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Preface

Wildfires are one of the most significant disturbances worldwide, impacting both natural

ecosystems and human communities. Many scientists and a portion of society believe that the

frequency and intensity of fires are escalating due to shifts in land use, suppression policies, and

climate change, leading to critical consequences for nature and the benefits it provides to people.

Additionally, the expansion of human settlements into forested areas has altered our vulnerability

to fire, further affecting the potential impacts of future events. In the context of these widespread

changes, remote sensing emerges as a valuable tool with which to address the environmental and

social challenges of forest fires and offer solutions. Its versatility, wealth of information, and rapid

technological advancements make it indispensable for designing proactive strategies, monitoring

risks, and analyzing damages over large areas, facilitating decision making and the development

of pre- and post-fire management strategies.

This Special Issue aims to explore various aspects that contribute to the advancement of (I)

fire driver characterization and the development of fire predictive models, (II) the assessment of

burned areas (III) the assessment of burn severity and specific fire impacts, and (IV) the analysis

of post-fire trajectories using remote sensing methods. The compilation comprises ten research

articles addressing these four topics, utilizing a diverse range of methodologies and remote sensing

platforms. The target audience for this Special Issue includes researchers, academicians, practitioners,

and policymakers working in forest ecology, environmental science, disaster management, remote

sensing, and geospatial technologies in general.

The success of this Special Issue can be attributed to the dedicated efforts and expertise of many

individuals. First and foremost, we express our gratitude to the 45 authors for presenting their

cutting-edge research and insights into remote sensing. Their exceptional contributions have enriched

this Special Issue significantly. We would also like to extend our appreciation to the more than

100 reviewers who invested their time and knowledge in meticulously evaluating the submissions,

thereby enhancing the quality of our Special Issue. Finally, we would like to acknowledge the editorial

staff for their efficient management of the editorial processes, which facilitated the success of this

Special Issue.

Vı́ctor Fernández-Garcı́a, Leonor Calvo, Susana Suarez-Seoane, and Elena Marcos

Editors
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Editorial

Remote Sensing Advances in Fire Science: From Fire Predictors
to Post-Fire Monitoring

Víctor Fernández-García 1,2,*, Leonor Calvo 1, Susana Suárez-Seoane 3 and Elena Marcos 1

1 Ecology, Department of Biodiversity and Environmental Management, Faculty of Biological and
Environmental Sciences, Universidad de León, 24071 León, Spain; leonor.calvo@unileon.es (L.C.);
elena.marcos@unileon.es (E.M.)

2 Institute of Geography and Sustainability, Faculty of Geosciences and Environment, Université de Lausanne,
Géopolis, CH-1015 Lausanne, Switzerland

3 Department of Organisms and Systems Biology and Biodiversity Research Institute, CSIC-University of
Oviedo, 33071 Oviedo, 33600 Mieres, Spain; s.seoane@uniovi.es

* Correspondence: vferg@unileon.es

Fire activity has significant implications for ecological communities, biogeochemical
cycles, climate, and human lives and assets. Approximately over half of the Earth’s land
surface is susceptible to fire, with around 3% experiencing annual burning according to
coarse-resolution satellites [1], a value that is probably much higher according to recent
estimates from finer satellite imagery [2]. Because of the vast extent of land burned over the
world, landscape fires release approximately 23% of the global CO2 emitted annually from
fossil fuels, modify Earth’s energy fluxes through changes in surface albedo, and have an
enormous influence on human health and the economy [1]. Fires also have a large influence
on local ecosystems, affecting the ecosystem services provided to local communities. Thus,
fires are a relevant phenomenon with an enormous area of impact every year.

Because of the relevance and impact of fires across the globe, the study of this phe-
nomenon and the assessment of its consequences cannot be addressed only by field or
laboratory studies. In this sense, the exploitation of remote sensing platforms, sensors, and
methods is crucial to obtain accurate and extensive spatial and spatiotemporal information
on fire and its consequences. Considering fire as a natural hazard, geo-spatial studies can
be organized in multiple ways, one of them being based on the temporal point on which
they focus in relation to fire. Thus, we can differentiate those studies focused on a pre-fire
stage: for instance, those addressing topics that can help predict fire-related risks and thus
are useful for pro-active management strategies. The second stage is the moment when
fires occur. At that point, remote sensing might be useful to detect active fires, or to detect
burn scars as evidence of fire. The next stage is the analysis of the immediate impacts and
consequences of fire. This is related, but not limited to burn severity assessments, which
indicate the overall environmental change caused by fire. The assessments immediately
after fire are essential for addressing post-fire emergency actions when needed. Lastly, re-
mote sensing plays a crucial role in analyzing the evolution of burned areas over time. This
can be focused on multiple elements of the ecosystem but is generally focused on soil and
vegetation. The assessment of post-fire trajectories is necessary to identify the areas where
post-fire recovery is not satisfactory and for the implementation of restoration strategies.

The remote sensing discipline is rapidly advancing thanks to the increasing avail-
ability of sensors, data, techniques, and processing capabilities. Thus, in this Special
Issue, “Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis”, we
compiled 10 studies [1–10] representing significant advances in the remote sensing of fires,
with regard to the different aspects and temporal stages exposed above. In relation to the
pre-fire stage, our Special Issue provides new insights into the relevant predictors of fire
activity, such as live fuel moisture content [3] and surface fuel load [4], or soil moisture
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availability [5]. Moreover, Stoyanova et al. [5] explored the potential of land surface tem-
perature status and dynamics as novel indicators of fire risk. In relation to the second
stage, a new burned area mapping algorithm using Sentinel-2 [2] is presented, which has
been revealed as the most accurate non-commercial imagery for burned area mapping.
Furthermore, Park et al. [6] presented a novel approach to improve disaster responses,
based on the application of deep learning to detect the multiple elements that might interact
in a fire situation. Regarding the assessment of burned areas and fire impacts, our Special
Issue includes the first analysis of trends in burn severity at the global scale, revealing the
aggravation of fires in many forest biomes [1]. Moreover, Silva Cardoza et al. [7] proposed
an improved burn severity algorithm by combining relative phenological correction with
former burn severity metrics. In terms of analyzing post-fire trajectories, our Special Issue
encompasses a variety of advances, providing cutting-edge information on the drivers
and dynamics of post-fire regeneration [8], the performance of physical-based models to
measure forest resilience to fire [9], and the identification of optimal parametrizations and
wavelengths for LiDAR classifications in post-fire environments [10].

The work provided in this Special Issue contains examples of the multiple advance-
ments in the remote sensing discipline. For instance, the presented studies demon-
strate advancements using different remote sensing platforms exploiting imagery from
geosynchronous orbit satellites (METEOSAT) [5], sun-synchronous polar orbit satellites
(MODIS) [1,3], low-earth-orbit satellites (Sentinel-2) [2,7–9], aircrafts [4,10], or UAVs [6].
Likewise, examples are also provided of how the remote sensing and fire sciences can be
advanced using different sensor types (passive [1–3,5–9] and active [4,10]) and method-
ological approaches (deep learning, machine learning, radiative transfer models, spectral
mixture analysis, interpolation techniques, linear models, and spectral indices).

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Global Patterns and Dynamics of Burned Area and
Burn Severity

Víctor Fernández-García 1,2,* and Esteban Alonso-González 3

1 Institute of Geography and Sustainability (IGD), Université de Lausanne, Mouline–Géopolis,
1015 Lausanne, Switzerland

2 Ecology, Department of Biodiversity and Environmental Management, Faculty of Biology and Environmental
Sciences, Universidad de León, 24071 León, Spain

3 Centre d’Etudes Spatiales de la Biosphère, CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS,
31000 Toulouse, France; esteban.alonso-gonzalez@univ-tlse3.fr

* Correspondence: vferg@unileon.es or victor.fernandezgarcia@unil.ch

Abstract: It is a widespread assumption that burned area and severity are increasing worldwide due
to climate change. This issue has motivated former analysis based on satellite imagery, revealing
a decreasing trend in global burned areas. However, few studies have addressed burn severity
trends, rarely relating them to climate variables, and none of them at the global scale. Within this
context, we characterized the spatiotemporal patterns of burned area and severity by biomes and
continents and we analyzed their relationships with climate over 17 years. African flooded and
non-flooded grasslands and savannas were the most fire-prone biomes on Earth, whereas taiga
and tundra exhibited the highest burn severity. Our temporal analysis updated the evidence of a
decreasing trend in the global burned area (−1.50% year−1; p < 0.01) and revealed increases in the
fraction of burned area affected by high severity (0.95% year−1; p < 0.05). Likewise, the regions
with significant increases in mean burn severity, and burned areas at high severity outnumbered
those with significant decreases. Among them, increases in severely burned areas in the temperate
broadleaf and mixed forests of South America and tropical moist broadleaf forests of Australia were
particularly intense. Although the spatial patterns of burned area and severity are clearly driven
by climate, we did not find climate warming to increase burned area and burn severity over time,
suggesting other factors as the primary drivers of current shifts in fire regimes at the planetary scale.

Keywords: fire severity; burn severity; spatial patterns; trends; biomes; continents; climate warming

1. Introduction

Fire activity plays a key role in shaping ecological communities, biogeochemical cycles,
climate, and human lives and assets [1,2]. More than half of the land surface on Earth is
prone to fire [3], with about 3% burning annually [4]. As a result, landscape fires generate
annual emissions estimated in 2.2 PgC, an equivalent of 23% of global CO2 from fossil
fuels [5], influence global albedo [6], and cause premature deaths from poor air quality,
dozens of direct fatalities, and annual economic losses estimated at above US$2500 mil-
lion [7]. Despite these global figures, burned area (BA) and its directly related fire regime
variable, the fire frequency [8], are largely heterogeneous across space and time because of
differences in their main determining factors. Among the BA determining factors there are
fuel load, which is linked to primary productivity and herbivory [1,9,10]; fuel connectivity,
which is enabled by non-fragmented landscapes and non-sparse vegetation [11,12]; flamma-
bility of fuels, closely linked to weather and vegetation properties [2,13,14]; and ignition
sources, which might be natural or anthropogenic, the last exceeding 90% of ignition events
in most terrestrial biomes [8]. In the same way, the ecological consequences of fire vary
depending on the intrinsic ecosystem traits, post-fire environmental conditions, and fire
characteristics, mainly burn severity (BS). BS is closely linked to fire intensity and here
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is defined as the immediate degree of overall environmental change caused by a fire in
ecosystems, including biomass loss, vegetation mortality, and biochemical and physical im-
pacts on soil [15]. Moreover, BS determines the post-fire processes, playing a key role in the
future ecosystem pathways [15–18], and its characterization is essential for the refinement
of carbon emission models [5,15,19].

Nowadays, the exploitation of some types of satellite imagery provides globally
consistent BA products based on the detection of active fires and the spectral changes
in surface reflectance [4,20]. Remote sensing analysis revealed grasslands and savannas
as the most fire-prone biomes on Earth, mainly those located in Africa and Northern
Australia. In these regions many areas burn annually or biennially, exhibiting a large
quantitative difference from the rest of the biomes, where generally less than 2% of the
area burns every year [4,5]. Satellite imagery also allows the characterization of spatial
patterns of BS [19,21,22]. BS has been customarily assessed by spectral indices based on the
near-infrared and shortwave infrared reflectance, such as the difference in the normalized
burn ratio (dNBR) [16,22,23]. The dNBR accurately matches field measurements of the
overall environmental change caused by a fire in multiple ecosystems (mainly calculated
through composite indices combining several ecosystem metrics) and has been adopted
as a standard BS metric by the EFFIS and MTBS programs of the European Union and
the United States of America, respectively [19]. Despite the lack of comprehensive global
spatiotemporal BS characterizations [7], current knowledge of maximum fire intensities [20],
biomass burned fractions [5] and BS drivers (mainly the fuel load available to burn and
fuel continuity) [24–26] anticipate a large spatial variability in BS across the globe.

The evolution of BA and BS arouses great interest in the media and in the scientific
community, which frequently warned about the increase or worsening of fire activity during
recent years [7], often attributing that assumed trend to climate change (see examples
in [17,27–29]). In this sense, climate warming is expected to cause increases in fire weather
danger in many regions [14], which is a driver of BA in a large proportion of Earth’s land
surface [13] and influences BS [24,25]. However, former empirical evidence of BA and BS
increases are often based on constrained observations, in terms of timescales or spatial
coverage [7]. In fact, global quantitative BA analysis has shown significant decreases in the
global BA between 2003 and 2015, mainly concentrated in the tropical savannas of Africa,
South America, and Asian steppes, albeit BA increases have been detected in many regions
such as the Siberian Arctic [30] and others dominated by closed canopy forests [4], including
Australia where BA increases have been fostered by climate change [31]. Likewise, little
is known about BS trends at the global scale as most of the literature focuses on USA,
Australia, and Mediterranean Europe, which might lead to a global “Western” biased
perception [7]. For instance, it is well documented a shift from low to high severity fire
regimes in southwestern US forests, caused by the implementation of fire suppression
policies after the European settlement [1], and extensive spatiotemporal studies have
revealed a generalized increase in high-severity fires in some parts of Western US between
1984–2015 [21]. In Australia, an increase in the proportion of BA at high severity has been
detected between 2013 and 2017 [17], and in Europe, an increased prevalence of extreme
wildfire events attributed to climate change and human alterations of landscapes has been
reported [29].

Here, we characterize the spatial patterns and temporal trends of BA, BS, and BA
by BS levels at the global scale and by biomes and continents for the period 2003–2019
(17 years). In addition, we studied the potential relationships between spatiotemporal pat-
terns of BA, BS, and BA by severity levels with climate variables (mean annual temperature,
annual temperature range, annual precipitation, and annual precipitation range) to identify
the former role of climate change on fire activity. To achieve these objectives, we used
NASA-MODIS-derived products at 500 m spatial resolution and ERA5 ECMWF re-analysis
climatic data.
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2. Materials and Methods

2.1. Data Sources

The BA and BS data were obtained from the MOSEV database [19]. MOSEV has
been developed based on MODIS information from the MCD64A1 collection 6 [32], which
is the standard NASA global BA product and probably the most used by the scientific
community [19]; and from the Terra MOD09A1 and Aqua MYD09A1 version 6 products,
which provide the highest quality surface reflectance observations in eight-day periods.
MOSEV offers, among other information, monthly global data at 500 m spatial resolution
from 2000 to 2019 of date of burning and BS measured by the dNBR spectral index ranging
from −2000 to 2000 [19]. Burn severity in the MOSEV database refers to short-term
BS, also called initial assessment of BS as the closest pre- and post-fire MOD09A1 and
MYD09A1 scenes are used for calculations. The alternative to initial BS assessments, are the
extended assessments that are often made one year after burning and thus are influenced
by ecosystem recovery [15,16], BS in the MOSEV database is directly related to short-term
BS calculated with Landsat imagery (R = 0.74 for dNBR; R = 0.42 for RdNBR) [19]. Here, we
used the dNBR instead of the relativized index RdNBR, also available in MOSEV, according
to (I) its better performance when using MODIS; (II) to its similar or better fit to field
composite metrics of BS such as the Composite Burn Index in different types of ecosystems;
and (III) to be consistent with our definition of BS, which is understood as the overall
degree of environmental change caused by fire [19]. For the present study, the period
2003–2019 was selected for consistency because Aqua products were not available for entire
years before 2003. Mean temperature and precipitation data were extracted for each month
of the time series from the ERA5 ECMWF reanalysis. ERA5 was downloaded from the
Copernicus Climate Data Store (CDS), using the CDS Python API.

2.2. Data Preparation

All data were extracted globally and by the regions conformed by the intersection of
terrestrial biomes (i.e., global vegetation units) [33] with the continent boundaries [34]. The
extraction of the global and regional data from both MOSEV and ERA5 was designed in the
R programming language [35]. All the routines were implemented in the supercomputing
facilities of the Spanish Research Council (CSIC).

For each year, we computed globally and by regions the BA, the percentage of the
land burned, the mean BS, the percentage of land burned at different BS levels, and
the percentage of the BA burned at different BS levels. The number of BS levels and
threshold values depend on the user’s objectives [16,19,36]. The differentiation of three
categories (low, moderate, and high BS) is probably the most common approach [19,37,38]
and many studies have followed the pioneering proposal by Key and Benson [16] to
differentiate levels. In the present study, we differentiated low, moderate, and high BS
levels by the standard <270, 270–440, and >440 dNBR ranges, respectively, following the
thresholds proposed in [16]. We have used the dNBR value of >440 to differentiate the high
severity rather than other common higher values (e.g., 660) as those have been found to
be excessive by multiple studies [37,38], and because values above 660 are scarce in the
MOSEV database [19]. Moreover, we highlight that we have applied the same thresholds to
all the regions for consistency; thus, same categories reflect similar overall spectral change
with respect to the pre-burn situation regardless of the region.

Likewise, for each year we computed the mean annual temperature, the annual
temperature range as the difference between the hottest and coldest months, the annual
precipitation, and the annual precipitation range as the difference between the wettest
and driest months. This raw database with the annual values of all study variables was
checked for coherence before performing the statistics based on regional data. Thus, biomes
corresponding to lakes, water bodies, rock, and ice were removed, as well as those regions
with BA registered less than 10 years of the study period (<60% of the time).
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2.3. Data Analysis

All the statistical analyses were performed in R software [35]. The spatial patterns of
all fire variables (BA, percentage of the land burned, mean BS, percentage of land burned
at different BS levels, percentage of the BA burned at different BS levels), and climate
variables (mean annual temperature, annual temperature range, annual precipitation, and
annual precipitation range) were studied by regions calculating the mean (±standard error)
values for the entire study period (2003–2019). Likewise, we computed the mean global
values of all fire variables.

To perform the temporal trend analyses (2003–2019; n = 17), we normalized the global
and regional annual data of fire variables to the corresponding 2003 values (with values of
2003 set to 100%), to facilitate interpretation and intercomparison. Afterward, we calculated
the Sen robust regression estimator with 95% confidence intervals using the zyp.sen and
confint.zyp functions of the zyp package [39], and the Mann–Kendall significance using
the cor.test function. The Sen robust regression estimator is a non-parametric statistical
analysis computed from the median of the slopes of all lines through pairs of points, and
thus it is insensitive to outliers. The non-parametric Mann–Kendall significance indicates if
a variable consistently decreases or increases over time.

The influence of climate variables (independent) on each fire variable (dependent) was
studied with the data by regions (n = 64; n = 63 for BA at high severity analyses because of
the absence of this BS level in one region) using two complementary statistical approaches:
first, the relationship of each single climate variable with each fire variable was shown by
fitting the local polynomial regression (loess), and the Spearman’s rank correlation coeffi-
cients and significances were calculated using the cor.test function; secondly, conditional
inference regression trees were implemented to account for complex combined effects of
climate variables. All mean 2003–2019 BA data were square root transformed for these
statistical analyses and to facilitate outputs visualization. Regression trees were built with
the ctree function of the partykit package [40], including as predictors the four climate
variables together. Regression trees include the most significant partitions up to p < 0.10
calculated with the approximated finite-sample distribution of Monte Carlo for each node.
The variance explained by the regression tree predictions against our data was also shown.
The analyses were run to analyze both, the synchronous relationships between fire and
climate by using the 2003–2019 means; and the influence of temporal trends, using the Sen
slopes as input data.

To analyze the relationships between pairs of fire variables, as well as between pairs
of climate variables, correlation matrices with the loess fit and Spearman’s rank correlation
coefficients and significances were computed for the synchronous spatial data (mean
2003–2019 values) and trend data (Sen slopes) by regions (n = 64) using the pairs.panels
function of the psych package [41].

3. Results and Discussion

3.1. Spatial Patterns of Burned Area and Burn Severity

We observed that 4.78 ± 0.12 Mkm2 (mean ± standard error), and around 3.26 ± 0.08%
of Earth’s land surface burned annually in the period 2003–2019 (Table 1), similar to NASA-
MODIS MCD64A1 BA data reported for 2003–2015 [4]. The spatial patterns of absolute
BA were highly heterogeneous among regions (biomes and continents) (Table A1). The
largest contributors to global BA were the tropical and subtropical grasslands, savannas,
and shrublands of Africa (2.79 ± 0.07 Mkm2 year−1), Australia (0.36 ± 0.03 Mkm2 year−1)
and South America (0.26 ± 0.02 Mkm2 year−1), a consequence of both their proneness to
fire and their vast extent.

Relativizing the BA to the total extent of each region (Figure 1; Table A1), we found
that the most fire-prone regions were the flooded grasslands and savannas of Africa
(26.97 ± 1.01% year−1), as well as the tropical and subtropical grasslands, savannas and
shrublands of Africa (20.07 ± 0.49% year−1), and Australia (17.01 ± 1.32% year−1). There,
the seasonally dry climate enables positive feedback interactions between primary pro-
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ductivity, fuel connectivity, and fire [1,12,42] which are essential for maintaining the open
structure of these biomes [9,43]. Among grasslands and savannas, the highest potential
to burn in those seasonally flooded has been attributed to greater fuel accumulation rates
as consequence of a higher productivity and the low herbivory of their less palatable
vegetation [10]. We found other biomes to be particularly fire-prone with more than 5% of
their area burned annually (Figure 1; Table A1), including the tropical and subtropical dry
broadleaf forests of Africa and montane grasslands and shrublands of Africa and Australia.
Likewise, a surprisingly high BA fraction (4.38% to 3.42% year−1) was detected in tropical
and subtropical moist broadleaf forests of Africa and Australia as fire is not an intrinsic
ecological process in rainforests [1,31]. The BA fraction was below 1.20% year−1 in all
temperate forests and boreal biomes, except for the Australian temperate broadleaf and
mixed forests (1.72% year−1). Although Mediterranean biomes are considered among
the most fire-prone on Earth [3], their BA ranged from 0.45% year−1 in Europe to 1.56%
year−1 in North America. Our results revealed that most biomes burned more in Africa
and Australia than on the other continents. In Africa, extensive burning is facilitated by the
low population density and decreases in grazing by bulk-feeding herbivores [12], whereas
the proneness of Australian biomes to fire is fostered by the extreme climate seasonal-
ity, the high number of dry lightning events, aboriginal fire management practices, the
physiognomy of eucalypts vegetation [31,42,44], and even by the colonization of exotic
grasses [45].

Table 1. Global mean values and normalized trends (value in 2003 = 100%) in burned area (BA),
burn severity (BS), and BA by BS levels at the global scale for the period 2003–2019. Both, BA, and
BA by BS levels are presented in absolute area values and in percentage with respect to the total
extent of the global land surface, BA by BS levels are also presented in percentage with respect to the
global BA. Note that BA and BA by BS levels, whether calculated as absolute area or as percentage
with respect to the total extent of the region results in the same trend values. The entire land area
of the world was considered in calculations, including regions with scarce or null fire occurrence.
Significant trends (p < 0.05) are denoted by boldface and the number of asterisks denotes the level of
statistical significance (p < 0.05, p < 0.01, and p < 0.001). SE: standard error; CL: confidence limit.

Fire Variable Global Mean Global Trend

Value (±SE) Unit Value Lower 95% CL Upper 95% CL Unit

BA
4.78 (±0.12) Mkm2 year−1

−1.50 *** −2.02 −0.82 % year−1
3.26 (±0.08) % land year−1

BS 175.74 (±0.89) dNBR 0.13 −0.08 0.33 % year−1

BA at low severity 3.59 (±0.09) Mkm2 year−1
−1.62 *** −2.10 −0.94 % year−1

2.45 (±0.06) % land year−1

75.06 (±0.23) % BA year−1 −0.08 −0.25 0.05 % year−1

BA at moderate severity 0.99 (±0.02) Mkm2 year−1
−1.27 *** −2.20 −0.50 % year−1

0.67 (±0.02) % land year−1

20.61 (±0.18) % BA year−1 0.08 −0.25 0.48 % year−1

BA at high severity 0.21 (±0.00) Mkm2 year−1
−0.63 −1.72 0.25 % year−1

0.14 (±0.00) % land year−1

4.33 (±0.10) % BA year−1 0.95 * 0.04 1.85 % year−1

BS spatial patterns were closely linked to biomes, being more consistent among con-
tinents than BA (Figure 1, Table A1). Generally, the BS patterns detected in the present
study are in line with those of fire radiative power emitted by fires detected in previous
work [20], revealing at the global scale the assumed relationship between BS and fire
intensity [15]. In general, we found the highest mean severities in the taiga, followed by
tundra, temperate coniferous forests, and Mediterranean biomes. BS was particularly high
in North American taiga, which is characterized by high-intensity stand-replacing crown
fire regimes [25], whereas lower mortality (42% lower) and combustion completeness
(36% lower) characterize the Eurasian boreal forests, due to different traits of the dominant
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species [2,46]. The high severity of tundra fires is a consequence of the burning complete-
ness of vascular vegetation and moss cover, as well as of the upper soil organic strata
accumulated for decades, which contributes to permafrost degradation [47]. It is important
to note that biomes at high latitudes have the largest topsoil carbon stocks on Earth (0–30
cm) [48], and seasonally become available to severely burn. In Mediterranean biomes,
high severity results from a marked crown fire regime [1,3]. The lowest severities were
found in tropical coniferous forests, mangroves, and in deserts and xeric shrublands; in the
first, combustion completeness is flammability-limited, and the last BS is constrained by
fuel-limitations. Tropical and subtropical forests in Africa exhibited lower BS than in Asia
and North America, which can be a consequence of burning at smaller fire patches [46] as
fire size covariates with BS [17], and potentially because of the predominance of burning in
lower tree cover ranges (25–75%) [46]. Low severity values were also found in non-flooded
grassy biomes, and intermediate severities generally corresponded to temperate forests.
These global patterns confirmed the tradeoffs between BA fractions and BS (ρ = −0.25; p <
0.05) (Figure 1) previously detected for fire intensity [20], at the time that supports the fuel
load available to burn as the primary driver of BS [25,26,49].

The analysis of BA by different severity levels, particularly at high severity, is useful
to acknowledge the territorial magnitude of fire impacts [21]. Globally, we revealed that
0.21 ± 0.00 MKm2 (0.14 ± 0.00%) of land surface burned annually at high severity (Table 1).
In absolute terms, the extent of BA affected by high severity was significantly linked to
the BA extent (ρ = 0.87; p < 0.01) (Figure 1), the largest contributors to the global high
severity BA are the tropical and subtropical grasslands, savannas, and shrublands of Africa,
South America, and the Asian taiga (Table A1). However, relativized to the total extent of
each region, we found that the regions most affected by high-severity burning were the
montane grasslands and shrublands of Australia (2.23 ± 1.77% year−1), flooded grasslands
and savannas of North America (1.85 ± 0.13% year−1), Africa (1.17 ± 0.12% year−1) and
South America (0.96 ± 0.19% year−1), tropical and subtropical grasslands, savannas, and
shrublands of Oceania (1.60 ± 1.59% year−1) and South America (0.55 ± 0.04% year−1),
and Mediterranean North America (0.52 ± 0.11% year−1) (Figure 1; Table A1). In the rest
of the regions, the high severity BA constituted less than 1% of their extent. This is a direct
consequence of the BA in each region (ρ = 0.71; p < 0.01), being related to a lesser extent
to the mean BS (Figure 1). Relativizing the BA at high severity to the total BA in each
region, similar patterns to BS were detected (ρ = 0.82; p < 0.01) (Figure 1), with around 40%
of BA exhibiting a high severity in all boreal forests and non-European tundra (Figure 1;
Table A1).

3.2. Temporal Trends in Burned Area and Burn Severity

World BA decreased −1.50% year−1; p < 0.01 which in absolute terms is equivalent
to a decrease of 1.22 MKm2 between 2003 and 2019 (25.5% less BA with respect to 2003)
(Table 1). These results elucidate an intensification of the decline in BA compared to the
results already reported for the period 2003–2015 [4]. Analyzing BA trends by regions
(Figure 2; Table 2), we found significant BA decreases in the European taiga (−6.21% year−1;
p = 0.04), temperate grasslands, savannas and shrublands of Asia (−2.77% year−1; p = 0.01),
Mediterranean Europe (−2.31% year−1; p = 0.03), tropical and subtropical dry broadleaf
forests of North America (−2.11% year−1; p < 0.01), montane grasslands and shrublands
of Africa (−2.08% year−1; p < 0.01) and Asia (−1.93% year−1; p = 0.02), and in most of
tropical Africa including grasslands, savannas and shrublands (−1.64% year−1; p < 0.01),
moist broadleaf forests (−1.57% year−1; p = 0.02) and mangroves (−1.37% year−1; p = 0.02).
Generalized decreases in BA have been formerly attributed to a decrease in the number of
ignitions and to a lesser extent, to decreases in fire size, driven by human activity [4]. In
this sense, the increase in human population, cropland area, and livestock density cause
decreases in fire activity in the fire-prone open biomes [4], whereas increased efficiency
in fire prevention, detection, and extinction, and abandonment of fire use in agriculture
contribute to the decreasing trend in other regions [7,50].
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Figure 1. Mean values of burned area (BA), burn severity (BS), and BA by BS levels by regions
(biomes × continents) for the period 2003–2019. BA values are represented by square root scaled
bars and expressed in percentage with respect to the total extent of the regional land surface. The
percentage of the BA burned at each BS level is proportional to their fraction within the BA bars. BS
is represented by red points and expressed in dNBR units ranging from −2000 to 2000. S.Am: South
America, Oce: Oceania, N.Am: North America, Eu: Europe, Aus: Australia, As: Asia, Afr: Africa.
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Figure 2. Normalized trends (value in 2003 = 100%) in burned area (BA) by regions (biomes ×
continents) for the period 2003–2019. The color ramps are square root scaled.

Globally, BS exhibited a non-significant increase (0.13% year−1; p = 0.34) (Table 1).
However, we found a large continental disparity, and regions with significant increases
outnumbered those with significant decreases in BS (Figure 3, Table 2). The largest increases
were found in South America, including temperate grasslands, savannas, and shrublands
(2.47% year−1; p = 0.03) and all forest biomes (1.49 to 3.56% year−1; p < 0.05) except
mangroves. Likewise, we detected significant increases in BS in tropical and subtropical
moist forests of Australia (2.23% year−1; p = 0.04), Mediterranean Africa (2.16% year−1;
p < 0.01), and Asian taiga (2.13% year−1; p = 0.03). Land cover changes might explain BS
trends in many regions, for instance, most of Mediterranean Africa, Central and Southern
Chile, and Siberian taiga have experienced long-term woody encroachment and forest
expansion [51], a fuel accumulation that in these regions lead to more severe fires [3,49].
Likewise, BS increases in the tropical rainforest of South America may respond to several
causes. First, to increases in fuel continuity in the Eastern Brazilian coast, which is frequently
burned [50]; second, to the loss of primary forests [51] that are characterized by no fire
or low severity surface fires [1]; and third, to decreases in lower atmosphere moisture
boosted by these forest losses that resulted in increased droughts the last years of the study
period [52], making large fuel loads available to burn. Significant decreases in BS were
only found in montane grasslands and shrublands of Asia (2.94% year−1; p = 0.04) and in
the European taiga (2.56% year−1; p = 0.04), which inversely to the Asian, has experienced
decreasing trends in fuel continuity and increasing moisture which have detrimental effects
on BA [50] and likely on BS [24,26].

The analysis of BA by BS levels showed that decreases in global BA were mainly
at the expense of decreasing low (−1.62% year−1; p < 0.01) and moderate severity BA
(−1.27% year−1; p < 0.01) (Table 1). Globally, we found trends in BA at high severity
(−0.63% year−1; p = 0.09) to be positively related to trends in BA (ρ = 0.67; p < 0.01) as well
as to trends in BS (ρ = 0.40; p < 0.01) (Figure 2). Regionally, we detected the highest increases
in BA at high severity in temperate broadleaf forests of South America (40.20% year−1;
p = 0.04) (Figure 4A; Table 2), which can be a consequence of the expansion of exotic
Pinus and Eucalyptus plantations with associated fuel load increases up to 40 Mg ha−1

between 1999 and 2006, accompanied by a large drought-driven intensification of fire
activity between 2010 and 2015 [53]. We observed the BA at high severity to also aggravate
in Australian tropical and subtropical moist forests (28.02% year−1; p < 0.01), which are
vulnerable to fire, as it favors alternative open biome states [44]. BA at high severity also
increased in Australian grasslands, savannas, and shrublands (6.85% year−1; p = 0.01).
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In Australia, increases in fuel continuity [50] and in fire weather [31] in the last decades
have been detected, which, along with the unprecedented fire events that occurred in 2019,
might contribute to the detected patterns. We found significant increases in BA at high
severity in the deserts and xeric shrublands and tropical and subtropical dry broadleaf
forests of Asia that locally can be attributed to encroachment [49] and to increases in fuel
continuity [50]. The largest decreases in high severity BA were observed in European
taiga (−6.03% year−1; p = 0.01) and in tropical and subtropical grasslands, savannas, and
shrublands of North America (−5.96% year−1; p = 0.04), a consequence of decreases in both
BA and BS. Moreover, a significant global increase in the fraction of BA that is burned at
high severity was detected (0.95% year−1; p = 0.04), and regionally, trends in the fraction
of BA burned at high severity were closer to BS (ρ = 0.51; p < 0.01) than to BA (ρ = 0.11;
p = 0.38) (Figure 2), confirming the aggravation of impacts within burned areas in a vast
proportion of South America, and in large parts of Northern Australia and Asia (Figure 4B,
Table 2). In the tropical forests of Australia and the Amazon, it has been revealed that
contemporary logging regimes and silvicultural practices exacerbate burn severity [54,55],
suggesting decision makers and forest managers have a determinant role in past, present,
and future fire regimes.

Figure 3. Normalized trends (value in 2003 = 100%) burn severity (BS) by regions (biomes ×
continents) for the period 2003–2019. The color ramps are square root scaled.

3.3. Relationships with Climate Variables

The climate spatial patterns (Figure 3) determined the spatial patterns of fire activity
(Figures 5 and 6). Local regressions and correlation analysis (Figure 5) showed monotonic
increases in BA (ρ = 0.58; p < 0.01), and monotonic decreases in BS (ρ = −0.35; p < 0.01) and
in the BA at high severity (ρ = −0.54; p < 0.01) towards the warmest regions (tropics), in
agreement with the results shown by the regression trees (Figure 6A–C). Moreover, the
regression trees revealed mean annual temperature as the primary climate driver of regional
differences in BA, BS, and BA at high severity (Figure 6A–C). Local regressions (Figure 5)
and correlation analysis also showed an opposite pattern for annual temperature range, but
regression trees (Figure 6A–C) suggest lower importance of annual temperature range and
the other climate variables (p > 0.05), probably because of their strong interdependencies
(Figure 4).

We found climate trends to be weakly related to all BA and BS trends (Figures 6D and 7),
the detected trends being opposite to the assumption of increases in BS with climate
warming. Thereby, we detected a significant inverse relationship between climate warming
and the proportion of BA at high severity (ρ = −0.26; p = 0.04) (Figure 7), and both the local
regression and the regression tree (Figure 6D) showed that the most stable regions in terms
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of proportion of BA burned at high severity were those experiencing the highest warming
(>0.03 K year−1). In this context, the long-term outcome of increased temperatures for fire
regimes has been disclosed complex as it is caused by shifts in fire weather [31], but also by
the warming effects on fuels through changes in productivity, vegetation composition [2,26],
and fuel accumulation in the soil uppermost layers that are controlled by productivity–
decomposition equilibriums varying at fine scales [56]. Moreover, the climate shifts would
have different impacts on fire regimes depending on the former climate, productivity, and
induced vegetation trajectories [24,27]. This complexity is expected to cause differential
changes in fire regimes across regions, which some authors claim to be scarcely plausible
until the coming decades [13,14]. Likewise, these premises highlight the difficulty of linking
climate change to generalized increases in BA and BS worldwide, as different variations
are expected depending on regional intrinsic characteristics.

Figure 4. Normalized trends (value in 2003 = 100%) in burned area (BA) at high severity by regions
(biomes × continents) for the period 2003–2019. The map in the upper part (A) shows the trends of
BA at high severity calculated as absolute burned area at high severity (when calculated as percentage
with respect to the total extent of the region the result is the same). The map in the bottom (B) shows
the trends of BA at high severity calculated as a percentage of the burned area that burned at high
severity. The color ramps are square root scaled.
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Figure 5. Scatterplots showing the synchronous relationships between the climate and fire variables
for the period 2003–2019. Red lines show the local polynomial regression fitting (loess), and shaded
areas ± 95% confidence intervals. Each panel also shows the Spearman’s correlation coefficient
(ρ), and the number of asterisks denotes the level of statistical significance (p < 0.05, p < 0.01, and
p < 0.001). Note that the BA axes are square root transformed. BA: burned area, BS: burn severity, T:
mean annual temperature: T range: annual temperature range, P: annual precipitation, P range: and
annual precipitation range.
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Figure 6. Conditional inference regression trees showing the most important climatic variables in
determining the spatial patterns of burned area (BA) (A), burn severity (BS) (B), BA at high severity
(C), and normalized trend (2003 = 100%) in the percentage of the BA burned at high (D). No further
trees were able to grow for the other studied fire variables and trends at the selected confidence level
for recursive binary partitioning (p < 0.10). R2 values on the bottom of panels represent the variance
explained by the regression tree predictions on our dataset. Red dots in the boxplots indicate the mean
values. T: mean annual temperature, T range: annual temperature range, P: annual precipitation.
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Figure 7. Scatterplots showing the relationship between the studied climate trends and normalized
trends (value in 2003 = 100%) in fire variables for the period 2003–2019. Red lines show the local
polynomial regression fitting (loess), and shaded areas ±95% confidence intervals. Each panel also
shows the Spearman’s correlation coefficient (ρ), and the number of asterisks denotes the level of
statistical significance (p < 0.05, p < 0.01, and p < 0.001). BA: burned area, BS: burn severity, T: mean
annual temperature: T range: annual temperature range, P: annual precipitation, P range: and annual
precipitation range.

3.4. Implications and Final Considerations

Our study updates BA data and constitutes the first global assessment of BS spa-
tiotemporal patterns. The information, provided by biomes and continents, is essential
in revealing increasing trends in BS in several regions and increases in the fraction of
BA that is burned at high severity at the planetary scale, providing scientific support for
widespread assumptions. However, we did not find evidence in line with the hypothesis
that climate change is increasing the mean BS worldwide. Nevertheless, several issues
should be considered when interpreting our findings. First, the used BA and BS data at
500 m spatial resolution are appropriate for global fire analysis and consistent for studying
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trends [4,19,31], but have limitations in terms of quantifying BA absolute values. Accord-
ingly, it has been demonstrated that the use of finer spatial resolution imagery at regional
scales can result in larger BA, particularly in those regions with a predominance of small
fires [57,58]. For this reason, as sensors and computational capabilities improve, we encour-
age future work to analyze BA and BS trends using higher spatial resolution imagery or
statistically refined BA data [58], and even different methods to quantify burn severity [59].
Secondly, although there are biome–fire regime relationships, it is important to note that
most biome regions have been largely modified by human activities such as agriculture,
livestock, or urbanization, which also have an important role on fire regimes [2,4,8,20,60].
In this sense, we recommend exploring the implications of these drivers in determining
the results presented in this study. Third, our study period is limited to 17 years because
of no prior availability of both MODIS Aqua and Terra sensors. This could favor inter-
ferences of decadal ocean and atmospheric oscillations [61] in our results, but we assume
little influence of El Niño Southern Oscillation (ENSO) due to 2–7 years oscillation of
this phenomenon and the balanced events along our study period. Fourth, despite not
finding strong evidence of climate change aggravation of BA and BS, we confirmed that
climate is an essential variable influencing fire regimes worldwide [1,13,27], and further
studies at finer scale map units of analysis are advisable to further disentangle the complex
climate–fire–human interactions in the current context of climate change.

4. Conclusions

This study used 17 years of MODIS-derived data to analyze the spatiotemporal pat-
terns of BA and constitutes the first BS analysis at the global scale. In addition, we showed
the spatiotemporal patterns of BA and BS by regions (biomes and continents), relating them
to several climate variables.

Our results updated the already known spatial patterns of BA across the globe and
corroborated significant decreases in global BA. Our triple-way analyses of BS trends
detected that globally (I) the mean BS exhibits non-significant increases; (II) the fraction of
land affected by high BS shows non-significant decreases, as it is linked to the decreases in
BA; and (III) the fraction of burned area that is affected by high BS is significantly increasing.
In addition, the number of regions showing significant increases in mean BS and burned
area at high BS outnumbered those with significant decreases.

We found close relationships between the spatial patterns of fire variables (BA and BS
metrics) and climate variables (temperature, precipitation, and their respective interannual
ranges), but our analysis by regions has not found evidence that climate warming is
increasing BA nor BS, suggesting other factors as the primary drivers of change.

Given the great technical and computational advances that are currently taking place,
future work may continue our analysis by using higher-resolution images, smaller analyti-
cal units, longer periods, or different methods of quantifying BS. We also encourage future
research to analyze region-by-region the implications that our results may have in the
field of ecology, climate regulation, and in the effectiveness and design of environmental
management strategies.
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Figure 1. Synchronous relationships between the spatial patterns of mean annual burned area (BA)
expressed in mean absolute values (Mkm2 yr−1) and in percentage with respect to the total extent
of each region (% land yr−1), burn severity (BS) expressed in dNBR units ranging from −2000 to
2000, and BA at high severity expressed in absolute values (Mha yr−1), in percentage with respect to
the total extent of the land extent in each region (% land yr−1), and in percentage with respect the
total BA in each region (% BA yr−1) for the period 2003–2019. Red lines in the scatterplots show the
local polynomial regression fitting (loess) and shaded areas ±95% confidence intervals. Values in
the panels are Spearman’s correlation coefficients (ρ) between pairs of variables, and the number of
asterisks denotes the level of statistical significance (p < 0.05, p < 0.01, and p < 0.001). Note that all
axis for BA variables were square root scaled.

Table 2. Mean trends in annual burned area (BA), in burn severity (BS), and in high severity BA
(dNBR > 440) by regions (biomes × continents) for the period 2003–2019. Note that trends are
normalized (value in 2003 = 100%) and expressed in percentage change per year, and therefore both,
trends in mean absolute values of BA (originally measured in Mha year−1), and in BA with respect to
the total extent of global land extent (originally measured in % land year−1) are the same. Slopes were
calculated using the Sen slope estimator and significances with the Mann–Kendall test. Significant
decreases (p < 0.05) are denoted by green boldface, significant increases by red boldface, and the
number of asterisks denotes the level of statistical significance (p < 0.05, p < 0.01, and p < 0.001). Trop.:
tropical and subtropical. B: broadleaf forest. C: coniferous forest. M: mixed forest. G.: grasslands. S:
savannas. Sh.: shrublands.

Original
Units

Africa Asia Australia Europe N America Oceania S America

BA
1 Trop. Moist B. −1.57 * −2.20 4.43 −0.78 −2.22 −2.02
2 Trop. Dry B. 0.17 0.16 −2.11 ** −0.70 −3.33
3 Trop. C. 1.20 −0.25
4 Temp. B. M. −2.43 −0.85 −2.72 −0.18 16.96

20



Remote Sens. 2023, 15, 3401

Table 2. Cont.

Original
Units

Africa Asia Australia Europe N America Oceania S America

5 Temp. C −4.54 0.16 1.31 2.77
6 Taiga 1.45 −6.21 * −1.70
7 Trop. G. S. Sh. −1.64 *** 1.00 −1.47 −1.83 0.00 −1.38
8 Temp. G. S. Sh. −2.77 * −0.49 −11.40 0.74 10.75 0.88
9 Flooded G. S. −0.92 0.07 −2.26 −9.89
10 Montane G. Sh. −2.08 *** −1.93 * 0.00 0.86
11 Tundra −0.02 0.00 −4.03
12 Mediterranean 0.15 5.43 0.47 −2.31 * −0.36 2.78
13 Deserts. Xeric Sh. −3.65 −1.82 8.21 −3.59 0.56 −0.18
14 Mangroves −1.37 * 1.76 −0.98 −0.44

BS
1 Trop. Moist B. −0.08 0.57 2.23 * 0.42 −0.10 1.49 *
2 Trop. Dry B. 0.36 0.36 1.15 −0.23 3.47 *
3 Trop. C. 3.43 0.56
4 Temp. B. M. −0.49 0.32 0.19 0.60 3.56 *
5 Temp. C −1.29 0.49 0.81 1.53
6 Taiga 2.13 * −2.56 * 0.35
7 Trop. G. S. Sh. −0.26 0.87 0.59 −1.72 −0.43 0.29
8 Temp. G. S. Sh. 0.81 0.34 0.90 1.42 0.87 2.47 *
9 Flooded G. S. 0.11 −0.22 −0.52 0.71
10 Montane G. Sh. −0.18 −2.94 * 0.95 1.05
11 Tundra 0.73 4.38 3.75
12 Mediterranean 2.16 ** −0.01 −0.64 −0.27 0.51 −0.21
13 Deserts. Xeric Sh. −0.30 0.13 −0.62 −1.33 0.29 0.80
14 Mangroves −0.85 1.07 0.53 −0.49

High severity BA

1 Trop. Moist B. Mha yr−1

% land yr−1 −0.68 2.31 28.02 ** −0.76 0.00 0.07

% BA yr−1 1.13 3.90 17.46 *** 1.18 −0.33 2.46 ***

2 Trop. Dry B. Mha yr−1

% land yr−1 1.98 4.01 * 1.35 1.85 −1.32

% BA yr−1 1.83 4.05 ** 5.03 * 5.38 2.92

3 Trop. C. Mha yr−1

% land yr−1 4.58 −0.35

% BA yr−1 9.75 −1.02

4 Temp. B. M. Mha yr−1

% land yr−1 −5.69 −0.14 −2.57 1.95 40.20 *

% BA yr−1 −4.30 −0.08 −0.17 1.55 2.97

5 Temp. C Mha yr−1

% land yr−1 −3.80 0.43 1.39 3.54

% BA yr−1 −0.81 0.21 2.02 2.17

6 Taiga Mha yr−1

% land yr−1 2.56 −6.03 * −1.29

% BA yr−1 2.47 −2.64 * 0.38

7 Trop. G. S. Sh. Mha yr−1

% land yr−1 −1.11 1.22 6.85 * −5.96 * 0.00 −1.31

% BA yr−1 0.68 1.73 7.72 *** −3.30 * 0.00 0.79

8 Temp. G. S. Sh. Mha yr−1

% land yr−1 −2.69 8.65 −8.97 2.11 NA 2.68

% BA yr−1 0.48 1.69 1.37 1.06 NA 7.38 ***

9 Flooded G. S. Mha yr−1

% land yr−1 −2.37 −1.75 −2.97 * −2.88

% BA yr−1 −1.53 −3.29 −0.69 5.48

10 Montane G. Sh. Mha yr−1

% land yr−1 −0.53 −4.10 * 0.00 2.20

% BA yr−1 1.60 −4.16 0.00 2.88

11 Tundra Mha yr−1

% land yr−1 0.05 0.00 −1.36

% BA yr−1 0.12 0.00 1.92
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Table 2. Cont.

Original
Units

Africa Asia Australia Europe N America Oceania S America

12 Mediterranean Mha yr−1

% land yr−1 7.13 0.20 −0.05 −1.24 0.15 1.99

% BA yr−1 5.41 * −1.88 −0.10 −0.23 0.47 −0.82

13 Deserts. Xeric Sh. Mha yr−1

% land yr−1 0.98 9.25 ** 10.79 1.64 1.85 −2.14

% BA yr−1 3.47 11.34 * 1.90 4.75 0.83 −4.12

14 Mangroves Mha yr−1

% land yr−1 −0.76 1.67 −0.59 −0.55

% BA yr−1 0.79 −0.03 1.32 −0.90

Figure 2. Relationships between the normalized trends (value in 2003 = 100%) in annual burned
area (BA), burn severity (BS), and BA at high severity. Note that BA and BA by BS levels whether
calculated as absolute area BA or as percentage with respect to the total extent of the region lead to
same trend values. Red lines in the scatterplots show the local polynomial regression fitting (loess)
fit and shaded areas ±95% confidence intervals. Values in the panels are Spearman’s correlation
coefficients (ρ) between pairs of variables, and the number of asterisks denotes the level of statistical
significance (p < 0.05, p < 0.01, and p < 0.001).

22



Remote Sens. 2023, 15, 3401

Figure 3. Spatial patterns (A–D) and trends (E–H) in mean annual temperature, annual temperature
range, annual precipitation, and annual precipitation range for the period 2003–2019. Trends were
calculated using the Sen estimator and significances with the Mann–Kendall test.
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Figure 4. Synchronous relationships between the spatial patterns of mean annual temperature
(T), annual temperature range (T range), annual precipitation (P) and annual precipitation range
(P range) for the period 2003-2019. Red lines in the scatterplots show the local polynomial regression
fitting (loess) and shaded areas ±95% confidence intervals. Values in the panels are the Spearman’s
correlation coefficients (ρ) between pairs of variables. the number of asterisks denotes the level of
statistical significance (p < 0.05, p < 0.01, and p < 0.001).
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Abstract: Wildfires have significant environmental and socio-economic impacts, affecting ecosystems
and people worldwide. Over the coming decades, it is expected that the intensity and impact of
wildfires will grow depending on the variability of climate parameters. Although Bulgaria is not
situated within the geographical borders of the Mediterranean region, which is one of the most
vulnerable regions to the impacts of temperature extremes, the climate is strongly influenced by it.
Forests are amongst the most vulnerable ecosystems affected by wildfires. They are insufficiently
adapted to fire, and the monitoring of fire impacts and post-fire recovery processes is of utmost
importance for suggesting actions to mitigate the risk and impact of that catastrophic event. This
paper investigated the forest vegetation recovery process after a wildfire in the Ardino region,
southeast Bulgaria from the period between 2016 and 2021. The study aimed to present a monitoring
approach for the estimation of the post-fire vegetation state with an emphasis on fire-affected territory
mapping, evaluation of vegetation damage, fire and burn severity estimation, and assessment of their
influence on vegetation recovery. The study used satellite remotely sensed imagery and respective
indices of greenness, moisture, and fire severity from Sentinel-2. It utilized the potential of the
landscape approach in monitoring processes occurring in fire-affected forest ecosystems. Ancillary
data about pre-fire vegetation state and slope inclinations were used to supplement our analysis for a
better understanding of the fire regime and post-fire vegetation damages. Slope aspects were used
to estimate and compare their impact on the ecosystems’ post-fire recovery capacity. Soil data were
involved in the interpretation of the results.

Keywords: fire impact; post-fire forest recovery; forest landscapes; vegetation indices; orthogonal
transformation; Sentinel-2

1. Introduction

Forest disturbance cycles are associated with exacerbating responses to climate change [1].
Forest fires have been more frequent and severe in recent decades, especially in areas that
have experienced climate change pressures for an extended period of time [2]. Due to
climate change, high-temperature anomalies continue to occur, which leads to frequent
forest fires [3]. The International Panel on Climate Change (IPCC) puts the Mediterranean
and its adjacent lands as amongst the most vulnerable regions to the effects of global
warming worldwide [4]. The models issued by IPCC agreed on a clear trend of the thermal
regime based on a scenario from 1980–2000. An increase in average surface temperatures,
ranging between 2.2 ◦C and 5.1 ◦C, for the period 2080–2100 was prognosed. For the
same period, the models indicated pronounced rainfall regime changes showing that
precipitation over lands might decrease by about 4% to 27%. Studies performed by the
Department of Meteorology at the National Institute of Meteorology and Hydrology at
the Bulgarian Academy of Sciences (NIMH-BAS) predicted an increase in the annual air
temperature by more than 1.8 ◦C for the coming decades in Bulgaria. This fact increases
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the risk of forest fire frequency and intensity [5]. During the last two decades in Bulgaria,
as well as in other countries of the Mediterranean region, many wildfires occurred and had
a significant economic, political, social, and ecological impact [6–9].

In recent years, high resolution (HR) and very high resolution (VHR) optical remote
sensing has become widespread concerning monitoring needs, and these strategies pro-
vide affordable multitemporal and multispectral pictures of the considered phenomena at
different scales. Satellite sensors allow measurement of the impact of fires by comparing
pre- and post-fire information. Applications of remote sensing technology related to fire
ecology, including fire risk mapping, fuel mapping, burn severity assessment, and post-fire
vegetation recovery, are widely discussed and accepted [10–15]. These technologies pro-
vide a low-cost, multi-temporal means for conducting local, regional, and global-scale fire
ecology research. Moreover, the development of new technologies and techniques resulted
in their rapid evolution, thus increasing the accuracy and efficiency of earth observation
studies and applications [16,17]. Space and airborne sensors have been used to map burned
areas, quantify the impact of fire on vegetation over large areas, and characterize post-fire
ecological effects [18–20]. Emphasis has been given to the roles of multispectral sensors,
lidar, and emerging Unmanned Aerial System (UAS) technologies [14]. Depending on
the purpose of post-fire vegetation recovery observation and study, the assessment is per-
formed based on groups of methods, such as image classification, vegetation indices (VIs),
spectral mixture analysis (SMA) [21,22], etc. Remote sensing imagery offers an opportunity
for obtaining land use and land cover information through image interpretation and classifi-
cation. Spectral responses are used in image classification to identify the healthy vegetation
in individual pixels [14]. Spectra-based classification approaches are conceptually simple
and easy to implement [23]. The type or condition of surface features and their dynamics
can be assessed by multi-temporal imaging. This type of analysis is fundamental in remote
sensing and is typically called change detection [24]. VIs are the most commonly used
method for assessments of vegetation state, including vegetation recovery after natural or
anthropogenic disturbances [17,25,26].

Post-fire-related conditions are important for forest vegetation recovery. In this context,
mapping of the burned area, representing the burn severity, is a standard technique for
monitoring the post-fire effects and forest recovery patterns [17,27–29]. It was found that
the differenced Normalized Burn Ratio (dNBR) and its relative form (relative differenced
Normalized Burn Ratio (RdNBR)) derived from Landsat data correlate with field measure-
ments of burn severity [30]. NBR is also used for monitoring post-fire regeneration over
burned areas in ecosystems. Results showed that as vegetation regenerates, the differences
between the burns and the reference area for the vegetation index decrease with time [31].
Detailed studies showed that the NIR-based vegetation indices are most appropriate for
accurately assessing vegetation recovery [32]. The NDVI is found to be the most used for
post-fire recovery studies, as it could be calculated alone without additional field data
collection [26,33,34]. However, due to reaching saturation levels before the point where an
ecosystem fully recovers its maximum biomass after disturbance, the forest recovery rate
could be overestimated when using NDVI [35,36]. For estimations of variations in chloro-
phyll content and its changes in vegetation after a fire event, the Modified Chlorophyll
Absorption Ratio Index (MCARI2) is used [37]. A quantitative analysis of forest degrada-
tion resulting from forest fires is performed by introducing the Normalized Differential
Greenness Index (NDGI) [38]. The remotely sensed Moisture Stress Index (MSI) is used
for canopy stress analysis and is suitable for monitoring coniferous forests and assessing
specific damages that cannot be detected using NIR/R vegetation indices [39]. Spectral
indices are also used to estimate other ecological parameters related to vegetation recovery.
Such parameters are the Leaf Area Index (LAI) [40], the Forest Recovery Index (FRI), and
Fractional Vegetation Cover (FVC) [29].

However, differences in fire severity provoke contrasting plant cover and floristic
composition when ecosystems recover after forest fires. A multitude of factors such as
climate, initial plant mortality, soil characteristics, the topography of the region, and vege-
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tation composition determine the rate of recovery [41,42]. Moreover, vegetation response
to fire and post-fire recovery processes differ in the various biogeographical regions and
depend on vegetation type and pre-fire vegetation state [43]. For that reason, post-fire
vegetation recovery is a complicated process that cannot be assessed by the application of a
single, unified spectral index. Despite the advantages of spectral indices for monitoring
post-fire vegetation recovery, there is still no single spectral index suitable for assessment
of post-fire disturbances or vegetation recovery processes in every ecosystem, scale, and
time-lag condition [44]. Even the NBR and its derivative indices developed specifically
for fire-affected areas show varying accuracy under different conditions. The NBR and
dNBR are considered advantageous for immediate post-fire monitoring, but their accuracy
decreases with increasing temporal distance from the fire event and with the progress of
vegetation recovery [45]. On the other hand, the Disturbance Index (DI) [46] is effective
in monitoring forest disturbances of different origins and their temporal dynamics [47,48].
Due to the involvement of a larger range of spectral information, the DI is considered
more accurate in assessing the recovery of undergrowth in forest ecosystems compared
to standard monitoring methods using VIs [19,47]. The DI is based on a linear orthogo-
nal transformation of multispectral satellite images [49,50], which increases its ability to
differentiate the three main components: soil, vegetation, and moisture [51]. As a result
of a fire, these three components are altered to the greatest extent. The DI more precisely
separates the unvegetated spectral signatures closely linked to the stand-replacing distur-
bance from all other forest signatures [46]. This feature makes the DI particularly suitable
for monitoring the dynamics of post-fire vegetation recovery.

This paper dissects the forest vegetation recovery stages during a period of six years
after a wildfire in the Ardino region in Bulgaria. The study aims to present the potential
for exploiting remotely sensed imagery and respective indices of greenness, moisture, and
fire severity from Sentinel-2 to support post-fire observation and forest management with
an emphasis on fire-affected territory mapping, vegetation damage assessment, fire and
burn severity assessment, and their influence on the ability of vegetation to recover. The
study used two groups of spectral indices for monitoring the area affected by the wildfire.
The first group encompassed VIs using individual spectral bands for their calculation, and
the second group included indices utilizing a larger range of spectral information through
the orthogonalization of multispectral data. The Normalized Difference Vegetation Index
(NDVI), the Modified Chlorophyll Absorption Ratio Index (MCARI2), and the Moisture
Stress Index (MSI) are the indices that belong to the first group, and the Normalized
Differential Greenness Index (NDGI), the Normalized Differential Wetness Index (NDWNI),
and the Disturbance Index (DI) are the indices from the second group. The study took into
account the landscape characteristics of the area influencing the processes occurring in
fire-affected forest ecosystems and their post-fire recovery dynamics. Ancillary data about
pre-fire vegetation state and slope inclinations were used to supplement our analysis for a
better understanding of the fire regime and post-fire vegetation damages. Slope aspects
were used to estimate and compare their impact on the ecosystems’ resilience, vulnerability,
and post-fire recovery capacity. Soil data were involved in the interpretation of the results.

2. Materials and Methods

2.1. Study Area

The study area was situated in the southeastern part of the Rhodope Mountains, near
Ardino town. The X and Y coordinates of the centroid were calculated to be 25◦6′7”E and
41◦34′30”N. A significant fire took place on 29 July 2016 in the study area (Figure 1). 2016
was the year with the highest wind speed during the summer months of the study period
(2016–2021). The average wind speed in the summer of 2016 ranged between 4.7 m/s
(in September) and 6.1 m/s (in August), and the average maximum wind speed was
between 7.4 m/s (in September) and 8.1 m/s (in July) [52]. Generally, based on hourly
weather simulations over the past 30 years in the study area, the maximum wind speed was
observed in March (reaching up to 20 m/s average value) and the minimum windspeed
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was in September (starting from 3 m/s average value). Days with wind speeds above
12 m/s predominated between February and September, and days with wind speeds above
5 m/s predominated between October and January. The wind direction was mainly from
the north and northwest [53].

Figure 1. Location of the studied area and land cover change in the pre-fire 2013 (a) and post-fire 2016
(b), 2018 (c), and 2020 (d) years. Source: Google Earth Pro—Airbus and Maxar Technologies images.
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The area affected by the forest fire was 100 ha. The main tree species were Scots
pine (Pinus sylvestris L.) and Black pine (Pinus nigra Arn.). The endemic vegetation in the
region refers to the Thracian province of the European deciduous forest area with the main
tree species being Quercus frainetto and Q.cerris. On karst terrains, Q. frainetto, Q. cerris,
and Q.pubescens, mixed with Carpinus orientalis, Fraxinus ornus, Syringa vulgaris, Cotinus
coggygria, and Ostrya carpinifolia can be found [54]. However, because of erosion processes
in the 1950s and the expansion of bare lands, massive afforestation with coniferous species
has been performed.

Lithogenic diversity was represented by pre-Paleozoic and Paleozoic metamorphic
rocks and phyllitoids covered by a Paleogene volcanogenic–sedimentary complex [54].
The terrain was hilly with steep slopes (>15◦). It influenced the fire regime and is also
considered a condition for the development of water erosion. Approximately 70% of the
area contained slopes above 15◦. The mean value of the slopes was 16◦ and the maximum
was 27◦. The slopes predominantly had east, southeast, and south exposures and define
warm and dry conditions for vegetation development. The soils were shallow Lithosols
mixed with Rendzinas [54].

The study area has a Continental Mediterranean climate with hot summers and mild
winters. The minimum amount of precipitation is in summer, and the maximum amount
is in winter. Over the last 40 years, a clear trend towards an increase in both average
air temperature and precipitation sum has been observed. The average air temperature
change showed a linear trend with an increase of 2.2 ◦C, starting from 10.2 ◦C in 1979 and
reaching up to 12.4 ◦C in 2021. Summer is getting hotter, with temperatures in July and
August consistently higher for the past 16 years. On the other hand, the precipitation sums
in the summer months decreased, especially in August, showing a persistent negative
tendency during the last 14 years. The winter is getting warmer too. February has been
distinguished by sustained higher average air temperatures since 2012. The precipitation
sum has also increased during the winters. Overall, there has been an increase (by 126 mm)
in precipitation sum over the past 40 years. This increase is primarily due to increased
winter precipitations [53]. The indicated climate changes have led to the transition of
the studied area from a Warm-summer Mediterranean climate (Csb), according to the
Köppen climate classification, to a Hot-summer Mediterranean climate (Csa). In addition,
the slopes in the area, which predominantly had east, southeast, and south exposures,
determined warm and dry conditions for the development of vegetation. The observed
trends significantly increase the risk of fires in the area, loss of biological diversity, and
degradation of ecosystems.

2.2. Characteristics of Climatic Anomalies Observed during the Period of 2016–2021

Figure 2 shows the mean air temperature and precipitation sum anomalies for the
period of 2016–2021 on an annual basis and for the summer months (July, August, and
September). As a reference, the period between 1981 and 2010 was used.

  
(a) (b) 

Figure 2. Mean air temperature (a) and precipitation sum (b) anomalies for the period of 2016–2021
on an annual basis and for the summer months (July, August, and September).
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In terms of mean air temperature, 2019 was the year with the highest positive anomaly
(+1.4 ◦C). Amongst the summer months, August was with positive anomalies only. The
highest anomalous value (+1.6 ◦C) was recorded in 2017. The highest anomalous value for
the summers between 2016 and 2021 was recorded in September 2020 (+2.6 ◦C). Three of
the years during the period of 2016–2021 were characterized by positive anomalies in all
three summer months. Overall for the three summer months, 2020 was with the highest
positive anomaly (+4.7◦C). The lowest positive anomaly, overall for the three summer
months, was recorded in 2018 (+0.3◦C). The mean air temperature in July 2018 was 1 ◦C
lower in comparison with the reference period (Figure 2a) [52].

Higher sums of annual precipitation were observed during the period of 2016–2021.
The wettest year was 2021, which had a 36% higher precipitation sum in comparison with
the reference period. There was no definite trend in the distribution of precipitation during
the summer months. All three summer months of 2016 and 2020 had lower precipitation.
In 2020, the total precipitation for the summer was 106% lower in comparison with the
reference period. In September 2020 only, the precipitation sum was lower by 83%. The
wettest summer was in 2019. In that summer, the total amount of precipitations was 366%
higher in comparison with the reference period (Figure 2b) [52].

