
enhanced ultraviolet (UV) radiation is reported for many aquatic ecosystems throughout
the world due to serious stratospheric ozone depletion [15,16]. Therefore, the effects of
UV radiation on typical cyanobacterial species have received considerable attention in
recent years, and most studies have used Microcystis as a model species [17–19]. Freshwater
ecosystems in the middle and lower reaches of Yangtze River are susceptible to enhanced
UV radiation due to the lack of depth refuge [20], and Microcystis often occur as the surface
blooms that encounter higher irradiance [21,22]. It is assumed that Microcystis should be
more threatened and suffered greater UV-induced damage. However, the frequency and
intensity of the dominance of Microcystis continue to increase in typical eutrophic lakes in
China, such as Lake Taihu. Hence, it is crucial to investigate and compare the responses of
Microcystis and other algal species to UV radiation.

The composition of HABs in freshwater ecosystems is varied and often includes
cyanobacteria and green microalgae as the major components [21,23]. For example, Micro-
cystis and Chlorella were the most dominant species in eutrophic lakes in China, although
their cell densities fluctuated wildly during different seasons [12]. Meanwhile, Microcystis
blooms were often formed by mixed species when the seasonal succession and competition
between the non-toxic and toxic species have been widely studied [24,25]. For example, the
toxic Microcystis aeruginosa was determined to be more harmful to Chlorella vulgaris than the
non-toxic species at higher temperatures [19]. Although numerous studies have focused
on the effects of UV on algae in recent years, relatively few studies have deeply examined
and compared the adaptive strategies to the ambient UV radiation of non-toxic and toxic
M. aeruginosa and other species [16,26]. Some scholars investigated the effects of nutrient
enrichment on algal responses to UV radiation and the results are varied. For example,
Li et al. [27] reported that the effects of UV-B on phytoplankton productivity might be
underestimated in iron-deficient ecosystems, and Yang et al. [28] reported that the nega-
tive impact was most pronounced when UV-B exposure and P limitation were combined.
Meanwhile, Zheng et al. [29] reported that impacts of solar UV radiation on algal growth
differed significantly at different N concentrations. However, the influence mechanisms
of nutrient enrichment on algal adaptation and biotic interactions to UV radiation also
remain unclear. In addition, many studies have investigated the effects of UV radiation
on algal growth in the pure mono-culture systems [13,30], and it remains unclear how the
coexistence of algae was affected by UV radiation, despite the fact that algal species coexist
in the natural ecosystems. In this regard, the co-cultures with different nutrient conditions
may provide useful information to address cyanobacterial blooms and algal competition
in the natural waters and to better explain the synergistic effects of eutrophication and
irradiation in mixed communities.

In this study, we selected C. pyrenoidosa and non-toxic and toxic M. aeruginosa to
investigate their various physiological responses with ambient irradiation treatment under
different nutrient regimes. The main goals were to: (i) analyze the effects and mechanisms
of ambient UV-B radiation on three species, (ii) compare and explore the responses of the
adaptation capability of three species to UV radiation, and (iii) study the effects of nutrient
enrichment on algal growth and competition.

2. Materials and Methods
2.1. Algal Culture

C. pyrenoidosa (FACHB 5), non-toxic M. aeruginosa (FACHB 469), and toxic M. aeruginosa
(FACHB 905) were obtained from the Freshwater Algae Culture Collection of the Institute
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of Hydrobiology, Chinese Academy of Sciences (FACHB). For the three algal species,
M. aeruginosa is a dominant genus during the outbreaks of HABs, and C. pyrenoidosa was
selected because of its common distribution and frequent co-existence with cyanobacteria
in many Chinese eutrophic ecosystems [14]. All strains were pre-cultured separately and
exponential growth was maintained by transferring 5 mL of growing cultures to fresh
standard BG11 medium in Erlenmeyer flasks every 8–10 days for enlargement [31]. Pre-
culture was performed under sterile conditions and the flasks were placed at 25 ◦C under
40 µmol photons m−2 s−1 PAR with cool white fluorescent lamps (light/dark regime of
12 h:12 h) in the illuminated incubator (GZX-250BS-II). All flasks were shaken three times
per day to prevent the cells from adhering to inner walls, and the position of flasks was
exchanged randomly to ensure uniform light exposure.

2.2. Experimental Setup

After pre-culture and enlargement–cultivation, the exponentially growing algal cells
were collected and suspended in phosphate buffer solution (PBS, pH = 7.4) for washing
and reservation prior to running our formal experiments. After 3–4 days, algal cells were
collected again and inoculated into 500-mL flasks containing 300–400 mL of modified
BG11 medium for experiments in the mono-cultures and co-cultures. In the first scheme
of modified BG11 medium, the composition was as shown in Table S1, and concentra-
tions of nitrogen (N), phosphorus (P), and iron were comparable to those in the natural
waters, representing normal growth conditions. In the second scheme of modified BG11
medium, the initial N, P, and iron concentrations were appropriately increased (Table S1),
representing nutrient enrichment conditions. The initial cell density of three species was
1.0 × 106 cells mL−1, which approximated the cell number at the beginning of HABs in
most eutrophic lakes in China [32]. Meanwhile, co-cultures were conducted to simulate
natural conditions and to explore the characteristics of algal competition. To this end,
C. pyrenoidosa was co-cultured with non-toxic and toxic M. aeruginosa, when the inoculation
ratio was 1:1 and the cell density of each strain was 1.0 × 106 cells mL−1.

On each day, algal cultures in the flasks were transferred into sterilized petri dishes
with quartz glass covers (20 cm in diameter) for PAR or UV-B exposure after slightly shaking
the flasks, representing PAR treatment and UV-B treatment, and the two treatments both
lasted for 4 h (9:00–13:00). In the PAR treatment, petri dishes were maintained in another
illumination incubator and continuously irradiated with 50 µmol photons m−2 s−1 PAR.
In the UV-B treatment, petri dishes were stored in clean chambers and subjected to high-
pressure mercury UV-B lamps with the dominant wavelength of 313 nm (TL20W/01RS,
Philips, Eindhoven, Netherlands, Figure S1). In the UV-B treatment, light exposure was
restricted to UV-B and no photosynthetically active wavelengths were given to algal cells.
The effective irradiation intensity of PAR and UV-B in our study was 70 and 0.8 W m−2,
respectively. After the irradiation treatment for 4 h, algal cultures were returned to flasks
and incubated under the conditions as described in the pre-cultures for the rest time on
each day (dark during 0:00–6:00 and 18:00–24:00, 40 µmol photons m−2 s−1 PAR during
6:00–9:00 and 13:00–18:00). The incubation lasted for 14 days in our study and a schematic
diagram of the experiment is shown in Figure S2.

Based on field monitoring, the adopted PAR and UV-B in different treatments was
in accordance with the natural conditions at noon in the middle and lower reaches of the
Yangtze River [26]. The vertical sides of petri dishes were all covered with aluminum foil
to ensure vertical radiation and the irradiance was measured using a miniature fiber optic
spectrometer (FLA4000A+, Flight, Hangzhou, China).

2.3. Analytical Methods of Parameters
2.3.1. Cell Density and Photosynthetic Efficiency

Subsamples were regularly taken for determining cell density in the mono-cultures
and co-cultures. Cells were both enumerated by using a flow cytometer (CytoFLEX S,
Beckman Coulter, Fullerton, CA, USA), when M. aeruginosa and C. pyrenoidosa could be
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clearly differentiated by autofluorescence in the co-cultures [33]. Then, the algal growth
rate was determined as follows: µ = (lnN2 − lnN1)/(t2 − t1), where N1 and N2 was the
cell density on days t1 and t2, respectively. The maximum µ during the whole incubation
period was defined as µmax, which is an important index to indicate algal growth potential.

A Phyto-PAM fluorometer (Hein Walz, Effeltrich, Germany) was adopted to determine
the effective quantum yield (Fv/Fm) of algal species. The Phyto-PAM fluorometer has been
increasingly used in laboratory and in situ experiments, and Fv/Fm can effectively indicate
the efficiency of algal photosynthesis apparatus [34–36].

2.3.2. Release of K+ by Algal Cells

As K+ is absorbed into the vacuole of algae cells and is mainly stored as an enzyme
activator, the algal release of K+ can be manifested for cell membrane damage [37,38].
During the incubation process, 10-mL supernatant samples of three species were regularly
taken and immediately filtered through 0.2-µm mixed cellulose ester filters (Whatman,
Little Chalfont, Buckinghamshire, UK) after daily irradiation. Then, the solution was
acidified to pH = 2 with HNO3 and K+ content was determined by the inductively coupled
plasma mass spectrometry (IC-PMS) (XII series, Thermo, Waltham, MA, USA). Afterwards,
the release rate of K+ by algal cells was calculated as a percentage and ultrasonic disrupted
samples were adopted to make a comparison.

2.3.3. Characterization of Extracellular Polymeric Substance (EPS)

The extraction of EPS was conducted according to the methods described by Gao et al. [39]
and Yang et al. [40]. Firstly, samples of the algal cultures were sonicated with 100 W
ultrasound treatment for 5 min to obtain a uniform distribution, then filtered through
0.45-µm filters (Whatman, Little Chalfont, Buckinghamshire, UK) in order to separate
soluble EPS (SEPS) from cell pellets [41]. The supernatant was collected and stored at 4 ◦C
in the dark. Then, the harvested cells were washed in ultra-pure water, re-suspended in
0.05% NaCl solution, and centrifuged at 16,000× g for 20 min. The resulting supernatant
was collected as bounded EPS (BEPS) and also stored at 4 ◦C in the dark.

On Day 1, the filtered SEPS and BEPS fractions were taken without dilution and
the excitation emission matrix (EEM) spectra were determined by using a fluorescence
spectrometer (F-7000, Hitachi, Tokyo, Japan). The excitation wavelengths were increased
from 200 to 400 nm in 5-nm steps and the emission spectra were recorded from 250
to 500 nm in 1-nm increments. The increments were all set at 5 nm, and a scan speed
of 2400 nm min−1 was applied. The blank scans were performed using modified BG11
medium, in which no fluorescence substance was present.

In addition, the contents of SEPS and BEPS were quantified spectrophotometrically
(UV-2700, Shimadzu, Kyoto, Japan) during the whole incubation process by the anthrone
sulfuric acid method and the values were normalized to cell density [42].

2.3.4. Reactive Oxygen Species (ROS) in Cells and Superoxide Dismutase (SOD) Activity

Before and during the incubation process in the mono-cultures, subsamples were
regularly taken for the determination of ROS in algal cells of three species and activity of
SOD. The details can be seen in the Supplementary Materials (SM).

2.3.5. Cell Adsorption Spectra and Contents of Photosynthetic Pigments

At the beginning of incubation, a scanning spectrophotometer (Beckman Coulter,
Fullerton, CA, USA) was used to measure the whole-cell absorption spectra of three species
between 400 and 750 nm. Cell cultures with the optical density value at 680 nm (OD680) of
0.10 were used for measurement and the absorption peaks could indicate the existence of
photosynthetic pigments in algal cells [43].

At different stages of the incubation (Day 1 and 8) in the mono-cultures, a subsample
of algal cultures was collected and filtrated through 0.2-mm mixed cellulose ester filters
(Whatman) to determine the contents of photosynthetic pigments (pg cell−1) in single cells,
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including chlorophyll a (Chl-a), carotenoid (CAR), and phycocyanin (PC). The details can
be seen in SM.

2.4. Statistical Analysis

All experiments were conducted in triplicate and means ± standard deviations of
three replicates were calculated. The parametric three-way repeated-measures analysis of
variance (RM-ANOVA) was used to determine the effects of irradiation treatments (PAR
and UV-B), species (C. pyrenoidosa, non-toxic and toxic M. aeruginosa), and sampling time
on the cell density, growth rates, EPS contents, and other parameters. Data were tested for
normality and the variance assumptions of parametric ANOVA, and no data transformation
was needed. If the interaction factor was significant at p < 0.05, a one-way ANOVA followed
by Tukey’s test was adopted to determine where differences lie. Meanwhile, the student’s
t-test was adopted to test the differences in the algal cell density of different species on
a specific day in the co-cultures. All statistical analyses were performed using SPSS 22.0
(Chicago, IL, USA).

3. Results
3.1. Algal Growth in the Mono-Cultures under Normal Growth Conditions
3.1.1. Cell Density and Algal Photosynthetic Efficiency

In the PAR treatment, three species could all persistently grow and reached the
maximum cell density on Day 14 (Figure 1). Meanwhile, the maximum cell density of
C. pyrenoidosa was higher compared to the other two species, and toxic M. aeruginosa prop-
agated more slowly. By comparison, the significant inhibitive effects (p < 0.05) of UV-B
radiation were observed on algal growth, including cell density on a specific day, the
maximum cell density during the incubation, and the duration of exponential growth.
More specifically, three species both grow slowly and their cell densities began to decrease
on Day-10 in the UV-B treatment. For algal photosynthetic efficiency, Fv/Fm of three species
in the PAR treatment gradually increased before Day-10 and decreased afterwards. The
variation patterns of algal Fv/Fm were different in the UV-B treatment, which decreased
from the beginning, increased during Day 2–10, and declined afterwards. Moreover, algal
Fv/Fm on a specific day in the UV-B treatment was always lower (p < 0.05) than that in the
PAR treatment.

For C. pyrenoidosa and non-toxic M. aeruginosa under normal growth conditions, µmax
in the UV-B treatment was significantly lower (p < 0.05) compared with those in the PAR
treatment (Figure 2), which indicated the negative effects of UV-B on the intrinsic growth
potential of two species. Although µmax of toxic M. aeruginosa was lower in the PAR
treatment compared with the other two species, it did not change significantly (p > 0.05)
with daily UV-B radiation in our study.

3.1.2. Diurnal Changes of Algal Fv/Fm

The diurnal changes of Fv/Fm were similar for three species in the PAR and UV-B
treatments (Figure 3). During the incubation, diurnal Fv/Fm did not change significantly
after 4 h of PAR treatment (p > 0.05), irrespective of species. In comparison, algal diurnal
Fv/Fm decreased after 4 h of UV-B radiation (p < 0.05), which could then increase after the
withdrawal of UV-B radiation on each day. However, the decline degree and recovery of
Fv/Fm was dependent on the incubation time and species.

For three species, their Fv/Fm decreased to 15.2–40.6% of the initial values after UV-B
radiation on Day 2 and they recovered to 75.2–83.3% of the initial values within 20 h, when
the decline was lower for toxic M. aeruginosa (p < 0.05). On Days 6 and 8, the decline of algal
Fv/Fm worsened after UV-B radiation and algal Fv/Fm could all recover to the initial values
within 20 h. Meanwhile, the recovery rate increased with the development of incubation,
and the recovery rate was highest for toxic M. aeruginosa (p < 0.05). In comparison, the
inhibition of UV-B radiation on Fv/Fm was maximum for C. pyrenoidosa on each day and the
recovery rate of its Fv/Fm was lower.
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Figure 3. Diurnal changes of Fv/Fm of three species in the PAR and UV-B treatments under normal
growth conditions on Day 2, Day 6, and Day 8.

3.2. K+ Contents in the Algal Cultures

The release rates of K+ by three species were all less than 5% before Day 6 in the PAR
treatment (Figure 4), which could indicate the integrity of cells. Moreover, algal release
rates of K+ did not differ significantly between PAR and UV-B treatments during this period
(p > 0.05), when the death and propagation of algal cells might be in a state of balance.
After reaching the exponential growth stage in the PAR treatment, algal metabolism was
enhanced with higher cell density, leading to the gradual increase of K+ in the cultures
(9.38–10.22% on Day 12). In comparison, the cell rupture of three species and algal release
rates of K+ were significantly promoted in the UV-B treatment (p < 0.05), indicating the
greater damage of UV-B radiation on algal cells during this period.
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3.3. EPS Determination of Algal Cells

At the beginning of incubation, 3-D EEM spectra of algal EPS were determined and
EEM contours were depicted (Figure S3). Results showed that EEM contours of BEPS
and SEPS were similar for C. pyrenoidosa and non-toxic and toxic M. aeruginosa, indicating
the similar metabolism patterns of three species. For BEPS, two peaks were presented
near Ex/Em of 225/325 nm (peak T2) and 280/325 nm (peak T1), which belonged to the
low-molecular aromatic protein and soluble microbial by-product like protein (such as
tyrosine and tryptophan-like substances), respectively [44]. In contrast, three peaks were
presented near Ex/Em of 280/325 nm (peak T1), 340/430 nm (peak C, humic-acid like
substances), and 275/435 nm (peak A, fulvic-acid like substances) in SEPS.

During the incubation, EPS contents increased for all three species in the PAR and
UV-B treatments, and SEPS and BEPS had distinct changing trends during the incubation
(Figure 5). For two M. aeruginosa species in the PAR treatment, SEPS content gradually
increased and then remained constant, but BEPS content both increased in the early stage
and decreased with increasing cell density. Meanwhile, the production of BEPS and SEPS
was stronger for toxic M. aeruginosa (p < 0.05) during the incubation. In comparison, algal
production of BEPS and SEPS by M. aeruginosa species was enhanced (p < 0.05) before Day 8
in the UV-B treatment. With the decline of cell densities, BEPS contents of two M. aeruginosa
species decreased and their SEPS contents increased greatly after Day 10. In contrast, EPS
production by C. pyrenoidosa was weaker in the PAR treatment (p < 0.05) and UV-B radiation
did not significantly promote BEPS production before Day 8.
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Figure 5. Contents of BEPS and SEPS produced by (a) C. pyrenoidosa, (b) non-toxic M. aeruginosa and
(c) toxic M. aeruginosa cells in the PAR and UV-B treatments.

3.4. Antioxidant Responses of Algal Species under Normal Growth Conditions
3.4.1. ROS in Algal Cells and SOD Activity

The variation patterns of ROS in algal cells and algal SOD activity were similar for
three species (Figure 6). In the PAR treatment, ROS and algal SOD activities were constant
(p > 0.05) before Day 4 compared to the initial values, indicating that PAR treatment did
not cause evident oxidative stresses on three species. However, ROS gradually increased
after Day 6 in the PAR treatment, and algal SOD activity was elevated for all three species.
Compared with PAR treatment, ROS of two M. aeruginosa species were comparable in the
UV-B treatment on Day 2 and they were higher (p < 0.05) after Day 6. In comparison, ROS of
C. pyrenoidosa was higher in the UV-B treatment on Day 2 and it was further promoted after
Day 6, which was higher than that in the cells of two M. aeruginosa species. Irrespective of
species, algal SOD activities were significantly higher (p < 0.05) in the UV-B treatment before
Day 8, which could provide effective antioxidant protection. However, as the incubation
progressed, algal SOD activity decreased sharply and leveled off until the end of incubation.
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Figure 6. ROS in the cells of three species (vertical bar) and algal SOD activity (line and scatter)
during the incubation in the PAR and UV-B treatments under normal growth conditions (the arrow
indicates the initial value of ROS contents).

3.4.2. Contents of Photosynthetic Pigments

For all three species, the whole-cell absorption spectra indicated that they have Chl-a
(two absorption peaks in the blue and red parts of the spectra at around 440 and 680 nm)
and CAR with an absorption peak at around 495 nm (Figure S4). Moreover, non-toxic and
toxic M. aeruginosa had an extra absorption peak at around 620 nm, which was regarded to
phycocyanin in cyanobacterial cells [45].

Similar Chl-a contents of algal single cells were observed in the PAR and UV-B treat-
ments on Day 1 (p > 0.05, Table 1). However, CAR of three species and PC of two Microcystis
species were significantly promoted (p < 0.05) in the UV-B treatment on Day 1. Moreover,
algal CAR/Chl-a and PC/Chl-a ratios in the UV-B treatment were higher (p < 0.05) than
those in the PAR treatment at this moment. As incubation progressed on Day 8, Chl-a
in algal cells were lower (p < 0.05) in the UV-B treatment compared to those in the PAR
treatment, which could indicate the damage to chlorophyll synthesis. Meanwhile, algal
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CAR and PC contents in the UV-B treatment decreased greatly (p < 0.05) compared with
Day 1, which were lower (p < 0.05) than those in the PAR treatment. Compared with PAR
treatment, the CAR/Chl-a ratio of C. pyrenoidosa on Day 8 was lower in the UV-B treatment
(p < 0.05), whereas CAR/Chl-a and PC/Chl-a ratios of two M. aeruginosa species were
significantly higher on Day 8 in the UV-B treatment (p < 0.05).

Table 1. Contents of photosynthetic pigments of three species in the PAR and UV-B treatments on
Day 1 and Day 8 under normal growth conditions).

Contents of Piments
(pg/cell)

C. pyrenoidosa Non-Toxic
M. aeruginosa

Toxic
M. aeruginosa

PAR UV-B PAR UV-B PAR UV-B

Day 1

Chl-a 0.14 ± 0.02 0.15 ± 0.02 0.18 ± 0.03 0.16 ± 0.01 0.17 ± 0.02 0.17 ± 0.03
CAR 0.12 ± 0.02 0.19 ± 0.02 * 0.07 ± 0.01 0.11 ± 0.01 * 0.06 ± 0.02 0.12 ± 0.02 *
PC \ \ 0.62 ± 0.07 0.84 ± 0.06 * 0.55 ± 0.03 0.75 ± 0.04 *

CAR/Chl-a 0.86 ± 0.02 1.25 ± 0.06 * 0.41 ± 0.02 0.68 ± 0.05 * 0.37 ± 0.05 0.72 ± 0.01 *
PC/Chl-a \ \ 3.46 ± 0.15 5.15 ± 0.35 * 3.26 ± 0.16 4.64 ± 0.28 *

Day 8

Chl-a 0.36 ± 0.04 0.24 ± 0.03 * 0.27 ± 0.01 0.11 ± 0.01 * 0.25 ± 0.01 0.12 ± 0.02 *
CAR 0.18 ± 0.01 0.09 ± 0.01 * 0.11 ± 0.01 0.07 ± 0.01 * 0.10 ± 0.02 0.05 ± 0.01
PC \ \ 0.70 ± 0.01 0.54 ± 0.04 * 0.67 ± 0.03 0.46 ± 0.03 *

CAR/Chl-a 0.50 ± 0.02 0.39 ± 0.03 * 0.42 ± 0.05 0.68 ± 0.02 * 0.42 ± 0.06 0.63 ± 0.03 *
PC/Chl-a \ \ 2.61 ± 0.03 5.07 ± 0.38 * 2.68 ± 0.05 4.12 ± 0.24 *

* Bold values with * indicated significant higher contents in the UV-B treatment compared with PAR treatment at
p < 0.05, while those bold and underlined values with * indicated significant lower contents in the UV-B treatment
compared with PAR treatment at p < 0.05.

3.5. Algal Growth in the Mono-Cultures under Nutrient Enrichment Conditions
3.5.1. Cell Density and Algal Photosynthetic Efficiency

Compared to normal growth conditions, three species all grew steadily under nutrient
enrichment conditions and their cell densities did not decrease at the later stage (Figure 7).
For C. pyrenoidosa and non-toxic M. aeruginosa, their cell densities on a specific day and
the maximum cell density in the UV-B treatment were significantly lower (p < 0.05) than
those in the PAR treatment. However, no significant difference in the cell density of toxic
M. aeruginosa (p > 0.05) was observed between PAR and UV-B treatments during the whole
incubation process. Fv/Fm of three species gradually increased and decreased afterwards in
both PAR and UV-B treatments. Although algal Fv/Fm in the UV-B treatment were lower
(p < 0.05) than that in the PAR treatment before Day 6, the difference became smaller at the
later stage of incubation. For example, Fv/Fm of non-toxic and toxic M. aeruginosa were both
comparable (p > 0.05) in the UV-B and PAR treatments on Day 10 and Day 14.

As expected, µmax of three species increased with nutrient enrichment compared with
those under normal growth conditions in the PAR and UV-B treatments (Figure 2). µmax of
non-toxic and toxic- M. aeruginosa were lower compared with C. pyrenoidosa, but they were
both comparable between PAR and UV-B treatments (p > 0.05).

3.5.2. Diurnal Changes of Algal Fv/Fm

Compared with normal growth conditions, diurnal changes of algal Fv/Fm were similar
under nutrient enrichment conditions (Figure 8). However, the decline degrees of algal
Fv/Fm after UV-B radiation were lower (17.5–50.8%), and the recovery efficiency of Fv/Fm
was better with nutrient enrichment. For example, Fv/Fm of two M. aeruginosa species
could both totally recover to the initial values after UV-B radiation on Day 2, and Fv/Fm of
C. pyrenoidosa on Day 6 and Day 8 totally recovered to the initial values within 16 h and
8 h after UV-B radiation, respectively. For three species in the UV-B treatment, the decline
degree of Fv/Fm was also lower for toxic M. aeruginosa and it exhibited a faster recovery
rate. This result was consistent with that under normal growth conditions.
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3.6. Antioxidant Responses of Algal Species under Nutrient Enrichment Conditions
3.6.1. ROS in Algal Cells and SOD Activity

Under nutrient enrichment conditions, the variation patters of ROS in algal cells and
algal SOD activity were also similar for three species (Figure 9). More specifically, PAR
treatment did not cause great oxidative stresses on algae, but ROS and algal SOD activity
gradually increased at the later stage of incubation. In the UV-B treatment, ROS in algal
cells also increased gradually, and they only showed higher values (p < 0.05) than those
in the PAR treatment after Day 10. For algal SOD activity in the UV-B treatment, they all
exhibited a sharp increase and decreased gradually to maintain a stable value. For both
PAR and UV-B treatments, ROS in algal cells were lower (p < 0.05) than those under normal
growth conditions on a specific day.
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3.6.2. Contents of Photosynthetic Pigments

As shown in Table 2, similar patterns were overserved for the algal synthesis of
photosynthetic pigments on Day 1. Compared to the initial values, Chl-a contents of
algal single cells were comparable in the PAR and UV-B treatment (p > 0.05), but CAR
and PC in single cells increased greatly (p < 0.05) in the UV-B treatment, resulting in the
higher CAR/Chl-a and PC/Chl-a ratios of three species on Day 1. Moreover, CAR and
PC contents, CAR/Chl-a and PC/Chl-a ratios were all higher (p < 0.05) with nutrient
enrichment compared to those under normal growth conditions.

On Day 8, despite the fact that the Chl-a contents of algal single cells were lower
(p < 0.05) in the UV-B treatments, they showed an increasing trend compared with those
on Day 1. This was consistent with the patterns of cell density. In addition, CAR and
PC in single cells were also higher (p < 0.05) in the UV-B treatment at this moment, and
CAR/Chl-a and PC/Chl-a ratios were promoted with UV-B radiation. This pattern was
remarkably different from that under normal growth conditions.
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arrow indicates the initial value of ROS contents).

3.7. Interspecific Competition in the Co-Cultures

Algal growth patterns were comparable in the PAR treatment (Figure 10), i.e.,
C. pyrenoidosa grew rapidly after the lag period and soon outcompeted non-toxic or toxic
M. aeruginosa, while the cell density of C. pyrenoidosa decreased when that of M. aeruginosa
started to increase. Compared with mono-cultures, the maximum cell densities of three
species were all lower (p < 0.05) in the co-cultures (Table S2). However, the maximum cell
density of C. pyrenoidosa seemed to decrease more in the PAR treatment, and the decline
was great in the co-cultures of C. pyrenoidosa with toxic M. aeruginosa. In comparison, two
M. aeruginosa species gained the obvious dominance and maintained competitive advan-
tages from the beginning in the UV-B treatment, and the growth of C. pyrenoidosa was also
markedly inhibited, which achieved 42.1% and 31.4% of the maximum cell density in the
mono-cultures. Meanwhile, despite the faster growth of C. pyrenoidosa in the mono-cultures,
µmax of C. pyrenoidosa decreased greatly when it was co-cultured with M. aeruginosa in
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the PAR and UV-B treatments. However, µmax of non-toxic M. aeruginosa only decreased
slightly and µmax of toxic M. aeruginosa even increased slightly.

Table 2. Contents of photosynthetic pigments of three species in the PAR and UV-B treatments on
Day 1 and Day 8 under nutrient enrichment conditions.

Contents of Piments
(pg/cell)

C. pyrenoidosa Non-Toxic
M. aeruginosa

Toxic
M. aeruginosa

PAR UV-B PAR UV-B PAR UV-B

Day 1

Chl-a 0.14 ± 0.01 0.15 ± 0.02 0.18 ± 0.02 0.16 ± 0.02 0.17 ± 0.02 0.17 ± 0.02
CAR 0.12 ± 0.02 0.23 ± 0.02 * 0.09 ± 0.01 0.14 ± 0.01 * 0.08 ± 0.01 0.15 ± 0.01 *
PC \ \ 0.67 ± 0.02 0.97 ± 0.04 * 0.58 ± 0.02 0.94 ± 0.02 *

CAR/Chl-a 0.84 ± 0.05 1.52 ± 0.08 * 0.41 ± 0.01 0.83 ± 0.02 * 0.37 ± 0.05 0.88 ± 0.09 *
PC/Chl-a \ \ 3.57 ± 0.22 6.01 ± 0.48 * 3.17 ± 0.18 5.58 ± 0.42 *

Day 8

Chl-a 0.50 ± 0.02 0.35 ± 0.04 * 0.41 ± 0.02 0.30 ± 0.02 * 0.39 ± 0.01 0.29 ± 0.01 *
CAR 0.23 ± 0.02 0.27 ± 0.01 * 0.18 ± 0.02 0.26 ± 0.01 * 0.15 ± 0.01 0.19 ± 0.01
PC \ \ 0.70 ± 0.02 0.83 ± 0.03 * 0.69 ± 0.01 0.79 ± 0.03 *

CAR/Chl-a 0.46 ± 0.03 0.78 ± 0.06 * 0.45 ± 0.05 0.86 ± 0.06 * 0.38 ± 0.02 0.68 ± 0.02 *
PC/Chl-a \ \ 1.72 ± 0.02 3.83 ± 0.21 * 1.78 ± 0.09 2.84 ± 0.25 *

* Bold values with * indicated significant higher contents in the UV-B treatment compared with PAR treatment at
p < 0.05, while those bold and underlined values with * indicated significant lower contents in the UV-B treatment
compared with PAR treatment at p < 0.05.
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4. Discussion
4.1. Effects of UV-B Radiation and Algal Responses

Although UV irradiance usually constitutes a few percent of solar radiation (5.85–8.51%
in China), many studies have analyzed the effects of UV radiation on algal growth and
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negative effects were often reported [46,47]. Based on field and laboratory experiments, the
main influencing mechanisms of UV-B radiation on algae include cell vitality impairment,
ROS production, DNA damages, changes of nutrient utilization, etc. [26,27,48,49]. Our
results are consistent with these findings, namely in that ambient UV-B radiation could
exert negative effects on typical algal species in freshwater ecosystems, which also showed
adaptative responses to UV-B radiation.

Since the growth and vitality of photosynthetic organisms are mainly governed by
photosynthetic activity and the photosynthetic apparatus is an important damage target of
UV-B radiation [50,51], daily Fv/Fm of all three species in the UV-B treatment were often
lower compared to those in the PAR treatment. This result indicated that ambient UV-B
might cause damages to D1 or D2 protein in algal photosystems [52] and 50 µmol m−2 s−1

of PAR did not have similar effects. However, different from many other studies using high-
dose UV-B radiation whereby algal photosynthetic systems were greatly damaged [53,54],
algal Fv/Fm gradually increased during Day 2–10 under two different growth conditions.
Based on algal Chl-a contents on Day 1 and the release rates of K+, the adopted UV-B
treatment in our study did not have direct lethal effects on algae, and changes of algal
Fv/Fm and growth could be the balance between the light-induced effects and adaptive
physiological processes of cells. This was confirmed by the diurnal changes of algal Fv/Fm,
as Fv/Fm of three species recovered with different rates after UV-B exposure, which could
have resulted from processes, such as oxidation resistance, nucleotide resynthesis, ATP
supply, or the repair of damaged proteins [55,56].

UV radiation could cause the overexcitation of substances and produce excess ROS
in algal cells or in the cultures [57,58], leading to the impairment of algal photosynthetic
systems and normal growth. Consistently, ROS contents in UV-B radiated algal cells were
higher during the incubation under normal growth conditions. The increase of ROS in the
later period in the PAR treatment was consistent with the work of Latifi et al. [59] in that
some environmental factors, such as nutrient deficiency and light limitation, could indi-
rectly generate ROS at multiple sites of the photosynthetic electron transport chain in algal
cells. However, as mentioned above, the oxidative stresses and resulting damages could be
mitigated with algal adaptive strategies. In our study, EPS production, the up-regulation of
SOD activity, CAR and PC synthesis, and recovery of Fv/Fm by three species, could act as
their effective adaptation mechanisms, resulting in decreased sensitivity to UV-B exposure
and increased self-repair efficiency. For example, algal EPS consisted of polysaccharides,
proteins, lipids, and humic substances and often appeared as a structureless slimy layer
around cells, which was helpful to algal aggregation and its resistance to environmental
stresses [38,42,60]. Meanwhile, higher CAR and PC in cells could adsorb UV-B light and
quench ROS to alleviate damage to algal photosynthetic systems and DNA [50,61]. More-
over, higher CAR in the cells could increase the algal utilization efficiency of light and
promote its generation of ATP and other substances [50,62], such as antioxidant enzymes,
nucleotides, and proteins, to repair damaged apparatus in algal cells [18,30]. In the UV-B
treatment, the high SOD activity and enhanced production of CAR and PC by algae in the
early stage could partly explain the gradual increase of algal Fv/Fm and cell density. How-
ever, these adaptive responses of three species might be not enough to remove UV-induced
oxidative stresses at the later stage under normal growth conditions, and inhibition on algal
growth could occur. Our previous study indicated that algal adaptation to UV-B radiation
required energy and essential nutrient substances [26], and this could be the possible reason
for algal decay at the later stage in the UV-B treatment. Especially, cumulative ROS might
damage the antioxidant systems of UV-radiated algae after Day 8 under normal growth
conditions and result in low SOD activity and algal death.

