
mdpi.com/journal/algorithms

Special Issue Reprint

Deep Learning Architecture
and Applications

Edited by

Xiang Zhang and Xiaoxiao Li

Deep Learning Architecture and
Applications

Deep Learning Architecture and
Applications

Editors

Xiang Zhang

Xiaoxiao Li

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Editors

Xiang Zhang

Department of Computer

Science, University of North

Carolina at Charlotte

Charlotte, NC, USA

Xiaoxiao Li

Electrical and Computer

Engineering Department,

University of British

Columbia

Vancouver, BC, Canada

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special

issues/56U1X6P99B).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-0365-8830-8 (Hbk)

ISBN 978-3-0365-8831-5 (PDF)

doi.org/10.3390/books978-3-0365-8831-5

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

Contents

About the Editors . vii

Preface . ix

János Hollósi, Áron Ballagi and Claudiu Radu Pozna

Simplified Routing Mechanism for Capsule Networks
Reprinted from: Algorithms 2023, 16, 336, doi:10.3390/a16070336 1

Saidur R. Pavel and Yimin D. Zhang

Optimization of the Compressive Measurement Matrix in a Massive MIMO System Exploiting
LSTM Networks
Reprinted from: Algorithms 2023, 16, 261, doi:10.3390/a16060261 23

Shadab Anwar Shaikh, Harish Cherukuri and Taufiquar Khan

Recovering the Forcing Function in Systems with One Degree of Freedom Using ANN and
Physics Information
Reprinted from: Algorithms 2023, 16, 250, doi:10.3390/a16050250 39

Cesar Davila Hernandez, Jungseok Ho, Dongchul Kim and Abdoul Oubeidillah

Machine-Learning-Based Model for Hurricane Storm Surge Forecasting in the Lower Laguna
Madre
Reprinted from: Algorithms 2023, 16, 232, doi:10.3390/a16050232 53

Sebastian Bickel, Stefan Goetz and Sandro Wartzack

Detection of Plausibility and Error Reasons in Finite Element Simulations with Deep Learning
Networks
Reprinted from: Algorithms 2023, 16, 209, doi:10.3390/a16040209 71

Dominik Stallmann and Barbara Hammer

Unsupervised Cyclic Siamese Networks Automating Cell Imagery Analysis
Reprinted from: Algorithms 2023, 16, 205, doi:10.3390/a16040205 89

Bradley Walters, Sandra Ortega-Martorell, Ivan Olier and Paulo J. G. Lisboa

How to Open a Black Box Classifier for Tabular Data
Reprinted from: Algorithms 2023, 16, 181, doi:10.3390/a16040181 111

Daniela Galatro, Rosario Trigo-Ferre, Allana Nakashook-Zettler,

Vincenzo Costanzo-Alvarez, Melanie Jeffrey, Maria Jacome and et al.

Framework for Evaluating Potential Causes of Health Risk Factors Using Average Treatment
Effect and Uplift Modelling
Reprinted from: Algorithms 2023, 16, 166, doi:10.3390/a16030166 137

Lorenzo Arsini, Barbara Caccia, Andrea Ciardiello, Stefano Giagu and Carlo Mancini

Terracciano

Nearest Neighbours Graph Variational AutoEncoder
Reprinted from: Algorithms 2023, 16, 143, doi:10.3390/a16030143 151

Eran Shachar, Israel Cohen and Baruch Berdugo

Acoustic Echo Cancellation with the Normalized Sign-Error Least Mean Squares Algorithm and
Deep Residual Echo Suppression
Reprinted from: Algorithms 2023, 16, 137, doi:10.3390/a16030137 169

Steven Guan, Ko-Tsung Hsu and Parag V. Chitnis

Fourier Neural Operator Network for Fast Photoacoustic Wave Simulations
Reprinted from: Algorithms 2023, 16, 124, doi:10.3390/a16020124 183

v

Olivier Pantalé

Development and Implementation of an ANN Based Flow Law for Numerical Simulations of
Thermo-Mechanical Processes at High Temperatures in FEM Software
Reprinted from: Algorithms 2023, 16, 56, doi:10.3390/a16010056 201

Tahira Niazi, Teerath Das, Ghufran Ahmed, Syed Muhammad Waqas, Sumra Khan,

Suleman Khan and et al.

Investigating Novice Developers’ Code Commenting Trends Using Machine Learning
Techniques
Reprinted from: Algorithms 2023, 16, 53, doi:10.3390/a16010053 223

Abouzar Choubineh, Jie Chen, David A. Wood, Frans Coenen and Fei Ma

Fourier Neural Operator for Fluid Flow in Small-Shape 2D Simulated Porous Media Dataset
Reprinted from: Algorithms 2023, 16, 24, doi:10.3390/a16010024 243

Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant and Aditya Kumar

Predicting Dissolution Kinetics of Tricalcium Silicate Using Deep Learning and Analytical
Models
Reprinted from: Algorithms 2023, 16, 7, doi:10.3390/a16010007 . 257

Mihai-Alexandru Niculescu, Stefan Ruseti and Mihai Dascalu

RoSummary: Control Tokens for Romanian News Summarization
Reprinted from: Algorithms 2022, 15, 472, doi:10.3390/a15120472 273

Tuan-Vinh La, Minh-Son Dao, Duy-Dong Le, Kim-Phung Thai, Quoc-Hung Nguyen and

Thuy-Kieu Phan-Thi

Leverage Boosting and Transformer on Text-Image Matching for Cheap Fakes Detection
Reprinted from: Algorithms 2022, 15, 423, doi:10.3390/a15110423 293

L. G. Divyanth, D. S. Guru, Peeyush Soni, Rajendra Machavaram, Mohammad Nadimi and

Jitendra Paliwal

Image-to-Image Translation-Based Data Augmentation for Improving Crop/Weed
Classification Models for Precision Agriculture Applications
Reprinted from: Algorithms 2022, 15, 401, doi:10.3390/a15110401 309

Alireza Namdari, Maryam Asad Samani and Tariq S. Durrani

Lithium-Ion Battery Prognostics through Reinforcement Learning Based on Entropy Measures
Reprinted from: Algorithms 2022, 15, 393, doi:10.3390/a15110393 327

Nikolaos-Ioannis Galanis, Panagiotis Vafiadis, Kostas-Gkouram Mirzaev and

George A. Papakostas

Convolutional Neural Networks: A Roundup and Benchmark of Their Pooling Layer Variants
Reprinted from: Algorithms 2022, 15, 391, doi:10.3390/a15110391 345

Alireza Saberironaghi, Jing Ren and Moustafa El-Gindy

Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review
Reprinted from: Algorithms 2023, 16, 95, doi:10.3390/a16020095 365

vi

About the Editors

Xiang Zhang

Xiang Zhang is an Assistant Professor in the Department of Computer Science at the University

of North Carolina (UNC) at Charlotte. Zhang is serving as director of the Charlotte Machine Learning

Lab (CML), which boasts around 40 members, including esteemed professors and PhD candidates

renowned for their expertise across diverse domains such as deep learning theory, computer vision,

natural language processing, reinforcement learning, and time series analysis. Before joining UNC

Charlotte, he was a postdoctoral fellow at Harvard University from March 2020 to July 2022. Zhang

received his Ph.D. degree (in 2020) in Computer Science from the University of New South Wales

(UNSW). His research interests lie in data mining and machine learning with applications in medical

time series, brain–computer interfaces (BCIs), and pervasive healthcare. Zhang’s research outcomes

have been published in prestigious conferences (such as ICLR, NeurIPS, and KDD) and journals (like

Nature Computational Science).

Xiaoxiao Li

Dr. Xiaoxiao Li is an Assistant Professor in the Electrical and Computer Engineering Department

at the University of British Columbia (UBC), leading the Trusted and Efficient AI (TEA) Group, and

an Adjunct Assistant Professor at the School of Medicine at Yale University. Dr. Li specializes in the

interdisciplinary field of deep learning and biomedical data analysis. Her primary mission is to make

AI more reliable, especially when it comes to sensitive areas like healthcare. At the TEA Group, they

explore a wide range of topics from fundamental machine learning to more focused healthcare-driven

AI solutions. The group delves into topics such as learning from multimodal and heterogeneous data,

efficient AI models, federated learning, and creating AI models that not only perform tasks but can

also be trustworthy. Some of their groundbreaking work includes AI-driven analysis of neuroimages,

pathology slides, molecular and clinical notes. In essence, Dr. Li’s work is all about bridging the

world of advanced machine learning with the practical needs of the healthcare industry.

vii

Preface

Amidst the ever-evolving realm of artificial intelligence, the emergence of deep learning

stands as a transformative force, fundamentally reshaping how machines understand and process

information. Yet, despite its prowess, deep learning techniques have predominantly focused on

specific domains such as computer vision, language processing, and time series analysis, often

overlooking the broader spectrum of vital real-world scenarios.

This reprint serves as a crystallization of this technological revolution, encompassing a

compendium of advanced accomplishments in deep learning and their pertinent applications. Within

these pages, readers embark on a comprehensive journey, delving into methodologies that span an

expansive array of real-world contexts encompassing healthcare, finance, physics, and mechanics.

This volume seeks to bridge the gap, bringing the prowess of deep learning to the forefront of diverse

and critical domains.

Xiang Zhang and Xiaoxiao Li

Editors

ix

Citation: Hollósi, J.; Ballagi, Á.;

Pozna, C.R. Simplified Routing

Mechanism for Capsule Networks.

Algorithms 2023, 16, 336. https://

doi.org/10.3390/a16070336

Academic Editors: Xiang Zhang

and Frank Werner

Received: 11 April 2023

Revised: 2 July 2023

Accepted: 10 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Simplified Routing Mechanism for Capsule Networks

János Hollósi 1,*, Áron Ballagi 2,* and Claudiu Radu Pozna 2

1 Department of Informatics, Széchenyi István University, 9026 Győr, Hungary
2 Department of Automation, Széchenyi István University, 9026 Győr, Hungary; pozna@sze.hu
* Correspondence: hollosi.janos@sze.hu (J.H.); ballagi@ga.sze.hu (Á.B.)

Abstract: Classifying digital images using neural networks is one of the most fundamental tasks
within the field of artificial intelligence. For a long time, convolutional neural networks have proven
to be the most efficient solution for processing visual data, such as classification, detection, or
segmentation. The efficient operation of convolutional neural networks requires the use of data
augmentation and a high number of feature maps to embed object transformations. Especially for
large datasets, this approach is not very efficient. In 2017, Geoffrey Hinton and his research team
introduced the theory of capsule networks. Capsule networks offer a solution to the problems
of convolutional neural networks. In this approach, sufficient efficiency can be achieved without
large-scale data augmentation. However, the training time for Hinton’s capsule network is much
longer than for convolutional neural networks. We have examined the capsule networks and propose
a modification in the routing mechanism to speed up the algorithm. This could reduce the training
time of capsule networks by almost half in some cases. Moreover, our solution achieves performance
improvements in the field of image classification.

Keywords: convolutional neural network; capsule network; routing algorithm

1. Introduction

For processing visual data, convolutional neural networks (CNNs) are proving to be
the best solutions nowadays. The most popular applications of convolutional neural net-
works in the field of image processing are image classification [1,2], object detection [3,4],
semantic segmentation [5,6] and instance segmentation [7,8]. However, the biggest chal-
lenge of convolutional neural networks is their inability to recognize pose, texture and
deformations of an object, caused by the pooling layers. Pooling layers are used in the
feature maps. Where we can find several types of this layer: max pooling, min pooling,
average pooling and sum pooling are the most common types of pooling layers [9]. Due to
this layer, the efficiency of the convolutional neural network to recognize the same object in
different input images under different conditions is high. At the same time, the size of the
tensors is reduced due to the pooling layer, thus reducing the computational complexity of
the network. In most cases, pooling layers are one of the best tools for feature extraction;
however, they introduce spatial invariance in convolutional neural networks. Due to the
nature of the pooling layer, a great amount of information is lost, which in some cases may
even be important features in the image. To compensate for this, the convolutional neural
network needs a substantial amount of training data where data augmentation is necessary.

Geoffrey Hinton and his research team introduced capsule network theory as an
alternative to convolutional neural networks. Hinton et al. published the first paper
in the field of capsule networks in 2011 [10], where the potential of the new theory is
explained, but the solution for effective training it is not yet available. The next important
milestone came in 2017, when Sabour et al. introduced the dynamic routing algorithm
between capsule layers [11]. Thanks to this dynamic routing algorithm, the training and
optimization of capsule-based networks can be performed efficiently. Finally, Hinton et al.
published a matrix capsule-based approach in 2018 [12]. These are the three most important

Algorithms 2023, 16, 336. https://doi.org/10.3390/a16070336 https://www.mdpi.com/journal/algorithms
1

Algorithms 2023, 16, 336

results that the inventors of the theory have published in the field of capsule networks.
The basic building block of convolutional neural networks is the neuron, while capsule
networks are made up of so-called capsules. A capsule is a group of related neurons,
where each neuron’s output represents a different property of the same feature. Hence,
the input and output of the capsule networks are both vectors (n-dimensional capsules),
while the neural network works with scalar values (neurons). Instead of pooling layers,
a dynamic routing algorithm was introduced in capsule networks. In this approach, the
lower-level features (lower-level capsules) will only be sent to higher-level capsules that
match its contents. This property makes capsule networks a more effective solution than
convolutional neural networks in some use cases.

However, the training process for capsule networks can be much longer than for
convolutional neural networks, where due to the high number of parameters, the mem-
ory requirements of the network can be much higher. Therefore, for complex datasets
(e.g., large input images, high number of output classes), presently, capsule networks do
not perform well yet. This is due to the complexity of the dynamic routing algorithm.
For this reason, we have attempted to make modifications to the dynamic routing algo-
rithm. Our primary aim was to reduce the time of the training process, and secondly to
achieve a higher efficiency. In our method, we reduced the weight of the input capsule
vector during the optimization in the routing process. We also proposed a parameteri-
zable activation function interpreted in terms of vectors, based on the squash function.
In this paper, we demonstrate the effectiveness of our proposed modified routing algo-
rithm and compare it with other capsule network-based methods and convolutional neural
network-based approaches.

This paper is structured as follows. In Section 2, we provide the theoretical background
of the capsule network theory proposed by Hinton et al. [10] and Sabour et al. [11]. Section 3
clarifies our improved routing mechanism for capsule network and our parameterizable
activation squash function. Section 4 describes the capsule network architecture used in
this research. In Section 5, we present the datasets used to compare the dynamic routing
algorithm and our proposed solution. Our results are summarized in Section 6, where
we compare our improved routing solution with Sabour et al.’s method, and with some
recently published neural network-based solutions. Finally, our conclusions based on our
results are summarized in Section 7.

2. Theory of Capsule Network

The capsule network [10–12] (or CapsNet) is very similar to the classical neural net-
work. The main difference is the basic building block. In the neural network, we use
neurons, but in the capsule network, we can find capsules. Figures 1 and 2 show the main
differences between the classical artificial neurons and the capsules.

A capsule is a group of neurons that perform a multitude of internal computation and
encapsulate the results of the computations into an n-dimensional vector. This vector is the
output of the capsule. The length of this output vector is the probability and the direction
of the vector, indicating certain properties about the entity.

In a capsule-based network, we use routing-by-agreement, where the output vector
of any capsule is sent to all higher-level capsules. Each capsule output is compared with
the actual output of the higher-level capsules. Where the outputs match, the coupling
coefficient between the two capsules are increased.

Let i be a lower-level capsule and j be a higher-level capsule. The prediction vector is
calculated as follows:

û(j|i) = Wijui (1)

where Wij is a trainable weighting matrix and ui is an output pose vector from the i-th
capsule to the j-th capsule. The coupling coefficients are calculated with a simple SoftMax
function, as follows:

cij =
exp

(
bij

)
∑k exp(bik)

(2)

2

Algorithms 2023, 16, 336

where bij is the log probability of capsule i coupled with capsule j, and it is initialized with
zero values. The total input to capsule j is a weighted sum over the prediction vectors,
calculated as follows:

sj = ∑
i

cijûj|i (3)

In capsule networks, we use the length of the output vector to represent the probability
for the capsule. Therefore, we use a non-linear activation function, which is called the
squashing function. The squashing function is the next:

vj = squash
(
sj
)
=

‖sj‖2

1 + ‖sj‖2

sj

‖sj‖ (4)

We can use the dynamic routing algorithm (by Sabour et al. [11]) to update the cij
values in every iteration. In this case, the goal is to optimize the vj vector. In the dynamic
routing algorithm, the bij vector is updated in every iteration, as follows:

bij = bij + ûj|ivj (5)

Figure 1. Typical structure of a neuron. (green: inputs, blue: operations, yellow: output, purple: neuron).

Figure 2. Typical structure of a capsule. (green: inputs, red: prediction vectors, blue: operations,
yellow: output, purple: capsule).

3

Algorithms 2023, 16, 336

3. Improved Routing Algorithm

Our experiments on capsule network theory have shown that the û(j|i) input tensor in
the dynamic routing algorithm has too large an impact on the output tensor and greatly
increaes the processing time. When calculating the output vector vj, the formula includes
the input û(j|i) twice:

vj = squash
(
∑i softmax

(
bij + ûj|ivj

)
ûj|i

)
(6)

To improve the routing mechanism between lower-level and higher-level capsules, the
following modifications to the routing algorithm are proposed:

vj = squash

(
∑i softmax

(
bij + ∑

j
‖vj‖

)
ûj|i

)
(7)

Let

vj =

⎡⎢⎣c11 · · · c1m
...

. . .
...

cn1 · · · cnm

⎤⎥⎦ (8)

where ckl is the value of the l-th neuron of the k-th capsule. If vj is an intermediate capsule
layer, then n is the number of output capsules. If vj is an output capsule layer, then n is the
number of possible object categories.

Let

vj =

⎡⎢⎢⎢⎣
v1
v2
...

vn

⎤⎥⎥⎥⎦ (9)

where ∀ x ∈ {1, 2, . . . , n}, let

vx =

√√√√ n

∑
y=1

cxy (10)

This minimal modification makes the routing algorithm simpler and faster to compute.
Our other proposed change concerns the squashing function. In the last capsule layer, we
use a modified squashing function, as follows:

squashour(s) =
s − e−‖s‖s
‖s‖+ ε

(11)

where ε is a fine-tuning parameter. Based on our experience, we used ε = 1 × 10−7 in this
work. Figure 3 shows a simple example of our squash function in a one-dimensional case
for different values of ε.

Figures 4 and 5 show a block diagram of the dynamic routing algorithm and our
improved routing solution, where the main differences between the two methods are
clearly visible.

4

Algorithms 2023, 16, 336

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

sq
ua

sh
ou

r

sj

0.1 0.5 1

Figure 3. Our squash activation function with different ε values.

Figure 4. Block diagram of the dynamic routing algorithm by Sabour et al. [11]. (green: inputs,
yellow: operations, blue: activations, purple: internal tensors).

Figure 5. Block diagram of our proposed routing algorithm. (green: inputs, yellow: operations, blue:
activations, purple: internal tensors).

5

Algorithms 2023, 16, 336

4. Network Architecture

In this work, we have used the network architecture proposed by Sabour et al. [11]
to compare our proposed routing mechanism with other optimization solutions in the
field of capsule networks. This capsule network architecture is shown in Figure 6. The
original paper used a fixed 32 × 32 × 1-sized input tensor, because they only tested the
network efficiency for the MNIST [13] dataset. In contrast, we trained and tested the capsule
networks for six fundamentally different datasets in the field of image classification. In our
work, the shape of the input layer varies depending on the dataset. We used the following
input shapes: 28 × 28 × 1, 48 × 48 × 1 and 32 × 32 × 3. After the input layer, the capsule
network architecture consisted of three main components: the first is a convolutional layer,
the next is the primary capsule layer, and the last one is the secondary capsule layer.

Figure 6. The capsule network architecture used in the research, based on work by Sabour et al. [11].
(green: input, purple: convolutional layer, yellow: primary capsule layer, red: secondary capsule
layer, gray: prediction).

The convolution layer contains 256 convolution kernels of size 9 × 9 with a stride of 1,
and a ReLU (rectified linear unit) [14] activation layer. This convolutional layer generates
the main visual features based on intensities for the primary capsule layer.

The primary capsule block contains a convolutional layer, where both the input and
the output are of the size 256. This capsule block also contains a squash layer. In this case,
the original squash function (Equation (4)) is used for both implementations. The output of
this block contains 32 capsules, where each capsule has 8 dimensions. This capsule block
contains advanced features, which are passed onto the secondary capsule block.

The secondary capsule block has one capsule per class. As mentioned earlier, we
worked with several different datasets, so the number of capsules in this capsule block
varied, always according to the class number of the dataset: 5, 10 or 43. This capsule
block contains the routing mechanism, which is responsible for determining the connection
weights between the lower and higher capsules. Therefore, this capsule block represents
the main difference between the solution of Sabour et al. and our presented method. In this
block, we applied our proposed squash function (Equation (11)). The secondary capsule
block contains a trainable matrix, called W (Equation (14)). The shape of the W matrix, for
both solutions, is pc × n × 16 × 8, where n is the number of output classes and pc depends
on the input image shape as follows:

pc =

⎧⎨⎩
32 × 6 × 6, imsize = (28, 28)
32 × 8 × 8, imsize = (32, 32)

32 × 16 × 16, imsize = (48, 48)
(12)

where imsize is the size of the input image. The routing algorithm was run through r = 3
iterations in both cases. The output of this capsule block is a 16-dimensional vector per
each class. This means that the block produces n 16-dimensional capsules, where n is the
number of output classes. The length of the output capsules represents the probability
values belonging to the given class.

6

Algorithms 2023, 16, 336

5. Datasets

In this work, six different datasets were used. A classification task was performed for
each dataset in our work. The datasets needed to have different levels of complexity. This
allowed us to test as wide a range of datasets as possible. The selected datasets include
grayscale and color images. The number of classes also varies, from 5 to 43. The size of
the images is typically small, but here, again, we tried to experiment with different sizes.
The datasets included a fixed background which had been used, as well as a variable color
background which had been applied. Table 1 shows the main properties of the six datasets
that we used in this research.

Table 1. Main properties of the datasets used.

Dataset Image Size Channels Classes Train Set Test Set Background

MNIST [13] (28, 28) 1 10 60,000 10,000 false
F-MNIST [15] (28, 28) 1 10 60,000 10,000 false

SmallNORB [16] (48, 48) 1 5 48,600 48,600 true
CIFAR10 [17] (32, 32) 3 10 50,000 10,000 true

SVHN [18] (32, 32) 3 10 73,257 26,032 true
GTSRB [19] (32, 32) 3 43 26,640 12,630 true

5.1. MNIST

The MNIST dataset (Modified National Institute of Standards and Technology dataset)
is a large set of handwritten digits (from 0 to 9) that is one of the most widely used datasets
in the field of image classification. The MNIST dataset contains 60, 000 training images and
10, 000 testing images, where every image is grayscale with a 28 pixel width and 28 pixel
height. Figure 7 shows some samples from this dataset.

7 8 8 8

6 7 1 7

0 4 1 6

Figure 7. Sample data from MNIST dataset.

5.2. Fashion-MNIST

The Fashion-MNIST (or F-MNIST) dataset is very similar to the MNIST dataset. The
main parameters are the same. It contains 60,000 training and 10,000 testing examples.
Every sample is 28 pixels in width and 28 pixels in height, and a grayscale image where
colors are inverted (an intensity value of 255 represents the darkest color). The Fashion-
MINST dataset contains 10 fashion categories: t-shirt/top, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag and ankle boot. Figure 8 shows some samples from this dataset.

7

Algorithms 2023, 16, 336

sandal coat ankle boot shirt

coat dress top sandal

shirt sandal sneaker trouser

Figure 8. Sample data from Fashion-MNIST dataset.

5.3. SmallNORB

The SmallNORB dataset contains images of 3D objects. The specialty of this dataset
is that the images were taken under several different lighting conditions and poses. This
dataset contains images of toys belonging to five different categories: four-legged animals,
human figures, airplanes, trucks and cars. The images were taken with two cameras under
six lighting conditions, nine elevations and eighteen azimuths. All images are grayscale,
with a size of 96 pixels in width by 96 pixels in height. However, in this work, we resized
the images to 48 × 48 pixels. Figure 9 shows some samples from this dataset.

car human plane truck

car human plane animal

truck truck truck human

Figure 9. Sample data from SmallNORB dataset.

5.4. CIFAR10

The CIFAR10 (Canadian Institute for Advanced Research) dataset is one of the most
widely used datasets in the field of machine learning-based image classification. This
dataset is composed of 60,000 RGB colored images, where 50,000 images are the training
samples and 10,000 images are the testing samples. Each image is 32 pixels wide and
32 pixels high. The object categories are the following: airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships and trucks. Figure 10 shows some samples from this dataset.

8

Algorithms 2023, 16, 336

dog airplane bird frog

truck cat cat airplane

cat ship horse dog

Figure 10. Sample data from CIFAR10 dataset.

5.5. SVHN

The SVHN (Street View House Numbers) dataset contains small, cropped digits, like
the MNIST dataset. However, the SVHN dataset is slightly more complex than the MNIST
dataset. The SVHN is obtained from house numbers in Google Street View, where the
background of the digits is not homogeneous and images may also include part of the
adjacent digit. This property makes the SVHN dataset more difficult to classify than the
MNIST dataset. The size of the images in this dataset is 32 pixels wide and 32 pixels high.
The SVHN dataset contains 73,257 training samples and 26,032 testing samples. Figure 11
shows some samples from this dataset.

4 8 2 6

1 7 7 3

2 3 3 4

Figure 11. Sample data from SVHN dataset.

5.6. GTSRB

The GTSRB (German Traffic Sign Recognition Benchmark) dataset includes 43 classes
of traffic signs. Each image contains one traffic sign with varying light conditions and
rich backgrounds. Images are 32 pixels wide and 32 pixels high. The traffic sign classes
are the following: speed limit {20, 30, 50, 60, 70, 80, 100, 120} km/h, end of speed limit
(80 km/h), no passing, no passing for vehicles over 3.5 metric tons, right-of-way at the next

9

Algorithms 2023, 16, 336

intersection, priority road, yield, stop, no vehicles, vehicles over 3.5 metric tons prohibited,
no entry, general caution, dangerous curve to the {left, right}, double curve, bumpy road,
slippery road, road narrows on the right, road work, traffic signals, pedestrians, children
crossing, bicycles crossing, beware of ice/snow, wild animals crossing, end of all speed and
passing limits, turn {right, left} ahead, ahead only, go straight or {right, left}, keep {right,
left}, roundabout mandatory, end of no passing and end of no passing by vehicles over
3.5 metric tons. Figure 12 shows some samples from this dataset.

speed limit 80 km/h priority road keep right speed limit 60 km/h

speed limit 30 km/h speed limit 70 km/h priority road speed limit 120 km/h

no passing no passing ahead only traffic signals

Figure 12. Sample data from GTSRB dataset.

6. Results

In this work, the network architecture presented in Section 4 has been designed in
three different ways and trained separately on the datasets presented in Section 5. The
difference between the three networks is the routing algorithm used: the first is the original
capsule network by Sabour et al., the second is our modified capsule network with some
improvements, and the third is the efficient vector routing by Heinsen [20]. Capsule
networks are trained separately on the six presented dataset. For the implementation, we
used Python 3.9.16 [21] programming language with PyTorch 1.12.1 [22] machine learning
framework and CUDA toolkit 11.6 platform. The capsule networks are trained on the
Paperspace [23] online artificial intelligence platform with an Nvidia Quadro RTX4000
series graphical processing unit.

We trained all networks for 35 epochs with the Adam [24] optimizer algorithm where
the train and test batch size are both 128. We also attempted to train the networks over
many more epochs, but found that the difference between the three solutions does not
change significantly after 35 epochs. In this study, we used 5 × 10−4 initial learning rate. In
each epoch, we reduced the learning rate as follows:

lri = lrinit × 0.97i (13)

where lrinit is the initial learning rate and lri is the learning rate in the i-th epoch. We used
β1 = 0.9 and β2 = 0.999 hyperparameter values to control the exponential decay, and
ε = 1 × 10−8 to prevent any division by zero in the implementation. In the training process,
we used the same loss function as proposed by Sabour et al.

L = Tk × max
(
0, m+ − p

)2
+ λ × (1 − Tk)× max

(
0, p − m−)2 (14)

10

Algorithms 2023, 16, 336

where

Tk =

{
1, if object of class k present
0, otherwise

(15)

m+, m− and λ are hyperparameters. In the present work, we used the same values for
these three hyperparameters as proposed by Sabour et al., in this case, m+ = 0.9, m− = 0.1
and λ = 0.5. The original study also used reconstruction in the training process; however,
we did not apply this in our work. During training without reconstruction, the efficiency of
the capsule network is reduced. In the long term, we want to translate our results in the
field of capsule networks into real-world applications. In this respect, reconstruction of the
input image is a rarely necessary step. Therefore, we explicitly investigated the ability of
capsule networks without reconstruction.

Figures 13–18 show the accuracy of the training processes for the test sets of the
six presented datasets with different numbers of routings. The value of r indicates the
number of iterations which the routing algorithm has optimized the coefficients. Based on
Sabour et al.’s experiment, the r = 3 is a good choice; however, we showed the efficiency
with r = 1 and r = 10. This makes the difference more visible between the routing
methods. As can be seen, for all six datasets, we have achieved efficiency gains compared
to the two other capsule network solutions. The difference in efficiency between our and
Sabour et al.’s solutions is minimal for about the first 10 epochs; however, after that, there
is a noticeable difference in the learning curve. Although Heinsen’s solution also proves to
be effective in most cases; its performance is slightly lower than the other two solutions.
It is also noticeable that changing the number of iterations has a much larger impact on
Sabour et al.’s solution and that of Heinsen. Our proposed solution is less sensitive to the
iteration value chosen during the optimization.

0.98

0.985

0.99

0.995

1

1 4 7 10 13 16 19 22 25 28 31 34

MNIST, r=1

Sabour et al. Our Heinsen

0.98

0.985

0.99

0.995

1

1 4 7 10 13 16 19 22 25 28 31 34

MNIST, r=3

Sabour et al. Our Heinsen

0.98

0.985

0.99

0.995

1

1 4 7 10 13 16 19 22 25 28 31 34

MNIST, r=10

Sabour et al. Our Heinsen

Figure 13. Classification test accuracy on MNIST dataset.

0.85

0.9

0.95

1

1 4 7 10 13 16 19 22 25 28 31 34

FMNIST, r=1

Sabour et al. Our Heinsen

0.85

0.9

0.95

1

1 4 7 10 13 16 19 22 25 28 31 34

FMNIST, r=3

Sabour et al. Our Heinsen

0.85

0.9

0.95

1

1 4 7 10 13 16 19 22 25 28 31 34

FMNIST, r=10

Sabour et al. Our Heinsen

Figure 14. Classification test accuracy on Fashion-MNIST dataset.

11

Algorithms 2023, 16, 336

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

SmallNORB, r=1

Sabour et al. Our Heinsen

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

SmallNORB, r=3

Sabour et al. Our Heinsen

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

SmallNORB, r=10

Sabour et al. Our Heinsen

Figure 15. Classification test accuracy on SmallNORB dataset.

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34

CIFAR10, r=1

Sabour et al. Our Heinsen

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34

CIFAR10, r=3

Sabour et al. Our Heinsen

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34

CIFAR10, r=10

Sabour et al. Our Heinsen

Figure 16. Classification test accuracy on CIFAR10 dataset.

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

SVHN, r=1

Sabour et al. Our Heinsen

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

SVHN, r=3

Sabour et al. Our Heinsen

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

SVHN, r=10

Sabour et al. Our Heinsen

Figure 17. Classification test accuracy on SVHN dataset.

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

GTSRB, r=1

Sabour et al. Our Heinsen

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

GTSRB, r=3

Sabour et al. Our Heinsen

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 7 10 13 16 19 22 25 28 31 34

GTSRB, r=10

Sabour et al. Our Heinsen

Figure 18. Classification test accuracy on GTSRB dataset.

12

Algorithms 2023, 16, 336

Figures 19–24 show the test losses (Equation (14)) during the training processes with
different numbers of routings. There is not much difference in the loss function, but it is
noticeable that our solution is less noisy and converges more smoothly.

0

0.002

0.004

0.006

0.008

0.01

1 4 7 10 13 16 19 22 25 28 31 34

MNIST, r=1

Sabour et al. Our Heinsen

0

0.002

0.004

0.006

0.008

0.01

1 4 7 10 13 16 19 22 25 28 31 34

MNIST, r=3

Sabour et al. Our Heinsen

0

0.002

0.004

0.006

0.008

0.01

1 4 7 10 13 16 19 22 25 28 31 34

MNIST, r=10

Sabour et al. Our Heinsen

Figure 19. Classification test loss on MNIST dataset.

0

0.02

0.04

0.06

0.08

0.1

1 4 7 10 13 16 19 22 25 28 31 34

FMNIST, r=1

Sabour et al. Our Heinsen

0

0.02

0.04

0.06

0.08

0.1

1 4 7 10 13 16 19 22 25 28 31 34

FMNIST, r=3

Sabour et al. Our Heinsen

0

0.02

0.04

0.06

0.08

0.1

1 4 7 10 13 16 19 22 25 28 31 34

FMNIST, r=10

Sabour et al. Our Heinsen

Figure 20. Classification test loss on Fashion-MNIST dataset.

0

0.01

0.02

0.03

0.04

0.05

1 4 7 10 13 16 19 22 25 28 31 34

SmallNORB, r=1

Sabour et al. Our Heinsen

0

0.01

0.02

0.03

0.04

0.05

1 4 7 10 13 16 19 22 25 28 31 34

SmallNORB, r=3

Sabour et al. Our Heinsen

0

0.01

0.02

0.03

0.04

0.05

1 4 7 10 13 16 19 22 25 28 31 34

SmallNORB, r=10

Sabour et al. Our Heinsen

Figure 21. Classification test loss on SmallNORB dataset.

13

Algorithms 2023, 16, 336

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16 19 22 25 28 31 34

CIFAR10, r=1

Sabour et al. Our Heinsen

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16 19 22 25 28 31 34

CIFAR10, r=3

Sabour et al. Our Heinsen

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16 19 22 25 28 31 34

CIFAR10, r=10

Sabour et al. Our Heinsen

Figure 22. Classification test loss on CIFAR10 dataset.

0

0.05

0.1

0.15

0.2

1 4 7 10 13 16 19 22 25 28 31 34

SVHN, r=1

Sabour et al. Our Heinsen

0

0.05

0.1

0.15

0.2

1 4 7 10 13 16 19 22 25 28 31 34

SVHN, r=3

Sabour et al. Our Heinsen

0

0.05

0.1

0.15

0.2

1 4 7 10 13 16 19 22 25 28 31 34

SVHN, r=10

Sabour et al. Our Heinsen

Figure 23. Classification test loss on SVHN dataset.

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16 19 22 25 28 31 34

GTSRB, r=1

Sabour et al. Our Heinsen

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16 19 22 25 28 31 34

GTSRB, r=3

Sabour et al. Our Heinsen

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16 19 22 25 28 31 34

GTSRB, r=10

Sabour et al. Our Heinsen

Figure 24. Classification test loss on GTSRB dataset.

Figure 25 shows the processing times for the three capsule-based networks. It can be
seen that for all six datasets, the capsule network was faster with our proposed routing
algorithm than with the dynamic routing algorithm introduced by Sabour et al. The smallest
increase was achieved for the Fashion-MNIST and MNIST datasets, but this still represents
an 18.60% and a 19.33% speedup. For more complex datasets, much higher speed increases
were achieved. A running time reduction of 25.55% was achieved for SVHN and 26.54%
for CIFAR10. The best results were observed for the SmallNORB and GTSRB datasets.
For SmallNORB it was 35.28%, while for GTSRB, it was 48.30%. Compared to Heinsen’s
solution, our proposed algorithm performed worse, but the difference in efficiency between
the two solutions is significant.

14

Algorithms 2023, 16, 336

0
50

100
150

200
250

300
350
400

450
500

MNIST F MNIST SmallNORB CIFAR10 SVHN GTSRB

Pr
oc
es
sin

g
tim

e
[s
/e
po

ch
]

Dataset

Sabour et al. Our Heinsen

Figure 25. Comparison of training time on the same hardware (Nvidia Quadro RTX4000 series).

The test errors during the training process are shown in Table 2, where the capsule-
based solutions were compared with the recently released neural network-based ap-
proaches. It can be clearly seen that our proposed modifications to the routing algorithm
have led to efficiency gains. It is important to note that our capsule-based solution does not
always approach the effectiveness of the state-of-the-art solutions, however, the capsule
network used consists of only three layers with a very minimal number of parameters
(<5.4 M). Its architecture is quite simple, but with further improvements, a higher efficiency
can be achieved. Prior to this, we felt it necessary to improve the efficiency of the routing
algorithm. Experience has shown that designing deep network architecture in the area of
capsule networks is too resource-intensive. For this reason, it is necessary to increase the
processing speed of the routing algorithm.

Table 2. Classification test errors on the different datasets, compared with other methods.

MNIST F-MNIST S.NORB CIFAR10 SVHN GTSRB

Goyal et al. [25] 0.58% - - 10% 13.6% 9.29%
Taylor et al. [26] 2.09% 10.95% - - - -
Phaye et al. [27] - - 5.57% - - -

Remerscheid et al. [28] - - - 26.5% - -
Dupont et al. [29] 1.8% - - 39.4% 16.5% -
Abad et al. [30] 0.6% - - 31.7% - -

Sabour et al. [11] 0.45% 8.35% 9.15% 29.36% 8.05% 2.67%
Heinsen [20] 0.7% 9.25% 10.18% 41.18% 11.36% 9.79%

Ours 0.41% 8.35% 8.54% 28.26% 6.90% 2.22%

Figure 26 shows the confusion matrices for the capsule network-based approaches in
the case of the six datasets used. It can be seen that for simpler datasets, such as MNIST,
the difference between the three optimization algorithms is minimal. For more complex
datasets, the differences are more pronounced. Tables 3–8 show the efficiencies achieved
by capsule networks for each class, separately. This table also shows that our proposed
method is in most cases able to provide a more effective solution than the other solutions
tested. However, there are cases where our solution falls short compared with solutions by
Sabour et al. and Heinsen.

15

Algorithms 2023, 16, 336

Sabour et al., MNIST Ours, MNIST Heinsen, MNIST

Sabour et al., F MNIST Ours, F MNIST Heinsen, F MNIST

Sabour et al., SmallNORB Ours, SmallNORB Heinsen, SmallNORB

Sabour et al., CIFAR10 Ours, CIFAR10 Heinsen, CIFAR10

Sabour et al., SVHN Ours, SVHN Heinsen, SVHN

Sabour et al., GTSRB Ours, GTSRB Heinsen, GTSRB

Figure 26. Confusion matrices for the capsule-based networks.

16

Algorithms 2023, 16, 336

Table 3. Classification test accuracy by class for capsule networks on the MNIST dataset.

Sabour et al. [11] Ours Heinsen [20]

0 0.9969 0.9980 0.9980
1 0.9974 0.9974 0.9965
2 0.9932 0.9961 0.9932
3 0.9941 0.9950 0.9941
4 0.9908 0.9929 0.9847
5 0.9933 0.9933 0.9944
6 0.9916 0.9948 0.9896
7 0.9971 0.9961 0.9893
8 0.9959 0.9969 0.9918
9 0.9891 0.9921 0.9851

Table 4. Classification test accuracy by class for capsule networks on the Fashion-MNIST dataset.

Sabour et al. [11] Ours Heinsen [20]

T-shirt/top 0.8920 0.9060 0.8410
Trouser 0.9780 0.9800 0.9780
Pullover 0.8560 0.8800 0.8710

Dress 0.9230 0.9190 0.8900
Coat 0.8370 0.8390 0.8400

Sandal 0.9810 0.9810 0.9740
Shirt 0.7320 0.6770 0.6340

Sneaker 0.9790 0.9780 0.9820
Bag 0.9840 0.9820 0.9750

Ankle boot 0.9600 0.9620 0.9530

Table 5. Classification test accuracy by class for capsule networks on the CIFAR10 dataset.

Sabour et al. [11] Ours Heinsen [20]

Airplane 0.6280 0.7100 0.6110
Automobile 0.7780 0.6810 0.6260

Bird 0.4630 0.5180 0.4230
Cat 0.4660 0.4440 0.3670

Deer 0.6930 0.5970 0.4340
Dog 0.5480 0.6450 0.5110
Frog 0.8110 0.7530 0.5380

Horse 0.6710 0.7300 0.5830
Ship 0.8480 0.7590 0.6260

Truck 0.7810 0.8600 0.5920

Table 6. Classification test accuracy by class for capsule networks on the SmallNORB dataset.

Sabour et al. [11] Ours Heinsen [20]

Animal 0.8496 0.8645 0.8681
Human 0.9295 0.9513 0.7709
Plane 0.9206 0.9210 0.8175
Truck 0.9958 0.9932 0.9610
Car 0.7075 0.7973 0.8192

17

Algorithms 2023, 16, 336

Table 7. Classification test accuracy by class for capsule networks on the GTSRB dataset.

Sabour et al. [11] Ours Heinsen [20]

Speed limit 20 km/h 0.8667 0.8167 0.6500
Speed limit 30 km/h 0.9889 0.9917 0.9458
Speed limit 50 km/h 0.9920 0.9893 0.9707
Speed limit 60 km/h 0.9889 0.9756 0.9333
Speed limit 70 km/h 0.9758 0.9758 0.8727
Speed limit 80 km/h 0.9619 0.9810 0.8000
Speed limit 100 km/h 0.8533 0.8533 0.8067
Speed limit 120 km/h 0.9133 0.8822 0.8289

End of speed limit (80 km/h) 0.9444 0.9511 0.9000
No passing 0.9958 1.0000 0.9458

No passing for vehicles over 3.5 metric t 0.9924 0.9955 0.9697
Right-of-way at the next intersection 0.9619 0.9714 0.8929

Priority road 0.9812 0.9884 0.9087
Yield 0.9972 0.9972 0.9861
Stop 1.0000 1.0000 0.9630

No vehicles 1.0000 1.0000 0.9762
Vehicles over 3.5 metric tons prohibited 0.9933 0.9933 0.9533

No entry 0.9972 0.9972 0.8806
General caution 0.9385 0.9410 0.7231

Dangerous curve to the left 1.0000 1.0000 0.4833
Dangerous curve to the right 0.9889 0.9889 0.8889

Double curve 0.7667 0.7000 0.6778
Bumpy road 0.9833 0.9917 0.9083
Slippery road 0.9467 0.9267 0.6667

Road narrows on the right 0.9444 0.9444 0.5333
Road work 0.9542 0.9500 0.9438

Traffic signals 0.8278 0.8167 0.7833
Pedestrians 0.5000 0.5667 0.5000

Children crossing 0.9933 0.9933 0.9200
Bicycles crossing 1.0000 1.0000 0.9222

Beware of ice/snow 0.7667 0.7733 0.5000
Wild animals crossing 0.9815 0.9741 0.9074

End of all speed and passing limits 1.0000 1.0000 1.0000
Turn right ahead 0.9952 0.9952 0.9476
Turn left ahead 0.9917 0.9917 0.9833

Ahead only 0.9923 0.9974 0.9538
Go straight or right 0.9750 0.9667 0.9417
Go straight or left 1.0000 1.0000 0.9000

Keep right 0.9739 0.9870 0.9087
Keep left 1.0000 1.0000 0.8000

Roundabout mandatory 0.9667 0.9778 0.8000
End of no passing 0.8000 0.7667 0.5500

End of no passing by vehicles over 3.5 t 0.9778 0.9778 0.9778

Table 8. Classification test accuracy by class for capsule networks on the SVHN dataset.

Sabour et al. [11] Ours Heinsen [20]

0 0.9151 0.8928 0.9002
1 0.9686 0.9547 0.9280
2 0.9393 0.9549 0.9152
3 0.8636 0.8550 0.7696
4 0.9080 0.9164 0.9045
5 0.8624 0.8968 0.8335
6 0.8402 0.8720 0.8255
7 0.8579 0.8742 0.8757
8 0.7861 0.8193 0.7657
9 0.8245 0.8621 0.8301

18

Algorithms 2023, 16, 336

Table 9 summarizes the percentage of classes per dataset that were able to provide the
best result for a given solution. From this approach as well, our solution performed the
best. Only in the case of the GTSRB dataset was the method proposed by Sabour et al. more
efficient. For the other five datasets, our proposed method was able to achieve the best
accuracy for most classes. Tables 10–12 summarize the recall score, dice score and F1-score
for the capsule-based implementations under study. It can be observed that, according to
all three metrics, our proposed method performs the best. The solution by Sabour et al.
performs better only for the Fashion-MNIST dataset, but there was no difference in accuracy
of this dataset. The solution by Heinsen underperforms the other two solutions in the cases
studied. It can also be seen that, where the method of Sabour et al. and our approach
perform worse, the score of Heinsen’s solution also decreases in a similar way.

Table 9. Best efficiency ratio per class for the presented capsule networks.

MNIST F-MNIST SmallNORB CIFAR10 SVHN GTSRB

Sabour et al. [11] 15% 35% 50% 20% 30% 51.94%
Heinsen [20] 15% 20% 0% 40% 10% 0.77%

Ours 70% 45% 50% 40% 60% 47.29%

Table 10. Recall scores for the capsule networks.

MNIST F-MNIST SmallNORB CIFAR10 SVHN GTSRB

Sabour et al. [11] 0.9939 0.9159 0.9056 0.6790 0.8958 0.9513
Heinsen [20] 0.9916 0.8937 0.8419 0.5311 0.8532 0.8304

Ours 0.9948 0.9124 0.9138 0.6925 0.9012 0.9519

Table 11. Dice scores for the capsule networks.

MNIST F-MNIST SmallNORB CIFAR10 SVHN GTSRB

Sabour et al. [11] 0.9940 0.9153 0.9052 0.6748 0.9012 0.9576
Heinsen [20] 0.9916 0.8945 0.8419 0.5350 0.8546 0.8396

Ours 0.9949 0.9118 0.9131 0.6882 0.9046 0.9576

Table 12. F1-scores for the capsule networks.

MNIST F-MNIST SmallNORB CIFAR10 SVHN GTSRB

Sabour et al. [11] 0.9940 0.9159 0.9056 0.6790 0.9084 0.9711
Heinsen [20] 0.9916 0.8937 0.8419 0.5311 0.8667 0.8920

Ours 0.9949 0.9124 0.9138 0.6925 0.9122 0.9727

7. Conclusions

Our work involved research in the field of capsule networks. We showed the main
differences between classical convolutional neural networks and capsule networks, high-
lighting the new potential of capsule networks. We have shown that the dynamic routing
algorithm for capsule networks is too complex and that the training time makes it difficult
to build more deep and complex networks. At the same time, capsule networks can achieve
very good efficiency, but their practical application is difficult due to the complexity of
routing. Therefore, it is important to improve the optimization algorithm and introduce
novel solutions.

We proposed a modified routing algorithm for capsule networks and a parameterizable
activation function for capsules, based on the dynamic routing algorithm introduced by
Sabour et al. In this approach, we aimed to reduce the computational complexity of
the current dynamic routing algorithm. Thanks to our proposed routing algorithm and
activation function, the training time can be reduced. In our work, we have shown its

19

Algorithms 2023, 16, 336

effectiveness on six different datasets, compared with neural network-based solutions
and capsule-based solutions. As can be seen, the training time was reduced in all cases,
by almost 30% on average. Even in the worst case, a speed increase of almost 20% was
achieved. And in some cases, an increase in speed of almost 50% can be seen. Despite the
increase in speed, the efficiency of the network has not decreased. For several different
metrics, our proposed solution was compared with other capsule-based methods. As we
have shown, our proposed approach can increase the efficiency of the routing mechanism.
For all six datasets tested in this research, our solution provided the highest results in
almost all cases.

In the future, we would like to perform further research on routing algorithms and
capsule networks to be able to achieve even greater improvements. We would like to carry
out more complex studies on larger datasets, compared with other solutions. We would like
to further optimize our solution based on the test results. Our goal is to be able to provide
an efficient and fast solution for more complex tasks, such as instance segmentation or
reconstruction, in the field of capsule networks. This is necessary to create much deeper
and more complex capsule networks, so it is important to address the issue of optimization.
This will allow us to apply the theory of capsule networks to real practical applications
with great efficiency.

Author Contributions: Conceptualization, J.H., Á.B. and C.R.P.; methodology, J.H., Á.B. and C.R.P.;
software, J.H.; validation, J.H.; formal analysis, J.H.; investigation, J.H.; resources, J.H.; data curation,
J.H.; writing—original draft preparation, J.H.; writing—review and editing, J.H.; visualization, J.H.;
supervision, Á.B. and C.R.P.; project administration, J.H.; funding acquisition, J.H. and Á.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union within the framework of the National
Laboratory for Artificial Intelligence grant number RRF-2.3.1-21-2022-00004 and the APC was funded
by RRF-2.3.1-21-2022-00004.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: The research was supported by the European Union within the framework of
the National Laboratory for Artificial Intelligence (RRF-2.3.1-21-2022-00004).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, X.; Liang, C.; Huang, D.; Real, E.; Wang, K.; Liu, Y.; Pham, H.; Dong, X.; Luong, T.; Hsieh, C.; et al. Symbolic Discovery of
Optimization Algorithms. arXiv 2023, arXiv:2302.06675.

2. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021.

3. Wang, W.; Dai, J.; Chen, Z.; Huang, Z.; Li, Z.; Zhu, X.; Hu, X.; Lu, T.; Lu, L.; Li, H.; et al. InternImage: Exploring Large-Scale
Vision Foundation Models with Deformable Convolutions. arXiv 2023, arXiv:2211.05778.

4. Ghiasi, G.; Cui, Y.; Srinivas, A.; Qian, R.; Lin, T.; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple Copy-Paste is a Strong Data Augmentation
Method for Instance Segmentation. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), online,
19–25 June 2021.

5. Su, W.; Zhu, X.; Tao, C.; Lu, L.; Li, B.; Huang, G.; Qiao, Y.; Wang, X.; Zhou, J.; Dai, J. Towards All-in-one Pre-training via
Maximizing Multi-modal Mutual Information. arXiv 2022, arXiv:2211.09807.

6. Yuan, Y.; Chen, X.; Chen, X.; Wang, J. Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Online, 23–28 August 2020.

7. Fang, Y.; Wang, W.; Xie, B.; Sun, Q.; Wu, L.; Wang, X.; Huang, T.; Wang, X.; Cao, Y. EVA: Exploring the Limits of Masked Visual
Representation Learning at Scale. arXiv 2022, arXiv:2211.07636.

8. Zhang, H.; Li, F.; Zou, X.; Liu, S.; Li, C.; Gao, J.; Yang, J.; Zhang, L. A Simple Framework for Open-Vocabulary Segmentation and
Detection. arXiv 2023, arXiv:2303.08131.

9. Zafar, A.; Aamir, M.; Mohd Nawi, N.; Arshad, A.; Riaz, S.; Alruban, A.; Dutta, A.K.; Almotairi, S. A Comparison of Pooling
Methods for Convolutional Neural Networks. Appl. Sci. 2022, 12, 8643. [CrossRef]

10. Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming Auto-Encoders. International Conference on Artificial Neural Networks; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6791, pp. 44–51.

20

Algorithms 2023, 16, 336

11. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the 31st Conference on Neural
Information Processing Systems (NIPS), Long Beach, CA, USA, 4–7 December 2017.

12. Hinton, G.E.; Sabour, S.; Frosst, N. Matrix capsules with EM routing. In Proceedings of the 6th International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

13. LeCun, Y.; Cortes, C.; Burges, C.J.C. The MNIST Database of Handwritten Digits. 2012. Available online: http://yann.lecun.com/
exdb/mnist/ (accessed on 9 April 2023).

14. Fukushima, K. Visual Feature Extraction by a Multilayered Network of Analog Threshold Elements. In IEEE Transactions on
Systems Science and Cybernetics, October 1969; IEEE: Piscataway, NJ, USA, 1969; Volume 5, pp. 322–333.

15. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv
2017, arXiv:1708.07747.

16. LeCun, Y.; Huang, F.J.; Bottou, L. Learning methods for generic object recognition with invariance to pose and lighting.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC,
USA, 27 June–2 July 2004; pp. 97–104.

17. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON, Canada, 2009.
18. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature Learning.

In Proceedings of the 25th Conference on Neural Information Processing Systems, Granada, Spain, 12–17 December 2011.
19. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German traffic sign recognition benchmark: A multi-class classification

competition. In Proceedings of the International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August
2011; pp. 1453–1460.

20. Heinsen, F.A. An Algorithm for Routing Vectors in Sequences. arXiv 2022, arXiv:2211.11754.
21. Rossum, V.G.; Fred, L.D. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
22. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035.
23. Paperspace. Available online: https://www.paperspace.com/ (accessed on 9 April 2023).
24. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
25. Goyal, P.; Duval, Q.; Seessel, I.; Caron, M.; Misra, I.; Sagun, L.; Joulin, A.; Bojanowski, P. Vision Models Are More Robust and Fair

When Pretrained On Uncurated Images without Supervision. arXiv 2022, arXiv:2202.08360. [CrossRef]
26. Taylor, L.; King, A.; Harper, N. Robust and Accelerated Single-Spike Spiking Neural Network Training with Applicability to

Challenging Temporal Tasks. arXiv 2022, arXiv:2205.15286. [CrossRef]
27. Phaye, S.S.R.; Sikka, A.; Dhall, A.; Bathula, D. Dense and Diverse Capsule Networks: Making the Capsules Learn Better. arXiv

2018, arXiv:1805.04001. [CrossRef]
28. Remerscheid, N.W.; Ziller, A.; Rueckert, D.; Kaissis, G. SmoothNets: Optimizing CNN Architecture Design for Differentially

Private Deep Learning. arXiv 2022, arXiv:2205.04095. [CrossRef]
29. Dupont, E.; Doucet, A.; Teh, Y.W. Augmented Neural ODEs. In Advances in Neural Information Processing Systems; Curran

Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.
30. Abad, G.; Ersoy, O.; Picek, S.; Urbieta, A. Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural Networks

with Neuromorphic Data. arXiv 2023, arXiv:2302.06279. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

21

Citation: Pavel, S.R.; Zhang, Y.D.

Optimization of the Compressive

Measurement Matrix in a Massive

MIMO System Exploiting LSTM

Networks. Algorithms 2023, 16, 261.

https://doi.org/10.3390/a16060261

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 31 March 2023

Revised: 15 May 2023

Accepted: 18 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Optimization of the Compressive Measurement Matrix in a
Massive MIMO System Exploiting LSTM Networks

Saidur R. Pavel and Yimin D. Zhang *

Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
* Correspondence: ydzhang@temple.edu

Abstract: Massive multiple-input multiple-output (MIMO) technology, which is characterized by the
use of a large number of antennas, is a key enabler for the next-generation wireless communication
and beyond. Despite its potential for high performance, implementing a massive MIMO system
presents numerous technical challenges, including the high hardware complexity, cost, and power
consumption that result from the large number of antennas and the associated front-end circuits.
One solution to these challenges is the use of hybrid beamforming, which divides the transceiving
process into both analog and digital domains. To perform hybrid beamforming efficiently, it is
necessary to optimize the analog beamformer, referred to as the compressive measurement matrix
(CMM) here, that allows the projection of high-dimensional signals into a low-dimensional manifold.
Classical approaches to optimizing the CMM, however, are computationally intensive and time
consuming, limiting their usefulness for real-time processing. In this paper, we propose a deep
learning based approach to optimizing the CMM using long short-term memory (LSTM) networks.
This approach offers high accuracy with low complexity, making it a promising solution for the
real-time implementation of massive MIMO systems.

Keywords: massive MIMO; hybrid beamforming; compressive measurement matrix; long short-term
memory network

1. Introduction

In recent years, the massive multiple input multiple output (MIMO) technology has
emerged as a highly promising solution for modern wireless communication. With the
growing demand for high-speed data transfer and low latency, the implementation of mas-
sive MIMO has become increasingly important, especially in millimeter wave (mmWave)
communication, which is a crucial aspect for the future of 5G networks. The central idea
behind massive MIMO is to equip base stations with a large number of antennas, which
allows multiple users to be served at the same time in the same frequency band. This
results in a significant increase in both capacity and spectral efficiency compared to tradi-
tional MIMO systems. The high number of antennas in a massive MIMO system enables
it to provide much higher data rates than traditional MIMO systems [1–6]. As a result,
the system is able to better utilize the available bandwidth and effectively mitigate the
effects of fading and interference. In mmWave communication, massive MIMO systems
address the problem of severe propagation attenuation and make efficient use of the signal
bandwidth [7–9]. Additionally, massive MIMO is becoming increasingly popular in radar
sensing due to its ability to enhance target detection and tracking accuracy, reduce false
alarms, increase capacity, and improve coverage [10,11].

Despite the numerous benefits offered by massive MIMO systems, their practical
implementation is a challenging endeavor. In a typical MIMO system, each antenna is
equipped with its own radio frequency (RF) chain, composed of components, such as a
band-pass filter, a low-noise amplifier, a mixer, a low-pass filter, and a high-resolution
analog-to-digital converter (ADC). With the implementation of massive MIMO systems, the

Algorithms 2023, 16, 261. https://doi.org/10.3390/a16060261 https://www.mdpi.com/journal/algorithms
23

Algorithms 2023, 16, 261

number of antennas and RF chains required at each base station is significantly increased,
thereby leading to an increase in cost, complexity, and power consumption. To make
the implementation of a massive MIMO system practical, one approach is to adopt the
hybrid beamforming technique. Hybrid beamforming addresses this limitation by reducing
the number of RF chains required in a massive MIMO system. It accomplishes this by
splitting the beamforming process into two parts: a digital part and an analog part. In
the analog part, the signals from multiple antennas are combined before they are passed
through a reduced number of the RF chain. To achieve this effectively, a compressive
measurement matrix (CMM), which projects the high-dimensional array received signal
onto a low-dimensional signal considering the sparsity nature of the signals.

Numerous studies have investigated the design of beamformer and precoder matrices
for MIMO systems [12–14]. The approach in [12] involves alternating optimization to opti-
mize the transmit and receive beamformers using a minimum mean square error (MMSE)
criterion between the received signal and the transmitted symbol vectors. Reference [13]
considers the optimization of the precoder matrix based on the singular vectors of the
channel matrix. In [14], a beamformer is optimized for MIMO-integrated sensing and
communication (ISAC) scenarios, where the beamforming matrix is designed to achieve
the desired radar beampattern, while maintaining a signal-to-interference-plus-noise ra-
tio constraint for communication users. However, the aforementioned method requires
knowledge of the signal directions of arrival (DOAs), which may not be available in many
scenarios and is a parameter that needs to be estimated in our problem. Several papers have
also explored compressive sampling-based DOA estimation techniques, such as [15,16].
In [15], a sparse localization framework for the MIMO radar is proposed by randomly
placing transmitting and receiving antennas, and a random measurement matrix is used
for target localization. Similarly, Ref. [16] develops a compressive sampling framework
for 2D DOA and polarization estimation in mmWave polarized massive MIMO systems
using a Gaussian measurement matrix. However, this type of random selection can lead to
information loss and performance degradation as demonstrated in [17,18].

Information theory is another widely used framework for optimizing the CMM in
massive MIMO systems. These principles of information theory provide a mathematical
framework for quantifying the amount of information that can be transmitted over a
communication channel. In [18,19], the CMM is optimized by maximizing the mutual
information between the compressed measurement and the signal DOAs. This approach
is based on considering the availability of a coarse prior distribution of the DOAs. By
reducing the dimension of the received signal, the required number of front-end circuits
is effectively reduced with minimal performance loss. Reference [20] extends this idea
by developing a general compressive measurement scheme that combines the CMM and
the sparse array. The framework can consider any arbitrary sparse array as the receive
antennas and use the CMM to compress the dimension. As a result, it can effectively reduce
both the number of physical antennas and the front-end circuits. They also optimize the
CMM by maximizing the mutual information of the compressed measurements and DOA
distribution, while considering the availability of the prior distribution of DOAs. In many
practical cases, however, the required a priori distribution may not available. To address
this issue, an iterative optimization approach is developed in [21]. Starting with no prior
information on the DOA distribution, the CMM is optimized based on mutual information
maximization and then used to estimate the DOA spectrum. The estimated normalized
DOA spectrum is subsequently used as the prior information for the next iteration, thus
iteratively improving the accuracy of the estimated DOA spectrum.

Optimizing the CMM in a sequential adaptive manner may lead to better performance
compared to non-adaptive schemes [22,23]. However, using optimization techniques,
such as projected gradient descent or simplified versions of projected coordinate descent,
to obtain the desired CMM can be computationally expensive [24]. On the other hand,
codebook-based methods, such as the hierarchical codebook developed in [23] and the
hierarchical posterior matching (hiePM) strategy developed in [5], can reduce the computa-

24

Algorithms 2023, 16, 261

tional burden. Nonetheless, the performance of codebook-based methods relies heavily on
the quality of the codebooks and may be inferior to codebook-free approaches.

Recently, deep learning methods have emerged as a popular approach for effectively
addressing complex optimization problems in various wireless communication and signal
processing applications, including massive MIMO beamforming [25,26], intelligent reflect-
ing surface [27,28], DOA estimation [29,30], and wireless channel estimation [31–33]. In
a prior study [34], we developed a deep learning method for sequentially updating the
CMM. Specifically, we trained a neural network without any prior information to obtain the
optimized CMM, which was then used to update the posterior distribution of signal DOAs
by leveraging the subsequent measurement. However, this approach faces two challenging
issues. First, for each snapshot of the impinging signal, the CMM must be updated, the
compressed measurement computed, and the posterior distribution updated. As such, it
incurs high-computational costs, especially for updating the posterior distribution at each
snapshot. Second, the posterior update relies on the accuracy of the estimated spatial spec-
trum, and any inaccuracies in this estimation can lead to performance degradation and slow
convergence. Conversely, any inaccuracy or change in the posterior estimation will affect
the spectrum estimation performance. In [35], LSTM neural networks are used in various
communication system problems, including adaptive beamformer design for mmWave
initial beam alignment applications. However, this study was limited to single-channel and
single-user scenarios.

In this paper, we propose to exploit an LSTM network for sequentially designing the
CMM matrix. LSTMs are a class of recurrent neural networks (RNNs) that are well suited
for handling time-series and other sequential data due to their inherent architecture [36–42].
The previous work used a fully connected deep neural network (FCDNN), where the
received signal in each time snapshot was treated independently. However, in real-world
scenarios, adjacent time samples of the signal have strong correlations with each other.
Therefore, we use an LSTM network to sequentially process data by retaining temporal
dependencies between the input data points. Preserving time-dependent information
enables more effective optimization of the CMM in each time snapshot, leading to faster
convergence and better DOA estimation performance.

Notations: We use bold lower-case and upper-case letters to represent vectors and
matrices, respectively. Particularly, we use IN to denote the N × N identity matrix. (·)T

and (·)H respectively represent the transpose and Hermitian operations of a matrix or

vector. The notations ÷ and (·) 2 are used to represent element-wise division and
squaring, respectively. Additionally, | · | denotes the determinant operator. The operator
E[·] represents statistical expectation, whereas R(·) and I(·) respectively extract the real
and imaginary parts of a complex entry. CM×N denotes the M × N complex space.

2. Signal Model

2.1. Array Signal Model

Consider D uncorrelated signals that impinge on a massive MIMO system equipped
with N receive antennas from directions θ = [θ1, θ2, · · · θD]

T. The analog RF array received
signal at time t is modeled as

xRF(t) =
D

∑
d=1

a(θD)sd(t)ejωct + n(t)

= A(θ)s(t)ejωct + n(t),

(1)

where A(θ) = [a(θ1), a(θ2), · · · , a(θD)] ∈ CN×D denotes the array manifold matrix whose
dth column a(θd) ∈ CN represents the steering vector of the dth user with DOA θd,
s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈ CD represents the signal waveform vector, ωc denotes
the angular frequency of the carrier, and n(t) ∼ CN (0, σ2

n IN) represents the zero-mean
additive white Gaussian noise (AWGN) vector.

25

Algorithms 2023, 16, 261

Figure 1 depicts the block diagram of the receiver antenna array of a massive MIMO
system without performing compressed measurement. In this receiver array, each antenna
is assigned with a dedicated front-end circuit, which converts the received analog RF
signal to the digital base-band by performing down conversion and analog-to-digital
conversion. However, dedicating a separate front-end circuit to each antenna in a massive
MIMO system may be impractical, considering the hardware cost, power consumption,
and computational complexity.

Figure 1. Block diagram of an antenna array without performing compression [18].

2.2. Compressive Array Signal Model

The number of antennas in a massive MIMO system is typically much higher than the
number of users or targets. Consequently, the impinging signals can be considered sparse
in the spatial (angular) domain. Such sparsity property allows us to design an optimal
CMM that projects the array receive signal to a lower-dimensional manifold with no or
negligible information loss. In this manner, the array receive signal can be compressed
significantly in the analog domain as shown in Figure 2. As a result, the number of front-
end circuits in the analog domain and the computation burden in the digital domain can be
significantly reduced.

In this compressive sampling scheme, M � N linear projections of the RF received
signal xRF(t) are taken along the measurement kernels represented as row vectors φm =
[φm,1, φm,2, · · · , φm,N] ∈ C1×N with m = 1, · · · , M. The mth compressed measurement of
the RF received signal yRF

m (t) is the linear projection of the RF received signal xRF(t) in the
mth measurement kernel φm, i.e.,

yRF
m (t) =

〈
φm, xRF(t)

〉
=

N

∑
n=1

φm,nxRF
n (t), (2)

where xRF
n (t) is the nth element of vector xRF(t).

Stacking all M measurement kernels forms the CMM Φ = [φT
1 , φT

2 , · · · , φT
M]T. Matrix

Φ is designed to be row orthonormal, i.e., ΦΦH = IM, to keep the noise power unchanged
after applying the compression.

Denote x(t) as the baseband signal corresponding to xRF(t). Note that vector x(t) is
not observed in the underlying system and is introduced solely for notational convenience.
Then, the M compressed measurements in baseband yield y(t) = [y1(t), y2(t), · · · , yM(t)]T ∈
CM, which is given as

y(t) = Φx(t) = ΦA(θ)s(t) + Φn(t), (3)

where ΦA(θ) ∈ CM×D represents the compressed array manifold with significantly re-
duced dimension compared to A(θ).

2.3. Probabilistic Signal Model

Consider signal DOA θ as a random variable with a probability density function (PDF)
f (θ). In [18,19], it is assumed that coarse knowledge of f (θ) is available. In this case,

26

Algorithms 2023, 16, 261

according to the law of the total probability, the PDF of the compressed measurement
vector y is expressed as

f (y) = Eθ{ f (y|θ)} =
∫

θ∈Θ
f (y|θ) f (θ)dθ, (4)

where Θ is the angular region of the observations. We discretize the PDF f (θ) into K
angular bins with an equal width of Δθ̄ so that the probability of the kth angular bin is
approximated as probability mass function pk ≈ f (θ̄k)Δθ̄ with ∑k∈K pk = 1, where θ̄k is the
nominal angle of the kth angular bin and K = {1, 2, · · · , K}. As a result, the PDF of y can
be reformulated as

f (y) ≈ ∑
k∈K

pk f (y|θ̄k). (5)

That is, the PDF of y is approximated as a Gaussian mixture distribution consisting of
K zero-mean Gaussian distributions y|θ̄k. Considering a signal s(t) impinging from the kth
angular bin with a nominal DOA θ̄k, the compressed measurement vector is given as

y|θ=θ̄k
(t) = Φ(a(θ̄k)s(t) + n(t)), (6)

and the corresponding conditional PDF is

f (y|θ̄k) =
1

πM|Cyy|θ̄k
| e

−yHC−1
yy|θ̄k

y
, (7)

where
Cyy|θ̄k

= Φ(σ2
s a(θ̄k)aH(θ̄k) + σ2

n I)ΦH (8)

is the covariance matrix of the compressed measurement vector y|θ=θ̄k
(t) and σ2

s is the
signal power. Additionally, define Cyy = ΦA(θ)SA(θ)HΦH, as the covariance matrix of
the compressed measurement with S = diag([σ2

s , σ2
S , · · ·]) is the source covariance matrix.

Figure 2. Block diagram of a compressive sampling antenna array [18].

3. Motivation for Using LSTM Network to Design the CMM

The objective of this paper is to design the beamforming matrix in a sequential manner.
Specifically, we aim to optimize the CMM Φ at each time sample t = 1, 2, · · · , T in an
adaptive manner such that the CMM Φ at time sample t + 1 can be regarded as a function
of all prior observations, denoted by y(1 : t) and Φ(1 : t), i.e.,

27

Algorithms 2023, 16, 261

Φ(t + 1) = F (y(1 : t), Φ(1 : t)), (9)

where F is a function that is exploited to map the past observations and past CMMs to
design the next CMM.

However, the dimension of the past observations increases as the time index increases,
rendering it impractical to optimize the CMM Φ using all prior observations. Therefore,
a significant challenge of this sequential optimization process is to summarize all of the
historical observations.

In [34], instead of using all past observations, the posterior distribution of signal DOA
at time t is considered a sufficient statistic to design the CMM Φ at time t + 1. However, this
approach may be prone to robustness issues. For instance, if the posterior p(θk) for a signal
containing the angular bin θk becomes small due to an estimation error during any time
iteration, the error will propagate through the time iteration, resulting in inaccurate DOA
estimation. Furthermore, in each time instant, it involves performing analog beamforming
and spectrum estimation, which are computationally expensive, particularly for a large
number of iterations. In addition, the paper uses a fully connected neural network, which
does not well exploit the temporal correlation of the received data.

To address this issue, we propose an LSTM framework that can provide a tractable
solution. LSTM is a type of recurrent neural network that can retain information over
time in a variable known as the cell state. Moreover, to maintain the scalability of prior
observation, LSTM incorporates a gate mechanism that controls which information to be
discarded and which to be incorporated into the cell state, retaining only the relevant
information from historical observations that are necessary for the given task.

Figure 3 illustrates a unit of the proposed LSTM framework at time t. At this time
instant, the input to the deep learning unit comprises the current compressed measurement
yt and the cell and hidden states from the previous time samples, denoted as ct−1 and ht−1,
respectively. The LSTM unit has four gates, namely the forget gate (ft), input gate (it), cell
gate (gt), and output gate (ot), which respectively perform the following operations:

• Forget gate (ft): This gate combines the current input y(t) and the previous hidden
state h(t − 1) to decide which information to forget and which to remember from
previous cell state. The operation is given by

ft = σ

(
W f

[
yT(t) hT(t − 1)

]T
)

, (10)

where σ(·) denotes the sigmoid function, and W f is a weight matrix corresponding to
the forget gate.

• Input gate (it): This gate combines the current input y(t) and the previous hidden
state h(t − 1) to decide which information to store in the cell state. The operation is
given by

it = σ

(
W i

[
yT(t) hT(t − 1)

]T
)

, (11)

where W i is a weight matrix corresponding to the input gate.
• Cell gate (gt): This gate combines the current input y(t) and the previous hidden

state h(t − 1) to compute the actual representation that will go into the cell state. The
operation is given by

gt = tanh
(

Wg

[
yT(t) hT(t − 1)

]T
)

, (12)

where tanh(·) denotes the hyperbolic tangent function and W g is a weight matrix
corresponding to the cell gate.

• Output gate (ot): This gate combines the current input y(t) and the previous hidden
state h(t − 1) to decide how much to weight the cell state information to generate the

28

Algorithms 2023, 16, 261

output of the LSTM cell, which is also denoted as hidden state ht. The operation is
given by

ot = σ

(
W o

[
yT(t) hT(t − 1)

]T
)

, (13)

where W o is a weight matrix corresponding to the output gate.

Finally, the cell state is updated according to

ct = ftct−1 + itgt, (14)

which combines the amount of information from the previous cell state regulated by the
forget gate and the amount of updated information. The output of the LSTM cell, i.e., the
hidden state for time t, will be the filtered version of the current cell state regulated by the
output gate, i.e.,

ht = ottanh(ct) (15)

The preservation of historical observations by the cell state ct over time is evident
from Equation (14). Additionally, the cell state does not exhibit growth as the time index
increases; rather, it adaptively updates its information content. We, therefore, use the cell
state information as a mapping of historical observations. At each time sample, these
historical observations are exploited to optimize CMM Φ using another DNN. At the end of
all time iterations, the minimum variance distortionless response (MVDR) spatial spectrum
estimation method is employed to estimate the signal DOAs.

Figure 3. Proposed deep learning unit for time t.

4. Proposed LSTM Based Optimization of the CMM Φ

Figure 4 illustrates the end-to-end architecture of the proposed framework for realizing
the equation presented in Equation (9). In the following subsections, we discuss the details
of the proposed approach for the optimization of CMM Φ.

Figure 4. End-to-end deep learning framework for optimizing CMM Φ.

29

Algorithms 2023, 16, 261

4.1. Data Pre-Processing

Using the array received signal vector at the massive MIMO x(t) ∈ CN at time t, we
form a tensor denoted by X(t) ∈ CB×N×1 by concatenating the array received signal vectors
for B different DOA scenarios. Collecting all time snapshots then produces the training
tensor X ∈ CB×N×T . At the beginning, with a randomly initialized CMM Φ, we perform
analog beamforming to obtain the compressed measurement tensor Y(t) = Φ(t − 1)X(t)
at time t = 1, where Y(t) ∈ CB×M×1. Separating the real and imaginary parts of Y(t), we
concatenate them to form the input tensor Ŷ(t) for the LSTM unit as illustrated in Figure 3.

4.2. Implementation Details of the Deep Learning Framework

The proposed deep learning framework comprises a series of LSTM units and FCDNNs.
An LSTM unit summarizes the historical observations into a fixed-dimensional cell state
vector c(t − 1), which serves as a sufficient statistic for optimizing the CMM in the subse-
quent time instance t. For a particular time snapshot t, the input tensor Ŷ(t), along with the
cell and hidden state tensors C(t − 1) and H(t − 1), serves as input to the LSTM unit. The
tensors C(t − 1) and H(t − 1) are formed by concatenating the vectors c(t − 1) and h(t − 1)
for all B scenarios and all layers of the LSTM network. Based on the gate mechanism
described in Equations (10)–(15), the cell and hidden states are updated adaptively. We
then employ an L-layer FCDNN to map the cell state information C(t) to design the CMM
Φ(t) at time instant t. The DNN output at time t is expressed as

Φ̃(t) = AL(W LAL−1(· · · A1(W1G(t − 1) + b1) · · ·) + bL), (16)

where W l , bl ,Al are the weight, bias, and nonlinear activation function corresponding to
the lth layer of the DNN, respectively. Φ̃(t) is the real valued representation of the complex
valued CMM matrix at time t, i.e., Φ̃(t) = [R(Φ(t) I(Φ(t)].

4.3. Post-Processing

We first reconstruct the complex valued Φ(t) from its real representation, where the
real and imaginary parts of Φ(t) correspond to the left and right halves of Φ̃(t), respectively.
The measurement kernels φm, m = 1, 2, · · · , M are generally implemented using a series
of phase shifters. Therefore, it is desirable for the CMM to satisfy a constant modulus
constraint. In order to achieve this constraint, we set the activation function of the final
layer as

AL(R(Φ)(t)) =

⎡⎣R(Φ) ÷
√
R(Φ) 2 + I(Φ) 2

⎤⎦,

AL(I(Φ)(t)) =

⎡⎣I(Φ) ÷
√
R(Φ) 2 + I(Φ) 2

⎤⎦.

(17)

Subsequently, the obtained Φ(t), along with the updated C(t) and H(t), will be
utilized to generate Φ(t + 1), and this process will continue until the time snapshot t = T.

4.4. Loss Function and Back Propagation

In the underlying massive MIMO context, where the CMM Φ is optimized to enhance
the accuracy of the DOA estimation, it is crucial to specify a suitable loss function that
enables a comparison between the true DOAs and those estimated using the optimized
Φ. Once the sequential updating of the CMM Φ is completed, the optimized Φ is used
to find the compressed measurements Y ∈ CB×M×T from the input tensor X as Y = ΦX.
Using these compressed measurements, we use the MVDR spectrum estimator to obtain

30

Algorithms 2023, 16, 261

the spatial spectrum. To do so, we first estimate the sample covariance matrix for the bth
compressed measurement Yb ∈ CM×T as

R̂yb =
1
T

YbYH
b (18)

for b = 1, 2, · · · , B. The MVDR spectrum is obtained as

p̂b(θ) =
aH(θ)ΦH(t)Φ(t)a(θ)

aH(θ)ΦH(t)R̂−1
yb (t)Φ(t)a(θ)

. (19)

We consider the DOA estimation problem as a multiclass classification problem, where
in each angular bin, we make a binary decision whether a signal is present in the bin or not.
To do so, we employ the binary cross entropy loss function between the estimated MVDR
spectrum (p̂b) and the true DOA location (pb) expressed as

Loss = − 1
B

B

∑
b=1

[pb log p̂b + (1 − pb) log(1 − p̂b)], (20)

where B is the batch size of the training data.

5. Simulation Results

We consider a massive MIMO system consisting of N = 50 receive antennas arranged
in a uniform linear fashion and separated by a half wavelength. We choose the compression
ratio to be N/M = 5, which yields the dimension of the compressed measurement M = 10.
The number of impinging sources in the massive MIMO system is considered between
1 and 9. The sources impinge from angular bins discretized by a Δθ̄ = 0.1◦ interval and
within an angular range between −90◦ and 90◦. As a result, there are 1801 components in
the Gaussian mixture model. The number of snapshots is assumed to be T = 100.

We consider a 4-layer LSTM unit with 200 nodes in each layer, and a DNN with 3 layers
and 500 nodes. The selection of the number of layers and nodes for both models is made
to achieve a good balance between the predictability and generalization capability of the
networks. A training dataset is created with 10,000 scenarios, each containing 1 to 9 sources
randomly sampled from a uniform distribution ranging between −90◦ and 90◦. The input
signal-to-noise ratio (SNR) is randomly selected between 0 dB and 20 dB for each scenario.
The test dataset consists of 1000 scenarios, which are generated using a similar approach.

We evaluate the performance of the proposed model against two related approaches as
described in [21,34]. The non-neural network approach presented in [21] optimizes CMM
Φ iteratively based on mutual information maximization, while the approach described
in [34] uses an FCDNN to update the posterior distribution of the DOAs of the impinging
signals. To compare these methods, we consider a test example with nine sources and
their corresponding signal DOAs are −55◦, −48◦, −44◦, −20◦, 8◦, 20◦, 31◦, 41◦, and 45◦.
Figure 5 shows the estimated spectra obtained from the methods where the input SNR is
5 dB. As demonstrated in this figure, the proposed method, depicted in (a), shows a cleaner
spectrum compared to [21,34], as illustrated in (b) and (c), in a low SNR scenario. Figure 6
demonstrates the reduction in the loss function as the number of epochs increases. It is
evident from the figure that the model converged well within the first 200 epochs.

31

Algorithms 2023, 16, 261

(a)

(b)

(c)

Figure 5. Comparison of the estimated spatial spectra. (a) Proposed method. (b) Method in [21].
(c) Method in [34].

32

Algorithms 2023, 16, 261

0 50 100 150 200
Number of epochs

0

1

2

3

4

5

6

7

8

Lo
ss

10-3

Train loss
Test loss

Figure 6. Loss vs. number of epochs.

In order to assess the methods’ performance under different conditions, including
varying input SNR levels, number of snapshots, and dimension of compressed measure-
ment (number of front-end circuits), we compared their performance using the root mean
squared error (RMSE), defined as

RMSE =

√√√√ 1
QD

Q

∑
q=1

D

∑
d=1

(θ̂q,d − θd)2, (21)

where Q is the number of trials and θ̂q,d is the estimated DOA for the dth source of the qth
Monte Carlo trial. In total, 1000 Monte Carlo trials are used to compute the RMSE values.
Figure 7 presents the RMSE values with respect to input SNR, number of snapshots, and
dimension of compressed measurement, and clearly shows that the proposed LSTM-based
approach outperforms the other methods. Additionally, the Cramer–Rao bound (CRB) is
included in Figure 7 for comparison.

To obtain the CRB, we first denote the unknown parameters in this problem, which in-
clude the signal DOAs and power of D sources as θ = [θ1, · · · , θD]

T and p = [σ2
1 , · · · , σ2

D]
T,

respectively. We also define the noise power as σ2
n, and ω = [ω1, · · · , ωD]

T as the spatial
frequencies, where ωd = sin(θd)/2 is the spatial frequency of the dth source. Then, the
unknown parameter vectors are grouped as ψ = [wT pT σ2

n]
T. Since we are interested

in obtaining the CRB of the signal DOAs, we partitioned the unknown parameters as
ψ = [wT|pT σ2

n]
T.

The CRB can be obtained as the inverse of the Fisher information matrix (FIM), which
is defined as

[F]u,v = −E

[
∂2 ln p(y|ψ)

∂ψuψv

]
, (22)

where ψu is the uth element of ψ, with u, v ∈ 1, 2, · · · , 2D + 1.
The FIM can also be expressed as [43]

1
T

F =

[
Δw
Δo

]H[
Δw Δo

]
=

[
ΔH

w Δw ΔH
w Δo

ΔH
o Δw ΔH

o Δo

]
(23)

33

Algorithms 2023, 16, 261

where Δw = (CT
yy ⊗ Cyy)

− 1
2

[
∂r

∂w1
, · · · , ∂r

∂wD

]
and Δo = (CT

yy ⊗ Cyy)
− 1

2

[
∂r

∂σ2
1

, · · · , ∂r
∂σ2

D
, ∂r

∂σ2
n

]
with r = vec(Cyy). Then, the CRB of the signal spatial frequencies is obtained as [43]

CRB =
1
T
(ΔH

ω Π⊥
o Δω)

−1, (24)

where Π⊥
o = I − Δo(ΔH

o Δo)−1ΔH
o .

0 2 4 6 8 10 12 14 16 18
SNR (dB)

10-3

10-2

10-1

100

R
M

S
E

 (
de

gr
ee

)

Zhang, 2022
Pavel, 2023
Proposed method
CRB

(a)

50 100 150 200 250 300 350 400 450 500
Number of snapshots

10-3

10-2

10-1

100

101

R
M

S
E

 (
de

gr
ee

)

Zhang, 2022
Pavel, 2023
Proposed method
CRB

(b)

10 15 20 25 30 35 40 45 50
Compressed dimension

10-6

10-5

10-4

10-3

10-2

10-1

R
M

S
E

 (
de

gr
ee

)

Zhang, 2022
Pavel, 2023
Proposed method
CRB

(c)

Figure 7. Performance comparison. (a) RMSE versus input SNR. (b) RMSE versus number of
snapshots. (c) RMSE versus compressed dimension.

Next, we considered a scenario where nine sources move with an initial position of
−20◦, −15◦, −10◦, −5◦, 0◦, 5◦, 10◦, 15◦, and 20◦ in the positive direction with the same
angular rate. They move 1 degree per 20 snapshots. The result of the proposed method
is compared with the result of the method described in [34] because both are sequential
methods, namely, Φ is sequentially updated. As shown in Figure 8, as the source positions
change, the performance of the method described in [34] degrades. This is because this
method uses the posterior from the previous time instant as a sufficient statistic of all past
observations. Therefore, as each new measurement differs from the previous ones, this
method cannot adapt well. In contrast, the proposed method, as depicted in Figure 9,
does not have this limitation, resulting in improved DOA estimation performance as the
sequential updating continues.

34

Algorithms 2023, 16, 261

(a)

(b)

(c)

Figure 8. Estimated spectra for moving sources using method in [34]. (a) Initial position. (b) Next
position from (a). (c) Next position from (b).

(a)

Figure 9. Cont.

35

Algorithms 2023, 16, 261

(b)

(c)

Figure 9. Estimated spectra for moving sources using the proposed method. (a) Initial position.
(b) Next position from (a). (c) Next position from (b).