2.3. Data
2.3.1. In Situ Data

In situ data included climatic data, soil data, and field observations.
The climatic data were based on measurements at the Kardzhali meteorological station

(331 m.a.s.l) situated 21 km from Ardino [53] and on hourly weather simulations with
30 km spatial resolution over the past 30 years [52]. The in situ climatic data included mean
air temperature and precipitation sum for a period between 1979 and 2021 as well as data
about the mean air temperature and precipitation sum anomalies for the period of 2016–
2021 on an annual basis and for the summer months (July, August, and September) [53]. In
addition, ERA5 model data, which combined satellite and in situ historical observation,
were used to outline how climate change has already affected the Ardino region in the last
40 years [52].

The soil data included soil types [54], soil chemical composition, and organic matter
content, which were measured in a pine-dominated mixed woodland (790 m.a.s.l) situated
near Ardino in 2015 [55]. Soil field data is part of LUCAS 2015 Topsoil datasets, which
is freely available through the European Soil Data Centre (ESDAC) of the Joint Research
Centre [55]. Because the soil data refer to the pre-fire period and the soil samples were not
taken from the affected area specifically, they were used only for result interpretation as
auxiliary data.

Interactive three-dimensional panoramas were used as a means of field observations.
They were acquired via Google Street View technology in the summer of 2021. These were
used to generate high-quality photographs of eight locations affected by the fire [56].

2.3.2. Satellite Data

Satellite data acquired from Sentinel-2A and Sentinel-2B multispectral sensors of the
European Space Agency Program for Earth Observation “Copernicus” [57] were used to
assess post-fire vegetation recovery. The temporal resolution of every individual Sentinel-2
satellite is ten days, and their combined resolution is five days. More detailed informa-
tion about the spectral and spatial resolution of the Sentinel-2 satellites can be found in
Table A1 [57].

The Sentinel-2 image acquired on 10 July 2016 was representative for the period
before the fire event (29 July 2016), and the images acquired on 24 August 2017 and 2018,
14 August 2019, 02 September 2020, and 23 August 2021 were used for assessment of the
forest vegetation state after the fire.

High-resolution forest layers (HRLs), which are freely available through the Coperni-
cus Land Monitoring Service [58], were used in the validation process. The layers included
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Tree Cover Density (TCD) and Forest Type (FTY) products. The TCD product represents
the level of tree cover density in a range from 0–100% for 2012, 2015, and 2018 reference
years. The Forest Type product represents the dominant leaf type with a Minimum Map
Unit (MMU) of 0.5 ha. Both products are pixel-based, and the minimum mapping width
is 20 m. The forests’ HRLs in 2015 were verified for the territory of Bulgaria using in situ
data [59]. The verification procedure was performed on three levels, including the highly
recommended quantitative verification. According to the results obtained by Tepeliev
et al. [59], the HRLs used in the present study are generally correctly mapped for the
territory of Bulgaria. Hence, we assumed that they could be used as independent reference
data in the validation procedure.

A Digital Elevation Model (DEM) with a spatial resolution of 25 m was used to obtain
slopes and slopes’ aspects. The dataset is freely available through the Copernicus Land
Monitoring Service [60].

2.4. Methods

The proposed approach for monitoring post-fire vegetation state and estimating its
dynamics included the following basic steps. First, spectral indices for the period between
2016 and 2021 were calculated to assess forest vegetation recovery dynamics. Second,
statistical regression analyses using three of the spectral indices as variables were performed.
The indices involved in the linear regression analyses were DI, MCARI2, and MSI. These
indices are representative of key post-fire characteristics of the affected territories. The
DI was used for the assessment of disturbance of forest ecosystems, burn severity, and
vegetation damage. MCARI2 is representative for vegetation regrowth, and MSI shows
stress in ecosystems caused by moisture deficiency. The third step considered differences in
landscapes and the conditions for forest recovery they create, which is predetermined by the
impact of slope exposures and their influence on the heat–moisture ratio. The assessment
of the slope exposure factor was based on a differentiated evaluation of indices dynamics
and their interpretation. The final step consisted of the validation of obtained results
using statistical regression analyses involving the forest HRLs as independent reference
data. Interactive three-dimensional panoramas from Google Street View were also used
in the validation process. The interactive panoramas were used to generate photographs
in different directions in order to demonstrate the state of various ecosystems. X and Y
coordinates and altitude of the point locations of the photographs were extracted. The
obtained point locations were georeferenced and digitized to be used in overlay analyses
with the indices’ rasters. The eight locations affected by the fire that were observed via this
technology were linked to the obtained results as a means for field observation. For each
location, indices values were extracted by taking into account the observed perspective and
the distance of the objects from the point of capture.

Spectral Indices Selected for Assessment of Post-Fire Vegetation Recovery

The spectral indices presented in Table 1 were selected and calculated to assess the
post-fire vegetation state.

The most well-known and used vegetation index for quantifying green vegetation
in the near-infrared wavelength region and chlorophyll absorption in the red wavelength
region is the NDVI. The NDVI strongly correlates with climate variations and their impact
on plant growth. That makes this index especially suitable for estimations of climate-related
vegetation changes. Moreover, changes in NDVI values correlate with the de Martonne
aridity index [19].

The MCARI has been proposed to estimate variations in chlorophyll content and its
concentration changes. Unlike MCARI, the newly designed MCARI2 is less sensitive to
chlorophyll concentration variations but has a high linear relationship with near-infrared
canopy reflectance and high linearity with the green LAI. The LAI is an important variable
used to estimate the biophysical processes of different vegetation types and predict their
growth and productivity [21,62]. Both the NDVI and MCARI2 range between −1 and +1.
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The highest values indicate dense and “healthy” vegetation, and the lowest values indicate
dead plants or inanimate objects.

Table 1. Spectral indices calculated in this study.

Index Abbreviation Formula

Normalized Difference
Vegetation Index [61] NDVI NDVI = ρNIR−ρRED

ρNIR+ρRED (1)

Modified Chlorophyll
Adsorption Ratio Index [62] MCARI2

MCARI2 =
1.5[2.5(ρ800−ρ670)−1.3(ρ800−ρ550)]√
(2ρ800+1)2−(6ρ800−5

√
ρ670)−0.5

(2)

Moisture Stress Index [63] MSI MSI = SWIR1
NIR (3)

Normalized Differential
Wetness Index [38,64,65] NDWNI

NDWNI = Wn(t2)−Wn(t1)
|Wn(t2)|+|Wn(t1)| , (4)

Wn(t) =
W(t)−E{W(t)}
St.Dev.[W(t)] , (5)

Normalized Differential
Greenness Index [38] NDGI

NDGI = GRn(t2)−GRn(t1)
|GRn(t2)|+|GRn(t1)| , (6)

GRn(t) =
GR(t)−E{GR(t)}

St.Dev.[GR(t)] , (7)

Disturbance Index [46] DI DI = nBR − (nGR + nW) (8)

The remotely sensed MSI is used for canopy stress analysis, productivity prediction,
and biophysical modeling. It detects plant water stress for these plants only, which are able
to tolerate low leaf water content through cellular adjustments. In the current study, the MSI
is especially suitable for monitoring coniferous forests and assessing specific damages that
cannot be detected using NIR/R vegetation indices [39]. Considering coniferous vegetation,
the differences in the MSI between damaged and undamaged stands are not necessarily
related to differences in the LAI. The MSI ranges from 0 to more than 3. Higher values
indicate greater moisture stress.

Additionally, a quantitative analysis of forest degradation resulting from forest fires
was performed by introducing the NDGI and the NDWNI. Both indices are based on
satellite image orthogonalization. In the process of orthogonalization, three differentiable
classes (soil brightness, greenness, and wetness axes) related to the main components of
the Earth’s surface (soil, vegetation, and water) are obtained. The NDGI uses the greenness
component, which corresponds to vegetation’s spectral reflectance characteristics (SRC),
and the NDWNI uses the wetness component, which corresponds to water’s SRC. These
indices quantitatively estimate the slightly positive and negative values of change in the
vegetation’s green mass and moisture content for a given period [38,64,65]. Both indices
range from −1 to +1. The positive NDGI values indicate plant growth and improvement of
the vegetation state, and the negative values indicate deterioration of the vegetation state
or deforestation. The positive NDWNI values indicate an increase in moisture content in
ecosystems, and the negative values indicate a decrease in moisture content.

The DI has also been used to monitor disturbances by forest fires. The index values
range widely, with positive values indicating disturbances. Higher values indicate more
severe disturbance. The DI is modified by weighting each input component to maximize the
difference between disturbed and undisturbed forest canopy. The weights reduce the effects
of background variations while emphasizing the variations caused by disturbance [48].
The model for calculating the DI includes three steps: the first step is the decomposition of
each of the three major Tasseled Cap components (brightness (BR), greenness (GR), and
wetness (W)); the second step is to calculate the averages and standard deviations for each
of the Tasseled Cap components; and the third step is to calculate the normalized values
of the components. These steps are needed to normalize the radiometric changes. In the
normalization, the following equations were used [46]:

nBR = (BR − E{BR}/St.Dev (BR) (9)
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nGR = (GR − E{GR}/St.Dev (GR) (10)

nW = (W − E{W}/St.Dev (W) (11)

where E {BR}, E {GR}, and E {W} are the average values of the brightness, greenness,
and wetness, respectively. St.Dev (BR), St.Dev (GR), and St.Dev (W) are the respective
standard deviations of these Tasseled Cap components. Therefore, nBR, nGR, and nW
are the normalized values of brightness, greenness, and wetness, respectively. The DI is
computed according to the equation presented in Table 1.

3. Results

3.1. Forest Vegetation Recovery for the Entire Study Area

Areas with negative NDGI values predominated until 2019. The NDGI values were
negative even a year before the fire event, which indicates a degraded state of forest
vegetation. The territories with negative NDGI values had maximum territorial spread
in the pre-fire year and a year after the fire (Figure 3, Table A2). The areas in the range
from −1 to −0.8 were dominant between 2016 and 2017 in the year immediately following
the fire (Figure 3, Table A2). With increasing temporal distance from the fire event, the
maximum territorial spread shifted to the category with slightly positive values (from 0 to
0.2). The areas with positive NDGI values, or an increase in biomass, had minimal spread
in the year immediately following the fire (Figure 3, Table A2). The positive NDGI values
had the highest growth between 2019 and 2020 (Figure 3, Table A2).

Surprisingly, the areas with no disturbance or negative DI values prevailed during
the entire studied period (Figure 3, Table A2). However, this maximum was highest in the
year before the fire event. Moreover, during the same year, the highest territorial spread
of the areas with great disturbance was observed. Areas from the same category (DI > 5)
were also recorded in the following 2017 and 2018 years (Figure 3, Table A2). After 2019,
with increasing temporal distance from the fire event, areas falling into this category were
not observed. In the year before the fire event, a large portion of the areas had DI values
between 0 and 2. In 2017, the areas were almost evenly distributed in the categories with DI
values between 0 and 4. In the following four years, between 2018 and 2021, the maximum
spread had areas with DI values between 0 and 3 (Figure 3, Table A2).

The first post-fire year was characterized by the most pronounced stress due to mois-
ture deficiency. In the same year, the highest territorial spread of the category with MSI
values above 1.5 was also observed (Figure 3, Table A2). The MSI category with values
between 0.5 and 1.5 had the largest share of the area. The maximum spread had territories
with MSI between 1.1 and 1.3. In the pre-fire year, 60.5% were in the category with MSI be-
tween 0.5 and 0.7. Between 2018 and 2021, the area was concentrated in the MSI categories
between 0.5 and 1.3. The maximum spread was between 0.7 and 1.3 (Figure 3, Table A2).

Regarding the NDWNI, the maximum area was mainly in the category between −0.2
and 0.2, indicating weak dynamics in the moisture content. An exception was the one-
year period immediately after the fire when a significant increase in moisture content was
observed (Figure 3, Table A2). In the years before the fire and between 2018 and 2021, a
significantly smaller share of the area had positive NDWNI dynamics (Figure 3, Table A2).

During the year before the fire, 94% of the area had MCARI2 values above 0.6. More-
over, almost half of the area had MCARI2 values between 0.7 and 0.8. This category (0.7–0.8)
also had a maximum territorial spread in the post-fire years, but the area falling into this
category was significantly less (Figure 3, Table A2). In the post-fire year of 2017, the area
was more evenly distributed between the individual categories. In the following years, the
area was concentrated mainly in the MCARI2 category with values between 0.4 and 0.9.
The share of the areas in this category gradually increased, reaching 96% in 2021 (Figure 3,
Table A2).
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Figure 3. Dynamics of the spectral indices calculated for the period of 2016–2021.

Greater dynamics were observed in the maximum territorial spread between the
individual NDVI categories. In the pre-fire year, the highest proportion of territories had
NDVI values between 0.6 and 0.7, whereas in the year following the fire event, maximum
spread had territories with NDVI between 0.3 and 0.4. The maximum territorial spread
shifted to the categories with higher NDVI values in the years between 2018 and 2021
(Figure 3, Table A2).

3.2. Forest Vegetation Recovery in the Individual Slope Aspects

The differential analysis of the dynamics of indices values on the individual slope
exposures showed that in the first three years after the fire event (2017–2019), the southwest-
facing slopes had faster vegetation recovery and less moisture stress. These slopes had the
highest values of the NDVI and MCARI2 and the lowest values of the MSI (Table 2). The
MCARI2 had a better ability to differentiate vegetation recovery through the individual
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slopes. On east- and southeast-facing slopes, the NDVI showed equal totals over the three
years, while the MCARI2 distinguished them. The difference in MCARI2 values between
the individual slope aspects was higher than those of the NDVI and was clearer (Table 2).
Regarding moisture stress in the first three years after the fire event, the MSI total values
gradually increased in the following sequence: northeast-facing, southeast-facing, east-
facing, and south-facing slopes (Table 2). In the last two post-fire years, the northeast-facing
slopes had the highest total values of NDVI and MCARI2 and the lowest moisture stress.
On northeast-facing slopes, the highest totals of NDVI and MCARI2 and the lowest totals
of MSI for the entire period were recorded (Table 2).

Table 2. Mean values of the spectral indices for the different slope aspects in the studied years.

Aspect 2016 2017 2018 2019 2020 2021

NDVI

E 0.63 0.37 0.47 0.54 0.54 0.59
NE 0.64 0.37 0.47 0.52 0.59 0.63
S 0.61 0.36 0.44 0.51 0.46 0.53

SE 0.61 0.40 0.46 0.53 0.45 0.52
SW 0.63 0.41 0.50 0.56 0.50 0.56

MCARI2

E 0.77 0.46 0.61 0.67 0.68 0.73
NE 0.78 0.45 0.62 0.64 0.75 0.77
S 0.76 0.46 0.57 0.64 0.58 0.65

SE 0.74 0.50 0.59 0.65 0.57 0.63
SW 0.77 0.52 0.64 0.69 0.64 0.69

MSI

E 0.64 1.20 0.99 0.93 0.85 0.75
NE 0.61 1.21 0.92 0.92 0.70 0.65
S 0.69 1.22 1.07 0.96 1.06 0.93

SE 0.72 1.15 1.02 0.93 1.07 0.93
SW 0.62 1.10 0.92 0.85 0.94 0.83

DI

E −0.48 1.94 0.98 1.30 −0.05 −0.05
NE −0.74 1.66 0.46 1.19 −0.18 −0.15
S −0.09 1.85 1.63 1.39 0.11 0.09

SE 0.58 1.53 0.14 1.27 0.12 0.10
SW −0.80 0.86 0.36 0.48 0.00 0.01

2015–2016 2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

NDWNI

E −0.46 −0.29 0.09 −0.16 0.07 −0.05
NE −0.70 −0.27 0.27 −0.39 0.18 −0.12
S −0.23 −0.25 −0.10 −0.02 −0.10 0.00

SE −0.18 0.02 −0.09 −0.03 −0.03 −0.01
SW −0.37 −0.31 0.04 −0.17 −0.06 −0.11

NDGI

E −0.05 −0.81 0.38 0.10 0.26 0.18
NE −0.16 −0.76 0.38 −0.16 0.34 0.01
S −0.02 −0.77 0.16 0.26 0.10 0.30

SE 0.00 −0.57 0.13 0.21 0.09 0.29
SW −0.13 −0.65 0.29 0.14 0.19 0.17

In the pre-fire year, only the vegetation on southeast-facing slopes had positive DI
values (Table 2). Moreover, territories most affected by the fire were situated on slopes with
such exposure in the northern part of the area. The entire forest vegetation was destroyed in
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those territories (Figure 1). The fire most likely started there (Figure 3). The mean DI values
were positive for all slopes in the following three post-fire years. The total DI values for the
individual slope exposers for 2017, 2018, and 2019 decreased in the following sequence:
south-facing, east-facing, northeast-facing, southeast-facing, and southwest-facing slopes
(Table 2). Despite the higher DI values recorded for the east and northeast-facing slopes in
the first three post-fire years, only these slopes had negative values in the last two years of
observation (Table 2). On slopes with a southern component, the DI remained positive. In
contrast to the trend observed in the NDVI, MCARI2, and MSI for the entire period, the
lowest DI values and the optimal vegetation state were not recorded for the northeastern
but for the southwestern slopes. However, as recorded by the listed indices, the vegetation
had the worst condition on south-facing slopes (Table 2).

The other two indices based on TCT (NDWNI and NDGI) can measure small changes
in moisture content and green mass. A slight positive increase in moisture content in the
first post-fire year was recorded only for the southeast-facing slopes. In 2018 and 2019, the
northeast-facing slopes had the highest positive NDWNI dynamics. The eastern slopes also
showed positive dynamics in the moisture content in these years (Table 2).

The NDGI, or green mass, showed positive dynamics after the second post-fire year
(2017–2018). In the period between 2017 and 2018, the vegetation on east- and northeast-
facing slopes had the highest increase in NDGI values. These were the highest NDGI
mean values in the entire period of observation and for all of the slope exposures (Table 2).
Moreover, during the drought in 2020, the vegetation on the northeastern and eastern slopes
again showed better condition compared to those on the slopes with different exposure
(Table 2). The NDWNI dynamics were also positive for the northeast- and east-facing slopes
in 2020. However, for the entire period of observation, the vegetation on southeast-facing
slopes had the highest total increase in NDGI values (Table 2).

3.3. Linear Regression Analyses for the Apectral Indices

The statistical regression analyses were representative for the correlation and depen-
dency between some of the key post-fire characteristics of the affected territories in the
vegetation recovery process.

The correlation between the areas affected by disturbance increased with the develop-
ment of ecosystem restoration processes and improving vegetation condition. The weaker
correlation between 2017 and 2018 indicated a higher difference in the state of the forest
vegetation in the first and second post-fire years (Figure 4c). This trend confirmed the rapid
development of the post-fire succession process between the first and second years after the
wildfire. The correlation was also lower between 2019 and 2020 when the severe drought
in the summer of 2020 influenced the vegetation state and increased the intra-territorial
differences. The increase in correlation for the periods between 2018 and 2019 and between
2020 and 2021, in turn, showed greater similarity in the state of the vegetation. In the
second post-fire year (the period between 2018 and 2019), the higher correlation indicated
delaying of the ecosystem restoration process, and in the 2020–2021 period, it indicated
restoring balance in the ecosystems disturbed by the severe drought. The character of the
territorial spread of vegetation throughout the individual categories divided by the DI val-
ues confirmed these observations (Figure 3, Table A2). In the first post-fire year, which was
distinguished by weaker correlation, the vegetation was divided between eight categories.
In 2021, as vegetation recovery progressed and the highest correlation was recorded, the
number of these categories decreased to five. In 2021, 67.4% of the area was concentrated
in two categories. 30% of this share consisted of the territories with DI between 1 and 2.
That was the greatest share of the area falling into this category of disturbance for the entire
period of observation. The area in this category gradually increased between 2016 and 2021,
starting at 16.4% in 2016 and reaching up to 30% in 2021 (Figure 3, Table A2).
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Figure 4. Linear regression analyses between DI and MCARI2 (a); DI and MSI (b); and DIs for two
consecutive years (c) for the period between 2017 and 2021.

The correlation between MSI and DI values, in turn, showed a decreasing trend with
the progression of the ecosystem restoration process (Figure 4b). In 2017 (the first post-fire
year), the correlation between the disturbed ecosystems and moisture stress was highest
for the entire period of observation. That indicated that for most of the forest ecosystems,
higher MSI values were connected with higher DI values. In other words, the lack of
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moisture was connected with a higher degree of disturbance of the ecosystems (Figure 4b).
The progression of ecosystem restoration processes decreased this dependency.

The correlation and the dependency between MCARI2 and DI (i.e., between leaf
area and intensification of photosynthesis and the degree of disturbance of the ecosystem)
showed a decreasing trend with the progression of ecosystem restoration processes for the
first three post-fire years. Figure 4a shows that the areas characterized by high MCARI2
values were distinguished by lack of disturbance of the ecosystem and vice versa; areas
with lower MCARI2 values (e.g., 0.2) (i.e., areas with underdeveloped vegetation and
small leaf area) were distinguished by a higher degree of disturbance of the ecosystems.
The progression of ecosystem restoration processes led to an increase in leaf mass and
intensification of photosynthesis. The lowest MCARI2 values reached 0.4 in 2019. In
these areas, the DI had decreased to below 4. The decline in the dependency between the
vegetation state and the degree of disturbance of ecosystems confirmed the progression of
ecosystem restoration processes. The decreasing trend in the correlation was interrupted
by drought stress in 2020. In 2021, the correlations between both indices started to decline
again. However, the forest recovery trend still could be observed. Starting from 2020,
vegetation with DI values above 4 was not observed (Figure 4a).

3.4. Validation through HRLs

Statistical regression analyses involving the forest HRLs acquired in 2012, 2015, and
2018 as independent reference data were performed to validate the obtained results.

Generally, between 2012 and 2018, an increase in tree cover density of both broad-
leaved forests and coniferous forests was observed. The largest share of the area had forests
with tree cover density between 40% and 80% (Table 3). In the post-fire year of 2018, the
non-forested areas, as expected, had the highest disturbance (Table 4). They had positive
DI values. The DI for the forested areas in the same year was negative. The non-forested
area recorded the highest moisture stress (MSI > 1) (Table 4) but also the highest increase
in NDGI values. That was related to the development of vegetation succession processes
in the deforested territories. The vegetation indices NDVI and MCARI2 recorded their
highest values in broad-leaved forests. However, coniferous forests had the highest positive
dynamics in moisture content (NDWNI) (Table 4).

Table 3. Tree-cover density (TCD) classes (%) and area of their distribution (%) within broad-leaved
and coniferous forests in 2012, 2015, and 2018.

TCD (%)
Broad-Leaved Forests Coniferous Forests

2012 (%) 2015 (%) 2018 (%) 2012 (%) 2015 (%) 2018 (%)

0–20 6.66 0.8 0.72 0.63 non non
20–40 14.53 9.41 25.51 3.83 0.75 9.39
40–60 37.61 72.47 39.02 19.15 43.85 54.26
60–80 38.97 15.92 28.47 73.96 55.35 34.96
>80 2.22 1.4 6.29 2.43 0.06 1.39

Mean 43.86 52.21 56.19 47.37 55.67 60.28

The DI and MSI were the indices that showed the highest correlation with forest
density (Table 5). The correlation between the DI and forest density was the highest in the
coniferous forests. In the broad-leaved forests, the correlation between these two variables
was slightly lower. Regarding the moisture content, both deciduous and coniferous forests
showed a similar correlation. Generally, the coniferous forests were distinguished by
higher dependence on the spectral indices. The difference in correlation between the forest
density and NDVI was significant when comparing deciduous and coniferous forests. In
deciduous forests, R was barely 0.162, whereas in coniferous forests, it was 0.529 (Table 5).
The observations for the NDGI were similar. The difference between both forest types
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was greater than four times. The correlation between forest density and MCARI2 was also
slightly higher in the coniferous compared with broad-leaved forests (Table 5).

Table 4. Mean values of the spectral indices in broad-leaved forests, coniferous forests, and in
non-forested areas in 2018.

Index
Broad-Leaved

Forests
Coniferous Forests Non-Forested Areas

DI −7.57 −18.54 15.97
MCARI2 0.79 0.76 0.57

MSI 0.71 0.68 1.06
NDGI 0.08 −0.08 0.23
NDVI 0.65 0.59 0.44

NDWNI −0.05 0.12 −0.06

Table 5. Linear regression between forest density (independent) and spectral indices (dependent) for
each of the forest types.

Broad-Leaved Forests Coniferous Forests Non-Forested Areas

Index R Rsqr R Rsqr R Rsqr

NDVI 0.16 0.03 0.53 0.28 0.18 0.03
MCARI2 0.46 0.21 0.51 0.26 0.18 0.03

NDGI 0.03 0 0.15 0.02 0 0
DI 0.61 0.37 0.65 0.43 0.2 0.04

MSI 0.64 0.4 0.64 0.4 0.18 0.03
NDWNI 0.06 0 0.02 0 0.09 0.01

3.5. Validation through Field Observation

Interactive three-dimensional panoramas of eight-point locations from Google Street
View were also used in the validation process. The eight locations were linked to the ob-
tained results as a means for field observation. The indices values clearly showed the trends
in the manifestation of the indices in relation to the observed ecosystems’ components
(i.e., soil and vegetation). The lowest indices values were observed in the post-fire karst
territories in point one and point eight, and the highest values were observed in the forest
territories unaffected by the fire (Figure A1, Table A3).

4. Discussion

The deteriorated vegetation state and the landscape-ecological conditions (karst terrain,
dry and hot summers, and warm slope exposures) caused the fire. Dry vegetation and steep
terrain made the fire more intense, devastating, and hard to control. The consequences
in the area of occurrence were almost complete destruction of the forest vegetation, litter
cover, and soil organic layer.

The soil type and slope exposures are the main landscape-forming factors that deter-
mine differences in the processes of vegetation recovery in the study area. Unfavorable
characteristics of the soils in this area, such as shallow profile, low organic matter content,
acidic soil reaction, and low exchange capacity, worsened after the fire and further inhibited
the recovery of vegetation, including forest. These processes manifested more significantly
on the southern slopes. The removal of vegetation and litter cover as a result of a fire
reduces rainfall interception, which enhances runoff and erosion rates [66]. Moreover, the
burn severity of the soil surface on the south-facing slopes decreases soil carbon content
and changes soil acidity [31].

The neighboring territories were also affected to a great extent. Forest management
practices include a sanitary logging of burnt forest stands after a fire. For this reason, in
2018 (two years after the fire), actions to remove the burnt forest vegetation were taken. As
a result, a large part of the territory was completely cut down. The recovery processes of
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the forest vegetation were interrupted. The manifestation of TCT-based indices (NDGI and
NDWNI), which represent the dynamics in greenness and wetness after 2017–2018, was
also an indication for this interruption of the recovery process (Figure 3). It was evident
from a sharp decline of the areas with values that ranged between −1 and −0.8, which
is typical for forested territories, and from a significant increase of the areas in the NDGI
category of 0.8–1 (Figure 3, Table A2), which indicates the rapid development of grass
vegetation.

The negative values of the TCT-based DI were also indicative of the landscapes’
dynamic conditions in the territories affected by the fire. This index showed stable presence
of areas “undisturbed” by the fire. Their share was most significant (52% of the studied
area) before the fire (10 July 2016). In the years after the fire, their share remained relatively
stable at about 1/3 of the territory (Figure 3, Table A2). The analysis showed that these
were forest areas that remained undamaged by the fire as well as local patches of meadows
in the southern zone unaffected by the fire. This category also included areas with exposed
bedrock formed due to the nature of lithological type (karst) in the northern part of the
study area [54]. In these areas, the fire was not a destabilizing factor for the ecosystems’
condition (Figure 1).

The maximum spread of the areas in the NDWNI category (−0.2–+0.2), which had a
percentage distribution similar to that observed for the negative values of DI (approximately
30%) of the studied area (Figure 3, Table A2), also confirmed the observations made in
the analysis of the DI. The territories unaffected by the fire, were distinguished by the
lowest dynamics in moisture content. The first post-fire year was distinguished by the
highest NDWNI dynamics. It was related to rapid post-fire succession processes in a
large part of the study area. However, the NDGI values, which were representative of
greenness dynamics, did not indicate high dynamics in the same year, but they did indicate
high dynamics in the following year after sanitary logging (Figure 3, Table A2). The
increase in moisture content in the first year after the fire was not induced primarily by
the better state of vegetation but was mainly a result of the meteorological condition in
the summer of 2017 when the precipitation was 226% more than what it typical for the
region (Figure 2b). It should be noted that in the first post-fire years, vegetation primarily
comprises herbaceous species. The state of this type of vegetation is closely dependent on
environmental conditions. Grasslands are less resistant to anomalies related to temperature
and humidity [67,68]. Moreover, they are strongly dependent on their fluctuations [69].

The indices that were not based on orthogonalization showed the general dynamics
in the vegetation state. Generally, the areas with comparatively high values of NDVI and
MCARI2 (taking into consideration the character of vegetation), which corresponds with
lower MSI values, had the greatest territorial spread in the pre-fire year (Figure 3, Table A2).
In the first post-fire year, the areas were distributed among a large number of categories, i.e.,
the vegetation in the fire-affected territories was characterized by great diversity in terms
of its state. There were both unaffected areas and areas with varying degrees of post-fire
damage. With an increasing temporal distance from the fire event, an increasing share of
the territories were concentrated in fewer and fewer categories, with a slight shift towards
the categories representing a better state of vegetation. In the different post-fire years, there
was a slight growth or contraction of the individual categories within the general trend of
vegetation recovery (Figure 3, Table A2). However, this dynamic was the result of climatic
elements in the relevant year of observation (Figure 2a,b).

Some trends stand out regarding the influence of slope exposures on the vegetation
recovery process. Vegetation recovery was faster on warmer slopes in the first post-fire
years (2017–2019) (Table 2). However, it should be noted that during those years, the lack
of moisture was not a limiting factor for the recovery processes (Figure 2b). In all three
years, the summer precipitation exceeded the norm (Figure 2b). These results are consistent
with those of Wilson at al. [70], who found that vegetation had a higher recovery rate when
the temperature and precipitation were higher. A rapid, “catch-up” development on the
northeastern slopes was observed (Table 2) in the last two years of observation (2020 and
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2021). These were dry years (the precipitation sum for the three summer months was below
the norm), and the drought delayed vegetation recovery on the warmer slopes (Figure 2b).
The recovery processes on the northeastern slopes for the last two years of observation
were so rapid that they influenced the values indicating the total recovery for the entire
period (Table 2). This rapid vegetation recovery was also recorded by the DI. The tendency
of positive values (i.e., values indicating disturbance in ecosystems) was interrupted only
for the slopes with northeast and east exposure (Table 2). The DI showed a significant
relationship with post-fire vegetation recovery processes and that its dynamics, when
assessing such a process, were correlated with various climatic and topographic factors [42].
Chen et al. [42] confirmed that the role of slope exposures in the dynamics of post-fire
vegetation recovery was essential. Our results are consistent with those of Chen et al. [42].
They found that vegetation recovery on sunny sides was greater than on shady sides and
that it closely related to elevation and its influence on the heat–moisture ratio [42].

The NDWNI and NDGI showed the highest positive dynamics for the north- and
northeast-facing slopes. These slopes are in the western part of the study area, where due
to the lower degree of slope inclinations, the forest vegetation was largely preserved from
the fire (Figure 1). After the post-fire sanitary logging in 2018, small patches of these slopes
were deforested. These patches remained between separate groups of trees (Figure 1).
Regarding the landscape-forming factors (soil type [54], slope aspects, and inclinations),
these territories had more favorable conditions for vegetation recovery.

The results of the statistical and validation analyses indicated the reliability of the
methodology used to monitor and assess post-fire vegetation recovery processes. The
linear regression analyses showed stronger correlations between the objects of the Earth’s
surface that were under favorable conditions for vegetation recovery for two consecutive
years (higher R values between DI) and vice versa (weaker correlations when the territory
was under post-fire or drought stress in one of two consecutive years (lower R value
between DI)) (Figure 4c). The dependency between the severity of disturbance and moisture
content decreased with increasing time from the fire event and with the development
of the vegetation recovery process (Figure 4b). The correlation between the leaf area
(indirectly represented by MCARI2) and the disturbance of the ecosystems decreased
with the development of vegetation recovery. This trend of decreasing correlation was
interrupted by the drought in 2020 that impacted the general state of the vegetation and
resulted in withering and shrinking of tree leaves (Figure 4a).

The validation through high-resolution forest layers showed higher dependency
between the forest density and the indices values for the coniferous forests (Table 5).
This tendency is induced by the fact that coniferous vegetation, in contrast to deciduous
vegetation, stays green during the entire year. Satellite images acquired in August or
early September for each of the years were used. At the end of summer, deciduous forests
undergo senescence. The process leads to reduced greenness and moisture in the tree
leaves, disrupting the process of photosynthesis. In coniferous vegetation, these processes
are significantly less noticeable. For that reason, the correlation between the forest density
and the indices values representing the general state and functioning of vegetation were
higher in the coniferous forests compared with the deciduous forests.

5. Conclusions

This study traced post-fire vegetation recovery dynamics using two groups of spectral
vegetation indices and taking into consideration the local landscape factors in an area
affected by a fire in southeast Bulgaria. Consistent with other studies [42,70], it was con-
firmed that vegetation recovery was dependent on climatic factors [70] and topography
features [42]. Regarding the effectiveness of spectral vegetation indices for monitoring
the post-fire vegetation state, it can be summarized that the statistical analysis and valida-
tion procedures confirmed their reliability for the assessment of restoration processes of
vegetation after a fire. The NDVI, MCARI2, and MSI indicated general trends in post-fire
vegetation dynamics, and the TCT-based indices (DI, NDGI, and NDWNI) were found to be
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suitable for more precise analyses of intra-territorial differences. The DI was advantageous
for the differentiation of post-fire severity in ecosystems. The obtained results clearly
showed the intra-territorial heterogeneity of post-fire vegetation recovery and the influence
of local environmental factors on the dynamics of the process. The study demonstrated the
need of multi-factor analysis in post-fire monitoring and could serve as a basis for further
post-fire-related studies. Estimations of the impact of soil erosion would be particularly
valuable. In such a study, the changes in the soil characteristics and in-depth analysis of
slope steepness must be taken into account.
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Appendix A

Table A1. Spectral (in microns) and spatial (in meters) resolution of Sentinel-2 sensor.

Band Spectral Resolution Spatial Resolution

B1 0.443 60
B2 0.49 10
B3 0.56 10
B4 0.665 10
B5 0.705 20
B6 0.74 20
B7 0.783 20
B8 0.842 10

B8a 0.865 20
B9 0.94 60

B10 1.375 60
B11 1.61 20
B12 2.19 20

Appendix B

Table A2. Territorial spread (in %) of the individual categories divided for each of the spectral indices
within the study area. This table represents the values behind the output rasters from Figure 3.

NDVI

Category 2016 2017 2018 2019 2020 2021

0–0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.1–0.2 0.0 4.7 0.8 0.3 0.5 0.1
0.2–0.3 0.1 20.2 6.9 3.3 6.3 2.2
0.3–0.4 1.7 21.0 18.1 10.7 18.5 9.3
0.4–0.5 6.8 18.0 24.3 19.1 26.7 20.6
0.5–0.6 28.2 18.3 26.1 25.5 28.3 28.9
0.6–0.7 48.1 13.5 18.1 27.1 17.5 29.7
0.7–0.8 14.1 3.8 5.3 12.1 2.2 8.9
0.8–0.9 1.0 0.1 0.0 1.7 0.0 0.2
0.9–1 0.0 0.3 0.3 0.3 0.0 0.0
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Table A2. Cont.

MCARI2

Category 2016 2017 2018 2019 2020 2021

0–0.1 0.3 0.7 0.4 0.4 0.1 0.0
0.1–0.2 0.0 3.3 0.6 0.2 0.3 0.1
0.2–0.3 0.0 10.3 2.1 1.1 2.1 0.9
0.3–0.4 0.2 13.7 6.0 3.1 6.0 3.0
0.4–0.5 1.4 14.5 11.8 7.2 13.5 7.8
0.5–0.6 3.9 14.3 18.0 13.2 20.5 15.9
0.6–0.7 11.3 15.3 20.8 20.2 21.4 22.6
0.7–0.8 47.5 19.4 25.1 29.0 26.7 29.7
0.8–0.9 35.2 8.6 15.2 25.5 9.5 20.0
0.9–1 0.1 0.0 0.0 0.3 0.0 0.0

MSI

Category 2016 2017 2018 2019 2020 2021

0.3–0.5 3.3 1.7 2.0 3.4 1.8 3.8
0.5–0.7 60.5 16.3 19.0 23.3 17.3 23.9
0.7–0.9 29.7 17.0 23.5 29.3 20.6 28.7
0.9–1.1 5.1 17.3 25.2 25.7 24.0 27.9
1.1–1.3 1.2 19.3 22.7 15.9 26.0 14.2
1.3–1.5 0.1 18.8 7.4 2.4 9.6 1.5
1.5–1.7 0.0 8.3 0.3 0.0 0.8 0.0
1.7–1.9 0.0 1.2 0.0 0.0 0.0 0.0
1.9–2.1 0.0 0.1 0.0 0.0 0.0 0.0
2.1–2.3 0.0 0.0 0.0 0.0 0.0 0.0

DI

Category 2016 2017 2018 2019 2020 2021

<0 52.1 36.4 36.6 34.9 35.9 35.9
0–1 28.8 12.3 16.2 20.6 16.9 21.8
1–2 12.1 16.2 19.4 21.9 25.4 30.0
2–3 4.0 16.9 17.7 15.9 19.4 11.7
3–4 2.0 12.3 8.6 6.0 2.4 0.6
4–5 0.7 4.9 1.5 0.6 0.0 0.0
5–6 0.2 0.9 0.0 0.0 0.0 0.0

6–6.5 0.0 0.0 0.0 0.0 0.0 0.0
>6.5 0.0 0.0 0.0 0.0 0.0 0.0

NDGI

Category 2015–2016 2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

−1–−0.8 7.9 49.9 5.5 2.8 6.1 1.9
−0.8–−0.6 2.0 4.9 1.3 0.8 2.0 0.7
−0.6–−0.4 4.4 5.3 2.7 1.7 3.1 1.3
−0.4–−0.2 12.7 6.3 6.6 6.7 5.7 4.1
−0.2–0 29.7 8.3 24.8 23.5 12.5 20.5
0–0.2 26.6 10.8 22.2 32.3 26.1 29.2

0.2–0.4 8.8 7.8 11.0 13.1 18.3 14.1
0.4–0.6 4.2 3.9 6.3 5.7 9.1 7.8
0.6–0.8 2.4 2.0 4.1 3.2 4.4 4.5
0.8–1 1.2 0.8 15.5 10.2 12.6 15.8

NDWNI

Category 2015–2016 2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

−1–−0.8 20.4 14.8 5.8 7.8 3.9 6.3
−0.8–−0.6 5.6 6.3 2.1 2.3 1.7 2.0
−0.6–−0.4 8.4 7.2 4.8 4.4 3.8 3.2
−0.4–−0.2 13.7 8.4 12.1 10.5 12.3 7.9
−0.2–0 22.6 10.5 22.9 34.1 32.8 28.5
0–0.2 23.2 9.5 32.8 34.8 27.0 36.2

0.2–0.4 4.9 8.7 11.6 4.4 7.7 8.8
0.4–0.6 0.6 8.2 2.8 0.6 3.4 2.4
0.6–0.8 0.2 5.7 1.2 0.3 1.9 1.3
0.8–1 0.5 20.7 4.0 0.7 5.5 3.5
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Appendix C

 

Figure A1. Point locations of field observations.

Table A3. Spectral indices values for each location. Interactive three-dimensional panoramas from
Google Street view were used to generate photographs.

Index Value
Point Location of Field

Observation
Photography

NDVI 0.47

Point 1
Karst area

 

MCARI2 0.57
MSI 0.98
DI 1.27

NDGI −0.53
NDWNI −0.09

NDVI 0.61

Point 1
Meadows amongst coniferous

forests
 

MCARI2 0.74
MSI 0.8
DI 1.75

NDGI 1
NDWNI 0.02

NDVI 0.46

Point 2

 

MCARI2 0.58
MSI 1
DI 0.75

NDGI 0.29
NDWNI −0.01

NDVI 0.61

Point 4
Mixed forests

 

MCARI2 0.75
MSI 0.61
DI −2.52

NDGI −0.17
NDWNI 0.16

NDVI 0.64

Point 5
Mixed forests

 

MCARI2 0.79
MSI 0.84
DI 1.06

NDGI 1
NDWNI 0

NDVI 0.44

Point 5
Transitional woodlands and

shrubs

 

MCARI2 0.57
MSI 1.11
DI 1.05

NDGI 0.33
NDWNI 0.17
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Table A3. Cont.

Index Value
Point Location of Field

Observation
Photography

NDVI 0.53

Point 6
Coniferous forests

 

MCARI2 0.67
MSI 1.05
DI 0.64

NDGI 0.5
NDWNI 0.47

NDVI 0.6

Point 7

 

MCARI2 0.74
MSI 0.71
DI −0.46

NDGI 0.5
NDWNI 0.47

NDVI 0.32

Point 8
Karst area

 

MCARI2 0.41
MSI 1.41
DI 2.91

NDGI 0.07
NDWNI 0.03
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Abstract: We aimed to compare the potential of physical-based models (radiative transfer and pixel
unmixing models) for evaluating the short-term resilience to fire of several shrubland communities
as a function of their regenerative strategy and burn severity. The study site was located within the
perimeter of a wildfire that occurred in summer 2017 in the northwestern Iberian Peninsula. A pre-
and post-fire time series of Sentinel-2 satellite imagery was acquired to estimate fractional vegetation
cover (FVC) from the (i) PROSAIL-D radiative transfer model inversion using the random forest
algorithm, and (ii) multiple endmember spectral mixture analysis (MESMA). The FVC retrieval was
validated throughout the time series by means of field data stratified by plant community type (i.e.,
regenerative strategy). The inversion of PROSAIL-D featured the highest overall fit for the entire
time series (R2 > 0.75), followed by MESMA (R2 > 0.64). We estimated the resilience of shrubland
communities in terms of FVC recovery using an impact-normalized resilience index and a linear
model. High burn severity negatively influenced the short-term resilience of shrublands dominated
by facultative seeder species. In contrast, shrublands dominated by resprouters reached pre-fire FVC
values regardless of burn severity.

Keywords: fractional vegetation cover; MESMA; PROSAIL; recovery; Sentinel-2; wildfire

1. Introduction

The observed and projected increase in the severity of wildfires in the western Mediter-
ranean Basin may hinder the resilience of plant communities to fire disturbance [1]. Wildfire
severity, defined as the fire impact on the ecosystem, and operationally estimated from
the amount of above- and belowground plant biomass consumed [2], is one of the key
determinants of plant communities’ recovery in the first post-fire periods [3]. Although
field sampling methods are reliable and accurate for assessing plant community resilience
to fire, its wide-scale application is limited in large-scale assessments due to its high time
and economic cost [4]. In this sense, synoptic observation of the land surface using remote
sensing-based techniques offers an effective way to achieve this objective.

Passive optical sensors of moderate spatial resolution, such as those onboard Landsat
or Sentinel-2 satellite missions, offer the potential to accurately detect land cover changes
and associated processes over extended time series [5,6]. The Landsat and Sentinel-2
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multispectral imagery archive is potentially useful for assessing spatial patterns of land
cover change such as post-fire forest dynamics due to the nominal 30 m/20 m spatial
resolution, a consistent scale with that of most landscape-scale land cover changes [7]. In
addition, their revisit period provides great coverage for multitemporal studies, especially
in areas with frequent cloud cover that can deplete the availability of usable imagery [8].

To date, most studies on ecological resilience to fire have been based on the evaluation
of plant community greenness recovery through spectral vegetation indices [9,10], among
others. However, this product does not represent physical quantities [11], is affected by
the background signal of burned areas [12], and suffers from reflectance saturation at
high canopy cover in unburned areas [13]. Conversely, physical-based remote sensing
techniques, such as pixel unmixing models and radiative transfer models (RTM), can be
used to retrieve vegetation biophysical variables (e.g., fractional vegetation cover (FVC)) as
fire resilience indicators [14].

Pixel unmixing models are based on the underlying premise that imagery pixels are
constituted by several ground features that contribute to the surface reflectance captured
by the optical sensor [15], being the pixel FVC, the physical fraction of vegetation cover in
that pixel [16]. In this approach, FVC is directly retrieved from remote sensing data using
spectral libraries or image endmembers, without initial field data needs [17]. However, end-
member collection can be time-consuming in large, heterogeneous burned landscapes [11].
Among these techniques, multiple endmember spectral mixture analysis (MESMA; [18]) is
an advanced method that allows the spectra of several endmembers to characterize each
pixel ground component (e.g., the vegetation fraction; [19]). Remarkably, each pixel can be
resolved independently with a differing number of endmembers to account for the associ-
ated terrain variability [17], for instance different vegetation species within the community.
This contrasts with more conventional spectral mixture models, such as linear spectral
mixture analysis, in which only one spectrum can be incorporated in each endmember [15].

RTM-based approaches simulate the physical relationships between vegetation bio-
physical variables, such as the FVC, and the plant community reflectance [20]. These
models can be inverted using observed surface reflectance data captured by passive optical
sensors for retrieving the FVC, to be implemented as a resilience indicator to fire. RTMs
do not need to be parameterized with field data specific to the area of interest, which are
only needed for validation of the retrieved biophysical variable [11]. Remarkably, RTM
physical relationships are not site-specific, and vegetation recovery can then be monitored
in burned landscapes that encompass several communities [21]. RTM inversion is usually
performed using machine learning techniques, also known as hybrid inversion [22].

Although physical-based models have been used to monitor post-fire vegetation com-
munities [11,23], to date there are no studies in the literature comparing their effectiveness
to assess vegetation resilience to fire in plant communities affected by different severity
levels. Therefore, the objective of this work was to compare the potentiality of two physical-
based approaches (pixel unmixing and radiative transfer models) applied to passive optical
data for evaluating vegetation resilience as a function of burn severity in shrubland com-
munities with different regenerative traits. FVC was used as a resilience indicator retrieved
from a time series of Sentinel-2 imagery, using hybrid RTM inversion and MESMA models.

2. Materials and Methods

2.1. Study Site Description

The study site lies within the perimeter of a wildfire that burned 9940 ha of shrub
and forest plant communities in the summer of 2017 within Sierra de Cabrera (NW Spain;
Figure 1). The site has a rugged topography, with prominent crests and steep slopes, and
its altitude ranges from 836–1938 m. The climate is temperate Mediterranean, with a mean
annual temperature of 9 ◦C and mean annual precipitation of 850 mm. The wildfire affected,
among others, three types of shrub plant communities: shrub communities dominated
by facultative seeder species (Genista hystrix Lange (gorse) and Genista florida L. (broom))
and resprouter species (Erica australis L. (heath)). The shrub plant communities of the site
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exhibit high spatial variability due to small-scale differences in post-fire recovery patterns
and accumulation of burned debris as a consequence of the fire regime variability. Other
plant communities affected by the fire include Pyrenean oak forests dominated by Quercus
pyrenaica Willd, and Scots pine forests dominated by Pinus sylvestris L., as well as grasslands
in the valley bottoms. The main land use in the site before the wildfire involved extensive
livestock farming.

 

Figure 1. Wildfire perimeter and burn severity estimation from the differenced Normalized Burn
Ratio (dNBR) thresholds.

Facultative seeder shrub species are able to resprout from belowground organs and to
germinate during post-fire conditions; however, in our study site, their resprouting success
and vigor is lower than that of obligate resprouters. The latter species rely on resprouting
strategy to regenerate after wildfire because they lack a fire-resistant aerial or soil seed
bank.

2.2. Sentinel-2 Imagery, Processing and Burn Severity Calculation

Sentinel-2 multispectral mission comprises two satellites (Sentinel-2A and Sentinel-2B)
as part of the Copernicus program. Sentinel-2 provides thirteen bands at different spatial
resolutions in the visible, near infrared and short-wave infrared regions: four bands at 10
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m, six bands at 20 m and three bands at 60 m [24]. Sentinel-2 bands at a spatial resolution
of 10 m were resampled to 20 m using the nearest neighbor interpolation. The bands
at 60 m were discarded, as they are used for atmospheric correction and cloud detection
processes and are strongly affected by atmospheric effects [20]. Two Sentinel-2 MSI Level 1C
scenes were calibrated to surface reflectance (level 2A) with the Atmospheric/Topographic
Correction for Satellite Imagery algorithm version 3 (ATCOR-3; [25]) by correcting for
topographic and atmospheric effects. Meteorological data from the State Meteorology
Agency of Spain (AEMET), the MODIS water vapor product (MOD05), and a digital
terrain model (DTM) were used to set appropriate ATCOR-3 input parameters. The scenes
were acquired for immediate pre-fire (13 August 2017) and post-fire (2 September 2017)
scenarios to estimate burn severity through the differenced Normalized Burn Ratio (dNBR)
index [26]. In this study, we selected the dNBR because it was the spectral index most
related to field-based burn severity in internal testing compared to relativized indices,
as well as in previous research on the site [27]. In addition, the dNBR is the primary
spectral index within the European Forest Fire Information System (EFFIS) and a reference
approach for initial burn severity assessment [28], which may improve the comparability
of the results of our study. The dNBR was validated through the composite burn index
(CBI; [29]), measured in 72 field plots of 20 m × 20 m one month after wildfire (initial burn
severity assessment). Burn severity was rated in the field between 0 (unburned) and 3
(high severity). Three field burn severity categories were established based on CBI values
of each plot: low (CBI < 1.25), moderate (1.25 ≤ CBI ≤ 2.25) and high (CBI > 2.25). These
widely accepted CBI thresholds in the literature correspond to those proposed by [30].
These CBI thresholds were used to define three burn severity categories based on a dNBR
thresholding approach using a linear regression model: low (dNBR < 384), moderate (384
≤ dNBR ≤ 659) and high (dNBR > 659) (Figure 1). The R2 of the linear model was equal
to 0.84.

2.3. Physical-Based Models

Pixel unmixing and radiative transfer models were used to retrieve the FVC from
three Sentinel-2 MSI Level 2A scenes (processed from level 1C following the methodology
described in Section 2.2) acquired during the biomass peak of the study site between 2017
and 2020: (i) 1-week pre-fire (13 August 2017 (equivalent to pre-fire dNBR calculation)), (ii)
2-weeks post-fire (2 September 2017 (equivalent to post-fire dNBR calculation)), and (iii)
3-years post-fire (18 July 2020).

2.3.1. Multiple Endmember Spectral Mixture Analysis (MESMA)

Candidate endmember spectra for MESMA models were extracted from Sentinel-2
scenes (image endmembers) rather than using spectral libraries (reference endmembers)
because image endmembers are acquired at the same resolution of the imagery and are in-
fluenced by the same atmospheric imagery corrections [19,31]. The first post-fire Sentinel-2
image (2-weeks post-fire) was used to collect endmembers to ensure the presence of enough
non-photosynthetic material corresponding to burned vegetation. We used 500 training
polygons consisting of uniform ground patches encompassing a single vegetation, soil or
charred material type. Polygon size was set to encompass at least four Sentinel-2 pixels. We
ensured a separation between polygons of 100 m and a uniform distribution among plant
community types [32]. Training areas for soil, green vegetation (Genista hystrix, Genista
florida and Erica australis) and non-photosynthetic vegetation (charred debris) were delin-
eated using very high spatial resolution orthophotographs at a spatial resolution of 0.5 m.
The Iterative endmember selection (IES) algorithm [33] was used in this study to select
optimal endmembers from the candidate set and improve MESMA computational effi-
ciency and accuracy [19]. We clustered the selected endmembers by the IES algorithm into
photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil spectral
libraries. Next, Sentinel-2 pre- and post-fire scenes were unmixed into PV, NPV, soil, and
shade fraction images. The performance of all candidate MESMA models was evaluated
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using the following requirements for each pixel: (i) the range between minimum and
maximum fraction image value was constrained between 0 and 1; (ii) shade fraction values
lower than 0.8; and (iii) maximum allowable RMSE equal to 0.025 [23,34]. The constraint in
fraction images was selected on the basis of the values physically attainable in the field [32],
whereas the shade constraint was chosen to maintain a reasonably high fraction value for
the other endmembers [34]. For its part, the RMSE constraint is a standard in the litera-
ture [18]. Finally, fraction images were shade-normalized, being the GV shade-normalized
fraction of the FVC.

IES, MESMA and shade normalization were implemented in VIPER Tools 2.0, devel-
oped by the VIPER Lab at UC Santa Barbara [35].

2.3.2. Hybrid Radiative Transfer Model (RTM) Inversion

The PROSAIL-D RTM, resulting from the coupled PROSPECT-D leaf model [36] and
the 4SAIL canopy reflectance model [37], was used to simulate shrubland plant canopy
reflectance. PROSPECT-D simulates leaves hemispheric reflectance and transmittance from
400–2500 nm as a function of a number of physiological and biochemical variables at the
leaf level. For its part, 4SAIL simulates plant canopy reflectance based on PROSPECT-D
simulations, as well as a series of variables related to canopy structure, lighting and viewing
conditions [38]. The values of PROSPECT-D and 4SAIL input variables (Table 1) were
obtained from satellite imagery metadata, in-depth literature review and field knowledge,
considering the variability of the biophysical conditions of the shrubland communities in
the study site. Then, PROSAIL-D simulations were executed in direct mode to obtain a
dataset of simulated shrubland canopy reflectance and its corresponding FVC, calculated
from the viewing conditions, leaf area index and leaf angle of each simulation [11]. The
dataset was spectrally resampled to the Sentinel-2 band configuration using its spectral
bandwidth and response function. We updated the dataset with 10% of bare soil and non-
photosynthetic vegetation spectra with respect to the total simulations [39]. This amount
may be representative in relation to the high variability of the vegetation biophysical
conditions in highly heterogeneous plant communities [11].

Table 1. Value or range of input variables for PROSPECT-D and 4SAIL models.

Leaf Model (PROSPECT-D) Unit Value or Range

Structure index unitless 1.5–2.5
Chlorophyll content μg cm−2 10–70
Dry matter content g cm−2 0.005–0.015

Water content g cm−2 0.005–0.015
Carotenoid content μg cm−2 5–40

Anthocyanin content μg cm−2 0–60
Brown pigment fraction unitless 0–1

Canopy model (4SAIL) Unit Value or range

Leaf area index m2 m−2 0.1–3
Average leaf angle degrees 20–90

Diffuse/direct radiation unitless 0.1
Hot spot effect unitless 0.001–1

Soil brightness factor unitless 0–1
Fraction of vegetation cover unitless 0–1

Solar zenith angle degrees Imagery metadata
Observation zenith angle degrees Imagery metadata
Sun-sensor azimuth angle degrees Imagery metadata

The Random Forest (RF; [40]) regression algorithm was used to model the relationship
between the simulated Sentinel-2 reflectance at the shrubland canopy level and the corre-
sponding FVC for the dataset generated by PROSAIL-D. In this study, the ntree parameter
was set to 500 and the mtry parameter to one third of the number of Sentinel-2 bands,
which are the default values. The calibrated RF model was then applied to the reflectance
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observed in the Sentinel-2 imagery for obtaining spatially explicit FVC predictions for each
of the pixels in the pre- and post-fire time series imagery.

PROSAIL-D parameterization and execution in direct mode, as well as FVC retrieval
through RF algorithm were performed in ARTMO [41].

2.4. FVC Retrieval Validation

In September 2017, we established 60 field plots of 20 m × 20 m in burned areas to
evaluate the post-fire FVC retrieval performance through MESMA and PROSAIL-D along
the post-fire time series. Likewise, 20 control plots of 20 m × 20 m were established in
unburned areas to evaluate pre-fire FVC retrieval. This number of field plots has been
shown to be representative of the plant communities’ variability in the study site [11]. Plots
were stratified by reproductive vegetation strategy (resprouters and facultative seeders).
The center of each plot was georeferenced using a sub-meter accuracy GPS receiver in
post-processing mode. Both control and burned plots were sampled in September 2017,
with burned plots also being surveyed in July 2020. FVC was estimated in each plot as the
area of the vertical projection occupied by each community stratum (i.e., herbaceous and
shrub strata) in the shrubland communities, using a visual estimation method [42]. The
coefficient of determination (R2) was calculated to evaluate the retrieval performance of
the FVC through MESMA and PROSAIL-D over the time series.

2.5. Data Analyses

From the spatially explicit FVC prediction maps for the time series with higher overall
accuracy (i.e., PROSAIL-D RTM or MESMA pixel unmixing model), we performed a
stratified random sampling of 1000 points, using reproductive vegetation strategy and
burn severity categories as strata. A minimum distance of 100 m between points was
ensured. For each point, the FVC value was extracted for the considered time series. We
computed an impact-normalized resilience index (Rin) [43] that represents the recovery of
the system property, in this case the FVC, with respect to the impact of the disturbance on
that property:

Rin = (Ptx − Pti)/(C0 − Pti)

where Ptx is the value of the system property at the time point when the resilience is evalu-
ated after the disturbance, Pti is the value of the property immediately after the disturbance,
and C0 is its control value. A value of the Rin index equal to 1 denotes a full recovery of the
property at the considered time point. A linear regression model and subsequent Tukey’s
HSD test were used to evaluate the effect of regenerative vegetation strategy and burn
severity (independent variables), as well as their interaction, on vegetation resilience as
measured by the Rin index (dependent variable). All statistical analyses were performed in
R.4.0.5 [44].

3. Results

The overall accuracy of the RF algorithm trained with PROSAIL-D model simulations
for retrieving FVC from Sentinel-2 imagery (R2 = 0.75–0.79) was substantially higher than
that achieved from MESMA models (R2 = 0.64–0.73), both in the immediate pre- and post-
fire scenarios, as well as three years after the wildfire (Figure 2). The accuracy of the FVC
retrieval for both PROSAIL-D and MESMA models was higher in the pre-fire and long-term
post-fire scenarios (R2 > 0.69) than in the immediate post-fire situation (R2 > 0.64). The FVC
estimation for the two shrubland communities considered, dominated by facultative seeder
species and by resprouter species, showed no significant under- or overestimation effects
over the entire range of field-measured FVC, although the estimates for the resprouters
were closer tailored to the 1:1 line (Figure 2).
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Figure 2. Relationship between the FVC measured in the field and that retrieved from Sentinel-2
imagery for the time series using PROSAIL-D (A) and MESMA (B) models.

From the PROSAIL-D spatially explicit FVC estimates, we evidenced a significant effect
of vegetation reproductive strategy (p-value < 0.05) and burn severity (p-value < 0.001), as
well as their interaction (p-value < 0.05), on the resilience of shrubland communities in the
study site (Figure 3). High burn severity hindered the short-term resilience of shrubland
communities dominated by facultative seeder species, with no FVC recovery to a pre-
disturbance state being observed 3 years after wildfire (Figure 3). In contrast, communities
dominated by shrub resprouter species reached pre-fire FVC values 3 years after the fire
disturbance, regardless of the burn severity scenario (Figure 3). In this sense, resprouter
shrubland communities featured a faster recovery rate in high burn severity scenarios than
those communities dominated by facultative seeders.
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Figure 3. Boxplot showing the relationship between the impact-normalized resilience index (Rin)
and burn severity in shrubland plant communities dominated by facultative seeders species and
resprouter species. Significance of Rin predictors (regenerative trait: T; burn severity: S; T × S
interaction) is represented as * (p-value < 0.05), ** (p-value < 0.01), and *** (p-value < 0.001). Lowercase
letters denote significant differences in Rin at the 0.05 level between burn severity levels within each
plant community.

4. Discussion

The assessment of post-fire recovery trajectories through remote sensing-based tech-
niques is essential for (i) understanding current fire regimes in fire-prone ecosystems of the
western Mediterranean Basin [3,45], (ii) providing new insights on the resilience of plant
communities at several spatial scales [23,46], and (iii) supporting adaptive management
strategies aimed at maintaining ecosystem functions and services endangered by changing
fire regimes [47–49].

The present study demonstrated the potentiality of physical-based remote sensing
approaches (i.e., radiative transfer and pixel unmixing models) for estimating FVC as an
indicator of resilience to fire in several pre- and postfire scenarios of shrubland communities
with different vegetation responses. Considerably accurate FVC estimates were achieved
with the PROSAIL-D RTM and MESMA approaches considering (i) the complexity of
biophysical parameters retrieval in shrubland communities because of the high background
signal of non-photosynthetic material and bare soil exposed to the remote sensor, and (ii)
the complex mixture of shrub species [11,50].

In any case, we found that hybrid inversion of the PROSAIL-D RTM using the RF
algorithm outperformed MESMA models when retrieving FVC in heterogeneous shrubland
plant communities. Although both approaches have a solid physical basis and feature
an adequate capability to generalize the biophysical parameter retrievals [4], the delin-
eation of spectrally pure endmembers with moderate spatial resolution imagery in pixel
unmixing models can be challenging [51], especially in heterogeneous burned landscapes
with fine-grained arrangement of vegetation and burned legacies. In addition, spatiotem-
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poral changes in the vegetation’s biophysical properties and background features when
dealing with time series analysis may not be properly captured when delineating image
endmembers in extensive burned landscapes [11]. In contrast, the PROSAIL-D model is
parametrized with well-known ranges of model input variables for the plant communities
under consideration, providing a strong characterization of the physical relationships be-
tween the simulated reflectance and site biophysical variability [11]. However, the use of
site-specific field information to parametrize the RTM could provide higher accuracy in the
retrieval of the biophysical variable of interest [52].

The higher accuracy of FVC retrieval for both PROSAIL-D and MESMA models in
the pre-fire and long-term post-fire scenarios, with stronger vegetation responses than in
the immediate post-fire situation, could be related to the increased influence of woody
debris and bare soil on the surface reflectance at the first post-fire stages with limited
canopy cover [50]. This behavior may also be related to FVC estimates closer to the 1:1
line in the case of shrublands dominated by resprouter species, which feature higher
vegetation cover [53] and structural complexity [14] than the communities dominated by
seeder species in the study site. In addition, a complex mixture of regenerating grass
species, seedling recruitment and resprouting responses in early post-fire stages could be
encompassed in a decametric Sentinel-2 pixel, increasing retrieval uncertainty [11]. Also,
the non-photosynthetic material and bare soil spectra profile from expected pure pixels
may not be accurately collected from decametric satellite imagery [22].

Shrubland communities dominated by both facultative seeder and resprouter
species featured a high post-fire recovery ability, especially in low and moderate burn
severity scenarios, in line with the results of previous field-based research [42,53–55].
However, under high burn severity scenarios, faster recovery rates were evidenced in
shrubland communities dominated by resprouter species compared to those dominated
by facultative seeders. In general, surviving resprouting structures confer a rapid re-
covery of plant biomass and a quick recolonization of the physical space occupied by
the vegetation prior to the wildfire [54]. Likewise, the aerial and soil seed bank of shrub
seeder species suffers considerable damage at high burn severity [56]. This behavior
enabled shrubland communities dominated by resprouter species to achieve resilience
in the short term after wildfire, in contrast to communities dominated by facultative
seeders [57].

Our results are therefore in agreement with those obtained in previous research based
exclusively on field data, which demonstrates the potential of physical-based remote sens-
ing techniques, particularly the hybrid inversion of RTMs, to assess the resilience to fire
of shrubland communities in the short term. However, both physical-based approaches
(i.e., PROSAIL-D RTM and MESMA) featured several FVC retrieval uncertainties in hetero-
geneous fire-prone shrubland communities. First, PROSAIL-D is a turbid medium RTM,
and, consequently, higher accuracies in the model inversion can be attained by using a
geometric RTM to simulate canopy reflectance and transmittance in heterogeneous shrub-
land communities [21], but at the expense of a more complex model parameterization [58],
usually with field data not available short-term after fire. Second, RTM approaches exhibit
improved performance from retrieval using passive optical data at high spatial resolu-
tion, avoiding the land cover aggregation effect of mixed pixels [11]. This shortcoming
would be partially solved by MESMA models, which better capture the ground spectra
variability of mixed pixels. Nevertheless, non-linear mixing in sparse canopies, such as
shrubland communities in the early post-fire periods, violates MESMA assumptions and
has an impact on its performance [59]. However, the main limitation of PROSAIL-D RTM
and MESMA lies in the impossibility to determine the post-fire recovery trajectories of
specific vegetation types or growth forms within the community [31], both in terms of their
composition and structure. In this sense, the fusion of remote sensing data from optical
sensors processed through physical-based techniques, with that of active sensors such
as synthetic aperture radar (SAR) or light detection and ranging (LiDAR), could provide
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valuable insights on the recovery trajectories of biophysical properties at the species level
or by height strata [14,60,61].