4.2. Comparison of Algal Adaptation to UV-B Radiation

In previous studies, scholars have often investigated the strategies of cyanobacteria
to alleviate the harmful effects of UV-B radiation, such as the production of UV-absorbing
compounds (UVCs) to mitigate photo-induced damages, vertical migration of cells to
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decrease the irradiation stress, enhanced self-repair, etc. [46,51,63]. In this study, three
species exhibited strain-specific responses to UV-B radiation, when toxic M. aeruginosa was
more tolerant and showed a higher adaptation capability, including lower sensitivity to
UV-B radiation and better self-repair efficiency.

Firstly, C. pyrenoidosa grew faster, whereas toxic M. aeruginosa had similar µmax in the
PAR and UV-B treatments, which might indicate the stronger plasticity of toxic M. aeruginosa
to maintain a stable growth potential. The lower growth rate of toxic M. aeruginosa was
probably caused by the excess energy cost for microcystin production [64]. Secondly, EPS
production by toxic M. aeruginosa could provide a better adaptation to UV-B radiation. In
this study, toxic M. aeruginosa produced more BEPS in the early stage in the UV-B treatment,
when tryptophan-like substances in BEPS could absorb UV-B radiation and play the role of
precursor to UV-absorbing metabolites [65]. The decrease of BEPS and increase of SEPS at
the later stage could be explained as some UV-absorbing compounds were degraded, and
this contributed to the decreased adaptation of algae to UV radiation under normal growth
conditions [49,57]. Meanwhile, toxic M. aeruginosa excreted more SEPS, and organic matter
in SEPS had a positive effect on algal aggregation [41,66]. The aggregated morphology of
algal cells could be beneficial to reduce photo-induced damage by shading [67,68] and this
was regarded as one kind of defense against UV-B in the natural waters. Furthermore, the
high iron availability for algal cells could decrease UV-induced damages [27] and higher
EPS could serve as an important iron reservoir that helps toxic M. aeruginosa to better cope
with UV-B radiation [11,60].

Moreover, toxic M. aeruginosa exhibited a better antioxidant response in the UV-B
treatment. In our study, two M. aeruginosa species could promote the synthesis of CAR
and PC in the UV-B treatment, which was further enhanced with nutrient enrichment.
As mentioned above, the beneficial effects of CAR and PC included the alleviation of
photo-induced damage and the promotion of self-repair [15,69]. Moreover, microcystin
synthesis by toxic M. aeruginosa could contribute to a higher fitness of cells under UV-B
irradiation through a covalent interaction with the cysteine residue of proteins [70]. Conse-
quently, Fv/Fm decline was lower and the recovery rate was faster for toxic M. aeruginosa
under two different conditions. Xu et al. [18] also indicated that toxic M. aeruginosa had
a competitive advantage relative to non-toxic strain in a changing light environment via
stronger antioxidant capacity (higher SOD activity and the synthesis of microcystin) and
quicker PSII recovery capacity The decrease of CAR and PC on Day 8 under normal growth
conditions was related to the photooxidation and photodegradation of pigments, when
the biological resources in the cultures might be not enough for the algal resynthesis of
pigments and other efficient metabolic processes [71]. Compared to PAR treatment, the
higher CAR/Chl-a and PC/Chl-a ratios of two M. aeruginosa species under normal growth
conditions and higher CAR/Chl-a and PC/Chl-a ratios of all three species under nutrient
enrichment conditions probably indicated their increased acclimation to prolonged UV-B
exposure [13,72]. This was consistent with results obtained by Jiang et al. [50]. Although
increased cell density partially reduced UV-B radiation at the later stage of incubation, our
results could be mainly ascribed to the adaptation capability of algae to UV radiation in the
2-cm depth dishes.

4.3. Effects of Nutrient Enrichment and Algal Competition Characteristics

Whereas scholars have often studied the influences and mechanisms of UV radia-
tion on algae, fewer studies have focused on the effects of nutrient enrichment. Mean-
while, the role of UV-B radiation in determining interspecific competition has not been
clearly elucidated.

Combining the diurnal changes of algal Fv/Fm and algal growth patterns under differ-
ent growth conditions, nutrient enrichment alleviated the negative effects of UV-B radiation
on three species in our study. This was in accordance with our previous findings that
higher P availability could enhance algal adaptation to UV radiation [26]. Zheng et al. [29]
also reported that UV-induced inhibition of algal growth and photosynthetic production
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changed in accordance with the changes of the chemical environment in the water. In our
study, the beneficial effects of nutrient enrichment also included decreasing algal sensitivity
to UV-B radiation and increasing its self-repair efficiency. For example, higher contents of
CAR and PC in cells with nutrient enrichment could help algae to counteract UV-induced
damages [50,73], which resulted in lower ROS in cells and lower decline degrees of algal
Fv/Fm on each day. Meanwhile, three species did not require a great deal of energy and
biological resources to deal with UV-B radiation, and they could better promote their
growth after self-repair with more nutrients in the medium, such as the photo-reactivation
of DNA or resynthesis of D1 proteins [18,22]. Therefore, algal µmax values were higher and
three species persistently grew in the UV-B treatment under nutrient enrichment condi-
tions. Since toxic M. aeruginosa exhibited a higher adaptation capability to UV-B radiation,
as previously discussed, the beneficial effects of nutrient enrichment were best for toxic
M. aeruginosa, and its growth was comparable between PAR and UV-B treatment during
the whole incubation.

Wind-induced mixing of water and sediment resuspension could cause pulse fluctua-
tions of irradiation conditions and high nutrient availability in the water, where different
algal species coexist. Thus, the co-cultures under nutrient enrichment conditions might
partly explain the competitive advantages of typical species in the field. Different from the
mono-cultures, C. pyrenoidosa was not always the fastest-growing species in the co-cultures,
and exposure to UV-B radiation could enhance the growth advantages of M. aeruginosa.
Our previous study indicated that the augmentation of algal P quota could alleviate or
eliminate the negative effects of UV radiation on algae [26]. Considering that M. aeruginosa
had a faster and better P accumulation ability compared to other typical species in fresh-
water ecosystems [74], M. aeruginosa might have a stronger adaptation capability to UV-B
radiation and a stronger competitive advantage in the co-cultures. However, since nutrients
were not limited under nutrient enrichment conditions, allelopathy effects between species
might have a more important role in the co-cultures [19,75]. In our study, two M. aeruginosa
species demonstrated a greater inhibition effect on C. pyrenoidosa growth compared with
the negative effects of C. pyrenoidosa on M. aeruginosa. For example, when the secondary
metabolites of green algae showed declining inhibitory effects as incubation progressed,
the extracts of cyanobacteria and microcystins were often more effective to inhibit the
growth of other species [24,76]. Therefore, µmax of C. pyrenoidosa decreased greatly and
two M. aeruginosa species outcompeted C. pyrenoidosa at the later stage in the PAR treat-
ment. Meanwhile, toxic M. aeruginosa showed a greater competitiveness to maintain high
µmax and inhibit C. pyrenoidosa growth in the co-cultures. As mentioned above, the higher
EPS contents and microcystin of M. aeruginosa cells were conducive to the adaptation of
Microcystis to UV-B radiation [11,70]. Furthermore, the aggregation of Microcystis might
prevent C. pyrenoidosa to utilize PAR for self-repair or recovery after UV-B radiation [77].
Consequently, non-toxic and toxic M. aeruginosa were dominant from the beginning in the
UV-B treatment, and toxic M. aeruginosa also had a greater impact in depressing the growth
of C. pyrenoidosa. In this sense, the dominance of cyanobacteria and advantages of toxic M.
aeruginosa could be enhanced in UV-radiated waters with severer eutrophication. However,
the complexities and likely influence of coexisting yet unexamined factors deserve a further
in situ study in the future.

5. Conclusions

(1) Compared with PAR, 4 h of ambient UV-B radiation could exert oxidative stresses and
negative effects on the photosynthesis and growth of three algal species under normal
growth conditions. The adopted UV- B treatment did not cause lethal effects on algae,
and three species could grow with adaptive responses, including EPS production,
regulation of SOD activity, synthesis of photosynthetic pigments, and Fv/Fm recovery.

(2) Three species exhibited strain-specific responses to ambient UV-B radiation in the
mono-cultures, when toxic M. aeruginosa was more tolerant and showed a higher adap-
tation capability to UV-B, including lower sensitivity and better self-repair efficiency.
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In addition to stable µmax in two treatments, higher production of EPS, and enhanced
production of CAR and PC under UV-B radiation, toxic M. aeruginosa showed a better
recovery of its photosynthetic efficiency.

(3) Nutrient enrichment could alleviate the negative effects of UV-B radiation on al-
gae, and the growth of toxic M. aeruginosa was comparable between PAR and UV-B
treatment. In the co-cultures with nutrient enrichment, M. aeruginosa gradually out-
competed C. pyrenoidosa in the PAR treatment, and UV-B treatment enhanced the
growth advantages of M. aeruginosa, when toxic M. aeruginosa showed a greater
competitiveness to maintain high µmax and inhibit the growth of C. pyrenoidosa.
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Abstract: Enrofloxacin is an important antimicrobial drug that is widely used in aquaculture. En-
rofloxacin residues can have negative effects on aquatic environments and animals. The toxicological
effects of different concentrations of enrofloxacin residues in cultured water on Chinese mitten
crabs (Eriocheir sinensis) were compared. A histological analysis of the E. sinensis hepatopancreas
demonstrated that the hepatopancreas was damaged by the different enrofloxacin residue concen-
trations. The hepatopancreas transcriptome results revealed that 1245 genes were upregulated and
that 1298 genes were downregulated in the low-concentration enrofloxacin residue group. In the
high-concentration enrofloxacin residue group, 380 genes were upregulated, and 529 genes were
downregulated. The enrofloxacin residues led to differentially expressed genes related to the immune
system and metabolic processes in the hepatopancreas of the Chinese mitten crab, such as the genes
for alkaline phosphatase, NF-kappa B inhibitor alpha, alpha-amylase, and beta-galactosidase-like.
The gene ontology terms “biological process” and “molecular function” were enriched in the car-
boxylic acid metabolic process, DNA replication, the synthesis of RNA primers, the transmembrane
transporter activity, the hydrolase activity, and the oxidoreductase activity. A Kyoto Encyclope-
dia of Genes and Genomes pathway analysis determined that the immune and metabolic signal
transduction pathways were significantly enriched. Furthermore, the nonspecific immune enzyme
(alkaline phosphatase) and the metabolic enzyme system played a role in the enrofloxacin metabolism
in the E. sinensis hepatopancreas. These findings helped us to further understand the basis of the
toxicological effects of enrofloxacin residues on river crabs and provided valuable information for the
better utilization of enrofloxacin in aquatic water environments.

Keywords: enrofloxacin; Eriocheir sinensis; transcriptome

1. Introduction

The Chinese mitten crab (Eriocheir sinensis) is a commonly farmed crustacean species
typically found in benthic aquatic environments [1]. The Yangtze River Delta is a primary
breeding area for crabs in China [2]. Generally, farmers adopt intensive and high-density
farming methods to obtain high returns and profits. This breeding practice leads to a
gradual deterioration in water quality and increases the incidence of infectious diseases [3].
To prevent disease outbreaks during crab farming, large amounts of antibiotics are used
and, as such, are released into the natural water environment.

Enrofloxacin is a third-generation fluoroquinolone antibacterial drug [4,5] which is
often used to treat bacterial infections in crab breeding operations in China because of its
wide antibacterial spectrum and high potency [6,7]. Although enrofloxacin is approved
for aquaculture in China [8], when used in large quantities, the antimicrobial remains in
the aquaculture water and sediment accumulates in aquatic animals. Pharmacokinetic
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studies on enrofloxacin in crustaceans, including the Eriocheir sinensis [9–11], Atlantic
horseshoe crab [12], and giant mud crab [13], have been reported. Enrofloxacin can be
biotransformed in vivo into its major metabolite, ciprofloxacin, in crabs. More importantly,
Roca et al. reported that quinolone residues are not degraded during processing and that
their presence in food poses a risk to human health [14]. The risk of enrofloxacin and
ciprofloxacin residues in aquatic products and the aquatic environment has become an
important issue that has attracted increasing attention.

Many recent studies on aquaculture animals have focused on the residual charac-
teristics of enrofloxacin and ciprofloxacin; the rate of biotransformation; and the health
risks of consuming residual enrofloxacin and ciprofloxacin in Procambarus clarkia [15],
Exopalaemon carinicauda [16], and Pangasianodon hypophthalmus [17]. Su et al. reported that
enrofloxacin has significant effects on the gene expression of the cytochrome P450 3 (CYP3),
glutathione S-transferases (GST), and phosphoenolpyruvate carboxykinase (PEPCK) in
crabs [18], which are key molecules that affect the metabolism, immunity, and antitumor
activity of organisms [19–22]. However, there are still few enrofloxacin toxicology reports
on Eriocheir sinensis in cultured water.

In this study, we built a microcosm that authentically simulated aquaculture conditions
and used it as a research tool to determine the mechanisms underlying the toxicological
effects exerted on crabs through exposure to different concentrations of enrofloxacin. In
crustaceans, the hepatopancreas has multiple functions, including nutrient absorption and
metabolization, the storage of minerals and energy reserves, the synthesis of lipoproteins,
the detoxification of heavy metals, and the excretion of uric acid [23]. In addition, the
hepatopancreas is an important organ and is the primary site for the synthesis, excretion,
and regulation of immune and metabolic molecules [24]. Su et al. demonstrated that
enrofloxacin regulated immunity- and metabolism-related gene expression, such as that of
CYP3, GST, and PEPCK [18]. Here, we continued to explore the effect of enrofloxacin on
the hepatopancreas by using RNA sequencing. Thus, we collected the hepatopancreatic
tissue from E. sinensis following 10 days of exposure to two different concentrations of
enrofloxacin. Histomorphological observations and transcriptome analyses revealed the
toxicological effects of enrofloxacin as well as the mechanisms underlying these effects.

We further analyzed the toxicological effects of different concentrations of enrofloxacin
on E. sinensis using hepatopancreas transcriptome analyses. These results aided in understand-
ing their effect on the immune system and metabolic process disorders of Eriocheir sinensis and
laid the foundation for further research on Eriocheir sinensis by developing an understanding
of the defense mechanism essential for maintaining healthy mitten crabs in aquaculture.

2. Materials and Methods
2.1. Experimental Design and Sampling

To authentically simulate the culture environment of mitten crabs, three Chinese mitten
crab culture drums with the same conditions were selected. Each drum had a diameter of
2 m, height of 1.2 m, and water depth of approximately 1 m. Twelve Chinese mitten crabs
of similar sizes and weights were placed in each barrel. The amounts of enrofloxacin, 1.875
and 3.750 g, were determined according to the national drug standard, and the enrofloxacin
was evenly sprinkled into two different Chinese mitten crab culture drums. After standing
for 24 h, the concentration of enrofloxacin in the culture water was 0.63 mg/L in the
low-concentration enrofloxacin residue group and 1.25 mg/L in the high-concentration
enrofloxacin residue group. After 10 days of sprinkling, crabs were anesthetized on ice and
then sampled from the control, low-concentration, and high-concentration enrofloxacin
residue groups. The drugs in the aquaculture water were not completely degraded by the
time of sampling. The remaining hepatopancreas samples were stored at −20 ◦C.

2.2. Histopathological Analysis of the Hepatopancreas

Hepatopancreatic tissue samples were immediately fixed in 4% paraformaldehyde
for 24 h, dehydrated in gradient concentration of ethanol, and embedded in paraffin
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wax. Using a microtome, 4–5 µm thick sections were obtained and then stained with
hematoxylin and eosin (HE). Histopathological changes were observed under a Nikon 50i
optical microscope (Nikon Corporation, Tokyo, Japan).

2.3. Total RNA Extraction and Sequencing

The transcriptome sequencing and analyses were conducted by Novogene Co., Ltd.
(Beijing, China). Total RNA was extracted using a TRIzol® Reagent Kit (Invitrogen, Cal-
ifornia, USA) according to the manufacturer’s protocol. The RNA quality and quantity
were examined using 1% Tris–acetate (TAE) agarose gel electrophoresis. Equal quantities
(0.5 µg) of RNA from E. sinensis hepatopancreas samples were separately pooled to elimi-
nate sample variation and to create two main samples. The samples were used for RNA-seq
library construction using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (New
England Biolabs, Ipswich, MA, USA) according to the protocol. The AMPure XP system
(Beckman Coulter, Beverly, MA, USA) was used to purify library fragments for selecting
complementary DNA (cDNA). After the library was constructed, a Qubit2.0 (Thermo Fisher
Scientific, Waltham, MA, USA) Fluorometer was used for initial quantification, and the
library was diluted to 1.5 ng/µL. The Agilent 2100 BioAnalyzer (Agilent Technologies,
Palo Alto, CA, USA) was used to determine the insert size of the library. For ensuring
the library quality, quantitative real-time PCR (qRT-PCR) was used to accurately quan-
tify an effective library concentration of higher than 2 nM. Mixed DNA libraries were
diluted to 4–5 pM for sequencing using an Illumina NovaSeq 6000 instrument (Illumina
Inc, San Diego, CA, USA).

2.4. De Novo Transcriptome Assembly

We removed low-quality adapter sequences by filtering raw reads. The resulting clean
reads were assembled to produce complete reference sequences using the Trinity program
(v2.4.0; min_kmer_cov:3). Longer contigs were assembled until they could not be extended
to either side. The unigenes were obtained by removing redundant transcripts. Using
BLASTx (2.2.28+; threshold E-value=1 × 10−5), the assembled transcripts were aligned
with the following National Center for Biotechnology Information protein databases: nonre-
dundant (NR), nucleotide sequence (NT), protein family (PFAM), gene ontology (GO), and
protein sequence (Swiss-Prot). The best hits were used for the functional annotation of the
unigenes. Blast2GO (b2g4pipe_v2.5, threshold E-value=1 × 10−6) was used to obtain and
analyze GO annotations for the uniquely assembled transcripts.

2.5. Differentially Expressed Gene (DEG) Analysis

DEGs between the control and residue groups were identified using the DESeq pack-
age (http://bioconductor.org/packages/release/bioc/html/DESeq.html, accessed on 30
October 2021). An absolute log2-fold change > 1 and FDR < 0.05 were used as thresholds
to define DEGs. DEGs were then subjected to GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses.

2.6. Enzymatic Analysis

Acid phosphatase (ACP), alkaline phosphatase (AKP), glutathione sulfotransferase
(GSH-ST), and acetylcholinesterase (AchE) activities were measured using commercial kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China) according to the manufac-
turer’s instructions.

2.7. Statistical Analyses

All data were analyzed using SPSS statistics 20 (IBM Inc., Chicago, IL, USA) through
one-way analysis of variance (ANOVA), and differences between groups were analyzed
using Student’s t-test. Statistical significance was set at p < 0.05.
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3. Results
3.1. Enrofloxacin Residues Induced Hepatopancreas Injury in E. sinensis

The degree of hepatopancreatic damage was a direct reflection of the intensity of
the toxicity of the external stimuli as observed with the aid of HE staining [25]. In the
hepatopancreases of the Chinese mitten crabs in the control group, the basement mem-
branes were complete and clear, and the nuclei were arranged in an orderly manner. The
absorbing cells, alveolar cells, fibroblasts, and embryonic cells were clearly distinguished
(Figure 1A). However, relative to the control group, in the low-concentration enrofloxacin
residue group, the hepatopancreases demonstrated an enlarged space in their lumens and
deformed basement membranes; the components in the cells were loosely arranged, the
number of nuclei was significantly reduced, and this was accompanied by inflammatory cell
infiltration (Figure 1B). In the high-concentration enrofloxacin residue group, the damage
to the basement membranes was more severe, the internal structure of the cell membranes
was deformed, the internal arrangement of the cells was disordered, the cell structure was
lost, secretion in the hepatopancreatic duct cavity was increased, and hepatopancreatic
duct atrophy was observed (Figure 1C).
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Figure 1. Hematoxylin and eosin staining of E. sinensis hepatopancreas specimens following en-
rofloxacin exposure at different doses. (A) CON represents the control group, (B) ENR-L represents
the low-concentration enrofloxacin residue group, and (C) ENR-H represents the high-concentration
enrofloxacin residue group.

3.2. Enrofloxacin Residues Led to Multiple Gene Expression Disorders in the Hepatopancreases
of Crabs

To elucidate the molecular mechanism underlying the toxicological effects of en-
rofloxacin on crabs, a de novo assembled transcriptome analysis of the hepatopancreatic
samples was performed. The data on the success rate of gene annotation were analyzed in
seven databases, including NR, GO, KOG, KO, NT, SwissProt, and PFAM. The annotation
success rate in NR was 24,604, accounting for 25.62%; that in GO was 26,538, accounting
for 27.64%; that in KOG was 7494, accounting for 7.8%; that in KO was 9251, accounting
for 9.63%; that in NT was 17,269, accounting for 17.98%; that in SwissProt was 14,294,
accounting for 14.88%; and that in PFAM was 26,542, accounting for 27.64% (Table S1).
Through the analysis of the transcriptomic data of the three groups of crab hepatopancreas
samples, we obtained DEGs corresponding to the two doses of enrofloxacin. The DEG
analysis of the RNA sequence revealed 1245 upregulated and 1298 downregulated genes in
the hepatopancreases of the low-concentration enrofloxacin residue group relative to the
control group (Figure 2A). Meanwhile, compared with the control group, the DEG analysis
demonstrated 380 upregulated and 529 downregulated genes in the hepatopancreases of
the high-concentration enrofloxacin residue group (Figure 2B).
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Figure 2. Volcano plot of the differences in the expression profiles of E. sinensis samples in the control
and residue groups, respectively. CON represents control, (A) ENR-L represents low-concentration
enrofloxacin residue group, and (B) ENR-H represents high-concentration enrofloxacin residue
group. The x-axis represents logFC (fold change), while the y-axis represents −log10 (p-value). Red
represents significantly upregulated genes, blue represents significantly downregulated genes, and
each circle represents a single gene.

3.3. GO Analysis of DEGs Found Significant Enrichment of Biological Processes Related to
Metabolism Process in Enrofloxacin Residue Groups

To investigate the function of these DEGs in the hepatopancreases of crabs exposed
to enrofloxacin, the 2543 The DEGs corresponding to a low dose of enrofloxacin were
entered into the GO database, and the results included the biological processes (BP), cellu-
lar components (CC), and molecular function (MF). The DEGs in the low-concentration
enrofloxacin residue group, relative to the control group, demonstrated an obvious en-
richment of the biological processes chiefly related to the metabolic processes, includ-
ing the carbohydrate metabolic process (37 DEGs, p = 0.000136), tyrosine metabolic pro-
cess (13 DEGs, p = 0.001826), and glycerolipid metabolic process (9 DEGs, p = 0.006136;
Figure 3A; Table 1). Similarly, the 909 DEGs corresponding to a high dose of enrofloxacin
were entered into the GO database, and an enrichment of the biological processes was again
evident, including the carbohydrate metabolic process (17 DEGs, p = 0.000478), purine
nucleobase metabolic process (13 DEGs, p = 0.029346), and tricarboxylic acid cycle (3 DEGs,
p = 0.008759; Figure 3B; Table 1). It is worth noting that the high concentration of en-
rofloxacin residues led to DNA and RNA damage, and the obvious enrichment in the
DEGs involved in translation, DNA-templates (12 DEGs, p = 0.029357), mRNA processing
(8 DEGs, p = 0.032291), and so on (Figure 3B). Metabolic abnormalities were closely related
to DNA and RNA damage as well as transcription and translation errors. DNA damage
can impair metabolic organ functions and induce tissue inflammation, which disrupts the
homeostasis of the systemic metabolism [26]. Moreover, the Venn diagram illustrates that,
in the BP of the DEGs, the enrichment between the low- and high-concentration residue
groups relative to the control group affected three common biological processes: the car-
boxylic acid metabolic process, carbohydrate metabolic process, and DNA replication and
synthesis of RNA primers (Figure 3C). Therefore, these results illustrated that enrofloxacin
residues may affect the hepatopancreatic metabolic processes of E. sinensis.
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3.4. Molecular Function in GO Analysis of DEGs

The molecular function in the GO analysis reflected the biological function that could
be affected by the DEGs. Among the molecular functions, the transmembrane transporter
activity was most significantly affected in the low-concentration enrofloxacin residue group
relative to the control group (44 DEGs, p = 0.000256) followed by the hydrolase activity
(34 DEGs, p = 0.004765), the adenosine triphosphate enzyme (ATPase) activity (27 DEGs,
p = 0.012104), sequence-specific DNA binding (26 DEGs, p = 0.002681), heme binding
(25 DEGs, p = 2.19 × 10−5), the hydrolase activity, hydrolyzing O-glycosyl compounds
(22 DEGs, p = 4.31 × 10−6), iron ion binding (21 DEGs, p = 0.001086), chitin binding
(18 DEGs, p = 2.02 × 10−5), the sulfuric ester hydrolase activity (15 DEGs, p = 7.41 × 10−9),
and the aminoacyl-transfer RNA ligase activity (2 DEGs, p = 0.036552; Figure 4A). In the
high-concentration enrofloxacin residue group, compared with the control, the transmem-
brane transporter activity was also the most significantly affected (25 DEGs,
p = 6.42 × 10−6) followed by the hydrolase activity (19 DEGs, p = 0.000301), the oxi-
doreductase activity (19 DEGs, p = 0.002669), the structural molecule activity (17 DEGs,
p = 0.009975), chitin binding (14 DEGs, p = 2.81 × 10−8), the catalytic activity (14 DEGs,
p = 0.022347), the hydrolase activity and hydrolyzing O-glycosyl compounds (9 DEGs,
p = 0.048616), and the RNA-directed 5′-3′ RNA polymerase activity (7 DEGs, p = 0.004283;
Figure 4B). Notably, the molecular functions, including the sulfuric ester hydrolase activity,
the hydrolase activity, hydrolyzing O-glycosyl compounds, chitin binding, the metallo-
carboxypeptidase activity, the transmembrane transporter activity, the catalytic activity,
the 1-alkyl-2-acetylglycerophosphocholine esterase activity, the oxidoreductase activity,
and the phosphatase activity, occurred repeatedly in both the low- and high-concentration
enrofloxacin residue groups (Figure 4C).
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different exposure doses of enrofloxacin. Colors represent p-values. The x-axis represents the gene
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number of molecular functions in E. sinensis hepatopancreas samples following (A) low and (B) high
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3.5. Results of KEGG Analysis of DEGs

The abundant signaling pathway information in the KEGG database helped elucidate
the system-level biological functions, such as the metabolic and inflammatory pathways,
oxidative stress, protein modification, and cell death, among others [27]. Relative to the
control group, a KEGG enrichment analysis of the DEGs in the low- and high-concentration
enrofloxacin residue groups was performed. The KEGG annotation analysis demonstrated
that, following the low-dose administration of enrofloxacin, the DEGs were significantly
enriched in multiple basic pathways; the abundantly significant pathways were related to
the starch and sucrose metabolism, the lysosome metabolism, the sphingolipid metabolism,
the two-component system, other glycan degradation, the galactose metabolism, nonalco-
holic fatty liver disease, folate biosynthesis, the thiamine metabolism, and the tryptophan
metabolism, among others (Figure 5A). In addition, in the high-concentration enrofloxacin
administration group, relative to the control group, DEGs were significantly enriched in
ribosome biogenesis in eukaryotes; the starch and sucrose metabolism; carbohydrate diges-
tion and absorption; lysosome, pantothenate, and CoA biosynthesis; folate biosynthesis;
the galactose metabolism; the thiamine metabolism; the nitrogen metabolism; and the fatty
acid metabolism, among others (Figure 5B). The Venn diagram illustrates that 12 pathways
were enriched by KEGG following exposure to low or high doses of enrofloxacin, including
the starch and sucrose metabolism, the lysosome metabolism, the sphingolipid metabolism,
the two-component system, the folate metabolism, the Toll and Imd signaling pathways,
the thiamine metabolism, pantothenate and CoA biosynthesis, carbohydrate digestion and
absorption, aminobenzoate degradation, and protein digestion and absorption (Figure 5C).
Consistent with the GO analysis, the KEGG enrichment analysis also revealed that en-
rofloxacin exposure may affect the metabolic processes of the crab hepatopancreas.
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3.6. Enrofloxacin Residues Led to Immune System and Metabolic Process Disorders in the
Hepatopancreases of Chinese Mitten Crabs

By analyzing the transcriptomic data of the three groups of crab hepatopancreas
samples, we obtained DEGs corresponding to the two doses of enrofloxacin. The results
showed that low-concentration enrofloxacin exposure produced 2543 DEGs between the
control and experimental groups of which 1245 were upregulated and of which 1298 were
downregulated (Figure 2A). In the meantime, high-concentration enrofloxacin exposure
yielded a total of 909 DEGs between the control and experimental groups with 380 upreg-
ulated and 529 downregulated genes (Figure 2B). Compared with the control group, we
found that the DEGs related to the immune system and metabolic processes showed signif-
icant changes in both the low- and high-concentration enrofloxacin residue groups. In the
immune system, the DEGs, including those for alkaline phosphatase (AKP), dual oxidase
1, and nuclear factor-κB (NF-κB) inhibitor alpha, changed significantly of which NF-κB
inhibitor alpha was upregulated in both the low- and high-concentration enrofloxacin
residue groups, while the other DEGs were downregulated. In the metabolic processes,
the DEGs changed significantly, such as those for venom phosphodiesterase 2-like, beta 1,
4-endoglucanase, alpha-amylase, arylsulfatase A-like, the ecdysteroid receptor (EcR) gene,
beta-galactosidase-like, pantothenate kinase 3-like, carboxypeptidase B-like, trypsin-like
serine proteinase, chitinase 3, and juvenile hormone esterase-like carboxylesterase 1, and all
of them were downregulated in both the low- and high-concentration enrofloxacin residue
groups (Table 2). Thus, these results demonstrated that immune system and metabolic
process disorders may be key factors in E. sinensis hepatopancreatic damage.

65



Int. J. Environ. Res. Public Health 2023, 20, 1836

Table 2. Summary of DEGs related to immune system and metabolic processes in the E. sinensis
transcriptome.

CON 1 vs. ENR-L 2 CON vs. ENR-H 3

logFC p Value logFC p Value

Immune system
alkaline phosphatase −5.909012989 2.99 × 10−14 −1.36058962 3.84 × 10−2

dual oxidase 1 −3.065045953 3.06 × 10−3 −2.19026803 1.42 × 10−2

NF-kappa B inhibitor alpha 1.680036355 1.13 × 10−2 1.668237232 2.98 × 10−2

metabolic process
venom phosphodiesterase 2-like −2.154713643 1.46 × 10−4 −1.70584579 5.71 × 10−3

beta 1,4-endoglucanase −4.572645684 6.59 × 10−3 −2.81828784 1.40 × 10−2

alpha-amylase −1.803435554 1.97 × 10−2 −1.50174728 1.70 × 10−2

arylsulfatase A-like −3.900096603 7.40 × 10−9 −1.42018217 1.51 × 10−2

ecdysteroid receptor (EcR) gene −2.393264135 1.87 × 10−5 −2.0989689 2.25 × 10−4

beta-galactosidase-like −2.452835189 4.92 × 10−5 −1.93785202 8.92 × 10−4

pantothenate kinase 3-like −2.018241358 7.46 × 10−3 −1.51740929 3.45 × 10−2

carboxypeptidase B-like −3.554127549 1.86 × 10−4 −3.08832125 2.19 × 10−4

trypsin-like serine proteinase −4.213806456 4.03 × 10−3 −3.9272743 5.16 × 10−6

chitinase 3 −2.837019698 2.05 × 10−3 −1.33310288 4.96 × 10−2

juvenile hormone esterase-like carboxylesterase 1 −2.794416003 4.66 × 10−2 −1.6048277 1.09 × 10−2

1 Control group, 2 low-concentration enrofloxacin residue group, and 3 high-concentration enrofloxacin
residue group.

3.7. Immune Responses and Metabolic Enzymatic Activities following Exposure to
Enrofloxacin Residues

Our analysis revealed that damage to the E. sinensis hepatopancreas was primarily
associated with immune responses and metabolic processes. By analyzing DEGs, we found
that enrofloxacin residues led to immune system and metabolic process disorders in the
hepatopancreases of Chinese mitten crabs. The widely used indicators ACP and AKP are
potential indicators for evaluating the impact of pollutants on the immune defense of bio-
logical organisms [28,29]. The other important indicators GSH-ST and AchE are indicators
of the metabolic processes of the liver and hepatopancreas in animals [30,31]. Therefore, we
selected those genes from the target DEGs for the qPCR analyses. The results demonstrated
that the enzymatic activities of ACP and AKP in the hepatopancreases of the specimens
were significantly decreased in both the low- and high-concentration enrofloxacin residue
groups (Figure 6A). Notably, the results demonstrated that the enzymatic activities of GSH-
ST and AchE were also significantly decreased in both the low- and high-concentration
enrofloxacin residue groups (Figure 6B).
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enrofloxacin residue group, and ENR-H represents the high-concentration enrofloxacin residue group.
*** p < 0.001. (A) Pollution impact indicators, acid phosphatase (ACP) and alkaline phosphatase
(AKP), indicating the impact of low- and high-concentration enrofloxacin residues on the immune
defense of E. sinensis. (B) Metabolic process indicators, glutathione sulfotransferase (GSH-ST) and
acetylcholinesterase (AchE), indicating the impact of low- and high-concentration enrofloxacin
residues on metabolic processes of the liver and pancreas in E. sinensis. The meaning of “ns” in figure
is “no significance”.