6. Conclusions

In this paper, we developed an LSTM-based framework to optimize the CMM in a
massive MIMO setting. The inherent architecture of an LSTM network is well suited to
preserve relevant historical observation, which is useful to design the CMM in a sequential
manner. The resulting optimized CMM can then be used to compress high-dimensional
received data, which can effectively reduce the number of front-end circuits. Our proposed
method exhibits superior DOA estimation performance compared to the existing literature
as demonstrated by the simulation results.

Author Contributions: Conceptualization, S.R.P. and Y.D.Z.; methodology, S.R.P.; validation, S.R.P.;
writing—original draft preparation, S.R.P.; writing—review and editing, Y.D.Z.; supervision, Y.D.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data used to support the findings of this study are included within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De Lamare, R.C. Massive MIMO systems: Signal processing challenges and research trends. arXiv 2013, arXiv:1310.7282.
2. Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and

challenges with very large arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [CrossRef]
3. Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag.

2014, 52, 186–195. [CrossRef]
4. Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An overview of massive MIMO: Benefits and challenges. IEEE J. Sel.

Top. Signal Process. 2014, 8, 742–758. [CrossRef]
5. Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Heath, Channel estimation and hybrid precoding for millimeter wave cellular

systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [CrossRef]

36

Algorithms 2023, 16, 261

6. Jiang, F.; Chen, J.; Swindlehurst, A.L.; López-Salcedo, J.A. Massive MIMO for wireless sensing with a coherent multiple access
channel. IEEE Trans. Signal Process. 2015, 63, 3005–3017. [CrossRef]

7. Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Gutierrez, F. Millimeter wave mobile communications for 5G
cellular: It will work! IEEE Access 2013, 1, 335–349. [CrossRef]

8. Wang, C.X.; Haider, F.; Gao, X.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Hepsaydir, E. Cellular architecture and key
technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [CrossRef]

9. Molisch, A.F.; Ratnam, S.V.V.; Han, Z.; Li, S.; Nguyen, L.H.; Li, L.; Haneda, K. Hybrid beamforming for massive MIMO: A survey.
IEEE Commun. Mag. 2017, 55, 134–141. [CrossRef]

10. Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising
research directions for antenna arrays. Digital Signal Process. 2019, 94, 3–20. [CrossRef]

11. Fortunati, S.; Sanguinetti, L.; Gini, F.; Greco, M.S.; Himed, B. Massive MIMO radar for target detection. IEEE Trans. Signal Process.
2020, 68, 859–871. [CrossRef]

12. Lin, T.; Cong, J.; Zhu, Y.; Zhang, J.; Letaief, K.B. Hybrid beamforming for millimeter wave systems using the MMSE criterion.
IEEE Trans. Commun. 2019, 67, 3693–3708. [CrossRef]

13. Zhang, D.; Pan, P.; You, R.; Wang, H. SVD-based low-complexity hybrid precoding for millimeter-wave MIMO systems. IEEE
Commun. Lett. 2018, 22, 2176–2179. [CrossRef]

14. Qi, C.; Ci, W.; Zhang, J.; You, X. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications. IEEE
Commun. Lett. 2022, 26, 1136–1140. [CrossRef]

15. Rossi, M.; Haimovich, A.M.; Eldar, Y.C. Spatial compressive sensing for MIMO radar. IEEE Trans. Signal Process. 2013, 62, 419–430.
[CrossRef]

16. Wen, F.; Gui, G.; Gacanin, H.; Sari, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave
polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 2022, 22, 3071–3083. [CrossRef]

17. Pakrooh, P.; Scharf, L.L.; Pezeshki, A.; Chi, Y. Analysis of fisher information and the cramér-rao bound for nonlinear parameter
estimation after compressed sensing. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6630–6634.

18. Gu, Y.; Zhang, Y.D. Compressive sampling optimization for user signal parameter estimation in massive MIMO systems. Digital
Signal Process. 2019, 94, 105–113. [CrossRef]

19. Gu, Y.; Zhang, Y.D.; Goodman, N.A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO. In
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5 March 2017; pp. 3181–3185.

20. Guo, M.; Zhang, Y.D.; Chen, T. DOA estimation using compressed sparse array. IEEE Trans. Signal Process. 2018, 66, 4133–4146.
[CrossRef]

21. Zhang, Y.D. Iterative learning for optimized compressive measurements in massive MIMO systems. In Proceedings of the 2022
IEEE Radar Conference (RadarConf22), New York, NY, USA, 21–25 March 2022; pp. 1–5.

22. Nakos, V.; Shi, X.; Woodruff, D.P.; Zhang, H. Improved algorithms for adaptive compressed sensing. arXiv 2018, arXiv:1804.09673.
23. Haupt, J.; Castro, R.M.; Nowak, R. Distilled sensing: Adaptive sampling for sparse detection and estimation. IEEE Trans. Inform.

Theory 2011, 57, 6222–6235. [CrossRef]
24. Sohrabi, F.; Chen, Z.; Yu, W. Deep active learning approach to adaptive beamforming for mmWave initial alignment. IEEE J. Sel.

Areas Commun. 2021, 39, 2347–2360. [CrossRef]
25. Yang, Y.; Zhang, S.; Gao, F.; Xu, C.; Ma, J.; Dobre, O.A. Deep learning based antenna selection for channel extrapolation in FDD

massive MIMO. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP),
Nanjing, China, 21–23 October 2020; pp. 182–187.

26. Huang, H.; Peng, Y.; Yang, J.; Xia, W.; Gui, G. Fast beamforming design via deep learning. IEEE Trans. Vehi. Tech. 2021, 69,
1065–1069. [CrossRef]

27. Zhang, S.S.; Zhang, F.; Gao, J.; Ma, O.; Dobre, A. Deep learning optimized sparse antenna activation for reconfigurable intelligent
surface assisted communication. IEEE Trans. Commun. 2021, 69, 6691–6705. [CrossRef]

28. Jiang, T.; Cheng, H.V.; Yu, W. Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation.
IEEE J. Sel. Areas Commun. 2021, 39, 1931–1945. [CrossRef]

29. Wu, L.; Liu, Z.M.; Huang, Z.T. Deep convolution network for direction of arrival estimation with sparse prior. IEEE Signal Process.
Lett. 2019, 26, 1688–1692. [CrossRef]

30. Pavel, S.R.; Chowdhury, M.W.T.; Zhang, Y.D.; Shen, D.; Chen, G. Machine learning-based direction-of-arrival estimation exploiting
distributed sparse arrays. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 31 October–3 November 2021; pp. 241–245.

31. Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep learning-based channel estimation. IEEE Commun. Lett. 2019, 23,
652–655. [CrossRef]

32. Chun, C.-J.; Kang, J.-M.; Kim, I.-M. Deep learning-based channel estimation for massive MIMO systems. IEEE Wirel. Commun.
Lett. 2019, 8, 1228–1231. [CrossRef]

33. He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems.
IEEE Wirel. Commun. Lett. 2018, 7, 852–855. [CrossRef]

37

Algorithms 2023, 16, 261

34. Pavel, S.R.; Zhang, Y.D. Deep learning-based compressive sampling optimization in massive MIMO systems. In Proceedings
of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island,
Greece, 4–10 June 2023.

35. Sohrabi, F.; Jiang, T.; Cui, W.; Yu, W. Active sensing for communications by learning. IEEE J. Sel. Areas Commun. 2022, 40,
1780–1794. [CrossRef]

36. Fernández, S.; Graves, A.; Schmidhuber, J. Sequence labelling in structured domains with hierarchical recurrent neural networks.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI, Hyderabad, India, 6–12 January 2007.

37. Schafer, A.M.; Zimmermann, H.G. Recurrent neural networks are universal approximators. In Proceedings of the Artificial
Neural Networks—ICANN 2006: 16th International Conference, Athens, Greece, 10–14 September 2006; pp. 632–640.

38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
39. DiPietro, R.; Hager, G.D. Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted

Intervention; Academic Press: Cambridge, MA, USA, 2020; pp. 503–519.
40. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. Lstm: A search space odyssey. IEEE Trans. Neural Netw.

Learn. Syst. 2016, 28, 2222–2232. [CrossRef]
41. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
42. He, T.; Droppo, J. Exploiting LSTM structure in deep neural networks for speech recognition. In Proceedings of the 2016

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016;
pp. 5445–5449.

43. Liu, C.-L.; Vaidyanathan, P.P. Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors.
Digit. Signal Process. 2017, 61, 43–61. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

38

Citation: Shaikh, S.A.; Cherukuri, H.;

Khan, T. Recovering the Forcing

Function in Systems with One Degree

of Freedom Using ANN and Physics

Information. Algorithms 2023, 16, 250.

https://doi.org/10.3390/a16050250

Academic Editor: Frank Werner

Received: 10 March 2023

Revised: 3 May 2023

Accepted: 8 May 2023

Published: 12 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Recovering the Forcing Function in Systems with One Degree
of Freedom Using ANN and Physics Information

Shadab Anwar Shaikh 1,*, Harish Cherukuri 1,* and Taufiquar Khan 2

1 Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte,
Charlotte, NC 28223-0001, USA

2 Department of Mathematics and Statistics, University of North Carolina at Charlotte,
Charlotte, NC 28223-0001, USA

* Correspondence: sshaikh4@uncc.edu (S.A.S.); hcheruku@uncc.edu (H.C.)

Abstract: In engineering design, oftentimes a system’s dynamic response is known or can be mea-
sured, but the source generating these responses is not known. The mathematical problem where the
focus is on inferring the source terms of the governing equations from the set of observations is known
as an inverse source problem (ISP). ISPs are traditionally solved by optimization techniques with
regularization, but in the past few years, there has been a lot of interest in approaching these problems
from a deep-learning viewpoint. In this paper, we propose a deep learning approach—infused with
physics information—to recover the forcing function (source term) of systems with one degree of
freedom from the response data. We test our architecture first to recover smooth forcing functions,
and later functions involving abruptly changing gradient and jump discontinuities in the case of a
linear system. Finally, we recover the harmonic, the sum of two harmonics, and the gaussian function,
in the case of a non-linear system. The results obtained are promising and demonstrate the efficacy of
this approach in recovering the forcing functions from the data.

Keywords: physics informed neural network; dynamic force identification; deep learning; duffing’s
equation; spring mass damper system; non-linear oscillators

1. Introduction

Inverse problems are a special class of mathematical problems where the focus is on
inferring causal relationships from the set of observations. These problems are often ill-
posed and suffer from various numerical issues [1], however, are encountered extensively
in different fields of science and engineering. In the past few decades, there has been a
plethora of research on solving these problems [2–4].

A subclass of inverse problems, where, the interest is in estimating the right-hand side,
or ”source term”, of a governing equation, is known as inverse source problems (ISP). ISPs
arise frequently in several domains of physics and engineering, a few noteworthy exam-
ples are the following: Optical Molecular Imaging (OMI), where the spatial distribution
of bio-luminescent and fluorescent markers in the human tissues is reconstructed from
light-intensity measurements [5,6]; Radiative Heat Transfer, where temperature distribu-
tion of a medium is reconstructed from radiation intensity measurements and medium
properties [6]; Magnetoencephalography (MEG) and Electroencephalography (EEG), where
surface electrical and magnetic current measurements on the head are used to determine
the source of brain activity [7,8].

In this paper, we study one such ISP known as the dynamic load identification problem.
Here, we attempt to recover the ‘forcing function’ or ‘excitation force’ of linear and non-
linear oscillators from the dynamic response data. This problem can be solved both in the
time and frequency domains; however, in this study, we adopt the time domain approach
owing to its simplicity and straightforwardness.

Algorithms 2023, 16, 250. https://doi.org/10.3390/a16050250 https://www.mdpi.com/journal/algorithms
39

Algorithms 2023, 16, 250

In the past few decades, plenty of research has been published discussing various
approaches to solving this problem, and it will be difficult to enumerate them all given
the scope of this paper; nonetheless, a few notable mentions are as follows. Huang [9]
used the conjugate gradient method to estimate the time-dependent forces in a non-linear
oscillator. Ma et al. [10] developed a recursive estimator based on the Kalman filter to
determine the impulsive load from the measurement data for the single and multi-degree-
of-freedom systems. In another interesting work by Azam et al. [11], the authors proposed
a dual Kalman filter for estimating the full states of a linear multi-degree of freedom
system with unknown input from a limited number of noisy acceleration measurements
and a known physical model. Ref. [12] formulated the force identification problem of
the duffing oscillator as a Volterra-type integral equation of the first kind and used the
regularization technique to stabilize the solution. Feldman [13] proposed a method for
predicting forces only from response data without the need for any parametric or governing
equation information using the Hilbert transform. Ref. [14] solved the non-linear force
identification problem in the frequency domain using ordinary least squares with Tikhonov
regularization and its variants. Liu et al. [15] solved the non-linear vibration problem
by transforming the non-linear ordinary differential equations into parabolic ordinary
differential equations due to their robustness against large noise. Recently, Rice et al. [16]
proposed a calibration-based integral formulation for estimating the forcing function in the
spring mass damper system from response data. For a detailed review of past and present
literature on dynamic load identification techniques, interested readers are advised to refer
to [17].

In recent years, there has been a significant interest in applying machine learning and
deep learning techniques for load identification. Pravin and Rao [18] proposed a technique
for recovering the input forces from acceleration time history using dynamic principal com-
ponent analysis. Zhou et al. [19] used a deep Recurrent Neural Networks (RNNs) technique
with two variants of Long Short Term Memory (LSTM) to recover the impact loads on non-
linear structures from response data. They tested their architecture on a damped duffing
oscillator subjected to an impact load expressed by normal distribution function and on a
composite plate. Another work [20] proposed RNN with different architecture, but this
work was mainly focused on recovering the forces on beam structure excited by harmonic,
impact, and random forces. In another work by Luca Rosafalco et al. [21], the authors im-
plemented a deep learning based autoencoder for load identification, for structural health
monitoring, from multivariate structural vibration data. They employed residual learning
and inception modules in their autoencoder network. Ref. [22] proposed an ANN based on
Bayesian Probability Framework to estimate the forces from the displacement responses.

In spite of the massive success of deep learning techniques in tackling a variety of
problems owing to their ability to explore vast design space and to manage ill-posed
problems, deep learning predictions are oftentimes physically inconsistent and generalize
poorly [23]. However, this behavior can be alleviated to some extent by embedding various
biases; one way of achieving this is by infusing the governing equation in the loss function
of a neural network as proposed by [24], known as a “physics-informed neural network
(PINNs). Recently, PINNs have been used to solve inverse source problems; one such
account is the paper by He et al. [25]. In this work, the author utilized PINNs to predict the
spatially and temporally varying heat source from the simulated temperature data with
good accuracy. In this work, we use the PINNs approach for estimating the forcing function
of one degree of freedom system.

Recently, two studies [26,27] have been published where the authors utilized machine
learning and physics information to solve the vibration problem. The former used the
Hilbert transform and a variant of the least-squares method to estimate the non-linear
restoring force in a bi-stable structure, and the latter used PINNs to solve forced vibration
and plate vibration problems.

Haghighat et al. [27] also used PINNs to solve forced spring mass damper systems
similar to ours, but their work was mostly about predicting the displacements for a future

40

Algorithms 2023, 16, 250

time step and natural frequency, whereas our approach is more focused on estimating the
excitation forces. We propose PINNs to estimate harmonic or non-harmonic and periodic
or aperiodic forcing functions for systems with one degree of freedom subjected to various
initial conditions.

Although in this work our attention is on oscillators as a mechanical system, to our
understanding, this work also has the potential to be applied to any systems governed by
linear or non-linear ordinary differential equations in different domains.

The remainder of the paper is organized as follows: In Section 2, we talk about
the mathematical model of duffing’s equation followed by Section 3 where we discuss
the structure of our neural network and share details about the training process. Later,
in the following Section 4, we share our findings and finally conclude this paper with
Sections 5 and 6 with discussions and conclusions, respectively.

2. Mathematical Model

Duffing’s equation is a nonlinear ordinary differential equation used to model the
approximate behavior of various physical systems, such as nano-mechanical resonators [28],
ultrasonic cutting systems [29], piezo-ceramics under influence of a magnetic field, and,
the flight motor of an insect [30], to name a few. One formulation of Duffing’s equation is
given by

ẍ + δẋ + αx + βx3 = f (t). (1)

Here, x(t) is the solution to a differential equation. Initial conditions are given by
x(0) = x0 and ẋ(0) = ẋ0, δ is the amount of damping, α is linear stiffness, β is the amount
of non-linearity, and f (t) is the forcing function. By rearranging and fixing different values
of coefficients, i.e., α, δ, β in Equation (1), the governing equation of various linear and non-
linear oscillators can be derived. For a detailed mathematical treatment and understanding
of Duffing’s equation, interested readers are advised to refer to [31].

In this work, we are going to recover f (t) from the simulated measurement of x(t), its
derivative ẋ(t), and initial conditions using artificial neural network (ANN) and governing
equation information. This is different than solving in a forward manner, where we typically
solve the differential equation analytically or numerically, to get the solution x(t) given
f (t) and initial conditions.

3. Methodology

In this section, we discuss the structure of the neural network (NN) that was used,
followed by details on the loss function, and later, sum up the section by shedding some
light on the training algorithm and process that was employed.

3.1. Structure of NN

The structure of NN is shown in Figure 1 and mathematically is represented by

f̂ , x̂, ˆ̇x = ΦL(t; W, b) (2)

where the function ΦL : R+ �→ R3 represents the neural network with L number of layers;
t ∈ R+ is the input and x̂ ∈ R, ˆ̇x ∈ R, f̂ ∈ R are the outputs; W ∈ Rn×n and b ∈ Rn are
the neural network parameters. The architecture was defined in this way since it makes
the differentiation of NN output with respect to input more manageable. Differentiation
was performed using Automatic Differentiation (AD) with the help of the TensorFlow [32]
library functions.

The NN is feed-forward in a sense, such that the first layer is an input to the second,
and the second to the next, and so on until the last layer. This can be represented by the
composite equation below,

xj = σj(Wj · xj−1 + bj), j ∈ {0, . . . , L} (3)

41

Algorithms 2023, 16, 250

where j is the layer number, σj : Rn �→ Rn is the activation function which adds non-
linearity to the NN, and Wj and bj are weights and biases of the specific layer

For example, a 4-layer neural network, i.e., L = 4, can be represented by

x1 = σ1
(

W1 · x0 + b1
)

x2 = σ2
(

W2 · x1 + b2
)

x3 = σ3
(

W3 · x2 + b3
)

x4 = W4 · x3 + b4

(4)

where x0 = t and x4 = [f̂ , x̂, ˆ̇x]. The output of NN, f̂ is constrained by the physical
model and x̂, ˆ̇x are constrained by the displacement and velocity data, respectively. This is
discussed in more detail in the Section 3.2.

Figure 1. Proposed neural network architecture with input t and output x̂, ˆ̇x and f̂ .

The proposed NN architecture was developed using the Keras [33] library with a
TensorFlow backend. It consists of L = 10 layers with [1,15,30,60,120, 240,120,60,30,15,3]
units each. The batch normalization layer is present alternately after every dense layer
and, each dense layer is passed through the eLU activation function, which adds the
non-linearity to the network.

The optimal hyper-parameters were determined by performing systematic hyper-
parameter tuning, which involved exploring different combinations of neural network
architectures, initialization methods, activation functions, learning rates, and number of
epochs. Initially, a shallow network with a smaller number of trainable parameters and
ReLU activation function was used, but this did not yield satisfactory results. Subsequently,
other activation functions were experimented with, and it was found that the eLU activa-
tion function produced better results. Finally, a deeper architecture with eLU activation
function was employed. Similar experiments were conducted to identify other optimal
hyper-parameter choices. Additional optimal hyper-parameters choices used in study are
discussed in the Section 3.3.

42

Algorithms 2023, 16, 250

3.2. Loss Function

The workhorse of our approach is the way the neural network loss function is de-
fined. The total loss Ltotal is composed of the data term Ldata, LIC and the physics loss
term Lphysics:

Ltotal = Ldata + LIC + λLphysics (5)

such that

Ldata =
1
N

N

∑
i=1

(x∗i − x̂i)
2 +

1
N

N

∑
i=1

(ẋ∗i − ˆ̇xi)
2 (6)

and

LIC = (x0 − x̂(0))2 + (ẋ0 − ˆ̇x(0))2. (7)

Here, x∗i and ẋ∗i are the displacement and velocity from the data, x̂i and ˆ̇xi are displace-
ment and velocity predictions from the neural network, λ represents the regularization
term, x0 and ẋ0 are the initial conditions.The task of Ldata and LIC is to constrain the neural
network predictions using the data.

The physics loss Lphysics term is where the physics information is infused into the
neural networks and is given by,

Lphysics =
1
N

N

∑
i=1

(
D ˆ̇xi
Dti

+ δ ˆ̇xi + αx̂i + βx̂3
i − f̂i

)2

. (8)

This equation is obtained by rearranging Equation (1) and replacing velocities and
displacements with their equivalent neural network predictions. For calculating the ac-
celeration from velocity prediction, we make use of automatic differentiation, which is

represented by
D

Dti
in the above equation. The job of Lphysics is to force the f̂i to take values

that obey the governing equation.

3.3. Training

The objective of the proposed NN architecture is to recover the forcing function, f (t),
from the displacement and velocity data. The training algorithm is shown below (refer
to Algorithm 1). Inputs to the algorithm are t, x∗,ẋ∗, i.e., time, displacement, and velocity
data. The NN takes in t and outputs f̂ , x̂, ˆ̇x, i.e., forcing function, displacement, and velocity
predictions, respectively. The weights of the neural network are initialized using He-
Normal initialization.

The network was trained on 500 data points in batches of 250 points on NVIDIA GTX
2060 GPU for 60,000 epochs. The training time for all the training instances was around 3
to 3.5 h approximately. The learning rate η was chosen as 0.001 and the regularization term
λ was chosen as either 0.1 or 0.01 depending on which provided a better result.

At each epoch, the Ltotal is calculated from the data and neural network predictions.
Later, Adam optimizer [34] takes in Ltotal and calculates its gradients with respect to NN
parameters and propagates them to the network using the back-propagation algorithm.
This algorithm uses these gradients to adjust the weights and biases of the network at
every epoch. A snapshot of Ltotal , Ldata and Lphysics progression with respect to epochs
for one training instance is shown in the Figure 2. Ideally, for the neural network to learn
successfully Ltotal → 0, which can be observed in the Figure 2 below.

43

Algorithms 2023, 16, 250

Algorithm 1 Training Algorithm

Require: t, x∗, ẋ∗
Ensure: Ltotal → 0

n ← no. of epochs
η ← learning rate
N ← batch size
λ ←regularization
while n > 0 do

f̂ , x̂, ˆ̇x ← ΦL(t; W, b)
Ldata,LIC,Lphysics � This is calculated using (6)–(8)
Ltotal ← Ldata + LIC + λLphysics
W∗, b∗ ← Adam(η,Ltotal)
W, b ← W∗, b∗
n ← n − 1

end while

(a) (b)

(c)
Figure 2. (a–c) shows the total, data, and physics loss w.r.t the training epochs for one training instance.

4. Results

In this section, we share our findings that were obtained by performing various
numerical experiments on our proposed architecture. We start by discussing the results of

44

Algorithms 2023, 16, 250

spring mass damper systems excited by different types of forces and initial conditions and
later sum up the section on the results of our experiments with the non-linear oscillator.

The data for training the neural network were generated by simulating Equation (1)
using the ode45 routine of MATLAB [35] for different coefficients α, β, δ and initial con-
ditions x0, ẋ0, for all the simulations, t ∈ [0, 50 s]. A snapshot of data instance that was
generated by simulating ODE is shown in Figure 3.

Figure 3. Figure shows the training sample that was obtained by simulating Equation (1) by setting
α = 0.4, β = 0.9, δ = 0.5 with initial conditions x0 = 2.4, ẋ0 = 0.7 subjected to forcing function given
by Equation (14) with γ1 = 5, γ2 = 4, ω1 = 0.4, ω2 = 0.7.

4.1. Linear Case

We convert Equation (1) to a linear ODE by setting β = 0. Later, by fixing α = k/m,
δ = c/m and f (t) = f (t)/m the equation reduces to an equivalent spring mass damper
system with mass m, stiffness c and spring constant k. For the remainder of this section,
we consider m = 1, c = 0.2 and k = 0.9 or equivalently α = 0.9, δ = 0.2. Finally, data
are generated by solving the linear ODE subjected to sinusoidal, piece-wise, and step-
forcing functions.

The neural network was trained on generated data instances and was tested to deter-
mine if it can recover the forcing functions from these data. The following sections provide
more details of the results that were obtained after training.

4.1.1. Sinusoidal Function

To test whether the neural network can recover a smooth periodic function, we train
it on the data generated by subjecting the spring mass damper system to a harmonic
excitation given by

f (t) = γ cos ωt (9)

with x0 = 4.9, ẋ0 = −2.2, ω = 0.4, and γ = 3. The result obtained is promising and is
shown in Figure 4a. It can be observed that the NN prediction and actual function are in
excellent agreement.

45

Algorithms 2023, 16, 250

(a) (b)

(c) (d)
Figure 4. Figure shows the agreement between neural network predictions and actual forcing
functions: (a) sinusoidal (b) sinusoidal with increased non-linearity and frequency (c) sum of two
sinusoidal (d) impulse for duffing’s equation.

4.1.2. Piece-Wise Function

Here, we subject the spring mass damper system to piece-wise forcing functions
represented by equations,

f (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 0 ≤ t < 5
t − 5 5 ≤ t < 10
5

20
(30 − t) 10 ≤ t < 30

0 30 ≤ t ≤ 50

(10)

and,

f (t) =

⎧⎪⎪⎨⎪⎪⎩
t2 0 ≤ t < 10
−2t + 120 10 ≤ t < 30

1
200

t3 − 1
2

t2 +
25
2

t 30 ≤ t ≤ 50

(11)

the former represents a triangular function, consisting of linearly increasing and decreasing
functions at consecutive intervals and the latter is a combination of parabolic, linear,

46

Algorithms 2023, 16, 250

and cubic functions. The functions are characterized by abrupt variations in gradient
magnitudes.

Figure 5b,c demonstrate our findings where the network was trained on data in-
stances generated by simulating the spring mass damper system for x0 = 4.4, ẋ0 = −4.4,
and x0 = 2.2, ẋ0 = −3.8 initial conditions subjected to forces represented by Equations (10)
and (11), respectively.

(a) (b)

(c) (d)
Figure 5. Figure shows the agreement between neural network predictions and actual forcing
functions: (a) sinusoidal (b) combination of parabolic, linear and cubic (c) triangular (d) step for
spring mass damper system.

As observed, the actual forcing function and neural network predictions match very
well; however, the network experiences some challenges in predicting the values at the cusp
of both functions. For the triangular function, it under-predicts, and for the combination of
linear, parabolic, and cubic it over-predicts. In addition, for the interval with a zero value
of the function, marking the start of the triangular function, some oscillations are observed
in the network predictions.

4.1.3. Step Function

After testing our architecture to recover the piece-wise forcing function in the previous
section. In the present section, we attempt to solve a problem that is much more challenging.
We try to determine if our architecture can recover functions involving discontinuities.

47

Algorithms 2023, 16, 250

To answer this question we train the neural network on the data generated by simulating
the spring mass damper system with x0 = −3.4, ẋ0 = −2.4 and step function below,

f (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 0 ≤ t < 5
10 5 ≤ t < 10
−10 10 ≤ t < 30
0 30 ≤ t ≤ 50

(12)

A step function is marked by constant values on specific intervals followed by sudden
jumps in values at the point of transition.

Figure 5d shows our findings. It can be observed NN was able to recover the majority
of the function from the data. The constant values of the step function are complemented
with oscillatory predictions. These oscillations resemble the Gibbs phenomenon, which is
observed when approximating functions with jump discontinuities using the Fourier series.

4.2. Non-Linear Case

After our success with linear ODE in the previous sections, we now evaluate the
effectiveness of our proposed architecture on non-linear ODE. We subject Equation (1) to
different smooth forcing functions such as sinusoidal, the sum of two sinusoidal, and im-
pulse functions. We share details and findings of our numerical experiments in the follow-
ing section

4.2.1. Sinusoidal Function

We solve the governing Equation (1) by subjecting it to the sinusoidal forcing function
given by,

f (t) = γ cos ωt (13)

fixing α = 1, δ = 1, β = 0.5, γ = 3, ω = 0.4 and initial conditions x0 = 0.6 ẋ0 = 1.4 to
generate the response data.

Figure 4a demonstrates the performance of our network after training it on the gener-
ated data. It can be observed that the neural network was successful in accurately recovering
the sinusoidal function from response data without much difficulty; nonetheless, there
exists some instability at the starting point.

We now increase the difficulty by setting α = 0.6, δ = 0.3, β = 1.2, γ = 3, ω = 0.7
and initial conditions x0 = 0.2, ẋ0 = 0.7. An interesting thing to note here is that the
non-linearity β = 1.2 and frequency ω = 0.7 are now increased versus the previous case.

The finding for this case is shown in Figure 4b. Although seen network predictions
are in good agreement with the actual function, for the most part, the neural network
over-predicts at the peaks and valleys with the presence of some instabilities at the start of
the function.

4.2.2. Sum of Two Sinusoidal Functions

In this section, we attempt to recover the forcing function represented by the sum of
two sinusoidal functions represented by the following equation,

f (t) = γ1 cos ω1t + γ2 cos ω2t (14)

The neural network was trained on the data that were generated by fixing the values
of α = 0.4, β = 0.9, δ = 0.5 and solving the duffing equation subjected to Equation (14)
with γ1 = 5, γ2 = 4, ω1 = 0.4, ω2 = 0.7 and x0 = 2.4ẋ0 = 0.7 initial conditions. This
is somewhat more difficult compared to the previous case involving just one sinusoidal
function. The results are shown in Figure 4c, it can be seen that the NN was able to predict
the forcing function from response data with acceptable accuracy. Although NN does

48

Algorithms 2023, 16, 250

under-predict and over-predict at certain peaks and valleys of the function, nevertheless,
overall the actual function and predictions are almost perfectly aligned.

4.2.3. Impulse Function Idealized by Normal Distribution

Finally, in the present section, we evaluate the efficacy of our network in predicting an
impulsive function expressed by a normal distribution given by,

f (t) =
e−(t−μ)2/(2σ2)

σ
√

2π
. (15)

We set μ = 25, and σ = 2 in Equation (15) and use this to produce the data by
simulating Equation (1) with α = 0.4, β = 1.4, δ = 0.6 and x0 = 1, ẋ0 = −2.2. This case was
used to test if the network can predict an impact excitation force of non-linear oscillators.
For the purpose of smoothness, the impact force was expressed by a normal distribution
equation. As seen in Figure 4d, the network predictions start with numerical oscillations
that later damp out, and, for the most part, the predictions are in good alignment with the
actual forcing function that was used for generating the data.

5. Discussion

In Section 4 we shared our findings that demonstrated the effectiveness of our pro-
posed neural network approach for solving the inverse source problem of dynamic load
identification by incorporating physics information. The neural network structure and
best working hyper-parameter choices were obtained by performing systematic hyper-
parameter tuning. The network was later trained on different data instances generated by
simulating spring mass damper systems subjected to different types of forcing functions,
including smooth, abrupt changes in gradient, and jump discontinuities.

The neural network predictions in all cases were excellent, with slight overshoot and
undershoot at the cusp of both piece-wise functions and some small oscillations at the
start of the triangular function. However, some numerical oscillations were observed in
step function predictions that resemble the Gibbs phenomenon. The findings suggest
that the proposed neural network approach was effective in predicting different types of
forcing functions.

The study also tested the network to recover the forcing functions of non-linear os-
cillators from the data. The data were generated by solving duffing equations subjected
to various smooth forcing functions. The network was able to predict sinusoidal func-
tions and sinusoidal functions with increased non-linearity and frequency with small
amounts of instability and minor overshoot and undershoot at the peak and trough of the
periodic function.

Finally, the network was used to predict functions given by the sum of two sinusoidal
functions and an impulse, and the network prediction was in close agreement with the
actual function. However, some under and over-predictions with small oscillations were
observed at the peaks and valleys of the functions in the case of the sum of two sinusoidal
functions. In the case of a forcing function involving an impulse, numerical oscillations
were observed at the start that dampened out in the later stages of predictions.

Overall, the findings of this study demonstrate that the proposed technique works
well in predicting a variety of forcing functions from response data, although, only smooth
functions were considered in the case of non-linear oscillators. Additionally, the analysis
was based on simulated data without any noise used to train the neural network. Fu-
ture studies should investigate the effectiveness of this technique using real-world data
with noise and compare its performance with other established techniques for dynamic
load identification.

6. Conclusions

In this paper, we presented an approach for solving the dynamic load identification
problem using neural networks and physics information. We started our analysis by testing

49

Algorithms 2023, 16, 250

the efficacy of our architecture in recovering the forcing functions of the spring mass
damper system and finally extending it to non-linear oscillators.

In our analysis of the spring mass damper system, we trained our neural network
to recover different types of functions from the data, and it was found that our network
was able to seamlessly recover them without much difficulty. Later on, we tried the same
for the non-linear ODEs. In the case of non-linear ODEs, we primarily focused on smooth
functions, and it was observed that our method was able to recover almost all of the
functions, but with minor numerical oscillations at different places.

Though this work was predominantly focused on predicting the source terms of
ODEs with mechanical systems in mind, to the best of our understanding, this has the
potential to be applied to any system where the interest is in finding the source term from
response data.

In the future, this work can be extended by testing whether the architecture can
recover discontinuous forcing functions of non-linear ODEs and if similar predictions can
be made from data that are corrupted by noise. Also, a similar study can be undertaken for
recovering both smooth and discontinuous forcing functions in a multi-degree of freedom
system. Another possibility is to test if our neural network architecture can predict the
forcing function just from one set of data, i.e., displacement or velocity.

Finally, this work was focused on recovering the forcing function of a specific ODE
from its data instances. However, a surrogate model can also be developed that can be
trained on huge sets of data and, after training, can predict the forcing function for any
instance of a linear or non-linear ODE from its response time histories and initial conditions.

Author Contributions: Methodology, implementation, and writing of manuscript—S.A.S.; supervi-
sion, review and editing—H.C. and T.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no competing conflict of interest.

References

1. Kabanikhin, S.I. Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 2008, 16, 317–357. Available
online: https://www.degruyter.com/document/doi/10.1515/JIIP.2008.019/html (accessed on 9 March 2023). [CrossRef]

2. Sabatier, P.C. Past and future of inverse problems. J. Math. Phys. 2000, 41, 4082–4124. [CrossRef]
3. Yaman, F.; Yakhno, V.G.; Potthast, R. A Survey on Inverse Problems for Applied Sciences. Math. Probl. Eng. 2013, 2013, 976837.

[CrossRef]
4. Uhlmann, G.; Uhlmann, S.G.F. Inverse problems: Seeing the unseen. Bull. Math. Sci. 2014, 4, 209–279. [CrossRef]
5. McCormick, N.J. Inverse Radiative Transfer Problems: A Review. Nucl. Sci. Eng. 2017, 112, 185–198. [CrossRef]
6. Stefanov, P.; Uhlmann, G. An inverse source problem in optical molecular imaging an inverse source problem in optical molecular

imaging. Anal. PDE 2008, 1, 115–116. [CrossRef]
7. Ammari, H.; Bao, G.; Fleming, J.L. An Inverse Source Problem for Maxwell’s Equations in Magnetoencephalography. SIAM J.

Appl. Math. 2006, 62, 1369–1382. [CrossRef]
8. Grech, R.; Cassar, T.; Muscat, J.; Camilleri, K.P.; Fabri, S.G.; Zervakis, M.; Xanthopoulos, P.; Sakkalis, V.; Vanrumste, B. Review on

solving the inverse problem in EEG source analysis. J. NeuroEng. Rehabil. 2008, 5, 25. [CrossRef]
9. Huang, C.H. A generalized inverse force vibration problem for simultaneously estimating the time-dependent external forces.

Appl. Math. Model. 2005, 29, 1022–1039. [CrossRef]
10. Ma, C.K.; Tuan, P.C.; Lin, D.C.; Liu, C.S. A study of an inverse method for the estimation of impulsive loads. Int. J. Syst. Sci. 1998,

29, 663–672. [CrossRef]
11. Azam, S.E.; Chatzi, E.; Papadimitriou, C. A dual Kalman filter approach for state estimation via output-only acceleration

measurements. Mech. Syst. Signal Process. 2015, 60, 866–886. [CrossRef]
12. Jang, T.S.; Baek, H.; Choi, H.S.; Lee, S.G. A new method for measuring nonharmonic periodic excitation forces in nonlinear

damped systems. Mech. Syst. Signal Process. 2011, 25, 2219–2228. [CrossRef]
13. Feldman, M. Mapping nonlinear forces with congruent vibration functions. Mech. Syst. Signal Process. 2013, 37, 315–337.

[CrossRef]

50

Algorithms 2023, 16, 250

14. Chao, M.; Hongxing, H.; Feng, X. The identification of external forces for a nonlinear vibration system in frequency domain. Proc.
Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 1531–1539. [CrossRef]

15. Liu, C.S.; Chang, C.W. A real-time Lie-group differential algebraic equations method to solve the inverse nonlinear vibration
problems. Inverse Probl. Sci. Eng. 2016, 24, 1569–1586. [CrossRef]

16. Rice, C.; Frankel, J.I. Estimating the forcing function in a mechanical system by an inverse calibration method. JVC/J. Vib. Control
2022, 28, 3352–3363. [CrossRef]

17. Liu, R.; Dobriban, E.; Hou, Z.; Qian, K. Dynamic Load Identification for Mechanical Systems: A Review. Arch. Comput. Methods
Eng. 2022, 29, 831–863. [CrossRef]

18. Prawin, J.; Rao, A.R.M. An online input force time history reconstruction algorithm using dynamic principal component analysis.
Mech. Syst. Signal Process. 2018, 99, 516–533. [CrossRef]

19. Zhou, J.M.; Dong, L.; Guan, W.; Yan, J. Impact load identification of nonlinear structures using deep Recurrent Neural Network.
Mech. Syst. Signal Process. 2019, 133, 106292. [CrossRef]

20. Yang, H.; Jiang, J.; Chen, G.; Mohamed, M.S.; Lu, F. A Recurrent Neural Network-Based Method for Dynamic Load Identification
of Beam Structures. Materials 2021, 14, 7846. [CrossRef]

21. Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. An autoencoder-based deep learning approach for load identification in
structural dynamics. Sensors 2021, 21, 4207. [CrossRef] [PubMed]

22. Liu, Y.; Wang, L.; Gu, K.; Li, M. Artificial Neural Network (ANN) - Bayesian Probability Framework (BPF) based method of
dynamic force reconstruction under multi-source uncertainties. Knowl.-Based Syst. 2022, 237, 107796. [CrossRef]

23. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.
2021, 3, 422–440. [CrossRef]

24. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

25. He, Z.; Ni, F.; Wang, W.; Zhang, J. A physics-informed deep learning method for solving direct and inverse heat conduction
problems of materials. Mater. Today Commun. 2021, 28, 102719. [CrossRef]

26. Liu, Q.; Zhao, Z.; Zhang, Y.; Wang, J.; Cao, J. Physics-informed sparse identification of bistable structures. J. Phys. D Appl. Phys.
2022, 56, 044005. [CrossRef]

27. Haghighat, E.; Bekar, A.C.; Madenci, E.; Juanes, R. Deep learning for solution and inversion of structural mechanics and
vibrations. Model. Comput. Vib. Probl. 2021, 1, 1–17. [CrossRef]

28. Antonio, D.; Zanette, D.H.; López, D. Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 2012,
3, 806. [CrossRef]

29. Lim, F.; Cartmell, M.; Cardoni, A.; Lucas, M. A preliminary investigation into optimising the response of vibrating systems used
for ultrasonic cutting. J. Sound Vib. 2004, 272, 1047–1069. [CrossRef]

30. Cao, Q.; Xiong, Y.; Wiercigroch, M. A novel model of dipteran flight mechanism. Int. J. Dyn. Control 2013, 1, 1–11. [CrossRef]
31. Kovacic, I.; Brennan, M.J. The Duffing Equation: Nonlinear Oscillators and Their Behaviour; John Wiley & Sons: Hoboken, NJ, USA,

2011.
32. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 8 May 2023).
33. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 9 March 2023).
34. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. MATLAB, 9.8.0.1873465 (R2020a) Update 8’; The MathWorks Inc.: Natick, MA, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

51

Citation: Davila Hernandez, C.; Ho,

J.; Kim, D.; Oubeidillah, A.

Machine-Learning-Based Model for

Hurricane Storm Surge Forecasting in

the Lower Laguna Madre. Algorithms

2023, 16, 232. https://doi.org/

10.3390/a16050232

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 10 March 2023

Revised: 26 April 2023

Accepted: 26 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Machine-Learning-Based Model for Hurricane Storm Surge
Forecasting in the Lower Laguna Madre

Cesar Davila Hernandez 1, Jungseok Ho 2,*, Dongchul Kim 3 and Abdoul Oubeidillah 2

1 Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin,
Austin, TX 78705, USA; cesardavilahernandez@utexas.edu

2 Department of Civil Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
abdoul.oubeidillah@utrgv.edu

3 Department of Computer Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
dongchul.kim@utrgv.edu

* Correspondence: jungseok.ho@utrgv.edu

Abstract: During every Atlantic hurricane season, storms represent a constant risk to Texan coastal
communities and other communities along the Atlantic coast of the United States. A storm surge
refers to the abnormal rise of sea water level due to hurricanes and storms; traditionally, hurricane
storm surge predictions are generated using complex numerical models that require high amounts
of computing power to be run, which grow proportionally with the extent of the area covered by
the model. In this work, a machine-learning-based storm surge forecasting model for the Lower
Laguna Madre is implemented. The model considers gridded forecasted weather data on winds
and atmospheric pressure over the Gulf of Mexico, as well as previous sea levels obtained from a
Laguna Madre ocean circulation numerical model. Using architectures such as Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) combined, the resulting model is capable
of identifying upcoming hurricanes and predicting storm surges, as well as normal conditions in
several locations along the Lower Laguna Madre. Overall, the model is able to predict storm surge
peaks with an average difference of 0.04 m when compared with a numerical model and an average
RMSE of 0.08 for normal conditions and 0.09 for storm surge conditions.

Keywords: machine learning; storm surge; hurricane; forecasting; CNN; LSTM

1. Introduction

The United States mainland has experienced around 280 hurricane strikes since the
1850s. Of these hurricane impacts, nearly a hundred have been classified in the Saf-
fir/Simpson Hurricane Wind Scale (SSHWS) as a category 3 or greater. The monetary
damage that such hurricane impacts have can ascend to billions of dollars, as was the case
with Hurricane Katrina in 2005 and Ike in 2008. The quantified damages are only a single
measure of how destructive a hurricane can be and serve as reminders of the importance of
preparation and adequate planning for such events [1,2]. The Laguna Madre, located in
South Texas, is one of the six hypersaline lagoons in the world. It is a unique ecological
system that provides the perfect environment for the proliferation of numerous species of
flora and fauna. This lagoon, and the surrounding region, is impacted by hurricanes that
affect the coastal population with flooding and storm surges. Although communities are
well aware of the risks that every hurricane season brings, the tools available to prepare and
plan are scarce. Storm surge research in this region is paramount to answer the needs of the
population. This study seeks to provide a tool that can be used for forecasting storm surge
conditions days ahead, without the usage of expensive resources and with automation
capabilities. The model proposed here can help first responders and emergency bodies
to assemble resources and develop plans ahead of a hurricane impact and subsequential
storm surge.

Algorithms 2023, 16, 232. https://doi.org/10.3390/a16050232 https://www.mdpi.com/journal/algorithms
53

Algorithms 2023, 16, 232

Coastal cities have experienced a boom in growth since the 2000s. The increase has
stayed constant at a rate of approximately one percent per year. Leisure has been one of the
most cited reasons for growth, and as such, the need for infrastructure in coastal cities has
increased proportionately. There have been projects prompted from coastal growth, such
as the construction of transportation, water and electrical infrastructure. This has brought
many benefits to coastal communities and has allowed and aided their continuous growth,
but at the same time, it has also raised a major weakness point. All the infrastructure
necessary to sustain and expand communities in coastal areas are just new vulnerabilities.
One of the major drivers of hurricane damages in coastal cities are storm surges, due to
their proximity to the ocean. Storm surge refers to the abnormal rise in ocean levels beyond
the predicted astronomical tides as a result of sustained winds, among other factors [3].
The state of Texas has many coastal cities that could be potentially struck by hurricanes
and subsequent storm surges. Major hurricane impacts can bring destruction to vulnerable
infrastructure, creating a potential avenue for billions of dollars worth of damages [4]. It is
also important to mention that the danger of a hurricane storm surge is not only limited to
direct structural damages; it also represents a worrying environmental risk. Many of the
coastal cities that could be potentially damaged by hurricanes and storm surges also house
ports. These ports expose industrial complexes to catastrophic events. As an example,
Hurricane Ike brought USD 30 billion dollars in damages to the cities of Houston and
Galveston, where at least 112 deaths occurred. The Houston Ship Channel is one of the
busiest seaports in the world and is the host of many petrochemical complexes, which
heightens the potential for an environmental disaster [5,6].

Since storm surges have the potential to cause damages worth billions of dollars, as
well as cause deaths and possible environmental disasters, it is of the utmost importance
to plan accordingly when a major hurricane is approaching a coastal area. It is possible
to assess the potential risk that a hurricane poses in terms of storm surge by creating a
simulation of the interaction between winds, atmospheric pressure, tides, and waves. To
date, the problem of simulating hurricane storm surges has been solved through the usage
of computer models capable of capturing these interactions and producing fairly accurate
storm surge estimates. Some of the computer models that are available and are currently
being used to predict storm surges by agencies such as the Federal Emergency Management
Agency (FEMA) or the US Army Corps of Engineers (USACE) are Advanced CIRCulation
(ADCIRC), or the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model [7–9].
There exist other numerical models for different purposes, such as TxBLEND, developed
by the Texas Water Development Board (TWDB) used to estimate salinity conditions for
Texas estuaries [10]. The estimation of storm surges is not only a matter of accuracy; it is
also a problem of time. Emergency preparations are time-sensitive; numerical-based storm
surge models such as ADCIRC or SLOSH require a lot of time to be executed, especially
if there are not many resources available. Currently, high-performance computer clusters
(HPC) are employed to run such models on a large scale and provide enough resources
for their computations to be timely. It is important to mention that such models are often
coupled with wave models, which add another level of complexity, raising the resource
requirements of the models. Some examples of the wave models used in conjunction are
the Wave prediction Model (WAM), the Steady-State Spectral Wave Model (STWAVE),
and Simulating WAves Nearshore (SWAN) [7,11]. Models such as ADCIRC run their
computations based on an unstructured mesh containing bathymetry information of the
area to be simulated; this mesh is a discretization of the area that needs sufficient detail
near points of interest to better capture the physics involved. It is because of this that
there is always a tradeoff between mesh resolution and the time required to complete
computations. The ADCIRC code is optimized to scale and parallelize very efficiently, but
if, as mentioned, there is a coupled model meant to simulate waves, then the complexity
of the model scales vastly, which can hog the computational resources available. It is
easy to see how high-fidelity models such as ADCIRC are out of the reach of endeavors
without substantial funding, and the long runtime and high costs represent a limiting

54

Algorithms 2023, 16, 232

factor for timely emergency notifications if resources are lacking. The prohibitive costs
of a numerical model and the demand for timely storm surge emergency notifications
pushed the search for a way to develop an Artificial Intelligence (AI) model for accurately
predicting storm surges without the need for large amounts of computational resources.
In this study, a machine-learning-based storm surge forecasting model is proposed and
created for predicting storm surges at discrete points along the Laguna Madre in Texas.
The goal of the study is to create a machine learning model capable of predicting storm
surges by using only a fraction of the computational resources that numerical models use.

2. Materials and Methods

To create this study, a literature review was conducted first to gather information
on what previous attempts have been made to create machine-learning-based models for
storm surge prediction. The literature review shed a light on what types of models were
used as well as what predictors are employed.

Literature Review

Machine learning techniques have been employed extensively in the prediction of
weather and for the modeling of complex relationships, such as storm surges, precipitation,
and floods. Machine learning has proven itself to be a valuable tool in the creation of very
accurate, non-resource-intensive models that can capture very complex phenomena. For
example, Artificial Neural Networks (ANN) have been utilized for capturing the rainfall–
runoff relationship in basins where the declaration of the internal structure of the watershed
is not needed [12]. Neural networks have also been used to predict floods with fairly good
accuracy [13]. These initially reviewed papers reiterate the possibility of creating a machine
learning model for storm surges. Hurricane storm surges are an example of a complex
nonlinear relationship where the usage of machine learning methods can prove to be very
beneficial. Neural networks are a type of machine learning technique that have already been
proven successful for storm surge prediction. In the past, several studies have explored
the performance of neural network architectures when it comes to storm surge estimation.
Simple ANNs [12,14–21] have already succeeded in recognizing the relationship between
weather variables and the subsequent storm surge; however, some problems still remain.
For a better visualization, Table 1 contains a sample of 10 reviewed studies.

As it can be seen from Table 1, most of the studies utilized ANN to produce their
storm surge predictions. ANNs accept a fixed amount of predictor variables; the most
common predictor variables utilized in the studies reviewed are storm parameters. Some
of the parameters are the location of the storm, angle of approach, translation speed of the
storm, wind speeds, and radius of strong winds. The accuracies obtained by the studies are
good; however, there are limitations that could be improved upon.

Table 1. Sample of papers reviewed. Predictors, data types, and metrics used in each paper can be
easily referenced in the table.

Paper Predicted Model Predictors Data Type Metrics

[16] Storm surge ANN

Longitude, latitude at
landfall, heading
direction, central
pressure, moving
speed, maximum

wind speed, radius of
the strong wind

speeds

59 Historical storms CC

55

Algorithms 2023, 16, 232

Table 1. Cont.

Paper Predicted Model Predictors Data Type Metrics

[17] Normalized storm
surge ANN

Pressure, wind
velocity, wind

direction, estimated
astronomical tide

Historical storm
descriptive
parameters

RMSE and CC

[20] Storm surge RBF, GRNN, MLP3,
MLP4

Two experiments: (1)
daily mean sea level
from preceding day,
6 h forecast of wind
speed, direction. (2)

4–10 different
parameters

Historical storms
from 1950–1999 RMSE and CC

[22]
Max still-water

inundation, runup,
wave height

Stats.

Landfall location,
angle at landfall,
central pressure,

forward speed, radius
of maximum winds

1500 synthetic storms MSE

[15] Storm surge ANN Atmospheric
pressure and winds

Historical
NCEP-NCAR data RMSE and CC

[12] Tide, storm surge ANN, ANFIS

Wind speed, wind
direction, air

pressure, simulated
water level using

hydrodynamic model

Historical data MAE, RMSE and PE

[19] Storm tide, coastal
inundation ANN

Landfall location,
approach angle,

translation speed,
wind speed

Computed storm tide,
coastal inundation by

ADCIRC
CC

[14] Storm surge ANN, GPR, SVR

Storm parameters,
reference latitude and
longitude of storm as
well as coastal points

USACE NACCS
synthetic data MSE, RMSE, CC

[21] Tidal level SVR, ANN, CNN,
LSTM

Previous and current
tidal water level

21 years of historical
data from tide

stations
RMSE, MAPE

The study by [23] developed a multioutput artificial neural network model which
was used to predict storm surges in the North Carolinian coast. The authors mention a
couple limitations of ANNs; for example, they found out that ANNs often underestimate
peak surges. Furthermore, they concluded that the underestimations could be a result
of the memoryless approach of ANNs. Naturally, including memory in an ANN-based
machine learning model could help improve the results. The usage of memory in neural
networks for tidal prediction was explored by [21], where they compared many approaches
for predicting ocean water levels at 17 different stations in Taiwan. The model utilized a
type of neural network called Long-short Term Memory (LSTM). LSTMs provide a solution
to the memoryless problem mentioned by [23] and outperformed other methods. The
results of LSTM show their potential for usage in storm surge prediction. It is important to
mention that the study in [21] focused only on tidal levels, and no storm surge or weather
conditions were considered.

LSTMs are an example of Recurrent Neural Networks (RNNs). These types of neural
networks are often used for process control or time series predictions [24]. LSTMs can solve
one of the glaring problems that are found in most studies referenced in Table 1, where
the usage of ANNs limited the performance of the resulting models due to their lack of

56

Algorithms 2023, 16, 232

‘memory’. Improvement on time series prediction is expected with the usage of LSTMs in
comparison with ANNs, and that is why they were chosen for further exploration in this
study in comparison with regular ANNs.

Convolutional Neural Networks (CNNs) are another type of neural network archi-
tecture that are utilized in this study. CNNs are a very common and well-known neural
network architecture. Their structure, often comprised of convolutional, pooling, and fully
connected layers, has driven forward the field of computer vision in the past decades.
Modern iterations of CNNs were first introduced by [25]. AlexNet [26] brought a scaled-up
version of CNNs with around 60 million parameters. Since then, the usage of CNNs has
skyrocketed, and their applications in several disciplines have been popularized. In this
study, CNNs are used as part of the model to read and interpret weather information
obtained in gridded form.

3. Modeling Scenarios and Data Processing

The storm surge forecasting model developed requires two sources of data. The first is
a database of ADCIRC numerical model predictions. The second source of data corresponds
to forecasted gridded weather data.

3.1. ADCIRC Numerical Model Database

The details of the ADCIRC model utilized to create the database of results for the
Laguna Madre can be seen in the following study [27]. To execute ADCIRC and create
the dataset necessary for training the machine learning model, it is necessary to develop
two files for each simulation. The geometric properties of the model, as well as the nodal
parameters, remained constant for all simulations. One of the two files utilized is named
Model Parameter and Periodic Boundary Condition file, or ‘fort.15’ [28]. The ‘fort.15’ file is
used to set the parameters that configure the ADCIRC model for running. The date of the
simulation, duration, and tidal constituents are just some relevant parameters that were
changed as required, while other parameters remained constant for all simulations, such as
the type of input file used.

3.2. Forecasted Gridded Weather Data

The second and perhaps more critical file is ‘fort.22’, or Meteorological Forcing
Data [28]. The machine learning model and the ADCIRC numerical model utilize the
same input source: a gridded forecasted weather dataset named the North American
Mesoscale Forecast System (NAM) [29]. The NAM dataset provides continuous forecasted
gridded atmospheric conditions over the continental United States. The model is dis-
tributed by the National Centers for Environmental Information (NCEI) and consists of
a 12 km-resolution grid with a forecasting range of up to 84 h. This forecasted gridded
dataset is utilized in two forms. First, a set of input files for the ADCIRC numerical model
is created; at the same time, the dataset is converted into image files to serve as input for
the machine learning storm surge model.

To create both ADCIRC’s and the machine learning storm surge model input, the NAM
dataset is trimmed to the domain of interest; in this case, the Gulf of Mexico. After the NAM
data are trimmed spatially, only the variables that will be used are kept, which includes the
U and V components of winds at 10 m elevation and atmospheric pressure. The data is
then projected into a regularly spaced grid over the Gulf of Mexico. The resulting grid can
be directly used for input in ADCIRC and is also leveraged for the creation of images for
their use in the machine learning model. To create the input images, each variable in the
data is normalized and its values mapped into the range of an unsigned byte, from 0 to
255, for the creation of PNG stills with three color channels. The resulting composite can be
seen below in Figure 1.

57

Algorithms 2023, 16, 232

Figure 1. Image showing hurricane Hanna (2020) over the Gulf of Mexico as it is approaching the
coast of Texas on the morning of July 25th. The image was constructed from retrieved NAM forecasts,
where the color channels represent U and V components of winds and atmospheric pressure.

To test the machine learning storm surge forecasting model, a total of five scenarios
were prepared from the available data. These five scenarios were selected as representative
of the presence and lack of storm surge conditions. Three of the five scenarios are repre-
sentative of hurricanes that impacted the Laguna Madre directly or caused fluctuations in
the ocean levels in the Laguna Madre; the remaining two scenarios provide everyday or
normal conditions, meaning no major weather event occurred near the Laguna Madre.

3.2.1. Hurricane Dolly (2008)

Dolly made landfall as a category 1 hurricane on the Saffir–Simpson Hurricane Wind
Scale at South Padre Island, Texas, with estimated maximum winds of 86 mph. The storm
reached peak intensity at around 1400 UTC on 23 July, 4 h before landfall, centered less
than 20 nautical miles east of the Rio Grande River. Part of Hurricane Dolly’s track can be
seen in Figure 2 below.

3.2.2. Hurricane Alex (2010)

Alex made landfall as a category 2 hurricane on the Saffir–Simpson Hurricane Wind
Scale near Soto la Marina, Tamaulipas in northeastern Mexico. At landfall, Alex had an
estimated maximum wind speed of 109 mph at around 0200 UTC on 1 July. The path
followed by Hurricane Alex as it made landfall can be seen on Figure 2 below.

3.2.3. Hurricane Hanna (2020)

Hanna made landfall as a category 1 hurricane at Padre Island, Texas. The hurricane
reached a peak intensity of 92 mph as it was located off the coast of South Texas at 1800 UTC
on 25 July. Hanna weakened to a tropical storm by 0600 UTC on 26 July and dissipated at
1800 UTC on 26 July as it neared Monterrey, Mexico. The path Hurricane Hanna took can
be seen in Figure 2.

3.2.4. Normal Conditions: June 2008

During this month, precipitation for the southern region of the United States was
below normal, with some regions receiving lower than 5% of the average June rainfall. A

58

Algorithms 2023, 16, 232

single tropical storm named Arthur formed on May 30th near the shore of Belize and, after
two days, dissipated over the Yucatan Peninsula in Mexico.

3.2.5. Normal Conditions: June 2020

This month was especially dry with a precipitation total for the contiguous U.S. of
about 0.21 inches below average. Two tropical storms were recorded in the Atlantic,
Amanda and Cristobal. Amanda made landfall in Guatemala and its remnants developed
to form Cristobal, which eventually made landfall in Louisiana, just east of Grand Isle.

Figure 2. Paths followed by Hurricane Alex, Dolly, and Hanna as they made landfall in Texas. The
white line depicts the U.S.–Mexico border.

It is important to note that while data are abundant, a bias was identified, and its
impact on the performance is later discussed at the end of the paper. The root of the bias
comes from the data available in the area where the study was conducted. Data from
NAM provided a total of 13 hurricane seasons for training. Each season translates to six
months of data, meaning a total of more than 6 years of continuous data was available.
During this period of time, the Lower Laguna Madre saw the impact of around 20 abnormal
sea-level conditions due to weather events. On average, the duration of such abnormal
events was one week. This translates to 6% of the data being representative of storm
surge conditions. This is problematic, since it evidences a bias in the data towards normal
conditions; however, this was expected since disastrous impacts of hurricanes are scarce on
a local level in the South Texas region.

4. Forecasting Model

There are three forecasting models that were created during this study. The differences
between them relies mainly on the machine learning architectures used and their coupling.
The two types of architectures used in the models created are CNN, LSTM and CNN+LSTM.

As explained before, CNNs are a type of artificial neural network architecture special-
ized in the analysis of image data. CNNs are inspired in the biology of the visual cortex of
animals. They are great at extracting relevant features out of images and, given that the
type of data used for the realization of this study can be interpreted as an image, the usage
of CNNs suits the type of problem at hand. The first model created only considers image
data as its input and produces a time series of ocean elevations corresponding to a specific

59

Algorithms 2023, 16, 232

time interval in the future. There are a total of 4 CNN-LSTM layers, with pooling operations
in between them that accept the time series of images of future weather conditions. Their
output is then fed to a series of regular densely connected neural network layers where the
final time series output prediction is generated. Training parameters are the same across
the CNN and LSTM models: 50 epochs, 6 samples per batch, and a validation split of 25%.

The second model to be evaluated is based on the LSTM neural network architecture.
It is composed of 50 LSTM units that connect to a series of regular neural network layers
where the output is generated. The training parameters are the same as the CNN model
above. The model will not utilize image data for its input; instead, it will use time series
data corresponding to past conditions of water surface elevation. Using this information,
the model will create a prediction of future conditions.

The third model is a combination of both architectures and can be thought of as
the final forecasting model. The two previously described models are simply a set of
preliminary attempts to judge the capabilities of the architectures to establish a connection
between past ocean surface elevations and weather and future ocean surface elevations. The
final surrogate model combines both architectures to take more information into account
for the generation of storm surge predictions. The model can be classified as a mixed-input
model with two heads. The first head corresponds to the CNN model, using the same
architecture discussed in the CNN-only model and accepting the same time series input of
images. The second head of the model is the LSTM-only model, with the same architecture
and input of time series elevations. Their outputs are then concatenated and fed to a series
of densely connected neural network layers that produce the final output. This final model
was trained on 100 epochs with a smaller batch size of 3 samples to accommodate the size
of the model in the GPU. All three models were trained on the same hardware, an RTX 3060
NVIDIA GPU with 12 GB of VRAM. The training time for the CNN model took around an
hour, while the LSTM model only took 5 min to train; however, the CNN+LSTM mixed-
input model’s total training time was around 7 h. Mixed precision was also leveraged to
achieve speed ups.

To train the respective models, two sets of data were utilized. First, a set to train
the preliminary models to evaluate their performance based on data from a recording
station. Second, a set to train the final surrogate model based on synthetic data generated
with the ocean circulation numerical model. Both sets of data have corresponding water
surface elevation and forecasted weather conditions data. The first, or preliminary training
dataset, contains water surface elevation data coming from the Center for Operational
Oceanographic Products and Services (CO-OPS) Port Isabel recording station in Texas,
with ID: 8779770. The data obtained from the Port Isabel recording station has the same
coverage as the forecasted weather information.

The data obtained from the Port Isabel recording station was leveraged as part of the
initial investigation into the feasibility of predicting storm surges with the LSTM and CNN
architectures both separately and combined. As part of a pilot, the Port Isabel recordings
were used to iterate models by tuning the hyperparameters and their architecture to find
the best performance. The best-performing architecture obtained from the Port Isabel pilot
models was used in the first iterations of the final model trained on the synthetic water
surface elevation data. Subsequent iterations changed the size of the model, integrated
mixed precision, and modified training parameters to find the best performance for the
final CNN+LSTM model.

The second set of data used to train the final storm surge model comes from the
execution of numerical model simulations corresponding to each Atlantic hurricane season
from 2008 to 2020. To force the simulations, the forecasted weather information was
used. This provides a training dataset for the surrogate model to learn and replicate the
performance of the numerical simulations. To evaluate the machine learning model, a set
of 10 virtual buoy stations were selected from the numerical model finite element mesh.
These virtual stations correspond to points of interest in the Lower Laguna Madre. The set
of virtual buoy stations and their location can be seen in Table 2.

60

Algorithms 2023, 16, 232

Table 2. Table detailing the locations of virtual buoy stations used in the study.

Name Latitude Longitude Numerical Model Mesh ID

South Padre Island (SPI) 26.0854 −97.1562 42195

Laguna–SPI 26.0862 −97.2007 59162

Ship Channel 26.0423 −97.2071 61388

Laguna Heights 26.0854 −97.2518 55382

Laguna Vista 26.1007 −97.2815 52698

Port Isabel 26.062 −97.215 60551

Port Mansfield Inside 26.5588 −97.4201 5684

Port Mansfield Outside 26.564 −97.2593 10629

Arroyo Colorado Inside 26.3616 −97.3266 29783

Arroyo Colorado Outside 26.3814 −97.1979 18356

To better visualize the location of the stations, a map of the Lower Laguna Madre with
the virtual stations can be seen below in Figure 3.

Figure 3. Map for the location of the 10 virtual buoy stations in the study.

61

Algorithms 2023, 16, 232

5. Results

Two different sets of results are presented. First is the preliminary set of results which
corresponds to three different models trained on data recorded by the single Port Isabel
station. The first model only utilizes weather information and CNNs to preform storm
surge prediction; it is expected that these results are far from accurate since there is no
input with relevant information regarding tide harmonics, only weather conditions. The
second preliminary model takes into consideration only previous water surface elevations
to perform predictions without the influence of weather information using only LSTM.
This model was expected to outperform the CNN model in at least normal conditions,
since having information about previous tide elevations is sometimes sufficient to predict
future conditions. The third preliminary model corresponds to a CNN+LSTM coupled
model with mixed input. The third model accepts future weather information in the form
of images, as well as past surface elevations as time series data.

The second set of results corresponds to the final machine learning model created for
each of the 10 virtual buoy stations with training and validation data generated by the
numerical model simulations.

To evaluate the performance of the models, the set of scenarios previously discussed
in Section 3 was used.

5.1. Preliminary Modeling Results

These results help to illustrate the influence that the CNN and LSTM architectures
have on the final model. The Root Mean Squared Error (RMSE) metric was used to compare
their performance.

5.1.1. CNN-Only Model

As previously discussed, the CNN model is expected to be the weakest of the three.
This model only takes into consideration weather information, completely ignoring previ-
ous water surface elevations. In the case of June 2008, where no major hurricane occurred,
the results exhibit a pattern that does not follow water surface elevations, as seen in
Figure 4. This period of time was chosen to better illustrate the importance of considering
tide harmonics in the model.

Figure 4. Preliminary CNN-only model prediction for the month of June 2008.

The CNN model does not encounter fluctuations during this month that could hint at a
storm surge event. It defaults to an oscillation pattern to maximize its score. The inability of
the model to predict the elevation might be due to its lack of knowledge of ocean elevations.
It is working, in this case, as a detector of storm surge weather conditions rather than a
storm surge predictor. The ability of the model to detect storm surge triggering conditions
is reflected in Figure 5.

62

Algorithms 2023, 16, 232

Figure 5. Preliminary CNN-only model prediction for the month of July 2008.

Here, the model defaults to a pattern which is disrupted by the detection of a storm
surge triggering weather event. While the estimation is completely inaccurate, the detection
of a storm is reflected as a change in the pattern, which hints at the ability of the model to
detect storms in image data.

5.1.2. LSTM-Only Model

The LSTM preliminary model only considers past water surface elevations for its
prediction and ignores weather information. The month of June 2010 saw the impact of
Hurricane Alex in Mexico. The extent of the storm affected the water surface elevation of
the Laguna Madre, which can be seen in the peak of the blue line in Figure 6.

Figure 6. Preliminary LSTM-only model prediction for the month of June 2010.

It can be seen from the prediction that when the storm hits, the model tries to replicate
what happened but is delayed in its prediction. This is because the model only considers
past elevations to construct its prediction, and since storm surges are produced by weather
fluctuations, the model has no information to anticipate the surge. Subsequently, the model
tries to continue the surge but cannot estimate it accurately.

Even in storm surge conditions, the LSTM architecture outperforms the CNN model
in its overall score but fails to detect the storm as it hits and can only produce a de-
layed response.

5.1.3. CNN+LSTM Model

This model is expected to perform better than both individual models since it is
considering critical information on weather and previous water surface elevations to
produce a prediction. The month of June 2008, when there were no storms hitting the
Laguna Madre area, can be seen in Figure 7.

63

Algorithms 2023, 16, 232

Figure 7. Preliminary CNN+LSTM model prediction for the month of June 2008.

It can be seen from this plot that the model is able to follow the trends closely; however,
it still struggles in some places by underestimating both highs and lows. The CNN+LSTM
model prediction for the month of June 2010 when the impact of Hurricane Alex was felt
in the Laguna Madre is a very good example of the performance of the machine learning
model, as shown in Figure 8.

Figure 8. Preliminary CNN+LSTM model prediction for the month of June 2010.

In this case, the model is able to follow the surge correctly but still struggles at some
points where normal conditions were expected. However, as it can be seen in the figures,
the RMSE was reduced from a maximum of 0.1555 in the LSTM-only model in the month
of June 2010 (when Hurricane Alex hit) to 0.0860 during the same period of time in the
preliminary model that combines CNN and LSTM.

5.2. Machine Learning Storm Surge Forecasting Model Results

This set of results was produced by the finalized model trained on the full set of virtual
buoy stations. For each of the five testing scenarios, a sample of four buoy stations is pre-
sented as a scatter plot. The four buoy stations selected represent important socioeconomic
areas in the Laguna Madre.

The results are presented as two separated groups: a group that only considers normal
conditions and a second group that includes storm surge conditions.

5.2.1. Normal Conditions

The predictions of the final CNN+LSTM model during normal conditions in June 2008
can be seen in Figure 9.

64

Algorithms 2023, 16, 232

Figure 9. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of June 2008.

The RMSEs for the four nodes, Port Isabel, South Padre Island, Laguna-SPI, and
Brownsville Ship Channel, during the month of June 2008 are 0.1058, 0.0980, 0.0634, and
0.0990, respectively.

In a similar manner, the RMSE for each virtual buoy station for normal conditions in
the month of June 2020 is 0.0730, 0.0832, 0.0541, and 0.0743. The scatter plot can be seen in
Figure 10 below.

Figure 10. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of June 2020.

5.2.2. Storm Surge Conditions

Hurricane Dolly predictions can be seen in Figure 11. The RMSEs for the different
stations during Hurricane Dolly are 0.1312, 0.1632, 0.0462, and 0.1430 for nodes 60551,
42195, 59162, and 61388, respectively. There is more spread in these predictions; however,
the peak surges observed and predicted do not differ greatly. On average, there is a 0.1183 m
difference between the peak observed and the one predicted.

In the case of Hurricane Alex in 2010, the RMSEs for the four stations that can be seen
in Figure 12 are 0.065, 0.0822, 0.0549, and 0.075, respectively. The model performed much
better during this event than for Hurricane Dolly. The average difference between the
observed and predicted peaks is much smaller compared with that of Dolly, being 0.0422 m.

Finally, for Hurricane Hanna in 2020, the RMSE for each of the buoy stations in
Figure 13 is 0.1142, 0.1105, 0.0835, and 0.1268, respectively. Interestingly, the peak observed
and predicted average difference is −0.0337 m, meaning, the model tended to overestimate
storm surge peaks.

65

Algorithms 2023, 16, 232

Figure 11. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of July 2008.

Figure 12. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of June 2010.

Figure 13. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of July 2020.

For most cases, the model was able to produce better estimations for everyday con-
ditions in comparison with storm surge conditions. Limitations in data availability con-
tributed to these results. Data representative of normal conditions constitute nearly 94%
of the samples, with the rest corresponding to storm surge conditions. The limitation in
data is attributed to the area that the study was conducted in, where, since 2008, around
20 abnormal ocean elevations due to weather were recorded. To improve results without
modifying the model, the amount of samples representative of storm surge conditions must
be increased. To accomplish this, in the field of image recognition, there are a couple of
techniques that allow for the creation of more samples for training. There is no use for these
algorithms for the perturbation of existing gridded weather forecasts, since the information

66

Algorithms 2023, 16, 232

contained in the samples is the result of complex atmospheric phenomena, and without
a numerical model it is not feasible to perturb the information contained in the samples
with traditional image data augmentation algorithms. Nonetheless, the generation of new
samples for the improvement of the described machine learning storm surge model is out
of the scope of this study. Other possible improvements to the model could come from the
input considered which, in essence, is the same type of input used in the numerical model
but transformed into a different format. Perhaps the application of feature engineering
techniques to the features in the input data could yield better results and a different model
architecture that considers a new type of input. Another possible route could be creating
an ensemble of models whose output is averaged, which could be achievable without
changing the underlying architecture of the model or the input.

6. Conclusions

Throughout the set of experiments that were set up for testing the performance of the
model, a very noticeable pattern emerged. The machine learning storm surge forecasting
model created in this study was able to constantly provide an accurate estimation of every-
day conditions with an average RMSE of 0.0813 among the buoy stations presented. Let us
recall that these conditions refer to the absence of any impactful weather event that could
change the water surface elevations from the expected astronomical tide harmonics. That is,
the model was able to capture the harmonic future oscillations from previous observations
while considering normal conditions of winds and pressure. This accomplishment is mainly
due to the presence of the LSTM architecture. Ref. [21] demonstrated that LSTM networks
are capable of predicting tidal levels effectively with superior performance when compared
with other methodologies. Being able to correctly predict tidal levels is imperative to
predicting storm surges, since the oscillation of tides have an additive or subtracting effect
on the final elevations, as it was noted in Section 5.1. Once this baseline was accomplished
during the modeling phase, it was important to build upon it. The next logical step was
to attempt to incorporate weather information into the model. The inclusion of the CNN
architecture improved everyday conditions and allowed for the estimation of storm surge
conditions due to the consideration of input from weather events.

On a more specific note, in the preliminary model results presented in Section 5.1.3,
a view of the overall performance of the final storm surge model and the importance of
the inclusion of both CNN and LSTM architectures can be seen. The result for normal
conditions in the Port Isabel recording station is greatly improved in the CNN+LSTM
preliminary model from Figure 7 when compared directly with the CNN model prediction
from Figure 4, highlighting the importance of the inclusion of the LSTM architecture, as
mentioned. There was a reduction in RMSE from 0.3231 for the CNN-only model to 0.1037
for the CNN+LSTM model. The contribution of the CNN architecture to the final model
is also important. Figure 6 shows a delayed response of the predicted storm surge in the
presence of a storm event and an RMSE of 0.1555. For storm surge conditions, the inclusion
of forecasted weather gridded data as input for the CNN head of the model provides
a considerable improvement not only in peak prediction but in its timing, as it is seen
in Figure 8. This change further reduced the RMSE to 0.0860 during the same period of
predicted time.

In Section 5.2, the prediction of normal conditions and storm surge conditions for
the final model shows an important point. Overall, normal condition predictions have
a maximum RMSE of 0.1058 and an average RMSE of 0.0813. In the case of storm surge
conditions, the maximum RMSE is 0.1632 and the average is 0.0996. From this, we can note
that the predictions for storm surge conditions are worse than for normal conditions in the
final model. This is important, as it shows a limitation in the storm surge forecasting model
presented. However, this limitation in accuracy can be directly attributed to the lack of
storm surge data training samples in comparison with normal conditions. The objective
of the model presented was to be a storm surge forecasting tool, as such, forecasting-type
data were used to train it. These data were obtained from NAM [29] forecasts on winds

67

Algorithms 2023, 16, 232

and atmospheric pressure. This limited the amount of data available, and while there are
big collections of parametric data, such as HURDAT2 [30], they were not used in the study
because the data are generated after an event and not as a forecast, which could not be
directly leveraged in this storm surge forecasting model. Another constraint in data comes
from the focus on the Lower Laguna Madre area. A greater model domain will provide
better data and plentiful storm events to improve the performance of the model. The logical
step is to include a bigger domain and hence more data, which could drive performance
further without changing the underlying model architecture. Another approach is data
augmentation, which would entail generating synthetic samples of storms.

Overall, the model provided a reliable estimation of storm surge peaks, with the
average error between observed and predicted peaks being in the realm of centimeters.
The model also tended to underestimate the storm surge peaks, except for the case of
Hurricane Dolly, where the model overshot the observed peak by about 0.033 cm on average.
Considering the data limitations in this study, a machine learning approach to storm surge
prediction using forecasted weather gridded datasets with the inclusion of CNNs is a viable
approach. As data continue to be collected and generated, the performance of CNN-based
models will continue to improve. This will allow for the possibility of deploying forecasted
weather image-based storm surge forecasting solutions that utilize small computational
resources during prediction.

Author Contributions: Conceptualization, C.D.H., J.H. and D.K.; methodology, C.D.H.; software,
C.D.H.; validation, C.D.H.; investigation, C.D.H.; data curation, C.D.H.; writing—original draft,
C.D.H.; writing—review & editing, C.D.H. and J.H.; visualization, C.D.H.; supervision, J.H., D.K. and
A.O.; project administration, J.H.; funding acquisition, J.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This project was partially funded by the Texas Coastal Management Program, Texas
General Land Office Award Number NA18NOS4190153.

Data Availability Statement: The data is not publicly available due to legal reasons.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blake, E.S.; Landsea, C.; Gibney, E.J. The deadliest, costliest, and most intense United States tropical cyclones from 1851
to 2010 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS NHC 2011, 6. Available online: https:
//repository.library.noaa.gov/view/noaa/8064 (accessed on 10 March 2023).

2. Morss, R.E.; Hayden, M.H. Storm surge and “certain death”: Interviews with Texas coastal residents following Hurricane Ike.
Weather Clim. Soc. 2010, 2, 174–189. [CrossRef]

3. Zachry, B.C.; Booth, W.J.; Rhome, J.R.; Sharon, T.M. A National View of Storm Surge Risk and Inundation. Weather Clim. Soc. 2015,
7, 109–117. [CrossRef]

4. Cutter, S.L.; Johnson, L.A.; Finch, C.; Berry, M. The US hurricane coasts: Increasingly vulnerable? Environ. Sci. Policy Sustain. Dev.
2007, 49, 8–21. [CrossRef]

5. Burleson, D.W.; Rifai, H.S.; Proft, J.K.; Dawson, C.N.; Bedient, P.B. Vulnerability of an industrial corridor in Texas to storm surge.
Nat. Hazards 2015, 77, 1183–1203. [CrossRef]

6. Christian, J.; Fang, Z.; Torres, J.; Deitz, R. Modeling the Hydraulic Effectiveness of a Proposed Storm Surge Barrier System for the
Houston Ship Channel during Hurricane Events. Nat. Hazards Rev. 2015, 16, 04014015. [CrossRef]

7. Dietrich, J.C.; Tanaka, S.; Westerink, J.J.; Dawson, C. Performance of the unstructured-mesh, SWAN + ADCIRC model in
computing hurricane waves and surge. J. Sci. Comput. 2012, 52, 468–497. [CrossRef]

8. Jelesnianski, C.; Chen, J.; Shaffer, W.; Gilad, A. SLOSH-A hurricane storm surge forecast model. In Proceedings of the OCEANS
IEEE Conference, Washington, DC, USA, 10–12 September 1984; pp. 314–317.

9. Li, J.; Nie B. Storm surge prediction: Present status and future challenges. Procedia IUTAM 2017, 25, 3–9. [CrossRef]
10. Matsumoto, J. User’s Manual for the Texas Water Development Board’s Hydrodynamic and Salinity Model: TxBLEND; Technical Report

Texas Water Development Board: Austin, TX, USA, 1993.
11. Cheung, K.F.; Phadke, A.C.; Wei, Y.; Rojas, R.; Douyere, Y.J.-M.; Martino, C.D.; Houston, S.H.; Liu, P.L.-F.; Lynett, P.J.;

Dodd, N.; et al. Modeling of storm-induced coastal flooding for emergency management. Ocean Eng. 2003, 30, 1353–1386.
[CrossRef]

12. Chen, W.B.; Liu, W.C.; Hsu, M.H. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model
and artificial neural network model. Nat. Hazards Earth Syst. Sci. 2012, 12, 3799–3809. [CrossRef]

68

Algorithms 2023, 16, 232

13. Mosavi, A.; Ozturk, P.; Chau, K.-W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536.
[CrossRef]

14. Al Kajbaf, A.; Bensi, M. Application of surrogate models in estimation of storm surge: A comparative assessment. Appl. Soft
Comput. 2020, 91, 106184. [CrossRef]

15. de Oliveira, M.M.F. Neural network model to predict a storm surge. J. Appl. Meteorol. Climatol. 2009, 48, 143–155. [CrossRef]
16. Kim, S.W.; Lee, A.; Mun, J. A surrogate modeling for storm surge prediction using an artificial neural network. J. Coast. Res. 2018,

85, 866–870. [CrossRef]
17. Kim, S.W.; Melby, J.A.; Caraballo, N.C.N.; Ratcliff, J. A time-dependent surrogate model for storm surge prediction based on an

artificial neural network using high-fidelity synthetic hurricane modeling. Nat. Hazards 2015, 76, 565–585. [CrossRef]
18. Lee, T.L. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Eng.

Appl. Artif. Intell. 2008, 21, 63–72. [CrossRef]
19. Sahoo, B.; Bhaskaran, P.K. Prediction of storm surge and coastal inundation using Artificial Neural Network–A case study for

1999 Odisha Super Cyclone. Weather Clim. Extrem. 2019, 23, 100196. [CrossRef]
20. Sztobryn, M. Forecast of storm surge by means of artificial neural network. J. Sea Res. 2003, 49, 317–322. [CrossRef]
21. Yang, C.H.; Wu, C.H.; Hsieh, C.M. Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting. IEEE Access

2020, 8, 159389–159401. [CrossRef]
22. Smith, J.M.; Kennedy, A.B.; Westerink, J.J.; Taflanidis, A.A.; Cheung, K.F. Hawaii hurricane wave and surge modeling and fast

forecasting. Coast. Eng. Proc. 2012, 1, management.8. [CrossRef]
23. Bezuglov, A.; Blanton, B.; Santiago, R. Multi-output artificial neural network for storm surge prediction in north carolina. arXiv

2016, arXiv:1609.07378.
24. Krenker, A.; Bester, J.; Kos, A. Introduction to the artificial neural networks. In Artificial Neural Networks: Methodological Advances

and Biomedical Applications; InTech: London, UK, 2011; pp. 1–18.
25. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a

back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404.
26. Krizhevsky, A. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2017, 60, 84-90.

[CrossRef]
27. Davila, S.E.; Hernandez, C.D.; Flores, M.; Ho, J. South Texas coastal area storm surge model development and improvement.

AIMS Geosci. 2020, 6, 271. [CrossRef]
28. User’s Manual-v53-ADCIRC. Available online: https://adcirc.org/home/documentation/users-manual-v53/ (accessed on 21

August 2019).
29. National Centers for Environmental Prediction; National Weather Service; NOAA; U.S. Department of Commerce. NCEP North

American Mesoscale NAM 12 km Analysis; NCAR: Boulder, CO, USA, 2015.
30. Landsea, C.W. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather. Rev. 2013, 141,

3576–3592. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

69

Citation: Bickel, S.; Goetz, S.;

Wartzack, S. Detection of Plausibility

and Error Reasons in Finite Element

Simulations with Deep Learning

Networks. Algorithms 2023, 16, 209.

https://doi.org/10.3390/a16040209

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 20 February 2023

Revised: 3 April 2023

Accepted: 7 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Detection of Plausibility and Error Reasons in Finite Element
Simulations with Deep Learning Networks

Sebastian Bickel *, Stefan Goetz and Sandro Wartzack

Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
goetz@mfk.fau.de (S.G.); wartzack@mfk.fau.de (S.W.)
* Correspondence: bickel@mfk.fau.de

Abstract: The field of application of data-driven product development is diverse and ranges from
requirements through the early phases to the detailed design of the product. The goal is to consistently
analyze data to support and improve individual steps in the development process. In the context
of this work, the focus is on the design and detailing phase, represented by the virtual testing of
products through Finite Element (FE) simulations. However, due to the heterogeneous data of a
simulation model, automatic use is a big challenge. A method is therefore presented that utilizes the
entire stock of calculated simulations to predict the plausibility of new simulations. Correspondingly,
a large amount of data is utilized to support less experienced users of FE software in the application.
Thus, obvious errors in the simulation should be detected immediately with this procedure and
unnecessary iterations are therefore avoided. Previous solutions were only able to perform a general
plausibility classification, whereas the approach presented in this paper is intended to predict specific
error sources in FE simulations.

Keywords: deep learning; machine learning; finite element simulation; plausibility checks; convolutional
neural networks

1. Introduction

The systematic analysis of data is increasingly established in the product development
process and referred to as data-driven product development [1–3]. The range of application
is broad, starting at the requirements and continuing through the early phases to the
detailed specification of the product. The fundamental principle is the consistent analysis
of data to support and improve dedicated (sub-)steps. According to [1], the procedure can
be divided into dataset, knowledge base, data-driven method, and the design process step.
For each stage, the possibilities are highly dependent on the associated constraints.

In the context of this paper, the focus is on the design and detailing phase, especially
on the virtual testing of the products with Finite Element simulations. Due to the hetero-
geneous data in a simulation model, consisting of input (3D geometry, load cases, surface
meshes, etc.), model (mesh, solving methods), and output data (results, reports, etc.), the
automatic use of this data is a major challenge [4,5]. An approach for reusing FE simulations
was developed by [6], which allows for the retrieval of specific simulations via a database
system. As a result, only certain simulations are reused, not the entire pool of calculated
simulations. The large amount of data is normally only kept for legal purposes but should
be utilized to enable a system to predict the plausibility of new simulations. The aim is to
support less experienced users of FE software in their application by directly identifying
obvious errors in the simulation and thus avoiding unnecessary iterations. While previous
solutions were only able to make general plausibility classifications, the approach presented
here targets the prediction of specific error sources. The challenge is to define a suitable
transformation method for the simulation data and train a model that is able to predict
error sources with high accuracy.