5. Conclusions

The assessment of how shrubland communities recover from fire disturbance in
fire-prone ecosystems is essential to providing new insights about the resilience of plant
communities under changing fire regimes in the Mediterranean Basin. This study novelty
compared the potential of radiative transfer and pixel unmixing models for evaluating
the short-term resilience to fire of several shrubland communities. We found that the
hybrid inversion of the PROSAIL-D RTM outperformed MESMA pixel unmixing models
to retrieve FVC in heterogeneous shrubland communities. Adaptations to fire allowed
shrub communities dominated by resprouter species to achieve resilience in the short-term
period after wildfire, which is consistent with previous studies based exclusively on field
data, and thus demonstrates the potential of physical-based remote sensing approaches in
fire ecology research.
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Abstract: Remotely sensed vegetation indices have been widely used to estimate live fuel mois-
ture content (LFMC). However, marked differences in vegetation structure affect the relationship
between field-measured LFMC and reflectance, which limits spatial extrapolation of these indices. To
overcome this limitation, we explored the potential of random forests (RF) to estimate LFMC at the
subcontinental scale in the Mediterranean basin wildland. We built RF models (LFMCRF) using a
combination of MODIS spectral bands, vegetation indices, surface temperature, and the day of year
as predictors. We used the Globe-LFMC and the Catalan LFMC monitoring program databases as
ground-truth samples (10,374 samples). LFMCRF was calibrated with samples collected between 2000
and 2014 and validated with samples from 2015 to 2019, with overall root mean square errors (RMSE)
of 19.9% and 16.4%, respectively, which were lower than current approaches based on radiative
transfer models (RMSE ~74–78%). We used our approach to generate a public database with weekly
LFMC maps across the Mediterranean basin.

Keywords: live fuel moisture content; wildfire; MODIS; spectral indices; land surface temperature;
random forests

1. Introduction

Live fuel moisture content (LFMC), the mass of water in the foliage and small twigs
relative to its total dry mass, is a key factor affecting fire potential and determining wildfire
danger and activity [1,2]. Fuel moisture is directly related to the amount of energy needed
to evaporate water before ignition [2,3]. Consequently, high moisture values reduce, or
even inhibit, ignitability and subsequent fire spread [4].

Different studies conducted in a wide range of ecosystems have found a significant
correlation between burned area and LFMC [5–7]. More specifically, these studies report
that large fires only occur once fuel moisture crosses critical dryness levels. In Mediter-
ranean regions, longer summer drought periods along with increases in temperature have
been projected under climate change [8]. Such climatic changes could significantly decline
LFMC and consequently enhance the length of the fire season and the rate of high intensity
fires [9]. This situation could be exacerbated with intensifying fuel load accumulation and
fuel connectivity as a result of rural exodus and widespread lack of land management.
As a consequence, the probability and the frequency of extreme fire events is expected to
increase [9]. Accurate and comprehensive spatial and temporal estimations of LFMC are
thus needed to assess wildfire danger [10] and to develop early warning systems for the
evolution of critical conditions [11].
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Regional-scale assessment of LFMC is commonly obtained through expensive and time-
consuming field inventories [12,13] or through meteorological drought indices (e.g., [14]). The
latter allow spatially continuous measurements, but their validity for the Mediterranean
areas has been questioned in various studies [15–17], as they do not take into account
plant-specific differences and the influence of site conditions (e.g., soil water dynamics),
often leading to poor predictions [3].

Remote sensing of LFMC using satellite information provides a valuable alternative
to overcome the limitations of drought indices. Current approaches are mainly grouped
into either physically-based simulation [18–20] or empirical methods [15,21–23]. Generally,
these methods measure how water absorption and leaf properties affect reflectance in the
optical spectrum [24]. Physical approaches, such as radiative transfer models (RTM), are
expected to be more robust than empirical methods [10]. This is because they are based on
the physical associations between leaf-canopy properties and spectral reflectance, which
are independent of sensor and site conditions [19,25]. However, they are also more complex
to parameterize and require additional ecological information and prior knowledge over
large geographical gradients to prevent unrealistic spectra simulations [25]. In contrast,
empirical approaches, which are commonly based on spectral indices (SI), are simpler
and have shown similar or even better accuracies than physical models when applied
locally [19,26] or across specific vegetation types [20].

Combinations of SI have been successfully employed to estimate LFMC [6,15,21,26].
In addition, some authors found stronger predictive power by including land surface
temperature (LST) along with optical data to the empirical relationships [22,27–29]. The
connection between LFMC and LST lies on the interaction between the plant energy
balance mechanisms and its response to water stress [24]. Other recent studies implement
microwave remote sensing to retrieve LFMC [30–32], but their use still has some limitations,
such as data availability.

The application of empirical approaches at continental or global scales is precisely
constrained by the availability of data for calibration during model development [18,21].
The biophysical and structural differences among species impact the functional relation-
ships between LFMC and remotely sensed reflectance spectra [33,34]. Consequently, a
large number of diverse sampling observations is required to reduce the effect of site de-
pendence. Furthermore, the use of many predictive variables potentially related to LFMC
may significantly improve the empirical estimations of the model [20], but also increase
its complexity.

Machine learning (ML) algorithms, such as random forests (RF), are a solid alternative
to physically based RTM methods or the classical regression models on which the empirical
approaches are commonly based. ML algorithms are highly efficient with high dimensional
data and solve the problem of model complexity by applying different functional forms in
the relation between predictors and LFMC, without make explicit a priori assumptions [35].
However, using ML to estimate LFMC from remote sensing is still very recent [28,31,34,36]
and has not been used in the Mediterranean basin.

Despite the importance of wildfires in the Mediterranean basin, we are currently
lacking a specific method to reliably estimate LFMC at the subcontinental scale. For
example, the European Forest Fires Information System (EFFIS) is using the Australian
operational system [20] to estimate LFMC in the European extent, but this method has not
been broadly assessed yet. Other studies have addressed LFMC modelling at local [26,37]
or regional [18,25] scales and they are usually focused on specific vegetation types (e.g.,
grasslands or shrublands). Thus, we are still lacking a product that provides LFMC
estimates for the Mediterranean basin. The only exception is the global LFMC product
developed by Quan et al. [38], which is based on an RTM, and it is not yet known whether
LFMC estimates could be improved through ML approaches.

The present study aims to fill this knowledge gap by developing an RF algorithm
to predict LFMC within the Western Mediterranean basin using the information of the
widely used Moderate Resolution Imaging Spectroradiometer (MODIS), and comparing the
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results with the only other method available for this area, the physically-based estimations
of Quan et al. [38]. We also aim to generalize the model over a wide range of fuel types
with a unique formulation by combining a forward feature selection with a spatial cross-
validation and ML techniques. Finally, our ultimate goal is to develop a database of
LFMC for the Mediterranean basin using available data that improves beyond currently
existing products.

2. Materials and Methods

2.1. Data
2.1.1. LFMC Field Measurements

We used all the LFMC data publicly accessible within the Mediterranean basin. Most
of the data available so far have been compiled in the Globe-LFMC database [39] (last
accessed June 2021). The Globe-LFMC is a global compilation of 161,717 LFMC destructive
field measurements of leaves and small twigs (<6 mm) from 1977 to 2018 at 1383 sampling
sites with different species and characteristics in 11 fire-prone countries [39]. Most of the
records in the study area come from The French Réseau hydrique database [13], but we also
found a more recent LFMC time series from Catalonia (Cat-LFMC) [12]. This is a collection
of 21 years (1998–2019) of biweekly field-sampled data compiled by the Catalan Forest
Fire Prevention Service across nine sampling areas within this Spanish region, and focused
on five species representatives of Mediterranean shrublands [12]. Cat-LFMC was added
to the Globe-LFMC to extend the total number of sites and the time interval within the
Mediterranean area. Both datasets have already been technically validated by correcting
inconsistencies and anomalies in LFMC, as described in the relevant publications [12,13,39].
All records are properly georeferenced and inform about the species collected, the sampling
protocol, land cover type, and further eco-physiological and environmental properties
not used in this study. Cat-LFMC additionally includes a quality control flag, indicating
possible outliers related to abrupt changes in LFMC values. These outliers were removed
from the database prior to analyses.

2.1.2. MODIS Data

The MODIS MCD43A4 Collection 6 product [40] was selected as a source of above-
ground spectral information, as it has shown good performance in previous studies [21,26,34].
MCD43A4 provides daily maps at 500 m spatial resolution from a 16-day composite of
Nadir Bidirectional Distribution Function (NBDF)-Adjusted Reflectance for each of the 7
MODIS bands (channels 1–7, Table 1). Using a composite product may reduce the probabil-
ity of cloud cover and shadows. The ‘Good quality’ flag from the simplified band specific
quality layers (BRDF_Albedo_Band_Quality) associated with MCD43A4 was used to keep
the full quality pixels of the composite.

The Terra MODIS Land Surface Temperature (LST) MOD11A2 Collection 6 product
was included as a predictor of LFMC due to the impact of water availability in plant
evapotranspiration and, consequently, on canopy temperature [24]. MOD11A2 is an 8-day
pixel average from the MOD11A1, a daily product of LST measurements from the Terra
satellite [41]. We used the daytime composite values, instead of single day measurements,
because MOD11A2 had fewer data gaps (8% vs. 35%), and their effect on LFMC predictions,
in terms of model RMSE, was the same (~20%, see Section S1). Daytime images cover the
same period as MCD43A4, and they coincide better with the typical sample collection time,
but at a 1000 m spatial resolution. They were resampled to the 500 m spatial resolution of
MCD43A4 using a bilinear interpolation.
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Table 1. List of potential predictors of LFMC.

Variable Description Wavelength (nm) Source

NR1 Nadir Reflectance Band 1 Red 620–670 MCD43A4

NR2 Nadir Reflectance Band 2 Near infrared (NIR1) 841–876 MCD43A4

NR3 Nadir Reflectance Band 3 Blue 459–479 MCD43A4

NR4 Nadir Reflectance Band 4 Green 545–564 MCD43A4

NR5 Nadir Reflectance Band 5 Near infrared (NIR2) 1230–1250 MCD43A4

NR6 Nadir Reflectance Band 6 Shortwave infrared (SWIR1) 1628–1652 MCD43A4

NR7 Nadir Reflectance Band 7 Shortwave infrared (SWIR2) 2105–2155 MCD43A4

SI Vegetation spectral indices: NDVI, EVI, SAVI, VARI, VIgreen,
Gratio, NDII6, NDII7, NDWI, GVMI, MSI, NDTI, STI see Table S2

LST Land surface temperature MOD11A2

DOY_COS
DOY_SIN Cosine and Sine of the Day of Year

Additionally, the annual MODIS Land Cover Type (MCD12Q1) Collection 6 prod-
uct [42] with the International Geosphere-Biosphere Programme (IGBP) classification
scheme was used to distinguish between vegetation types in the analyses. This prod-
uct replaced the land cover field included in the Globe-LFMC database, which is based on
the ESA Climate Change Initiative Land Cover for the year 2015. This is because MCD12Q1
accommodates to the spatial resolution of the reflectance data and the temporal resolution
of the field samples. It also was used for map production (e.g., masking water bodies and
non-vegetation covers).

All MODIS images were downloaded from the NASA Land Processes Distributed
Active Archive Center (LPDAAC) in the U.S. Geological Survey (USGS) Earth Resources
Observation and Science Center (EROS) (https://lpdaac.usgs.gov; accessed on June 2020).

2.1.3. Landsat Data

The Landsat Collection 1 surface reflectance data included in Google Earth Engine
(GEE) [43] was used to assess the MODIS subpixel spatial heterogeneity corresponding to
each sampling site in the LFMC dataset. The revisit time of these satellites is 16 days, and
the resolution is 30 m for the reflective bands. Similarly to Quan et al. [38], we employed
Landsat 5 TM from Feb 2000 to Oct 2011 for high quality pixels, Landsat 7 ETM+ from Feb
2000 to Oct 2011 when Landsat 5 TM had poor quality pixels and also from Nov 2011 to
Apr 2013, and Landsat 8 OLI from May 2013 until 2019. The use of Landsat 5 TM instead
of Landsat 7 ETM+ was due to data gaps produced in the latter by failure in a sensor
component [38]. Snow, cloud, and shadow pixels were removed using the Landsat internal
quality band.

2.1.4. Radiative Transfer Model (RTM) Database

The global RTM-based product developed by Quan et al. [38] was used to compare
the results of the ML-based approach proposed here. We chose this product because it
is the only currently available database that has produced LFMC maps over the whole
Mediterranean basin. It consists of a weekly collection of maps (2001–2019) generated by a
physically based remote sensing model.

2.2. Methods

The following sections describe all the steps we used to estimate LFMC (Figure 1). The
first section explains how we prepared the data for analyses. The second section briefly
introduces the modelling approach. The last sections describe the variable selection process,
the calibration and validation methods, and the software used in all steps.
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2.2.1. Data Preparation

First, we cropped the Globe-LFMC dataset to the Mediterranean region (Figure 2) and
used it, along with the Cat-LFMC, only for the dates with available MODIS data. Then,
LFMC samples collected within the same day and site, but corresponding to different
species or vegetation layers (e.g., understory and canopy), were aggregated by arithmetic
means to obtain a single value per site. Nolan et al. [6] observed that average LFMC per
site has a stronger correlation with spectral data than any individual vegetation layer alone.
However, some studies have observed that spectral information may more closely reflect
signals from the upper part of the canopy, particularly for closed forests [24]. We were
interested in developing an indicator of LFMC representative of the entire canopy (upper
canopy but also of the understory) because the understory often burns during a fire, which
explains why we used the average LFMC value.

Figure 1. Overview of the pre-processing, modelling, and analysis steps.

Figure 2. Distribution of sampling sites and extension of the mapping area for the database and
future map productions. The background layer represents terrestrial biomes based on [44]. Gray
areas were discarded from map production.
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For each resultant LFMC sample, pixel values from remote sensing data were obtained
by a simple pixel extraction (that is, the nearest grid cell centroid) matching their sampling
date. We performed some preliminary tests observing that the simple pixel extraction
method showed no significant differences (p-value = 0.9; see Section S2, Table S1) relative
to conducting a focal mean (e.g., from a 3 × 3 window). Afterwards, various vegetation
spectral indices (SI; Table S2) potentially related to LFMC were calculated by combining
information from different MODIS spectral bands and used as predictors of LFMC in
addition to atmospherically corrected reflectance. SI tend to reduce directional anisotropic
and soil background effects and highlight specific properties of the vegetation canopy [24].
We also used land surface temperature (LST) from the LST 8-day average composite, as
previously discussed (see Section S1). Finally, we added the day of year (DOY) of the
ground LFMC samples as auxiliary variables to take into account the seasonal trends in
LFMC [22,27]. To do so, DOY was normalized to [0, 1] and reconverted to [−π, π], such that
DOY 1 and DOY 366 corresponded to −π and π, respectively. With the resulting values, we
calculated the sine (DOY_SIN) and cosine (DOY_COS) to maintain the information on the
periodicity as performed in Zhu et al. [34]. Consequently, DOY_SIN varied from −1 to 1
between the wettest and driest season, while DOY_COS varied from winter (coldest; −1)
and summer (hottest; 1).

After defining the potential predictors described above (Table 1), we removed LFMC
samples with missing data from any variable, and we discarded values outside the thresh-
old 20–250%, which is considered the biological range of LFMC [13]. We then averaged
multiple observations in the same day and MODIS-grid cell and randomly assigned the
values to one of their locations to have a single daily LFMC value for a given pixel value.
The resulting dataset contained a total of 10,374 LFMC field measurements between 2000
and 2019 from 118 sites located in Spain, France, Italy, and Tunisia (Figures 2, S1 and S2).
These sites are mostly concentrated in the ecoregions ‘Northeast Spain and Southern France
Mediterranean forests’ and ‘Italian sclerophyllous and semi-deciduous forests’ (~80%).
Ecoregions with Mediterranean woodlands and coniferous, broadleaf, and mixed forest
formations are also represented to a minor degree. In conjunction, mean annual tempera-
ture ranges from 6 to 20 ◦C and mean annual rainfall ranges from 250 to 1100 mm [44]. Site
altitude ranges from 11 to 1660 m.

For model validation, Quan et al. [38] RTM data were only acquired for the sample
records that coincided with the available dates of such products. We also assigned
land cover information from the MCD12Q1 layers to each ground sample by matching
the year of sampling with the year of the layer. Misclassified sites (e.g., croplands,
permanent wetlands, and urban covers) were discarded or manually corrected based
on the species collected, location, and the land cover type field included in the Globe-
LFMC database. To simplify the analyses, the IGBP land cover classes present in the
study were re-classified into four vegetation (or fuel) types accounting for different
structural characteristics (Table S3). These new land cover classes were defined as
grasslands, shrublands (closed and open shrublands), savannas (tree cover 10–60%;
savannas and woody savannas), and forests (tree cover > 60%; evergreen broadleaf,
evergreen needleleaf, and mixed forests).

Additionally, the NDVI coefficient of variation (NDVICV) derived from Landsat data
were used to assess the homogeneity of vegetation ‘greenness’ surrounding each site coor-
dinates, as performed in Quan et al. [38]. The authors suggest using these metrics to filter
highly heterogeneous areas within a specific satellite footprint since they may not be suit-
able for predictive attributions [39]. Lower values correspond to more homogeneous sites.
NDVICV was calculated with the Landsat surface reflectance values from a 500 × 500 m2

buffer that matched the MODIS cell where site coordinates were located. To do so, we
adapted the GEE script publicly shared by Yebra et al. [39], such that the NDVICV value was
the monthly average that corresponded to the sampling date. Monthly average maximizes
the quality (unmasked pixels) and the stability of the NDVICV statistic. Only values with
more than 80% good quality pixels (without no snow, clouds, or shadows) were retained.
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2.2.2. Machine Learning Approach

Random forests (RF) was the ML algorithm chosen to empirically estimate LFMC at
the Mediterranean basin because of its simplicity, its ability to deal with a large number of
covariates, and because it is not necessary to have prior knowledge of the functional form
of the relationships between these covariates and the response. Furthermore, the presence
of outliers does not have a great influence on its performance [35].

RF is a non-parametric data-driven statistical method proposed by Breiman [45],
which is based on Classification and Regression Trees (CART, also called decision trees)
and bagging. Several decision trees are constructed in different bootstrap samples of the
data, on which every data split (node) is forced to consider an arbitrary subset of available
predictors. All individual-tree responses are then aggregated to obtain the final output
predictions. The hyperparameters needed for model calibration and used in the subsequent
analyses are explained in the associated Supplementary Materials (Table S4). Full details
on CART, bagging, and RF can be found in Kuhn and Johnson [35].

2.2.3. Variable Selection: Forward Feature Selection

Variable selection was needed because many of the variables (or features) used as can-
didates to estimate LFMC were highly correlated with each other, as expected (Figure S3).
This is because the SI were formed by close combinations of different spectral bands. On
the other hand, predictor variables that are highly autocorrelated in space can be misinter-
preted by the RF algorithm, leading to poor predictions outside the locations of the training
data [46].

Here, we used the Forward Feature Selection (FFS) method proposed by Meyer
et al. [46] to eliminate uninformative predictors and reduce the spatial over-fitting. First,
the algorithm trains models using all possible combinations of two predictor variables
and keeps those with the lowest prediction error based on a spatial cross-validation that
discards entire sampling sites, as described later. Then, FFS iteratively increases the number
of variables and evaluates the new model until none of the remaining variables improves
the performance of the current best model. Additionally, we introduced a modification
of the original method that consisted of calculating the average error over 25 different
data splits. This avoided the dependence of cross-validation data splitting and aimed at
stabilizing the error estimation [47].

FFS is complex and computationally intensive to execute parallel with RF parameter
selection [47], and this step was performed before model calibration using a fixed set of
hyperparameters (Table S4).

2.2.4. Model Selection and Performance Evaluation

In order to select the final model, we first assessed the general performance of different
forms of the RF (depending on the selected predictors and whether or not the NDVICV filter
for heterogeneous pixels was applied) independently from a specific model calibration. We
then adjusted the best performing model and evaluated its predictions.

Initial model performance assessment (MP) consisted of a bias-reduced predictive
performance evaluation done using a nested 5-fold leave-location-out cross-validation
(LLOCV) [47]. Nested cross-validation divides the data two times, first to develop the
model and then for independently testing its performance. LLOCV means that the cross-
validation folds are made of the observations left out of complete locations, assuring
spatial independence [46]. More specifically, the data were divided into 5 outer folds,
where one was kept for testing and the remaining were split again into 5 nested folds
to iteratively train and select the optimal tuning using a standard LLOCV. Five optimal
models were obtained for each outer partition, and the accuracy metrics (described in
the section below) were then calculated based on the collection of predictions from all
the outer folds. The same procedure was repeated 100 times with different data splits
(that is, 500 independent validations), and the overall predictive power metrics were the
mean of all repetitions.
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Using this method, we assessed MP over 5 different model combinations with the en-
tire set of variables, with the variables selected during the FFS, and with/without applying
the NDVICV filter. NDVICV was treated as an additional hyperparameter and implemented
in both the whole dataset (training and test) and only to the training partition. The five
models consisted of: (1) all variables without filters; (2) all variables with NDVICV filters
on the whole dataset; (3) FFS-selected variables without filters; (4) FFS-selected variables
with NDVICV filters on the whole dataset; and (5) the best of all/selected variables with the
NDVICV filter only applied to the training partition. This method of evaluation provides an
appropriate estimate of model reliability since the reported metrics are not a function of a
specific model calibration, and many alternative independent datasets (outer folds) are used
for testing [47]. Thus, models 1–4 allowed us to examine the effectiveness of the NDVICV
filter on the model performance, and the predictive improvement achieved by using only
the selected features along with different parameter combinations than the fixed ones in
the FFS process. With model 5 we tested how well a model optimized for homogeneous
sites (defined by the selected NDVICV value threshold) predicted independent sites that
represent both homogeneous and heterogeneous pixels. The best alternative was employed
in the subsequent calibration and validation strategies.

After selecting the best approach, we evaluated the predictions by first calibrating
the model with LFMC samples from 2000 to 2014 (~80% of the total dataset) and then
validated it using the samples collected in 2015–2019 (~20% of the total dataset). That
is, we first determined the optimal hyperparameter values for a single model using the
samples collected during 2000–2014 by training the algorithm iteratively on one-fifth of the
sampling sites and tested on the remaining ones using a standard LLOCV. This process
was repeated over 25 random site-resamples for each of the model candidates to stabilize
the error rate and eliminate the effect of a particular data partition [47]. The model with the
lowest average predictive error was selected and calibrated again to obtain predictions on
the whole 5 cross-validation folds. The respective accuracy metrics (called CAL) referred to
estimates within the sample period but are not independent from model calibration, as they
are the outer-fold metrics in MP. We then evaluated how well the model extrapolates outside
the sample period using the samples collected in 2015–2019. This validation phase (named
EXT) included some new locations (3 sites) not used in CAL, which means validating future
predictions also at unknown points in space.

The final model was used to compare the RF predictions against the RTM estimations
produced by Quan et al. [38]. To be a fair comparison, both estimates were contrasted over
the same ground-truth samples separately for the LFMCRF predictions inside (CAL) and
outside (EXT) the training period.

The optimal hyperparameters for model calibration were chosen from an initial set of
possible inputs performing a grid-search scheme [47]. We considered a wider range of pos-
sible values (Table S4) of the grid-search scheme for the MP, and then we limited the range
according to the results obtained from all fitted models. For CAL, each parameter combi-
nation in the grid was iteratively assessed. In the MP, a random subset of combinations
(e.g., 50) was implemented at each training process to be more computationally effective.
In this case, the choice of hyperparameters was not so important since the cross-validation
estimates were a generalization of the model performance.

In all cases, models were optimized to predict new locations, which is the inter-
est of remote sensing(that is, to estimate LFMC over areas without available ground
data), and it prevents spatial over-fitting [46]. For MP and CAL grid-search steps, these
locations were selected using the method of Meyer et al. [46] to benefit splitting di-
versity. In the final model adjustment, prior to predictions, sample-site splitting was
conducted by means of their coordinates and the K-means algorithm to ensure equal
spatial distribution [48].
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2.2.5. Validation Methods and Map Production

The predictive capabilities of the model were characterized by means of the root mean
square error (RMSE), the mean absolute error (MAE), the mean bias error (MBE), and the
unbiased RMSE (ubRMSE), as well as the variance explained by predictive models based
on cross-validation (VEcv) [49] and the Lin’s concordance correlation coefficient (CCC) [50].
RMSE, MAE, and MBE measure, respectively, squared, absolute, and mean departures
between the estimated (ŷi) and observed (yi) test values of LFMC in the same units of the
outcomes. RMSE was the statistic used as a criterion for parameter tuning and variable
selection processes. We included the ubRMSE following Zhu et al. [34], which shows the
error after removing the tendency to over- or under-predict in the model:

ubRMSE =
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Here, n is the number of observations in a validation dataset. VECV is similar to the
coefficient of determination R2, but it measures the predictive accuracy of a model by
comparing observations and predictions derived from cross-validation and not the square
correlation between observed and fitted values. It is defined as:

VECV = 1 − ∑n
1 (yi − ŷi)

2

∑n
1 (yi − y)2 (2)

where y is the mean of the observed values. Otherwise, CCC provides a measure of
correlation relative to the line of agreement, which is expected to be unbiased with a slope
of 1 and apply a penalty (Cb) if the relationship is far from this line. From CAL, EXT,
and the RTM, we also obtained the slope and intercept from the linear regression between
observed against predicted to assess general deviation trends.

Spatiotemporal analyses were additionally made through land cover types [31]. More
specifically, we calculated general performance metrics from the CAL and EXT estimates
for each land cover class, and we decomposed the mean RMSE by land cover and the month
of the year to determine the temporal variability of the predictions over each vegetation
functional type.

After the validations, we recalibrated the model using the whole dataset in order to
consider all the available information to train the algorithm. The readjusted LFMCRF was
then used to produce the collection of maps of the reported LFMC database.

2.2.6. Marginal Effects of the Predictors

We used partial dependence plots derived from the fitted model to evaluate the
contribution of each variable to the LFMC estimations. The partial dependence function
represents the average effect of a given variable on the predicted response marginalized
over the effects of the rest of model inputs [51]. Mainly, we divided the distribution of
values of the variable of interest into equal steps (e.g., 50). At each step, we calculated
the average of all possible predictions made on the data holding the value of the step
constant. Finally, we drew a line joining all average points. Resulting plots allowed for
the examination of the functional relationships between the most relevant features and the
LFMC estimates.

2.2.7. Software

Model building and statistical analysis were made with the statistical software R
version 4.2.0 [52] and their base package for generic operations. RF was principally im-
plemented with the R package ‘ranger’ [53] but also with the ‘randomForest’ library [54] to
extract the partial dependence plots. The R packages ‘raster’ [55] and ‘sf ’ [56] were used for
remote sensing and spatial data manipulation, and ‘doParallel’ [57] for parallel computing.
An adaptation of the stratfold3d function of the ‘sparsereg3D’ package [48] was used to
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make the equally spatially distributed LLOCV folds, while the spatially random splits were
created with the CreateSpacetimeFolds function from the ‘CAST’ package [58].

3. Results

3.1. Selected Variables

Results of the FFS indicated that the most important predictors of LFMC, in terms
of error reduction, were the combination of LST and DOY_SIN followed by VARI, NDTI,
and DOY_COS (Figure 3). These five variables alone led to an RMSE of 20.1%. We
also considered NR3 and NR5 because each one represented on average an additional
improvement of ~0.1% in RMSE from the previous stepwise selection, which was greater
than the corresponding RMSE standard error (~0.05%) calculated from the 25 FFS real-
izations. Selected variables for the subsequent developments reached an overall RMSE
of 19.9%.

Figure 3. Selected variables derived from the combination of the Forward Feature Selection (FFS)
process and the leave-location-out cross-validation (LLOCV). Black dots and vertical segments
represent, respectively, the average LLOCV error and the standard error calculated from the 25
random forests computed at each FFS step.

3.2. Statistical Performance of the LFMCRF

Calibrated and evaluated models within the general model performance assessment
(MP) achieved similar results among them, with overall RMSEs (that is, from all separate
iterations of each MP alternative in conjunction) ranging from 19.1% to 21.4% and VECV
ranging from 0.28 to 0.43. Average performance statistics (Table 2) showed that all MP
alternatives tended towards a slight overprediction (MBE: 0.9–1.5%). Nonetheless, the
ubRMSE values were close to the RMSE (max. difference ~0.07%), further indicating a
relatively low bias of the LFMCRF estimates. In general, models with all the initial predictors
(Allp) showed worse performance than those with only the selected ones (Selp) (Table 2).
The latter benefited from the elimination of the spatially dependent variables and were
used in the successive validation strategies.
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Table 2. Evaluation metrics from predicted and observed values of the model performance (MP),
spatial cross-validation (CAL), and the time extrapolation (EXT) assessment. Different methods
based on the NDVICV filter application and the complete (Allp) or selected (Selp) predictive variables.
Predictions from CAL and EXT broken down by fuel type. RTM extractions and LFMCRF were
validated on the same ground-truth observations separately if they were used in CAL or EXT.

Method Fuel Type Variables Filter * MBE (%) MAE (%)
RMSE
(%)

ubRMSE
(%)

CCC VECV
#Testing Sam-
ples/Sites

MP All Allp NF 1.10 15.70 20.57 20.54 0.53 0.32 10,374/118

All Allp F1 1.43 15.47 20.29 20.24 0.55 0.35 7633/103

All Selp NF 0.86 15.18 19.90 19.88 0.56 0.37 10,374/118

All Selp F1 1.00 15.07 19.74 19.71 0.57 0.38 7633/103

All Selp F2 1.06 15.18 19.92 19.89 0.57 0.39 7887/109

CAL All Selp NF 0.47 15.10 19.93 19.93 0.56 0.37 8983/115

Forests 0.87 14.49 18.32 18.30 0.54 0.33 2633/27

Savannas 1.94 15.22 19.74 19.65 0.51 0.33 4330/46

Shrublands −7.76 16.20 20.98 19.50 0.53 0.31 442/9

Grasslands −1.94 15.48 22.57 22.49 0.57 0.36 1578/43

EXT All Selp NF 2.75 13.05 16.35 16.12 0.69 0.52 1391/43

Forests 7.40 13.57 16.87 15.16 0.62 0.40 456/17

Savannas 1.63 13.18 16.46 16.38 0.69 0.55 730/22

Shrublands −4.62 12.08 15.27 14.56 0.72 0.54 166/3

Grasslands 0.86 8.56 12.04 12.01 0.72 0.55 39/2

LFMCRF (CAL) All Selp NF 0.86 14.54 18.74 18.73 0.54 0.34 1152/68

RTM (CAL) All - - 65.10 66.56 77.78 42.58 0.04 −10.31 1152/68

LFMCRF (EXT) All Selp NF 3.88 14.15 17.32 16.88 0.66 0.46 157/41

RTM (EXT) All - - 61.87 63.10 74.41 41.33 0.07 −8.98 157/41

* NF: no filter; F1: NDVICV filter applied to the entire dataset (training and test); F2: filter applied only to the
training data.

Application of the NDVICV filter did not show significant effects on the general model
performance (Table 2; Figures S4 and S5). For example, applying the optimal filter in Selp
to the entire dataset (F1) led to a small improvement in RMSE (<2%) and VECV (~0.01),
but also to an increase of MBE (~0.15%) with respect to no filter application. Moreover,
comparing MP with no filter and with the filter only applied to the training data (F2)
resulted in increases in RMSE and MBE by 0.02% and 0.2%, respectively. In addition, the
application of the filter led to the elimination of 26–28% of the dataset. It is worth noting
that only a very small percentage of the data (2–4%) was deleted with NDVICV application
because they were above the optimal filter threshold (0.3–0.35). The rest of the data was
removed because of missing rows in NDVICV, which were derived from poor-quality pixels
in Landsat products. The model with no filter was thus used in subsequent analyses.

3.3. Prediction Assessment and Intercomparison

Accuracy metrics from the calibrated model (CAL) were consistent with the general
performance (MP) of the LFMCRF (Table 2). These results were expected because CAL was
developed with 80% of the data employed in MP, but they proved that the adjusted model
was not overfitted to the particular data or by the current hyperparameter optimization
(Table S4). In contrast, the EXT validation showed smaller RMSE (~3.5%) and higher VECV
(~0.15) than CAL, probably due to differences in the validation samples.

We did not observe any significant bias in the LFMCRF estimations, as the y-intercepts
and slopes were close to 0 and 1 in the fitted line between measured and predicted values
of LFMC, respectively (Figure 4a,d). However, the residuals between predictions and obser-
vations revealed a linear pattern along the range of LFMC in both CAL and EXT (Figure S6).
For example, the model highly underestimated values above 120% (MBE CAL = −33.97%
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and MBE EXT = −22.58%) and overestimated values below 30% (MBE CAL = 45.7%; no data
in EXT). This explained the aforementioned better outcomes from EXT, because the range
of the actual LFMC for testing (31–209%) excluded values where the model performed
worst. Within the LFMC values (30–120%) where live fuels transition from flammable to
non-flammable, the model attained a smaller RMSE (MAE) of 16.75% (13.35%) for CAL
and 15.10% (12.19%) for EXT relative to the overall performance of the corresponding
estimates, with a small propensity to overestimate (MBE of 3.30% and 5.24% for CAL and
EXT, respectively). It is worth noting that 92% of the data was within the range of 30–120%,
and data below 30% may have represented curing.

Figure 4. LFMC field measurements versus predictions from CAL (upper plots) and EXT (lower
plots): all predictions (a,d), LFMCRF predictions made on the same data points available in RTM
(b,e), and the corresponding RTM (c,f). Dashed black line and red line indicates the expected 1:1
relationship and the fitted linear model, respectively. Color scale indicates point density.

LFMCRF had better performance than RTM-based estimates when comparing against
the same validation samples. In fact, poor correlation and large errors between observed
and predicted values occurred in RTM simulations (Table 2). RTM systematically overpre-
dicted LFMC when LFMC exceeded ~76% (Figure 4c,f). Negative values of VECV (−10.15
and −8.98) indicated that these LFMC estimates were less accurate than using the mean of
observations as predictions. Otherwise, the LFMCRF estimations used for this comparison
showed the same level of accuracy as in the previous sections (Figure 4b,e), given that they
were subsets of predictions from CAL and EXT.

3.4. Evaluation across Vegetation Types

Assessing the performance across vegetation types, LFMCRF reached better results
in EXT (RMSE: 12–17%; CCC: 0.6–0.7) than in CAL (RMSE: 18–23%; CCC: 0.5–0.6) for all
fuel types (Table 2). This coincides with previous results and may be because of the greater
range in LFMC variation observed in the CAL dataset (Figure S2). Forests showed the
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smallest errors in CAL (MBE = 0.87%; RMSE = 18.32%), but the largest in EXT (MBE = 7.40%;
RMSE = 16.87%). Grasslands obtained the best performance within the EXT validation
(Table 2). However, they represented < 3% of the validation records and were mainly
concentrated (~80% of the total) in Jul–Aug, where the model performed better (Figure 5c,d).
In both cases, LFMCRF significantly underpredicted LFMC in shrublands (MBE −7.76 to
−4.62). Temporally, the smallest errors (RMSE: 16–19%) were obtained during the hottest
months (Jul–Aug), where field samples were primarily collected (Figure 5a,b), and also
in winter months (Jan–Feb), matching with the lowest LFMC variability (Figure S2d).
Forests showed larger stability during the entire year in both RMSE (Figure 5c) and LFMC
measurements (Figure S2c). Contrarily, the performance of the model greatly fluctuated
in grasslands. Grasslands reported the largest RMSE (36.7%) in May, one of the wettest
months of the Mediterranean region, when fires are scarce, declining to an RMSE of 14.9%
(Figure 5c) during the driest month.

Figure 5. Number of testing samples and RMSE from CAL (a,c) and EXT (b,d) by vegetation type and
month of the year. Gray cells in c and d indicate no data available. The IGBP classes from MCD12Q1
were aggregated by the vegetation functional type to which they belong.

3.5. Marginal Effects of the Predictors

Partial dependence plots exposed different patterns on the variation of LFMC esti-
mates (Figure 6). VARI and DOY_SIN exerted the strongest effects on predictions. LFMCRF
estimates monotonically increased as the VARI values increased. Conversely, LFMC gener-
ally monotonically decreased with increases of DOY_SIN, indicating that the highest LFMC
values occurred in spring (−1) and the lowest in late summer (1). LST had non-significant
effects on the LFMC estimations up to 20 ◦C but then presented a clear negative relationship.
NR5 showed a concave shape, with marked increases at higher values of NR5 (>0.3; last
decile). NDTI, NR3, and DOY_COS showed little effects on the predictions of LFMC, but
they were still considered informative. The partial dependence of DOY_COS on the LFMC
prediction may have been masked by the marginal effects of LST, as they were highly
correlated (Figure S3).
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Figure 6. Partial dependence plots from the fitted model. Blue lines describe the average effect
of a given predictor in the LFMC estimates. Small lines in the x axis indicate the deciles of the
predictor values.

4. Discussion

We propose a novel method to estimate LFMC from remote sensing at the subconti-
nental scale by means of a selected set of remote sensing predictors and the RF algorithm.
LFMCRF outperforms current approaches used in the Western Mediterranean basin in terms
of validation errors and provides a solid alternative to predict LFMC over a wide range of
environmental conditions using a simple but robust model with a unique formulation. In
the next sections, we discuss the contribution of each selected predictor, the general and
the spatiotemporal performance of the model, as well as their potential applicability and
future improvements.

4.1. Selected Predictors

The key explanatory features derived from the FFS process were the variables derived
from the day of the year (DOY_COS, DOY_SIN), LST, VARI, and NDTI, along with nadir
reflectance bands 3 (blue) and 5 (NIR) to a minor degree.

DOY_SIN and DOY_COS had a significant influence on the LFMC estimates due to
the seasonal variation in LFMC. In general, LFMC dynamics follow the distribution of the
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balance between evapotranspiration and rainfall in the Mediterranean region [21,26,34].
DOY_SIN partly reflects the average annual pattern in soil water availability and acts as
a complement of the SI, maintaining the periodicity of LFMC within the year. Similarly,
DOY_COS reflects changes in the temperature and is more related to vegetation surface
temperature, which is measured by the LST [22,27].

As we expected, LST was a key factor explaining LFMC, and it showed a negative
relationship with LFMC when temperatures were above ~20 ◦C [22,27,28]. LST is a key
determinant of the energy balance of the vegetation, and its difference with air temperature
is related to evapotranspiration and water losses [59]. Such differences between air temper-
ature and LST depend on the density of vegetation cover, and previous works have shown
strong relationships when combining LST and a vegetation index (e.g., [27]), as was done
here. DOY_COS and LST are complementary because the former keeps the inter-annual
variation of LFMC trends, while the latter provides better spatial information (that is, local
deviations from the average trends) [27]. The partial dependence of LFMC on LST was
similar to that reported in previous studies in that LST only affected LFMC after a certain
temperature threshold [28]. LST is related to VPD [60], which is a variable that can also
affect plant water content as a primary driver of evapotranspiration [61]. The importance of
LST may thus be related to the fact that VPD significantly acts on leaf moisture content after
a certain threshold is reached. Therefore, it is also possible that LST could be reflecting local
differences in surface temperature and VPD. Further work is needed to fully understand
the mechanisms by which LST affects LFMC.

VARI combines different visible wavelength bands (blue–green–red), and it has the ability
to detect chlorophyll content and leaf structure variations, which are indirectly associated
with changes in canopy moisture [19]. Several authors [15,19,23,26,30] have shown that
VARI is one of the best indices for predicting LFMC on different vegetation types, and
we also demonstrated a notable dependency of the LFMCRF estimations (Figure 6). Other
authors found stronger correlations with indices that include SWIR [37] and NIR [21,62] bands
predicting LFMC at local scales.

Reductions in chlorophyll content can result from water shortage but also from changes
in leaf age, nutrient deficiency, health, and phenological stages [33,63]. Introducing NDTI
from SWIR bands in the spectral region greatly sensitive to plant water content [33,64],
was necessary to correct for VARI changes not driven by the moisture status of plants.
Moreover, Wang et al. [63] described a connection (r = 0.45) between NDTI and dry matter
content of vegetation. Dry matter weight is the denominator of the LFMC equation and
could lead to variations in the spectral response and LFMC due to plant seasonal growth,
independently of drought changes [30,65].

On the other hand, NIR (NR5, centered at 1240 nm) is partly influenced by water
content but also by leaf internal structure and dry biomass [33,65]. This particularity may
explain the concave effect that this variable had on predictions. Water loss produces an
increment of NR5 as a result of lower water absorption [64]. However, at certain species
and LFMC levels, water stress leads to leaf cell structure changes (reducing reflective areas
by wilting) and leaf curling, which cause a decrease in NR5 [24,64].

We acknowledge that topography could have affected our results as it alters microcli-
matic variables influencing LFMC, such as solar radiation. However, a previous study that
used reflectance bands as main explanatory variables [34] indicated a rather small effect on
LFMC estimations with an RMSE improvement of ~1%.

4.2. Model Performance Assessment

Generalization errors of the LFMCRF (RMSE: 16–20%; MAE: 13–15%) were lower
than in other studies attempting to model LFMC at large spatial scales. For instance, Zhu
et al. [34] reported an overall RMSE of 27.9% using a similar spatial validation strategy but
for the contiguous US. They also achieved an RMSE of 22.7% performing a standard cross-
validation, which normally results in higher accuracy because the training and testing sets
are not spatially independent. LFMCRF also showed smaller RMSE than did Rao et al. [31]
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(25%), who used the same spatial approach as Zhu et al. [34] but ignored multi-species sites
with high LFMC seasonal variation, where predictions tend to be more uncertain.

The proposed model tended to underestimate large values and overestimate small
values of LFMC (Figure S6). Poor performance of an RF-based model towards the extremes
is a well-known problem within RF models [35]. Nonetheless, similar problems were also
reported in previous works based on machine learning [34,36], classical regression [23,26]
and RTM simulation [20] methods. One reason for the systematic bias at high moisture
levels can be the lower sensitivity of optical spectra to capture changes in water content
while the vegetation gets wet [25,38]. Our strategy to address this problem was to assess
LFMC over a very wide range, such that extreme values, those where LFMC estimation
is problematic, are largely out of range. The lower level of LFMC in this study was 20%,
but fuel moisture below 30% often corresponds to dead fuel (e.g., cured grass) and is thus
beyond our scope, since we were interested in LFMC [24]. Similarly, the higher LFMC
values (above 200%) may be related to harvested samples with the presence of primary
tissues from a new vegetative period [21], plant parts other than leaves (e.g., fruits, flowers),
or the inadequately inclusion of samples collected after rain or dew events [20].

The LFMCRF showed a better performance that RTM predictions from Quan et al. [38].
The RTM-based estimates were highly biased with a strong tendency to overpredict beyond
76% LFMC. This coincided with the results reported by Marino et al. [26], who found
an identical pattern starting at the threshold of 65% using the RTM developed by Yebra
et al. [20]. This demonstrates a better predictive power for our data-driven approach, even
though physically-based approaches are expected to be more precise when applied to
sites not used for calibration [24]. At any rate, we acknowledge that comparing a regional
dataset like this one against a global dataset is not entirely fair, given the scale gap, but
our results highlight that the RMSE of the global RTM hinders any local application for
operational purposes.

The critical LFMC level associated with fire occurrence in the Mediterranean forests,
and other parts of the world occurs around 100% [5–7]. Our model improves current
products, but MAE around the critical threshold of 100% LFMC is still ~13%. Differences
of 10% in LFMC estimation from field measurements are generally acceptable for fire
management [26]. However, these results indicate that there is still room for further
improvements, particularly towards the critical threshold, so as to avoid reporting of false
fire alerts or omission of danger situations [19].

4.3. Evaluation across Vegetation Types

The predictive errors obtained by the LFMCRF within the training period
for forests/savannas (RMSE 18–20%), shrublands (RMSE ~21%), and grasslands
(RMSE ~23%) were similar between them and comparable to those reported by
other studies for the same vegetation types (forests/savannas 22–32%, shrublands
14–29%, grasslands 29–49% [18,20,31,34,38].) Despite the methodological differences,
this comparison demonstrates that a single model can be as accurate or even better than
formalizing a model for each fuel class separately. This could be due to the RF architecture
that allows using the spectral and thermal information itself to discriminate between vege-
tation functional types. Furthermore, misclassification problems of the land cover products
used to differentiate between fuel classes can further increase the uncertainty of the LFMC
estimates [20,34].

In general, we observed that the uncertainty of the LFMC predictions (Figure 5)
depended on the range of LFMC values for testing and their local and temporal variability
(Figure S2). For example, forests showed more stable behavior in both LFMC dynamics and
prediction agreement. Deep root systems in trees reduce the seasonal LFMC variation [2].
On the contrary, grasslands reported the highest errors in spring (the wettest part of the
year) and the lowest in the driest periods (summer, when fires are more likely). These
patterns overlapped with the monthly maximum and minimum values of LFMC, that is,
larger LFMC errors under higher LFMC values and smaller LFMC errors under lower
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values. Shrublands instead had a low temporal variability but presented a significant bias
(MBE from −5 to −8%), likely because of the high proportion of large LFMC values (>120%)
in their ground-truth sample distributions (16.4% of the total ground-truth samples). The
error associated with predictions outside the training period (EXT) was similar to that
from the CAL dataset (Figure 5). However, RMSE was slightly lower with the EXT dataset
because of the lower LFMC variability in the EXT dataset relative to CAL. We thus conclude
that the fitted model with historical data can be safely applied in future situations without
the need for frequent readjustment, but with careful interpretation in the wettest months
and for LFMC values below 30%.

4.4. Applicability and Potential Improvements

The relatively coarse resolution (~500 m) of the final product is appropriate for
landscape-scale use and does not guarantee smaller-scale applications. Each individual
pixel normally contains information from a mixture of vegetation canopy layers, species,
surface litter, and soil elements with different properties that cannot be unambiguously
separated [10,20]. We acknowledge that a limitation to this study is that we did not explic-
itly assess the representativeness of the samples within the site. We therefore took into
account small-scale heterogeneity by implementing an NDVICV filter, as in Quan et al. [38].
However, we did not observe any significant improvement after applying this filter, likely
indicating that sample areas were relatively homogenous. In any case, sub-pixel variation
and the scale mismatch between sample-plot size and pixel resolution hinder establishing
relationships between field observations and satellite-derived variables, introducing un-
certainties into the predictions. The latter could be solved using higher spatial resolution
data (e.g., Sentinel-2 or Landsat) [26,36,37,62], but these satellites usually have lower revisit
frequency disabling near-real-time usage and introducing a time lag between the images
and the sampling date [26]. Future work should extend the use of our methods to these
newer satellites because historical LFMC field data currently available is not yet sufficient
to achieve this goal.

Further progress will come from joining our approach with microwave remote sensing
data. Microwave observations (active and passive) can also detect changes in vegetation
water content but are less sensitive to atmospheric conditions (e.g., clouds) than optical
wavelengths [30] and have the ability to penetrate deeper into the canopies [31]. The
recently available non-commercial radar data supplied by the Sentinel-1 A/B Synthetic
Aperture Radar (SAR) may represent a great opportunity to infer the improvement of
LFMC models at the operational level [31,32].

Sample representativeness is a general constrain in the empirical models [24]. In this
study, field samples were not evenly distributed across the whole Mediterranean basin.
They could be considered representative of the Western Mediterranean conditions since
they were abundant in number (space and time) within their specific biome, as well as in
species and environmental conditions. Thus, application of the LFMCRF should be limited
to areas with similar characteristics, and LFMC estimates must be interpreted with caution
in underrepresented areas (e.g., temperate zones). Despite that, the generated maps extend
to the entire Mediterranean biome included in the Mediterranean basin, as well as some
meridional areas of the temperate biomes of Europe (e.g., northern Spain) (Figure 2).

5. Conclusions

We successfully tested an RF algorithm as an approach to predict large-scale LFMC
using the spectral and thermal information of MODIS and two static variables representing
seasonal patterns. The LFMCRF is applicable to a wide variety of vegetation types, and the
performance of the fitted model (MBE = 0.47%, RMSE = 19.9%, VECV = 0.37, CCC = 0.56)
was comparable to that of other studies with similar purposes but with a higher degree
of complexity than LFMCRF, including the RTM-based methods with applications in the
Mediterranean basin. The architecture of RF allows the introduction of new explanatory
variables that would help to reduce the uncertainty in the predictions. LFMC maps were
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produced at 8-day intervals from 2001 to 2021. The final product provides a complete asset
for studying the relationships between LFMC and the influencing factors that promote
wildfire activity and fire regimes in the Mediterranean basin. Furthermore, after the
imminent MODIS decommission, the new Visible Infrared Imaging Radiometer Suite
(VIIRS) is expected to provide long-term continuity with better spatial resolution [24].
Continuous retrievals, either with MODIS or VIIRS, might be a valuable tool for quasi
near-real-time fire risk assessment and for operational applications such as the mobilization
of resources and people or the planning of preventive actions for fire mitigation (e.g., fuel
reduction or prescribed burns).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133162/s1, Table S1. Performance metrics from the focal
mean and simple pixel extraction comparison; Table S2. Spectral vegetation indices used to estimate
LFMC; Table S3. Land cover classes from samples used in the study; Table S4. Boundaries of the
RF hyperparameters grid-search space, adjusted parameters for the Forward Feature Selection (FFS)
process and optimized hyperparameters for the final model; Figure S1. LFMC ground samples
overall and by country distributions; Figure S2. Mean and standard deviation (SD) matrices from
CAL and EXT of the LFMC field measurements shown by fuel type and month of the year, and the
overall of each one; Figure S3. Correlation matrix between LFMC and predictive variables; Figure S4.
Performance metrics profiles from the general model performance assessment (MP) alternative with
the selected variables and the NDVICV filter applied to the entire dataset and only to the training
partition; Figure S5. LFMC field observations versus predictions from the CAL validation theoretically
rejected by the 0.3 NDVICV threshold; Figure S6. Residuals between predictions and observations
against the LFMC observations and their marginal density distributions for CAL and EXT. This SM
are distributed in 8 sections of additional methods and analyses: S1, Land surface temperature; S2,
Data extraction method [66]; S3, Spectral vegetation indices; S4, Land cover definitions; S5, Model
parametrization [67]; S6, Data description; S7, NDVICV filter; S8, Additional prediction analysis.
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Abstract: Pre- and post-fire airborne lidar data provide an opportunity to determine peat combus-
tion/loss across broad spatial extents. However, lidar measurements of ground surface elevation
are prone to uncertainties. Errors may be introduced in several ways, particularly associated with
the timing of data collection and the classification of ground points. Ground elevation data must
be accurate and precise when estimating relatively small elevation changes due to combustion and
subsequent carbon losses. This study identifies the impact of post-fire vegetation regeneration on
ground classification parameterizations for optimal accuracy using TerraScan and LAStools with
airborne lidar data collected in three wavelengths: 532 nm, 1064 nm, and 1550 nm in low relief boreal
peatland environments. While the focus of the study is on elevation accuracy and losses from fire, the
research is also highly pertinent to hydrological modelling, forestry, geomorphological change, etc.
The study area includes burned and unburned boreal peatlands south of Fort McMurray, Alberta.
Lidar and field validation data were collected in July 2018, following the 2016 Horse River Wildfire.
An iterative ground classification analysis was conducted whereby validation points were compared
with lidar ground-classified data in five environments: road, unburned, burned with shorter vegeta-
tive regeneration (SR), burned with taller vegetative regeneration (TR), and cumulative burned (both
SR and TR areas) in each of the three laser emission wavelengths individually, as well as combinations
of 1550 nm and 1064 nm and 1550 nm, 1064 nm, and 532 nm. We find an optimal average elevational
offset of ~0.00 m in SR areas with a range (RMSE) of ~0.09 m using 532 nm data. Average accuracy
remains the same in cumulative burned and TR areas, but RMSE increased to ~0.13 m and ~0.16 m,
respectively, using 1550 nm and 1064 nm combined data. Finally, data averages ~0.01 m above the
field-measured ground surface in unburned boreal peatland and transition areas (RMSE of ~0.19 m)
using all wavelengths combined. We conclude that the ‘best’ offset for depth of burn within boreal
peatlands is expected to be ~0.01 m, with single point measurement uncertainties upwards of ~0.25 m
(RMSE) in areas of tall, dense vegetation regeneration. The importance of classification parameteri-
zation identified in this study also highlights the need for more intelligent adaptative classification
routines, which can be used in other environments.

Keywords: elevation; airborne laser scanning; peatland; carbon; accuracy; change detection; disturbance

1. Introduction

Boreal peatlands contain considerable carbon (C) stores and have acted as a long-term
sink for atmospheric C since the Holocene [1,2]. However, with climate change, many of
these peatland regions are drying and becoming more vulnerable to wildland fire [3–5],
which are increasing in both frequency and severity [4,6]. There is interest in quantifying
the contribution of peat combustion to atmospheric C [7–9]. Improving estimations of C loss
during wildland fire is especially critical in boreal environments, where soil combustion
can account for up to ~90% of C loss [7].
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In recent years, several studies [6,10–12] have described the loss of C from wildland
fire in peatlands; however, there are methodological limitations for estimating C loss
across a broad range of peatland and boreal ecosystems. Fieldwork is labor-intensive
and time-consuming and cannot survey the full range of environmental variations that
influence the loss of C from fire in peatland landscapes [8,13,14]. Optical remote sensing
is often utilized to estimate burn severity and is particularly useful in its ability to cover
broad spatial extents (e.g., [13,15]); however, optical remote sensing of the understory and
ground surface is occluded by the pre-fire vegetation canopy and any remaining post-forest
canopy—a limitation in assessing burn severity as well as pre-fire conditions [8,13,16].
Therefore, these sensing techniques cannot easily measure ground surface elevation and
cannot measure depth of burn, an essential component of biomass loss [9].

Airborne and Unpiloted Aerial Vehicle (UAV) lidar provide an opportunity to resolve
both the lack of spatial coverage of field data and reduced ability to determine ground
elevation from high spatial resolution optical remote sensing due to occlusion. Lidar is
useful for measuring ground surface elevations and vegetation structural characteristics
across a range of land cover types, including boreal peatlands (e.g., [17–19]). This capability
allows for not only the quantification of pre-fire fuels and post-fire ecosystem regeneration
in the study of wildland fire (e.g., [9,20,21]), but also in forestry (e.g., [19,22]), urban
planning and road design (e.g., [13]), hydrological modelling (e.g., [23]), mapping and
modelling of land cover distribution (i.e., wetlands) (e.g., [24,25]), monitoring of permafrost
thaw (e.g., [9]), soil erosion (e.g., [26]) and flooding (e.g., [27]). A benefit of the use of lidar is
the ability to measure both canopy structure, understory, and ground surface elevation [13].
Multi-temporal, pre- and post-fire lidar data also enable quantification of biomass losses
from fire and post-fire vegetation regeneration (e.g., [28]). As laser pulse returns can
measure ground surface elevation, the technology is particularly useful for determining
surface elevation changes, such as depth of burn during wildland fire, quantification of
erosion, and impacts of permafrost slaw if pre- and post-disturbance lidar data are available.
However, despite its utility, questions arise on the accuracy of lidar data for determining
elevation (and therefore depth of burn, C losses, etc.) associated with different ground
classification routines and also, the efficacy of lidar-based observations as time since fire
increases. Ref. [13] suggest that most error is introduced during the classification stage;
however, custom, environment-specific ground classification parameterization can improve
DEM accuracy [19,29]. Due to the need for accurate ground surface data when quantifying
relatively small changes in elevation from combustion, erosion, slumping, permafrost thaw,
and anthropogenic disturbance, the quantification of ground classification routines specific
to land cover and vegetation growth that result in the least error is required. There is also
an urgent need for more accurate measurements of soil combustion and overall C losses
from boreal peatlands and their potential influence on the global climate system [11,30].

Based on the necessity for accurate ground elevation data for estimating depth of
peatland burn in pre- and post-fire lidar data, this study aims to: (a) identify how post-
fire vegetation regeneration impacts optimal ground classification configurations using
industry-standard software: TerraScan (Terrasolid, Helsinki, Finland) and LAStools (Rapid-
Lasso, Gilching, Germany, GmbH); and (b) compare multispectral lidar emission wave-
length(s) (532 nm (green); 1064 nm (near infrared); 1550 nm (shortwave infrared); 1064 and
1550 nm combined; and, 532, 1064, and 1550 nm combined) in burned and unburned boreal
peatlands and transition zones in western Canada. The overall goal is to provide recom-
mendations for ground classification of lidar data across a range of vegetation regeneration
required for quantifying subtle changes in elevation, including depth of burn from fire (in
bi-temporal, pre- and post-fire lidar data). While this research focuses on wildland fire,
recommendations will also be useful for hydrological modelling, forestry applications, and
land surface engineering/mining/cut-fill operations.
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2. Materials and Methods

2.1. Study Area

The study area is located about 30 km south of Fort McMurray, Alberta (centre:
12N 482464E 6260554N) in the Boreal Plains ecozone of Canada (Figure 1) [31]. The
region is characterized by flat to slightly undulating terrain with some hummocky zones.
It is dominated by bog and fen peatlands (dominant wetland classes in Alberta [32]),
aspen (Populus tremuloides) uplands, and black spruce (Picea mariana) lowlands/transition
zones [31]. Extensive forestry and oil exploration and extraction occur within the region, as
do subsistence and commercial hunting and fishing and minor agricultural practices [31].

 
Figure 1. Map illustrating the extent of the Horse River Wildfire within the Boreal Plains Ecozone
(inset), which extends across Canada from northern British Columbia (BC) and into Alberta (AB),
Saskatchewan (SK), and Manitoba (MB) and the study area, including lidar survey polygon and field
validation transects/plots.

The study covers a 20,441-ha area south of Fort McMurray, extending beyond the area
burned by the Horse River Wildfire in 2016 (Figure 1). The Horse River Wildfire, covering
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approximately 600,000 ha, ignited 7 km outside Fort McMurray on 1 May 2016, under
hazardous conditions—uncharacteristically hot (~35 ◦C), dry, and windy (~43 km hr−1)
weather. The fire was declared under control on 4 July 2016; however, smoldering peat burn
continued for approximately 15 months before being extinguished [33,34]. The burned
region includes a variety of burn severities and levels of vegetative regeneration since the
fire, from little to no regeneration to significant vegetation growth (Figure 2). This allows
for the opportunity to compare laser pulse interactions and ground elevation accuracies
across a range of conditions akin to timing of lidar data collection following fire.

Figure 2. Four vegetation categories used to represent time since fire with field photos and lidar
point clouds.

In sites with shorter regeneration (SR), post-fire vegetation heights averaged 0.20–0.35 m
(Figure 2). Dominant vegetation was primarily Sphagnum spp. And feathermoss (Pleuroz-
ium spp.), with subdominant vegetation consisting of mosses, herbs, and low-lying herb
species such as Labrador tea (Rhododendron groenlandicum), reindeer lichen (Cladonia rangife-
rina), bog cranberry (Vaccinium oxycoccos), cloudberry (Rubus chamaemorus), and horsetail
(Equisetum fluviatile). In sites with taller post-fire vegetative regeneration (TR), above-surface
vegetation heights averaged 0.40–1.00 m (Figure 2). While dominant vegetation included
some similar species as the SR sites such as feathermoss and Sphagnum spp., sites were also
dominated by more woody vegetation and tall shrubs, such as willow (Salix spp.), bog,
shrub, and paper birch (Betula pumila, glandulosa, and papyrifera), black spruce (Picea mari-
ana), fireweed (Chamaenerion angustifolium), horsetail (Equisetum spp.), rose (Rosa acicularis),
trembling aspen (Populus tremuloides), and raspberry (Rubus idaeus).
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2.2. Data Acquisition

Airborne lidar data were collected in July 2018, two years following the Horse River
Wildfire, using a Titan multispectral lidar (Teledyne Optech, Inc., Vaughan, ON, Canada).
The Titan collects data using three laser emission wavelengths (channels): 1550 nm (short-
wave infrared (SWIR); channel 1), which is 3.5◦ forward of nadir; 1064 nm (near-infrared
(NIR); channel 2), which is emitted at nadir; and 532 nm (green; channel 3) which is 7◦
forward of nadir (Figure 3a) [18]. The survey was flown at ~1000 m above ground, with
scan angles of ±25 degrees, a pulse repetition frequency of 100 kHz per channel (300 kHz
total), and a 50% flightline overlap. This survey configuration resulted in average point
densities of 4.8 pts m−2, 4.2 pts m−2, and 2.1 pts m−2 for channels 1, 2, and 3, respectively.
As laser scan lines are not spatially coincident, the 50% overlap reduces gaps, especially
prevalent along scan line edges, such that validation points do not exist within one or two
channels, introducing bias (Figure 3b).

a. 

b. 

Figure 3. (a) Illustration of lidar laser beam angles, beam divergence, and impact on footprint
diameter (Ø) in peatlands with variable microtopography (hollows and hummocks); (b) Samples of
validation transects and lidar data demonstrating spatial distribution of validation points throughout
the three channels. Note: microtopography in (a) has been exaggerated for demonstration purposes.

Field data were collected coincident with the 2018 lidar data collection for the calibra-
tion and validation of lidar data. To select sample sites, the study area was first stratified
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into scales of influence: (a) burned versus non-burned areas within and proximal to the
Horse River wildfire; (b) within burned areas, different classes of burn severity (minimum,
medium, and severe) determined visually from optical remote sensing imagery as well as
through on-the-ground assessments at the time of field data collection; and, (c) peatland
type (treed and open bogs; rich and poor fens) determined from optical remote sensing
imagery and on-the-ground assessments. Data were collected along ~30 m transects in
18 burned and 6 unburned peatland sites. Transects intersected upland-peatland transi-
tion zones and peatlands. Global Navigation Satellite System (GNSS) ground elevation
validation points were collected in burned and unburned landscapes. To validate post-fire
ground surface elevations [9], GNSS stations were placed at the beginning and end of each
transect and were left to run for the duration of sampling (>1 h for centimeter accuracy).
Precise Point Positioning (PPP) was used to process these end points. A level was used at
one- (burned sites) or two- (unburned sites) meter intervals to determine ground elevation
relative to the GNSS base stations. A total of 708 ground elevations were measured: 130 in
unburned and 578 in burned peatlands with variable rates of vegetation regeneration. Post
Processed Kinematic (PPK) GNSS elevation locations were also collected along two road
surfaces (n = 2655) to ensure the elevational accuracy of airborne lidar data in areas of flat
terrain without any overstory canopy influences on ground surface elevation [17,35].

2.3. Data Processing

Lidar returns from road surfaces were compared with PPK GNSS survey points and
vertically batch-shifted to ensure the average offset between lidar data and calibration
points was zero [35] using Bentley Microstation TerraSolid Terrascan software version
021.011 (Terrasolid, Helsinki, Finland) [36]. Isolated or outlier points were removed, and
an iterative ground classification analysis was then conducted through which ground vs.
non-ground returns were classified. The five ground cover types (road, unburned, short
vegetation regeneration (SR), and tall vegetation regeneration (TR), and cumulative burned
(all regeneration stages)) were analyzed separately to identify optimal ground return
classifications for each type, optimized for relatively flat to slightly undulating boreal
peatland and transitional environments with micro-topographic hummocks and hollows.