4. Discussion

Our results indicated that exposure to low or high doses of enrofloxacin resulted in
hepatopancreatic damage in E. sinensis. The RNA sequencing results demonstrated that
enrofloxacin-induced hepatopancreatic damage was closely related to disorders of the
metabolic processes and the immune system.

Enrofloxacin, a third-generation fluoroquinolone antibacterial drug, is commonly
used to treat bacterial infections in crab breeding; however, the side effects of this antimi-
crobial treatment deserve attention. For example, the expression level of key genes and
enzymes in the hepatopancreases of the E. sinensis specimens treated with enrofloxacin
were disturbed [18]. The enrofloxacin biotransformation product, ciprofloxacin, at low
and high doses affected the expression of many genes in the hepatopancreases of the
E. sinensis specimens, and these were primarily enriched in the metabolic processes and the
immune system.

The metabolism involves a series of reactions that occur in living cells to sustain
life [32]. Metabolic disorders can lead to the occurrence and development of various disor-
ders and diseases in organisms that seriously affect the quality of life of these organisms and
that may even threaten their lives. In addition, the metabolic disorders of crabs seriously
affect the yield and environment of the aquaculture [33–35]. In eukaryotes, the metabolic
processes are involved in various interconnected cellular pathways, molecular signaling
pathways, and metabolic materials and products [36–38]. At the molecular level, metabolic
changes depend on the configuration of the metabolic pathways, which are regulated by
key metabolic enzymes, transcription factors, protein modifications, and the metabolite
clearance status; many of these pathways are closely related to the mitochondrial and
lysosomal digestive functions [39,40]. In this study, we determined that enrofloxacin expo-
sure affected the metabolism of many substances, including carbohydrates, lipids, starch,
and sucrose, as determined by the GO and KEGG enrichment analyses. Specifically, the
metabolic processes, including the metabolism of carbohydrates, tyrosine, glycerolipids,
tryptophan, methane, purine nucleobases, and amino sugars, were significantly altered fol-
lowing enrofloxacin exposure. Moreover, the functions of the mitochondria and lysosomes
were also affected by enrofloxacin. Significant changes in the enrichment results relative
to the biological processes (the response to oxidative stress, tricarboxylic acid cycle, and
protein import into the mitochondrial matrix) and molecular functions of the GO analysis
(the ATPase activity, NADH dehydrogenase activity, and oxidoreductase activity) and
KEGG analysis (the lysosome metabolism, oxidative phosphorylation, pantothenate and
CoA biosynthesis, and the fatty acid metabolism) were all involved in the resultant damage
of the mitochondrial and lysosomal functions following enrofloxacin exposure.

The metabolic pathways are well recognized as important regulators of immune
differentiation and activation [41–43]. Chen et al. reported that Ophiopogon japonicus
increased the immune response in E. sinensis, inhibited the proliferation of the white
spot syndrome virus (WSSV), and improved the survival of WSSV-challenged crabs [44].
Abamectin insecticides and anthelmintics inflict oxidative damage on aquatic animals and
impair the immune defenses, which may further cause a sharp drop in the hemocyte counts
in E. sinensis [29]. Therefore, immune homeostasis is crucial for E. sinensis survival. We
determined that enrofloxacin exposure affected the biological processes, including the
response to oxidative stress, regulation of autophagy, and viral release from the host cells,
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all of which were related to the homeostasis of the immune system [45–49]. Moreover, some
DEGs related to the immune system showed significant changes in expression, including
those of AKP, dual oxidase 1, and NF-κB inhibitor alpha, in the hepatopancreases of the
E. sinensis specimens.

The widely used indicators ACP and AKP are potential indicators for evaluating the
impact of pollutants on the immune defense of biological organisms [28]. Oxidative stress
markers, GSH-ST, and AchE are important indicators that affect the metabolic processes of
the liver and hepatopancreas in animals [50]. Overall, the ACP, AKP, GSH-ST, and AchE
levels were clearly decreased following enrofloxacin exposure in the hepatopancreases of
the E. sinensis specimens, confirming that enrofloxacin exposure affects the metabolism and
immune response in the hepatopancreas of E. sinensis. However, the mechanisms by which
enrofloxacin affects the metabolism and the immune system remain unclear and require
further investigation.

5. Conclusions

In conclusion, this study not only provided novel evidence for the toxicological effects
exerted on E. sinensis following enrofloxacin exposure but also helped elucidate the possible
mechanisms underlying this toxicity and the corresponding cellular pathways that were
activated, which notably involved the metabolic processes and immune responses.
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Abstract: Xinfengjiang River, the largest tributary of Dongjiang River, plays a key role in the water
supply of Heyuan, Huizhou, Guangzhou and even the Pearl River urban agglomeration. It is crucial
to determine the pollution status, potential ecological risk degree of heavy metals in Xinfengjiang
river sediment and their influence on the abundance of fish species. In this paper, seven heavy metal
concentrations in sediment from the Heyuan section of the Xinfengjiang river were investigated. The
order of average concentration was: As > Zn > Pb > Cr > Cu > Cd > Hg. The average concentrations
of Cd, Zn and Cu in the upper reaches of the Xinfengjiang Reservoir were significantly higher than
those in the reservoir. The mean value order of Igeo was: Cd > Zn > Pb > As > Cu > Cr > Hg. Cd and
As had the highest ecological risk index and the greatest threat to the ecological environment. Pearson
correlation analysis and principal component analysis demonstrated that the pollution source of
heavy metals such as Cu and Cd are much more likely to originate from the mine fields located in the
northeast of the sampling sites. In addition, agriculture, electronic industry and domestic sewage also
contributed to the concentration of heavy metals in different degrees. Redundancy analysis showed
that the abundance of Cypriniformes was negatively correlated with Cu and Cd concentrations,
suggesting that mining activities might indirectly affect the abundance of fish species.

Keywords: heavy metal; sediment; ecological risk; fish species

1. Introduction

Heavy metals have received widespread attention in the past few decades due to them
being persistent hazards to aquatic ecosystems and human health, which are constantly
released by natural and anthropic activities, such as mining, industrial and domestic
sewage discharge, agriculture, e-waste, soil erosion as well as rock weathering [1–4]. As
one of the components of an aquatic ecosystem, sediment plays an important role as both a
concentrated sink of heavy metal pollution, and to some extent an inevitable source [5,6]. A
significant amount of heavy metals entering water are deposited at the bottom of the water
body with suspended particles, and when the physical and chemical factors (such as pH,
oxidation–reduction potential and organic matter) change, they can be released again to
cause secondary pollution [7–9].

The toxic effects of heavy metals could disturb the metabolism and reproduction of
living organisms, cause the death of organisms and affect the aquatic biological community
through bio-accumulation mechanism [10,11]. The essential micronutrients such as Cu,
Zn, Cr, Mn and Fe may induce toxic effects on organisms at high concentration levels of
exposure, while non-essential metals such as Cd, Pb, As, Ni and Hg enhance the overall
toxic effects even at low concentration levels [12]. In addition, Pb, Cd and Hg do not
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perform any known functions in human biochemistry or physiology, nor do they naturally
exist in organisms [13]. There is extensive literature on the accumulation of heavy metals
in fish [3,10,11,14–16]. Cd, As, Cu, Zn, Pb and Cr have toxic effects to C. carpio which
are sensitive to heavy metals concentration [17]; Cu, Zn, Cd and Pb in particular have the
highest bioaccumulation in C. carpio [18].

Mining operations are considered the greatest threat to ecological integrity because
of the lasting toxicity (hundreds of years after the cessation of mining operations) [19,20].
Furthermore, the discharge of acid mine drainage and mining tailings are mainly associated
with the pollution of heavy metals in water and sediment [21]. Iron-ore extraction is
typically performed through open pit mining, which offers higher productivity and lower
costs and security risks compared to underground mining [22].

Xinfengjiang River is the largest tributary of Dongjiang River which serves about
28 million people by lying at the heart of drinking water supply source for Heyuan,
Huizhou, part of Dongguan, Shenzhen and Hong Kong [23]. It is closely related to the
survival and sustainable development of the urban agglomeration in the east of the Pearl
River Delta [24]. Xinfengjiang River Basin has a long history of mining [23,25]; the river
lies in a metallogenic belt rich in metals such as W, Sn, Zn and Pb. Many illegal small-scale
mining sites are widely distributed in the middle reaches of the river, and there are several
large-scale sources of mineral input including the Dading iron mine and the Jubankeng
tungsten mine. In addition, the non-point source pollution caused by agricultural chemical
fertilizers and pesticides is worthy of attention [26], and the electronic industry pollution
caused by industrial parks is generally high. Jinfeng Chen et al. [23] determined the content
of trace elements in the riverbed, bankside and adjacent agricultural soil of the Zhongxing
River which is located in the Dongjiang River Basin. Yun-jiang Yu et al. [27] evaluated the
heavy metals and pollution levels in the sediments of the Xinfengjiang Reservoir and the
Dongjiang River Basin. Few researchers have addressed the problem of response of fish
species to heavy metal pollution in the Xinfengjiang River. Fish are considered to be the
most significant biomonitors of aquatic systems for the evaluation of heavy metal pollution
levels [28]. This paper focuses on the heavy metal pollution conditions in the sediment of
the Xinfengjiang River in the Heyuan city section. Geo-accumulation index, individual
heavy metal ecological risk index (Ei

r) and potential ecological risk index (RI) were used to
assess ecological risk levels. We then traced the main sources of heavy metals by Pearson
correlation analysis and principal component analysis (PCA). Finally, redundancy analysis
(RCA) was used to research the response relationship between fish species and heavy
metals concentration in sediment.

2. Materials and Methods
2.1. Study Area

The Xinfengjiang River, the largest tributary of the Dongjiang River, is located in the
Northeast of the Guangdong Province (Figure 1). The Xinfengjiang river is 163 km long, of
which 94.16 km are in Heyuan City. The Xinfengjiang Reservoir, also known as Lvwan Lake,
is the largest artificial reservoir in the Guangdong Province. The study area (23.7◦ N–24.4◦ N
to 114.2◦ E–114.7◦ E) was located in Heyuan City in the middle and lower reaches of
the Xinfengjiang river, accounting for 57.8% of the total length of the Xinfengjiang river,
with a drainage area of 4340 km, accounting for 74.5% of the total basin area (Figure 1).
Influenced by maritime climate, it belongs to a subtropical monsoon climate zone. The
average temperature is 19.5~20.7 ◦C and the average annual precipitation is more than
1500 mm. Eleven sampling sites (S1—S11) were set up in the study area, of which four
(S1–S4) were located in the upper reaches of Xinfengjiang reservoir, one (S11) in the lower
reaches of the reservoir adjacent to the Dongjiang River and the other six sampling sites
(S5–S10) in the reservoir (Figure 1). On the basis of consulting the research literature on
heavy metals and examining the actual situation in the study area, seven target heavy
metals, Cu, As, Pb, Zn, Cr, As and Hg, were selected for assessment.
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2.2. Sample Collection and Analysis
2.2.1. Sediment Sampling

Sediment samples (0–10 cm depth) were collected at the corresponding sampling sites
in August, 2021. We received a portable GPS device for recording geographic location.
Three samples were collected at each site using a portable Ekman grab sampler and
subsequently mixed, then placed in an acid-rinsed polyethylene plastic bag and sealed.
The sediment samples were transferred to the laboratory for treatment while being kept
at 4 ◦C.

2.2.2. Sediment Sample Analysis

A standard reference and a reagent blank were included in the heavy metal concentra-
tion test to ensure data accuracy and precision. After natural air drying in the laboratory
at room temperature, gravel and plant roots in the samples were removed, ground and
sifted through 100 mesh for the analysis of heavy metals, including Cu, Cd, Zn, Pb, Cr, As
and Hg. The samples were digested with a microwave digestion instrument (CEM Inc.,
Matthews, NC, USA) for 10 h before concentration analysis. SK-2003AZ atomic fluorescence
spectrophotometer(Suokun technology, Beijing, China) was used to analyze the content
of As and Hg, while the other five Heavy metal concentrations were analyzed by WFX-
120 atomic absorption spectrophotometer(Beifen-Ruili, Beijing, China). Each heavy metal
concentration was tested three times, and the data were unacceptable until the relative
standard deviation <5%.

2.2.3. Fish Sampling

Fish collection was carried out from August to September in 2021 by laying drift Gill
net and ground cage, and the collection points was the same as sediment. Each drift Gill
net is 50 m in length and 2 m in height, with a mesh of 3 cm. The statistical catch was
recovered after placing a drift Gill net and a ground cage at each station for one night. The
fish specimens collected from various survey sites were photographed and weighed at
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the scene, then tagged and brought back to the laboratory for identification, analysis and
preservation.

2.3. Assessment of Heavy Metal Concentration in Sediments
2.3.1. Geo-Accumulation Index (Igeo)

The geo-accumulation index (Igeo) is one of the most widely used and simple indices to
evaluate heavy metal pollution in sediment on account of its ability to reflect the enrichment
situations and to provide consistent values for comparison [29]. It was calculated using the
following empirical relations [30]:

Igeo = log2(Cn/1.5Bn) (1)

where Cn is the concentration of study metal and Bn is the background concentration, as
listed in Table 1 Factor 1.5 was used for the background matrix correction and reducing
lithogenic effects. Table 2 showed the Igeo classes and corresponding sediment quality.

Table 1. Statistics of heavy metal concentration in sediments of XFJR.

Sample Sites Cu (mg/kg) Zn (mg/kg) Pb (mg/kg) Cd (mg/kg) Cr (mg/kg) Hg (mg/kg) As (mg/kg)

S1 32.50 163.0 68.8 1.680 41.80 0.08 22.80
S2 24.20 119.0 73.8 0.640 31.20 0.09 14.30
S3 29.30 121.0 71.5 0.630 43.10 0.08 27.50
S4 145.00 186.0 143.0 2.390 59.80 0.11 327.00
S5 14.50 80.2 135.0 0.250 22.30 0.07 33.10
S6 18.50 29.7 16.3 0.080 59.30 0.07 437.00
S7 12.00 32.2 30.4 0.060 66.00 0.07 36.50
S8 1.80 12.9 25.1 0.035 6.86 0.04 10.40
S9 1.90 21.8 65.2 0.033 8.12 0.05 3.45

S10 1.78 18.7 22.3 0.038 8.26 0.06 24.90
S11 32.40 152.0 38.9 0.790 38.70 0.14 13.20

Mean 28.50 85.13 62.75 0.602 35.04 0.078 86.38
CV(%) 141.60% 76.70% 69% 129.10% 61.90% 35.60% 172%

Background
value 16.17 48.99 39.65 0.08 38.53 0.11 19.77

Table 2. Classes of contamination indices and corresponding levels.

Igeo Class a Sediment Quality Ei
r Class b Potential Risk RI Class c Ecological Risk

<0 Uncontaminated Ei
r < 40 Low RI < 150 Low

0–1 Uncontaminated to
moderately contaminated 40 ≤ Ei

r < 80 Moderate 150 ≤ RI < 300 Moderate

1–2 Moderately contaminated 80 ≤ Ei
r < 160 Considerable 300 ≤ RI < 600 Considerable

2–3
3–4
4–5

Moderately to heavily
contaminated

Heavily contaminated
Heavily to extremely

contaminated

160 ≤ Ei
r < 320

Ei
r ≥ 320

High
Very high RI ≥ 600 Very high

>5 Extremely contaminated

Igeo the geo-accumulation index, Ei
r the potential ecological risk factor of single metal, RI the potential ecological

risk index, CF the contamination factor, PLI the pollution load index. a [30]; b [31]; c [32].
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2.3.2. Potential Ecological Risk Index (RI)

The potential ecological risk index is used to assess the toxicity of metal in sedi-
ments [25,32,33]. Ei

r and RI represent individual heavy metal ecological risk and compre-
hensive potential ecological risk, respectively. Their calculation formulas are as follows:

Ei
r = Ti

r ×
(

Ci

C0

)
(2)

RI =
n

∑
i=1

Ei
r =

n

∑
i=1

Ti
r

(
Ci

C0

)
(3)

where Ci is the concentration of metal i in sediment, C0 is the background concentration
of metal, and Ti

r defines biological toxicity factor for individual metal. The Ei
r values for

Cu = Pb = Ni = 5, Zn = 1, Cr = 2 and Cd = 30 [30,31], Table 2 gives the classes and levels for
Ei

r and RI.

2.4. Statistical Analysis

Principal component analysis (PCA) was performed to extract significant PCs and
associated loads. Pearson’s correlation analysis was used to test the significant relationship
between variables. Redundancy analysis (RCA) was used to analyze the response of fish
abundance to heavy metal content using Canoco5.0 (Microcomputer Power, Ithaca, NY,
USA). PCA and correlation analysis were implemented with R language and IBM Spss26.0.

3. Results
3.1. Heavy Metal Concentration in Sediments

The concentrations of seven heavy metals in surface sediments of Xinfengjiang River
(Heyuan section) was shown in Table 1. The mean concentrations followed a decreas-
ing ranking order of As (86.38 mg/kg) > Zn (85.13 mg/kg) > Pb (62.75 mg/kg) > Cr
(35.04 mg/kg) >Cu (28.53 mg/kg) >Cd (0.602 mg/kg) >Hg (0.078 mg/kg). The variable
coefficients of As, Cu and Cd concentrations with values of 172%, 141.6% and 129.1%, re-
spectively, were higher than other four heavy metals, in other words, it is more reasonable
to believe that the sources of these three heavy metals are more closely related to the effects
of human activities. There was significant difference in the concentrations of most heavy
metals among upstream sites (S1–S4), reservoir sites (S5–S10) and the downstream site
(S11). The heavy metal contents were generally higher in the upstream than reservoir, while
Hg content shows the highest values at the downstream site (S11). Particularly, S4 was the
highest total heavy metals concentration.

3.2. Igeo

The distribution of Igeo value of heavy metals in the sediments is shown in Figure 2.
The maximum Igeo values of Hg and Cr were below 0 and 1, respectively, indicating that
the sediments were not contaminated with these two metals, or that the contamination level
was low. The Igeo values of Cu (−3.76–2.58, median −0.39), Zn (−2.51–1.34, median 0.13),
Pb (−1.87–1.27, median 0.13), As (−1.51–3.88, median −0.25), Cd (−1.86–4.32, median
1.06). Different colors (Figure 2b) refer to different levels of sediment pollution, with
blue indicating uncontaminated, and from light yellow to orange and red indicating
slightly contaminated to extremely contaminated. Cd exceeded the background value most
seriously, with the highest Igeo value exceeding 4, from heavily to extremely contaminated;
Cu, Zn, Pb and Cd concentrations at four sites (S1–S4) upstream of the reservoir all exceeded
the regional background values. As appeared in extremely high values at points S4 and
S6, exceeding other sites by a large margin. Pollution is more severe upstream (S1–S4) and
downstream (S11) than at the Reservoir (S5–S10).
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3.3. Ecological Risks and Potential Ecological Risks

The single metal ecological risk index (Ei
r) and potential ecological risk index (RI) of

heavy metals in the sediments of Heyuan City section of Xinfengjiang river are shown in
Table 3 and Figure 3. Zn, Pb and Cr at the low ecological risk with individual ecological risk
indices lower than 40; Cu showed moderate ecological risk at S4, Hg was in the threshold
of low risk (Er = 40) at S4 and moderate risk at S11; high ecological risk at S4 and S6, and
the above three total metals were of low risk at the rest of the sites. Cd created the highest
degree of ecological risk with six sample sites reaching moderate risk or higher, and the
biggest two ecological risk values of were 630 (S1) and 896.25 (S4). The potential ecological
risk indices of the sampling sites ranked in order as follow: S4 > S1 > S11 > S3 > S2 > S6
> S5 > S7 > S10 > S9 > S8, consistent with above, S4 and S1 had the highest RI, 1171.4 at
S4 and 694.8 at S1, all above the high potential risk limit of 600. S7, S10, S9 and S8 were
sampled in the low potential risk range. In summary, Cd and As posed the greatest threat
to ecology, followed by Hg, Cu, Zn and Cr. As with the results of Igeo, the ecological risk
of the four upstream sites were higher than the reservoir sites, and the downstream was in
the middle. S4 was the most prominent, S5 and S6 were observed to significantly higher
than other sites in reservoir.

Table 3. Individual ecological risks (Ei
r) and potential ecological risks (RI) of heavy metals.

Sites
Ei

r
RI

Cu Zn Pb Cd Cr Hg As

S1 10.05 3.33 8.68 630.00 2.17 29.09 11.53 694.8
S2 7.48 2.43 9.31 240.00 1.62 32.73 7.23 300.8
S3 9.06 2.47 9.02 236.25 2.24 29.09 13.91 302.0
S4 44.84 3.80 18.03 896.25 3.10 40.00 165.40 1171.4
S5 4.48 1.64 17.02 93.75 1.16 25.45 16.74 160.2
S6 5.72 0.61 2.06 30.00 3.08 25.45 221.04 288.0
S7 3.71 0.66 3.83 22.50 3.43 25.45 18.46 78.0
S8 0.56 0.26 3.17 13.13 0.36 14.55 5.26 37.3
S9 0.59 0.44 8.22 12.38 0.42 18.18 1.75 42.0

S10 0.55 0.38 2.81 14.25 0.43 21.82 12.59 52.8
S11 10.02 3.10 4.91 296.25 2.00 50.91 6.68 373.9
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Figure 3. RI value of heavy metals in sediment (derived from the Ei
r value).

3.4. Tracing the Sources of Heavy Metal Pollution

Pearson correlation analysis and principal component analysis are widely used to
explore the internal correlation of variables and help trace the pollution sources of heavy
metals in sediments [34,35]. Table 4 listed the Pearson correlation matrix among sediment
heavy metals. All metals showed positive correlations, with Cu-Cd (r = 0.883), Cd-Zn
(r = 0.891) and Zn-Hg (0.804) showing highly significant positive correlations at p < 0.01,
and Cu-Zn (r = 0.723), Cu-Pb (r = 0.643), Cd-Pb (r = 0.61) and Hg-Cd (r = 0.602) showing
significant positive correlation at p < 0.05. Statistically significant heavy metals with high
correlation coefficients are considered to have the same origin or similar behavior during
river transport [36]. Lack of valid correlation among the other metals reveals that the
contents of these metals are not controlled by a single factor.

Table 4. Pearson’s correlation matrix of sediment heavy metals.

Heavy
Metals Cu Zn Pb Cd Cr Hg As

Cu 1
Zn 0.723 * 1
Pb 0.643 * 0.596 1
Cd 0.883 ** 0.891 ** 0.610 * 1
Cr 0.520 0.426 0.106 0.438 1
Hg 0.577 0.804 ** 0.281 0.602 * 0.492 1
As 0.528 0.084 0.093 0.287 0.582 0.154 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Principal component analysis (PCA) of heavy metals was given in Figure 4. The first
principal component explained 58.8% of the variance, the second principal component
explained 18.9%, and the three principal component axes together explained 89.8% of the
overall variance. The loads of each heavy metal on the three components are shown in
Table 5.
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Table 5. The interpretation variance of heavy metals on three principal components.

Heavy Metals PC1 PC2 PC3

Cu 0.926 0.066 0.246
Cd 0.923 −0.169 0.076
Zn 0.898 −0.325 −0.220
Hg 0.762 −0.085 −0.549
Pb 0.647 −0.432 0.518
Cr 0.632 0.603 −0.248
As 0.442 0.792 0.319

Cu, Cd and Zn have obvious advantages on PC1, loading 0.926, 0.923 and 0.898
respectively. Different from the former, Hg, Pb and Cr also have varying degrees of loading
on the other two principal components, although their loadings on the first principal
component are not low (0.762, 0.647 and 0.632). Among them, Hg loads −0.549 onPC3,
Pb loads −0.432 on PC2 and 0.518 on PC3, Cr loads 0.603 on PC2. It is thus clear that
the sources of these three elements are significantly different from the previous three.
Meanwhile, it is worth noting that As differs from the previous heavy metals in that its
loading on PC2 (0.792) has a significant upper hand. In the PCA-Biplot (PC1 and PC2)
(Figure 4), the reservoir sites (S5 to S10) are all distributed in the third and fourth quadrants,
the upstream site S4 near the reservoir is distributed in the first quadrant, and the remaining
three upstream sites (S1–S3) and one downstream site (S11) are distributed in the second
quadrant. S4 and S6 are outliers, with S4 closer to PC1 and S6 closer to PC2. In the
PCA-Biplot (PC3 and PC2) plot (Figure 4), S4 is closer to the positive direction of the
third principal component and point S11 is closer to the negative direction of the third
principal component. This indicates that the content of heavy metals in the upstream and
downstream sites is higher than that in the reservoir sites, and the content of Hg at S11 is
much higher than others, which is consistent with the results reflected by the ecological
risk index of sampling sites.

3.5. Response of Fish Species Abundance to Heavy Metal Concentration in Sediment

A total of 23 species of fishes belonging to four orders were recorded in this sur-
vey, which were cypriniformes, perciformes, cypriniformes and siluriformes, all of them
belonged to teleost. Cypriniformes are dominant at the order level, as shown in Figure 5.
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Figure 5. Distribution of fish species at sampling sites.

It has been reported that heavy metals in the environment will be enriched in fish, and
there is a response relationship between the abundance of fish species and heavy metals in
the environment, which affects the composition and abundance of organisms to varying
degrees [37]. Redundancy analysis is a ranking method combining regression analysis with
principal component analysis, which can intuitively reflect the response of species variables
to environmental variables [38]. The magnitude and angle of vectors can intuitively reflect
the correlation between variables. The first axis explains 54.96% of the species abundance
variables, and the two axes jointly explain 86.74% of Figure 6.
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4. Discussion

Both the geo-accumulation index and the ecological risk index demonstrate that the
sediment heavy metals pollution degree in the upstream sites were generally higher than
that in the reservoir area, and the downstream site was in the middle. Among them, Cd,
Cu, As and Zn were the main heavy metal pollutants. They could be caused by a variety
of reasons. First and foremost, the large mining sites are located in the northeast of the
upstream site. Second, the upstream is closer to the community. The upstream content
of heavy metal pollutants produced by agricultural chemical fertilizers and pesticides,
domestic sewage discharge, breeding, etc., is also higher than that in the reservoir area. In
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view of the industrial characteristics of the Lianping and Dongyuan counties around the
Xinfengjiang Reservoir, it was speculated that the first principal component in the principal
component analysis (Figure 4) was mainly related to mineral exploitation, livestock and
poultry breedin and agricultural activities. The river lies in a metallogenic belt in the
northeast Guangdong province which is rich in metals such as W, Sn, Pb, Fe and Zn [39].
There are many scattered illegal small-scale mining sites as well as large and medium
mining sites in the upper reaches of the reservoir, so mining activities are prevalent in
this area [23]. The Lianping County is rich in mineral resources, with more than 30 kinds
of proven minerals and approximately 52 mining locations. Iron ore has the greatest
advantage with a reserve of 160 million tons. The Jubankeng tungsten mine, located in
Lianping County, is the largest tungsten mine that has been operating intermittently since
last century in the Guangdong Province. Located in the Lianping County, the Sawpan
Hang tungsten mine, which mines tungsten and copper ore, is the largest tungsten mine
in the Guangdong Province and has been operating intermittently since the last century,
about 45 km from the upstream sampling point of the reservoir. Dading Iron Mine, located
in Youxi Town, Lianping County, is the largest iron mine in the province, 25.5 km away
from S4. Previous studies have shown that tailings, drainage and air suspended solids
caused by mining activities will strongly affect the content of heavy metals in nearby water,
sediment and soil [22]. In particular, the content of heavy metals such as Cd, Cu, Zn and
Pb is generally higher than the background value, and can be up to a thousand times
in Pilcomayo river [40]. Many studies confirmed the migration of trace elements from
point source to downstream with sediments, and demonstrated that the contents of trace
elements in downstream rivers generally showed a decreasing trend [41]. In this paper, the
average concentration of the upstream points (S1–S4) of Cd, Cu and Zn is much higher
than that of the reservoir points (S5–S10), which are 16 times, 6.9 times and 4.5 times higher,
respectively.

According to investigation, pig farming contributes to the concentration of Cu in
sediments, especially the use of copper-containing additives in pig feed, which results
in high levels of copper in pig manure [42]. There are a large number of pig farms in
the Xinfengjiang catchment area; on the one hand, despite sewage treatment, some of the
copper and cadmium in pig manure is discharged into rivers along with the wastewater. On
the other hand, pig manure, as the main source of manure, enters the soil with agricultural
activities, indirectly increasing the content of heavy metals in the soil, and some of the
heavy metals in the soil will be discharged into the river with the runoff. Cd and Zn have
strong fluidity. Cd is a symbolic metal in pesticides and fertilizers involved in agricultural
activities [43]. Besides mining, gasoline, phosphate and domestic sewage are also possible
sources of Cd [44]. The second principal component may mainly represent natural erosion
processes such as parent rock weathering and soil erosion. The third main component
mainly associates with industrial activities, electronics, machinery manufacturing and
domestic sewage discharge. There are five outfalls distributed near S11 downstream of the
Xinfengjiang Reservoir Dam; meanwhile, the downstream of the reservoir converges into
the Dongjiang River, in close proximity to industrial parks such as the Linjiang Industrial
Zone and Zijin Industrial Park, which mainly produce electronics and electrical machin-
ery [27]. The main pollutants are Cr, As, Cu and Pb. As is widely used in semiconductors,
diodes, alloys and structural steel. Pb is the raw material of battery, and lead compounds
are widely used in pigment, glass, plastic and rubber. Meanwhile, Pb is used in various
metallurgical equipment and chemical manufacturing. Hg mainly comes from domestic
sewage, manufacturing industry and electronic appliances.

Overall, the heavy metals in the Xinfengjiang river sediment are from a wide range
of sources, including mining, agricultural activities, industrial activities, domestic sewage
and rock weathering. Cu may originate from mining, farming and pesticide herbicides. Cd
is correlated with mining, farming, industrial production, domestic sewage, agricultural
activities, etc. Pb is mainly correlated with automobile exhaust pollution, sewage and
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electronic appliance pollution. As may be correlated with pesticides, Hg is mainly from
domestic sewage and industrial activities.

In addition, heavy metal pollution can negatively affect fish species abundance.
Cypriniformes are negatively correlated with heavy metals except Hg, and significantly
negatively correlated with Cd and Cu. Perciformes are negatively correlated with As and
Pb. Hg is positively correlated with Perciformes, Silphiformes and Anguilliformes, but
not with Cypriniformes. Therefore, Cu and Cd have a great influence on the species of
Cypriniformes, and high concentrations are detrimental to species abundance. In fact, Hg
is considered as one of the most toxic elements or substances on earth. Research indicates
that Hg exposure can induce various adverse effects on fish at physiological, histological,
biochemical, enzymatic and genetic levels [45]. As a result of redundancy analysis, there
are five sewage outlets in the section from the Xinfengjiang Reservoir Dam to the Dongjiang
River, and sewage may be the biggest contributor of mercury. The abundance of fish at S11
is the highest among all points, mainly because it is close to the Dongjiang River, rather
than Hg having a positive impact on the abundance of fish species. Moreover, water flow
velocity is one of the important influencing factors in the living environment of fish, which
in upstream points (S1–S4) is higher than that in the reservoir area (S5–S10), and the above
redundancy analysis result shows Cd and Cu have a higher degree of negative influence
on the Cypriniformes, indicating that the mobility of these two elements and the difference
between the upstream and the reservoir area are stronger. The abundance of Cypriniformes
in the upstream points was quite different, and the mean value was small. It indicates
that the flow velocity has an adverse effect on the Cypriniformes, and this conclusion is
consistent with the effect of heavy metals. That is to say, the flow velocity also has influence
on the distribution of heavy metals such as Cd and Cu in the sediment, thereby affecting
the response of fish species abundance to the concentration of heavy metals.