Algorithms 2023, 16, 209. https://doi.org/10.3390/a16040209 https://www.mdpi.com/journal/algorithms
71

Algorithms 2023, 16, 209

1.1. State of the Art

The intention to support users in the application of FE software has been present in the
academic landscape for a long time. A very early knowledge-based system was presented
by [7] in the late 1980s. With the help of the SACON (Structural Analysis CONsultant)
system, the FE calculation of Boeing 747 wings could be improved and access for less
experienced engineers was facilitated. Another analysis tool that enhances FE simulation
with knowledge-based engineering (KBE) was introduced by [8], with the aim of supporting
set up of the FE simulation through knowledge databases. The system was demonstrated
with aluminum draw bending components as an example.

In addition to knowledge-based approaches, the use of Machine Learning (ML) tech-
niques in combination with FE simulations has also become popular for facilitating FE
simulation tasks. To improve material generation, an approach was presented by [9] that as-
sists the modeling of materials through evolutionary polynomial regression. The approach
was integrated into the existing FE simulation process and tested for linear elastic and
elastic–plastic material models. The preparation of geometry, a sub-step of preprocessing,
can also be optimized by Machine Learning methods. For example, [10] developed a
method that detects different ribbon features in components, which enables high-quality
meshing of these geometric features. In addition to the recognition, a decomposition into
individual areas is also essential for generating a suitable mesh. Another preprocessing
upgrade was created from [11], which describes hole detection for mold injection parts. The
identified holes are removed from the parts in a subsequent step to facilitate and accelerate
the meshing of the different mold components. Furthermore, a contribution dealing with
the automatic geometric simplification of components was created by [12]. This approach
relies on geometric primitives for segmentation and following morphological investigations
of the component. The methods generate a simplified surface model for the simulation from
the 3D volume model through dimensional reduction and fitting of the contact surfaces.
The authors of [13] provided another contribution to the automation of the preprocessing
process by building ontologies via text and data mining, which builds the foundation of
the simulation model. In this context, standards or simulation reports serve as the source
of the knowledge base and help to automatically set up the simulation. Depending on
the analysis requirement, the simulation can be set up accordingly, such as by simplifying
bolted connections as beam elements or by modeling them with their threat. Examples
of further applications of Machine Learning in the environment of FE simulations are
given in [14]. In addition to the listed application fields, other areas such as the efficient
optimization of the simulation results and the evaluation of the geometry are also listed.

The presented methods combine assistance to the user with the generation or evalua-
tion of FE simulations. However, these methods [7,8,10,11] only offer solutions for specific
problems or use cases. Other approaches [9,12,13] rely on pre-existing knowledge but do
not utilize existing simulations from older projects. This gap is filled by the projection
method for simulation data developed by [15] and improved in [16].

The objective of this method is to utilize existing simulation data to train a Deep
Learning (DL) model that is subsequently capable of classifying new simulations into
the classes “plausible” and “non-plausible”. The term “plausibility” was defined in the
context of FE simulations by [15] as a simulation that does not contain obvious mistakes
an experienced simulation engineer would recognize. These errors include incorrect loads
such as unit errors for forces (e.g., kN instead of N), meshing of the work piece that is too
coarse, or faulty geometry parameters for components. The meaning of plausibility in the
simulation context is very well described by the English term “likely valid”.

The entire process is shown in Figure 1, starting with the FE simulation and resulting
in a classification result. Before a Machine Learning model is trained, a dataset must be
created, which consists of the prepared simulations and a corresponding label. Labeling of
the simulations should be performed by experienced simulation experts [17]. A parameter
study of FE simulations is an effective method for obtaining an adequate number of
simulations. After training and examination of the model, it can be employed for the

72

Algorithms 2023, 16, 209

classification of new simulations. For this purpose, new simulations must undergo the
same preparation process to be classified as “plausible” and “non-plausible”.

Figure 1. Overview of the Convolutional Neural Network (CNN)-based plausibility check method
with example matrices according to [15,16].

In the first step (data preparation), the method uses the projection of points onto
a detector sphere to convert the simulation input and results into matrices. In contrast
to the unordered simulation data, the matrices are uniformly sized and hence suitable
as input for a Neural Network (NN). For conversion of the whole FE simulation into
matrices, different point clouds (bearing, loads, mesh, and results) are necessary. The
transformation is performed with a projection of nodes onto a detector sphere, which is
subdivided into different areas similar to the longitudes and latitudes of a globe. The fields
are called pixels and correspond to the respective matrix input. The number of pixels can
be chosen independently (for example, 10,000 pixels results in a 100 × 100 matrix). Detailed
calculation of the detector sphere and node projection is explained in more depth in [16]
and illustrated in Figure 2 with its main steps.

Figure 2. Process steps of the projection method for generating the node matrix according to [15,16].

After projection of the points, the detector sphere is turned into a matrix, similar to
transforming a globe into a map. Since the inputs and results of the FE simulation are
node-bound, they can be transferred into matrices, allowing the entire simulation to be
uniformly transferable. Consequently, different matrices can be created for one simulation,
which are arranged channel-wise (comparable to RGB images). The choice of matrices is
dependent on the simulation and the objective pursued.

These matrices allow for the training of a Machine Learning model that predicts
the two classes “plausible” and “non-plausible”. Within this contribution, the aim is to
investigate whether a differentiated detection of the cause of the simulation errors is also
achievable. For this purpose, it is necessary to examine which classification approach can
fulfill the stated goal. Therefore, the methodical background for classification and Deep
Learning is presented in the next section.

73

Algorithms 2023, 16, 209

1.2. Methodical Background

The categorization of Machine Learning algorithms strongly depends on the learning
category. According to [18–20], a distinction is typically made between supervised, unsu-
pervised, and reinforcement learning. The classification of objects falls under supervised
learning since a labeled dataset must be available. In contrast to regression, where discrete
numerical values are determined, classification predicts previously defined categories, as
described in [21,22]. In [23,24], the classification task is further divided into the number of
labels per input value. If there are only two possible classes, it is called a binary classifier.
A multiclass application occurs when there are several possible classes per input, but only
one result label. When multiple classes are possible for one input value, this is termed a
multilabel classifier. Figure 3 shows the mentioned distinction graphically.

Figure 3. Comparison of different classification approaches according to [23,24] with positive classifi-
cation results marked in green.

The plausibility detection presented earlier falls under the category of binary classifiers.
To classify multiple new error classes, different approaches are feasible. A multilabel
classification is performed by converting the classification into a regression task. Each
class is converted into numerical values between 0 and 1, resulting in a vector instead
of a label for each sample. Subsequently, the vector is determined via the regression
algorithm. Afterwards, a threshold value (e.g., 0.5) is used to determine whether the
input can be assigned to a class or not. The adaptation of multiclass classification is
also an option; however, in this case, the dataset must be supplemented with additional
labels. This is necessary to ensure that all label combinations are included in the dataset.
With this adjustment of the dataset, multilabel classification is a viable option afterwards.
Binary classifiers can also be modified for the task of multilabel classification. In this case,
each binary classifier holds one label; thus, multiple models must be trained, which are
evaluated afterwards.

A special category in the field of Machine Learning is Deep Learning, which is often
linked to the application of Neural Networks [20,25–27]. It differs from classical Machine
Learning in the number of layers and feature generation. In a classic ML model, the
developer specifies the model features. In contrast, a Deep Learning model creates them
in the learning phase. In [20], this process is described as automatically breaking down
complicated concepts into more simple ones.

An application of the Deep Learning principle to images is Convolutional Neural
Networks (CNNs), which take human vision as a template. The term “convolutional”
was first introduced by [28] in 1989 and has been associated with this type of network
since then. The structure of a CNN aims to emulate the visual cortex. For this purpose,
different neuron, convolutional, and pooling layers are used to filter information from the
image data.

One of the most famous CNNs is the LeNet of [29], which was published in 1998 to rec-
ognize handwritten letters. As computational power increased and larger datasets became

74

Algorithms 2023, 16, 209

publicly available (e.g., MNIST [29], CIFAR [30], PASCAL VOC [31], or ImageNet [32]), it
was possible to put CNNs to practical and beneficial use. As a result of an image detection
competition in 2012, AlexNet from [33] attracted particular attention due to its results.
In comparison to LeNet-5, AlexNet has more layers and is suitable for higher resolution
images. An even deeper network with 16 layers, accordingly named Vgg16, was presented
by [34] two years later. All previously mentioned CNN models are serial, which allows the
network to pass through all layers in sequence.

According to [35], deeper networks should adapt better to a given task as the parameter
space for adjustment increases, though the achieved accuracy tends to saturate and then
decrease. Multiple paths through the CNN can solve the described problem, which was
implemented through residual blocks in the CNN by [36] and called ResNets. An example
of this new component in a network is displayed on the left in Figure 4.

Figure 4. Example of a residual building block and the Inception module according to [36,37].

Since objects in images can occur in different sizes and matching larger kernel sizes
increases the complexity of the model and computational requirements, the Inception
networks of [37] were developed. The solution is multiple and parallel convolutional
operations with fixed sizes, as depicted on the right side in Figure 4. Furthermore, a
pooling function is performed, and the results of the concurrent operations are then merged
afterwards. This procedure was improved constantly and provided with new updates,
hence it is available in the fourth generation [38].

The authors of [39] published another iteration of this idea under the name Densenet.
In ResNet models, the merging is always performed after one ResNet module, whereas
in Densenet each layer receives the results of all previous layers. An alternative idea to
the ever deeper and linked architectures is demonstrated in the creation of MobileNet
by [40]. The goal was to design a network that computes fast enough to run on mobile
devices. The implementation was achieved through depth-wise separable convolutions,
which drastically reduced the number of free parameters. The procedure of depth-wise
separable convolution consists of depth-wise and point-wise convolution. After the first
version, two more iterations of the idea were published (V2: [41]; V3: [42]).

1.3. Research Gap

After presentation of the current state of the art and the methodological background,
two research questions (RQ) for the plausibility check of FE simulations arise.

RQ1: Is there a multilabel classification framework capable of predicting the specific sources
of errors for different FE simulations?
RQ2: In combination with the classification model, which CNN architecture is particularly
suitable for detecting the causes of errors?

75

Algorithms 2023, 16, 209

These questions are intended to show whether the detection of specific faults in FE
simulations is possible without creating a purely application-specific solution.

2. Methodical Approach

In order to provide conclusive answers to the questions raised, an overview of the
planned examinations is presented. Overall, three different influencing factors are relevant
to the general investigation: the classification realization, the dataset, and the CNN architec-
ture. All three of these divisions have different influencing parameters that affect the overall
result. The objective of the experiment is always the prediction of the plausibility cause,
whether it is due to a faulty mesh, wrong load values, or unrealistic geometry parameters.
Figure 5 provides an overview, and the following subsections present the different parts in
more detail.

Figure 5. Overview of the relevant experiment parameters.

2.1. Classification Structure

First, the realization of the multilabel classification is explained in greater depth. Two
implementation ideas were developed based on the theoretical knowledge from Section 1.2
and are shown schematically in Figure 6. The first concept applies several binary classifiers,
each of which predicts one specific class. These consist of a CNN for classification and a
dataset extracted from the entire simulation pool. In contrast, the second model uses a
conversion of the problem into a regression model. For this purpose, the CNN structure is
adapted correspondingly by replacing the softmax and classification layers with sigmoid
and cross-entropy loss layers. For this application, the dataset does not require any further
processing. The choice of CNN architecture is independent of the selected execution,
although the binary classification theoretically offers the advantage of using different CNN
models for each classifier.

The third possibility, adaptation of the multiclass classification, was not pursued
further since all combinations must be defined as classes, which would correspond to eight
(23) labels. As a result, very few simulations can be assigned to some classes, such as in a
the category in which all three plausibility causes are true. Furthermore, this procedure
would become more and more complex to handle when adding further classes, since the
number of new necessary classes scales with input classes to the power of two.

76

Algorithms 2023, 16, 209

Figure 6. Comparison of multilabel classification approaches.

2.2. Database

In order to test and analyze the new approach, a large dataset with a sufficient number
of simulations is necessary. Currently, only structural mechanics simulations with compo-
nents are considered. The dataset includes already calculated simulations from previous
publications [16,43]. The general structure of the entire dataset is organized with the help of
the Opitz coding system [44]. The first digit of the code was selected as the distinguishing
feature and the aim was to cover the existing categories as broadly as possible. The result
with the corresponding simulation parts is listed in Table 1. The variables representing ro-
tatory components stand for the length (L) and the diameter (D), while for the non-rotatory
ones the maximum dimensions are sorted in all three directions in space and defined with
A as the highest value and C as the lowest value.

Table 1. Categorization of the simulation parts in accordance with the Opitz coding system [44].

Rotatory Non-Rotatory

L/D < 0.5 0.5 < L/D < 3 L/D ≥ 3 A/C > 4 A/B ≤ 3 & A/C ≥ 4 A/B ≤ 3 A/B ≤ 3 & A/C < 4

Vehicle rim Crankshaft Inliner frame Brake lever Mountain bike
rocker

In total, five components from different applications and domains are integrated into
the entire dataset, all displayed in Figure 7. All simulations were calculated with parametric
CAD models using Ansys Workbench (version 19.2 and 2021 R2). For generation of the
results, parameter studies were performed with d-optimal experimental designs (DOE) for
the different simulations [45]. After successful calculation of the FE simulation, an APDL
script saves the results as a text file, including stresses, deformations, boundary conditions,
and the general mesh.

77

Algorithms 2023, 16, 209

Figure 7. Overview of the different simulation setups.

The simulations were built using real loading conditions (inliner frame or mountain
bike rocker) or information from the literature (crankshaft [46,47], brake lever [48], or car
rim [49,50]). An overview of the various components and simulation setups is shown in
Figure 7, with more detailed information on the simulations listed in [16,43].

For all simulations, the element size of the mesh, the load values, and the geometric
variables of the component were used as parameters. These all affect the non-plausibility of
FE simulations, and the goal is to detect these certain error sources. Since the focus of pre-
vious datasets was not differentiated by plausibility cause, the geometric non-plausibility
cases were not taken into account in all parts. To close this gap and to test how the models
behave with smaller datasets, supplementary studies focusing on geometric plausibility
reasons were created for the vehicle rim and brake lever.

An overview of the calculated simulations and the labeled results is given in Table 2.
In total, over 63,000 simulations are in the dataset, corresponding to a storage requirement
of almost 13 TB. Most simulations were calculated with the bike rocker and the smallest
amount with the crankshaft. In the case of the vehicle rim and brake lever, the second study
for the geometrical error cause is added below in brackets as it was calculated with a second
DOE plan. The sum of the plausible and different non-plausible classes always exceeds the
total number of simulations. This is due to the fact that several reasons for non-plausibility
can exist per simulation. The table also shows that the geometrically non-plausible reason
is the least represented in the data and accordingly forms an imbalanced dataset, which
can thus lead to favoritism toward the majority class from the trained model. Labeling of
each parameter study was performed by a combination of automatic (e.g., rule-based for
high load values) and manual labeling.

78

Algorithms 2023, 16, 209

Table 2. General information about the demonstrative study simulation datasets, with the numbers
of the additional dataset in brackets.

Dataset
Simulation
Numbers

Plausible
Non-

Plausible
Mesh

Non-
Plausible
Geometry

Non-
Plausible

Loads

Storage
Space

Vehicle
rim

9968 3736 2488 0 4992 676 GB

(1816) (80) (792) (1520) (888) 217 GB

Brake
lever

9862 5896 2493 0 1987 574 GB

(1225) (554) (315) (290) (251) 64 GB

Bike
rocker

22,624 12,257 3780 1620 6776 2890 GB

Crankshaft 8640 4800 1440 0 2880 6920 GB

Inliner
frame

8952 4344 2172 0 3252 1650 GB

Whole
dataset

63,087 31,667 13,480 3430 21,026 12,991 GB

Dataset Preparation

After description and explanation of the available simulation pool, the next step is
to demonstrate conversion of the simulation setup and results into matrices. The idea
behind the transformation and arrangement of the matrices is to generate the “DNA of the
simulation” and represent the simulation setup and results. An example transformation
of a simulation is shown in Figure 8 including the input and result variables. With this
investigation, the goal was to test a universal approach, which is the reason for including
as many loads as possible in the matrix collection. The most common types of loads should
be implemented, even if some of them are not part of the simulation pool. Consequently,
26 different matrices are created for one simulation: nodes, fixed translation and rotation in
the X-, Y-, and Z-direction, force, external force and pressure in the X-, Y-, and Z-direction,
moment around the X-, Y-, and Z-axis, the positive and negative displacements in the
X-, Y- and Z-direction, and the equivalent von Mises stress. A resolution of 100 × 100
was chosen to generate the datasets for both classification approaches. The matrices are
prepared through a special method of normalization, which is explained in detail in [16].
Through this process, the boundary conditions and result values are normalized differently
in order to better represent FE simulations.

Figure 8. Example of the resulting matrices for one inliner frame simulation.

One additional advantage of projection conversion is the reduced storage space. After
execution of the method, the matrices for the entire dataset only need about 10.5 GB com-
pared to the original 13 TB. Of course, size depends on the resolution of the transformation,
as the data requirements for higher resolution also increase. For this study, the dataset for

79

Algorithms 2023, 16, 209

each simulation parameter study was split 80/20 into training and testing data. As a result,
10% of the training dataset was selected for validation during training.

2.3. CNN Architecture

After explaining the classification procedure and the dataset, this chapter will focus on
applied CNNs. A total of four architectures were investigated: Vgg19, ResNet, Inception-
V3, and MobileNet-V2. Figure 9 shows a simplified comparison of the architectures. Due
to the size of some architectures, the representation was simplified.

Figure 9. Comparison of different network architectures adapted for channel-wise input of trans-
formed FE simulation matrices.

The Vgg19-derivate uses four groups of sequential convolution layers, each followed
by a ReLU (Rectified Linear Unit) layer. Compared to the original Vgg19 architecture, a
block of convolutional layers was removed due to the lower resolution of the matrix input.
Furthermore, the number of filters per convolutional layer was reduced so a comparable
batch size could be applied for all architectures. The variant derived from ResNet is
shown in a simplified manner in Figure 9 using convUnits, each consisting of a convolution,
batch normalization, ReLU activation, convolution, and batch normalization layer. The
filter size is 3 × 3 for both convolution layers, and the values in the square brackets
describe the number of filters and the stride for the layer. The two skipConv blocks contain
extra convolution layers and are necessary for the results to have the same format when
merging. The third architecture is based on MobileNet-V2 and is illustrated schematically
via convBlock units in Figure 9. A convBlock contains a channel-wise convolution with
6 filters, batch normalization, an ReLU layer, channel-wise convolution with one filter,
batch normalization, an ReLU layer, a channel-wise convolution layer with a fixed number
of filters (matching the input to the convBlock), and a batch normalization layer. A total of

80

Algorithms 2023, 16, 209

17 blocks are arranged one after the other with partial skip paths, modeled after the original
MobileNet-V2. For the adapted Inception-V3 network, the first layers were replaced by
convUnit2 blocks, each composed of a convolution, batch normalization, and ReLU layer,
with the convolution parameters listed in the square brackets. The following inceptBlock
modules are carried over from the original Inception-V3 architecture and contain four
threads each with different convolution, batch normalization, ReLU, and pooling layers, as
shown in Figure 4. Due to the lower resolution of the input, the last two larger inception
blocks were removed from the network.

For all models, the last three layers depend on the classification model. In the case of
binary classification, they are a fully connected layer with two neurons and a softmax and
classification layer. In contrast, in the multilabel instance, a fully connected layer with three
neurons and a sigmoid and cross-entropy loss layer is applied.

The evaluation metric for comparison of the different approaches and models is usually
classification accuracy. This metric is derived from the confusion matrix and is calculated
for the three datasets: the training dataset, validation dataset, and test dataset. A confusion
matrix with the associated variable names is shown in Figure 10, with the variables True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

Figure 10. Confusion matrix for classification tasks according to [51–53].

For a balanced dataset, classifications accuracy is often applied, which can be calcu-
lated according to [52,53]:

accuracy =
TP + TN

TP + TN + FP + FN

However, this metric is not appropriate for the evaluation of imbalanced datasets
since it does not consider the uneven distribution of classes. An alternative is the balanced
accuracy from [51]:

balanced accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
Another metric for imbalanced datasets is the G-Mean (geometric mean) value defined

by [54]:

G − Mean =

√
TP

TP + FN
· TN
TN + FP

Besides the presented metrics, many others have been developed, such as the F-
Measure, the Receiver Operator Curve (ROC), the area under the curve (AUC), the Precision
Recall (PR) Diagram, and the Index of Balanced Accuracy (IBA), which are explained in
detail in [51,54–56].

3. Result Comparison

After explanation of the different classification adaptations and CNN architectures, the
following chapter examines them in further depth using the described evaluation metrics.
All models were trained on the same computational server, which had two AMD EPYC
7643 processors, 256 GB RAM, and two Nvidia A40 (46 GB) graphics cards installed. The
basic set of training parameters is identical for all models, as shown in Table 3. Only the

81

Algorithms 2023, 16, 209

learning rate was adjusted for different models because a uniform rate did not work. Data
was divided into training, validation, and test datasets automatically according to the
72%–8%–20% principle and was performed in the same manner for all datasets and models.

Table 3. Training parameters for the CNN models.

Options Value

Solver Type adam

Mini Batchsize 128

Max. Epochs 40

Validation Frequency 125

Validation Patience 8

Shuffle Once

Learning Rate
Binary

MobileNet: 0.0001
ResNet: 0.000001
Vgg19: 0.00001
Inception: 0.001

Learning Rate
Multilabel

MobileNet: 0.0001
ResNet: 0.000001
Vgg19: 0.00001

Inception: 0.0001

Class distribution for the two variants of training data is shown in Figure 11. The
number of non-plausible classes is identical for both cases, with only the plausible instances
varying. Since only one cause of error is detected in the binary classifiers, the other
two non-plausible cases are still included as plausible. All training datasets consist of
45,444 observations for training. The uneven distribution of classes is particularly evident
in the geometry class. Therefore, the metrics balanced accuracy and G-Mean are applied
for evaluation to account for the non-uniformity of the distribution.

0

10,000

20,000

30,000

40,000

50,000

elementsize loads geometry

N
um

be
ro

fo
bs
er
va
tio

ns

Class distribution for binary model

non plausible plausible

0

5,000

10,000

15,000

20,000

regression

N
um

be
ro

fo
bs
er
va
tio

ns

Class distribution for multilabel model
non plausible (elementsize) non plausible (loads)

non plausible (geometry) plausible

Figure 11. Label distribution for binary and multilabel models.

3.1. Classification Approach

For initial comparison of the classification models, the results of all CNN models
were analyzed for all three classes. The derivatives of Vgg19, ResNet, Inception-V3, and
MobileNet-V2 serve as the CNN models.

The results are shown in the diagram in Figure 12. The training duration of the CNN
models varied between 4 h and 12 h. The plot shows the test results for the error classes
in the binary (Bin) and multilabel (MuL) approaches. The boxplot is composed of all four
CNN architectures, with all detailed results listed in the Appendix A in Tables A1 and A2.

82

Algorithms 2023, 16, 209

The scores for all methods are generally very high, with all results above 0.9. Comparison
of the G-Mean and balanced accuracy values indicates that scatter is lower for the binary
methods over all plausibility causes.

Figure 12. Results for the test dataset with different evaluation metrics for the two classification
approaches.

Analysis of the highest classification results also reveals that the binary and multilabel
variants achieve nearly identical results for the loads and mesh classes. The absolute
differences are very small, in some cases in the third decimal digit. Only in the geometry
class is the higher accuracy of the binary classification visible. In evaluation of the geometry
cause, it is evident that this class was the most challenging in the classification, recognizable
by the high dispersion of both classification variants.

Because of low dispersion and higher accuracy for the geometry class of the binary
classifiers, they will be examined in more detail. The aim is to compare the different CNN
architectures against each other in order to obtain the best results.

3.2. CNN Architecture

The bar chart in Figure 13 compares the calculated results. In general, the G-Mean
values achieved by the respective architectures are very high, and the distribution per class
is low in most cases. It is also evident that the geometry class had the most deviations,
which is due to the imbalance of the dataset. Furthermore, it is visible that the Inception-V3
derivative best classified the loads and geometry. For the plausibility cause mesh size,
ResNet achieved the highest accuracy. The Vgg19 architecture also obtained very high
results in the first two classes, though not for the geometric error reason. Here, MobileNet
could score very high values, whereas it performed worse in comparison to the other
two classes.

Since the Inception network performed the best overall, another study with individual
class weights was carried out. For each binary classifier, individual weights were deter-
mined depending on the class distribution. Afterwards, the networks were trained again
with an adapted learning rate of 0.0005 and the results were compared, which are shown
in the confusion matrix in Figure 14. The G-Mean values achieved are as follows: 0.9930
(Loads), 0.9866 (Mesh), and 0.9978 (geometry).

83

Algorithms 2023, 16, 209

0.92

0.94

0.96

0.98

1

Loads Mesh size Geometry

Ev
al
ua

tio
n
m
et
ri
c

VGG19 ResNet MobileNet Inception V3

Figure 13. Comparison of different CNN architectures in terms of G-Mean metric for plausibility
detection.

Figure 14. Results of the adapted class weights with the Inception-V3 derivate and binary classification.

The results show that accuracy could again be improved by weighted classes but
on a smaller scale, which is inevitable due to the already very high values. Above
all, the mesh class was further enhanced, whereas the other two plausibility causes
marginally worsened.

4. Discussion

After presentation of the obtained results, it can be concluded that both classification
approaches are suitable for the application of specific plausibility cause detection in FE
simulations. This answers the first research question as both presented classification
approaches provide very good results, and principal detection of the cause of the error is
possible with both of them. However, a detailed comparison of the two approaches reveals
the different advantages and disadvantages of the procedures.

The advantage of multilabel classification via an adapted regression model is the
reduced training time since only one model needs to be trained instead of three in the case
of binary classification. Therefore, the model can theoretically be adapted to a new dataset
faster. Furthermore, integration of all three labels into the dataset reduces class imbalance
compared to a plain binary classifier, as can be seen in Figure 11. Nevertheless, training

84

Algorithms 2023, 16, 209

also showed that there was high sensitivity to the appropriate choice of hyper parameters,
which made the training time-consuming in some cases.

In contrast, the advantage of binary classifiers lies in the learning of a specific problem,
which thus allows it to predict that problem with higher accuracy at the expense of training
time. Additionally, they are much more flexible since the CNN architecture can be chosen
specifically for the class. In the case of application as an assistance system for plausibility
checking in industry, new data could be brought into the system more easily because only
the recognition of an error would cause temporarily interruption.

In addition to the multilabel concept comparison, it is noticeable when comparing the
CNN architectures that all networks achieve very good results. However, to answer the sec-
ond research question, the Inception-V3 adaptation achieves especially high classification
results. The other three network types mostly have their strengths in a certain class and
are less capable of detecting the other two. The use of specific class weights resulted in a
further general improvement, which leads to the conclusion that the combination of binary
classifiers with the Inception-V3 network is best suited for the dataset and the application
task at hand.

5. Conclusions and Outlook

In summary, this paper tested multilabel classification approaches with different
networks to predict the specific plausibility cause. For this purpose, a dataset with over
60,000 simulations was prepared and given as input to different CNNs. The achieved
accuracies were reasonably high, which thus allows for the conclusion that a prediction of
more accurate error causes in FE simulations is possible.

The next steps could address the analysis of the input vector in more depth. In this
paper, the matrices were chosen to ensure that the procedure was generally applicable,
although exploring the exact influence of the different matrices on recognition accuracy
would be very interesting. In addition, other network architectures and newer Neural
Network types (such as Visual Transformer [57]) could be adapted and used for classifi-
cation. Furthermore, methods from the field of data augmentation could be applied in
different ways to reduce the imbalance of the classes. Finally, other causes for non-plausible
simulations could be taken into account and the database could be enhanced accordingly.

Author Contributions: Software, conceptualization, methodology, visualization, investigation, re-
sources, data curation, writing—original draft preparation: S.B.; writing—review, conceptualization,
and editing: S.G.; project administration, funding acquisition, supervision: S.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by DFG, grant number WA 2913/47-1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the German Research Foundation for funding this research
under grant number WA 2913/47-1. The authors acknowledge financial support by Deutsche
Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-Nürnberg within the funding
programme “Open Access Publication Funding”.

Conflicts of Interest: The authors declare no conflict of interest.

85

Algorithms 2023, 16, 209

Appendix A

Table A1. All classification results for the binary models and different CNN architectures.

Dataset Binary
Evaluation

Metric

Loads Mesh Size Geometry

Vgg19

0.9875 0.9832 0.9484 G-Mean

0.9875 0.9833 0.9497 Balanced
Accuracy

0.9877 0.9906 0.9960 Accuracy

ResNet

0.9789 0.9859 0.9658 G-Mean

0.9791 0.9859 0.9664 Balanced
Accuracy

0.9848 0.9898 0.9971 Accuracy

MobileNet-V2

0.9789 0.9768 0.9950 G-Mean

0.9789 0.9770 0.9950 Balanced
Accuracy

0.9805 0.9857 0.9976 Accuracy

Inception-V3

0.9944 0.9804 0.9993 G-Mean

0.9944 0.9804 0.9993 Balanced
Accuracy

0.9957 0.9840 0.9987 Accuracy

Table A2. All classification results for the multilabel models and different CNN architectures.

Dataset Multilabel
Evaluation

Metric

Loads Mesh Size Geometry

Vgg19

0.9709 0.9733 0.9262 G-Mean

0.9711 0.9735 0.9290 Balanced
Accuracy

0.9778 0.9828 0.9942 Accuracy

ResNet

0.9795 0.9871 0.9662 G-Mean

0.9797 0.9871 0.9662 Balanced
Accuracy

0.9853 0.9919 0.9676 Accuracy

MobileNet-V2

0.9881 0.9840 0.9788 G-Mean

0.9881 0.9840 0.9790 Balanced
Accuracy

0.9883 0.9871 0.9979 Accuracy

Inception-V3

0.9940 0.9837 0.9916 G-Mean

0.9940 0.9837 0.9916 Balanced
Accuracy

0.9956 0.9948 0.9886 Accuracy

86

Algorithms 2023, 16, 209

References

1. Feng, Y.; Zhao, Y.; Zheng, H.; Li, Z.; Tan, J. Data-driven product design toward intelligent manufacturing: A review. Int. J. Adv.
Robot. Syst. 2020, 17, 1729881420911257. [CrossRef]

2. Briard, T.; Jean, C.; Aoussat, A.; Véron, P.; Le Cardinal, J.; Wartzack, S. Data-driven design challenges in the early stages of the
product development process. Proc. Des. Soc. 2021, 1, 851–860. [CrossRef]

3. Quan, H.; Li, S.; Zeng, C.; Wei, H.; Hu, J. Big Data driven Product Design: A Survey. arXiv 2021, arXiv:2109.11424.
4. Iriondo, A.; Oscarsson, J.; Jeusfeld, M.A. Simulation Data Management in a Product Lifecycle Management Context. In Advances

in Manufacturing Technology XXXI; IOS Press: Amsterdam, The Netherlands, 2017; pp. 476–481.
5. Chari, S. Addressing Engineering Simulation Data Management (SDM) Challenges: How Engineering Enterprises Can Improve Productivity,

Collaboration and Innovation; Cabot Partners Group, Inc.: Danbury, CT, USA, 2013.
6. Yang, X.; Liang, J.; Liao, Y.; Liu, F.; Feng, X.; Wen, Y. Study of Universal Simulation Data Management System. In Proceedings of

the 2009 International Conference on Information Technology and Computer Science, Kiev, Ukraine, 25–26 July 2009; pp. 333–338.
7. Bennet, J.; Creary, L.; Englemore, R.; Melosh, R. SACON: A Knowledge-Based Consultant for Structural Analysis; Stanford Heuristic

Programming Project; Stanford University—Computer Science Department: Stanford, CA, USA, 1979.
8. Johansson, J. Manufacturability Analysis Using Integrated KBE, CAD and FEM. In Volume 5: 13th Design for Manufacturability and

the Lifecycle Conference; 5th Symposium on International Design and Design Education; 10th International Conference on Advanced Vehicle
and Tire Technologies; ASMEDC: Houston, TX, USA, 2008; pp. 191–200.

9. Javadi, A.A.; Mehravar, M.; Faramarzi, A.; Ahangar-Asr, A. An artificial intelligence based finite element method. Comput. Intell.
Syst. 2009, 1, 1–120.

10. Lai, J.-Y.; Wang, M.-H.; Song, P.-P.; Hsu, C.-H.; Tsai, Y.-C. Recognition and decomposition of rib features in thin-shell plastic parts
for finite element analysis. Comput. -Aided Des. Appl. 2018, 15, 264–279. [CrossRef]

11. Song, P.-P.; Lai, J.-Y.; Tsai, Y.-C.; Hsu, C.-H. Automatic recognition and suppression of holes on mold bases for finite element
applications. Eng. Comput. 2019, 35, 925–944. [CrossRef]

12. Boussuge, F.; Léon, J.-C.; Hahmann, S.; Fine, L. Idealized models for FEA derived from generative modeling processes based on
extrusion primitives. Eng. Comput. 2015, 31, 513–527. [CrossRef]

13. Kestel, P.; Kügler, P.; Zirngibl, C.; Schleich, B.; Wartzack, S. Ontology-based approach for the provision of simulation knowledge
acquired by Data and Text Mining processes. Adv. Eng. Inform. 2019, 39, 292–305. [CrossRef]

14. Zimmerling, C.; Poppe, C.; Kärger, L. Virtuelle Produktentwicklung mittels Simulationsmethoden und KI. Lightweight Des. 2019,
12, 12–19. [CrossRef]

15. Spruegel, T.C.; Hallmann, M.; Wartzack, S. A concept for FE plausibility checks in structural mechanics. In Proceedings of the
NAFEMS World Congress, San Diego, CA, USA, 21–24 June 2015.

16. Spruegel, T.C.; Bickel, S.; Schleich, B.; Wartzack, S. Approach and application to transfer heterogeneous simulation data from
finite element analysis to neural networks. J. Comput. Des. Eng. 2021, 8, 298–315. [CrossRef]

17. Bickel, S.; Spruegel, T.C.; Schleich, B.; Wartzack, S. How Do Digital Engineering and Included AI Based Assistance Tools Change
the Product Development Process and the Involved Engineers. Proc. Int. Conf. Eng. Des. 2019, 1, 2567–2576. [CrossRef]

18. Bonaccorso, G. Machine Learning Algorithms, 1st ed.; Packt Publishing Limited: Birmingham, UK, 2017.
19. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386.
20. Goodfellow, I.; Courville, A.; Bengio, Y. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
21. Cleve, J.; Lämmel, U. Data Mining, 2nd ed.; De Gruyter Oldenbourg: Berlin, Germany, 2016.
22. Runkler, T.A. Data Mining: Methoden und Algorithmen Intelligenter Datenanalyse, 1st ed.; mit 7 Tabellen; Vieweg + Teubner:

Wiesbaden, Germany, 2010.
23. Tsoumakas, G.; Katakis, I. Multi-Label Classification. Int. J. Data Warehous. Min. 2007, 3, 1–13. [CrossRef]
24. Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333–359.

[CrossRef]
25. Deng, L. Deep Learning: Methods and Applications. FNT Signal Process. 2014, 7, 197–387. [CrossRef]
26. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron Mark. 2021, 31, 685–695. [CrossRef]
27. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
28. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to

Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
29. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
30. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, USA, 2009.
31. Everingham, M.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
32. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.
33. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
34. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

87

Algorithms 2023, 16, 209

35. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway Networks. arXiv 2015, arXiv:1505.00387.
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015.

38. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

39. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

40. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

41. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

42. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching
for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27
October–2 November 2019.

43. Bickel, S.; Schleich, B.; Wartzack, S. Resnet networks for plausibility detection in finite element simulations. In Proceedings of the
DS 118: Proceedings of NordDesign 2022, Copenhagen, Denmark, 16–18 August 2022; pp. 1–10.

44. Opitz, H. A Classification System to Describe Workpieces; Taylor, A., Translator; Pergamon Press: New York, NY, USA, 1970.
45. Murray-Smith, D.J. Testing and Validation of Computer Simulation Models: Principles, Methods and Applications, 1st ed.; Springer

International Publishing: Cham, Switzerland, 2015.
46. Van Basshuysen, R. Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven, 7th ed.; mit 1804 Abbildungen

und mehr als 1400 Literaturstellen; Springer Vieweg: Wiesbaden, Germany, 2015.
47. Kohler, E. Verbrennungsmotoren: Motormechanik, Berechnung und Auslegung des Hubkolbenmotors, 4th ed.; Friedr. Vieweg & Sohn

Verlag: Wiesbaden, Germany, 2006.
48. DIN. Cycles—Safety Requirements for Bicycles—Part 4: Braking Test Methods; German Institute for Standardization e.V.: Berlin,

Germany, 2014.
49. Wang, L.; Chen, Y.; Wang, C.; Wang, Q. Fatigue Life Analysis of Aluminum Wheels by Simulation of Rotary Fatigue Test. SV-JME

2011, 57, 31–39. [CrossRef]
50. Jape, R.K.; Jadhav, S.G.; Student, M.T. CAD modeling and FEA analysis of wheel rim for weight reduction. Int. J. Eng. Sci. Comput.

2016, 6, 7404–7411.
51. Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The Balanced Accuracy and Its Posterior Distribution. In Proceedings

of the 2010 20th International Conference on Pattern Recognition, Washington, DC, USA, 23–26 August 2010.
52. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
53. Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv

2020, arXiv:2010.16061.
54. Branco, P.; Torgo, L.; Ribeiro, R. A Survey of Predictive Modelling under Imbalanced Distributions. arXiv 2015, arXiv:1505.01658.
55. García, V.; Mollineda, R.A.; Sánchez, J.S. Index of Balanced Accuracy: A Performance Measure for Skewed Class Distributions; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 441–448.
56. Sun, Y.; Wong, A.K.C.; Kamel, M.S. Classification of imbalanced data: A review. Int. J. Patt. Recogn. Artif. Intell. 2009, 23, 687–719.

[CrossRef]
57. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

88

Citation: Stallmann, D.; Hammer, B.

Unsupervised Cyclic Siamese

Networks Automating Cell Imagery

Analysis. Algorithms 2023, 16, 205.

https://doi.org/10.3390/a16040205

Academic Editor: Xiang Zhang and

Xiaoxiao Li

Received: 27 February 2023

Revised: 29 March 2023

Accepted: 4 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Unsupervised Cyclic Siamese Networks Automating Cell
Imagery Analysis

Dominik Stallmann * and Barbara Hammer *

Faculty of Technology, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
* Correspondence: dstallmann@techfak.uni-bielefeld.de (D.S.); bhammer@techfak.uni-bielefeld.de (B.H.)

Abstract: Novel neural network models that can handle complex tasks with fewer examples than
before are being developed for a wide range of applications. In some fields, even the creation of a few
labels is a laborious task and impractical, especially for data that require more than a few seconds to
generate each label. In the biotechnological domain, cell cultivation experiments are usually done
by varying the circumstances of the experiments, seldom in such a way that hand-labeled data of
one experiment cannot be used in others. In this field, exact cell counts are required for analysis, and
even by modern standards, semi-supervised models typically need hundreds of labels to achieve
acceptable accuracy on this task, while classical image processing yields unsatisfactory results. We
research whether an unsupervised learning scheme is able to accomplish this task without manual
labeling of the given data. We present a VAE-based Siamese architecture that is expanded in a cyclic
fashion to allow the use of labeled synthetic data. In particular, we focus on generating pseudo-
natural images from synthetic images for which the target variable is known to mimic the existence
of labeled natural data. We show that this learning scheme provides reliable estimates for multiple
microscopy technologies and for unseen data sets without manual labeling. We provide the source
code as well as the data we use. The code package is open source and free to use (MIT licensed).

Keywords: Siamese networks; synthetic data; cyclic learning; unsupervised learning; deep learning;
data augmentation; single cell cultivation; bioimage analysis

1. Introduction

Single cell cultivation is one of the most important steps in single cell analysis [1]
and represents an essential means to better understand cell functionality from cellular and
subcellular perspectives for diagnosis and therapy, and microfluidic devices constitute
fast-rising systems for efficient single cell cultivation. However, the analysis of microfluidic
single cell cultivation (MSCC) microscopic images is usually performed manually or sup-
ported by technological aiding systems, but requires the work of human experts because of
the high spatial and temporal resolution and a variety of visual characteristics that make
automation difficult. Flexible image processing pipelines have proven their relevance for
certain setups, but are limited to specific scenarios and partially interactive, as the fully
automated analysis of non-adhesive cells in the presence of the varying light conditions
and various artifacts of microscopic images is challenging [2].

In recent years, the potential of deep convolutional architectures for automated and
flexible image analysis has been demonstrated in this area, but training procedures for
current deep architectures rely, at least partially, on manually labeled training data [3,4]. A
manual procedure is not practical in many applications, creating a demand for effective,
fully automated solutions [5]. Therefore, the particular focus of this work is to eradicate the
human expert requirement for annotations completely.

Henceforth, we will focus on a relevant generic learning task for MSCC image analysis:
the cell count is used as the target variable, which has to be estimated reliably at any
point in time of the experiment and is chosen mainly for two reasons: (1) it allows for the

Algorithms 2023, 16, 205. https://doi.org/10.3390/a16040205 https://www.mdpi.com/journal/algorithms
89

Algorithms 2023, 16, 205

extrapolation of other important attributes of the experiment, such as the growth delta over
the last few time segments, as well as the overall growth rate, and (2) as a regression task,
it is known to be especially difficult to be estimated accurately for unsupervised training
methods, i.e., it can be inferred that tasks that are generally considered more simple, such
as classification or segmentation, can also be solved with the methodology presented in
Section 3.

In the following, we will aim for a solution that does not rely on any manually
generated labels. Instead, we will rely on automatically generated artificial labels, i.e., use
“fully automated supervision”. To prevent misunderstandings, unsupervised deep learning
would, in its most exclusive definition, not be able to solve the addressed task, since the
lack of labels means that the regression loss cannot be calculated. Therefore, we refer to
“unsupervised learning” for this task as the absence of manually curated labels for the
experimental data. There needs to be a computable loss on the target variable to achieve
actual training, which, in our case, can explicitly and efficiently be defined, based on the
available symbolic semantics for auxiliary synthetic data.

Even self-training architectures such as Generative Adversarial Networks (GAN) and
Variational Autoencoders (VAE) can only generate losses on predictions and reconstructions
of the data, not on the target variable. The Siamese-like architecture described later will
therefore not only train on natural data, created by the biotechnological experiments,
but also on a collection of synthetic auxiliary data with automatically generated labels
and therefore known ground truth. By training this architecture with a special learning
scheme, it is not only possible to perform regression learning on the target variable, but
also to achieve accuracy that approaches or, in some cases, exceeds the state of the art (see
Section 4).

While our own previous work [4] will serve as a basis for the later comparison of
results, we would like to clarify the differences between that work and this one in terms
of approaches and goals. The novelty of [4] is state of the art accuracy in the domain of
semi-supervised cell counting, achieved by transferring a pre-trained model to another
type of microscopy data. Due to optimizations in the transfer process, the architecture
presented there has also slightly outperformed the previous state of the art. In this work,
we instead focus on unsupervised training with the modification of generating pseudo-
synthetic images from natural images (and vice versa) in order to use the well-trained
regressor that is accustomed to synthetic data representations. The earlier work would not
be able to achieve meaningful regression for the fully unlabeled natural data used in this
work because the loss of the regressor would not be defined for natural data.

Figure 1 shows examples from the MSCC experiments that we address in the following.
It can be seen that lab-on-a-chip technology is used and that the data have a number of
visual aspects that make them difficult for classical image processing solutions and non-
specialized machine learning models to process. Namely, these are as follows:

• Smudges, in some cases larger than cells. Simple background filtering does not work,
as these can move during the experiment.

• Ongoing cell divisions (Figure 1 right), making it unclear in some cases what the actual
correct target variable would be, but giving a meaning to comma values as they can
represent an ongoing division.

• Varying contrast and light conditions.
• Dying, appearance, and vanishing of cells.
• Overpopulation of the cell chamber or the end of an experiment due to escape of the cells.
• Overlapping and close adherence of cells.
• Continuous changes in the cell membrane and inner organelles, changing the orienta-

tion of cells, with variations in shape and perceived size.

90

Algorithms 2023, 16, 205

Figure 1. Samples from the data sets of CHO-K1 suspension growth. Bright-field microscopy image
on the right, phase-contrast microscopy image on the left. Smudges on the chip can be seen in the
form of faint, small circles within the fluid solution. The scale bars do not appear in the working data.

In this article, we propose a novel training scheme for a Siamese deep learning model
that can optimally combine information provided by automatically generated synthetic data
and real images such that no manual labeling of natural data is required. The contribution
and novelty of this work are as follows:

• We achieve high prediction preciseness on the target variable where the state of the
art fails to do so.

• We build an effective translation learning pipeline and show, on multiple microscopy
data sets, that this pipeline is stable and reliable throughout this domain.

• We gain additional insight into the inner state of the neural network by performing
translations twice (cycling), leading to critical parts of the architecture to optimize
the network for the domain without overfitting to the specific data, thus contributing
to the understanding of deep neural network representations, especially for Siamese
networks [6].

In the following sections, we first give an overview of the current state of the art in
this research field and take a brief look at previous works in this field of application. In
Section 3, we address the underlying machine learning challenge and present our deep
Siamese network architecture in detail. Then, the details of the proposed learning procedure
are explained and it is analyzed how the unique architecture used affects the learning
procedure. Thereafter, Section 4 contains the evaluation for real data sets and ablation
studies, as well as the comparison to state of the art alternatives and baselines. Lastly, in
Section 5, a discussion followed by a conclusion (see Section 6) completes the contribution.

2. Related Work

In the last few years, convolutional deep neural networks have become the state of the
art for image processing that does not require human labor and for the majority of other
computer vision tasks [7]. Especially for the task of counting in images, solutions have
been worked on for over a decade now (see [8]). Applications in the biomedical domain
have become common [9] and cell tracking approaches in images have been an ongoing
field of study in recent years [10]. However, the optimization of such methods is often
time-consuming and remains prone to errors.

Ulman et al. [11] propose a benchmark suite to compare different imaging technologies
and extrapolate the strengths and limitations of different approaches to cell tracking, none
of which have been determined as a final solution on this task, even the ones including
interactions among bioimage analysis experts [12] or the distributed work of manual
labeling [13]. Schmitz et al. [14] show the demand for fleshed out solutions by evaluating

91

Algorithms 2023, 16, 205

the currently used state of the art tools as insufficient for heterogeneity studies of the
CHO-K1 mammalian cells that are present in the given data.

In addition, Brent et al. [15] used transfer learning to predict microscope images
between different imaging technologies, but without sufficiently accounting for the wide
variety of cell images and features. The approach by Falk et al. [16] provides one of the
few toolboxes for cell tracking, albeit for adherent rather than suspension cells. It allows
for transfer learning based on given models and novel data, whereby data set enrichment
technologies limit the number of required samples.

In contrast to adherent cell lines, where already reported single cell cultivation stud-
ies [17,18] promise success, we address the more complex scenario of suspension cells
with all their visual characteristics listed above, rendering analysis tools of adherent cells
deficient. Earlier works have overcome some of the challenges, such as sufficient counting
accuracy, by interactive design [19], or detecting overlapping instances in such imagery [20],
but they are not yet sufficient for the unsupervised task at hand. Different contrast and light
conditions have been addressed by Chen et al. [21]. The adherence of cells and overlaps
have been addressed by Xie et al. [22], but additional visual features complicate the process
and reduce the applicability of previous solutions.

Siamese networks have been used for a variety of tasks as they can help to facilitate few-
shot learning or clustering of the data space by generalizing from unlabeled data. This is
done in [23] for genome sequencing and in [24] for text data. These presented architectures
are, however, specific to their domains and not applicable to image processing.

There are also Siamese networks that do work in the image processing domain, such
as [25], but they focus on change detection as a binary segmentation, suitable for tracking
single cells, but not for the regression task at hand. Ref. [26] uses Siamese networks and
data augmentation, similar to our approach, but the training is supervised and addresses a
four-class classification task. In [27], similar data augmentation and Siamese networks were
used and the 20-class classification is closest to the regression task that we address, but the
networks used are non-generative CNNs and the data are not used cyclically, rendering it
not applicable for our work.

Furthermore, there are no deep learning models that easily and efficiently solve
the task, as shown in [3] by comparing the recent state of the art EfficientNet [28] and
classical image processing such as Watershed methods [29], and transfer models such
as BigTransfer [30] are not reliably able to generate good cell counts by transferring a
pretrained model to this domain, as can be seen in our earlier work [4].

Deepak Babu et al. [31] achieved acceptable accuracy for the regression task of crowd
counting, a similar task; however, the training was semi-supervised. More generalized
few-shot and even zero-shot learning has been done by Schönfeld et al. [32] by using
aligned VAEs, achieving high precision, but only on the few-shot tasks, not the zero-shot
ones. In our approach, we will fully focus on the idea of the integration of synthetic
data, which can itself harvest its semantically meaningful generation, to avoid any addi-
tional manual labeling of natural data for training, therefore rendering even these related
results insufficient.

Synthetic data have already been used in [33,34], but for natural scene and text recogni-
tion, or computer vision tasks more generally, mostly natural domains where powerful deep
generative models can build on massive amounts of publicly available data. In contrast,
we are interested in synthetic data that are prone to a reality gap due to the limited avail-
ability of natural data. In semi-supervised learning, models are often enriched by easily
available unlabeled data that describe the underlying input distribution [35]. A view into
when unlabeled data can improve the learning rate has been taken by Göpfert et al. [36],
suggesting the usage of additional unlabeled data, be it synthetic or natural, as beneficial,
confirmed for this case in Section 4. The impact of variability in auxiliary training data on
convolutional networks specifically was tested in [37], but for 3D head reconstruction, not
intrinsically usable in this domain.

92

Algorithms 2023, 16, 205

The weight sharing used in our particular learning scheme was used previously to
decrease network sizes and improve test and verification performance [38]. In Section 3.3,
we show details on the specialized usage of this technique for our architecture.

Lastly, Uniform Manifold Approximation and Projection (UMAP) [39] is used to
project the inner state of the network into a two-dimensional representation, allowing us to
obtain a glance at the internal state of the latent representation and insight into how the
data are processed. In Section 6, such a UMAP is discussed for interpretation.

3. Methodology

3.1. Natural Data

Image data applied in this study were obtained by MSCC of mammalian suspension
cells, as introduced before in the literature [40]. The CHO-K1 cells were cultivated in
polydimethylsiloxane (PDMS) glass chips. Perfusion of the device constantly provided
the cultures with nutrients. An automated inverted microscope performed the live cell
imaging, taking images of the relevant positions on-chip every 20 min. The data used in
this work are split into two major parts according to the two microscopy technologies,
namely bright-field microscopy and phase-contrast microscopy, abbreviated as BF and PC,
which were used for the analysis of the architecture. Figure 2 shows example data from
both microscopy technologies after the application of the preprocessing described below.

Figure 2. Samples from the natural data sets after application of various data enrichment techniques,
described below. Phase-contrast technology on the left, bright-field technology on the right. The image
resolution equals the working resolution.

Around 10,000 images were taken over the course of the experiments per microscopy
technology; then, images of empty and fully filled cell chambers were removed, since, for
these, the experiment had not started yet or the outcome of the experiment was already
determined, respectively. In total, 2983 BF images and 3944 PC images remained relevant
for the machine learning task. Around 20% of the data were labeled by hand exclusively
for testing and will from here on be called Nat-L-Te (natural, labeled test data); the other
80 percent remain unlabeled and are used for training and called Nat-U-Tr (natural, unla-
beled training data). The test data were split in half to obtain a verification data set and to
prevent accidental specialized training on the test data over the course of the hyperparame-
ter optimization. During the test data selection process, we ensured that full experimental
runs as well as randomly picked images from the various experiment series were part of
the test and verification data. Table 1 gives an overview over the different types of data
sets used in our work.

93

Algorithms 2023, 16, 205

Table 1. Overview of all data sets used. Nat-U-Tr contains natural, unlabeled training data;
Nat-L-Te natural, labeled test data; Syn-L-Tr synthetic, labeled training data, and Syn-L-Te con-
tains synthetic, labeled test data. For reasons described in Section 3.2, synthetic data have been
generated in a 1:1 ratio to natural data. Nat-PC refers to all natural phase-contrast images
(i.e., Nat-L-Te and Nat-U-Tr) and Nat-BF refers to all natural bright-field images, respectively.
Syn-PC and Syn-BF denote the groups of training and test data for phase-contrast and bright-field
data accordingly, and, lastly, Nat and Syn denote the full set of natural and synthetic data.

Data Set Name
No. of

Phase-Contrast Images
No. of Bright-Field Images

Nat Nat-PC Nat-BF
Nat-U-Tr 3.152 2.469
Nat-L-Te 792 514

Syn Syn-PC Syn-BF
Syn-L-Tr 3.152 2.469
Syn-L-Te 792 514

We crop and rotate all images to center the cultivation chamber. Further data aug-
mentation beyond this preprocessing is described in Section 3.2. We place our focus on
the larger data set called Nat-PC from here on. It contains more experimental samples and
the biological processes covered are more diverse. In addition, phase-contrast microscopy
is more popular, and we will nonetheless show that our method also works reliably on
the smaller Nat-BF data set, although the variations in cell positions, numbers, and sizes
are lower in this data set and therefore the quality of these images is lower in terms of
machine learning, similar to what might be the case for entirely different types of cells,
such as plant cells.

To make the best use of the poor amount of experimental data, the following enrich-
ment techniques are applied to the data. Flips along both image axes are followed by a
random crop up to the edges of the cell chamber, not cropping away cells, except for the
entrance tunnel, where precise cell detection is not required. The crop does complicate
cell detection, as cells may be in positions where only the chamber rim and the outside of
the chamber would be without the crop, but it proved necessary to allow cells to appear
anywhere on the images to ensure uniform detection success that is barely affected by the
position of the cells within an image. Then, a random rotation of 90◦ is performed and a
randomly generated noise map is multiplied by a small weighting factor and applied to
the image to simulate more fluctuation in the cells’ visuals, since occasionally there are
dead cells in the experimental data that do not change in appearance for multiple images.
All augmentations are reapplied to the original data for every epoch of training with seed
consistency to ensure reproducibility.

3.2. Synthetic Data

We propose a novel learning scheme in Section 3.3.2 that deals with synthetic data
with known ground truth (i.e., the cell count) and a Siamese architecture that can abstract
from the fact that the auxiliary data are synthetic. In addition to the common data set
enrichment, generating proxy data allows us to create a wide variety of synthetic samples,
which are inspired by the natural data, but not limited by their amount or variety.

By enriching the training procedure with synthetic data, we extinguish the need
for natural labeled data. Synthetic data are easily obtained in this setting because the
architecture does not require that the images are rendered realistically in all respects, such
as morphological details. The 128 × 128 working resolution of the architecture makes the
synthetic data generation undemanding, while maintaining sufficient intricacy of visual
features such as overlapping (see Figure 3 left). For the specialized training procedure
described below, we do not need to synthetically create images that are indistinguishable
from natural ones, unlike current data augmentation schemes, such as proposed in the

94

Algorithms 2023, 16, 205

work [41]. This would require a considerate amount of engineering [37], i.e., human expert
labor, exactly what we aim to mitigate. We rely merely on modeling simple ellipsoidal
shapes to embody cells, ignoring details of the texture and the intricate morphology of
real suspension cells. We imposed this limitation on ourselves to suggest that the learning
procedure presented below should also work with other types of image data and is neither
tailor-made for exactly these microscopy technologies nor requires extensive manual work
to generate the most realistic synthetic data possible. In Section 3.3, we show that this
approach is adequate for training our architecture described.

Figure 3. Examples of synthetic data. Syn-PC imagery on the left, Syn-BF imagery on the right.
Backgrounds were generated by averaging over natural, nearly empty chamber images (including
smudges) and cells are approximated by simple geometric ellipses, but given some of the intricate
visual characteristics of natural cells, such as overlapping and differing luminosity, while factors
that explicitly only hinder the architecture, such as cells escaping through the chamber funnels and
complex visual features such as the inner organelles of cells, have not been recreated.

We ensured that the distribution of cell counts in the auxiliary data was sufficiently
close, but not necessarily identical to that of the natural data sets. This allows for an
unlimited amount of labeled training data, with only the processing time being the limiting
factor for the potential to use enormous amounts of proxy data, not the availability of
such. One problem remains, however, which is how to actually improve the regression
performance on natural data. Using a large ratio of synthetic data compared to natural
data would entail a separation of the two types of data in the inner representation of the
network, resulting in high accuracy on the synthetic data, but low accuracy on the natural
data (see Section 4). To prevent this separation, two major functionalities are proposed and
have been implemented, described in more detail in the following paragraph.

The auxiliary data generator is highly adjustable and produces imagery with a given
distribution of cells. As background images, we calculate the mean of the first 20% of data
from the experimental series, expecting cell counts to be low and cells to be scattered, so that
the background has no visible natural cells in it. The generator takes control of the overlaps,
brightness, and blurriness of the cells’ inner organelles as well as their membranes, the
contrast with the background, a range of possible cell sizes, counts, and crop values, as well
as the ellipsoidal deformation range as parameters. All these can be chosen by hand within
the code package, or the default values can be used. Combined, these operations can be
used to imitate most of the intricate features of the real data, such as ongoing divisions
of cells, by requesting a small overlap along with noisy cell boundaries. Smudges, as
in Figure 2, are not included because they are a confounding factor and are assumed to
only hinder the training process. The cells have been given a roughly circular shape to
approximately match the shape of the natural cells. To generate cells, positions are sampled
randomly from the valid space, taking the parameter of possible overlaps into account, and

95

Algorithms 2023, 16, 205

are then randomly stretched, deformed, made noisy, and so on according to the chosen
parameters; then, brightness fluctuation and Gaussian filters of varying strengths are added
to increase the variety of cells in the data. This geometric form can easily be adjusted if
natural cells in other data sets have different shape characteristics or when other camera
setups produce different ambiences.

This data are generated fully automatically based on simple algorithmic principles
and, as a baseline, a ratio between synthetic and natural data of 1:1 is used, since larger
amounts increase the training time almost linearly, while the performance improves only
with diminishing returns in our experiments. More details on this are given in Section 4.
The imagery is produced algorithmically with seed consistency and can therefore be
reproduced similarly to the data enrichment on the natural data and can be generated in an
arbitrary amount.

3.3. Architecture and Learning Scheme
3.3.1. Architecture

Our aim is to provide reliable cell counting for the microscopic imaging of suspension
cells, and since the experimental data are limited in their amount and without annotations,
we assemble a novel learning scheme for the Twin-VAE architecture previously introduced
by us to overcome these limitations.

The architecture circumvents the problem of differences in the appearance of auxiliary
and real data by separating the data input for training according to their origin, but requires
that the model creates a tightly coupled joint inner representation to avoid high training
losses. This is realized by modifying a Variational Autoencoder (VAE), duplicating the
outer layers of the encoder and decoder, accounting for the two data sets. Therefore, the
weights of the inner layers of both encoder and decoder are shared, as well as the semantic
bottleneck in between (see Figure 4). We decided to choose this architecture for the reasons
mentioned in Section 2.

The specialized encoders consist of four two-dimensional convolutional layers with
kernel sizes of 5 and strides of 2. They are initialized with an orthogonal basis [42]. In
between layers, leaky rectified linear units (LReLUs) with a leakiness of 0.2 and a dropout
of 0.1 have been added. The channels used for the convolutions in the encoders in order
are 32, 64, 128, and 256. The weight-shared encoder contains a single two-dimensional
convolutional layer with the same remaining attributes but 512 channels. It is followed by
the bottleneck, consisting of three layers of fully connected neurons. The layer sizes are 512,
256, and 512, each with the same dropout as before. The weight-shared decoder therefore
also has 512 channels and uses a two-dimensional transposed convolutional operator layer
with identical strides and kernel sizes as above, followed by a batch normalization over
a four-dimensional input and another LReLU with the same leakiness. The decoders
designed for specific data each consist of a total of five layers with kernel sizes 5, 5, 5, 2,
6, and strides of 2, 2, 2, 1, 2, following the convention of a smaller second to last kernel
followed by a large last kernel. Then, we include the same LReLUs and a sigmoidal
activation function at the end.

The representation in the latent space is not only fed to to the weight-shared de-
coder, but also to a three-layer fully connected network of neurons as a regressor. The
sizes of the layers are 256 and 128 and lastly 1. Linear layers and a dropout of 0.2 are
used for the regressor. The rectified Adam (RAdam) [43] optimizer worked best for the
training procedure.

96

Algorithms 2023, 16, 205

Figure 4. Visualization of the Siamese-Cycle-VAE (SC-VAE) architecture. The blue elements represent
synthetic data handling, yellow elements depict natural data handling. Green elements are shared by the
two VAEs and contain the inner representation of the cell imagery; purple elements result in an estimation
for the cell count. The example images that are outlined are samples from the data sets on the left, with
their respective results shown on the right. The translated images outlined with color transitioning have
been generated from the opposite data type and are of particular interest, as well as the blue and yellow
arrows pointing from right to left that indicate the reuse of decoded images. The examples at the very top
left and bottom right are of the utmost importance, since they show the conversion of a synthetic image
to a natural-looking one, which can then be used as a labeled pseudo-natural image for training of the
regressor with natural-looking images.

One of the VAEs works on proxy data, and we will refer to it as VAE-syn, while the
other one processes natural data (VAE-nat). The differing visual features of proxy and real
data are accounted for in the separated layers, while the weight-shared encoder and decoder
rely on and enforce a similar representation of the determinant image characteristics. In
addition to auto-encoding, the architecture works on data with known labels in a supervised
manner by the addition of a three-layer fully connected neural network regression model
for the actual cell counting, based on the shared representation of the VAEs.

3.3.2. Learning Scheme

For images x of either natural or synthetic type t ∈ {n, s}, the VAEs are able to generate
reconstruction losses Rec(x, y) from reconstructed images y of their decoder. Ct

Rec are hand-
crafted weighting factors to balance the different reconstruction costs. Choosing these
weights to be large results in better reconstruction but worse regression. However, proper
reconstruction quality is required to fabricate well-trained encoders, thus demanding the
factors to not be too low. The loss for the reconstructions is defined as

RECloss(x, t) = Cn
Rec · Rec(xn, yn) + Cs

Rec · Rec(xs, ys) (1)

For synthetic data with cell counts l from 1 to 30, we can also generate a regression
loss Reg(xs, l). However, Reg(xn, l) cannot be calculated usually, since l is not known for
these. In Section 4, our ablation studies show that this is insufficient for effective regression
on natural data. The internal representations of the two types of images are naturally being
separated in the bottleneck, precisely what VAEs are usually known and used for, resulting
in high precision for synthetic data, but nearly arbitrary cell counts for natural data.

97

Algorithms 2023, 16, 205

The specialized architecture allows an additional learning scheme to generate a loss for
pseudo-natural data. This is done by encoding synthetic data in their specialized encoder,
but decoding them with the decoder designed for natural data. This translation works both
ways and will result in images xs→n and xn→s.

This new type of data can now be used in the natural pipeline, creating new recon-
struction losses Rec(xs→n, ys→n), which can be used to train the according encoder and
decoder, especially enriching the data available for the natural pipeline immensely.

These images will be called translated or cycled images from here on and they expand
the usable image types to t ∈ {n, s, s → n, n → s}. Examples of translated images
and a pipeline of their generation can be seen in Figure 4. Cycled images also generate
reconstruction losses, which are defined as

REC-Tloss(x, t) = Cn→s
Rec · Rec(xn→s, yn→s) + Cs→n

Rec · Rec(xs→n, ys→n) (2)

These images do not exactly resemble natural images and are distinguishable from
them by the human eye, but they are actually close enough in their relevant characteristics
to natural images that when designing the learning scheme in the way described below, they
are not distinguished as fake natural images by the architecture, a beneficial circumstance
that allows the simulation of labeled natural data and shared representations, which
becomes more clear when taking a look at the UMAP of the internal representation later in
Section 4.3.

This process also leads us to translated natural images, for which the label is known,
and therefore allows for the generation of the regression loss Reg(xs→n, l) �= 0. This way,
we can train the full regression pipeline for natural data, without any labeled natural data
at all. Henceforth, we refer to this process as translation learning.

Furthermore, we can translate the same images again, leading to two new types
of images yet again t ∈ {xs→n→s, xn→s→n}, which should appear near-identical to the
original reconstruction y. We first designed this difference to be a loss as well, but we later
omitted this training step for hyperparameter optimization, as it did not improving the
accuracy on cell counts significantly while adding another step of the more demanding
image backpropagation to the pipeline. However, we still create these bilateral translations
for specialized top-performing models (see Table 2) and for reasons mentioned below. Since
the cycling of data through the different types is what allows the architecture to perform
a regression task on unlabeled natural data, we call it Siamese-Cycle-VAE or SC-VAE for
short, and variants with enabled bilateral learning cycles will be called SC-VAE-B from
here on.

Table 2. Evaluation of all baselines and SC-VAE on the data sets Nat-PC, Nat-BF, Syn-PC and Syn-BF.
For each method and data set, we report the mean absolute (MAE), the mean relative error (MRE),
and the accuracy. Ultimately, only performance on natural data (Nat) is important, but we also report
the performance on synthetic data (Syn) to provide further context. We use an upward arrow ↑ to
indicate that higher is better; a downward arrow ↓ means lower is better. The best results achieved
per category are marked in bold, (ss) denotes a semi-supervised method, (u) an unsupervised method.

Method MAE (Syn) ↓ MRE (Syn) ↓ Acc. (Syn) ↑ MAE (Nat) ↓ MRE (Nat) ↓ Acc. (Nat) ↑
PC (phase-contrast microscopy)

EfficientNet (ss) 4.987 79.4% 5.0% 1.67 25.12% 23.4%
BiT (ss) N/A N/A N/A 2.32 29.7% 25.4%

Twin-VAE (ss) 0.09 0.68% 68.2% 0.60 5.92% 57.8%
Transfer Twin-VAE (ss) 0.15 0.43% 85.0% 0.66 6.46% 53.7%

Dual Transfer Twin-VAE (ss) 0.12 0.43% 85.0% 0.58 5.56% 58.7%
Watershed (u) 0.94 18.0% 24.0% 1.66 29.0% 23.1%

C-VAE (u) 0.24 2.65% 54.2% 1.03 19.1% 28.9%
S-VAE (u) 0.09 0.53% 76.3% 2.64 41.2% 11.6%
SC-VAE (u) 0.11 0.83% 66.1% 0.49 5.16% 61.7%

98

Algorithms 2023, 16, 205

Table 2. Cont.

Method MAE (Syn) ↓ MRE (Syn) ↓ Acc. (Syn) ↑ MAE (Nat) ↓ MRE (Nat) ↓ Acc. (Nat) ↑
SC-VAE-B (u) 0.10 0.81% 67.9% 0.48 5.12% 61.8%

BF (bright-field microscopy)

EfficientNet
(ss) 6.502 67.1% 4.5% 1.13 17.2% 33.9%

BiT (ss) N/A N/A N/A 1.79 22.45% 38.7%
Twin-VAE (ss) 0.48 4.27% 60.1% 0.68 7.6% 53.2%
Transfer

Twin-VAE (ss) 0.40 3.87% 66.6% 0.52 5.47% 60.7%

Dual Transfer
Twin-VAE (ss) 0.35 3.73% 66.8% 0.51 5.43% 60.8%

Watershed (u) 1.92 39.0% 2.0% 2.39 32.0% 32.0%
C-VAE (u) 0.67 5.72% 50.8% 1.96 21.8% 26.3%
S-VAE (u) 0.33 3.66 % 67.3% 2.09 34.2% 18.6%
SC-VAE (u) 0.41 3.88% 62.5% 0.60 7.1% 56.6%

SC-VAE-B (u) 0.39 3.77% 62.6% 0.56 6.51% 58.7%

As mentioned above, we also generate pseudo-synthetic data xn→s from natural data
(blue arrow in Figure 4). Since, for these pseudo-data, annotations are unknown, they can-
not be used to train the regression process, but they can be used for two different purposes.

The first is balancing out the encoders and decoders, since, with the learning scheme
described above, the synthetic pipeline will go through more training steps than the natural
one, although this is the one that should be especially well-trained, as the minimization of
regression losses on natural data is the actual goal of this learning scheme. In this way, the
natural training pipeline can also be trained on many more cell arrangements than the few
that natural images provide, since even with a multitude of data augmentation techniques,
the generalization of encoding and decoding can be improved by this step (see Section 4).

Secondly, the decodings of translated synthetic images yn→s can be used as stability
checks of the latent space for the different types of data. Badly decoded pseudo-synthetic
images imply a larger than wanted differentiation of natural and synthetic images in the
bottleneck. More on this is given in Section 4.1.

Considering the loss functions, let r(x) be the estimated cell count and l remain the
label. The mean-squared error (MSE) ||r(x) − l||2 and the binary cross-entropy (BCE)
−l · log(r(x)) + (1 − l) · log(1 − r(x)) yielded similar results as in our previous works, and
both resulted in more precise cell counts than common alternatives; therefore, extensive
testing has been done with both, but ultimately the MSE was chosen as the default, since it is
easier to find appropriate coefficients for the different types of losses due to the diminishing
nature of MSE. The weight factors determine the importance of the counting accuracy and
change over the course of the training procedure, since deriving accurate cell counts on
natural data from synthetic and translated data requires preceding training of the encoders
and decoders. The associated REGloss(x, y) term is defined as

REGloss(x, l, t) = Cs,l
Reg · Reg(xs, l) + Cs→n,l

Reg · Reg(xs→n, l) (3)

When using BCE, the decoder loss factors decays over time with a decaying rate of
3 × 10−5 per epoch. This is necessary because the BCE does not decrease significantly dur-
ing training, but needs to diminish over time to increase the importance of low regression
losses Reg(x, l).

Since it is beneficial for the prevention of overfitting to generate latent vectors that
are sufficiently close to a normal distribution, we aim for homogeneous representations
of synthetic and natural data in the embedding space of the architecture by applying a
regularization cost DKL, which is applied in the form of the Kullback–Leibler divergence
(KLD) of the standard VAE [44]. This loss will also ensure that the inner representations of
natural, synthetic, and both types of cycled data stay similar, allowing us to use the special

99

Algorithms 2023, 16, 205

training procedure described above. This cost is applied for natural, synthetic, and both
types of translated data and is defined as follows:

KLDloss(x, t) = Cn,n→s
DKL

· DKL(xn,n→s) + Cs,s→n
DKL

· DKL(xs,s→n) (4)

All coefficient factors have to be chosen mindfully, balancing the main target of
punishing incorrect cell counts on natural data and relaxing the importance of details in
visual reconstruction, but not undervaluing the KLD at the same time. Doing so can make
the training procedure unstable, while applying very large regularization costs hinders the
learning process and slows it down. To minimize the number of hyperparameters that have
to be optimized by hand, the weighting factors for the DKL losses have been grouped and a
Bayesian optimization [45] in the form of a Gaussian process regressor [46] was used to
quickly find baseline values for the most important hyperparameters, such as the learning
rate and the loss weight factors.

We combine these losses to form our overall SCVAEloss(x, l, t), use the coefficients of the
different terms to balance the impacts between natural, synthetic, and both types of translated
images, and handle input images with missing cell counts by fixing Cn,l

Reg = Cn→s,l
Reg = 0:

SCVAEloss(x, l, t) = RECloss(x, t) + REC-Tloss(x, t) + REGloss(x, l, t) + KLDloss(x, t) (5)

3.3.3. Baselines

For the evaluation in the upcoming section, several baselines have been gathered, to
enable a meaningful comparison with the state of the art. The first baseline is a widely
practiced classical computer vision pipeline. First, the input images are cropped to only
contain the cell chamber, and are then blurred with an averaging kernel-based filter; then, a
thresholding filter is applied, followed by a watershed segmentation [29]. The regions of
the segmented image are counted and used as a cell estimation. In order to find suitable
parameters for this learning scheme, an exhaustive grid search was performed for each
data set BF and PC. The code repository contains the best hyperparameters found. We refer
to this pipeline as Watershed in the following.

As a second baseline, we fine-tuned a pre-trained state of the art deep convolution
neural network, specifically a variant of EfficientNet [28]. We replace the last layer of the
pre-trained network with a fully connected layer that outputs a single value, and train
it to predict the cell count for a given input image. We apply the same hyperparameter
optimization as for our own method, and generate the same data augmentation. Since Effi-
cientNet is a variable architecture that comes in different sizes, referred to as EfficientNet-B0,
EfficientNet-B1, and so on, we evaluated EfficientNet-B0 through EfficientNet-B3 and found
that the smallest variant EfficientNet-B0 performed best, while larger variants performed
progressively worse. We considered to instead use EfficientNetV2 [47], but our preliminary
results showed that the same performance degradation applies to its larger variants as well,
and since EfficientNet-B0 outperformed the smallest EfficientNetV2-S variant, we retained
it and refer to this fine-tuned convolutional neural network as EfficientNet hereafter.

As a third baseline, we compare a state of the art transfer learning model from
Kolsenikov et al. called BiT, which produces highly accurate classification results on
Cifar-100 and similar data sets in a few-shot learning case of 1 to 10 examples per class. BiT
consists of the classical ResNet [48] architecture, but with very long pre-training times on
large image sets and a custom hyperrule that determines the training time and learning rate
during transfer depending on the size of the new data set. Changes to the hyperrule were
tested, but did not cause any significant improvement in accuracy; therefore, the values
provided by the authors were used. BiT is given all the natural and synthetic training data
per epoch, so it can come up with meaningful cell counts on natural data by abstracting
from the labeled synthetic data. We valued the possible cell counts from 1 to 30 as classes,
to account for the difference in training methodology.

100

Algorithms 2023, 16, 205

In addition, we compare our own previous work Twin-VAE (see [3]) and its alterations
Transfer Twin-VAE and Dual Transfer Twin-VAE (see [4]). These are based on the same
architecture, but perform semi-supervised learning techniques for which the same data
are used, albeit with partial annotations on the natural training data of 5–10%. Although
this circumstance should allow for higher accuracy on the counting task, the optimized
pipeline and cyclic data reuse of the new Siamese-Cycle-VAE is able to keep up with and
in some cases even outperform its predecessors, despite not being given any manual labels
at all. More on this is given below.

Lastly, ablation studies are done to ensure and show that the specific architectural de-
tails and principles of the learning scheme are helpful and optimize the training procedure
and therefore the accuracy on the regression task. One study will be called C-VAE from
here on. In this alteration of the network, there are no specialized Siamese encoders and
decoders, but the cyclic structure is kept. C-VAE should still be able to make meaningful cell
predictions, albeit that the abstraction between natural and synthetic data has to happen in
the inner layers of the VAE. The cyclic structure and the difference between original and
reconstructed images can still help the architecture to enrich the data in a more extensive
way than classical data augmentation alone can. The second study is called S-VAE. Here,
the Siamese architecture is kept, but we omit the cycling and do not use the reconstructed
image data as new input, but merely as reconstruction loss, as in the standard VAE. As there
are no labels on the natural data and there is no translated pseudo-natural imagery with
labels either, the regressor lacks a loss to meaningfully train for this type of data directly,
but could possibly abstract from the differentiation between natural and synthetic data in
the latent space and still achieve adequate accuracy on cell counting.

4. Results

As for the hyperparameter choices, the best results were achieved with decoder loss
factors Cn

Rec = 1× 102 and Cs
Rec = 2× 102, with the higher loss on synthetic data accounting

for the higher image variety of these images, while Cn→s
Rec = Cs→n

Rec = 5 × 101 resulted in
the lowest reconstruction losses. While not mandatory to minimize, a degradation in the
deconstruction loss of translated images is almost always coupled with lower regression
losses. The regressor loss factors for synthetic data Cs

Reg and pseudo-natural data Cs→n
Reg are

both set to 5 and should inversely account for the ratio between the according types of data.
The KLD factor CDKL = 1 yields the best results for the larger data set Nat-PC, while slightly
larger factors work better for Nat-BF, constraining the inner representations of synthetic,
natural, and translated images to be coupled tightly. Faster convergence was observed for
smaller KLD factors, but the learning scheme tended to separate more between data types,
resulting in better reconstructions but poorer regressions. Figure 5 shows the combined
losses and indicates convergence.

In addition, a soft weight decay of 2 × 10−5 per epoch, a constant learning rate of
0.75 × 10−5, and delaying the start of the regressor by 25 epochs are used to achieve the
following results. Batch sizes of 128 for both types of microscopy imagery work best and
the training runs for up to 20,000 epochs, as there are no significant improvements after this.
Ablation studies with more synthetic data relative to natural data have been done as well.
In general, the architecture appears to converge faster when measured by epochs, but when
taking the increase in training batches per epoch into account and therefore measuring
by the number of computations, the training speed is marginally lower in all cases, so we
retain the 1:1 ratio.

101

Algorithms 2023, 16, 205

1 3

1 5

1 7

1 9

2 1

2 3

2 5

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

CO
M

BI
NE

D
LO

SS

EPOCH X100

SC -VAE COMBINED LOSS

Training

Tes ng

Figure 5. Visualization of the combined losses of SC-VAE top-performing model during training with
regularly applied tests, in this case of Nat-PC. It can be seen that after 20,000 epochs, convergence is
imminent, but has not fully been reached. Accuracy on cell counts does not improve significantly
after this point; only image reconstruction quality does. Since the primary goal is not to diminish
the reconstruction and normalization losses to zero, but rather to balance out the different losses, the
combined loss can only indirectly be interpreted as a convergence indicator. Nevertheless, larger and
faster descents in the combined loss still resemble well-trained models, even if this is insufficient as a
sole indicator of such.

4.1. Comparison

We present the results of our method and the comparative baselines in Table 2. The
mean relative error (MRE) is a normalized error, taking the ground truth into account, i.e.,
in high cell count images, small absolute deviations do not increase the error as much as
they do for low cell count images. When interpreting experimental results as a biological
expert, in most cases, this is the more meaningful indication over the mean absolute error
(MAE), which serves as the typical indicator in terms of a regression task. The bilateral
alteration SC-VAE-B that uses fully cycled images (back and forth) results in marginal but
reliable improvements, assimilating representations in the latent space, and should be
considered our top candidate.

Our SC-VAE consistently outperforms the other state of the art methods Watershed, BiT,
and EfficientNet by a wide margin. SC-VAE and its alteration SC-VAE-B correctly estimate
around 62 % of the cell counts for the Nat-PC data set, and their predictions differ on average
by only 0.5 cells from the true cell counts of the images, and they achieve approximately
5.1 % MRE. For the smaller Nat-BF data set, SC-VAE-B accomplishes 0.56 MAE, 6.5 % MRE,
and 58.7 % accuracy. While Dual Transfer Twin-VAE achieves slightly better results for
these data, they are attained by semi-supervised training, commonly not even compared to
unsupervised methods. As such, Siamese-Cycle-VAE holds up against semi-supervised
training methods and even exceeds them the case of the larger Nat-PC data set, making it
suitable for reliable cell counting with various microscopy techniques.

Moreover, we see that Siamese-Cycle-VAE performs well across the entire range of
cell counts in Nat-PC and Nat-BF. By contrast, Watershed and EfficientNet struggle with
images that contain few cells, which is the most important range of cell counts for biological
tasks, such as estimating the growth rate.

The ablation C-VAE that feeds all data through the same encoder and decoder results
in accuracy on synthetic data that is inferior to the other methods, even more so for the
important accuracy on natural data. By using the reconstructed images as new input,

102

Algorithms 2023, 16, 205

the learning scheme resembles the optimized scheme of SC-VAE in such a way that visual
intricacy on natural data is simplified, but not on the same level as SC-VAE..

S-VAE, on the other hand, worked best on synthetic data, especially so for Nat-BF,
but for both types of microscopy data, the MRE and accuracy on the natural data are far
from the results from SC-VAE. No translated natural data are generated by S-VAE, which
is missing the regression loss for natural data completely. Cell counts on natural data are
not random since there is still the shared encoder to unify the two types of data, but since
accuracies differ vastly between natural and synthetic data, the S-VAEs encoder fails to do
so because of a missing incentive.

4.2. Image Reconstruction and Representation

An analysis of the reconstruction abilities of Siamese-Cycle-VAE is useful to ensure
that the shared representation is meaningful, even though our main aim is automatic cell
counting, not perfect image reconstruction.

During the training of Siamese-Cycle-VAE, the image inputs are processed by their
respective encoder, followed by the general, weight-shared encoder, represented in the
bottleneck of the architecture; they are then processed by the shared decoder and finally
reconstructed by their specialized decoder accordingly (see Figure 4). The same is true
for auxiliary data and both types of translated pseudo-imagery. To ensure that the actual
regressive task works as intended for natural images, it must be able to benefit from
synthetic data representations in the latent space, so the learned representation must be
shared by the four types of data.

This can be verified by encoding natural images with their appropriate encoder,
but performing the decoding with the decoder that is designed and trained for auxiliary
images, the counterpart to the opposite conversion, which is done in every epoch of training.
Minimal changes in the stages of the images that are converted back and forth indicate the
close coupling of the representations. The closer the different data types are transformed
into the latent space, the greater the potential gain for regression on natural data. Moreover,
the conversion makes this fact interpretable on a visual level.

We show examples of perfect translations in Figure 6. For these samples, a natural
image is encoded and then decoded as a synthetic image. The number of cells remains
unchanged, and the position and size of the cells are also maintained. However, the overall
appearance is simplified: Siamese-Cycle-VAE learned to remove noise and to break down
the reconstruction to the essentials. Even the very large smudge on the left natural image
has not been reconstructed; although it will cause an increased loss in the reconstruction,
the weighting of the loss factors makes it more acceptable to forfeit image reconstruction
precision in favor of the regression. On the right side, it can be seen that the output does
indeed appear more similar to natural data than the synthetic input does, while fine details
such as the noisy borders are not recreated.

The ongoing cell division shown in Figure 7 is a prime example to understand how
Siamese-Cycle-VAE works. The membrane of the bottom right cell is not fully enclosed
and there is no overlap, since a fine bright border of the underlying cell would be seen
through the top cell. However, two cell cores can clearly be seen and a human expert would
presumably count this situation as two cells, which is exactly what Siamese-Cycle-VAE
does. The prediction of 9.65 instead of 10 can be understood as uncertainty and a slightly
earlier stage of the division would have arguably led to a slightly smaller prediction, which,
when rounded, would be the correct cell count again. The effect of simplified visuals also
happens in these non-translated reconstructions; the smudges on the Nat-BF sample are
clearly fainter and, in the left image, even the high-contrast dead cell residue on the left is
not recreated. This clearly indicates that even when Siamese-Cycle-VAE does not predict
the cell count perfectly in an image, the comparison between the original and reconstructed
image is useful to understand where an error occurs.

103

Algorithms 2023, 16, 205

Figure 6. Examples of translations used for cycling. From left to right: natural image, according
translated image from natural to synthetic, synthetic image, according translated image from synthetic
to natural. Compositions stay the same but the visual style has been transferred. The translated
images can now be used in the encoder designed for the type of data that they are imitating and
thereby serves a special purpose for each of the two translations: enriching the VAEs process of
encoding and decoding with unseen data, which is especially helpful for the natural coders due to
the limited availability of natural data (syn → nat), and allowing the regressor that is well trained to
handle synthetic data to count cells in translated natural data (nat → syn).