2.3.1. TerraScan

Within TerraScan, six ground classification parameters can be readily modified: (a) ‘max
building size’, which sets the grid size for seed ground point selection; (b) ‘terrain angle’,
which is the maximum slope between a seed point and a candidate point; (c) ‘iteration
angle’, which is the maximum angle that a point can be added to the ground classification;
(d) ‘iteration distance’, which is the maximum distance that a point can be added to the
ground classification; (e) ‘reduce iteration angle’, a binary choice which reduces the number
of unnecessary points added to the surface in areas of high point density by reducing the
number of points that are added to the surface if edge length is longer than all triangle edges;
and (f) ‘stop triangulation’, another binary choice which reduces the number of unnecessary
points added to the surface by not processing points within a triangle if edge length is longer
than all triangle edges [37,38] (Table 1). Adjusting each ground classification parameter results
in morphological differences in the resultant ground-classified data.
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Table 1. TerraScan ground classification parameter modifications used in ground classification
iteration analysis.

Ground
Classification

Max Build-
ing Size

Terrain
Angle

Iteration
Angle

Iteration
Distance

Reduce Iteration Angle
When Edge Length<

Stop Triangulation
When Edge Length<

1 60 50 6 1.4 5 -
2 60 55 6 1.4 5 -
3 60 60 6 1.4 5 -
4 60 65 6 1.4 5 -
5 60 70 6 1.4 5 -
6 60 75 6 1.4 5 -
7 60 80 6 1.4 5 -
8 60 88 6 1.4 5 -
9 60 88 2 1.4 5 -
10 60 88 2 0.5 5 -
11 60 88 2 1 5 -
12 60 88 2 1.5 5 -
13 60 88 2 2 5 -
14 60 88 5 1.4 5 -
15 60 88 5 0.5 5 -
16 60 88 5 1 5 -
17 60 88 5 1.5 5 -
18 60 88 5 2 5 -
19 60 88 10 1.4 5 -
20 60 88 10 0.5 5 -
21 60 88 10 1 5 -
22 60 88 10 1.5 5 -
23 60 88 10 2 5 -
24 60 88 15 1.4 5 -
25 60 88 15 0.5 5 -
26 60 88 15 1 5 -
27 60 88 15 1.5 5 -
28 60 88 15 2 5 -
29 60 88 15 1.5 - -
30 60 88 15 1.5 1 -
31 60 88 15 1.5 2 -
32 60 88 15 1.5 10 -
33 60 88 15 1.5 5 0.5
34 60 88 15 1.5 5 2
35 60 88 15 1.5 5 5
36 60 88 15 1.5 5 0.25

Thirty-six different ground classification parameterizations were developed by mak-
ing adjustments to TerraScan’s classification parameters (Table 1). Classifications 1–28 were
produced by iterating through adjustments to the four primary parameters: ‘Max Building
Size’, ‘Terrain Angle’, ‘Iteration Angle’, and ‘Iteration Distance’. Classifications 29–36
were developed by refining an optimal classification (27) using ‘Reduce Iteration Angle
When Edge Length<’ and ‘Stop Triangulation When Edge Length<’ (Table 1). Each of the
classification parameterizations was used to produce ground surfaces in the channels and
channel combinations tested, resulting in 180 distinct ground surfaces. Each surface output
was compared to ground elevation field validation data (elevation collected along the road,
unburned peatlands, TR peatlands, SR peatlands, and total burned peatlands) using TerraS-
can’s control report function (see Section 2.4) for a total of 740 ground classification tests.

2.3.2. LAStools

LASground, from LAStools (RapidLasso GmbH, Gilching, Germany), offers five
defined ground classifications that, like TerraScan, use an adaptive TIN algorithm to classify
ground points. Two were tested (excluding urban settings): ‘nature’ and ‘wilderness’. These
settings differ in their step size (cell size within which lowest point becomes initial ground
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point) and ‘bulge’ (height allowance for TIN to “bulge” above planar surface). These can
be refined using the options ‘default’, ‘fine’, ‘extra’, ‘ultra’, and ‘hyper’, resulting in ten
different readily accessible ground classification parameterizations (lettered A–J; Table 2).
Using refining options intensifies the search for seed ground points—this is often most
useful for ground surfaces with steep hills [39]. Each of the ten different classification
parameterizations was used to produce ground surfaces in the channels and channel
combinations tested, resulting in 50 distinct ground surfaces. These were brought into
TerraScan for the quantification of control point statistics. Like the TerraScan analysis, each
ground surface was compared with field elevation measurements from road, unburned
peatlands, TR peatlands, SR peatlands, and burned peatlands cumulatively, for a total of
250 ground classification tests.

Table 2. LASTools ground classification parameter modifications used in ground classification
iteration analysis.

Ground Classification Refinement Bulge (m) Step Size (m) Subgrid for Initial Ground Points

A Nature Default 0.5 5 =step size
B Nature Fine 0.5 5 Default granularity × 4
C Nature Extra Fine 0.5 5 Fine granularity × 4
D Nature Ultra-Fine 0.5 5 Extra Fine granularity × 4
E Nature Hyper Fine 0.5 5 Ultra-Fine granularity × 4
F Wilderness Default 0.3 3 =step size
G Wilderness Fine 0.3 3 Default granularity × 4
H Wilderness Extra Fine 0.3 3 Fine granularity × 4
I Wilderness Ultra-Fine 0.3 3 Extra Fine granularity × 4
J Wilderness Hyper Fine 0.3 3 Ultra-Fine granularity × 4

2.4. Vertical Accuracy Assessment

Ground classification outputs performed using TerraScan (n = 36) and LAStools soft-
ware (n = 10) in each of the three available laser emission wavelengths and wavelength
combinations were compared with field-measured elevations from road (n = 2655), un-
burned peatlands (n = 130), burned peatlands (n = 578), TR peatlands (n = 267), and SR
peatlands (n = 269). Validation data were segregated into TR vs. SR vegetative regeneration
based on average measured vegetation height and dominant species per plot (1 m × 1 m
with three elevation measures through the center of each plot, perpendicular to the transect;
Figure 2). The separation of peatlands based on vegetation provides an opportunity to quan-
tify elevation accuracy from lidar across a range of environmental characteristics, including
unburned with a full understory, burned with no or shorter regeneration (SR; a proxy for
lidar data collected immediately post-fire), and burned with tall regeneration (TR; a proxy
for data collection several years post-fire). Validation data were distributed throughout
the study area, and the number of validation elevations measured in the field exceeded
the minimum (n = 20) and the recommended (n = 30) suggested for each vegetation cover
type by the American Society for Photogrammetry and Remote Sensing [13,40,41]. All
ground-classified data were examined in TerraScan, where validation point elevations were
compared with lidar point elevations, a standard methodology for lidar vertical accuracy
assessments [41,42]. Through TerraScan’s control report function, lidar points were used to
interpolate a surface using a Triangulated Irregular Network (TIN). As it is unlikely that
a lidar point exists at the same x, y location as a validation point, validation points were
compared to their x, y location on the TIN surface [43,44]. Control point statistics, including
the difference in elevation between control points and lidar ground returns (dz; average,
maximum, and minimum), standard deviation, and root mean square error (RMSE), were
quantified via TerraScan’s control report function [44].

To identify the optimal ground classification for each vegetation cover type, classified
outputs were assessed based on RMSE (commonly used to determine accuracy) [41,45,46]
and by absolute average dz (|dz|), while also being mindful of point density. Optimal
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ground classification statistics (dz and standard deviation (SD)) were then used to determine
total error (dz ± SD) when using multitemporal lidar data to assess ground surface elevation
changes (pre- and post-fire). The uncertainties associated with multi-temporal surface
elevation measurements are independent of one another, so the propagated error (SD)
was calculated through quadrature, (Equation (1)), where Q is the average over- or under-
estimation of surface elevation change, ∈ a is cumulative SD, dz(b) and dz(c) are the
average deviations of lidar classified ground surface from the measured ground surface at
times b and c, and ∈ b and ∈ c are the SDs of ground surface measurements at two points in
time (i.e., pre- and post-fire). Note that the average deviation (dz) is used, and not absolute
average deviation (|dz|).

Q ± ∈ a =
(

dz(b) + dz(c)
)

±
√
(∈ b)2 + (∈ c)2 (1)

3. Results

The results demonstrate wavelength dependencies and optimal ground classification
parameterizations for each vegetation cover type tested within TerraScan and LAStools.

3.1. Differences between Ground-Surveyed Road Elevations and Lidar-Measured Road
Ground Classifications

The optimal ground return classification aims to observe the lowest differences in
ground surface elevations between field validation and nearby laser returns in each wave-
length. Based on the flat, non-vegetated road surface GNSS measurements, we found
that neither classification parameter choice (Tables 1 and 2), nor wavelength, significantly
impacted the quality of the ground classification along road surfaces (Figures 4 and 5;
Table S1). Using both TerraScan and LAStools, the |dz| from the measured elevations
ranged from 0.00 to 0.02 m, and RMSE from 0.04 m to 0.05 m.

 

Figure 4. Ground classification results (|dz| and RMSE) along a flat road surface for baseline
comparisons using parameterization methods in Table 1. Classifications were conducted in TerraScan.
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Figure 5. Ground classification results (|dz| and RMSE) along a flat road surface for baseline
comparisons using parameterization methods in Table 2. Classifications were conducted in LAStools.

This provides a baseline for comparisons to ground classifications in varying vegeta-
tion regeneration stages and demonstrates that any changes observed in ground classifica-
tion accuracies result from different parameterizations responding differently to variable
vegetation regeneration.

3.2. Differences between Field-Measured Elevation and Lidar Return Ground Classification in
Shorter Vegetative Regeneration Peatlands

In SR peatlands and transitional areas (representing characteristics that are similar
to peatlands that have been surveyed soon after a fire), we found that the ground clas-
sifications that produced the most accurate results in TerraScan were classifications 14
through 18 (a slight reduction in iteration angle from six to five as compared to default)
with laser pulse emission at 532 nm (Figure 6 and Table 1). These all produced a lidar-
derived ground-classified elevation with an |dz| = 0.00 m (RMSE = 0.09 m). However,
the point density was below 1 point m−2; (0.86 points m−2; Table S1). If a higher point
density were required, using all three laser pulse emissions (IR, NIR and Visible) and
increasing iteration angle from 6 to 15, as well as reducing iteration angle when edge
length < 1.0, 2.0, or turned off (classifications 29–31) produce nearly-as-accurate ground
surfaces with |dz| = 0.01 m (RMSE = 0.09 m) and 4.06, 3.94, and 3.32 points m−2, respec-
tively (Figure 6; Tables 1 and S1). In more typically used lidar systems that collect data
at 1064 nm (NIR), the optimal classifications were 24–28 (iteration angle increased from
6 to 15◦; Table 1), which resulted in |dz|s slightly elevated above the true ground surface
(|dz| = 0.03 m; RMSE = 0.10 m; 1.03 points m−2; Figure 6 and Table S1).The poorest ground
classifications for SR areas were those within which iteration angle was narrowed to 2◦.
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Figure 6. Ground classification results (|dz| and RMSE) in burned peatlands with low vegetation
regeneration two years post-fire (as a proxy for immediately post-fire). Classifications were conducted
in TerraScan.

Using LAStools, ground classifications F–J using lidar data collected at all three wave-
lengths were optimal (Figure 7 and Table 2). These classifications produced lidar-measured
ground elevations that did not, on average, deviate from the true ground surface
(|dz| = 0.00 m; RMSE = 0.09 m; 3.70–3.72 points m−2; Figure 7 and Table S1). In this
case, where all channels were used, refinement did not impact the ground-classified sur-
face’s accuracy or point density (m−2). In a lidar system that collects data in the 1064 nm
wavelength, optimal classifications were G–J, which produced lidar-measured ground clas-
sifications with |dz| = 0.01 m (RMSE = 0.09 m; 1.3–1.31 points m−2; Figure 7 and Table 2).
However, in this landscape, when using LAStools, the most significant difference in classifi-
cation accuracy was due to the channel with which the data were collected; changes within a
channel were negligible (i.e., within the 1064 nm data: |dz| remained at 0.01 m regardless
of classification, RMSE only varied by 0.01 m (0.09–0.10 m), and point density varied from
1.24–1.31 points m−2 (Figure 7 and Table S1). While the optimal classifications from TerraScan
and LAStools were comparable, the poorest classifications from each were notably different.
The classifications produced in LAStools had an |dz| ranging from 0.00–0.03 m and an
RMSE ranging from 0.09–0.10 m, whereas TerraScan classifications had an |dz| ranging from
0.00–0.09 m and an RMSE ranging from 0.09–0.15 m (Figures 5 and 6).
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Figure 7. Ground classification results (|dz| and RMSE) in burned peatlands with low vegetation
regeneration two years post-fire (as a proxy for immediately post-fire). Classifications were conducted
in LAStools.

In summary, for a well-calibrated and locally controlled (e.g., over a nearby highway
surface) airborne lidar survey we can expect a spatially averaged difference in elevation of
<0.01 m with a range of ~0.09 m in areas of burned ground surface with no to low vegetation
regeneration using optimal classifications in both TerraScan and LAStools. However,
appropriate parameterization in TerraScan is dependent on the channel(s) available and
required point density (Tables 1 and S1).

3.3. Differences between Field-Measured Elevation and Lidar Ground Classification across All
Burned Peatlands (Cumulative Shorter Vegetative Regeneration and Taller Vegetative
Regeneration Sites)

As vegetation growth increases in the two years following wildland fire, and vegeta-
tion regeneration varies from low (as in SR sites) to high (as in TR sites), optimal ground
classification parameters change. In TerraScan, the greatest similarity (and lowest error)
when comparing lidar ground-classified returns with the surveyed ground elevation in
all burned sites combined (a proxy for ~2 years post-fire) was found when the iteration
angle was increased from 6 to 15, but iteration distance was reduced to 0.5 or 1.0 from 1.4
default (parametrization methods 25 or 26) using both 1550 nm and 1064 nm data (Figure 8;
Tables 1 and S1). These classifications produced lidar-measured ground elevations with
an |dz| = 0.00 m (RMSE = 0.13 m; 1.88 points m−2). For a typical 1064 nm laser emission
wavelength system, classifications 20 through 23 produced optimal results (iteration angle
increased from six to ten), also producing ground elevations with an |dz| = 0.00 m but
with a slightly higher RMSE and lower point density (RMSE = 0.14 m; 1.03 points m−2;
Figure 8 and Table 1). As with SR areas, the ground classifications with the lowest accuracy
in cumulative burned areas were those whose iteration angle was narrowed to 2.
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Figure 8. Ground classification results (|dz| and RMSE) in burned peatlands unsegregated based on
vegetation regeneration two years post-fire (true representation of two years post-fire). Classifications
were conducted in TerraScan.

When compared with optimal ground classification for laser returns in SR landscapes,
the optimal ground classification used for total burned areas provides results with compa-
rable |dz|, but slightly higher uncertainty (SR RMSE = 0.09 m), as would be expected with
an increase in vegetation height and height variability.

As in SR areas, classification of returns to ground and elevation accuracy in ar-
eas representative of vegetation two years post-fire (cumulative burn areas) depended
more on laser pulse emission wavelength than on classification parameters applied in
LAStools; however, channel optimization differed. The ground classifications that pro-
duced the most accurate results for burned surfaces compared with measured elevations
were A through C, E, G, and J (Table 2), using 1550 nm data (|dz| = 0.00; RMSE = 0.14;
point density = 1.27–1.34 points m−2; Figure 9; Table 2); however, within a given wave-
length, all parameterizations produced similar results (for example, using 1550 nm data,
|dz| = 0.00–0.01 m; RMSE = 0.14–0.15 m; points m−2 = 1.27–1.34). By using combined
1550 nm and 1064 nm data, similar results are produced (|dz| = 0.01–0.02 m; RMSE = 0.14)
but point density increases to 2.4–2.61 points m−2. Similarly to SR landscapes, optimal
classifications from TerraScan and LAStools were negligibly different; however, the poorest
classification from LAStools was more accurate than that of TerraScan (|dz| = 0.06 m;
RMSE = 0.15 m and |dz| = 0.09 m; RMSE = 0.16 m, respectively; Figures 7 and 8).
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Figure 9. Ground classification results (|dz| and RMSE) in burned peatlands unsegregated based on
vegetation regeneration two years post-fire (true representation of two years post-fire). Classifications
were conducted in LASTools.

In the case of more typical 1064 nm lidar systems, classifications B through J produced
ground elevations with an |dz| of 0.02 m, an RMSE of 0.14 m, and 1.24–1.31 points m−2

compared with field-measured; however, even the “poorest” classification (greatest dif-
ference from measured) produced from 1064 nm data showed nearly identical results
(|dz| = 0.02; RMSE = 0.15; Figure 9 and Table 2), emphasizing the importance of chan-
nel selection during data collection over classification parameterization choice when
using LAStools.

In summary, two years post-fire, we can expect an average elevational accuracy of
~0.00 m with a range of ~0.13 m using combined 1550 nm and 1064 nm data with TerraScan.
Using LAStools, spatially averaged elevational accuracy is comparable at ~0.00 m but with
a slightly higher range of ~0.14 m when measured at 1550 nm.

3.4. Differences between Field-Measured Elevation and Lidar Return Ground Classification in
Taller Vegetative Regeneration Peatlands

In areas with the greatest vegetation growth since fire (proxies for >2 years post-
burn), the most accurate ground classification in TerraScan was classification 20, using
combined 1550 nm and 1640 nm data (Figure 10; Tables 1 and S1). For this classification, the
iteration angle was increased from six to ten, and the iteration distance was reduced from
1.4 m to 0.5 m when compared with default parameters. This resulted in a lidar ground
classification output with a ground classification accuracy of |dz| = 0.00 m (RMSE = 0.16 m;
1.54 points m−2). In the case of more typical airborne lidar emitting laser pulses at 1064 nm,
this classification still resulted in the most optimal ground surface (with a point density of
>1 point m2); however, the lidar-measured ground surface sat ~0.03 m above measured
(|dz| = 0.03 m; RMSE = 0.17 m; 1.03 points m−2). More accurate classification schemes
were identified, with fewer (in this case, 0.75) points m−2 (classifications 14 through 18;
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|dz| = 0.00 m; RMSE = 0.17 m; Figure 10; Table 1). Generally, the least accurate results
were similar to those for cumulative burned areas—those within which the iteration angle
was reduced to two; however, in TR areas, emission wavelength made the most difference
to accuracy, with the lowest accuracy classifications produced by 532 nm data.

 

Figure 10. Ground classification results (|dz| and RMSE) in burned peatlands with tall vegetation
regeneration two years post-fire (as a proxy for 3+ years post-fire). Classifications were conducted
in TerraScan.

Using LAStools, the optimal ground classifications were A through E (‘Nature’ classifi-
cations with any level of refinement) using combined 1550 nm and 1064 nm data (Figure 11;
Tables 2 and S1). The lidar-measured ground classified returns had an |dz| = 0.03 m
from field-measured (RMSE = 0.18 m; 2.40–2.42 points m−2). Comparable results were
achieved using only 1550 nm data, but point density was reduced to 1.27–1.34 points m−2.
As with earlier vegetation regeneration stages, classification accuracy depended more on
the wavelength than on classification parameters with LAStools. For systems using only
1064 nm emission wavelengths, the lidar-measured ground surface sits slightly above the
measured ground (|dz| = 0.04–0.05 m; RMSE = 0.18 m; 1.24–1.31 points m−2). Similar to
TerraScan results, the poorest classifications were those produced with 532 nm data.
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Figure 11. Ground classification results (|dz| and RMSE) in burned peatlands with tall vegetation
regeneration two years post-fire (as a proxy for 3+ years post-fire). Classifications were conducted
in LAStools.

In summary, unlike areas with lower vegetation regeneration, in TR areas, the optimal
classifications from TerraScan and LAStools differed, with TerraScan classifications gener-
ally performing better (Figures 10 and 11). Using TerraScan we can still expect an average
elevation accuracy of ~0.00 m; however, the accuracy at a given point is expected to have a
range of ~0.16 m using combined 1550 nm and 1640 nm data with TerraScan. Using the
same lidar data but with LAStools, the average elevational accuracy is slightly lower at
~0.03 m, with a slightly increased RMSE of ~0.18 m.

3.5. Differences between Field-Measured Elevation and Lidar Return Ground Classification in
Unburned Peatlands

Finally, in unburned areas (or areas that have fully regenerated post-fire), the optimal
ground classifications were 9 through 13 using all wavelengths combined (Figure 12;
Tables 1 and S1). By reducing the iteration angle to two, these classifications resulted in
an |dz| = 0.01 m and an RMSE = 0.19 m; however, point density was relatively low
for this particular survey (0.64 points m−2). When a threshold of 1.0 points m−2 is set,
the optimal ground classifications shifted to 14 through 18, with their iteration angles
set to 5◦ (Table S1). These classifications have a point density of 1.16 points m−2, but
an |dz| = 0.05 m (Figure 12; Table 1). In the case of a lidar emitting at 1064 nm, the
optimal classifications are the same as those when all wavelengths are combined (9 through
13); however, classification accuracies notably decline with a threshold of 1.0 points m−2.
Classifications 19 through 23 provide the best outputs, in this case, with an |dz| = 0.09 m
(RMSE = 0.22 m; 1.03 points m−2). The least accurate classifications are those produced
using lidar data collected at 532 nm, where the iteration angle is 15 (widest angle tested).
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Figure 12. Ground classification results (|dz| and RMSE) in unburned peatlands. Classifications
were conducted in TerraScan.

Unlike in burned landscapes, where classification was not the dominant control on
accuracy compared with emission wavelength in LAStools, there was a distinction between
classifications in unburned areas. In these zones, classification B using data collected at
1064 nm was optimal (Figure 13 and Table 2), resulting in the lowest difference between field-
measured and ground classified returns. This classification resulted in an |dz| = 0.09 m
(RMSE = 0.21 m; 1.24 points m−2). As with other vegetation regeneration stages, data
collected at 532 nm resulted in the least accurate ground classifications, regardless of
parameterization, followed by use of all channels combined.

In summary, as with TR areas, the optimal classifications from TerraScan and LAStools
differed in unburned boreal peatlands. We can expect a spatially averaged elevation
accuracy of ~0.01 m (or ~0.05 m with a threshold of point density > 1 point m−2) with an
accuracy at a given point within an RMSE of ~0.19 m when using all channels combined,
processed in TerraScan (Figure 12). Using LAStools, accuracy was poorer, with an average
elevation accuracy of ~0.09 m with an RMSE of ~0.21 m at 1064 nm (Figure 13).
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Figure 13. Ground classification results (|dz| and RMSE) in unburned peatlands. Classifications
were conducted in LAStools.

3.6. Expected Ground Surface Elevation Accuracies of Lidar Data in the Years following
Wildland Fire

By isolating taller versus shorter vegetative regeneration regions and using these as
proxies for time since fire, we can estimate the elevation accuracy of lidar data collection
in the years following wildland fire. Within the first year since fire (which we assume is
the ‘SR’ category), lidar-measured ground elevation accuracies would be expected to be
approximately 0.00 ± 0.09 m (dz ± standard deviation (SD); Figure 14a and Table S1). For
this classification, as well as the others used, below, SD was equal to RMSE. Approximately
two years post-fire (at the time of this lidar data collection, assumed to include burned area
surveyed–SR and TR), we would expect to see ground elevation accuracy of approximately
0.00 ± 0.13 m (Figure 14a and Table S1). As vegetation growth continues beyond the third
year post-fire (‘TR’ category), the elevation accuracy of the lidar-measured ground classified
points would be reduced to approximately 0.00 ± 0.16 m (Figure 14a and Table S1). In
unburned areas, elevation accuracy would be approximately 0.01 ± 0.19 m (Figure 14a
and Table S1).

As the highest uncertainty (SD) was associated with unburned (pre-fire) areas, the
RMSEs associated with surface elevation changes were minimally different depending
on the stage of post-fire vegetation regeneration (Figure 14b). By using optimal ground
classification schemes, the post-fire dzs were consistently 0.00 m, and pre-fire was ~0.01 m
(Figures 4–13; Table S1). As such, the standard offset for elevation change was ~0.01 m, on
average, regardless of vegetation regeneration. We found that if lidar data were collected
immediately post-fire (i.e., SR areas), SD of the elevation change (depth of burn) was 0.21 m
(Figure 14b). If data were collected ~ two years post-fire (i.e., cumulative burned areas),
SD was 0.23 m (Figure 14b). Furthermore, if lidar data were collected three or more years
post-fire (i.e., TR areas), SD was 0.25 m (Figure 14b).
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a. 

b. 

Figure 14. (a) Expected ground elevation accuracies of lidar data in the years following wildland
fire in boreal peatlands; (b) Expected depth of burn (DOB) accuracies of lidar data in the years
following wildland fire in boreal peatlands, assuming pre-fire lidar data were collected in “unburned
conditions”, where Q = average over- or under-estimation of surface elevation change, and Ea is
cumulative error (SD). Note: for all measurements used, SD was equal to RMSE.
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3.7. Wavelength Dependency of Ground Classification Accuracy as Varies by
Vegetation Regeneration

By optimizing parameterizations, highly accurate ground classifications in low relief
environments are possible for any wavelength or combination used. However, regardless
of processing software, local vegetation characteristics still influence which wavelength
produces optimal ground classification results. When applying the TerraScan ground
classification parameterizations to road surfaces, optimal ground classification parameteri-
zations derived from 1064 nm data had the lowest error compared with ground control
measurements. However, wavelength-associated differences in ground surface elevation
were negligible: |dz|s ranged from 0.00 to 0.02 m (on average for all combination of
wavelengths) and RMSEs from 0.04 to 0.05 m (Figure 15a and Table S1). In unburned
and TR areas, the combination of 1550 nm and 1064 nm wavelengths resulted in the
most accurate ground classifications, with the least variability based on parameterization
optimizations (Figure 15e,c). The least wavelength-dependent vegetation regeneration
stage was that of cumulative burned areas with variable regeneration heights (a proxy for
~2 years post-fire; Figure 15d). While 1064 nm data resulted in the most accurate ground
classifications with the least variability based on the parameterization scheme, the use of
any wavelength individually resulted in similar levels of accuracy. However, the accuracy
of ground classifications became more variable when wavelengths were combined (either
1550 nm and 1064 nm; or, 1550 nm, 1064 nm, and 532 nm). In SR zones, lidar-based ground
elevations measured at 532 nm were the most accurate, with the lowest variability based
on parameterizations (Figure 15b).

 

Figure 15. Ground classification results by wavelength along/in: (a) roads, (b) burned peatlands
with short regeneration, (c) burned peatlands with tall regeneration, (d) all burned peatlands, and
(e) unburned peatlands two years post-fire. Results were identified using TerraScan as determined by
lidar channel. Each point represents an iterative parameter set. Note: axis range varies by plot.

In LAStools, wavelength selection impacted ground classification accuracy more than
in TerraScan (Figures 15 and 16). Interestingly, processing software affects wavelength
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dependency for a given regeneration stage, particularly in SR areas (Figures 15b and 16b).
Along road surfaces, the use of data collected at 1064 nm, or both 1550 nm and 1064 nm,
resulted in slightly lower RMSEs; however, |dz| differences were negligible, and RMSEs
varied by only ~0.01 m (Figure 16a). In unburned areas, 1064 nm data resulted in ground
classifications with the lowest |dz|s and RMSEs (Figure 16e). Data collected using the
1550 nm wavelength provided the most accurate classifications in both cumulative burned
and TR areas (Figure 16d,c). In SR areas, all wavelengths combined provided the most
accurate ground classifications (Figure 16b).

 

Figure 16. Ground classification results by wavelength along/in: (a) roads, (b) burned peatlands
with short regeneration, (c) burned peatlands with tall regeneration, (d) all burned peatlands, and
(e) unburned peatlands two years post-fire. Results were identified using LAStools as determined by
lidar channel. Each point represents an iterative parameter set. Note: axis range varies by plot.

4. Discussion

Despite the utility of lidar data for measuring ground surface elevation, time-series
lidar data pre- and immediately post-fire is relatively rare but is increasing in availability
with the application of lidar for understanding the impacts of wildland fire on ecosystems.
This study provides an opportunity to assess the potential for error during the classification
of lidar returns as “ground” and the accuracy of ground elevations for use in DEMs. It also
identifies the ground classification errors associated with scorched patches/new vegetation
regeneration (SR) and early post-fire regeneration stages, indicating time since disturbance.

Previous studies have found that errors in ground classification most often occur
as a result of steep terrain [19,41,47] or dense vegetation [19,29,48]. Here, the study area
is relatively flat, and so the potential for error that results from sloped terrain is greatly
reduced (e.g., [19]). However, where vegetation has regenerated post-fire, stems and
foliage can be relatively dense. Further, burned peatland surfaces can have significant
microtopographical variability (hummocks and hollows) that may be difficult for the
lidar ground classification to differentiate from short, dense vegetation (e.g., [49]). Our
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results show that within a given vegetation height range, the accuracies of lidar ground
classifications (provided the parameters are set logically) do not deviate greatly from
the most to least accurate ground classification of laser returns compared with ground
control (Table S1). For example, within SR zones, using the least accurate classification
scheme/wavelength combination results in classified returns that were, on average, 0.11 m
below measured ground elevation, with a RMSE of 0.15 m. For many applicationns, such
as canopy height measurements in forested environments, this may be sufficient (e.g., [50]);
however, it is important to achieve the best accuracy possible when determining ground
surface elevations for applications including combustion from wildland fire (e.g., using
pre- and post-fire datasets) and hydrological modelling (e.g., [19]). This is due to the need
for accurate quantification of slight differences in the elevation surface from pre-post fire or
spatial changes in local surface topography.

We found that as vegetation regenerates post-fire, both optimal parameterizations and
the wavelength used for lidar data collection differ at varying growth stages. In SR areas, or
immediately post-fire, laser pulse emissions at 532 nm or using all wavelengths combined
(532 nm, 1064 nm, and 1550 nm) provide the most accurate ground classifications compared
with measured (Figures 4, 5, 15 and 16; Table S1). In these areas where vegetation regeneration
was minimal, laser pulses emitted at 532 nm better characterized the ground surface due to
the dominance of moss cover in measurement plots with little overlying vegetation in these
peatland environments. It should be noted that channel dependencies are likely a result of
both wavelength as well as pulse geometry (beam angle and footprint). Pulses emitted at
532 nm have lower energy receipt, a wider footprint, and a tendency to reflect from green
vegetation above the ground surface (Figure 3a) [51,52]. As such, ground classified returns at
532 nm were the least accurate in unburned and TR areas (Figures 15 and 16).

As vegetation heights increased, the data from 1064 nm, 1550 nm, or both wavelengths
combined, produced the most accurate elevations, noting that the addition of the 532 nm
wavelength reduced accuracy even when combined with the other two (Figures 15 and 16).
In cumulative burned areas, the use of 1550 nm provided the most optimal ground classifi-
cations, while in TR areas, either using 1550 nm data or combined 1064 nm and 1550 nm
data had the least error and variability based on parameterizations (Figures 15 and 16). In
cumulative burn areas where ground classification was conducted over regions of highly
variable vegetation heights and densities, classifications that used 1064 nm data resulted
in vegetation misclassified as ground [17,53]. Typical lidar systems with 1064 nm laser
wavelength emission have greater reflectance from short vegetation and mosses [54]. There-
fore, in areas with low, dense vegetation, there may be energy transmission losses as the
laser pulse intercepts and reflects from vegetation instead of the ground surface [9,17,51,53].
This was also observed in [19] who found that low, dense vegetation was more commonly
misclassified as ground, such that the classification was less accurate than in areas with
tall overstory vegetation and reduced understory, e.g., in some forests. This phenomenon
can be seen in the classifications of unburned peatlands, where 1064 nm data were optimal
for ground classifications as this resulted in the lowest error (Figures 15 and 16). Here, it
is likely that lidar was penetrating through canopies to low-lying understory vegetation
(ground dominated by mosses) and the ground surface.

As with channel selection, the parameterization settings that optimized ground classi-
fications depended on the dominant and sub-dominant vegetation heights found within
plots. In TerraScan, we found that changes to three parameters impacted ground classifica-
tions: iteration angle, iteration distance, and the ability to reduce iteration angle when edge
length exceeds a set distance (Tables 1 and S1). In burned landscapes with little vegetation
regeneration (SR), adjustments made to the iteration angle improved the accuracy of the
lidar-measured ground elevations compared with field-measured (Tables 1 and S1). Using
532 nm wavelength data (most accurate but low point density), the iteration angle was
slightly reduced from six to five degrees in the optimal classification. Using all wavelengths
combined, or only the 1064 nm wavelength data, the iteration angle was increased to 15
and 10 degrees, respectively (Table S1). The classifications using 532 nm data were more
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optimal using a smaller iteration angle (best for flat landscapes), likely due to the large
pulse footprint. However, by increasing the iteration angle when using all wavelengths
or 1064 nm data, the classification was better able to retain the steep transitions between
hummocks and hollows, which would be most significant in areas with low regeneration,
resulting in higher accuracy ground classification. A larger iteration angle allows the
ground classification routine to adhere to surface elevation variability [38] by including re-
turns that follow the microtopographic morphology of the hummocks and hollows. Despite
the general topography of peatlands and transitions into forests being relatively flat, we are
able to optimize the classification to account for highly localized topographic variability by
setting the iteration angle to a greater angle within a confined area [10,38].

As vegetation heights increased (cumulative burned and TR areas), maintaining a high
iteration angle but reducing iteration distance improved results. Iteration distance, which
is the maximum height at which a point will be added to the ground classification [38],
may be optimized at a longer distance in landscapes with little vegetation (e.g., for lidar
surveys in the months following a fire). This will better account for the discrepancies in dz
from returns from hummocks vs. hollows. However, in areas with greater vegetation re-
generation and fewer scorched gaps between vegetation patches, a larger iteration distance
of 1.4 m (vs. 0.5 m) may result in some returns from short vegetation being included in the
ground classification. This increases the lidar ground classified elevation surface above
the measured ground surface elevation, thereby increasing the inaccuracy of the DEM
(Tables 1 and S1). Optimal parameterizations change notably in unburned areas or in areas
with complete vegetation regeneration, post-fire. Interestingly, the optimal classifications
in these regions had a reduced iteration angle of two degrees, which was the iteration
angle that resulted in the poorest classifications in all post-burn analyses, even in TR areas.
As peat combustion can enhance elevation differences between hummocks and hollows
in peatlands [55], unburned peatlands often have less undulating moss ground surfaces.
Further, reducing the iteration angle in unburned areas reduces the likelihood of including
low herbaceous or shrubby vegetation in the ground classification. However, by reducing
the iteration angle, the tendency to add more points into the ground class is also reduced,
thereby reducing the point density. We found that by increasing the iteration angle to 5◦,
point density was increased to >1 point m−2; however, this increased the dz as the routine
included low-lying vegetation as ground.

When using LAStools, we found that classification parameters were less important
than the channel (laser pulse emission/reception wavelength as well as pulse geometry)
with which data were collected. In SR and TR areas, ground elevation classifications were
slightly improved when step size was set to 5 (‘Nature’ setting) instead of 3 (‘Wilderness’
setting) but were not impacted by the level of refinement. The ground classification was
slightly better in unburned landscapes when step size was five and refinement was set to
‘Fine’, where the initial ground point search grid is four times more refined than the step
size (Tables 2 and S1).

The results of this study demonstrate that not only do optimal classification parameters
differ based on vegetation structures and environmental conditions within these low-relief
ecosystems, but also that the same ground classification parameters can be optimal for spe-
cific environmental conditions (e.g., burned, low, moderate vegetation regeneration), but
far less accurate for a different set of environmental conditions. For example, in TerraScan,
classifications 8 through 13 provided the most accurate classifications in unburned land-
scapes but were the least accurate in cumulative burned and SR areas. There may be more
variable ground topography in a burned landscape, which is not optimally parameterized
using the same classification. With reduced iteration angle, areas with highly variable mi-
crotopography result in underestimation of ground surface elevation because returns from
hummocks are excluded from the classification because the angular differences between
returns in hollows vs. hummocks is too great. Steep angular classification of returns from
the tops of the Sphagnum hummocks resulted in points being added to short vegetation
instead of the ground class. This emphasizes the need to classify returns not only by land
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cover type but also by vegetation characteristics within those land covers for the most
optimal/accurate classification parameterization. For example, classification to wetland
class, burned and unburned, and within the burned class, high versus low regeneration
(which can be determined based on the lidar data derivatives).

5. Conclusions

This study demonstrates the importance of optimizing classification parameters from
default settings and optimizing parameters for different land cover types and vegetation
structural characteristics. While it is important to iterate/optimize methods with any new
data set, the results here provide parameters that can be used in burned and unburned
boreal peatland environments and as a starting point for parameterization in similar
environments. We provide optimal parameterization for boreal peatlands along a post-fire
regeneration trajectory, with “SR” representing peatlands soon after burn, unsegmented
burned land cover representing two years post-fire, “TR” representing several years post-
fire, and unburned vegetation covers representing land cover later in the regeneration
trajectory. However, we suggest that there is a need for the development of accessible
adaptative classification procedures, which can be used to (a) filter the landscape by
attributes and (b) identify optimal parameterizations.

From this study, we conclude an expected ‘best’ average accuracy for depth of burn
(pre-fire elevation minus post-fire elevation) within peatlands will have a spatially averaged
error (dz) of ~0.01 m, indicating that soil organic matter loss (determined most simply as
a change in elevation) would be over-estimated by an average of 0.01 m. Using the
adventitious roots method, the average uncertainty is 0.004 m to 0.04 m (e.g., [54,56,57]) at
the tree base. However, airborne lidar methods provide an opportunity to quantify spatially
continuous elevational variability between trees and across a broad range of peatlands and
environmental characteristics. In addition, we demonstrate that lidar surveys completed in
the years following combustion do not become significantly less accurate for quantifying
depth of burn overall (offset at ~0.01 m and RMSEs ranging from ~0.21 m to ~0.25 m in SR
to TR areas; Figure 14). We suggest that lidar data collected up to three years post-fire can
be utilized for depth of burn analyses without significant differences in cumulative errors
associated with laser pulse interactions in the understory.
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Abstract: The remote sensing of fire severity and burned area is fundamental in the evaluation of
fire impacts. The current study aimed to: (i) compare Sentinel-2 (S2) spectral indices to predict
field-observed fire severity in Durango, Mexico; (ii) evaluate the effect of the compositing period
(1 or 3 months), techniques (average or minimum), and phenological correction (constant offset, c,
against a novel relative phenological correction, rc) on fire severity mapping, and (iii) determine fire
perimeter accuracy. The Relative Burn Ratio (RBR), using S2 bands 8a and 12, provided the best
correspondence with field-based fire severity (FBS). One-month rc minimum composites showed
the highest correspondence with FBS (R2 = 0.83). The decrease in R2 using 3 months rather than
1 month was ≥0.05 (0.05–0.15) for c composites and <0.05 (0.02–0.03) for rc composites. Furthermore,
using rc increased the R2 by 0.05–0.09 and 0.10–0.15 for the 3-month RBR and dNBR compared
to the corresponding c composites. Rc composites also showed increases of up to 0.16–0.22 and
0.08–0.11 in kappa values and overall accuracy, respectively, in mapping fire perimeters against c
composites. These results suggest a promising potential of the novel relative phenological correction
to be systematically applied with automated algorithms to improve the accuracy and robustness of
fire severity and perimeter evaluations.

Keywords: Sentinel-2; post-fire severity; initial fire assessment; soil burn severity; fire perimeter;
image compositing; vegetation phenology

1. Introduction

The evaluation of burned area and fire severity is fundamental for understanding a
variety of ecological processes (e.g., [1–4]), including fire emissions and carbon cycling
(e.g., [5,6]), post-fire erosion (e.g., [7–9]), tree mortality (e.g., [10–12]), post-fire recovery
trajectories (e.g., [13–16]), and ecosystem resilience (e.g., [17,18]). In spite of the great
progress in fire severity and burned area evaluations using medium-resolution sensors,
several challenges remain for the development of more standardized, automated methods
of post-fire assessment. Among others, these challenges include: (i) the assessment of
spectral indices, particularly for Sentinel-2, to map burned area perimeters and measure
fire severity and fire effects by strata, namely vegetation and soil; (ii) the evaluation of the
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effect of compositing periods and techniques, particularly on automated platforms such
as Google Earth Engine (e.g., [19]), on the accuracy for mapping initial assessments of fire
severity and burned area perimeters; (iii) the quantification of the effect of non-fire-related
temporal and spatial variations in spectral indices [20–22] and the development of simple,
readily automated methods of phenological correction that account for the spatial and
temporal heterogeneity of such effects [23].

1.1. Evaluation of Spectral Indices to Map Fire Severity and Perimeter, Particularly for Sentinel-2

Regarding this challenge, several spectral indices using medium-resolution sensors
have been developed [3]. These include several formulations of NBR indices based on
NIR/SWIR bands (e.g., [24–27]), and more recently, spectral indices including Sentinel-2
red-edge bands such as CIre [28,29] or BAIS2 [30]. Nonetheless, the selection of the most
appropriate indices from Sentinel-2 to map fire severity and perimeters is still an open
research question, with a large variety of results depending on the ecosystems analyzed
(e.g., [8,9,31–35]). Furthermore, while the majority of fire severity research has been devel-
oped in temperate to boreal ecosystems, there are comparatively fewer studies in areas
with different climatic and vegetation characteristics. This is the case in Mexico, a very
ecologically diverse country with high fire activity (e.g., [36–39]), where previous studies
evaluating spectral indices, validated with field data, to map fire severity and burned area
perimeters, are lacking.

1.2. Evaluation of Compositing Techniques and Period for Fire Severity and Perimeter Mapping
1.2.1. Comparison of the Effects of Compositing Techniques for Fire Severity and Burned
area Mapping

Pixel-based compositing methods can provide a new analysis paradigm instead of
depending on a single scene [40], resulting in an unprecedented opportunity for standard-
izing and automating fire severity and burned area evaluations [27,41–43]. Nevertheless,
the image composite techniques analyzed in the literature have largely varied, depending
on the study goal, location, and period analyzed. For example, mean composites have
been used for extended assessments of fire severity [19,41,44,45] and mean, median, or
medoid [46,47] composites have been also used to map burned area and recovery [47–50].
Likewise, minimum, or maximum composites [26,27,42,51–53] have been used for mapping
fire perimeters and trends of burned area [54] or fire severity [55]. Because of this variety of
approaches, there is a need for a formal evaluation of the effect of compositing techniques
(i.e., average or minimum) and compositing periods on their accuracy in mapping fire
perimeters and fire severity. Such an evaluation is particularly lacking for immediate post-
fire assessments of fire impacts (hereafter termed “fire severity” following [1], [2] or [54],
which propose the use of this term for initial severity assessments), which are fundamental
for post-fire erosion emergency planning (e.g., [8,9,56]) but have received less attention
from compositing analysis studies.

1.2.2. Assessment of the Influence of Compositing Period for Mapping Initial Fire Severity
and Burned Area Perimeter

The post-fire image assessment period can largely influence what is being observed
(e.g., [1,57]). Non-fire variations in spectral indices can be caused by natural oscillations
in vegetation and soil moisture (e.g., [58–60]) or vegetation processes such as senescence,
regrowth, and phenological changes in grasses, shrubs, and trees (e.g., [61,62]), both for
broadleaves (e.g., [63]) and conifer species (e.g., [64]). Therefore, the values of a spectral
index can vary considerably from slight changes in image dates, resulting in substantially
different burn severity maps [21,22,54]. This can affect image accuracy in mapping fire
perimeters [62] and fire severity [19,58]. Moreover, it could also influence the widely
reported lack of transferability of fire severity and burned area thresholds between seasons
and ecosystems [20,65–67].

However, although evidence of variability in the assessment of burn severity driven by
image selection has been shown in many studies, paradoxically, little attention has been paid

116



Remote Sens. 2022, 14, 3122

to quantifying the temporal and spatial variations in spectral fire severity indices [20,21,54]
and how this impacts their suitability for mapping fire perimeters [23] and severity [22].
In addition, in contrast to the more widely analyzed Landsat satellite, there are relatively
few studies examining the temporal variations in Sentinel spectral indices’ accuracy in
mapping burned area [68] and fire severity [22]. Furthermore, most of those relatively
scarce studies have used paired-image techniques, contrasting with a scarcity of studies
addressing temporal and phenological variations in fire severity spectral indices’ accuracy
using composite images [19,22]).

1.3. Development of a Spatially Variable Automated Phenological Correction

In spite of the frequent documentation of the above-mentioned phenological biases,
most of the literature has generally failed to include any measure to quantify or correct
for such non-fire phenological changes to standardize fire severity assessments [20,69].
The most notable exception is the constant offset method [41,57,67,70,71]. This approach
consists in subtracting from the uncalibrated dNBR image a phenological constant offset,
generally calculated as the average dNBR from the unburnt area surrounding the fire
perimeter [70,72,73]. Because of the relative simplicity of this method, some steps have
been taken towards its automatization for Landsat [19,41,74] and Sentinel images [75].
Nevertheless, in order to be representative, the average offset should be calculated in similar
vegetation types to those where the fire occurred [41,74,76]. This strong assumption presents
a challenge in heterogeneous fuels, making the constant offset method not advisable in
those cases, as it would be compromised by the spatial heterogeneity of phenological
effects [41,45]. Still, fuel heterogeneity is very common (e.g., [23]), resulting in frequent
spatial and temporal variations in the phenological effects (e.g., [54,77]).

Although some attempts to propose spatially variable techniques of phenological
correction have been made (e.g., [22,54,77]), in their current states, the majority of those
approaches require supervision to either manually select control pixels (e.g., [54,77]) or to
manually create phenologically matched composites [22]. In this sense, to the best of our
knowledge, the use of the pre-fire Normalized Burn Ratio [78] (NBRpre), a widely used
proxy of biomass [70], has not been yet tested to automatically stratify and sample for
spatial phenological variations in unburned vegetation. Such a systematic stratification of
phenological effects could lead to a standardized, automated, novel relative phenological
correction procedure for analyzing and minimizing the spatial heterogeneity of phenologi-
cal variations. This approach could overcome some of the limitations of the offset method,
while benefiting from its relative simplicity and ease of automation.

Consequently, the present work aimed to evaluate and map fire severity and burned
area perimeter through paired and composite spectral indices of S2-MSI images, the latter
calculated with different periods, techniques, and phenological corrections (constant offset,
c, against a novel spatially variable relative phenological correction, rc). Specifically, the
goals of the study were: (i) to evaluate the correspondence of paired Sentinel-2 (S2) images
with field data from wildfires in the temperate to semi-arid forests of Durango, Mexico, to
select the best S2 spectral index to map the initial assessment of fire severity in the analyzed
ecosystems; (ii) to analyze the effect of Google Earth Engine S2 composite period length (1
or 3 months), technique (average or minimum), and phenological correction (c and rc) for
estimating field-observed fire severity; and finally, (iii) to quantify the effect of composite
period length, technique, and phenological correction on the accuracy in mapping the
burned area perimeter for each wildfire.

2. Materials and Methods

2.1. Study Area

This study was conducted in the Mexican physiographic province of Sierra Madre
Occidental in Durango State (SMO), between 26◦59′50′′N, 22◦20′26′′S latitude North and
103◦42′26′′E, 107◦14′12′′W longitude West. The study area is dominated by conifers of the
genera Pinus, Juniperus, and Cupressus, as well as grasslands and shrublands dominated by
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Acacia and Prosopis species [79,80]. The climate ranges from semi-dry temperate to semi-
cold subhumid and subhumid temperate according to the Köppen climate classification
adapted for Mexico [81]. The average annual temperature ranges from 5 to 18 ◦C, with
average annual precipitation ranging from 300 to 1500 mm [82]. The Durango SMO region
is characterized by surfaces of large mesas that extend over the central part of the state, as
well as mountain areas with slopes ranging from 20 to 80%. Altitude ranges from 800 to
3200 m [83]. We selected three fires that occurred between April and May 2019, covering a
gradient in fuel types and climates ranging from semi-arid (Site 1) to humid (Site 2) and
semi-humid (Site 3) (Table 1, Figure 1). Fire regimes in the study area include both high-
frequency, low-severity fires in the denser, wetter pine and oak forests and lower-frequency,
higher-severity fires in the more open, semi-arid forests [84]. Severe fires can affect species
of timber value, such as pine stands, as well as tree and shrubby species used for charcoal
production, such as Quercus or Prosopis species.

Table 1. Summary of wildfires selected in the Sierra Madre Occidental, Durango.

Fire Start–End Date Fire Size (ha) 1 Fuelbed Types Latitude N
Longitude

W

Site 1 2019/04/26–2019/05/27 23,809 TU, TL, GR, GS 23◦36′36′′ 104◦33′28.8′′
Site 2 2019/05/14–2019/06/28 2602 TL, TU 23◦49′26′′ 105◦40′44.4′′
Site 3 2019/04/12–2019/05/09 7029 TL, TU, GR 25◦36′25′′ 105◦57′18′′

1 [85], fuelbed types [84] (Figure 1): TU = grass or shrub understory mixed with timber litter, TL = timber litter,
GS = grass and shrublands, and GR = grasslands.

 

Figure 1. Location of the three 2019 wildfires analyzed in Durango State, Mexico, where (a) = Site 1,
(b) = Site 2, (c) = Site 3, AGAF = aggregated active fire perimeter [75], fuelbed types (scale:
1:250,000) [84]: 1.1.GR1 = warm–humid tall grass, 1.2.GR2 = temperate–humid short grass and
shrublands, 1.3.GR3 = semi-arid short grass and shrublands, 2.1.GS1 = semi-arid grass and shrub-
lands, 2.2.GS2 = arid grass and shrublands, 3.1.SH1 = arid tall shrublands, 3.2.SH2 = arid short
shrublands, 4.1.TU1 = subhumid temperate timber understory with dense shrubs, 4.2.TU2 = humid
temperate–cold timber understory with dense pasture, 4.3.TU3 = subhumid timber understory with
sparse grasslands, 4.4.TU4 = subhumid warm to semi-arid timber understory with sparse grass
and shrublands, 5.1.TL1 = humid temperate short-needle coniferous timber litter, 5.2.TL2 = humid
long-needle coniferous timber litter, 5.3.TL3 = subhumid to humid sclerophyll broadleaf timber
litter, 5.4.TL4 = seasonally dry humid broadleaf timber litter, 7.NB = not burnable (bare ground),
8.NB1 = not forestry areas (e.g., urban development or agricultural), and 8.1.NB2 = water bodies.
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The selected wildfires included a heterogeneous-severity fire (low–medium severity
to crown fire patches) (Site 1), with an estimated burned area of 23,809 ha (the largest
wildfire in Durango state for 2019) [85]. Fuels in Site 1 ranged from semi-arid grass and
shrublands in the eastern part of the fire to a more subhumid to temperate conifer and
broadleaf understory and litter in the west (Figure 1a). Site 2 was dominated by pine and
oak timber litter (Figure 1b), affected by a low-to-medium-severity fire in a humid climate
in the west of the SMO. Finally, Site 3 was a medium-to-high-severity fire (with frequent
crown fire patches) in a subhumid and temperate–cold pine timber understory mixture
with shrublands in NW Durango (Figure 1c) [84].

2.2. Field Sampling of Fire Severity

Fire severity field sampling was performed during the months of November and De-
cember 2019 after fires at the three locations. Field and satellite imagery dates were selected
to represent the early conditions of fire severity immediately after the fire (i.e., the initial
assessment) in order to minimize the fire obscuration effects caused by rapid regrowth that
have been documented for similar semi-arid ecosystems (e.g., [61,71]). We measured a total
of 115 circular plots (30 m in diameter), distributed in a stratified sampling scheme, mea-
suring homogeneously burned patches—stratified by dNBR [72]—within the fire perimeter
(85 plots), as well as unburned patches (30 control plots). At each fire location, we also
stratified sampled plots by vegetation types (Figure 1) and pre-fire NBR (e.g., [86,87]),
both for burned and unburned plots. The center of each plot was georeferenced using
a high-precision GPS (Spectra Precision MobileMapper© 60, with an average precision of
<2 m) [88].

The field protocol for fire severity was based on the methodology for temperate forest
described by Silva-Cardoza et al. [86,87]. This field protocol is an adaptation of differ-
ent published guides for fire severity and mapping evaluation, i.e., Key and Benson [57],
Parson et al. [89], Vega et al. [90,91], and Rodriguez et al. [92]. Both vegetation and soil
strata were measured (Table 2). For every tree with a diameter at breast height (DBH)
> 7.5 cm, we measured the mean scorch height, total height, crown base height, crown
diameter, and DBH. The scorched crown volume (%), defined as the sum of the estimated
percent assessed for the scorched and consumed crown of each tree, was visually esti-
mated [93]. At the time of field data collection, the overstory stratum was defined as
every individual with DBH > 7.5 cm [94]. Once we processed field data, the overstory
was separated by 75th percentile heights values on each plot sampled into canopy (>75th
percentile) and subcanopy (<75th percentile) [95]. Understory strata were defined as small
trees and shrubs with DBH < 7.5 cm (Table 2), given the availability of allometric equations
which can be used to estimate biomass for the main species in the study area [96]. For
these strata, we deliberately did not include severity measurements in herbaceous plants,
given their ephemeral nature and fast recovery in the analyzed ecosystems, among other
challenges documented in the literature [97], and focused our evaluation on the effects
on small trees and shrubs. For those, we quantified frequencies by basal diameter classes
0–2.5, 2.5–5, and 5–7.5 cm and measured the average total height, crown base height, crown
diameter, and estimated scorched crown volume for a representative sample for each basal
diameter class.

Table 2. Strata levels used in the field inventory performed in this study.

Level Stratum Description

Vegetation

5. Overstory Woody individuals with DBH > 7.5 cm.
4. Canopy Woody individuals with DBH > 7.5 cm and h > P75th on each plot.
3. Subcanopy Woody individuals with DBH > 7.5 cm and h < P75th on each plot.
2. Understory Small trees and shrubs with DBH < 7.5 cm.

Soil 1. Soil Inert surface materials of litter, duff, and mineral soil.

DBH = diameter at breast height, h = total tree height (m) and P75 = 75th percentile height per individual for
each plot.
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The assessment of fire impacts on soil—hereafter named soil burn severity (SBS) fol-
lowing Parson et al. [89], Keely [98], Vega et al. [91], and Sobrino et al. [8]—was performed
on 9 square quadrats (30 × 30 cm) per plot, at every 5 m in 3 transects of 15 m (at 0, 120, and
240◦ azimuth) from the plot center. In each quadrat, the cover, depth, and intact/charred
state of the remaining litter and duff were measured. The color and depth of ash layer,
the degree of surface fine root consumption, and the soil structure alteration were also
evaluated at each quadrat. To classify SBS, the following levels were considered, following
Vega et al. [91] and Sobrino et al. [8]: 0: unburned; 1: burned litter but limited duff con-
sumption; 2: litter and duff layers totally charred covering unaltered mineral soil; 3: litter
and duff completely consumed (bare soil), but mineral soil organic matter not consumed
and structure unaffected; 4: bare soil, surface mineral soil organic matter consumed and soil
structure affected; 5: bare soil and mineral soil structure and color largely altered. For each
quadrat, the percentage of cover by SBS level (0–5) was registered. The weighted SBS aver-
age by cover was calculated for every quadrat, and the plot-level SBS was finally obtained
as the average of all the measured quadrats per plot. The SBS levels (1–5) were scaled from
0 to 100, named soil burn severity index (SSI), by multiplying by 20 to homogenize the levels
with the vegetation strata severity scale.

Based on the analyzed strata, we calculated the following field-based severity
indices (FBSs):

FSI = ∑(CCS + SCS + UCS + SSI)
4

(1)

where: FSI = Fire Severity Index, CCS = canopy crown scorch volume (%), SCS = subcanopy
crown scorch volume (%), UCS = understory crown scorch volume (%), and SSI = soil burn
severity index.

The structure of the FSI index (0–100) is relatively similar to the first proposed Com-
posite Burn Index (CBI) [57]), which averages the severity observed in all evaluated strata.
In order to account for possible correlations in the crown damage between canopy and
subcanopy strata, as well as potential correlations between understory severity and SBS
(e.g., [90]), we tested a simplified FSI2 index, using overstory strata (all trees with DBH
> 7.5) and grouping the understory and soil fire severity as a surface stratum, following
Equation (2):

FSI2 =
OCS + UCS+SSI

2
2

(2)

where: FSI2 = Fire Severity Index 2, OSC = overstory crown scorch volume (%), UCS =
understory crown scorch volume (%), and SSI = soil burn severity index.

We additionally evaluated a field severity index weighted by the cover of each stratum,
named weighted FSI, resembling the Geometrically structured CBI (GeoCBI) proposed by De
Santis and Chuvieco [99], by multiplying each FSI stratum by its corresponding cover:

wFSI = CCS ∗ CC + SCS ∗ SC + UCS ∗ UC + SSI ∗ SOC (3)

where: wFSI = weighted Fire Severity Index, CSC = canopy crown scorch volume (%),
CC = canopy cover (%), SCS = subcanopy crown scorch volume (%), SC = subcanopy cover
(%), UCS = understory crown scorch volume (%), UC = understory cover (%), SSI = soil
severity index, and SOC = soil cover (%), calculated as 100 − (CCC + SCC + UCC).

Finally, we also tested a simplified version of wFSI, named wFSI2, with a similar
structure to FSI2, considering overstory and surface strata (soil and understory), weighted
by their corresponding cover:

wFSI2 = OSC ∗ OC +

(
USC + SSI

2

)
∗ (100 − OC) (4)

where: wFSI2= weighted Fire Severity Index 2, OSC = overstory crown scorch volume (%),
OC = overstory cover (%), UCS = understory crown scorch volume (%), and SSI = soil
severity index.
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2.3. Remotely Sensed Data
2.3.1. Aggregated Active Fire Perimeters

In order to locate the areas of fire occurrence to retrieve Sentinel images, we used
monthly aggregated active fire (AGAF) perimeters [75], downloaded from the Fire Danger
Forecast System of Mexico (Sistema de Predicción de Peligro de Incendios Forestales de Mex-
ico, SPPIF) (http://forestales.ujed.mx/incendios2/, accessed on 16 May 2022), [100,101].
AGAF perimeters are calculated in the SPPIF by applying a convex hull algorithm to active
fire data from the Moderate Resolution Imaging Radiometer Spectrum (MODIS, 1 km) [102]
and the Visible Infrared Imaging Radiometer Suite (VIIRS, V1375 m) [103], as described in
Briones-Herrera et al. [75,104]. Historical monthly and 10-day AGAF perimeters for Mexico
are available for download from the SPPIF for the period 2012–current day [101]. They are
updated in the SPPIF at every MODIS and VIIRS satellite pass [104], provided in near real
time by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) [105].

2.3.2. Sentinel-2 Data

Data download and analysis for fire severity and burned area mapping involved three
stages, as summarized in Figure 2: (i) Section I aimed to analyze the correspondence of
the field-based severity indices (FBSs) and field severity data by stratum, with single-date
paired images. The goal of this first analysis was to select the spectral index (SI) with the
highest correspondence against FBS data for further evaluation in the subsequent stages.
(ii) Section II aimed to evaluate the effect of the image compositing period (1 or 3 months),
technique (average or minimum), and phenological correction (constant or relative, c or rc)
for predicting field fire severity. The evaluated composites were downloaded from Google
Earth Engine (GEE) using the selected SI from section I. (iii) Section III aimed to evaluate the
GEE composites’ accuracy in burned area perimeter mapping, by means of a kappa and
overall accuracy analysis of burned/unburned points for each individual fire (Figure 2).

Figure 2. Summary of the study methodology for analyzing Sentinel-2 imagery performance for:
(i) evaluating spectral indices from paired dates to predict field-observed fire severity (Section I);
(ii) comparing image composites of varying length (1 or 3 months), composite technique (average or
minimum), and phenological correction (c or rc) for predicting field fire severity (Section II) and for
(iii) mapping burned area perimeter (Section III). Where: AGAF: aggregated active fire perimeters
(2.3.1), TOA: top-of-atmosphere, dSI: differenced spectral index (Equation (29)), RSI: relative spectral
index (Equation (31)), c: constant phenological correction (Equation (30)), SI: spectral index, FBSs:
field-based fire severity indices, FSI: field severity index (Equation (1)), FSI2: field severity index 2
(Equation (2)), wFSI: weighted field severity index (Equation (3)), wFSI2: weighted field severity index
2 (Equation (4)), AA, AM, MM: compositing technique (Table 4), rc: relative phenological correction
(Equation (32)), and GCI: Google Earth Engine composite index.

2.3.3. Section I: Comparison of Spectral Indices from Paired Images against Fire Severity

For the analysis of paired images, we downloaded single-date pre- and post-fire
L1C images from the United States Geological Survey (USGS) Earth Explorer data portal
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(https://earthexplorer.usgs.gov/, accessed on 12 February 2022). We selected the images
with the lowest cloud cover, closest to the dates before and after fire occurrence based
on MODIS and VIIRS active fires dates for each fire (Table 3). The digital values of
L1C-level images were transformed into apparent reflectance using top of atmosphere
(TOA) correction, based on the Dark Object Subtraction (DOS) method, proposed by
Chávez [106]. Earth Explorer images were processed in the Semi-Automatic classification
plug-in proposed by Congedo [107] on QGIS software v3.16.16-Hannover [108].

Spectral Indices Analyzed from Paired Sentinel-2 Imagery

The Sentinel-2 spectral indices analyzed for fire severity discrimination are listed in
Table 3. For all of the tested spectral indices SI (Table 3), we calculated the difference in
spectral values between pre- and post-fire dates, dSI, following Equation (5):

dSI =
(
SIpre − SIpost

)× 103 (5)

where dSI = differenced spectral index [109] from paired pre- and post-SI images (SIpre
and SIpost, respectively).

In order to account for phenological and weather-related influences between the pre-
and post-fire images (e.g., [41,70,72,73]), we calculated the phenologically corrected spectral
indices, dSIc, for all the considered indices, following Equation (6). For the constant “offset”
c [73] calculation, we used a buffer from 3 to 5 km from the aggregated active fire perimeter,
following Briones-Herrera et al. [75].

dSIc = dSI − c (6)

where dSIc = constant phenology− corrected dSI and c = constant phenological correction,
calculated as the average dSI value in the unburned vegetation.

Table 3. Spectral indices derived from Sentinel L1C and L2A imagery calculated in this study.