5. Conclusions

The pollution and toxicity of heavy metals in sediments is one of the most concerning
issues in aquatic ecosystems. This study examines seven heavy metals (Cu, Zn, Pb, Cd,
Cr, Hg and As) in the sediment at 11 sampling sites located in the Heyuan section of
the Xinfengjiang River. Based on the results related to heavy metals and their analysis,
the following conclusions could be drawn: (1) The concentrations of heavy metals and
ecological risks in the upstream of the Xinfengjiang Reservoir are generally higher than
those in the reservoir, and the downstream is in the middle. (2) The mean order of Igeo
was: Cd>Zn>Pb>As>Cu>Cr>Hg, and the Cd at S1 and S4 reached a heavily contaminated
level. The potential ecological risk index showed that Cd and As were the most serious
heavy metals threatening the ecology. The order of potential risk index on sampling sites
was: S4 > S1 > S11 > S3 > S2 > S6 > S5 > S7 > S10 > S9 > S8. (3) Pearson correlation analysis
and principal component analysis showed that Cd, Cu and Zn had a high correlation, and
Hg and Zn had a very significant correlation. The possible sources of heavy metals mainly
include mining, agricultural activities, industrial activities and domestic sewage. Mine
pollution should be given due attention. (4) Redundancy analysis was used to analyze the
response of fish species abundance to heavy metal concentrations, and the results showed
that the Cypriniformes was most affected by Cd and Cu. It is speculated that mining is
the main source of heavy metals in Xinfengjiang River sediment, and indirectly affects fish
species abundance. Water flow velocity is an influencing factor of fish species abundance,
and may even be the main factor. In this regard, this paper is still insufficient, and it is
expected that this issue can be further studied in the future.
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Abstract: The comprehensive evaluation of water quality and identification of potential pollution
sources has become a hot research topic. In this study, 14 water quality parameters at 4 water quality
monitoring stations on the M River of a city in southeast China were measured monthly for 10 years
(2011–2020). Multiple statistical methods, the water quality index (WQI) model, machine learning
(ML), and positive matrix factorisation (PMF) models were used to assess the overall condition of the
river, select crucial water quality parameters, and identify potential pollution sources. The average
WQI values of the four sites ranged from 68.31 to 77.16, with a clear trend of deterioration from
upstream to downstream. A random forest-based WQI model (WQIRF model) was developed, and
the results showed that Mn, Fe, faecal coliform, dissolved oxygen, and total nitrogen were selected as
the top five important water quality parameters. Based on the results of the WQIRF and PMF models,
the contributions of potential pollution sources to the variation in the WQI values were quantitatively
assessed and ranked. These findings prove the effectiveness of ML in evaluating water quality, and
improve our understanding of surface water quality, thus providing support for the formulation of
water quality management strategies.

Keywords: water quality index (WQI); machine learning; parameter selection; positive matrix
factorization (PMF); source apportionment

1. Introduction

Surface water has historically been vital in providing water for human consumption,
agriculture, and industrial requirements [1–4]. In recent decades, rapid urbanisation,
industrialisation, and global population growth have led to the deterioration of surface
water quality, which is a serious concern for the public and scientists [5,6]. According to a
study conducted by the World Health Organization [7], at least 2 billion people worldwide
use contaminated drinking water sources, 785 million people do not even have essential
drinking water services, and 144 million rely on surface water.

As a water quality assessment method widely used for groundwater and surface
water (especially rivers), the water quality index (WQI) method is playing an increasingly
important role in water resource management [3,8–10]. Over the last several decades,
various improvements have been made in the calculation of WQI values [11–13]. Compared
with traditional water quality evaluation methods, the WQI method combines several
environmental parameters, effectively transforming them into a single value reflecting the
general water quality status, instead of comparing different evaluation results of various
parameters [3].
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To simplify and efficiently assess water quality, a WQImin model based on a select
number of representative parameters can quickly and accurately determine water quality
and reduce analytical costs [14–16]. To determine the water quality parameters in the
WQImin model, previous studies mostly used linear regression methods based on the
relationship between WQI values and various water quality parameters, and selected
important indicators based on the performance of the WQImin model on comprehensive
evaluation values [3,10].

Machine learning (ML) models perform well in regression problems and have become
very popular in recent years. In the field of environmental science, many scientists have
used ML for water quality prediction. Chen et al., compared the water quality prediction
performance of 10 ML models using big data from major rivers and lakes in China, iden-
tified two key water parameter sets (dissolved oxygen (DO), potassium permanganate
index (CODMn), and ammonia nitrogen (NH3-N); and CODMn and NH3-N), and proved
the superiority of random forests (RFs) [17]. Lu and Ma used two hybrid models (extreme
gradient boosting and RFs) to predict six water quality indicators (water temperature,
DO, pH, specific conductance, turbidity, and fluorescent dissolved organic matter) and
compared the performance of each model with those of four conventional models [18]. The
results showed that the RF model had a higher prediction stability. In the present study, an
RF model was used for regression modelling of WQI values, and important water quality
parameters were selected according to the feature importance of RFs [19–21]. Selected key
water quality parameters were then applied to develop the RF-based WQIRFmin model.

In addition to completing the water quality assessment and obtaining important
water quality indicators, it is also necessary to explore the potential sources of water
pollution. Receptor models, such as the absolute principal components score combined
with multivariate linear regression (APCS–MLR) and positive matrix factorisation (PMF),
have performed well in source apportionment studies [22]. The PMF approach is a multi-
source analysis method for source identification and assignment that is specifically designed
to process environmental data and manage the associated uncertainty and distribution [23].
The PMF method is particularly suitable for environmental data because it considers
the analytical uncertainty typically associated with environmental sample measurements
and renders all values and contributions in the solution to be positive, which may lead
to more realistic results than other multivariate methods [24]. Previous studies [22,25]
showed that PMF had a higher coefficient of determination (R2) of prediction and a smaller
proportion of unidentified sources than the APCS–MLR model, which could provide a more
physically plausible source apportionment and a more realistic representation of pollution.
In the last two decades, PMF has been widely used in studies related to air pollution
and the atmospheric environment. In recent years, PMF has been increasingly used to
apportion pollution sources in water environments [26,27]. The PMF model can describe the
contributions of pollution sources to various water quality parameters; however, each water
quality parameter has a different importance in different areas of research. Previous studies
have rarely examined the contribution of pollution sources to WQI values, which can
comprehensively assess water quality. Although some pollution sources provided a higher
pollution contribution rate to water quality parameters in some studies, these sources
may not be the main factor influencing water quality changes, because the concentrations
of water quality parameters affected by them were too low to influence water quality
changes [5].

The M River is an important river flowing through the capital city (mainly urban areas)
of a province in southeast China, providing a permanent source of water for approximately
14 million people [28]. Based on the above background, WQI calculations, RF model con-
struction, and PMF analyses were performed using a dataset of 14 water quality parameters
collected on a monthly basis over 10 years (2011–2020) from four monitoring stations on
the M River. The objectives of this study are to (1) analyse the spatial and temporal water
quality patterns of the M River, (2) assess the comprehensive water quality condition and
identify key water quality parameters of the M River, and (3) explore the potential pollution

86



Int. J. Environ. Res. Public Health 2023, 20, 881

sources in the watershed and their contributions to the variation in WQI values. The results
of the water quality assessment, crucial water quality parameter selection, and pollution
source apportionment will be valuable for the local authorities to control and manage the
water quality of the M River and to better protect it from pollution through a fixed-point
traceability approach.

2. Materials and Methods
2.1. Study Area

The M River is located in the 25–29◦ N latitude and 116–120◦ E longitude region,
and flows eastward through the Taiwan Strait. The river provides important assistance
to people’s daily lives, industry, and agriculture in the cities of southeast China [28]. As
a subtropical mountain river, the M River basin has an average annual temperature of
16–20 ◦C, and total annual rainfall of 1500–2000 mm, which is higher than that of other
plain-dominated rivers in China. In recent years, modern agriculture has developed
rapidly. The overuse of chemical fertilisers and pesticides, and the reckless discharge of
sewage have intensified river pollution. Meanwhile, the continuous industrialisation and
urbanisation of the M River basin have led to an increase in illegal discharges of industrial
wastewater and an increase in heavy metal pollution due to mining, urban construction,
and the development of transportation. Inadequate management of municipal, industrial,
and agricultural wastewater means that residents around the watershed are exposed to
dangerous organic and inorganic contamination of their drinking water [7,10,29].

2.2. Data Preparation

The datasets were collected on a monthly basis from October 2011 to August 2020 at
four monitoring stations on the M River (WWP, FWP, SWP, and CWP; Figure 1). Fourteen
water quality parameters were monitored as follows: pH, water temperature (WT), DO,
total nitrogen (TN), NH3-N, nitrate-nitrogen (NO3

−-N), total phosphorus (TP), CODMn,
chloride (Cl−), sulfate ion (SO4

2−), faecal coliform (F. coli), iron (Fe), manganese (Mn), and
fluoride (F−). The analytical methods used for each parameter are listed in Table 1.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 3 of 16 
 

 

stations on the M River. The objectives of this study are to (1) analyse the spatial and tem-
poral water quality patterns of the M River, (2) assess the comprehensive water quality 
condition and identify key water quality parameters of the M River, and (3) explore the 
potential pollution sources in the watershed and their contributions to the variation in 
WQI values. The results of the water quality assessment, crucial water quality parameter 
selection, and pollution source apportionment will be valuable for the local authorities to 
control and manage the water quality of the M River and to better protect it from pollution 
through a fixed-point traceability approach. 

2. Materials and Methods 
2.1. Study Area 

The M River is located in the 25–29° N latitude and 116–120° E longitude region, and 
flows eastward through the Taiwan Strait. The river provides important assistance to peo-
ple’s daily lives, industry, and agriculture in the cities of southeast China [28]. As a sub-
tropical mountain river, the M River basin has an average annual temperature of 16–20 
°C, and total annual rainfall of 1500–2000 mm, which is higher than that of other plain-
dominated rivers in China. In recent years, modern agriculture has developed rapidly. 
The overuse of chemical fertilisers and pesticides, and the reckless discharge of sewage 
have intensified river pollution. Meanwhile, the continuous industrialisation and urbani-
sation of the M River basin have led to an increase in illegal discharges of industrial 
wastewater and an increase in heavy metal pollution due to mining, urban construction, 
and the development of transportation. Inadequate management of municipal, industrial, 
and agricultural wastewater means that residents around the watershed are exposed to 
dangerous organic and inorganic contamination of their drinking water [7,10,29]. 

2.2. Data Preparation 
The datasets were collected on a monthly basis from October 2011 to August 2020 at 

four monitoring stations on the M River (WWP, FWP, SWP, and CWP; Figure 1). Fourteen 
water quality parameters were monitored as follows: pH, water temperature (WT), DO, 
total nitrogen (TN), NH3-N, nitrate-nitrogen (NO3−-N), total phosphorus (TP), CODMn, 
chloride (Cl−), sulfate ion (SO42−), faecal coliform (F. coli), iron (Fe), manganese (Mn), and 
fluoride (F−). The analytical methods used for each parameter are listed in Table 1. 

 
Figure 1. Locations of the water quality monitoring stations in the study area in southeast China. Figure 1. Locations of the water quality monitoring stations in the study area in southeast China.

87



Int. J. Environ. Res. Public Health 2023, 20, 881

Table 1. Water quality parameters measured in this study and the relevant analytical methods.

Variables Abbreviation Units Testing Base

pH pH GB6920-1986

Water temperature WT ◦C GB/T13195-1991

Dissolved oxygen DO mg/L HJ506-2009

Total nitrogen TN mg/L HJ636-2012

Ammonia NH3-N mg/L HJ665-2013

Nitrate NO3-N mg/L HJ/T84-2001

Total phosphorus TP mg/L GB/T11893-1989

Permanganate index CODMn mg/L GB 11892-1989

Chloride Cl− mg/L HJ/T84-2001

Sulphate SO4
2− mg/L HJ/T84-2001

Iron Fe mg/L HJ700-2014

Manganese Mn mg/L HJ700-2014

Fecal coliform F. coli colonies/L GB/T5750.12-2006

Fluoride F- mg/L HJ/T84-2001

2.3. Water Quality Index

The calculations for the WQI in this study are based on Equation (1), which was refined
and developed by Pesce and Wunderlin [16] as follows:

WQI =
∑n

i−1(CiPi)

∑n
i−1 Pi

(1)

where n is the total number of water quality parameters in the study; Ci is the normalized
value of the i-th parameter; and Pi is the determined weight of the i-th parameter (the
values of Pi have been verified in previous studies and are listed in Table S1).

The theory of the WQI model has been widely used and extensively discussed in
previous studies [2,3,29]. The water quality status in this study was classified into five
grades based on the WQI values (Table 2), which are in line with the actual water quality
management standards in China [3].

Table 2. Water quality classification based on water quality index (WQI) values.

WQI value 91–100 71–90 51–70 26–50 0–25

Water quality Excellent Good Moderate Poor Very poor

2.4. Random Forests

Random forest regressors are widely applied in ML for classification and regres-
sion, which can deal with nonlinearities and interactions, but cannot be interpreted
directly [4,20,30]. It is an ensemble model based on the generation of many decision
trees and their assemblage to produce the final output. Each output from the decision
tree is dependent on the values of a random vector sampled independently from the same
distribution of all decision trees generated in the forest. The number of predictors used to
find the best split at each node is randomly chosen from a subset of all predictors [21]. The
output is calculated by taking the mean and aggregation of each individual component
tree [21,31]. The RF model has been found to be reliable for evaluating the ranking of the
most critical predictors in trophic status prediction [32] and for predicting groundwater
arsenic contamination [33].
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In the construction of the decision tree, the quality of the segmentation variables and
segmentation points are generally measured by the impurity of the node after segmentation.

G
(
xi, vij

)
=

nle f t

Ns
H
(

Xle f t

)
+

nright

Ns
H
(

Xright

)
(2)

where xi is a segmentation variable; vij is a segmentation value of the segmentation variable;
nle f t is the number of training samples of the left child node; nright is the number of training
samples of the right child node; Ns is the number of training samples of the current node;
Xle f t is the set of training samples of left child nodes; Xright is the set of training samples of
the right child nodes; H(X) is the impurity function of the node (classification and regression
generally use different impurity functions).

The mean square error (MSE) was selected by default as the impurity function of the
RF regression models based on decision trees as follows:

G(x, v) =
1

Ns


 ∑

yiεXle f t

(
yi − yle f t

)2
+ ∑

yjεXright

(
yi − yright

)2

 (3)

The importance of a node is given by:

nk = wk × Gk − wle f t × Gle f t − wright × Gright (4)

where wk is the ratio of the number of training samples to the total number of training
samples in node k; wle f t is the ratio of the number of training samples in the left child node
of node k to the total number of training samples in node k; wright is the ratio of the number
of training samples in the right child node of node k to the total number of training samples
in node k; Gk is the impurity of node k; Gle f t is the impurity of the left child node of node k;
and Gright is the impurity of the right child node of node k.

After calculating the importance of each node, the importance of a certain feature can
be obtained as follows:

fi =
∑jεnodes split on f eature i nj

∑kεall nodes nk
(5)

To ensure that the importance of all features will add up to one, the importance of
each feature must be normalised:

fni =
fi

∑jεall f eatures f j
(6)

In this study, the WQIRFmin model based on the key parameters selected by the RF
regression model was also developed. The RF in this study consisted of 500 trees and
was applied to train the WQIRF model with the values of water quality indicators as the
feature input model and the corresponding WQI as the label (predicted value), which
were built using the Scikit-learn v.0.23.1 package in Python 3.8.3. Metrics including R2,
MSE, MAE, and MAPE were adopted to evaluate the performance of the regressor on the
testing dataset.

2.5. Positive Matrix Factorisation

The PMF method is a multivariate statistical analysis tool [23], which is usually used
to decompose the sample data matrix into two matrices: factor contributions and factor
profiles, with the following formula:

Xnm = Enm +
p

∑
j=1

Gnp × Fpm (7)
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where Xnm is the original matrix (n × m), representing n samples and m monitoring
variables, which can be decomposed into two matrices Gnp (n × p) and Fpm (p × m); p is
the number of calculated sources (extraction factor); G is the source contribution matrix; F
is the source component spectral matrix (factor load); Enm (n × m) is the residual matrix
representing the difference between the analytical result and the measured value.

The results are constrained by a penalty function such that no sample can have a
negative source contribution, and no species can have a negative concentration in any
source profile. A detailed description of the PMF model is provided in Paatero and
Tapper [23]. The researchers have explained the PMF model in detail, thus no more detailed
description here. This study used the PMF 5.0 software recommended by the US EPA for
data analysis.

2.6. Contribution of Potential Pollution Sources to the Variation in WQI Values

According to the principle of RFs described in the previous section, the WQIRF model
based on water quality parameters was developed to quantitatively calculate the feature
importance of each water quality parameter. The PMF model can quantitatively evaluate
the contribution of each source to water quality; however, the WQIRF model has calculation
errors; therefore,

(
1 − MAPEWQIRF

)
should be added as the error correction factor for the

contribution of potential pollution sources to the variation in WQI values, as follows:

pj =
(
1 − MAPEWQIRF

)
× ∑

(
fni × cji

)
(8)

where pj is the contribution of pollution source j to the comprehensive water quality
evaluation based on WQI values; MAPEWQIRF is the mean absolute percentage error of the
WQIRF model developed by RFs; and cji is the contribution of pollution source j to water
quality parameter i.

3. Results
3.1. Analysis of Water Quality Characteristics Based on Individual Parameters

The descriptive statistics of the original data for the selected 14 water quality parame-
ters are listed in Table S2. For water quality comparison, the surface water quality standards
of GB3838-2002 (State Environment Protection Bureau of China 2002a) are also included in
Table S2. The statistical analysis results of each water quality parameter from 2011 to 2020
showed that, excluding TN, Fe, Mn, and F. coli, most of the water quality parameters were
better than the Class III water quality standards over the long term.

Water pH indicates an acidic or basic nature and is an important parameter for assess-
ing the quality of drinking water and irrigation water. It has profound effects on water
quality, affecting the solubility of metals, alkalinity, and water hardness. From the analysis
results, the incoming water from the four monitoring stations in River M over the past
10 years was relatively weakly acidic. The pH values ranged from 6.47 to 7.6, with 64%
of the samples having a pH less than 7. Although it is in line with the surface water envi-
ronmental quality standard GB3838-2002 (6–9 pH), but as a drinking water intake point,
it is not enough to meet the surface water standard, but also needs to meet the drinking
water hygiene standard GB5749-2022 (6.5–8.5 pH), which could only be said to just satisfy.
As we all know, long-term consumption of acidic or weakly acidic water not only leads
to the potential risk of erosive tooth wear, but also leads to gradually acidic body fluids,
increased blood viscosity and imbalance of the acid–base balance of the human body. Many
studies have shown that a low pH of the water supply system has a strong corrosive effect
on metal pipes, which can easily lead to ‘yellow water’ and pipe bursts.

The values of TP, SO4
2−, NO3

−, F−, CODMn, Cl−, NH3-N, and DO were lower than
the respective Class III standards. For TN, 75% of the samples exceeded the Class III
standards. The highest TN concentration (4.76 mg/L) was 4-, 2-, and 1.5-times higher than
the standards of classes III, IV, and V, respectively. We observed that the multi-year average
concentration of TN was 1.54 mg/L, with 48% and 23% of all observed samples exceeding
the Class IV and V surface water standards, respectively (Figure 2). When TN and TP

90



Int. J. Environ. Res. Public Health 2023, 20, 881

in surface water exceed their respective standards, microorganisms proliferate, plankton
grow vigorously, and waterbodies are prone to eutrophication. Considering that the TN
concentration did not increase significantly from upstream to downstream, the background
value of the upstream water was the main factor. The causes of pollution may have been
due to agricultural fertiliser (NO3

−-N fertiliser) pollution, residential sewage, and farming
wastewater pollution.
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In addition, Mn, Fe, and F. coli exceeded the Class III standards to different degrees.
The F. coli concentrations in the downstream region were significantly higher than those
in the upstream regions, implying that the urban section of the city is a source of faecal
coliform pollution to the river, although the background value of upstream water cannot
be ignored.

Trace metals may be present in natural surface water and groundwater, and can be
sourced from either natural processes or human activities. Multiple metal ion analyses
were performed, but only Fe and Mn concentrations were found to be above the analytical
detection limits. The Fe and Mn concentrations of water samples ranged from 1.26 mg/L to
3.2 mg/L and 0.16 mg/L to 1.52 mg/L, respectively. The exceedance rates of the Fe and Mn
concentrations at the WWP and FWP monitoring sites in the upper reach were significantly
lower than those at the CWP and SWP monitoring sites in the lower reach. The Mn and Fe
concentrations at the WWP and FWP sites were likely related to the interaction between
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water and ophiolitic rocks in the basin, whereby relatively high levels of Mn and Fe in the
surrounding ore-bearing landmass could provide a source of these elements to the rivers
flowing over this terrain. The relatively high Mn and Fe concentrations at the downstream
sites of CWP and SWP were probably mainly influenced by anthropogenic contaminants.

The coefficient of variation (CV) is the most discriminating factor in the variability
description; it can eliminate the influence caused by the difference of units and the mean
value between two or more datasets. As shown in Table S2, all parameters showed a
CV value of between 3.5% and >100%, indicating great variability. Among them, Cl−

and F. coli had the largest variabilities, indicating that these water quality parameters
were extremely unevenly distributed throughout the basin and were affected by external
sources of pollution. In addition, most analysed parameters in water samples presented
spatiotemporal variabilities, whereby the concentrations of Mn, Fe, and F. coli in the lower
reach were significantly higher than those in the upper reach (Figure 2).

3.2. Water Quality Assessment Based on the WQI

To calculate the WQI values at each sampling point, the weight values were determined
for each water quality parameter according to their relative importance in terms of the
overall drinking water quality (Table S3). A weight of 3 was assigned to the trace metals,
which can have major effects on water quality, especially for drinking purposes [15]. The
accumulation of trace metals in water indicates both natural or anthropogenic sources, and
may affect human health at high levels. The parameters of CODMn, NH4-N, and F. coli were
also each assigned a weight of 3 by taking into consideration their importance in water
quality [10,14]. The exceedance of these indicators could lead to the presence of excessive
organic pollutants in surface water [15], causing lasting toxic effects on aquatic organisms,
and compromising drinking water safety for humans. The lower weights of 1 and 2 were
assigned to WT, pH, TN, NO3-N, TP, Cl−, SO4

2−, and F− because of their low importance
in water quality [3,10]. Then, the relative weights (Pi) were computed for each parameter.
The WQI values were calculated using Equation (1), and the water quality types were
determined for each sampling point (Table S3).

The WQI results showed the spatial profiles and annual patterns of the variations
in surface water quality (Figure 3). A violin plot is a collection of box-line and density
plots, which can be used to show the percentile points of the data by thinking in terms of
box lines, and a density plot to show the ‘contour’ effect of the data distribution, where
the larger the ‘contour’ is, the more concentrated the data is. Based on the WQI scores,
58.2% of water samples were rated as ‘good’, with an average WQI value of 72.1, while the
remaining water samples were rated as ‘moderate’.
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Regarding the spatial variation in the calculated WQI values, the water quality exhib-
ited a clear trend of deterioration from upstream to downstream. The mean WQI values
at the FWP (upstream), WWP (upstream), SWP (downstream), and CWP (downstream)
sites were 77.2, 74.1, 71.2, and 68.3, respectively. Overall, 86.4%, 76.5%, 51.2%, and 34.5% of
water samples from the FWP, WWP, SWP, and CWP sites were rated as ‘good’, respectively.
From the above analysis, Fe, Mn, and F. coli increased from upstream to downstream. As
these water quality parameters accounted for high weightings in the calculation of the
WQI, they were largely responsible for the decline in the WQI.

The annual changes in WQI values suggested that the median and interquartile range
of WQI values shifted upward during the study period, and the wide part of the distribution
density also shifted upward, indicating that the water quality was continuously improved
with time. During 2011–2015, 54.2% of water samples were rated as ‘moderate’. In 2015,
only 27.8% of water samples were rated as ‘good’. However, 70% of WQI values exceeded
70 (i.e., ‘good’) after 2016. The water quality in 2020 was the best, and the average WQI
was 78.5, with 87.5% of water samples being rated as ‘good’.

3.3. Selection of Key Water Quality Parameters

The WQIRF model was developed using RFs with all 14 water quality parameters
(training data:testing data = 9:1), and the results showed that Mn made the most signif-
icant contribution to the WQI values (Figure 4). The parameters of Fe, F. coli, and DO
were selected sequentially, and the R2 values of the models were considerably increased.
Additionally, TN slightly enhanced the performance of the model. Hence, Mn, Fe, F. coli,
DO, and TN were established as essential and critical parameters in the training of the
WQIRFmin model.
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According to the constructed judgement of RFs on the importance of water quality
parameters, two, three, four, and five parameters were selected to develop WQIRFmin mod-
els using RFs. The performance of each WQIRFmin model was based on a comprehensive
evaluation of the R2, MSE, MAE, and MAPE values (Table 3, Figure 5), indicating that
increases in the parameters could better explain the variation in the WQI. Among the
WQIRFmin models, the WQIRFmin model comprising Mn, Fe, F. coli, DO, and TN had the
best R2 (0.96), MSE (1.77), MAE (1.06), and MAPE (1.47%) values, indicating that it was the
best WQIRFmin model for the study area.

Based on the results of measured water parameters, water quality can be accurately
assessed by some procedures; however, it is costly and time-consuming to measure all water
parameters in all types of surface water because of the various analytical requirements.
Therefore, it is more practical to measure key parameters indicative of water quality rather
than completely following the guidelines of GB3838-2002 to understand water quality.
Moreover, it is of great significance to predict water quality based on the selection of
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indicative fundamental water parameters. The five water quality parameters extracted by
RFs in this study could determine the WQI with a very high accuracy.

Table 3. Parameter selection results of the WQIRF models based on the training dataset.

Parameters Feature
Importance R2 MSE MAE MAPE (%)

Mn 0.35 — — — —

Mn + Fe 0.58 0.73 20.01 3.66 5.09

Mn + Fe + F. coli 0.76 0.84 11.26 2.76 3.88

Mn + Fe + F. coli + DO 0.84 0.93 2.99 1.41 1.98

Mn + Fe + F. coli + DO + TN 0.88 0.96 1.77 1.06 1.47

All water quality parameters 1 0.97 1.60 .0.95 1.35
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3.4. Pollution Source Apportionment Using the PMF Model

According to a quantitative analysis of pollution sources based on PMF, five factors
were determined for the surface water of the study area (Figure 6). F1 was characterised
as microbial contamination because of the high percentage contribution of F. coli (87.4%),
which could be attributed to sewage discharge, potentially from a leak due to a sewer
system malfunction [5]. F2 was characterised by high weightings of TN (67.2%), F− (61.3%),
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SO4
2− (81.6%), Cl− (80.6%), and NO3

− (69.0%). A large amount of rural land is distributed
in the upstream region of the M River. Considering that fertilisers might be transported
with surface runoff and discharged into the river, frequent agricultural activities might
have been the main cause of the high levels of nitrogen [25], and F2 could be attributed to
non-point source agricultural pollution [26]. F3 was the main contributor of WT (53.6%),
DO (58.5%), and CODMn (56.4%), as well as TP and TN; therefore, F3 may correspond
to unexplainable variability, which may be the result of a combination of natural factors
and urban domestic sewage [22]. F4 was characterised by a significant contribution of TP
(73.3%), which is an important indicator of eutrophication; hence, F4 may represent nutrient
pollution, which could include runoff pollution from urban areas [34]. The contribution
rates of F5 were concentrated on Fe (79.3%) and Mn (93.7%), representing the impact of
heavy metal pollution. The Fe and Mn concentrations in the M River increased significantly
from upstream to downstream, indicating the external input of heavy metals in the study
area, for example, from the local mining industry.
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Figure 6. Contributions of pollution sources to the selected water quality variables.

3.5. Contribution of Pollution Sources to Variation of WQI Value

The contributions of each potential pollution source to the variation in the WQI values
were calculated (Table 4). Heavy metal pollution had the greatest impact on the WQI values,
with a contribution of 53.18%, and the Fe and Mn concentrations increased significantly
from the upper reach to the lower reach, which had a significant impact on the overall
water quality. Therefore, close attention should be given to heavy metal pollution of the M
River. The second largest contributor was microbial contamination (F. coli, 18.15%), which
fluctuated widely in the M River and played a critical role in the WQI value. Non-point
source agricultural pollution contributed significantly to many water quality parameters,
but its contribution to the variation in the WQI values was only 9.64%. The concentrations
of F−, SO4

2−, Cl−, and NO3
− were generally stable. The TN concentration was relatively

high for a long time and severely exceeded the Class III standard; however, its impact on the
water quality evaluation was not significant. The contribution of nutrient contamination
was 6.73%, which was primarily due to TP; however, TP was of a relatively good status for
a long time and did not play a key role in the comprehensive evaluation of water quality.
Unexplained variability contributed 10.95% to the variation in the WQI values, in which
DO was a crucial water quality parameter for the WQI.
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Table 4. Contribution of pollution sources to the variation in WQI values.

Pollution
Sources

Microbial
Contamination

Non-Point Source
Agricultural

Pollution

Unexplained
Variability

Nutrient
Contamination

Heavy Metal
Pollution

Model
Error

Contribution (%) 18.15 9.64 10.95 6.73 53.18 1.35

4. Discussion
4.1. Quantitative Assessment of the Impact of Pollution Sources on Water Quality

The WQI can comprehensively evaluate the status of water quality. For the trained
WQIRF model based on RFs, according to the analysis of the model’s feature importance,
the proposed WQIRFmin model in this study consisted of five key water quality parameters,
that is, Mn, Fe, F. coli, DO, and TN, and exhibited a very good performance for water
quality evaluations. The selected parameters of the WQIRFmin model should be able
to comprehensively explain the overall variations and characteristics of water quality
and should be conducive for efficiently evaluating water quality with relatively lower
measurement costs [3]. Five potential pollution sources were obtained using the PMF
method. Because the RF model could assess the importance of each parameter in the model,
the feature importance of each water quality parameter in the WQIRF could be calculated.
The contribution of each potential pollution source to the variation in the WQI values
was quantitatively assessed by multiplying the feature importance of each water quality
indicator by the contribution of the source to each water quality indicator in the PMF model
and then accumulating them.

Previous studies have used the WQI to assess surface water quality in many
areas [2,3,8,9,35], and many studies have also analysed potential pollution sources of
surface water [36–38]. However, the determination of most pollution sources and their
effects are usually based on the personal experience of the researcher and the qualitative
judgement of the local survey information [26].

Few studies have quantitatively analysed the impact of pollution sources on the
water quality assessment. Although some pollution sources provided a higher pollution
contribution rate to water quality parameters in this study, the contribution of the pollution
source to the WQI values was not enough to change the WQI values; this, the actual
impact of these sources on the water quality assessment was not significant. Through the
quantitative analysis of the relationship between pollution sources and the WQI values, it
is possible to (i) obtain the pollution sources that have a substantial impact on water quality
evaluation, (ii) clarify the focus of water pollution management, and (iii) provide relevant
departments with a reasonable water resource protection strategy.

From the perspective of water quality evaluation, this study systematically analysed
the water quality of the M River basin and obtained five important water quality indicators
through the ML method. From the perspective of pollution source analysis, this study
identified potential pollution sources and quantitatively analysed the impact of pollution
sources on water quality evaluation.

The method used in this study identified the most important potential sources of
pollution in terms of their effect on the WQI score. Nevertheless, the disadvantage of
using the receptor PMF model to determine the potential sources of pollution in surface
water is that the source of pollution to a waterbody cannot be clearly identified. If the
potential sources of pollution can be identified by this method for targeted pollution
control, and subsequent water samples can be collected and compared for water quality
analysis, the results of present studies could be verified. Moreover, the important water
quality indicators and water quality characteristics could also be analysed before and after
pollution control.
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4.2. Advantages and Innovation of RFs in the Construction of the WQImin Model

In previous studies, scholars generally used the stepwise multiple linear regression
method to develop the WQImin models [3,10], which were evaluated based on R2, MSE,
and percentage error (PE) values to select important water quality indicators. Compared
with previous studies, the data distribution of WQI values in the present study was wide
and the model was relatively difficult to construct. The WQImin obtained with the above
method did not perform well on the testing set, in which PE > 10% [10].

In recent years, ML has shown excellent performance in regression models, and has
attracted increasing attention for use in academia and industry. The RF-based WQIRFmin
model in this study exhibited a better performance and yielded more stable results com-
pared with the traditional stepwise multiple linear regression method (Figure S1). In
recent years, some research has focused on combining ML with individual water quality
indicators. Chen et al. used ML methods to classify surface water quality with only a few
water quality parameters [17]. However, the national standards for surface water quality
evaluation in China still use a single-indicator evaluation method. There are relatively few
studies on the combination of ML and comprehensive water quality assessment. The use
of RFs combined with the WQI method in this study is a novel attempt to use ML for water
quality assessment. Given the rapid development of artificial intelligence and big data, ML
and deep learning can be combined with water quality assessment, water quality warning
systems, and other related water quality research in the future.

5. Conclusions

The main conclusions are as follows: (1) The main water quality parameters of the M
River that exceeded the Class III standards were TN, F. coli, Fe, and Mn. The WQI results
indicated that the water quality of the M River was ‘good’ overall, with an overall average
WQI value of 72.11. The average WQI values of the four monitoring stations ranged from
68.31 to 77.16, and there was a clear trend of deterioration from upstream to downstream.
(2) The feature importance of each water quality parameter in the WQIRF model was quan-
titatively assessed, and five parameters (Mn, Fe, F. coli, DO, and TN) were selected as key
water quality parameters for establishing the WQIRFmin model, which had good accuracy
(R2 = 0.96). (3) The PMF method was applied to identify five pollution sources and to appor-
tion their contributions to each water quality parameter. (4) Quantitative assessment of the
impact of pollution sources on water quality showed that pollutions sources were ranked
as: heavy metal pollution (53.18%) > microbial contamination (18.15%) > non-point source
agricultural (9.64%) > nutrient contamination (6.73%), while the unexplained variability
accounted for 10.95% of the total.

The methods used in this study to analyse the water quality of the M River could
reduce the measurement cost of water quality assessment and effectively improve the
measurement efficiency. In addition, the findings provide support for formulating water
quality management strategies. The methods of selecting key water quality parameters
and of assessing the quantitative contributions of pollution sources to the variation in the
WQI values could be practically applied to other surface waters to greatly improve our
understanding of the overall water quality condition. Additional studies will be required to
assess precisely the unidentified sources of pollution and variation of further water quality
parameters that were not analyzed in this study.