Figure 7. Examples of synthetic-looking reconstructions of a natural images. The reconstructions
are to the right of their natural counterparts. The composition of cells stays the same, positions are
near identical, cell sizes are preserved, and smudges are not recreated, or, if so, they are very faint,
semantically not impacting the regression task too much, since it learns to extract the encoding of
large, high-contrast cell boundaries. When rounded to full numbers, the cell counts of 10 on the left
and 4 on the right match exactly. Without rounding, on the left side, the predicted cell count is too
low by 0.35. This can be interpreted semantically as the ongoing cell division that happens in the
bottom right of the image.

4.3. Shared Representation

Siamese-Cycle-VAE’s ability to translate back and forth between natural and synthetic
images illustrates the semantically shared representation of all four types of data learned
by the autoencoder. Below, we visualize this shared representation. Because each image
is encoded as a 256-dimensional vector, we need to reduce the dimensionality to do so.
Uniform Manifold Approximation and Projection (UMAP) [39] has established itself as the
state of the art for nonlinear dimensionality reduction. It computes a topology-preserving
embedding that can be used for semantic interpretations of representations. In the result-
ing embedding (see Figure 8), we see that synthetic and natural data occupy the same
space, and we can even observe that both types of translated images also lie on the same
projection space.

Therefore, UMAP is unable to separate the latent representations of the different
types of data and this allows us to visually understand what is meant by tightly coupled
representations. UMAPs are non-parametric; therefore, the axis and scale have no meaning
other than the preserving of relations. Since we can observe that, along the main axis, the
cell count has been chosen as the most mandatory factor, it is the main determining factor in
the latent space, providing perfect conditions for a well-functioning regressor, since images
are represented vastly differently, dependent on the number of cells that they include.

104

Algorithms 2023, 16, 205

Figure 8. Embedding of the trained representations, determined via UMAP. Illustrated are natural,
labeled test samples (red circles); unlabeled test samples (grey); synthetic samples (blue), and both
types of translated images, syn → nat (green) and nat → syn (yellow). Cell counts are separated
by brightness, with darker dots indicating low cell counts and brighter dots indicating a high cell
count. Since UMAPs are non-parametric, axis and scale have no meaning, but relations are preserved.
Since dots become visibly brighter from left to right and this is the main axis along which the dots are
separated, UMAP has determined this direction to be the most important and it directly corresponds
to cell counts. Simultaneously, natural and auxiliary images do not become separated. If this were
the case, it would contradict a truly shared representation between the different types of data.

It can be seen that data that have been translated from synthetic to natural (green) tend
to encapsulate the synthetic data (blue); this is more so the case for the natural data that
are translated to synthetic (yellow), which encapsulate the original natural data (red and
gray). This can be interpreted as semantic coverage, which means that, for every possible
natural, unlabeled data point, there are labeled data points nearby, demanding only minor
abstractions of the regressor to be able to achieve a meaningful cell prediction.

Another way to ensure meaningful representations and condensed information in the
bottleneck of the Siamese-Cycle-VAE architecture is to sample images from noise vectors
and check two aspects of them: first, they should show deceptive images that could be
reconstructions from real data of their type, and, secondly, slight changes to the random
vectors should result in similar but not identical images. Both behaviors can be observed
in Figure 9; therefore, the latent representation contains information in a semantically
meaningful way.

The distribution of the UMAP also suggests that certain areas of the latent space serve
to represent a determinable number of cells. We tested this and found that there are indeed
areas in the latent space that lead to the reconstruction of low cell counts, and, within
the local area, all reconstructions result in low cell counts, while other areas can be found
that represent the presence of high cell counts in input images, and this is exactly what is
reconstructed by the decoders, when the latent space is sampled in this area.

105

Algorithms 2023, 16, 205

Figure 9. Samples generated from the latent space by inputting noise vectors and deconstructing them
with the natural (row 1) and synthetic (row 3) decoder. Appropriate cell imagery can be reconstructed
from these; consequently, the latent space meaningfully represents the important information of
possible input images for this domain. Adding and subtracting tiny amounts to and from these
vectors results in semantically similar images (row 2) with often only one cell more or less, where
the cells are slightly larger or smaller and have changed position slightly, while samples from a
completely different part of the latent space yield completely different images.

5. Discussion

We now discuss the limitations of this architecture and state possible revisions to
overcome them. During analysis, we found that for very small cells in the natural data,
only subpar precision is achieved. Since the working resolution of the architecture is
128 × 128 pixels, these cells are barely visible in the downscaled versions of the images and
can therefore not yield low error estimations. In future work, the working resolution could
be doubled per axis, which requires new layers in the specialized encoders and decoders,
but leaves the rest of the architecture unchanged. Alternatively, local crops of quarters of
the images could be used, allowing a quasi-double resolution by answering the question of
cell count with the sum of 4 quarters.

Large and high-contrast light reflections can also be problematic for satisfactory re-
gression. When scaling down an image such as the phase-contrast microscopy on the left in
Figure 1, the smaller reflections are merely a single bright pixel in the working resolution,
too small to impact the cell count. When these reflections are larger, as with the one on
the very left, it can lead to quite high reconstruction losses and cause the architecture to
replicate these, although they should be filtered out and ignored. To overcome this, a step
in the image preprocessing could be added that seeks this effect and dims the affected
area. More elegantly, the reconstruction loss could be capped with local maximums, so that
the high deviations that derive from this are not fully accounted for in the training of the
network. Further, although the proxy image generator is merely auxiliary content for this
work, currently, new microscopy imagery makes it obligatory to find appropriate parame-
ters for the generator, accounting for cell sizes, border brightness, etc. A more sophisticated
generator could be able to algorithmically generate auxiliary data automatically from given
natural data.

Due to the different types of network parts present in the architecture and the resulting
loss of Equation (5), it can be difficult to understand the importance of optimization of the
different parts of the composite loss. Forcing better reconstructions by setting the according
weight factors to high numbers may bring the disadvantage of worse regression, but this is
not necessary, because, to some extent, better reconstructions will also help to ensure that
the existence of cells is represented in the latent space, which is a major requirement for the
regressor to achieve high accuracy.

106

Algorithms 2023, 16, 205

The amount of hand-crafting meta-parameters could be reduced by the more extensive
use of meta-learning systems, such as a modified regressor for the Gaussian process that
we used, to enable the creation of a simple tool that users of a complete solution can
utilize for cell counting during live cell imaging experiments. Thus far, alternating between
automated meta-learning and hand-crafting with multiple parallel runs with different
meta-parameter choices has been utilized to find good parameters quickly.

Implementations for the real-time, continuous estimation of cell counts in experiment
monitoring would be a practical way to make this architecture and its learning scheme easily
usable for biologists. Despite these limitations, with SC-VAE, it is possible to outperform
state of the art alternatives, sometimes by a wide margin, and it can compete with its
semi-supervised predecessor.

Surprising findings were that the weight factors of the KLD loss in Equation (4) can be
quite low and therefore hinder the learning process from ensuring shared representations
only very little, only if the parameters of the other losses are chosen well. We are inconclusive
regarding what makes them well chosen, but the parameters that we found allow a very
high loss factor for regression, especially for translated pseudo-natural images, without
the representations becoming separated or the loss or the architecture becoming unstable,
a common outcome in other literature when weighing the loss of the main task as too
high and devaluing the loss of indirect tasks or those only achievable late in sequential
learning schemes.

We will now conclude the contribution and summarize our findings.

6. Conclusions

With our specialized learning scheme, we created a basis for automated cell counting
in the domain of microfluidic cell cultivations, and we presented a workflow for the
unsupervised image recognition of mammalian suspension cells, obtained by live cell
imaging. The auxiliary data generator presented delivers arbitrary amounts of synthetic
microscopy imagery and, with only minor adjustments, can also generate images for
entirely different types of cells and microscopy technologies. SC-VAE demands only rough
similarity between synthetic and natural data, omitting the laborious task of replicating the
intricate visual details of the natural data. The presented technique operates independently
of the actual cell sizes of the organism being studied, and the adaptation to, e.g., elongated
bacterial cells or plant cells can be done easily.

In Section 1, we mentioned that the manual procedure of labeling such imagery
by human experts is not feasible and requires automation. We overcome this issue by
delivering an end-to-end solution that is usable not only by experts, requires no hand-
labeled data at all, and still competes with semi-supervised state of the art solutions that
do require manual labels. We also present an innovative means of gaining insights into the
latent spaces of these type of Siamese networks by comparing cycled images, i.e., images
converted back and forth, to their original counterparts and by translating natural data to
pseudo-synthetic data to particularly ensure the stability of the internal representations
and a meaningful latent space distribution from which we can sample freely, in such a way
that is understandable to the human eye.

The Siamese-Cycle-VAE architecture helps us to understand what requirements exist
for the presence, quantity, and quality of natural data in the image processing domain,
specifically related to an unsupervised regression task.

Moreover, we show that our specialized learning scheme grants SC-VAE the ability to
abstract from the fact that data are synthetic by ensuring that all elements of the architecture
that tend to discriminate between different types of data are vastly overruled by elements
that do not tend to do so. Only due to the novel learning scheme that we present, it is
possible to generate a meaningful loss without any labeled original data.

We encourage future learning methods and architectures in other domains but with
similar research questions and obstacles, especially the lack of labeled data, to adapt the
general idea of this machine learning scheme and architecture in the future, albeit with

107

Algorithms 2023, 16, 205

different types of difficulties, especially for those cases where the generation of auxiliary
data cannot be directly coupled to a target variable or classification, i.e., domains where the
full coverage of possible natural data by synthetic data is not trivial.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, inves-
tigation, resources, data curation, writing, and visualization have been performed by D.S. Review,
supervision, project administration, and funding acquisition have been performed by B.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministerium für Kultur und Wissenschaft NRW, grant
number NW21-059A (SAIL).

Data Availability Statement: We have made the data sets available at https://pub.uni-bielefeld.de/
record/2960030 (accessed 27 February 2023) and make the source code available at https://github.
com/dstallmann/cyclic_siamese_learning (accessed 27 February 2023).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References

1. Anggraini, D.; Ota, N.; Shen, Y.; Tang, T.; Tanaka, Y.; Hosokawa, Y.; Li, M.; Yalikun, Y. Recent advances in microfluidic devices for
single-cell cultivation: methods and applications. Lab Chip 2022, 22, 1438–1468. [CrossRef] [PubMed]

2. Sachs, C.C. Online high throughput microfluidic single cell analysis for feed-back experimentation. Ph.D. Thesis, Technische
Hochschule Aachen, Aachen, Germany, 2018. RWTH-2018-231907. [CrossRef]

3. Stallmann, D.; Göpfert, J.P.; Schmitz, J.; Grünberger, A.; Hammer, B. Towards an Automatic Analysis of CHO-K1 Suspension
Growth in Microfluidic Single-cell Cultivation. Bioinformatics 2020, 37, 3632–3639. [CrossRef] [PubMed]

4. Kenneweg, P.; Stallmann, D.; Hammer, B. Novel transfer learning schemes based on Siamese networks and synthetic data. Neural
Comput. Appl. 2022, 35, 8423–8436. [CrossRef] [PubMed]

5. Theorell, A.; Seiffarth, J.; Grünberger, A.; Nöh, K. When a single lineage is not enough: Uncertainty-Aware Tracking for
spatio-temporal live-cell image analysis. Bioinformatics 2019, 35, 1221–1228. [CrossRef]

6. Jacob, G.; Rt, P.; Katti, H.; Arun, S. Qualitative similarities and differences in visual object representations between brains and
deep networks. Nat. Commun. 2021, 12, 1872. [CrossRef]

7. Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. Deep Learning Advances in Computer Vision with 3D Data: A
Survey. ACM Comput. Surv. 2017, 50, 3042064. [CrossRef]

8. Lempitsky, V.; Zisserman, A. Learning To Count Objects in Images. In Proceedings of the Advances in Neural Information Processing
Systems 23; Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2010; pp. 1324–1332.

9. Razzak, M.I.; Naz, S.; Zaib, A., Deep Learning for Medical Image Processing: Overview, Challenges and the Future. In
Classification in BioApps: Automation of Decision Making; Springer: Cham, Switzerland, 2018; pp. 323–350. [CrossRef]

10. Moen, E.; Bannon, D.; Kudo, T.; Graf, W.; Covert, M.; Van Valen, D. Deep learning for cellular image analysis. Nat. Methods 2019,
16, 1233–1246. [CrossRef]

11. Ulman, V.; Maška, M.; Magnusson, K.E.G.; Ronneberger, O.; Haubold, C.; Harder, N.; Matula, P.; Matula, P.; Svoboda, D.;
Radojevic, M.; et al. An objective comparison of cell-tracking algorithms. Nat. Methods 2017, 14, 1141–1152. [CrossRef]

12. Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. ilastik:
interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16, 1226–1232. [CrossRef]

13. Hughes, A.J.; Mornin, J.D.; Biswas, S.K.; Beck, L.E.; Bauer, D.P.; Raj, A.; Bianco, S.; Gartner, Z.J. Quanti.us: a tool for rapid, flexible,
crowd-based annotation of images. Nat. Methods 2018, 15, 587–590. [CrossRef]

14. Schmitz, J.; Noll, T.; Grünberger, A. Heterogeneity Studies of Mammalian Cells for Bioproduction: From Tools to Application.
Trends Biotechnol. 2019, 37, 645–660. [CrossRef] [PubMed]

15. Brent, R.; Boucheron, L. Deep learning to predict microscope images. Nat. Methods 2018, 15, 868–870. [CrossRef] [PubMed]
16. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net:

deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [CrossRef] [PubMed]
17. Di Carlo, D.; Wu, L.Y.; Lee, L.P. Dynamic single cell culture array. Lab Chip 2006, 6, 1445–1449. [CrossRef]
18. Kolnik, M.; Tsimring, L.S.; Hasty, J. Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture. Lab Chip

2012, 12, 4732–4737. [CrossRef]

108

Algorithms 2023, 16, 205

19. Arteta, C.; Lempitsky, V.; Noble, J.A.; Zisserman, A. Interactive Object Counting. In Computer Vision—ECCV 2014; Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 8691, pp. 504–518. [CrossRef]

20. Arteta, C.; Lempitsky, V.; Noble, J.A.; Zisserman, A. Detecting overlapping instances in microscopy images using extremal region
trees. Med Image Anal. 2016, 27, 3–16. [CrossRef]

21. Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting Apples and Oranges With
Deep Learning: A Data-Driven Approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [CrossRef]

22. Xie, W.; Noble, J.A.; Zisserman, A. Microscopy cell counting and detection with fully convolutional regression networks. Comput.
Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 283–292. [CrossRef]

23. Koh, W.; Hoon, S. MapCell: Learning a Comparative Cell Type Distance Metric with Siamese Neural Nets With Applications
Toward Cell-Type Identification Across Experimental Datasets. Front. Cell Dev. Biol. 2021, 9, 767897. [CrossRef]

24. Müller, T.; Pérez-Torró, G.; Franco-Salvador, M. Few-Shot Learning with Siamese Networks and Label Tuning. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May
2022; pp. 8532–8545. [CrossRef]

25. Yang, L.; Chen, Y.; Song, S.; Li, F.; Huang, G. Deep Siamese Networks Based Change Detection with Remote Sensing Images.
Remote. Sens. 2021, 13, 13173394. [CrossRef]

26. Mehmood, A.; Maqsood, M.; Bashir, M.; Shuyuan, Y. A Deep Siamese Convolution Neural Network for Multi-Class Classification
of Alzheimer Disease. Brain Sci. 2020, 10, 84. [CrossRef] [PubMed]

27. Figueroa-Mata, G.; Mata-Montero, E. Using a Convolutional Siamese Network for Image-Based Plant Species Identification with
Small Datasets. Biomimetics 2020, 5, 10008. [CrossRef] [PubMed]

28. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
29. Rahman, M.S.; Islam, M.R. Counting objects in an image by marker controlled watershed segmentation and thresholding. In

Proceedings of the 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013;
pp. 1251–1256. . [CrossRef]

30. Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung, J.; Gelly, S.; Houlsby, N. Large Scale Learning of General Visual
Representations for Transfer. arXiv 2019, arXiv:1912.11370.

31. Sam, D.B.; Sajjan, N.N.; Maurya, H.; Babu, R.V. Almost Unsupervised Learning for Dense Crowd Counting. Proc. AAAI Conf.
Artif. Intell. 2019, 33, 8868–8875. [CrossRef]

32. Schönfeld, E.; Ebrahimi, S.; Sinha, S.; Darrell, T.; Akata, Z. Generalized Zero- and Few-Shot Learning via Aligned Variational
Autoencoders. arXiv 2019, arXiv:1812.01784.

33. Jaderberg, M.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Synthetic data and artificial neural networks for natural scene text
recognition. In Proceedings of the Workshop on Deep Learning, Advances in Neural Information Processing Systems (NIPS);
Palais des Congrès de Montréal, Montréal, QC, Canada, 7 December 2018.

34. Nikolenko, S.I. Synthetic Data for Deep Learning. arXiv 2019, arXiv:1909.11512.
35. van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
36. Göpfert, C.; Ben-David, S.; Bousquet, O.; Gelly, S.; Tolstikhin, I.O.; Urner, R. When can unlabeled data improve the learning rate?

In Proceedings of the Conference on Learning Theory, COLT 2019, PMLR, Phoenix, AZ, USA, 25–28 June 2019; Beygelzimer, A.,
Hsu, D., Eds.; Proceedings of Machine Learning Research; Volume 99, pp. 1500–1518.

37. Göpfert, J.P.; Göpfert, C.; Botsch, M.; Hammer, B. Effects of variability in synthetic training data on convolutional neural networks
for 3D head reconstruction. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu,
HI, USA, 27 November–1 December 2017; pp. 1–7. [CrossRef]

38. Ullrich, K.; Meeds, E.; Welling, M. Soft Weight-Sharing for Neural Network Compression. arXiv 2017, arXiv:1702.04008.
39. McInnes, L.; Healy, J.; Saul, N.; Grossberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw.

2018, 3, 861. [CrossRef]
40. Schmitz, J.; Täuber, S.; Westerwalbesloh, C.; von Lieres, E.; Noll, T.; Grünberger, A. Development and application of a cultivation

platform for mammalian suspension cell lines with single-cell resolution. Biotechnol. Bioeng. 2021, 118, 992–1005. [CrossRef]
[PubMed]

41. Sandfort, V.; Yan, K.; Pickhardt, P.J.; Summers, R.M. Data augmentation using generative adversarial networks (CycleGAN) to
improve generalizability in CT segmentation tasks. Sci. Rep. 2019, 9, 16884. [CrossRef] [PubMed]

42. Saxe, A.M.; McClelland, J.L.; Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In
Proceedings of the International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013.

43. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the Variance of the Adaptive Learning Rate and Beyond. arXiv 2020,
arXiv:1908.03265.

44. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
45. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the Advances in

Neural Information Processing Systems; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q., Eds.; Curran Associates,
Inc.: Red Hook, NY, USA, 2011; Volume 24.

46. Williams, C.K.I.; Rasmussen, C.E. Gaussian Processes for Regression. In Advances in Neural Information Processing Systems 8;
Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds.; MIT Press: Cambridge, MA, JUSA, 1996; pp. 514–520.

109

Algorithms 2023, 16, 205

47. Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. arXiv 2021, arXiv:2104.00298.
48. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

110

Citation: Walters, B.;

Ortega-Martorell, S.; Olier, I.; Lisboa,

P.J.G. How to Open a Black Box

Classifier for Tabular Data.

Algorithms 2023, 16, 181. https://

doi.org/10.3390/a16040181

Academic Editors: Xiang Zhang

and Xiaoxiao Li

Received: 14 February 2023

Revised: 13 March 2023

Accepted: 17 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

How to Open a Black Box Classifier for Tabular Data

Bradley Walters, Sandra Ortega-Martorell, Ivan Olier * and Paulo J. G. Lisboa

School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool L3 2AF, UK
* Correspondence: i.a.oliercaparroso@ljmu.ac.uk

Abstract: A lack of transparency in machine learning models can limit their application. We show
that analysis of variance (ANOVA) methods extract interpretable predictive models from them. This
is possible because ANOVA decompositions represent multivariate functions as sums of functions
of fewer variables. Retaining the terms in the ANOVA summation involving functions of only one
or two variables provides an efficient method to open black box classifiers. The proposed method
builds generalised additive models (GAMs) by application of L1 regularised logistic regression to the
component terms retained from the ANOVA decomposition of the logit function. The resulting GAMs
are derived using two alternative measures, Dirac and Lebesgue. Both measures produce functions
that are smooth and consistent. The term partial responses in structured models (PRiSM) describes the
family of models that are derived from black box classifiers by application of ANOVA decompositions.
We demonstrate their interpretability and performance for the multilayer perceptron, support vector
machines and gradient-boosting machines applied to synthetic data and several real-world data sets,
namely Pima Diabetes, German Credit Card, and Statlog Shuttle from the UCI repository. The GAMs
are shown to be compliant with the basic principles of a formal framework for interpretability.

Keywords: ANOVA; Shapley values; self-explaining neural networks; generalised additive
models; interpretability

1. Introduction

Machine learning models can be inherently interpretable, typically by fitting decision
trees [1] or even by representing an existing black box model, such as a neural network,
by extracting rules, whether using decompositional methods to explain the activity of
individual hidden neurons, or applying pedagogical methods to fit the decision surface
with axis-orthogonal hypercubes [2]. Decision trees have been successfully used to build
transparent models in high-stakes applications [3].

Alternatively, statistical models, such as logistic regression, have high classification
performance for the levels of noise typical for clinical prediction models [4]. Both decision
trees and logistic regression have been successful and have global interpretability. However,
each has a significant limitation. Rule sets can grow so complex as to become opaque to the
user. Generalised linear models, while accurately modelling the nature of chance variation
in the data through an appropriate choice of the output distribution function, require a
priori choices of attribute factors, often resorting to categorising input variables to better
capture non-linearities in the data.

A model that is arguably gold-standard should combine linear additivity with the
automatic estimation of the non-linear dependence of the prediction on individual variables
or pairs of variables. This can be achieved with generalised additive models (GAMs) [5].
We investigate to what extent it is possible to buck the performance-interpretability trade-
off for tabular data by deriving GAMs from existing black box models, or using standard
machine learning approaches to seed a GAM, keeping only univariate and bivariate terms.

Opening black boxes with ANOVA in this way is attractive because GAMs quantify
Bayesian models in a way that is natural for human thinking. In particular, the representa-
tion of the logit as a GAM represents the prediction of the probability of class membership

Algorithms 2023, 16, 181. https://doi.org/10.3390/a16040181 https://www.mdpi.com/journal/algorithms
111

Algorithms 2023, 16, 181

as a combination of independent effects, much in the way that logistic regression does, but
allowing for non-linear functions of the input variables. Specifically, for input dimensional-
ity d, the odds ratio of this probability has the form

P(C|x)
1 − P(C|x) = eϕ1(x1).eϕ1(x2) . . . eϕd(xd) .eϕ1,2(x1,x2) . . . eϕ(d−1),d(x(d−1) ,xd).eϕ0 (1)

where the terms ϕi(xi) are univariate functions, hence easily interpreted, ϕij
(
xi, xj

)
are

bivariate functions, which can also be easily plotted, and ϕ0 is the null model for which all
of the input variables ϕi(xi) and ϕi,j

(
xi, xj

)
are set to 0.

From a Bayesian perspective, each component eϕ models the contribution of an indi-
vidual variable or pair of variables, which can enhance or suppress the P(C|x) depending
on whether the value taken by the argument function ϕ is positive or negative, acting on
the baseline value eϕ0 , which, if ϕi(0) is always 0, corresponds to the prior odds ratio in the
absence of any of the input variables being present.

As the variables are entered into Equation (1), they modulate the prediction of P(C|x),
much in the same way as a human observer can start with a prior probability, e.g., for
the diagnosis of a clinical state, then modulate that diagnosis as the observations of the
symptoms are made; each symptom contributing to increasing or reducing the probability
of diagnosing the clinical state according to Equation (1). In the medical domain, many risk
models are quantified by exactly this model, usually expressed as a risk score, namely

score(x1, x2, . . . , xd) =
d

∑
i=1

βi·xi (2)

with

logit(P(c|x)) = log
(

P(C|x)
1 − P(C|x)

)
= β0 + score(x1, x2, . . . , xd) (3)

This corresponds to the GAM defined by Equation (1) with only univariate terms
given by

ϕi(xi) = βi·xi (4)

1.1. Related Work on Self-Explaining Neural Networks

Interpretable neural network models have a long history starting with generalised
additive neural networks (GANNs) [6–8], also called self-Explaining neural networks
(SENNs) [9], which consist of a multilayer perceptron with modular structures that are not
fully connected but involve sums of sub-networks, each representing functions of a single
input variable or pair of variables [6]. However, they lack efficient methods to carry out a
model selection to avoid modelling spurious correlations by including too many variables.

Our method relies on the analysis of variance (ANOVA) decompositions [10]. Al-
though ANOVA is well known in mainstream statistics, its potential to derive interpretable
models from pre-trained black box machine learning algorithms has not been fully ex-
ploited. In his paper introducing gradient boosting machines, Friedman notes that partial
dependence functions can help “interpret models produced by any black box prediction
method, such as neural networks, support vector machines, etc.” [11]. However, this
referred to the visualisation of the model’s dependence on covariates, which applies locally
only at the data median, rather than building a predictor that applies globally and so
can be used to make predictions over the complete range of input values with the same
additive model.

Other algorithms to derive predictive additive models have been proposed recently.
They are neural additive models (NAM), where the univariate functions are each modelled
with a separate multilayer perceptron or deep learning neural network [12] and explainable
boosting machines (EBM) [13], which includes both univariate and bivariate terms. A
recent refinement of these methods is the GAMI-NET [14]. This model estimates main
(univariate) effects and pairwise interactions in two separate stages, building bespoke

112

Algorithms 2023, 16, 181

neural networks to model each effect and interaction. None of these models will open an
existing black box since they built a SENN structure first rather than applying function
decomposition to a given multivariate function, as achieved with ANOVA.

Moreover, all the above models have limitations either in feature selection or in the
structure of the model itself. In particular, NAMs favour a model structure that includes
univariate functions for all the input variables and lack a clear process for selecting bivariate
component functions. In contrast, EBMs incorporate model selection with statistical tests;
in fact, ANOVA significance tests applied to partial dependence functions, proposed
by [11], which are similar to the marginal functions used in Section 2.1.1 to calculate partial
responses from ANOVA decompositions with the Lebesgue measure. This permits the
inclusion of bivariate functions in the additive model. However, the EBM component
functions are jagged because they are built from hyper box cuts in input space. The GAMI-
NET requires explicit sparsity and heredity constraints, along with what is called marginal
clarity, which is a penalisation term to enforce orthogonality between the main effects and
the pairwise interactions. This is motivated by the functional ANOVA decomposition,
implicitly using the marginal distribution, although it is not clear whether this observes the
constraint raised in [11] to ensure that correlations among the input variables do not bias
the orthogonality calculation. Our approach uses the ANOVA decomposition directly and
so keeps the training process much simpler.

All of the above methods are stand-alone algorithms rather than explaining predictions
made by pre-trained black boxes. This is also the case for sparse additive models (SAM) [15],
where the component univariate and bivariate functions in a GAM are implemented with
splines in contrast to our use of neural networks, which are semi-parametric, and hence, less
restrictive. Moreover, splines can over-regularise the model and miss important details in
the data, as well as being inefficient for estimating bivariate terms due to a proliferation of
spline parameters. A further model, sparse additive machines [16], derives GAM structures
from SVM models. It is scalable and has a provable convergence rate that is quadratic on
the number of iterations, but this is not probabilistic and does not include pairwise terms.

The motivation for considering ANOVA as a method to open black box models is
that each measure used in ANOVA is closely related to an intuitive approach for the
decomposition of multivariate functions into predictive models with fewer variables. The
Dirac measure filters from the multivariate response precisely the terms in the Taylor series,
centred at the data median, which are dependent on just one or two variables [17], while
the Lebesgue measure marginalises the response surface over one of two variables [18].
The proposed method is computationally efficient and stable for variable selection.

1.2. Contributions to the Literature

The main hypothesis of this paper is that the low-order functions derived by ANOVA
from arbitrarily complex machine learning or other probabilistic classifiers contain sufficient
information to open the black box models while retaining the classification performance
measured by the area under the receiver operating characteristic curve (AUC). The resulting
models are interpretable by design [19].

The proposed generic framework to extract GAMs from black boxes is termed partial
responses in structured models (PRiSM). An instantiation of the framework has been
demonstrated by applying the simplest measure used by ANOVA. This performed well on
two medical data sets about intensive care [20] and heart transplants [21]. The focus of the
latter is a detailed clinical interpretation of the partial response network (PRN), which is
an anchored model, i.e., it combines functions restricted to be zero at the median values
of the data. This paper makes a comprehensive approach to the proposed method and
contributes novelty in the following respects:

• Comprehensive presentation of the generic framework for deriving PRiSM models
from arbitrary black box binary classifiers, reviewing the orthogonality properties
of ANOVA for two alternative measures: the Dirac measure, which is similar to
partial dependence functions in visualisation algorithms [11] and produces component

113

Algorithms 2023, 16, 181

functions that are tied to the data median; the Lebesgue measure, which involves
estimates of marginal effects and is related to the quantification of effect sizes [7]. The
method is tested on nine-dimensional synthetic data to verify that it retrieves the
correct generating variables and achieves close to optimal classification performance;

• Derivation of a commonly used indicator of feature attribution, Shapley values [22].
When applied to the logit of model predictions from GAMs and SENNs, it is shown
to be identical to the value of the contributions of the partial responses derived
from ANOVA;

• Mapping of the properties of the PRiSM models to a formal framework for inter-
pretability, demonstrating compliance with its main requirements [23], known as the
three Cs of interpretability. This is complemented by an in-depth analysis of the
component functions estimated from three real-world data sets.

The univariate and bivariate component functions representing the additive contribu-
tions to the logit of the model prediction are what we call partial responses. Note that while
univariate component functions are numerically identical to partial dependence plots, the
bivariate functions are not since they are obtained by removing the univariate dependence
via the orthogonality properties of ANOVA decompositions. Moreover, the univariate and
bivariate component functions are not used here purely for visualisation. Their values are
the nomogram of the model, i.e., the ordinate of the figures shown later is in all cases the
precise contribution of the variables to the model prediction, which is for every data point
merely the summation of the contributions from all of the variables in the logit space.

The derived models retain a direct link between the input variables and the model
predictions, meeting the requirements of the three “Cs” outlined earlier, and have compa-
rable classification performance to the original black box models. This is demonstrated
by application to four real-world data sets: UCI Diabetes, UCI German Credit Card, and
Statlog Shuttle. The first three were used as benchmark data sets, whilst the last one was
chosen as it was used in related work [12].

We refer to the overall framework to open pre-trained black boxes by deriving sparse
models in the form of GAMs and SENNs as the integration of partial responses into
structured models (PRiSM), Figure 1.

Figure 1. Schematic of the PRiSM framework. Any multidimensional decision function can be
represented by a spectrum of additive functions, each with only one or two inputs. The final prediction
of the probability of class membership, P̂(C|X), is given by the sum of the univariate and bivariate
component functions, scaled by the coefficients βxi , βxij derived by the least absolute shrinkage and

selection operator (LASSO). Since only univariate ϕ(xi) and bivariate ϕ
(

xi, xj

)
component functions

are in the model, their shapes provide a route towards interpretation by end-users.

114

Algorithms 2023, 16, 181

2. Materials and Methods

2.1. Methods
2.1.1. ANOVA Decomposition

The first novelty of the paper is to apply an ANOVA decomposition [10] to pre-trained
black box probabilistic binary classifiers in order to extract from the logit(P(C|x)), which is
a multivariate function, component functions of fewer variables.

The ANOVA decomposition is defined as follows

logit(P(C|x)) ≡ log
(

P(C|x)
1−P(C|x)

)
= ϕ0 + ∑

i
ϕi(xi) + ∑

i �=j
ϕij

(
xi, xj

)
+ . . . + ∑

i1 �= ... �=iP

ϕi1 ... iP

(
xi1 , . . . , xiP

) (5)

where the general form of the terms in (5) is a recursive function of the nested subsets of the
covariate indices {i 1, . . . , iP} with the property that the term involving all of the covariates
xi:i = 1 . . . P, where P is the dimensionality of the input data is given by

ϕi1 ... iP

(
xi1 , . . . , xiP

)
= logit

(
P
(
C
∣∣xi1 , . . . , xiP

))− ∑
{i1 �= ... �=iP−1}

ϕi1 ... in−1

(
xi1 , . . . , xiP−1

)− ϕ0 (6)

Note that Decomposition (5) is an identity that exactly reproduces the values of the
logit(P(C|x)), originally predicted by the black box classifier. We call the component
functions ϕi1 ...in

(
xi1 , . . . , xin

)
partial responses, since they involve only a subset of the

input variables.
The general form of the component terms is given by the following equations, which

depend only on the chosen measure μ(x)

ϕ0 =
∫
[x]P

logit(P(C|x))dμ(x) (7)

ϕS(xs) =
∫
[x]P−|S| logit(P(C|x))dμ(x−S)− ∑

T⊂S
ϕT(xT) (8)

where S ∈ RS represents a subset of variables with dimensionality |S| ≤ P. The terms xs
and x−s denote, respectively, the subspace spanned by S:|S| = n in Equation (6) and its
complement −S:|−S| = d − n.

It follows from (7) and (8) that the terms ϕS are normalised with respect to the
chosen measure ∫

S
ϕS(xs)dμ

(
xj
)
= 0, i f j ∈ S (9)

and also orthogonal for disjoint variable sets S and T∫
S

ϕS(xs)ϕT(xT)dμ(x) = 0, i f S �= T. (10)

There are two natural choices of measure, each of which will define the functionality
of each of the component terms ϕS in response to either one or two arguments:

• Dirac measure

dμ(x) = δ(x − xc)dx (11)

An arbitrary point xc that is called anchor point. The partial responses become cuts
through the response surface for the logit(P(C|x).

• Lesbesgue measure

dμ(x) = ρ(x)dx (12)

where ρ(x) is the density function of the variables in the argument of the integral. This
measure calculates the weighted mean of the integrand.

115

Algorithms 2023, 16, 181

In both cases, the data matrix X is first centred using the overall median of the data
and scaled by the marginal standard deviation:

X → (X − median(X))

/
std(X) (13)

The absence of a variable now corresponds to fixing it at the median value, since the
median point corresponds to a vector of 0 s. Therefore, the logit value then takes the value
logit(P(C|0)). Similarly, if all of the variables except xi are set to their median values, then
the corresponding values of logit(P(C|(0, . . . , xi, . . . , 0))) represent a function of just that
one variable. The same principle applies when only two variables are not 0, then three
variables, etc.

The partial responses for the Dirac measure are calculated according to

ϕ0 = logit(P(C|0)) (14)

ϕi(xi) = logit(P(C|(0, . . . , xi, . . . , 0)))− ϕ0 (15)

ϕij
(
xi, xj

)
= logit

(
P
(
C
∣∣(0, . . . , xi, . . . , xj, . . . , 0

)))− ϕi(xi)− ϕj
(
xj
)− ϕ0 (16)

In the case of the Lebesgue measure, the integrals in Equations (7) and (8) are calculated
empirically using the training data, with sample size N observations

F̂S(xs) =
1
N

N

∑
k=1

logit
(

P (C |xS, xk
−S)

)
(17)

where the variables with dimensions xs take any desired values but those in the complement
set with dimension xk

−S are fixed at their actual values in the training set k = 1 . . . N [11].
This corresponds to shifting all onto the coordinate(s) xs so that in the summation (17),
every data point has the same value of this input dimension while retaining the original
values for all other coordinates.

The orthogonalised partial responses ϕS(xs) follow by using Equation (8).

ϕ̂0 =
1
N

N

∑
k=1

logit
(

P (C |xk)
)

(18)

ϕ̂i(xi) = F̂i(xi)− ϕ̂0 (19)

ϕ̂ij
(
xi, xj

)
= F̂ij

(
xi, xj

)− ϕ̂i(xi)− ϕ̂j
(
xj
)− ϕ̂0 (20)

2.1.2. Model Selection with the LASSO

The resulting terms in the truncated ANOVA decomposition comprising only the
univariate and bivariate terms in (5) need to be re-calibrated to maximise the predictive
classification performance. In addition, having treated the higher-order terms as noise, the
remaining terms need also to be filtered to remove non-informative partial responses.

This is achieved through a second step involving the application of the logistic re-
gression with the LASSO [24], treating P ∗ (P + 1)/2 terms in the truncated ANOVA
decomposition as the new input variables. The L1 regularisation is robust for hard model
selection by sliding to zero the value of the linear coefficients for the least informative
variables, which are now partial responses.

Since the partial responses are generally non-linear functions of one of two variables,
they are readily interpretable. This is not new having previously been a widely used
approach to visualise non-linear models with partial dependence functions that are func-

116

Algorithms 2023, 16, 181

tionally equivalent to ANOVA terms with the Dirac measure. What is new is the realisation
that when these functions are calculated for the logit(P(C|x) and used for prediction with
tabular data, they can achieve comparable AUCs to those of the original black box models
from which the partial responses are derived.

2.1.3. Second Training Iteration

If the original black box model is an MLP, it is possible to construct a GANN/SENN
to replicate the output of the logistic Lasso by a replication of the weights from the MLP
multiplied by the coefficients of the Lasso. This permits an additional step of refining the
partial responses themselves by initialising the SENN at the operating point of the GAM.

Given the weights
{

wij, bj, vj, v0

}
of the original pre-trained fully connected MLP,

Figure 2, with the inputs indexed by i and hidden nodes indexed by j, together with the co-
efficients

{
β0, βi, βij

}
fitted by the Lasso, the PRiSM model for the anchored decomposition

can be exactly mapped onto an MLP structured in the form of a GANN/SENN, as follows.

Figure 2. The partial response network (PRN) has the modular structure typical of a self-explaining
neural network. In particular, the figure illustrates the connectivity for a univariate function of input
variables x1 and xp, and a bivariate term involving variables x2 and x3. Modelling the interaction
term as orthogonal to univariate terms involving the same variables requires three blocks of hidden
nodes, as explained in the main text. If there are univariate additive component functions involving
either x2 or x3 these are added to the structure by inserting additional modules, as shown for x1

and xp.

(1) Univariate partial response corresponding to the input xi

This is shown in Figure 2 for input x1. Zero inputs for all other inputs will not
contribute to the activation of the hidden nodes. The hidden layer weights wij connected
to node xi remain the same as in the original MLP but the weights and bias to the output
node need to be adjusted as follows:

vj → βi ∗ vj (21)

117

Algorithms 2023, 16, 181

v0 → βi ∗ (v0 − logit(P(C|0))) (22)

(2) Bivariate partial response for the input pair {xi,xj}

This is shown in Figure 2 for inputs x2 and x3. This time, to replicate the partial
response multiplied by the Lasso coefficient, it is necessary to add three elements to the
structure, namely, a univariate partial response for each of the inputs involved and a
coupled network that both inputs feed into together. We will use the generic input indices
k and l to avoid confusion with the hidden node index j. The hidden layer weights once
again remain unchanged from the original MLP. The output layer weights and bias for the
network structure representing the univariate term associated with input k (and similarly
for input l) are adjusted by

vj → (βk − βkl) ∗ vj (23)

v0 → (βk − βkl) ∗ (v0 − logit(P(C|0))) (24)

whereas the weights and bias for the coupled network are changed according to

vj → βkl ∗ vj (25)

v0 → βkl ∗ (v0 − logit(P(C|0))). (26)

(3) Finally, an amount is added to the total sum of the values calculated for the bias term
in the structured neural network. This amount is equal to the intercept of the logistic
Lasso, β0.

Equations (23)–(26) have the property that when an interaction between two variables
is identified after the first application of the Lasso, its mapping onto the structured neural
network involves also univariate modules, with the consequence that the second back-
propagation step can potentially render the bivariate term not statistically significant and
replace it with one or more univariate independent effects.

2.1.4. Summary of the Method

The following is the pseudo-code for PRiSM models, taking as a starting point a data
set comprising a set of P-dimensional input variables normalised according to (13) and the
corresponding black box model predictions.

Algorithm Partial Response Models PRiSM(BB, D):
Input: set D of training examples; predictions P(C|x) from a pre-trained black box

model BB.
1. ANOVA decomposition: apply the recursion given by Equation (6) to the logit(P(C|x).
This may use either of the suggested measures, Dirac and Lesbesgue. The former leads

to an anchored decomposition referenced to the choice of anchor point; the component
functions generated by the latter are summations weighted by the density function of the
covariates, P(x).

2. Model selection with the Lasso: input the set of univariate and bivariate partial
responses ϕi(xi) and ϕij

(
xi, xj

)
from (6) calculated over the training data set D as new

inputs for variable selection with the logistic regression Lasso.
The Lasso will also output a linear coefficient for each partial response, βi and βij, as

well as an intercept β0, generally resulting in good calibration.
Output prBB(BB, D): this is the output of the Lasso in Step 2, which has the form

of a GAM, shown in Equation (5), truncated to the selected subset of functions ϕi(xi)
and ϕij

(
xi, xj

)
:

logit(prBB(C|x)) ≡ ϕ(0) + ∑
i

βi ϕi(xi) + ∑
i �=j

βij ϕij

(
xi, xj

)
(27)

118

Algorithms 2023, 16, 181

Each partial response comprises a non-linear function of its arguments. Consequently,
the model prediction equals the sum of all partial responses plus the intercept, weighted
by the linear coefficients from Step 2, followed by the application of the sigmoid function,
which inverts the logit(P(C|x)).

The predictions for anchored decompositions are indexed by the pre-fix pr followed
by an abbreviation of the black box algorithm, e.g., prSVM and prGBM.

3. Predictions with PRiSM models: given a test data point, the ϕi(xi) and ϕij
(
xi, xj

)
are calculated using Equations (14)–(16) or (17)–(20), and the predicted output follows
from (27). The input variables are, therefore, directly linked to the predictions through
interpretable functions.

Anchored decomposition applied to the MLP:
By denoting the output prMLP (MLP, D) by MLP-Lasso, it is then possible to continue

training as follows:
4. Map the MLP-Lasso into a GANN/SENN: this has the form of a GANN/SENN,

meaning that it is not fully connected, as shown in Figure 2. The adjustments to the weights
are explained in Equations (21)–(26) and in Section 2.1.3.

Output Partial Response Network [PRN]: having initialised a structured neural net-
work in the previous step, so that it exactly replicates the component functions and output
of the MLP-Lasso, back-error propagation is applied to continue the training of this net-
work. The PRN is a probabilistic binary classifier, so training will use the log-likelihood
cost function. Note that the component functions no longer conform with the require-
ments of an ANOVA decomposition as they will have been adjusted without the constraint
of orthogonality.

Output PRN-Lasso: Steps 1,2. are then applied to the PRN instead of the original MLP.
This generates a new set of partial responses ϕ∗

i (xi) and ϕ∗
ij
(
xi, xj

)
and corresponding coef-

ficients β∗
i and β∗

ij from which the model predictions follow by inserting these coefficients
and partial responses into Equation (27).

The second training iteration enables the partial responses to be refined without being
adjusted for input variables that were removed from the model by the Lasso in Step 2.
Therefore, the PRN–Lasso–BB models will always comprise a subset of the variables in the
PRN–BB models, but not necessarily with the same functional form. It is possible that some
of the partial responses in the PRN–BB model are no longer selected and even that what
may have started as a pure two-way effect can now be split into two independent main
effects represented by univariate partial responses.

2.1.5. Exact Calculation of Shapley Values

In common with GAMs generally, the interpretation of a PRiSM model is the model
itself, since the components of the logit are additive and the amount contributed by each
partial response is clearly quantified.

In addition, the relevance of individual input variables can be calculated using Shapley
values [22]. This can be achieved for the overall prediction of the probability of class
membership, but also for the logit, which places less emphasis on the non-linearity at the
class boundary but takes greater account of the value of the logit across the full range of
input values, which is important to ensure the good calibration of the final model.

When the logit has the form shown in Equation (27), the Shapley value φi correspond-
ing to input variable xi of dimensionality P can be efficiently computed by summing over all
variable subsets that exclude input i, S ⊆ P\{i}, including S = ∅, with the usual formula

φi(xi) =
1
P ∑

S⊆N\{i}

(
P − 1
|S|

)−1

(logit(P(C|S ∪ {i} − logit(P(C|S)) (28)

The linear terms in (27) simply add for every combination of input variables excluding

i, of which there are
(

P − 1
|S|

)
; therefore, at each data point the contribution to φi(xi) is just

119

Algorithms 2023, 16, 181

βi(ϕi(xi)− ϕi(0)). In the case of the bivariate terms, the calculation is similar but involves

only
(

P − 2
|S|

)
combinations giving

1
P

P−1

∑
j=1

⎡⎢⎢⎢⎣
(

P − 2
j − 1

)
(

P − 1
j

)
⎤⎥⎥⎥⎦ =

1
P

P−1

∑
j=1

[
(P − 2)!j!

(P − 1)!(j − 1)!

]
=

1
P

P−1

∑
j=1

(
j

P − 1

)
=

1
2

(29)

Therefore, the pairwise terms neatly share their impact among the Shapley values for
each of the variables, yielding

φi(xi) = βi(ϕi(xi)− ϕi(0)) +
1
2∑

j
βij

(
ϕij

(
xi, xj

)− ϕij
(
0, xj

))
(30)

2.1.6. Experimental Settings

All algorithms were implemented in Matlab [25]. The MLP was trained with automatic
relevance determination [26] implemented in Netlab [27], although conjugate gradient
descent leads to similar results. The other machine learning algorithms predict scores for a
class assignment. In this study, the scores are calibrated for probabilistic classification using
the score as the sole input to a logistic regression model, which forms the starting point for
PRiSM models by taking the logit in the same way as for the MLP. The SVM was fitted using
fitcSVM with an RBF kernel and automatic optimisation. The GBM model is implemented
with fitcensemble, which boosts 100 decision trees using the function LogitBoost.

2.2. Data sets used
2.2.1. Synthetic Data

(a) 2D circle. We implemented a sample size of n = 10,000 with unbalanced classes,
which is the case for all synthetic data sets in this paper. In this case, the logit has two
separate univariate components,

logit(P(C|(x1, x2)) = 10 ×
[(

x1 − 1
2

)2
+

(
x2 − 1

2

)2
− 0.08

]
(31)

This data set is similar to that used in [15] but instead of generating clean data by
allocating different classes on either side of the boundary, we use noisy data by generating
binary targets with a Bernoulli distribution, which is also common for all the synthetic data
sets that we report,

Y ∼ Bin(n, P(C|(x1, x2))). (32)

The factor of 10 in Equation (31) is to reduce the amount of noise and so ensure a
reasonable value for the AUC. The values of (x1, x2) are generated using xi = 0.5 × (ui + w),
where both ui and w are uniform distributions in the range [0,1], to demonstrate the predic-
tion accuracy when the two input variables are correlated. There are only two univariate
main effects and no interaction term.

(b) XOR function. The purest bivariate interaction is the XOR, represented in the
multilinear form appropriate for continuous Boolean algebra [28],

P(C|(x3, x4)) = x3 + x4 − 2x3x4, xi ∈]0, 1[(33)

Each variable will be generated by a uniform distribution in [0,1]. This density function
has the property that

logit(P(C|(x3, x4))) = log
(

x3 + x4 − 2x3x4

1 − x3 − x4 + 2x3x4

)
(34)

120

Algorithms 2023, 16, 181

Therefore, logit
(

P
(

C
∣∣∣(x3, 1

2

))
= 0 making it a pure interaction for the ANOVA de-

composition with the Dirac measure anchored at (1/2,1/2). Similarly, for the Lebesgue
measure, it is readily shown that

logit(P(C|(x3, x4)) = −logit(P(C|(1 − x3, x4)) (35)

which is similar to the other dimension; therefore, the integrals corresponding to the
univariate terms vanish, once again leaving the pure interaction term.

(c) Logical AND function. A combination of univariate and bivariate terms by gener-
ating data according to the logical AND function, which in continuous Boolean algebra is
represented by the following atomic term:

P(C|(x5, x6)) = x5x6, xi ∈]0, 1[(36)

This time, the ANOVA expansion with the Dirac measure anchored at (1/2,1/2) is

logit(P(C|(x5, x6)))

= −log(3) + ∑
i

[
log

(
xi

2−xi

)
+ log(3)

]
+

[
log

(
(2−x5)(2−x6)

1−x5x6)
− log(3)

)] (37)

The Lebesgue measure yields univariate terms given by

ϕ
Lebesgue
i = log

(
xi

/
(1 − xi)

)
+

log(1 − xi)

xi
+ Li2(1) (38)

where Li2(1) is the polylogarithm function of second order evaluated at 1. The bivariate
term is given by the explicit ANOVA decomposition in Equation (5) and does not reduce to
a simpler algebraic form.

(d) Three-way interaction. The final synthetic data set comprises a data set that cannot
be modelled with univariate and bivariate terms only. The purpose is now to see how well
PRiSM models work to model a high-order effect.

P(C|(x7, x8, x9)) = x7x8x9, xi ∈]0, 1[(39)

Note that the complete set of input variables for the synthetic data set is calculated
only once. In this way, the same sample of 9-dimensional input data will be used for all
classifiers. Only the target classes differ, thus generating four separate binary classification
tasks. In each case, two or three variables will carry signal and the others comprise noise.
A minimum requirement of all classifiers is to identify the relevant input dimensions and
discard the rest. In addition, since we have the data generators, we can calculate the optimal
classification performance corresponding to allocating every data point to the correct class,
irrespective of the stochastic label generated by the Bernoulli distribution.

2.2.2. Real-World data

A description of the variables included in the starting pool for model selection and
any standardisation that was applied to them is provided below.

(a) Diabetes data set:

The Diabetes dataset [29,30] comprises measurements recorded from 768 women, who
were at least 21 years old, of Pima Indian heritage, and tested for diabetes using World
Health Organization criteria. One of the variables, “Blood Serum” Insulin, has significant
amounts of missing data. These rows were removed along with all entries with missing
values of “Plasma Glucose Concentration” in a tolerance test, “Diastolic Blood Pressure”
(BP), “Triceps Skin Fold Thickness” (TSF) or “Body Mass Index” (BMI), resulting in a
reduced data set with n = 532. In line with common practice, a subset was randomly

121

Algorithms 2023, 16, 181

selected for training (n = 314), and the remaining were used for testing (n = 268). The
additional variables available are “Age”, “Number of Pregnancies”, and “Diabetes Pedigree
Function” (DPF), a measure of family history of diabetes. A binary target variable indicated
diabetes status, with a positive prevalence of 35.7%.

(b) Statlog German Credit Card data set:

We used the numerical version of the Statlog German Credit Card database [31],
which contains n = 1000 instances and 24 attributes. The first 700 observations were
used for training, with a prevalence of bad credit risks being 29.6%. The remaining
300 observations were used for testing, with a prevalence of bad risks of 31%. The data set
was used in the form created for the benchmarking study Statlog, where three categorical
variables (“Other Debtors”, “Housing”, and “Employment”) were coded in binary form
with multiple columns.

(c) Statlog Shuttle data set:

The Statlog Shuttle database [31,32] from NASA comprises 9 numerical attributes and
an outcome label. It is split into 43,500 cases for training and 14,500 for testing. There
are 7 outcomes, of which 21% are in the category “Rad Flow”. The binary classification
task is to separate this category, Class 0, from the others, assigned to Class 1. Given the
strong imbalance between classes, the default accuracy for a null model, i.e., predicting the
predominant class for all rows, is 79%. The target accuracy is 99–99.9%.

3. Results

The following sections compare the performance and characteristics of different PRiSM
models obtained by opening a range of frequently used black box algorithms.

3.1. Synthetic Data

The purpose of the benchmarking on the synthetic data is to ascertain how close
each machine learning classifier and the corresponding interpretable PRiSM models get to
the optimal classification accuracy, which is obtained using the known class membership
probabilities given by the generating formulae for class membership, notwithstanding the
presence of noise in the targets.

The classification performance of frequently used machine learning models and their
interpretable versions applied to the four synthetic sets are listed in Tables 1–4. The
optimal AUC values are in bold, and the values below the confidence interval (CI) are in
italics. Two-dimensional plots of the relevant variables from the nine input dimensions are
plotted in Figures 3–5, showing the actual training data with Bernoulli noise and the ideal
class allocations used to find the best achievable AUC. The generated data set was split
into three parts for training, model parameter optimisation with out-of-sample data, and
performance estimation in generalisation. It is interesting to see how much the optimal
AUC varies between three slices from the same noisy data. This illustrates the importance
of calculating confidence intervals. The model with marginally the best point estimate
of the AUC for the optimisation data may not have the highest AUC estimated on the
independent sample.

Table 1. Classification performance for the 2D circle measured by the AUC [CI]. The input variables
x1 and x2 are ideally selected solely for their univariate responses.

AUC [CI]
No. Input
Variables

Training (n = 6000)
Optimisation

(n = 2000)
Performance

Estimation (n = 2000)

Optimal classifier 2 0.676 [0.662,0.689] 0.657 [0.634,0.681] 0.666 [0.643,0.690]
MLP 9 0.676 [0.663,0.690] 0.659 [0.635,0.682] 0.660 [0.636,0.684]
SVM 9 0.695 [0.682,0.708] 0.646 [0.622,0.670] 0.648 [0.624,0.672]
GBM 9 0.697 [0.684,0.710] 0.649 [0.625,0.673] 0.641 [0.617,0.665]

122

Algorithms 2023, 16, 181

Table 1. Cont.

AUC [CI]
No. Input
Variables

Training (n = 6000)
Optimisation

(n = 2000)
Performance

Estimation (n = 2000)

PRiSM models Components Dirac measure
Lasso 2 0.675 [0.661,0.688] 0.658 [0.634,0.682] 0.661 [0.637,0.685]
PRN 2 0.676 [0.662,0.689] 0.659 [0.636,0.683] 0.664 [0.640,0.687]

PRN–Lasso 2 0.676 [0.662,0.689] 0.659 [0.636,0.683] 0.664 [0.640,0.688]
prSVM 2 0.676 [0.662,0.689] 0.658 [0.634,0.681] 0.664 [0.640,0.688]
prGBM 5 0.681 [0.667,0.694] 0.655 [0.631,0.679] 0.655 [0.632,0.679]

PRiSM models Components Lebesgue measure
Lasso 2 0.675 [0.662,0.689] 0.659 [0.636,0.683] 0.661 [0.637,0.685]
PRN 2 0.676 [0.662,0.689] 0.659 [0.636,0.683] 0.664 [0.640,0.687]

PRN–Lasso 2 0.676 [0.662,0.689] 0.660 [0.636,0.683] 0.664 [0.640,0.687]
prSVM 3 0.675 [0.662,0.689] 0.657 [0.634,0.681] 0.665 [0.641,0.689]
prGBM 2 0.673 [0.659,0.686] 0.656 [0.632,0.679] 0.654 [0.630,0.678]

Table 2. Classification performance for the XOR function measured by the AUC [CI]. The input
variables x3 and x4 are ideally selected solely for their bivariate response.

AUC [CI]
No. Input
Variables

Training
(n = 6000)

Optimisation
(n = 2000)

Performance
Estimation (n = 2000)

Optimal classifier 1 0.689 [0.675,0.702] 0.663 [0.639,0.687] 0.671 [0.648,0.695]
MLP 9 0.692 [0.678,0.705] 0.665 [0.641,0.688] 0.669 [0.646,0.693]
SVM 9 0.708 [0.695,0.721] 0.652 [0.628,0.676] 0.660 [0.637,0.684]
GBM 9 0.713 [0.700,0.726] 0.586 [0.561,0.610] 0.609 [0.584,0.633]

PRiSM models Components Dirac measure
Lasso 1 0.688 [0.675,0.701] 0.663 [0.639,0.686] 0.672 [0.648,0.695]
PRN 1 0.690 [0.677,0.703] 0.664 [0.640,0.687] 0.670 [0.646,0.694]

PRN–Lasso 1 0.688 [0.675,0.702] 0.663 [0.639,0.686] 0.672 [0.648,0.695]
prSVM 14 0.691 [0.678,0.705] 0.663 [0.640,0.687] 0.671 [0.648,0.695]
prGBM 1 0.687 [0.674,0.700] 0.656 [0.633,0.680] 0.661 [0.638,0.685]

PRiSM models Components Lebesgue measure
Lasso 1 0.689 [0.676,0.702] 0.664 [0.640,0.688] 0.670 [0.647,0.694]
PRN 1 0.690 [0.677,0.703] 0.664 [0.640,0.687] 0.670 [0.646,0.693]

PRN–Lasso 1 0.690 [0.676,0.703] 0.664 [0.641,0.688] 0.670 [0.647,0.694]
prSVM 7 0.690 [0.677,0.703] 0.633 [0.640,0.687] 0.672 [0.648,0.695]
prGBM 1 0.688 [0.675,0.702] 0.656 [0.632,0.680] 0.659 [0.635,0.682]

Table 3. Classification performance for the logical AND function measured by the AUC [CI]. The
input variables x5 and x6 are ideally selected with two univariate responses and a bivariate response.

AUC [CI]
No. Input
Variables

Training
(n = 6000)

Optimisation
(n = 2000)

Performance
Estimation (n = 2000)

Optimal classifier 3 0.816 [0.802,0.830] 0.836 [0.813,0.860] 0.817 [0.793,0.841]
MLP 9 0.816 [0.803,0.830] 0.833 [0.809,0.857] 0.815 [0.791,0.839]
SVM 9 0.803 [0.790,0.817] 0.797 [0.772,0.821] 0.786 [0.762, 0.809]
GBM 9 0.822 [0.810,0.834] 0.826 [0.805,0.847] 0.808 [0.787,0.830]

PRiSM models Components Dirac measure
Lasso 3 0.815 [0.801,0.828] 0.833 [0.809,0.857] 0.813 [0.789,0.837]
PRN 3 0.816 [0.802,0.829] 0.835 [0.811,0.858] 0.814 [0.790,0.838]

PRN–Lasso 3 0.816 [0.802,0.830] 0.835 [0.811,0.859] 0.814 [0.791,0.838]
prSVM 6 0.800 [0.787,0.813] 0.813 [0.790,0.835] 0.797 [0.774, 0.820]
prGBM 6 0.820 [0.807,0.832] 0.828 [0.807,0.848] 0.807 [0.786,0.829]

123

Algorithms 2023, 16, 181

Table 3. Cont.

AUC [CI]
No. Input
Variables

Training
(n = 6000)

Optimisation
(n = 2000)

Performance
Estimation (n = 2000)

PRiSM models Components Lebesgue measure
Lasso 3 0.815 [0.801,0.828] 0.832 [0.808,0.856] 0.813 [0.789,0.837]
PRN 3 0.816 [0.802,0.829] 0.835 [0.811,0.858] 0.814 [0.790,0.838]

PRN–Lasso 3 0.816 [0.802,0.830] 0.835 [0.811,0.858] 0.815 [0.791,0.839]
prSVM 4 0.799 [0.786,0.812] 0.812 [0.790,0.834] 0.796 [0.773,0.819]
prGBM 8 0.817 [0.805,0.829] 0.828 [0.808,0.849] 0.810 [0.789,0.831]

Table 4. Classification performance for the three-way interaction measured by the AUC [CI].
Three input variables are involved, x7, x8, and x9.

AUC [CI]
No. Input
Variables

Training
(n = 6000)

Optimisation
(n = 2000)

Performance
Estimation (n = 2000)

Optimal classifier 3 0.840 [0.822,0.859] 0.817 [0.783,0.851] 0.836 [0.805,0.868]
MLP 9 0.840 [0.822,0.859] 0.809 [0.775,0.843] 0.832 [0.801,0.864]
SVM 9 0.797 [0.779,0.815] 0.764 [0.729,0.798] 0.786 [0.755,0.817]
GBM 9 0.831 [0.816,0.847] 0.796 [0.767,0.826] 0.813 [0.786,0.840]

PRiSM models Components Dirac measure
Lasso 3 0.837 [0.818,0.855] 0.811 [0.777,0.845] 0.821 [0.797,0.861]
PRN 3 0.837 [0.819,0.856] 0.812 [0.778,0.846] 0.830 [0.799,0.862]

PRN–Lasso 3 0.837 [0.819,0.856] 0.812 [0.778,0.846] 0.830 [0.799,0.862]
prSVM 6 0.813 [0.796,0.829] 0.777 [0.744,0.810] 0.807 [0.778,0.836]
prGBM 3 0.832 [0.817,0.847] 0.797 [0.768,0.826] 0.813 [0.786,0.841]

PRiSM models Components Lebesgue measure
Lasso 3 0.834 [0.816,0.853] 0.808 [0.774,0.842] 0.828 [0.796,0.860]
PRN 3 0.837 [0.819,0.856] 0.812 [0.778,0.846] 0.831 [0.799,0.862]

PRN–Lasso 3 0.837 [0.819,0.856] 0.812 [0.778,0.846] 0.831 [0.799,0.862]
prSVM 6 0.808 [0.792,0.824] 0.776 [0.745,0.808] 0.805 [0.777,0.833]
prGBM 4 0.825 [0.809,0.841] 0.798 [0.768,0.828] 0.810 [0.781,0.839]

(a) (b)

Figure 3. Class allocation for the 2-circle synthetic data set as a function of x1 and x2 showing:
(a) The stochastic class labels; and (b) The correct classes that are used to find the optimal AUC.

124

Algorithms 2023, 16, 181

(a) (b)

(c) (d)

Figure 4. Class allocation for the XOR data set as a function of x3 and x4 showing: (a) The stochastic
class labels; (b) The correct classes used to find the optimal AUC; (c) The two-way interaction term
identified by the Dirac measure; and (d) The interaction estimated with the Lebesgue measure, which
is almost identical to the curve in (c). Both surfaces are the only terms in the GAM, and closely
correspond to the logit of the ideal XOR prediction surface. The main difference to theory is that the
values at the four corners that saturate at finite values, whereas in theory, they extend to infinity in
both vertical directions. This, however, has little impact on the crucial region for classification, which
is the class boundary.

(a) (b)

Figure 5. Class allocation for the synthetic data set representing the logical AND a function of x5 and
x6 showing: (a) The stochastic class labels; and (b) The correct classes to find the optimal AUC.

125

Algorithms 2023, 16, 181

The MLP-derived PRiSM models identified the correct ANOVA components for all
data sets, with both the Dirac and Lebesgue measures. The three-way interaction term is a
product of three inputs, not a pure interaction term. Therefore, its decision boundary can
be approximated even in the absence of a third-order term, with three univariate partial
responses sufficient to get close to the optimal prediction accuracy. Note that the predicted
response in Figure 4c,d for the XOR task is very close to the bilinear surface corresponding
to the theoretically correct response given by multilinear algebra (Tsukimoto, 2000).

Some machine learning models can be prolific in model selection with the ANOVA
decomposition, followed by the Lasso, for either measure. The models always include the
relevant variables but may also suffer from overfitting. However, it is remarkable how the
interpretable models frequently achieve AUC values within 1% of the optimal value.

The models that filtered out the correct number of components to model each data set
all have consistent interpretations. The partial responses correspond to the data generators
in the vicinity of the class boundary, although the responses tend to level off away from the
boundary, where the precise value of the logit is less important since the class membership
probabilities are close to zero or one.

3.2. Real-World Data

The benchmarking results for the interpretable models against the original black box
classifiers are summarised in Table 5. Values below the CI of the AUC are in italics.

Table 5. Classification performance for the real-valued data sets. The label ‘D’ indicates the number
of input variables for the black boxes and component functions for the PriSM models.

AUC [CI] D Diabetes D Credit Card D Shuttle

MLP 7 0.902 [0.850,0.954] 24 0.815 [0.758,0.872] 6 0.999 [0.998,1.000]
SVM 7 0.817 [0.749,0.884] 24 0.793 [0.733,0.852] 6 0.999 [0.999,1.000]
GBM 7 0.816 [0.748,0.884] 24 0.784 [0.724,0.845] 6 1.000 [0.999,1.000]

PRiSM models Dirac measure

MLP–Lasso 5 0.902 [0.851,0.954] 12 0.818 [0.762,0.875] 3 0.999 [0.999,1.000] *
PRN 5 0.903 [0.851,0.954] 12 0.809 [0.752,0.867] 3 0.999 [0.998,1.000] *

PRN–Lasso 5 0.903 [0.851,0.955] 12 0.815 [0.758,0.872] 2 0.998 [0.997,0.999] *
prSVM 5 0.884 [0.829,0.940] 13 0.798 [0.739,0.857] 3 0.998 [0.997,0.999] *
prGBM 8 0.847 [0.784,0.910] 10 0.763 [0.700,0.825] 2 0.998 [0.997,0.999]

PRiSM models Lebesgue measure
MLP–Lasso 4 0.889 [0.835,0.944] 12 0.819 [0.763,0.876] 3 0.999 [0.998,1.000] *

PRN 4 0.903 [0.852,0.955] 12 0.817 [0.760,0.874] 3 0.999 [0.998,1.000] *
PRN–Lasso 4 0.905 [0.853,0.956] 11 0.819 [0.762,0.875] 2 0.999 [0.998,1.000] *

prSVM 6 0.896 [0.842,0.949] 12 0.803 [0.745,0.861] 3 0.998 [0.997,0.999] *
prGBM 7 0.881 [0.824,0.937] 9 0.791 [0.732,0.851] 2 0.997 [0.995,0.998]

* Indicates a two-stage model selection process, explained in the text.

All methods use the same data sets, and the AUCs are quoted for test data only.
Measuring statistical significance with the McNemar test shows that the performance
difference between any pair of models is not significant at the 5% level.

While the accuracy of all models is comparable, the PRiSM models use fewer variables
and are intuitive to interpret. It is also apparent that the two different measures lead to very
similar classification performances. The coefficients of the Lasso used for re-calibration are
close to unity for all models.

The number of component functions in Table 5 shows the effect of variable selection
by the Lasso. The Diabetes data set generates only univariate responses. However, the
Credit Card and Shuttle data sets require two-way interactions, as well as univariate effects.
Note that the Credit Card data set generates 300 partial responses to choose from.

The GAMs, seeded by the SVM and GBM, are calibrated by the LASSO, resulting in
the prSVM and prGBM. The univariate and bivariate structure of these models can be used

126

Algorithms 2023, 16, 181

to define a PRN model, which is a SENN with MLP components, initialised either with
random weights or with univariate and bivariate modules trained to replicate each of the
selected partial responses. This will replicate the PRN and, following orthogonalization,
the PRN–Lasso.

The sparsity of the models and their potential for interpretation are illustrated by
the partial responses of two models, the MLP–Lasso and the PRN, shown in Figures 6–11.
These functions are derived from the training data and are always used for prediction on
out-of-sample data. The corresponding component functions for the other PRiSM models
have similar values, although, if derived from random forests, e.g., in the case of the prGBM,
they are stepwise constant rather than smooth. This is shown in [20] for a different data set.

(a) (b)

(c) (d)

(e)

Figure 6. Contributions to the logit from partial responses to the logit (left axis) for the Diabetes data
set, obtained with the Dirac measure, overlapped with the histogram of the training data (right axis).
The final partial responses derived at the second application gradient descent (solid lines) are shown
alongside the partial responses from the original MLP (dashed lines). Five covariates are represented,
namely (a) Pregnancies, (b) Glucose, (c) BMI, (d) DPF and (e) Age.

127

Algorithms 2023, 16, 181

(a) (b)

(c) (d)

(e)

Figure 7. As for Figure 6, with the Lebesgue measure, the component functions of the GAM are
very similar for both measures. They have a similar structure and range of contributions to the logit.
Despite being fitted with a generic non-linear model, the MLP, several of the partial responses are
linear. Variable “DPF” shows a saturation effect, as might be expected, while the log odds of “Age”
as an independent effect peak around the age of 40. Note that data sparseness for higher values will
result in greater uncertainty in the estimation of the partial response. The same size covariates are
represented (a–e) as in Figure 6.

128

Algorithms 2023, 16, 181

(a) (b)

(c) (d)

(e)

Figure 8. Partial responses for the German Credit Card data set, using the same notation as the
previous figures. Four univariate responses and a bivariate response are shown namely for the
covariates (a) Status of checking account, (b) Duration of loan, (c) Credit history and (d) Credit
amount, together with (e) the pairwise interaction between Credit amount and Duration of loan.

129

Algorithms 2023, 16, 181

(a) (b)

(c) (d)

(e) (f)

Figure 9. As for Figure 8, with the Lebesgue measure for the same covariates in (a–d), but with
two pairwise interactions involving the variables listed in (e,f). Despite the different nature of the two
measures, they offer entirely consistent interpretations, with the only difference being the selection by
the Lasso model of a second bivariate interaction term, albeit with a range in contribution to the logit
that is five times smaller than for the interaction term involving “Credit amount” and “Duration”.

130

Algorithms 2023, 16, 181

(a) (b)

(c)

Figure 10. Nomogram of the PRN–Lasso model obtained for the Statlog Shuttle data set using the
Dirac measure with a training/test split of n = 43,500 and 14,500, respectively: (a) Shows the raw data
for the two variables selected, which corresponds well with two partial responses in the final model,
namely: (b) shows the main effect involving x9; and (c) plots the two-way interaction between the
two variables in the model, x1 and x9.

Among the seven covariates in the Diabetes data set, five occurred together as univari-
ate responses in all of the random initialisations for the MLP–Lasso, PRN–Lasso, and the
two measures. They are “Pregnancies”, “Glucose”, “BMI”, “DPF”, and “Age”. An inter-
action term involving “Glucose” and “DPF” was present in three random initialisations.
The set of models obtained is, therefore, remarkably stable. The partial responses for the
recurrent univariate effects are shown in Figures 6 and 7.

The German Credit Card data set is more challenging. Out of 24 variables, six were
present in all initialisations for both measures: “Duration”, “Credit history”, “Savings ac-
counts”, “Period of employment”, and the two variables labelled x16 and x17. In the case of
the Lebesgue measure, three more variables recurred in all 10 initialisations, namely “Status
of checking account”, “Other instalment plans”, and “Worker status”. In addition, the
variable “Credit amount” featured as a univariate or a bivariate term in eight initialisations.
These ten variables were selected to obtain the models for which a selection of component
functions is shown in Figures 8 and 9.

131

Algorithms 2023, 16, 181

(a) (b)

(c)

Figure 11. As for Figure 7, with the Lebesgue measure, the same two variables were used as with the
Dirac measure, and similar AUC performance was achieved albeit involving an additional univariate
term. Shown are the two main effects involving covariates x1 in (a) and x9 in (b) together with the
pairwise interaction between them in (c).

Four univariate functions for multi-valued input variables are consistently monotoni-
cally decreasing and very close to linear, suggesting that these indicators are well calibrated
as independent effects on credit risk, quantifying reductions in risk with rising input values.
“Duration” shows saturation in its contribution to risk for large values, and “Credit amount”
has a non-linear response with a minimum value. The bivariate responses suggest that to
optimise the overall calibration of the model, adjustments are required in addition to the
main effects. This includes a risk reduction when the “Credit amount” and “Duration” are
both high, and a slight enhancement when either is small compared with the median value.

After mapping the structure derived with the Dirac measure from the prSVM onto the
PRN–Lasso, good discrimination was achieved with an AUC of 0.812 [0.755,0.869] with just
ten univariate effects. They comprised the six variables identified also by the PRN, together
with the variables ‘Personal status’, ‘Property’, and ‘Other instalment plans’.

For both the Diabetes and Credit Card data, the other benchmarked algorithms, SVM
and GBM, generally select more components than the MLP and have worse generalisation
performance, as evident from Table 5. If the partial response models derived from each
machine learning algorithm are mapped onto a SENN and further trained, then their

132

Algorithms 2023, 16, 181

performance becomes similar for all of the models and they select consistent input variables,
although some models will include additional ones.

The scalability and power of the method can be illustrated using the Statlog Shuttle
data set. This data set is challenging because all of the variables have non-normal distribu-
tions, often with very peaked histograms, hence very small entropy. Two of the variables,
x5 and x9, have a Pearson correlation of −0.875.

When applying MLP, the weight decay parameters estimated for variables x2, x4, and
x6 are noticeably larger than the others, indicating that these variables are less informative.
They were, therefore, removed from the data. In the case of the Dirac measure, univari-
ate component functions for x1 and x9 were selected by the PRN–Lasso with an AUC of
0.996 [0.994,0.998]. Selecting just these two variables as the inputs resulted in the perfor-
mance listed in Table 5, involving a univariate effect for x9 together with the interaction
between x1 and x9. The Lebesgue measure behaved similarly but for the same Lasso selec-
tion procedure, and included also a univariate effect for x1 albeit without an appreciable
performance improvement.

The prSVM model selection process also followed a two-stage process, ending with
the same two variables, x1 and x9, for both measures, each time involved in two univariate
effects and a bivariate term. Interestingly, the prGBM model converged straight away
on the two-component solution involving a univariate effect for x9 and an interaction
between x1 and x9 with the Dirac measure; with the Lebesgue measure, it converged on
two univariate effects.

4. Discussion

A potential advantage of the PRN model over other PRiSM models in their current
formulation is that the PRN allows for a second step of training, where the univariate and
bivariate responses are re-estimated without the constraints of the ANOVA framework.
The PRN–Lasso then applies the ANOVA framework to the refined univariate and bivariate
models obtained by the PRN, followed by re-calibration, using logistic regression with
L1 regularisation.

We now turn to three key questions for explainable machine learning methods: the
accuracy of the resulting models, their stability in model selection and their interpretability.
In particular, accuracy and stability are critical requirements for any interpretable model.

4.1. Predictive Accuracy

The ability to model data depends primarily on the capacity of the machine learning
algorithm to fit the data structure given the observational noise. Each of the methods shown
is capable of fitting the benchmark data although some of the point estimates of the AUC
are close to the confidence limit boundaries of the best performing methods. Therefore,
the different methods have different efficiencies for modelling specific data sets. However,
all of the models have comparable performance, which is uniformly high and with no
evidence of an interpretability vs. performance trade-off.

4.2. Stability

The discussion of the empirical results shows that model selection is stable for multiple
random initialisations of the MLP algorithm. This suggests that the PRiSM framework
resolves two major limitations of the MLP: different predictions for multiple initialisations
and lack of interpretation. It turns out that re-shaping the MLP to become a SENN also
stabilises the predictions for different initialisations.

Stability is also good between models, with consistency between the input variables
selected by all of the methods. This is perhaps most striking for the Shuttle data, where
all of the methods picked the two key variables and identified an important interaction
between them from a highly non-linear but remarkably noise-free set of measurements.

133

Algorithms 2023, 16, 181

4.3. Interpretability

This can be referred to a formal framework involving the three Cs of interpretability [23]:

• Completeness—the proposed models have global coverage in the sense that they
provide a direct and causal explanation of the model output from the input data, over
the complete range of input data. The validity of the model output is evidenced by
the AUC and calibration measures;

• Compactness—the explanations are as succinct, ensured by the application of logistic
regression modelling with the Lasso. The component functions, both univariate and
bivariate, are shown in the results to be stable, as are the derived GAMs;

• Correctness—the explanation generates trust in the sense that:

- They are sufficiently correct to ensure good calibration for all data sets. This
means that deviations from the theoretical curves for the synthetic data occur in
regions where the model is close to saturated, i.e., making predictions close to
0 or 1;

- The label coherence of the instances covered by the explanation is assured by
the shape of the component functions so that the neighbouring instances have
similar explanations.

The partial responses for the real-world data sets are plausible. In the case of the
medical and credit card classifiers, some variables show remarkably linear dependence over
their full range, while others are monotonic but their values saturate, showing a levelling-
up beyond a certain point. In some cases, there is a turning point, and, interestingly, this
was seen consistently for the two measures, e.g., for the added risk associated with credit
amount, shown in Figures 8d and 9d. There is also a clear impact from data sparsity,
which causes variability in the component functions in the less densely sampled regions of
the data.

A more thorough appraisal of the plausibility of a PRiSM model using the Dirac
measure applied to heart transplants is discussed in [21].

Finally, we note that PRiSM models are counterfactual because their predictions are
directly connected to the input values. In the case of the PRN, the logit of the probabilistic
prediction is simply the sum of the univariate and bivariate responses, whereas for the
MLP–Lasso, PRN–Lasso, and the remaining PRiSM models seeded by other machine
learning algorithms, the prediction is the sum of the response functions re-scaled by the
linear coefficients of the Lasso.

5. Conclusions

We propose ANOVA decompositions of multivariate logit functions into sums of
functions of fewer variables as a computationally efficient way to open probabilistic black
box binary classifiers. Empirical results on the synthetic and real-world data show that
the resulting interpretable models do not suffer from the interpretability vs. performance
trade-off when applied to tabular data. Moreover, two alternative measures, Dirac and
Lebesgue, lead to consistent interpretations for any given data set. The proposed method
is accurate, stable, and scalable. Benchmarking it against a range of machine learning
algorithms confirms this.

This paper formalizes the complete framework for the derivation of GAMs from
black box classifiers, links the formalism to a commonly used attribution measure, Shapley
values, and demonstrates its compliance with a user-led interpretability framework [23].
The paper extends previous results from related work focusing on clinical interpretations
of a particular realization of the framework with anchored decomposition [20,21]. An
unexpected finding of this study is that although the two measures are distinct, in that the
Dirac measure represents a cut through a response surface at a particular point in the data
and so is dependent on the choice of anchor point, while the Lebesgue measure integrates
the surface over the range of the data and so is closer to the evaluation of size effects, both
measures lead to similar interpretable models. This result is encouraging and suggests

134

Algorithms 2023, 16, 181

that the PRiSM framework may be a viable method to derive globally interpretable models
from arbitrary binary classifiers.

The resulting partial responses form a nomogram, which is a broadly used method
of communicating complex models to users without the need for a detailed mathematical
formulation [33]. We show that the components in the nomogram of a GAM agree exactly
with the Shapley values, which are increasingly used for the explanation of machine
learning in some high-stakes applications [34].

The component functions derived with the two measures, while close, are not identical.
Further work is required to explore with end-users the preference for either measure and
by which model they are seeded. In addition, confidence intervals for the univariate and
bivariate terms need to be quantified. There are also clear parallels with regression models
and a possible extension of the binary classifier to survival modelling within the framework
of partial logistic cost functions [35]. Note that the method applies to any classifier that
predicts the probability of class membership since it does not use the internal structure of
the classifier but only the overall response function.

Author Contributions: P.J.G.L. conceptualised the method and led the study. P.J.G.L., S.O.-M. and I.O.
implemented the code and ran the experiments. B.W. contributed to the discussions, implementation,
and experiments. All authors evaluated the results. P.J.G.L., S.O.-M. and I.O. drafted the early versions
of the manuscript. All authors contributed to the writing, reviewing, and editing, and approved the
final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This was partially funded by Liverpool John Moores University via a PhD scholarship.

Data Availability Statement: The real-world data analysed in the current study are available in
Kaggle, the UCI Machine Learning repository, and PhysioNet, as follows: Diabetes (Pima Indians dia-
betes database): https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database (access
on 11 October 2021) German Credit Card (Statlog German credit card data set): https://archive.ics.
uci.edu/ml/datasets/statlog+(german+credit+data) (access on 11 October 2021). Statlog Shuttle data
set: https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle) (access on 11 October 2021). Medi-
cal Information Mart for Intensive Care (MIMIC-III): https://physionet.org/content/mimiciii/1.4/
(access on 11 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; Rudin, C. Learning Certifiably Optimal Rule Lists for Categorical Data.
J. Mach. Learn. Res. 2018, 18, 1–78.

2. Rögnvaldsson, T.; Etchells, T.A.; You, L.; Garwicz, D.; Jarman, I.; Lisboa, P.J.G. How to Find Simple and Accurate Rules for Viral
Protease Cleavage Specificities. BMC Bioinform. 2009, 10, 149. [CrossRef]

3. Poon, A.I.F.; Sung, J.J.Y. Opening the Black Box of AI-Medicine. J. Gastroenterol. Hepatol. 2021, 36, 581–584. [CrossRef]
4. Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; van Calster, B. A Systematic Review Shows No Performance

Benefit of Machine Learning over Logistic Regression for Clinical Prediction Models. J. Clin. Epidemiol. 2019, 110, 12–22. [CrossRef]
[PubMed]

5. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box
Models. ACM Comput. Surv. 2018, 51, 93. [CrossRef]

6. Sarle, W.S. Neural Networks and Statistical Models. In Proceedings of the Nineteenth Annual SAS Users Group International
Conference, Dallas, TX, USA, 10–13 April 1994; pp. 1538–1550.

7. Brás-Geraldes, C.; Papoila, A.; Xufre, P. Odds Ratio Function Estimation Using a Generalized Additive Neural Network. Neural
Comput. Appl. 2019, 32, 3459–3474. [CrossRef]

8. Lee, C.K.; Samad, M.; Hofer, I.; Cannesson, M.; Baldi, P. Development and Validation of an Interpretable Neural Network for
Prediction of Postoperative In-Hospital Mortality. NPJ Digit. Med. 2021, 4, 8. [CrossRef]

9. Alvarez-Melis, D.; Jaakkola, T.S. Towards Robust Interpretability with Self-Explaining Neural Networks. In Proceedings of the
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 2–8 December 2018.

10. Hooker, G. Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables. J. Comput.
Graph. Stat. 2007, 16, 709–732. [CrossRef]

11. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
12. Agarwal, R.; Melnick, L.; Frosst, N.; Zhang, X.; Lengerich, B.; Caruana, R.; Hinton, G.E. Neural Additive Models: Interpretable

Machine Learning with Neural Nets. Adv. Neural Inf. Process. Syst. 2020, 6, 4699–4711. [CrossRef]

135

Algorithms 2023, 16, 181

13. Nori, H.; Jenkins, S.; Koch, P.; Caruana, R. InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv
2019, arXiv:1909.09223 2019.

14. Yang, Z.; Zhang, A.; Sudjianto, A. GAMI-Net: An Explainable Neural Network Based on Generalized Additive Models with
Structured Interactions. Pattern Recognit. 2021, 120, 108192. [CrossRef]

15. Ravikumar, P.; Lafferty, J.; Liu, H.; Wasserman, L. Sparse Additive Models. J. R. Stat. Soc. Ser. B 2009, 71, 1009–1030. [CrossRef]
16. Chen, H.; Wang, X.; Deng, C.; Huang, H. Group Sparse Additive Machine. Adv. Neural Inf. Process. Syst. 2017, 30, 97–207.
17. van Belle, V.; Lisboa, P. White Box Radial Basis Function Classifiers with Component Selection for Clinical Prediction Models.

Artif. Intell. Med. 2014, 60, 53–64. [CrossRef]
18. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance Based Sensitivity Analysis of Model Output.

Design and Estimator for the Total Sensitivity Index. Comput. Phys. Commun. 2010, 181, 259–270. [CrossRef]
19. Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef]
20. Walters, B.; Ortega-Martorell, S.; Olier, I.; Lisboa, P.J.G. Towards Interpretable Machine Learning for Clinical Decision Support. In

Proceedings of the International Joint Conference on Neural Networks, Padua, Italy, 18–23 July 2022. [CrossRef]
21. Lisboa, P.J.G.; Jayabalan, M.; Ortega-Martorell, S.; Olier, I.; Medved, D.; Nilsson, J. Enhanced Survival Prediction Using Explainable

Artificial Intelligence in Heart Transplantation. Sci. Rep. 2022, 12, 19525. [CrossRef]
22. Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774.
23. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019,

8, 832. [CrossRef]
24. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [CrossRef]
25. The MathWorks Inc. MATLAB; The MathWorks Inc.: Natick, MA, USA, 1994.
26. MacKay, D.J.C. The Evidence Framework Applied to Classification Networks. Neural Comput. 1992, 4, 720–736. [CrossRef]
27. Nabney, I. NETLAB: Algorithms for Pattern Recognitions; Springer: Berlin/Heidelberg, Germany, 2002.
28. Tsukimoto, H. Extracting Rules from Trained Neural Networks. IEEE Trans. Neural Netw. 2000, 11, 377–389. [CrossRef] [PubMed]
29. Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996.
30. Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP Learning Algorithm to Forecast the

Onset of Diabetes Mellitus. In Proceedings of the Annual Symposium on Computer Application in Medical Care, Washington,
DC, USA, 6–9 November 1988; p. 261.