Spectral Index Equation 1 Reference 2

Burn Area Index for Sentinel-2
BAIS21 =

(
1 −√

(B6 ∗ B7 ∗ B8)/B4
)
∗ ((B11 − B8/

√
B11 + B8

)
+ 1

)
(7) -

BAIS22 =
(

1 −√
(B6 ∗ B7 ∗ B8)/B4

)
∗ ((B12 − B8/

√
B12 + B8

)
+ 1

)
(8) -

BAIS23n =
(

1 −√
(B6 ∗ B7 ∗ B8a)/B4

)
∗
((

B11 − B8a/
√

B11 + B8A
)
+ 1

)
(9) -

BAIS24n =
(

1 −√
(B6 ∗ B7 ∗ B8a)/B4

)
∗
((

B12 − B8a/
√

B12 + B8A
)
+ 1

)
(10) [30]

Chlorophyll Index red-edge CIre = (B7/B5)− 1 (11) [28]

Normalized Burn Ratio

NBR1 = (B11 − B12) /(B11 + B12) (12) [26]
NBR2 = (B8 − B11)/ (B8 + B11) (13) [78]
NBR3 = (B8 − B12)/(B8 + B12) (14) [31]

NBR4n = (B8a − B11) /(B8a + B11) (15) [24]
NBR5n = (B8a − B12)/(B8a + B12 ) (16) [31]

Normalized Difference Index NDI1re = (B6 − B5 )/(B6 + B5 − 2 ∗ B1) (17) [110]
NDI2re = (B7 − B5 )/(B7 + B5 − 2 ∗ B1) (18) [110]

Normalized Difference vegetation Index

NDVI1re = (B6 − B5) /(B6 + B5) (19) [111]
NDVI2re = (B7 − B5) / B7 + B5) (20) [112]
NDVI3 = (B8 − B4) /(B8 + B4) (21) [113]

NDVI4re = (B8 − B5)/ (B8 + B5) (22) [111]
NDVI5re = (B8 − B7) / (B8 + B7) (23) [29]
NDVI6n = (B8a − B4)/ (B8a + B4) (24) [114]

NDVI7ren = (B8a − B5)/(B8a + B5) (25) [29]
NDVI8ren = (B8a − B7) / (B8a + B7) (26) [29]

Modified Simple Ratio

MSR1re = ((B8/B5)− 1)/
(√

B8 + B5 + 1
)

(27) [115]
MSR2re = ((B8/B7)− 1)/

(√
B8 + B7 + 1

)
(28) -

MSR3ren = ((B8a/B5)− 1)/
(√

B8a + B5 + 1
)

(29) [29]
MSR4ren = ((B8a/B7)− 1)/

(√
B8a + B7 + 1

)
(30) -

1 Sentinel-2 MSI spectral bands: B1 = ~443 nm, B4= ~665 nm, red-edge bands (*re): B5=~704 nm, B6 = ~740 nm,
B7 = ~783 nm, NIR: B8 = ~833 nm, NIR narrow (*n): B8A = ~865 nm, SWIR: B11= ~1613 nm, B12= ~2202 nm. Spatial
resolution bands = 20 m (B1, B4, and B8 were resampled) [116]. 2 References with “-” are index modifications
tested in this study.
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In addition, for the NBRi indices considered (Equations (12)–(16), Table 3), we calcu-
lated the Relativized Burn Ratio (RBR) following Equation (31) [70]:

RSIic = dNBRic /
(

NBRi pre + 1.001
)

(31)

where RSIic = RBR with constant phenological correction, dNBRic: differenced NBRi
(Table 3) with constant phenological correction (Equation (6)), NBRi pre: pre-fire NBRi
(Table 3) and i = 1, 2, 3, 4n, and 5n (i.e., NBR1, NBR2, NBR3, NBR4n, and NBR5n, Table 3).

2.3.4. Section II: Comparison of GEE Composites for Mapping Fire Severity

Sentinel-2 composites were generated and downloaded from Google Earth Engine
(GEE), a multi-petabyte catalog of satellite imagery and geospatial datasets which is a cloud-
based platform [117]. GEE composite indices were derived from Sentinel-2 processing level
2A: bottom-of-atmosphere [GEE dataset ID: ee.ImageCollection (“COPERNICUS/S2_SR”)]
imagery. SCL and Q60 bands were used to select the “optima” pixels (i.e., free of clouds,
shadows, water, and/or snow) within a given period in each pre- and post-fire window.

GEE Composite Periods and Techniques Analyzed

Composite indices were generated with varying composite lengths of 1 or 3 months
for the best dSI and RSI selected in Section I. Dates immediately before and after each fire,
based on MODIS and VIIRS active fire data, were used to define each composite search
period (Table S2). We tested average and minimum compositing since they are the most
widely used approaches in the literature (e.g., [19,27,28,41,42,44,45,48]). For each 1- and
3- month composite, three combinations of average (A) and minimum (M) for the pre- and
post- fire images (AA, AM, and MM) were tested (see Table 4). GEE code for calculating
and downloading the composites was based on the modification of Parks et al. [41] for
Sentinel-2 by Briones-Herrera et al. [75], initialized with active fire perimeters.

Table 4. Composite techniques analyzed for GEE Sentinel-L2A imagery.

Composite Technique Pre-Fire Post-Fire

AA Average Average
AM Average Minimum
MM Minimum Minimum

Constant and Relative Phenological Correction

For each of the 6 combinations of composite length (1 or 3 months) and technique
(AA, AM, or MM, Table 4), two phenological corrections were compared, resulting in
a total of 12 composites calculated for each dSI and RSI analyzed. The first correction
method tested was the constant phenological correction c [73]. The phenological cor-
rections were calculated for each of the composites analyzed by subtracting the c offset,
following Equations (30) and (31). The constant offset c was calculated in GEE following
Parks et al. [41] and using the 3 to 5 km buffer of the aggregated active fire perimeter, as
proposed by Briones Herrera et al. [75], to calculate the offset as the average dSI from the
unburned buffer.

The constant phenological correction method applied the same correction c to every
pixel, therefore assuming that phenological changes in dSI for the unburned vegetation
were homogeneous. Additionally, in order to consider the potential spatial heterogeneity
in unburned dSI changes, we calculated the average dSI (e.g., dNBR) for every pre-SI
(e.g., NBRpre) value in the unburned 3–5 km buffer. This allowed us to assess variations in
vegetation phenological changes (i.e., unburned dNBR) between vegetation with varying
characteristics, since NBRpre values are frequently used as proxies of total biomass or
tree cover [70]. To calculate a spatially variable phenological correction, we assigned the
average unburned dSI (e.g., dNBR) to each pre-SI (e.g., NBRpre) pixel for the entire image
extent, resulting in a map of relative phenological correction (rc). Such rc maps represented
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the expected phenological change (i.e., unburned dNBR) in the absence of fire for each type
of vegetation, as stratified by NBRpre values. Finally, we calculated the relative corrected rc
indices, dSIrc, using Equation (32):

dSIrc = dSI − rc (32)

where dSIrc = relative corrected dSI, dSI = uncorrected differenced spectral index [109], and
rc = relative phenological correction map.

Based on dSIrc, we also calculated its correspondent in the relative version RSIrc
(Equation (33)) for all 6 of the composites analyzed.

RSIirc = dNBRirc/
(

NBRi pre + 1.001
)

(33)

where RSIirc= RBR with relative phenological correction, i = 1, 2, 3, 4n, and 5n (i.e., RBR1rc,
RBR2rc, RBR3rc, RBR4nrc, and RBR5nrc, dNBRiRc: differenced NBRi (Table 3), with relative
phenological correction (Equation (32)), NBRi pre : pre-fire NBRi (Table 3) and i = 1, 2, 3, 4n,
and 5n (i.e., NBR1, NBR2, NBR3, NBR4n, and NBR5n, Table 3).

This resulted in a total of 24 composites analyzed for the two phenological corrections
tested: c and rc.

2.4. Predicting Fire Severity from Spectral Indices and Composites

We evaluated linear and non-linear (exponential and power) regression models to
predict paired-image spectral indices (section I) from field-measured severity variables by
stratum (OSC, CSC, SSC, USC, and SSI) and from field severity indices, i.e., FSI, FSI2, wFSI,
and wFSI2 (see Equations (1)–(4)). For example, for a linear model, we tested the following
regression (Equation (34)):

y = β0 + β1 × FBS (34)

where y = Sentinel-2 spectral index (SI), FBS = field-based severity per strata, i.e., OSC,
CSC, SSC, USC, and SSI, and field severity indices, i.e., FSI, FSI2, wFSI, and wFSI2
(Equations (1)–(4)).

Models were fitted using the “lm” and “nls” packages from the R software [118].
Model goodness of fit was evaluated based on the squared correlation coefficient between
the predicted and observed values (R2) and their Root Mean Square Error (θ, RMSE) [119].
The best-performing spectral index was selected for further analysis in Section II, again
using linear and non-linear (exponential and power) regression models, in this case to
predict GEE composite indices of the selected absolute and relative spectral index (dSI and
RSI) from the analyzed field severity indices. Composites’ correspondence with field fire
severity was also evaluated using model R2 and RMSE.

2.5. Fire Severity Thresholds

We defined the following fire severity categories based on field fire severity indices:
Extreme (>90), High (60–90), Moderate (30–60), Low (30–10), and Very low/unburned
(<10). The proposed fire severity categories considered both CBI protocol categories [72]
and previous research in post-fire pine mortality in Mexico [92,120] and in temperate pine
ecosystems elsewhere [10]. The threshold for High fire severity was based on such previous
studies, which observed higher post-fire pine mortality when approximately >2/3 of the
tree crown volume was scorched. Conversely, lower fire-caused tree mortality is expected
at the Moderate fire severity level, which can be in turn more susceptible to pest attack, in
contrast with low mortality either by fire or pests expected at the Low fire severity level [10].
Finally, to support post-fire emergency soil erosion hazard assessments, we differentiated
an Extreme fire severity level, corresponding to areas of full tree canopy consumption, due
to crown fire. In these areas, the absence of scorched litter covering the bare mineral soil
can result in higher soil erosion risk [7,8,91]. This is particularly marked when crown fire
is accompanied by high soil organic matter consumption, consistent with high soil burn
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severity levels [9,90,121]. Based on these field fire severity categories, the best fit models
of the best-performing spectral index and compositing technique were used to obtain the
corresponding spectral index thresholds to map fire severity levels.

2.6. Section III: Comparison of GEE Composites for Mapping Burned Area Perimeter

In order to evaluate the burned/unburned (BUR/UNB) separability of the 24 analyzed
composites for each wildfire (i.e., Sites 1–3), the SI values of the GEE composites were
extracted to a sample of BUR/UNB points. We used filtered VIIRS active fires with SI > 0
inside the active fire perimeter of each wildfire as burned points (BUR). The same number of
data sample points were randomly located inside the unburned buffer (UNB). Agricultural
areas, agricultural–forest interface areas (downloaded from the SPPIF, accessed on 17
February 2021 http://forestales.ujed.mx/incendios2/#), bare soil, human settlements,
water bodies, and ice/snow [122] were not considered for analysis. This resulted in a total
of 5144, 634, and 1708 burned points for sites 1, 2, and 3, respectively, and an equal-sized
sample of unburned points. For each wildfire, we tested the 99th, 95th, 90th, 85th, 80th,
and 75th percentiles of SI values as candidates for the burned area threshold for the BUR
sample, as well as the 1st, 5th, 10th, 15th, 20th, and 25th SI percentiles for the UNB sample.
For every fire and for each candidate sampled composite SI threshold value, we calculated
the overall accuracy, kappa coefficient, sensitivity (i.e., omission errors), and specificity (i.e.,
commission errors) [123] to classify burned/unburned data, using the ‘caret’ package [124]
(https://cran.r-project.org/web/packages/caret/, last accessed on 23 March 2022) from
the R software [118]. The spectral index value with the highest kappa and overall accuracy
was set as the optimal threshold to discriminate unburned from burned areas [23] for each
composite and wildfire in question.

3. Results

3.1. Section I: Correspondence between Field-Based Severity Variables and Spectral Indices from
Earth Explorer (Paired Images)

For the field severity variables and spectral indices analyzed, higher R2 values were
obtained with linear models, which are shown in Table S3. The highest correspondence
with spectral indices was observed for FSI and FSI2, which performed very similarly,
followed by wFSI2, generally outperforming wFSI (Table S3). RBR5nc and RBR3c, using
bands 8a/12 and 8/12, respectively (Equations (14) and (16) [31]), had the first- and
second-highest correspondence with the analyzed field measures of fire severity (an R2 of
approximatedly 0.85 for both FSI and FSI2) and by individual stratum as well (Table S3).
The third ranking spectral index was dBAIS24nc (Equation (10) [30]), with an R2~0.83 for
both FSI and FSI2 (Equations (1) and (2), respectively). RBR5nc, RBR3c, and dBAIS24nc
also performed consistently, with the highest correspondence with overstory, canopy,
and subcanopy severity and very similar performance between them for these strata
(R2 = 0.80–0.78) (Table S3). On the other hand, lower but significant correlations were
observed for the understory and soil strata, with an R2 of 0.69–0.67 (Table S3). For the
understory stratum, RBR5nc and RBR3c were also the best-performing SI, with an R2 of
approximately 0.69, followed by RBR1c (using bands 11/12 [26], Equation (12), Table 4)
and dBAIS24nc, with an R2 of approximately 0.66 for both indices (Table S3). For soil
burn severity, the highest correspondence was observed for RBR5nc (R2 of 0.685), closely
followed by RBR3c (R2 = 0.678) (Table S3). The absolute fire severity spectral indices based
on NBR, such as dNBR5n (8a/12 bands), consistently ranked higher than red and red-edge
versions of dNDVIc for all strata but showed a lower performance compared to their relative
versions [70] for all of the analyzed fire severity indices and strata.
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3.2. Section II: Comparison of Google Earth Engine Composites with Varying Period, Technique,
and Phenological Correction for Predicting Field-Observed Fire Severity
3.2.1. Correspondence between GEE Composites and Field-Based Severity Indices

Based on Section I, we selected the composite with the highest correspondence index,
RBR5nc (hereafter, RBR) for further testing in GEE. We also selected for further testing
its corresponding absolute version, dNBR5nc (hereafter, dNBR), in order to quantify the
differences between absolute and relative indices with the same spectral bands and because
of the wide utilization of this latter index [67]. Similar to Section I, higher R2 values were
again observed with linear models. The correspondences between field fire severity indices
and the composites for the selected indices RBR and dNBR with varying composite lengths
(1 or 3 months), techniques (AA, AM, or MM), and phenological correction (c and rc) are
shown in Table 5. In agreement with the results in Section I, RBR composites showed better
performance than dNBR. The greatest association levels were obtained for the relative
phenological correction indices (i.e., RBRrc and dNBRrc) compared with their analogous
constant phenological correction (*c) (Table 5). These gains using rc composites were higher
for the 3-month composites, where the R2 values increased by 0.05–0.09 and 0.10–0.14 for
RBR and dNBR, respectively (Table 5).

Table 5. Goodness of fit and coefficients of linear models between spectral indices from composite
images and the field-based severity index FSI2 for the three wildfires of Durango.

GEE Com-
posite

β0 β1 θ R2 Diff. R2

(rc-c)
Diff. R2

(1-3)

RBRrc_AA1 −10.4 5.4 85.8 0.815 - -
RBRrc_AM1 −16.7 5.8 87.1 0.830 - -
RBRrc_MM1 −20.7 5.9 87.4 0.832 - -

RBRrc_AA3 −5.9 4.4 77.6 0.781 - 0.034
RBRrc_AM3 −19.7 4.7 80.9 0.789 - 0.041
RBRrc_MM3 −21.5 5.1 87.5 0.788 - 0.044

RBRc_AA1 18.1 5.0 88.4 0.779 0.036 -
RBRc_AM1 6.2 5.5 85.8 0.817 0.013 -
RBRc_MM1 6.7 5.5 85.5 0.820 0.012 -

RBRc_AA3 36.1 4.3 86.5 0.727 0.054 0.052
RBRc_AM3 21.8 4.8 104.1 0.698 0.091 0.119
RBRc_MM3 15.1 4.9 101.3 0.721 0.067 0.099

dNBRrc_AA1 −15.4 6.5 113.0 0.785 - -
dNBRrc_AM1 −24.6 7.0 117.8 0.793 - -
dNBRrc_MM1 −28.9 6.9 116.3 0.796 - -

dNBRrc_AA3 −10.6 5.5 103.3 0.759 - 0.026
dNBRrc_AM3 −25.8 5.8 106.5 0.765 - 0.028
dNBRrc_MM3 −24.8 5.8 108.7 0.755 - 0.041

dNBRc_AA1 25.2 5.9 118.8 0.731 0.054 -
dNBRc_AM1 8.4 6.5 116.5 0.773 0.020 -
dNBRc_MM1 8.6 6.4 114.3 0.778 0.018 -

dNBRc_AA3 51.5 5.2 125.9 0.655 0.104 0.076
dNBRc_AM3 38.9 5.8 149.6 0.623 0.142 0.150
dNBRc_MM3 27.7 5.5 136 0.642 0.113 0.136

β0, β1 = intercept and coefficient of linear regression model (Equation (34)), R2 = coefficient of determination,
θ = root mean square error, FSI2 = Fire Severity Index 2 (Equation (2)), Suffix: c = phenological correction [73],
rc = relative phenological correction (suggested in this study), composite technique: AA = average in pre-
and post-fire composites; AM = average (pre) and minimum (post); MM = minimum (pre and post), time
window: 1 and 3 months, Diff. R2 (rc-c): observed difference in R2 between rc and c composites for corresponding
technique and index, and Diff. R2 (1-3): observed difference in R2 between 1-month and 3-month composites for
corresponding technique and index. Changes in R2 > 0.05 are marked in bold.
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For all the analyzed compositing techniques and indices, the R2 between field severity
and composites was higher for the 1-month period than for the corresponding 3-month
period (Table 5). The decrease in the R2 with increasing composite length from 1 to 3 months
was ≥0.05 for all of the c composites (0.05, 0.12, and 0.10 and 0.08, 0.15, and 0.14 decreases in
the R2 for AA, AM, and MM for RBRc and dNBRc, respectively). Interestingly, rc composites
showed, in contrast, a ≤ 0.05 decrease in the R2 (0.03–0.04) for all RBRrc and dNBRrc
composites with increasing composite length from 1 to 3 months (Table 5). Regarding the
compositing technique, the highest correspondence was obtained using the minimum in
pre- and post-fire (RBRrc_MM1 with R2= 0.832 and RBRc_MM1 with R2= 0.820), closely
followed by AM (R2 of 0.830 and 0.817 for RBR5nrc and RBR5nc, respectively). Conversely,
composites using the average in both pre- and post-fire images had the lowest R2 for the
1-month composites, with an R2 = 0.815 (RBRrc) and 0.779 (RBRc). AA composites also
showed lower R2 values than AM or MM composites for the 1-month dNBR composites
(Table 5).

3.2.2. Fire Severity Thresholds for Each GEE Composite Technique

Based on the best-performance regression models obtained in Table 5, we determined
composite thresholds categorizing FSI2 (%) as follows: Extreme (>90), High (60–90), Mod-
erate (30–60), Low (30–10), and Very low (<10) (Table S4). As expected, there were some
variations in the thresholds between composites of different lengths, compositing tech-
niques, and phenological corrections applied. Interestingly, the thresholds were higher
for the 1-month composites compared to lower thresholds for the 3-month composites.
For example, the Extreme fire severity thresholds for the RBRrc composites, using AA and
AM, would be 478 and 506, respectively, for the 1-month composites, compared to values
of 392 and 405 (approximately 100 RBR lower), respectively, for the 3-month composites.
Similar magnitude differences were observed for all fire severity categories, for both RBR
and dNBR, for all the compositing techniques applied.

3.2.3. Evaluating Phenological Variations for each GEE Composite Period and Technique

The differences between the average and minimum for 1- and 3-month NBR pre-
and post-fire composites are illustrated in Figure 3 for two selected wildfires: Site 1
(Figure 3a–h) and Site 2 (Figure 3i–p). For the post-fire composites, lower NBR values,
more clearly capturing the high-severity areas, can be observed for the minimum compos-
ites for both wildfires and compositing periods (Figure 3f,h,n,p). In contrast, the average
post-composites showed a more diluted response, less clearly capturing high-severity areas
in both wildfires (Figure 3b,d,j,l). This is particularly noteworthy for the post-composites
in Site 2 (Figure 3j,l), where the average composites very weakly captured the burned
surface, achieving positive (green and/or wet vegetation) post-NBR values, in contrast
to a more distinct observation of burned areas in the corresponding minimum composite
(Figure 3n,p).

The process of phenological correction, by sampling the unburned dNBR, is illus-
trated in Figure 4 for the 3-month MM composites of the three analyzed wildfires, Site 1
(Figure 4a–d), Site 2 (Figure 4e–h), and Site 3 (Figure 4i–l). The left column (Figure 4a,e,i)
shows the uncorrected dNBR, together with the active fire perimeter buffer, used to sam-
ple the phenological changes in the NBR in the unburned area adjacent to the fire. An
inspection of the dNBR within the unburned buffer suggests spatial variation in the pheno-
logical NBR changes, particularly for Site 1 and 2 (Figure 4a,e, respectively). For example,
higher dNBR values can be observed in the southwest of Site 1 fire’s unburned buffer
(Figure 4a). Similarly, higher dNBR values can also be seen in the south of Site 2′s unburned
buffer (Figure 4e), in contrast with lower values in the northern part of the unburned
area. A comparison against the corresponding NBRpre maps for these sites (Figure 3g,o,
respectively) reveals that such areas with higher phenological change corresponded to the
drying or senescence processes of areas with high NBRpre (i.e., dense, humid forests, shown
in blue in Figure 3g,o), in contrast with lower phenological change (dNBR, Figure 4a,e)
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observed in the low-biomass (low-NBR) areas which were already dry in the pre-fire image
(Figure 3g,o).

Figure 3. Pre- and post-fire NBR GEE composites with varying techniques average (a–d) and (i–l)
and minimum (e–h) and (m–p) and different time windows: 1 month (left columns) and 3 months
(right columns)) for Sites 1 (a–h) and 2 (i–p).
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Figure 4. Phenological corrections on dNBR images, where dNBR* = without any correction
(a,e,i), corr_rc = relative correction map (b,f,j), dNBRc = constant-offset-corrected dNBR (c,g,k), and
dNBRrc = relative-phenology-corrected dNBR (d,h,l) for sites 1 (a–d), 2 (e–h) and 3 (i–l). Very
low/unburned thresholds (shown in green) were obtained for each fire in Section III (Table 6).

Table 6. Overall accuracy, kappa index, sensitivity, and specificity of the best-performing RBR burned
area thresholds, for each analyzed composite technique in 1–3 months and different phenological
corrections (c and rc).

RBRc RBRrc Difference

Fire
Composite
Technique

Perc Threshold OA Kappa Sens. Spec. Perc. Threshold OA Kappa Sens. Spec.
Diff. OA

(rc-c)
Diff. Kappa

(rc-c)
Diff. Sens.

(rc-c)
Diff. Spec.

(rc-c)

Site 1

AA1 85 * 63 0.975 0.950 0.973 0.976 95 * 60 0.969 0.938 0.987 0.952 −0.01 −0.01 0.01 −0.02
AM1 90 * 73 0.959 0.918 0.971 0.948 95 * 86 0.961 0.922 0.971 0.952 0.00 0.00 0.00 0.00
MM1 10 73 0.959 0.918 0.966 0.952 95 * 70 0.960 0.920 0.971 0.950 0.00 0.00 0.01 0.00

AA3 10 74 0.958 0.916 0.956 0.960 95 * 59 0.965 0.930 0.980 0.951 0.01 0.01 0.02 −0.01
AM3 10 46 0.878 0.756 0.951 0.825 10 68 0.914 0.828 0.902 0.926 0.04 0.07 −0.04 0.10
MM3 85 * 50 0.899 0.798 0.945 0.861 10 73 0.921 0.842 0.910 0.940 0.02 0.04 −0.04 0.08

Site 2

AA1 20 99 0.770 0.541 0.760 0.782 10 47 0.798 0.597 0.908 0.749 0.03 0.06 0.15 −0.03
AM1 10 63 0.826 0.652 0.877 0.787 5 60 0.895 0.791 0.980 0.857 0.07 0.14 0.10 0.07
MM1 80 * 92 0.826 0.652 0.830 0.822 85 * 57 0.893 0.786 0.993 0.860 0.07 0.13 0.16 0.04

AA3 5 32 0.730 0.459 0.889 0.663 80 * 57 0.811 0.622 1.000 0.771 0.08 0.16 0.11 0.11
AM3 75 * 81 0.789 0.578 0.813 0.768 10 48 0.865 0.730 0.902 0.842 0.08 0.15 0.09 0.07
MM3 15 66 0.775 0.549 0.819 0.741 5 29 0.883 0.765 0.945 0.838 0.11 0.22 0.13 0.10

Site 3

AA1 10 76 0.977 0.955 0.971 0.984 1 67 0.974 0.948 0.989 0.961 0.00 −0.01 0.02 −0.02
AM1 90 * 72 0.977 0.955 0.977 0.975 99 * 83 0.980 0.961 0.972 0.989 0.00 0.01 −0.01 0.01
MM1 95 * 86 0.983 0.966 0.968 0.998 99 * 78 0.984 0.969 0.980 0.989 0.00 0.00 0.01 −0.01

AA3 10 77 0.955 0.910 0.953 0.956 5 64 0.957 0.914 0.951 0.964 0.00 0.00 0.00 0.01
AM3 10 76 0.953 0.905 0.952 0.953 95 * 53 0.946 0.892 0.943 0.950 −0.01 −0.01 −0.01 0.00
MM3 10 78 0.964 0.928 0.954 0.975 5 59 0.960 0.920 0.951 0.970 0.00 −0.01 0.00 −0.01

Composite technique: AA = average in pre- and post-fire composites, AM = average (pre) and minimum (post)
and MM = minimum (pre and post), Perc. = best-performing RBR percentile, * percentile of the unburned sample,
OA = overall accuracy, Sens. = sensitivity, Spec. = specificity, time window: 1 and 3 months, phenological
correction: RBRc = RBR with constant phenological correction [73], RBRrc = RBR with relative phenological
correction (proposed in this study), Diff OA (rc-c) = difference in overall accuracy between rc and c composites,
Diff kappa (rc-c) = difference in kappa coefficient between rc and c composites, Diff. Sens. (rc-c): difference in
sensitivity between rc and c composites, and Diff. Spec. (rc-c): difference in specificity between rc and c composites.
Differences in overall accuracy, kappa coefficient, sensitivity, or specificity between rc and c composites higher
than 0.05 are shown in bold.
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The average unburned dNBR values for every NBRpre value, used to calculate the rela-
tive correction, are shown in Figure 5 for the three analyzed wildfires, for every composite
technique and period tested. Changes in the NBR in the unburned areas were substantially
larger in the 3-month composites (Figure 5b,d,f), reaching values of up to 500–600 average
dNBR in the unburned areas. In contrast, significantly lower unburned dNBR, of up to
100–200 values, were observed in the 1-month composites (Figure 5a,c,e), for all the wild-
fires and composite techniques analyzed. Both composites using the minimum on the
post-NBR (AM and MM, showed in blue and green in Figure 5, respectively) behaved
similarly, suggesting a higher influence of the post-fire image than the pre-fire image on
the observed phenological change for the studied wildfires.

Figure 5. Average dNBR by NBRpre in the unburned buffer for sites 1 (a,b), 2 (c,d), and 3 (e,f)
for 1-month and 3-month composites (a,c,e and b,d,f, respectively), where composite technique:
AA = average in pre- and post-fire composites, AM = average (pre) and minimum (post), and
MM = minimum (pre and post).

Interestingly, for both 1 and 3 months, unburned dNBR was mainly positive (i.e., drying)
for AM and MM composites in the majority of fires and periods analyzed (shown in
blue and green in Figure 5). In contrast, for composites using the average in both pre-
and post-fire images (AA, shown in red in Figure 5), the unburned dNBR varied from
negative (i.e., greening or increased moisture) in low-biomass (low-NBR) fuels to positive
(i.e., drying) in higher-biomass (high-NBR) fuels. For those AA composites, averaging
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positive and negative dNBR values in a constant offset calculation could result in the
underestimation of larger positive or negative phenological changes that occurred for each
fuel type, not reflecting the spatial heterogeneity of phenological changes (Figure 5). In the
case of composites with the minimum in the post-image AM and AM, a constant average
offset could largely underestimate the higher drying or senescence present in unburned
high-biomass fuels, particularly for the longer periods (Figure 5b,d,f). In addition, the
smaller phenological changes that occurred in the low-biomass fuels (Figure 5) could also
be overestimated by an average constant offset in this case.

By assigning these observed unburned average dNBR values (Figure 5) to each NBRpre
value, we created a spatially variable relative correction (rc), shown in Figure 4b,f,j. The
relative correction rc maps for the 3-month MM composites shown in Figure 4 use the
patterns analyzed in the unburned buffer (Figure 5) to spatially represent the expected
phenological change in the absence of fire for the entire area of study. Consequently, for
Site 1 and Site 2 (Figure 4b,f), relative correction rc maps reflect that, on average, for those
sites, pixels with a higher NBRpre experienced a higher phenological increase in the dNBR
in the period analyzed. Conversely, observed lower phenological changes are mapped
for the low-biomass (low-NBR) areas in those sites and periods of study (Figure 4b,f).
Relative-phenology-corrected dNBRrc maps, calculated by subtracting rc rasters (second
column, Figure 4b,f,j) from uncorrected dNBRs (first column, Figure 4a,e,i) are shown in
the last column of Figure 4d,h,l. In contrast to the constant phenological dNBRc maps
(Figure 4c,g,k), dNBRrc composites seem to minimize confusion (i.e., commission errors) in
the unburned buffer (as evaluated in Section III), while also maintaining a clear distinction
of the patches of higher severity (Figure 4d,h,l).

3.3. Section III: Evaluating the Effect of Composite Period Length, Technique, and Phenological
Correction on the Accuraccy in Mapping the Burned Area Perimeter for each Wildfire
3.3.1. Burned Area Thresholds for Each Composite and Wildfire

We selected the best-performing RBR value (highest kappa and overall accuracy) from
the candidate burned and unburned percentiles tested as the best burned area perimeter
threshold for each wildfire and composite technique, period, and phenological correction
(i.e., c and rc) (Table 6, Figure S1). Both the overall accuracy and kappa peaked at the same
RBR values, which were in turn selected as burned area thresholds (Table 6). Burned area
perimeters estimated with 1-month composites consistently showed higher kappa and
overall accuracy values than their corresponding 3-month composites; this decrease in
kappa with increasing composite period was higher for c than for rc composites (Table 6,
Figure S1). Regarding the compositing technique, composites using the minimum (AM and
MM) largely outperformed those using the average (AA) in Site 2 (Table 6 and Figure S1).
For both Site 3 and 1-month composites in Site 1, relatively similar results were obtained
for both the average and minimum techniques (Table 6 and Figure S1).

Remarkably, rc composites had generally higher kappa and overall accuracy values
than their corresponding c composites (Table 6 and Figure S1). The highest increases in
kappa were observed for Site 2 (where kappa values raised by 0.16–0.22 and 0.06–0.13 for
3 months and 1 month, respectively) and Site 1 (with kappa increases of up to 0.04–0.07
for the 3-month composites). For Site 2, those improvements in accuracy were generally
a result of both gains in sensitivity of 0.09–0.16 (i.e., lower omission errors) and increases
of up to 0.11 in specificity (lower commission errors) for the rc composites (Table 6). For
the 3-month composites in Site 1, accuracy increases were mostly caused by improved
specificity values of up to 0.10 (i.e., decreased commission errors). In contrast, for Site
3, both phenological corrections and all the composite techniques performed relatively
similarly, together with a lower observed reduction in kappa values from 1 to 3 months.

The performance of rc and c composites for burned area mapping for the 1- and 3-
month MM composites is shown in Figure 6, using the burned area thresholds obtained for
each composite and wildfire analyzed (Table 6). Higher commission errors in the sampled
unburned points (shown in yellow in Figure 6) can be observed for the c composites,
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particularly for the 3-month composites in Site 1 and 2 (Figure 6c,g), compared to a lower
commission observed for their corresponding relative correction rc composites (Figure 6d,h).
In addition, higher omission errors (shown in blue in Figure 6) for c composites in Site
2 can also be observed at both 1 (Figure 6e) and 3 months (Figure 6g), in contrast with
lower omission errors for the rc composites during both periods (Figure 6f,h, respectively).
Contrarily, slightly higher omission errors, mainly in low-severity areas, were observed
with rc 3-month composites in Site 1 (Figure 6d), which nevertheless had a higher overall
classification accuracy and kappa because of the large improvement in commission errors
(Table 6).

Figure 6. Burned area (shown in red) estimated for site 1 (a–d), 2 (e–h) and 3 (i–l), using the corre-
sponding burned area threshold from Table 6, for 1-month (left columns) and 3-month (right columns)
MM composites using constant phenology correction c [73] and relative phenological correction rc
(proposed in this study). Sampled points for burned areas (active fires) and for unburned areas
are shown in gray and green within the active fire perimeter and the unburned buffer, respectively.
Omission and commission errors in the sampled burned and unburned point sample are shown in
blue and yellow, respectively.
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3.3.2. Fire Severity Mapping

We finally mapped fire severity (using FSI2 thresholds from Table S4), also considering
the wildfire-specific burned area thresholds for the Very low/unburned category (see
Table 6). Fire severity maps for the three analyzed wildfires are shown in Figure 7 for the
1-month and 3-month MM composites, using constant and relative phenological corrections
(c and rc). Notably, relative phenological corrections, in addition to allowing for a clearer
burned/unburned delineation as previously shown in Figure 6 for these same composites,
also maintained a clear distinction of high- and extreme-severity patches, even slightly
improving the correspondence with field measured plots of fire severity (Table 5), which
are shown in circles in Figure 7.

 

Figure 7. Fire severity mapping with MM technique and different time windows (1 and 3 months)
and constant (c) or relative phenological correction (rc) for wildfires in Site 1 (a–d), Site 2 (e–h), and
Site 3 (i–l), using FSI2 thresholds (see Table S4). The corresponding burned area threshold (Very
low/unburned, shown in green) was assigned for each wildfire (see Table 6) according to the time
window and composite technique.
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4. Discussion

4.1. Field-Based Fire Severity Metrics and Paired Images S2 Spectral Indices Correspondence

The observed higher performance of RBR5nc and RBR3c (using bands 8a/12 and 8/12,
respectively) as the best predictors of field-based fire severity (Table S3), agree with previous
Sentinel-based studies of fire severity (e.g., [9,34,125]) and burned area (e.g., [35,126]). The
superior performance of the relative index RBR compared to its absolute version dNBR,
both for paired images and composites evaluated (Table 5 and Table S3), also supports
the findings of previous studies such as Fernández-Manso [29], Botella-Martínez [127],
Arellano et al. [128], Quintano et al. [129], Parks et al. [41,70], Holsinger et al. [19], and
Fernández et al. [9], where relative indices showed a higher correlation against field-based
severity data. In our study, the strong heterogeneity in fuel types (Figure 1) and pre-
fire biomass (Figure 3) was probably related to this better performance of the relative
spectral indexes.

The higher performance of fire severity indices (i.e., FSI, FSI2) than individual strata
(i.e., OCS, UCS, and SSI) supports previous observations where composite indices of
fire/burn severity showed a higher R2 with spectral indices than the individual strata
evaluated [61,130]. For the temperate to semi-arid pine/oak study sites analyzed, our
hypothesis that there could be correlations between canopy and subcanopy crown scorch
volume and between understory and soil burn severity was met; in fact, we observed a
significant correlation in both cases (R Pearsons = 0.96 and 0.77, respectively). This could
explain our observed similar, even slightly higher performance of FSI2 against FSI and, more
interestingly, our markedly higher R2 for wFSI2 against wFSI (Table S3). This suggests some
potential of wFSI2 to compensate for the overemphasis of soil strata in sparsely vegetated
plots, observed using wFSI, with the latter being in line with previous observations [131].
Further research in a variety of forest ecosystems, analyzing the presence or absence of
correlations between strata and also against satellite indices (e.g., [132]), might be useful in
better understanding the limitations of both satellite and current integrated field indices of
fire severity, and it could provide suggestions for potential improvements for simplified or
more representative field indices.

Furthermore, while it is clear that integrated field fire severity indices can improve
correlations with satellite data, the question remains as to whether such integrated indices
are representative of ecosystem effects (e.g., [1,2,98,133]). In this sense, although they were
lower than field fire severity indices, significant correlations were observed for all strata
(Table S1). Such observed high correlations with overstory strata has been extensively
documented elsewhere (e.g., [61,66,130]). This relationship can be potentially useful when
coupled with mortality prediction models (e.g., [11,92,120]), while also accounting for
forecasted post-fire pest risk (e.g., [10]), among other factors. Nevertheless, because of the
complex interactions behind tree mortality, the performance of remotely sensed crown
scorch volume as an input for predicting tree mortality is a subject of ongoing research
(e.g., [12]).

Our observed relatively lower correlation for the understory and soil strata (R2 of 0.691
and 0.685, respectively, Table S3) supports previous observations of lower accuracies for
such strata against SI (e.g., [34,61,66]), with this limitation being potentially more marked
in ecosystems with relatively high tree density. In this sense, for our study, the relatively
low tree density in the majority of the pine/oak forests measured might have allowed for
the signal of burned soil to be partially captured by the Sentinel spectral indices. This
would agree with the observations of Allen and Sorbel [130], who also found significant
correlations of substrate severity scores (R = 0.74), although they were also lower than for
canopy (R = 0.83) in open-woodland canopies and tundra forest ecosystems. In addition,
our observed outperformance of the NBR against NDVI-based indices for SBS prediction
agrees with the results of Sobrino et al. [8] in temperate forests in NW Spain. Additionally,
the best performance of RBR in the current study supports the best performance observed
by Fernández et al. [9] for this index to predict post-fire physical soil properties.
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While the relatively open canopies of our studied ecosystems seem to reinforce the
concept that the ash and burned soil spectral response might be partially captured in
relatively low-tree-density forests, as previously suggested by both some empirical [8,9,130]
and radiative transfer modeling studies (e.g., [134]), this might not hold true under more
dense canopy conditions (e.g., [66]). In this sense, several authors have stated that passive
remote sensing imagery is more likely to detect fire effects on tree crowns than on the ground
(e.g., [34,61,135]), together with its limitations to separate strata effects in ecosystems with
complex structures [136]. This could be related to a relative inability of passive remote
sensing to “pass through” over outer vegetation strata [34], this latter limitation being
potentially more marked in ecosystems of relatively high tree density or cover. Accordingly,
beyond using satellite reflectance alone, future studies could further explore the role of
other ancillary variables such as land surface temperature from thermal bands, which
has shown potential for predicting both soil burn severity [137,138] and field indices of
fire severity such as CBI [139,140]. In addition, the role of topographic variables [141] or
fire intensity and duration [142], with the latter possibly being inferred from active fire
detections [143], could be also explored to improve our ability to predict and map fire
effects on soil.

4.2. Evaluation of GEE Composites for Mapping Fire Severity and Perimeter
4.2.1. Effect of Compositing Technique on Fire Severity and Burned Area Mapping

Higher correspondence with field fire severity (Table 5) and increased burned area
classification accuracy (Table 6) were observed for the composites using a minimum in
the post-fire image, particularly for the MM. In addition, for the equivalent evaluation
period and phenological correction, the fire severity thresholds for MM were higher than
for their equivalent AA composites (Table S4). Both results are possibly related to their
better potential to detect initial post-fire effects, by selecting the driest lower-biomass
images both in pre- and post-fire periods (e.g., Figure 3h,p), and therefore being potentially
less influenced by weather oscillations or regrowth effects in the composite period. In
contrast, for average composites, the initial post-fire severity was more diluted, likely by
forest recovery responses (e.g., Figure 3b,d) and possibly also by increased fuel and soil
moisture with post-fire precipitation (Figure 3j,l), which was undesirable for burned area
perimeter and initial fire severity detection. This supports studies that have proposed the
use of the minimum or maximum values (depending on the spectral index) for burned area
perimeter mapping (e.g., [27,51,144]). For example, Roteta et al. [26] reported that minimum
NBR composites retained the pixel values when the burned signal was considered to be
strongest, corroborated by our comparisons of post-fire minimum versus average NBR
composites (Figure 3). Additionally, it confirms suggestions from previous studies that
warned about the limitations of average composites for initial assessments in forests that
revegetate rapidly after fire (e.g., [41,45]). In contrast, for a different goal, such as mapping
extended assessments and long-term ecosystem responses, average composites of longer
compositing periods might be valuable, particularly in forest ecosystems of slower post-
fire recovery (e.g., [19,41,45]). These potential differences support the observations of
Holsinger et al. [19], who suggested that the best approach for measuring fire severity may
depend on the context and conditions of each fire, as well as the measurement objectives.
Future studies in Mexico should focus on performing extended assessments of burn severity,
potentially capturing delayed mortality, which might be particularly relevant for fire-
sensitive species such as wet tropical forests [84].

4.2.2. Effect of Compositing Period on Fire Severity and Perimeter Mapping

Shorter-length (1-month) composites showed higher fire severity thresholds (Table S4)
and higher correspondence with field fire severity (Table 5) than 3-month composites for the
fires analyzed. Our observed decrease in the dNBR and RBR fire severity thresholds with
increasing time confirms, for Sentinel-2 composites, previous observations from Landsat
compositing studies (e.g., [19,41,45]) or from paired Landsat imagery (e.g., [54,58,61,130]),
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where longer evaluation periods also generally resulted in lower fire severity thresholds
and lower correspondence with fire severity [19]. Furthermore, this better agreement of fire
severity with imagery immediately after a fire seems to support the previous suggestions
to, ideally, use an image captured within a few weeks of field plot measurements, so that
the image reflects the conditions at the time of field measurements (e.g., [19,58,72]). In
addition, the use of MODIS and VIIRS active fires to define the composite search window
starting immediately post-fire (e.g., [19,47]) was confirmed to be useful, in the light of the
fast decrease in the dNBR with increasing time since fire. In our study, an initial obscuration
of fire effects, likely related to forest recovery, was already captured in the third month after
fire, being particularly more marked when using average composites and constant offset
corrections (Table S4, Figures 6 and 7). This likely agrees with similar rapid obscuration
effects by regrowth in the first few months after a fire in fast-recovery ecosystems, such
as semi-arid and tropical areas in the southwestern and southeastern United States and
grasslands areas in the CONUS [61,71], or Mediterranean climate locations in southern
Europe (e.g., [54]). We consequently recommend that, for the evaluation of initial fire
severity in the semi-arid to temperate pine/oak ecosystems in Northern Mexico and
similar fast-growing ecosystems, images taken immediately after fire and short compositing
periods (<3 months) should be favored.

For our study area, images taken directly after a fire (1 month) were also particularly
advantageous for fire perimeter mapping (Table 6, Figure 6). This supports various stud-
ies that have preferentially used early post-fire images for perimeter delineation, given
the relatively clearer separation of burned/unburned areas in the fresh burn scar before
ecosystem recovery (e.g., [54,62,68,145,146]). This need for short-term imagery has to be
balanced with image availability, for which multi-sensor approaches [49,129,147] should be
further explored [22]. Nevertheless, cloud-free, post-fire, phenologically matching images
might not be readily available in the first month (e.g., [21,62]), particularly in in areas with
persistent cloud cover. Consequently, in addition to defining the best season and time
period for compositing, continued research in improved phenological correction techniques
will likely continue to be necessary for sound burned area and fire severity evaluations.

Interestingly, the decrease in the R2 for predicting field fire severity with increasing
composite period was only higher than 0.05 for all the constant offset correction c com-
posites. In contrast, rc composites using the proposed relative phenological correction
showed two advantages for fire severity mapping: first, they provided a higher correspon-
dence with field fire severity, particularly for the 3-month composites. Secondly, unlike
c composites, rc composites experienced a much smaller decrease in the R2 with increas-
ing compositing periods to 3 months against corresponding 1-month rc composites. This
suggests the better performance and potentially greater stability of the proposed relative
phenological correction to minimize the observed decrease in correspondence against field
fire severity with increasing observation periods. This should be corroborated in future
studies testing this novel relative phenological correction technique in other locations.

4.2.3. Effect of Phenological Corrections on Fire Severity and Burned Area Mapping

The observed values in the unburned dNBR were much larger than the range of −100
and 100 dNBR proposed by Key and Benson [57] or Picotte [74] and Picotte et al. [67] to
be sampled in the unburned buffer for a constant offset calculation, particularly for the
3-month period (Figure 5). Such observed strong spatial variability in the unburned
dNBR would violate the assumptions for a reliable application of the constant offset
method [57,74]. This limitation is not uncommon: in their evaluation of the 18,497 im-
ages manually processed by MTBS analysts in the 1984–2014 period, Picotte [74] found that
close to one third of the calculated offset values did not meet the recommended range for a
reliable constant offset application (offset average and standard deviation exceeding +/−
50). This common unsuitability of available imagery, limiting reliable constant phenology
correction because of frequent strong, spatially variable phenological effects, reinforces the
need to account for the temporal and spatial variability in phenology changes. In contrast
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to a constant offset calculation approach, where such strong variability in the range of
the unburned dNBR can limit the average offset reliability, the relative correction method
allows for the inclusion of the spatial variability in phenological changes in unburned areas,
and therefore should not limit sampling values exceeding 100 or −100 dNBR. In fact, such
variability can and should be incorporated into a spatially variable phenological correction
to take into account the actual changes observed in different fuel types.

The relative phenological correction improved both the correspondence with field-
observed fire severity (Figure 7) and burned area perimeter accuracy (Table 6 and Figure 6),
mainly because of reduced commission, but also because of reduced omission errors in
some sites. Improvements in specificity (reduced commission) in sites 1 and 2, which
had large phenological effects in the unburned fuels, particularly higher during the longer
compositing periods (Figure 5), were likely a consequence of the ability of rc to minimize the
confusion of unburned stressed or senescent vegetation with burned areas by considering
a fuel-specific (NBRpre) phenological change that better reproduces the spatial variability
in those changes than a constant phenological correction.

Regarding omission errors, for Site 2, which had the strongest phenological effects,
sensitivity was also largely improved using rc, possibly as a consequence of this clearer
separability between burned and stressed vegetation for this site compared to the constant
offset method. In contrast, the observed slight increase in omission errors for rc against c
for the 3-month composites in Site 1 seems to suggest that, in some locations, in order to
minimize commission errors, the rc perimeter thresholds might omit some of the lowest-
severity areas. This is a common limitation using remote sensing imagery (e.g., [97]) and
is relatively more acceptable than commission errors, since those low-severity areas are
expected to be mildly impacted by fires and require fewer or no post-fire rehabilitation
interventions (e.g., [10,90]).

In any case, omission errors should be treated with caution, given the spatial un-
certainties inherent to the use of filtered active fire observations as proxies for burned
area locations. This approach, already proposed by Roteta et al. [27], among others, for
calibrating burned area thresholds for Sentinel and Landsat, has the advantage of reducing
the need for extensive ground datasets of burned areas and of being susceptible to being
automated in near real time using active fire observations to obtain fire-specific burned
area thresholds [148]. Nonetheless, the relatively coarse resolution of active fires requires
caution, particularly in smaller fires (with a lower number of observations than the large
fires analyzed here), where the technique might have limited applicability because of this
spatial uncertainty. Future studies could alternatively test the use of Landsat active fire de-
tections [149] or aerial infrared imagery [150], where available, to calibrate locally adaptive
burned area thresholds [148] from the percentile distribution of the spectral values of S2
indices, extracted from those detections at much finer spatial resolutions.

We observed a high degree of spatial and temporal variation in phenology, as mea-
sured by rc. In this sense, the most widely used method of phenological correction, the
constant offset, had previously been documented to slightly improve correlations with CBI
when analyzing several fires (e.g., [41,76]). Conversely, some studies reported decreased cor-
relations with field CBI using constant offset correction methods compared to uncorrected
images (e.g., [58]) and attributed this to the dynamic nature of the ecosystems studied,
such that a single average dNBR value in unburned areas could not provide a reference
point between pre- and post-fire images. This was also acknowledged by Parks et al. [41],
who warned that, in their current formulations, constant offset methods would not be
appropriate under heterogeneous fuel conditions, which can unfortunately be very com-
mon (e.g., [23,74]). Moreover, on an individual fire level, a constant offset correction is not
expected to improve neither correlations with field fire severity (e.g., [130]) nor to change
the individual fire perimeter delineation accuracy. It is obvious that simply subtracting a
constant value to a raster image would not alter the relative differences between pixel val-
ues (e.g., burned/unburned) at an individual fire level. In contrast, spatially heterogeneous
methods, such as the relative correction method, apply a different phenological correction
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to every fuel type, as defined by the NBRpre, by including the observed heterogeneity in
phenological changes (Figures 4 and 5), resulting in the potential for improving accuracies
for fire severity and burned area mapping (Table 6, Figure S1).

Interestingly, the higher increases in accuracy using rc composites for fire severity
and fire perimeter mapping, observed for the 3-month composites, corresponded with the
higher variation in the dNBR values observed in the unburned area for those longer periods
(Figure 5). In addition, larger improvements using rc against c composites for burned
area perimeter mapping also corresponded to sites where observed phenological changes
were also larger, such as Site 1 and 2, while accuracies and fire severity and perimeter
maps (Figures 6 and 7) were similar for sites with smaller observed phenological changes,
such as Site 3. This seems to suggest that relative phenological correction methods could
be routinely applied both for fire severity and fire perimeter delineation, resulting in a
similar performance to the current constant offset method when phenological changes are
small. More importantly, when large and spatially heterogeneous phenological changes are
present, such spatially variable phenological correction could improve both fire severity
and perimeter delineation accuracy. Because of the high number of images with large
and/or spatially variable phenological effects (31% of all MTBS images analyzed by [74])
and the frequent lack of immediate post-fire imagery [62], we believe that the potential
of the proposed rc method to improve both fire severity and perimeter delineation can
be significant.

Previous approaches have used supervised methods that require a manual selection
of control plots by subjectively interpreted fuel type based on expert knowledge (e.g., [77])
or the manual creation of phenology-matched composites [22], which currently require the
large involvement of analyst manual supervision [23]. Unlike those approaches demanding
manual supervision, the novel relative correction method proposed in this study uses a
systematic approach by automatically stratifying by NBRpre as a proxy of fuel type and
biomass and quantifying and correcting for the phenological changes for each of those
spatially variable fuel categories. All the processes in the rc calculation can be easily
automated and readily incorporated into existing operational GEE codes, very similar to
the current automatization of constant offset [41,75], but only by automatically stratifying
its calculation by the NBRpre, with this layer also already being calculated automatically in
Parks et al. [41] GEE code. Including an automated rc calculation into existing GEE burned
area tools could improve the accuracy of operational large-scale automated assessments of
fire severity [19,41,44,45] and burned area [26,27,42]).

Additionally, another advantage of the proposed rc method is that, unlike methods that
assume a baseline from previous years (e.g., internannual differencing [23]), this approach
neither requires a long time series as a baseline, nor does it make any assumptions about the
magnitude of the phenological changes from those previous periods. Instead, it quantifies
the observed temporal and spatial variations in the unburned fuels and uses this observed
change to normalize the image with respect to observed unburned phenological changes. In
this sense, this method can capture phenological changes of varying magnitudes (Figure 5),
potentially reflecting a variety of greening/drying conditions between different fuels,
specific to each location and assessment time. The portability of the rc method suggests
the potential for improved analysis in a variety of locations and assessment periods, as
it minimizes non-fire-induced changes in vegetation dynamics. This could improve the
transferability of fire severity thresholds, again, because it minimizes fuel-specific variations
in phenological and weather influences. Further research in spatial and temporal variations
of phenological corrections across a large variety of ecosystems should be encouraged and
ultimately incorporated into operational burned area and fire severity mapping efforts,
potentially improving their accuracy and robustness.

5. Conclusions

For the first time, the current study analyzed the accuracy of Sentinel-2 spectral indices
to map fire severity and burned area perimeter in Mexico. It included an evaluation of

138



Remote Sens. 2022, 14, 3122

Google Earth Engine (GEE), composite length, and technique and tested a novel relative
phenological correction (rc) against the constant offset (c) method. The RBR index, using
bands 8a and 12, showed the highest correspondence with both field fire severity indexes
and evaluated individual strata (i.e., canopy, subcanopy, understory, and soil), for a variety
of sites with marked vegetation heterogeneity under a climatic gradient from semi-arid
to temperate.

One-month GEE composites, using the minimum metric for post-fire images, showed
a higher correspondence with field severity and higher fire perimeter delineation accuracies
than 3-month composites or using the average. Interestingly, the decreases in fire severity
and perimeter accuracy with increasing compositing period from 1 to 3 months were
lower for the composites using the rc phenological correction, which showed greater
stability compared to a constant offset correction. Therefore, the rc method could be
potentially useful to minimize such effects when immediate post-fire, cloud-free imagery is
not available.

Relative phenologically corrected composites showed both improved correspondence
with field fire severity and higher accuracy for fire perimeter delineation for most sites and
periods analyzed. This latter improvement was more significant in sites and periods where
phenological effects (as quantified by changes in the dNBR in the unburned area) were
stronger. Because strong and heterogeneous fuel phenology effects have been frequently
observed, the rc method could have the strong potential to significantly improve the
accuracy of fire severity and burned areas if routinely applied in post-fire evaluations.

The proposed rc approach, using the NBRpre to systematically stratify fuels and
sample the spatially variable temporal variations in the spectral indices of the unburned
fuels, goes beyond the constant offset method in incorporating fuel heterogeneity but
shares its relative simplicity of being fully automated. Including such a spatially variable
phenological correction into existing automated tools, such as GEE, could contribute to
deriving improved, systematic large-scale evaluations of fire severity and perimeters in
Mexico and elsewhere.
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Abstract: The present work is aimed at gaining more knowledge on the nature of the relation between
land surface temperature (LST) as a biophysical parameter, which is related to the coupled effect of
the energy and water cycles, and fire activity over Bulgaria, in the Eastern Mediterranean. In the
ecosystems of this area, prolonged droughts and heat waves create preconditions in the land surface
state that increase the frequency and intensity of landscape fires. The relationships between the
spatial–temporal variability of LST and fire activity modulated by land cover types and Soil Moisture
Availability (SMA) are quantified. Long-term (2007–2018) datasets derived from geostationary MSG
satellite observations are used: LST retrieved by the LSASAF LST product; fire activity assessed by
the LSASAF FRP-Pixel product. All fires in the period of July–September occur in days associated
with positive LST anomalies. Exponential regression models fit the link between LST monthly means,
LST positive anomalies, LST-T2 (as a first proxy of sensible heat exchange with atmosphere), and FRP
fire characteristics (number of detections; released energy FRP, MW) at high correlations. The values
of biophysical drivers, at which the maximum FRP (MW) might be expected at the corresponding
probability level, are identified. Results suggest that the biophysical index LST is sensitive to the
changes in the dynamics of vegetation fire occurrence and severity. Dependences are found for forest,
shrubs, and cultivated LCs, which indicate that satellite IR retrievals of radiative temperature is a
reliable source of information for vegetation dryness and fire activity.

Keywords: geostationary satellite observations; wildfire regime; biophysical drivers; land surface
temperature; land cover type; trends

1. Introduction

Fire is a global phenomenon closely linked to climate variability and human practices
with critical regional implications [1,2]. It is an important process in the modulation of
the Earth system through the links between weather, climate, and vegetation and has the
potential to impact on the global climate system by changing the ability of the surface to
absorb and emit energy [3,4].

Climatic variability is a major driver of fire in many terrestrial ecosystems, as reflected
in Bradstock’s conceptual model of four climatic ”switches” that influence fire regimes by
controlling fuel amount, fuel moisture, and fire weather at contrasting temporal scales [1].
Fire regimes are also affected by other controls such as landscape-scale patterns of vege-
tation, topography, and human activities [5]. Climate is connected to fires at two distinct
temporal scales [6]. Short-term climatic anomalies (from months to years) affect fires by
modifying vegetation growth and fuel moisture before the fire and by influencing weather
during the period of fire spread. In addition, climate has more indirect, long-term (decadal
or longer) effects on the distribution of major vegetation types, which in turn constrain the
landscape-scale mosaics of fuels and vegetation.
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Soil moisture (SM) has been identified as a key variable in understanding and predict-
ing wildfire hazards [7–11]. Soil moisture, defined as the water contained in the unsaturated
soil zone [12], not only influences vegetation growth conditions and consequently the accu-
mulation of wildfire fuel, but also determines the vegetation moisture content and hence
the flammability of the vegetation [7,9,13].

Land surface temperature (LST) is one of the most important parameters controlling
physical processes responsible for the land surface balance of water, energy, and CO2 [14,15].
In the context of wildfire studies, the LST consideration has two main aspects: first, as
a pre-fire indicator of land surface state (SM deficit in root zone and vegetation dryness,
evapotranspiration, leaf temperature), and second, as a post-fire characteristic of fire-
induced environmental changes. The variations in the spatial distribution of LST as a
result of fires are usually the focus of research works that characterize fire intensity and
burn severity. Higher post-fire LST of burned areas has been reported in remotely-sensed
images [3,4,16–18], that is accounted mainly due to a decrease in transpiration and an
increase in the Bowen ratio (β = sensible heating/latent heating) [19].

Although relationships between drought and fire seem quite interrelated, only a few
studies have explored LST as a pre-fire indicator [20,21]. Short-term analyses based on LST
daily anomalies have been performed to predict fire occurrence [20].

The vegetation cover partitions the incoming solar radiation into sensible and latent
heat fluxes depending on its structure as well as affects the surface roughness, which can in
turn alter heat and moisture transport; the type of vegetation and its seasonal dynamics
affect the land’s vulnerability to fire ignition and spread. That is why spatial–temporal
patterns of LST can contribute to the monitoring of processes that structure ecosystem
development and may be associated with fire occurrences to help fire management. Satel-
lite measurements are a source of information for the accurate estimation of LST at the
global and regional level, thus helping to evaluate the land surface–atmosphere exchange
processes and can serve as a valuable metric of surface state [4,14].

In this study, we consider data for skin surface temperature retrieved by satellite mea-
surements to explore the significance of LST as a biophysical driver, which (in combination
with SM, air temperature, and humidity) controlled long-term wildfire activity during
the study period of 2007–2018 over the Eastern Mediterranean region, as seen in coherent
satellite active fire observations.

Studies have used satellite remote sensing for fire monitoring from the early 1990s.
With the rapid development of remote sensing technology, satellites are increasingly used
for fire monitoring [22–26] and applied at large scales. In recent years, many studies have
been committed to identifying the spatial and temporal characteristics of fires from the
global and regional perspectives with the use of satellite data [27–31]. All these studies were
performed by using observations by low earth orbit (LEO) satellite sensors with the Very High
Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS),
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

Geostationary (GEO) fire products were first generated over the Americas using the
Geostationary Operational Environmental Satellite Visible Infrared Spin Scan Radiometer
Atmospheric Sounder (GOES-VAS), e.g., in [32], and this led to the development of the
long-standing GOES WildFire Automated Biomass Burning Algorithm (GOES WFABBA)
product [33]. Roberts et al. [34] first demonstrated the retrieval of Fire Radiative Power
(FRP) from GEO data and developed a full “fire thermal anomaly” active fire detection
and FRP retrieval algorithm for GEO systems. This was initially applied to data from
Meteosat Second Generation [35], and an operational version is now used to generate a
series of geostationary active fire detection and FRP retrieval products that span much of
the globe, including Meteosat over Africa and Europe [36,37], GOES-East and West over
the Americas [38], and Himawari over Asia [39]. Wooster et al. [40] summarized the history
of achievements in the field of active fire remote sensing, reviewed the physical basis of
the approaches used, the nature of the active fire detection and characterization techniques
deployed, and highlighted some of the key current capabilities and applications.
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However, since every observation by the satellite sensors lasts only an instant, what
they actually measured was the rate of release of FRE per unit of time or Fire Radiative
Power (FRP) in MW [24,41,42]. It was shown that the FRE released by a fire is directly
proportional to the biomass consumed as well as the smoke emitted [43]. Measurement of
fire radiative energy (FRE) release rates or power (FRP) from space offers opportunities
for the characterization of biomass burning and emissions in a quantitative manner. In
essence, it has enabled the rating of fires as well as an estimation of regional FRP fluxes,
which reflect the relative concentrations of biomass burning activities.

Mediterranean regions are some of the most affected by wildfires, and remote-sensed
information about fire activity as provided by the SEVIRI instrument on board Meteosat-8 is
especially valuable for forest and civil protection activities [44]. On the other hand, the
Mediterranean is one of the most responsive regions to climate change, as evidenced by
“pronounced warming” and significant decreases in spring and summer precipitation,
which have led to regime shifts toward more arid climates [45,46]. Triggered by large-scale
atmospheric forcing, Mediterranean regional heat waves are often amplified by surface
preconditioning such as negative soil moisture anomalies and vegetation stress [47].

The research works of Sifakis et al. [48], Amraoui et al. [44], and Di Biase and Lan-
eve [49] were aimed at understanding the spatial and temporal patterns of landscape
fires in the Mediterranean, applying different remote sensing data from GEO sensors.
Compared to LEO systems, GEO products offer higher temporal resolutions but coarser
spatial resolutions, and each sensor only provides data over a specific region of the Earth.
The observations from the geostationary meteorological satellite MSG provide a valuable
source of information about fire occurrences in the Mediterranean region. Sifakis et al. [48]
reported that during the summer period of 2007, MSG-SEVIRI data successfully detected
82% of the fire events in Greek territory, with less than 1% false alarms. Using data from
MSG-1 satellite, Amraoui et al. [44] performed an analysis of the spatial distribution of fire
events in the months of July and August during the period of 2007–2009. Around half of
the fire pixels were detected in croplands, and the remaining half was evenly distributed
between forest and shrub. Based on the analysis of the low, mid, and upper atmospheric
fields of geopotential, temperature, relative humidity, and wind in two extreme events
of fire activity that struck Greece and Italy on 24–25 July and 22–27 August 2007, they
suggested a conceptual model for meteorological conditions that favor the occurrence of
severe wildfire episodes in Italy and the Balkan Peninsula.

The current study is the first one to use the FRP product retrieved by geostation-
ary satellite observations to investigate fire activity in a recent long-term period for the
Eastern Mediterranean.

In Mediterranean ecosystems, prolonged droughts and heat waves have created the
preconditions for the increasing frequency and intensity of forest fires [50], the underlying
mechanism being the reduction of live and dead fuel moisture content as a response of the
soil–plant system to the increased vapor pressure deficit [51]. Vegetation response varies
with species as well as with forest structure and soil/terrain characteristics, and it is deter-
mined by evapotranspiration. The moisture of dead fuels is affected by weather variations
as well, and it is regulated through evaporation [52]. The climate and weather patterns
of the Mediterranean region highlight the value of having an improved understanding of
the relationships between drought and wildfire; more specifically, an understanding of
how drought is related to fire danger outputs. A number of studies have examined the
link between drought indicators and wildfire occurrence [53–55]. Many drought indices
(see [56]) are driven by stand and climate variables of precipitation and/or temperature,
but more recent developments include variables that express conditions at the land surface–
atmosphere interface such as vegetation health [57], soil moisture deficit [58–62], actual
evapotranspiration [63], and evaporative demand [56,64,65]. These last indexes are impor-
tant because they can reflect the outcome of the coupled physical processes of energy–water
cycles on the land surface.
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In our previous work [66], long-term LST anomalies retrieved by MSG SIVIRI were
used to identify drought-prone areas in the Eastern Mediterranean. Song [21] showed
that there is no linear relationship between LST anomaly and fire occurrences, but the
time series of LST anomaly before fire events show a significant trend. Resolving LST–fire
interactions facilitate fire predictions and the issuance of early warnings.

We use long-term spatially and temporally consistent satellite observations from the
SEVIRI sensor of geostationary MSG satellite to assess the biophysical forcing effect of
vegetation fires on a climatic basis at a regional scale. The study is focused on two key
aspects of wild fire problems that are not systematically studied in the literature: (i) an
evaluation of the importance of LST (monthly mean values, anomalies, and difference with
air temperature, T2m) as precursor/s of vegetated land surface dryness and the related
pre-fire signals of vegetation stress and fire occurrence; (ii) an exploration of the variability
of these biophysical drivers of vulnerability in biomass burning across the climatic gradient,
delineated into main land cover types, and the quantification of relations with fire activity
using long-term records of satellite information from Meteosat, ground observations, and
SVAT model data of Soil Moisture Availability (SMA) to the land cover as reference data
over the Eastern Mediterranean region (Bulgaria). The specific objectives to be met are
the following:

• To characterize spatial–temporal patterns of fire activity (July–September) using long-
term satellite data records from SEVIRI observations (2004–2019) in terms of the num-
ber of biomass burning detections and the severity of burning (FRP, MW) according to
the LSASAF FRP-Pixel product;

• To use LSASAF LST product data to statistically investigate and evaluate the relation-
ship of the biophysical parameters of LST, LST anomaly, and the difference between
skin and air temperatures (LST-T2m) to the occurrence and severity of wild fires on a
short-term climatic basis (2007–2018);

• To characterize the wild fire vulnerability of the main vegetation types (forest, shrub-
lands, cultivated) in relation to the LST and SMA warm and dry anomalies.