However, water pollution is a complex process, and more factors will affect the
migration and transformation of pollutants. Therefore, we should continue to improve the
research methods and technical means, and explore the methods and theories of traceability
of exceeded pollutants at both qualitative and quantitative levels. It is necessary to verify
and analyze the existing results, optimize the sampling scheme, and establish a model
of the relationship between environmental variables and water pollutants. This will be a
major direction for future development.
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Abstract: Water resources are critical for the survival and prosperity of both natural and socioe-
conomic systems. A good and informational water resources evaluation system is substantial in
monitoring and maintaining sustainable use of water. The Driver-Pressure-State-Impact-Response
(DPSIR) framework is a widely used general framework that enabled the measurement of water
resources security in five different environmental and socioeconomic subsystems: driver, pressure,
state, impact, and response. Methodologically, outcomes of water resources evaluation based on such
framework and using fuzzy set pair analysis method and confidence interval rating method depend
critically on a confidence threshold parameter which was often subjectively chosen in previous
studies. In this work, we demonstrated that the subjectivity in the choice of this critical parameter can
lead to contradicting conclusions about water resources security, and we addressed this caveat of sub-
jectivity by proposing a simple modification in which we sample a range of thresholds and pool them
to make more objective evaluations. We applied our modified method and used DPSIR framework
to evaluate the regional water resource security in Jiangxi Province, China. The spatial-temporal
analysis of water resources security level was carried out in the study area, despite the improvement
in Pressure, Impact, and Response factors, the Driver factor is found to become less safe over the
years. Significant variation of water security across cities are found notably in Pressure and Response
factors. Furthermore, we assessed both cross-sectionally and longitudinally the inter-correlations
among the DPSIR nodes in the DPSIR framework. The region-specific associations among the DPSIR
nodes showed important deviances from the general DPSIR framework, and our analysis showed
that in our study region, although Responses of regional government work effectively in improving
Pressure and State security, more attention should be paid to improving Driver security in future
regional water resources planning and management in Jiangxi Province, China.

Keywords: water resources security; DPSIR; confidence threshold method

1. Introduction

Water resources are the basis of human survival and development and are irreplaceable
natural resources for sustainable economic and social development [1]. Since the 1970s, the
rapid growth of world population and the rapid development of the global economy have
led to the rapid growth of global water consumption and water pollution [2,3]. In recent
years, under the influence of global climate change and high-intensity human activities, the
water cycle and the spatial and temporal distribution of water resources have undergone
complicated changes. The complexity of hydrological characteristics and the insecurity of
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water resources increased substantially [4,5]. Therefore, water resources security evaluation
and the selection of appropriate evaluation methods is of critical importance in monitoring
the sustainable use of water resources and guiding countries and regions to maintain
socially sustainable development [6,7].

To evaluate water resources security, scholars have come up with various indicators to
measure the degree of regional water resources security, such as per capita water resources
and water resources vulnerability index [8,9]. Measuring water resources security via per
capita water resources is proposed by Falkenmark et al. [10]. The vulnerability index of
water resources refers to the percentage of annual freshwater resources taken up in the
total amount of available or renewable freshwater resources. Raskin et al. [11] used a
vulnerability index and classified water resource pressure as low, medium low, medium
high, and high based on the degree of water resources usage. Other commonly used
water resources security evaluation indicators include the water resources development
and utilization index [12], the water allocation and priority strategy index [13], and water
poverty index [14].

Recently, more and more studies evaluated water resources security from a multi-
dimensional perspective that utilizes a system of indicators from different domains [15–20].
Various multi-dimensional water resources evaluation frameworks and methods have
been developed, including methods based on catastrophe theory [15], system dynamics
model (SDM) [16,17], process analysis method (PAM) [21], WaterGAP3 modeling frame-
work [18], projection pursuit model [19], and multistage integrated method [20]. For a
comprehensive review of water resources evaluation tools, see [22]. Among them, one
of the most commonly used frameworks is the Driver-Pressure-State-Impact-Response
(DPSIR) framework. Compared to other frameworks like SDM and PAM, the DPSIR frame-
work includes more measures and is more flexible [23]. The DPSIR framework has been
widely applied in water resources and ecological security assessment studies [19,24–44].
Some primitive versions and new variants of the DPSIR framework were also used in the
literature, e.g., PSR model [45,46], DPSI model [33], PSIR model [47,48], DPSR model [49],
and DPSIRM model [36,50].

The DPSIR model was proposed by the European Environmental Agency in
1995 [51,52] and has been widely used in policymaking and research. The DPSIR model
has the advantage of linking among several components in the water resources security
assessment system, and it allows for analyzing the coupling relationship between natu-
ral environment resources and human activities. The DPSIR model aims to establish a
causal chain of Driver-Pressure-State-Impact-Response, and these five different sub-systems
have different implications [24,27,30,33,53]. “Driver” refers to the socio-economic or socio-
cultural factors that promote the increase or decrease of water system pressure. The Driver
sub-system includes factors like population growth, prosperity level, social or technological
change, etc. “Pressures” is mainly reflected by the direct pressure of human behavior
on natural resources and the environment. The Pressures sub-system includes factors
like water usage and wastewater discharge. “State” is the condition of the environment
under various pressure factors. The State sub-system includes factors like water resource
quantity and quality. “Impact” refers to the consequences of environmental conditions,
which represents the observable positive or negative results, such as human health impact
or vegetation damage. “Response” indicates the countermeasures taken by mankind in
the process of promoting sustainable development, such as improving resource utilization
efficiency, reducing pollution, increasing investment, etc. In summary, the DPSIR model
evaluates threats from social, economic, and human activities to regional water resources
security and the human responses to these threats.

China is a country with serious uneven spatial and temporal distribution of water
resources, and water resources problems are very prominent. Water resources shortage,
drought, and flood disasters and water ecological environment problems have become im-
portant factors restricting China’s economic development. Water resources security evalua-
tion has received significant interests among scholars [7,16,20,27,30,36,45,54–60]. Regional
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water resources security evaluation has been done at both river basins [37,43,44,61–63] and
urban areas which are analyzed both at the level of individual cities [15,41,45,46,58,64,65]
and at the level of provinces [16,20,27,47,54,56,65–68]. Compared to other provinces in
China, Jiangxi is a province relatively rich in water resources [65]. However, the tempo-
ral and spatial distribution of water resources in Jiangxi is uneven, and seasonal water
resources are scarce. With the rapid development of the economy and the acceleration of
urbanization, the contradiction between supply and demand of water resources is becom-
ing increasingly prominent, the quality of water environment is declining year by year,
and water pollution emergencies occur from time to time [66]. How to reasonably develop
water resources and achieve sustainable utilization is an important and arduous task.

In this paper, we evaluated the regional water resources security in Jiangxi Province,
China, using the DPSIR framework. The study period was chosen based on the availability
of data in Jiangxi Province, China. The entropy weight method [69] was used to calculate
the indices weight, and the fuzzy set pair analysis method [70] was used to evaluate the
water resources security. Instead of using a subjective confidence threshold parameter to
draw boundaries between Safe vs. Unsafe, which has been used by many studies in the
literature [38–41], we demonstrated that the limitation of such method is that subjectivity in
the choice of the confidence threshold could lead to contradictory conclusions. Furthermore,
we addressed this issue of subjectivity by proposing a modified method that samples a
range of thresholds to obtain a more objective measure of water resources security. We
evaluated the temporal and spatial dynamics of water resources security in the Driver
force, Pressure, State, Impact, and Responses domains in 11 cities in Jiangxi Province
over the period of 2010–2018 using our modified method. In addition, we empirically
assessed the inter-correlations among the DPSIR nodes over time and space using repeated
measures correlation. Our analysis revealed a more complicated and region-specific flows of
interactions in the DPSIR framework. Our approach estimates region-specific sensitivities
and associations among the DPSIR sub-systems and can use this information to better
guide local policy makers on improving the carrying capacity of water resources and
strengthening the sustainable development of economy, society, and water resources in the
Jiangxi Province.

2. Study Area and Datasets
2.1. Study Area

The Jiangxi Province (113◦34′36′′–118◦28′58′′ E, 24◦29′14′′–30◦04′41′′ N) lies in the
southern bank of the middle and lower reaches of the Yangtze River and is one of the
most important inland provinces in China. It belongs to East China, with a land area
of 166,900 square kilometers, accounting for 1.8% of the national land area, with a total
population of more than 46.47 million and jurisdiction over 11 prefecture level cities,
namely, Nanchang, Jingdezhen, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, Ji’an, Yichun,
Fuzhou, and Shangrao. The geographical locations of the cities are shown in Figure 1. In
this paper, we will evaluate the water resources safety of these 11 cities in Jiangxi Province
using the DPSIR framework.

2.2. Datasets

The dataset used in this paper to conduct the water resources security evaluation comes
from the annual statistical data and official documents approved by regional governmental
departments, including China Statistical Yearbook, Jiangxi statistical yearbook, and Jiangxi
water resources bulletin. It could be accessed through China’s economic and social big data
research platform (https://data.cnki.net/NewHome/index (accessed on 20 November
2020)) and National Bureau of Statistics website (http://data.stats.gov.cn/ (accessed on
20 November 2020)). Given the integrity and availability of data, the study period is chosen
to be from 2010 to 2018. Among them, most evaluation index data of driver (D), pressure
(P), state (S), influence (I), response (R) can be obtained directly, and some indexes can be
obtained by index calculation method.
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sources and dense river network. There are more than 2400 large and small rivers in 
Jiangxi Province, with a total length of about 18,400 km. The average annual water re-
sources amount to 156.5 billion cubic meters. The total runoff is the seventh in China, the 
per capita is the fifth, and the cultivated land is the sixth. The annual average value of 
groundwater natural resources is more than 21.2 billion cubic meters, accounting for 2.3% 
of the national natural groundwater resources. 
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Figure 1. Study area: Jiangxi Province, China.

The whole year of Jiangxi has mild climate, with sufficient sunshine, plentiful rainfall,
and long frost-free period, which belongs to the subtropical warm and humid monsoon
climate. The average annual temperature is about 16.3–19.5 ◦C. Jiangxi Province is one of
the rainy provinces in China, with annual precipitation of 1341–1943 mm. Moreover, 97.7%
of the area of Jiangxi belongs to the Yangtze River Basin, with rich water resources and
dense river network. There are more than 2400 large and small rivers in Jiangxi Province,
with a total length of about 18,400 km. The average annual water resources amount to
156.5 billion cubic meters. The total runoff is the seventh in China, the per capita is the
fifth, and the cultivated land is the sixth. The annual average value of groundwater natural
resources is more than 21.2 billion cubic meters, accounting for 2.3% of the national natural
groundwater resources.

3. Methodology
3.1. Water Resources Security Evaluation Index

In this paper, water resources security is evaluated using the DPSIR framework. One
domain-specific index is calculated respectively for each of the five subdomains, namely,
Driver, Pressure, State, Impact, and Response. These indices are computed for each of
the 11 cities and for each year separately. Fifteen social economic factors are used in the
calculation of the indices of water resources security in Jiangxi Province. These factors are
classified based on the nature of the factor into one of the five subsystems of DPSIR (see
Table 1). All the factors used in this paper were well-accepted in the field and were used by
multiple studies in the previous literature; the relevant references to each of the 15 factors
are listed in the last column of Table 1.
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Table 1. Social economic factors used in the DPSIR system. Here, index type “+” indicates that
higher values are more desirable for the particular factor whereas “-” indicates that lower values are
more desirable.

Subsystem Factors Unit Calculation Meaning of Index Index Type References

Driver

Per capita
GDP (D1) yuan/person GDP/population

It indicates the driver of
economic development on
water resources security

+ [47,48,71,72]

Population
density (D2) person/km2 Total population/

land area

It indicates the driver of
population density on

water security
- [47,60,72,73]

Urbanization
rate (D3) %

Non-agricultural
population/total

population

It indicates the driver of
regional development on
water resources security

+ [15,47,48,60]

Annual GDP
growth rate (D4) % Statistical data

It indicates the driver of
economic development

intensity to water
resources security

+ [15,47,60]

Pressure

Water use for
each 10,000 yuan

of GDP (P1)
m3/10,000 yuan

Total amount of
water use/
total GDP

It indicates the pressure of
economic development

intensity on the quantity
of water resources

- [47,60,71,72]

Wastewater
discharge for each

10,000 yuan of
GDP (P2)

m3/10,000 yuan
Wastewater
discharge/
total GDP

It indicates the pressure of
industrial development

on the quality of
water resources

- [47,60]

Water use for
each 10,000 yuan

of agricultural
output (P3)

m3/10,000 yuan

Total amount of
irrigated water

use/total output
value of farming

It indicates the pressure of
agricultural development

on the quality of
water resources

- [47,60,71]

Per capita daily
consumption of

tap water for
residential

use (P4)

L/day Statistical data
It indicates the pressure of
human life on the quantity

of water resources
- [47,60,73,74]

State

Per capita water
resource

quantity (S1)
m3/person

Total amount
of water

resources/total
population

It indicates the per capita
state of water resources + [15,23,47,60,71,

74–77]

Per unit area
water resource
quantity (S2)

10,000 m3/km2

Total amount
of water

resources/
land area

It indicates the per unit
area water resource state. + [23,72]

Impact

Energy
consumption for
each 10,000 yuan

of GDP (I1)

Tons of SCE
/10,000 yuan

Total Energy
Composition/

total GDP

It indicates the Potential
impact of resource

utilization on
water resources

- [74]

Rate of green
coverage area to

developed
area (I2)

% Statistical data
It indicates the response

of surface water storage to
water resources

+ [60,71,74]

Proportion of
tertiary industry

in GDP (I3)
% Statistical data

It indicates the impact of
water resources system on

industrial structure
+ [47,60]

Response

Utilization rate of
water

resources (R1)
%

Total amount of
water use/total

amount of
water resources

It indicates the response
of water resources
quantity security

- [15,47,72]

Urban sewage
treatment
rate (R2)

% Statistical data
It indicates the response

of standard discharge
of sewage

+ [60,71,74–76]

GDP: gross domestic product; SCE: standard coal equivalent.
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3.2. Individual Factor Grade Intervals

Based on the current domestic research results in China and the regional situation
of the Jiangxi Province [57], as the first step of the pipeline, for each of the 15 factors (See
Table 2), we assign the following 5 security levels: 1—safe, 2—generally safe, 3—barely
safe, 4—unsafe, and 5—very unsafe. The specific boundaries used here are chosen based on
both standards that have been used in the literature and standards and planning objectives
issued by the local government and protection requirements of river water system [58,65,66].
For details, see Table 2, for specific water resources safety classification boundaries.

Table 2. Grades of water resource security evaluation.

Factor Level Index Level Index Type 1—Safe 2—Generally Safe 3—Barely Safe 4—Unsafe 5—Very Unsafe

Driver (D)

D1 (yuan) + >75,000 55,000–75,000 35,000–55,000 15,000–35,000 <15,000
D2 (person/km2) - <250 250–2000 2000–3750 3750–5500 >5500

D3 (%) + >70 50–70 30–50 10–30 <10
D4 (%) + >10 8–10 5–8 3–5 <3

Pressure (P)

P1 (m3) - <300 300–600 600–1000 1000–1500 >1500
P2 (m3) - <20 20–30 30–40 40–60 >60
P3 (m3) - <500 500–1000 1000–1500 1500–2000 >2000

P4 (L/day) - <70 70–120 120–170 170–220 >220

State (S) S1 (m3) + >3000 1700–3000 1000–1700 500–1000 <500
S2

(10,000 m3/km2) + >200 200–150 150–100 100–50 <50

Impact (I)
I1 (Tons of SCE) - <0.5 0.5–1 1–2 2–5 >5

I2 (%) + >40 30–40 20–30 10–20 <10
I3 (%) + >60 40–60 20–40 5–20 <5

Response(R) R1 (%) - <5 5–15 15–30 30–45 >45
R2 (%) + >90 80–90 70–80 60–70 <60

3.3. Fuzzy Security Level Using Fuzzy Set Pair Analysis

To better quantify the dynamics of the DPSIR factors, instead of directly using the
classification threshold in Table 2, the water security levels of each of the 5 DPSIR categories
are calculated using Fuzzy Set Pair Analysis (FSPA). FSPA is a special case of Set Pair
Analysis (SPA) which is a systematic analysis method established by Zhao 1989 [78]. SPA
has been applied to various canonical set pairs in the field of hydrology and water resources,
e.g., flood vs. drought, qualified vs. unqualified, safety vs. danger [17,70,79,80]. FSPA
applies fuzzy logic theory to SPA and accounts for system uncertainty in addition to
identity, by considering difference and opposition of two sets of each set pair. In dealing
with problems with uncertainty such as evaluating the water security level, instead of
using a hard coded boundary to categorize factors into Safe vs. Unsafe, FSPA represents
the security level by quantifying the similarity of the current value to that of each security
category. FSPA is proved to be effective and has been successfully applied to water resources
evaluation in many studies [54,56,81–86].

3.3.1. Calculation of Index Connection Degree

Assume that the set of water resources security evaluation index system composed of
n index values X = {x1, x2, · · · , xn}, xi ∈ {1, 2, 3, . . . , K}. K is the number of the evaluation
grade standard, in our case K = 5 since we have 5 different water security levels. The
evaluation grade standard is Bk (k = 1, 2, · · · , K), and here, the set of the kth level of the
evaluation grade standard is Bk = {k, k, . . . , k}. The similarity between the two sets X and
Bk represents how close X is to a security level of k.

Here, we define the index connection degree between X and Bk, for each k. First, we
compute the difference between each element of X and Bk, |xi − k|. Then, we count the
number of occurrences that |xi − k|= i , and denote it as Fi. In particular F0 is the number of
times that xi = k, and Fk−1 is the number of times that {xi, k} = {1, k}. Then the K-element
connection degree of (X, Bk) is

µX∼Bk = b0 I0 + b1 I1 + b2 I2 + · · ·+ bK−2 IK−2 + bK−1 IK−1 (1)
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where bi =
Fi
n and b0 + b1 + b2 + · · ·+ bK−2 + bK−1 = 1

I1, I2, . . . , Ik−1 are the coefficients of difference degree component, which can be
determined by uniform value method e.g., Ii = 1− 2i

K−1 ; IK−1 is the coefficient of contrary
degree which is usually taken as −1.

In this paper, Bk is specified as the set B1 composed of the first level evaluation criteria
of a certain index. In case of (X, B1), b0 = F0

n is the identical degree of (X, Bk) which
represents the possibility of index X belonging to the 1st level of the standard; b1 = F1

n ,
b2 = F2

n , bK−2 = FK−2
n are the difference degree which represents the possibility of index X

belonging to the 2nd, 3rd, and the (K− 1) level of the standard; bK−1 = FK−1
n is the contrary

degree which represents the possibility of index xt belonging to the Kth level.
Because the boundary of grade standard is fuzzy, the degree of connection µXt∼B1 can

be calculated using Equations (2) and (3). Xt is the factor of interest (D1–D4, P1–P4, S1–S2,
I1–I3, R1–R2) at year t. s1, s2, . . . , sK−1 are the grade boundaries for factor Xt as indicated
in Table 2.

Generally, the indicators of water resources security evaluation can be divided into
cost indicators (negative indicators) and benefit indicators (positive indicators). For the
cost indicators (the smaller the better), when K > 2, the K-element connection degree of
(Xt, B1) is

µXt∼B1 =





1I0 + 0I1 + 0I2 + · · · + 0IK−2 + 0IK−1, xt ≤ s1;
s1+s2−2xt

s2−s1
I0 +

2xt−2s1
s2−s1

I1 + 0I2 + · · · + 0IK−2 + 0IK−1, s1 < xt ≤ s1+s2
2 ;

0I0 +
s2+s3−2xt

s3−s1
I1 +

2xt−s1−s2
s3−s1

I2 + · · · + 0IK−2 + 0IK−1, s1+s2
2 < xt ≤ s2+s3

2 ;
· · ·

0I0 + 0I1 + · · · + 2sK−1−2xt
sK−1−sK−2

IK−2 +
2xt−sK−1−sK−2

sK−1−sK−2
IK−1, sK−2+sK−1

2 < xt ≤ sK−1;

0I0 + 0I1 + 0I2 + · · ·+ 0IK−2 + 1IK−1, xt > sK−1

(2)

where s1 ≤ s2 ≤ · · · ≤ sK−1.
For the benefit indicators (the bigger the better), when K > 2, the K-element connection

degree of (Xt, B1) is

µXt∼B1 =





1I0 + 0I1 + 0I2 + · · · + 0IK−2 + 0IK−1, xt ≥ s1;
2xt−s1−s2

s1−s2
I0 +

2s1−2xt
s1−s2

I1 + 0I2 + · · · + 0IK−2 + 0IK−1, s1+s2
2 ≤ xt < s1;

0I0 +
2xt−s2−s3

s1−s3
I1 +

s1+s2−2xt
s1−s3

I2 + · · ·+ 0IK−2 + 0IK−1, s2+s3
2 ≤ xt <

s1+s2
2 ;

· · ·
0I0 + 0I1 + · · · + 2xt−2sK−1

sK−2−sK−1
IK−2 +

sK−1+sK−2−2xt
sK−2−sK−1

IK−1, sK−1 ≤ xt <
sK−2+sK−1

2 ;

0I0 + 0I1 + 0I2 + · · · + 0IK−2 + 1IK−1, xt < sK−1

(3)

where s1 ≥ s2 ≥ · · · ≥ sK−1.

3.3.2. Determination of Index Weights

After the establishment of the evaluation index system, it is necessary to select an
appropriate method to determine the evaluation index weight. At present, the widely
used methods include analytic hierarchy process (AHP) [36], expert investigation method,
BP neural network technology [87], and entropy weight method [69]. Compared with
commonly used alternative methods such as AHP, which involves the construction of
a subjective evaluation matrix, the entropy weight method is more objective and can
instead objectively weigh the different indices based on implicit information in the index
data. The entropy method has been adopted by many previous studies in water resources
evaluation [42,44,54,59,60,69]. Thus, in this study, we used the entropy weight method.

Entropy weight method is often used in information theory to calculate index weight.
In information theory, information is a measure of the order degree of the system, and
entropy represents the disorder degree of the system. When the entropy of an index
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is smaller, the difference among the index data is more systematic, which indicates a
greater influence of the index on the evaluated object, and hence, a greater weight should
be assigned. On the contrary, the greater the entropy, the more random the index data,
indicating a smaller influence of the index on the evaluated object, and hence, a smaller
weight of the index should be assigned. The steps are as follows:

(1) Standardize the evaluation index:

Assume the water resources security evaluation system includes n evaluation objects
(for each DPSIR domain, n is the number of years of evaluation) and m evaluation indexes
(for each DPSIR domain, we have m factors). If the jth evaluation index of the ith evaluation
object is xij (i = 1, 2, · · · , n; j = 1, 2, · · · , m), then the index matrix X composed of xij is
as follows:

X =
(
xij
)

n×m =




x11 · · · x1m
...

. . .
...

xn1 · · · xnm


 (4)

We compute for the positive index a normalized value:

vij =
xi,j − xminj

xmaxj − xminj
(5)

We compute for the negative index a normalized value:

vij =
xmaxj − xij

xmaxj − xminj
(6)

Here, xmax is the maximum value of the index, and xmin is the minimum value of the
index for column j.

After normalization, the n×m value matrix V is obtained:

V =
(
vij
)

n×m =




v11 · · · v1m
...

. . .
...

vn1 · · · vnm


 (7)

(2) Determine the value of evaluation index entropy:

We compute the relative ratio of vij for each evaluation object i as pij, and the calcula-
tion formula is as follows:

pij =
vij

∑n
i=1 vij

(8)

Then, the entropy Ej of the jth evaluation index is defined as:

Ej = −
1

ln n

n

∑
i=1

pij· ln pij (9)

A special case is that if pij = 0, then pij· ln pij = 0.

(3) Determine the weight of index:

The entropy weight ωj of each evaluation index can be expressed as:

ωj =
1− Ej

∑m
j=1
(
1− Ej

) (10)

3.3.3. Calculation of Connection Degree

If the evaluation sample is set X, then the K-element connection degree of (X, B1) can
be defined as [44]:

108



Int. J. Environ. Res. Public Health 2022, 19, 3650

µX∼B1 =
n
∑

j=1
ωjµXt ∼B1

=
n
∑

j=1
ωjbj,0 I0 +

n
∑

j=1
ωjbj,1 I1 +

n
∑

j=1
ωjbj,2 I2 + · · ·+

n
∑

j=1
ωjbj,K−2 IK−2 +

n
∑

j=1
ωjbj, K−1 IK−1

(11)

If we let f1 =
n
∑

j=1
ωjbj,0, f2 =

n
∑

j=1
ωjbj,1, · · · , fK−1 =

n
∑

j=1
ωjbj,K−2, fK =

n
∑

j=1
ωjbj,K−1, then

Equation (11) can be transformed into:

µX∼B1 = f1 I0 + f2 I1 + f3 I2 + · · ·+ fK−1 IK−2 + fK IK−1 (12)

where fK represents the possibility that the evaluation sample belongs to the Kth level of the
standard. We computed a continuous measure of security rating µ, the connection degree,
by setting Ii = 1− 2i

K−1 . As a result, we can rewrite Formula (12) as

µX∼B1 =
K

∑
i=1

fi

(
1− 2(i− 1)

K− 1

)
= f1 + f2

(
1− 2

K− 1

)
+ f3

(
1− 4

K− 1

)
+ · · ·+ fK−1

(
−1 +

2
K− 1

)
− fK (13)

The connection degree is computed for each DPSIR component, for each year at each
city. The connection degree is linearly transformed from [0, 1] to [1, 5] to be compared with
other measures in Section 3.3.4.

3.3.4. Measures of Water Resources Security

In this paper, we computed a discrete measure of overall water security rating (1 to 5)
for each city and each year using the confidence level grading method [88]:

min
k

hk = f1 + f2 + · · ·+ fk > λ , where k = 1, 2, · · · , K (14)

Here, hk is the property measure, and λ is the confidence threshold. λ should not be
too large, otherwise the evaluation results tend to be conservative and stable; λ should not
be too small, otherwise the reliability of the results becomes poor, and the evaluation results
tend to be over-positive. It is generally recommended that λ be taken in [0.5, 0.7] [58,59,89].
This threshold parameter λ is often subjectively chosen in this range of [0.5, 0.7] in the
previous literature [38–41]. For a selected λ, the evaluation security rating is selected as the
minimal k such that hk is greater than λ. For example, if h1 = f1 < λ and h2 = f1 + f2 > λ,
then the evaluation security rating is k = 2.

In order to avoid the subjectivity of the choice of λ, we proposed a simple modification
of the confidence level grading method. We sampled 100 λs uniformly from the empirical
range of [0.5, 0.7], and we repeated the calculations of the minimal k such that hk > λ
for 100 times for each of the 100 different λs. Then, we averaged the results from these
100 λs to determine the grade of each index. This gave us a continuous measure of water
resources security. We showed in Figure 2 that this measure correlates strongly with the
connection degree.

3.4. Statistical Analysis
3.4.1. Repeated Measures Correlation

Repeated measures correlation (rmcorr) was first introduced by Bland and Altman
in biostatistics to analyze the correlations between paired repeated measures, which
are two corresponding measures assessed for each individual/site on multiple occa-
sions [90,91]. For repeated measures, the independence assumption adopted by simple
correlation/regression is often violated. Repeated measure correlation addresses this
non-independence among observations by using analysis of covariance (ANCOVA) to
statistically adjust for inter-site variability. Conceptually, rmcorr is similar to a regression
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model that assumes a common slope and varying intercept for each group (in our case,
city or year). By removing measured variance between sites, rmcorr provides the best-fit
parallel regression lines with varying intercepts and the same slope. The rmcorr coefficient
ranges from −1 to 1, similar to Pearson correlation [92].

In our study, we used rmcorr to analyze the correlations among pairs of DPSIR water
security ratings (for example, between D and P) that were computed for each year and each
city. We assessed the repeated correlations both longitudinally and cross-sectionally. In the
longitudinal assessment, we used rmcorr to adjust for the variances across cities. In other
words, we analyzed how a pair of factors (e.g., D and P) covaried over the years. In the
cross-sectional assessment, we used rmcorr to adjust for the variances across years instead.
In other words, we analyzed how a pair of factors (e.g., D and P) covaried across cities.
Repeated measures correlation analysis was implemented in R programming language
using the “rmcorr” package [92].
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Figure 2. (a–c) Water resource security grade with λ = 0.5, 0.6, 0.7; (d) water resources security
using the graded confidence threshold; (e) connection degree rescaled from 0–1 to 1–5; (f) correlation
between the modified method and the connection degree; (g) distributions of water security scores in
all methods; here, 1 is Safe, and 3 is Barely safe.
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3.4.2. Linear Mixed Models

In this study, Linear Mixed Models (LMMs) [93] were used to assess the temporal
trend of the DPSIR factors over the years. In our case

f = βyearY + τcity + ε

Here, f stands for D, P, S, I, or R, and the LMMs analysis was applied for each factor
separately. βyear is the slope parameter that quantifies the temporal trend of each factor, Y
is the year, τcity is the city ID, and ε is the random error. We assume a fixed effect of Year
and a random effect of City. The analysis was implemented in R programming language
using the “lmer” function in package “lme4” [94].

4. Results
4.1. Water Resource Security Evaluation in Jiangxi Province Using the Modified Confidence
Threshold Method

Using Fuzzy set pair analysis and the entropy weight method, we calculated the water
resource security for each city and each year. In our dataset, the calculated weights for each
DPSIR factor are shown in the table below (Table 3).

Table 3. Weights of each DPSIR factor.

D1 D2 D3 D4 P1 P2 P3 P4 S1 S2 I1 I2 I3 R1 R2

0.060 0.067 0.065 0.150 0.052 0.051 0.049 0.040 0.075 0.070 0.045 0.062 0.079 0.050 0.086

The water resource security evaluation method described in this paper depends crit-
ically on a confidence level parameter λ. It has been suggested in the literature that λ
should be chosen from [0.5, 0.7]. However, the subjective selection of λ can have conse-
quential impacts on the estimated water security. To illustrate the caveat of this subjectivity
in the selection of λ, we compared five different measures of water resource security,
three measures using subjective thresholds λ = 0.5, 0.6, 0.7, the measure using our pro-
posed modified method, and finally the connection degree measure. The estimated water
resource security with λ = 0.5, 0.6, 0.7 is shown in Figure 2a–c, respectively. A lower λ
tends to give optimistic estimates that the water security is classified as Safe or Generally
Safe for all cities and all years, whereas a higher λ tends to give pessimistic estimates that
the water security is classified as Barely Safe for significant proportions of cities and years.
Furthermore, this subjective selection of λ can lead to contradictory conclusions. When
comparing the water resource security in 2010–2014 and 2015–2018, with λ = 0.5, most
cities change from Safe to Generally Safe, showing a declining temporal trend in safety
(Figure 2a). However, with λ = 0.7, most cities change from Barely Safe to Generally Safe,
showing an increasing temporal trend in safety (Figure 2c). To avoid this subjectivity in
parameter selection of λ, we used a modified method that utilizes a range of uniformly
sampled λs (Figure 2d). We further compared this modified method and the connection
degree. The connection degree is rescaled from 0–1 to 1–5 for equal comparison (Figure 2e).
The modified method is strongly correlated with the connection degree (Figure 2f, R2 = 0.64,
p < 0.001). The distributions of water security scores across cities and years in all methods
(the modified method, the connection degree, and old methods with λ = 0.5, 0.6, 0.7 are
shown in Figure 2g. The score from the modified method has a shape that is closest to a
normal distribution and lends itself to more convenient statistical tools.

Overall, we find that the water resource security of 11 cities in Jiangxi province is
generally safe, ranging from Barely Safe to Safe (Figure 2d–e). We did not find Unsafe or
Very Unsafe grades in any of the 11 cities from 2010–2018. In addition, we found that the
water resource security changed from a more inconsistent and volatile grade (Barely Safe to
Safe) before the year of 2014, to a more consistent and stable grade (Generally Safe) since the
year of 2014. This change reflected the regional water resource managers’ efforts in water
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resources management. The overall degree of environmental remediation is strengthening
over the years.

4.2. Temporal and Spatial Dynamics of Water Resource Security in Jiangxi Province

We further investigated the DPSIR components of the water resources security and
how they varied over the years and across different cities. Temporally, we showed the
DPSIR scores of each city as a function of year (Figure 3, upper panel) to investigate the
temporal trend. Spatially, we showed the variation of the DPSIR scores across years as
a function of city (Figure 3, lower panel) to investigate the spatial differences in water
resources management. Each color denotes a city, and the green line in the upper row
showed the yearly averages of water security score across the eleven cities.
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Figure 3. Time series and boxplot of water security grading of each city during the years 2010–2018.