31. Newman, D.J.; Hettich, S.; Blake, C.L.; Merz, C.J. UCI Repository of Machine Learning Databases. Available online: http:
//www.ics.uci.edu/~mlearn/MLRepository.html (accessed on 1 January 2022).

32. Abe, N.; Zadrozny, B.; Langford, J. Outlier Detection by Active Learning. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 504–509. [CrossRef]

33. Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in Oncology: More than Meets the Eye. Lancet Oncol. 2015,
16, e173–e180. [CrossRef] [PubMed]

34. Roder, J.; Maguire, L.; Georgantas, R.; Roder, H. Explaining Multivariate Molecular Diagnostic Tests via Shapley Values. BMC
Med. Inform. Decis. Mak. 2021, 21, 1–18. [CrossRef]

35. Biganzoli, E.; Boracchi, P.; Mariani, L.; Marubini, E. Feed Forward Neural Networks for the Analysis of Censored Survival Data:
A Partial Logistic Regression Approach. Stat. Med. 1998, 17, 1169–1186. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

136

Citation: Galatro, D.; Trigo-Ferre, R.;

Nakashook-Zettler, A.;

Costanzo-Alvarez, V.; Jeffrey, M.;

Jacome, M.; Bazylak, J.; Amon, C.H.

Framework for Evaluating Potential

Causes of Health Risk Factors Using

Average Treatment Effect and Uplift

Modelling. Algorithms 2023, 16, 166.

https://doi.org/10.3390/a16030166

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 1 March 2023

Revised: 15 March 2023

Accepted: 18 March 2023

Published: 19 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Framework for Evaluating Potential Causes of Health Risk
Factors Using Average Treatment Effect and Uplift Modelling

Daniela Galatro 1, Rosario Trigo-Ferre 2, Allana Nakashook-Zettler 1, Vincenzo Costanzo-Alvarez 3,*,

Melanie Jeffrey 4, Maria Jacome 5, Jason Bazylak 3 and Cristina H. Amon 1,3

1 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
2 Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E5, Canada
3 Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
4 Centre for Indigenous Studies, University of Toronto, Toronto, ON M5S 2J7, Canada
5 Faculty of Applied Sciences and Technology, Humber Institute of Technology and Advanced Learning,

Toronto, ON M9W 5L7, Canada
* Correspondence: v.costanzo@utoronto.ca

Abstract: Acute myeloid leukemia (AML) is a type of blood cancer that affects both adults and
children. Benzene exposure has been reported to increase the risk of developing AML in children.
The assessment of the potential relationship between environmental benzene exposure and child-
hood has been documented in the literature using odds ratios and/or risk ratios, with data fitted to
unconditional logistic regression. A common feature of the studies involving relationships between
environmental risk factors and health outcomes is the lack of proper analysis to evidence causation.
Although statistical causal analysis is commonly used to determine causation by evaluating a distri-
bution’s parameters, it is challenging to infer causation in complex systems from single correlation
coefficients. Machine learning (ML) approaches, based on causal pattern recognition, can provide an
accurate alternative to model counterfactual scenarios. In this work, we propose a framework using
average treatment effect (ATE) and Uplift modeling to evidence causation when relating exposure to
benzene indoors and outdoors to childhood AML, effectively predicting causation when exposed
indoors to this contaminant. An analysis of the assumptions, cross-validation, sample size, and inter-
action between predictors are also provided, guiding future works looking at the universalization of
this approach in predicting health outcomes.

Keywords: acute myeloid leukemia; risk factors; average treatment effect; uplift modelling; machine
learning; benzene

1. Introduction

Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells; AML
starts in the blood stem cells and is characterized by its rapid growth [1]. While AML is the
most common type of leukemia in adults, it also affects children; and about 500 children are
diagnosed with AML in the U.S. annually [2]. Childhood AML is most prevalent during the
first two years of life and adolescence. Epidemiological and genetic studies have confirmed
that most infant leukemias develop in utero [3,4].

Chemical exposure to significant benzene concentrations is reported as a possible
cause of AML in occupationally exposed workers [5]. Benzene exposure has also been
reported to increase the risk of developing AML in children. Most existing reports are
retrospective case-control studies [6], which are inherently limited since benzene exposure
is typically measured indirectly (biased) as parents of sick versus healthy children may
differentially recall them [5].

Moreover, some positive findings may be due to confounding factors instead, as other
biases are added when specific segments of the population are under-represented in the
study or control cohorts [6]. It has also been noted that exposure to various solvents

Algorithms 2023, 16, 166. https://doi.org/10.3390/a16030166 https://www.mdpi.com/journal/algorithms
137

Algorithms 2023, 16, 166

and hydrocarbons increases the chance of developing childhood AML [7,8]. Both groups
of chemicals fall into a vast range of toxicological profiles, benzene being the one of
greatest concern.

In the following subsections, we briefly review the traditional approaches to establish-
ing the relationship between Benzene Exposure and AML and current trends in estimating
causation for health outcomes using Machine Learning outcomes.

1.1. Traditional Approaches to Establishing the Relationship between Benzene Exposure and AML

The Bradford Hill criteria [9,10] have been extensively used to evaluate causation when
human epidemiologic relationships are found between exposure to a contaminant such as
benzene and the disease outcome, such as AML or other hematopoietic and pulmonary
diseases [10]. Despite its extensive use, this method is still debated among epidemiologists,
as they question, among many arguments, its scope of application and the possibility of
ruling out causality in some specific scenarios.

The assessment of the potential relationship between environmental benzene exposure
and childhood AML includes studying exposures prior to conception, during pregnancy,
or while breastfeeding [5]. Parental exposure to benzene, for instance, has been studied as
a potential risk factor for infant AML, with conflicting results among researchers. Kaatsch
et al. [11] and Shu et al. [12] did not find any association between parental exposure and
childhood AML. On the other hand, Buckley et al. [13] and Magnani et al. [14] reported
elevated rates of childhood AML associated with benzene, solvents, and paternal petroleum
occupational exposure (prenatal).

Households’ exposures to benzene have also been investigated, showing no increases
in childhood AML related to home use of solvents [15,16]. Nevertheless, cigarette smoke,
the main non-occupational source of benzene, is associated with an increased risk of
developing this disease, even at low-level exposure to benzene, through parental smoking
during pregnancy [17,18].

Other exposure surrogates for benzene as an air pollutant are traffic density and
proximity to chemical plants, refineries, and gas stations. While several air pollutants
are typically present in different concentrations, their risks are ranked by odds ratios.
Norlinder and Jarkvolm [19] observed an increase in childhood AML related to car density
with an incidence greater than 20 cars/km2, possibly attributable to benzene in the gasoline.
Reynolds [20] reported correlations between traffic density between benzene and butadiene
air concentrations. The corresponding odds ratios for children reveal a relationship with
the incidence rate of childhood AML. Similarly, Crosignani et al. [21] also reported an
association between elevated rates of childhood AML to traffic density, attributable to high
benzene exposure. Steffan et al. [22] reported an increased risk of this disease in proximity
to gas stations, while Harrison et al. [23] found no association. These opposing results have
also been reported when analyzing the risks of nearby petrochemical plants [5].

The discrepancies found in the literature may be due to the method of estimating
exposures, potential confound from correlated pollutants, and the intrinsically anisotropic
nature of the control volumes defined for the studies. For instance, air measurements in
outdoor volumes, show considerable variability in space and time, compared to values
reported for indoor control volumes. Benzene has undoubtedly been classified as a human
carcinogen causing AML in adults when exposed to relatively high concentrations at work.
Nevertheless, it is not clear if low concentrations of this compound in outdoor air cause
childhood AML, although some studies reveal some association [24].

Previous studies involving benzene exposure and childhood AML statistically re-
ported their results as odds ratio (OR) and/or risk ratio (RR). OR stands for the ratio of
an event’s odds in one group (for example, the exposed group) to its odds in the other
group (for example, the nonexposed group); the risk ratio (RR) stands for the ratio of the
risk of an event in one group to the risk of an event in the other group. An OR or RR
greater than 1.0 indicates an increase in odds or risk among the exposed group compared
to the unexposed one. Conditional and unconditional logistic regressions are typically

138

Algorithms 2023, 16, 166

used to fit the data of these studies, hence estimating the ORs, and RRs [25–27]. Matching
is used in case-control studies to adjust for confounding data, ensuring that regression is
possible when there is not enough overlap in confounding variables between cases and
a set of controls. Age, sex, and race are typical confounders suggested by descriptive
epidemiology [28]. Since the distribution of these variables may differ between cases and
controls, matching is commonly used to select cases and controls with similar distributions
of similar variables. Unmatched case-control studies, on the other hand, are typically
analyzed using unconditional logistic regression (ULR) due to their robust estimates and
effectiveness if there are few confounders to adjust for [23,27]. ULR involves producing
exposure-disease strata for each level of the confounder and then producing an average
effect across the data. This method is also effective when there are no problems with sparse
data, no loss of validity, and a potential increase in precision [29].

ULR makes the events log-odds a linear mixture of one or more independent factors,
predicting the likelihood that an event will occur [30]. Similar to other regressions, this
method shows where there is a relationship between these variables. Nevertheless, this
relationship cannot always imply causation; in other words, regression does not determine
causation. In statistics, the causal analysis goes one step further than the standard statis-
tical analysis in assessing the parameters of a distribution, aiming to infer probabilities
under changing conditions and understanding the actual effect of a specific phenomenon
happening in a system.

1.2. Current Trends in Estimating Causation for Health Outcomes Using Machine
Learning Methods

Causal analysis can be sometimes inaccurate, as in complex systems, it is difficult to
make causal arguments based on single correlation coefficients. To overcome this challenge,
recent machine learning (ML) approaches have been developed, based on causal pattern
recognition, providing robustness in accurately modeling counterfactual scenarios [31].

ML methods have been applied to health sciences for causal inference [32]. For
counterfactual prediction, ML has been used to address causal questions using methods
such as Random Forest [33] and Bayesian additive regression trees (BART) [34]. Some
common research goals that can be tackled with these techniques are [30] (i) the evalua-
tion of potential causes of health outcomes, (ii) the assessment of treatment options, and
(iii) the assessment of bias in the statistical analysis. Some ML predictors proved to be
assertive when causally inferring the influence of a health outcome while being controlled
by confounders. One study, for instance, showed that the targeted maximum likelihood
estimation (TMLE) technique outperformed traditional models when analyzing the effect
of fruit density on the nutrition of pregnant women on birth outcomes [35]. Despite being a
promising alternative to causal analysis, it is still in the foreseeable future when we will be
able to identify high-level causal variables from low-level data using these techniques, as
causal modeling approaches such as meta-learning and meta-modeling will be able to find
causal relationships accurately. Moreover, the potential case of being exposed to complex
mixtures of chemical contaminants causing adverse health outcomes can have additive
or synergistic effects, posing a challenge where the strength of the ML approach could be
used in combination with existing human data to infer causality [36].

Uplift modeling has been used by several companies to estimate the effect of an action
on some customer outcomes [37]. Estimating customer uplift is a causal inference since it
requires determining the difference between two outcomes that are mutually exclusive for
an individual (counterfactual nature); this is carried out using randomized experiments for
the treatment group and the control group. At the same time, the Uplift estimation is also a
machine learning problem because different models must be trained to finally select the one
that yields the most reliable prediction, requiring a sensible cross-validation process [38].
The combination of these features taken from both approaches, causal inference, and
machine learning, make Uplift modeling a suitable alternative in determining causation. To
our knowledge, Uplift modeling has not been applied to health sciences. Uplift modeling

139

Algorithms 2023, 16, 166

might become unstable when predicting causation, as with any other ML technique, as the
sample size decreases. Moreover, its convergence might be affected since it can depend on
variables not typically used in response models.

In this work, we propose a novel framework, for evaluating potential causes of health
outcomes using the average treatment effect (ATE) to compare the effects in our computa-
tional experiments and Uplift modeling, as a machine learning technique employed for
cross-validation of the ATEs. This simple approach effectively estimates the causation
of health outcomes using two levels of confirmation, integrating causal inference and
machine learning features. Our case study includes the causation of benzene exposure (as
an air pollutant) to childhood AML, analyzing the counterfactual nature of the OR-based
relationships found indoors and outdoors. The case study selected for our framework was
presented by Heck et al. [25] and includes childhood AML data collected from California
birth records over 17 years. Health outcomes based solely on relationships between vari-
ables can be challenged when the outcome is not proven to result from the occurrence of the
other event (s). This paper aims to describe the development and use of this framework and
discuss its significance as a reliable causation framework that can potentially be effectively
used to prevent, monitor, and treat diseases.

2. Methods

The methodological workflow (Figure 1) can be applied as a framework for any
study involving the causation of a pollutant exposure to the risk of developing a disease
through machine learning techniques and the analysis of the counterfactual nature of the
OR-based relationships.

Figure 1. Framework for causation analysis of a pollutant exposure to the risk of developing a disease
using machine learning techniques.

140

Algorithms 2023, 16, 166

The proposed ATE-Uplift framework is depicted in Figure 1, where the data is collected
either from an existing database or by obtaining simulated data from a regression model.
Typically, health outcome studies in the literature comprise strata of data that are fitted
using logistic regressions, as discussed in Section 2.1. Once collected, our causation analysis
includes two stages: (i) estimating the ATEs and (ii) cross-validating the previous estimation
using the Uplift modeling. The two levels strategy based on cross-validation integrating
causal inference and machine learning is crucial to support the reliability of our framework
since the consequences of determining causation can have several implications in the
prevention, monitoring, and treatment of diseases. Ultimately, our framework provides
two integrated causation indicators, the ATE values, and Qini coefficients. The results from
these stages allow researchers to conclude the causation of pollutant exposure to the risk of
developing a disease.

2.1. Case Study

The data for the case study selected in this work was presented by Heck et al. [25]. In
their work, they ascertained 46 cases of AML from the California Cancer Registry records
of children with ages less than six years and 19,209 controls from California birth records
between 1990 and 2007 and within 6 km of air monitoring stations. Risks of developing
AML were reported as ORs, including the ones associated with exposure to benzene,
butadiene, toluene, and other air pollutants, concluding that there is an increased risk
for AML when exposed to these air pollutants. A 1-M-matched case-control study was
performed using unconditional logistic regression (ULR), adjusted for the year of birth as a
matching variable, with 1:M = 1:20, to compare several characteristics of cases and controls,
primarily demographics (socioeconomic status, race, birthplace, and parity). Then, ULR
was employed to estimate the risk of AML from each interquartile range increase in air
toxic exposure for the different pollutants separately. The data might require evaluating
the correlations between pollutants. Heck et al. [25] recommended performing a factor
analysis with varimax rotation to group highly correlated pollutants based on eigenvalues
greater than 1. We have selected the OR related to exposure to benzene, which reveals a
relationship between this exposure and the risk of developing childhood AML.

2.2. Data Generation and Preparation for Uplift

This section summarizes the process used to generate data from the 1-M matched
control case study fitted with URL [23], as the original numerical and categorical data of the
study was unavailable, and its consequent preparation for ATE-Uplift, including factual
and counterfactuals. The data generation involves drawing samples from the existing ULR
model by Heck et al. [23].

Let y be the case-control study, where y = 1 for a case and y = 0 for the control. Let
xm = {xm1, xm2} a vector of matching variables, xe and exposure associated with the case-
control status, and x0 a vector of unmatched dummy variables corresponding to the strata
of the matched variables. The ULR model, assuming no interaction between the predictors,
is given by,

logit(π) = β0 + βexe + βT
mxm + βT

0 x0 (1)

where π is the probability of developing the disease, and β’s are the regression coefficients.
T denotes transpose.

The input data for the ATE model must be generated as a table of factual and counter-
factual cases. ‘Factuals’ are persons in the factual universe (where a ‘zero’ value is assigned
to benzene, or benzene = 0), and ‘counterfactuals’ are persons in a counterfactual universe
(where ‘one’ value is assigned to benzene, or benzene = 1). The table is generated from the
expected propensity of AML conditional on the inputs, which are predicted and converted
into a binary variable, as shown in Table 1.

141

Algorithms 2023, 16, 166

Table 1. Factuals and counterfactuals input for the ATE model.

Person Socioeconomic Status Race Birthplace Parity Benzene BINaml

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 1 0 0 0

. .
61 0 0 0 0 0 0 0 0 1 0
62 0 0 0 0 0 0 0 1 1 0
63 0 0 0 0 0 0 1 0 1 0

In Table 1, person 1 and person 61 are identically theoretical persons, except for having
different binary exposures to benzene and potentially different binary AML outcomes.
Similarly, and with the same proviso, person 2 and person 62 are identical, person 3 and
person 63 are identical, and so on.

We used simulated data from the ULR of the case study; the simulation assumes no
interaction between the benzene exposure and the rest of the predictors (socioeconomic
status, race, birthplace, and parity); hence, Simpson’s paradox is ruled out. This paradox
emerges when groups of data show one trend, but this is reversed when the groups are
combined. Our factual and counterfactuals table, in particular, the BINaml column (the
presence or absence of AML), is generated by the projection of the target variable of
Equation (1) or its substitute, Equation (2), that is logit(π(x)) of AML and its associated
binary AML variable.

logit(π(x)) = β0 + βexe + βT
mxm (2)

This projection requires Equation (1) to be completely specified, including the inter-
cepts, which was omitted by Heck et al. [25] as is usual in matched case-controlled studies.
Therefore, we substitute Equation (1) with Equation (2) to estimate the intercept, where β0
is a single number rather than a vector, yet βe, βT

m are the same βe, βT
m [25]. We estimate

β0 using Equation (2) following Haneuse’s et al. [38] optimization approach by using an
estimated overall prevalence of AML for the years 1990–2007 and the simulated benzene
exposure data. As input to this projection, we use two levels of benzene exposure: the
minimum and maximum values of the benzene distribution. Having projected the binary
AML variable, we inserted it into the BINaml column of the factual and counterfactuals
table, along with the corresponding benzene exposures and other predictor values. Finally,
we generated the factual and counterfactuals table by converting the benzene exposures
from numerical to categorical (i.e., from a maximum value to 1 and from a minimum
value to 0). We carry out this last conversion following the approach by Lebel [39] and the
California of Environmental Health Hazzard Assessment’s reference exposure level for
benzene as 0.940 ppm (0.903 ppb) [40].

2.3. Distribution of Benzene Exposure

Heck et al. [23] provide a description of the distribution of outdoor benzene exposure,
reproduced in Table 2.

Table 2. Outdoor benzene distribution [23].

Agent Mean/Standard
Deviation

Inter-Quartile
Range (IQR)

Minimum
Percentile

Maximum
10th 25th 75th 90th

Benzene, ppbv * 1.268/0.830 1.197 0.151 0.410 0.591 1.788 2.574 4.600

* ppbv is parts per billion by volume.

For our benzene exposure data simulation, we use a normal distribution centered at
1.268 with a standard deviation of 0.830, a truncated minimum of 0.151, and a truncated
maximum of 4.600. Heck et al. [25] calculate the risk of AML associated with one interquar-

142

Algorithms 2023, 16, 166

tile range increase in benzene exposure; we normalize the benzene distribution parameters
(mean, standard deviation, minimum, and maximum) by the IQR = 1.197 as well.

As for the observed prevalence of pediatric AML in California, we use an incidence of
46/19,255 (observed ratio of cases over controls) [25], reflecting their 1:20 matching.

In addition to the outdoor distribution, we also provide a causation analysis using an
indoor benzene exposure distribution from locations near garages (Table 3) [41].

Table 3. Indoor benzene distribution [38].

Agent Mean/Standard
Deviation

Inter-Quartile
Range (IQR) *

Minimum
Percentile

Maximum
10th 25th 75th 90th

Benzene, ppbv 5.650/2.825 1.197 0.700 - - - - 12.000

* Assumed the same as the outdoor distribution.

We normalized the parameters by the IQR of the outdoor benzene exposure to be able
to compare the results using two different distributions.

2.4. Causation between Exposure to Benzene and Risk of Developing AML

We estimated the causal effects of the benzene exposure to AML using the average
treatment effect and typical validation indicators obtained from Uplift modeling.

The average treatment effect (ATE) is a special case of an average partial effect for a
binary explanatory variable. It is used to compare the effects in our randomized compu-
tational experiments. The ATE measures the difference in mean outcomes between units
assigned to the study and units assigned to the control and is given by,

ATE =
1
N ∑i

(
y1(i) − y0(i)

)
(3)

where the treatment effect for individual i is given by y1(i) − y0(i) = β(i); the summation
occurs over all N individuals in the population.

The value of the potential outcome y(i) must not be affected by how the treatment and
exposure are assigned among all other individuals, according to the stable unit treatment
value assumption that is required for the estimation of the ATE. Extrapolation based on
strata must be assumed, or monotonicity instead, which denotes the absence of definers in
the population. Therefore, if the experiment experiences non-compliance, the ATE can no
longer be recovered. Instead, a local ATE can be obtained as the average treatment effect
for a particular subpopulation, limiting its extrapolation. Generalization for the causal
inference can be, hence, affected. The extrapolation based on ignobility or monotonicity, are
difficult assumptions to verify; once the data is available, the foundations of the design of
the experiment might reveal signals of homogeneity across groups that can verify them or
not, for which further data analysis is required. A stronger argument for Uplift modeling
can be made, as they provide a solution for isolating effects. Thus, Uplift models the
difference between conditional response probabilities in both the treatment and control
groups, clearly identifying groups of individuals on which an action or intervention will
have the most ‘positive effect’. A binary outcome is assumed for Uplift modeling, aligned
to the odds ratio, as per the nature of the problem described in this work.

There are various Uplift modeling approaches. The response probabilities that differ
between the study and control groups are used by the Two-Model approach to model
the uplift. This leads to a methodology based on two models as these probabilities are
calculated separately for each group. In Lo’s approach (Figure 2), the independent variables
change in logistic regression. The model is based (and learned) on one model; however, the
predicted probabilities are calculated for both groups. For the calculation of the predicted
probabilities, there is a dummy treatment variable in the test dataset, which is set to 0 for
the control group and 1 for the treatment group [42].

143

Algorithms 2023, 16, 166

Figure 2. Uplift Two-model Approach.

The Uplift model validation is performed by selecting an appropriate cost function
measuring the difference between the actual and predicted values of the response variable.
In economics, the Gini coefficient is used to measure the model’s goodness-of-fit. It is
typically plotted to show the Lorenz curve where the predicted scores of the targeted
observations are sorted in decreasing order. The extension of this curve and the Gini
coefficient for Uplift modeling is called the Qini curve [43]. Figure 3 shows a typical Qini
curve for an application in Econometrics.

Figure 3. Typical Qini curve for Uplift model evaluation, used in Econometrics.

144

Algorithms 2023, 16, 166

The y-axis shows the cumulative incremental gains, and the x-axis the proportion
of the population targeted. There is an Uplift curve and a random curve based on the
calculation of every segment. The Qini coefficient is the difference between the area under
these curves. A positive Qini-coefficient represents a good performance of the model, while
a value approximating zero represents a poorer performance.

2.5. Causation Codes

The Uplift data generation code (datagen.rmd) uses the βs provided by Heck et al. [23]
and benzene distributions indoors and outdoors to find the corrected intercept β_0 via
optimization. This code, developed with the software R, is a modification of the program
presented by Haneuse et al. [38]. The main results obtained include the ATE and the data
table prepared as input for Uplift modeling.

We also developed an R code (uplift.R) for the Uplift modeling, using the library
tools4uplift. The data is split into train and validation data for further fitting using the
baseline model two-model estimator through the embedded function DualUplift. The
results are interpreted from the QiniArea from the function PerformanceUplift.

Both codes datagen.r and uplift.rmd are available in Available online: https://github.
com/CHE408UofT/AML_Uplift (accessed on 18 March 2023) [44].

2.6. Results Interpretation

ATE values equal to zero reveal no causation, while values different than zero reveal
causation between exposure to benzene and the risk of developing childhood AML. We
look at two different scenarios, as we included indoor and outdoor benzene distributions,
looking at finding causation indoors and/or outdoors; therefore, we reported ATE values
for both scenarios.

Regarding the Uplift modeling, the goodness-of-fit of the model is evaluated using the
QiniArea function in R, which computes the area under the Qini curve. A positive value at-
tests to a good performance of the model, while a value near 0 shows a worse performance.

3. Results

This section presents the results of using our ATE-Uplift framework to estimate the
causation of benzene exposure (as an air pollutant) to childhood AML, through the analysis
of the counterfactual nature of the OR-based relationships found indoors and outdoors.

3.1. Indoor Benzene Distribution

The results of generating a set of factual/counterfactuals tables for indoor benzene
distribution to estimate their ATEs, show an average ATE of 0.203. This positive value
reveals the causation between indoor exposure to benzene and the risk of developing AML
in early childhood.

When analyzing the Uplift modeling results, we look at a variant of the Qini curve,
representing the incremental uplift as a function of the proportion of the population target.
Incremental Uplift measures whether an event would not have occurred without a specific
interaction; hence positive Qinis attest to the goodness-of-fit of the Uplift model. Figure 4
shows a typical Qini curve for the indoor benzene distribution scenario.

The data is first partitioned into subsets that keep the same distribution of treated ver-
sus non-treated and responders versus non-responders values. The training was achieved
using the formula DualUplift which fits the data using the two-model estimator or approach
(logistic regression model), with splits of the data in 70% for the training and 30% for
the validation. The first element of the DualUplift class is the baseline model fitted for
nontreated individuals, and the second is the baseline model fitted for treated individuals.
Using the two-model estimator, a baseline model is fitted for comparison purposes. Using
the validation set, the function predict infers the uplift. Finally, to evaluate the quality of
the baseline model, we plot the Qini curve, as shown in Figure 4. The Qini coefficients are
single indexes of the Uplift model. The x-axis represents the fraction of targeted individuals

145

Algorithms 2023, 16, 166

and the y-axis represents the incremental number of positive responses relative to the total
number of targeted individuals. The straight line between the origin and (100, y-max)
in Figure 4 represents a benchmark to compare the model’s performance to a strategy
that randomly targets subjects, as we explained before. In our case, the Qini coefficient is
positive (with a value of 0.14) and outperforms random targeting. The uplift percentages
are detailed in Figure 5. This reinforces the goodness-of-fit of the Uplift modeling approach,
as the observed uplifts are ordered from highest to lowest.

Figure 4. Qini curve for Uplift modeling for the validation data—indoor benzene distribution.

Figure 5. Uplift versus proportion of population targeted.

Our combined ATE/Uplift modeling framework allows us to conclude that there is a
causation of benzene exposure (as an air pollutant) to AML in early childhood, analyzing
the counterfactual nature of the OR-based relationship found indoors for the simulated
data from Heck et al. [25] and the benzene exposure distribution considered [25].

3.2. Outdoor Benzene Distribution

The results of generating a set of factual/counterfactuals tables for outdoor ben-
zene distribution to estimate their ATEs show an average value of zero, which indicates

146

Algorithms 2023, 16, 166

no causation between outdoor exposure to benzene and the risk of developing AML in
early childhood. The incremental uplift, in this case, is also zero at any proportion of
the targeted population.

4. Discussion

The ATE-Uplift framework effectively predicts causation in health outcomes when
fitted using ULR. Uplift modeling acts as a cross-validation technique of the ATE estimation,
integrating its causal inference and machine learning features. Moreover, Uplift modeling
ensures the goodness-of-fit of the regression. Thus, categorical factual/counterfactuals
tables generated from the original data are input to obtain ATEs, with positive values
revealing causation. Then, Uplift modeling is employed, where positive Qini coefficients
confirm causation.

For the data considered by Heck et al. [25], their corresponding ULR fitting and
distribution of benzene exposure [38], our framework was useful in revealing the causation
between indoor exposure to benzene and the risk of developing childhood AML. In contrast,
no causation was revealed when considering outdoor exposure. Nevertheless, it was
observed that, for this scenario, low ATE values (<0.05) near zero are somehow related
to inconsistent Uplift modeling results, as the corresponding Qini coefficients also show
low values (<0.03), different than zero. In these instances, we recommend, using a third
cross-validation method when reporting low ATE values.

While our preference is to have the original data to perform exploratory data analysis
(EDA), evaluate the interaction between predictors, and consequently preselect -and later
compare- applicable ML methods for estimating causation, in this work, we cautiously
tested ATE-Uplift for generated data, with one predictor, benzene, as ATE and Uplift
modeling are complementary methods for binary outcomes, working with factual and
counterfactuals to consequently estimating causality. ML methods, although promising,
must be carefully supported by a detailed EDA and a sample size evaluation. We noticed,
for instance, that inconsistent Uplift modeling results are obtained when decreasing the
sample size, an effect that must be minimized as per most ML predictors. Our future work
will add to our framework an EDA that will allow us to observe trends among and within
data groups, potentially fit and compare different surrogate models to establish the ‘best’
relationship between variables, and ultimately, perform a meta-analysis and comparison
between causation-based ML methods. Some techniques to be explored in future works
include meta-analysis and machine learning tools such as meta-learning causal structures
and causal Bayesian networks.

It is important to note that the reliability of the results obtained through the application
of our ATE-Uplift framework depends largely on the completeness of the data used and
how well-defined the assumptions are. Thus, once the numerical and categorical data is
available, it is recommended to perform data analysis to verify or not the main assumptions
regarding the absence of definers in the population required by the ATE model and,
therefore, frame the limitations of the model extrapolation.

Finally, we have assumed that there is no interaction between the benzene exposure
and the rest of the predictors. Such interaction will be considered in future works adapting
our framework once the data is available. ORs might be readjusted, and correlations
between pollutants might be revisited for more accurate correlations representing the
interaction within the strata predictors and benzene exposure.

Our research’s scientific and practical novelty lies simply and effectively in estimating
the causation of health outcomes using two levels of confirmation or cross-validation. We
use ATE values and Uplift modeling, integrating causal inference and machine learning
features. Causation is, per se, the main goal when evaluating health outcomes since
confirmed relationships between variables might not indicate that the outcome is indeed
the result of the occurrence of the other event(s). A reliable causation approach may lead to
effective disease prevention, monitoring, and treatment.

147

Algorithms 2023, 16, 166

5. Conclusions

In this work, we have presented the ATE-Uplift framework to predict causation in
health outcomes. Uplift modeling and estimating ATE values effectively integrate causal
inference and machine learning capabilities. We tested our framework to estimate the
causation between benzene exposure and AML, verified when considering indoor exposure
to this air pollutant. Causation is confirmed with two indicators, an ATE value different
than zero and positive Qini coefficients. Further considerations to validate and universalize
the use of this approach include an exhaustive exploratory data analysis (EDA) to observe
trends that might allow confirming the assumptions for its applicability and analyzing
the interaction between predictors, as its comparison with emerging ML methods being
evaluated for causation.

Author Contributions: Conceptualization and visualization: D.G., R.T.-F., V.C.-A. and C.H.A. Data
collection and methodology: D.G., R.T.-F. and A.N.-Z. Software: D.G. and R.T.-F. Formal analysis:
D.G., R.T.-F. and V.C.-A. Validation: A.N.-Z., M.J. (Melanie Jeffrey), M.J. (Maria Jacome), J.B. and
C.H.A. Computing resources: D.G., R.T.-F. and C.H.A. Writing—original draft: D.G. and R.T.-F. Prepa-
ration: D.G., R.T.-F. and A.N.-Z. Writing—review and editing: D.G., R.T.-F., V.C.-A., M.J. (Melanie
Jeffrey), M.J. (Maria Jacome), J.B. and C.H.A. Supervision: D.G., R.T.-F., V.C.-A. and C.H.A.; funding
acquisition: C.H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a Healthy Cities Implementation Science Team Grants (LOI)
202110LT5 from the Canadian Institutes of Health Research.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to Julia E. Heck from the UCLA Fielding School of Public Health,
Department of Epidemiology, for the information and support provided throughout this research.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. What Is Acute Myeloid Leukemia (AML)? What Is AML? Available online: https://www.cancer.org/cancer/acute-myeloid-
leukemia/about/what-is-aml.html (accessed on 8 February 2023).

2. Administrator Just Diagnosed, Just Diagnosed with Acute Myeloid Leukemia (AML). Available online: https://childrensoncologygroup.
org/just-diagnosed-with-acute-myeloid-leukemia-aml- (accessed on 8 February 2023).

3. Ross, J.A.; Potter, J.D.; Robison, L.L. Infant leukemia, topoisomerase II inhibitors, and the MLL gene. JNCI J. Natl. Cancer Inst.
1994, 86, 1678–1680. [CrossRef]

4. Ross, J.A.; Davies, S.M.; Potter, J.D.; Robison, L.L. Epidemiology of childhood leukemia, with a focus on infants. Epidemiol. Rev.
1994, 16, 243–272. [CrossRef] [PubMed]

5. Pyatt, D.; Hays, S. A review of the potential association between childhood leukemia and benzene. Chem.-Biol. Interact. 2010, 184,
151–164. [CrossRef]

6. Belson, M.; Kingsley, B.; Holmes, A. Risk factors for acute leukemia in children: A review. Environ. Health Perspect. 2007, 115,
138–145. [CrossRef] [PubMed]

7. Rinsky, R.A. Benzene and leukemia: An epidemiologic risk assessment. Environ. Health Perspect. 1989, 82, 189–191. [CrossRef]
8. Costantini, A.S.; Dsc, A.B.; Vineis, P.; Kriebel, D.; Tumino, R.; Ramazzotti, V.; Rodella, S.; Stagnaro, E.; Crosignani, P.; Amadori, D.;

et al. Risk of leukemia and multiple myeloma associated with exposure to benzene and other organic solvents: Evidence from the
Italian Multicenter Case-control study. Am. J. Ind. Med. 2008, 51, 803–811. [CrossRef] [PubMed]

9. Hill, S.A.B. The environment and disease: Association or causation? J. R. Soc. Med. 2015, 108, 32–37. [CrossRef]
10. Cox, L.A. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data. Crit. Rev. Toxicol. 2018,

48, 682–712. [CrossRef]
11. Kaatsch, P.; Kaletsch, U.; Meinert, R.; Miesner, A.; Hoisl, M.; Schüz, J.; Michaelis, J. Erman case control study on childhood

leukaemia—Basic considerations, methodology and summary of the results. Klin. Pädiatrie 1998, 210, 185–191. [CrossRef]
12. Shu, X.O.; Gao, Y.T.; Tu, J.T.; Zheng, W.; Brinton, L.A.; Linet, M.S.; Fraumeni, J.F. A population-based case-control study of

childhood leukemia in Shanghai. Cancer 1988, 62, 635–644. [CrossRef]
13. Buckley, J.D.; Chard, R.L.; Baehner, R.L.; Nesbit, M.E.; Lampkin, B.C.; Woods, W.G.; Denman Hammond, G. Improvement in

outcome for children with acute nonlymphocytic leukemia. A report from the Childrens Cancer Study Group. Cancer 1989, 63,
1457–1465. [CrossRef]

148

Algorithms 2023, 16, 166

14. Magnani, C.; Pastore, G.; Luzzatto, L.; Terracini, B. Parental occupation and other environmental factors in the etiology of
leukemias and Non-Hodgkin’S lymphomas in childhood: A case-control study. Tumori J. 1990, 76, 413–419. [CrossRef] [PubMed]

15. Freedman, D.M.; Stewart, P.; Kleinerman, R.A.; Wacholder, S.; Hatch, E.E.; Tarone, R.E.; Robison, L.L.; Linet, M.S. Household
solvent exposures and childhood acute lymphoblastic leukemia. Am. J. Public Health 2001, 91, 564–567. [CrossRef]

16. Alderton, L.E.; Spector, L.G.; Blair, C.K.; Roesler, M.; Olshan, A.F.; Robison, L.L.; Ross, J.A. Child and maternal household
chemical exposure and the risk of acute leukemia in children with Down’s syndrome: A Report from the Children’s Oncology
Group. Am. J. Epidemiol. 2006, 164, 212–221. [CrossRef]

17. Chang, J.S. Parental smoking and childhood leukemia. Methods Mol. Biol. 2009, 472, 103–137. [CrossRef] [PubMed]
18. Lichtman, M.A. Cigarette smoking, cytogenetic abnormalities, and acute myelogenous leukemia. Leukemia 2007, 21, 1137–1140.

[CrossRef] [PubMed]
19. Nordlinder, R.; Jarvholm, B. Environmental exposure to gasoline and leukemia in children and young adults-an ecology study.

Int. Arch. Occup. Environ. Health 1997, 70, 57–60. [CrossRef] [PubMed]
20. Reynolds, P.; Von Behren, J.; Gunier, R.B.; Goldberg, D.E.; Hertz, A. Residential exposure to traffic in California and childhood

cancer. Epidemiology 2004, 15, 6–12. [CrossRef]
21. Crosignani, P.; Tittarelli, A.; Borgini, A.; Codazzi, T.; Rovelli, A.; Porro, E.; Contiero, P.; Bianchi, N.; Tagliabue, G.; Fissi, R.; et al.

Childhood leukemia and road traffic: A population-based case-control study. Int. J. Cancer 2003, 108, 596–599. [CrossRef]
22. Steffen, C.; Auclerc, M.F.; Auvrignon, A.; Baruchel, A.; Kebaili, K.; Lambilliotte, A.; Leverger, G.; Sommelet, D.; Vilmer, E.; Hémon,

D.; et al. Acute childhood leukaemia and environmental exposure to potential sources of benzene and other hydrocarbons; a
case-control study. Occup. Environ. Med. 2004, 61, 773–778. [CrossRef]

23. Harrison, R.M.; Leung, P.L.; Somervaille, L.; Smith, R.; Gilman, E. Analysis of incidence of childhood cancer in the West Midlands
of the United Kingdom in relation to proximity to main roads and petrol stations. Occup. Environ. Med. 1999, 56, 774–780.
[CrossRef]

24. Raaschou-Nielsen, O.; Hvidtfeldt, U.A.; Roswall, N.; Hertel, O.; Poulsen, A.H.; Sørensen, M. Ambient benzene at the residence
and risk for subtypes of childhood leukemia, lymphoma and CNS tumor. Int. J. Cancer 2018, 143, 1367–1373. [CrossRef]

25. Heck, J.E.; Park, A.S.; Qiu, J.; Cockburn, M.; Ritz, B. Risk of leukemia in relation to exposure to Ambient Air Toxics in pregnancy
and early childhood. Int. J. Hyg. Environ. Health 2013, 217, 662–668. [CrossRef]

26. Wan, F. Conditional or unconditional logistic regression for frequency matched case-control design? Stat. Med. 2022, 41, 1023–1041.
[CrossRef]

27. Kuo, C.-L.; Duan, Y.; Grady, J. Unconditional or conditional logistic regression model for age-matched case–control data? Front.
Public Health 2018, 6, 57. [CrossRef]

28. De Graaf, M.A.; Jager, K.J.; Zoccali, C.; Dekker, F.W. Matching, an appealing method to avoid confounding? Nephron Clin. Pract.
2011, 118, c315–c318. [CrossRef] [PubMed]

29. Pearce, N. Analysis of matched case-control studies. BMJ 2016, 352, i969. [CrossRef]
30. Stoltzfus, J.C. Logistic Regression: A brief primer. Acad. Emerg. Med. 2011, 18, 1099–1104. [CrossRef]
31. Gonfalonieri, A. Introduction to Causality in Machine Learning. Medium. 9 July 2020. Available online: https:

//towardsdatascience.com/introduction-to-causality-in-machine-learning-4cee9467f06f (accessed on 8 February 2023).
32. Sanchez, P.; Voisey, J.P.; Xia, T.; Watson, H.I.; O’Neil, A.Q.; Tsaftaris, S.A. Causal machine learning for healthcare and Precision

Medicine. R. Soc. Open Sci. 2022, 9, 220638. [CrossRef] [PubMed]
33. Venkatasubramaniam, A.; Mateen, B.A.; Shields, B.M.; Hattersley, A.T.; Jones, A.G.; Vollmer, S.J.; Dennis, J.M. Comparison of

causal forest and regression-based approaches to evaluate treatment effect heterogeneity: An application for type 2 diabetes
precision medicine. medRxiv 2022. [CrossRef]

34. Chipman, H.A.; George, E.I.; McCulloch, R.E. Bart: Bayesian additive regression trees. Ann. Appl. Stat. 2010, 4, 266–298.
[CrossRef]

35. Côté, M.; Lamarche, B. Artificial intelligence in nutrition research: Perspectives on current and future applications. Appl. Physiol.
Nutr. Metab. 2022, 47, 1–8. [CrossRef] [PubMed]

36. Fedak, K.M.; Bernal, A.; Capshaw, Z.A.; Gross, S. Applying the Bradford Hill criteria in the 21st Century: How data integration
has changed causal inference in molecular epidemiology. Emerg. Themes Epidemiol. 2015, 12, 14. [CrossRef] [PubMed]

37. Gailmard, S. Causal Inference: Inferring causation from Correlation. In Statistical Modeling and Inference for Social Science;
Cambridge University Press: Cambridge, UK, 2018; pp. 335–357. [CrossRef]

38. Haneuse, S.; Saegusa, T.; Lumley, T. osDesign: An r package for the analysis, evaluation, and design of two-phase and case-control
studies. J. Stat. Softw. 2011, 43, 1–29. [CrossRef] [PubMed]

39. Lebel, E.D.; Michanowicz, D.R.; Bilsback, K.R.; Hill, L.A.L.; Goldman, J.S.W.; Domen, J.K.; Jaeger, J.M.; Ruiz, A.; Shonkoff, S.B.C.
Composition, emissions, and air quality impacts of hazardous air pollutants in unburned natural gas from residential stoves in
California. Environ. Sci. Technol. 2022, 56, 15828–15838. [CrossRef] [PubMed]

40. Centers for Disease Control and Prevention. United States and Puerto Rico Cancer Statistics, 1999–2019 Incidence Request.
Available online: https://wonder.cdc.gov/cancer-v2019.HTML (accessed on 8 February 2023).

41. Mann, H.S.; Crump, D.; Brown, V. Personal exposure to benzene and the influence of attached and integral garages. J. R. Soc.
Promot. Health 2001, 121, 38–46. [CrossRef] [PubMed]

149

Algorithms 2023, 16, 166

42. Uplift Modelling—Github Pages. Available online: https://humboldt-wi.github.io/blog/research/theses/uplift_modeling_
blogpost/ (accessed on 9 February 2023).

43. Quality Measures for Uplift Models—Stochastic Solutions. Available online: https://www.stochasticsolutions.com/pdf/kdd201
1late.pdf (accessed on 9 February 2023).

44. CHE408UofT—Overview. Available online: https://github.com/CHE408UofT (accessed on 14 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

150

Citation: Arsini, L.; Caccia, B.;

Ciardiello, A.; Giagu, S.; Mancini

Terracciano, C. Nearest Neighbours

Graph Variational AutoEncoder.

Algorithms 2023, 16, 143. https://

doi.org/10.3390/a16030143

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 20 December 2022

Revised: 7 February 2023

Accepted: 7 February 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Nearest Neighbours Graph Variational AutoEncoder

Lorenzo Arsini 1,2, Barbara Caccia 3, Andrea Ciardiello 2,*, Stefano Giagu 1,2,* and Carlo Mancini Terracciano 1,2

1 Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
2 INFN Section of Rome, 00185 Rome, Italy
3 Istituto Superiore di Sanità, 00161 Rome, Italy
* Correspondence: andrea.ciardiello@gmail.com (A.C.); stefano.giagu@uniroma1.it (S.G.)

Abstract: Graphs are versatile structures for the representation of many real-world data. Deep
Learning on graphs is currently able to solve a wide range of problems with excellent results. However,
both the generation of graphs and the handling of large graphs still remain open challenges. This
work aims to introduce techniques for generating large graphs and test the approach on a complex
problem such as the calculation of dose distribution in oncological radiotherapy applications. To this
end, we introduced a pooling technique (ReNN-Pool) capable of sampling nodes that are spatially
uniform without computational requirements in both model training and inference. By construction,
the ReNN-Pool also allows the definition of a symmetric un-pooling operation to recover the original
dimensionality of the graphs. We also present a Variational AutoEncoder (VAE) for generating graphs,
based on the defined pooling and un-pooling operations, which employs convolutional graph layers
in both encoding and decoding phases. The performance of the model was tested on both the realistic
use case of a cylindrical graph dataset for a radiotherapy application and the standard benchmark
dataset sprite. Compared to other graph pooling techniques, ReNN-Pool proved to improve both
performance and computational requirements.

Keywords: graph neural network; variational autoencoder; pooling; nearest neighbours

1. Introduction

Deep Generative Modeling involves training a deep neural network to approximate
the high-dimensional probability distribution of the training data, enabling the generation
of new examples from that distribution. There are various approaches to deep generative
modeling, such as Generative Adversarial Networks (GANs) [1], Variational AutoEncoders
(VAEs) [2], and Normalizing Flow models [3]. A comprehensive review of deep generative
modeling can be found in [4].

In some cases, the architecture includes both an encoding and a decoding scheme,
as is the case with models such as VAEs. The encoding process is typically used to obtain
compact representations of the data distribution, often achieved through pooling operations
that reduce the dimensionality of the data. The creation of a “bottleneck” by embedding
the input samples in lower and lower dimensional spaces enables the extraction of essential
features of the data. The decoding scheme, on the other hand, often employs reverse
techniques used in the encoding, such as un-pooling operations, to restore the original
dimensionality of the data.

In recent years, there has been a growing interest in utilizing Deep Learning in the field
of Medical Physics. Specifically, in Radiotherapy (RT), Deep Generative modeling presents
a valuable opportunity to streamline the calculation of deposited dose distributions by
radiation in a given medium. These data, which are currently computed using more
resource-intensive methods, can be utilized to optimize and validate RT treatment plans.
Little effort has been made so far in this area, except for in the works of [5,6]. Models
for this application should possess two key properties. Firstly, a high resolution in dose
prediction is crucial and requires the ability to process large data efficiently. Secondly,

Algorithms 2023, 16, 143. https://doi.org/10.3390/a16030143 https://www.mdpi.com/journal/algorithms
151

Algorithms 2023, 16, 143

models should be lightweight to enable their use in resource-constrained medical devices
and for online training. In the future, real-time imaging may enable real-time treatment
planning optimization, making it imperative to use fast Deep Learning models during both
training and inference.

Deep Learning applications can find a role in specialised hardware for both resource
efficient deployment and fast inference tasks. These models are referred to as Lightweight
models and they are designed to be small and efficient, making them well-suited for use
on resource-constrained devices. Notable applications are embedded software in Internet
of Things (IoT) devices [7], wearable medical devices [8], and real-time applications such
as online video analysis, e.g., online crowd control [9]. A similar need is also present for
models developed for fast inference on accelerated hardware, for which a keypoint example
is the trigger analysis in high energy physics experiments [10]. These models are typically
smaller and less complex than traditional deep learning models, which allow them to run
on devices with limited computational power and memory. Moreover, designing them
often involves trade-offs between computational resources and performance.

Deep Generative Modeling is commonly based on Convolutional Neural Networks
(CNNs) for many applications, as they are one of the most powerful tools for processing
grid-like data in Deep Learning frameworks. However, a significant amount of real-world
data is better described by more flexible data structures, such as graphs.

A graph is defined by a pair G = (V, E). V = {vi}N
i=1 is a set of N vertices, or nodes,

while E = {eij}N
i,j=1 is the set of edges, which carry the relational information between

nodes. The edge set E can be organised into the adjacency matrix A, an NxN binary matrix,
whose elements Aij are equal to 1 if a link between i-th and j-th node exists and is equal
to 0 otherwise.

To address learning tasks on graphs, there has been an increasing interest in Graph
Neural Networks (GNNs). These architectures typically use Graph Convolutional layers
(GCNs), which allow for the processing of data on graphs, generalizing the concept of
convolutions in CNNs. There are currently several types of GCNs available, ranging from
the simplest models [11,12], to those based on graph spectral properties [13], and those that
include attention mechanisms [14]. Although it is currently possible to achieve excellent
results in solving various problems of classification, regression, or link prediction on graphs,
graph generation remains an open challenge [15].

Unlike images, graphs often have complex geometric structures that are difficult to
reproduce, particularly in an encoder–decoder framework. Despite various approaches
existing, there is currently no standard method for addressing this class of problems.
Standard classes of models for graph generation are Graph AutoEncoders (GAEs) and
Variational Graph AutoEncoders (VGAEs) [16], which apply the concepts of AutoEncoders
and Variational AutoEncoders (VAEs) to graphs. However, these architectures can only
reconstruct or generate the adjacency matrix of the graphs, not the features of their nodes.
Additionally, while these models can learn meaningful embeddings of node features,
the graph structure and number of nodes remain fixed during the encoding process,
resulting in no compression of input data through pooling operations and no bottleneck.

Different strategies have been developed for pooling operations on graphs. Early
works used the eigen-decomposition for graph coarsening operations based on the graph
topological structure, but these methods are often computationally expensive. An alterna-
tive algorithm is the Graclus algorithm [17], used in [13] and later adopted in other works
on GNNs. Approaches like this aim to define a clustering scheme on graphs, on top of
which it is possible to apply a standard max or mean pooling. Other approaches, such as
SortPooling [18], select nodes to pool based on their importance in the network. There is
also a stream of literature that bases pooling operations on spectral theory [19,20]. Finally,
state-of-the-art approaches rely on learnable operators that, such as message-passing layers,
can adapt to a specific task to compute the optimal pooling, such as DiffPool [21], Top-K
pooling [22], and ASAPooling [23]. These pooling methods have been demonstrated to
perform well when integrated into GNN models for graph classification, but all have

152

Algorithms 2023, 16, 143

limitations. For example, DiffPool learns a dense matrix to assign nodes to clusters, thus
it is not scalable to large graphs. Top-k pooling samples the top-k aligned nodes with a
learnable vector, not considering the graph connectivity. In this way, after the pooling,
a good connectivity between the surviving nodes is not guaranteed. ASAPooling uses a
self-attention mechanism for cluster formation and a top-k scoring algorithm for cluster
selection, also taking into account graph connectivity. While overcoming some limitations
of previous methods, this pooling requires more computations, which can lead to high
computing needs for large graphs.

In contrast to pooling procedures, there is currently a lack of solutions for un-pooling
operations for graphs that can be considered the inverse of pooling. The only works
that attempt to define such operations are described in [22,24]. Other decoding schemes
for graph generation are designed in different ways, most of which are task-specific.
For example, in many algorithms for protein or drug structure generation, decoding
is conducted by adding nodes and edges sequentially [25,26]. On the other hand, there are
also works on “one-shot” graph generation, with decoding architectures that can output
the node and edge features in a single step [27,28]. However, in various works that use this
approach, the decoding of nodes and edges are considered separately and do not take into
account the structure of the graphs. For example, in [29], a 1D-CNN is used to decode node
features and a 2D-CNN is used for edge features.

In summary, we found that the current literature lacks:

• A pooling operation for graph data that takes into account graph connectivity and,
at the same time, is lightweight and scalable to a large graph;

• A graph generative model based on an encoder–decoder architecture;
• A decoding solution that is based on the message passing algorithm.

In this study, we propose a model for graph generation based on Variational AutoEn-
coders. We focus on the case of graph data with a fixed, regular, and known geometric
structure. To this end, we have developed:

• Simple, symmetrical, and geometry-based pooling and unpooling operations on
graphs, which allow for the creation of bottlenecks in neural network architectures
and that are scalable to large graphs;

• A Variational AutoEncoder for regular graph data, where both the encoding and
decoding modules use graph convolutional layers to fully exploit the graph structure
during the learning process.

The remainderof the study is organized as follows. In Section 2, we describe our pro-
posed deep learning architecture and the datasets used. First, in Section 2.1, we introduce
our Nearest Neighbors Graph VAE, describing how the developed pooling and unpooling
techniques work and how they are integrated into the generative model. Then, in Section 2.2,
we describe the benchmark sprite dataset and present our own set of cylindrical-shaped
graph data for a Medical Physics application. In Section 3, we present the results of ap-
plying our Graph VAE to the described datasets. We also conduct an ablation study to
compare the performance of our model using different pooling and unpooling techniques.
The paper concludes with a final discussion in Section 4.

2. Materials and Methods

2.1. Nearest Neighbour Graph VAE

In this section, we introduce our Nearest Neighbour Graph VAE model, which uses
graph convolutions in both the encoding and decoding operations. To create a bottle-
neck in the architecture, we propose new symmetrical graph pooling and un-pooling
techniques, which we refer to as Recursive Nearest Neighbour Pooling and Un-Pooling
(ReNN-Pool and Un-Pool). Such operations enable the construction of a VAE decoder
based on graph convolutions.

153

Algorithms 2023, 16, 143

2.1.1. ReNN-Pool and Un-Pool

In CNNs, pooling operations are widely used to decrease the dimensionality of feature
maps while increasing the receptive fields of neurons when processing grid-like data.
This is easily possible on images, where a standard pooling layer typically involves a
downsampling operation such as the max or mean function applied to groups of nearby
pixels. Conversely, applying this idea to graph structures is generally a challenging task.

However, there are cases where, although data does not have a grid-like shape and
can be better processed with GNNs, the graph structures are fixed and have a regular
and known geometry. For example, some datasets may contain examples whose data are
arranged in a cylindrical or spherical structure. For these cases, we developed a simple
pooling operation (ReNN-Pool) that can sub-sample graph nodes in a regular way.

The ReNN-Pool consists in a masking operation and a subsequent update of the
adjacency matrix of the graph. First of all, nodes are sorted on the basis of their position in
the graph. For example, if samples have a cylindrical structure, nodes can be hierarchically
ordered on the basis of their positions along the z, θ and r axes. Then, the masking operation
is carried out. Masking consists in dropping, i.e., removing, certain nodes from the graph.
The process is performed in a recursive manner on the sorted node list. It begins with the
first node, which is preserved, while all its nearest neighbours are dropped and removed
from the node list. The process then continues with the next node and repeats, until all
nodes in the list have been processed.

After the masking, we rewire links between the “survived” nodes, connecting the
ones that were 2nd order neighbours before the masking. This is conducted substituting
the adjacency matrix A with A2. If we call M the vector that contains all the indices of the
“survived” nodes, X = {xi}N

i=1 and A, respectively, and the nodes’ feature matrix and the
adjacency matrix before the pooling, the application of ReNN-Pool gives in output:

X′ = {x′i}N
i=1, where x′i =

{
xi, if i ∈ M
0, otherwise

A′ =
{

A2
ij, if i, j ∈ M

0, otherwise

The process is illustrated in Figure 1.

Masking

Rewiring
Figure 1. Pooling. The ReNN-Pool operation consists of two steps: masking and rewiring. In the first
step, recursively on the whole graph, a node is selected and all its nearest neighbours are dropped.
In the second step, nodes are linked to the ones that were their 2nd order neighbours.

In the case of regular geometrical graph structures, by construction, pooled and not-
pooled nodes are evenly spread across the graph; thus, the choice of the starting node does
not affect the performances of the model in which the ReNN-Pool is used. For irregular
graph structures, the performance can depend on the choice of the first node. However,
in principle this can become an hyperparameter to optimize using a validation set. Such a
possibility will be explored in future works.

154

Algorithms 2023, 16, 143

On regular graphs, the masking operation allows one to define evenly spread clusters
of nodes. In fact, the surviving nodes can be thought as centroids of the clusters made up
by their nearest neighbours. These clusters can be used to perform a mean or max pooling
on graphs in addition to the simple masking. A comparison of these methods is presented
in Section 3.

Due to the fact that the creation of masks and the adjacency matrices’ augmentation in
our pooling only depends on the graph structure of data, it is possible to compute and store
them before the training. This has two main advantages. First, the pooling operation has
no influence on the computational needs both in the training and the inference phase. Thus,
it can be used inside lightweight models for resource-constrained devices and it is scalable
for graphs of any size. Second, such masks and adjacencies can also be used to define an un-
pooling operation that is symmetrical to the pooling one. Such a possibility is particularly
relevant for the construction of generative encoder–decoder models, but also crucial for
symmetrical architectures such as U-nets [30], where skip connections connect graphs with
the same geometrical structure. Starting from a lower dimensional (pooled) representation
of the graph with a feature matrix X and adjacency A2, the Un-Pool layer embeds back the
nodes in their original position in the higher dimensional representation of the graph, that
has an adjacency matrix A. All other restored nodes are initialized to 0. A similar idea for
the un-pooling was already explored [22]. An illustration of the un-pooling operation is
shown in Figure 2.

Embedding

back

Figure 2. Un-Pooling. The Un-Pool operation consists in embedding the nodes of a pooled graph in
their initial position in the bigger original graph structure. All other restored nodes are initialized to 0.

2.1.2. ReNN Graph VAE Architecture

A Variational AutoEncoder is a generative model with an encoder–decoder structure.
First the encoder learns to represent high dimensional input data as a distribution in a low
dimensional space, called “latent space”. The decoder is then trained to recover the original
data, sampling a point from such distribution. We refer the reader to the Appendix B and
the original paper [2] for a detailed description of the model.

In our architecture, the encoding consists of three subsequent repetitions of two
operations: a graph convolution and a ReNN-Pool operation. For the graph convolution,
we chose to use the GraphConv layer [11]. With this convolution, the new features of nodes
are just linear combinations between their old features and the mean of the features of their
neighbourhood, followed by a ReLu activation:

x′i = ReLu

⎛⎝W1xi + W2
1

|N(i)| ∑
j∈N(i)

xj

⎞⎠. (1)

155

Algorithms 2023, 16, 143

Eventually, to increase the expressive power of the network, one can also include edge
features eij in the computation, considering instead:

x′i = ReLu

⎛⎝W1xi + W2
1

|N(i)| ∑
j∈N(i)

eijxj

⎞⎠. (2)

In particular, we consider edge features eij to be learned parameters of the Neural Network.
The number of output channels of the GraphConv in the three subsequent repetitions

is set to 16, 32, and 64.
After the three graph encoding steps, the node features are put together and flattened.

Then, the dimensionality of data is further reduced through a linear layer.
The encoded data is processed as in a standard VAE architecture with Gaussian prior

to that.
Data points are mapped to Gaussian distributions in the latent space and, using the

reparameterisation trick, a variable Z is sampled from those distributions.
The decoding uses the same graph representations employed for the encoding, but in

reverse order. After an initial decoding linear layer, we repeat for three times the series
of an un-pooling layer and a graph convolution. For the convolutions, we employ again
the GraphConv layers with the output channels’ number set to 32, 16 and 1. In this way,
the original dimensionality of the data is recovered. The activation function of the last
convolutional layer is a sigmoid. The model is trained minimizing the standard β-VAE loss
function, defined in Appendix B, with binary cross entropy as the reconstruction term.

The concatenation of a graph convolution and a pooling operation can be thought of
as an “encoding block”, while the union of an un-pooling operation and a convolution
can be thought of as a “decoding block”. Various architectures can be built using different
numbers of blocks. In Figure 3, for example, our VAE architecture is illustrated, but with
only two blocks in the encoder and decoder.

Z
μ

σ

Graph Conv

Graph ConvGraph Conv

Graph Conv

Un-Pooling

Un-Pooling

Pooling

Pooling

Figure 3. Full scheme. Schematic representation of our Re-NN Graph VAE with two encoding blocks
and two decoding blocks. Each block is made up of a graph convolution and a pooling (un-pooling)
operation. In the lower part of the picture, the VAE sampling and the encoding (decoding) linear
layers are represented.

2.2. Datasets
2.2.1. Energy Deposition Datasets

The architecture presented in this work was developed for a specific application in
Medical Physics, which is the generation of the distribution of the dose absorbed by a

156

Algorithms 2023, 16, 143

medium interacting with a given particle beam, conditioned to beam parameters and
medium density. Specifically, the approach was developed for a frontier application
in radiation oncology therapy, which makes use of high-energy electron beams (Flash
Therapy [31]).

The datasets for this task are built simulating an electron beam interacting with a
material using Geant4 [32], a toolkit in C++ for Monte Carlo simulations in particle physics.

The two datasets differ on the material in which electrons deposit their energy. In the
first case, this material is a cubic volume filled with water. We will refer to this dataset as
“Water Dataset”. In the second case, to increase the complexity of the task, we inserted a
slab of variable density in the water volume. This slab is orthogonal to the electrons’ beam
and has a fixed position and thickness. The density of the slab is uniformly sampled at
each run of the simulation between 0 and 5 g/cm3 (for reference, water density is 1 g/cm3).
We will refer to this dataset as “Water + Slab Dataset”. In both cases, the particles’ energies
are sampled uniformly between 50 and 100 MeV, which is the typical range of energies for
the FLASH radiotherapy with high-energy electrons.

Energy deposition data are collected in a cylindrical scorer, aligned with the elec-
tron beam, and divided in 28 × 28 × 28 voxels along z, θ and r axes. The cylindrical
shape is particularly useful in our application because it allows for higher precision near
the beamline.

Each example in the dataset is therefore a set of 283 voxels arranged in a cylindrical
shape. Voxels have only one feature, and correspond to the amount of energy deposited in
them by the simulated particle beam. Each example of the Water Dataset is labelled by the
initial energy of the electron beam, while in the other dataset examples are labelled by both
the particles’ initial energy and the slab’s density. An illustration of a typical example from
these datasets is shown in Figure 4. Besides the representation of the original data in the
left panel, we also show how the ReNN-Pool operates on nodes. As it is possible to see,
the nodes’ pooling is conducted in a spatial and uniform way.

Figure 4. Dataset and ReNN-Pool. From the left, the panels show the representation of a typical
example from the energy deposition datasets and two pooled representations of the same example.
The nodes in light grey have null features, while all others show an energy distribution within the
considered range.

Datasets, respectively, consist of 4662 and 6239 examples and are divided in train,
validation and test sets on the basis of particle energy and slab density. In particular, in the
Water Dataset, the test set is made up of examples with a particle’s energy ranging between
70 and 80 MeV. In the Water + Slab Dataset test set, the examples have the same range of
initial energies and slab density values, ranging between 2 and 3 g/cm3. In both cases,
the rest of the dataset is used for validation and trains with a ratio of 1/10.

Test sets have been chosen in this way in order to test the network ability to interpolate
between samples and generalise to unseen configurations.

For both datasets, we imposed a graph structure on the data. Each voxels was asso-
ciated with a node and nodes were linked within each other with a nearest neighbours

157

Algorithms 2023, 16, 143

connectivity. In this way, the nodes in the center and on the outer surface of the cylinder
have five neighbours, while all others have six neighbours.

2.2.2. Sprite Dataset

The sprite dataset is a benchmark dataset for the latent space feature disentaglement
in VAEs and consist of a set of 2D images representing pixelized video game “sprites”. The
aim of testing our Graph VAE on such a dataset is to show that our model can also work
as a standard Variational AutoEncoder on tasks that are different from the one for which
it was developed. Although a CNN would reasonably be the best choice for this dataset,
images can also be thought of as graphs with a regular structure; therefore, they should
also be processed effectively by our model.

We used part of the dataset employed in [33], available online (https://github.com/
YingzhenLi/Sprites, accessed on 17 November 2022). Such a dataset consists of 9000 examples
for training and 2664 for testing. Each example is a sequence of 8 frames of a sprite perform-
ing an action. We decided to keep the first frame for each example, so we ended up with
9000 images, divided into a training and validation set with a 1/8 ratio, and 2664 images
for testing. Each image is 64 × 64 pixels and represents a standing sprite whose attributes
are organized in 4 categories (skin color, tops, pants and hairstyle) with 6 variations each,
and 3 orientations (left, center and right).

To process such a dataset with our architecture, we had to impose a graph structure
on the data. Therefore, we associated a node to each pixel and connected nodes with a
grid-like connectivity. In this way, internal nodes have 4 edges, border nodes have 3 edges
and corner nodes have 2 edges.

3. Results

3.1. Results on Energy Deposition Datasets

We trained our VAE with the two energy deposition datasets described in the previous
section. Here, we present the results that regard the reconstruction of the energy deposition
distribution from the test set. The DL model was trained for 200 epochs and the best set
of learnable parameters was chosen as the one that minimizes the validation loss. We set
the latent space dimensionality to 1, for the Water Volume dataset, and to 2 for the other
dataset. For the weight update, we used the Adam optimiser with an initial learning rate
of 0.003 and an exponential scheduler with λ = 0.9. The hyperparameter β of the VAE,
defined in Appendix B, was set to 1.

To evaluate the performance of our model, we considered both local node-per-node
and global reconstruction metrics. As a node-per-node reconstruction metric, we use the
δ-index, developed by [5]. This metric is inspired by the standard γ-index [34], used for
the clinical validation of treatment plans, and is currently used in the field to evaluate DL
models for energy deposition data generation. The reconstruction error on each node is
defined as:

δ =
Xreco − XGT
max(XGT)

(3)

where Xreco is the node feature predicted by the VAE, while XGT is the ground truth node
feature in the corresponding example. Then, as a reconstruction performance measure, we
consider the 3% passing rate, which is the percentage of nodes with a δ index smaller than
3% . In the water volume case, our Network reaches 99.4% of nodes with a 3% passing rate,
while the water volume + Slab case reaches 98.4%, as reported in Table 1.

158

Algorithms 2023, 16, 143

Table 1. Results on energy deposition reconstruction. We report mean relative errors on energy
profiles and total energy along with the mean 3% δ-index passing rate. Uncertainties are computed
as standard deviations. Values are computed on test sets.

Dataset z Profile Error r Profile Error Total Energy Error δ < 3%

Water 5.8 ± 3.4% 2.6 ± 1.6% 2.2 ± 1.6% 99.3 ± 0.1%
Water + Slab 6.9 ± 3.4% 3.0 ± 1.2% 2.2 ± 1.6% 98.6 ± 0.3%

As global evaluation metrics, we consider the error on relevant physical quantities
that the generative model should reconstruct well. To this end, we compute the relative
error on three quantities:

• Total energy: computed by summing the features of all nodes.
• z profile: computed by integrating, i.e., by summing, the features of all nodes along

the r and θ axes.
• r profile: computed by integrating, i.e., by summing, the features of all nodes along

the z and θ axes.

In Figure 5, we show the energy profiles along the z and r axes. The upper Figure 5a
regards the Water Dataset, while the lower Figure 5b refers to the Water + Slab one. In
each panel, the blue line correspond to the ground truth, i.e., Monte Carlo simulated data,
while the orange line refers to the reconstructed data from our Network. In both cases,
the Network reconstructs the profiles well. The mean relative errors on profiles and total
energy deposition are reported in Table 1, along with their standard deviation on the
test set.

(a)

Figure 5. Cont.

159

Algorithms 2023, 16, 143

(b)

Figure 5. Energy profiles reconstruction. Distribution of energy deposition along z and r axes from
the test sets of the Water dataset (a) and the Water + Slab dataset (b). The blue lines correspond to the
Monte Carlo simulated data, while the orange lines refer to the reconstructed data from our Network.

While the errors on the r profile, total energy and overall reconstruction are quite low
and around 1–3%, the errors on the z profile are around 6%. To understand such a result,
we included in the analysis the variance in the Monte Carlo simulations. We fixed the
particle energy and slab density to be the ones in the example in Figure 5b, and we ran
100 Monte Carlo simulations computing the mean and standard deviation of the energy
deposition profile along the z axis. We also generated 100 energy deposition distributions
for feeding our VAE the test set example relative to the chosen particles’ energy and slab
density, as well as computed the mean and standard deviation for the z profile.

In Figure 6, we show the comparison of the standard deviation over the mean of the en-
ergy profile along the z axis between Monte Carlo simulations (left) and VAE reconstruction
(right). The red dashed lines represent the slab with different (in this case higher) density,
where most of the energy is released. Note that most of the errors in the reconstruction
is relative to regions where there are fluctuations in the energy deposition, and so in our
training set generated by Monte Carlo simulations, they are not negligible.

Figure 6. Standard deviations in MC and VAE. Comparison of standard deviation over mean of
the energy profile along the z axis between Monte Carlo simulations and VAE reconstruction in the
Water + Slab setting. Values are estimated for 100 MC runs with fixed parameters and 100 VAE
execution with the same example as input. Results demonstrate how VAE’s largest errors are in
regions where energy deposition fluctuation, and so Monte Carlo’s ones, are not negligible.

160

Algorithms 2023, 16, 143

3.2. Results on Sprite Dataset

For this task, to increase the expressive power of the architecture, we used both
variants of the GraphConv layers. In particular, in the first layer of the encoder (and in a
symmetrical way in the last layer of the decoder), we used the GraphConv without edge
weights described in Equation (1). In the other layers, we used the GraphConv with edge
weights (Equation (2)). Such weights are learned using Linear layers. A full description of
the model is given in Appendix A.

We trained our Graph VAE for 50 epochs with a batch size of 50 and set the latent
space to have 5 dimensions.

For the weight update, we used the Adam optimiser with an initial learning rate
of 0.005 and an exponential scheduler with λ = 0.95. In this case, The hyperparameter β of
the VAE, defined in Appendix B, was set to 2.

As shown in Figure 7, our model can also work like a standard CNN VAE for image
generation. In the upper panel, we show a comparison between the input images and the
reconstructed ones. In the lower panel, we show how the VAE can learn a disentangled
representation of features and can also interpolate through samples. In particular, we
show how when fixing all dimensions of the latent space but one, it is possible to generate
samples with a continuously changing hair style. A direct comparison with a standard 2D
CNN VAE is presented in Appendix C.

(a)

(b)

Figure 7. Results on sprite dataset. (a) Comparison between input sprite images (first row) and
reconstructed ones (second row). (b) Images generated fixing all the latent variables’ dimensions but
one, which is varied. Generated sprites have fixed attributes but a continuously varying hair style.

3.3. Ablation Study on Pooling

We performed an ablation study to asses the impact of the pooling technique on the
model’s performance. The model was evaluated on the Water + Slab dataset using the
reconstruction metrics discussed in Section 3.1. Five pooling techniques were considered:

• ReNN-Pool: the one proposed in this work with only the simple node masking;
• ReNN Mean Pool: mean pooling on clusters defined by the masking operation of

ReNN-Pool;
• ReNN Max Pool: max pooling on clusters defined by the masking operation of ReNN-Pool;
• Random Pool: dropping random nodes in the graph;
• Top-k Pool: defined in [22], dropping nodes on the base of features’ alignment with a

learnable vector.

For the Random Pool and Top-k Pool, we fixed the ratios of the pooled nodes to be
the same as the one of the ReNN-Pool. Such ratios are sequentially: 50%, 87% and 84%.
After the node dropping, the adjacency matrix is updated from A to A2, connecting second
order neighbours, as conducted in this work and recommended in [22], where the Top-k
pooling was introduced. The un-pooling operations employ the same node masks and
adjacency matrices of the pooling operations; thus, they are always symmetrical to them.
The results of the ablation study are presented in Table 2, where it is demonstrated how the

161

Algorithms 2023, 16, 143

architectures with the ReNN-Pool and Un-Pool operations outperform the other models.
The results relative to the addition of mean and max operations are very likely related to
the kind of data processed, which are smooth energy distributions in a cylinder. With such
data, it is reasonable that the ReNN Mean Pool performs similarly to the simple ReNN-Pool
and that adding the max operation leads to worse results.

Table 2. Results of ablation study on pooling. Comparison of the results on the test set of the
Water + Slab dataset using different pooling and un-pooling techniques. Mean relative errors on
energy profiles and total energy along with the mean 3% δ-index passing rate on test sets are reported.

Pooling z Profile Error r Profile Error Total Energy Error δ < 3%

ReNN-Pool 6.9 ± 3.4% 3.0 ± 1.2% 2.2 ± 1.6% 98.6 ± 0.3%
ReNN Mean Pool 6.4 ± 3.0% 2.8 ± 1.1% 2.0 ± 1.4% 98.6 ± 0.3%
ReNN Max Pool 22.6 ± 9.9% 5.0 ± 1.8% 3.2 ± 2.3% 97.5 ± 0.7%

Random Pool 172.6 ± 21.7% 52.2 ± 3.7% 2.0 ± 1.5% 92.4 ± 0.4%
Top-k Pool 51.7 ± 3.4% 75.1 ± 9.1% 4.0 ± 2.6% 79.9 ± 1.3%

A plausible explanation of the better performances of ReNN-Pool-based techniques
with respect to the Random and Top-k Pool relates to the connectivity of the graphs.
ReNN-Pool is specifically designed for data to always be represented by a single connected
graph. Indeed, after each pooling operation, the receptive field of the remaining nodes
is enlarged but there is no loss of information due to the disconnected clusters of nodes.
Conversely, with random pooling or Top-k pooling there is no guarantee that this will
happen. Actually, in most cases, after such pooling operations, the graph structure breaks
up in different unconnected clusters. That is particularly true when the graph exhibits only
local connectivity.

4. Discussion

In this work, we presented our Nearest Neighbour Graph VAE, a Variational AutoEn-
coder that can generate graph data with a regular geometry. Such a model fully takes
advantage of the Graph convolutional layers in both encoding and decoding phases. For
the encoding, we introduced a pooling technique (ReNN-Pool), based on the graph con-
nectivity that allows us to sub-sample graph nodes in a spatially uniform way and to alter
the graph adjacency matrix consequently. The decoding is carried out using a symmetrical
un-pooling operation to retrieve the original graphs. We demonstrated how our model can
reconstruct well the cylindrical-shaped graph data of energy deposition distributions of a
particle beam in a medium.

We also evaluated the performance of the model on the sprite benchmark dataset,
after transforming the image data into graphs. Although it can not be directly compared
with more sophisticated and task specific algorithms for image synthesis, our model has
the ability to generate good quality images, create disentangled representations of features,
and interpolate through samples as well as a standard CNN VAE. Finally, we performed
an ablation study on pooling. The results show how, on our task on large regular graphs,
using the ReNN-Pool is more efficient and leads to better performances versus using a
state-of-the-art technique, such as Top-k Pool.

Finally, we believe that ReNN-Pool represents a simple, lightweight and efficient
solution to pool regular graphs. It requires no computation during either the training or
inference of models because node masks and adjacency matrices can be computed and
stored early on. Thus, it is directly scalable to graphs of any size, contrarily to state-of-the-
art pooling techniques. Moreover, the definition of a symmetrical un-pooling technique
enables the construction of graph decoding modules, which can take advantage of graph
convolutional layers. The current limitation of our pooling is that it has been only tested on
regular graphs. However, a test on irregular graphs is among our future research directions.
Although ReNN-Pool is not directly usable on all types of graphs, such as fully or highly
connected ones, we believe that it could also be an efficient solution for irregular graphs

162

Algorithms 2023, 16, 143

with small to medium-sized node neighbourhoods. We also plan to test our method on
graph U-Net architectures, where the symmetry between encoding and decoding is needed.

Author Contributions: Conceptualization, L.A., B.C., A.C., S.G. and C.M.T.; methodology, L.A., B.C.,
A.C., S.G. and C.M.T.; software, L.A.; validation, L.A. and A.C.; formal analysis, L.A.; investigation,
L.A. and A.C.; resources, B.C., S.G. and C.M.T.; data curation, L.A. and C.M.T.; writing—original draft
preparation, L.A.; writing—review and editing, L.A., A.C. and S.G.; visualization, L.A.; supervision,
S.G. and C.M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Sprite dataset is publicly available in https://lpc.opengameart.
org/, (accessed on 17 November 2022); the Energy deposition datasets and the code used for this
study are available on request by contacting the authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations and Symbols

The following abbreviations and symbols are used in this manuscript:

DL Deep Learning
CNN Convolutional Neural Network
GAN Generative Adversarial Networks
VAE Variational AutoEncoder
RT Radiotherapy
GNN Graph Neural Networks
GCN Graph Convolutional layers
GAE Graph AutoEncoders
VGAE Variational Graph AutoEncoders
ReNN-Pool Recursive Nearest Neighbour Pooling
ELBO Evidence Lower Bound
(z, θ, r) Cylindrical coordinate system
X = {xi}N

i=1 Node feature vector
A = {Ai,j}N

i,j=1 Adjacency matrix
M ReNN-Pool masking vector
N Number of nodes in the graph
N(i) Number of neighbours of node i
eij Weight of the edge between node i and j
Wk Generic weight of the Neural network
Z Latent space variable
δ δ-index

Appendix A. Full Model Description

In the following Tables, we report a detailed list of the layers that compose the mod-
els we used to run the experiments described in Section 3. Next to the name of each
layer, we report the number of parameters in it and the number of nodes and edges in
the graphs after the layer execution. In particular, in Table A1, we describe the model
used on the Water + Slab dataset. For the Water dataset, we used the same architecture
except for the last two linear layers of the encoder and the first one of the decoder, whose
output (input) number of channels was set to 1, instead of 2, in accordance with the latent
space dimensionality.

In Table A2, the version of the Re-NN Graph VAE used for the Sprite dataset is
described. The linear layers between the pooling (un-pooling) operations and the graph
convolutions are responsible for learning the edge features which enter in the computation
of the GraphConv marked with eij.

163

Algorithms 2023, 16, 143

Table A1. ReNN Graph VAE used for the Water + Slab dataset. For the Water dataset, the same
architecture was used but the parameter marked with an asterisk was changed to 1, in accordance
with the latent space dimensionality.

Layers Parameters N Nodes N Edges

Graph Encoder GraphConv (1, 16, ‘mean’) 48 21,952 128,576
ReNN-Pool - 10,976 188,216

GraphConv (16, 32, ‘mean’) 1056 10,976 188,216
ReNN-Pool - 1470 21,952

GraphConv (32, 64, ‘mean’) 4160 1470 21,952
ReNN-Pool - 236 6206

Linear (64 × 236, 64) 966,720 - -
Linear (64, 2*) 130 - -
Linear (64, 2*) 130 - -

Graph Decoder Linear (2*, 64) 192 - -
Linear (64, 64 × 236) 981,760 - -

ReNN-Unpool - 1470 21,952
GraphConv (64, 32, ‘mean’) 4128 1470 21,952

ReNN-Unpool - 10,976 188,216
GraphConv (32, 16, ‘mean’) 1040 10,976 188,216

ReNN-Unpool - 21,952 128,576
GraphConv (16, 1, ‘mean’) 33 21,952 128,576

Table A2. ReNN Graph VAE for sprite dataset.

Layers Parameters N Nodes N Edges

Graph Encoder GraphConv (3, 16, ‘mean’) 112 4096 16,128
ReNN-Pool - 2048 15,874

Linear (1, 15,874) 31,748 - -
GraphConv (16, 32, ‘mean’, eij) 1056 2048 15,874

ReNN-Pool - 528 3906
Linear (1, 3906) 7812 - -

GraphConv (32, 64, ‘mean’, eij) 4160 528 3906
ReNN-Pool - 136 930

Linear (64 × 136, 64) 557,120 - -
Linear (64, 5) 325 - -
Linear (64, 5) 325 - -

Graph Decoder Linear (5, 64) 384 - -
Linear (64, 64 × 136) 565,760 - -

ReNN-Unpool - 528 3906
Linear (1, 3906) 7812 - -

GraphConv (64, 32, ‘mean’, eij) 4128 528 3906
ReNN-Unpool - 2048 15,874

Linear (1, 15,874) 31,748 - -
GraphConv (32, 16, ‘mean’, eij) 1040 2048 15,874

ReNN-Unpool - 4096 16,128
GraphConv (16, 3, ‘mean’) 99 4096 16,128

Appendix B. Variational AutoEncoder

A Variational AutoEncoder is a generative Deep Learning model first proposed by
Kingma and Welling [2]. It is a special AutoEncoder based on the variational Bayes
inference, whose goal is to learn the distribution of the training data and to be able to
sample new datapoints from it. The underlying hypothesis is that datapoints {x} are the
results of a generative process controlled by a variable z that lives in a low dimensional
space, called latent space, and their distribution is thus:

p(x) =
∫

p(x|z)p(z)dz,

164

Algorithms 2023, 16, 143

where the prior p(z) is often considered Gaussian. The model is made up of two networks:
the encoder and the decoder. The encoder qψ(z|x) maps the input data to a distribution in
the latent space. Thanks to the reparemeterisation trick, a point from such a distribution is
sampled in a fully differentiable way and processed by the decoder pψ(x|z) to retrieve the
original data. The model is trained maximising the evidenced lower bound (ELBO) of the
data likelihood:

{ψ, φ} = argmaxψ,φ

[
Ex∼qψ(·|x)

[
logpφ(x|z)− DKL(qψ(z|x)|p(z))

]]
After training, new datapoints x can be generated sampling z in the latent space and

passing it to the decoder. Starting from a standard VAE, it is also possible to slightly modify
the loss function by adding a scalar hyperparameter β > 1:

{ψ, φ} = argmaxψ,φ

[
Ex∼qψ(·|x)

[
logpφ(x|z)− βDKL(qψ(z|x)|p(z))

]]
.

The model with such a modification is known as β-VAE [35] and is recognised to
promote a better disentangling of features’ embedding in the latent space.

Appendix C. ReNN Graph VAE vs. CNN VAE

We performed a quantitative comparison between our ReNN Graph VAE and a stan-
dard 2D CNN VAE on the Sprite benchmark dataset. The CNN comprise 2D convolutional
layers and mean pooling in the encoder and 2D transpose convolutions and upsampling in
the decoder. A full description of the model is given in Table A3. The model was trained
for 50 epochs with a batch size of 50, setting the latent space to have 5 dimensions. For the
weight update, we used the Adam optimiser with an initial learning rate of 0.005 and an
exponential scheduler with λ = 0.95. In order to obtain a disentangled representation for
the hair style in the latent space, we had to set the β parameter to 4.

To quantitatively evaluate the performance of our model on this dataset, we considered
the Structure Similarity Index Measure (SSIM). It is a perception-based measure that
considers image degradation as the perceived change in structural information. While
pixel-per-pixel reconstruction metrics, such as as MSE or the previously used δ-index,
estimate absolute errors, the structural information considers the strong inter-dependencies
between spatially close pixels that carry important information about the image as a whole.
Both CNN VAE and ReNN Graph VAE reached an average SSIM on the test set of 0.90.

In Figure A1, we also report a comparison between some ground truth, ReNN Graph
VAE reconstructed sprites and CNN VAE reconstructed sprites from the test set. Both
VAEs work well, but it is possible to spot some differences. CNN VAE reconstructed
images are slightly blurrier that the originals, while the ReNN Graph VAE has slightly less
bright colours.

Figure A1. Ground truth vs. reconstructed sprites. Comparison between sprites from the test set
with their reconstructed counterpart by ReNN Graph VAE and a standard CNN VAE.

165

Algorithms 2023, 16, 143

Table A3. Two-dimensional CNN VAE for sprite dataset.

Layers Parameters

Graph Encoder Conv2d (3, 16, kernel_size = (3, 3, 3)) 448
AvgPool2d (kernel_size = 2, stride = 2) -
Conv2d (16, 32, kernel_size = (3, 3, 3)) 4640
AvgPool2d (kernel_size = 2, stride = 1) -
Conv2d (32, 64, kernel_size = (3, 3, 3)) 18,496
AvgPool2d (kernel_size = 2, stride = 2) -

Linear (64 × 169, 64) 692,288
Linear (64, 5) 325
Linear (64, 5) 325

Graph Decoder Linear (5, 64) 384
Linear (64, 64 × 169) 703,040

Upsample (size = (26, 26), mode = ‘bilinear’) -
ConvTranspose2d (64, 32, kernel_size = (3, 3, 3)) 18,464

Upsample (size = (29, 29), mode = ‘bilinear’) -
ConvTranspose2d (32, 16, kernel_size = (3, 3, 3)) 4624

Upsample (size = (62, 62), mode = ‘bilinear’) -
ConvTranspose2d (16, 3, kernel_size = (3, 3, 3)) 435

References

1. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. arXiv 2014, arXiv:1406.2661.

2. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
3. Rezende, D.; Mohamed, S. Variational Inference with Normalizing Flows. In Proceedings of the Machine Learning Research

(PMLR), Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37,
pp. 1530–1538.

4. Bond-Taylor, S.; Leach, A.; Long, Y.; Willcocks, C.G. Deep Generative Modelling: A Comparative Review of VAEs, GANs,
Normalizing Flows, Energy-Based and Autoregressive Models. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7327–7347.