2. Materials and Methods

This work is based on the methodology developed in our work [66], adapted to assess
environmental control on fire activity and its spatial–temporal variability by using satellite
observations from geostationary Meteosat. As a biophysical index related to the forcing
of fire activity, the satellite-derived IR skin temperature from SEVIRI observations with
the EUMETSAT LSASAF LST product is proposed. Based on long-term data records, LST
mean summer monthly values, and their anomalies and deviation from the air temperature,
T2m were applied as indicators of the coupled energy and water cycles. Fire-promoting
SM anomaly patterns derived by the SVAT modeling approach were used as a reference for
the evaluation of the LST–fire intertwining. The pattern of fire activity over Bulgaria was
characterized by the evaluation of SEVIRI-based satellite detections of biomass burning
according to the LSASAF FRP-Pixel product. Benefiting from the geostationary satellites’
high temporal resolution, the relationship between LST and fire regimes was studied and
the underlying biophysical processes were explored.

Statistical comparative analyses of long-term data records of the LSASAF product,
SVAT meteorological model outputs, and ground observations (meteorological parameters
and actual fires) were applied following the methodology in [66], which was further ex-
tended (in Section 2.5). Overlaid graphical analyses of the summer season (June–September
2007–2018) dynamics of biophysical indexes in relation to fire characteristics (number of
detections and severity) were performed to study the sensitivity of the approach. All
datasets taken from information sources with different spatial resolutions were placed
over the grid of the ECMWF global NWP model, IFS version O1280 (about 9 km spatial
resolution). Only values with 1400 points that cover the region of Bulgaria were considered.
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2.1. The LSASAF FRP-PIXEL Product

In order to characterize fire activity in this study, radiative energy released by fire
events, as provided by the LSA SAF Fire Radiative Power-Pixel (FRP) product [36,67], was
used. The LSASAF FRP-PIXEL product provided information on the location, timing, and
fire radiative power (FRP, in MW) output of landscape fires (“wildfires”) detected every
15 min across the full Meteosat disk at the native spatial resolution of the SEVIRI sensor. The
FRP provided information on the measured radiant heat output of detected fires; the heat
output was a direct result of the combustion process whereby carbon-based fuel is oxidized
to CO2 with the release of a certain “heat yield” [24]. FRP calculation relies on the Middle
Infrared (MIR) method and assumes FRP to be proportional to the difference between
the observed fire pixel radiance measured from the MSG SEVIRI radiometer and the
“background” radiance that would have been observed at the same location in the absence
of fire. The LSASAF algorithm for deriving FRP from SEVIRI radiance measurements
is fully described in [37]. The type of fire detection algorithm that is proposed for use
with SEVIRI is based on the principles applied to generate active fire detections within the
MODIS Fire Products [24].

While this FRP methodology offers many advantages, among the uncertainness reported,
two factors are likely to reduce the satellite-measured FRP that is emitted by the fire:

• The first concerns surface fires in forests, where an unknown amount of radiant energy
may be intercepted (scattered and absorbed) by the forest canopy.

• Second, although atmospheric effects perturb MIR wavelength observation far less
than those in shorter wavelengths, allowing FRP retrieval through even dense smoke
and plumes, the radiative impact of the absorptive black carbon released during com-
bustion may result in some underestimation of the FRP by the satellite measurement.

The FRP algorithm is subject to other sources of uncertainties, essentially due to the
characteristics of SEVIRI, as described in [37]. Among these limitations, one can state that
the FRP-derived value is quite sensitive to the fire location within the pixel. A fire located at
the center of the instrument’s instantaneous field-of-view will elevate the pixel temperature
much more than a fire located far away from its center. Additionally, abnormally low
radiances might be observed surrounding a fire pixel due to the negative lobes of the
point spread function. As a result, the background temperature might be colder, thereby
increasing the estimated FRP value. The rather coarse spatial resolution of SEVIRI may
cause the non-detection of smaller/less intense fires that MODIS can detect, for instance,
but SEVIRI misses. The non-linearity of the SEVIRI 3.9 channel above 310 K and the
saturation of that band above 335 K are responsible for the error in the FRP estimation. As
a result, FRP values derived from SEVIRI underestimate those derived from MODIS by
about 40% [34].

A significant remote sensing constraint for fires is the presence of cloudiness in fire
weather situations, as all satellite methods used for monitoring fires have limitations that
tend to cause important biases in the final product. The algorithms cannot detect existing
fires due to the elimination of cloudy pixels or the assumption of some detection in partially
cloudy pixels as “false” fire detections based on “contextual” tests.

2.2. Biophysical Indexes

In our work [66], the spatial–temporal variability of land surface state dry anomalies
was characterized by the land surface temperature with the use of LST retrievals from the
MSG satellite measurements and SMA. Using long-term data records, the same biophysical
drivers of drought occurrence have been further explored here in terms of their forcing
effects on fire activity through the related biophysical processes. In addition to land surface
radiometric temperature characterized by its monthly values and calculated anomalies,
the blended parameter, which is the difference between skin surface temperature and
air temperature at 2 m above the earth’s surface (LST-T2m), is proposed to be used as a
first proxy of sensible heat flux exchange. The patterns of these biophysical indexes were
defined as the mean monthly values for June, July, August, and September. The SMA
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anomalies during the summer months were considered in parallel to explore the fire forcing
effect of soil moisture deficit.

To quantify the relations, statistical analyses and modeling were applied. Since the
considered biophysical parameters and the procedure of their application have been ex-
plained in detail in [66], only the main points are marked here, and the new elements are
further explained in Section 2.5.

2.2.1. The LSASAF LST Product

For the purposes of the current study, the LSASAF LST product (MLST, LSA-001)
has been applied [68]. The LST retrieval was based on clear-sky measurements from the
MSG system in the thermal infrared window (MSG/SEVIRI channels IR10.8 and IR12.0),
every 15 min within the area covered by the MSG disk. Theoretically, LST values could be
determined from MSG 96 times per day, but in practice, fewer observations were available
due to cloud cover.

The 12-year time series for the region of Bulgaria for the period of June–September
(2007–2018), which included only days/locations with satellite fire detections, was con-
structed. Datasets for LSASAF LST at 0900 UTC and at 1200 UTC (averaged over 5 mea-
surements within ±30 min of these two time slots to avoid the limitations of cloudy pixels)
were inferred at MSG pixel bases. For some climatic assessments, the averaged 3 × 3 pixels
LST values around the grid points were also processed. The difference between LST and
the air temperature, T2m (observations at the SYNOP network at 0900 UTC and 1200 UTC)
was also constructed for the same studied period.

2.2.2. SVAT Model and SMAI

For the identification of fire-promoting SM anomaly patterns, the “SVAT_bg” model
developed at the National Institute of Meteorology and Hydrology (NIMH) of Bulgaria
was used [61,69,70]. This is a simple 1D site-scale meteorological model that exploits the
concept of one layer of vegetated land surface and two levels of moisture availability
along the root zone depth. One of the main “SVAT_bg” model output parameters is soil
moisture (SM) for different root zone soil depths (20, 50, 100 cm). For assessing land surface
state, the SMA concept was adopted to serve as an information source for “warnings” of
environmental constraints. Based on the “SVAT_bg” model-derived SM, a quantitative SMA
index, SMAI was developed and operationally calculated at a site scale for the region of
each NIMH synoptic station. At each point of the used grid, the SMAI values at the nearest
synoptic station were considered for the calculation of the anomalous water content in the
unsaturated root zone. SMAI was designed as a 6-level threshold scheme to account for
moistening conditions [66]. The site-scale assessment of mean monthly SMAI anomalies at
synoptic stations was compared with the overlaid FRP Pixel detections from corresponding
MSG pixels covering the region of the station applying the statistical analyses.

2.3. Ground Observations of Forest Fires

Ground observations of the number of actual forest fires were considered according
to the database of the State Forest Agency of Bulgaria (SFA), the responsible national
institution, and were used for comparison with satellite detections.

2.4. Target Region and Land Cover

The study area includes the whole territory of Bulgaria, Southeastern Europe, located
within latitude circles of 40.25 N and 45.0 N and meridians of 20.5 N and 29.5 E. The region
falls under Mediterranean climate influences, characterized by dry summers and mild, wet
winters, both with irregular precipitation distribution. Information about land covers (LC)
provided by the ESA-CCI Land Cover Map product at a spatial resolution of 300 m [71]
was used. Maps were updated on an annual basis. The LC classification system from
ESA-CCI includes 24 vegetation types. For the purposes of this study, we reclassified these
types into the following three main vegetation groups (Figure 1): forests (classes 50, 60,
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61, 62, 71, 72, 80, 81, 82, 90), scrubland (11, 12, 40, 100, 110, 120, 121, 122), and cultivated
areas (10, 20, 30, 130). Other land cover types, including permanent snow and ice (220) and
barren and water bodies (200, 210), where there are limited fires, were not analyzed in our
study. Urban areas (190) were also excluded.

Figure 1. Geographical distribution of the vegetation cover types according to the ESA-CCI Land
Cover database 2018 over (a) Europe; (b) Bulgaria, SE Europe, reclassified for the purposes of the
study into three categories: forest, shrubland, grassland.

2.5. Numerical Analyses

To characterize the fire distribution pattern, a dataset of FRP detections (location,
timing, and energy) for the period of June–September (2004–2019) was constructed [72,73].
All pixels with at least one fire detection were considered. Fire regime was characterized
by the frequency of detections and severity according to the released energy from biomass
burning (FRP fire radiative energy, MW). Each fire pixel was associated with the coordinates
of the nearest point on the grid, where LST, LST anomalies, and (LST-T2m) had been
derived. The procedure was performed for monthly (June, July, August, and September)
accumulated energy released from fires in the corresponding grid point.

In order to validate the adopted methodology, monthly mean anomalies of LST and
SMA that had been inferred in [66] and visualized in color-coded maps were evaluated
for consistency with FRP fire pixel spatial distribution over Bulgaria by using qualitative
comparative analysis. Examples for July 2007 are presented in Figure 2. Figure 2a shows
that the higher positive LST anomalies (in red) correspond to a higher number of FRP-
detected fire pixels. The stronger negative SMA anomalies (indicated by reddish colors) are
related to a higher number of fire detections (Figure 2b). The consistency of the data allows
quantitative studies to be performed further.

Based on long-term records (June–September 2007–2018), stochastic graphical analysis
was performed. The consistency in the behavior of the fire activity and the biophysical
drivers LST, LST anomalies, (LST-T2m), and SMA anomalies was analyzed in terms of
their mean, spatiotemporal variability on a monthly and annual basis, as well as their
anomalous distribution and relations. The summer seasonal dynamics of biophysical
conditions for different LC vegetation types were studied and their relation to vulnerability
of fire ignition/spread was evaluated.

A graphical description of the locality, the spread and skewness groups of numerical
data of FRP detections, released energy from biomass burning, LST, LST anomalies, and
the (LST-T2m) temperature difference was performed through their boxplot quartiles. Two
types of regression analyses were performed; the first one made use of estimates by the
method of least squares of the conditional mean of the response variable across values of
the predictor variables. The second method used Quantile Regression (QR) estimates of
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the conditional median of the response variable, which has received increasing attention in
recent years and is applied in many areas, including data analysis in the natural sciences.

Figure 2. Spatial distribution of LSASAF FRP fire pixel detections superimposed over: (a) LSASAF
LST 0900 UTC anomalies and (b) monthly mean SMA anomalies (50 cm soil depth). Examples for
July 2007, Bulgaria: The LST and SMA anomalies were calculated for the 2007–2018 period [66].

To identify regions most vulnerable to fires in Bulgaria, the spatial pattern of the
accumulated fire numbers detected by the LSASAF FRP-Pixel product for the period of
June–September 2004–2019 was considered. A statistical evaluation of the spatial distribu-
tion of fire pixels was performed by applying the Mann–Kendall statistic test. To perform
all these comparisons, the R language for statistical computing was used [74].

All numerical evaluations were performed for the three main vegetation groups: forest,
shrubland, and cultivated, as well as considered all together in a sample “all land cover”.
Such a reclassification into three LC categories has been used in other studies of fire activity
over the Mediterranean using satellite data, e.g., in [44].

A summary of all data used for comparative analyses in the current study are presented
in Table 1.

Table 1. Summary of data used and their characteristics.

Data Temporal Resolution Spatial Resolution

Fire Radiative Power-Pixel product 15 min SEVIRI, about 5 km over Bulgaria
Land Surface Temperature (LST) 15 min SEVIRI, about 5 km over Bulgaria
Temperature difference between LST and air temperature
at 2 m (LST-T2m) 0900 and 1200 UTC NIMH synoptic station network

Soil Moisture Availability Index (SMAI) Daily, 0600 UTC NIMH synoptic station network

3. Results

Fire regimes were described through statistical distributions of frequency and severity
over the studied area in the summer season during a 16-year time period. Using 12 years
of data for LST and related biophysical parameters, the environmental determinants of fire
regimes were assessed by exploring how environmental drivers operating over a range of
scales affected the spatial and temporal patterns of these fires.

3.1. Active Fire Monitoring from Space

The results from the study of fire activity derived from satellite observations over Bulgaria
are presented in maps of accumulated fire detections for each month of the July–September
period and each year of the whole 2004–2019 period. Examples for selected years are shown in
Figure 3 (see also [72,73]). The fire severity was assessed following the color-indicated released
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energy of burning biomass FRP (MW). The fire activity exhibited various seasonal distributions
from year to year, e.g., maximum activity and severity was observed in July 2007 (also in
2006, 2016, 2017, not presented), in August 2004 (also 2006, 2008), and in September 2019
(2011, 2012). There are repetitions of spots with higher fire activity, suggesting that the spatial
distribution varies depending on the evolution of the horizontal patterns of the biophysical
drivers (to be further considered in Sections 3.2 and 3.3).

Figure 3. Maps of the spatial–temporal (monthly/annual) distribution of fire activity over Bulgaria.
Color-coded severity of biomass burning according LSASAF FRP-Pixel (MW) is indicated. Examples
for July, August, September and annually for 2004, 2007, and 2019 are presented.

Results from the validation of the MSG FRP-Pixel product comparing the number
of detected fire pixels in forested areas with the course of actual forest fires reported by
ground observations of the State Forest Agency (SFA) of Bulgaria are shown in Figure 4.
Comparisons are performed for the period of July–September 2007–2018. A good agreement
between the two independent sources of information for forest fire dynamics during
different months and years is observed: the increase in actual fires corresponds to the
increase in satellite fire pixel detections; the highest forest fire activity is in July 2007; for
July and August, the two lines are very close, indicating an almost similar number of fire
detections; for September, the courses are similar but the number of satellite detections are
lower, probably due to the cloudier conditions in September.

3.2. Biophysical Drivers and Fire Activity
3.2.1. Annual Trends in Fire Activity along with LST

Figure 5 shows a comparison of LST (at 0900 UTC) with the fire energy released accord-
ing to the FRP-Pixel product (MW). The course of LST over time (red lines) shows behavior
synchronized with fire energy (blue lines) for all vegetation types. The sample size allows a
regression analysis to be applied, and the results show an existing linear relationship between
the parameters: Trend lines of both parameters, LST (red dashed line) and FRP, MW (blue
dashed line), for the considered LC types were obtained (Figure 5a–d). The coefficient of
determination R2, which is the square of the correlation, shows how much of the observed
scatter in the data is due to the hypothetical linear component as opposed to the unexplained
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random error. Despite the rather complex nature of the curves, the resulting R2 values
confirm a significant linear component (values bottom right in the panels).

Figure 4. Inter-annual dynamics of forest fires over Bulgaria according the LSASAF FRP-Pixel product
detections (blue line) and ground observations of actual forest fires by the national SFA (green line)
for (a) July, (b) August, (c) September 2007–2018.

Figure 5. Time series of fire activity characterized by the total energy released from biomass burning
per year FRP, MW (blue line) along with LST (red line) (June–September, 2007–2018) for: (a) All LC
samples; (b) Cultivated LC; (c) Shrubs LC; (d) Forest LC. Each time series is fitted with a trend line
using the linear regression technique (least squares method).

Figure 5a shows the trend lines for LST and the energy released from biomass burning
for a sample of all land cover types without classifying them (“all LC”); the linear regression
line fits the relation between the parameters at high R2 values of 0.68. The values of R2

for forest-shrubs-cultivated types vary between 0.61 and 0.68, and the validity of these
conclusions passed the significant test from 0.001 up to 0.003 levels (Figure 5b–d). The
FRP (blue lines) decreases with the decrease in LST (red lines) within individual diapa-
son for biomes (e.g., 32–29 ◦C for forest and 36–34 ◦C for shrubs/cultivated, as seen in
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Figure 5c,d). A high level of fit between the trends in the number of fire pixels and the LST
as a biophysical driver is also experienced (Supplementary Material). In this case R2 varies
within 0.67–0.62 for shrubs and forest vegetation types, at high significant levels, indicating
a descending trend for the fire accuracy along with the LST decrease.

To clarify the nature of this linear structure, it is examined by linear regression on
the individual components in each data pair. Again, the results are similar (values in the
bottom left panel in Figure 5), although at the limit of reliability. For at least one group in
each pair, a linear model with a similar slope of about −0.25 is obtained, and its significance
level is slightly above 0.10. Therefore, for at least one pair, a significant confirmation of the
estimated downward trend line was obtained.

3.3. Statistical Analyses

Monthly wildfire activity (2007–2018) characterized by the number of fire pixel ac-
cording to the LSASAF FRP-Pixel product, and the ratio between the total energy released
(MW) and the total number of fire pixels detected for a specific month and LC type are
shown in Table 2. The number of fire pixels in forest and shrubs in June represents 6.5–7.6%
percent of the fire pixels detected in July. Fires in cultivated LC in June seem lower by
about 5% than their amount in July due to the specific vegetation in the managed LC areas
still being in the growing phase. For September, the wildfires (forest, shrubs) from the
forest fires in August are at 37% and 50% from the shrub fires in the same month. However,
in the cultivated LC, the relatively large number of fire pixels are detected in September
(75% from their number in August), which is likely due to some controlled agriculture
burning activities.

Table 2. Monthly accumulated FRP-Pixel detections for the period of 2007–2018 and the total FRP
energy released per pixel (MW), DFI. Examples for shrubs, forest, and cultivated LCs for June, July,
August, and September are presented.

Monthly Accumulated (2007–2018)
Fire Characteristics

June July August September

Shrubs LC, FirePixelDetections 232 3572 2819 1429
DFI (MW/pixel) 72.63 99.78 101.28 85.66
Forest LC, FirePixelDetections 137 1795 1306 486
DFI (MW/pixel) 35.06 72.97 96.05 76.29
Cultivated LC Detections 130 2533 1928 1441
DFI (MW/pixel) 69.82 98.10 107.18 83.42

The ratio between the total FRP energy released and the accumulated number of fire
pixels at a specific LC type was introduced to serve as a measure of mean Detected Fire
Intensity (DFI) observed by the satellite. The DFI from the forest fire pixels is the lowest one,
ranging from 35 MW/pixel in June to 96 MW/pixel in August. For shrubs and cultivated
LC types, the DFI range is 72–101 MW/pixel and 70–107 MW/pixel, respectively.

The satellite-derived FRP are likely to estimate a specific portion of the actual fire-
emitted FRP (see Section 2.1). Data in Table 2 show that shrubs LC is characterized by the
largest amount of total energy released by fires for the summer season. In order to assess
how the portion of satellite-detected fire energy depends on the vegetation type during the
fire season, the DFI values of forest and cultivated LC are divided by the DFI obtained for
shrubs in each month (Table 3). It can be seen that the ratio between the DFI parameters of
forest and shrubs is 0.48 in June, then increases gradually to 0.95 in August and becomes
0.89 in September. At the same time, the ratio between the DFI values for cultivated–shrubs
LC is close to 1.0, ranging from 0.96 in June to 1.06 in August–September. This result comes
from the different ability of satellite observations (FRP product) to estimate actual emitted
energy from wildfires at different LC types, and this also depends on the biophysical status
of the vegetation along the fire season.
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Table 3. Ratios of the monthly accumulated DFI of forest and cultivated LC fires to the DFI of shrubs
fires for the period of 2007–2018.

Ratio between DFI for
Different LC Types

June July August September

DFI Forest/DFI Shrubs 0.48 0.73 0.95 0.89
DFI Cultivated/DFI Shrubs 0.96 0.98 1.06 1.06

3.3.1. Box Plots Analyses

Boxplots of the distribution of fire radiative energy (MW) according to the FRP-Pixel
product and biophysical indexes for forest and shrubs LCs are shown in Figures 6 and 7.

Figure 6. Boxplots of monthly mean values (2007–2018) for the region of Bulgaria during the summer
season (June–September): from the LSASAF FRP-Pixel (MW) for (a) forest and (b) shrubs; from the
LSASAF LST 0900 UTC ◦C for (c) forest and (d) shrubs. The boxes represent the interquartile range
(from the 25th to 75th percentile, first and third red line), whiskers cover 99.3% of the data, and the
middle (red) lines represent the mean values.
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Figure 7. Boxplots of monthly mean values (2007–2018) for the region of Bulgaria during the summer
season (June–September) from the LSASAF LST anomaly for (a) forest and (b) shrubs, and the
(LST-T2m) difference for (c) forest and (d) shrubs. The boxes represent the interquartile range (from
25th to 75th percentile, first and third red line), whiskers cover 99.3% of the data, and the middle (red)
lines represent the mean values.

The plots in Figure 6 show different aggregation of data by months. Through a visual
comparison of the corresponding notches, it can be seen that there is sufficient reason
to accept the statistical hypothesis that the medians are significantly different. The red
lines show the median and first and fourth quartile averages of the same statistics for
all individual boxplots presented and are used to visually assess the degree of difference
depending on the month.

The boxplots in Figure 6a,b demonstrate the variability of the monthly mean values of
FRP (MW) for forest and shrubs LC during the summer. The statistical analyses confirm
that for July, the ratio between the median of total FRP box plots for shrubs and forest fires
is higher than the corresponding ratio for the DFI parameter in Table 3: shrub fires were
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detected with about 50% higher released FRP (MW), while the DFI parameter was only
35% larger than this for forest fires. This effect seems to be due to higher energy emitted by
some forest fires in July.

On the contrary, for June, the medians of total FRP are not much different for these
two LC types (Figure 6a,b), but the DFI parameter is twice higher for shrubs than the
corresponding DFI value obtained for forest fires (Table 3). This suggests the occurrence of
more forest fires under the canopy of dry dead forest fuel with much less energy measured
by the satellite and that a certain amount of radiant energy may have been intercepted
(scattered and absorbed) by the forest canopy.

The summer course of the FRP median corresponds well to the LST statistical behavior
for the forest LC (Figure 6a,c). In June, optimal SMA is present in the deep forest root zone
that leads to fully open stomata conductance and unlimited evapotranspiration, leading
to decreasing canopy temperature and minimum LST. For shrubs (Figure 6b,d), there is a
disagreement: the LST median maximum appears in August, but the maximum of the total
FRP median is in July. The reason could be that in shrub lands, the SMA easily reaches
the wilting point, in which the stomata conductance strongly decreases in reaction to the
increasing water stress conditions through the transpiration regulation mechanism. These
lead to an increasing shrub canopy LST in August.

All fires in the period of July–September occur in days associated with positive val-
ues of LST anomalies (averaged in the area of 3 × 3 pixels) around the same location
(Figure 7a,b). All 25% of the fire detections in the days associated with negative anomalies
of LST occur in June in forest and shrubs LCs. This result suggests that in June, some
fires may mostly occur in dead fuel where the canopy temperature is below the historical
average for today’s day-of-year.

The trend of increasing (LST-T2m) from June to September (Figure 7c,d) corresponds
to the gradual decrease of SMA to vegetation cover on the one hand, and to the increasing
LST on the other. This is consistent with the result on the disagreement in the behavior of
LST versus FRP in August for shrubs LC (Figure 6b,d).

3.3.2. Quantile Regression

Results from the quantile regression analysis of the relationship between log FRP
(MW) and biophysical parameters (LST, LST anomalies, (LST-T2m), and SMA anomalies)
are presented on Figure 8a–d.

These graphs can quite comprehensively characterize the dependences between each
pair of quantities. QR examples of the “all LC” type are here presented. Figure 8a shows
at which LST values the maximum FRP (MW) might be expected and the corresponding
probability level the FRP might reach the maximum. Accordingly, the QR in Figure 8a
shows how the log(FRP, MW) maximum depends on the predictor LST, with a confidence
of 5%, 25%, and other levels of significance. The QR lines indicate that the high values of
the log(FRP, MW) > 5 can be expected to occur at LST = 35 ◦C with a 25% probability level;
extreme values of log(FRP, MW) > 7 are possible with 5% reliability at LST above 40 ◦C,
and with 10% reliability above 45 ◦C.

On the plot of Figure 8b, the probability level of FRP maxima at a specific temperature
difference (LST-T2m) is illustrated. Very high values of log(FRP, MW) > 6 can be expected
to occur at (LST-T2m) = 5 ◦C with 10% reliability; extreme values of log(FRP, MW) > 7 are
possible at a 5% significance level for (LST-T2m) above 12 ◦C. This illustrates how the
log(FRP, MW) maximum depends on the predictor (LST-T2m), with confidence levels of
5%, 10%, and other levels of significance.

The QR between FRP and LST anomalies (Figure 8c) shows that very high values of
log(FRP, MW) > 6 can be expected to occur at negative LST anomalies, with a probabil-
ity of less than 10%. Extreme values of log(FRP, MW) > 7 are not possible even at a 5%
significance level, with negative LST anomalies. In parallel, higher FRP energy occurs at
negative SMAI anomalies (Figure 8d). The decreasing trend of energy released, along with
the decreasing values of negative or low positive anomalies, i.e., decreasing drought (agri-
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cultural and ecological), at corresponding probability levels are shown. Extreme values of
log(FRP, MW) > 7 are possible at 10% significance with negative SMAI anomalies.

Figure 8. Quantile regression of the total energy released by biomass burning (all land cover types)
in Bulgaria (June–September 2007–2018): log (Total FRP-Pixel, MW) vs. (a) LSASAF LST 0900 UTC;
(b) (LSASAF LST-T2m) temperature difference; (c) LSASAF LST anomaly (2007–2018); (d) SMAI
anomaly at 20 cm soil depth. Regression lines for 50%, 75%, 90%, and 95% quantile are shown.

Such QR graphs have been developed for forest, shrubs, and cultivated vegetation
types and confirm similar relations for the fire activity over the whole country. The results
obtained for some smaller samples over specific regions of Bulgaria show an intersection of
the probability lines that is an indication of insufficient data.

3.3.3. Correlation Analyses

The results of the least-squares method applied for the quantitative evaluation of
the relation between biogeophysical indexes (LST, LST anomaly, (LST−T2m) temperature
difference, including the SMAI anomaly at 20, 50, 100 cm depth) and the severity of wildfire
events are presented in Table 4. Monthly means LST at around 0900 UTC, which is 1200 local
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time (selected as a less cloudy period), are considered. For all land cover types (all biomes
included in a sample), exponential regression lines fit the relations at high R2 values and
high significance levels (Figure 9).

Table 4. Coefficients of determination R2 of the regression between the energy of biomass burning,
FRP (MW), and the monthly mean values of biophysical indexes (July–August, 2007–2018). Only
days with fire detections are considered.

Fire Characteristics vs. Biophysical Indexes Month Forest Shrubs Cultivated All LC Types

Total FRP (MW) vs. LST 0900 UTC
July 0.772 0.593 0.683 0.773

August 0.407 0.481 0.564 0.540
September 0.436 0.432 0.609 0.671

Total FRP (MW) vs. LST anomaly 0900 UTC
July 0.779 0.554 0.660 0.668

August 0.739 0.501 0.598 0.627
September 0.611 0.584 0.678 0.682

Total FRP(MW) vs. SMA 100 soil depth July 0.874 0.569 0.669 0.695
August 0.457 0.494 0.599 0.569

Total FRP (MW) vs. SMA 50 soil depth July 0.884 0.523 0.713 0.690
August 0.512 0.444 0.524 0.546

Total FRP (MW) vs. SMA 20 soil depth July 0.715 0.423 0.665 0.607

Figure 9. Regression models of the total energy released by biomass burning in Bulgaria according
to the FRP-Pixel product, MW vs. LSASAF LST 0900 UTC for: (a) July; (b) August; (c) September,
and vs. LSASAF LST anomaly (2007–2018) for: (d) July; (e) August; (f) September. Examples for
cultivated land cover are presented.

The SMA index is especially efficient as a measure of fuel dryness, taken at 50 cm or
100 cm soil depth, for all cover types in the period of July–August. With the progressive
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establishment of dry conditions during August and September, the correlation decreases
when the SMA at 20 cm and 50 cm becomes fully exhausted, and the SMAI is equivalent to
a constant value of zero.

Exponential regression models better fit the FRP (MW)–LST relations from Table 4.
Examples for cultivated LC are shown in Figure 9a–c, indicating high significance levels
(p < 0.007) of the dependences for July, August, and September. Similar exponential models
for the regression of FRP (MW) versus the LST anomalies, R2 at about 0.6 (p < 0.003),
are presented in (Figure 9d–f). Results confirm a statistically significant high correlation
between biophysical drivers (LST, LST anomalies) and the wildfire severity.

All these results suggest that the biophysical index LST and the related parameters
LST anomalies and (LST-T2m) are sensitive to the dynamics of the occurrence and severity
of vegetation fires in all studied LC types.

3.3.4. Spatial Pattern and Trends

To characterize fire activity, plots of monthly sums of FRP detections are consid-
ered. Figure 10 shows a color-coded map of accumulated fire pixels in the period of
June–September 2004–2019. The fire numbers are categorized into the following classes:
1–30 (low, yellow color), 30–90 (moderate, orange color), 90–150 (high, red color), and
>150 (extreme, dark red). Thus, the spatial distribution of the spots with higher fire activity
is revealed. The “+” sign on the map indicates that the trend passed the Mann–Kendall
significance test at the 5% level; thus, regions with a statistically significant positive trend
in fire activity over the studied period are localized.

Figure 10. Map of “hot spots” of fire activity over Bulgaria, SE Europe based on long-term satellite
observations (June–September, 2004–2019) using the LSASAF FRP-Pixel product. The fire numbers
are the sum of the fire pixels (4 × 5 km MSG resolution over Bulgaria) detected and resampled
in a 10 × 10 km plot. The “+” sign indicates locations where the trend passed the Mann–Kendall
significance test at the 5% level.

The long-term trends of fire activity (number of detections) are different when it is
delineated into different land cover types (superposition of Figures 1b and 10). These
considerations show that there is no positive trend of fire activity in regions with forest land
cover types. There are limited hot spots for fires, located in the northern and southeastern
parts of Bulgaria, indicating an increasing trend in fire activity that is mostly scattered in
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the shrublands. Positive trends are also seen in limited areas of cultivated land cover types,
but in this case, it is rather a result of human activities than a climate trend.

4. Discussion

The results of our study confirm the driving role of land surface temperature and the
related biophysical parameters in the spatial–temporal evolution of fire activity in Eastern
Mediterranean as well as in forcing the vulnerability of forest, shrubs, and cultivated land
cover types to wildfire. Based on the 2007–2018 summer time series, the trend analyses
(Section 3.2.1) show the synchronized behavior of annual LST values with the released
FRP energy (MW) from biomass burning (respectively to the number of fire pixels). The
analysis of satellite retrievals from geostationary satellite data show a statistically significant
declining trend for the wildfire characteristics, consistent with the course of LST for all
considered vegetation types (Figure 3).

The box-plot statistics (Figure 6a,c) show that the median of the FRP (MW) energy
released from forest fires in the summer course corresponds well to the behavior of the
LST median, which confirms the relationship between the biophysical index LST and fire
activity. All fires in the period of July–September occurred in days associated with positive
values of LST anomalies, while the other 25% of the fire detections in days associated with
negative anomalies of LST occurred in June at forest and shrubs LCs (Figure 7a,b).

A high correlation between the monthly mean values of the biophysical indexes
(LST, LST anomalies, LST-T2m, and SMA) and FRP-detected fire pixels was obtained.
Exponential regression models fit the relations for all LC types at high significance levels
(Section 3.3.3). This result is a step forward from the findings of Song [21], who stressed
on the spatial–temporal information provided by LST anomalies (2001–2019 time series
over Australia) on fire activity, confirming a significant trend before the fire events but not
establishing a linear relationship with fires.

The values of LST, LST anomalies, and LST-T2m, for which the maximum FRP (MW)
values might be expected at the corresponding probability level, were statistically estimated
(Section 3.3.2) as being able to contribute to fire preparedness activities. For example,
extreme values of log(FRP, MW) > 7 were possible at a 5% significance level for (LST-T2m)
above 12 ◦C. A previous study reported that forest fires in August over Bulgaria might
occur under land surface drought conditions defined by middy (MSG LST-T2m difference)
>12 ◦C prior to the fire [62].

These dependences obtained for the Eastern Mediterranean confirm and extend the
reported results in the literature that land surface state can significantly contribute to the
enhancement of weather impacting on the fire environment such as drought (long-term
and/or short-term), terrain, and fuel conditions [62,75,76]. Plants constitute the main
ignition material in the landscape, and their moisture content plays an important role
because it may serve to retard ignition or mitigate the propagation of a fire [77–80]. For this
reason, the fuel moisture content is a common component of fire danger and related fire
regime assessments; e.g., in [81,82]. Skin temperature is an important disclosure of fuel
moisture content, and the results reported confirm the role of LST as a biophysical index
of fire activity. The physical mechanism of LST–SMA relations and related fire occurrence
covers a range of coupled biophysical processes: as a moist soil surface dries out, more of
the incoming solar energy is reflected, and a larger fraction of the absorbed energy is used
to heat the air and soil [83]. The heat flow into the soil increases at first, then decreases
as the soil becomes very dry [84]. This results in increasing land surface temperatures,
which also influences the rate of drying and evapotranspiration. As a result, high LST is a
cause and product of dry periods; in other words, drought begets drought and extreme
fire activity.

Land surface temperature explains 80% of the variance in air temperature, and vegetation
density also plays an important role in explaining the air temperature variance [85]. Since only
data from days with detected fires in the summer months were considered, most of the results
of the statistical analyses are related to conditions of limited SMA for the vegetation cover.
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In such conditions, the (LST-T2m) parameter is a measure of the evapotranspiration rate,
and relations are specified by atmosphere/land weather and climate conditions as well as by
physiological and structural features of the LC [86,87] Hence, the trend of increasing (LST-T2m)
from June to September (see Figure 7c,d) is related to gradually decreasing evapotranspiration
during the summer months due to the gradual decrease of SMA to vegetation cover on the
one hand, and/or the increasing LST on the other.

All these results suggest that the biophysical index LST and the related parameters of
LST anomalies and (LST-T2m) are sensitive to the dynamics of vegetation fire occurrence
and severity. The dependences are valid for forest, shrubs, and cultivated LCs at high
significant levels and indicate that satellite IR retrievals of radiative temperature is a reliable
source of information for vegetation dryness and fire occurrence. Some existing mismatches
are due to highly inhomogeneous land cover from one side and the complicated nature
of their biogeophysical relations. LST is directly linked to precipitation, cloudiness, and
solar irradiance, while SMAI is influenced by the cumulative effect of these meteorological
parameters and with functional links to vegetation. In the case of when the period of
moisture depletion is long, the LST-SMA relation is weak because the LST continues to
increase; on the other hand, after full SM depletion, the “SVAT_bg” model does not assess
any further SM changes. In terms of the model simulations, full SM depletion denotes an
interruption of liquid and water vapor flow because SM has reached its constant minimum
value (at specific soil/climate), which is set to be the maximum hygroscopic value [69].

In addition, there are some limitations in the remote sensing approach for assessing
the relation of fire activity to the distribution of its biophysical drivers. Such cases may
be due to different abilities of the satellite observations and the derived FRP product to
estimate actual emitted energy from wildfire in different LC types, and this also depends
on the biophysical status of the vegetation during the fire season. This ability of FRP
is significantly different as compared to wildfires in the forest and shrubs LCs in June
(reported here, Table 2 and Figure 6a,b) due to the specific physical properties of the forest
canopy, which leads to larger amounts of radiant energy to be intercepted. This in turn
makes some of the low-energy forest fires impossible to be detected by the satellite. In
August and September, with the decrease in SMA and the fraction of vegetation cover, the
canopy biophysical properties changed so that a larger amount of energy released by forest
fires could be evaluated by satellite measurements, and most of the forest fires could be
detected as well.

Although landscape fires in Mediterranean countries are mainly caused by human
activities related to agricultural practices, this study confirms that fire regime components
(occurrence and severity) exhibit characteristic spatial and temporal patterns that reflect
differences in the relative importance of various environmental drivers. In this regard,
an identification of the regions most vulnerable to biomass burning is of importance
for some prevention activities. Different land covers have widely differing flammability,
which depends on species composition, stand age and density, microclimate, and soil
conditions [31,88]. For this reason, a detailed discrimination of the land cover types is
needed in studying short-term weather and land surface state influences on the fire ignition
and spread. In our study, the LC typology is simplified to consider three types: forests,
scrubland, and cultivated; this is because relationships between monthly mean values of the
physical indexes and fire activity are explored over long-term 12-year periods. Moreover,
the forest LC is considered to be spatially stable throughout all 12 years while more land
cover changes may occur in the category scrubland during the observation period, and more
detailed classification would be difficult to apply. Our qualitative comparative analysis of
the ESA CCI LC maps for 2006–2015 does not show any significant changes in the land
cover over Bulgaria for the test period.

Recent concerns about the potential increases of forest fires under climate change
underline the importance of fire–climate feedbacks [89–91]. In this context, an important
result of our study based on a dataset of satellite FRP detections from the last 16 years is that
no positive trend in fire activity for forest land cover type has been observed over Bulgaria.
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There are significant increasing trends in fire activity for single spots in the low land
areas of shrubs LC types in the northern and southeastern part of Bulgaria. A reasonable
explanation for these results is that the forests are a more stable environment over a long-
term period, which also confirms the validity of our approach for the simplification of the
LC variety into three main types for the purposes of the current climate study.

5. Conclusions

This study quantified the relationship between the spatial–temporal variability of land
surface temperature (LST) and fire activity on a short-term climatic scale over the Eastern
Mediterranean (Bulgaria), accounting for physical properties such as land cover and soil
moisture that, combined with LST, provide a valuable metric for surface state. Based on
satellite observations from the geostationary Meteosat LSASAF-FRP-Pixel product (summer
season 2007–2018), the distribution of fire activity on a monthly/annual basis in relation
to the biophysical forcing effect of LST (assessed by IR MSG satellite measurements) was
observed in land cover types of different fire vulnerability (forest, shrubland, cultivated).

A synchronized annual behavior between LST and FRP with a declining trend (2007–2018)
in wildfire characteristics was seen. Exponential models fit the relationships of LST monthly
means, LST anomalies, and LST-T2, as a first proxy of sensible heat exchange with atmo-
sphere, as well as SMA with FRP fire characteristics (MW). All fires in the period of
July–September occurred in days associated with positive LST anomalies.

The values of LST, LST anomalies, and LST-T2m, for which the maximum FRP energy
(MW) might be expected at corresponding probability levels, were estimated as being
capable of contributing to fire preparedness activities. For example, monthly mean extremes
of log(FRP, MW) > 7 could be observed with a 5% reliability at an LST monthly mean above
40 ◦C and (LST-T2m) above 12 ◦C, and with a 10% reliability above 45 ◦C. The reported
biophysical forcing effects of LST on vegetation fires provided more understanding of the
relationships between drought and wildfire; more specifically, of how drought is related to
fire danger outputs. Since forest fires have the potential to affect regional climate through
changes in the energy budget [91–93], this knowledge is especially important for the
Mediterranean region, where land–atmosphere coupling has become one of the important
aspects of global environmental change.

To advance the added value of this study by using LST as a biophysical index of
drought for fire management, further evidence in support of this approach is observed:
First, the use of related FRP products from the MODIS sensor to validate the usefulness
of this approach for short-term applications; Second, the evaluation and adaptation of
the LST applications in the operational mode for the analyses of real fire situations in the
scope of early warnings of fire risk assessment, thus contributing as the final step in the fire
management practice.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Abstract: Given the explosive growth of information technology and the development of computer
vision with convolutional neural networks, wildfire field data information systems are adopting
automation and intelligence. However, some limitations remain in acquiring insights from data,
such as the risk of overfitting caused by insufficient datasets. Moreover, most previous studies have
only focused on detecting fires or smoke, whereas detecting persons and other objects of interest
is equally crucial for wildfire response strategies. Therefore, this study developed a multilabel
classification (MLC) model, which applies transfer learning and data augmentation and outputs
multiple pieces of information on the same object or image. VGG-16, ResNet-50, and DenseNet-121
were used as pretrained models for transfer learning. The models were trained using the dataset
constructed in this study and were compared based on various performance metrics. Moreover, the
use of control variable methods revealed that transfer learning and data augmentation can perform
better when used in the proposed MLC model. The resulting visualization is a heatmap processed
from gradient-weighted class activation mapping that shows the reliability of predictions and the
position of each class. The MLC model can address the limitations of existing forest fire identification
algorithms, which mostly focuses on binary classification. This study can guide future research on
implementing deep learning-based field image analysis and decision support systems in wildfire
response work.

Keywords: wildfire response; multilabel classification; data augmentation; decision support systems;
transfer learning

1. Introduction

Wildfires have become increasingly intense and frequent worldwide in recent years [1].
A wildfire not only destroys infrastructure in fire-hit areas and causes casualties to firefight-
ers and civilians but also causes fatal damage to the environment, releasing large amounts
of carbon dioxide [2]. To minimize such damage, decision makers from the responsible
agencies aim to detect fires as quickly as possible and to extinguish them quickly and
safely [3]. Wildfire response is a continuous decision-making process based on a variety
of information that is constantly shared in a spatiotemporal range, from the moment a
disaster occurs to when the situation is resolved [4]. Efficient and rapid decision making in
urgent disaster situations requires the analysis of decision-support information based on
data from various sources [5].

Video and image data are key factors for early detection and real-time monitoring
to prevent fires from spreading to uncontrollable levels [6]. Over the past few decades,
the use of convolutional neural networks (CNNs) in image analysis and intelligent video
surveillance has proven to be faster and more effective than other sensing technologies in
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minimizing forest fire damage [7]. Nevertheless, several problems must be addressed in
forest fire detection and response when using CNNs.

The first problem is that most of the research on wildfires using deep-learning-based
computer vision is mainly limited to binary classifications, such as the classification of
wildfire and non-wildfire images [8]. In other words, these models are focused on de-
tecting forest fires but ignore other meaningful information, such as information on the
surrounding site. Even though a wide range of regions can be filmed via unmanned aerial
vehicles (UAVs) or surveillance cameras, information provisions for decision makers are
limited in this single-label classification model environment because only one type of result
can be obtained from one instance. Unlike single-label classification or multiclass classi-
fication, where the classification scheme is mutually exclusive, multilabel classification
(MLC) does not have a specified number of labels per image (instance), and the classes are
non-exclusive. Therefore, the model can be trained by embedding more information in a
single instance [9].

In the context of wildfire response, information is shared to establish a common
understanding of wildfire responders regarding the disaster situations they encounter [10].
Information on the disaster site is a vital data source that must be shared to enable timely
and appropriate responses. Therefore, information concerning human lives and property
at the site of occurrence must be considered to ensure effective and optimized response
decisions by decision makers [11].

Another important problem is that the performance of the learning model can be
degraded by overfitting owing to insufficient data [12]. The lack of large-scale image data
benchmarks remains a common obstacle in training deep neural networks [13]. However,
transfer learning and data augmentation can significantly enhance the predictive perfor-
mance of binary classification models to overcome image data limitations. In particular,
transfer learning (with fine-tuning of pretrained models) improves accuracy compared
to scanarios when the parameters of the model are initialized from scratch (i.e., without
applying transfer learning) [14].

The main purpose of this study was to develop a decision support system for wildfire
responders through the early detection and on-site monitoring of wildfire events. A
decision support system should perform two functions: (1) process incoming data and
(2) provide relevant information [15]. The received data are limited to image data from an
optical camera, and the results of deep learning can be analyzed. Therefore, we propose a
transfer learning approach for the MLC model to address the following challenges:

1. Does the proposed CNN-based multilabel image classification model for wildfire
response decision support show a convincing performance?

2. Are transfer learning and data augmentation methods, which are used to overcome
data scarcity, effective in increasing the performance of the proposed MLC model?

3. Images taken from drones are usually collected at a high resolution. However, the
CNN-based result is output as a low-resolution image (224 × 224). How can the gap
between these two resolutions be addressed?

4. How can the models be used to support forest fire response decision making?

In this study, it is significant that MLC was used to provide multiple pieces of infor-
mation within the image frame, away from the binary or multi-class classifications mainly
covered in previous studies. The reason for using this multi-information framework is to
share various pieces of information at disaster sites with disaster responders in near-real
time. In the model configuration, we tried to lower the error rate as much as possible by
using data augmentation, transfer learning, by adding similar data, and cross validation.
In order to minimize the resolution gap between the CNN input model and the actual
captured image, a method of dividing and evaluating the image was attempted.

The backbone network of the MLC was constructed using VGG16 [16], ResNet50 [17],
and DenseNet121 [18], which are mainly used in CNN-based binary classification. These
models were retrained on a dataset built by researchers and were validated using 10-fold
cross-validation. The size of the dataset used in the training model was increased by data
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augmentation to overcome the limitations caused by a lack of data. Finally, the model with
the best performance among the three models was selected using the evaluation metric,
and the result was visualized as a class activation map (CAM).

The remainder of this paper is organized as follows: Section 2 briefly summarizes
previous studies on wildfire detection and response using image data and decision support
systems. Section 3 presents the multilabel image classification, transfer learning model,
and evaluation methods. The results of relevant experiments are analyzed and discussed
in Section 4. Finally, the conclusions are presented in Section 5.

2. Related Work

Effective disaster management relies on the participation and communication of
people from geographically dispersed organizations; therefore, information management
is critical to disaster response tasks [19]. Because forest fires can cause widespread damage
depending on the direction and speed of the fire, strategic plans are required to ensure
prioritization and resource allocation to protect nearby homes and to evacuate people.
In the past, limitations in data collection techniques constrained these decision-making
processes, making them dependent on the subjective experience of the decision-maker [20].
Recent advances in information technology have led to a sharp increase in the amount of
information available for decision making. Nevertheless, human capability in information
processing is limited, and it is problematic to process information acquired at the scene of a
forest fire timely and reliably. To solve this problem, a forest fire decision-support checklist
for the information system was developed [21], and machine-learning-based research has
steadily increased in the field of forest fire response and management since the 2000s [11].
Analyzing wildfire sites with artificial intelligence can substantially reduce the response
time, decrease firefighting costs, and help minimize potential damage and loss of life [5].

Traditionally, wildfires have mainly been detected by human observations from fire
towers or detection cameras, which are difficult to use owing to observer errors and time–
space limitations [21]. Research on image-based automated detection that can monitor
wildfires in real-time or near-real-time according to the data acquisition environment
using satellites and ground detection cameras has been steadily increasing over the past
decade [22]. Satellites have different characteristics depending on their orbit, which can
be either a solar synchronous orbit or a geostationary orbit. Data from solar synchronous
orbit satellites have a high spatial resolution but a low time resolution, which limits
their applicability in cases of forest fires. Conversely, geostationary orbit satellites have
a high temporal resolution but a low spatial resolution. According to previous studies,
geostationary orbit satellites can continuously provide a wide and constant field-of-view
over the same surface area; however, many countries do not have satellites owing to
budget constraints, atmospheric interference, and low spatial resolution [23]. Therefore,
satellites are not suitable for the early detection of small-scale wildfires [24]. On the other
hand, small UAVs or surveillance cameras incur much lower operating costs than other
technologies [25], offer high maneuverability, flexible perspectives, and resolution and
have been recognized for their high potential in detecting wildfires early and for providing
field information [26].

Previous studies combined image data and artificial intelligence methods to improve
the accuracy of forest fire detection or to minimize the factors that cause errors. Damage
detection studies often face the problem of data imbalances [27], which previously relied
only on images downloaded from the Web and social media platforms [28,29]. Online image
databases, such as the Corsican Fire Database, have been used for binary classification as
a useful test set for comparing computer vision algorithms [30] but are still not available
in MLC. Recent studies have demonstrated its effectiveness using data augmentation or
transfer learning for the generalization of the performance of CNN models [31] and have
shown its potential in object detection or MLC fields.

Because neural networks cannot be generalized to untrained situations, the importance
of the dataset has been steadily emphasized to improve the performance of the model.
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During model verification, the smoke color and texture are too similar to other natural
phenomena such as fog, clouds, and water vapor, and because it is difficult to detect smoke
during the night, algorithms relying on smoke detection generally cause problems such as
high false alarm rates [31,32]. The current study was conducted by including the objects
that could not be differentiated in the dataset.

3. Materials and Methods

3.1. Data Augmentation

Data augmentation is the task of artificially enlarging the training dataset using
modified data or synthesizing the training dataset from a few datasets before training the
CNN model, which lowers the test error rate and significantly improves the robustness of
the model to avoid overfitting. The most popular and proven effective current practices for
data augmentation are affine transformation, including the rotation and reflection of the
original image and color modification, including brightness transformation [33]. In this
study, the image dataset was pre-processed in terms of reflection, rotation, and brightness,
which are commonly used data augmentation techniques in previous studies to increase
the richness of the training datasets.

3.2. Transfer Learning

Transfer learning is another approach to prevent overfitting [34]. It is a machine
learning method that uses the weights of the pretrained models as weights for the initial
or intermediate layers of the new objective model. In computer vision, transfer learning
refers mainly to the use of pretrained models. This method is widely used to handle
tasks that lack data availability [35]. There are two representative approaches for applying
a pretrained model, called a fixed feature extractor and fine-tuning. The fixed feature
extractor is a method of learning only the fully connected layer in a pretrained model and
fixing the weights of the remaining layers. It is mainly applied when the amount of data
is small, but the training data used for pretraining are similar to the training data of the
target model. This approach is uncommon for the deep learning of damage detection areas,
such as wildfire monitoring images, because of the dissimilarity between ImageNet and
the given wildfire images.

On the other hand, fine-tuning not only replaces the fully connected layers of the
pretrained model with a new one that outputs the desired number of classes to re-train
from the given dataset but also fine-tunes all or part of the parameters in the pretrained
convolutional layers and pooling layers by backpropagation. It is used when the amount
of data is sufficient, even if the training data are not similar. This is shown in Figure 1.

The pretrained CNN model from ImageNet [36], which contains 1.4 million images
with 1000 classes, is used for transfer learning. However, as there are no labels similar to
flame or smoke or other on-site images to assist disaster response in the ImageNet label,
fine-tuning is introduced.

3.3. Multilabel Classification Loss

Cross-entropy is defined as the calculation of the difference between the two probabil-
ity distributions p and q, i.e., error calculations. Cross entropy is used as a loss function in
machine learning. However, our framework uses binary cross entropy (BCE), which has
commonly been used in the loss function for multilabel classification. The CNN model
performs training by adjusting the model parameters such that probabilistic prediction is
as similar to ground-truth probabilities as possible through the BCE. In other words, the
probability of the output and the target similarly adjusts the model parameters. The BCE
loss is defined by the following equation:

LBCE = − 1
N

N

∑
i=1

[p(yi)logq(yi) + {1 − p(yi)}log{1 − q(yi)}], (1)
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where N denotes the total count of images, p(yi) denotes the probability of class yi in the
target, and q(yi) denotes the predicted probability of class yi.

Figure 1. Transfer learning architecture with fine-tuning using the pretrained CNN model initialized with the weights
trained from ImageNet.

3.4. Proposed Network

The MLC model used in this study consists of a backbone network pretrained on
ImageNet and fully connected layers. In multilabel classification, the training set consists of
instances associated with the label set, and the model analyzes the training instances with
a known label set to predict the label set of unknown instances. Figure 2 shows an example
of a framework for an MLC-based proposed model with DenseNet121 as the backbone.
The fully connected layer included dropout [37] and batch normalization [34]. The order of
dropout, batch normalization, and rectified linear units (ReLU) were constructed based on
the methodology of Ioffe [34] and Li [38].

Six classes were printed out, and the model was configured to achieve the following
goals required for disaster response during the event of a forest fire: (a) check whether
a forest fire has occurred, (b) detect smoke for the early detection of fires, (c) detect the
burning area for extinguishing, and (d) detect the areas where human or property damage
may occur.

In this study, we selected each of the three pretrained models mentioned above as a
backbone network. An MLC model was constructed to provide information that can be
supported for wildfire response from CCTV or UAV images. Finally, we compared the
performance of each model.
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Figure 2. Proposed approach pipeline: framework of multilabel classification with transfer learning from DenseNet-121 as a
backbone network. The probabilities generated by the sigmoid function were independently output at the end of the neural
network classifier.

3.5. Performance Metrics

Instances in single-label classification can only be classified correctly or incorrectly,
and these results are mutually exclusive. However, the classification schemes in multilabel
classification are mutually non-exclusive: in some cases, the predicted results from the
classification model may only partially match the elements of the real label assigned to
the instance. Thus, methods for evaluating multilabel models require evaluation metrics
specific to multilabel learning [39]. Generally, there are two main groups of evaluation
metrics in the recent literature: example-based metrics and label-based metrics [40]. Label-
based measurements return macro/micro averages across all labels after the performance
of the training system, for each label is calculated individually, whereas example-based
measurements return mean values throughout the test set based on differences in the
actual and predicted label sets for all instances. To evaluate the performance of each model
and to verify the effectiveness of transfer learning and data augmentation, this study
used macro/micro average precision (PC/PO), macro/micro average recall (RC/RO), and
macro/micro average F1-score (F1C/F1O). The abbreviations for evaluation metrics are
based on the notations of Zhu [41] and Yan [9]. The metrics are defined as follows:

PC =
1
q

q

∑
λ=1

TPq
λ

TPq
λ + FPq

λ

(2)

RC =
1
q

q

∑
i

TPq
λ

TPq
λ + FNq

λ

(3)

PO =
∑

q
λ=1 TPλ

∑
q
λ=1(TPλ + FPλ)

(4)

RO =
∑

q
λ=1 TPλ

∑
q
λ=1(TPλ + FNλ)

(5)

F1C =
2 ∗ PC ∗ RC

PC + RC
(6)

F1O =
2 ∗ PO ∗ RO

PO + RO
(7)

In the above equations, TP, FP, and FN denote true positives, false positives, and false
negatives, respectively, as evaluated by the classifier.
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Macro averages are used to evaluate the classification model on the average of all of
the labels. In contrast, the micro average is weighted by the number of instances of each
label, which makes it a more effective evaluation metric on datasets with class imbalance
problems. The F1 score is a harmonic average that considers both precision and recall.
Therefore, the F1 score is generally considered a more important metric for comparing the
models. In addition, the datasets for MLC generally suffer from data imbalance, and thus,
micro-average-based metrics are considered important.

In addition, this study used Hamming loss (HL) and mean average precision (mAP),
which are represented by example-based matrices. These metrics are defined as follows:

Hamming Loss =
1
|D|

|D|
∑
i=1

|YiΔZi|
|L| (8)

mAP =
1
|L|

|L|
∑
i=1

APi (9)

In the above equations, |D| is the number of samples, |L| is the number of labels, and
APi is the average map of label i. Hamming loss is the ratio of a single misclassified label to
the total number of labels (considering both the cases when incorrect labels are predicted
and when associated labels are not predicted) and is one of the best-known multilabel
evaluation methods [42]. The mean average precision was the mean value of the average
precision for each class.

3.6. Class Activation Mapping

In the CNN model, the convolutional units of various layers act as object detectors.
However, the use of fully connected layers causes a loss in the localizing features of these
objects. Class activation mapping (CAM) [43] is used as a CNN model translation method
and is a popular tool for researchers to generate attention heatmaps. A feature of CAM
is that the network can include the approximate location information of the object even
though the network has been trained to solve a classification task [8]. To calculate the CAM
value, the fully connected layer is modified with the global average pooling layer (GAP).
Subsequently, a fully connected layer connected to each class is attached and fine-tuned.
However, it has a limitation in that it must use a GAP layer. When replacing the fully
connected layer with GAP, the fine-tuning of the rear part is required again. However,
CAM can only be extracted for the last convolutional layer.

Gradient-weighted class activation mapping (Grad-CAM) [44] solves this problem
using a gradient. Specifically, it uses the gradient information coming into the last con-
volutional layer to take into account the importance of each neuron to the target label. In
this study, Grad-CAM was used to emphasize the prediction values determined by the
classification model and to visualize the location of the prediction target.

4. Results

This section presents the learning process and test results of the MLC model to support
wildfire responses. Experiments were conducted in a CentOS (Community Enterprise
Operating System) Linux release 8.2.2004 environment with Nvidia Tesla V100 GPU, 32 GB
memory, and models were built and trained using PyTorch [45], a deep learning open-
source framework.

4.1. Dataset

The dataset used to train and test the deep learning model contained daytime and
nighttime wildfire images captured by surveillance cameras or drone cameras downloaded
from the Web and cropped images of a controlled fire in the forest captured by a drone by
the researchers. This study also included a day–night image matching (DNIM) dataset [46],
which was used to reduce the effects of day and night lighting changes, and Korean tourist
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spot (KTS) [47] datasets generated for deep learning research, which comprise images
linked by forest labels containing important wooden cultural properties in the forest.
Additionally, wildfire-like images and 154 cloud and 100 sun images were also included
as datasets because they have similar properties with early wildfire smoke and flames
as the color or shape and are often detected erroneously. As such, they were included in
the training dataset to prevent predictable errors in the verification stage and to train the
robust model against wildfire-like images.

The collected images were resized or cropped to 224 × 224 pixels to consider whether
the model is applicable to high-definition images. The datasets included 3,800 images.
Figure 3 shows samples of the images.

Figure 3. Resized sample of annotated images for MLC: (a) downloaded from the Web; (b) KTS dataset; (c) DNIM dataset;
(d) dataset for error protection purposes; (e) dataset of a controlled fire captured by researchers.

All instances were annotated according to the following classes: “Wildfire”, “Non-
Fire”, “Flame”, “Smoke”, “Building”, and “Pedestrian” (each class was abbreviated as
“W”, “N”, “F”, “S”, “B”, and “P”, respectively). Table 1 lists the number of images for
each designated label set before data augmentation. It consists of 2165 images downloaded
from the Web, 1000 images from the KTS dataset, 101 images from the DNIM dataset, 254
images for error protection purposes, and 280 cropped images captured by the researchers.
To ensure the annotation quality and accuracy, all of the annotated images were checked
twice by different authors.

Table 1. Number of image datasets for each annotated multilabel instance.

Label WS WSF WSP WSBP WSB WSFB WSFP WSFBP N NB NP NBP

Original 585 419 176 103 82 84 87 67 1567 331 210 89

After data pre-processing (augmentation and partition)

Train 1464 996 432 240 234 150 216 138 3726 786 462 276
Test 341 253 104 63 43 59 51 44 946 200 133 43

4.2. Data Partition

The dataset used for the experiment was divided into train, validation, and test sets.
The test dataset included 2280 images from the entire dataset. The remaining 1520 images
were pre-processed by data augmentation techniques, such as rotation, horizontal flip,
and brightness, which are typically used in CNN image classification studies to secure
sufficient data for learning, as shown in Table 2. Table 1 also lists the number of images
for each designated label set after augmentation. Overall, the non-fire label group was the
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most common, and as the number of multi-labels increased, the number of the label group
decreased. In particular, the number of label groups in which pedestrians and houses exist
in the wildfire site, which is difficult to obtain, has the lowest number.

Table 2. Number of images generated by each data augmentation method.

Augmentation Method Original Data Brightness Flip Rotation Total

Images 1520 3040 1520 3040 9120

Since drones are generally not perpendicular to the horizon or are inverted when
photographing wildfires, the rotation was not set up as extreme, such as at 90◦ or 180◦,
but was instead set up between 10◦ and 350◦, considering the lateral tilt of the drone.
In addition, if the brightness of the image is too high or too low, the boundary line
of the objective target becomes unclear, and the object becomes ambiguous. Therefore,
data enhancement was performed between the maximum brightness l = 1.2 and the
minimum brightness l = 0.8. After data augmentation, the training and test datasets were
divided in a ratio of 4:1. In the model learning phase, 912 randomly sampled instances
from the training dataset were evenly divided into 10 groups for evaluation using the
cross-validation strategy.

The total number of classes of the prepared data was checked, and the distribution
is shown in Figure 4. Due to the nature of wildfire response, most of the early detection
was performed by smoke, so the number of smoke classes was higher than the number of
flame classes. In addition, the wildfire classes and non-fire classes also had an imbalance,
and the building and pedestrian classes also had relatively few classes. Since there was
an imbalance between the labeling classification table in Table 1 and the overall class
distribution in Figure 4, the micro average-based metric evaluation index should be checked.

Figure 4. Histogram of class distribution on multi-label classification datasets after data pre-processing.

4.3. Performance Analysis

This study compared the models with different backbones and verified the efficiency
of transfer learning and data augmentation. The model was constructed using training
and validation sets that had been partitioned by a 10-fold cross-validation strategy, and
the final performance was measured according to each performance metric from the test
dataset. The initialized learnable parameters (i.e., hyperparameters) for the CNN-based
MLC architectures are listed in Table 3.
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Table 3. Parameters for each CNN architecture.

VGG-16 ResNet-50 DenseNet-121

Mini batch size 48 57 48
Iteration 171 144 171

Number of training epoch 100 100 100
Learning rate 0.001 0.001 0.001

Optimizer Adam Adam Adam

The models were trained using binary cross-entropy as a loss function with the selected
parameters. Each model was trained using a 10-fold cross-validation strategy, and the
results were calculated 10 times. The training process using the validation scheme of each
model with the selected hyperparameter combination is illustrated in Figure 5. In the case
of VGG-16, the training loss fell gently and started at a very high validation loss value,
while the training loss of ResNet-50 and DenseNet-121 fell sharply to about epoch 10 at
the initial stage and then remained close to zero. However, it was found that DensNet-121
remained lower in terms of the validation learning curve. In the final epoch, epoch 100,
it was shown that both the training loss and validation loss recorded the lowest values
in DensNet-121.

Figure 5. Learning curve over epochs (until 100). (a) Training learning curve. Final loss: VGG-16 (0.00789); ResNet-
50 (0.00137); DenseNet-121 (0.00048). (b) Validation learning curve. Final loss VGG-16 (0.06790); ResNet-50 (0.03352);
DenseNet-121 (0.00318).

The models were evaluated using the label-based performance metrics, which are
shown in Figure 6 as a box plot. All of the proposed models showed good multilabel
classification ability using images of forest and wildfire sites for disaster response, with
high scores (above 0.9) for most of the evaluation metrics. Among the proposed mod-
els, DenseNet-121 not only showed a significantly higher score for all of the evaluation
metrics (distribution of the highest box and median value) but the interquartile ranges of
each metric result were also typically smaller (i.e., with fewer distributed results) than in
other models. Thus, the model maintained consistently high performance over several
tests. Table 4 presents the results of the evaluation measurements with the mean and
standard deviation.

However, an evaluation that only uses label-based measurements cannot highlight
the dependencies between classes. Therefore, Table 4 presents example-based scores
that consider all of the classes simultaneously and thus are considered more suitable for
multilabel problems. The mAP score for the best-performing model (DenseNet-121) was
0.9629, whereas the mAP score for HL was 0.009.
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Figure 6. Boxplot of the 10-fold cross-validation results from performance metrics for MLC model with each backbone network.

Table 4. Compared performance scores of each backbone network (mean ± standard deviation).