Linear Mixed Models (LMMs) were used in analysis to account for repeated measures
and assess the statistically significance of the temporal trends of the DPSIR factors. Specially,
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we showed a significant descending trend (from 5-Unsafe to 1-Safe) in the Pressures, Impact,
and Response factors. In addition, we showed a significantly ascending trend (from 1-Safe
to 5-Unsafe) in the Driver factor. The State factor remains unchanged during the time period
of the study (Table 4). The Pressures factor significantly improved over the years (p < 0.001).
Considering the four water resources pressure indices used in this study, the decrease in
the security level shows that the utilization rate of water resources in various industries is
getting higher, and the pressure on water resources security is gradually weakened. The
Impact factor significantly improved over the years (p < 0.001). The increasing in index I
indicates that the urbanization level increases, and the greening rate and the water supply
assurance rate of these cities are getting higher over the study period. The response factor
also significantly improved over the years (p = 0.017), showing an increase in the laws
and rules in favor of sustainable water usage. The safety of the Driver factors significantly
declined over the years (p < 0.001). This indicates that the economic and industrial structure
of the cities in Jiangxi Province rapidly developed but exposed more risks to water security
over the study period. The State factor remained unchanged during the period of study
(p > 0.05), indicating a sustainable water quality.

Table 4. LMM results of temporal trend analysis of the DPISR water resources security.

D P S I R

Predictors Estimates p Estimates p Estimates p Estimates p Estimates p
(Intercept) 1.27 <0.001 2.99 <0.001 2.79 <0.001 2.70 <0.001 2.15 <0.001

(0.87–1.67) (2.58–3.40) (2.39–3.20) (2.30–3.10) (1.74–2.57)
years 0.09 <0.001 −0.12 <0.001 0.03 0.212 −0.13 <0.001 −0.06 0.017

(0.04–0.14) (−0.17–−0.07) (−0.02–0.08) (−0.18–−0.08) (−0.11–−0.01)
Random Effects

σ2 0.11 0.11 0.45 0.04 0.43
ICC 0.14 0.51 0.16 0.62 0.32
N 11citys 11citys 11citys 11citys 11citys

Observations 99 99 99 99 99
Marginal R2/

Conditional R2 0.299/0.397 0.304/0.660 0.013/0.172 0.518/0.815 0.040/0.346

ICC: Intraclass correlation coefficient. The significant p values are bolded.

The variations of DPSIR factors over the years are computed for each city. We showed
a significant difference among the cities. As the capital city of the province, the capital city
Nanchang (City #1 in dark blue, Figure 3) has the most industry and economic growth
among the 11 cities (the safest/lowest D factor); the heaviest pollution problem, land-use
charges, and population growth (the least safe/highest P factor); and a relatively low water
quality (a relatively unsafe/high S factor). On the other hand, Fuzhou (City #10 in red,
Figure 3) is a city under-development with a high Driver factor rating, a low Pressures
factor rating, and a low State factor rating, the opposite of Nanchang. This anti-correlations
among factors are further explored in the next section. Moreover, we noticed that some
cities went through more changes over the years compared to other cities. In particular,
the cites Jingdezhen (City #2) and Ganzhou (City #7) have a significant higher variance in
the Response factor compared to other cities, showing a significant impact of taxes and
environmental laws on water management in these cities.

4.3. The Cross-Sectional and Longitudinal Inter-Correlations among the DPSIR Subsystems

In this paper, we assessed empirically the inter-connections among the 5 subsystems
in the DPSIR framework, namely, Driver, Pressure, State, Impact, and Response. Temporal
trends were removed for each factor, and the inter-correlations were computed based on
residuals. In particular, we assessed the inter-correlations among the DPSIR components
both cross-sectionally and longitudinally, by controlling the temporal (year) and spatial
(city) factor, respectively, using repeated measures correlation. The diagonal panels in
Figure 4 showed the histograms of the DPSIR security ratings across years and cities. The
upper triangular of Figure 4 showed the repeated measures correlations among DPSIR
factors over the years (city is treated as a random effect). Data points in these plots are
grouped by cities (the color scheme is the same as in Figure 3); different colors here are

113



Int. J. Environ. Res. Public Health 2022, 19, 3650

different cities, and a separate regression line is drawn for each city. The lower triangular
of Figure 4 showed the repeated measures correlations among DPSIR factors across cities
(year is treated as a random effect). Data points in these plots are grouped by years, and the
different intensity of the grey indicates different years (more recent years are represented
by darker colors). A separate regression line was drawn for each year. The regression’s
coefficient and associated p-values are shown in the title of each subplot (Figure 4).
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Driver and Pressures factors are negatively correlated, both over the years (R = −0.27,
p = 0.011) and across cities (R = −0.27, p = 0.011). This is in line with the DPSIR framework
that an increase in Driver should lead to a decrease in the Pressures score (e.g., high industry
development leads to more pollution). Increasing Drivers such as population and economic
and social development promotes the development of the city but at the same time imposes
pressures on water supply demand and sewage treatment, which would decrease the safety
level in Pressure factors. Pressure and States correlate over the years (R = 0.31, p = 0.003).
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Higher Pressure would lead to Poorer State (e.g., lower water quantity and quality). State
factor does not correlate significantly with Impact factor over the years (p > 0.05) but
correlates significantly with Impact factor across cities (R = 0.39, p < 0.001). Pressure and
Impact positively correlate over the years (R = 0.27, p = 0.01) and negatively correlate across
cities (R = −0.26, p = 0.013). Over the years, increasing water demand due to agricultural
and residential water use leads to a decrease in the safety rating of the Impact of water
security (e.g., decreasing greening coverage). Across the cities, however, cities with high
Pressure safety have low Impact safety. Finally, the Response factor correlated significantly
with both Pressure (R = 0.22, p = 0.04) and State (R = 0.25, p = 0.019) over the years. Good
responses to water threats can indeed decrease water pressure and lead to better water/soil
states. Impact factor did not significantly react to responses in the study region (p > 0.05).

5. Discussion

In this paper, we used the DPSIR framework to evaluate regional water resources
security in Jiangxi Province in China. Our study constructed a water resources security
evaluation index system and evaluation grade standards for 11 cities in Jiangxi Province.
Fuzzy set pair analysis method and entropy weight method were used to evaluate water
security through a modified confidence-threshold method. We analyzed the temporal
trend and spatial variations of water resources security, separately for the Driver, Pressure,
State, Impact, and Response subsystems. In addition, we empirically assessed the inter-
correlations among the five subsystems of the DPSIR system, both longitudinally and cross-
sectionally by controlling for city and year respectively. We revealed a more complicated
and region-specific DPSIR flow and suggested that such region-specific networks are
informational in guiding local policy making.

The evaluation of water resources security in the DPSIR framework depends critically
on a confidence threshold parameter λ. This threshold λ was usually subjectively chosen
in the literature. The subjective choice of λ varied from study to study, some of the choices
are 0.55 [39], 0.6 [40], and 0.7 [41]. In our paper, we showed that this subjectivity would
lead to inconsistent and even opposite conclusions in water resources evaluation and is
prone to errors (Figure 2). To address this caveat, we proposed a simple modification
that averages water security estimates over a range of λs. In this method, researchers no
longer had to specify a single subjective λ value. We compared our modified method
with connection degree and found that these two measures correlate strongly with each
other. We recommend future researchers to avoid using subjective λs and use alternative
continuous measures such as our modified method or the connection degree.

We comprehensively evaluated Jiangxi Province’s water resources security of all cities
from 2010 to 2018. We can see that since 2014, Jiangxi Province’s water resources become
more stable and consistent across cities and mostly fall in the category of “Generally Safe”.
Through trend analysis, we were able to identify differential temporal trends among the
DPSIR factors. The water resources security in Jiangxi Province has been improving over
the years in many aspects. The water security levels of the indices pressure (P), impact
(I), and Response (R) have decreasing trends over time and are becoming safer over the
years. This is related to the continued construction of water-saving reconstruction projects
in Jiang provinces in recent years. Moreover, the development and utilization rate of water
resources in Jiangxi Province is increasing, which also makes the water resources security
safer over the years. The index driver (D) has an increasing trend and is becoming less safe,
and more attention is needed in regulating the Driver. This manifests in a number of factors
including the increase of population density and the decrease of GDP growth rate. Jiangxi
Province has attracted a large number of migrant populations in recent years, resulting
in population aggregation, which in turn results in a relative increase of domestic water
consumption of urban residents and a relative reduction of per capita water and economic
resources. The state (S) remains unchanged.

Despite the general temporal trend, we identified significant differences among cities.
The water resources security in some cities are relatively poorer than others and require
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more attention. Cities like Nanchang, Ganzhou, and Jiujiang are developing rapidly
socio-economically; the GDP growth rates are large; these cities not only attract a large
number of foreign populations, but also have local population aggregation, resulting in the
relative increase of domestic water consumption of urban residents. The per capita water
resources are relatively reduced, and the contradiction between supply and demand of
water resources become prominent. However, cities like Yingtan, Shangrao and Fuzhou are
rich in annual rainfall and per capita water resources. The domestic water consumption of
urban residents and the water consumption of 10,000-yuan industrial added value are less,
and the reuse rate of industrial water and sewage treatment rate are also higher than the
average value in the province.

Furthermore, we empirically assessed the inter-correlations among the DPSIR sub-
systems. We argue that despite the general causal flow in the DPSIR framework, the
sensitivities of changes between different subsystems should vary from region to region. It
is important to assess the region-specific intercorrelations among the DPSIR subsystems em-
pirically. In this paper, we tested such correlations both longitudinally and cross-sectionally
using repeated measures correlations. Longitudinal correlations reflect more the intrinsic
associations between the rise and fall of different pairs of factors, whereas cross-sectional
correlations reflect more the regional heterogeneity in water resources management. The
results are summarized in Figure 5. The general DPSIR framework has a forward loop in
the order of D-P-S-I-R, and feedback edges (R, D), (R, P) and (R, S) represent the Responses
in response to Drivers, Pressures, and States. In our study region, there are informational
deviations from this standard framework in inter-correlations among the DPSIR subsys-
tems. For longitudinal correlations, Impact seems to be detached from the rest of the
4 subsystems. In particular, Responses do not seem to arise from Impacts but rather from
Pressures and State directly. In addition, the fact that Responses correlate with Pressure
and State but not Driver, indicate that the local policies are less targeted at regulating
Driver compared to managing Pressures and State. Our analysis suggested that future
policies should consider regulating Driver. We suggest that relevant departments can
increase investment in economic development, accelerate the development of advanced
water resources technology, tap the exploitable potential of water resources, and resolve
the problem of increasing demand for water resources from the source. Moreover, it is
beneficial to formulate effective water-saving strategic plans, promote the recycling of
water resources, and improve the optimal allocation of water resources. For cross-sectional
correlations, we observed significant correlations between (S, I) and (P, I). This suggests the
regional heterogeneity in the causal influences on the Impact factor. We think that these
region-specific interconnections and their deviances from the standard DPSIR framework
carry useful information about the local water resources system and can assist local gover-
nors in making better local water resources policies. Our approach of empirical assessment
of the region-specific connectivity in various subsystems over space and time can serve as
a reference for future regional water resources evaluation studies.
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6. Conclusions

This study used the DPSIR framework and assessed the temporal and spatial dynamics
of water resources security in Jiangxi Province, China. In this study, we demonstrated that
methods using the subjective confidence threshold in assessing water resources security
can lead to contradictory conclusions depending on the choice of the confidence threshold
parameter. To address this limitation, we proposed a modified method that samples a
range of threshold values and pools them to obtain more objective measures of water
resources security.

From the analysis of the temporal trend and spatial variation of DPSIR-based water
security level in Jiangxi Province, we found that while Pressures, Impacts, and Responses
are becoming safer over the years, the Driver factor is becoming less safe and requires
more attention. The increase in population density and the decrease in per capita water
resources have made the contradiction between supply and demand of water resources
more prominent in Jiangxi Province.

Through longitudinal and cross-sectional correlational analysis among the DPSIR
subsystems in Jiangxi Province, we found regional deviances of inter-correlations among the
DPSIR nodes from the general DPSIR causal chain framework. In particular, the Responses
in this area correlate with Pressure and State but not with Driver. This suggests that local
government should direct future policies towards improving the security level of Driver,
and relevant departments should increase the development of water resources potential,
formulate water-saving strategic measures, and optimize the allocation of water resources.
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Abstract: N-doped TiO2 films supported by glass slides showed superior photocatalytic efficiency
compared with naked TiO2 powder due to them being easier to separate and especially being
responsive to visible light. The films in this study were prepared via the sol–gel method using
TBOT hydrolyzed in an ethanol solution and the nitrogen was provided by cabamide. The N-doped
TiO2 coatings were prepared via a dip-coating method on glass substrates (30 × 30 × 2 mm) and
then annealed in air at 490 ◦C for 3 h. The samples were characterized using X-ray diffraction
(XRD), scanning electron microscopy (SEM) and UV-vis. The doping rate of N ranged from 0.1 to
0.9 (molar ratio), which caused redshifts to a longer wavelength as seen in the UV-vis analysis. The
photocatalytic activity was investigated in terms of the degradation of phenol under both UV light
and visible light over 4 h. Under UV light, the degradation rate of phenol ranged from 86% to 94% for
all the samples because of the sufficient photon energy from the UV light. Meanwhile, under visible
light, a peak appeared at the N-doping rate of 0.5, which had a degrading efficiency that reached
79.2%, and the lowest degradation rate was 32.9%. The SEM, XRD and UV-vis experimental results
were consistent with each other.

Keywords: photocatalysis; N-doped films; visible light; titanium dioxide

1. Introduction

In recent years, substances that cause water pollution are mainly refractory pollu-
tants in industrial and agricultural wastewater and domestic sewage, such as volatile
halogenated hydrocarbons, phenols, nitrobenzene and polycyclic aromatic hydrocarbons.
Much effort has been devoted to the photocatalysis field in water treatment to efficiently
remove nonbiodegradable compounds and avoid secondary pollution. The photocatalytic
reaction transfers an electron from a valance band electron to an empty conduction band
by absorbing photon energy equal to or more than the semiconductor band gap. The result-
ing electron–hole pairs contribute to the degradation reaction of the pollutant. Phenolic
compounds are highly toxic and carcinogenic; they are present in wastewater, mainly in
effluents from the production of pharmaceuticals, plastics, pesticides, oil and petrochemi-
cals. Phenol was used as a model form of pollution since its molecular structure contains a
benzene ring, making it quite stable and difficult to be biodegraded.

Common semiconductor photocatalysts include TiO2, WO3, ZnO and NiO. In order to
improve the photocatalytic degradation activity, many technologies were proposed, such as
metal or nonmetal doping, the development of microspheres and coupling semiconductors
together. A pure TiO2 photocatalyst often has some shortcomings, such as easy recombina-
tion of photogenerated electrons and holes, low catalytic efficiency and only responds to
UV light, which limits its practical application. To solve these problems, current research
focuses on metal/nonmetallic element doping, precious metal deposition and the construc-
tion of composite photocatalysts. TiO2 of ultrafine nanoparticle size is considered to be
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the most useful photocatalyst for its excellent properties, such as high-light-conversion
efficiency, chemical stability, nontoxic nature and low cost [1–13].

The band gap energy of TiO2 is 3.2 eV (for anatase) and 3.0 eV (for rutile), and the
maximum absorption wavelength of TiO2 is 387.5 nm (anatase); that is to say, TiO2 can
only assimilate UV light rather than generate electrons (e−) and holes (h+), which can
subsequently induce redox reactions for the degradation of nonbiodegradable organics
in water [14]. Under the irradiation of UV light, electrons are promoted from the valence
band to the conduction band of the semiconductor, creating electron–hole pairs, which
can cause highly oxidizing hydroxyl and highly reduced superoxide radicals [15]. While
the energy of UV light only takes 4–5% of the solar energy, how to enlarge the maximum
absorption wavelength of TiO2 for visible light and cause TiO2 to absorb more visible light
has become a research hotspot in recent years [16]. Ion doping, semiconductor complexes
and surface photosensitized methods were employed to cause TiO2 to be responsive to
visible light. Nonmetallic ion doping is one of the widely studied ways of inducing new
electronic bands and optical transitions, which involves the inclusion or substitution of
a foreign atom, such as nitrogen, sulfur, fluorine or sulfur, that replaces the oxygen atom
in the TiO2 crystal lattice [17–19]. Doping TiO2 with nitrogen can create a redshift in the
absorption wavelength from UV to the visible range because of the formation of new states
inside the TiO2 bandgap. This shift could enable photocatalytic reactions to produce a high
degradation rate under sunlight illumination [20–23].

Different nano-TiO2 photocatalytic systems in suspension were studied, such as
nanoparticles, nanobelts and nanotubes, where TiO2 has a larger specific surface area
and high absorption of light, and all show increased photocatalytic activity when excited
under visible light toward the degradation of different chemical species [24–26]. However,
difficulties in separation and recycling lead to the smaller possibility of industrial appli-
cation. Furthermore, the dosage of TiO2 is difficult to control, where too little will lead
to low photocatalytic efficiency and too much will cause light scattering that influences
the absorption of light. Thus, much effort was expended to immobilize photocatalysts in
the form of thin films on a stable support to avoid the problems associated with disposing
photocatalyst suspensions [27]. Different contents of doped nitrogen have different impacts
on the photocatalytic efficiency, for disparities in the replaced oxygen atom can lead to
variations in the photocatalyst activity. Frequently used nitrogen sources include urea,
triethylamine, ammonia and ethylmethylamine [25].

N-doped TiO2 thin films can effectively solve the previous problems by enlarging
the maximum absorption wavelength and realizing immobilization together. Nitrogen
is doped into TiO2 using the sol–gel method, which is easy to operate and the reaction
condition is mild. The formation of catalyst needs to go through the procedure of dipping,
pulling out, drying, annealing, and chilling [28].

The purpose of this research was to prepare nitrogen-doped TiO2 thin films on sheet
substrates of different nitrogenous amounts using the sol–gel method. The advantages
of this method are that TiO2 can be stimulated with visible light, it solves the traditional
issue of photocatalytic technology being difficult to control, problems such as high cost and
effective components being easily lost are solved, and it greatly improves the possibility
of a large-scale practical application in wastewater treatment engineering. We compared
the degradation properties of these samples, investigated degradation results and their
characterization consequences, analyzed the influence of the amount of nitrogen, and
addressed the relationship between the concentration of zymolyte and the reaction time.

2. Materials and Methods
2.1. Materials and Reagent

Tetrabutyltitanate (CP, 98%), acetylacetone (AR, 98.0%), polyethylene glycol, acetone
(AR, 99.5%) and hydrofluoric acid were provided by GuangFu Fine Chemical Research
Institution in TianJin. Anhydrous ethanol (AR, 99.7%) and carbamide (AR, 99.5%) were
made by ShuangShuang Chemical Co., Ltd., in YanTai, China. Deionized water was created

124



Int. J. Environ. Res. Public Health 2022, 19, 15721

in our lab. The glass substrates used were common commercial glass sheets cut to the
needed size.

2.2. Preparation of N-Doped TiO2 Films

The dip-coating method was utilized to immobilize the films. Precursor solutions for
N-doped TiO2 coatings were prepared with tetrabutyltitanate, anhydrous ethanol, acety-
lacetone, carbamide, deionized water and polyethylene glycol (1 wt%). Tetrabutyltitanate
(20 mL), anhydrous ethanol (80 mL) and acetylacetone (3 mL) were mixed using magnetic
stirring for 20 min, followed by a certain quality of carbamide added into the solution as the
donor of nitrogen (the molar ratios of N/Ti used were 0.1, 0.3, 0.5, 0.7 and 0.9). Deionized
water (15 mL) was dropwise added at the speed of one drop per second and left to stir
for one hour; then, the procedure was finished after the addition of polyethylene glycol
(1 mL) to avoid fracturing of the films [28]. Undoped TiO2 sol with the same reagents
and procedures was also prepared to compare the photocatalytic activity with N-doped
coatings. The sol was aged for 24 h at 35 ◦C and then used to make the coatings.

Commercial glass substrates (30 mm × 30 mm × 2 mm) cleaned with acetone (10 wt%)
and eroded with hydrofluoric acid (10 wt%) for 3 h were used as the support of the N-doped
TiO2 films. The substrates were maintained in the aged sol for 10 min and then pulled out
at the rate of 2 cm/s using a dip coater (CZ-4200, Qingdao Zhongrui Intelligent Instrument
Co., LTD, Qingdao, China). After the films dried out, the previous process was repeated
another three times; the product was then calcined for 3 h at 490 ◦C. The films were finally
even and tight on the glass sheet. The coatings obtained were named TN0, TN1, TN3, TN5,
TN7 and TN9 according to the amount of doped nitrogen.

2.3. Characterization

After the deposition of the TiO2 films onto glass substrates, all of the remaining sol
was dried at 80 ◦C for 20 h in order to obtain dried gels, which were then calcined at 490 ◦C
for 3 h to prepare the powders with the same crystal phase as the coatings. These powders
were synthesized to analyze the phase compositions of titania by means of X-ray diffraction
(XRD) using a D/Max-2200 Powder X-ray Diffractometer (XRD, D/Max-2200, Nippon
Science Corporation, Tokyo, Japan) with Cu-Kα radiation at 40 kV and 20 mA.

Scanning electron microscopy (SEM, SU8220, Hitachi hi-tech, Shanghai, China) was
utilized in an air atmosphere to examine the morphological structure and grain size of the
films coated on the glass. The vapor has its considerable impact on the dried sample before
observation [29].

The UV-vis DRS measurements were recorded at room temperature for the dry-pressed
disk samples using a UV-3600 UV-vis spectrophotometer (UV-3600 UV-vis, Shimadazu, Tokyo,
Japan) equipped with an integrating sphere assembly within the range of 300–900 nm.

2.4. Measurement of Photocatalytic Activity

The experiments were carried out with the initial concentration of phenol equal to
10 mg/L at an ambient temperature (approximately 25 ◦C) and pressure. The photoreactor
used an acrylic cuboid static opaque chamber (700 mm × 450 mm × 250 mm) equipped
with a thermocouple to monitor the temperature during irradiation. The UV source was
supplied by 6 ultraviolet tubes (20 W), which had a dominant wavelength of 254 nm. As
for the visible light source, 6 ordinary fluorescent lamps (20 W) were employed to produce
the longer wavelength light.

Each beaker contained 8 pieces of glass sheet supporting N-doped TiO2 coatings of
the same amount of doped nitrogen. The illuminant was about 15 cm from the bottom of
the solution. The system was left in the dark for 30 min until reaching phenol adsorption
equilibrium, and then a photocatalytic reaction was carried out under UV light or visible light.
The samples were taken from the reactor for analysis every 30 min, where the samples were
placed in a 2 cm quartz dish and the remaining concentrations were analyzed using 4-AAP
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extraction spectrophotometry and UV-vis spectrophotometry (Photo Lab 6600 UV–Vis, WTW,
Munich, Germany) at 510 nm. The photocatalysis reaction lasted for 4 h.

3. Results and Discussion
3.1. XRD Analysis

Figure 1 shows the XRD patterns of the six powdery samples. For all samples, it can be
observed that where the 2θ was 25.4◦ (101), the diffraction peak was especially distinct, and
at 2θ = 30.7◦ (121), the relative intensity is quite small, which means that the anatase phase
was dominant and the rutile phase was hardly existing. In addition, other characteristic
peaks (2θ = 25.34◦, 48.11◦ and 44.49◦) were all accordant with JPDS-21-1272 [30] (anatase
standard card). It can be confirmed that N-doped TiO2 mainly existed in the form of
anatase. With the increase in the N doping amount, the sample pattern almost did not
change, indicating that N doping had little effect on the crystal structure. The difference
being all samples on the 101 crystal plane may have been caused by the grinding of the
samples with different N contents.
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Figure 1. XRD patterns of TN0, TN1. TN3, TN5, TN7 and TN9.

3.2. SEM Analysis

Figure 2 shows the SEM photographs of a clean glass substrate and N-doped TiO2
films. The glass substrate after being washed with acetone and eroded with hydrofluoric
acid was quite clean and had an even roughness with a great transmission of light. A
rough surface can increase the capacity of the load [27]. The microstructures of the six
samples had no obvious differences, which indicated that the quantity of carbamide had
little impact on the surface of the coatings. Figure 2d, e demonstrate that the films made
using the sol–gel method were porous and the granules dispersed uniformly with particle
sizes ranging from 30 nm to 80 nm.

126



Int. J. Environ. Res. Public Health 2022, 19, 15721Int. J. Environ. Res. Public Health 2022, 19, 15721  5  of  10 
 

 

 
(a) 

 
(b) 

TN 0 

     
(c)  (d)  (e) 

TN 9 

Figure 2. SEM photographs of a clean glass substrate (a,b) (TN0) and SEM photographs of sample 

TN9 (c–e). 

3.3. UV‐Vis DRS Analysis 

UV‐vis DRS results are shown in Figure 3. The maximum absorption wavelength of 

TN0 was about 380 nm, indicating the main components of samples were naked titanium 

dioxide with little impurities. Different amounts of N‐doping replaced oxygen atoms in 

the TiO2 crystal lattice with nitrogen atoms to different degrees, which was also the reason 

for different degrees of  redshift when compared with  the maximum absorption wave‐

length of TN0. It is worth noting that the nitrogen doping amount did not follow a “the 

more, the better” pattern within a certain range since the maximal redshift occurred for 

TN5, not TN9. Different amounts of N‐doping can reduce the bandwidth of TiO2, enhance 

the transfer of electrons from the valence band to the conduction band and improve the 

photocatalytic rate. However, when the amount of N‐doping  is too much, the nitrogen 

atom will become the center of electron recombination and accelerate the recombination 

rate of electrons and holes, thus affecting the photocatalytic rate [31,32]. 

   

Figure 2. SEM photographs of a clean glass substrate (a,b) (TN0) and SEM photographs of sample
TN9 (c–e).

3.3. UV-Vis DRS Analysis

UV-vis DRS results are shown in Figure 3. The maximum absorption wavelength of
TN0 was about 380 nm, indicating the main components of samples were naked titanium
dioxide with little impurities. Different amounts of N-doping replaced oxygen atoms in the
TiO2 crystal lattice with nitrogen atoms to different degrees, which was also the reason for
different degrees of redshift when compared with the maximum absorption wavelength of
TN0. It is worth noting that the nitrogen doping amount did not follow a “the more, the
better” pattern within a certain range since the maximal redshift occurred for TN5, not TN9.
Different amounts of N-doping can reduce the bandwidth of TiO2, enhance the transfer of
electrons from the valence band to the conduction band and improve the photocatalytic
rate. However, when the amount of N-doping is too much, the nitrogen atom will become
the center of electron recombination and accelerate the recombination rate of electrons and
holes, thus affecting the photocatalytic rate [31,32].
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3.4. Photocatalytic Activity under UV and Visible Light Irradiation
3.4.1. Photocatalytic Activity under UV Light Irradiation

With regard to absorption, the dark test showed that the variation of phenol concen-
tration caused by absorption was lower than 3%, which meant that the absorption had little
influence on the degradation ratio of the photocatalytic procedure.

The variation of each sample over time is shown in Figure 4. The phenol concentration
at 0 min was measured just after absorption. It can be observed that the rank of the six
samples regarding photocatalytic activity was TN5 > TN3 > TN7 > TN1 > TN9 > TN0, i.e.,
TN5 had the highest degradation over the others during the same period. The degradation
ratios were 93.77%, 91.32%, 90.82%, 88.89%, 85.73% and 80.10%, respectively. The maximum
absorption wavelength of the five N-doped samples were all redshifted to visible light to
different degrees, while the photocatalytic activities of the five samples were also enhanced,
which should have been caused by the doping nitrogen leading to the energy structure of
titanium dioxide changed; that is to say, the optical energy band gap of TiO2 diminished.
A reduction in the optical energy band gap will enhance the transfer of electrons from
the valence band to the conduction band under visible light, which may have been the
reason for the better relative performance of the N-doped TiO2 [33]. The kinetics of phenol
removal followed the Langmuir–Hinshelwood kinetic equation [34]:

R = dc/dt = kKc/(1 + Kc) (1)

where R represents the reaction rate, c is the concentration of the substrate at the time, k is
the reaction rate constant and KC is the adsorption constant. When the concentration was
very low, Kc << 1; therefore, the relevant equation turned out to be

ln(c0/c) = kt + b (2)

where c0 is the initial concentration, t is the reaction time and kt is the apparent reaction
rate constant. Figure 5 shows the kinetics of the six samples. The apparent reaction rate
constants ranged from 0.00614 to 0.01048.
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3.4.2. Photocatalytic Activity under Visible Light Irradiation

The absorption under visible light in the dark period made little difference compared
with UV light, while the variation in phenol concentration during illumination time made
a significant difference.

It can be observed from Figure 6 that the degradation rates of the N-doped samples
were obviously better than that of the naked TiO2 (TN0). TN5 still possessed the fastest
degradation rate, followed by TN3, TN7, TN1 and TN9; that is to say, the best degradation
efficiency appeared at the point where the molar ratio of N/Ti was 0.5, rather than the
more nitrogen doping, the higher the degradation rate. The degradation results were also
coincident with the UV-vis DRS results, where TN5 had the greatest redshift.
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The kinetics of phenol removal under visible light also followed the Langmuir–
Hinshelwood kinetic equation (the kinetic Equation (1) in 3.4.1), as Figure 7 shows. The
apparent reaction rate constants ranged from 0.00156 to 0.04893.
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4. Conclusions

N-doped TiO2 thin films were successfully immobilized on commercial glass substrates
via the sol–gel method starting from tetrabutyltitanate dissolving in anhydrous ethanol as
a precursor. The formulation of sol and an annealing temperature of 490 ◦C were optimal,
as seen by the highly uniform lattice structure that was mainly constituted of anatase and
the TiO2 granules being evenly distributed with ultrafine nano-particle sizes ranging from
30 to 80 nm. The surface morphology of the coating was basically unaffected by different
nitrogen contents. Under the same experimental conditions, the degradation efficiency of
phenol in the experimental group under visible light irradiation reached about 90% of that
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under UV light, indicating that N-doping caused the optical energy band gap of TiO2 to
diminish; therefore, the maximum absorption wavelength had obvious redshifts, leading
to the doped films having more efficient photocatalytic activity, both under UV light and
visible light. The optimal photocatalytic efficiency was realized at an N-doping ratio of
0.5, rather than the more dopant, the better the photocatalytic efficiency since an excess N-
doping ratio leads to an increased recombination ratio of electrons and holes, which reduces
the photon utilization factor. The pollution absorption ability of the TiO2 and glass sheet
was quite feeble; thus, the kinetics of degradation followed the Langmuir–Hinshelwood
kinetic equation, which describes first-order reaction kinetics.
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Abstract: Adsorption can quickly remove pollutants in water, while photocatalysis can effectively
decompose organic matter. B-TiO2/g-C3N4 ternary composite photocatalytic materials were prepared
by molten method, and their adsorption–degradation capability under visible light conditions was
discussed. The morphology of the B-TiO2/g-C3N4 materials was inspected by SEM, TEM, BET, and
EDS, and the results showed that close interfacial connections between TiO2 and g-C3N4, which are
favorable for charge transfer between these two semiconductors, formed heterojunctions with suitable
band structure which was contributed by the molten B2O3. Meanwhile, the molten B2O3 effectively
increased the specific surface area of TiO2/C3N4 materials, thereby increasing the active sites and
reducing the recombination of photogenerated electron–hole pairs and improving the photocatalytic
degradation abilities of TiO2 and g-C3N4. Elsewhere, the crystal structure analysis (XRD, XPS, FTIR)
results indicated that the polar -B=O bond formed a new structure with TiO2 and g-C3N4, which is not
only beneficial for inhibiting the recombination of electron holes but also improving the photocatalytic
activity. By removal experiment, the adsorption and degradation performances of B-TiO2/g-C3N4

composite material were found to be 8.5 times and 3.4 times higher than that of g-C3N4. Above
all, this study prepared a material for removing water pollutants with high efficiency and provides
theoretical support and experimental basis for the research on the synergistic removal of pollutants
by adsorption and photocatalysis.

Keywords: adsorption; degradation; B2O3; TiO2/C3N4; molten

1. Introduction

Photocatalysis is a technology that can use semiconductor materials to remove pol-
lutants from the environment under different lighting conditions [1–3]. Most materials
require ultraviolet conditions to produce redox effects. The visible part of sunlight irradi-
ate that reaches the water surface only occupies 45%, while the ultraviolet part occupies
less than 4% [4]. At the same time, water absorbs and reflects sunlight in different wave-
lengths, which seriously limits the removal efficiency of photocatalytic materials in a water
environment [5–7].

g-C3N4 is a good semiconductor material with application potential that is metal free
and has visible light responsiveness [8–10]. However, researchers found that g-C3N4 still
has many disadvantages such as low utilization of visible light, poor photoelectric conver-
sion efficiency, and low specific surface area [11]. Since Serpone et al. [12] first reported that
a solid–solid heterojunction interface with good contact can be constructed from different
coupled semiconductor materials to promote electron transfer between particles, more and
more researchers have paid attention to different semiconductor materials. Among the
many photocatalytic semiconductor materials, TiO2 is widely used in sewage treatment [13],
photocatalytic synthesis [14], and self-cleaning [15]. Due to its easy availability, low cost,
stable chemical properties, corrosion resistance, non-toxicity, and strong oxidizing prop-
erties [16], its air purification [17] and antibacterial properties [18] have been extensively
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studied. Therefore, using the advantages of TiO2 material properties to composite it with
g-C3N4 to become a more competitive material has attracted the attention of more and
more researchers [19–21].

In the treatment of water environment pollution, the adsorption performance and
visible light response ability of photocatalytic materials are two important factors that
determine whether the photocatalytic technology can be effectively promoted [22,23]. The
high-efficiency adsorption and enrichment ability of the material reduce the concentration
of pollutants in water and provide a high-concentration contact environment that is con-
ducive to the photocatalytic reaction for the material [24,25]. The melting characteristics of
B2O3-modified g-C3N4 are effective for improving its specific surface area and adsorption
performance, but its response to visible light is limited, which affects the visible light
photocatalytic activity [26].