5. Mentzel, F.; Kröninger, K.; Lerch, M.; Nackenhorst, O.; Paino, J.; Rosenfeld, A.; Saraswati, A.; Tsoi, A.C.; Weingarten, J.;
Hagenbuchner, M.; et al. Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using
conditional 3D-UNet generative adversarial networks. Med. Phys. 2022, 49, 3389–3404. [CrossRef]

6. Zhang, X.; Hu, Z.; Zhang, G.; Zhuang, Y.; Wang, Y.; Peng, H. Dose calculation in proton therapy using a discovery cross-domain
generative adversarial network (DiscoGAN). Med. Phys. 2021, 48, 2646–2660. [CrossRef] [PubMed]

7. Mendonça, R.V.; Silva, J.C.; Rosa, R.L.; Saadi, M.; Rodriguez, D.Z.; Farouk, A. A lightweight intelligent intrusion detection system
for industrial internet of things using deep learning algorithms. Expert Syst. 2022, 39, e12917. [CrossRef]

8. Beniczky, S.; Karoly, P.; Nurse, E.; Ryvlin, P.; Cook, M. Machine learning and wearable devices of the future. Epilepsia 2021,
62, S116–S124. [CrossRef]

9. Khan, N.; Ullah, A.; Haq, I.U.; Menon, V.G.; Baik, S.W. SD-Net: Understanding overcrowded scenes in real-time via an efficient
dilated convolutional neural network. J. Real-Time Image Process. 2021, 18, 1729–1743. [CrossRef]

10. Francescato, S.; Giagu, S.; Riti, F.; Russo, G.; Sabetta, L.; Tortonesi, F. Model compression and simplification pipelines for fast deep
neural network inference in FPGAs in HEP. Eur. Phys. J. C 2021, 81, 969. [CrossRef]

11. Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W.L.; Lenssen, J.E.; Rattan, G.; Grohe, M. Weisfeiler and Leman Go Neural: Higher-order
Graph Neural Networks. arXiv 2021, arXiv:1810.02244.

12. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
13. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

arXiv 2017, arXiv:1606.09375.
14. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903.
15. Zhu, Y.; Du, Y.; Wang, Y.; Xu, Y.; Zhang, J.; Liu, Q.; Wu, S. A Survey on Deep Graph Generation: Methods and Applications. arXiv

2022, arXiv:2203.06714.
16. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.
17. Dhillon, I.S.; Guan, Y.; Kulis, B. Weighted Graph Cuts without Eigenvectors A Multilevel Approach. IEEE Trans. Pattern Anal.

Mach. Intell. 2007, 29, 1944–1957. [CrossRef]
18. Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An End-to-End Deep Learning Architecture for Graph Classification. In Proceedings

of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [CrossRef]
19. Bianchi, F.M.; Grattarola, D.; Livi, L.; Alippi, C. Hierarchical Representation Learning in Graph Neural Networks with Node

Decimation Pooling. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 2195–2207.

166

Algorithms 2023, 16, 143

20. Bravo-Hermsdorff, G.; Gunderson, L.M. A Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening.
arXiv 2020, arXiv:1902.09702.

21. Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W.L.; Leskovec, J. Hierarchical Graph Representation Learning with Differentiable
Pooling. arXiv 2019, arXiv:1806.08804.

22. Gao, H.; Ji, S. Graph U-Nets. arXiv 2019, arXiv:1905.05178.
23. Ranjan, E.; Sanyal, S.; Talukdar, P. Asap: Adaptive structure aware pooling for learning hierarchical graph representations. In

Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 5470–5477.
24. Guo, Y.; Zou, D.; Lerman, G. An Unpooling Layer for Graph Generation. arXiv 2022, arXiv:2206.01874.
25. Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A.L. Constrained Graph Variational Autoencoders for Molecule Design. arXiv

2019, arXiv:1805.09076.
26. Bresson, X.; Laurent, T. A Two-Step Graph Convolutional Decoder for Molecule Generation. arXiv 2019, arXiv:1906.03412.
27. Guo, X.; Zhao, L.; Qin, Z.; Wu, L.; Shehu, A.; Ye, Y. Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement.

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July
2020; pp. 1697–1707. [CrossRef]

28. Assouel, R.; Ahmed, M.; Segler, M.H.; Saffari, A.; Bengio, Y. DEFactor: Differentiable Edge Factorization-based Probabilistic
Graph Generation. arXiv 2018, arXiv:1811.09766.

29. Du, Y.; Guo, X.; Cao, H.; Ye, Y.; Zhao, L. Disentangled Spatiotemporal Graph Generative Models. In Proceedings of the AAAI
Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 6541–6549. [CrossRef]

30. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef]

31. Lin, B.; Gao, F.; Yang, Y.; Wu, D.; Zhang, Y.; Feng, G.; Dai, T.; Du, X. FLASH Radiotherapy: History and Future. Front. Oncol. 2021,
11. [CrossRef]

32. Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al.
Geant4—A simulation toolkit. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003,
506, 250–303. [CrossRef]

33. Li, Y.; Mandt, S. Disentangled Sequential Autoencoder. arXiv 2018, arXiv:1803.02991.
34. Low, D.A.; Harms, W.B.; Mutic, S.; Purdy, J.A. A technique for the quantitative evaluation of dose distributions. Med. Phys. 1998,

25, 656–661. [CrossRef]
35. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. beta-VAE: Learning Basic Visual

Concepts with a Constrained Variational Framework. In Proceedings of the International Conference on Learning Representations,
Toulon, France, 24–26 April 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

167

Citation: Shachar, E.; Cohen, I.;

Berdugo, B. Acoustic Echo

Cancellation with the Normalized

Sign-Error Least Mean Squares

Algorithm and Deep Residual Echo

Suppression. Algorithms 2023, 16, 137.

https://doi.org/10.3390/a16030137

Academic Editor: Xiang Zhang and

Xiaoxiao Li

Received: 30 December 2022

Revised: 1 February 2023

Accepted: 7 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Acoustic Echo Cancellation with the Normalized Sign-Error
Least Mean Squares Algorithm and Deep Residual Echo
Suppression

Eran Shachar *, Israel Cohen * and Baruch Berdugo *

Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion–Israel Institute of Technology,
Technion City, Haifa 3200003, Israel
* Correspondence: eranshachar@campus.technion.ac.il (E.S.); icohen@ee.technion.ac.il (I.C.);

bbaruch@technion.ac.il (B.B.)

Abstract: This paper presents an echo suppression system that combines a linear acoustic echo
canceller (AEC) with a deep complex convolutional recurrent network (DCCRN) for residual echo
suppression. The filter taps of the AEC are adjusted in subbands by using the normalized sign-
error least mean squares (NSLMS) algorithm. The NSLMS is compared with the commonly-used
normalized least mean squares (NLMS), and the combination of each with the proposed deep residual
echo suppression model is studied. The utilization of a pre-trained deep-learning speech denoising
model as an alternative to a residual echo suppressor (RES) is also studied. The results showed that
the performance of the NSLMS is superior to that of the NLMS in all settings. With the NSLMS output,
the proposed RES achieved better performance than the larger pre-trained speech denoiser model.
More notably, the denoiser performed considerably better on the NSLMS output than on the NLMS
output, and the performance gap was greater than the respective gap when employing the RES,
indicating that the residual echo in the NSLMS output was more akin to noise than speech. Therefore,
when little data is available to train an RES, a pre-trained speech denoiser is a viable alternative when
employing the NSLMS for the preceding linear AEC.

Keywords: residual echo suppression; acoustic echo cancellation; deep-learning; speech enhancement

1. Introduction

Acoustic echo cancellation is a long-standing problem in real-life telecommunication
scenarios where a near-end speaker communicates with a far-end speaker. A loudspeaker
plays the far-end signal, and a microphone captures the echo of the loudspeaker signal,
and the near-end signal and background noise [1].

Traditional acoustic echo cancellers (AECs) employ linear adaptive filters [2].
Linear AECs commonly use the least mean squares (LMS) algorithm [3,4] and its nor-
malized version, the normalized LMS (NLMS) [5,6]. The improvement introduced by
the normalization is that the step size can be set independently of the reference signal’s
power [7]. Variants of the LMS and NLMS algorithms are the sign-error LMS (SLMS),
and normalized SLMS (NSLMS) algorithms [8]. In contrast to the NLMS, the NSLMS
adjusts the weight for each filter tap, based on the polarity (sign) of the error signal. Several
studies have shown the advantages of the NSLMS over the NLMS. For example, Freire
and Douglas [9] used the NSLMS adaptive filter to cancel geomagnetic background noise
in magnetic anomaly detection systems and demonstrated its superiority over the NLMS.
Pathak et al. [10] utilized the NSLMS adaptive filter to perform speech enhancement in
noisy magnetic resonance imaging (MRI) environments. According to their experiments,
the NSLMS achieved faster convergence than the NLMS, and residual noise produced by
the NSLMS had characteristics of white noise. In contrast, residual noise produced by the
NLMS was more structured.

Algorithms 2023, 16, 137. https://doi.org/10.3390/a16030137 https://www.mdpi.com/journal/algorithms
169

Algorithms 2023, 16, 137

The linear AECs lack the ability to cancel the nonlinear components of the echo.
Therefore, further suppression of the residual echo is required, and a residual echo sup-
pressor (RES) is typically employed. While traditional residual echo suppression relies
on filter-based techniques [11,12], recent advances in deep learning have shifted the focus
toward neural network-based approaches [13–16]. Under challenging real-life conditions,
for example, low signal-to-echo ratios (SERs) and changing acoustic echo paths, the perfor-
mance of the linear AEC preceding the RES model has a significant impact on the overall
performance. Hence, it may be beneficial to investigate the AECs in conjunction with
deep-learning models for residual echo suppression.

The output of a linear AEC is expected to contain a distorted weaker version of the
echo signal, while keeping the near-end signal almost distortionless. Therefore, denoising
the estimated near-end signal with a designated speech denoiser might suppress the
residual echo, while eliminating other noises. Research on deep-learning-based speech
enhancement algorithms has seen significant progress over the last few years, with many
models exhibiting excellent performances [17–19]. For a speech denoiser to achieve good
performance as an RES, the AEC must produce residual echo that closely resembles noise,
rather than human speech.

In this paper, two aspects of residual echo suppression were investigated: the impact
of the preceding linear AEC on the performance of the residual echo suppression deep-
learning model and the utilization of a pre-trained speech denoiser as an alternative
to an RES. In addition, an echo suppression system, that employs NSLMS to perform
linear acoustic echo cancellation and a deep complex convolutional recurrent network
(DCCRN) [18] to achieve residual echo suppression, is proposed. The performances of the
NSLMS and the commonly-used NLMS algorithms were compared, and the utilization of a
speech denoiser to the output of the linear AEC to suppress the residual echo and additional
noises was evaluated. The results showed that the performances of systems using NSLMS
were superior to those using NLMS in all settings. This suggested that NSLMS was better
suited for acoustic echo cancellation and residual echo suppression tasks, emphasizing
the importance of choosing the right linear AEC. Additionally, the performance of the
pre-trained denoiser in combination with each linear AECs was investigated to determine
which of the outputs contained residual echo that resembled noise more closely than
speech. The results indicated that, contrary to the NLMS, the outputs of the NSLMS
were more akin to noise than speech. Therefore, the preceding linear AEC choice had
an even more significant impact when employing a pre-trained speech denoiser model
for the residual echo suppression task. With the NSLMS, a speech denoiser might be a
suitable alternative when insufficient data is available to train an RES model. Finally, the
advantages and efficacy of the proposed RES model over a larger pre-trained denoiser
model are shown. To summarize the contributions of the presented study, the main findings
are highlighted below:

• The performance of the NSLMS is superior to that of the common NLMS, both as a
standalone linear AEC and combined with a deep-learning residual echo suppressor.
More generally, the reported findings indicated that the linear AEC significantly
impacted the performance of the following residual echo suppressor and should be
carefully chosen.

• When combined with a pre-trained speech denoiser, the NSLMS brings a more signifi-
cant performance improvement than when combined with a residual echo suppressor.
This indicated that the outputs of the NSLMS were less structured and more akin to
noise than the NLMS outputs. Therefore, with the NSLMS, employing a pre-trained
speech denoiser might be a viable alternative to training a residual echo suppressor.

• The DCCRN architecture, initially proposed for speech enhancement, is offered to
perform residual echo suppression. While requiring only a minor modification to
adapt to the residual echo suppression task, the proposed residual echo suppressor
outperformed the larger, pre-trained speech denoiser.

170

Algorithms 2023, 16, 137

The presented study focused on challenging real-life scenarios, such as echo–path
changes, low signal-to-echo ratios (SERs), and real-time considerations.

Following is the outline of the manuscript. In Section 2, formulation of the residual
echo suppression problem is provided, the relevant signals are denoted, the different
systems and their components are described, and details regarding the datasets and ex-
perimental procedures are provided. In Section 3, the experimental results are provided.
The results are discussed and interpreted in this section as well. The manuscript is con-
cluded in Section 4.

2. Materials and Methods

This section is organized as follows. First, the different signals of concern are denoted
and explained. A high-level overview of the residual echo suppression setting is also
provided. Next, the different systems and system components are described in detail.
Lastly, the training and evaluation data are described, and experimental, and implementa-
tion details are provided.

2.1. Problem Formulation

First, the different signals presented in the manuscript are denoted. The far-end
reference signal is denoted by x(n). The echoic loudspeaker signal is denoted by s(n),
and the near-end signal is denoted by d(n). The value v(n) denotes the background noise.
The microphone signal is given by:

m(n) = s(n) + d(n) + v(n) . (1)

The linear AEC receives as inputs, x(n) and m(n), and outputs two signals: a(n), the
estimate of the echo signal s(n), and the estimate of the noisy near-end signal, i.e. the er-
ror signal e(n) = m(n) − a(n). The filter tap weights vector of length N is denoted by
c(n) = [c1(n), ..., cN(n)]T, where (·)T represents the transposed vector. Similarly, the far-end sig-
nal’s vector at time n and length N is denoted by xN(n) = [x(n), x(n − 1), ..., x(n − N + 1)]T.

The error signal e(n) contains noise and residual echo components. The goal was to
enhance e(n) by further suppressing the residual echo and possibly removing noise. This is
done either by a speech denoising model, in which case it receives e(n) as a single input to
be denoised, or by an RES model, in which case it also receives as inputs x(n), m(n), and
a(n). The RES/denoiser block predicts d̃(n). The problem’s setup and the related signals
are depicted in Figure 1. When referring to the short-time Fourier transform (STFT) [20]
domain transformations of the above signals, f denotes the frequency index, and k denotes
the time index of the transformed signals. For example, E(f , k) is the STFT of e(n).

Figure 1. Residual echo suppression setup.

171

Algorithms 2023, 16, 137

2.2. System Components

A residual echo suppression system comprises a linear AEC and an RES model.
Two linear AECs were compared: NSLMS and NLMS. For residual echo suppression,
two alternatives were considered: the proposed RES model and a pre-trained speech-
denoising model.

2.2.1. Linear Acoustic Echo Cancellers

For linear acoustic echo cancellation, an AEC with the NSLMS algorithm was em-
ployed. The algorithm operates in the subband domain by transforming the signals with
uniform single-sideband filter banks [21]. The filters’ tap weights update equation for each
subband is given by:

c(n + 1) = c(n) +
xN(n)sgn(e(n))α(n)

||xN(n)||2 (2)

where α(n) is the step size, and sgn(·) is the signum function. The performance of NSLMS
was compared to that of NLMS, for which the tap weights update equation is given by:

c(n + 1) = c(n) +
xN(n)e(n)α(n)

||xN(n)||2 . (3)

2.2.2. Residual Echo Suppression Model

The DCCRN [18] architecture, which employs a complex convolutional encoder–
decoder structure and a complex long short-term memory (LSTM), was adopted for residual
echo suppression. The model was initially developed for speech enhancement in the time–
frequency (T–F) domain. It estimates a complex ratio mask (CRM) applied to the STFT of
the input signal. For residual echo suppression, the model was adapted to have 4 input
channels instead of one, and its inputs were all available signals: e(n), a(n), x(n), and m(n).
The estimated CRM was applied to the STFT of the error signal, E(f , k). Figure 2 depicts
the model’s architecture.

Figure 2. Residual echo suppression model architecture.

The encoder and decoder branches of the model were symmetrical, where the outputs
of each encoder block were used as the inputs of the next encoder block and as additional
inputs to the decoder block of the same level. These connections between the different
encoder and decoder blocks are termed skip connections. Skip connections have two
advantages: they provide an alternative path for the gradient during back-propagation,
which is beneficial for model convergence, and they allow re-use of features from the
encoder in the decoder. Each encoder/decoder block comprised a complex 2-D convolution
layer, a complex batch-normalization layer, and a real parametric rectified linear unit
(PReLU) activation function [22], as depicted in Figure 3.

172

Algorithms 2023, 16, 137

Figure 3. Structure of a complex convolution block. The input features map, consisting of real and
imaginary parts, was fed to a complex 2-D convolution layer, the outputs of which were fed to a
complex 2-D batch normalization layer. A PReLU activation function provided the block’s output.

A complex 2-D convolution layer comprised two real 2-D convolution layers, each
operating on the real and imaginary parts of its input. The output of a complex 2-D
convolution layer, denoted by Oc, is formulated as:

Oc = (Xr ∗ Wr − Xi ∗ Wi) + j(Xr ∗ Wi + Xi ∗ Wr) , (4)

where Xr and Xi are the real and imaginary parts of the input, respectively, Wr and Wi are
the real and imaginary convolution kernels, respectively, and ∗ is the convolution operation.
Like the complex 2-D convolution layer, the complex LSTM layer comprised two real LSTM
layers, denoted by LSTMr and LSTMi. The output of the complex LSTM, denoted by Fc, is
formulated as:

Fc = (LSTMr(Xr)− LSTMi(Xi)) + j(LSTMi(Xr) + LSTMr(Xi)) . (5)

Further details regarding the original model’s architecture and the structure of the
different layers can be found in [18].

Since a clean near-end signal is unavailable when training with real, recorded data,
the noisy near-end signal d(n) + v(n) was the training target. The training objective was
the waveform �1 loss, combined with the multi-resolution STFT magnitude loss adopted
from [17]. For an estimated signal ỹ and its ground-truth y, the loss is defined as:

Loss =
1
T
[||y − ỹ||1 +

M

∑
i=1

L(i)
mag(y, ỹ)] (6)

L(i)
mag(y, ỹ) =

1
T
||log|STFT(y)| − log|STFT(ỹ)|||1 (7)

where T denotes the total time steps number, || · ||1 is the �1 norm, M is the number of STFT
resolutions, and i is the resolution index.

2.2.3. Speech Denoising Model

As an alternative to the RES model, an off-the-shelf, pre-trained speech-denoising
deep-learning model [17], which accepts a single input e(n) and outputs d̃(n), was utilized.
A speech-denoising model might be considered an alternative to an RES in cases where the
residual echo resembles noise more closely than speech. In these cases, the residual echo
might be suppressed while preserving the near-end speech. The utilized speech-denoising
model was based on the DEMUCS architecture [23]. The model operated in the time
domain, and similarly to DCCRN, it employed a convolutional encoder–decoder structure

173

Algorithms 2023, 16, 137

and an LSTM between the encoder and the decoder. A single encoder block consisted
of two 1-D convolution layers. The activation function of the first convolution layer was
the rectified linear unit (ReLU) [24] and the activation function of the second convolution
layer was the gated linear unit (GLU) [25]. The output of the encoder block was passed
to the next encoder block (or to the LSTM when it was the final encoder block) and to its
matching decoder block via a skip connection. A decoder block received both the output of
the matching encoder block and the output of the previous decoder block (or the output of
the LSTM when it was the first decoder block). The inputs were summed element-wise.
The structure of the decoder block mirrored that of the encoder block, except after the
first convolution layer, a 1-D transpose convolution layer was employed to upsample the
signal. The structure of the encoder and decoder blocks is depicted in Figure 4. The general
structure of the speech-denoising model is depicted in Figure 5. Further details regarding
the model’s architecture can be found in [17].

Figure 4. Structure of the speech-denoising model’s encoder and decoder blocks. Conv. stands for
convolution, and Trans. stands for transpose.

Figure 5. High-level structure of the speech denoising model.

As mentioned in Section 1, the speech enhancement field is well-studied, with an
abundance of excellent works and a variety of readily-available, pre-trained models trained
on large and diverse datasets. With careful fine-tuning, the features learned by such
pre-trained models might be effectively utilized for the residual echo suppression task.
This might be especially effective when there is only a small amount of data to train
a residual echo suppression model. Therefore, a pre-trained model, provided by the
authors [17], was employed. The model was pre-trained on the Valentini dataset [26] and
the INTERSPEECH 2020 deep noise suppression (DNS) challenge dataset [27]. The model
was subsequently fine-tuned with the same training data used for training the RES models,

174

Algorithms 2023, 16, 137

once with the NSLMS outputs and once with the NLMS outputs. The loss function that
was minimized is given in (6).

2.3. Datasets

Two datasets were employed for training the different models: the ICASSP 2021
AEC challenge synthetic dataset [28] and an independently recorded dataset. Unlike the
synthetic data, the independent recordings were taken in real-life conditions with low SERs.
Various scenarios were considered, including echo–path changes, variations in near-end
source positions and distances from the microphone, and varying room sizes. A total of
11 hours of speech data were taken from the LibriSpeech [29] corpus and the TIMIT [30]
corpus. Spider MT503TM or Quattro MT301TM speakerphones (Shure Inc., Niles, IL, USA)
were utilized to simulate low-SER scenarios. The loudspeaker and microphone were
positioned 5 cm from each other in these devices. Echo path changes were simulated
by moving a Logitech type Z120TM loudspeaker (Logitech International S.A., Lausanne,
Switzerland), playing the echo signal. The loudspeaker’s distance from the microphone
was either 1, 1.5, or 2 m. The near-end speech was simulated using mouth simulator type
4227-ATM of Bruel&Kjaer (Bruel&Kjaer, Naerum, Denmark). The distance of the mouth
simulator from the microphone also varied between recordings and was either 1, 1.5, or
2 m from the microphone. Double-talk utterances always contained two different speakers,
so the average overlap between the two was 90%. Rooms of different sizes were used for
the recordings (sizes varied between 3 × 3 × 2.5 m3 and 5 × 5 × 4 m3). Reverberation
time (RT60) varied between 0.3 and 0.6 seconds. The training data SER was distributed
on [−24, 18] decibels, and the test data SER was distributed on [−18, 5] decibels. Test data
speakers were unique and not used in the training set. Further details regarding the data
creation can be found in [14].

The ICASSP 2021 AEC challenge synthetic dataset was used to augment the training
data. About 27.7 h of data were generated, with different scenarios, including double-talk,
far-end or near-end single-talk, with/without near-end noise, and likewise for far-end. In
addition, several nonlinear distortions were applied, with different SERs and signal-to-noise
ratios. Further details regarding the dataset can be found in [28].

2.4. Implementation Details

All signals were sampled with a sampling rate of 16 kHz. Initially, the input sig-
nals were transformed to the subband domain by uniform 32-band single-sideband filter
banks [21]. Each subband consisted of 150 taps. These were the equivalent of filters in the
time domain with 2400 taps and of length 150 ms.

For the RES model, the transformation of the input signals to the T-F domain was
achieved by a 512-point STFT, resulting in 257 frequency bins. The STFT window length
was 25 ms, and the hop length was 6.25 ms. The number of convolution kernels for the
different encoder layers was [16, 32, 64, 128, 256, 256]. The LSTM had two layers with a
128 hidden size. The model comprised 2.07 M parameters. The Adam optimizer [31] was
employed for model optimization. Training started with a learning rate of 5 × 10−4. The
learning rate was decreased by a factor of 2 if the validation loss did not improve after 3
consecutive epochs. The mini-batch size was 16, and the training continued for a maximum
number of 100 epochs.

The number of encoder and decoder blocks for the speech-denoising model was 5.
The number of the first encoder block’s output channels was 64, and each encoder block
doubled the number of channels. Subsequently, each decoder block halved the number of
channels, where the output of the last decoder block consisted of 1 channel. The convolution
kernel size was 8, and its stride was 4. The LSTM consisted of two layers, and its hidden
size matched the number of channels of the last encoder block (and the number of channels
of the first decoder block). The input to the model was normalized by its standard deviation.
The model was pre-trained using the Valentini dataset [26] and the INTERSPEECH 2020
DNS challenge dataset [27]. The model comprised 18.87 M parameters. For a fair com-

175

Algorithms 2023, 16, 137

parison with the RES model, the causal version of the denoiser was employed. For
both linear AECs, the model was fine-tuned using the same data used to train the RES
model. Training continued for 20 epochs with a learning rate of 3 × 10−4 using the Adam
optimizer [31]. Further details regarding the model architecture can be found in [17].

3. Results

This section presents performance measures and experimental results.

3.1. Performance Measures

Performance was evaluated in two scenarios: far-end single-talk and utterances con-
taining near-end speech, either double-talk or near-end single-talk. When only the far-end
speaker spoke, the goal was to reduce the output signal’s energy as much as possible.
Optimally, the enhanced signal was silent during these periods. We utilized the echo return
loss enhancement (ERLE) measure to evaluate performance during far-end-only periods.
The ERLE in decibels is defined as:

ERLE = 10log10
||m||2
||d̃||2 . (8)

During double-talk periods, the goal was to maintain near-end speech quality while
suppressing the residual echo. Since the performance measures used during these periods
focused on speech quality rather than echo reduction, these measures were also used
during near-end single-talk periods. Two different measures were employed to evaluate
performance during these periods. Perceptual evaluation of speech quality (PESQ) [32]
aimed to approximate a subjective assessment of an enhanced speech signal. PESQ was
intrusive, i.e., the enhanced signal was compared to the clean, ground-truth signal. PESQ
score was in the range [−0.5, 4, 5]. PESQ is known to only sometimes correlate well
with subjective human ratings. Therefore, deep noise-suppression meant opinion score
(DNSMOS) [33] was also used to evaluate performance during these periods. DNSMOS
is traditionally used to assess noise suppressors, although it can be employed to estimate
speech quality in any setting. DNSMOS is non-intrusive, i.e., it does not require a clean
near-end signal to evaluate speech quality. DNSMOS is a neural network trained with
hundreds of hours of ground-truth subjective human speech quality ratings. The model
predicted a score in the [1, 5] range.

Further measures used in the next section included the SER, measured in double-talk
scenarios and defined in decibels as:

SER = 10log10
||d||2
||s||2 , (9)

and the echo-to-noise ratio (ENR), measured in far-end-only scenarios and defined in
decibels as:

ENR = 10log10
||s||2
||v||2 . (10)

3.2. Experimental Results

Table 1 shows the different methods’ performances on the test set: the linear AECs
(NLMS and NSLMS), the denoiser [17] operating on the outputs of each of the linear AECs
(NLMS + Denoiser and NSLMS + Denoiser), and the RES model combined with each of
the linear AECs (NLMS + RES and NSLMS + RES). First, the performances of the NLMS
and NSLMS acoustic echo cancellers were compared. As the table shows, NSLMS had
significantly better echo cancellation performance than NLMS, as indicated by the 4.57 dB
gap in ERLE. NSLMS also outperformed NLMS in preserving near-end speech quality,
as shown by DNSMOS and PESQ, both in near-end single-talk and double-talk periods.
PESQ and DNSMOS results for the double-talk-only scenario (DT) were differentiated from

176

Algorithms 2023, 16, 137

the respective results when including the near-end-only scenario (DT + NE). Notably, the
performance gap during DT was more significant than during DT + NE: the DNSMOS
difference between NSLMS and NLMS was 0.05 for DT + NE and 0.09 for DT, and the
PESQ score difference was 0.33 for DT + NE and 0.56 for DT. These results indicated that
a proper choice of a linear AEC was even more crucial when considering the challenging
double-talk scenario, and NSLMS was notably superior to NLMS in this scenario. Overall,
the performance of the NSLMS as a linear AEC was superior to that of the NLMS in all
scenarios.

Table 1. Performance comparison of the different systems. FE stands for far-end-only scenarios, NE
stands for near-end-only scenarios, and DT stands for double-talk scenarios. Results in bold represent
the best result in the column and row group (where row groups are separated with bold lines.)

FE DT DT + NE
ERLE DNSMOS PESQ DNSMOS PESQ

NLMS 16.60 2.62 2.42 2.81 3.33
NSLMS 21.17 2.71 2.98 2.86 3.66

NLMS +
Denoiser

32.63 2.44 2.32 2.72 3.23

NSLMS +
Denoiser

39.44 2.65 3.13 2.84 3.63

NLMS + RES 38.55 2.46 2.53 2.76 3.34
NSLMS + RES 40.34 2.64 3.11 2.84 3.70

Next, the performance of the proposed RES was considered, both with the NLMS and
the NSLMS. It can be seen from the table that the NSLMS + RES system’s performance was
superior to the NLMS + RES system’s performance in all scenarios. When comparing the
performance of the NLMS + RES and NSLMS + RES systems to the respective linear AECs
(NLMS and NSLMS), different trends in DNSMOS and PESQ scores were observed. For
both systems, DNSMOS deteriorated, and PESQ improved. This emphasized the differences
between the two measures and the importance of examining several measures when
evaluating the performance of residual echo suppression systems. While NLMS + RES
DNSMOS deteriorated by 0.05 for DT + NE and 0.16 for DT, NSLMS+RES DNSMOS
deteriorated by 0.02 for DT + NE and by 0.07 for DT. In other words, the NSLMS RES system
saw a smaller degradation in DNSMOS than the NLMS RES system, further showing the
advantage of employing NSLMS over NLMS. Furthermore, the NLMS+RES PESQ increased
by 0.01 for DT + NE and by 0.11 for DT, while the NSLMS+RES PESQ increased by 0.04
for DT + NE and by 0.13 for DT. In other words, the improvement in PESQ was greater for
the NSLMS system than for the NLMS system. A different trend could be seen in the far-
end-only performance. For the NLMS, ERLE increased by 21.95 dB compared to the linear
AEC, and for the NSLMS system, ERLE increased by 19.17 dB. These results indicated that,
when combined with the deep-learning RES, the NLMS achieved a greater performance
gain than the NSLMS. Overall, it could be seen that the NLMS was more efficient than the
NSLMS when combined with the deep-learning RES model during far-end-only periods,
but NSLMS was more efficient than the NLMS in near-end-only and double-talk scenarios.
While it might be worthwhile to investigate these different trends, the overall performance
of the NSLMS + RES system was superior to the performance of the NLMS + RES system,
indicating that NSLMS was a better choice for a linear AEC than the NLMS when combined
with a deep-learning RES model.

When comparing the performances of the NLMS + Denoiser and the NSLMS + De-
noiser systems, it could be seen again that the system using NSLMS as a linear AEC
was superior to the system using NLMS in all settings. NSLMS + Denoiser ERLE was
6.81 dB greater than the NLMS + Denoiser ERLE. Similarly to the RES systems, DNSMOS
deteriorated for both denoisers compared to the linear AECs, both during DT + NE and
during DT. NLMS + Denoiser DNSMOS deteriorated by 0.09 during DT + NE and by

177

Algorithms 2023, 16, 137

0.18 during DT, while NSLMS+Denoiser DNSMOS deteriorated by 0.02 during DT + NE
and by 0.06 during DT. Contrary to the RES system, the NLMS + Denoiser PESQ decreased
both for DT + NE and DT, while the NSLMS+Denoiser PESQ increased. Notably, the PESQ
score of the denoiser with the NSLMS linear AEC was 0.81 greater than the PESQ score
of the denoiser using the NLMS linear AEC during double-talk periods. Furthermore, the
Denoiser + NSLMS DNSMOS was 0.21 greater than the Denoiser + NLMS DNSMOS during
double-talk periods. These significant gaps in performance during double-talk periods,
and the notable ERLE gap during far-end-only periods, further asserted the claim that the
NSLMS produced a residual echo that was more akin to noise than speech when compared
to the NLMS. In light of all the above observations, it was clear that when employing a
pre-trained speech denoising model to the task of residual echo suppression, the preceding
linear AEC significantly impacted the denoiser’s performance, and NSLMS was preferable
over NLMS to a large degree.

Next, the performances of the NSLMS + Denoiser and NSLMS + RES systems were
compared. The RES system achieved better far-end single-talk performance, as indicated by
the 0.9 dB gap in ERLE. The DNSMOS of both systems was on-par, with a minor difference
during DT periods. The RES system’s PESQ was 0.07 greater during DT + NE and 0.02
lower during DT. Overall, it could be concluded that the performance of the RES system
was superior to the denoiser system’s performance during far-end single-talk periods, and
the performances were on-par during near-end single-talk and double-talk periods, which
indicated that the overall performance of the RES system was superior to the performance
of the denoiser system. These results asserted the efficacy of the proposed RES model,
which consisted of 10 times fewer model parameters than the denoiser model, which was
also pre-trained on a large corpus with diverse speakers and noises. Nevertheless, the
performance gap was not significant, which suggested that in cases where a large dataset
for training a residual echo suppressor is not available, fine-tuning an off-the-shelf speech
denoiser might be a reasonable alternative to a residual echo suppressor.

To complete the comparison between the different systems, the different measures’
gaps between the NLMS and the NSLMS systems for the denoiser and the RES models
were compared. During far-end single-talk periods, the gap between the NSLMS + RES and
NLMS + RES ERLE was 1.79 dB, while the gap between the respective denoiser systems
was 6.81 dB. In other words, the denoiser brought a more significant performance improve-
ment between the NLMS and NSLMS systems, compared to the gap in the residual echo
suppression setting. During DT + NE periods, the DNSMOS gap between the NLMS + RES
and the NSLMS + RES systems was 0.08, and the respective gap in the denoiser setting was
0.12. During DT, the DNSMOS gap in the residual echo suppression setting was 0.18, and
the DNSMOS gap in the denoiser setting was 0.21. Again, the denoiser brought a greater
DNSMOS improvement between the NLMS and NSLMS compared to the improvement
between the respective systems in the RES settings. For PESQ, the same trend could be
observed: during DT + NE, the PESQ gap was 0.36 in the residual echo suppression setting
and 0.40 in the denoiser setting, and during DT, the gap in the residual echo suppression
setting was 0.58 and 0.81 in the denoiser setting. Overall, it could be seen that in all
scenarios, the gap between the NLMS and NSLMS performances in the denoiser setting
was greater than the respective gap in the residual echo suppression settings. In other
words, the denoiser benefited more from choosing NSLMS over NLMS than the proposed
RES, which further asserted that the outputs produced by the NSLMS were more akin to
noise than the outputs produced by the NLMS. Therefore, although NSLMS was preferable
over NLMS in all settings when employing a pre-trained speech denoiser to the task of
residual echo suppression, using NSLMS as a linear AEC resulted in significantly superior
performance compared to using NLMS, showing that the proper choice of a linear AEC
was even more critical in this setting.

Finally, the performances of the NSLMS and NLMS as linear AECs, as well as com-
bined with the proposed RES model, were compared for different SERs and ENRs. Figure 6
shows the PESQ scores for different values of SER in the double-talk scenario. NSLMS

178

Algorithms 2023, 16, 137

achieved superior PESQ over NLMS in all SERs, both as a standalone linear AEC and
combined with the RES model. Furthermore, in all SERs, the RES model did not improve
PESQ when employing the NLMS linear AEC. On the other hand, in the more challenging
scenarios of lower SERs, the RES model improved in PESQ when employing the NSLMS
linear AEC. Figure 7 shows the ERLE for different values of ENR during far-end single-talk
periods. Again, NSLMS achieved superior performance over NLMS in all ENRs, both as a
standalone linear AEC and combined with the RES model. In the challenging low ENR
scenarios, the performance gap between the NLMS + RES and NSLMS + RES systems
was greater than the respective gap in higher ENRs, further showing the advantage of
using NSLMS over using NLMS in challenging scenarios. Overall, the graphs show the
superiority of NSLMS over NLMS, both as standalone linear AECs and combined with the
proposed RES model, in various conditions and settings. Furthermore, the graphs show
that the advantage of using NSLMS over NLMS was even more significant in challenging
scenarios and conditions.

Figure 6. PESQ in double-talk-only scenarios for different SERs.

Figure 7. ERLE in far-end-only scenarios for different ENRs.

4. Conclusions

In this study, an echo suppression system, based on the NSLMS linear AEC and the
DCCRN speech enhancement model, was presented. Experiments in challenging real-life
conditions with low SER were conducted. The performances of the proposed system and a
pre-trained speech-denoising model operating on the AEC output that was fine-tuned with
the same training data were compared. The proposed system’s ERLE was 0.9 dB greater
than the denoiser’s ERLE, indicating better far-end single-talk performance. The near-end
single-talk and double-talk performances of the systems were on-par. These results showed

179

Algorithms 2023, 16, 137

that, although the speech denoising model was pre-trained on a large corpus with diverse
speakers and conditions and was 10 times larger concerning the number of parameters, the
proposed RES model was favorable. A comparison of the performances of all the systems
using NSLMS–AEC and NLMS–AEC was also made. The NSLMS was favorable over NLMS
in all settings and scenarios. Notably, NSLMS’s ERLE was 4.57 db greater than NLMS’s ERLE
as a stand-alone linear AEC. When combined with the proposed RES, NSLMS’s DNSMOS
was 0.18 greater than the NLMS, and its PESQ score was 0.58 greater, both in the challeng-
ing double-talk scenario. Overall, the results showed that, although the NLMS algorithm
is commonly employed for linear acoustic echo cancellation, the NSLMS may be a better
choice, which raises a more general question regarding the importance of choosing a proper
linear AEC and its effect on the performance of the deep-learning residual echo suppressor.
When analyzing the performance of the pre-trained speech denoiser, both with the NLMS
and the NSLMS, a notable ERLE gap of 6.81 dB was observed. This gap was considerably
larger than the respective 1.79 dB gap in the RES setting. Furthermore, there was a 0.81 gap
in double-talk PESQ scores, which was also considerably larger than the respective 0.58 gap
in the RES setting. When including near-end single-talk periods, the differences between
the different measures’ gaps were less notable. These observations supported the claim that
the NSLMS produced a residual echo that was less structured than the output produced
by the NLMS. Therefore, when the complexity of the model is not an important considera-
tion, fine-tuning a readily available denoiser could be a reasonable alternative to creating a
new RES model. However, the choice of linear AEC becomes more critical, and NSLMS is
preferable to NLMS.

Author Contributions: Conceptualization, E.S., I.C. and B.B.; methodology, E.S., I.C. and B.B.; software,
E.S. and B.B.; validation, E.S.; formal analysis, E.S.; investigation, E.S., I.C. and B.B.; resources, I.C.
and B.B.; data curation, E.S. and B.B.; writing—original draft preparation, E.S.; writing—review and
editing, I.C. and B.B.; visualization, E.S.; supervision, I.C. and B.B.; project administration, I.C.; funding
acquisition, I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations were used in this manuscript:

AEC Acoustic echo canceller
CRM Complex ratio mask
DCCRN Deep complex convolution network
DNS Deep noise suppression
DNSMOS Deep noise suppression mean opinion score
ENR Echo-to-noise ratio
GLU Gated linear unit
LSTM Long short-term memory
MRI Magnetic resonance imaging
NLMS Normalized least mean squares
NSLMS Normalized sign-error least mean squares
PESQ Perceptual evaluation of speech quality
PReLU Parametric rectified linear unit
ReLU Rectified linear unit
RES Residual echo suppressor
SER Signal-to-echo ratio
SLMS Sign-error least mean squares
STFT Short-time Fourier transform
T-F Time-frequency

180

Algorithms 2023, 16, 137

References

1. Sondhi, M.; Morgan, D.; Hall, J. Stereophonic Acoustic Echo Cancellation-an Overview of the Fundamental Problem. IEEE Signal
Process. Lett. 1995, 2, 148–151. [CrossRef] [PubMed]

2. Benesty, J.; Gänsler, T.; Morgan, D.R.; Sondhi, M.M.; Gay, S.L. Advances in Network and Acoustic Echo Cancellation; Springer:
Berlin/Heidelberg, Germany, 2001.

3. Macchi, O. Adaptive Processing: The Least Mean Squares Approach; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1995.
4. Rusu, A.G.; Ciochină, S.; Paleologu, C.; Benesty, J. An Optimized Differential Step-Size LMS Algorithm. Algorithms 2019, 12, 147.

[CrossRef]
5. Bershad, N. Analysis of the Normalized LMS Algorithm with Gaussian Inputs. IEEE Trans. Acoust. Speech Signal Process. 1986,

34, 793–806. [CrossRef]
6. Rusu, A.G.; Paleologu, C.; Benesty, J.; Ciochină, S. A Variable Step Size Normalized Least-Mean-Square Algorithm Based on Data

Reuse. Algorithms 2022, 15, 111. [CrossRef]
7. Koike, S. Analysis of Adaptive Filters Using Normalized Signed Regressor LMS Algorithm. IEEE Trans. Signal Process. 1999,

47, 2710–2723. [CrossRef]
8. Farhang-Boroujeny, B. Adaptive Filters: Theory and Applications; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1998.
9. Freire, N.; Douglas, S. Adaptive Cancellation of Geomagnetic Background Noise Using a Sign-Error Normalized LMS algorithm.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Minneapolis, MN,
USA, 27–30 April 1993; Volume 3, pp. 523–526.

10. Pathak, N.; Panahi, I.; Devineni, P.; Briggs, R. Real Time Speech Enhancement for the Noisy MRI Environment. In Proceedings
of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6
September 2009; pp. 6950–6953.

11. Guerin, A.; Faucon, G.; Le Bouquin-Jeannes, R. Nonlinear Acoustic Echo Cancellation Based on Volterra Filters. IEEE Trans.
Speech Audio Process. 2003, 11, 672–683. [CrossRef]

12. Malik, S.; Enzner, G. State-Space Frequency-Domain Adaptive Filtering for Nonlinear Acoustic Echo Cancellation. IEEE Trans.
Audio Speech Lang. Process. 2012, 20, 2065–2079. [CrossRef]

13. Wang, Z.; Na, Y.; Liu, Z.; Tian, B.; Fu, Q. Weighted Recursive Least Square Filter and Neural Network Based Residual Echo
Suppression for the AEC-Challenge. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), virtual, 6–11 June 2021; pp. 141–145.

14. Ivry, A.; Cohen, I.; Berdugo, B. Deep Residual Echo Suppression with A Tunable Tradeoff Between Signal Distortion and Echo
Suppression. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), virtual,
6–11 June 2021; pp. 126–130.

15. Franzen, J.; Fingscheidt, T. Deep Residual Echo Suppression and Noise Reduction: A Multi-Input FCRN Approach in a Hybrid
Speech Enhancement System. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Singapore, 22–27 May 2022; pp. 666–670.

16. Ma, L.; Huang, H.; Zhao, P.; Su, T. Acoustic Echo Cancellation by Combining Adaptive Digital Filter and Recurrent Neural
Network. arXiv 2020, arXiv:2005.09237.

17. Defossez, A.; Synnaeve, G.; Adi, Y. Real Time Speech Enhancement in the Waveform Domain. arXiv 2020, arXiv:2006.12847.
18. Hu, Y.; Liu, Y.; Lv, S.; Xing, M.; Zhang, S.; Fu, Y.; Wu, J.; Zhang, B.; Xie, L. DCCRN: Deep Complex Convolution Recurrent

Network for Phase-Aware Speech Enhancement. arXiv 2020, arXiv:2008.00264.
19. Koizumi, Y.; Yatabe, K.; Delcroix, M.; Masuyama, Y.; Takeuchi, D. Speech Enhancement Using Self-Adaptation and Multi-Head

Self-Attention. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 181–185.

20. Ortiz-Echeverri, C.J.; Rodríguez-Reséndiz, J.; Garduño-Aparicio, M. An approach to STFT and CWT learning through music
hands-on labs. Comput. Appl. Eng. Educ. 2018, 26, 2026–2035. [CrossRef]

21. Crochiere, R.E.; Rabiner, L.R. Section 7.6. In Multirate Digital Signal Processing; Prentice Hall PTR: Hoboken, NJ, USA, 1983.
22. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

arXiv 2015, arXiv:1502.01852.
23. Défossez, A.; Usunier, N.; Bottou, L.; Bach, F. Music Source Separation in the Waveform Domain. arXiv 2019, arXiv:1911.13254.
24. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015, arXiv:1505.00853.
25. Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language Modeling with Gated Convolutional Networks. arXiv 2016, arXiv:1612.08083.
26. Valentini-Botinhao, C. Noisy Speech Database for Training Speech Enhancement Algorithms and TTS Models; Centre for Speech

Technology Research (CSTR), School of Informatics, University of Edinburgh: Edinburgh, UK, 2017.
27. Reddy, C.K.A.; Beyrami, E.; Dube, H.; Gopal, V.; Cheng, R.; Cutler, R.; Matusevych, S.; Aichner, R.; Aazami, A.; Braun, S.; et al.

The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Speech Quality and Testing Framework. arXiv
2020, arXiv:2001.08662.

28. Sridhar, K.; Cutler, R.; Saabas, A.; Parnamaa, T.; Loide, M.; Gamper, H.; Braun, S.; Aichner, R.; Srinivasan, S. ICASSP 2021 Acoustic
Echo Cancellation Challenge: Datasets, Testing Framework, and Results. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), virtual, 6–11 June 2021; pp. 151–155.

181

Algorithms 2023, 16, 137

29. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An ASR Corpus Based on Public Domain Audio Books.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toronto, ON, Canada,
6–11 June 2015; pp. 5206–5210.

30. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S.; Dahlgren, N.L. DARPA TIMIT Acoustic Phonetic Continuous Speech
Corpus CDROM. NIST Speech Disc 1-1.1.; Technical Report LDC93S1; National Institute of Standards Technolology: Gaithersburg,
MD, USA, 1993.

31. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
32. Rix, A.; Beerends, J.; Hollier, M.; Hekstra, A. Perceptual Evaluation of Speech Quality (PESQ)-A New Method for Speech Quality

Assessment of Telephone Networks and Codecs. In Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Salt Lake City, UT, USA, 7–11 May 2001; Volume 2, pp. 749–752.

33. Reddy, C.K.A.; Gopal, V.; Cutler, R. DNSMOS: A Non-Intrusive Perceptual Objective Speech Quality Metric to Evaluate Noise
Suppressors. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), virtual,
6–11 June 2021; pp. 6493–6497.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

182

Citation: Guan, S.; Hsu, K.-T.;

Chitnis, P.V. Fourier Neural Operator

Network for Fast Photoacoustic Wave

Simulations. Algorithms 2023, 16, 124.

https://doi.org/10.3390/a16020124

Academic Editors: Xiang Zhang

and Xiaoxiao Li

Received: 19 January 2023

Revised: 14 February 2023

Accepted: 16 February 2023

Published: 19 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fourier Neural Operator Network for Fast Photoacoustic
Wave Simulations

Steven Guan †, Ko-Tsung Hsu † and Parag V. Chitnis *

Bioengineering Department, George Mason University, Fairfax, VA 22030, USA
* Correspondence: pchitnis@gmu.edu
† These authors contributed equally to this work.

Abstract: Simulation tools for photoacoustic wave propagation have played a key role in advancing
photoacoustic imaging by providing quantitative and qualitative insights into parameters affecting
image quality. Classical methods for numerically solving the photoacoustic wave equation rely on
a fine discretization of space and can become computationally expensive for large computational
grids. In this work, we applied Fourier Neural Operator (FNO) networks as a fast data-driven
deep learning method for solving the 2D photoacoustic wave equation in a homogeneous medium.
Comparisons between the FNO network and pseudo-spectral time domain approach were made
for the forward and adjoint simulations. Results demonstrate that the FNO network generated
comparable simulations with small errors and was orders of magnitude faster than the pseudo-
spectral time domain methods (~26× faster on a 64 × 64 computational grid and ~15× faster on
a 128 × 128 computational grid). Moreover, the FNO network was generalizable to the unseen
out-of-domain test set with a root-mean-square error of 9.5 × 10−3 in Shepp–Logan, 1.5 × 10−2

in synthetic vasculature, 1.1 × 10−2 in tumor and 1.9 × 10−2 in Mason-M phantoms on a 64 × 64
computational grid and a root mean squared of 6.9 ± 5.5 × 10−3 in the AWA2 dataset on a 128 × 128
computational grid.

Keywords: photoacoustic imaging; image processing; computer vision; simulation; reconstruction;
deep learning

1. Introduction

Photoacoustic imaging is a non-invasive hybrid imaging modality that combines
the advantages of optical (e.g., high contrast and molecular specificity) and ultrasound
(e.g., high penetration depth) imaging [1]. It has been applied for many preclinical and clin-
ical imaging applications, such as small-animal whole-body imaging, breast and prostate
cancer imaging and image-guided surgery [2–6]. Specifically, in breast cancer detection,
tumors have been successfully revealed by single-breath-hold photoacoustic computed
tomography (SBH-PACT) without the need of ionizing radiation and exogenous contrast
agents based on the higher blood vessel density characteristics associated with tumors [7].
Multispectral photoacoustic imaging can be used for functional imaging, such as mea-
suring blood oxygen saturation and metabolism in biological tissues [8]. In addition to
applying multispectral photoacoustic imaging to differentiate oxyhemoglobin from deoxy-
hemoglobin in breast cancer, ultrasound and photoacoustic tomography (US-OT) can reveal
differences in lipids and collagen in breast fibroglandular tissue, providing more clinically
meaningful insights for diagnosis [9]. Photoacoustic imaging provides both structural and
functional information that can potentially reveal novel insights into biological processes
and disease pathologies [10].

In photoacoustic tomography (PAT), a tissue medium is illuminated using a short-
pulsed laser. Optically absorbing molecules within the medium are excited and undergo
thermoelastic expansion, resulting in the generation of photoacoustic waves that are subse-
quently measured using an array of acoustic sensors [1]. An image representing the initial

Algorithms 2023, 16, 124. https://doi.org/10.3390/a16020124 https://www.mdpi.com/journal/algorithms
183

Algorithms 2023, 16, 124

pressure distribution can be reconstructed from the measured time-dependent signals
using analytical solutions, numerical methods and model-based iterative methods [11–15].
A detailed understanding of parameters describing the imaging medium (e.g., optical,
thermal and acoustic properties of the tissue) and the imaging system (e.g., arrangement
and characteristics of the laser source and acoustic sensors) is needed to reconstruct a
high-quality PAT image.

PAT simulation is a highly useful tool that provides quantitative and qualitative in-
sights into these parameters affecting image quality [16]. It is commonly used prior to
experimentation and imaging to optimize the system configuration. It also plays an integral
role in PAT image reconstruction and provides numerical phantom data for the develop-
ment of advanced algorithms, such as iterative methods and deep learning methods [17–22].
Simulating PAT image acquisition comprises two components: optical illumination and
photoacoustic propagation. For this work, we are primarily focused on the photoacoustic
propagation component. The equation for photoacoustic wave propagation can be solved
numerically using classical methods, such as the time domain finite element method [23,24].
These methods generally solve the equation via approximation on a mesh and can be
computationally expensive, such as for large three-dimensional (3D) simulations.

Recently, deep learning has been explored as an alternative method for solving par-
tial differential equations (PDE) [25,26]. It has the potential to greatly impact scientific
disciplines and research by providing fast PDE solvers that approximate or enhance con-
ventional ones. Applications requiring repeated evaluations of a PDE can greatly benefit
from the reduced computation times offered by deep learning. Here, we provide a brief
overview of three deep learning methods for solving PDEs—finite dimensional operators,
neural finite element models and Fourier Neural Operators (FNO).

Finite dimensional operators use a deep convolutional neural network (CNN) to solve
the PDE on a finite Euclidean Space [27,28]. This approach is mesh-dependent, meaning
the CNN needs to be retrained for solving the PDE at different spatial resolutions and
discretization. Neural finite element models are mesh-independent and closely resemble
traditional finite element methods [25,29]. It replaces the set of local basis functions in the
finite element models with a fully connected neural network. It requires prior knowledge
of the underlying PDE and is designed to solve for one specific instance of the PDE. The
neural network needs to be retrained for new instances where the underlying PDE is
parameterized with a different set of functional coefficients. FNO is a mesh-free approach
that approximates the mapping between two infinite dimensional spaces from a finite
collection of input–output paired observations [30,31]. The neural operator is learned
directly in the Fourier and image space using a CNN. The same learned operator can be
used without retraining to solve PDEs with different discretization and parameterization.
Fourier Neural Operators have been demonstrated to achieve state-of-the-art results for a
variety of PDEs (e.g., Burgers’ equation, Darcy Flow and Navier–Stokes) and outperform
other existing deep learning methods [31].

To the best of our knowledge, this is the first paper to apply deep learning for solving
the photoacoustic wave equation for simulating PAT. FNOs were chosen for this task
given their flexibility in discretization and superior performance compared to other deep
learning methods. Prior work with FNOs demonstrated solutions to the Navier–Stokes and
Burgers’ equations, which have relatively smooth spatio-temporal solutions [31]. Unlike
these works, photoacoustic signals have high broadband frequencies and contain sharp
transitions. Specifically, this paper highlights the following innovative contributions:

• Adapting the FNO neural network and applying it as a fast PDE solver for simulating
the forward and adjoint 2D photoacoustic operator.

• Simulations from the FNO network and the widely used k-Wave toolbox for time
domain acoustic wave propagation [16] were compared in terms of accuracy and
computation times.

184

Algorithms 2023, 16, 124

• Further experiments were also conducted to evaluate the generalizability of the FNO
network beyond the training data and the impact of key hyperparameters on network
performance and complexity.

The remainder of the article is organized as follows. The forward problem and the
inverse problem of PAT are described in Section 2. Acoustic wave simulation techniques for
the PAT based on conventional methods and FNO networks are presented in Section 2. The
data generation and training process of the FNO network and its detailed implementation
are also given in Section 2. Simulation results of the FNO network on the different test
set with different spatial grid sizes and hyperparameter optimizations are provided in
Section 3. Furthermore, the simulation results of zero-shot super-resolution with the
FNO network are also given in Section 3. The conclusion and discussion are presented in
Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Photoacoustic Signal Generation and Imaging

The photoacoustic signal is generated by irradiating the medium with a nanosecond
laser pulse (Figure 1). Chromophores within the image medium are excited by the laser and
undergo thermoelastic expansion to generate acoustic pressure waves. Assuming negligible
thermal diffusion and volume expansion during illumination, the initial photoacoustic
pressure x can be defined as

x(r) = Γ(r)A(r), (1)

where A(r) is the spatial absorption function, and Γ(r) is the Grüneisen coefficient describ-
ing the conversion efficiency from heat to pressure [32]. The photoacoustic pressure wave
p(r, t) at position r and time t can be modeled as an initial value problem, where c is the
speed of sound [33].(

∂tt − c2
0Δ

)
p(r, t) = 0, p(r, t = 0) = x, ∂t p(r, t = 0) = 0 (2)

Figure 1. Diagram illustrating the process of photoacoustic signal generation and detection. Chro-
mophores absorb the incident pulsed laser light and undergo thermoelastic expansion to generate
acoustic waves. Acoustic detectors along the measurement boundary So are used to measure the
acoustic waves.

In photoacoustic imaging, sensors located along a measurement surface So, surround-
ing the medium, are used to measure a time series signal. The linear operator M acts
on p(r, t) restricted to the boundary of the computational domain Ω over a finite time T

185

Algorithms 2023, 16, 124

and provides a linear mapping to the measured time-dependent signal y. The forward
photoacoustic operator W maps the initial acoustic pressure to the measured signal.

y = Mp|∂Ω×(0,T) = Wx (3)

The measured sensor data are then used to form an image representing the initial
acoustic pressure distribution. Photoacoustic image reconstruction is a well-studied inverse
problem that can be solved using analytical solutions, numerical methods and model-based
iterative methods [11–13,15,34]. The adjoint photoacoustic operator W∗ maps the measured
signal to the initial acoustic pressure.

x = W∗y (4)

Time reversal is a robust reconstruction method that works well for homogenous
and heterogeneous mediums and also for any arbitrary detection geometry [15,34]. The
acoustic waves that are generated are measured along the measurement surface So. After
a long period of time T, the acoustic field within the medium becomes zero, which is
guaranteed by Huygens’ principle in homogeneous mediums [35]. A PAT image is formed
by running a numerical model of the forward problem and transmitting the measured
sensor data in a time-reversed order into the medium, where the detectors along So are
time-varying pressure sources. Thus, time reversal is modeled as a time-varying boundary
value problem, and the resulting acoustic field at t = 0 is the initial acoustic pressure
distribution to be recovered.

2.2. Conventional Solvers for the Wave Equation

Numerical approaches, such as the finite difference and finite element methods, are
commonly used to solve PDEs by discretizing the space into a grid [36]. However, these
methods are often slow for time domain modeling broadband or high-frequency waves
due to the need for a fine grid with small time steps [16]. Computational efficiency can be
improved using pseudo-spectral and k-space methods. The pseudo-spectral method fits a
Fourier series to the data and reduces the number of grid points per wavelength required for
an accurate solution [37]. The k-space method incorporates a priori information regarding
the governing wave equation into the solution [38]. This allows for larger time steps and
improves numerical stability in the case of acoustically heterogeneous media. The k-Wave
toolbox, a widely used MATLAB tool for photoacoustic simulations, uses the pseudo-
spectral k-space approach for solving time domain photoacoustic wave simulations [39].

Conventional numerical approaches are typically used to solve a single instance of
PDEs and require the PDEs’ explicit form. Because these approaches solve the PDE via
approximation on a mesh, there is a trade-off between accuracy and computation time.
In comparison, the FNO network is a data-driven and black-box approach that learns a
solution for a family of PDEs from the training data and does not require the PDEs’ explicit
form. It is also resolution- and mesh-invariant, meaning that the trained network can be
used for solving PDEs at varying levels of resolution and discretization. However, the
FNO network is dependent on the quality of the data and is slow to train. Although
modifications to the functional form of the PDE can be easily accounted for in conventional
approaches to solve a single instance, the FNO network would need to be retrained with a
new training dataset.

2.3. Fourier Neural Operator Networks

The FNO network [31] was adapted for solving the 2D photoacoustic wave equation.
In the original implementation, the input a to the FNO was the first several time steps
of the solution acquired using a conventional solver. Using insights from the physics of
photoacoustic imaging, we determined that only the initial pressure distribution (time
= 0) was needed as the input a to the FNO for solving the wave equation because the
generated acoustic pulses propagate in an omni-directional manner. This removed the need

186

Algorithms 2023, 16, 124

for conventional solvers, and the full spatio-temporal solution could be obtained using only
the FNO. To avoid instabilities and keep our solution bounded, we replaced previously
used element-wise Gaussian normalizers with a peak-normalization scheme, where the
initial source distribution map was normalized by its maximum value. We empirically
found that the Gaussian normalizer was not appropriate for simulating wave propagation
because the distribution of pressures over time at any given element in the computational
grid was not normally distributed.

The network begins by projecting the input a (initial pressure distribution) onto a
higher dimensional latent representation using the fully connected layer FC1 with a single
shallow layer (Figure 2). The dimensionality of this latent representation is defined by
the hyperparameter termed channels. Four Fourier layers are then used to iteratively
update the projected features. In each Fourier layer, the features initially undergo a Fourier
transform, which plays a key role in enabling the network to efficiently learn mesh- and
resolution-invariant features for solving the PDE. Features learned in the Fourier space
are global by nature and represent patterns spanning the whole computational grid. In
contrast, features learned in a standard CNN are local by nature and represent patterns
spanning over a local region (e.g., edges and shapes).

Figure 2. Neural network architecture for the FNO network. The input a (initial pressure distribution
a) is mapped to a higher dimensional space using a fully connected layer (FC0). The transformed
feature is passed through four Fourier Layers (FLs). Finally, a fully connected layer (FC2) is used
to obtain the final output u (solution to the wave equation u) with the desired dimensions. The
input goes through two paths in each Fourier layer. In the top path, the input undergoes a Fourier
Transform FFT, linear transform R and inverse Fourier Transform iFFT. In the bottom path, the input
undergoes a linear transform. Outputs from each path are summed together and undergo GeLU
activation. The dimension of the feature representation for each operation is given in the parentheses.

187

Algorithms 2023, 16, 124

After the Fourier transform, the resulting Fourier modes can be truncated to optimize
computational efficiency. This is useful as a regularization technique and for PDEs with
smooth solutions that can be accurately represented with fewer Fourier modes, as previ-
ously demonstrated for the 2D Navier–Stokes equation [31]. Following the Fourier layers,
the updated features are projected in FC2 to a higher dimensional representation with
128 channels in the hidden layer and finally to the desired dimensions in the final shallow
layer to obtain the output u (solution to the wave equation). Through a combination of
Fourier, linear and non-linear transformations, the FNO network can approximate highly
complex and non-linear operators in PDEs.

Channels and modes are the two main hyperparameters for the FNO network. Chan-
nels represent the dimensionality of the latent representation in the FNO network, and
modes define the number of Fourier modes retained in each Fourier layer. Increasing the
channel parameter generally increases the representational power of the model to learn
more complex operators but can lead to issues of overfitting. There is no upper limit to
the number of channels that can be used. Choosing the number of Fourier modes to retain
largely depends on the smoothness of the PDE’s solution. The maximum number of modes
is defined by the size of the computational grid.

PDE solvers using Fourier methods assume a periodic boundary condition. Although
the FNO network heavily uses the Fourier transform, it is not limited by this assumption
and can be applied to solve PDEs with non-periodic boundary conditions, such as Burgers’
equation and the Navier–Stokes equation [31]. This is important because the photoacoustic
wave equation also has non-periodic boundary conditions.

The photoacoustic wave equation can be solved using either a 2D or 3D FNO architec-
tural implementation. In the 2D architecture, the FNO network performs 2D convolutions
in space and finds a solution for some fixed interval length Δt. The solution is then re-
currently propagated in time and used to solve for the next interval length. In the 3D
architecture, the FNO network performs 3D convolutions in space-time and can directly
output the full time series solution with any time discretization. Both implementations
were demonstrated to have similar performance. In this work, the 3D FNO network was
used because it was found to be more expressive and easier to train [31].

2.4. Data Generation

The MATLAB toolbox k-Wave was used for photoacoustic wave simulation and to
generate data for training and testing the FNO network [16]. The simulation medium
was defined as a 64 × 64 computational grid, non-absorbing and homogenous with a
speed of sound of 1480 m/s and density of 1000 kg/m3. Forward simulations were
performed with a time step of 20 ns for T = 151 steps. The initial photoacoustic pressure was
initialized using anatomically realistic breast vasculature phantoms that were numerically
generated [40]. The training dataset (n = 500) and testing dataset (n = 100) comprised
images representing the initial photoacoustic pressure (the input to the FNO network) and
the corresponding simulation of the photoacoustic wave propagation (output of the FNO
network). Simulations for the Shepp–Logan, synthetic vasculature, tumor and Mason-M
phantoms were also generated to evaluate the generalizability of the FNO network [16,41].

A second dataset was generated based on images from the Animals with Attributes 2
(AWA2) dataset originally developed for zero-shot image classification [42]. The AWA2
dataset has over 32,000 images categorized into 50 animal classes. This highly diverse
dataset with many varied animals and backgrounds provides a more challenging task to
train and evaluate the FNO. Forward simulations were performed with a similar medium
as described previously, except with a 128 × 128 computational grid for T = 302 steps.
With the same medium, the adjoint simulations were also performed using a 128-sensor
linear array at the top of the computational grid. Images from 10 animal classes were used
to create a training dataset (n = 1500). Images from 5 different animal classes were used
to create a testing dataset (n = 500). The forward and adjoint simulations had their own
respective datasets.

188

Algorithms 2023, 16, 124

2.5. Model Training and Evaluation

The FNO network was implemented in PyTorch v1.7.1, a popular open-source deep
learning library for Python [43]. The Adam optimizer with a mean squared error loss
function was used to train the FNO network for 2000 epochs over approximately two days
on an NVIDIA Tesla K80 GPU. The trained model was used to solve the wave equation for
all time steps in a single forward pass.

The simulations from k-Wave served as the ground truth and were used to evaluate
the quality of the FNO simulations. The root-mean-square error (RMSE) was used to
quantitatively measure FNO simulation quality. Prior to calculating the RMSE, the k-Wave
and FNO simulations were normalized to have values between 0 and 1 based on the peak
value in the entire time series data. Normalization was applied to the entire time series and
not to each individual time step. The RMSE was calculated at each time step and for the
whole simulation.

For further validation, an in silico experiment of PAT imaging with a 64-sensor linear
array was conducted. In general, any sensor array geometry could be used because the
photoacoustic simulation and data sampling were independent events. A linear geometry
was chosen because it is a widely available sensor array that is often used in experimental
and clinical settings. Sensor data for the image reconstruction experiment were generated
from the k-Wave and FNO network simulations by sampling the photoacoustic pressures
at the top of the computational grid. The sampled time series sensor data were then used
to reconstruct an image with the time reversal method [16].

The execution times to run the k-Wave and FNO simulations were measured on the
same machine with an NVIDIA GeForce GTX 1080 Ti GPU and an Intel i7-12700K CPU.
Simulations were repeated for 200 iterations, and the mean execution time was recorded.
Torchinfo v1.6.5 was used to estimate the model size and GPU memory requirements.

3. Results

3.1. Breast Vasculature Simulation

An FNO network with the hyperparameters of 5 channels and 64 Fourier modes was
trained using the breast vasculature dataset. The trained FNO network was used to predict
and simulate photoacoustic wave propagation for n = 100 initial photoacoustic sources
in the breast vasculature testing dataset. The photoacoustic wave simulations produced
by the FNO network and k-Wave were remarkably similar and essentially identical to the
naked eye (Figure 3). The FNO simulations successfully maintained the sharp edges and
fine image details of the acoustic waves as they propagated throughout the medium. This
demonstrated that the FNO network can model the broadband and high-frequency waves
required for photoacoustic simulations.

Errors in the FNO network were quantitatively measured using the RMSE. The dis-
tribution of normalized photoacoustic pressures decreased as the simulation continued
forward because energy dissipated within the medium as the acoustic waves propagated
and exited the medium (Figure 4). For the testing dataset, the RMSE was several orders
of magnitude smaller than the distribution of photoacoustic pressures in the simulations.
This indicated that the errors in the FNO network simulations were small compared to
the actual acoustic pressures, and the FNO network simulations were highly accurate
approximations of the k-Wave simulations for photoacoustic wave propagation. Here, the
RMSE was orders of magnitude smaller than the photoacoustic pressure distribution in the
simulations, which can be attributed to the inherent model properties of globally learning
frequency domain features and using the entire Fourier mode without any truncation.
Therefore, the broadband frequency components originally distributed in the photoacoustic
time series data can be described by sufficient frequency components.

189

Algorithms 2023, 16, 124

Figure 3. Visual comparison of the ground truth (Top Row) using k-Wave and the FNO network
(Bottom Row) simulated photoacoustic wave propagation for an example vasculature image in
a homogeneous medium at t = [1, 20, 40, 60, 80] time steps. The RMSE over all time steps was
3.8 × 10−3 for this example.

Figure 4. RMSE and standard deviation bands between the k-Wave and FNO simulations on the
breast vasculature test dataset. Distribution of pressures (25th, 50th and 75th percentiles) are provided
as a frame of reference.

A key advantage of data-driven PDE solvers over traditional ones is the vast reduction
in computation time. In general, the time required to solve the photoacoustic wave equation
largely depends on the discretization of the computational grid. For a computational grid
of 64 × 64, k-Wave on average required 1.63 s to complete the simulation on a GPU. The
FNO network on average required 0.061 s to complete it on the same GPU. This was
approximately a 26× reduction in computation time.

190

Algorithms 2023, 16, 124

3.2. Image Reconstruction

The reconstructed PAT images from the FNO network and k-Wave simulations were
almost visually identical (Figure 5). Vasculature structures and artifacts arising from the
limited-view nature of the linear array can be seen in both the k-Wave and FNO network
images. The reconstructed images were quantitatively compared using the RMSE and
the structural similarity index metric (SSIM), a metric ranging from 0 to 1 that measures
the similarity between two images based on factors relevant to human visual perception
(e.g., structure, contrast and luminance) [44]. For the testing dataset (n = 100), the sim-
ilarity between the FNO network and k-Wave images were measured with the RMSE
(7.1 ± 1.5 × 10−3), SSIM (0.98 ± 0.01) and maximum error pixelwise (0.05 ± 0.01). These
small errors and high similarity scores demonstrated that the time series sensor data
produced using the FNO network and k-Wave simulations were highly similar.

Figure 5. FNO and k-Wave were used to simulate wave propagation for the ground truth image.
Sensor data were sampled from the resulting simulations and reconstructed into PAT images. The
k-Wave and FNO images are almost identical. RMSE (0.011), SSIM (0.97) and max error (0.06).

3.3. Generalizability of Trained FNO Network

The FNO network was trained on photoacoustic simulations of breast vasculature. To
evaluate its generalizability, the trained FNO network was used to simulate photoacous-
tic wave propagation with initial photoacoustic sources for the Shepp–Logan, synthetic
vasculature, breast tumor and Mason-M logo phantoms. These phantoms contain many
features not observed in the training dataset. For example, the breast vasculature phantoms
typically occupy a majority of the space in the computational grid and have a mixture of
large and small vessels, whereas the other phantoms occupy a fraction of the space and
have small vessels or non-vasculature structures.

The FNO network and k-Wave simulations for each phantom tested were highly
similar, but small visual differences could be observed (Figure 6). For example, the Mason-
M logo has a mostly uniform grayscale background in the k-Wave simulation at t = 1, but a
small gradient or shading could be seen in the FNO network simulation (average RMSEs
across all time steps in the FNO network simulations: Shepp–Logan (9.5 × 10−3), synthetic
vasculature (1.5 × 10−2), tumor (1.1 × 10−2) and Mason-M (1.9 × 10−2) phantoms). The
Mason-M FNO simulation likely had the highest RMSE because it was a non-biological
phantom unlike the other phantoms and the training dataset.

These results were promising and provided evidence that the trained FNO network is
generalizable to other initial photoacoustic sources not in the training data. However, the
FNO network did overfit the training data, as shown by the larger RMSE of the additional
phantoms. Having a more diverse and larger training dataset can further improve the
generalizability of the FNO network.

191

Algorithms 2023, 16, 124

Figure 6. Comparison between FNO Network and k-Wave simulations for initial pressure sources
using the (a) Shepp–Logan, (b) synthetic vasculature, (c) tumor and (d) Mason-M phantoms at
t = [1, 10, 20] time steps.

3.4. Hyperparameter Optimization

A study was conducted to investigate the impact of hyperparameter selection on
the FNO network’s accuracy. All FNO networks were trained on the breast vasculature
dataset for 200 epochs, which was sufficient for all networks to converge to a minimum
loss. The number of Fourier modes had the largest impact on the FNO network because it
directly affected the truncation error in the Fourier layers. FNO networks with fewer modes
typically produced simulations with a blurred appearance (Figure 7). This was due to the
loss of high-frequency information necessary for accurately simulating the sharp transitions
of the acoustic wavefront. For a computational grid of 64 × 64, the FNO network with a
maximum number of 64 modes produced the highest quality photoacoustic simulations.

Increasing the number of channels improved the FNO network’s accuracy with di-
minishing returns (Table 1). Results show that there was little benefit in having an FNO
network with more than five channels. Parameterizing the FNO network with a higher
number of modes or channels results in a more complex model that requires more GPU
memory. Interestingly, the time for a trained network to complete a simulation remained
approximately the same. There was a small increase in computation time for the larger
FNO networks with 64 modes and a higher number of channels.

192

Algorithms 2023, 16, 124

Figure 7. Comparison of FNO simulations at t = 1, 5, 10, 15 and 20 time steps. (a) k-Wave simulation.
(b) The FNO network were parametrized with channels = 5 and modes = 16. (c) The FNO network
were parametrized with channels = 5 and modes = 32. (d) The FNO network were parametrized with
channels = 5 and modes = 64.

Table 1. Comparison of FNO network hyperparameters.

Grid Size M C RMSE Std. Dev. Time (s) GPU Mem. (GB)

64 × 64 × 151 16 5 2.4 × 10−2 2.7 × 10−2 0.016 0.85
64 × 64 × 151 32 5 8.5 × 10−3 7.9 × 10−3 0.021 0.94
64 × 64 × 151 64 5 4.7 × 10−3 4.6 × 10−3 0.061 1.68
64 × 64 × 151 64 2 1.3 × 10−2 1.2 × 10−2 0.048 0.84
64 × 64 × 151 64 3 8.5 × 10−3 8.2 × 10−3 0.051 1.05
64 × 64 × 151 64 4 5.4 × 10−3 5.4 × 10−3 0.055 1.33
64 × 64 × 151 64 5 4.7 × 10−3 4.6 × 10−3 0.061 1.68
64 × 64 × 151 64 6 5.1 × 10−3 4.9 × 10−3 0.066 2.09
64 × 64 × 151 64 7 4.4 × 10−3 4.3 × 10−3 0.074 2.57
64 × 64 × 151 64 8 5.1 × 10−3 6.2 × 10−3 0.082 3.12

128 × 128 × 302 64 5 6.9 × 10−3 5.5 × 10−3 0.110 6.45
Comparison between FNO networks with varying grid sizes, Fourier modes (M) and channels (C).

3.5. AWA2 Simulations

FNO networks with 5 channels and 64 Fourier modes were trained using the AWA2
datasets to perform the forward and adjoint simulations on a 128 × 128 computational
grid. The simulations by the FNO network and k-Wave were visually almost identical
(Figure 8). The RMSE in the forward simulation was consistently several orders of mag-
nitude smaller than the normalized pressure across all time steps (Figure 9). The RMSE
in the adjoint simulation increased over time but remained smaller than the normalized
pressure (Figure 10). An increasing error was expected because the adjoint simulations
began with a zero computational grid, and the pressure waves entered the grid from the
top over time. The RMSE over the entire testing dataset (n = 500) was similarly small for
the forward (6.9 ± 5.5 × 10−3) and adjoint (5.2 ± 5.5 × 10−3) simulations.

193

Algorithms 2023, 16, 124

Figure 8. Simulations shown are for a 128 × 128 computation grid. (Top) Comparison between FNO
and k-Wave forward simulations at t = [1, 40, 80, 120, 160] time steps. (Bottom) Comparison between
FNO and k-Wave adjoint simulation t = [200, 220, 240, 260, 280] time steps. The input to both adjoint
simulations was sensor data sampled with a linear array from the k-Wave forward simulation.

Figure 9. RMSE and standard deviation bands between the k-Wave and FNO forward simulations on
the AWA2 test dataset. Distribution of pressures (25th, 50th and 75th percentiles) are provided as a
frame of reference.

194

Algorithms 2023, 16, 124

Figure 10. RMSE and standard deviation bands between the k-Wave and FNO adjoint simulations
for the AWA2 test dataset. Distribution of pressures (25th, 50th and 75th percentiles) is provided as a
frame of reference.

3.6. Zero-shot Super Resolution

The FNO was trained on simulations with a 128 × 128 × 302 computational grid and
was then used for zero-shot super resolution to simulate wave propagation on larger-sized
grids. This was completed on an animal image from the testing dataset and a vasculature
image to evaluate generalizability. The FNO simulations for both images strongly resembled
their respective higher-resolution simulations using k-Wave (Figure 11). Errors could be
seen in the background. The FNO simulations also had a more blurred appearance, as seen
in the zoomed regions. This was likely due to the truncation of Fourier modes leading
to the loss of high-frequency information that is useful for retaining sharper details in an
image. Truncation errors became more prevalent for larger grid sizes using the FNO’s
super resolution feature (Table 2).

For a computational grid of 128 × 128 × 302, k-Wave required on average 1.66 s to
complete a simulation on a GPU. The FNO network on average required 0.11 s on the same
GPU. This was approximately a 15× reduction in computation time.

Table 2. FNO super resolution RMSE.

Grid Size Animal Vasculature

128 × 128 × 302 9.8 × 10−3 2.7 × 10−3

152 × 152 × 302 5.2 × 10−2 3.4 × 10−2

176 × 176 × 302 7.1 × 10−2 4.5 × 10−2

200 × 200 × 302 8.6 × 10−2 5.5 × 10−2

224 × 224 × 302 1.0 × 10−1 6.3 × 10−2

RMSE errors between k-Wave simulations and FNO zero-shot super resolution simulations for varying computa-
tional grid sizes.

195

Algorithms 2023, 16, 124

Figure 11. Zero-shot super resolution using an FNO trained on a 128 × 128 × 302 computational grid
to perform simulations on a 224 × 224 × 302 grid. Images from the FNO and k-Wave simulations at
t = 5 and zoomed regions are shown. (Left) Animal image of a lion from the testing dataset. (Right)
Vasculature image to evaluate FNO generalizability.

4. Discussion

A key motivation for an FNO network is that a trained network can quickly produce
accurate solutions for both forward and adjoint simulations. For a comparable simulation,
the FNO network was ~26× faster on a 64 × 64 grid and ~15× faster on a 128 × 128 grid
than k-Wave. This reduction in computation time with minimal loss in accuracy is ideal for
applications requiring repeated evaluations of the photoacoustic operator. For example,
advanced image reconstruction techniques, such as iterative methods, yield state-of-the-art
results but are computationally expensive due to the repeated evaluation of the forward
and adjoint operators. Therefore, the FNO network can greatly accelerate these methods by
replacing traditional solvers for those operators.

The FNO network is parameterized by the number of Fourier modes and channels.
Increasing either parameter typically improves model performance but at the cost of
increased memory and computation requirements. PDEs with generally smoother solutions
require fewer modes to achieve a satisfactory solution. However, the photoacoustic operator
contains broadband frequency information, which means that a higher number of modes is
needed for an accurate solution. The optimal number of Fourier modes retained is related
to the spatial resolution of the initial photoacoustic source and not necessarily the size
of the computational grid, meaning that not all simulations with a computational grid
of 64 × 64 require the maximum 64 Fourier modes for the FNO network to produce an
accurate solution. Hyperparameter optimization is especially important for simulations
with large computational grids where limited GPU memory can become a problem.

Optimizing the FNO for larger computational grids can be partially addressed via
hyperparameter selection. There are other approaches that can be employed to further
reduce GPU memory limitations. In this work, a 3D CNN architecture was used, but there
are other CNN architectures, such as the recurrent 2D network, that are more memory-
efficient [31]. Instead of solving for the full temporal solution in a single step, the FNO
can be used iteratively to solve the wave equation for n time steps in each forward pass
over the full time interval. Conventional solvers typically require sufficiently small time
steps for solution stability, but the FNO is likely not limited by this requirement. Thus,
it is possible that the FNO can use larger time steps and obtain an accurate solution for
downstream image reconstruction and processing tasks.

196

Algorithms 2023, 16, 124

In this work, we chose to simulate the full spatio-temporal wave field to decouple
the tasks of simulation from sampling. This allowed the same trained FNO to be used for
any sensor configuration. The FNO could be configured and trained to directly output the
sampled sensor data. This would reduce memory requirements but would also need to be
retrained for each sensor geometry and configuration.

A practical limitation in data-driven PDE solvers, such as the FNO network, is the
need for high-quality training data. Traditional solvers are often used to create arbitrarily
large datasets to train the network. Depending on the size of the computational grid,
this can be computationally formidable, such as the case of 3D photoacoustic simulations.
To create a large dataset in these scenarios, a high-performance computing environment
would be needed to generate the training data in a reasonable timeframe. Transfer learning
could also be employed to partially address this challenge after training the initial FNO
model. Rather than training from scratch, a pre-trained model can be fine-tuned with
smaller datasets for specific tasks or simulation environments. This would make the model
more accessible for other downstream users.

Zero-shot super resolution is a unique feature to the FNO and has been previously
demonstrated to work well for the Navier–Stokes equation. Given the difficulty of zero-
shot tasks, it is highly encouraging that the FNO could generate larger-sized simulations
resembling the k-Wave simulations. However, the truncation of Fourier modes led to
blurring and errors for larger computation grids. For example, the computational grid of
224 × 224 produced 224 Fourier modes, but only 64 were retained. The information loss in
that scenario was greater than that in the case of 128 × 128 computational grid.

5. Conclusions

Solving the 2D photoacoustic wave equation with traditional methods typically re-
quires a fine discretization of the computational grid and can be time-consuming to com-
plete. Deep learning methods directly learn from data to solve PDEs and can be orders
of magnitude faster with minimal losses in accuracy. In this work, we applied the FNO
network as a fast data-driven PDE solver for the 2D photoacoustic wave equation in a
homogeneous medium. The photoacoustic simulations generated by a traditional solver
with the k-Wave toolbox and the FNO network for the breast vasculature testing dataset
were remarkably similar, both visually and quantitatively. The RMSE between the k-Wave
and FNO simulations was several orders of magnitude smaller than the pressure intensities.

Model generalizability is a highly desirable property for an FNO network. If the
trained FNO network is to be a reliable alternative to traditional PDE solvers, then it
needs to be capable of solving the photoacoustic operator for any arbitrary initial pressure
source within an acceptable degree of error. Having a generalizable network minimizes
the need to retrain the network for instances not observed in the training dataset. The
generalizability of the trained FNO network was evaluated using phantoms not in the
training data. Shepp–Logan, synthetic vasculature, tumor and Mason-M phantoms were
used for 64 × 64 simulations, and the vasculature phantom was used for the 128 × 128
simulation. In general, the FNO network and k-Wave simulations were visually similar.
The RMSE was relatively small for these phantoms but was larger than those in the testing
dataset. This indicated that the FNO was overfitting the training data. These results
provide evidence for the FNO network being generalizable and can be used for simulations
with any arbitrary initial pressure source. Moreover, the FNO network was learning the
photoacoustic operator and not memorizing specific solutions related to the training data.

In this work, the FNO network was trained for solving the 2D acoustic wave equation
in a homogeneous medium. Simulations with homogeneous media are widely used in
many applications because the spatial distribution of heterogeneities is often unknown.
Nevertheless, an FNO network can be used for simulations with heterogeneous media by
providing the spatial distribution of medium properties as additional inputs to the FNO
network. During the training process, the FNO network can leverage these inputs and
learn from training examples generated with varying heterogeneous media to perform

197

Algorithms 2023, 16, 124

simulations with heterogeneous media. The operator for a heterogeneous medium is more
complex than that of the homogeneous case. Thus, a larger and more diverse dataset is
likely needed to adequately train the FNO network.

The significance of our work is that it provides a comprehensive study on solving the
2D photoacoustic wave equation with an FNO, demonstrating its application potential
in downstream reconstruction and image-processing tasks. The FNO performs orders
of magnitude faster than traditional solvers and can generalize to unseen out-of-domain
datasets. However, for simulations in a larger computational grid, a higher Fourier mode is
necessarily required to learn the broadband frequency residing in the whole time series
data. Consequently, it increases GPU memory and can be an intractable problem while
simulating in a larger domain, which usually requires the output of more time steps.
Furthermore, the current framework is limited to simulating the 2D photoacoustic wave
equation. Simulating the 3D photoacoustic source to output entire 4D time series data is
impossible to handle with modern GPUs. In addition, zero-shot super resolution using an
FNO tends to output blurry images due to the insufficient number of Fourier modes used
to train the network to support broadband frequency components in a larger computational
grid. In the future, research addressing these issues will benefit the use of FNOs in more
complex settings.

Author Contributions: Conceptualization, S.G.; methodology, S.G.; validation, S.G. and K.-T.H.;
writing—original draft preparation, S.G.; writing—review and editing, S.G., K.-T.H. and P.V.C.;
visualization, S.G.; supervision, P.V.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Animals with attributes 2 (AWA2) dataset is available at https://
cvml.ista.ac.at/AwA2/. Software for generating breast phantom dataset is available at https://
breastphantom.readthedocs.io/en/latest/.