VGG-16 ResNet-50 DenseNet-121

PC 0.9435 ± 0.0308 0.9640 ± 0.0399 0.9899 ± 0.0138
RC 0.9177 ± 0.0338 0.9221 ± 0.0304 0.9661 ± 0.0293
F1C 0.9265 ± 0.0212 0.9368 ± 0.0371 0.9769 ± 0.0215
PO 0.9635 ± 0.0225 0.9655 ± 0.0462 0.9914 ± 0.0110
RO 0.9560 ± 0.0178 0.9485 ± 0.0329 0.9783 ± 0.0214
F1O 0.9595 ± 0.0123 0.9555 ± 0.0390 0.9847 ± 0.0159
mAP 0.8811 ± 0.0312 0.9056 ± 0.0529 0.9629 ± 0.0327
HL 0.0025 ± 0.0008 0.0017 ± 0.0009 0.0009 ± 0.0009

In addition, the per-class score of the area under the receiver operating characteris-
tic curve (ROC-AUC) values of our proposed models were calculated to determine the
performance for each class in the image dataset. The ROC curve is a graph showing the
performance of the classification model at all possible classification thresholds, unlike the
recall and precision values that change as the threshold is adjusted. AUC is a numerical
value calculated from the area under the ROC curve and represents the measure of sepa-
rability. Therefore, the ROC-AUC is a performance metric that is more robust than other
performance indicators. AUC values range from 0 to 1, where AUC = 0.5 indicates that the
model performed a random guess, and thus, the prediction was the entirely unacceptable.
The best performance is when AUC = 1, indicating that all of the instances are properly
classified. Table 5 presents the results with mean and standard deviation values.

Table 5. ROC-AUC scores per class for each model (mean ± standard deviation).

Wildfire Smoke Flame Non-Fire Building Pedestrian

VGG-16 98.70 ± 00.48 98.72 ± 00.47 98.71 ± 00.46 95.68 ± 02.65 91.66 ± 00.53 87.54 ± 02.61
ResNet-50 98.37 ± 01.25 98.36 ± 01.25 98.35 ± 01.25 97.60 ± 01.70 92.55 ± 03.64 92.92 ± 03.67

DenseNet-121 99.01 ± 01.38 99.00 ± 01.40 99.01 ± 01.40 98.29 ± 01.95 96.65 ± 02.75 96.44 ± 03.65

The dataset for the MLC model includes pictures of fires or non-fires (because the
results are mutually exclusive). Therefore, the results of two classes—“Wildfire” and “Non-
fire”—are calculated in almost the same way. The results of the classes “Wildfire” and
“Smoke” were also calculated similarly, as flames are inevitably accompanied by smoke,
although this smoke may be invisible because some fires are small or obscured by forests.
The accuracy of the pedestrian and building labels was low in all of the models, which
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can be attributed to the relatively small number of labels assigned to the instances. It was
confirmed that the ROC-AUC scores in all of the classes were generally high in the transfer
learning algorithm using DenseNet-121 as a network.

Finally, to confirm the effect of transfer learning and data augmentation on the training
model, we removed one data limit overcoming strategies each time using the control vari-
able method and obtained the F1-score and the HL value. This method was implemented
for DenseNet-121, which showed the highest performance. The training learning curve
over epochs is illustrated in Figure 7. In the training stage, there was a significant difference
in the slope of the learning cover curve when no data limit overcoming strategies were used
and when one or more strategy was used; a steep learning curve was demonstrated with
the strategies; a shallow learning curve was demonstrated without the strategies. When all
of the strategies were used, the curve was formed the most rapidly, and the lowest final
loss was calculated. This means other models require more practice or attempts before a
performance begins to improve until the same level is reached. The curve produced in the
case of using all of the strategies was formed the most rapidly, and the lowest final loss
score was also calculated. There was no significant difference in the data augmentation
and transfer learning effects when looking at the gradient slope or the final loss, but it was
shown that the roughness of the curve was further reduced when data augmentation was
used. In other words, learning was more stable.

Figure 7. Learning curve over epochs (until 100) trained by the control variable method. Final loss.
Transfer learning and data augmentation (0.00048); data augmentation (0.01807); transfer learning
(0.01909); none (0.05216).

Additionally, the test results determined by the evaluation metrics are listed in Table 6.
The results of this experiment show that transfer learning can significantly improve multil-
abel classification performance. With the exception of the transfer learning strategy, the
macro average F1-score decreased by 0.0745, the micro average F1-score decreased by
0.0466, and the HL increased by 0.0286. In the case where only augmentation was used,
the macro average F1-score decreased by 0.1159, the micro average F1-score decreased by
0.0701, and the HL increased by 0.0412.

The performance of transfer learning was further reduced when trained only with
the datasets with no data augmentation. Hence, the quantitative number of the datasets
required for learning in MLC has a significant impact on the performance of the model.
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Table 6. F1 scores and Hamming loss values for the models trained by the control variable method.

Strategies to Overcome Data Limitations F1C F1O HL

Transfer Learning and Data Augmentation 0.9769 0.9847 0.0093
Transfer Learning 0.8610 0.9146 0.0505

Data Augmentation 0.9024 0.9381 0.0379
None 0.7951 0.8634 0.0845

4.4. Visualization

To perform localization, a bounding box is drawn by the thresholding method, which
retains over 20% of the grad-CAM result. It also provides a confidence score indicating
the extent to which the model’s predictions are true, considering a threshold value of 0.5.
Figures 8 and 9 show an example of the results obtained with DenseNet-121 as a backbone.

Figure 8. Original image (first column) and the heatmap and bounding box (columns 2–5) for a well-classified example
(Case 1); an example to review errors for objects with similar colors or shapes (Case 2); and an example of an error for
a particular class (Case 3). Case 3 has an error for the building class. The number above each picture is the predictive
confidence score.
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Figure 9. Example of a heatmap and bounding box result for the class that has the possibility of an error. Confidence score
(a): Wildfire (0.8117); Smoke (0.8158); Flame (0.0096); Non-Fire (0.1860); Building (0.0006); Pedestrian (0.9952). Confidence
score (b): Wildfire (0.8117); Smoke (0.8158); Flame (0.0096); Non-Fire (0.1860); Building (0.0006); Pedestrian (0.9952).

As shown in Figure 8, the sum of the confidence scores between the two classes is
almost 100% because the wildfire and non-fire classes are mutually exclusive. Among the
test datasets, a Case 1 image was selected as a sample of labeled wildfire with pedestrians,
a Case 2 image was selected as a sample with a confusing object, such as sun or fog, that
can be treated as a wildfire object for verification. Finally, a sample image with a night fire
was selected to evaluate the model in nighttime conditions in Case 3.

In Case 1, the model predicted smoke, flames, non-fire, and a pedestrian with confi-
dence scores of 0.9464, 0.7642, 0.0539, and 0.8623, respectively. The heatmap and bounding
box were separated from each other to express the location. Conversely, for non-fire that is
not assigned to an instance, a heatmap map without fire or smoke was displayed in the
bush area.

Case 2 used an image taken at sunrise in a foggy mountainous area. All of the classes
except for the non-fire class showed a score of 0.000, and it was possible to examine
whether the model worked correctly to classify the sun and fog, which are frequently used
for evaluating errors in wildfire detection.

Case 3 was an image of a wildfire that occurred near a downtown area at nighttime,
and fireworks were displayed nearby, which may have some effect on detection. For the
wildfire class, a heatmap was formed even in an area unrelated to the wildfire (lower left),
which was judged to have detected the smoke generated by the firecrackers on the image.
However, although the lighting in the dark at night was considered in the model training
process, the heatmap represented the residential area, but the reliability of the building
class was still very low (0.0030).

These results were similarly expressed in other test datasets, indicating that the
accuracy of the classification was only improved if the CNN model was observable with the
naked eye because only clear targets were labeled during the dataset preparation process.
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Using an example, Figure 9 shows that the classification model is robust to a small
object or noise in a photograph. As shown in Figure 9a, firefighters were dispatched to
extinguish the fire in the forest, and nearby hikers were caught on camera. Although the
human shape in Figure 9a looks very small, it is detectable with a 0.9952 confidence score,
and an approximate location of the object was determined. Figure 9b shows a house with
lights on and a nearby forest fire. Despite the similarity of the lamp to the fire image,
the heatmap result did not recognize this part as a fire. Thus, the model looked at the
appropriate part when identifying each class.

Finally, Figure 10 shows the influence of transfer learning and data augmentation. As
discussed in the previous subsection, four cases were classified using the control variable
method. For each case, the heatmap and bounding box of a specific class (smoke and person
in Figure 10) were visualized, and the probability values were calculated. In the case of not
using the data-shortage overcoming strategy, it was found that the heatmap represented
the wrong place, and the class that was difficult to distinguish could not be detected
at all. (If the value is less than 0.5, it is not treated as a detected value.) Therefore, the
accuracy difference is significant if data supplementation strategies are not used for wildfire
images, where data are inevitably lacking, as shown in Figures 9 and 10. When a data
supplementation method was used, the heatmap distribution was somewhat reasonable,
and the confidence value for the class that was to be detected was significantly increased.
When both strategies were used, the heatmap distribution was the cleanest, and the positive
predictive probability was the highest.

Figure 10. Sample of the Grad-CAM results depending on the model trained by the control variable method.

4.5. Application

The proposed model was applied to an image captured by the researchers using a DJI
Phantom 4 Pro RTK drone, which had an image size of 1280 × 720 high-definition (HD)
units. The filming site was composed of a virtual wildfire environment similar to that of a
fire created by lighting a drum around the forest.

Although the captured HD image can be resized to the input size of the proposed
model, downscaling a high-resolution image may result in the loss of information that is
useful for classification, and the model may not operate smoothly [48]. Thus, the images
were divided into 28 equal parts of 224 × 224, and the model was evaluated for the divided
pictures. When the pictures are divided without overlapping parts, there is a possibility
of a blind spot where the object to be found is cut off. Thus, the images are divided such
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that there are overlapping parts. The predicted classification values of each part of the
picture were merged into the entire image and were visualized. The results of applying
the proposed model to the drone shooting screen are shown in Figure 11. The confidence
value was over 50%, and the label corresponding to the photograph part was predicted. In
Figure 11, a forest fire was detected based on smoke in the central part of the whole picture.
However, there was also an error (9.02%) in the building area, which was important for
preserving residential and cultural assets. This error can be explained as follows: the large
object was still cut off in the cropped image despite the application of the overlapping
method. The white dotted circle was drawn to highlight the area with people, and the
model correctly predicted that there were people in the area at 99.34% and 77.03%.

Figure 11. Sample of model application with the confidence score for each class. The blue and red boxes represent
224 × 224 images.

5. Discussion

In this study, transfer learning and data augmentation were combined to improve
the capabilities of the model. Three different pretrained models were used to handle data
limitations, data augmentation was performed, and each model was evaluated using label-
based evaluative metrics and example-based evaluative metrics. In conclusion, DenseNet-
121 surpassed VGG-16 and ResNet-50 in the proposed MLC model. This is confirmed
by the results of the evaluation metrics. With the advancement in camera technology,
the image resolution increases, but training a CNN to handle large images is particularly
difficult. The problems are the cost and learning time caused by excessive computational
load in the initial layer. Because of the discrepancy between the image size in these models
and the image size taken from the imaging device, we split the high-resolution image into
smaller parts and processed them separately. The method proposed in this study loses less
data and is expected to better classify small objects compared to scenarios when the original
image is reduced in size and only a single image is processed. The proposed framework can
be converted into other applications of image-based decision-making systems for disaster
response fields to extract redundant information from one object.

Some previous studies used public data for binary classification problems (fire and
non-fire). However, a dataset with multiple labels or classes changes according to the
requirements of the system, and it is difficult to use the datasets from previous studies.
The classified labels were defined to solve the need for a response from the image sources
collected at the site. Fire is often accompanied by smoke, which is released faster than
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flames. The flame of a forest fire is barely visible from a distance. However, the smoke
columns caused by fires are usually visible on camera. Therefore, early smoke detection is
an effective way to prevent potential fire disasters [49]. Based on the detection of flames,
field responders can be informed as to where the flames need to be extinguished. Decision
makers for wildfire response, who receive information on the life and property at the fire
site, use this basic information to decide on the evacuation route by considering the spot
of fire occurrence to preferentially protect the area where there is a possibility of severe
damage and to establish a line of defense. Instructions for prioritizing such tasks and
for efficiently allocating limited support resources must be provided. Therefore, label
categories can be defined for wildfire response and building large image benchmarks for
disaster response.

This is a basic study that provides multilabel information of target areas from cameras
by applying CNN to wildfire response. Considering that multilabeling was performed
manually by the researchers, the distinction between instances was vague in some of the
images collected from external data sources. Instances that were too small to distinguish
were not labeled to avoid overfitting. In addition, in the case of an instance that cannot
be easily distinguished with the naked eye, it was not possible to easily add a class to be
classified because of a label classification error.

Therefore, future research should aim to construct a formal annotated data benchmark
for wildfire response in deep learning systems to enable the use of field information for
supporting disaster decision-makers from the perspective of the wildfire detection algo-
rithm. For example, the state of the wildfire may be understood from the fire shape. Crown
fires are the most intense and dangerous wildfires, and surface fires cause relatively little
damage. It is also important to identify forest species in disaster areas using videos. If the
forests of the target area are coniferous, fires may spread to a large area. To provide this
additional information, it is important to ensure communication between photographers,
labeling workers, and deep learning model developers. From the perspective of wild-
fire response, future studies should also aim to develop an integrated wildfire-response
decision-support system that can provide decision makers with various insights. Location
can be retrieved from the global positioning system (GPS) of drones filming in disaster
areas, and this can be combined with data on weather conditions that greatly affect wildfire
disasters, such as wind direction, wind speed, and drying rate at the target site. In addition,
when combined with a geographic information system (GIS), it is possible to determine the
slope of the target area because a steep slope is difficult to control during a wildfire.

6. Conclusions

To the best of our knowledge, previous computer vision-based frameworks for man-
aging fires have only used binary classification. However, in disaster response scenarios,
decision makers must prioritize extinguishing operations by considering the range of
flames, major surrounding structures such as residential facilities or cultural assets, and
residents at the site. Various types of information on the scene of a wildfire can be obtained
and analyzed using the photographs from an imaging device. However, annotation work
is limited because of a lack of training datasets and the fact that previous wildfire detection
research has only focused on binary classification. To solve these problems, we proposed a
basic MLC-based framework to support wildfire responses.

The proposed model was verified through well-known evaluation indicators from
the dataset selected by the researchers, and DenseNet-121, the most effective of the three
representative models, was selected as the final model. Then, we visualized the result
through grad-cam, and proposed a method to divide and evaluate each image to prevent
data omission when applied to FHD or higher photos according to recently developed
camera technology.
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Abstract: Sentinel-2 (S2) multi-spectral instrument (MSI) images are used in an automated approach
built on fuzzy set theory and a region growing (RG) algorithm to identify areas affected by fires
in Mediterranean regions. S2 spectral bands and their post- and pre-fire date (Δpost-pre) difference
are interpreted as evidence of burn through soft constraints of membership functions defined from
statistics of burned/unburned training regions; evidence of burn brought by the S2 spectral bands
(partial evidence) is integrated using ordered weighted averaging (OWA) operators that provide
synthetic score layers of likelihood of burn (global evidence of burn) that are combined in an RG
algorithm. The algorithm is defined over a training site located in Italy, Vesuvius National Park,
where membership functions are defined and OWA and RG algorithms are first tested. Over this
site, validation is carried out by comparison with reference fire perimeters derived from supervised
classification of very high-resolution (VHR) PlanetScope images leading to more than satisfactory
results with Dice coefficient > 0.84, commission error < 0.22 and omission error < 0.15. The algorithm
is tested for exportability over five sites in Portugal (1), Spain (2) and Greece (2) to evaluate the
performance by comparison with fire reference perimeters derived from the Copernicus Emergency
Management Service (EMS) database. In these sites, we estimate commission error < 0.15, omission
error < 0.1 and Dice coefficient > 0.9 with accuracy in some cases greater than values obtained in
the training site. Regression analysis confirmed the satisfactory accuracy levels achieved over all
sites. The algorithm proposed offers the advantages of being least dependent on a priori/supervised
selection for input bands (by building on the integration of redundant partial burn evidence) and for
criteria/threshold to obtain segmentation into burned/unburned areas.

Keywords: Mediterranean ecosystems; convergence of evidence; accuracy assessment

1. Introduction

Wildfires are the largest contributor to global biomass burning (BB) and represent
a significant dynamic component of ecosystems, affecting terrestrial and atmosphere
systems [1,2]. In vegetated areas of Southern Europe, fire is a major damaging agent
and recent years (2017–2018) have witnessed unprecedented fire seasons with countries
suffering large forest fires as a consequence of drought and heatwaves. Global warming
has been affecting fires with increased frequency and severity, as observed in both real and
simulated data [3,4]; this effect is particularly true in Mediterranean ecosystems (object of
this work) where, according to models’ forecasting, warming and a precipitation deficit
will exacerbate fire weather conditions [5].

Fires impact on atmospheric chemistry, with aerosols and greenhouse gas emis-
sions [6], the carbon budgets [7], hydrological cycles, soils and vegetation components of
ecosystems [8,9]. In this framework, the extent of the area affected by fires is critical to
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investigate trends and patterns of fire occurrence and identify drivers of fire occurrence as
well as for modeling future fire patterns and fire regimes; this information can therefore
support the assessments of fire impacts on both natural and social systems. Several studies
can be mentioned on the use of remote sensing (RS) to map burned areas at a regional to
global scale [10–12]. Coarse-resolution RS data have been proved to be the most suitable
source for depicting fire distribution over large areas and one primary image source for
burned area (BA) products is the Moderate Resolution Imaging Spectrometer (MODIS) [13].
To the aim of improving accuracy of global estimates by detecting smaller fires (<50 ha),
higher-resolution sensors have been exploited, such as 300 m Medium Resolution Imaging
Spectrometer (MERIS) and 100 m Project for On-Board Autonomy–Vegetation (PROBA-
V) [10,14,15], although the results were not always more accurate compared to coarser
spatial resolution products [16].

At a regional scale and in heterogeneous environments, such as the Mediterranean
ecosystems of Southern Europe, coarse-resolution data do not provide enough spatial detail
and medium/high- and very high-resolution satellite images are preferable for accurately
mapping burned areas. Indeed, small fires could significantly contribute to global effects
of fires [15,17]. The greatest challenge in the RS community is the development of a global
algorithm for mapping burned areas from decametric satellite images (e.g., Sentinel-2
and Landsat missions) [18–20], although important steps forward are shown by recent
works [21,22]. In order to achieve this objective, some issues are yet to be addressed; among
them a significant variability, across the ecosystems, of burned area spectral response as a
function of pre-fire vegetation conditions and characteristics, fire behavior and intensity as
well as time since the fire event. The lower revisiting time of medium spatial resolution
satellites reduces the likelihood of observing burned surfaces immediately after the fire
when spectral separability is greatest; yet Sentinel-2 (S2) revisiting time, obtained with the
combined use of A&B missions, offers unprecedent opportunity with an average revisiting
time of about five days [23].

Several algorithms have been proposed for mapping burned areas in the diverse
ecosystems of the globe [12] and some key elements can be pointed out as providing the
most robust approaches: supervised self-adaptive algorithms that can fit local conditions
and contextual, multi-source (combining active fires) and multi-temporal approaches that
can reduce the likelihood of commission errors due to spectral confusion with low albedo
surfaces and highlight changes induced by fire on the surface [16,24,25].

The algorithm proposed here exploits the abovementioned key elements to deliver a
semi-automatic robust and self-adaptive classification algorithm for S2 imagery exploiting
pre-fire and post-fire acquisitions to maximize mapping accuracy. The algorithm inherits
from the conceptual framework of the multi-criteria soft aggregation approach of burn
evidence proposed by Stroppiana et al. (2012) [26] for burned area mapping and also
applied for flooding mapping [27].

Major improvements with respect to the previous algorithm characteristics are (i) the
use of S2 band reflectance in post-fire images and of their temporal difference between
post- and pre-fire acquisitions and (ii) the definition of soft constraints by membership
functions of fuzzy sets based on statistics (percentiles) of reflectance as derived from
training areas. These improvements build on (i) the exploitation of a greater frequency
of acquisition of S2 data (nominal five days when A and B constellations are combined),
that allows the implementation of a robust change detection approach and (ii) a more
automatic way for defining membership functions based on frequency distribution of
training pixels over burned and unburned surfaces [19]. In particular, the algorithm
aggregates partial evidence of burn, extracted from the information provided by S2 bands
through the membership functions, into a synthetic score of global evidence by means
of an ordered weighted averaging (OWA) operator [28]. Each S2 band could potentially
and independently be used as a source of evidence of burn for the identification of areas
affected by fires, hereafter named ‘partial evidence’ since it is given by a single input
feature. However, the concurrent aggregation of multiple spectral bands can provide a
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more reliable evaluation of the occurrence of fires by modeling a convergence of evidence
provided by redundant information, hereafter named ‘global evidence’ since it is given by
multiple input features. This multi-criteria soft aggregation computes distinct pixel-based
global evidence obtained with different OWAs (e.g., ranging from extreme conditions of
minimum and maximum operators) that are exploited as input to a region growing (RG)
algorithm.

The algorithm is trained over a large fire occurred in the Vesuvius National Park, Italy;
this site is characterized by a complex and fragmented forest ecosystem and, in 2017, was
affected by fires that generated different degrees of severity, providing a wide range of
burn spectral conditions. After the training phase, the algorithm was automatically applied
(with no need of repeating training) to five sites located in Southern Europe to assess
exportability (i.e., robustness of membership functions, seed and growing layer selection
strategy and map accuracy with respect to local characteristics). Copernicus Emergency
Management Service (EMS) products (https://emergency.copernicus.eu/, last access 1
May 2021) from major events in the 2017 summer fire season were used as reference data
for assessing the accuracy of burned area mapping over these sites.

The major novelty of this work with respect to our previous work was to assess the
robustness and exportability of the multi-criteria soft aggregation algorithm developed
for post-fire Landsat data to multi-temporal S2 data. Indeed, a specific novel aspect was
the full exploitation of the temporal component as information for burned area mapping
together with improvement of automatization of the algorithm to reduce the dependence
on expert knowledge in the definition of the membership functions.

2. Study Areas and Datasets

In Southern Europe, 2017 was characterized by abnormal droughts and heatwaves [29].
Summer was the second warmest on record, with temperatures over 1.7 ◦C above the
1981–2010 average; the warmest being 2003 at more than 2.0 ◦C above average (https:
//climate.copernicus.eu/node/358, last access 1 May 2021). Extreme weather conditions
led to severe fires affecting, in particular, Portugal, Spain, Southern France, Greece and
Italy [30]. In this framework, we selected sites for algorithm training and testing that are
described in the sections below.

2.1. Training and Exportability Sites

Six sites situated in Mediterranean ecosystems were selected in this work among
the regions most affected by forest fires in 2017 (Figure 1). Vesuvius National Park, Italy,
was used for algorithm training (development, tuning and thematic accuracy assessment)
and the other five sites (Spain, Greece and Portugal) were exploited for testing algorithm
exportability. The Corine Land Cover map (CLC2012, https://land.copernicus.eu/pan-
european/corine-land-cover, last access 1 May 2021) was used to extract information on
major land covers that are summarized in Table 1. Most of the sites are mainly covered
by natural vegetation (forest and shrub/grasslands), with the exception of Kalamos and
Zakynthos where croplands are predominant, covering approximately 40% and 52%,
respectively; in the Vesuvius site, forest and croplands cover similar proportions (38.7%
and 36.5%). Table 1 also shows the proportion of area burned within fire polygons of the
Copernicus EMS dataset among the land cover classes: in all sites, fires affected mainly
forested areas, except for Kalamos, Greece, where fires affected mostly shrub/grassland
(~36%).
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Figure 1. The CLC2012 land cover classes over the six sites located in Southern Europe (a): Vesuvius, Italy (b), Leiria,
Portugal (c), Calar, Spain (d), Huelva, Spain (e), Kalamos, Greece (f), Zakynthos, Greece (g).
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Table 1. CLC2012 land cover classes over the entire site and within fire perimeter identified by EMS. In the last column, the
proportions of fire damage levels in the burned area according to EMS fire grading products (CD = Completely Destroyed,
HD = Highly Damaged, MD = Moderately Damaged and ND = Negligible to Slightly Damaged), where available.

CLC2012 Class (%) EMS Fire Damage

Bare Crops Forest Shrub Urban CD HD MD ND

Vesuvius
Italy

Site 6.6 38.7 36.5 10.4 7.78 0.0 12.8 3.7 2.3
BA 3.4 4.8 47.2 34.4 10.26 0.0 68.2 19.7 12.0

Leiria
Portugal

Site 0.2 15.4 43.1 40.2 1.10 0.0 8.9 5.6 2.3
BA - 5.6 66.7 27.5 0.17 0.0 53.0 33.1 13.8

Calar
Spain

Site 13.6 8.2 61.2 17.0 - 18.9 16.5 3.6 2.0
BA 0.3 2.4 76.4 20.9 - 46.2 40.2 8.7 4.9

Huelva
Spain

Site 0.8 11.9 39.7 46.6 0.89 0.0 15.4 1.1 0.0
BA 0.2 0.1 61.2 37.7 0.71 0.0 93.1 6.7 0.2

Zakynthos
Greece

Site 5.1 52.5 32.5 3.7 6.17 - 3.2 - -
BA 2.3 14.6 81.8 1.3 0.02 - 100 - -

Kalamos
Greece

Site 2.0 40.6 24.2 24.7 8.36 - 20.0 - -
BA 3.3 25.1 33.9 36.3 1.37 100 - -

2.2. Sentinel-2 Dataset

The remote sensing data source used for algorithm training and exportability tests
was the Sentinel-2 (S2) multispectral instrument (MSI) which measures the Earth’s reflected
radiance in 13 spectral bands from VIS/NIR to SWIR with a spatial resolution ranging
from 10 m to 60 m (https://earth.esa.int/web/sentinel/home, last access 1 May 2021).

Over each site, pre-fire and post-fire S2 images were selected and downloaded by
considering the occurrence of the major fire events, the dates of available reference datasets
and the most clear sky conditions (Figure 2). Since post-fire S2 images simultaneous with
reference data were desirable but hardly feasible, post-fire S2 dates were selected as close
as possible to the date of reference fire perimeters (Table 2) to minimize bias in accuracy
metrics due to spectral signal changes and further burning occurring after the date of
reference perimeters. S2 images were downloaded as Level 1C from Copernicus Open
Access Hub (https://scihub.copernicus.eu/, accessed 1 May 2021) since at the time of
data processing no Level 2A products were available. S2 images were processed with
Sen2r [31] Toolbox developed in R and released under GNU General Public License version
3 (GPL-3) and available on GitHub (https://ranghetti.github.io/sen2r, accessed 1 May
2021): Level-1C products were corrected with Sen2Cor [32] to derive bottom of atmosphere
(BOA) reflectance in the VIS–NIR–SWIR wavelengths (S2 bands 2 to 12). In pre-processing
steps, pixels with high and medium cloud probability were masked out while low cloud
probability and cloud shadow pixels were retained to avoid discarding of burned pixels. In
Sen2r, masking of cloudy pixels was done with information from the scene classification
map (SCL) [33].

Table 2. Pre- and post-fire S2 dates over the six sites, reference date and source for the EMS products.

Study Site Pre-Fire S2 Post-Fire S2 EMS Date

EMS Source
(https://emergency.copernicus.eu/
mapping/list-of-activations-rapid,

access 1 May 2021)

Vesuvius—Italy 08/04 22/07 16/07 EMSR213
Leiria—Portugal 04/06 04/07 20/06 EMSR207

Calar—Spain 15/07 04/08 04/08 EMSR216
Huelva—Spain 11/06 01/07 27/06 EMSR209

Zakynthos—Greece 25/07 03/09 18/08 EMSR224
Kalamos—Greece 28/07 17/08 18/08 EMSR224
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Figure 2. Pre- and post-fire S2 images (first and second column) and EMS fire grading maps (last column) for each site:
Vesuvius, Italy, (a–c); Leiria, Portugal, (d–f); Calar, Spain (g–i); Huelva, Spain (j–l); Kalamos, Greece (m–o); Zakynthos,
Greece (p–r). S2 images are displayed as RGB false color composites (SWIR2, NIR, red). Notice that for Kalamos and
Zakynthos sites, Greece, no fire damage grading maps are available from EMS.

Output pre-processed S2 images for the selected dates were available as bottom of
atmosphere (BOA) reflectance values in VIS–NIR–SWIR wavelengths (S2 bands 2 to 12)
resampled to a 10 m spatial resolution with a nearest neighbor method. The temporal
difference between post- and pre-fire (Δpost-pre) reflectance was computed and, together
with post-fire reflectance, band values were used as input to a separability analysis to
identify features that were most suited for burned area identification. Hereafter, Δ is
always meant as post-pre reflectance difference.

Training data were collected over the Vesuvius site, Italy, by photointerpretation
of false color RGB (SWIR–NIR–Red) composites of S2 images (Figure 2): polygons over
burned and unburned surfaces were extracted and labeled by considering as ‘burned’ only
areas that were affected by fires between the two S2 dates.

2.3. Reference Fire Perimeters

Burned area maps output from the proposed algorithm were validated by compar-
ison with fire reference perimeters obtained from independent source data. In all sites,
major fires occurred during the 2017 summer season, affecting, to a large extent, ecosys-
tems, houses and people, so the Copernicus Emergency Management Service (EMS) was
activated. EMS consists of the on-demand and fast provision (hours–days) of geospa-
tial information in support of emergency management activities and derived from pro-
cessing and analysis of satellite imagery acquired immediately after natural or human-
made disasters such as floods, droughts and forest fires. EMS products are delivered
as ready-to-print maps and geographic datasets (vector package). Two types of geo-
products are delivered: fire delineation (fire perimeter) and fire damage grading (burn
severity) derived from very high-resolution multispectral images. Fire damage grad-
ing is provided in four classes: “Completely Destroyed”, “Highly Damaged”, “Moder-
ately Damaged” and “Negligible to Slightly Damaged”. Quality checks are performed
by the European Commission Joint Research Centre (EC JRC) to assure fast delivery of
high-quality products. Further validation activities can be carried out by the EC JRC if
triggered by the European Commission and/or suggested by authorized users; further
information can be found in the ‘Online Manual for Rapid Mapping Products’ (https:
//emergency.copernicus.eu/mapping/ems/online-manual-rapid-mapping-products, last
access 1 May 2021).

Table 2 summarizes the reference dates of the EMS delineation and grading map
source (where available). EMS delineation maps were used as source datasets for fire
reference perimeters for all sites, except Vesuvius where EMS maps depicted the status of
the surface on 16 July 2017. Yet, ongoing fires made the time gap between the EMS and S2
post-fire date (22 July 2019) critical for the comparison and for the estimation of reliable
accuracy metrics (Appendix A, Figure A1). Hence, to generate a reference dataset suitable
for validation, very high-resolution (VHR) PlanetScope images [34] were used.
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PlanetScope is a constellation composed of more than 120 optical CubeSat 3U satellites
carrying a multi-spectral sensor with four bands: three in the visible wavelengths (b1:
455–515 nm; b2: 500–590 nm; b3: 590–670 nm) and one in the NIR wavelengths (b4:
780–860 nm) (https://earth.esa.int/web/guest/missions/3rd-party-missions/current-
missions/planetscope, accessed 1 May 2021). PlanetScope has a swath of about 25 Km and
a spatial resolution of 3 m for all bands [35]. Imagery is captured as a continuous strip of
single frame images known as ‘scenes’.

Pre- and post-fire PlanetScope images (22 April and 22 July 2017) were downloaded
and classified with a supervised random forest (RF) algorithm to extract fire perimeters
(Figure 3). The RF classifier is a machine learning algorithm that is largely used in remote
sensing [36,37]. It builds an ensemble of decision trees (CART) and merges them together
to yield a more accurate and stable prediction than any single tree alone [38]. The map gen-
erated at high resolution (~3 m) can be considered spatial explicit ground truth information
for the assessment of S2 products (namely 10 m resolution).

p y

   
a) b) c) 

Figure 3. Pre- (a) and post-fire (b) PlanetScope images: 22 April and 22 July 2017, over the Vesuvius sites. Images are
displayed as RGB false color composites (NIR, red, green) and the reference burned area map (c) obtained with RF algorithm.
Black polygon shows the border of Vesuvius National Park.

3. Methods

The proposed algorithm relies on a multi-criteria approximate reasoning approach
that aggregates information brought by multiple features into synthetic global degrees of
evidence of burn. Each input feature could be used as source for deriving evidence of burn
conditions (partial evidence) but aggregation reinforces evidence by exploiting the conver-
gence of partial evidence from multiple possibly redundant sources and by compensating
the inconsistency/conflict of evidence from multiple possibly complementary sources. This
step allows strengthening of the likelihood of the presence of burn and reduces confusion
between burned areas and surfaces with similar spectral characteristics [26]. Aggregation
was carried out with ordered weighted averaging operators (OWAs): a parameterized
family of soft-mean-like aggregation operators. Different operators were used to represent
attitudes ranging between pessimistic (the maximum extent of the phenomenon to mini-
mize the chance of underestimating: modeling a compensative aggregation to integrate
complementarities of multiple criteria) and optimistic (minimize the chance of overesti-
mating: modeling a concurrent aggregation to integrate mutual reinforcement of multiple
criteria). Layers of global evidence derived with different OWAs were input to a region
growing (RG) algorithm. The approach was applied independently to each pixel of the
input RS images as follows:

1. Selection of the input features;
2. Definition of the soft constraints (membership function, MF) for each input feature

from training data and application to derive partial evidence of burn (MD);
3. Selection of OWAs, according to their semantic, for the soft integration;
4. Computation of the global degree of evidence of burn for generating seed and growing

layers;
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5. Implementation of the RG algorithm;
6. Segmentation of the RG output score to derive burned area maps.

The algorithm was applied to vegetated areas, while not burnable (bare soil and urban
classes) and agricultural areas were masked out based on the CLC2012 land cover map.
Output burned area maps were compared to reference datasets for estimating accuracy
metrics. Steps (1) to (6) were applied over the training site (Vesuvius, Italy) for the selection
of the best input features, the definition of the membership functions and the customization
of the RG algorithm. Exportability was tested over the other sites by applying steps (4)
to (6) to assess the algorithm’s performance over geographic locations with different
environmental conditions compared to those of the training site.

3.1. Separability Analysis

A separability analysis was preliminarily carried out over the Vesuvius training site for
selecting the most suitable bands for the discrimination of burned and unburned surfaces.
Separability metric M (1) was computed from frequency distributions of training pixels [39].

M =

∣∣∣∣μu − μb
σu + σb

∣∣∣∣ (1)

where μu, μb are mean values and σu, σb are standard deviation values of the unburned
(u) and burned (b) classes in the training data. Spectral bands with M > 1 were selected as
input features for the computation of the partial evidence of burn.

3.2. Definition of the Membership Functions

Membership functions (MFs) are soft constraints that can be defined with different
approaches according to the available expertise and training data [40]. Here, soft constraints
were defined from training data over the Vesuvius site for each input feature identified by
the separability analysis. MFs are sigmoid Functions (2) used to convert a pixel’s values
of the input feature into degrees of membership to the burned class (membership degree,
MD), i.e., the partial evidence of burn that is a score in the range [0, 1]. The extremes of
the sigmoid-shaped MFs were defined based on percentiles of the unburned and burned
histogram distributions, respectively [19].

f (x) =
L

1 + e−k(x−x0)
(2)

where L is the upper limit of the function, in this case L→1 to quantify the maximum degree
of membership, k is the curve’s slope and x0 is the inflection point. The two parameters k
and x0 are estimated by using percentiles.

Based on Roteta et al. (2019) [19], we selected a different shape for the sigmoid
functions depending on the spectral characteristics of burned areas in the specific input
feature: a z-shaped function or s-shaped function. The upper limit of the function f (x)→1
represents the greatest partial evidence of burn defined by a pixel’s values of the input
features below and above the 50th percentile of the frequency distribution function of
the burned training pixels for z-shaped and s-shaped functions, respectively (Figure 4).
On the opposite side, f (x)→0 (no partial evidence of burn) and it is given by the 10th
and 90th percentile of the frequency distribution function of the unburned training pixels
for the z-shaped and s-shaped function, respectively. Training pixels for burned and
unburned categories, extracted over the Vesuvius training site, were used to estimate k and
x0 parameters: a z-shaped function was used when fire occurrence led to a decrease in
the pixel’s value in a given input feature, for example, in the NIR S2 reflectance band. On
the contrary, an s-shaped function represents the case when per-pixel input feature value
increases over a burned area.
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Figure 4. The s-shaped (a) and z-shaped (b) sigmoid functions chosen as MFs to quantify the partial evidence of burn.

3.3. OWA Operators for Computing Global Evidence

Layers of partial evidence were integrated to derive global scores of burn evidence
with ordered weighted averaging (OWA) operators [28]. An OWA of dimension N (OWA:
[0, 1]N → [0, 1]), where N is the number of input values [d1, . . . , dN] to aggregate, has a
weighting vector W = [w1, . . . ,wN], with ∑i=1,...,N wi = 1, so that it computes an aggregated
output value a ∈ [0, 1] by applying the following formula [41]:

a = OWA([d1, . . . , dN ]) =
N

∑
i=1

wi ∗ gi (3)

where gi is the ith largest value among the input d1, . . . ,dN.
Input values d1, . . . ,dN, are rearranged from the highest to the smallest; reordering

is a key element of OWA operators, meaning that a specific weight wi is not univocally
associated to the specific ith input but rather it is associated with the ith position of the
reordered inputs [28]. Since, in our case, OWAs aggregated the MDs expressing partial
evidence of burn provided by single features, in each pixel, a different reordering of the
MDs may have occurred so different features contributed to determining the aggregated
value.

Different operators were tested to represent decision attitudes between pessimistic
(the maximum extent of the phenomenon to minimize the chance of underestimating)
and optimistic (to minimize the chance of overestimating). For example, a weighting
vector W of the OWA operator with the last weight wN = 1 considers only the contribution
of the smallest input value, i.e., the minimum partial evidence degree after reordering;
hence, it implements an optimistic attitude by computing the minimum total burned area
(AND aggregation). Conversely, by setting the first weight w1 = 1, the maximum partial
evidence will determine the largest burned area, thus modeling the pessimistic case (OR
aggregation). Intermediate cases, in which all or most components of W are not null, model
soft integrations.

In this work, we compare the results obtained by applying five different OWA opera-
tors with the following weighting vectors:

WAND = [0, . . . , 0, 1] thus OWAAND([d1, . . . , dN ]) = min{d1, . . . , dN}
WOR = [1, . . . , 0, 0] thus OWAOR([d1, . . . , dN ]) = max{d1, . . . , dN}
WAlmostAND = [0, . . . , 0.5, 0.5] thus OWAAlmostAND([d1, . . . , dN ]) =

1
2 min{d1, . . . , dN}+ 1

2 min{{d1, . . . , dN} − {min{d1, . . . , dN}}
WAaverage =

[
1
N , . . . , 1

N

]
thus OWAAverage([d1, . . . , dN ]) =

1
N

N
∑

j=1
dj

WAlmostOR = [0.5, 0.5, 0, . . . , 0] thus OWAAlmostOR([d1, . . . , dN ]) =
1
2 max{d1, . . . , dN}+ 1

2 max{{d1, . . . , dN} − {max{d1, . . . , dN}}

The output of an OWA operator applied to all pixels in an image is a gray-level image
whose pixels take values in [0, 1], where each pixel’s value is the global evidence of burn:
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in Figure 5, this step performs the dimension reduction from N input features (MD scores
for each pixel) to 1 (synthetic score). OWA layers are then input to the region growing
algorithm.

 

Figure 5. Flowchart of the processing steps from input S2 MSI images to generate BA maps.

3.4. Region Growing

The RG algorithm, implemented in Harris IDL language (https://www.l3harrisgeospatial.
com/docs/region_grow.html, last access 1 May 2021), needs as input a seed layer (OWAseed)
and a growing layer (OWAgrow) and two conditions (thresholds) on OWAseed and OWAgrow
to identify seed pixels and to delimit maximum growing boundaries. Seed and growing
layers are selected among the layers of global evidence generated with distinct OWAs: one
concurrent for the seed layer whose segmentation is set to minimize commission errors,
and one compensative for the grow layer, whose segmentation is set to minimize omission
errors by expanding seeds. Hence, seeds are extracted from the most restrictive OWAAND
while growing boundaries are derived from less restrictive OWAs (OWAOR, OWAAverage,
OWAAlmostOR). While the requirement on the seed layer is very high, the strategy for
identifying candidate boundaries (i.e., the limits for the region growing) can be looser, thus
allowing the algorithm to also expand over pixels with low burn signal but connected to
more reliable pixels, i.e., the seeds (e.g., partially burned pixels along the perimeter of the
burned patches). The RG algorithm is an iterative algorithm that at each iteration expands
the seed pixels: starting from initial seeds (pixel with OWAAND above a given threshold),
it searches the 8-neighbor connected pixels and it includes in the seed layer only those
pixels with OWAgrow > 0. These expanded pixels update the seeds for the next iteration
cycle. The iteration ends when boundaries of maximum growth is reached in the OWAgrow
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layer. The output layer is a gray-level image (RGscore ∈ [0, 1]) whose values can be further
segmented to generate the maps of burned/unburned areas (binary maps).

Preliminary analysis carried out over the training site allowed the definition of the
implementation conditions of the RG algorithm: thresholds for seed and growing layers as
well as a threshold for the segmentation of the RGscore. The criterion set for seed selection
is OWAAND > 0.9; no change in burned area mapping accuracy was observed for different
thresholds applied to OWAAND due to its frequency distribution with a bimodal shape
centered over extreme values 0 (no evidence of burn) and 1 (full membership to the burned
class, greatest evidence of burn) (not shown). For the growing layer, different conditions
on the value of OWAgrow were analyzed to identify the maximum growing boundary (S.2,
S.3), showing that the highest accuracy is achieved when all pixels with not null evidence
are retained (OWAgrow > 0). Finally, in the segmentation step on RGscore, the analysis
of variable thresholds showed that RGscore > 0 provides the greatest accuracy (S.2, S.3).
As a result of these preliminary analyses, Figure 5 shows the flowchart of the algorithm
proposed in this work.

3.5. Validation

The accuracy of the output burned area maps was estimated by comparison with
reference fire perimeters (i.e., fire polygons from RF classification of PlanetScope images
for the Vesuvius site and Copernicus EMS fire delineation layers). Over the Vesuvius
site, accuracy assessment was part of the training phase for the definition of the best
implementation criteria of the algorithm. Over the other sites, accuracy assessment of the
burned area maps obtained by applying the algorithm in its final form contributed to the
evaluation of the exportability. In both cases, validation was carried out by estimating
metrics from the confusion matrix (commission error, omission error, Dice coefficient and
relative bias) [42]. In order to build the confusion matrix, score map output from the RG
algorithm was segmented to extract burned/unburned areas in a binary form (RGscore > 0,
S.3). In the Results section, accuracy metrics are presented and discussed as a function of
the OWAgrow layer.

4. Results

4.1. Separability and Membership Functions

Results of the separability analysis depict the distance between burned and unburned
classes, as observed in the post-fire and Δpost-pre S2 reflectance bands for the Vesuvius
site (Table 3); M > 1 highlights a good separability that is, in this case, achieved by S2
post-fire red–edge (RE2, RE3) and NIR bands and their temporal difference (Δpost-pre). S2
SWIR2 post-fire reflectance provides very poor separability (M < 0.1) that increases when
temporal difference (ΔSWIR2) is computed, suggesting that the difference with respect to
pre-fire unburned conditions enhances separability; the opposite occurs for the S2 SWIR1
band. Reflectance of burned surfaces is the result of a mixture of bare soil, unburned
vegetation and combustion products (ash, charcoal) that are present on the surface after a
fire. The combustion of vegetation significantly influences the post-fire spectral signature
by generally decreasing reflectance (μb), thus enhancing the difference with respect to
unburned conditions (μu), especially in the NIR wavelengths. For longer wavelength
bands (i.e., SWIR2), the spectral reflectance of dry unburned vegetation (green vegetation
proportion absorbing radiation due to water content) and burned surfaces could be equally
low, thus reducing separability (lower M value). The separability power of SWIR wave-
bands in the temporal change detection algorithm has also been widely exploited as an
indicator of burn severity although the sensitivity of these bands has been found to vary
geographically [43]. Red–edge bands show good separability for wavelengths longer than
740 nm (RE2 and RE3), and are certainly of great interest, although these bands are not
present on all space-borne sensors and they are mainly selected for vegetation chlorophyll
content estimation and monitoring [44].
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Table 3. Separability metric M measuring the distance between burned and unburned surface spectral
signal in the post-fire and post-pre fire reflectance of the S2 bands. Bold numbers highlight values
M > 1 of the selected features.

S2 Band M Post fFire M ΔPost Fire-Pre Fire

Green (b3) 0.577 0.027
Red (b4) 0.321 0.454
RE1 (b5) 0.879 0.214
RE2 (b6) 2.091 1.571
RE3 (b7) 1.917 1.561
NIR (b8) 1.812 1.530
SWIR1 (b11) 0.873 0.099
SWIR2 (b12) 0.029 1.100

Based on these results, the following seven input layers were selected as features for
the implementation of the algorithm (Figure 5): post-fire NIR, post-fire RE2 and RE3 and
temporal difference (Δpost-pre) of the same three bands and additionally of SWIR2. From
the same training dataset, statistics for burned and unburned surfaces were computed for
the estimation of the k and x0 parameters of the membership functions (Table 4). MFs map
the input feature’s values into the [0, 1] domain where values closer to 1 (0) represent the
greatest (lowest) likelihood of being burned. Among the selected features, only ΔSWIR2
was properly described by an s-shaped function since, according the training dataset, over
burned areas, ΔSWIR2 > 0.

Table 4. Percentiles of the frequency distribution functions extracted from the training pixels of the
study area and used for defining MFs.

S2
Band

Burned Unburned MF Parameters
10% 50% 90% 10% 50% 90% k x0

PostRE2 0.058 0.074 0.102 0.147 0.220 0.286 −125.89 0.111
PostRE3 0.061 0.077 0.112 0.156 0.249 0.339 −115.77 0.116
PostNIR 0.054 0.073 0.115 0.147 0.264 0.370 −123.66 0.109

ΔRE2 −0.126 −0.098 −0.063 −0.021 0.012 0.088 −120.29 −0.06
ΔRE3 −0.158 −0.124 −0.075 −0.026 0.012 0.108 −93.721 −0.075
ΔNIR −0.180 −0.139 −0.085 −0.034 0.011 0.111 −87.14 −0.086

ΔSWIR2 0.025 0.063 0.114 −0.030 0.0084 0.024 236.98 0.044

4.2. Partial and Global Evidence of Burn

MFs are applied to the input features to derive maps of partial evidence of burn (MD =
membership degree score). Figure 6 shows the partial evidence of burn for the training site:
greater MD values represent higher likelihood of burn (from blue to yellow in the figure)
and the frequency distribution of pixel values varies with the input feature according to
its sensitivity in detecting different burned conditions. Areas located in the southernmost
regions of the park that were severely affected by fires during summer 2017 are consistently
identified by all features with the greatest values (yellow regions). Differences in the partial
evidence of burn brought by single features are mainly observed in the northern regions;
in fact, each feature is sensitive to different characteristics of the burned surfaces and/or
different degrees of burn. In the figure, non-forested areas within the border of the national
park are masked out and shown in gray.

Global evidence of burn is computed with OWA operators integrating partial evidence,
as shown in Figure 7 for the Vesuvius training site. OWA score ranges within [0, 1], with
the greatest values showing pixels with the highest likelihood of being burned according to
convergent evidence of burn from the input layers. All OWA maps highlight regions of the
Vesuvius site most affected by fires in the southernmost areas, where all input layers agree
on identifying higher partial evidence of burn. The ‘concurrent–strict’ to ‘complementary–
relaxed’ integration conditions implemented by the different OWAs supported the choice of
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seed and growing layers for the RG algorithm: we selected OWAAND as the seed layer com-
bined with average and OR-like OWAs as the growing layer (OWAAverage, OWAAlmostOR
and OWAOR). Once seed pixels were selected (OWAAND > 0.9), the RG algorithm expanded
the initial selection in an iterative way over the OWAgrow layer in order to also capture
pixels with lower values of global evidence (less likely to be burned).

    
a) b) c) d) 

     
e) f) g)  

Figure 6. Partial evidence of burn as given by the input features interpreted by sigmoid MFs: PostRE2 (a), PostRE3 (b)
PostNIR (c), ΔRE2 (d), ΔRE3 (e), ΔNIR (f) and ΔSWIR2 (g). Color scale shows increasing degree and likelihood of burn (blue
to yellow).

   
a) b) c) 

  

 

d) e)  

Figure 7. Global evidence of burn shown by OWA score [0, 1] (left column) over the Vesuvius study site: OWAAND (a),
OWAalmostAND (b), OWAAverage (c), OWAAlmostOR (d) and OWAOR (e); borders of Vesuvius National Park are highlighted
in black and masked areas in gray.
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4.3. RG Burn Score and Validation

Figure 8 shows the RGscore (top row) and agreement (bottom row) maps that depict
the spatial distribution of agreement between the two-class algorithm’s output and the
reference datasets: full agreement over burned (orange) and unburned classes (white) as
well as errors of omission (green) and commission (blue).

OWAAverage OWAAlmostOR OWAOR 

   

a) b) c) 

   

d) e) f) 

Figure 8. RGscore and agreement maps for the Vesuvius training site for growing layers OWAAverage (a,d), OWAAlmostOR

(b,e) and OWAOR (c,f).

In the agreement maps, omission errors in the northern slopes of the volcano are
mainly produced by the lack of seed pixels in the OWAseed layer (Figure 7a), likely due to
low-intensity and/or below-canopy fires; these regions are common to all output RGscore
maps since the omission error descends from the seed layer rather than the growing layer.
Commission errors are larger in the maps produced with OWAAlmostOR and OWAOR that
implement ‘complementary–relaxed’ aggregation. Accuracy metrics quantifying the errors
depicted in Figure 8 are summarized in Table 5 together with total estimated hectares of
area burned (Tot BA).

Table 5. Accuracy metrics (oe = omission error, ce = commission error, dc = Dice coefficient, relB = rel-
ative bias) over the Vesuvius site for the three (OWAAverage, OWAAlmostOR and OWAOR) growing
layers. The total amount of burned area from the algorithm (Tot BA RG) and the reference (Tot BA
REF) are also given.

OWAgrow oe ce dc RelB (%)
Tot BA
RG (ha)

Tot BA
REF (ha)

Average 0.15 0.12 0.87 +1.82 1676.39
1744.07AlmostOR 0.10 0.20 0.85 −5.81 1959.69

OR 0.09 0.22 0.84 −7.70 2029.95
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Results show that omission error is below 0.15 while commission error is in the
range [0.12–0.22]. Commission is greater than omission for OWAAlmostOR and OWAOR
growing layers, while OWAAverage leads to the greatest underestimation. Over the training
site, total estimated burned area from the RG algorithm ranges between 1676.39 ha and
2029.95 ha, while the reference dataset provides 1744.07 ha of area burned. Saulino et al.
(2020) [45] estimated that the area burnt by summer wildfires in 2017 in Vesuvius National
Park amounted to 3350.23 ha, although this estimate covers the entire summer season by
including fires that occurred later than the S2 post-fire date, 22 July.

4.4. Exportability Results

The algorithm developed over the Vesuvius site was applied to the sites selected for
testing and located in Spain (2), Portugal (1) and Greece (2) with the following criteria:

1. Seed layer: OWAAND;
2. Seed selection: OWAAND > 0.9;
3. Growing layers: OWAAverage, OWAAlmostOR and OWAOR;
4. RG algorithm: OWAgrow > 0;
5. Burned area mapping: RGscore > 0.

Figure 9 shows the agreement maps for the five sites and the corresponding accuracy
metrics are summarized in Figure 10 and compared to metrics estimated for the training
site. Increasing commission errors for OR-like operators (ce > 0.15) are visible in Calar and
Huelva sites, Spain. In particular, in the Calar site, the OWAOR growing layer generates a
significantly greater commission error (ce > 0.30) by mistakenly classifying as burned a
region of woodland–shrubland located in the northeastern part of the site. Additionally,
in the Zakynthos site, Greece, commission error for the OR-like OWA operators is greater
than OWAAverage and mainly located in sparsely vegetated land covers. Commission is
greater than omission in all sites except Kalamos, Greece, and Leiria, Portugal. In all
sites, the difference in the estimates of the Dice coefficient for the three growing layers
is negligible while relative bias shows values significantly below zero (overestimation)
for Vesuvius, Calar and Huelva sites and OR-like operators confirm the ‘complementary–
relaxed’ aggregation of these operators. Estimates of the relative bias clearly show that
OWAAverage provides burned area maps that tend to underestimate the area actually
burned; again, the opposite occurs for OWAOR. In terms of relB, the Zakynthos and Leiria
sites show the lowest values and no difference among the three growing layers tested.
Finally, a negligible difference is observed in accuracy metrics obtained over the Leiria site,
Portugal, probably due to the clear burn spectral signal produced by intense and severe
fires affecting forest cover; over this site, we obtained the overall greatest Dice coefficient
and lowest relative bias.
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Figure 9. Cont.
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Figure 9. Agreement maps obtained for OWAAverage (left column), OWAAlmostOR (middle column) and OWAOR (right
column) over exportability sites: Leiria, Portugal (a–c), Calar, Spain (d–f), Huelva, Spain (g–i), Kalamos, Greece (l–n)
and Zakynthos, Greece (o–q). The four classes represent: correctly classified burned pixels (orange), correctly classified
unburned pixels (white), pixels mistakenly classified as burned—commission (blue) and pixel mistakenly classified as
unburned—omission (green).

A regression analysis was carried over a grid layer spacing of 500 m × 500 m to
compare the proportion of grid cells labeled as burned in the RG output and the reference
maps. This analysis allows a more robust quantitative evaluation of the agreement between
classified and reference data [46] by reducing the effect of error compensation. The results
are displayed as regression scatter plots and the agreement was quantified by regression co-
efficients and error metrics: the coefficient of determination (R2) and the root mean squared
error (RMSE) computed from the proportion and the total amount (hectares) of area burned
within each grid cell (Figure 11). Slopes of the linear regression are generally very close to
1, showing a more than satisfactory agreement between classified and reference maps; in
particular, slope values slightly below 1 can be observed for the Leiria, Calar and Kalamos
sites, pointing out an underestimation of the area burned in S2 maps; on the contrary,
overestimation occurs for the Zakynthos site (slope > 1.07). Indeed, underestimation error
is rather expected when burned area mapping is carried out by coarser-resolution data [46]
despite the contribution of RG in reducing commission (Figure 12). These trends appear to
be least influenced by the OWAgrow layer that is selected in the RG (columns in Figure 11).
Only Vesuvius and Huelva show the slope of the regression model changing from negative
to positive with OWAgrow; indeed, commission errors brought by the OR-like OWAs lead
to a slope > 1. The R2 values confirm the very good agreement with lower values obtained
over the Vesuvius training site and with OR-like operators (R2~0.85). By looking at the
RMSE, the best results are obtained by applying different OWAs in the different sites:
OWAAverage yields the best results in Vesuvius, Huelva and Zakynthos, OWAOR performs
best in Kalamos and Leiria, while OWAAlmostOR performs best in Calar. Hence, it is not uni-
vocally identified which OWAgrow layer performs best across the sites, although OWAOR
should be discarded due to the high overestimation errors. By choosing OWAAverage or
OWAAlmostOR, the average grid cell RMSE is below 2 ha. As highlighted in Figure 9, the
greatest commission errors occur over the Calar site, Spain, and with OWAOR growing
layer; this error is represented in the scatter plot by grid cells along the y-axis (BA reference
cell proportion = 0).
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Figure 10. Accuracy metrics (omission error = oe, commission error = ce, Dice coefficient = dc and relative bias = relB) over
the exportability and training sites.

By observing, in particular, scatter plots for the Leiria and Huelva sites, a large number
of grid cells are fully burned according to the reference (BA reference cell proportion along
the x-axis = 1) but the burn proportion detected by the RG algorithm is largely variable (BA
RG cell proportion along the y-axis) with some cases of full omission. An in-depth analysis
of these cells by visual inspection of S2 RGB color composite images (RGB = SWIR − NIR −
Red) revealed that disagreement is mainly due to unburned islands and/or linear elements,
such as roads, that are included as burned in the EMS polygons. Moreover, discrepancy
between RG and reference perimeters is also due to differences in the reference date of the
pre-fire image. The EMS pre-fire images can date back to previous years while S2 pre-fire
images in this study belong to the same year as the fire event (2017); in fact, to limit the
influence of changes of surface conditions due to other phenomena and to maximize the
burned/unburned separability, we kept a time gap between pre- and post-fire S2 images in
the range of 1–2 months. Some examples area given in the (Appendix A, Figure A4).
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Figure 11. Scatter plot of the proportion of 500 m × 500 m grid cell mapped as burned in the RG output and the reference
dataset for each site and OWAgrow layer. Scatter plots are displayed as counts of cells for 0.05 step along the x- and y-axis to
better represent overlapping points and with a logarithmic color scale. The black dotted line is the 1:1 line while the gray
continuous line is the linear regression model. The coefficient of determination (R2), slope of the regression linear model
(Slope), root mean squared error (RMSE) and total number of cells (N cells) are also shown.
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Figure 12. Accuracy metrics (omission error = oe, commission error = ce, Dice coefficient = dc and relative bias = relB) over
the training site for burned area maps obtained with the RG algorithm (with three cases of growing layer, OWAAverage,
OWAAlmost_OR and OWAOR) and from segmentation of the OWA global evidence (from all tested OWAs).

5. Discussion

The algorithm described here relies on S2 spectral bands and their temporal differ-
ence (pre-fire to post-fire reflectance change) in mapping burned areas in Mediterranean
ecosystems. We chose to rely on spectral bands rather than indices for the more robust
relationship between reflectance and surface properties; indeed, spectral indices might pro-
vide local good discrimination but their performance can vary in space and time [47]. The
approach integrates burn evidence from those S2 bands and their temporal differences that
showed the greatest sensitivity in discriminating burned and unburned surfaces. Among
the S2 spectral bands, the separability metric M identified red–edge (bands 6 and 7) and
NIR (band 8) as the most suitable bands while the short-wave infrared domain showed
poor separability (M < 1) with the lowest values for SWIR2 (band 12). In this wavelength
domain, separability improves slightly above the threshold value (M = 1.1) only when
temporal difference (Δpost-pre) is computed and for the longer wavelength SWIR2 S2 band.
Additionally, Δred–edge and NIR reflectance showed high separability (M > 1.5), although
lower than post-fire reflectance (M > 1.8), thus, suggesting that, in the case of a lack of
temporal series and/or suitable S2 image pairs, single-date images could provide accu-
rate mapping results. This confirms previous findings obtained with Landsat images by
Stroppiana et al. (2012) [26].

Seven features (PostRE2, PostRE3, PostNIR, ΔRE2, ΔRE3, ΔNIR, ΔSWIR2) were therefore se-
lected as input for the algorithm that relies on approximate reasoning to model uncertainty
on burned areas through the convergence of evidence of burned conditions. In this frame-
work, pixel-based partial burn evidence is the likelihood of observing burned conditions
in a given single spectral feature and the global evidence is given by the complementary–
concurrent aggregation of partial evidence degrees. This way, self-adaptation of the al-
gorithm to slightly similar areas and context is achieved, conferring robustness to the
approach. Prior to aggregation, input features are interpreted in terms of burn likelihood
by membership functions (MFs); similarly to other works proposed in the literature [19], we
chose sigmoid-shaped functions to rescale the domain of each input feature into a common
domain [0, 1] and these functions were defined from training sets in a semi-automatic way.
This improvement makes the implementation of the burned area mapping algorithm less
dependent on supervision and/or expert intervention compared to the previous version
where membership functions were defined in a fully expert driven way [26]. Tests carried
out on the exportability to new sites (4.4) confirmed that MFs are robust and provide
reliable results in similar ecological conditions (Mediterranean ecosystems of Southern
Europe). If other new regions have similar characteristics in terms of fire regime and land
cover, the algorithm could be applied in its present form since it is robust and self-adaptive,
stable and valid. The algorithm could be further automatized with MFs defined from
training that are automatically extracted, for example, from active fire points in a hybrid
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approach able to combine multi-source information to add new evidence for burned area
classification [10,16].

Integration of partial evidence to derive global scores was achieved with ordered
weighted averaging (OWA) operators; OWA layers were then used as input to a region
growing (RG) algorithm, which is largely exploited for image segmentation to balance
omission and commission errors [25]. An initial seed layer, in which burned pixels are
identified to minimize commission errors (i.e., in this case using an AND-like OWA), ex-
pands by adding new neighboring pixels belonging to a grow layer, identified to minimize
omission errors (i.e., in this case OR-like OWA). The improved performance of the algo-
rithm achieved with RG is presented in Figure 12 for the Vesuvius training site. First, the
implementation of the RG combined with OWA significantly reduces relative bias (relB)
that quantifies the difference between overestimation and underestimation. Moreover, RG
reduces the higher omission error brought by AND-like OWAs (more restrictive conditions
on the convergence of evidence) while it reduces commission of the OR-like operators. The
balance between these two types of errors, as quantified by the Dice coefficient (dc), shows
that RG brings significant improvement with respect to extreme OWAAND and OWAOR
accuracy (dc~0.6).

Hence, two layers of global evidence were selected as input to the RG algorithm for
seed selection and growing. Seeds were identified as pixels where OWAAND > 0.9 to guaran-
tee the highest reliability relying on the OWA operator able to implement ‘concurrent–strict’
integration conditions. On the other hand, the grow layer is selected among operators
implementing “partially complementary–relaxed” (average) and “complementary–relaxed”
(OR-like) aggregation. The output of the RG algorithm (RGscore) is a continuous layer in
[0, 1] that can be segmented to deliver a binary two-class burned/unburned map to be
compared to reference fire perimeters (i.e., validation).

Preliminary analysis over the Vesuvius training site (Appendix A, Figures A2 and A3)
showed that all pixels in the OWAgrow layer could be retained as potentially burned
(OWAgrow > 0) and all evidence values from the RG algorithm contribute to burned area
mapping (RGscore > 0). Under these conditions, estimated accuracy metrics are commission
error < 0.22, omission error < 0.15, Dice coefficient > 0.84.

Over the exportability sites, accuracy metrics fall in the range of values: oe [0.02, 0.15],
ce [0.01, 0.22], dc [0.84, 0.97] and relB [−0.077, 0.040]. The range of values is given by the
three OWAs used as potential layers for growing boundaries. Accuracy metrics are more
than satisfactory for a semi-automatic burned area mapping algorithm covering a wide
range of fire and land cover conditions in Mediterranean ecosystems. Where fire severity is
greatest, such as in the case of the Leiria site, Portugal, we observed that all three growing
layers analyzed provided comparable accuracy.

In the literature, Pulvirenti et al. (2020) [48] proposed an automated algorithm based
on S2 spectral indices over forest areas and achieved an average commission error of 6.3%
and omission error of 12.7%. Similarly, Smiraglia et al. (2020) [49] obtained commission
error = 33% and omission error = 24% by also exploiting S2 spectral indices. Furthermore,
Seydi et al. (2021) [50] mapped burned areas with a random forest algorithm (proved to
be the algorithm providing greatest accuracy) with ce = 8.7% and oe = 9.2%. Hence, the
performance of the algorithm proposed here is consistent with published results.

The regression analysis over 500 m × 500 m grid cells confirmed the high spatial accu-
racy achieved over all sites and, in particular, over Kalamos and Zakynthos, Greece (R2~1,
RMSE < 0.1 ha). Overall accuracy metrics (Figure 10) showed that the algorithm tends to
overestimate, with commission errors larger than omissions; the greatest overestimation
rate being from the OWAOR (RMSE > 3 ha), as also shown by the agreement maps (Figure 9,
third column). In these cases, areas erroneously classified as burned are mainly located
in sparsely vegetated land covers. On the contrary, disagreement between reference and
S2 classification and resulting in large omission errors occurred in the Leiria and Huelva
sites. In these cases, the regression analyses highlighted local omission errors better than
the overall accuracy metrics: visual comparison of RGB S2 composite images pointed out
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that these errors are due to unburned islands and linear patterns (e.g., roads) that are
erroneously included in the reference burned polygons. Additionally, differences in pre-fire
image date for S2 (our algorithm) and EMS products could lead to biased accuracy metrics;
an example is reported in the (Appendix A, Figure A4). Although EMS delineation maps
proved to be suitable source of information for validation [18] by delivering reliable fire
perimeters in rapid mapping mode, inconsistency might occur locally. Since no detailed
information is available on the accuracy of the EMS fire perimeters, we could not further
investigate this issue.