Effectively improving the adsorption performance and visible light catalytic activity
of materials at the same time is a key issue for researchers. Functional coupling through
different materials is an idea to solve this problem. Here, TiO2 and g-C3N4 were formed into
a composite heterostructure to improve the photocatalytic oxidation ability of the material.
Then, the melting characteristics of B2O3 during the heating process were used as a “reaction
environment regulator”, and TiO2/C3N4 was co-calcined to prepare a composite mate-
rial. The results of the experiment showed that B element doped the composite-modified
materials, and, finally, the adsorption behavior and visible light catalytic degradation
ability of B-TiO2/C3N4 were analyzed by using MB and RhB organic pollutants. This
method effectively increased the specific surface area of the material, increased the con-
jugated system, improved the adsorption capacity, and effectively improved the visible
light catalytic effect of the material. This provides a technical idea for the promotion and
application of a low-cost preparation of an efficient adsorption–degradation photocatalytic
composite material.

2. Materials and Methods
2.1. Sample Preparation

(1) TiO2: 17 mL of butyl titanate (Aladdin, 99% pure) was placed into 55 mL of ethanol
solution (Aladdin, 99.7% pure), then 4.5 mL of glacial acetic acid (Aladdin, 99% pure)
was added. After mixing using a magnetic stirrer, the solution was recorded as A. We
measured 27.6 mL of ethanol, added 0.9 mL of distilled water, and adjusted the pH
to 4 with nitric acid (Sinopharm, 65−68% pure), and this solution was recorded as B
after thorough mixing. The solutions A and B were stirred for 30 min respectively, the
B solution was added dropwise to the A solution at a rate of 10 drops per minute, and
the final obtained mixed solution was TiO2 sol. Then, the TiO2 sol was stirred at room
temperature and placed in an oven to dry after gelation. Then, the dried xerogel was
ground into powder and placed in a crucible with a lid to heat at a rate of 5 ◦C/min
until 550 ◦C and was maintained at this temperature for 2 h. After the temperature
in the muffle furnace (XS2−10, Li Chen, China) dropped to room temperature, the
calcined material was ground into powder, and the obtained material was denoted
as TiO2.

(2) g-C3N4: 10 g melamine (Aladdin, 99% pure) was placed into a 50 mL crucible and
put into muffle furnace, and the heating rate was set to 5 ◦C/min until it reached the
reaction temperature of 550 ◦C. Then, the reaction temperature was maintained for
2 h. After the material cooled to room temperature, we ground the calcined solid, and
the obtained yellow powder was g-C3N4.

(3) TiO2/C3N4 composite material: 1 g of melamine and 10 mL of TiO2 sol were weighed
in a beaker, stirred, and mixed thoroughly and then the mixture was placed into an
oven for drying after gelation. The dried composite precursor was placed in a crucible
with a lid and calcined at 550 ◦C for 2 h. The obtained material was ground into
powder after cooling to room temperature to obtain TiO2/C3N4 composite material.
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(4) B-C3N4: The B2O3 (Aladdin, 99.9% pure) and g-C3N4 were mixed and ground evenly.
Then, the composite powder was placed into a ceramic crucible. After that, the
samples were heated to 550 ◦C at a heating rate of 5 ◦C/min and maintained for
2 h. When the furnace was cooled to room temperature, the powders were washed
with water and ethanol several times. For convenience of description, the composite
material was abbreviated as B-C3N4.

(5) B-TiO2/C3N4: The TiO2/C3N4 material and B2O3 were mixed and stirred in distilled
water at a mass ratio of 1:1. After grinding evenly, we put it into an atmosphere
furnace at 550 ◦C for 2 h. Then, the material was soaked and washed three times with
ethanol and distilled water, respectively. The sample was denoted as B-TiO2/C3N4.
For comparison, another ternary composite material, B2-C3N4/TiO2, was prepared:
1 g of B-C3N4 and 10 mL of TiO2 sol were weighed with the same method.

2.2. Characterization

The structural analysis of the samples was carried out by X-ray diffraction (XRD,
Rigaku Ultima III, Tokyo, Japan) and was recorded in the 2θ range of 5–80◦ with a scan
rate of 0.02◦/0.4 s using a Bruker AXSD8 system (Bruker, Billerica, MA, USA) equipped
with a Cu Kα radiation source (λ = 0.15406 Å, in which the X-ray tube was operated
at 40 kV and 40 mA). UV–Vis diffuse reflectance spectra (DRS) were obtained on a UV–
visible (UV–Vis) spectrophotometer (PerkinElmer, Waltham, MA, USA) with BaSO4 as the
reference. The sample morphology of the different composite materials was examined using
a scanning electron microscope (SEM, Hitachi, Tokyo, Japan) and a transmission electron
microscope (TEM, JEM-2100, JEOL, Tokyo, Japan). X-ray photoelectron spectroscopy
(XPS) measurements were performed on a Thermo Scientific ESCALAB 250 instrument
(Thermo Fisher Scientific, Waltham, MA, USA) with an Al Kα source. Low-temperature
N2 adsorption/desorption measurements (Brunauer–Emmett–Teller (BET) method) were
carried out using a Micromeritics ASAP 2020 system (Micromeritics, Norcross, GA, USA)
at −196 ◦C following degassing of all samples at 120 ◦C for 2 h.

2.3. Adsorption and Photocatalytic Degradation of Organic Pollution

In order to evaluate whether composite materials have a better effect on the removal of
pollutants, TiO2, g-C3N4, B-TiO2, B-C3N4, TiO2/C3N4, B-TiO2/C3N4, and B2-C3N4/TiO2
were weighed in the removal experimental. A 30 mg amount of each of material was added
to the MB solution with a volume of 100 mL and a concentration of 20 mg/L. Under the
condition of magnetic stirring, the photocatalytic efficiency was measured after 30 min
of dark reaction adsorption experiment. A 1.5 mL amount of solution was taken out
for measurement each time, and the removal rate of pollutants was determined by the
following formula:

Rt =
C0 − Ct

C0
× 100% (1)

where Rt is the removal rate at time t after commencing the adsorption and photocatalytic
degradation process, and C0 and Ct are initial concentration and concentration at time
t, respectively.

Qe =
C0 − Ce

m
V (2)

where Qe is the adsorbed quantity of samples at the equilibrium moment of adsorption
and desorption. C0, Ce, V, and m are the initial concentration, concentration at time t, initial
volume of MB, and quantity of adsorbent, respectively.

2.4. Kinetics and Adsorption Isotherm Model

The adsorption behaviors were fitted to the materials by pseudo-first-order kinetic and
pseudo-second-order kinetic models, respectively. Two kinetic linear models are shown
below [27]:
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Pseudo-first-order kinetic model:

ln(Qe − Qt) = lnQe − k1t (3)

Pseudo-second-order kinetic model:

t
Qt

=
1

k2Q2
e
+

t
Qe

(4)

where Qt and Qe in the formula are the adsorption amount of the sample at time t and
equilibrium, respectively. k1 and k2 are pseudo-first-order kinetic constants and pseudo-
second-order kinetic constants, respectively.

Langmuir and Freundlich are the two most common adsorption isotherm models. The
Langmuir model assumes that the surface of the adsorbate is uniform and the adsorption ca-
pacity is the same everywhere, and it only occurs on the outer surface of the adsorbent; this
is monolayer adsorption. The Freundlich adsorption equation can be applied to both mono-
layer adsorption and adsorption behavior on uneven surfaces. Freundlich, as an empirical
adsorption isotherm for non-uniform surfaces, is more applicable to low-concentration
adsorption and can interpret experimental results over a wider concentration range. There-
fore, in this experiment, the experimental results are fitted by these two adsorption isotherm
models, and the formulas are as follows [28]:

Langmuir:
Ce

Qe
=

1
QmKL

+
Ce

Qm
(5)

Freundlich:
lnQe =

1
n

lnCe + lnKF (6)

where Qe and Qm represent the adsorption capacity and the maximum adsorption capacity,
respectively; Ce is the concentration of pollutants in the solution at adsorption equilibrium;
KL is the Langmuir adsorption equilibrium constant; and KF is the Freundlich constants
with the affinity coefficient.

3. Result and Discussion
3.1. Performance Testing

In order to study the physical and chemical properties of the materials, the materials
were screened by the adsorption catalytic performance of removing pollutant MB (Figure S1).
It can be clearly seen from the figure that the adsorption–catalytic efficiency of several
different materials for removing MB under the dark reaction and visible light conditions was
B-TiO2/C3N4 > B-C3N4 > B2-C3N4/TiO2 > TiO2/C3N4 > B-TiO2 > g-C3N4 > TiO2. Among
them, the adsorption and removal rate of MB on B-TiO2/C3N4 in the dark reaction process
reached 73.8%, while that of B2-C3N4/TiO2 was only 17.8%. Then, under the visible light
condition for 2 h, the removal rate of MB by B-TiO2/C3N4 reached 97.3%, while that of
B2-C3N4/TiO2 only reached 66.5%. Therefore, according to the preliminary experimental
results, the B-TiO2/C3N4 material was selected as the composite photocatalyst with the
highest removal efficiency for follow-up research.

The mixing ratio and calcination temperature of the composites are both important
factors affecting the performance of the composite materials. Therefore, in order to further
analyze the performance of the composite material, this experiment first selected B2O3 and
TiO2/C3N4 with different mass ratios to be mixed and calcined at 550 ◦C and then selected
the material with the best pollutant removal effect for subsequent experiments.

According to the amount of doping of B2O3, the composite materials were marked
as B-TiO2/C3N4-x (x = 1, 2, 3, 4, 5). The removal efficiencies are shown in Figure S2. The
removal rates of B-TiO2/C3N4-1, B-TiO2/C3N4-2, and B-TiO2/C3N4-3 were 69.3%, 83.2%,
and 73.4%, respectively, while the removal rates of B-TiO2/C3N4-4 and B-TiO2/C3N4-5
were only 50.9% and 23.9%.
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Therefore, according to the above experimental results, B-TiO2/C3N4-2 had the best
effect and was selected as the follow-up research material. A 2 g amount of B2O3 and 1 g
of TiO2/C3N4 material were mixed uniformly, and the mixture temperature was heated
at a rate of 5 ◦C/min for 2 h at different temperatures. The set target temperatures were
350 ◦C, 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C. For convenience of description, B-TiO2/C3N4
prepared at different calcination temperatures was named after its temperature (350 ◦C,
450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C).

3.2. Characterization and Analysis of B-TiO2/C3N4 Composites

The morphology of B-TiO2/C3N4 composites prepared under different calcination
conditions at different temperatures are shown in Figure 1. It can be seen from Figure 1a
that at 350 ◦C the surface of the structure was relatively smooth, which may have been
due to molten B2O3 wrapping the base material. Figure 1b shows the surface layer of the
calcined material at 450 ◦C was still partially covered, but a large number of loose structures
also appeared. This may have been due to the increase in the calcination temperature, and
the disorder degree increased due to the B2O3 entering the molten state, which contains
polar -B=O groups. As seen in Figure 1c, many loose pores appeared on the surface of the
composite under the 550 ◦C calcination condition. As the temperature continued to increase,
the main structure of the g-C3N4 material began to decompose when the temperature was
above 600 ◦C, and the pulverization of the g-C3N4 structure can be clearly seen in Figure 1d.
At 750 ◦C, g-C3N4 was decomposed into nitrogen and nitrile-based fragments, and TiO2
was gradually transformed from anatase to rutile; so, the layered structure of g-C3N4
cannot be observed in Figure 1e, while some agglomerates of particles can be seen.
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Figure 1. SEM of B-TiO2/C3N4 under different calcination conditions: (a) 350 ◦C; (b) 450 ◦C;
(c) 550 ◦C; (d) 650 ◦C; (e) 750 ◦C.

The specific surface area and porosity of materials are crucial factors affecting the adsorp-
tion and photocatalytic reactions. As shown in Figure S3, the representative N2 adsorption–
desorption isotherms of composite materials were of type IV [29]. According to the classifi-
cation of IUPAC, the adsorption and desorption curve hysteresis loop types of the prepared
B-TiO2/C3N4 materials belonged to the “H3” hysteresis loop (0.5 < P/P0 < 0.98:550 ◦C, 650 ◦C,
750 ◦C; 0.75 < P/P0 < 0.97:350 ◦C, 450 ◦C). The low-temperature calcination shown for
loops located at high P/P0 was caused by the aggregation of the 2D lamellar structure
of g-C3N4. By contrast, the high temperature and B2O3 as a medium effectively resulted
in more holes on the surface of g-C3N4. In Table 1, details regarding the specific surface
areas, average pore diameters, and pore volumes of various materials are summarized.
Among the temperature series, 550 ◦C showed the highest specific surface areas, average
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pore diameters, and pore volumes. This is because, at the calcination temperature of 550 ◦C,
the molten B2O3 could fully contact the TiO2/C3N4 composite as a reaction environment
modifier. The lamellar structure of g-C3N4 was exfoliated in the molten environment while
the pore structure was formed during the cooling process, so the specific surface area was
significantly increased.

Table 1. BET surface area, average pore size, and pore volume of B-TiO2/C3N4 material at
different temperatures.

Sample 350 ◦C 450 ◦C 550 ◦C 650 ◦C 750 ◦C

BET (m2/g) 13.381 13.472 58.654 34.622 25.795
Average pore size (nm) 6.311 7.809 6.960 12.733 14.263

Average pore volume (cm3/g) 0.090 0.073 0.130 0.162 0.103

The surface morphologies and microstructure of B-TiO2/C3N4 (550 ◦C) composite
material are shown in Figure 2. From Figure 2a,b, it can be clearly observed that there
were a lot of loose macropores and particle agglomeration on the surface of the g-C3N4-
based material. In order to better analyze the morphological characteristics of the material,
the high-resolution transmission electron microscope (HR-TEM) pattern was used for
analysis. In Figure 2c, it can be seen that there were a lot of loose pores on the surface
of the g-C3N4. Otherwise, a large number of granular material lattice fringes appeared
on the g-C3N4 lamellar structure. The lattice spacing embedded particles were measured
to be ~0.35 nm (Figure 2d), which is similar to the TiO2 (101) crystal plane structure [30].
Through the analysis of specific surface area and the characterization of SEM and TEM,
it was found that TiO2 grew uniformly on the surface of the g-C3N4 layered structure,
and the modification of the TiO2/C3N4 composite structure by B2O3 produced a large
number of loose pores on the g-C3N4 layered structure. Such a modification method not
only improved the specific surface area of the material, but also preserved the composite
structure of TiO2/C3N4, which is more conducive to the charge transfer of photogenerated
carriers between composite semiconductor materials and improves the photocatalytic
activity of the material.
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The XRD pattern of materials was recorded and is shown in Figure S4. It can be seen
that B2O3 showed two obvious, characteristic peaks at 14.6◦and 27.9◦ [31]. The composites
prepared at 350 ◦C and 450 ◦C had only two obvious characteristic peaks of B2O3 but no
characteristic peaks of TiO2 and g-C3N4 [32]. This may have been because the surface of the
TiO2/C3N4 material was coated by B2O3 in the molten state at 350 ◦C and 450 ◦C, which is
basically consistent with the SEM characterization shown in Figure 1. At the same time,
due to the large amount of B2O3 added, there was no peak position of g-C3N4 and TiO2
but only the characteristic peak of B2O3. At 550 ◦C, the two characteristic peaks of B2O3
disappeared in the XRD pattern, and the anatase (25.3◦) and rutile (27.4◦) diffraction peaks
of TiO2 appeared. It was caused by the entry of polar -B=O into the TiO2/C3N4. When
the temperature rose to 650 ◦C, several characteristic peaks (27.4◦, 41.3◦, etc.) of the rutile
phase of TiO2 became more and more obvious, which indicated that the crystal structure
of TiO2 gradually changed from anatase to rutile with the increase in temperature. It can
be seen from XRD analysis that when the temperature gradually increased, the degree of
disorder gradually increased, and a polar -B=O bond was formed to form a new structure
with TiO2 or g-C3N4 [33].

The Fourier-transform infrared spectroscopy of composite materials is shown in
Figure S5. In this figure, it can be seen that the peak at 550 ◦C was the smallest, which was
the Ti–O bond expansion joint and Ti stretching vibration of the -O–Ti bond. Compared
with the B-TiO2/C3N4 composites at different calcination temperatures (350 ◦C, 450 ◦C,
550 ◦C, 650 ◦C, and 750 ◦C), the obvious peaks appeared at 810 cm−1 and 1200–1600 cm−1.
The characteristic peak at 810 cm−1 was the stretching vibration of the triazine ring struc-
ture in g-C3N4, while the broad peak spectrum at 1200–1600 cm−1 was caused by the
stretching vibration of C=N. Otherwise, the obvious differences of all composite materials
were mainly due to the incomplete transformation of B2O3 from solid to molten state.
At low temperatures, the peaks were not obvious, which was caused by molten B2O3
coating on the surface of composite material, resulting in limited exposure of the surface
structure of the B-TiO2/C3N4 composite. In addition, the absorption peaks of B-TiO2/C3N4
composites at 3000–3300 cm−1 were mainly the stretching vibration of the amino group
(-NH2). Meanwhile, the two peaks at 2260 cm−1 and 2350 cm−1 were the C=O stretching
vibration of CO2 in the atmosphere [34].

Figure S6 shows the XPS spectra of several elements of B-TiO2/C3N4: B1s, N1s, C1s,
Ti2s and O1s. B1s shows three binding energies at 190.4 eV, 192.7 eV, and 193.5 eV, of
which 192.7 eV belonged to the B–O bond, 190.4 eV was the binding energy of the B–N
bond, and 193.5 eV may have been O–B formed by B entering the TiO2 crystal structure—Ti
or TiB2 bond [35]. This indicates that B element entered into the structures of TiO2 and
g-C3N4. C1s showed three main binding energies, of which 284.8 eV was the typical sp2
hybridization of the graphite phase (C=C bond peak position), and 288.7 eV corresponded
to the C–N–C bond in the structure. In addition, 286.5 eV corresponded to the exocyclic
C–O of carbon–nitrogen polymer materials [36]. Figure S6c shows the N1s binding energy
peaks at 397.3 eV, 398.2 eV, and 401.9 eV. Among them, 398.2 eV was attributed to the
sp2 hybridization (C–N=C) of the N triazine ring structure, while the peak at 401.9 eV
corresponded to the bridged N atom (N–(C)3) [37], and the peak at 397.3 eV corresponded
to N–B [38]. In addition, the characteristic peaks in the N spectrum were slightly shifted,
possibly due to the increased delocalization between the large π bonds in the carbon nitride
structure due to the doping of B element [29]. The two peaks of 458.7 eV and 464.8 eV in
the binding energy of Ti 2s were the electron binding energies of Ti4+ 2p3/2 and 2p1/2 in
TiO2, respectively. The strong peak at 530.1 eV in the O1s spectrum was the O–Ti bond in
TiO2, while 531.0 eV and 532.7 eV were the surface-adsorbed water molecules, H2O and
surface hydroxyl groups (-OH), respectively [39].

Figure S7 shows the UV–Vis diffuse reflectance absorption spectra of the composite
material (350 ◦C, 450 ◦C, 550 ◦C, 650 ◦C, 750 ◦C). It can be seen from the figure that
under different temperature conditions, the UV–visible light absorption properties of
the composites were different. The B-TiO2/C3N4 prepared at the three temperatures of

139



Int. J. Environ. Res. Public Health 2022, 19, 8683

350 ◦C, 450 ◦C, and 550 ◦C had better visible light absorption ability in both the ultraviolet
and visible light regions, and the effect of 550 ◦C was the best. This result was caused
by B element entering into the TiO2 lattice and g-C3N4 structure. According to the low
electronegativity of B element, it can be inferred that the 2p orbital of B may be different
from the 2p orbital of O. Hybridization was generated, thus, enabling enhanced visible
light absorption [40]. Otherwise, the 650 ◦C and 750 ◦C had high light absorption capacity
in the ultraviolet regions of 200–350 nm and 200–400 nm, respectively. The light absorption
ability of the visible light region greater than 400 nm was weak. This may have been due
to the gradual decomposition of the g-C3N4 structure in the composite material with the
increase in temperature, resulting in a decrease in the visible light absorption capacity of
the material. At the same time, although the temperature increased, it could also have
caused the transformation of the TiO2 crystal phase, while the mixed-phase TiO2 had
visible light absorption ability, but the effect was not obvious. Therefore, according to the
UV–Vis diffuse reflectance spectrum analysis, it is shown that the B-TiO2/C3N4 composites
prepared at 550 ◦C had good light absorption ability.

Based on the above characterization analysis description, we can roughly infer the
preparation process of composite materials. The TiO2/C3N4 material was exfoliated by
using the molten reaction environment provided by B2O3 during the heating process. At
the same time, the gas was decomposed by the trace amount of g-C3N4, thereby forming a
large number of loose pore structures. With the increase in calcination temperature, the
generated polar -B=O bond replaced the H atom of the amino group on carbon nitride
melon and formed an O–B–Ti or TiB2 structure, thereby finally forming a structurally
stable B-TiO2/C3N4 material. The specific reaction process inference diagram is shown in
Figure S8.

3.3. Photocatalytic Efficiencies

Figure 3 shows the dark adsorption and light-driven photocatalytic degradation ability
of MB (a) and RhB (b) of B-TiO2/C3N4 composite materials (350 ◦C, 450 ◦C, 550 ◦C, 650 ◦C,
and 750 ◦C). The specific experimental process was as follows: 30 mg of B-TiO2/C3N4
composite was added into 100 mL of MB solution with a concentration of 20 mg/L and
10 mg/L of RhB solution, respectively. A half-hour dark reaction time was set in the
experiment and then the photocatalytic degradation experiment was carried out. The
removal ability of RhB and MB was analyzed by catalytically degrading RhB and MB under
the irradiation of a xenon light source with a wavelength greater than 400 nm.
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reaction are shown in Figure 4a,b. The two figures show the adsorption–degradation curves
of MB (20 mg/L) and RhB (10 mg/L) by the B-TiO2/C3N4 composite, respectively. The
relationship among the adsorption–degradation efficiencies can be clearly seen from the
figure: 550 ◦C > 650 ◦C > 450 ◦C > 750 ◦C > 350 ◦C. The B-TiO2/C3N4 prepared at the
550 ◦C calcination temperature had the best adsorption effect on the two dyes in the dark
reaction adsorption process and the best removal efficiency (83.4% (MB), 64.1% (RhB)).
At this temperature, B2O3 may undergo a complete molten state process, and become a
good molten state reaction environment to fully contact with TiO2/C3N4. Therefore, the
prepared B-TiO2/C3N4 had a larger specific surface area, exposing more adsorption sites
and a reaction active site. Therefore, the doping of B element is beneficial to improve
photocatalytic activity. When the temperature continued to rise above 600 ◦C, the g-C3N4
material began to decompose gradually, and the TiO2 gradually transformed from anatase
type to rutile phase with lower photocatalytic reaction activity, so the photocatalytic reaction
efficiency decreased gradually.
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Figure 4. Cycling experiments of B-TiO2/C3N4 for the adsorption–photocatalytic degradation of MB
(a) and RhB (b).

Meanwhile, multiple cycle experiments were carried out with MB and RhB. It can
be seen from Figure 4 that after four cycles of repeated tests, the adsorption and removal
rate of B-TiO2/C3N4 to 20 mg/L organic solution decreased from 83.4% to 70.1%(MB) and
from 64.1% to 51.2% (RhB). The results showed that the adsorption effect of the material
on MB and RhB was weakened gradually. This may have been because the pores on
the surface of the material were damaged during the experiment. Meanwhile, the active
sites were reduced due to the coverage of undegraded pollutants adsorbed on the surface
of the material, resulting in a decrease in the adsorption and catalytic efficiency of the
material after multiple experiments. Although the adsorption capacity of the material for
the two pollutions was gradually weakened, the removal rate remained at around 95%
(MB) and 80% (RhB) within two hours. This result shows that the B-TiO2/C3N4 composite
material had better stability and repeatability.

The TOC in the photocatalytic degradation system reflected the mineralization degree
of organic pollutants. The results of the TOC are shown in Figure S9. The adsorption
process effectively reduced the value. With the progress of visible light, the TOC value
experienced small decreases with the prolongation of the lighting time. This is because,
during the degradation process, the pollutant molecules were decomposed from macro-
molecules to small molecules containing organic carbon, and the pollutants adsorbed on the
surface of the material were also desorbed. The resorption–degradation process resulted in
insignificant changes in the organic carbon content in the solution [41,42].
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3.4. Adsorption Property

To demonstrate the adsorption property of B-TiO2/C3N4 (550 ◦C) composite materials,
adsorption and removal rates of RhB and MB were chosen as the contaminant. The
adsorption efficiency plays an important role in the rapid removal of pollutants.

The kinetic curve of adsorption of MB and RhB on B-TiO2/C3N4 is shown in Figure 5.
From this figure, it can be seen that B-TiO2/C3N4 reached the adsorption equilibrium for
the two pollutants within 30 min; the adsorption capacity of MB reached 56.25 mg/g; and
the adsorption capacity of RhB reached 18.94 mg/g. Compared with other materials (as
shown in Figure S1), the improvement of adsorption efficiency was due to the increase in
specific surface area and the increase in adsorption sites, and the doping of B element in
g-C3N4 expanded the large, π-bonded conjugated system, which was more conducive to
the adsorption of MB [9].
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Figure 5. Adsorption kinetics curves of B-TiO2/C4 on MB and RhB.

The pseudo-first-order kinetic and pseudo-second-order kinetic models were fitted to
the adsorption amounts of MB and RhB, respectively. The results are shown in Figure 6. The
fitted correlation coefficients were: MB: R1

2 = 0.5017 (a), R2
2 = 0.9964 (b); RhB: R1

2 = 0.6872
(c), R2

2 = 0.9998 (d). According to the correlation coefficients fitted to the two pollutants,
it can be seen that the pseudo-second-order kinetic model better fitted the adsorption
behavior of B-TiO2/C3N4.

Figure 7 shows the fitting of the Langmuir and Freundlich adsorption isotherm models
for the adsorption of MB (a) (b) and RhB (c) (d) on B-TiO2/C3N4, respectively. By comparing
the correlation coefficients obtained by calculation, it was found that for the MB adsorption
isotherm model, RL

2 = 0.9946 was higher than that of the Freundlich model (RF
2 = 0.6883),

while the simulated adsorption isotherm model for RhB had the same or similar results
(RL

2: 0.9993 > RF
2: 0.7395). This result showed that the adsorption of MB and RhB by

B-TiO2/C3N4 was monolayer adsorption, and the adsorption was more favorable with the
increase in pollutant concentration. Therefore, the adsorption of these two pollutants by
B-TiO2/C3N4 was more inclined to the Langmuir adsorption isotherm model.
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3.5. Analysis of Photocatalytic Mechanism

Based on the above experimental results, MB was selected as the target pollutant with
the best removal effect, and the main substances involved in the photocatalytic reaction
were determined by the free radical capture experiment. The experimental results are
shown in Figure 8. The addition of EDTA-2Na had less of an effect on the degradation
effect of MB, which indicates that the role of holes is less important in the catalytic reaction.
After the addition of p-benzoquinone, the degradation of MB was inhibited, indicating that
superoxide radical (·O2−) is an important free radical involved in the photodegradation
process. After the addition of tert-Butanol, the degradation of MB was also inhibited to
a certain extent, so it can be concluded that hydroxyl radicals (·OH) are also involved
in the photocatalytic oxidation process. The above research results show that ·O2− and
·OH radicals were the active groups that mainly participated in the reaction during the
degradation of MB by B-TiO2/C3N4.
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Figure 8. The capture experiments of MB by B-TiO2/C3N4.

Through mechanism analysis, it was found that ·O2− and ·OH were the main active
groups involved in the photocatalytic reaction. Therefore, DMPO ESR was used to detect
the ·O2− and ·OH produced by B-TiO2/C3N4 material under visible light above 400 nm.
In addition, a comprehensive comparative analysis was conducted with other materials. It
can be clearly seen from Figure 9a that after 10 min of light source irradiation, the order of
·O2−ESR signal intensity was B-TiO2/C3N4 > TiO2/C3N4 > g-C3N4 > B-C3N4 > B-TiO2 > TiO2.
The signal peak generated by B-TiO2/C3N4 was slightly higher than that of TiO2/C3N4 and
significantly higher than that of the other three materials. In the ESR spectrum of ·Oh, as
shown in Figure 9b, the signal peak generated by B-TiO2/C3N4 was the strongest. According
to the analysis results, the B-TiO2/C3N4 material produced the most ·O2− and ·OH in the
visible light photocatalytic system, so it had a better photocatalytic effect.

Otherwise, the XPS characterization showed that the B element in B2O3 entered the
TiO2 crystal structure. Therefore, in order to analyze the structural composition of B-TiO2
and B-C3N4, the conduction band relationship of the forbidden band width of B-TiO2 and
B-C3N4 was analyzed. The specific results are shown in Figure 10a.

The photocatalytic reaction mechanism of B-TiO2/C3N4 composite material was de-
duced according to the radical trapping experiment. As shown in Figure 10b, under visible
light conditions, the conduction band position of B-C3N4 was −0.88 eV, which was more
negative than that of B-TiO2 (−0.31 eV) and E0 (O2/·O2− = −0.33 eV). The electrons could
be captured by O2 to form ·O2− and finally formed H2O2 on the surface of the material.
The holes were trapped by H2O and OH− in the valence band of B-TiO2 to form hydroxyl
radicals (·OH). These species are vital for photocatalytic degradation of organic pollution.
Meanwhile, it can be determined that the B-TiO2/C3N4 composite material formed a Z-type
heterostructure [43,44].

144



Int. J. Environ. Res. Public Health 2022, 19, 8683
Int. J. Environ. Res. Public Health 2022, 19, 8683 13 of 16 
 

 

  

(a) (b) 

Figure 9. Spectrum of DMPO spin trapping ESR of different materials (a) DMPO-O2− and (b) DMPO-

·OH. 

Otherwise, the XPS characterization showed that the B element in B2O3 entered the 

TiO2 crystal structure. Therefore, in order to analyze the structural composition of B-TiO2 

and B-C3N4, the conduction band relationship of the forbidden band width of B-TiO2 and 

B-C3N4 was analyzed. The specific results are shown in Figure 10a. 

The photocatalytic reaction mechanism of B-TiO2/C3N4 composite material was de-

duced according to the radical trapping experiment. As shown in Figure 10b, under visible 

light conditions, the conduction band position of B-C3N4 was −0.88 eV, which was more 

negative than that of B-TiO2 (−0.31 eV) and E0 (O2/·O2− = −0.33 eV). The electrons could be 

captured by O2 to form ·O2− and finally formed H2O2 on the surface of the material. The 

holes were trapped by H2O and OH− in the valence band of B-TiO2 to form hydroxyl rad-

icals (·OH). These species are vital for photocatalytic degradation of organic pollution. 

Meanwhile, it can be determined that the B-TiO2/C3N4 composite material formed a Z-

type heterostructure [43,44]. 

  

(a) (b) 

Figure 10. The photocatalytic reaction mechanism of B-TiO2/C3N4: (a) The VBXPS of B-TiO2 and B-

CN; (b) Scheme of proposed mechanism for degradation of B-TiO2/C3N4. 

4. Conclusions 

Herein, B-TiO2/C3N4 composites were prepared by modifying Z-type heterostruc-

tured TiO2/C3N4 composites using the molten reaction environment created by B2O3. The 

physical-chemical properties of B-TiO2/C3N4 composites prepared at different tempera-

tures were analyzed by various characterization methods. Through characterization, it 

Figure 9. Spectrum of DMPO spin trapping ESR of different materials (a) DMPO-O2
− and (b) DMPO-·OH.

Int. J. Environ. Res. Public Health 2022, 19, 8683 13 of 16 
 

 

  

(a) (b) 

Figure 9. Spectrum of DMPO spin trapping ESR of different materials (a) DMPO-O2− and (b) DMPO-

·OH. 

Otherwise, the XPS characterization showed that the B element in B2O3 entered the 

TiO2 crystal structure. Therefore, in order to analyze the structural composition of B-TiO2 

and B-C3N4, the conduction band relationship of the forbidden band width of B-TiO2 and 

B-C3N4 was analyzed. The specific results are shown in Figure 10a. 

The photocatalytic reaction mechanism of B-TiO2/C3N4 composite material was de-

duced according to the radical trapping experiment. As shown in Figure 10b, under visible 

light conditions, the conduction band position of B-C3N4 was −0.88 eV, which was more 

negative than that of B-TiO2 (−0.31 eV) and E0 (O2/·O2− = −0.33 eV). The electrons could be 

captured by O2 to form ·O2− and finally formed H2O2 on the surface of the material. The 

holes were trapped by H2O and OH− in the valence band of B-TiO2 to form hydroxyl rad-

icals (·OH). These species are vital for photocatalytic degradation of organic pollution. 

Meanwhile, it can be determined that the B-TiO2/C3N4 composite material formed a Z-

type heterostructure [43,44]. 

  

(a) (b) 

Figure 10. The photocatalytic reaction mechanism of B-TiO2/C3N4: (a) The VBXPS of B-TiO2 and B-

CN; (b) Scheme of proposed mechanism for degradation of B-TiO2/C3N4. 