Acknowledgments: This project was supported by resources provided by the Office of Research
Computing at George Mason University URL: https://orc.gmu.edu (accessed on 1 January 2022).
The authors would like to acknowledge Matthias Eyassu from the George Mason Biomedical Imaging
Laboratory for providing the breast vasculature phantoms, and we acknowledge the source code for
Fourier Neural Operators available at https://github.com/zongyi-li/fourier_neural_operator.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xia, J.; Yao, J.; Wang, L.V. Photoacoustic tomography: Principles and advances. Electromagn. Waves Camb. Mass 2014, 147, 1–22.
[CrossRef] [PubMed]

2. Xia, J.; Wang, L.V. Small-animal whole-body photoacoustic tomography: A review. IEEE Trans. Biomed. Eng. 2014, 61, 1380–1389.
[CrossRef] [PubMed]

3. Nyayapathi, N.; Xia, J. Photoacoustic imaging of breast cancer: A mini review of system design and image features. J. Biomed.
Opt. 2019, 24, 121911. [CrossRef]

4. Bungart, B.L.; Lan, L.; Wang, P.; Li, R.; Koch, M.O.; Cheng, L.; Masterson, T.A.; Dundar, M.; Cheng, J.-X. Photoacoustic tomography
of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets. Photoacoustics 2018, 11, 46–55.
[CrossRef] [PubMed]

5. Moore, C.; Jokerst, J.V. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranos-
tics 2019, 9, 1550–1571. [CrossRef]

6. Rao, A.P.; Bokde, N.; Sinha, S. Photoacoustic Imaging for Management of Breast Cancer: A Literature Review and Future
Perspectives. Appl. Sci. 2020, 10, 767. [CrossRef]

7. Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed
tomography of the breast. Nat. Commun. 2018, 9, 2352. [CrossRef]

8. Li, M.; Tang, Y.; Yao, J. Photoacoustic tomography of blood oxygenation: A mini review. Photoacoustics 2018, 10, 65–73. [CrossRef]

198

Algorithms 2023, 16, 124

9. Goh, Y.; Balasundaram, G.; Tan, H.M.; Putti, T.C.; Tang, S.W.; Ng, C.W.Q.; Buhari, S.A.; Fang, E.; Moothanchery, M.; Bi, R.; et al.
Biochemical “decoding” of breast ultrasound images with optoacoustic tomography fusion: First-in-human display of lipid and
collagen signals on breast ultrasound. Photoacoustics 2022, 27, 100377. [CrossRef]

10. Wang, L.V. Prospects of photoacoustic tomography. Med. Phys. 2008, 35, 5758–5767. [CrossRef]
11. Li, S.; Montcel, B.; Liu, W.; Vray, D. Analytical model of optical fluence inside multiple cylindrical inhomogeneities embedded

in an otherwise homogeneous turbid medium for quantitative photoacoustic imaging. Opt. Express 2014, 22, 20500–20514.
[CrossRef]

12. Xu, M.; Wang, L.V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 2005, 71, 016706.
[CrossRef]

13. Hristova, Y.; Kuchment, P.; Nguyen, L. Reconstruction and time reversal in thermoacoustic tomography in acoustically homoge-
neous and inhomogeneous media. Inverse Probl. 2008, 24, 055006. [CrossRef]

14. Huang, C.; Wang, K.; Schoonover, R.W.; Wang, L.V.; Anastasio, M.A. Joint Reconstruction of Absorbed Optical Energy Density
and Sound Speed Distributions in Photoacoustic Computed Tomography: A Numerical Investigation. IEEE Trans. Comput.
Imaging 2016, 2, 136–149. [CrossRef]

15. Cox, B.T.; Treeby, B.E. Artifact Trapping During Time Reversal Photoacoustic Imaging for Acoustically Heterogeneous Media.
IEEE Trans. Med. Imaging 2010, 29, 387–396. [CrossRef] [PubMed]

16. Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed.
Opt. 2010, 15, 021314. [CrossRef] [PubMed]

17. Xu, M.; Xu, Y.; Wang, L.V. Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in
various geometries. IEEE Trans. Biomed. Eng. 2003, 50, 1086–1099. [CrossRef] [PubMed]

18. Paltauf, G.; Viator, J.A.; Prahl, S.A.; Jacques, S.L. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am.
2002, 112, 1536–1544. [CrossRef]

19. Guan, S.; Khan, A.; Sikdar, S.; Chitnis, P. Fully Dense UNet for 2D Sparse Photoacoustic Tomography Artifact Removal. IEEE J.
Biomed. Health Inform. 2019, 24, 568–576. [CrossRef] [PubMed]

20. Guan, S.; Khan, A.A.; Sikdar, S.; Chitnis, P.V. Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep
Learning. Sci. Rep. 2020, 10, 8510. [CrossRef]

21. Antholzer, S.; Haltmeier, M.; Schwab, J. Deep learning for photoacoustic tomography from sparse data. Inverse Probl. Sci. Eng.
2019, 27, 987–1005. [CrossRef]

22. Hauptmann, A.; Lucka, F.; Betcke, M.M.; Huynh, N.; Adler, J.; Cox, B.T.; Beard, P.C.; Ourselin, S.; Arridge, S.R. Model-Based
Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography. IEEE Trans. Med. Imaging 2018, 37, 1382–1393. [CrossRef]

23. Baumann, B.; Wolff, M.; Kost, B.; Groninga, H. Finite element calculation of photoacoustic signals. Appl. Opt. 2007, 46, 1120–1125.
[CrossRef] [PubMed]

24. Xia, W.; Piras, D.; van Hespen, J.C.G.; van Veldhoven, S.; Prins, C.; van Leeuwen, T.G.; Steenbergen, W.; Manohar, S. An optimized
ultrasound detector for photoacoustic breast tomography. Med. Phys. 2013, 40, 032901. [CrossRef]

25. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

26. Greenfeld, D.; Galun, M.; Basri, R.; Yavneh, I.; Kimmel, R. Learning to Optimize Multigrid PDE Solvers, in International
Conference on Machine Learning, May 2019, pp. 2415–2423. Available online: http://proceedings.mlr.press/v97/greenfeld19a.
html (accessed on 22 May 2021).

27. Khoo, Y.; Lu, J.; Ying, L. Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 2021, 32, 421–435.
[CrossRef]

28. Adler, J.; Öktem, O. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 2017, 33, 124007.
[CrossRef]

29. E, W.; Yu, B. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems,
ArXiv171000211 Cs Stat, September 2017. Available online: http://arxiv.org/abs/1710.00211 (accessed on 22 May 2021).

30. Lu, L.; Jin, P.; Karniadakis, G.E. DeepONet: Learning Nonlinear Operators for Identifying Differential Equations Based on the
Universal Approximation Theorem of Operators, ArXiv191003193 Cs Stat, April 2020. Available online: http://arxiv.org/abs/19
10.03193 (accessed on 22 May 2021).

31. Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for
Parametric Partial Differential Equations, ArXiv201008895 Cs Math, October 2020. Available online: http://arxiv.org/abs/2010.0
8895 (accessed on 29 December 2020).

32. Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [CrossRef] [PubMed]
33. Xu, M.; Wang, L.V. Universal back-projection algorithm for photoacoustic computed tomography. Int. Soc. Opt. Photonics 2005,

5697, 251–255. [CrossRef]
34. Treeby, B.E.; Zhang, E.Z.; Cox, B.T. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl.

2010, 26, 115003. [CrossRef]
35. Piaggio, H.T.H. The Mathematical Theory of Huygens’ Principle. Nature 1940, 145, 531–532. [CrossRef]
36. Tadmor, E. A review of numerical methods for nonlinear partial differential equations. Bull. Am. Math. Soc. 2012, 49, 507–554.

[CrossRef]

199

Algorithms 2023, 16, 124

37. Treeby, B.E.; Pan, J. A practical examination of the errors arising in the direct collocation boundary element method for acoustic
scattering. Eng. Anal. Bound. Elem. 2009, 33, 1302–1315. [CrossRef]

38. Mast, T.D.; Souriau, L.P.; Liu, D.-L.D.; Tabei, M.; Nachman, A.I.; Waag, R.C. A k-space method for large-scale models of wave
propagation in tissue. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 341–354. [CrossRef] [PubMed]

39. Treeby, B.E.; Jaros, J.; Rendell, A.P.; Cox, B.T. Modeling nonlinear ultrasound propagation in heterogeneous media with power
law absorption using a k-space pseudospectral method. J. Acoust. Soc. Am. 2012, 131, 4324–4336. [CrossRef] [PubMed]

40. Badano, A.; Graff, C.G.; Badal, A.; Sharma, D.; Zeng, R.; Samuelson, F.W.; Glick, S.J.; Myers, K.J. Evaluation of Digital Breast
Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial. JAMA Netw. Open 2018,
1, e185474. [CrossRef] [PubMed]

41. Arridge, S.; Beard, P.; Betcke, M.; Cox, B.; Huynh, N.; Lucka, F.; Ogunlade, O.; Zhang, E. Accelerated high-resolution photoacoustic
tomography via compressed sensing. Phys. Med. Biol. 2016, 61, 8908. [CrossRef]

42. Xian, Y.; Lampert, C.H.; Schiele, B.; Akata, Z. Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the
Ugly. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2251–2265. [CrossRef]

43. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703.

44. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

200

Citation: Pantalé, O. Development

and Implementation of an ANN

Based Flow Law for Numerical

Simulations of Thermo-Mechanical

Processes at High Temperatures in

FEM Software. Algorithms 2023, 16,

56. https://doi.org/10.3390/

a16010056

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 16 December 2022

Revised: 10 January 2023

Accepted: 12 January 2023

Published: 13 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Development and Implementation of an ANN Based Flow Law
for Numerical Simulations of Thermo-Mechanical Processes at
High Temperatures in FEM Software

Olivier Pantalé

Laboratoire Génie de Production, Institut National Polytechnique/Ecole Nationale d’Ingénieurs de Tarbes,
Université de Toulouse, 47 Av d’Azereix, F-65016 Tarbes, France; olivier.pantale@enit.fr; Tel.: +33-562442933

Abstract: Numerical methods based on finite element (FE) have proven their efficiency for many
years in the thermomechanical simulation of forming processes. Nevertheless, the application of
these methods to new materials requires the identification and implementation of constitutive and
flow laws within FE codes, which sometimes pose problems, particularly because of the strongly
non-linear character of the behavior of these materials. Computational techniques based on machine
learning and artificial neural networks are becoming more and more important in the development
of these models and help the FE codes to integrate more complex behavior. In this paper, we present
the development, implementation and use of an artificial neural network (ANN) based flow law for a
GrC15 alloy under high temperature thermomechanical solicitations. The flow law modeling by ANN
shows a significant superiority in terms of model prediction quality compared to classical approaches
based on widely used Johnson–Cook or Arrhenius models. Once the ANN parameters have been
identified on the base of experiments, the implementation of this flow law in a finite element code
shows promising results in terms of solution quality and respect of the material behavior.

Keywords: ANN flow law; constitutive behavior; radial return algorithm; numerical implementation;
VUHARD; GrC15; Abaqus Explicit

1. Introduction

Numerical methods for simulating the behavior of structures subjected to high ther-
momechanical loads, as in the case of the high-temperature forming of metallic materials,
are generally based on the use of commercial finite element (FE) codes, such as Abaqus, or
laboratory codes, such as DynELA [1]. These FE codes are based on two types of equations:
conservation equations and constitutive equations. If the first equations are well established
on the basis of physics and mechanics, it is not the same for the second type of equations:
the constitutive equations. Thus, in a general way, the conservation equations concern the
fundamental principles of physics, such as the mass conservation law, the momentum law
(fundamental equation) and the energy law (declined as the first and second principles
of thermodynamics). By themselves, these laws are not sufficient to describe the behav-
ior of a material or a structure subjected to thermomechanical solicitations because the
nature of the material’s behavior translated through the behavior laws is not included
in the system previously proposed. Therefore, for each type of material, it is necessary
to define behavior laws whose formulation is based on observation in order to describe
the behavior of this material under external forces. The quality and the accuracy of the
results of any numerical simulation depend on the choice of these behavior laws and on
the ability of the user to identify the coefficients of these behavior laws for a given material
by performing experiments under conditions close to those encountered during the real
stress of the structure in service that one wishes to design [2]. Depending on the nature of
the solicitations, these tests are based on quasi-static or dynamic tensile or compression

Algorithms 2023, 16, 56. https://doi.org/10.3390/a16010056 https://www.mdpi.com/journal/algorithms
201

Algorithms 2023, 16, 56

tests, tests on thermomechanical simulators such as Gleeble [3] or impact tests using gas
launchers or Hopkinson bars [4].

In the thermomechanical simulation of forming processes, these behavior laws define
the dependence [5] of the flow stress of the material σy as a function of the three input vari-
ables, which are the plastic strain εp, the strain rate .

ε and the temperature T of the material,
so that the general form of the flow law can be written with the following expression:

σy = f (εp, .
ε, T) (1)

These laws, due to the nature of materials and the phenomena involved [6,7] (work
hardening, movement of dislocations, structural hardening, phase transformations, etc.) are
highly non-linear, and their validity is restricted to a certain range of strains ε, strain rates .

ε
and temperatures T. From the observations made, we can define two main classes of behav-
ior laws: the flow laws based on physics and the empirical flow laws. From the mechanics
of continuous media and experimental tests and depending on the materials used, several
flow models have been developed in the past, including the Johnson–Cook flow law [8,9],
the Zerilli–Armstrong flow law [10] and their respective derived forms [11–19], the Hansel–
Spittle [20,21] or the Arrhenius [22–24] flow laws, to name only a few of the most widely
used in the metal-forming processes at high temperature. As an example, and because
it is widely used in numerical simulation of metal forming processes, the equation that
describes the Johnson–Cook flow law [8] is given as follows:

σy =
(

A + Bεpn
)[

1 + C ln
(.

ε
.
ε0

)][
1 −

(
T − T0

Tm − T0

)m]
, (2)

where A is the initial elastic limit of the material, B is the strain hardening coefficient, n is
the strain hardening exponent, and C and m are the material constants that describe the
strain rate hardening coefficient and the thermal softening coefficient, respectively. The
Johnson–Cook model is the most widely used because it is simple to identify and use and
has few parameters to determine [25,26].

Once the choice has been made concerning the type of flow law to be used for a
material, it is then necessary, from a set of experimental tests carried out in the laboratory
under conditions close to those of the structure in service, to identify the parameters of
these flow laws by machine learning methods based on approaches of minimization of
the calculated experiment. Therefore, the use of the Johnson–Cook flow law defined by
Equation (2) requires the identification of 5 material parameters.

The main problem that researchers are confronted with after the phase of realization
of the experimental tests concerns the choice of the flow law to use according to the
observations made on these test results. This choice of flow law is also restricted by the FE
code used and the availability of such flow laws. Thus, a user of the Abaqus FE code will
turn more particularly to a Johnson–Cook [8] flow law, where it is natively implemented
in this software. The choice of another form of flow law, Zerilli–Armstrong, or Arrhenius,
for example, obliges the user to program himself the computation of the flow stress σy of
the material through a VUMAT subroutine in FORTRAN 77 as proposed by Gao et al. [27],
Ming et al. [28] for a Johnson–Cook flow law, or Liang et al. [24] for an Arrhenius type flow
law with the following expression:

σy =
1

α(ε)
ln

⎧⎨⎩
(

Z(ε)
A(ε)

)1/n(ε)
+

√
1 +

(
Z(ε)
A(ε)

)2/n(ε)
⎫⎬⎭ (3)

with

Z(ε) = .
ε exp

(
Q(ε)

RT

)
, (4)

202

Algorithms 2023, 16, 56

where Z is the Zenner–Hollomon parameter [29], Q(ε) is the apparent activation energy
(J mol−1), R is the universal gas constant (8.314 J mol−1K−1). Q(ε), A(ε), α(ε) and n(ε) are
expressed as a function of the strain ε through polynomial functions of degree m (varying
from 1 to 9), which leads to the identification of up to 36 material parameters.

Implementing the flow law as a VUMAT FORTRAN subroutine requires the com-
putation of the derivatives ∂σy/∂εp, ∂σy/∂

.
ε and ∂σy/∂T of the flow stress σy, which can

quickly become relatively complex as the complexity of the flow law increases, i.e., the
relative complexity of the Arrhenius flow law defined by Equations (3) and (4), regarding
the relative simplicity of the Johnson–Cook model defined by Equation (2), one can refer to
the work proposed by Liang et al. [24] for details concerning this implementation using the
safe version of the Newton–Raphson method proposed by Ming et al. [28]. The choice of
the flow law to use for a problem is therefore doubly guided by the behavior of the material
on the one hand, but a more important aspect is the list of flow laws implemented natively
in the FE code we plan to use for the numerical simulation. At this time, there is not yet
a flow law generic enough to cover a wide range of material behavior that is simple to
implement and use.

As we have seen in the previous paragraph, the choice of the flow law to use is guided
mainly by the list of flow laws available in the finite element code used, and very often,
this choice is made at the expense of the quality of the model. For example, Zhou et al. [14],
proposed the identification of the flow law of a GCr15 alloy for a continuous casting
bloom with heavy reduction application as introduced by Ji et al. [30], who performed
compression tests on this material. In their study, Ji et al. [30] performed compression tests
on GCr15 cylinders in a temperature range of 750 ◦C to 1300 ◦C in 50 ◦C steps, strain rates
of 0.001 s−1, 0.01 s−1 and 0.1 s−1 and strains up-to 0.7. The results of these compression
tests, plotted in Figure 1, show a decrease in flow stress σy with respect to an increase in
the temperature T and a increase of σy with respect to an increase in the strain rate .

ε, as in
most metallic materials.

Figure 1. Original data extracted from the publication of Ji et al. [30].

203

Algorithms 2023, 16, 56

The evolution of the flow stress as a function of the plastic deformation shows the
presence of a dynamic recrystallization (DRX) phenomenon within the material. This phe-
nomenon is an additional non-linearity of this type of material compared to other materials,
mainly because of high temperatures and low strain rates, which should be considered
when describing the material behavior. As stated in the publication of Zhou et al. [14],
depending on the flow model used—Johnson–Cook, modified Zerilli–Armstrong, Arrhe-
nius or new modified Johnson–Cook—the fidelity of considering the real behavior varies
widely with the complexity of the flow model, which includes between 5 parameters for
the Johnson–Cook model and 16 parameters for the Arrhenius model. Thus, and for the
input data provided by Ji et al. [30], the two most common models, Johnson–Cook and
Zerilli–Armstrong do not correctly describe the material behavior. Only the modified
Johnson–Cook and Arrhenius models can describe correctly the behavior of the material
during the compression process. Unfortunately, and this is not part of their study, if these
last two models are satisfactory from a theoretical point of view, from a practical point of
view for the user of a FE code such as Abaqus, it will be necessary to carry out a numerical
implementation in a FORTRAN 77 VUMAT subroutine of the modified Johnson–Cook
flow law or the Arrhenius law as carried out by a few authors [24,27,28] to use these
laws for numerical simulation. This requires a certain expertise in the development and
implementation of flow laws, which is not available to all users of the Abaqus FE code.

From this observation, and from the necessity to select a flow law for a type of
material, then to identify the parameters of this flow law according to experimental tests,
and finally to implement this flow law as a user subroutine in FORTRAN in the Abaqus
FE code, we recently proposed in Pantalé et al. [31] an alternative approach based on
the ability of artificial neural networks (ANNs) to behave as universal approximators as
reported by Minsky et al. [32] and Hornik et al. [33]. In fact, artificial neural networks can
solve problems that are difficult to conceptualize using traditional computational methods.
Unlike a classical approach based on a regression method, an ANN does not need to know
the mathematical form of the model it seeks to reproduce; hence, we do not need anymore
to postulate the mathematical form of the constitutive equation to use it in a FE simulation
using this kind of approach. Using a neural network instead of an analytical constitutive
law can lead to a bias related to the validity of the answers according to the domain of use
and the learning domain. Thus, if ANNs are efficient for the interpolation of results inside
the learning domain, their behavior outside of it is not controlled. Therefore, if the input
values are far from those provided during the training, the outputs can be far from the
physical reality of the process. It is, of course, the same for analytical laws when modeling
non-linear behavior, but if the choice of the model is made properly, based on physical
considerations, they will provide results closer to reality than the ANN model. Therefore,
care should be taken when using ANN-based flow laws, and the validity of the model
input data should always be verified.

Implementing ANNs for plasticity in thermomechanics has been studied, and a review
of the literature can be found, for example, in the work of Gorji et al. [34] concerning the
use of recurrent neural networks, in that of Jamli et al. [35] concerning their application in
finite element analysis of metal forming processes, or in that of Jiao et al. [36] concerning
the applicability to meta-materials and their characterization. A distinction must be made
between ANN-based flow models (the focus of this study) and ANN-based constitutive
models. Both approaches have been studied by many researchers during the last thirty
years. Ghaboussi [37] proposed an ANN-based constitutive model for concrete under
monotonic biaxial loading and cyclic uniaxial loading. They extended their work by
introducing adaptive and auto-progressive networks in [38,39], where the architecture of
the network evolves during the learning phase to better learn the complex stress–strain
behavior of the materials using a global load-deflection response, where the evaluation
of the flow stress of the material computed by the ANN is combined with a radial return
algorithm. Lin et al. [40] proposed an ANN to predict the flow stress of 42CrMo4 steel
in hot compression tests on a Gleeble thermomechanical device and showed a very good

204

Algorithms 2023, 16, 56

correlation between the experimental results and the model predictions. Ashtiani et al. [41]
compared the predictive capabilities of an ANN versus an analytical model for Johnson–
Cook, Arrhenius, and strain-compensated Arrhenius laws and concluded that the neural
network had better efficiency and accuracy in predicting the hot behavior of the Al–Cu–
Mg–Pb alloy.

The underlying idea proposed in our approach is to implement a flow law described
by a trained ANN as a FORTRAN 77 subroutine in the Abaqus FE code. This ANN was
previously trained from the data extracted from mechanical tests of the material and can
directly define the value of the flow stress σy as a function of the plastic strain εp, the strain
rate .

ε and the temperature T. After a training phase based on the use of the Python library
TensorFlow [42,43], the weights and biases of the trained neural network are transcoded
into a subroutine in FORTRAN 77, which is compiled and linked with the libraries of the
Abaqus FE code to include the behavior of the material by allowing the computation of
the flow stress σy as a function of εp, .

ε and T, and of its three derivatives ∂σy/∂εp, ∂σy/∂
.
ε

and ∂σy/∂T.
The structure of this paper is as follows: Section 2 addresses the presentation of a

neural-network-based flow law and its training from the data proposed by Ji et al. [30] and
reported in Figure 1. The comparison of several neural network architectures regarding
accuracy and implementation complexity will be presented and compared. In Section 3, we
will present the transposition of this neural network into a FORTRAN 77 subroutine for
the Abaqus FE code. Validation is based on the numerical simulation Abaqus Explicit FE
code of a compression test in the same configuration as the one proposed by Ji et al. [30]
using four different ANN flow laws. In this Section, we will present the problems of over-
fitting the neural network and its visible consequences on the results concerning numerical
simulations. Finally, a conclusion and perspective section will conclude this paper.

2. Training of the ANN Flow Law

In this section, we briefly recall, as an introduction, some basic principles of artificial
neural networks that apply to this work. The global architecture chosen to model the
behavior of a material is based on a multi-layer feed-forward ANN, which, as proposed
by Hornik et al. [33], can be used as a universal approximator. The architecture retained
for this study concerns a neural network with two hidden layers containing a variable
number of neurons on these two layers, 3 input nodes corresponding to the plastic strain
εp, the strain rate .

ε and the temperature T, respectively, and a single output node for the
flow stress σy of the material. Figure 2 shows a graphical representation of the global
architecture of this neural network.

Figure 2. Global structure of the ANN flow law with two hidden layers, 3 input neurons (εp, .
ε, T)

and one output neuron σy.

205

Algorithms 2023, 16, 56

The choice of the number of neurons in the two hidden layers is free, but must be
reasonable. Indeed, the more neurons the network contains, the more it will reproduce
faithfully the training data, but the less it will generalize to new data (the classical problem
of the over-learning of neural networks). Moreover, the more neurons it contains, the more
complex its mathematical structure will be, and the more computation time it will require
for propagating the data inside of it within the routine included in the FE code. It is
therefore necessary to respect a balance between the capacity of the network to minimize
errors during the learning phase, its complexity and the computing CPU time once it is
transcribed into the FE code.

2.1. Neural Network Governing Equations

According to Figure 2, the proposed neural network has 3 inputs (referred as the
input vector −→x) corresponding to the plastic strain εp, the strain rate .

ε and the temperature
T, respectively. These inputs are first normalized within the range [0, 1] to avoid an ill-
conditioning of the system as presented by many other authors in the literature [40,44]
since these three variables represent different physical data with very different amplitudes
(0.7 for the plastic strain, 100 s−1 for the strain rate and 550 ◦C for the temperature in the
case of the training data reported in Figure 1). Therefore, the three components of the input
vector −→x are coming from the plastic strain εp, the strain rate .

ε and the temperature T using
the following expressions:

−→x =

⎧⎪⎪⎨⎪⎪⎩
x1 = εp−[εp]min

[εp]max−[εp]min

x2 = ln(
.
ε/

.
ε0)−[ln(

.
ε/

.
ε0)]min

[ln(
.
ε/

.
ε0)]max−[ln(

.
ε/

.
ε0)]min

x3 = T−[T]min
[T]max−[T]min

, (5)

where []min and []max are the boundaries of the range of the corresponding field. Concern-
ing the strain rate .

ε, and considering that its amplitude in a real case can reach 105 s−1,
as proposed in Pantalé et al. [31], we chose initially to substitute ln(.

ε/ .
ε0), with .

ε0 equal to
the lowest strain rate test, for the value of .

ε. After normalization, these three input variables
are introduced into the neural network and are propagated within it by the feed-forward
propagation mechanism.

Conforming to the structure of the ANN reported in Figure 2 any hidden layer k,
containing n neurons, takes a weighted sum of the outputs

−→̂
y (k−1) of the immediately

previous layer (k − 1), containing m neurons, given by the following equation:

y(k)i =
m

∑
j=1

w(k)
ij ŷ(k−1)

j + b(k)i , (6)

where y(k)i is the entry of the ith neuron of layer k, ŷ(k−1)
j is the output of the jth neuron of

layer (k − 1), w(k)
ij is the associated weight parameter between the ith neuron of layer k and

the jth neuron of layer (k − 1) and b(k)i is the associated bias of the ith neuron of layer k.
Those weights wij and bias bi, for each layer, are the training parameters of the ANN that
we have to adjust during the training process. For the proposed model, we selected the
sigmoid activation function so that each neuron in the hidden layer k provides an output
value ŷ from the input value y of the same neuron defined by Equation (6) according to the
following equation:

ŷ =
1

1 + e−y (7)

206

Algorithms 2023, 16, 56

According to Equations (6) and (7), the output of each of the two hidden layers (−→y 1
for the first hidden layer and −→y 2 for the second hidden layer) are given by the following
two equations:

−→y 1 =
[
1 + exp

(
−w1 ·−→x −−→

b 1

)]−1
(8)

−→y 2 =
[
1 + exp

(
−w2 ·−→y 1 −

−→
b 2

)]−1
(9)

Then we compute the output s of the ANN from the output vector of the second
hidden layer −→y 2 using the following equation:

s = −→w T ·−→y 2 + b (10)

Finally, since no activation function is used for the output neuron of the ANN as is
usually done in regression ANN, the flow stress σy can be obtained from the output s using
the following equation:

σy = ([σ]max − [σ]min)s + [σ]min (11)

2.2. Computation of the Derivatives of the Neural Network

As introduced in Section 1, implementing a flow law in a FE code requires both the
computation of the flow stress σy as a function of the input data, performed using the
previous Equations (5)–(11), but also the evaluation of the three derivatives of σy with
respect to the input data to use a Newton–Raphson algorithm within the stress integration
scheme, as proposed by many authors [24,28,45,46] based on the radial return algorithm
in the Abaqus FE code. It is, therefore, necessary to perform a numerical evaluation of
these three derivatives based on the ANN to obtain these quantities. It seems obvious that
it is not possible to train a neural network to evaluate these values of derivatives insofar
as the training data are not physically collectible data during the experimental tests. It
is, therefore, necessary to predict these derivatives from the neural network architecture
itself. One straightforward, but not recommended, solution to this problem is to compute
numerically the derivative of σy with respect to εp, .

ε and T using the following relation:

∂σ(x)
∂x

=
σ(x + δx)− σ(x)

δx
, (12)

where δx is a small increase (δx = 10−6 for example) applied to one of the 3 variables εp, .
ε

and T. As reported in [31], we need to compute a result from the ANN 4 times to compute
the flow stress and approximate the three derivatives, which is quite time consuming.
The solution for this study consists, insofar as the architecture of the neural network is
known through Equations (6)–(10), in analytically deriving the output s of the network
with respect to the input −→x , then integrating the data normalization operations defined
by Equations (5) and (11). Given Equations (5)–(11), we can then establish in the case of a
neural network containing two hidden layers and a sigmoid activation function on the two
hidden layers that the derivative of σy with respect to the input data εp, .

ε and T is given by
the following procedure.

• First, we compute the internal terms of the ANN to compute the derivative of the
ANN with respect to the input vector −→x :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−→z 1 = exp
(
−w1 ·−→x −−→

b 1

)
−→z 2 = exp

(
w2 · 1

1+−→z 1
+
−→
b 2

)
−→z 3 = −→w ◦

−→z 2

(1+−→z 2)
2

−→z 4 =
−→z 1

(1+−→z 1)
2

, (13)

207

Algorithms 2023, 16, 56

where ◦ is the element-wise product, known as the Hadamard product, which is
a binary operation that takes two matrices A and B of the same dimensions and
produces another matrix C of the same dimension as the operands, where each
element Ci = Ai Bi.

• Then, from the two terms −→z 3 and −→z 4, we can therefore compute the three derivatives
of the output s with respect to the input vector −→x with the following equation, where−→s ′ is a vector of 3 components containing the 3 derivatives ∂s/∂εp, ∂s/∂

.
ε and ∂s/∂T:

−→s ′ = wT
1 ·

[(
wT

2 ·−→z 3

)
◦ −→z 4

]
(14)

• Finally, from Equation (14) and conforming to the normalization of the inputs intro-
duced earlier, one can obtain the 3 derivatives of the yield stress σy with respect to the
three inputs εp, .

ε and T using the following final equation:⎧⎪⎪⎨⎪⎪⎩
∂σ/∂εp = s′1

[σ]max−[σ]min
[εp]max−[εp]min

∂σ/∂
.
ε =

s′2.
ε
[σ]max−[σ]min
[
.
ε]max−[

.
ε]min

∂σ/∂T = s′3
[σ]max−[σ]min
[T]max−[T]min

(15)

Equations (13)–(15) define the derivatives of the yield stress σy with respect to εp, .
ε

and T, as computed by the ANN, and, as shown in [31], these derivatives can be used for
the numerical implementation of the ANN constitutive law in a FE code.

2.3. Training of the Neural Networks

In neural network learning, it is necessary to define the objective function to be
minimized and the evaluation of the model error. In this study, the error evaluation is
based on the mean square error (EMS) and the root mean square error (ERMS) given by the
following equation:

ERMS(MPa) =
√

EMS =

√√√√ 1
N

N

∑
i=1

(
�e

i −�y
i

)2
, (16)

where N is the total number of numerical training data used, �y
i is the ith value predicted

by the neural network, and �e
i is the corresponding experimental value coming from the

experimental tests. The accuracy and predictive ability of the models is assessed by the
mean absolute relative error (EMAR) defined by Equation (17):

EMAR(%) =
1
N

N

∑
i=1

∣∣∣∣∣�
y
i −�e

i
�e

i

∣∣∣∣∣× 100 (17)

The numerical implementation of the learning phase of the neural network was done
in Python language, using the TensorFlow library [42,43]. The minimization procedure
of the objective function is based on the use of the adaptive moment estimation (ADAM)
solver proposed by Kingma et al. [47].

The training data used in this section are taken from the publication of Ji et al. [30].
Thus, data for which compression tests were performed for the 3 strain rates .

ε = 0.001 s−1,
.
ε = 0.01 s−1 and .

ε = 0.1 s−1, and the 12 temperature values between 750 ◦C and 1300 ◦C in
50 ◦C steps are used. For each pair of data (.

ε, T), we have a record of 71 values of flow stress
σe corresponding to values of deformation between 0 and 0.7, regularly spaced of 0.01. We
use a database of 2556 quadruplets of values (εp, .

ε, T, σe) for the training of the ANNs.
The set of these data is used as training data for the neural network. Several neural

network architectures have been studied in this work; they differ from each other by the
number of neurons present in the two hidden layers. Among them, we selected 4 different
architectures named 3-7-4-1, 3-9-4-1, 3-9-7-1 and 3-15-7-1 for which the name 3-n-m-1

208

Algorithms 2023, 16, 56

translates an ANN with 2 hidden layers, having n neurons on the first layer and m neurons
on the second layer.

All models have been trained for the same number of iterations (50,000 iterations),
and around 50 min of training on a Dell XPS-13 7390 laptop running Ubuntu 22.04 LTS
64 bits with 16 GB of RAM and an Intel 4-core i7-10510U processor allow obtaining the
converged parameters of the ANN models. Figure 3 shows the evolution of the training
error defined by the log10 of the mean square error (log10[EMS]) during the training phase.

Figure 3. Convergence of the ANN models during the training phase.

As we can see on this figure, after 50,000 iterations, we can consider that we have
reached a stationary state of the model learning and that it is useless to continue the
learning phase. As expected, the more neurons the model contains, the more it can follow
the non-linear evolution of the material’s behavior and therefore the more the mean square
error (EMS) during the learning phase decreases. Table 1 shows the main results of the
training of these neural networks.

Table 1. Results concerning the training of the four ANN flow laws.

ANN nv t EMS EMAR ERMS

(min) ×10−5 (%) (MPa)

3-7-4-1 65 48 3.91 1.88 3.05
3-9-4-1 81 48 3.29 1.70 2.75
3-9-7-1 114 49 1.83 1.25 2.44
3-15-7-1 180 50 1.01 0.97 2.30

It can be noted that the number of internal variables nv of the networks varies from 65
to 180 for the most complex and the most powerful one, but that this complexity has no
real influence on the learning time t which oscillates around a value of 50 min, regardless
of the architecture chosen. Concerning the internal accuracy EMS of the network, it varies
in proportions in accordance with the graphical representation of Figure 3. From the
plot in Figure 3 and the results reported in Table 1, the user would normally be tempted
to select the most complex model, namely 3-15-7-1, as it gives the smallest deviation
between predicted and experimental values of flow stress σy. This will be analyzed in the
next section concerning the numerical simulation of the compression of a cylinder on the
Abaqus Explicit software using the ANN flow law.

Since, as reported in Figure 3, the 3-7-4-1 model seems to have converged after the
training phase, we are going to compare it with the ’accurate’ model, the 3-15-7-1 model.
From a more physical point of view, Figures 4 and 5 show the correlation between the data

209

Algorithms 2023, 16, 56

predicted by the neural network and the experimental data for the 3-7-4-1 and 3-15-7-1
networks, respectively.

Figure 4. Comparison of the flow stress σy predicted by the 3-7-4-1 ANN (continuous line) and the
experimental data for the GCr15 (square markers).

Figure 5. Comparison of the flow stress σy predicted by the 3-15-7-1 ANN (continuous line) and the
experimental data for the GCr15 (square markers).

210

Algorithms 2023, 16, 56

Analysis of Figures 4 and 5 shows a very good correlation between the ANN results
and the experimental results, which is reflected by the very low values of the EMAR and
ERMS coefficients reported in Table 1. As reported by Phaniraj [48], the correlation coefficient
(R) is generally not a good measure in our case of study because it only shows the correlation
of the model with respect to the data and not its accuracy, which is a determining factor in
the qualification of a model. Therefore, this type of coefficient is not used in this work for
comparing the different models.

Concerning the performance of the ANN flow laws, the correlation results for both
reported models, are much better than the ones obtained by Zhou et al. [14] during his
work on the same material with four different analytical flow laws, especially since he
had to split the data into two groups according to the temperature value (one on the
range T = 750–850 ◦C and one on the range T = 850–1300 ◦C) and to identify two sets of
parameters for each flow law to reduce the error of his identified analytical models. This of
course raises the question of the usability of those analytical laws where the temperature of
the material changes from one group to the other during a thermomechanical transformation.

In our approach and by using an ANN flow law, the identified law is not only valid
over the whole temperature range, but it displays a EMAR value 5 times lower than the
best flow law proposed by Zhou et al. [14]: the Arrhenius law with an EMAR = 3.74% over
the range T = 750–850 ◦C and EMAR = 5.76% over the range T = 850–1300 ◦C, while
the EMAR = 0.97% for the 3-15-7-1 and EMAR = 1.88% for the 3-7-4-1 ANN flow laws
proposed here.

The disadvantage of developing a flow law model based on neural networks is the
number of internal variables in the network (180 in the case of the 3-15-7-1 network), which
makes it difficult to translate the network into printable results. Using a Johnson–Cook-
type flow law, for example, allows the reader to quickly get an idea of the law, where the
analytical formulation of the law is known to the users, and the behavior of a material is
based on the knowledge of only 5 internal parameters to be identified, which makes it easy
to publish in a table. Concerning an Arrhenius law, this task becomes a little more complex,
as one can have from 24 to 36 coefficients. However, in our case, the publication of the
65 coefficients of the 3-7-4-1 model or the 180 coefficients of the 3-15-7-1 model makes this
task delicate. As an illustration, we provide in the Appendix A all the coefficients of the
3-7-4-1 model identified during this study.

Once the identification phase is complete, it is now necessary to transpose this ANN
model into a subroutine in FORTRAN or C++ that can be used by a FE code, such as
Abaqus (for the FORTRAN 77 version) or DynELA (for the C++ version not presented in
this paper). This is the main topic of the next section.

3. ANN Flow Law Implementation in FE Software

Once the neural network is trained as presented in Section 2.3, it can be used in a finite
element code for the numerical simulation of a structure subjected to thermomechanical
loading. This requires the extraction of the internal variables of the neural network and their
transfer as a subroutine in FORTRAN 77 based on equations proposed in Sections 2.1 and 2.2.

3.1. Implementation of the ANN Flow Law

If we refer to the general flowchart of a finite element code as shown in Figure 6,
integrating the flow law described by the ANN concerns the computation of the stress
tensor σ1 at the end of an increment, in the yellow rectangle on the figure.

211

Algorithms 2023, 16, 56

Data input
- Geometry / Mesh / BC
- Material behavior
- Numerical strategy
- Parameters
- ...

Reference con guration
- Everything is known
- Equilibrium...

Update
Reference con guration

Equilibrated con guration
becomes new reference

Apply load increment
in a given t

First guess of
the new con guration

(the new geometry is approximated)

Compute new
- stresses
- internal forces
- external forces

Compute
- tangent sti ness matrix
- update nodal positions
 thanks to Algorithm

Equilibrium ? Last time step ?
No Yes

No

Yes

END

START

Figure 6. General flowchart of a FE code, focus on the stresses computation using an iterative
solving procedure.

Within the framework of a FE formulation in large deformations such as the one used
in thermomechanical modeling of processes, this computation of the stress tensor σ1 is to
be carried out on all the integration points of each element of the studied structure. Since
the numerical model can include thousands of elements, themselves comprising between 1
and 8 integration points depending on the elements used, this stress computation must
be as fast as possible in order not to increase the CPU time too much, but precise enough
so that the results are under the physics of the process. This is even more important if we
want to integrate this flow law in an explicit FE code, such as Abaqus/Explicit, for which
one second of physical simulation corresponds to several million iterations of these stress
computations. Thus, the complexity of the ANN, i.e., the number of computational steps
that must be performed to compute the flow stress as a function of the input variables,
is a major parameter in the choice of the neural network. As an example, for the model
presented in Section 2.3, 180 internal variables, 15 neurons on the first hidden layer and
7 neurons on the second hidden layer were listed. Given the equations described in
Sections 2.1 and 2.2, it will be necessary to compute 22 exponentials, to make matrix–vector
products of size 15 × 3 and 15 × 7 plus many other numerical operations to compute the
flow stress σy and the 3 derivatives of it with respect to εp, .

ε and T.
Implementing the ANN flow law identified above is realized here in a VUHARD

subroutine, similarly as proposed by van Rensburg et al. [49], used by the Abaqus Explicit
FE code in order to allow a user to program the computation of the flow stress σy and
its 3 derivatives as a function of the model input data. This subroutine is used when
calculating the stress tensor σ1 at the end of an increment from the stress tensor at the
beginning of the increment σ0, the deformations, the material parameters and the history of
the deformation at each finite element integration points, according to the stress integration
algorithm based on the radial return method as described in Simo et al. [46] for the general
aspects, Ming et al. [28] for Abaqus Explicit FE code, or Pantalé et al. [1] for the DynELA
FE code. Thus, without going into too much detail about the stress integration scheme
used in finite element codes (the curious reader can refer to [1,24,28,45] for details about
this method), Figure 7 shows the location of the VUHARD subroutine used to compute the
flow stress σy and its derivative ∂σy/∂Γ used in the writing of the two quantities γ(Γ) and
γ

′
(Γ) used in the Newton–Raphson solving procedure from the following relation:

dσy

dΓ
=

√
2
3

(
∂σy

∂εp +
1

Δt
∂σy

∂
.
εp +

ησy

ρCp

∂σy

∂T

)
, (18)

212

Algorithms 2023, 16, 56

where Γ is the consistency parameter used in the radial return algorithm as defined by
Simo et al. [46], Δt is the time increment, η is the Taylor–Quinney coefficient defining the
amount of plastic work converted into heat energy, Cp is the specific heat coefficient, ρ
is the density of the material and ∂σy/∂εp, ∂σy/∂

.
ε and ∂σy/∂T are the three derivatives

defined in Equation (15).

Start

Elastic predictor : str, σ tr
Γ = 0

σ tr > σ y No

Yes

ε p
1 = ε p

0 +
√

2
3 Γ

.ε1 = 1
Δt

√
2
3 Γ

Use the ANN to compute:
σ y; ∂σ y/∂ε p; ∂σ y/∂ .ε p; ∂σ y/∂T

dσy

dΓ =
√

2
3

(
∂σy

∂ε p +
1
Δt

∂σ y

∂
.
ε + ησy

ρCp
∂σy

∂T

)
γ(Γ) = σ tr −

√
6GΓ − σ y

γ ′
(Γ) = −√

6G − dσy

dΓ
ΔΓ = −γ(Γ)/γ ′

(Γ)
Γ ← Γ + ΔΓ

‖ΔΓ‖ < NRprec
No

Yes

s1 = str − 2GΓ str
‖σ‖

End

Figure 7. General flowchart of the radial return algorithm to compute the final stress tensor σ1.

3.2. Numerical Simulations and Benchmarks Tests

To validate the proposed approach and to compare the different neural network
architectures proposed in Section 2.3, we propose here to simulate on the Abaqus Explicit FE
code the high-temperature compression of a cylinder on a Gleeble-type thermomechanical
device. We consider a cylinder in compression with an initial diameter d0 = 8 mm and
an initial height h0 = 12 mm made of GCr15 material, for which the final height after
compression is h = 6 mm, which is a reduction of 50% of its total height. The compression
of the sample is done in 10 s so that the strain rate .

ε is in the corresponding range of the

213

Algorithms 2023, 16, 56

characterization of the material behavior defined by Ji et al. [30]. Concerning the flow
laws, the 4 models presented in Section 2.3 will be used and compared between them.
Unfortunately, it is not possible here to compare these results with the experimental results,
even if the initial shape of the specimen is the same, as these are not available in the
references of the work of Zhou et al. [14] or Ji et al. [30].

The mesh of the sample is made with 850 axis-symmetric quadrilateral finite ele-
ments with 4 nodes and reduced integration (named CAX4R in the Abaqus software) with
50 elements in the vertical direction and 17 elements in the radial direction, respectively.
The cylinder is between two rigid surfaces, and the Coulomb friction law with a friction
coefficient at the contact surfaces was set to μ = 0.15. The simulation time being fixed at
10 s in order to reduce the simulation time, considering that an explicit integration scheme
is used, a global mass scaling is used for all simulations. The VUHARD subroutine is com-
piled using the GNU gfortran 11.3.0 and linked to the main Abaqus Explicit executable. All
benchmarks tests were solved using Abaqus Explicit 2022 on a Dell XPS 13 laptop running
Ubuntu 20.04 64 bits with 16 GiB of RAM and one 4 core i7-10510U Intel Processor. All
computations were performed using the double precision option of Abaqus, with parallel
threads execution on two cores.

Figure 8 shows the plastic strain field εp contourplot within the structure at the end of
the simulation for both the 3-7-4-1 (left side) and the 3-15-7-1 (right side) flow laws, while
Figure 9 shows the temperature field T contourplot for the same models.

(Avg: 75%)
PEEQ

+3.870x10-1
+4.338x10-1
+4.807x10-1
+5.275x10-1
+5.743x10-1
+6.212x10-1
+6.680x10-1
+7.148x10-1
+7.617x10-1
+8.085x10-1
+8.553x10-1
+9.022x10-1
+9.490x10-1

Figure 8. Equivalent plastic strain εp contourplot for the compression of a cylinder using the 3-7-4-1
(left side) and the 3-15-7-1 (right side) ANN flow laws.

(Avg: 75%)
TEMP

+7.717x10+2
+7.737x10+2
+7.758x10+2
+7.779x10+2
+7.799x10+2
+7.820x10+2
+7.841x10+2
+7.861x10+2
+7.882x10+2
+7.902x10+2
+7.923x10+2
+7.944x10+2
+7.964x10+2

Figure 9. Temperature T contourplot for the compression of a cylinder using the 3-7-4-1 (left side)
and the 3-15-7-1 (right side) ANN flow laws.

Both sides of the figures look more or less the same with some visible differences
from the left to the right concerning the shape of the isovalues zones and the maximum
value, but in fact, the two models with the lowest and the highest number of neurons give

214

Algorithms 2023, 16, 56

coherent results concerning for the plastic strain εp and temperature T contourplots. The
maximum plastic strains are concentrated in the center of the specimen with a maximum
value of εp = 0.89 for the 3-7-4-1 model and εp = 0.95 for the 3-15-7-1 model, which is
slightly beyond the limit set by the training data, which varies from 0 to 0.7. As shown by
Pantalé et al. [31], the flow laws defined by neural networks are able to correctly extrapolate
the flow stresses σy when the plastic deformations are higher than at least 150% of the
maximum plastic strain used during training. Concerning the temperature T, the maximum
value is around T = 795 ◦C and T = 799 ◦C, which is very close and in accordance to the
experiments used for the learning phase.

Figure 10 shows the evolution of the maximum radius r of the cylinder (measured at
the middle of the sample height) as a function of the vertical displacement of the top of
the cylinder.

Figure 10. Evolution of the external radius r of the specimen during the compression process using
the four ANN flow laws (only the 3-15-7-1 model differs).

This figure shows a slight difference of the four models during the numerical simula-
tion. In the rest of this section, the four models will be referred to as M1234. The final value
therefore differs from r = 5.870 mm for M1 to r = 5.917 mm for M34.

Table 2 gathers the results allowing the comparison of the four identified flow laws.

Table 2. Compression of a cylinder using the four ANN flow laws, results for the center element of
the structure.

Model ANN Ninc t r εp T σ
(s) (mm) (◦C) (MPa)

M1 3-7-4-1 1,367,147 886 5.870 0.891 794.74 161.95
M2 3-9-4-1 1,405,471 941 5.895 0.927 798.29 178.78
M3 3-9-7-1 1,408,680 1023 5.917 0.965 798.76 164.25
M4 3-15-7-1 1,418,586 1263 5.917 0.950 796.56 165.80

It appears from the study of this table that the modification of the number of neurons
in the hidden layers has an influence on the computation time t, which increases with the
complexity of the network structure as expected and varies within the range from 886 s to
1263 s approximately since this information is hard to capture from a commercial software
that does not contain accurate CPU time reports as the Abaqus software. It is obvious from
this table that all models do not give exactly the same results. The computing time increases
from M1 to M4, proof that the increase in complexity of the ANN has an influence on the
global computation time t.

215

Algorithms 2023, 16, 56

The results, both from the point of view of the dimensional characteristics of the
sample (maximum radius r), or the internal fields, such as the temperatures T and the
plastic strains εp and equivalent stresses σ in the center of the sample, are more or less the
same for all M1234 flow models.

To have a better analysis of the difference between models M1234, Figure 11 shows the
evolution of the equivalent von Mises stress σ for the element in the center of the cylinder
during the compression.

Figure 11. Evolution of the equivalent von Mises stress σ of the specimen during the compression
process using the four ANN flow laws.

As shown in this figure, the M1234 models give equivalent results with more or less
the same value of the equivalent stress σ at the end of the cylinder compression as shown
in Table 2. The appearance of the curve for the M3 and M4 models is very oscillating in the
first 1/3 of the graph. This is probably related to the fact that the M34 models are over-fitted
and cannot serve as a universal approximator for the flow stress.

To verify this assumption, Figure 12 shows a plot of the predicted flow stress σy using
the 3-15-7-1 ANN model as a function of the plastic strain εp and the plastic strain rate .

ε for
a fixed temperature T = 750 ◦C.

Figure 12. Predicted flow stress σy as a function of (εp, .
ε) for a fixed temperature T = 750 ◦C using

the 3-15-7-1 model.

216

Algorithms 2023, 16, 56

This figure shows that when .
ε varies between 0.001 s−1 and 0.01 s−1, and for a value

of εp < 0.3, the representative curves of σy ‘cross’ demonstrate the poor interpolation of the
flow stresses σy when the strain rate varies (there is a zone in black dashed lines above the
blue line). Thus, for a strain rate between 0.001 s−1 and 0.01 s−1, and for a plastic strain less
than 0.3, the flow stress σy is greater than the value of σy calculated for the same plastic
strain and .

ε = 0.001 s−1, which is physically not admissible for the behavior of GCr15
material. This causes the oscillations visible in Figure 11. For comparison, Figure 13 shows
a similar study to Figure 12 for the 3-7-4-1 model.

Figure 13. Predicted flow stress σy as a function of (εp, .
ε) for a fixed temperature T = 750 ◦C using

the 3-7-4-1 model.

This time, there is no visible area where the representative curves ’cross’, except
perhaps for low values of the strain, where it is hard to distinguish the curves.

This problem occurs for the 3-15-7-1 ANN because we do not have enough training
points regarding the strain rate .

ε (only 3 strain rates are used) regarding the number of
internal variable of the ANN, and this leads to erroneous calculations of the flow stress
σy when the strain rate values differ from those used during training (0.001 s−1, 0.01 s−1

and 0.1 s−1). Even though the M4 model has the lowest values of EMAR and ERMS during
the training phase, it is not usable for numerical simulation of the GCr15 flow law in FE
simulations. The same type of conclusions can be drawn for the M3 model.

We can conclude here that only the two first models M12 can be used for numerical
simulation of the compression of a cylinder, but we must avoid the models M34, as it seems
to be over-fitted, and the behavior of the GCr15 alloy is badly represented, even if the
curves reported in Figure 5 show that the prediction of model M4 is excellent.

4. Conclusions and Future Work

In this paper, a flow law based on an artificial neural network capable of predicting the
flow stress of a material as a function of input data, such as the plastic strain εp, the strain
rate .

ε and the temperature T, for a metallic material subjected to high thermomechanical
loading is presented.

From the equations that govern the writing of the neural network, the expressions of
the derivatives of the flow stress of the model as a function of the plastic strain εp, the strain
rate .

ε and the temperature T were established. These expressions allow the transfer of the
neural network behavior into a VUHARD subroutine written in FORTRAN 77 language to
allow the use of this network for the computation of the material flow stresses within the
Abaqus FE code.

217

Algorithms 2023, 16, 56

In a first step, data from the works of Ji et al. [30] and Zhou et al. [14], allowed to
train several architectures of the proposed model and to compare the results of these ANN
models regarding the fidelity of reproduction of the experimental behavior. The comparison
of the results obtained allowed to validate the approach and to show the superiority of
the ANN model compared to the analytical models based on Johnson–Cook or Arrhenius
flow laws, both in terms of the fidelity of the model and quality of the results. In a second
step, after transferring the training data to the VUHARD subroutines for the Abaqus FE
code, we showed the consistency and quality of the numerical results obtained during the
numerical simulation of the compression of a GCr15 alloy cylinder. In the same section,
we also discussed the problems of over-fitting the ANN when the number of neurons is
too large compared to the training data ranges. It is therefore important to always adjust
the structure and size of the neural network to the experimental data that we wish to
approximate to avoid this over-fitting phenomenon.

This work thus allowed to highlight the significant contributions of flow laws based on
neural networks in numerical simulation by finite elements on a commercial FE code, such
as the Abaqus software. The quality of the results obtained allows us to go further in the use
of the simulation results and in particular to consider that the results of these finite element
simulations can predict the phase transformations and the dynamic recrystallization within
the material during the thermomechanical transformation at high temperature.

Funding: This research received no external funding.

Data Availability Statement: Source files of the numerical simulations are available from the author.

Conflicts of Interest: The author declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
DRX Dynamic Recrystallization
CPU Central Processing Unit
FE Finite Element
VUMAT User subroutine to compute the stress tensor for Abaqus/Explicit
VUHARD User subroutine to compute the flow stress for Abaqus/Explicit

Appendix A. ANN Flow Law Coefficients

In order to complete this paper, we report here after the computing process and the
65 coefficients of the artificial neural network ANN-3-7-4-1 model used in Section 2.3. The
weight matrix for the first hidden layer w1 is a 7 × 3 matrix:

w1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4234 0.6361 −3.3756
0.9035 −2.0141 −85.3653
6.3799 −1.9357 −0.3671

−26.7227 0.9218 −2.5756
−0.7105 0.7599 11.5957
−0.4727 −18.4137 11.6583

3.4733 6.0173 −2.2098

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

218

Algorithms 2023, 16, 56

The biases of the first hidden layer
−→
b1 is a 7-component vector:

−→
b 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1200
0.8351

−2.9032
−1.1547
−4.7023
−3.9429
−7.2849

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The weight matrix for the second hidden layer w2 is a 4 × 7 matrix:

wT
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0488 −2.2694 4.7134 −8.6149
1.2225 1.7295 0.6877 8.2364

−0.9681 −16.4026 −1.9820 −0.2577
−2.2942 −7.3726 −14.0394 16.5637
−11.3020 −2.9066 −1.9601 0.3557
−35.7421 −3.0537 −1.8083 0.1603

0.9444 3.5816 0.4988 −0.6497

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The biases of the second hidden layer

−→
b2 are a 4-component vector:

−→
b 2 =

⎡⎢⎢⎣
−1.0302
−1.6695
−1.6705

1.7122

⎤⎥⎥⎦
The weight vector for the output layer −→w is a 4-component vector:

−→w =

⎡⎢⎢⎣
0.6684
3.0013
0.1998

−0.1879

⎤⎥⎥⎦
The bias of the output layer b is a scalar:

b = 0.1631

The boundaries of the range of the corresponding field are as follows:

• εp ∈ [0.0, 0.7]
• .

ε∈ [
0.001 s−1, 0.1 s−1]

• T∈ [750 ◦C, 1300 ◦C]
• σ∈ [3.052 MPa, 306.096 MPa].

The reference strain rate is .
ε0 = 0.001 s−1.

References

1. Pantalé, O.; Caperaa, S.; Rakotomalala, R. Development of an object-oriented finite element program: Application to metal-
forming and impact simulations. J. Comput. Appl. Math. 2004, 168, 341–351. [CrossRef]

2. Dey, S.; Borvik, T.; Hopperstad, O.S.; Langseth, M. On the influence of constitutive relation in projectile impact of steel plates. Int.
J. Impact Eng. 2007, 34, 464–486. [CrossRef]

3. Lin, Y.C.; Chen, M.S.; Zhang, J. Modeling of flow stress of 42CrMo steel under hot compression. Mater. Sci. Eng. A 2009,
499, 88–92. [CrossRef]

4. Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Society. Sect. B
1949, 62, 676–700. [CrossRef]

5. Lee, W.S.; Liu, C.Y. The effects of temperature and strain rate on the dynamic flow behaviour of different steels. Mater. Sci. Eng. A
2006, 426, 101–113. [CrossRef]

219

Algorithms 2023, 16, 56

6. Lennon, A.M.; Ramesh, K.T. The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J.
Plast. 2004, 20, 269–290. [CrossRef]

7. Zhang, J.; Chen, B.; Baoxiang, Z. Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum
alloy. Mater. Des. 2012, 34, 15–21. [CrossRef]

8. Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High
Temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983;
pp. 541–547.

9. Johnson, G.R.; Holmquist, T.J. Evaluation of cylinder-impact test data for constitutive model constants. J. Appl. Phys. 1988,
64, 3901–3910. [CrossRef]

10. Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys.
1987, 61, 1816–1825. [CrossRef]

11. Lin, Y.; Chen, X.M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working.
Mater. Des. 2011, 32, 1733–1759. [CrossRef]

12. Li, H.Y.; Wang, X.F.; Duan, J.Y.; Liu, J.J. A modified Johnson Cook model for elevated temperature flow behavior of T24 steel.
Mater. Sci. Eng. A 2013, 577, 138–146. [CrossRef]

13. Zhang, D.N.; Shangguan, Q.Q.; Xie, C.J.; Liu, F. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6
aluminum alloy. J. Alloy. Compd. 2015, 619, 186–194. [CrossRef]

14. Zhou, Q.; Ji, C.; Zhu, M.y. Research on Several Constitutive Models to Predict the Flow Behaviour of GCr15 Continuous Casting
Bloom with Heavy Reduction. Mater. Res. Express 2020, 6, 1265f2. [CrossRef]

15. Jia, Z.; Guan, B.; Zang, Y.; Wang, Y.; Lei, M. Modified Johnson-Cook model of aluminum alloy 6016-T6 sheets at low dynamic
strain rates. Mater. Sci. Eng. A 2021, 820, 141565. [CrossRef]

16. Rule, W.K.; Jones, S.E. A revised form for the Johnson-Cook Strengh Model. Int. J. Impact Eng. 1998, 21, 609–624. [CrossRef]
17. Lin, Y.; Chen, X.M.; Liu, G. A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci.

Eng. A 2010, 527, 6980–6986. [CrossRef]
18. Lennon, A.M.; Ramesh, K.T. On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting

process. J. Manuf. Process. 2017, 28, 253–265. [CrossRef]
19. Cheng, C.; Mahnken, R. A modified Zerilli–Armstrong model as the asymmetric visco-plastic part of a multi-mechanism model

for cutting simulations. Arch. Appl. Mech. 2021, 91, 3869–3888. [CrossRef]
20. Hensel, A.; Spittel, T. Kraft- und Arbeitsbedarf Bildsamer Formgebungsverfahren; Deutscher Verlag für Grundstoffindustrie: Leipzig,

Duchland, 1978.
21. Chadha, K.; Shahriari, D.; Jahazi, M. An Approach to Develop Hansel–Spittel Constitutive Equation during Ingot Breakdown

Operation of Low Alloy Steels. In Frontiers in Materials Processing, Applications, Research and Technology; Springer: Hyderabad,
India, 2018; pp. 239–246. [CrossRef]

22. Jonas, J.; Sellars, C.; Tegart, W.M. Strength and structure under hot-working conditions. Metall. Rev. 1969, 14, 1–24. [CrossRef]
23. He, A.; Xie, G.; Zhang, H.; Wang, X. A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius–type

constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater. Des. (1980–2015) 2013, 52, 677–685.
[CrossRef]

24. Liang, P.; Kong, N.; Zhang, J.; Li, H. A Modified Arrhenius-Type Constitutive Model and its Implementation by Means of the
Safe Version of Newton–Raphson Method. Steel Res. Int. 2022, 94, 2200443. [CrossRef]

25. Nemat-Nasser, S.; Guo, W.G. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and
temperatures. Mech. Mater. 2003, 35, 1023–1047. [CrossRef]

26. Khan, A.S.; Sung Suh, Y.; Kazmi, R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys.
Int. J. Plast. 2004, 20, 2233–2248. [CrossRef]

27. Gao, C.Y. FE Realization of a Thermo-Visco-Plastic Constitutive Model Using VUMAT in ABAQUS/Explicit Program. In
Computational Mechanics; Springer: Berlin/Heidelberg, Germany, 2007; p. 301.

28. Ming, L.; Pantalé, O. An Efficient and Robust VUMAT Implementation of Elastoplastic Constitutive Laws in Abaqus/Explicit
Finite Element Code. Mech. Ind. 2018, 19, 308. [CrossRef]

29. Zener, C.; Hollomon, J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944, 15, 22–32. [CrossRef]
30. Ji, C.; Wang, Z.; Wu, C.; Zhu, M. Constitutive Modeling of the Flow Stress of GCr15 Continuous Casting Bloom in the Heavy

Reduction Process. Metall. Mater. Trans. B 2018, 49, 767–782. [CrossRef]
31. Pantalé, O.; Tize Mha, P.; Tongne, A. Efficient implementation of non-linear flow law using neural network into the Abaqus

Explicit FEM code. Finite Elem. Anal. Des. 2022, 198, 103647. [CrossRef]
32. Minsky, M.L.; Papert, S. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, UK, 1969.
33. Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
34. Gorji, M.B.; Mozaffar, M.; Heidenreich, J.N.; Cao, J.; Mohr, D. On the Potential of Recurrent Neural Networks for Modeling Path

Dependent Plasticity. J. Mech. Phys. Solids 2020, 143, 103972. [CrossRef]
35. Jamli, M.; Farid, N. The Sustainability of Neural Network Applications within Finite Element Analysis in Sheet Metal Forming:

A Review. Measurement 2019, 138, 446–460. [CrossRef]

220

Algorithms 2023, 16, 56

36. Jiao, P.; Alavi, A.H. Artificial Intelligence-Enabled Smart Mechanical Metamaterials: Advent and Future Trends. Int. Mater. Rev.
2020, 66, 365–393. [CrossRef]

37. Ghaboussi, J.; Garrett, J.H.; Wu, X. Knowledge-Based Modeling of Material Behavior with Neural Networks. J. Eng. Mech. 1991,
117, 132–153. [CrossRef]

38. Ghaboussi, J.; Pecknold, D.A.; Zhang, M.; Haj-Ali, R.M. Autoprogressive Training of Neural Network Constitutive Models. Int. J.
Numer. Methods Eng. 1998, 42, 105–126. [CrossRef]

39. Ghaboussi, J.; Sidarta, D. New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling. Comput. Geotech. 1998,
22, 29–52. [CrossRef]

40. Lin, Y.; Zhang, J.; Zhong, J. Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy
Steel. Comput. Mater. Sci. 2008, 43, 752–758. [CrossRef]

41. Ashtiani, H.R.; Shahsavari, P. A Comparative Study on the Phenomenological and Artificial Neural Network Models to Predict
Hot Deformation Behavior of AlCuMgPb Alloy. J. Alloy. Compd. 2016, 687, 263–273. [CrossRef]

42. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, Savannah, GA, USA, 2–4 November 2016; USENIX Association: Berkeley, CA, USA, 2016; pp. 265–283.

43. Mattmann, C. Machine Learning with Tensorflow; O’REILLY MEDIA: Shelter Island, NY, USA, 2020.
44. Lu, Z.; Pan, Q.; Liu, X.; Qin, Y.; He, Y.; Cao, S. Artificial Neural Network Prediction to the Hot Compressive Deformation Behavior

of Al–Cu–Mg–Ag Heat-Resistant Aluminum Alloy. Mech. Res. Commun. 2011, 38, 192–197. [CrossRef]
45. Ponthot, J.P. Unified Stress Update Algorithms for the Numerical Simulation of Large Deformation Elasto-Plastic and Elasto-

Viscoplastic Processes. Int. J. Plast. 2002, 18, 91–126. [CrossRef]
46. Simo, J.C.; Hughes, T.J.R. Computational Inelasticity; Interdisciplinary Applied Mathematics, Springer: New York, NY, USA, 1998.
47. Kingma, D.P.; Lei, J. Adam: A method for stochastic optimization. arXiv Preprint 2014, arXiv:1412.6980
48. Phaniraj, M.P.; Lahiri, A.K. The applicability of neural network model to predict flow stress for carbon steels. J. Mater. Process.

Technol. 2003, 141, 219–227. [CrossRef]
49. Jansen van Rensburg, G.; Kok, S. Tutorial on State Variable Based Plasticity: An Abaqus UHARD Subroutine. In Proceedings of

the Eighth South African Conference on Computational and Applied Mechanics—SACAM2012, Johannesburg, South Africa, 3–5
September 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

221

Citation: Niazi, T.; Das, T.;

Ahmed, G.; Waqas, S.M.; Khan, S.;

Khan, S.; Abdelatif, A.A.; Wasi, S.

Investigating Novice Developers’

Code Commenting Trends Using

Machine Learning Techniques.

Algorithms 2023, 16, 53. https://

doi.org/10.3390/a16010053

Academic Editors: Xiang Zhang

and Xiaoxiao Li

Received: 12 October 2022

Revised: 2 January 2023

Accepted: 4 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Investigating Novice Developers’ Code Commenting Trends
Using Machine Learning Techniques

Tahira Niazi 1, Teerath Das 2, Ghufran Ahmed 3, Syed Muhammad Waqas 4, Sumra Khan 1, Suleman Khan 5,*,

Ahmed Abdelaziz Abdelatif 6 and Shaukat Wasi 1

1 Department of Computer Science, Mohammad Ali Jinnah University, Karachi 75400, Pakistan
2 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
3 School of Computing, National University of Computer Emerging Sciences, Karachi 75400, Pakistan
4 Department of Computer Science, Bahria University, Karachi 75260, Pakistan
5 School of Psychology and Computer Science, University of Central Lancashire, Preston PR1 2HE, UK
6 Khawarizmi International College, Al Bahya, Abu Dhabi 25669, United Arab Emirates
* Correspondence: skhan92@uclan.ac.uk

Abstract: Code comments are considered an efficient way to document the functionality of a particular
block of code. Code commenting is a common practice among developers to explain the purpose
of the code in order to improve code comprehension and readability. Researchers investigated the
effect of code comments on software development tasks and demonstrated the use of comments
in several ways, including maintenance, reusability, bug detection, etc. Given the importance of
code comments, it becomes vital for novice developers to brush up on their code commenting skills.
In this study, we initially investigated what types of comments novice students document in their
source code and further categorized those comments using a machine learning approach. The work
involves the initial manual classification of code comments and then building a machine learning
model to classify student code comments automatically. The findings of our study revealed that
novice developers/students’ comments are mainly related to Literal (26.66%) and Insufficient (26.66%).
Further, we proposed and extended the taxonomy of such source code comments by adding a few
more categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code (4.44%),
Autogenerated (1.48%), and Improper (1.10%). Moreover, we assessed our approach with three different
machine-learning classifiers. Our implementation of machine learning models found that Decision
Tree resulted in the overall highest accuracy, i.e., 85%. This study helps in predicting the type of code
comments for a novice developer using a machine learning approach that can be implemented to
generate automated feedback for students, thus saving teachers time for manual one-on-one feedback,
which is a time-consuming activity.

Keywords: source code comments; classification; machine learning techniques

1. Introduction

Code comments are considered an integral and indispensable activity across various
tasks in the software development life cycle (SDLC). Indeed, it is necessary for the devel-
opers and peer reviewers to understand what the code is intended to perform and how
it works. In recent times, with the increase in software complexity and the number of
developers working on a single project, it has become necessary to write code comments
to make any sense of what is happening within the software. With growing team sizes, it
is important for all the developers in the team to have a better understanding of the code.
This can be achieved by adhering to good programming conventions to better understand
the codebase by all the developers within a team. Many code conventions are followed to
make the code readable across the development teams, e.g., naming conventions, source
code comments, etc. Code conventions are a set of formats, rules, and guidelines followed
while writing code. The code is written in a specific format to make the program easy to

Algorithms 2023, 16, 53. https://doi.org/10.3390/a16010053 https://www.mdpi.com/journal/algorithms
223

Algorithms 2023, 16, 53

read and understand. There are many research studies that discuss the impact of adopting
coding standards on their particular projects [1]. Many studies reveal that coding conven-
tions significantly and positively impact the readability of code [2]. These programming
conventions help developers produce more readable code that is better understood by
others. At the same time, it also helps to produce adaptable code, which is easy to fix when
it comes to bug fixing. Basic code conventions are generalized across all programming
languages. However, the way code comments are written varies according to the program-
ming language’s syntax. Figure 1 illustrates different types of comments in Java program
such as block, single-line and multi-line comments.

As discussed above, source code commenting is one of the programming practices
widely followed by developers to explain their code to others, who intend to gain an un-
derstanding for either improving the code or bug fixing. For a particular project, the same
development team is not always the one to work on that project continuously. Therefore,
it is not guaranteed that the next developer will be as experienced as the development
team that worked on it before. No matter how well the code is written or refactored, it
still requires that the documentation be included in the source code, and therefore, code
commenting is one of the good practices for documenting the code.

Code comments are part of the source code that developers produce in natural lan-
guage to describe the purpose and implementation details of the programming code. The
purpose of source code comments is not just limited to the code’s explanation; developers
also include comments to highlight any pending bug fixes, technical debt, or references to
other code snippets. They play a pivotal role in many software engineering tasks, such as
software maintainability, code modification, and code reuse. Multiple researches suggest
that commenting on a source code enhances its readability [3,4], leads to bug detection [5,6],
and improves testing [7].

Figure 1. Example of code comments in Java program file. Reprinted/adapted with permission
from [8] Copyright 2019, by Luca Pascarella, Magiel Bruntink, Alberto Bacchelli.

224

Algorithms 2023, 16, 53

This research study has provided the key contributions to taxonomy introduced
in [9,10] by analyzing student code comments. Further, we implemented machine learning
models to achieve the automated classification of students’/developers’ source code comments.

The main contributions of our study are:

• An extension to the taxonomy of the source code comments introduced in [9,10];
• Automated classification of students’/developers’ source code comments using ma-

chine learning techniques.

The remainder of this paper is structured as follows: The related research work is
highlighted in Section 2 to find the significant gap. Section 3 describes the methodology
exploited to conduct the research, and the experiment is explained in Section 4. The results
and analysis of the research are reported in Section 5. Finally, Section 6 represents the
conclusions and provides potential future research directions.

2. Related Work

Research on code comments has been an active area of research in the past decades.
Many researchers have investigated code comments regarding their relation to code con-
cerning various factors. These studies help us understand the effectiveness of code com-
ments and their influence on different aspects of software design and implementation. The
related literature is divided into six categories connected to our study: (i) code comments for
code maintainability, (ii) code comments for bug detection, (iii) comments generation and
code summarizing, (iv) code comments as a means of documentation, (v) code comments
quality aspect and categorization, and (vi) analysis of student code comments.

2.1. Code Comments for Code Maintainability

Many researchers have studied the source code comments and revealed interesting
findings that encourage programmers to follow this useful code convention. The benefits
of good commenting extend beyond the primary benefit of providing information to the
reader. Comments are an important element of code quality. They help document how
the code is supposed to work. This increases programmer understanding, making the
code more maintainable. Tenny et al. [3,4] suggested that commenting on a source code
enhances its readability, as discussed in that leads to bug detection, discussed by Rubio-
Gonz et al. and Subramanian et al. [5,6] and improved testing, discussed by Goffi et al. [7].
Hartzman et al. [11] studied the roles of comments in the maintenance of large software
systems depicting the need for source code comments for maintainability. Jiang et al. [12]
suggested that outdated comments that no longer align with the associated method entities
result in confusion for the developers and hinder the process of future code-changing. As
evident from the results, writing quality source code comments in a program is regarded
as a good practice, as studied by de Souza et al. [13]. Oman et al. and Garcia et al. [14,15]
introduced a quality metric called the code/comment ratio to quantify the quality of the
overall code. Further tools are developed to assess the quality of the source code comments.
For example, Khami [16] designed a tool called JavaDocMiner to check the quality of
JavaDoc comments. It is based on natural language processing and evaluates the comment
content concerning “language” and its relevance with the associated code. Steidl et al. [17]
suggested that for analyzing the quality of code comments, a machine learning model was
used, and assessment was carried out on various comment categories, including “header
comments, member comments, in-line comments, section comments, code comments, and
task comments.” Similarly, as an extension to the previous work, Sun et al. [18] gave useful
recommendations by performing a comprehensive assessment of the comments in jdk8.0
and jEdit.

2.2. Code Comments for Bug Detection

Many researchers have exploited code comments to gain useful insights for software
quality assurance perspectives. The developers often overlook inconsistencies between
code and comments as the codebase grows. Tan et al. [19] suggest that bugs can be

225

Algorithms 2023, 16, 53

automatically detected between inconsistent code and comments. The experimental results
present evidence that their tool, iComment, can extract 1832 rules from comments with
90.8–100% accuracy and detect 60 comment-code inconsistencies, 33 new bugs, and 27 bad
comments in the latest versions of the four programs. Nineteen of these issues (twelve bugs
and seven bad comments) were confirmed by the corresponding developers, while the
other issues are currently under investigation by the developers. Ratol et al. [20] studied
the process of refactoring a source code. Code comments can be used to facilitate the
change introduced by the refactoring. Code comments were used to help in the refactoring
activities, thus enhancing the code’s maintainability. Few studies have been conducted
to analyze GitHub commits; for example, Das et al. [21] analyzed GitHub commits to
investigate the performance issues in Android application.

2.3. Comments Generation and Code Summarizing

Various studies have been conducted in the context of experimenting with com-
ment generation and code summarizing to produce comments from the existing code.
The techniques employed by machine translation were suggested by Allamanis et al.
and Hu et al. [22,23], and information retrieval was suggested by Haiduc et al. and
Huang et al. [24–26] to generate comments. The study by Lawrie et al. [27] employed
an information retrieval approach using the cosine similarity for assessing the program’s
quality with the hypothesis that “if the code is high quality, then the comments give
a good description of the code”. Marcus et al. [28] introduced an innovative information
retrieval approach to distinguish traceability links between source code and comments.
Chen et al. [29] worked on automatically identifying the scope of the code comments in
Java programs by employing machine learning techniques. However, they propose that
natural language processing techniques can also be applied to evaluate the similarities
between code comments and the corresponding code entities.

2.4. Code Comments as a Means of Documentation

In the literature, researchers also investigated the contents of comments in their
work to further assess the need for writing informative and meaningful code comments.
Hata et al. [30] investigated the role of links in code comments, their prevalence, purpose,
and targets. Their investigation reveals diversity in the usage of links in comments, and
links decay over time and evolve after they have been referenced in the source code
comments. Similarly, Alghamdi et al. [31] studied comments concerning the presence of
primitive data types through advanced lexical methods and demonstrated that developers
document the primitive data types in the code comments to give additional information
regarding purpose and usage.

2.5. Code Comments Quality Aspect and Categorization

As apparent from the above sections, code commenting practice varies among devel-
opers, and different code comments serve different purposes and meanings. Eventually,
this leads to an interesting research area of comment classification. Some of the earliest
studies by Haouari et al. and Steidl et al. [17,32] that worked on comment classification
presented valuable results. Additionally, Zhai et al. [33] introduced a taxonomy by consid-
ering the code entities and the code perspectives of the comments. They also experimented
with the propagation of comments from one code entity to another. However, classifying
comments was not their primary purpose. Moreover, Pascarella et al. [8] introduced a more
fine-grained taxonomy of code comments by studying comments from six open-source Java
projects and mobile applications. It resulted in two-layered taxonomy having 6 top layers
and 16 sub-layer categories. A statistically representative 1925 comments from files were
selected and then manually classified by the two authors using the COMMEAN application.
The authors used the supervised machine learning technique, probabilistic (Naïve Bayes
Multinomial), and the Decision Tree algorithm (Random Forest or J48).

226

Algorithms 2023, 16, 53

2.6. Analysis of Student Code Comments

Mohammadi-Aragh et al. [9] also assessed the commenting habits of students and
categorized them into different types. Beck et al. [10] collected student source code com-
ments and labeled them as “sufficient” or “insufficient” according to their codebook from
their previous research work and then implemented supervised machine learning tech-
niques. Their results suggest that introducing the lemmatization technique improved the
performance of the Random Forest classifier. However, it lowered the performance on
Multinomial Naïve Bayes on average. Additionally, Random Forest exceeded Naïve Bayes
classifier in both testing rounds based on the results. Vieira et al. [34] worked on promoting
in-code comments to self-explain the code written by students. Beck et al. [35] studied the
structure and proportion of student comments and code.

Furthermore, various studies have been conducted to build the taxonomy of source
code comments. For example, Table 1 contains the various aspects along with their names
and descriptions. It presents the aspects that were considered in various types of research
work on source code comments carried out in this particular domain. Table 2 is an overview
of the research studies that cover specific aspects of Table 1.

Table 1. Aspects considered in research.

Aspect Category Aspect Name Description

A1 Analysis of student
code commenting habit

Whether the dataset was taken of the
professional developers or students

A2 Taxonomy based on code cognition Types of comment categories based on comments
insights from the author re- flection

A3 Taxonomy based on program aspect Types of comment categories based on program
structure and related code entities

A4 Classification using machine learning method Any classification techniques that are applied to
carry out the research

Table 2. Analysis of existing research (A = Addressed, NA = Not Addressed).

Research Work A1 A2 A3 A4

J. Zhai et al. [33] NA NA A A
L. Pascarella and A. Bacchelli, [8] NA NA A A
P. Beck et al. [10] A A NA A
L. Pascarella [36] NA NA A A
R. E. Garcia [34] NA NA NA NA
M. J. Mohammadi-Aragh et al. [9] A A NA NA
H. Hata, C. Treude et al. [30] NA NA A NA
M. Alghamdi et al. [31] NA NA A NA
P. J. Beck [35] A NA NA A

The research study discussed herein mainly differs from the existing research work
in all the above aspects. In particular, previous studies were mostly based on codebases
produced by professional developers, whereas the current study investigates the code
commenting habits of novice developers. The work by Mohammadi-Aragh et al. [9]
is also related to students’ commenting habits, but the experiment was carried out for
the Python language; however, this research work has taken Java as the programming
language. To illustrate this point, consider the fact that programming languages differ in
their structure, as the former is a dynamically typed language and the latter is a statically
typed language, therefore, having a consequent impact on the programming concepts.
Moreover, the research work mentioned above used supervised machine learning methods
to train a binary classifier. In contrast, our model is capable of classifying data into different
categories, i.e., a multi-class classification model. Another aspect is a difference in the
granularity of the classification with respect to comment categorization.

227

Algorithms 2023, 16, 53

3. Methodology

The study aims to analyze the activities performed in the Java source code with the
purpose of manually investigating and classifying the source code activities using machine
learning techniques. The study was conducted from the viewpoint of novice developers and
researchers. The context of the study is based on the projects of novice students/developers
that were developed at Mohammad Ali Jinnah University.

3.1. Research Questions

The main objectives that drive the motivation behind this study are: is it possible
to analyze the code activities by novice developers and further classify the source code
comments that would help novice student developers to write meaningful code comments?
The intent is to make their code more readable. We formulated two research questions
(RQs) to investigate this study further.

RQ-1. Which kind of code activities are performed by novice students/developers in the source code?

Rationale: The primary rationale behind this research question is to analyze the key
activities developers mention in their source code comments. This research question
provides an idea to novice developers regarding the essential aspects that should be
considered for development. The features exploited in this RQ-1 are comment_content
and code, as shown in Table 3. As already described, the main idea is to see the novice
developers’ activities by analyzing comment code and its corresponding source code and
building a meaningful set of categories. The outcome of this research question will be
a taxonomy of categories mentioned in the source code.

Table 3. Description of the features extracted for the dataset preparation.

No. Feature Name Description

1 comment_content This feature contains the comment text written by the student
2 code This feature contains the relevant code about which the comment was written.
3 begin_line The line number of the file at which the comment begins.
4 end_line The end line of the comment.
5 code_start_line The start line for the relevant code section.
6 type The type of the comment, i.e., single-line or multi-line.
7 category This is the class that was labeled to the dataset using the taxonomy.

RQ-2. Is it possible to classify novice students’/developers’ source code comments using machine
learning techniques?

Rationale: This research question is dedicated to automatically classifying the novice
students’/developers’ source code comment categories obtained in RQ-1 using machine
learning techniques. Furthermore, the objective of this research question is to apply dif-
ferent machine-learning approaches to source code comments and eventually find the
best machine-learning approach for classifying code comments. This will help novice
developers to categorize the new comments in the correct categories.

It is important to note here that the work examines student code comments with
a finer categorization of their comments, as discussed at the end of Section 2.6. The
objective of this research question is also to lay out the methodology of machine learning
techniques based on multi-label classification, which will provide an outcome of how
effective this approach is at predicting code comments for novice developers.

The proposed method in Listing 1 represents the high-level pseudo-code algorithm,
which describes the overall methodology. The methodology of our study consists of
two parts: (i) Preparation of taxonomy of code comments using source code comments
(M1), and (ii) classification of source code comments categories using machine learning
techniques (M2). M1 aims to address RQ-1, whereas M2 is dedicated to RQ-2, described in
the research question section. For the RQ-2 methodology, we used three machine learning

228

Algorithms 2023, 16, 53

techniques to classify the source code’s comments: (i) Support Vector Machine, (ii) Random
Forest, and (iii) Decision Tree.

Listing 1. Pseudo code of classification of code comments.

1
2 Input: Comments extracted from the source code
3 Parameter: Hyperparamter tuning
4 Output: Label comments
5 Steps of M1: Preparation of dataset of source code comments
6 building taxonomy of source code comments
7
8 1. Pre-processing the raw java source code.
9 2. Building the parser to parse the raw source code and extract code comments in JSON object
format
10 3. The JSON object is converted into CSV
11 4. Building Taxonomy and Dataset Annotation
12
13 Steps of M2: Classification of source code comments categories using machine learning
techniques
14
15 5. Extract the dependent feature.
16 6. Add the dependent feature to the original dataset.
17 7. Split the dataset into training and testing
18 8. Hyperparameter Tuning

3.2. Context Selection

The context of this study is 70 web development projects written in Java language
by novice students/developers at the Department of Computer Science, Mohammad Ali
Jinnah University. We built the dataset of source code comments from the Java code
projects, and these comments are extracted by the parser, which is built in JavaScript.
There are two approaches used in Java programming to comment in the source code, i.e.,
(i) single-line comment and (ii) multi-line comment.

Single-line comments start with//.
Example System.out.println(“Hello World”);//This is the example comment
Multi-line comments start with/* and end with */.
Example:///* The code will print the character of words to the screen, then use it in line 4*/

Figure 2 represents the flow chart of the classification of code comments that describes
the overall flow of our algorithm. The raw Java code is initially pre-processed, and then
we parse it to create a JSON object, which is then converted to CSV. In CSV, we obtain our
dataset, which consists of 5000 total comments, and then annotate it using our designed
taxonomy, represented in Table 4. We then extract the dependent features, and add those
features to our dataset. The dataset was then split into training and testing to apply
the machine learning algorithm and tune their hyper-parameters to improve the results
even further.

Table 4. Taxonomy and annotation with new categories.

SNO Category Frequency Description

1 Literal 1333 (26.66%) A comment that just restates the source code and does not provide any additional insight into the
program’s logic.

2 Insufficient 1333 (26.66%) Code comments might be classified as “insufficient,” either if they do not provide enough information for
understanding the code or if, even if they are verbose, they add no value.

3 Conceptual 1111 (22.22%)
Conceptual comments explain source code functionality without simply restating the source code.
Conceptual comments are not mere translations of source code in English but explain its functionality in
greater detail to a code reviewer or another outside developer.

229

Algorithms 2023, 16, 53

Table 4. Cont.

SNO Category Frequency Description

4 License 259 (5.18%)
The code comments that contain information on the terms of use and the licensing of the
source code.

5 Profile 240 (4.80%)
These code comments provide references to the authors and their ownership of the work, as well as
source credentials in the form of an “@author” tag.

6 Irrelevant 240 (4.80%)
The type of code comments for which it is not easy to comprehend their meaning and they do not
clearly describe the associated code and are not related.

7 Commented
code

222 (4.44%)
This category includes all comments that contain
source code commented out by developers.

8 Organizational 92 (1.84%)

Organizational comments are used to communicate the structure of code. They typically take the form of
a short comment that explains
a module or block of code, separating one functional unit from another. This demonstrates that the
programmer is attempting to present code in a way that helps other coders easily understand it.

9 Autogenerated 74 (1.48%)
This category includes Auto-generated code. These are typically the metadata left behind by an IDE
and contain only the skeleton with
a placeholder provided by the IDE.

10 Improper 55 (1.10%)
This category includes comments that are not properly implemented, e.g., a comment should have
an associated code directly below the comment body without any empty lines in between.