From the algorithm point of view, even if a single OWAgrow layer was not identified
as the best performing across all sites, we can be confident in stating that OWAAverage and
OWAAlmostOR are the best ones. If the characteristics of a new region are known in advance
and comparable to those of one of our test sites, we could select the best OWA case by case.

6. Conclusions

We propose a burned area mapping algorithm that is an improvement over a previous
version [26] in several aspects:

1. Customization to S2 imagery for implementing a convergence of evidence approach;
2. Exploitation of additional spectral bands available from the S2 MSI instrument;
3. Automatic interpretation of input features (e.g., post-fire and Δpost-pre reflectance)

through membership functions (MFs) defined from training statistics (partial evidence
of burn);

4. Tests of OWA operators from AND-like (for seed selection) to OR-like (for growing
layer) integration criteria;

5. Implementation of OWA global evidence in a region growing (RG) algorithm;
6. Accuracy assessment over a wide range of conditions/locations in Southern Europe

for the 2017 summer fire season.

Accuracy over training and exportability sites confirmed that the semi-automatic
algorithm is robust and self-adaptive over different land cover and fire regime conditions
in Mediterranean landscapes. Overall, accuracy metrics (oe < 15%, ce < 22%, dc > 0.84)
are consistent with values from the literature for regional applications, although effort
should be made in reducing commission errors. A key issue in the validation activity is the
availability of reference fire perimeters comparable in space and time with the burned area
maps from classification that could induce biased estimation of accuracy metrics. Finally,
future activity will be focused on the exploitation of the output burn evidence from OWA
operators and RG (RGscore) as an indicator of variable degrees of burn severity.
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Appendix A

 

Figure A1. Estimates of the accuracy metrics omission error (oe), commission error (ce), Dice coefficient (dc) and relative
bias (relB) over the Vesuvius site estimated by comparison with PlanetScope (green lines) and EMS (orange line) fire
reference polygons, horizontal red dashed line shows y = 0.

Figure A2. RG output score [0, 1] estimated over the Vesuvius training site OWAAlmostOR (a–e), OWAAverage (f–l) and
OWAAlmostOR (m–q) as growing boundaries and different threshold for identifying growing boundaries (Th) in [0.1–0.5]
(left to right columns). Masked areas are in gray. In all cases the seed layer is OWAAND > 0.9.
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Figure A3. Accuracy metrics (omission error = oe, commission error = ce and Dice coefficient = dc) estimates for burned
area maps obtained with the region growing (RG) algorithm over the Vesuvius site. Seed layer is the OWAAND score map
and growing layers are: OWAAverage, OWAAlmostOR and OWAOR. Accuracy metrics are estimated for combinations of the
threshold applied to the growing layers (OWAgrow, legend colors) and to the RGscore (x-axis).

    
a) b) c) d) 

    
e) f) g) h) 

    
i) l) m) n) 

Figure A4. Example of apparent commission errors for the Leiria site, Portugal (a–d): pre-fire S2 image (4 June 2017, b),
post-fire S2 image (4 July 2017, c) and burned areas from RG and EMS (d). Examples of commission errors in the Huelva
site, Spain (e–n): pre-fire S2 image (11 June 2017, f,l), post-fire S2 image (1 July 2017, g,m) and burned areas from RG and
EMS (c). S2 RGB are false color composites SWIR-NIR-Red. First column shows the location of the zoom areas and the last
column RG classification (white to black background) and EMS reference perimeters (red line patterns).
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Abstract: Surface fuel loading is a key factor in controlling wildfires and planning sustainable forest
management. Spatially explicit maps of surface fuel loading can highlight the risks of a forest fire.
Geospatial information is critical in enabling careful use of deliberate fire setting and also helps to
minimize the possibility of heat conduction over forest lands. In contrast to lidar sensing and/or
optical sensing based methods, an approach of integrating in-situ fuel inventory data, geospatial
interpolation techniques, and multiple linear regression methods provides an alternative approach
to surface fuel load estimation and mapping over mountainous forests. Using a stratified random
sampling based inventory and cokriging analysis, surface fuel loading data of 120 plots distributed
over four kinds of fuel types were collected in order to develop a total surface fuel loading model
(lntSFL-BioTopo model) and a fine surface fuel model (lnfSFL-BioTopo model) for generating tSFL
and fSFL maps. Results showed that the combination of topographic parameters such as slope, aspect,
and their cross products and the fuel types such as pine stand, non-pine conifer stand, broadleaf
stand, and conifer–broadleaf mixed stand was able to appropriately describe the changes in surface
fuel loads over a forest with diverse terrain morphology. Based on a cross-validation method, the
estimation of tSFL and fSFL of the study site had an RMSE of 3.476 tons/ha and 3.384 tons/ha,
respectively. In contrast to the average loading of all inventory plots, the estimation for tSFL and
fSFL had a relative error of 38% (PRMSE). The reciprocal of estimation bias of both SFL-BioTopo
models tended to be an exponential growth function of the amount of surface fuel load, indicating
that the estimation accuracy of the proposed method is likely to be improved with further study. In
the regression modeling, a natural logarithm transformation of the surface fuel loading prevented
the outcome of negative estimates and thus improved the estimation. Based on the results, this paper
defined a minimum sampling unit (MSU) as the area for collecting surface fuels for interpolation
using a cokriging model. Allocating the MSUs at the boundary and center of a plot improved surface
fuel load prediction and mapping.

Keywords: wildfire fuel loadings; sampling-based inventory data; ordinary cokriging method;
regression analysis; lidar remote sensing

1. Introduction

Wildfires are recognized as one of the major disturbances in terrestrial forest ecosys-
tems. Fire can significantly change forest attributes and destroy the habitat of wildlife while
at the same time, it can create another important habitat. Naturally occurring wildfires
caused by lightning or extreme climate events (a long dry season or drought and high
temperature) are generally inevitable. Fires are also frequently used to clear forest for
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large-scale plantation establishment [1] and small-scale agricultural uses [2–4]. Although
rapid warming has recently resulted in more wildfires worldwide, human activities have
been recognized as the major causes of wildfire [5]. Most human-caused wildfires can
therefore be prevented by using fires responsibly and taking preventative measures [6].

During a long, dry heat-wave period, an original wildfire can occur naturally and
may become uncontrolled when the weather conditions, topography, and fuels, the drivers
of fire behavior, are suitable for fire spread or propagation [7,8]. From the viewpoint of
ecosystem succession, a burnt forestland will recover over a long-term period of succession
and consequently be suitable for the development of new communities of vegetation and
wildlife [9]. However, large-scale and high-intensity fires are likely to occur simultaneously
over a landscape and therefore cause profound societal impacts [10]. The most recent
example of such extreme natural disturbance would be the 2019–2020 Black Summer
megafires in Australia [11]. In contrast to prescribed fires, the biomass burning events
release a significant amount of particular matter into the air [12]. Uncontrolled forest fires
can be recurrent and cause a significant loss of aboveground biomass stocks. Observations
of forest fires in northern Brazil showed the tropical rain forests lost more than 60% of
the biomass stocks in 3–7 years after the last major fire in a series of recurrent fires; even
for large trees with diameter > 50 cm, the biomass loss was about 54% in areas that
burnt three times [13]. Similarly, the carbon loss of tropical forest in northern Australia
caused by surface fires was equivalent to 46% of the annual net primary production
(NPP) of the forest [14]. Although smaller carbon-stock reductions of about 6% of annual
NPP were reported for temperate forests versus 11% for natural vegetation landscapes,
wildfire-caused biomass consumption has become a significant source of carbon emissions
globally [15]. Management of fuel loads therefore becomes an important issue for the safe
use of fire, wildfire prevention, and REDD achievement conservation [16].

Fuel is the combustible biomass found in forests and can be divided into fine fuels
such as leaves, grasses, and small twigs, and larger fuels such as shrubs, branches on the
ground, downed trees, and logs [17]. From the standpoint of vertical dimension, the fuel
can be classified as ground fuels, aerial fuels (trees, snags, and ladder fuels), and canopy
fuels (green leaves and branches of crowns). Accordingly, a fire occurring in the humus
layers, moving slowly, which can probably smolder for a long time, is called a ground
fire; a fire burning only surface litter and duff is a surface fire, while a fire that burns trees
over their entire height to the top is called a crown fire. Human-caused wildfire generally
begins as a ground/surface fire at a small scale but occasionally it can become a crown
fire and cause huge damage to the forest. Therefore, a map of fuel load distribution can
highlight the prevalence of wildfire risk and guide people in more careful use of fire in
order to minimize the possibility of heat transfer via conduction/radiation/convection
in forests.

When considering the possibility of ignition of a forest fire, identifying fuels that are
most likely to burn is related to the water content and the amount of surface fuels in a forest.
In other words, the fuel loadings should include the quantities of duff, litter, fine-woody
debris, and coarse woody debris or logs (fallen dead woods) distributed over the ground
surface of the forest because these are the primary factors for predicting fire effects from on-
site fuels [18]. The fuel-loading models (FLMs) designed by Sikkink et al. [18] emphasized
the importance of fuel composition for ground and surface fires. When fires become
uncontrollable, the amount of crown materials will be included in the fuels available for
crown fires and the trunk may or may not be burnt in crown fires. Therefore, many studies
have been conducted to explore methods for deriving the distribution of fuel or biomass
(ton/ha) using a variety of data such as forest inventory data and airborne lidar scanning
(ALS) data for aboveground biomass [19–22] and canopy biomass [23–25]. According to
the remote sensing-based IPCC method, a canopy fuel map can be derived using an ALS
canopy height model by segmenting every single tree, using, for example, mathematical
morphology-based watershed segmentation [26–29], Multilevel Morphological Active
Contour (MMAC) [30] or Multilevel Slicing And Coding (MSAC) techniques [31]. Moreover,
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the latest development of lidar sensing enables precise inventories of surface fuel and
canopy fuel using mobile terrestrial lidar instruments [32–35]. To overcome the high
cost of high-density point cloud ALS data, alternate methods for surface fuel loading
(SFL) estimation can be based on mathematical/empirical models using inventory data
such as vegetation/species maps and related environmental factors [18,36], satellite full-
waveform lidar data [37,38], and photon lidar data [39]. More recently, the approach
has been extended to integrate optical sensing images such as infrared orthophotos and
QuickBird images with ALS data to improve fuel mapping accuracy [40–43]. The major
strength of lidar technology in fuel estimation is the ability to retrieve fuel heights and
discriminate between fuel types [36]. It is impossible to measure surface fuel loads directly
from lidar data because lidar pulses can rarely penetrate the dense litter and duff layers on
the bare earth surface and travel back to the sensor.

Surface fuel inventories involve the complicated task of the collection of live biomass
such as grasses, forbs, and small woody plants and dead fuels such as duffs, debris, and
fallen dead wood over a large area of forest floor. Lidar technology is considered to be an
efficient method of gathering information of detailed biomaterials distributed on the land
surface. However, there still are difficulties in the determination of surface fuel loads over
a wide range of forests using this technology. In practice, the determination of surface fuel
loads is a process related to the collection and analysis of diverse surface fuels, fuel bed
depth, and bulk density in the field. Fuel depth varies widely, for example, from 0.3 m for
grasses to 1.8 m for shrub fields and 0.06–0.30 m for timber litter in forests [44]. Therefore,
the surface fuels lying on the fuel bed 0.3 m above the earth surface are generally collected
to account for the bulk density [45]. In addition, the ground is generally covered with
surface mass due to the weathering effect and accumulation of fine materials. In spite of the
ability of laser pulses to penetrate canopy gaps and reach the ground, collecting sufficient
numbers of point clouds that lie on the surface fuel and the earth surface remains difficult
and therefore, characterizing surface fuel though lidar point clouds is still challenging.

Surface fuel loads and bulk density are primarily subject to forest structures related to
species composition, phenology, and canopy height [41,46–50]. Distribution of surface fuel
loads is therefore a consequence of the interaction of multiple factors such as forest type
or overstorey/understorey species, topographic relief, and climate. A traditional forest
fuel inventory is capable of collecting the loads and bed depth of surface fuel and can
further differentiate and measure a variety of fuel sizes, for example, duff mass, litter mass,
fine-woody debris, coarse-woody debris, and fallen dead wood (FDW). In practice, a field
inventory of surface fuel loads within the whole area of sample plots has to collect and
measure the masses of the litter layer and duff layer. The work is time consuming and
labor intensive and significantly disturbs the surface stability and seed bank when the plot
covers a large area, for example, 10 by 10 square meters or even larger. The distribution
of fuel masses is most likely spatially dependent in a relatively local space. This kind of
spatial autocorrelation can be described via geostatistics which incorporates the spatial
coordinates of sample data to interpolate values for locations where samples were not taken.
Geostatistical methods such as kriging and cokriging (refer to Section 2.2 for the details)
capture observed spatial dependence among regional points. In addition, the distribution
of forests is typically a consequence of natural processes in which terrain morphology such
as the slope, aspect, and elevation may influence the amount of solar radiance, temperature,
humidity, and water availability on the slope, and these further affect the weathering
and accumulation of surface fuel mass on a slope. Thus, the integration of traditional
inventory and geostatistical methods could be helpful for mapping fuel distribution. A
geospatially explicit continuous map of surface fuel loads can be a fuel baseline for the use
of fire protection scenario generation and forest management. Therefore, the objective of
this study was to propose an algorithm for generating surface fuel load maps through the
integration of forest types, topographic variables, and in-situ inventory mass data using
geostatistical analysis and multiple linear regression methods. The surface fuel load was
presented as two types: fSFL (the fine- and coarse surface fuel loads) and tSFL (the total

221



Remote Sens. 2021, 13, 1561

surface fuel load, i.e., the sum of fSFL and the FDW mass). With detailed composition
complexity of fSFL and tSFL distribution over the study site, the uncertainty in mapping
the surface fuel load was further examined, and a strategy to generate the surface fuel load
was suggested.

2. Materials and Methods

2.1. Study Site and Data Acquisition

The forest in the area of the Dajiaxi Working Circle, managed by the Taiwan Forestry
Bureau, was selected for this study. The forest located at 121◦07′42′′–121◦27′03′′E and
24◦08′09′′–24◦26′31′′N in north central Taiwan (Figure 1) has been frequently disturbed
by fires during the last few decades. According to the official records revealed on the
website of the Forestry Bureau (https://forecast.forest.gov.tw/Forecast/# accessed on 10
February 2021), a total of 2171 fires occurred in the 37 working circles of national forests
from 1963 to 2019, averaging 37 ± 39 fires per year, with a minimum and maximum of
three and 252 fires, respectively, while averaging 55 ± 74 per working circle in which the
minimum frequency was 2 and the maximum was 287. Historical records of the Dajiaxi
Working Circle revealed that larger fires occurred frequently during the period from 1963
to 1990. The annual occurrence frequency ranged from 0 to 20, and the burnt area was
on average 526 ± 717 ha per year. Due to the implementation of a fire-fighting approach
that incorporates the Incident Command System and Government Flying Service, the fire
frequency and burnt area, after 1990, was significantly reduced to 0 to 4 and 39 ± 84 ha
per year, respectively. Most of the fires occurred in the dry season from winter to the early
spring; during this period, fire is most likely caused by careless use of fire. The prevalence
of forest fire in the Dajiaxi Working Circle was around 10% and ranked 3rd among the 37
forest management units. The Dajiaxi national forest is therefore officially considered as a
hotspot area for fire.

The altitude of the Island of Taiwan ranges from 0 to 3950 m. The forests on the island
vary dramatically along with the changes in altitude, temperature, and latitude. With
respect to the altitudinal variation, the forest is divided into the foothill zone (tropical forest),
submontane zone (subtropical forest), montane zone (warm-temperate and temperate
forests), upper montane (cool-temperate forest), subalpine zone (cold-temperate forest),
and alpine zone (subarctic forest) [51]. The elevation of this site ranges between 1115
and 3885 m across the subtropical–temperate–subarctic forest zones, and the temperate
forest dominates this area. The forest types include conifers, mixed pine–conifer–broadleaf
(hereafter mixed), and broadleaf forests. Specifically, this site has a lot of Taiwan red pine
(Pinus taiwanensis) plantations which were originally managed for wood production and
thus account for a major part of the coniferous forest even though it has been suffering from
a high risk of forest fire for decades. The pine is therefore listed together with the conifer,
mixed, and broadleaf forests as one of the forest types for fuel load inventory and SFL
modeling. Correspondingly, each of the forest types was sequentially encoded as 1: Taiwan
red pine, 2: conifer, 3: mixed, and 4: broadleaf in this study. The map of forest types was
generated using high-resolution ortho-photos obtained from the Taiwan Forestry Bureau.

The airborne lidar scanner data were acquired on 14 December 2018 via Strong Engi-
neering Consulting Company using a P68C-TC plane. A small-footprint, full-waveform
lidar system (Riegl LMS-Q780) mounted on the aircraft provided high-accuracy point cloud
data. Lidar data were collected at an operating flight altitude of 3400–4000 m (or 1970–2370
m above ground level) with a laser pulse repetition rate of 240–270 KHz. The resulting
lidar dataset with ground and canopy point cloud density around 2.5 and 15 points per
square meters, respectively, was used to produce a 1.0-m cell resolution of a rasterized
digital elevation model (DEM) and digital surface model (DSM) using a linear interpolation
technique. Both DSM and DEM were used to produce CHM data for aboveground biomass
mapping in a previous study, while only DEM data were used to derive topographic
parameters such as elevation, slope, and aspect for this study. The range of the DEM data,
classified degree slope (CS), and classified degree aspect (CA), as well as the reciprocal
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of degree slope (RDS) are shown in Figure 2. Forest type and topographical variables are
abbreviated as BioTopo variables hereafter.

 
Figure 1. The biological data used in this study. The green polygon in (a) shows the geolocation of the forest with detailed
forest types at the site. The total area of this study site is about 46,504 ha. Subfigure (b) depicts the sites of fires (red dots)
occurring during the period from 1963 to 2019, and correspondingly the bar chart in subfigure (c) shows the fire frequency
counted based on the year/month sequence. The white portion within the study site consists of rivers, inland lakes, and
private agriculture land.

In implementing airborne laser scanning, aerial photographs with 80% endlap and
50% sidelap were acquired using a PhaseONE iXA 180 camera. The geometric distortion
of the aerial photography had a value of 0.0169◦, 0.0209◦, and 0.0188◦ for the yaw, pitch,
and roll error, respectively, which accounted for an overall error of 0.0328◦. The aerial
photographs were used to generate a 0.2-m cell resolution orthophoto whose x-, y-, and
z-coordinates had RMSE values of 5.05, 2.45, and 1.36 cm, respectively, accounting for
an overall RMSE of 5.78 cm, based on the RTK-based ground control points. With the
high-resolution DEM and orthophotos of the study site, a series of route planning was
implemented in advance for in-situ inventory.
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Figure 2. Topographical variables of the study site ((a): DEM, (b): slope class, (c): aspect class, and (d): reciprocal of the
slope degree).

2.2. Surface Fuel Load Inventory Using Stratified Random Sampling and Cokriging Analysis

This study designed a three-level sampling strategy (Figure 3) to collect sufficient
SFL sample data. The sampling process was first implemented using forest type as the
strata and basemap-ID as the sampling unit. A series of random numbers indicating a
sampling unit was selected in which a level-1 plot with an area of 20 m by 20 m was drawn
for the pine, conifer, mixed, and broadleaf forestsover the study site (Figure 4). Second,
a level-1 plot was divided into four subplots (level-2) with a size of 10 m by 10 m. Third,
every subplot was evenly subdivided into 1-m-gridded microplots (the size is identical to
topographical variables derived from ALS DEM data), and the particular microplots (level-
3) located at the four corners and the center of each level-2 subplot whose surface fuels
including dull, litter, fine-woody debris, coarse-woody debris, and fallen dead wood were
investigated. Fourth, an ordinary cokriging method (Equation (1)) was applied to derive
a distribution map of fSFL over the level-1 plot in the 1-m gridded cells, and finally, the
fSFL of a level-2 subplot was determined by aggregating the values of all 1-m cells within
the area of the corresponding subplot. After that, the tSFL of a subplot was determined by
summing up the fSFL and the observed FDW mass within the corresponding area.
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Figure 3. An illustration of the 3-level sampling scheme for the surface fuel load inventory.

 
Figure 4. Location of plots for the fuel loading inventory. Subfigures (a–d) show the examples of the stands of pine, conifer,
conifer-broadleaf mixed, and broadleaf forests.

The in-situ field inventory was carried out between February and July in 2019. Virtual
base station real-time kinematic (VBS-RTK) technology was applied to locate the inventory
plots in the forest. In addition, a GeoSLAM terrestrial mobile lidar scanner ZEB Horizon
was used to capture 3D data for the plots for another aboveground biomass study (Figure 5).
Live and dead surface fuels, including 1-hr, 10-hr, 100-hr, and 1000-hr timelag fuels, were
collected separately [18,36,52]. For each fuel category, the fresh (or wet) weight and absolute
dry weight were measured in-situ and in the laboratory, respectively. For each category, a
fuel sample of 500 g was sent to be oven-dried at a temperature of 105 ◦C for measuring
the absolute dry weight [53]. With the dry–fresh weight ratio of each subsample, the value
of surface fuel loads of every plot was determined.
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Figure 5. A site scene of a post-hoc field survey plot for the surface fuel model performance determination. The upper
image displays surface fuel distributed over a pine stand mixed with a few broadleaf saplings and juveniles. The images to
the lower left present a profile of litter/duff/soil in the plot, and those in the center to the lower middle show the cleared
ground of the subplot area (10 m by 10 m) after the surface fuel collection. The image to the lower right shows the integrated
control point for the VBS-RTK positioning and terrestrial mobile lidar scanning with a ZEB Horizon.

Under normal circumstances, surface fuel distribution is mainly governed by the
location of vegetation/trees, which are distributed randomly/systematically over the
forestland area in natural/planted forests, and is most likely related to topography, partic-
ularly the slope and aspect. This is because litterfall as well as fallen dead logs naturally
move downslope due to gravity and collect at a position where the movement is blocked
by topography or objects. In addition, when the fallen dead wood decomposes/decays, the
rolling debris will accumulate more at the bottom of slopes over a limited local space. In
other words, the amount of fine surface fuel or dead biomass can gradually change in terms
of the physical characteristics over a slope, and fallen dead wood can occasionally interrupt
the continuity in stands [54]. The possibility of discontinuity/continuity of surface fuel
distribution increases with an increase in the area of interest of factors such as power-
ful typhoons or tropical cyclones that frequently bring high winds and rainfall, causing
biomass to move to lowland areas, inland lakes or the ocean. A plot-based forest inventory
is generally area limited, and attributes of the trees and the ground surface within a plot
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tend to be homogeneous; thus, the surface fuel properties of points in a plot are supposed
to be spatially dependent. Because cokriging analysis conducts interpolation according
to a semivariogram model, the technique can determine the spatial dependence among
points [55,56]. In cokriging analysis, the fSFL in the level-3 1-m cells within a level-1 plot
can therefore be presented as a function of the observed amount of surface fuel (the primary
variable), with the slope degree, degree aspect, and fuel bed depth the three secondary
variables. The cokriging system containing one primary and three secondary variables is
defined as:

z∗0 =
n

∑
i=1

αizi +
m

∑
j=1

β jxj +
p

∑
k=1

γkvk +
q

∑
l=1

τlul (1)

where z∗0 is the estimate of Z at location 0; z1, z2, . . . , zn are the primary data at n locations;
x1, x2, . . . , xm, v1, v2, . . . , vp, and u1, u2, . . . , ul are the secondary data at m, p, and q
locations, respectively. α1, α2, . . . , αn, β1, β2, . . . , βm, γ1, γ2, . . . , γp, and l1, l2, . . . , lq are
cokriging weights to be determined.

In the cokriging analysis, a variety of semivariogram models such as exponential, cir-
cular, spherical, and Gaussian models was tested and evaluated using the cross-validation
method. Only the semivariogram model fitted with a smaller RMSE was used to generate
the fSFL map of a plot. The microplot fSFLs over a level-1 plot area were further used to
aggregate the level-2 subplot-based fSFL values and tSFL.

2.3. Modeling of Surface Fuel Loads Using Multiple Linear Regression

In this study, the regression coefficients (B) of a multiple linear regression (Equation
(2)) were estimated by the method of ordinary least squares using Equation (3).

Y = XB+ ∈ (2)

B̂ =
(
X′X

)−1
X′Y (3)

In Equation (3), X is the matrix of independent variables including CS, CA, RDS, and
NFT (the normalized forest type, which is determined as the ratio of FT to the maximum
value of FT) and Y is the dependent vector lnSFL. X′X = R is the correlation matrix of
independent variables as each of them is standardized by its own mean and standard
deviation. In this study, 120 level-2 plots were collected and randomly divided into
training and assessing sub-datasets. Based on leave-20%-of-the-plots-out (5-fold) cross-
validation [38], all of the sample plots were evenly grouped into five assessing datasets. As
a result, the average and standard deviation of performance measures were determined. In
order to explore if estimation bias was related to fuel type, an additional evaluation was
implemented based on leave-1-fuel-type-out cross-validation.

In the regression analysis, two surface fuel load models were generated, that is, the
fSFL-BioTopo model and tSFL-BioTopo model in which fSFL and tSFL represent the fine
surface fuel loads and total surface fuel load, respectively, and BioTopo is associated with
the biological and topographic variables. The fSFL and tSFL models derived from the
training dataset were further applied to derive a distribution map of the fSFL and tSFL
for the Dajiaxi National Forest. Accuracy of the fSFL and tSFL maps was evaluated by
a cross-validation method via the root-mean-square error (RMSE) and the percentage
root-mean-square error (PRMSE). The RMSE is a scale-dependent accuracy measure and
is presented on the same scale as the surface fuel load; in contrast, the PRMSE is scale-
independent and measures the accuracy as an error percentage relative to the average of
observations [22].

3. Results

3.1. The Derived fSFL Semivariogram Models and Their Performance in Estimating Level-1 Plot
Surface Fuel Loads

Based on the rule of the smallest estimation bias in the cross-validation of a cokriging
method in the level-3 microplot, a semivariogram model with the smallest RMSE was
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applied to generate a 1-m cell SFL map for the corresponding level-1 plot. Detailed
information of the fitted models, prediction maps, RMSEs, and the percentage of RMSE
related to the mean average of fSFL observations (PRMSEs) in the inventory data is shown
in Table 1. As can be seen, the best prediction of fSFL for every single plot of the forest
types was mostly achieved by an exponential semivariogram model. Out of 30 level-1 plots
with the tested secondary variables, the variable slope was the most frequently used as
the supplementary data to describe the spatial change in fSFL. Table 1 also shows 17 of
the 30 models whose fSFL was predicted via the slope or simultaneously via the aspect
and/or fuel bed depth. Fuel bed depth was another frequently selected variable which
was used alone to account for the distribution of the amount of surface fuel in 11 models
and another five models when combined with other secondary variables. In contrast, the
aspect appeared to be additional supplementary data when accompanied with the slope.

Table 1. The ordinary cokriging method-derived maps of 1-m cell fine surface fuel loads (fSFL) and for the inventory plots
of forest types.

Forest Type Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8

Pine

        
Model * Gaus (1) Exp (2) Exp (3) Exp (3) Exp (4) Spher (1) Exp (4) Exp (4)

RMSE 0.3036 0.3158 0.1604 0.1999 0.1762 0.1809 0.2667 0.0902
PRMSE 26.31 28.71 15.31 20.91 16.94 19.54 27.61 4.83

Conifer

        
Model * Exp (4) Exp (4) Exp (4) Exp (1) Exp (1) Exp (1) Exp (2) Exp (4)

RMSE 0.2428 0.2594 0.2023 0.1687 0.3012 0.1423 0.2750 0.2387
PRMSE 32.81 31.18 18.46 29.91 43.15 22.80 39.51 35.42

Mixed

       

x

Model * Exp (3) Exp (5) Exp (2) Cir (4) Exp (4) Exp (3) Exp (6) x
RMSE 0.6082 0.7723 0.2239 0.2777 0.4112 0.2295 0.1988 x

PRMSE 39.14 50.95 36.58 35.06 31.29 30.68 48.88 x

Broadleaf

       

x

Model * Exp (2) Exp (4) Exp (1) Exp (5) Exp (4) Exp (4) Exp (2) x
RMSE 0.2229 0.1215 0.0934 0.2685 0.1332 0.1712 0.3411 x

PRMSE 24.44 17.21 21.13 45.05 23.13 29.12 43.61 x

*: Exp, Spher, Cir, and Gaus represent the exponential, spherical, circular, and Gaussian semivariogram models, respectively. The codes
(1), (2), (3), (4), (5), and (6) after the type of semivariogram model indicate a combination of secondary variables used in deriving that
semivariogram model. Correspondingly, the codes represent slope, slope–aspect, slope–fuel bed depth, fuel bed depth, slope–aspect–fuel
bed depth, and aspect–fuel bed depth, respectively.

Recall the bias of the fSFL prediction map: the best accuracy had an RMSE of
0.0902 kg/100 m2 or an equivalent error rate of PRMSE = 4.83% for a pine forest while
the lowest accuracy had an RMSE of 0.7723 kg/100 m2 and an PRMSE of 50.95% for a
mixed forest. On average, the method of integrating 3-level stratified random sampling
and cokriging analysis was able to derive the amount of surface fuels at an RMSE of
0.2533 ± 0.1390 kg/100 m2 or a PRMSE of 29.66 ± 10.64%. In addition, the SFL distribu-
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tion within the area of every single plot showed quite a different pattern among plots of
the pine, conifer, mixed, and broadleaf forests. The natural variation of fSFL in a variety of
forest types and topographic features revealed the spatial heterogeneity of fSFL distribu-
tion in forests, indicating that the method proposed makes sense for gathering plot-based
surface fuel loads with a low cost of labor and time for forest inventories.

3.2. The Level-2 Subplot-Based fSFL-BioTopo Models and Their Performance in Generating the
fSFL Map of the Whole Forest

The amount of fine surface fuels of the 120 level-2 subplots in an area of 10 × 10 m2

is shown in Table 2 (hereafter a pixel) and was aggregated from the cokriging-derived
level-1 SFL map. As can be seen, the pine stands had fSFL values that ranged from
73.71 kg/pixel to 149.75 kg/pixel, with an average of 107.32 ± 24.56 kg/pixel greater
than 99.58 ± 56.11 kg/pixel, 81.34 ± 22.90 kg/pixel, and 73.54 ± 16.28 kg/pixel of the
mixed stands, conifer stands, and broadleaf stands, respectively. The broadleaf stands on
average had obviously smaller fSFL while the mixed stands, whose fSFL values displayed
a significant and dramatic change indicated by their standard deviation, was almost three
times larger than those of the pine, conifer, and broadleaf stands.

Table 2. The aggregated amount of fine surface fuel loads (fSFL) in level-2 subplots.

Forest Type Subplot ¶ Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 AVG STD

Pine
(n1 = 32)

LL 149.75 132.98 75.89 161.72 121.82 63.54 92.59 79.22 107.32 24.56
LR 122.12 120.37 125.91 126.11 139.38 101.47 87.41 83.19
UL 139.70 120.52 73.71 119.99 82.82 84.83 86.04 109.47
UR 120.34 110.68 128.56 78.36 97.3 112.78 76.40 109.42

Conifer
(n2 = 32)

LL 89.93 90.90 113.00 91.88 76.28 55.86 66.12 60.31 81.34 22.90
LR 95.32 76.19 135.27 46.10 76.17 40.48 82.05 48.35
UL 93.78 85.37 110.91 68.92 99.70 82.24 90.00 92.86
UR 85.60 56.18 138.06 49.73 67.62 68.18 84.53 84.99

Mixed
(n3 = 28)

LL 86.04 223.01 104.74 87.04 225.84 73.07 36.48 x 99.58 56.11
LR 80.86 227.40 48.80 94.39 174.59 89.64 41.86 x
UL 87.53 138.60 63.41 80.39 111.58 73.27 56.27 x
UR 91.69 180.47 39.15 87.23 104.04 46.44 34.30 x

Broadleaf
(n4 = 28)

LL 83.50 67.42 54.91 71.69 56.90 65.14 92.40 x 73.54 16.28
LR 107.28 74.87 53.79 64.40 62.95 58.54 104.31 x
UL 74.98 92.06 49.62 85.58 63.65 73.2 84.48 x
UR 100.47 77.08 44.76 68.04 70.53 64.07 92.55 x

¶: The abbreviations LL/LR/UL/UR indicate the level-2 subplot on the lower left/lower right/upper left/upper right of a level-1 plot
listed in Table 1. The value of each entry has a unit of kg/pixel. A pixel has an area of 100 m2. AVG and STD represent the respective
average and standard deviation of the values for a forest type.

The ANOVA test showed that the derived fSFL-BioTopo model using the fSFL data of
level-2 subplots displayed an R-squared value of 0.162 (F = 3.096, p < 0.005, n = 120). In
Equation (4), the dependent variable is the natural log-transformed fSFL (lnfSFL, kg/pixel),
and the independent variables are the original or first-order topographical variables (NFT,
AC, and SC), their second-order interaction product (NFTxAC, NFTxSC, and ACxSC) and
third-order interaction product (NFTxACxSC). Based on the cross-validation test, this
model was able to achieve an accuracy of RMSE = 34.10 kg/pixel and PRMSE = 37.59%. In
contrast, when the 6-class SC was replaced by four classes (that is, 1: <5◦, 2: 5–10◦, 3: 10–20◦,
4: >20◦) and the 8-class AC was regrouped as four classes (1: North, 2: East, 3: South, 4:
West), the alternative lnfSFL-BioTopo model (Equation (5)) displayed an R-squared value of
0.173 (F = 8.063, p < 0.001, n = 120) and had an RMSE = 33.07 kg/pixel and PRMSE = 38.03%.
The RMSE and PRMSE differences between Equations (4) and (5) were 1.03 kg/pixel and
0.44%, respectively, which accounts for a relative change rate of 3% and 1% in the RMSE
and PRMSE. It was therefore concluded that the performance of the two models was almost
identical.
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lnfSFL = 3.785174 + 0.819635∗NFT + 0.154689∗AC + 0.416842∗SC − 0.230969∗NFTxAC − 0.671540∗NFTxSC
−0.072628∗SCxAC + 0.127985∗NFTxACxSC

(4)

lnfSFL = 3.911091 + 1.209008∗NFT + 0.076095∗AC + 0.375311∗SC − 0.237776∗NFTxAC − 0.842360∗NFTxSC
−0.040685∗SCxAC + 0.130257∗NFTxACxSC

(5)

3.3. The Level-2 Subplot-Based tSFL-BioTopo Model for Total Surface Fuel Loading Estimation

The detailed information of total surface fuel loads for the 120 subplots is shown in
Table 3 in which the italic numbers indicate the fallen dead wood mass of that particular
subplot. On average, the largest amount of FDW mass within the subplot area was found in
the conifer stand, with an average of 27.57 ± 26.66 kg/pixel, followed in descending order
by pine stands (13.42 ± 10.28 kg/pixel), broadleaf stands (12.04 ± 11.55 kg/pixel), and
mixed forest stands (3.77 ± 3.44 kg/pixel). In contrast to the fSFL, the increasing amount
of FDW mass in pine, conifer, mixed, and broadleaf forest stands was around 6.25%, 8.47%,
2.70%, and 4.68%, respectively; this indicates that the prevalence rate of FDW in the conifer
and pine stands was significantly higher than that in the mixed and broadleaf stands.

Table 3. The aggregated amount of total surface fuel loads (tSFL) in level-2 subplots.

Forest Type Subplot ¶ Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 AVG STD

Pine
(n1 = 32)

LL 149.75 145.32 75.89 161.72 125.38 70.93 92.59 109.61 114.03 24.99
LR 122.12 132.71 125.91 126.11 142.93 108.86 87.41 113.58
UL 139.70 132.86 73.71 119.99 86.38 92.22 86.04 139.86
UR 120.34 123.02 128.56 78.36 100.86 120.17 76.40 139.81

Conifer
(n2 = 32)

LL 89.93 90.90 113.00 91.88 77.19 55.86 66.12 114.54 88.23 26.70
LR 95.32 76.19 135.27 46.10 77.07 40.48 82.05 102.59
UL 93.78 85.37 110.91 68.92 100.61 82.24 90.00 147.10
UR 85.60 56.18 138.06 49.73 68.53 68.18 84.53 139.22

Mixed
(n3 = 28)

LL 90.18 224.96 104.74 87.04 226.88 83.38 37.88 x 102.27 55.71
LR 85.00 229.36 48.80 94.39 175.62 99.94 43.26 x
UL 91.67 140.55 63.41 80.39 112.61 83.58 57.67 x
UR 95.83 182.43 39.15 87.23 105.08 56.75 35.70 x

Broadleaf
(n4 = 28)

LL 83.50 67.42 54.91 72.18 56.90 88.72 92.40 x 76.98 16.63
LR 107.28 74.87 53.79 64.89 62.95 82.12 104.31 x
UL 74.98 92.06 49.62 86.06 63.65 96.78 84.48 x
UR 100.47 77.08 44.76 68.53 70.53 87.65 92.55 x

¶: The same as in Table 2. The italics is used to highigh the partiular plots.

The inclusion of FDW mass did not change the relationship of the total surface fuel
loads among the forest types, that is, the pine stand had the highest amount of tSFL,
followed by the mixed, conifer, and broadleaf stands. The significant variation in tSFL
in the mixed stands remained significantly larger than that in the other forest types. The
R-squared value of the derived lntSFL-BioTopo model as shown in Equation (6) was 0.144
(F = 2.701, p < 0.013, n = 120). The performance of this model in predicting tSFL of the whole
forest had an RMSE of 35.02 kg/pixel, corresponding to a PRMSE of 36.57%. Similarly,
Equation (7) shows the alternative lntSFL-BioTopo model for tSFL estimation using NFT,
4-classes SC, 4-classes AC, and their interaction product variables. The R-squared value
of this model was 0.168 (F = 7.836, p < 0.001, n = 120), and RMSE and PRMSE were 33.81
kg/pixel and 37.85%, respectively. The performance measures of the two models were also
quite close, with a difference in RMSE and PRMSE of 1.21 kg/pixel and 1.28%, respectively.
In contrast to Equation (6), the relative change in the two measures of Equation (7) was 3%
and 4%.

lntSFL = 4.481948 + 0.171296∗NFT + 0.082297∗AC + 0.153252∗SC − 0.170669∗NFTxAC − 0.364650∗NFTxSC
−0.041167∗SCxAC + 0.092501∗NFTxACxSC

(6)
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lntSFL = 4.433072 + 0.635037∗NFT − 0.012423∗AC + 0.163312∗SC − 0.145670∗NFTxAC − 0.541648∗NFTxSC
−0.000879∗SCxAC + 0.077361∗NFTxACxSC

(7)

For the 5-fold cross-validation, the respective average RMSE and PRMSE were
34.57 ± 8.76 kg/pixel and 37.58 ± 6.11% for the fSFL and 35.36 ± 9.09 kg/pixel and
36.38 ± 5.98% for the tSFL. However, for the leave-1-fuel-type-out cross-validation, a
significant difference in estimation performance among the four trials was observed. When
the pine, conifer, mixed, or broadleaf plots were sequentially excluded from modeling and
then used for validation, the PRMSE for the fSFL estimation was 36%, 34%, 62%, and 109%,
respectively, but 32%, 35%, 62%, and 102% for the tSFL estimation (Table 4). Obviously, the
mixed and broadleaf surface fuel loads tended to be significantly over-estimated if they
were not included in modeling. Both fSFL and tSFL of the broadleaf stands appeared to
be significantly over-estimated because the surface fuel load in the stands was lower but
under-estimated for the mixed stands due to the evidently diverse surface fuel load in the
stands. In other words, a smaller PRMSE only occurred in the estimation when the plots of
pine or conifer were not used for modeling, and the prediction bias appeared to be related
to fuel type. Collecting appropriate numbers of plots for each fuel type for deriving a
general model or having a sufficient number of plots for deriving fuel type-specific models
should be able to prevent the significant over-estimation and/or under-estimation problem.

Table 4. Summary of the performance of fSFL and fSFL models based on cross-validation.

Model ¶ fSFL
Model R2

RMSE
(kg/m2)

PRMSE
(%)

tSFL
Model R2

RMSE
(kg/m2)

PRMSE
(%)

Equation (4)/
Equation (6) 0.162 (F = 3.096, p < 0.005, n = 120) 34.10 37.59 0.144 (F = 2.701, p < 0.013, n = 120) 35.02 36.57

Equation (5)/
Equation (7) 0.173 (F = 8.063, p < 0.001, n = 120) 33.07 38.03 0.168 (F = 7.836, p < 0.001, n = 120) 33.81 37.85

DeGroup 1 0.154 (F = 2.295, p = 0.034, n = 96) 23.28 28.56 0.128 (F = 1.844, p = 0.089, n = 96) 24.10 28.84
DeGroup 2 0.167 (F = 2.526, p = 0.020, n = 96) 25.82 33.75 0.164 (F = 2.469, p = 0.023, n = 96) 25.73 31.44
DeGroup 3 0.182 (F = 2.801, p = 0.011, n = 96) 46.70 46.30 0.145 (F = 2.128, p = 0.049, n = 96) 47.96 45.59
DeGroup 4 0.136 (F = 1.986, p = 0.066, n = 96) 39.25 37.91 0.120 (F = 1.713, p = 0.116, n = 96) 39.05 36.11
DeGroup 5 0.193 (F = 3.016, p = 0.007, n = 96) 37.82 41.36 0.188 (F = 2.908, p = 0.009, n = 96) 39.94 39.90

DePine 0.106 (F = 1.352, p = 0.237, n = 88) 38.47 35.84 0.051 (F = 0.609, p = 0.747, n = 88) 37.01 32.45
DeConifer 0.232 (F = 3.455, p = 0.003, n = 88) 27.82 34.20 0.240 (F = 3.607, p = 0.002, n = 88) 30.70 34.79
DeMixed 0.257 (F = 4.160, p = 0.001, n = 92) 61.56 61.82 0.246 (F = 5.231, p < 0.001, n = 92) 63.02 61.62

DeBroadleaf 0.342 (F = 6.242, p < 0.001, n = 92) 80.11 108.94 0.258 (F = 4.167, p = 0.001, n = 92) 78.89 102.48
¶: The specific models (Equations (4) and (6)) used for generating surface fuel load maps of the whole study site. Performance measures of
the models were determined based on all of the plots. DeGroup 1–5 represents the five evaluations of leave-20%-of-the-plots-out cross-
validation; the respective average RMSE and PRMSE were 34.57 ± 8.76 kg/pixel and 37.58 ± 6.11% for the fSFL and 35.36 ± 9.09 kg/pixel
and 36.38 ± 5.98% for the tSFL. DePine, DeConifer, DeMixed, and DeBroadleaf represent the four evaluations of leave-1-fuel-type-out
cross-validation; the respective average RMSE and PRMSE were 51.99 ± 20.31 kg/pixel and 60.20 ± 30.20% for the fSFL and 52.40 ± 19.51
kg/pixel and 57.83 ± 28.21% for the tSFL. Both cross-validations included six slope classes and eight aspect classes.

4. Discussion

4.1. The Uncertainty of Surface Fuel Loading Estimation in fSFL and tSFL Models

Because the relative error in the two fSFL-BioTopo models (Equations (4) and (5)) was
small, and that of the two tSFL-BioTopo models (Equations (6) and (7)) was almost identical,
estimation performance of the paired models for both fSFL and tSFL can be considered
equal. The uncertainty of surface fuel models is therefore discussed based primarily on the
estimation of Equations (4) and (6).

The predicted values of surface fuel loading over the whole area of the study site
are shown in Figure 6 and are summarized in Table 5. Based on the prediction maps of
the whole forest, the fSFL mass of the pine stands ranged from 1.42 to 18.44 ton/ha and
averaged 10.67 ± 1.72 ton/ha. Taking into account the forest areas, there was approximately
379,718.31 tons of fine surface fuel within the pine stands. This is the largest amount of fine
fuel mass among the forest types over the whole forest. In contrast, the fine fuel mass of the
conifer, mixed, and broadleaf stands averaged 9.29 ± 1.10 ton/ha, 8.22 ± 1.53 ton/ha, and
7.18 ± 2.40 ton/ha, respectively, and resulted in a total mass of 130,433.75 tons, 57,555.40
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tons, and 52,283.57 tons. The relative amount of fine surface fuel mass among the four
forest types derived from the lnfSFL-BioTopo model is quite similar to that observed in
the subplot values. A similar trend appeared in the total surface fuel map derived from
the lntSFL-BioTopo model. In addition, the amount of tSFL of the forest types showed the
same sequence of pine > conifer > mixed > broadleaf, with an average value of 9.61 ± 1.01
ton/ha, 8.81 ± 1.03 ton/ha, 8.40 ± 1.49 ton/ha, and 7.71 ± 2.25 ton/ha, respectively. The
results show that the lnfSFL-BioTopo and lntSFL-BioTopo models are capable of performing
fSFL and tSFL estimations, and the estimates are generally consistent with the sampling
inventory results. This reveals that the distribution map of surface fuel loading generated
by each of the models is able to provide a baseline for accounting for the accumulation of
surface fuel loads over time.

As noted by comparing the descriptive statistics of the two models in Table 5, the
mixed and broadleaf fSFL estimate was generally smaller than the tSFL estimate by 0.18
ton/ha and 0.53 ton/ha while the pine and conifer stands’ fSFL was generally greater than
the tSFL by an amount of 1.05 ton/ha and 0.48 ton/ha. Mathematically, the situation of
fSFL > tSFL in a forest stand should not happen according to their definitions as described
in Section 2.2. Recall the descriptive statistics of inventory data shown in Tables 2 and 3:
the fallen dead wood mass in the pine and conifer stands was almost three times higher
than that in the mixed and broadleaf stands. In view of the range of surface fuel loading
estimates of the models, the tSFL of pine and conifer stands was apparently smaller than
the fSFL, with values of 10.66 vs. 17.02 and 10.60 vs. 12.29. In contrast to the mixed
and broadleaf stands (11.75 vs. 11.87 and 13.56 vs. 13.30 for the range of fSFL and tSFL
estimates), a significant uncertainty occurred in the estimation of the lntSFL-BioTopo model,
and the source of uncertainty should be the inclusion of fallen dead wood mass. This kind
of estimation uncertainty was also observed in the estimation bias of the subplots (Figure 7)
in which an extra amount of bias in the estimates of tSFL was highlighted by an arrow with
respect to those corresponding hollow bars.

Table 5. A summary of surface fuel loadings with respect to forest types in Dajiaxi National Forest.

Models
Forest
Types

Areas
(ha)

Minimum
(ton/ha)

Maximum
(ton/ha)

Average
(ton/ha)

STD
(ton/ha)

Total
(tons)

lnfSFL-BioTopo Pine 13,070 1.42 18.44 10.67 1.72 139,445.59
(Equation (4)) Conifer 14,039 1.04 13.33 9.29 1.10 130,433.75

Mixed 7001 1.02 12.90 8.22 1.53 57,555.40
Broadleaf 7280 0.66 13.96 7.18 2.40 52,283.57

Sum 41,390 0.66 18.44 9.17 2.08 379,718.31

lntSFL-BioTopo Pine 13,070 1.28 11.95 9.61 1.01 125,665.94
(Equation (6)) Conifer 14,039 1.03 11.62 8.81 1.03 123,659.56

Mixed 7001 1.06 12.81 8.40 1.49 58,835.28
Broadleaf 7280 0.76 14.32 7.71 2.25 56,147.02

Sum 41,390 0.76 14.32 8.80 1.55 364,307.80

Difference Pine 13,070 −6.50 1.34 −1.05 1.04 −13,779.65
(fSFL–tSFL) Conifer 14,039 −3.34 0.83 −0.48 0.45 −6774.19

Mix 7001 −2.52 0.79 0.18 0.26 1279.88
Broadleaf 7280 −2.19 1.10 0.53 0.32 3863.45

Sum 41,390 −6.50 1.34 −0.37 0.89 −15,410.51
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(a) (b) 

Figure 6. The surface fuel loading regression model-derived fSFL map (a) and tSFL map (b) of the Dajiaxi National Forest.

Figure 7. Prediction bias of surface fuel loadings in the lnfSFL–BioTopo and lntSFL–BioTopo models. The x–axis represents
the identity of inventory samples, and the y–axis is the bias determined by the difference between estimated and inventory
data. A negative value indicates an underestimation while a positive value represents an overestimation. The arrow below
the hollow bars indicates that the corresponding inventory subplots (identity number: 21–24/57–60/93–96/119–120) had a
significant FDW mass as well as a larger estimation bias in the tSFL estimates.

4.2. The Dependency of Estimation Bias on the Amount of Surface Fuel Loads

In Section 3, the cross-validation tests showed that fSFL and tSFL were predicted
with a similar accuracy of RMSE (33.84 kg/pixel vs. 34.76 kg/pixel) and PRMSE (37.29%
vs. 36.28%), indicating that the lnfSFL-BioTopo and lntSFL-BioTopo models have almost
the same ability to predict surface fuel mass in the forest. The similarity was revealed
through the bias of the inventory subplots as shown in the bar chart in Figure 7. However,
the difference in fSFL and tSFL in a one-hectare areal basis over the whole forest of the
study site showed more than 50% of the areas whose fSFL was larger than tSFL. This is
particularly evident in the pine and coniferous forests (Figure 8).
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Figure 8. Map of the difference between MLR-derived tSFL and fSFL estimates over the study site. The negative values are
a result of larger fSFL and smaller tSFL, indicating prediction uncertainty in the lntSFL–BioTopo model.

Although the estimation appeared to be bias-independent and randomly based on the
scatter plot of bias vs. estimates in Figure 9a,b, the prediction bias still revealed a linear
dependency on the observed value. This is evident in Figure 9c,d, where the original variable
was converted to the deviation from the mean of observed values, i.e., fSFL-fSFLavg or
tSFL-tSFLavg. The prediction bias can be presented as a negative linear function of the
transformed variable, i.e., the bias is most likely to be compensated by the fuel mass itself,
and the bias-adjustment value or compensatory value ycom can be determined by the linear
models shown in Figure 9c,d. The compensated fSFL and tSFL estimates can be retrieved by
subtracting the ycom from the original estimates of fSFL and tSFL using Equations (4) and
(6), respectively. Accordingly, the compensated estimates of fSFL and tSFL through the bias-
adjustment models in Figure 9c,d were significantly improved to 11.64 kg/pixel and 12.84%
and 11.37 kg/pixel and 11.87% for RMSE and PRMSE, respectively. The bar chart shown in
Figure 10a,b demonstrates the improvement of prediction bias for the original estimation and
the compensated estimation of fSFL and tSFL with respect to each of the subplots.

4.3. A Possible Strategy for Improving Surface fuel Load Mapping

The prediction bias of the lnfSFL-BioTopo model and the lntSFL-BioTopo model
(Equations (4) and (6)) can also be presented as a nonlinear function of the observed value
of surface fuel loads. Estimates derived from the regression models can be over- or under-
estimated and correspondingly generate a positive or negative prediction bias, determined
as ŷ − y. Each bias can be adjusted to positive by introducing an additive component, c, to
compensate for the negative values without changing the relationship between the bias
and the observed values. Assuming that the compensated offset value c is ≥ the maximum
observed value of tSFL, the reciprocal transformation of “fSFLbias + c” and “tSFLbias + c”
can be presented as an exponential growth function of the observed value of fSFL or tSFL,
respectively (Figure 11). The transformed bias is helpful to diagnose the prediction bias
behavior with respect to the original scale of the fSFL and tSFL observed values. As shown
in Figure 11a,b, the R-squared value of the two exponential growth models was 0.8872 and
0.8713 when a constant value of 250 was assigned to the compensative offset.
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Figure 9. An examination of prediction bias of surface fuel loadings. The independency between the bias and predicted
values of fSFL (a) and tSFL (b) via Equations (4) and (6). A linear dependency of the surface fuel mass estimation bias on
the deviation from the mean of the observed values was formulated as a bias-adjustment model of Bias–adjfSFL–MLR for
the estimate of fSFL shown in (c) and Bias–adjtSFL–MLR for the estimate of tSFL shown in (d). The compensated value
(ycom) derived from the bias-adjustment model can be applied to appropriately restore surface fuel loading by subtracting
ycom from the originally estimated value of fSFL or tSFL.

(a) 

Figure 10. Cont.
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(b)

Figure 10. Changes in bias for the surface fuel loading estimation between the original lnfSFL–BioTopo model and its
bias-adjustment model (a) and the lntSFL–BioTopo model and its bias-adjustment model (b).

In the multiple linear regression models (Equations (4) and (6)), a larger surface
fuel load tended to be underestimated while a smaller fuel load was most likely overes-
timated, revealing that a smaller range of surface fuel load estimates was made by the
lnfSFL-BioTopo model and the lntSFL-BioTopo model. Similarly, based on the reciprocal
transformation, a smaller surface fuel load was generally found to have a smaller value of
transformed bias and vice versa. The exponential growth function in Figure 11a,b shows
that the greater the surface fuel load, the more significant the bias in the estimation. This
is most likely induced by a shortage of samples of larger fuel loads in deriving the multi-
ple linear regression models because the number of samples with respect to the diverse
amounts of surface fuel loads is generally proportional to the size of the corresponding
populations.

 

(a) (b) 

Figure 11. Nonlinear dependency of the surface fuel load estimation bias on the amount of observed surface fuel load. The
transformed bias of the original lnfSFL-BioTopo model and the lntSFL-BioTopo model was positively related to the values
of fSFL (a) and tSFL (b).
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Figure 12 provides a generalized logistic distribution of the tSFL and fSFL observed
values. The probability density function of this distribution is abbreviated as GL(x; α,
β, γ for the shape, scale, and location parameters. Specifically, the distributions for tSFL
and fSFL are GL(tSFL; 0.1804, 18.57, 90.04) and GL(fSFL; 0.2109, 17.38, 84.35), respectively.
Figure 12a,b reveals a right skewed distribution, indicating the rareness of larger surface
fuel load samples. In this study, the standard deviation and mean of the inventory data
were 36.63 kg/pixel and 95.76 kg/pixel for the fSFL in the forests and 35.80 kg/pixel and
90.70 kg/pixel for the tSFL, which resulted in a coefficient of variation (CV) of around
0.38–0.39 for the forests. Statistically, the CV is used to examine the extent of data variability
in relation to the arithmetic mean of a variable. The evidence of both the generalized logistic
distributions of samples and CV suggests that increasing the number of inventory samples
covering a wide range of a variable, particularly with a sufficient number of observations
for diverse fuel loads, would be expected to upgrade a model’s estimation performance.

(a) (b) 

Figure 12. Probability density function of the observed values of surface fuel mass. The distribution of inventory fuel mass
data is GL(tSFL; 0.1804, 18.57, 90.04) (a) and GL(fSFL; 0.2109, 17.38, 84.35) (b) where the x-axis is the observed value of fuel
loads and the y-axis is the percentage frequency of individual fuel loads.

4.4. An Examination of the Appropriateness of the Cokriging-Based Surface Fuel Mapping Method

An additional independent inventory of surface fuel loads was carried out in an area
of 10 × 10 square meters for examining the appropriateness of the sampling scheme in
deriving the plot-based SFL map. The SFL of the whole plot was 100collected. As shown
in Table 6, a few samples of 2-m size microplots located in the black cells of the locational
template (template no. 2–5, with 5, 9, 13, and 25 samples), were used to derive a cokriging
semivariogram model for generating the SFL prediction map. The RMSE of the four models
was 0.65, 0.80, 0.69, and 0.40 kg/m2, which is equivalent to a PRMSE of 29.71%, 39.05%,
34.34%, and 17.54%, respectively, indicating the best accuracy was achieved by a geospatial
cokriging model that used all samples from the whole plot area at the scale of a 2-m size
sampling scheme. The difference in PRMSE between the fourth case and the first case
was approximately 12%, indicating the proposed method to collect surface fuel loads of
inventory plots is a viable approach.

In contrast, templates 1 and 6 show alternative sampling schemes at a 1-m scale. The
cokriging model derived using template number 6 had a prediction accuracy of RMSE
0.05 kg/m2 and PRMSE 2.30%; the predicted values were quite close to the observed
values. Compared with template 2, the smaller values of both RMSE and PRMSE achieved
by template 1 also reveal the appropriateness of the proposed method in reducing labor
costs while retaining accuracy for generating surface fuel load maps. The 1-m size cell is
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therefore defined as the minimum sampling unit (MSU). Table 7 further demonstrates the
extrapolation map of surface fuel loads extended from a limited predefined map of the five
sample microplots. The RMSE and PRMSE did not show significant differences among
the four centralized sampling schemes (denoted as CenLL, CenLR, CenUL, CenUR), but
the two measures showed an evident increase in the four edged sampling schemes. The
results indicate that the extrapolation is not appropriate for deriving surface fuel loads of
inventory plots, and the MSUs should be distributed along the boundary as well as in the
center of a plot.

In published articles, much research demonstrates that the performance in the esti-
mation of surface fuel loads using lidar data and optical images varies dramatically. From
the perspective of PRMSE, the integrated approach of diverse remote sensing data was
around 20–38% for a dense coniferous forest located in central Greece [33] and 37–98%
for a bark beetle-affected forest in eastern Grand County in north-central Colorado [57].
A better accuracy of PRMSE around 5–47% was achieved for an upland oak-dominated
forest in Kentucky using small footprint full-waveform lidar data [58]. According to Franke
et al. [59], a PRMSE ranging from 21 to 41% was achieved when measuring diverse coarse
woody debris in a forest savanna in the Brazilian Cerrado using only multi-temporal
Landsat OLI images. In contrast, the 37% of PRMSE achieved in this study is quite close to
the moderate accuracy revealed in previous studies, reflecting the potential of applying
stratified random sampling to forest types, topographical variables, and inventory data in
generating baseline information for surface fuel loading. The classification of forest types
was determined based on the biological conditions of the study site. This system is quite
similar to the fuel types of coniferous, deciduous, mixed wood, slash, and open grassland,
as defined in the Canadian Fire Behavior Prediction System (FBPS) [36]. Various research
has demonstrated the feasibility of integrating ALS and optical images to map the fuel
types (alternatively fuel models), such as the ones defined by the Northern Forest Fire
Laboratory (NFFL) [36,41,49,50,60,61]. The proposed algorithm for mapping the surface
fuel load is therefore most likely able to substitute the fuel types of the FBPS, NFFL, and
NFDRS classification systems to moderately improve the mapping performance for forests
with undulating terrain morphology in mountainous area.

Table 6. A comparison of surface fuel load mapping using different numbers of samples within a spatial scale of a 10-m
size plot.

Template No. 1 2 3 4 5 6

Locational template
and the number of
samples (NS) for
deriving model ¶

      

NS = 5@1 m NS = 5@2 m NS = 9@2 m NS = 13@2 m NS = 25@2 m NS = 100@1 m

SFL
Prediction

map
      

Semivariogram
model Exponential Exponential Gaussian Gaussian Gaussian Exponential

Secondary variables slope, aspect,
fuel bed depth

slope, aspect,
fuel bed depth

slope, aspect,
fuel bed depth

slope, aspect,
fuel bed depth

slope, aspect,
fuel bed depth

slope, aspect,
fuel bed depth

RMSE (kg/m2) 0.59 0.65 0.80 0.69 0.40 0.05

PRMSE (%) 26.58 29.71 39.05 34.34 17.54 2.30
¶ The black and gray boxes show the training and testing samples for cokriging model derivation and accuracy evaluation, respectively.
The size value comes after the symbol “@” presenting the area of a microplot.
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Table 7. A comparison of appropriateness of extended prediction based on the predefined cokriging surface fuel load map ¶.

7 8 9 10 11 12 13 14

        

0.60/26.85% 0.59/26.30% 0.59/26.12% 0.59/26.35% 0.72/31.80% 0.79/35.42% 0.79/35.42% 0.89/39.92%

        

5 (CenLL) 5 (CenLR) 5 (CenUL) 5 (CenUR) 5 (LL) 5 (LR) 5 (UL) 5 (UR)
¶ The black and gray boxes show the training and testing samples for cokriging model derivation and accuracy evaluation, respectively.
The surface fuel load map for the particular area bounded by the training samples was first generated through the cokriging semivariogram
model and then extended to the extent defined by templates no. 7–14. The xx/xx% values below each map specify the RMSE/PRMSE that
was derived from the corresponding template.

5. Conclusions

Surface fuel load estimation and mapping are of particular importance, not merely for
the origin of fire and better prediction of fire spread and intensity, but also for understand-
ing the source of soil nutrients. Decomposed vegetative mass can easily enter into nutrient
cycling and support the needs of vegetation growth and forest development. An in-situ
field inventory is the direct method to collect real data of surface fuel load in a forest, but
the method is only implementable over limited or small areas in the view of costs of labor,
time efficiency, and finance. In general, the surface fuel load over a forest area is a result of
the accumulation of litterfall and dried and short-lived vegetation mass as well as fallen
dead wood, and wildfire consumes surface fuel. A fire-behavior model can be used to
chart the post-fire fuel dynamics when the dynamics of fuel accumulation are established
based on the historical records of fire regimes and initial surface fuel load [62]. Empirical
models with predictors derived from lidar data and/or satellite images provide alternative
methods of estimation at a certain accuracy or uncertainty. In fact, surface fuel masses
generally form a dense cover on the ground surface. It is impossible for lidar pulses to
penetrate the fuel bed and reach the bare ground. Consequently, measuring the surface
fuel load directly with lidar point cloud data from the air and even the ground is obviously
quite challenging.

The amount of surface fuel mass will change over time due to diverse influences
induced by the interaction of biological, physical, and climatological factors; therefore, the
information revealed through a map of surface fuel distribution is most likely valid or
practical only for a limited period. Frequent updates of fuel maps are required for efficient
management of forest fuel in order to control fire risks. In view of the economic cost of fuel
mapping, a method of deriving accurate surface fuel load maps is needed that will be both
easier to implement and at a lower cost. Considering the complexity of undulating terrain
morphology and inaccessibility of vehicles in mountainous areas, the proposed method for
estimation and mapping of surface fuel loads using topographic variables and classified
fuel models (forest types) is highly appropriate to meet this need. To implement the 3-level
stratified random sampling based approach for surface fuel load mapping, the user should
apply a fuel type (also fuel models) classification as needed and then carry out inventories
to collect data for generating a map of the surface fuel load.

For deriving a reliable prediction of surface fuel loads of an inventory plot, it is recom-
mended that the minimum sampling unit for collecting surface fuel should include the four
corners and the central position of an inventory plot in order to allow the cokriging method
to achieve an accurate prediction. In the proposed method, the orthogonal decomposition
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design of the plots was mainly for the convenience of linking with raster-based remote
sensing data. The size of a plot area can be determined based on the pixel size of the fuel
type map and the topographic map. The plot design can be flexible in the geometries
and sizes that allow compatibility with a variety of forest inventory systems, for example,
the forest inventory and analysis (FIA) plot design of the USDA that establishes three
additional plots next to a core plot at a fixed distance and in three directions [63]. The
plot design of the Indonesia National Forest Inventory is a systematic cluster design. It is
composed of clusters, temporary sample plots, and permanent sample plots. The fuel load
data collected via the Cluster-TSP-PSP plot design [64,65] can directly adopt the proposed
approach.

Biological variables are the primary leading factors of the surface fuel load. Some
of the factors are likely to change over time due to growth, competition among trees,
and disturbances. To address the temporal-related changes, a spatiotemporal dynamic
model of biological mass transition would be a critical solution for better surface fuel load
management.
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