4. Conclusions 

Herein, B-TiO2/C3N4 composites were prepared by modifying Z-type heterostruc-

tured TiO2/C3N4 composites using the molten reaction environment created by B2O3. The 

physical-chemical properties of B-TiO2/C3N4 composites prepared at different tempera-

tures were analyzed by various characterization methods. Through characterization, it 

Figure 10. The photocatalytic reaction mechanism of B-TiO2/C3N4: (a) The VBXPS of B-TiO2 and
B-CN; (b) Scheme of proposed mechanism for degradation of B-TiO2/C3N4.

4. Conclusions

Herein, B-TiO2/C3N4 composites were prepared by modifying Z-type heterostruc-
tured TiO2/C3N4 composites using the molten reaction environment created by B2O3. The
physical-chemical properties of B-TiO2/C3N4 composites prepared at different tempera-
tures were analyzed by various characterization methods. Through characterization, it was
found that the addition of B2O3 effectively increased the specific surface area of TiO2/C3N4
materials, thereby increasing the active sites for adsorption and photocatalysis. Crystal
analysis showed that the modification of TiO2/C3N4 by B2O3 simultaneously doped B
element into the TiO2 lattice and g-C3N4, which helped to inhibit the recombination of
electron holes and improved the photocatalytic activity. At the same time, the doping of
B element expanded the π-conjugated system of the g-C3N4 material, which is beneficial
for the improvement of MB adsorption performance. Above all, this paper started with
consideration of the two aspects of improving the adsorption capacity and photocatalytic
oxidation capacity of the material and integrated the preparation, characterization, and
adsorption–degradation mechanism analysis of the material, providing theoretical support
and experimental basis for research on the synergistic removal of pollutants by adsorption
and photocatalysis.
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Abstract: In order to study the temporal and spatial distribution characteristics of atmospheric
pollutants in cities (districts and counties) in the Chengdu–Chongqing Twin-city Economic Circle
(CCEC) and to provide a theoretical basis for atmospheric pollution prevention and control, this
paper combined Ambient Air Quality Standards (AAQS) and WHO Global Air Quality Guidelines
(GAQG) to evaluate atmospheric pollution and used spatial correlation to determine key pollution
areas. The results showed that the distribution of atmospheric pollutants in CCEC presents a certain
law, which was consistent with the air pollution transmission channels. Except for particulate matter
with an aerodynamic diameter equal to or less than 2.5 µm (PM2.5) and ozone (O3), other pollutants
reached Grade II of AAQS in 2020, among which particulate matter with an aerodynamic diameter
equal to or less than 10 µm (PM10), PM2.5, sulfur dioxide (SO2), nitrogen dioxide (NO2) and carbon
monoxide (CO) have improved. Compared with the air quality guidelines given in the GAQG, PM10,
PM2.5, NO2 and O3 have certain effects on human health. The spatial aggregation of PM10 and PM2.5

decreased year by year, while the spatial aggregation of O3 increased with the change in time, and
the distribution of NO2 pollution had no obvious aggregation. Comprehensive analysis showed that
the pollution problems of particulate matter, NO2 and O3 in CCEC need to be further controlled.

Keywords: spatial autocorrelation; Moran’s I; air pollution transmission channels; ambient air quality
standards; WHO Global Air Quality Guidelines

1. Introduction

Currently, atmospheric pollution has become an important environmental problem,
which places risk on human health. Many studies show that the release of atmospheric
pollutants may cause many adverse health effects such as increased risks of cardiovascular
and pulmonary diseases, decreased semen quality, and coronary heart disease [1–3]. The
rapid developments of transportation and industry cause the discharge of atmospheric
pollutants. The emissions of particulate matter with an aerodynamic diameter equal to or
less than 2.5 µm (PM2.5) and sulfur dioxide (SO2) by coal-fired power plants accounted for
6% and 33% of national total emissions in 2010, respectively [4], and the usage of coal ac-
counts for 69% of the total energy consumption [5]. Intense vehicular traffic causes the large
emissions of nitrogen dioxide (NO2) and carbon dioxide [6]. In order to assess the degree of
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air pollution, six pollutants such as particulate matter with an aerodynamic diameter equal
to or less than 10 µm (PM10), PM2.5, SO2, NO2, ozone (O3) and carbon monoxide (CO) have
been selected to characterize the levels of air pollution. The World Health Organization
(WHO) develops the WHO Global Air Quality Guidelines (GAQG) to reduce atmospheric
pollutants in order to decrease the enormous health burden resulting from exposure to
atmospheric pollution worldwide. In China, the Ambient Air Quality Standard (AAQS) is
also set up to protect and improve the living environment and ecological health, and to
ensure human health [7].

In January 2020, the construction of the “Chengdu–Chongqing twin-city Economic Cir-
cle” (CCEC) was first proposed by the sixth meeting of the Central Finance and Economics
Commission, which aims to turn the Chengdu–Chongqing area into an economic circle
with its own strengths and distinctive features, as well as a new driver and an important
growth engine of the country’s high-quality development. CCEC is made up of some cities
in Sichuan province and some districts or counties in Chongqing municipality, which is
the urbanization area with the highest development level and the greatest development
potential in the western region of China. The high-quality development of CCEC can
effectively enhance the economic development and the population-carrying capacity of
the urbanization area, which is of great significance to the protection of the ecological
environment in the upper reaches of the Yangtze River and of western China. It is also
an important part of the implementation of the “Yangtze River Economic Belt” and “the
Belt and Road Initiative”. The whole area of the CCEC is 185,000 square kilometers, which
includes 29 districts and counties in Chongqing and 15 cities in Sichuan province (Figure 1).

Figure 1. Map of air pollution transmission channels in the Chengdu–Chongqing twin-city Economic
Circle (CCEC) [8–10].

For many years, the atmospheric pollution of CCEC has been particularly serious and
complex. Due to the unique topography and climate in Sichuan Basin [11], the atmospheric
pollutants accumulate in large quantities and cause the Sichuan Basin to become one of the
most heavily polluted areas in China [12,13]. Furthermore, Chongqing is a mountainous
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city, and its environmental quality is significantly affected by the factors of pollution and
dense built environment [14]. The research has shown that there are three air pollution
transmission channels in Sichuan Basin due to the effect of the east Asian atmospheric
circulation and the Qinghai Tibet Plateau flow field [8–10]: (1) Guangyuan→Mianyang→
Deyang→ Chengdu→ Ya’an; (2) Bazhong→ Nanchong→ Suining→Ziyang→Meishan
→Leshan; (3) Northern of Chongqing→ Dazhou→ Guang’an→Nanchong→ Suining
→ Ziyang → Neijiang → Luzhou. Additionally, the pollution of O3 has become more
and more serious in Sichuan Province since 2015, while the particulate matter has shown
characteristics of secondary pollutants [15,16]. The primary pollutants in the atmosphere
of Chongqing were PM10, nitrogen oxides and SO2 in 2007–2014, which showed significant
regional differences in air quality [17]. Environmental quality and public health determine
the prospect of sustainable development [18]. The prevention and reduction of air pollution
has become one of the key issues of current concern for high quality development of the
economy in the CCEC.

The aim of this research is to explore the spatiotemporal distribution and pollution
degrees of atmospheric pollutants from 2017 to 2020 in the CCEC, and to find the main
pollution areas. Based on the results, the reasonable suggestions for pollution control in
CCEC were propounded, and the theoretical basis for the coordinated governance of the
atmosphere and water environment was provided.

2. Data Sources and Methods
2.1. Data Sources

In this study, the relevant data of ambient air quality in each area (city in Sichuan
province or district and county in Chongqing) of CCEC from 2017 to 2020 were obtained
from the ecological and environmental bulletin of Chongqing (http://sthjj.cq.gov.cn/hjzl_
249/hjzkgb/, accessed on 31 January 2022) and from nthe ecological and environmental
bulletin of each city in Sichuan Province (http://sthjt.sc.gov.cn/sthjt/c104157/hjglnew.
shtml, accessed on 31 January 2022). The atmospheric pollutants that were chosen mainly
include PM10, PM2.5, SO2, NO2, O3 and CO.

2.2. Evaluation Standards

The evaluation standards for the concentration of atmospheric pollutants were based
on the Grade II of AAQS [7,19] (http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/
dqhjzlbz/201203/t20120302_224165.shtml, accessed on 31 January 2022) and GAQG [20]
(https://www.who.int/publications/i/item/9789240034433, accessed on 31 January 2022.
The average annual concentrations of PM10, PM2.5, SO2 and NO2 were adopted, the 24 h
average value of the 95th position for CO was adopted, and the 8 h average value of the
maximum daily concentration of the 90th position for O3 was adopted (Table 1). The areal
interpolation was used to draw the figures of spatial distribution. The indexes in GAQG
are stricter than that in AAQS, which is based on the latest evidence of human health
caused by air pollution. The purpose of GAQG is to propose new air quality levels, and
their interim targets play a role in guiding emission reduction and promoting air quality to
reach the level of air quality guidelines. The purpose of the AAQS is based on air quality
management. It aims at promoting harmonious and sustainable development between
humans and nature [21]; thus, the indexes in AAQS are much closer to the interim target 1
of GAQG.
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Table 1. Limit values of atmospheric pollutants in AAQS and GAQG [7,19,20].

Atmospheric
Pollutants

Ambient Air
Quality WHO Global Air Quality Guidelines

The Secondary
Limits

Interim
Target 1

Interim
Target 2

Interim
Target 3

Interim
Target 4

Air Quality
Guideline Unit

PM10 70 70 50 30 20 15 µg/m3

PM2.5 35 35 25 15 10 5 µg/m3

SO2 * 60 - - - - - µg/m3

O3 160 160 120 - - 100 µg/m3

NO2 40 40 30 20 - 10 µg/m3

CO 4 7 - - - 4 mg/m3

* No average annual concentration of SO2 was given in GAQG.

2.3. Methods

Spatial autocorrelation refers to the presence of systematic spatial variation in a
mapped variable. The map shows positive spatial autocorrelation where adjacent ob-
servations have similar data values. The spatial autocorrelation is often used to detect
whether the distribution of variables has spatial dependency, heterogeneity and constitutive
properties. Moran’s I is one of the important indexes used to analyze spatial correlation
(Equation (1)) [22,23].

I =
n ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)

∑n
i=1 ∑n

j=1 wij ∑n
i=1(xi − x)2 (1)

where n represents the number of the cities and districts; wij represents the spatial rela-
tionship between region i and j; xi and xj, respectively, are the concentration values of
certain atmospheric pollutant in each city; x is average concentration value of a certain
atmospheric pollutant by study region, x = 1

n ∑n
i=1 xi. The range of Moran’s I lies between

−1 and 1. If the Moran’s I index >0, this implies a positive spatial correlation. Inversely, if
the Moran’s I index <0, this indicates a negative correlation [24]. The smaller the value, the
stronger the spatial divergence [25].

An alternative approach to measure the relationship typology and intensity are pro-
vided by the local indicator of spatial association (LISA) (Equation (2)) [26]. It has four types
of distributions, which includes high–high (HH) type, high–low (HL) type, low–high (LH)
type and low–low (LL) type. High–high type or low–low type represents spatial clusters
of similar high or low concentration values of atmospheric pollutants. Low–high type
or high–low type indicates spatial outliers with low concentration values of atmospheric
pollutants surrounding high concentration values of atmospheric pollutants or vice versa.

Li =
(xi − x)

S2 ∑N
j=1 wij(xi − x) (2)

where S2 = 1
n ∑n

i=1(xi − x)2; S2 is the concentration variance of a certain atmospheric
pollutant. If Li > 0, this implies the HH type or LL type. If Li < 0, this indicates the HL type
or LH type [27].

3. Result and Discussions
3.1. Temporal and Spatial Changes of the Concentrations of Atmospheric Pollutants
3.1.1. PM10

Figure 2 shows the change in PM10 for each area in the CCEC during 2017–2020. The
average annual concentration of PM10 for the whole CCEC was 72.0 µg/m3, and the range
and standard deviation were 42.0 µg/m3 and 9.5 µg/m3, respectively, in 2017. The areas
with the highest annual average PM10 concentration were Zigong city in Sichuan province
and Jiangjin district in Chongqing (89 µg/m3), and the concentrations were 27.0% higher
than Grade II of AAQS. The area with lowest annual average PM10 concentration was
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Qianjiang district in Chongqing (47 µg/m3). The number of areas exceeding Grade II of
AAQS was about 42.0%. The areas with a higher concentration were mainly located in the
cities of Chengdu, Deyang, Leshan, Zigong in Sichuan province and the districts of Jiangjin,
Qijiang in Chongqing, and the distribution of PM10 was consistent with three air pollution
transmission channels. In 2020, the average annual concentration of PM10 for the whole
CCEC decreased to 50.1 µg/m3, while the range and standard deviation were 32.0 µg/m3

and 7.2 µg/m3, respectively. All cities (districts and counties) met the Grade II of AAQS.
The area with the highest concentration of PM10 was Chengdu city in Sichuan province
(64 µg/m3), while the area with the lowest concentration of PM10 was Ya’an city in Sichuan
province (33 µg/m3).

Figure 2. Spatial distribution of PM10 in CCEC from 2017 to 2020.

Studies have found that particulate matter in the atmosphere is harmful to human
health [28,29]. Based on the interim targets and air quality guideline of PM10 in QAGQ,
the average annual concentrations of PM10 for each area in the CCEC were higher than
the air quality guideline (15 µg/m3), which caused the potential risk to public health. The
numbers of areas exceeding interim target 2 (50 µg/m3) and interim target 3 (30 µg/m3)
were 55.6% and 44.4% respectively. If mortality in a population exposed to PM10 at the air
quality guideline level was arbitrarily set at 100, then it would be 114 and 106 in populations
exposed to PM10 at the interim target 2 and 3 levels.

3.1.2. PM2.5

Figure 3 shows the change in PM2.5 in the CCEC from 2017–2020. The average annual
concentration of PM10 for the whole CCEC was 48.6 µg/m3 (the range was 31.0 µg/m3, and
standard deviation was 7.2 µg/m3) in 2017. In total, 97.0% of the cities failed to reach Grade
II of AAQS. The area with the highest concentration was Zigong city in Sichuan province
(66 µg/m3, which was 89.0% higher than Grade II of AAQS), while the area with the lowest
values was Yunyang county in Chongqing (35 µg/m3). The heavily polluted areas were
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mainly located in Chengdu–Deyang and Leshan–Zigong, and the PM2.5 distributions were
consistent with air pollution transmission channels 1 and 2, which were consistent with the
results of Luo et al. [9] and Liao et al. [30]. Some studies showed that air stagnation always
happened in the Sichuan–Chongqing region in winter, which caused the high concentration
of PM2.5 [30]. Furthermore, as one of the most important agricultural regions in China,
the combustion of biomass has also caused the severe pollution in Sichuan Basin [31]. The
average annual concentration of PM2.5 in CCEC decreased to 31.9 µg/m3 (the range was
22.9 µg/m3, and standard deviation was 5.0 µg/m3) in 2020, and 75.0% of the cities met the
Grade II of AAQS. The area with highest concentration of PM2.5 was Rongchang district
in Chongqing (44 µg/m3, which was 25.7% higher than the Grade II of AAQS), while the
area with lowest value was Ya’an city in Sichuan province (21 µg/m3). Based on the mean
values, ranges and standard deviations of PM10 and PM2.5, the control of particulate matter
had achieved remarkable improvement in 2020.

Figure 3. Spatial distribution of PM2.5 in CCEC during 2017 to 2020.

It was said by QAGQ that priority should be given to the air quality guidelines of PM2.5
when considering the impact of particulate matter. The average annual concentrations of
PM2.5 for each area in the CCEC were higher than the air quality guidelines (5 µg/m3)
in 2020. The number of areas exceeding the interim target 1 (35 µg/m3), interim target 2
(25 µg/m3) and interim target 3 (15 µg/m3) were 55.6%, 69.4% and 2.8%, respectively. If
mortality in a population exposed to PM2.5 at the air quality guideline level was arbitrarily
set to 100, then it would be 124, 116 and 108, respectively, in populations exposed to PM2.5
at interim target 1, 2 and 3 levels. The results showed that the concentration level of PM2.5
causes a high risk to public health and should be given priority to control.

It was found that the higher the ratio value of PM2.5/PM10, the heavier the influence
on the atmospheric environment [32]. The mean value of the PM2.5/PM10 ratio in Beijing
was 0.72, which ranged from 0.31~0.96 [32]. The PM2.5/PM10 ratio values of Kaohsiung and
Hong Kong were around 0.62 and 0.63 [33,34], respectively. The ratio values of PM2.5/PM10
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in the whole CCEC were 0.68, 0.66, 0.66 and 0.64 from 2017 to 2020, respectively. It was
shown that the larger the proportion of PM2.5 in particulate matter, the higher the risk to
public health. The range of PM2.5/PM10 ratio in cities of Sichuan province in the CCEC
were between 0.63–0.64. The ratio of PM2.5/PM10 showed a small decrease from 0.7 to 0.64
in the districts (counties) of Chongqing in the CCEC. The results showed that the pollution
of particulate matter in Chongqing was much heavier than that in Sichuan province.

3.1.3. O3

Figure 4 shows the change in O3 in the CCEC from 2017–2020. In 2017, the concentra-
tion of O3 for the whole CCEC was 139.6 µg/m3 (the range was 60.0 µg/m3, and standard
deviation was 15.6 µg/m3), and 11.0% of the areas failed to reach Grade II of AAQS.
The area with the highest concentration of O3 was the Jiangjing district in Chongqing
(164 µg/m3), which was 9.0% higher than Grade II of AAQS, and the area with the lowest
concentration of O3 was Mianyang city in Sichuan province (114 µg/m3). The mean values
of O3 were slightly increased at 144.8 µg/m3 in 2018 and 140.6 µg/m3 in 2019. The dis-
tributions mainly located in Chengdu–Meishan, Chongqing, and Zigong were consistent
with three air pollution transmission channels. Based on our results, the pollution of O3
was severe in the area of Chengdu. Yang et al. found that the gasoline vehicle exhaust and
the use of solvents was the main reason [35]. Due to the low atmospheric pressure, small
pressure gradient, and the stable weather, the condition of horizontal diffusion was bad for
the diffusion of pollutants [36]. The photochemical reactions were promoted in Chongqing
due to the increase in oxidation after 2016, and the exogenous input of VOCs in nearby
areas led to the increase in O3 concentration [37]. The concentration of O3 for the whole
CCEC decreased to 133.8 µg/m3 (the range was 65.0 µg/m3, and standard deviation was
16.4 µg/m3) in 2020. The area with the highest concentration of O3 was Chengdu city in
Sichuan province (169 µg/m3), which was 6.0% higher than Grade II of AAQS, and the
area with the lowest concentration of O3 was Qianjiang district in Chongqing (104 µg/m3).
In total, 97.2% of the areas met the Grade II of AAQS.

Long-term exposure to high concentrations of O3 could cause chronic damage to
the human body. The concentrations of O3 for each area in the CCEC were higher than
the air quality guidelines (100 µg/m3). The number of areas exceeding interim target
1 (160 µg/m3) and interim target 2 (120 µg/m3) were 2.8% and 72.2%, respectively. If
mortality in a population exposed to ozone at the air quality guideline level was arbitrarily
set at 100, then it would be 103 and 101 in the populations exposed to ozone at the interim
target 1 and 2 levels. The results suggest that more strict measures are needed to be
implemented for O3 control in the future.
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Figure 4. Spatial distribution of O3 in CCEC during 2017 to 2020.

3.1.4. SO2

The average annual concentration of SO2 for the whole CCEC met Grade II of AAQS
in 2017 (Figure 5). The mean value, range, and standard deviation were 15.4 µg/m3,
26.0 µg/m3, and 5.9 µg/m3, respectively. The area with the highest annual average SO2
concentration was Nanchuan district in Chongqing (34 µg/m3), while the areas with the
lowest annual average SO2 concentration were the counties of Yunyang and Zhong in
Chongqing (8 µg/m3). The average annual concentration of SO2 for the whole CCEC
decreased to 10.3µg/m3 in 2020; the range and standard deviation were 10.0 µg/m3 and
2.8 µg/m3, respectively. In recent years, the average annual concentration of SO2 was far
below Grade II of AAQS. The Sichuan Basin has suffered from pollution of SO2 for the
past decades, because 80% SO2 concentrations in some areas of the Sichuan Basin was from
industries such as chemical, textile, electronics, etc. [38]. Since the implementation of “the
Division Plan of Acid rain and Sulfur dioxide Pollution Control Areas”, the control of SO2
achieved obvious improvement, basically removing the long-term problems of acid rain
and sulfur dioxide pollution. The mean concentration of SO2 in areas of Sichuan province
in CCEC were reduced from 13.3 µg/m3 in 2017 to 8.2 µg/m3 in 2020, and the mean
concentration of SO2 in areas of Chongqing in the CCEC were reduced from 17.0 µg/m3 in
2017 to 12.2 µg/m3 in 2020. The concentration of SO2 in the air depends on the consumption
of coal [39]. The proportion of coal consumption in Sichuan province was 32.0% in 2019,
while that in Chongqing was 53.0%. Therefore, the control of SO2 in Sichuan province
was better.
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Figure 5. Spatial distribution of SO2 in CCEC during 2017 to 2020.

3.1.5. NO2

In 2017, the average annual concentration of NO2 for the whole CCEC was 29.9 µg/m3,
the range and standard deviation were 35.0 µg/m3 and 7.5 µg/m3, respectively (Figure 6).
The number of areas exceeding Grade II of AAQS was about 11.0%. The area with the high-
est and lowest concentrations of NO2 were Chengdu city in Sichuan province (53 µg/m3)
and Dazu district in Chongqing (18 µg/m3). The distributions of NO2 were consistent
with air pollution transmission channels 1 and 3, which were mainly located in the cities
of Chengdu, Meishan, Dazhou, the central districts and Jiangjin district of Chongqing.
The rapid development of urbanization in these areas has led to a gradual increase in
vehicles, and one of the main sources of NO2 was traffic emissions [1]. The average annual
concentration of NO2 for the whole CCEC decreased to 24.1 µg/m3 in 2020, and the range
and standard deviation were 24.0 µg/m3 and 5.9µg/m3, respectively. Each area in the
CCEC reached Grade II of AAQS, which meant that the control measures of NO2 in the
CCEC also had certain effects in the past years.

The average annual concentrations of NO2 for each area in the CCEC were lower than
interim target 1 of QAGQ (40 µg/m3) in 2020. The number of areas exceeding interim
target 2 (30 µg/m3), interim target 3 (20 µg/m3), and the air quality guidelines (10 µg/m3)
were 11.1%, 58.3%, and 27.7%, respectively. If all-cause mortality in a population exposed
to nitrogen dioxide at the AQG level was arbitrarily set at 100, then it would be 104 and 102
in populations exposed to nitrogen dioxide at the interim target 2 and 3 levels. The results
showed that the potential risk to public health caused by NO2 pollution might still exist.
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Figure 6. Spatial distribution of NO2 in CCEC from 2017 to 2020.

3.1.6. CO

Figure 7 shows the change in CO in the CCEC from 2017–2020. The results showed
that the control of CO in the CCEC had always been effective, since the concentration of CO
for the whole CCEC was 1.4 mg/m3 (the range and standard deviation were 0.9 mg/m3

and 0.2 mg/m3, respectively). The concentration of CO was far below Grade II of AAQS
and the air quality guideline in QAGQ, which meant no potential risk to public health. The
area with the highest and lowest concentrations of CO was Dazhou city (1.9 mg/m3) and
Mianyang city (1.0 mg/m3) in Sichuan province, respectively. In 2020, the concentration of
CO for the whole CCEC slightly decreased to 1.1 mg/m3; the range and standard deviation
were 0.5 mg/m3 and 0.1 mg/m3, respectively.

In summary, the controls of SO2 and CO in CCEC were effective. The pollutions of
PM10, PM2.5, and NO2 had obvious improvement, while the control of O3 was not obvious.
The concentrations of PM10, PM2.5, O3, and NO2 in 2020 were still higher than the air
quality guidelines in QAGQ, which meant that the potential risk to public health still exited.
The terrain of CCEC was quite complex; the basin in Sichuan province and mountains in
Chongqing caused the accumulation of atmospheric pollutants. The pollutions of PM10,
PM2.5, and NO2 were quite severe in 2017. Furthermore, the distributions of PM10, PM2.5,
O3 and NO2 were consistent with three air pollution transmission channels, which verified
the unique geographical and climatic factors influencing the distributions. Since the revised
version of “The Environmental Protection Law of People’s Republic of China” came into
force in 2015, the concentrations of PM2.5 and SO2 have decreased over time [40]. There
were 27 key tasks that had been completed to improve air quality, meet the capacity of atmo-
spheric environment, and control the pollution of PM2.5 and nitrogen oxide in Chongqing
city since 2018. The air quality in Sichuan province was also improved by dividing the key
areas of air pollution prevention and control, carrying out stricter environmental protection
standards, and implementing environmental monitoring systems since 2019. Meanwhile,
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the interventions to control COVID-19 might improve air quality. Studies have found
reductions in NO2 and PM2.5 concentrations during the pandemic [41,42]. The air quality
of China was also significantly improved due to the anti-epidemic measures [43,44]. The
reduction in human activities (traffic and industry) led to the decrease in atmospheric
pollutants [45]. With the economic activities resumed, the effect of improvements on air
quality will be offset in the short term. Some sustainable policies must be carried out to
tackle air pollution in the post-pandemic era [44]. However, the heavily polluted areas still
existed in 2020. Thus, the heavily polluted areas caused by PM10, PM2.5, O3, and NO2 were
analyzed by spatial autocorrelation.

Figure 7. Spatial distribution of CO in CCEC during 2017 to 2020.

3.2. Spatial Autocorrelation of Air Pollution in CCEC
3.2.1. Global Spatial Autocorrelation

Table 2 shows the Global Moran′s I of PM10, PM2.5, NO2, and O3 during 2017–2020.
The Global Moran’s I values of PM10 and PM2.5 were 0.49 and 0.35 (p < 0.05, Z > 1.65) in 2017,
respectively. The certain aggregation characteristics of PM10 and PM2.5 with positive spatial
correlation were shown in the CCEC, and there was an obvious tendency of aggregation
in heavily polluted areas. The Global Moran′s I values of PM10 and PM2.5 decreased to
0.21 and 0.06 in 2020, which meant that the spatial aggregations of PM10 and PM2.5 were
changed from aggregation distribution to random distribution, due to the implementation
of atmospheric control measures. The Global Moran′s I value of O3 increased from 0.21 in
2017 to 0.57 in 2020, and the spatial aggregation became significant. The Global Moran′s
I value of NO2 did not show any significance, which meant that there was no significant
spatial aggregation of NO2 in CCEC.

159



Int. J. Environ. Res. Public Health 2022, 19, 4333

Table 2. Global Moran′s I of atmospheric pollutants.

Year PM10 PM2.5 NO2 O3

2017 0.49 0.35 0.14 0.21
2018 0.43 0.31 0.08 0.33
2019 0.17 0.05 0.04 0.29
2020 0.21 0.06 0.10 0.57

3.2.2. Local Spatial Autocorrelation

The cities of Yibin, Neijiang, Luzhou, Meisan in Sichuan province and Yongchuan
district in Chongqing showed the HH type of PM10 in 2017 (Figure 8), which meant that
these areas suffered from heavy pollution of PM10. The areas of Wanzhou district, Fengdu
county, and Qianjiang district in Chongqing showed the LL type of PM10 in 2017, while the
Ya’an city in Sichuan province showed the LH type. Meanwhile, the cities of Yibin, Neijiang,
Luzhou in Sichuan province and the Yongchuan district in Chongqing showed the HH type
of PM2.5 in 2017. Nanchong city in Sichuan province and the districts of Wanzhou, Qianjiang
in Chongqing showed the LL type of PM2.5, while Dazhou city in Sichuan province showed
the HL type. The results showed that the distribution of particulate matter had obvious
regional aggregation; the heavily polluted areas were consistent with the distribution of
air pollution transmission channels, which were at the end of the channels. The cities of
Zigong, Yibin, Neijiang and Luzhou were traditional industrial bases, and the large-scale
and intensification of heavy polluting industries also resulted in the aggregation of heavily
polluted areas [27]. In 2020, with the implementation of atmospheric control measures, the
number of cities with the HH type of PM10 decreased obviously, and the spatial aggregation
became weak. Meanwhile, the number of cities with the HH type of PM2.5 was barely
changed. Based on the results, the cities with the HH type of PM10 and PM2.5 located at the
end of the three transmission channels and the control of PM10 were better than the control
of PM2.5. The southern part of the CCEC still deserved key attention in the future control
of particulate matter.

Figure 8. LISA cluster of PM10 and PM2.5 in 2017 and 2020.
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The areas of Wanzhou district, Liangpin district, Zhong county, and Fengdu county in
Chongqing showed the LL type of O3 in 2017 (Figure 9). These areas had relatively lighter
O3 pollution. Few cities showed the HH type of O3. Meanwhile, the LH type of O3 was
shown in the cities of Ziyang, Luzhou in Sichuan province and the districts of Tongliang,
Yongchuan in Chongqing. The distribution of O3 in the CCEC was still random in 2017.
The HH type of O3 became more and more obvious year by year, which was mainly located
in the cities of Chengdu, Deyang, Neijiang, Ziyang in Sichuan province and districts of
Bisan, Tongliang, Yongchuan, and Dazu in Chongqing, which was consistent with the
middle reach of the three air pollution transmission channels. Based on the distributions of
particulate matter and O3, the degree of pollution in Sichuan province was heavier, due
to the low topography of the Sichuan Basin, which was not conducive to the discharge of
pollutants. Furthermore, the relatively developed economy, large population density and
high industrial density in Sichuan province caused the high emission of pollutants [13].
Therefore, the areas with a high concentration of O3 should be controlled to prevent the
expansion of heavy polluted areas.

Figure 9. LISA cluster of O3 from 2017 to 2020.

In 2017, the districts of Tongnan, Dazu, and Rongchang in Chongqing showed the LL
type of NO2, and the city of Ya’an in Sichuan province and district of Qijiang in Chongqing
showed the LH type (Figure 10). In 2020, the distribution of NO2 in CCEC was still random,
yet the districts of Nanchuan and Qijiang in Chongqing showed the HH type. Based on
the concentration of NO2 in 2020, the average annual concentration of NO2 for the whole
CCEC was 24.1 µg/m3, while the average annual concentration of NO2 in the districts
of Nanchuan and Qijiang in Chongqing was 25.5 µg/m3. Since the obvious effect was
achieved on NO2 control in the CCEC, the average annual concentration of NO2 decreased,
and the high concentration of NO2 in the districts of Nanchuan and Qijiang in Chongqing
caused these areas to be the HH type. Therefore, the control of NO2 in the districts of
Nanchuan and Qijiang in Chongqing should be further strengthened in the future.
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Figure 10. LISA cluster of NO2 from 2017 to 2020.

4. Conclusions

We have investigated the temporal and spatial distribution of atmospheric pollutants
in the CCEC from 2017 to 2020. The concentrations of PM10, SO2, NO2, and CO met the
Grade II of AAQS in 2020, due to the implementation of atmospheric control measures.
The average annual concentration of SO2 for the whole CCEC decreased from 15.4 µg/m3

in 2017 to 10.3 µg/m3 in 2020, and the long-term problems of acid rain and sulfur dioxide
pollution were basically eliminated. The concentrations of PM10 and PM2.5 also improved
significantly; there were 30.4% and 34.4% reductions for the average annual concentration
of PM10 and PM2.5. The concentration change of O3 was not obvious, yet 97.2% of the areas
met the Grade II of AAQS in 2020. The distributions of PM10, PM2.5, O3, and NO2 were
consistent with three air pollution transmission channels, which meant that the distribution
of atmospheric pollutants was influenced by topographic and climatic conditions.

The concentrations of PM10, PM2.5, O3, and NO2 were far beyond the air quality
guidelines in QAGQ in 2020. The purpose of the air quality guidelines was to illustrate the
minimum impact of atmospheric pollutants on human health. The concentration levels of
PM10, PM2.5, O3, and NO2 still had certain impacts on human health, and it is necessary to
reduce the concentration of these atmospheric pollutants by using interim targets in QAGQ.

Based on the results of spatial autocorrelation of air pollution in the CCEC, the spatial
aggregation of PM10 was significantly reduced, and the number of areas with the HH
type of PM10 decreased in 2020. Meanwhile, the HH type of PM2.5 was mainly located in
the southern part of CCEC, and it barely changed in 2020. The spatial aggregation of O3
became obvious in 2020, and the HH type of O3 was shown in the central and northwest
parts of the CCEC. The spatial aggregation of NO2 was random during 2017–2020, yet the
districts of Nanchuan and Qijiang in Chongqing showed the HH type of NO2.

In summary, the key control areas of particulate matter should focus on the southern
part of the CCEC, and the control of industrial pollution sources in the cities of Zigong,
Yibin, Neijiang and Luzhou in Sichuan province should be strengthened. It was suggested
that the growth rate of coal-fired power plants should be controlled strictly, the proportion
of coal and gas in electricity needs to be optimized, and the transformation of the steel
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industry to achieve ultra-low emissions should be accelerated. The key control areas of
O3 should focus on the central and northwest parts of the CCEC. It was recommended to
reduce the emission of NOx and VOCs in these regions, especially focusing on the sources
of scattered polluted enterprises and key industry VOCs emissions. The distribution of
NO2 pollution was random to some extent, yet NO2 pollution in the southern part of the
CCEC is still worth paying attention to.
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