11 Empty 41 (0.82%) This category includes the comments that do not contain anything,
for example //

Figure 2. Flow chart of classification of code comments.

3.3. Data Extraction

As already discussed, we split the methodology for RQ-1 and RQ-2 as M1 and M2,
respectively. The data extraction process of the research questions is described in M1 and M2.

230

Algorithms 2023, 16, 53

3.3.1. M1: Preparation of Dataset of Source Code Comments and Building Taxonomy of
Source Code Comments

As shown in Figure 3 and Listing 1, the steps from 1 to 4 of the figure and algorithm
cover the data extraction of RQ-1. It defines the overall procedure of dataset preparation
which is sub-divided into four parts, (i) pre-processing of java source code, (ii) building the
parser, (iii) the JSON object is converted into CSV, and (iv) building taxonomy and dataset
annotation, which are described as follows:

• Pre-processing of java source code: The dataset required to carry out this research
was prepared by pre-processing the raw source code. This raw source code is ob-
tained from the lab assignments of sophomore-year students in the computer science
discipline. We only considered the java source code files for our study. Initially, we
prepared a dedicated script to obtain all the projects that are: (i) complete projects and
(ii) programs built in java language. This results in a total of 70 projects.

• Build the parser and Parse the raw source code to create JSON object: A parser was
developed in JavaScript language to parse the java source code files and extract the
code-comment pairs. The parser goes through a directory, traverses all sub-directories
within that directory, and searches all files with a .java file extension. It reads the files
one by one, extracts the code-comments pairs from those files, and creates a JSON
object. That extended JSON object is later converted to CSV file format so that this can
be used for machine learning experiments.

• The JSON object converted into CSV: Data pre-processing is the first and most crucial
phase in the research analysis. Data pre-processing is applied to the CSV file that is
obtained by the parser. Intensive pre-processing would be required to convert the raw
code into a usable dataset.

• Building Taxonomy and Dataset Annotation: The generated dataset was carefully an-
alyzed, the annotation for the dataset was performed from the existing taxonomy [9,10],
and new categories in the taxonomy were also introduced. Table 4 below contains all
the information about the taxonomy, which consists of the comment type name and
its description (the types in bold text are newly introduced types in the taxonomy).

Figure 3. Overall methodology.

Figure 3 depicts the overall methodology, which consists of two steps (M1 and M2),
each represented by an arrow symbol and each sub-step by a number. The first step, which
we called M1, was the preparation of the dataset represented by 1–4. In substep 1, the raw
source code is pre-processed. In the second sub-step, the parser is built through which
the raw source code is parsed to create a JSON object containing the source code com-

231

Algorithms 2023, 16, 53

ments. In the third sub-step, the JSON object is converted into CSV. In the fourth sub-step,
a taxonomy is built, and the annotation is performed on a CSV file. The second step, M2,
involves the classification of source code using various machine learning algorithms; the
second part is represented as 5–8. In the fifth sub-step, feature extraction is performed, and
in the sixth sub-step, we divided the dataset into training and testing. Then, in the seventh
sub-step, a machine learning classification model was implemented, and in the last sub-step,
three evaluation measures were used to evaluate the performance of the algorithm.

3.3.2. M2: Classification of Source Code Comments Categories Using Machine
Learning Techniques

The methodology (M2) covers points from 5 to 8 in the algorithm and aims to answer
RQ-2. M2 consists of 4 steps, i.e., (i) extract the dependent features from data, (ii) add the
extracted features to the original dataset, (iii) split the dataset into training and testing, and
(iv) tune the hyper-parameter for the machine learning model. We further explain these
steps in detail in the next Experiment section.

4. Experiment

Several experiments are performed to assess the effectiveness of the suggested method.
A machine equipped with an Intel Xeon E5-2630 v4 CPU, 64G RAM, Windows 10 with
64-bit OS, and the Jupyter notebook was used to conduct the tests. We exploited precision,
recall, and accuracy as the performance metrics to report the results.

4.1. Characteristics of Datasets

In order to run machine learning experiments, it is important to have datasets available
for these experiments. Often, the data required for an experiment are not readily available
in the desired format. Therefore, it must be created from scratch. Similarly, this was the
case in our experiment, and we had to prepare our datasets. A total of 5000 samples were
acquired in the dataset preparation process. The information contained in Table 3 describes
each feature/attribute present in our dataset.

4.2. Performing Feature Extraction

The feature engineering step was carried out on the data, and some new features
were created from the existing data. This step is also called feature extraction. These new
features were extracted to improve the machine learning results and enrich the feature set.
Table 5 describes the new features that resulted after the feature engineering step.

Table 5. New features introduced in the dataset during feature engineering process.

No. Feature Name Description

1 comment_length The number of characters present in the comment content.
2 is_license Indicates whether the comment falls in the License category with a value of 1 or 0 (1: yes, 0: no)
3 comment_token_length The number of tokens present in the comment content.
4 is_profile Indicates whether the comment falls in the Profile category with a value of 1 or 0 (1: yes, 0: no)

4.3. Training and Testing the Model

After feature extraction, the dataset is split into the training and test set. The training
set is used to train the classifier with the help of hyperparameter tuning, and later the
model was evaluated according to accuracy and other parameters by using the test set
for predictions.

Code comments written by students are often too general or premature and lack the
precision of those written by more experienced developers. From the code perspective, the
apparent characteristics of the code comments can be extracted as the features, e.g., what
is the text that creates a comment, from where does the comment start, etc. The features
listed in Table 3 were extracted based on these apparent characteristics of comments to

232

Algorithms 2023, 16, 53

prepare the initial dataset for this experiment. The initial dataset was examined, and
a feature engineering process was performed to derive more meaningful features that can
enhance the overall prediction of the machine learning model. The impact of features from
Table 5 is demonstrated in the Result and Discussion section.

4.4. Hyperparameter Tuning

Hyperparameters are the adjustable parameters of a machine learning model architec-
ture, and these cannot be assigned randomly, but rather optimizing and selecting the ideal
parameters is needed to improve the machine learning model’s performance. Therefore,
this process is called hyperparameter tuning. We performed the hyperparameter tuning
of the machine learning model in our experiments to enhance their overall performance.
K-fold cross-validation of 5 folds was applied to tune the machine learning model and gain
the values for the hyperparameters.

Among the three classifiers, Decision Tree was the most accurate classifier for predict-
ing the comment categories, and then Random Forest also gave relatively better results.
However, Support Vector Machine only performed well on the textual data; therefore, we
performed hyperparameter tuning on the Random Forest to further improve its results. As
discussed above, the 5-fold cross-validation method was used to obtain the values for the
hyperparameters. We employed GridSearchCV from the Scikit-learn library; it is a method
that exhaustively considers all parameter combinations (as shown in Listing 2), providing
a means for finding the best parameter settings.

Listing 2. Parameter combinations for the hyperparmater tuning of Random Forest classifier.

1 param_grid_rf = {
2 ’ n_estimator ’: [200, 300, 400, 500, 600, 700, 800, 1000],
3 max_features’: [’ auto ’],
4 ’ max_depth’: [20, 22, 24, 26, 28, 30],
5 ’ random_state’: [x for x in range (6,100,2)]

6 }

4.5. Evaluation and Performance Metrics

Every experiment evaluation requires some performance measure to validate the
results. We used four performance measures in our study, i.e., accuracy, precision, recall, and
F1-Scores. The main reasons for selecting these measures are their widespread acceptance in
machine learning. These performance measures are obtained from the classification report
of the machine learning model.

Model accuracy measures how accurately a classification model predicts classifications.
A model’s accuracy is defined by the number of correct classifications divided by the
number of total predictions.

Accuracy =
Total Number o f Correct reponses f or a class

Total Number o f responses f or a class

The precision measure is also known as positive predictive value (PPV), which indicates
the proportion of positive instances among all the positive class predictions. This predic-
tion measure is defined for each class output individually. The outcome is different for
each parameter.

Precision(class) =
Total Number o f Correct predictions f or a class

Total Number o f resulting predictions f or a class

233

Algorithms 2023, 16, 53

The recall tells how many of all the positive samples were correctly identified as such
by the classifier. It is also known as true positive rate (TPR) or sensitivity. Recall measure is
also defined for each class output individually.

Recall(class) =
Total Number o f Correct predictions f or a class
Total Number o f Actual predictions f or a class

By calculating the harmonic mean of a classifier’s precision and recall, the F1-score
integrates both into a single metric.

F1 − Score(class) =
2 × Precision × Recall

Precision + Recall

5. Results and Discussion

5.1. RQ-1 Which Kind of Code Activities Are Performed by Novice Students/Developers in the
Source Code?

In order to answer this research question, we manually analyzed each comment’s
content and assigned them a suitable category. The category should be a representation of
the whole source code comment. Master’s students performed this activity for all the source
code comments. The student’s supervisor and co-supervisor cross-checked the labels to
verify this activity. The outcome of this labeling activity was a taxonomy of categories
representing different aspects of the source code.

According to our results, the source code comments are mainly distributed in the
categories such as Literal, Insufficient, Conceptual, License, Profile, Irrelevant, Commented
code, Autogenerated, Improper, and Empty. The distribution of the dataset according to the
“category” is reported in Table 4 and Figure 4. We observed that the more frequent source
code comment categories in our dataset are “Insufficient” and “Literal” (1333, 26.66% each).
This may be due to students’ inability to write better comments as the large proportion
of comments falls in the “Insufficient” and “Literal” categories. The Literal category just
restates the source code and does not provide any additional insight into the program logic.
Whereas in the Insufficient category, comments either do not provide enough information for
understanding or are verbose, i.e., adding no value. Moreover, large numbers of conceptual
comments (1111, 22.22%) are present in our dataset, followed by License (259, 5.18%). This
makes sense because, generally, students write some conceptual comments to explain the
functionality of source code in detail without simply restating the code. License comments
are more focused on the terms of use and the licensing of the source code. It usually appears
at the top of the source code.

Figure 4. Distribution of code-comments data by the type column feature.

234

Algorithms 2023, 16, 53

Empty (41, 0.82%) category source code comments are rare in our dataset. We presume
that developers very rarely write “//” or does not write any comment on the source code.

Furthermore, as discussed, Table 4 depicts the complete taxonomy that is obtained
after pre-processing, carefully analyzing, and annotation of the source code comments.
The bold category type, frequency, and description are indicated as our contribution as new
categories to the existing taxonomy. The new categories of the taxonomy that emerged
from our dataset are:

• License (259, 5.18%): License is the code comments that contain information on the
terms of use and the licensing of the source code. It usually appears at the top of the
source code.

• Profile (240,4.80%): This comment contains the information of authors and the owner-
ship of the work; it usually begins with the “@author” tag.

• Irrelevant (240, 4.80%): It is not easy to comprehend the meaning of the comment.
This type of comment does not describe the associated code.

• Commented code (222, 4.44%): This category contains all the comments that contain
source code which were commented out by the developer.

• Auto-generated (74, 1.48%): This category contains metadata left behind by an IDE
and contains only the skeleton with a placeholder provided by the IDE.

• Improper (55, 1.10%): This category includes comments that are not properly imple-
mented, e.g., a comment should have an associated code directly below the comment
body without any empty lines in between.

From the above results, these obtained categories can be used as a checklist for novice
developers to check what types of comments developers focus on during software de-
velopment. It is interesting to note that novice developers frequently mention the Literal
type of comments in their source code. This is reasonable because the comments of novice
developers are more specific to what they are implementing in their source code. Moreover,
the comments type Empty has been used significantly less by novice developers, which
means developers tend to comment on what activities are performed in source code.

Distribution of Data According to Type of Comments

We further analyzed that there are two types of comments present in our dataset:
(i) single-line comments and (ii) multi-line comments. The data distribution according
to the “type” column is shown in Table 6, along with its graphical representation in
Figure 5. It is evident from the figure that students are more comfortable writing single-line
comments than writing more detailed comments in the form of multi-line. We attribute
this to the fact that students are still in the learning phase and lack attention to the code
documentation aspect.

Figure 5. Distribution of code-comments data by the type column feature.

235

Algorithms 2023, 16, 53

Table 6. Distribution of data by “type” column.

Type Total

Single-line 4333
Multi-line 667

After the dataset and taxonomy preparation, the experiments were carried out in
Python using the Jupyter notebook. Mainly, three machine learning algorithms were imple-
mented to conduct the experiment: Support Vector Machine, Random Forest, and Decision Trees.
Table 7 reports the results of three models for their accuracy measure with a comparison
of the after and before feature extraction steps. The results show that all three classifiers’
performance was enhanced after implementing feature extraction.

Table 7. Accuracy measure of proposed machine learning algorithm.

Method Before Feature Extraction
After Feature

Extraction

Random Forest 0.68 (68%) 0.84 (84%)
Decision Tree 0.72 (72%) 0.85 (85%)

Support Vector Machine 0.31 (31%) 0.59 (59%)

5.2. RQ-2 Is It Possible to Classify Student Source Code Comments Using Machine Learning
Techniques?

In order to answer this research question, we applied three machine learning algo-
rithms to our labeled dataset obtained in RQ-1. The algorithms considered in our study to
classify the source code comments are: (i) Support Vector Machine (SVM), (ii) Decision Tree,
and (iii) Random Forest. After the machine learning models were implemented, the results
were recorded. We analyzed the results with three performance parameters, i.e., accuracy,
precision, and recall.

Table 7 and Figure 6 represent the comparison of the accuracy measure for all three
classifiers. The feature extraction helped in improving the overall performance of all three
classifiers. As apparent from the results, the Decision Tree algorithm outperformed the rest
of the two models with an overall accuracy of 0.85 (85%). The performance of the Support
Vector Machine was poor. We presume that this is the one main reason it was not used
previously for such a problem, i.e., classification of source code comments.

Figure 6. Classifiers accuracy before and after feature extraction.

236

Algorithms 2023, 16, 53

Figure 6 shows a graphical representation of the accuracy before feature extraction
and after feature extraction.

One interesting aspect to note from Table 8 and Figure 7 is that the Support Vector
Machine classifier produced good results when only the text feature (i.e., comment content)
was selected as the only predictor for the machine learning model. However, when both
quantitative data (numerical information such as token comment size, length, etc.) and
textual data (e.g., comment text) were used as predictors, both Random Forest and Decision
Tree achieved good performance.

Table 8. Accuracy of all three classifiers on text data.

Method Accuracy on Text Feature

Random Forest 0.83 (83%)
Decision Tree 0.86 (86%)

Support Vector Machine 0.83 (83%)

Figure 7. Accuracy of all three classifiers on text data only.

P. Beck et al. [10] evaluated and analyzed the code comments with a single label as
either sufficient or insufficient using a binary classifier. In their research study, they only
considered the text feature of the comments. They demonstrated that after the reduction in
the vocabulary size due to lemmatization, the Multinomial Naive Bayes classifier’s accuracy
was reduced by 5%, but Random Forest Classifier’s accuracy was improved by 6%. The
results of their study reveal that they achieved an overall precision rate of 82% using
Multinomial Naïve Bayes. By using a Random Forest classifier and lemmatization, they
were able to achieve a classification precision of 90%. In another study, L. Pascarella [36]
compared the performance of two machine learning models to automatically classify code
comments in five open-source mobile applications. Their aim was to assess code comments
produced by professional developers. Specifically, they used two well-known classes of
supervised machine learning algorithms based on probabilistic classifiers and Decision
Tree algorithms: Naive Bayes Multinomial and Random Forest. According to their results,
Random Forest outperformed the Naive Bayes Multinomial classifier in automatically
classifying the code comments. In our research study, we employed three different machine
learning classifiers to compare their performance results. All three models produced better
results on text data; however, when the other quantitative features were taken into account,
both Random Forest and Decision Tree produced good results than the Support Vector
Machine, with Decision Tree having the highest accuracy, i.e., 85%. It is interesting to note

237

Algorithms 2023, 16, 53

that previous studies, as discussed above, also revealed the effectiveness of the Random
Forest classifier for classifying source code comments.

Table 9 and Figure 8 represent the precision, recall and F1-Score of Random Forest and
Decision Tree on all the source code comments categories of our dataset. The overall accuracy
achieved in the case of Random Forest is 0.84 (84%), whereas the overall accuracy in the case
of Decision Tree is 0.85 (85%), which means we obtain the best result on the Decision Tree.

Table 9. The Precision, Recall anf F1-Score for Random Forest and Decision Tree.

Random Forest Decision Trees

Precision Recall F1-score Precision Recall F1-score

Autogenerated 1 0.5 0.67 1 0.5 0.67

Commented code 1 0.75 0.86 1 1 1

Conceptual 0.75 0.9 0.82 0.75 0.9 0.82

Improper 0 0 0 0 0 0

Insufficient 0.86 0.95 0.9 0.9 0.95 0.92

Irrelevant 1 0.67 0.8 0.67 0.67 0.67

License 1 1 1 1 1 1

Literal 0.78 0.74 0.76 0.82 0.74 0.78

Organizational 1 1 1 1 1 1

Profile 1 0.67 0.67 1 0.67 0.8

Overall Accuracy Overall Accuracy
0.84 0.85

Figure 8. The precision and recall for Random Forest and Decision Tree.

6. Conclusions

In this study, initially, we manually classified the source code comments and then
presented a machine-learning approach to classify source code comments written by novice
developers/students enrolled at Mohammad Ali Jinnah University. This work is inspired
by many aspects, such as student metacognition, focusing on internal student processes
while writing code; teacher–student feedback activity, introducing automated feedback
and reducing teacher dependency; and studying the machine learning approach to code-
comment analysis. The results of our study depicted that novice developers/students’
comments are mainly related to Literal (26.66%) and Insufficient (26.66%). Further, we
proposed and extended a taxonomy of such source code comments by adding a few more
categories, i.e., License (5.18%), Profile (4.80%), Irrelevant (4.80%), Commented Code (4.44%),

238

Algorithms 2023, 16, 53

Autogenerated (1.48%), and Improper (1.10%). Moreover, after applying different machine
learning algorithms, we found that the Decision Tree has the overall highest accuracy, i.e.,
85%, and performed better than other studied techniques. Classification of source code
comments is important from the perspective of how students utilize this important code
convention in providing the documentation for their programming code. This study helps
not only in predicting the type of code comments using the machine learning approach but
also can serve as a basis for designing a utility that can be implemented to generate auto-
mated feedback for students, thus, saving teachers’ time for manual one-on-one feedback,
which is a time-consuming activity. The objectives of this study included building a source
code parser, designing a taxonomy for the categorization of source code comments, and
implementing the different machine learning models and their results and evaluations. The
datasets for this research study were not available. Therefore, they were extracted from the
raw source code of student programming tasks. The machine learning models performed
classification with a reasonably good accuracy of 85%, achieved by Decision Tree, and hence,
outperformed the other two algorithms.

7. Future Work

This study provides a foundation for future directions in this area of research. As
previously discussed, the research in this software engineering domain is ongoing and
offers much potential for further study. This also opens more ways for pursuing research
in this field of study. In the future, other machine learning models can be analyzed by
their performance. Furthermore, the NLP approach to classifying source code comments
can be carried out and compared with the machine learning approach as a comparison.
Moreover, in the future, the idea related to predicting the contribution of each feature to
the classification model using Random Forest variables with SHAP can be implemented as
an extension to the current work with anticipation of further enhancing the effectiveness
and accuracy of our research objective. We also aim to incorporate the code context and
CodeBert in our intended extension of this research effort.

Author Contributions: Conceptualization, T.N. and S.W.; Methodology, T.N., T.D. and S.M.W.;
Software, T.N. and S.K. (Sumra Khan); Validation, T.D.; Investigation, T.D., S.K. (Sumra Khan) and
S.W.; Resources, G.A.; Data curation, G.A. and S.W.; Writing—original draft, S.M.W.; Writing—review
& editing, S.K. (Suleman Khan) and A.A.A.; Supervision, G.A. and S.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smit, M.; Gergel, B.; Hoover, H.J.; Stroulia, E. Maintainability and source code conventions: An analysis of open source projects.
Univ. Alta. Dep. Comput. Sci. Tech. Rep. TR11 2011, 6.

2. dos Santos, R.M.; Gerosa, M.A. Impacts of coding practices on readability. In Proceedings of the 26th Conference on Program
Comprehension, Gothenburg, Sweden, 27–28 May 2018; pp. 277–285.

3. Tenny, T. Program readability: Procedures versus comments. IEEE Trans. Softw. Eng. 1988, 14, 1271. [CrossRef]
4. Tenny, T. Procedures and comments vs. the banker’s algorithm. Acm Sigcse Bull. 1985, 17, 44–53. [CrossRef]
5. Rubio-González, C.; Liblit, B. Expect the unexpected: Error code mismatches between documentation and the real world. In

Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Toronto,
ON, Canada, 5–6 June 2010; pp. 73–80.

6. Subramanian, S.; Inozemtseva, L.; Holmes, R. Live API documentation. In Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 643–652.

7. Goffi, A.; Gorla, A.; Ernst, M.D.; Pezzè, M. Automatic generation of oracles for exceptional behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, Saarbrücken, Germany, 18–20 July 2016; pp. 213–224.

8. Pascarella, L.; Bacchelli, A. Classifying code comments in Java open-source software systems. In Proceedings of the 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), Buenos Aires, Argentina, 20–28 May 2017;
pp. 227–237.

239

Algorithms 2023, 16, 53

9. Mohammadi-Aragh, M.J.; Beck, P.J.; Barton, A.K.; Reese, D.; Jones, B.A.; Jankun-Kelly, M. Coding the coders: A qualitative
investigation of students’ commenting patterns. In Proceedings of the 2018 ASEE Annual Conference Exposition, Salt Lake City,
UT, USA, 23–27 July 2018.

10. Beck, P.; Mohammadi-Aragh, M.J.; Archibald, C. An Initial Exploration of Machine Learning Techniques to Classify Source Code Com-
ments in Real-time. In Proceedings of the 2019 ASEE Annual Conference & Exposition, Tampa, FL, USA, 15 June–19 October 2019.

11. Hartzman, C.S.; Austin, C.F. Maintenance productivity: Observations based on an experience in a large system environment.
In Proceedings of the 1993 Conference of the Centre for Advanced Studies on Collaborative Research: Software Engineering,
Toronto, ON, Canada, 22–25 November 1993; Volume 1, pp. 138–170.

12. Jiang, Z.M.; Hassan, A.E. Examining the evolution of code comments in PostgreSQL. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, Shanghai, China, 22–23 May 2006; pp. 179–180.

13. de Souza, S.C.B.; Anquetil, N.; de Oliveira, K.M. A study of the documentation essential to software maintenance. In Proceedings
of the 23rd Annual International Conference on Design of Communication: Documenting & Designing for Pervasive Information,
Coventry, UK, 21–23 September 2005; pp. 68–75.

14. Oman, P.; Hagemeister, J. Metrics for assessing a software system’s maintainability. In Proceedings of the Conference on Software
Maintenance 1992, IEEE Computer Society, Orlando, FL, USA, 9–12 November 1992; pp. 337–338.

15. Garcia, M.J.B.; Granja-Alvarez, J.C. Maintainability as a key factor in maintenance productivity: A case study. In Proceedings of
the Icsm, Monterey, CA, USA, 4–8 November 1996; p. 87.

16. Khamis, N.; Witte, R.; Rilling, J. Automatic quality assessment of source code comments: The JavadocMiner. In Proceedings of
the International Conference on Application of Natural Language to Information Systems, Cardiff, UK, 23–25 June 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 68–79.

17. Steidl, D.; Hummel, B.; Juergens, E. Quality analysis of source code comments. In Proceedings of the 2013 21st International
Conference on Program Comprehension (icpc), San Francisco, CA, USA, 20–21 May 2013; pp. 83–92.

18. Sun, X.; Geng, Q.; Lo, D.; Duan, Y.; Liu, X.; Li, B. Code comment quality analysis and improvement recommendation:
An automated approach. Int. J. Softw. Eng. Knowl. Eng. 2016, 26, 981–1000. [CrossRef]

19. Tan, L.; Yuan, D.; Krishna, G.; Zhou, Y. comment: Bugs or bad comments? In Proceedings of the ACM Symposium on Operating
Systems Principles: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, New York, NY,
USA, 3–6 November 2007; Volume 14, pp. 145–158.

20. Ratol, I.K.; Robillard, M.P. Detecting fragile comments. In Proceedings of the 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Urbana-Champaign, IL, USA, 30 October–3 November 2017; pp. 112–122.

21. Das, T.; Penta, M.D.; Malavolta, I. A Quantitative and Qualitative Investigation of Performance-Related Commits in Android
Apps. In Proceedings of the 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016, IEEE
Computer Society, Raleigh, NC, USA, 2–7 October 2016; pp. 443–447. [CrossRef]

22. Allamanis, M.; Peng, H.; Sutton, C. A convolutional attention network for extreme summarization of source code. In Proceedings
of the International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 2091–2100.

23. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation. In Proceedings of the 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC), Gothenburg, Sweden, 27 May–3 June 2018; pp. 200–20010.

24. Haiduc, S.; Aponte, J.; Marcus, A. Supporting program comprehension with source code summarization. In Proceedings of the
2010 ACM/IEEE 32nd International Conference on Software Engineering, Cape Town, South Africa, 1–8 May 2010; Volume 2,
pp. 223–226.

25. Haiduc, S.; Aponte, J.; Moreno, L.; Marcus, A. On the use of automated text summarization techniques for summarizing source
code. In Proceedings of the 2010 17th Working Conference on Reverse Engineering, Washington, DC, USA, 13–16 October 2010;
pp. 35–44.

26. Huang, Y.; Zheng, Q.; Chen, X.; Xiong, Y.; Liu, Z.; Luo, X. Mining version control system for automatically generating commit
comment. In Proceedings of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), Toronto, ON, Canada, 9–10 November 2017; pp. 414–423.

27. Lawrie, D.J.; Feild, H.; Binkley, D. Leveraged quality assessment using information retrieval techniques. In Proceedings of the
14th IEEE International Conference on Program Comprehension (ICPC’06), Athens, Greece, 14–16 June 2006; pp. 149–158.

28. Marcus, A.; Maletic, J.I. Recovering documentation-to-source-code traceability links using latent semantic indexing. In Proceed-
ings of the 25th International Conference on Software Engineering, Portland, OR, USA, 3–10 May 2003; pp. 125–135.

29. Chen, H.; Huang, Y.; Liu, Z.; Chen, X.; Zhou, F.; Luo, X. Automatically detecting the scopes of source code comments. J. Syst. Softw.
2019, 153, 45–63. [CrossRef]

30. Hata, H.; Treude, C.; Kula, R.G.; Ishio, T. 9.6 million links in source code comments: Purpose, evolution, and decay. In Proceedings
of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 27 May 2019;
pp. 1211–1221.

31. Alghamdi, M.; Hayashi, S.; Kobayashi, T.; Treude, C. Characterising the Knowledge about Primitive Variables in Java Code
Comments. In Proceedings of the 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR),
Madrid, Spain, 17–19 May 2021; pp. 460–470.

240

Algorithms 2023, 16, 53

32. Haouari, D.; Sahraoui, H.; Langlais, P. How good is your comment? A study of comments in java programs. In Proceedings of the
2011 International Symposium on Empirical Software Engineering and Measurement, Banff, AB, Canada, 22–23 September 2011;
pp. 137–146.

33. Zhai, J.; Xu, X.; Shi, Y.; Tao, G.; Pan, M.; Ma, S.; Xu, L.; Zhang, W.; Tan, L.; Zhang, X. CPC: Automatically classifying and
propagating natural language comments via program analysis. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, Seoul, Republic of Korea, 27 June–19 July 2020; pp. 1359–1371.

34. Vieira, C.; Magana, A.J.; Falk, M.L.; Garcia, R.E. Writing in-code comments to self-explain in computational science and
engineering education. ACM Trans. Comput. Educ. (TOCE) 2017, 17, 1–21. [CrossRef]

35. Beck, P.J.; Mohammadi-Aragh, M.J.; Archibald, C.; Jones, B.A.; Barton, A. Real-time metacognition feedback for introductory
programming using machine learning. In Proceedings of the 2018 IEEE Frontiers in Education Conference (FIE), Lincoln, NE,
USA, 13–16 October 2018; pp. 1–5.

36. Pascarella, L. Classifying code comments in Java mobile applications. In Proceedings of the 2018 IEEE/ACM 5th International
Conference on Mobile Software Engineering and Systems (MOBILESoft), Gothenburg, Sweden, 27 May–3 June 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

241

Citation: Choubineh, A.; Chen, J.;

Wood, D.A.; Coenen, F.; Ma, F.

Fourier Neural Operator for Fluid

Flow in Small-Shape 2D Simulated

Porous Media Dataset. Algorithms

2023, 16, 24. https://doi.org/

10.3390/a16010024

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 5 December 2022

Revised: 25 December 2022

Accepted: 26 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fourier Neural Operator for Fluid Flow in Small-Shape 2D
Simulated Porous Media Dataset

Abouzar Choubineh 1,2,*, Jie Chen 2,*, David A. Wood 3, Frans Coenen 1 and Fei Ma 2

1 Department of Computer Science, University of Liverpool, Liverpool L69 7ZX, UK
2 Department of Applied Mathematics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
3 DWA Energy Limited, Lincoln LN5 9JP, UK
* Correspondence: a.choubineh@liverpool.ac.uk or a.choubineh20@student.xjtlu.edu.cn (A.C.);

jie.chen01@xjtlu.edu.cn (J.C.)

Abstract: Machine Learning (ML) and/or Deep Learning (DL) methods can be used to predict
fluid flow in porous media, as a suitable replacement for classical numerical approaches. Such
data-driven approaches attempt to learn mappings between finite-dimensional Euclidean spaces.
A novel neural framework, named Fourier Neural Operator (FNO), has been recently developed
to act on infinite-dimensional spaces. A high proportion of the research available on the FNO has
focused on problems with large-shape data. Furthermore, most published studies apply the FNO
method to existing datasets. This paper applies and evaluates FNO to predict pressure distribution
over a small, specified shape-data problem using 1700 Finite Element Method (FEM) generated
samples, from heterogeneous permeability fields as the input. Considering FEM-calculated outputs
as the true values, the configured FNO model provides superior prediction performance to that of a
Convolutional Neural Network (CNN) in terms of statistical error assessment based on the coefficient
of determination (R2) and Mean Squared Error (MSE). Sensitivity analysis considering a range of FNO
configurations reveals that the most accurate model is obtained using modes = 15 and width = 100.
Graphically, the FNO model precisely follows the observed trend in each porous medium evaluated.
There is potential to further improve the FNO’s performance by including physics constraints in its
network configuration.

Keywords: subsurface fluid flow; Fourier neural operator; small-shape data; finite element method;
convolutional neural network; sensitivity analysis

1. Introduction

A wide range of phenomena/processes in science and engineering are described
via measurable/estimable quantities that rely on independent variables. As an example,
in subsurface fluid flow, pressure and temperature are typically measured based on the time
and location variables. Given the available fundamental laws, it is feasible to determine
the relationships among the rates of change of these physical quantities. The mathematical
correlations typically used to do this are Ordinary and/or Partial Differential Equations
(ODEs/PDEs). In ODEs, the derivatives of the dependent variable(s) are taken with respect
to only one independent variable. On the other hand, partial derivatives are required in
PDEs when there are two or more independent variables involved.

Theories, methods, and tools available in scientific computing (also called compu-
tational science) make it possible to solve mathematical models of physical phenomena
described in terms of ODEs and/or PDEs [1]. The theories and methods are together
called numerical analysis/numerical mathematics, and tools refer to computer systems
on which codes are run. The more complex the mathematical models, the more advanced
the computational hardware requirements are to solve them. There are various numerical
methods available that can provide approximate solutions to such problems. These include
the finite difference method [2], Finite Element Method (FEM) [3], finite volume method [4],

Algorithms 2023, 16, 24. https://doi.org/10.3390/a16010024 https://www.mdpi.com/journal/algorithms
243

Algorithms 2023, 16, 24

spectral method [5], and meshless method [6]. Such methods are usually time-consuming
to apply.

One way to mitigate the problem of the high computational cost in numerical calcula-
tions required to determine complex systems is to apply Machine Learning (ML) and/or
Deep Learning (DL) techniques. Machine learning methods such as Neural Network (NN),
adaptive-neuro-fuzzy-inference system, support-vector machine, and decision tree are
widely employed to find and predict relevant patterns within datasets. Machine learning
is now used to great advantage in various fields [7–10]. Deep learning methods represent
more complex extensions of existing ML methods, particularly neural networks, and have
demonstrated improved performance, particularly when applied to large datasets [11–15].
There are various DL algorithms, including Convolutional Neural Network (CNN), deep
auto-encoder, deep-belief network, recurrent neural network, and generative adversarial
network. There are some differences between ML and DL. For instance, manual feature
engineering tends to be performed with ML algorithms, sometimes requiring domain
knowledge about a given problem. To make the point clear, consider ’filling missing val-
ues’. A dataset can include missing values due to the difficulty of collecting complete data.
Missing values can be manually filled in based on expert knowledge, which is sometimes
a tedious process. However, with DL algorithms this is more often not required, being
performed automatically.

Classical neural networks concentrate on learning mappings between finite-dimensional
spaces. This makes such networks, when configured, confined to a particular discretization
(i.e., they are mesh-dependent). Mesh-independent networks have been developed to reduce
such constraints. In this regard, the Fourier Neural Operator (FNO) has recently been pro-
posed to learn a continuous function via parameterizing the model in its function space [16].
This makes it possible for FNO to be trained on one mesh and subsequently evaluated on
another. Unlike standard feed-forward networks that use activation functions (e.g., sigmoid,
tanh, relu), training an FNO model using the Fourier transform to find optimum weights
and biases is performed by employing sines and cosines as activation functions [17–19].

The Fourier neural operator has demonstrated its capabilities in solving parametric
PDEs. Different models were developed to solve the Navier–Stokes equation for a viscous,
incompressible fluid in vorticity form on the unit torus [16]. The viscosity was set to 0.001,
0.0001, and 0.00001. The resolution was 64 × 64 for both training and testing. Based on the
results, the FNO-3D had the best performance in the case of available sufficient data. When
the amount of data was not sufficient, the FNO-2D achieved the lowest error.

An improved FNO-based DL model, U-FNO, was developed to solve a CO2-water
multiphase flow problem over a wide range of rock–fluid properties, such as permeability,
anisotropy, and flow rate [20]. The predictions generated for gas saturation and pressure
buildup confirmed the superiority of the U-FNO model compared to FNO and CNN models
applied to the same dataset. Additionally, U-FNO requires few training data to match the
prediction accuracy of CNN.

As a substitute for physics-based solvers, an FNO framework was employed to
learn/map certain mechanical responses of 2D composites [21]. The FNO models, trained
with few data, were able to predict high-resolution stress/strain tensor fields for geometri-
cally complex microstructures. Additionally, the models exhibited zero-shot generalization
with high precision on random geometries previously unseen by the trained FNO model.
Moreover, the trained FNO models were able to predict high-resolution stress/strain fields
when presented with low-resolution inputs.

An FNO model has also been applied to a Large Eddy Simulation (LES) of a 3D turbu-
lence system [22]. Filtered direct numerical simulation flow-field of isotropic turbulence
recorded at different times comprised the training data. In the a posteriori test of LES, The
FNO model outperformed dynamic Smagorinsky and dynamic mixed models to predict
the velocity spectrum, probability density functions of vorticity and velocity increments,
and the instantaneous flow structures.

244

Algorithms 2023, 16, 24

In addition to solving parametric PDEs, FNO has been successfully applied to solve
other problems. For example, FNO was used to classify images contained in the CIFAR-10
image database comprised of 60,000 distinct samples [23]. The input samples were color
images of ten different classes. A total of 83% of the total dataset was used to train the FNO,
and the remaining images were used to test the trained model. According to the different
evaluation criteria, the FNO performed slightly better than ResNet20. However, the FNO
model was computationally more costly.

As described, some research has been conducted applying FNO models to various
existing datasets. However, much of that research addresses problems involving big-shape
data (e.g., 421 × 421 and 256 × 256). Thus, there is a critical lack of analysis regarding the
performance of FNO models on small-shape data. Consequently, the major contribution
of this paper is to apply and evaluate an FNO model to predict pressure distribution in
small-shape data (30 × 30). Specifically, the study answers the following questions:

1. Can FNO models perform accurately on small-shape data problems in terms of the
prediction error metrics?

2. How do mode and width affect the performance of FNO models?
3. Does downsampling have a positive or negative effect on FNO model performance

when applied to small-shape data?
4. Can FNO models satisfy the pattern applicable to porous media problems?
5. How does the performance of FNO models compare to that of CNN?

A 30 × 30 uniform mesh problem from the domain of petroleum engineering is evalu-
ated as a relevant topic with a suitable dataset to address the research questions identified.
Continued constraints on the ability of the available energy supply to meet global energy
demand make it important to improve our understanding of subsurface oil and gas reser-
voirs to improve production and resource recovery. The problem evaluated is designed to
do that.

Comparing the FNO model performance with that of a CNN model applied to the
same dataset is justified because CNNs are proven in their applications to 2D arrays and
the mathematical basis underpinning convolutional-filter functionality is well established.
Convolutional neural networks are also able to learn the spatial hierarchy of dataset
characteristics on an unsupervised basis leading to good prediction performance based on
relatively sparse feature selections.

The remaining sections of this article are arranged as follows. Section 2 describes the
problem configuration and the dataset evaluated; Section 3 explains the configurations
of the FNO and CNN models applied to the dataset and how their performances are
optimized; Section 4 presents and compares the results generated by those two models;
Section 5 discusses the limitations of the research; and Section 6 draws conclusions and
makes recommendation for required future research.

2. Problem Setup with Governing Equations

The flow of fluids through porous media can be effectively described in terms of:
(i) the Darcy (or momentum) law, (ii) mass conservation, (iii) energy drive, and (iv) case-
specific rock–fluid correlations including compressibility and saturation equations, where
more than one fluid is involved (e.g., gas, oil and/or water) [24]. Energy conservation
can in many cases be disregarded if isothermal conditions are considered. However,
for reservoir systems in which temperature changes over time, such as for surface water
injected into subsurface reservoirs, energy conservation cannot be disregarded. For a single,
incompressible fluid phase with constant viscosity in a 2D linear and isothermal system,
Darcy’s law, assuming steady-state flow and ignoring gravitational effects, can be expressed
as [24]:

k−1μu +∇p = 0 (1)

where k = permeability, μ = fluid viscosity, u = Darcy velocity, and ∇p = gradient pressure
(∂p

∂x , ∂p
∂y).

245

Algorithms 2023, 16, 24

The formulation for the mass conservation law (also known as the continuity equation)
is [24]:

∇.u = f (2)

here, ∇.u = divergence velocity (∂ux
∂x +

∂uy
∂y), and f = source term.

By combining Equations (1) and (2) and assigning values to the viscosity and source
term of one and zero, respectively, and assuming the permeability to be a diagonal tensor
in the isotropic medium, the below is obtained [24]:

∇.(−k∇p) = 0 (3)

In a homogeneous porous medium, k is constant, so the formulation becomes [24]:

k(∇.∇p) = kΔp = k(
∂2 p
∂x2 +

∂2 p
∂y2) = 0 (4)

where Δp = Laplace pressure.
A heterogeneous porous medium indicates that it is not homogeneous, and thus

formation-related properties can have multiple scales. For example, in petroleum reservoirs,
there may be numerous fractures (connected or disconnected) with different lengths, whose
width is much smaller than the domain size. For a heterogeneous medium, Equation (3)
changes to [24]:

∂(k ∂p
∂x)

∂x
+

∂(k ∂p
∂y)

∂y
= 0 (5)

To solve PDEs, Boundary Conditions (BCs) and Initial Conditions (ICs) need to be
specified as additional constraints on the system. The main types of BCs applied are those
defined by: (i) Dirichlet (the first kind), (ii) Neumann (the second kind), and (iii) Robin
or Dankwerts (the mixed or third kind). In the first type, values are assigned to the
certain dependent variable(s) (e.g., pressure) while the derivatives of the certain dependent
variable(s) are known in Neumann’s condition. Robin’s BC is a weighted combination of
the first two BCs. An IC refers to a value (or a correlation) of a parameter at time t = 0.

For the system analyzed here, the computational domain was defined as
Ω = [0,1] × [0,1], representing a square 2D domain. Dirichlet’s condition was applied
on two sides: p = 100 (left-side boundary) and p = 0 (right-side boundary). Neumann’s
condition was applied to the other two sides: ∂p = 0 (top and bottom sides).

The grid selected to define each square system consisted of a 30 × 30 uniform mesh
with the option to incorporate (or not) horizontal and/or vertical fractures. The permeability
is defined as the ability of a rock to permit fluids to pass through it. The permeability in
fractures is generally much higher than that of the matrix. In this research, the permeability
of the matrix (Km) and fracture (Kf) were assigned fixed values of 1 and 1000 millidarcy
(md), respectively. The number of fractures (Nf) available in a porous medium was set
to 5, and fractures are allowed to intersect with each other. The length of individual
fractures was randomly distributed. A total of 1400 sample grids were generated in MatLab
software to constitute the training dataset, and a further 300 sample grids were generated to
constitute the testing dataset. The testing data, therefore, made up 17.65% of the generated
grids and the training data 82.35%. Permeability fields were randomly assigned to each
generated grid using the Karhunen–Loeve expansion [25], and duplicate fields were not
allowed to exist in the training and/or testing datasets. Only two of the generated grids
were removed during pre-processing to avoid intruding bias to specific permeability fields.
Although the grid shape of each sample is small, the number of elements it covers in
1698 samples is large (1698 × 30 × 30), which makes the dataset too large to be handled by
ML/DL methods.

246

Algorithms 2023, 16, 24

3. Methodology

3.1. FNO Architecture

While conducting research on heat propagation, Joseph Fourier introduced the idea of
a harmonic series, later called the Fourier series, which can represent any periodic function
as an infinite sum of sine and cosine waves [26]. Assuming f (x) defined over the interval
(−T, T) and outside this space f (x + 2T) = f (x), the Fourier series of this periodic function
is written as follows [26]:

f (x) =
a0

2
+

∞

∑
n=1

[ancos(
nπx

T
) + bnsin(

nπx
T

)] (6)

in which an and bn are the Fourier series coefficients expressed in the form of integral and
also a0 is the first term of an when n = 0.

Subsequently, the Fourier transform was developed to extend the Fourier series to non-
periodic functions [27]. The Fourier transform involves the decomposition of functions into
frequency components. Supposing that f (x) is the original function, ’i’ is the imaginary
number (

√−1), and ’s’ is the angular frequency, then the mathematical definition of a
continuous FT is defined as [27]:

F(s) =
∫ ∞

−∞
f (x)e−2πisxdx (7)

It is appropriate to consider the inverse of the continuous FT as [27]:

f (x) =
∫ ∞

−∞
F(s)e2πisxds (8)

The Fourier neural operator is an operator for a neural network that performs convolu-
tions applying the Fourier transform. This causes the higher modes to be removed from the
Fourier space, leaving only the lower modes. In the following, a linear transform is applied
along with an inverse Fourier transform. This makes the training process independent of
the number of cells in a specific mesh.

At any location (x, y) within a mesh, the FNO algorithm first raises the input I(x, y)
to a higher-dimension channel space Z0(x, y), where Z0(x, y) = P(I(x, y)) (Figure 1). It
does this by locally applying the transform P: R → Rdz , with a parametric procedure using
either a Fully Connected (FC) neural network or a simple linear layer. Z0 is defined on
the similar mesh to I and the values of Z0 can be displaced as an image with dz channels.
Then, four successive Fourier layers are applied to Z0. Subsequently, another transform
is applied locally Q : Rdz → R. This final transform projects Z4(x, y) to the output by
O(x, y) = Q(Z4(x, y)). Meantime, Z4 is the output of the fourth (final) Fourier layer and Q
is parameterized by a fully connected neural network.

Z(x, y) passes through two routes in the Fourier layers. In the top path, a Fourier
transform F, a linear transform R on the lower Fourier modes, and an inverse Fourier
transform F−1 are applied. Z(x, y) undergoes only a local linear transform W in the bottom
path. Outputs of each path are added together and then subjected to an activation function
σ (here ReLu).

To establish an optimum FNO architecture, PyTorch [28] was employed with Python
version 3.9.12. The models developed for the dataset applied batch size = 5, epochs = 500,
step size = 100, gamma = 0.9, and downsampling rate = 1 in this research. Additionally,
‘Adam’ [29] was used as the optimizer with a learning rate of 0.001 and a weight decay
of 0.0001. Adam uses a distinct learning rate for each scalar parameter and adapts these
rates during the whole training process considering the historical values of the partial
derivatives of each parameter. This gradient-based algorithm combines the ability of
(i) AdaGrad to handle sparse gradients and (ii) RMSProp to function in online and non-
stationary settings. The input and output shapes defined were 30 × 30 × 1 and 30 × 30,

247

Algorithms 2023, 16, 24

respectively. Moreover, fast Fourier transform [30] was used as a fast algorithm to compute
discrete Fourier transforms and their inverses.

Figure 1. (a) Architecture of the neural operator and (b) Architecture of a Fourier layer.

3.2. CNN Architecture

In preparing a CNN simulation involving a unit square, a 30 × 30 uniform mesh was
selected. On the other hand, the input/output values were defined as a 900 × 1 1D tensor
(vector). The input shape was then changed to 30 × 30 × 1 for processing through 2D
convolutional filters. Regarding to the output in CNN, there were two options: keeping the
initial shape or reshaping to a 2D tensor. While reshaping to 30 × 30, the accuracy achieved
by the CNN model became substantially impaired. On the other hand, many fewer errors
were generated by CNN models that retained the initial 900 × 1 shape. Therefore, the CNN
model was developed and its computational layers processed with the 900 × 1 shape and
only reshaped to the 30 × 30 output size for final visualization purposes (Figure 2).

An optimum CNN architecture was developed with five convolutional layers and
two FC layers (Figure 2). The kernel numbers in the convolutional layers (referred to as
CONV1 to CONV5) were 5, 45, 85, 125, and 165, respectively. Padding was set to ‘same’
only in CONV5 to prevent the size from changing. A 3 × 3 kernel size and 1 × 1 stride
were applied to all convolutional layers, providing those layers with sizes 28 × 28, 26 × 26,
24 × 24, 22 × 22, and 22 × 22, respectively. A batch normalization layer (referred to as BN1
to BN5) followed CONV1 to CONV5, without changing size. Normalization of the input
layer makes the CNN converge more quickly to outputs that collectively average nearly
zero with a standard deviation of nearly one. The layers FC1 and FC2 contain 1500 neurons.
The ReLu activation function was applied to CONV1 to CONV5, whereas the sigmoid
activation function was applied to FC1 and FC2, with a linear transformation applied to
generate the output layer.

The CNN model was coded using the Keras/TensorFlow packages [31] executed in
virtual environments in Python version 3.9.12. It was specifically configured with the Mean
Squared Error (MSE) as the loss (objective) function and ‘Adam’ [29] with the default values
as the optimizer. The CNN was trained to apply a batch size of 16 samples and run with
500 epochs.

248

Algorithms 2023, 16, 24

Figure 2. The structure of the CNN model used in this study.

4. Results

There are two main hyperparameters in FNO: the number of channels and modes.
The former defines the width of the FNO network, referring to the number of features
learned in each layer. The latter defines the number of lower Fourier modes retained when
truncating the Fourier series. The size of the grid space controls the maximum allowable
number of modes. In this research, five values were evaluated for the width: 20, 60, 100,
140, and 180, and four cases were evaluated for the mode: 5, 10, 15, and 20.

Figure 3a reveals that the FNO models generated very similar errors, based on MSE,
when calculated based on initial pressure values (actual non-normalized values) for the
training data when the number of modes is 10, 15, or 20. However, the errors increased
slightly for models configured with modes = 5. The coefficient of determination (R2) values
for the training data varied from 0.9945 to 0.9971, according to Figure 3b. As a general result,
all models were able to predict pressure with acceptable error levels for the training subset.

Figure 3c,d display the FNO results for the testing subset. The model with modes of
5 generated the poorest prediction performance, i.e., highest MSE and lowest R2. As width
increased (with modes held at 5), MSE decreased from 109.9231 to 86.3347 and R2 increased
from 0.7661 to 0.8163. When the number of modes was increased to 10, the FNO perfor-
mance improved. Additionally, an increase in width had a positive effect on accuracy when

249

Algorithms 2023, 16, 24

modes were held at 10. The model with modes = 15 performed better than models with
modes of 5 or 10, as it generated MSE and R2 displaying ranges of 42.1611–65.5664 and
0.8605–0.9103, respectively. In general, the prediction performance of the FNO model with
modes of 20 overlapped with that of modes of 15. Considering all twenty cases, the model
with modes = 15 and width = 100 generated the best performance with an MSE of 1.4087
and R2 of 0.997 for the training subset, and an MSE of 42.1611 and R2 of 0.9103 for the
testing subset. In addition to the graphical comparisons (Figure 3), the MSE and R2 values
achieved by all FNO cases evaluated are listed in Table 1.

Figure 3. Prediction error graphical analysis of the developed FNO models: (a) MSE for training data,
(b) R2 for training data, (c) MSE for testing data, and (d) R2 for testing data.

250

Algorithms 2023, 16, 24

Table 1. Performance of the developed FNO models with different modes and widths based on MSE
and R2.

Mode Width
MSE

(Training)
R2 (Training)

MSE
(Testing)

R2 (Testing)

5 20 2.5543 0.9945 109.9231 0.7661
5 60 2.0832 0.9955 92.2014 0.8038
5 100 2.0605 0.9956 89.8219 0.8089
5 140 1.943 0.9958 93.8539 0.8003
5 180 1.878 0.996 86.3347 0.8163

10 20 1.8483 0.996 78.7648 0.8324
10 60 1.4814 0.9968 65.4587 0.8607
10 100 1.4196 0.9969 60.6803 0.8709
10 140 1.5745 0.9966 60.8775 0.8705
10 180 1.3643 0.9971 59.8904 0.8726

15 20 1.7253 0.9963 65.5664 0.8605
15 60 1.4007 0.997 51.0625 0.8914
15 100 1.4087 0.997 42.1611 0.9103
15 140 1.505 0.9968 53.6779 0.8858
15 180 1.4966 0.9968 47.783 0.8983

20 20 1.5206 0.9967 60.3367 0.8716
20 60 1.6387 0.9965 43.8621 0.9067
20 100 1.6409 0.9965 46.167 0.9018
20 140 1.5687 0.9966 44.5223 0.9053
20 180 1.7145 0.9963 46.8985 0.9002

To assess whether downsampling has a positive or negative impact on the FNO model
performance with respect to small-shape data (in the dataset modeled: 30 × 30), a down-
sampling rate was set to 2. By applying that rate, the data shape was reduced to 15 × 15,
which led to poor prediction results. For example, with modes = 10 and width = 100,
the FNO model achieved pressure predictions with MSE of 27.3128 and R2 of 0.9411 for the
training subset, and with MSE of 410.7709 and R2 of 0.1259 for the testing subset. As to be
expected, further downsampling of the initial case caused prediction accuracy to deteriorate
further. A likely explanation for this outcome is that the size of the grid space controls the
maximum allowable number of modes. This means that by downsampling, the allowable
number of FNO modes also decreases. Meantime, because CNN acts on discretized vectors,
downsampling with CNN is not reasonable.

In order to improve visualization of the pressure changes occurring over the defined
shapes, three examples are illustrated for selected training (Figure 4) and testing (Figure 5)
subsets. The plots in the left-side columns display the permeability fields, for representative
sample grids. The plots in the left-central columns display the pressure distribution
derived by FEM (considered to be true distribution). The plots in the right-central columns
display the predicted pressure distributions of the best-performing FNO model developed.
The plots in the right-side columns display the pressure difference between the FEM
and FNO outputs [p(FNO) − p(FEM)]. Generally, there was a very close match between
the true pressure distributions and those predicted by the FNO model, especially for the
training dataset.

251

Algorithms 2023, 16, 24

Figure 4. A comparison between the actual pressure distributions and those obtained by FNO for
three representative training subset samples. The pressure difference is based on a point-by-point
absolute error. Outputs are displayed as rectangles rather than squares due to a scaling issue.

The prediction performance of the CNN model is similar to that of the FNO model
in terms of R2 with regard to the training subset (Table 2). Indeed, the MSE generated by
the CNN model (0.3074) is slightly less than that generated by the FNO model (1.4087).
Nonetheless, the FNO model clearly provided superior results in terms of R2 and MSE
when the trained models were applied to the testing data subset. The results (Table 2)
suggest that whereas the trained FNO model is well-fitted to the dataset, the trained CNN
model is somewhat over-fitted to the same dataset.

Table 2. A comparison between the performance of the best-performing FNO model and the CNN
model in terms of MSE and R2.

Model MSE (Training) R2 (Training) MSE (Testing) R2 (Testing)

FNO
(mode = 15 and

width = 100)
1.4087 0.997 42.1611 0.9103

CNN 0.3074 0.9993 86.1818 0.8166

252

Algorithms 2023, 16, 24

Figure 5. A comparison between the actual pressure distributions and those obtained by FNO for
three representative testing subset samples. The pressure difference is based on a point-by-point
absolute error. Outputs are displayed as rectangles rather than squares due to a scaling issue.

5. Discussion

The FNO model is underpinned by a rigorous mathematical methodology, as described.
Furthermore, the statistical/graphical pressure prediction results associated with the small-
size grids simplistically simulating fluid flow in a subsurface reservoir indicate promising
prediction accuracy, which outperforms that of a CNN model. However, there is a drawback
associated with the FNO model applied to these small-size grids. As with other data-driven
ML/DL methods, FNO relies on the number of data samples it is provided with, and it
may require a large number of small-size grids to adequately train it to fully learn the full
range of possible variations in complex subsurface systems. For this reason, FNO was
applied to a relatively simple example dataset, i.e., based on relatively limited assumptions
of Km = 1 md, Kf = 1000 md, and Nf = 5. As opposed to data-driven neural networks
such as FNO, which rely exclusively on the provided data points, Physics-Informed Neural
Networks (PINNs) use the PDE itself as a data source. In PINNs, the PDEs are explicitly
encoded into the NN via automatic differentiation algorithms. The weighted summation of
the MSE of the PDE residuals, BCs, ICs, and possibly known solution points could then be
minimized as a loss function based on the NN parameters. Therefore, it could be beneficial
to combine PINN and FNO to find out how the performance changes compared to a
stand-alone FNO. In this sense, the model uses available data and/or physics constraints to

253

Algorithms 2023, 16, 24

learn the solution operator, conquering the limitations of purely data-driven and physics-
based techniques.

6. Conclusions

Classical NNs attempt to learn mappings between finite-dimensional Euclidean spaces,
making them confined to a particular discretization. On the other hand, the FNO, as a
mesh-independent algorithm, tries to learn function-to-function mappings. This makes
it possible for FNO to be trained on one mesh and subsequently assessed on another.
This study further extended the capabilities of FNO by applying it to a new simulated
dataset made up of small-shape samples. The generated dataset simulates single-phase
fluid flow in a porous reservoir assessed by 1700 2D grid samples, each constructed as
a unit square with a 30 × 30 uniform mesh. The models of FNO and CNN are trained
to predict the pressure distribution of each grid sample based on its permeability field.
The statistical-graphical results confirm the good ability of the FNO to predict the pressure
distribution based on the permeability field. The FNO model provided better prediction
performance than the CNN model when applied to the testing dataset. Analysis of the
results leads to three recommendations for future research. These are: (i) training the FNO
models for fluid flow in porous media with more data covering a wider range of matrix and
fracture permeabilities and a variable number of fractures in each small-shape grid sample,
(ii) applying FNO to solve other types of small-shape data problems, and (iii) designing
and testing novel more complex FNO architectures.

Author Contributions: Conceptualization, A.C. and J.C.; methodology, A.C.; formal analysis, A.C.,
J.C. and D.A.W.; data curation, A.C. and J.C.; writing original draft, A.C.; writing—review and editing
by A.C., D.A.W. and F.C.; visualization, A.C.; supervision, J.C., F.C. and F.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Key Program Special Fund in XJTLU (KSF-E-
50), XJTLU Postgraduate Research Scholarship (PGRS1912009), and XJTLU Research Development
Funding (RDF-19-01-15).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and supporting the findings of this article are
obtainable from the corresponding author(s) upon reasonable request.

Acknowledgments: We would like to thank Zongyi Li for clarifying some points related to FNO.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

a0 first term of an
an Fourier series coefficient
BC Boundary Condition
BN Batch Normalization
bn Fourier series coefficient
CNN Convolutional Neural Network
CONV convolutional layers
DL Deep Learning
Δp Laplace pressure
f source term
F Fourier transform
F−1 inverse Fourier transform
FC Fully Connected
FEM Finite Element Method

254

Algorithms 2023, 16, 24

FNO Fourier Neural Operator
i imaginary number (

√−1)
IC Initial Condition
I(x, y) input layer
Kf permeability of the fracture
Km permeability of the matrix
LES Large Eddy Simulation
ML Machine Learning
Nf number of fractures
MSE Mean Squared Error
μ fluid viscosity

NN Neural Network
∇p gradient pressure (

∂p
∂x , ∂p

∂y)

∇.u divergence velocity (∂ux
∂x +

∂uy
∂y)

ODE Ordinary Differential Equation
O(x, y) output layer
PDE Partial Differential Equation
PINN Physics-Informed Neural Network
R linear transform
R2 coefficient of determination
s angular frequency
k permeability
u Darcy velocity
W local linear transform
Z0(x, y) higher-dimension channel space
Z4 output of the fourth (final) Fourier layer

References

1. Golub, G.H.; Ortega, J.M. Scientific Computing and Differential Equations: An Introduction to Numerical Methods; Academic Press:
Cambridge, MA, USA, 1992.

2. Tao, Z.; Cui, Z.; Yu, J.; Khayatnezhad, M. Finite difference modelings of groundwater flow for constructing artificial recharge
structures. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 1503–1514. [CrossRef]

3. Fathollahi, R.; Hesaraki, S.; Bostani, A.; Shahriyari, E.; Shafiee, H.; Pasha, P.; Chari, F.N.; Ganji, D.D. Applying numerical and
computational methods to investigate the changes in the fluid parameters of the fluid passing over fins of different shapes with
the finite element method. Int. J. Thermofluids 2022, 15, 100187. [CrossRef]

4. Afzal, A.; Saleel, C.A.; Prashantha, K.; Bhattacharyya, S.; Sadhikh, M. Parallel finite volume method-based fluid flow computations
using OpenMP and CUDA applying different schemes. J. Therm. Anal. Calorim. 2021, 145, 1891–1909. [CrossRef]

5. Han, C.; Wang, Y.L.; Li, Z.Y. Numerical Solutions of Space Fractional Variable-Coefficient Kdv–Modified Kdv Equation by Fourier
Spectral Method. Fractals 2021, 29, 2150246. [CrossRef]

6. Bhardwaj, A.; Kumar, A. A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. Appl.
Numer. Math. 2021, 160, 146–165. [CrossRef]

7. Keybondorian, E.; Soltani Soulgani, B.; Bemani, A. Application of ANFIS-GA algorithm for forecasting oil flocculated asphaltene
weight percentage in different operation conditions. Pet. Sci. Technol. 2018, 36, 862–868. [CrossRef]

8. Mohammadi, M.; Safari, M.; Ghasemi, M.; Daryasafar, A.; Sedighi, M. Asphaltene adsorption using green nanocomposites:
Experimental study and adaptive neuro-fuzzy interference system modeling. J. Pet. Sci. Eng. 2019, 177, 1103–1113. [CrossRef]

9. Mai, H.; Le, T.C.; Chen, D.; Winkler, D.A.; Caruso, R.A. Machine learning for electrocatalyst and photocatalyst design and
discovery. Chem. Rev. 2022, 122, 13478–13515. [CrossRef] [PubMed]

10. Kazemi, P.; Ghisi, A.; Mariani, S. Classification of the Structural Behavior of Tall Buildings with a Diagrid Structure: A Machine
Learning-Based Approach. Algorithms 2022, 15, 349. [CrossRef]

11. Chen, W.; Wang, S.; Zhang, X.; Yao, L.; Yue, L.; Qian, B.; Li, X. EEG-based motion intention recognition via multi-task RNNs. In
Proceedings of the 2018 SIAM International Conference on Data Mining, SIAM, San Diego, CA, USA, 3–5 May 2018; pp. 279–287.

12. Choubineh, A.; Chen, J.; Coenen, F.; Ma, F. An innovative application of deep learning in multiscale modeling of subsurface fluid
flow: Reconstructing the basis functions of the mixed GMsFEM. J. Pet. Sci. Eng. 2022, 216, 110751. [CrossRef]

13. Choubineh, A.; Chen, J.; Coenen, F.; Ma, F. A quantitative insight into the role of skip connections in deep neural networks of low
complexity: A case study directed at fluid flow modeling. J. Comput. Inf. Sci. Eng. 2022, 23, 014502. [CrossRef]

14. Pawar, P.; Ainapure, B.; Rashid, M.; Ahmad, N.; Alotaibi, A.; Alshamrani, S.S. Deep Learning Approach for the Detection of
Noise Type in Ancient Images. Sustainability 2022, 14, 11786. [CrossRef]

255

Algorithms 2023, 16, 24

15. Mijalkovic, J.; Spognardi, A. Reducing the False Negative Rate in Deep Learning Based Network Intrusion Detection Systems.
Algorithms 2022, 15, 258. [CrossRef]

16. Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier neural operator for
parametric partial differential equations. arXiv 2020, arXiv:2010.08895.

17. Gallant, A.R.; White, H. There exists a neural network that does not make avoidable mistakes. In Proceedings of the ICNN,
San Diego, CA, USA, 24–27 July 1988; pp. 657–664.

18. Silvescu, A. Fourier neural networks. In Proceedings of the IJCNN’99, International Joint Conference on Neural Networks,
Proceedings (Cat. No. 99CH36339), Washington, DC, USA, 10–16 July 1999; Volume 1, pp. 488–491.

19. Liu, S. Fourier neural network for machine learning. In Proceedings of the 2013 International Conference on Machine Learning
and Cybernetics, Tianjin, China, 14–17 July 2013; Volume 1, pp. 285–290.

20. Wen, G.; Li, Z.; Azizzadenesheli, K.; Anandkumar, A.; Benson, S.M. U-FNO—An enhanced Fourier neural operator-based
deep-learning model for multiphase flow. Adv. Water Resour. 2022, 163, 104180. [CrossRef]

21. Rashid, M.M.; Pittie, T.; Chakraborty, S.; Krishnan, N.A. Learning the stress-strain fields in digital composites using fourier neural
operator. iScience 2022, 105452. [CrossRef] [PubMed]

22. Li, Z.; Peng, W.; Yuan, Z.; Wang, J. Fourier neural operator approach to large eddy simulation of three-dimensional turbulence.
Theor. Appl. Mech. Lett. 2022, 100389. [CrossRef]

23. Johnny, W.; Brigido, H.; Ladeira, M.; Souza, J.C.F. Fourier Neural Operator for Image Classification. In Proceedings of the 2022
17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6.

24. Chen, Z. Reservoir Simulation: Mathematical Techniques in Oil Recovery; SIAM: Philadelphia, PA, USA, 2007.
25. Fukunaga, K.; Koontz, W.L. Application of the Karhunen-Loeve expansion to feature selection and ordering. IEEE Trans. Comput.

1970, 100, 311–318. [CrossRef]
26. Lasser, R. Introduction to Fourier Series; CRC Press: Boca Raton, FL, USA, 1996; Volume 199.
27. Strichartz, R.S. A Guide to Distribution Theory and Fourier Transforms; World Scientific Publishing Company: Hackensack, NJ,

USA, 2003.
28. Subramanian, V. Deep Learning with PyTorch: A Practical Approach to Building Neural Network Models Using PyTorch; Packt Publishing

Ltd.: Birmingham, UK, 2018.
29. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of adam and beyond. arXiv 2019, arXiv:1904.09237.
30. Nussbaumer, H.J. The fast Fourier transform. In Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg,

Germany, 1981; pp. 80–111.
31. Joseph, F.J.J.; Nonsiri, S.; Monsakul, A. Keras and TensorFlow: A hands-on experience. In Advanced Deep Learning for Engineers

and Scientists; Springer: Cham, Switzerland, 2021; pp. 85–111.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

256

Citation: Han, T.; Ponduru, S.A.;

Reka, A.; Huang, J.; Sant, G.;

Kumar, A. Predicting Dissolution

Kinetics of Tricalcium Silicate Using

Deep Learning and Analytical

Models. Algorithms 2023, 16, 7.

https://doi.org/10.3390/a16010007

Academic Editors: Xiang Zhang

and Xiaoxiao Li

Received: 14 November 2022

Revised: 19 December 2022

Accepted: 21 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Predicting Dissolution Kinetics of Tricalcium Silicate Using
Deep Learning and Analytical Models

Taihao Han 1, Sai Akshay Ponduru 1, Arianit Reka 1,2, Jie Huang 3, Gaurav Sant 4 and Aditya Kumar 1,*

1 Department of Materials Science and Engineering, Missouri University of Science and Technology,
Rolla, MO 65409, USA

2 Faculty of Natural Sciences and Mathematics, University of Tetova, 1220 Tetovo, North Macedonia
3 Department of Electrical and Computer Engineering, Missouri University of Science and Technology,

Rolla, MO 65409, USA
4 Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
* Correspondence: kumarad@mst.edu; Tel.: +1-573-341-6994; Fax: +1-573-341-6934

Abstract: The dissolution kinetics of Portland cement is a critical factor in controlling the hydration
reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in
Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions
and changes to particle surfaces. As a result, current analytical models are unable to accurately
predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect
to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of
C3S in the undersaturated solvent. The DF model takes into account several variables, including
the measurement method (i.e., reactor connected to inductive coupled plasma spectrometer and flow
chamber with vertical scanning interferometry), temperature, and physicochemical properties of solvents.
Next, the DF model evaluates the influence of each variable on the dissolution rate of C3S, and this
information is used to develop a closed-form analytical model that can predict the dissolution rate of
C3S. The coefficients and constant of the analytical model are optimized in two scenarios: generic and
alkaline solvents. The results show that both the DF and analytical models are able to produce reliable
predictions of the dissolution rate of C3S when it is undersaturated and far from equilibrium.

Keywords: tricalcium silicate; analytical model; ion activity; dissolution kinetics; deep forest

1. Introduction

Portland cement (PC) is the fundamental material for modern infrastructure, but its
production contributes significantly to global CO2 emissions, accounting for about 9% of
total emissions [1–3]. To improve the sustainability and performance of PC, it is important to
understand the hydration reaction of its primary component, tricalcium silicate (C3S). C3S
is the most abundant component in PC, making up more than 50% of its composition [4–6].
When C3S reacts with water, it undergoes a series of chemical reactions that result in
the dissolution of calcium and silicate ions, followed by the formation of calcium silicate
hydrate and portlandite [4]. While the phase transformations that occur at later stages of
the hydration are well documented [4,7], the dissolution kinetics of C3S at early stages
remains a controversial subject. However, it is important to understand the dissolution
kinetics of C3S when it is undersaturated with respect to solvent. The undersaturation
of C3S solution presents the initial and induction periods of cement hydration [4,6]. The
dissolution mechanisms of C3S are different when the solution is in undersaturation and
saturation (i.e., hydration products form) [6,8]. By studying the dissolution behaviors of
C3S, we can gain a better understanding of the factors that affect the hydration kinetics of
cement. This knowledge can be used to develop novel cement formulations and improve
cement performance.

Algorithms 2023, 16, 7. https://doi.org/10.3390/a16010007 https://www.mdpi.com/journal/algorithms
257

Algorithms 2023, 16, 7

Despite many studies that have sought to uncover the mechanisms (e.g., protective
phase [9–11] and double layer theory [12]) behind the dissolution of C3S and minerals in
recent decades, a definitive rate-controlling mechanism remains elusive due to the complex
interaction of physicochemical parameters between solids and aqueous solvents. The
most widely accepted theory to explain the dissolution kinetics of C3S and minerals is the
inverse crystal nucleation theory [6,13,14]. This theory posits that, similar to the process
of crystal growth, the dissolution of C3S and minerals is primarily determined by the
density of pre-existing steps on the surface of minerals [14]. These steps are formed by
dislocation defects and the nucleation of two-dimensional vacancy islands at impurities
or homogenous sites. The growth of vacancy islands on a surface is determined by the
Gibbs–Thomson effect, a thermodynamic principle that dictates their critical size [15,16]. If
a vacancy exceeds this critical size, it will continue to grow. At the critical size, the free
energy change reaches a maximum, creating an energy barrier that must be overcome for
vacancy growth to continue. The energy barriers that must be overcome by the vacancy
islands have a proportional relationship with the interfacial energy, but an inverse relation-
ship with the degree of undersaturation [15,16]. While the solution is near the equilibrium,
the density of steps of the solid is dominated by dislocation defects, as the energy barriers
are too high for vacancy islands to overcome.

Except for surface defects, other experimental parameters—for example, solvent chem-
istry [8,17], surface geometry [18–23], and mineral composition [24–26]—also substantially
influence the dissolution kinetics of C3S and minerals. By incorporating these parameters
into analytical models, it is possible to reveal underlying structures between dissolution
kinetics and physicochemical properties of minerals and solvents. The following review
focuses on existing analytical models (shown in Table 1) that have been used to predict
the dissolution kinetics of C3S and minerals. Some of these models have been successful
in accurately predicting the dissolution kinetics of minerals. The symbols used in these
models are defined as follows: ΔGr is the Gibbs free energy of the overall reaction; T is the
temperature; R is the gas constant; A is the effective surface area of material; ai is the ion
activity of species i; Ea is the activation energy; n, ni, k, and ki are constants; and g(I) is the
function of ionic strength.

The analytical model developed by Burch et al. [27] is based on the transition state
theory and the Burton–Cabrera–Frank theory. It shows that the dissolution rate of a min-
eral depends exponentially on the Gibbs free energy of the overall dissolution and the
temperature. However, this model cannot accurately predict the dissolution kinetics of
a solid–solvent system that is near the equilibrium. This is because the model does not
account for the transition from step retreat to dislocation-controlled dissolution. The model
developed by Lasaga et al. [28] accounts for various factors such as surface area, tempera-
ture, ionic strength, H+ concentration in the solvent, and the change in Gibbs free energy
related to dissolution. This model is widely used in the cement community to predict the
dissolution kinetics of C3S [6]. In addition to modeling from a thermodynamic perspective,
several studies [29–33] have explained the dissolution kinetics of minerals using the ion
leaching theory. Strachan’s model [29] accounts for both H+ and OH− in the leaching
process, as these ions leach species from mineral surfaces with different activation energies.
Other studies [32–36] have found that cations (excluding H+) in solvents can also contribute
to mineral surface leaching. Oelkers et al. [32] have emphasized the role of the ion activity
ratio of H+ to cations in mineral dissolution kinetics. This model divides the process into
two scenarios: if the ion activity ratio is small, a large number of cations remain on the
material surface, which dominates the leaching and dissolution processes; if the ratio is
large, the dissolution rate is independent of cations. This model has been used to predict
the dissolution kinetics of various minerals [33].

258

Algorithms 2023, 16, 7

Table 1. Summary of current dissolution kinetics models for C3S and minerals.

Rate = k1

[
1 − exp

(
−n

(
ΔGr
RT

)n1
)]

+ k2

[
1 − exp

(
−ΔGr

RT

)]n2
Burch et al. [27]

Rate = k0·Amin· exp
(
− Ea

RT

)
·anH+

H+ ·∏
i

ani
i ·g(I)· f (ΔGr) Lasaga et al. [28]

Rate = k
[

anOH−
H+ + anOH−

OH−
]

Strachan [29]

Rate = k
i

∏
i=1,i �=k

⎡⎢⎣ ki

(
aVi

H+

aVi
Mi

)n

1+ki

(
aVi

H+

aVi
Mi

)n

⎤⎥⎦ Oelkers et al. [32]

Although previous studies have proposed various models for predicting dissolution
kinetics of minerals based on disparate theories, none of these models can predict the
dissolution kinetics of C3S in a high-fidelity manner with a coefficient of determination (R2)
above 0.90. This is because there are several knowledge gaps in the state-of-the-art analytical
models. First, it is not possible to account for all the influential variables (e.g., ions in the
solvent; physicochemical properties of C3S particles; temperature; etc.) in a single analytical
model. Moreover, it is difficult to incorporate a variable into analytical models without
a clear understanding of its role in the dissolution process. Next, coefficients are not generic,
thus requiring additional calibration while applying the model to a new C3S-solvent
systems. Lastly, some parameters (e.g., ion activity; Gibbs free energy; activation energy;
etc.) are obtained from additional quantitative and qualitative analyses of experimental
results, which makes the model difficult to use and increases the likelihood of human error.

Measuring the dissolution rate of C3S is a challenge because the solubility of calcium
silicate hydrate is much lower than that of C3S, which means calcium silicate hydrate will
precipitate before C3S completely dissolves, unless a very small amount of C3S is used.
As a result, only a few studies have attempted to measure the C3S dissolution rate. Those
studies have applied two different methods to measure the dissolution rate of C3S: reactor
connected to inductive coupled plasma (ICP) spectrometer [37,38]; and flow chamber with vertical
scanning interferometry (VSI) [39]. In the first method, C3S particles dissolve into the solvent
in a reactor, and the ICP spectrometer measures ion concentrations of the solution for the
first couple of minutes to determine the dissolution rate. The change in C3S surface area
can be ignored because of the short measurement duration. In the second method, the
solvent is flushed over the surface of the C3S bulk for a period of time, and the VSI is
used to measure the leaching depth and determine the dissolution rate. Because these
two methods are based on different experimental principles and use different parameters,
a single analytical model cannot be used to predict the dissolution rate from both methods.

Machine learning (ML), a data-driven framework, has been employed in many stud-
ies [40–50] to predict properties for multi-component systems (e.g., cement, glass, and
biomaterials) in a high-fidelity manner. ML models acquire knowledge of underlying input-
output correlations (all possible correlations can be included) from a training dataset, and
subsequently utilize such knowledge to produce predictions for new mixture designs, with-
out requiring an understanding of the mechanisms behind the materials. Elçiçek et al. [49]
have successfully employed an artificial neural network to discover the underlying struc-
ture between the dissolution kinetics of colemanite, a type of boron mineral, in complex
dissolution environments. A decision-tree-based ensemble model has demonstrated re-
markable performance, in terms of R2 ≈ 0.98, on predictions of dissolution rate for bioactive
glasses in various pH environments [40]. ML models incorporating topological constraints
of glasses have been employed to predict and extrapolate dissolution kinetics of silicate
glasses without violating fundamental material laws [43]. Although extensive studies have
applied ML methods to predictions of material dissolution kinetics, there is currently no
literature that shows that an ML model is a valid approach to predict the dissolution rate of
C3S when it is undersaturated with respect to the solvent.

259

Algorithms 2023, 16, 7

In this study, a deep forest (DF) model is trained using a heterogenous database of C3S
dissolution rate measured by the reactor connected to ICP spectrometer and flow chamber with
VSI methods. The rigorously trained model produces high-fidelity, a priori predictions of
the C3S dissolution rate. It is notable that ML models can predict the hydration kinetics of
PC at any given age, which has been shown in our previous studies [51–53]. This study
only focuses on the dissolution kinetics at the initial period (i.e., undersaturated solution)
because the hydration products precipitate and cause the solution to reach saturation after
a short time of the dissolution of C3S. Then, the influence of each input variable on the
dissolution rate is evaluated, and this knowledge is used to develop a simple, closed-form
analytical model based on fundamental thermodynamic and kinetic frameworks, such as
ion activity, ion strength, and ion activity product (IAP). The analytical model reveals fun-
damental correlations behind the C3S dissolution process, which are the critical information
that cannot be provided by ML models due to their “black-box” nature. Furthermore, the
analytical model can be used by all end users, regardless of their background or of their
access to ML models. Overall, this study is the first to develop an ML model to predict
with high fidelity the dissolution kinetics of C3S dissolved in various solvents when it is
undersaturated and far from equilibrium.

2. Database Collection

The C3S dissolution database used in this study consists of 292 data records, which
were consolidated from Nicoleau et al. [37,38] and Juilland and Gallucci [39]. However,
these data records are not compatible with our database due to differences in experimental
parameters. For example, Bellmann et al. [54] measured the dissolution rate of C3S at
the induction period and later ages; Damidot et al. [55] and Barret et al. [56] used the
filter dissolution technique; and Robin et al. [57] used the face-specific dissolution method
to measure the dissolution rate of C3S. The database used in this study contains 11 in-
put parameters: temperature (◦C); specific surface area (SSA) of C3S (m2/g); flow rate
(mL/min/mm2) initial concentration of Na, Cl, Ca, Si, Cs, K, and SO4 (mM); and initial pH
(unitless). The output is the dissolution rate of C3S (umol/m2/s). There are 92 data-records
from Nicoleau et al. [37,38] measured by the reactor connected to ICP spectrometer method.
Since the flow rate is not applicable in this method, it was set as 0. Several solvents with
different ions were utilized in the reactor connected to ICP spectrometer method. There were
200 data records from Juilland and Gallucci [39] measured with the flow chamber with VSI
method. Moreover, since the SSA of C3S is not applicable in this method, it was set as
0. The solvents only contained calcium ions at different concentration levels. Four statis-
tical parameters associated with inputs and output of the C3S dissolution database are
summarized in Table 2.

Table 2. Four statistical parameters pertaining to the 12 parameters (11 inputs and 1 output in bold)
of the C3S dissolution database. The database consists of 292 unique data records.

Attribute Unit Min. Max. Mean Std. Dev.

Temperature ◦C 10 60 21.07 5.437
SSA of C3S m2/g 0 0.400 0.112 0.171
Flow Rate mL/min/mm2 0 1273 79.22 201.8

Initial Na Concentration mM 0 1000 29.19 101.5
Initial Cl Concentration mM 0 1000 18.74 113.6
Initial Ca Concentration mM 0 20 5.824 6.561
Initial Si Concentration mM 0 0.876 0.006 0.062
Initial Cs Concentration mM 0 1000 5.513 65.45
Initial K Concentration mM 0 1000 5.513 65.45

Initial SO4 Concentration mM 0 200 8.904 34.95
Initial pH Unitless 6.516 13.09 10.69 2.316

C3S Dissolution rate umol/m2/s 0.3800 154.6 27.92 32.61

260

Algorithms 2023, 16, 7

The ML model was trained by 219 randomly selected data records from the original
database. The remaining 73 data records were used to validate the performance of the
model. The prediction performance was evaluated by five statistical parameters: mean
absolute error (MAE); coefficient of determination (R2); mean absolute percentage error
(MAPE); Pearson correlation coefficient (R); and root mean square error (RMSE).

3. Deep Forest Model

In this study, a DF model was utilized to predict C3S dissolution kinetics based on
the physicochemical properties of C3S and solvents. The DF model was developed based
on the modified classification-and-regression tree (CART) model with a combination of
bagging and random selection techniques [58,59]. The DF model grows a large number of
independent trees through a recursive binary split at each node [58]. To be specific, the
root node receives information from a bootstrap extracted from the training dataset, and
then splits to create two child nodes. This process is repeated until the homogeneity of the
child nodes cannot be improved. The tree can grow as deep as it can because none of the
usual pruning or smoothing algorithms are applied. This allows the DF model to maintain
diversity among trees. The DF model usually contains hundreds of independent trees.
Usually, a large-size forest is required to produce reliable predictions while the database
contains thousands of data-records. When a testing dataset is applied to a trained DF model,
trees produce independent outputs, and subsequently a bagging algorithm averages them
to derive the final output. A unique feature (i.e., two-stage randomization) allows the DF
model to reduce the variance and bias errors in predictions. The first randomization is
that the bootstrap randomly selects data records from the parent database. Second, at each
split, several randomly selected variables, instead of all variables, are used to determine
the optimal split. The randomization features ensure the decorrelation between trees.
Furthermore, due to the growth of a large number of trees, errors from generalization
and the likelihood of overfitting are minimized. Owing to those unique features, the DF
model can effectively learn input–output correlations from complex databases. Overall, the
architecture of the DF can be summarized in the following steps:

N bootstrap samples are randomly selected from the training dataset. N is equal to
the number of trees. In this study, N was 200. Each bootstrap can contain ~66% [60–62] of
the data records of the training dataset. The remaining data records are “out-of-bag” (OOB)
data [58].

• Each bootstrap iteration in the DF model grows a single tree. At each split, a subset of
input variables is randomly selected and used to determine the optimal split scenario.
The number of leaves, or the subset size, was set to five in this study. The cost function
(i.e., MAE) is used to evaluate all split scenarios, and the scenario with the minimum
cost is selected. Unlike other models, the DF model allows trees to grow to their
maximum size without pruning or smoothing.

• Next, the DF model produces predictions for OOB data. The DF model aggregates
and averages these predictions to produce an overall OOB prediction and OOB error
rate. This OOB error rate can be used to evaluate the importance of each variable in
influencing the model’s output.

• Lastly, at the testing stage, the DF model averages outcomes from trees to produce
predictions for a new data domain.

4. Predictions from Deep Forest Model

To optimize the DF model’s performance on new data records, it is crucial to meet
the following criteria. First, the model requires sufficient and diverse data records to
learn adequate input–output correlations (e.g., pH–dissolution rate). Second, outliers
should be included in the database to ensure that the DF model comprehensively learns
input–output correlations [63,64]. Herein, the outliers indicated that one or more data-
records—although measured and reported properly—did not fit into the trends exhibited
by the majority of the data records in the neighborhood because of some underlying

261

Algorithms 2023, 16, 7

(chemical, or kinetic, or thermodynamic) mechanism. Third, it is important to avoid both
underfitting and overfitting to datasets. Underfitting occurs when the model is unable
to learn the underlying correlations in the data, often due to a small training dataset that
does not contain enough information for the model to learn from. On the other hand,
overfitting occurs when the model learns local trends instead of global ones from highly
similar data, resulting in poor performance on the testing dataset. To address this issue, the
hyperparameters of the DF model were the 10-fold cross-validation (CV) [41,65] and grid-
search methods [48,52]. These methods can help to prevent underfitting and overfitting
by evaluating the model’s performance on multiple splits of the training data and using
a range of different hyperparameter settings, respectively. Predictions of C3S dissolution
rate (from training and testing datasets), as produced by the DF model, are demonstrated
in Figure 1. The five statistical parameters listed in Table 3 provide further evidence of the
model’s performance and accuracy. Overall, by meeting the aforementioned criteria, the
DF model can be trained to make highly accurate predictions on new data records.

Figure 1. DF model’s predictions of C3S dissolution rate against experimental measurements of
training and testing datasets. Coefficient of determination (R2) is shown in the legend, providing
a measure of the prediction performance. The dashed line represents the ideal prediction.

Table 3. R, R2, MAE, MAPE, and RMSE evaluating prediction accuracy of the DF model against the
testing dataset.

Model Name R R2 MAE MAPE RMSE

DF
Unitless Unitless μmol/m2/s % μmol/m2/s

0.9672 0.9354 5.297 47.33 9.373

The predicted results from the DF model for the dissolution rate of C3S, as shown in
Figure 1 and Table 3, demonstrate the model’s accuracy and reliability. The R2 and RMSE
values for the dissolution rate predictions were 0.94 and 9.4 μmol/m2/s, respectively,
indicating a strong correlation between the predicted and measured values. In Figure 1,
the predictions show a larger deviation at low dissolution rates than at high dissolution
rates, but this is largely due to the use of a logarithmic scale on the y-axis. The prediction
errors, as measured by the mean absolute error (MAE), were 2.01 μmol/m2/s for low
dissolution rates (below 20 μmol/m2/s) and 8.67 μ mol/m2/s for high dissolution rates,
indicating that the DF model is able to produce reliable predictions of the dissolution rate
of C3S, regardless of the experimental method. This is a significant improvement over
analytical models, which typically have a prediction accuracy of only 0.78 in terms of R2 for
silicate compounds [66]. The capability of the DF model to yield reliable predictions of C3S
dissolution rate is largely due to its inherent architecture [59,60,62]. First, by growing a large
number (more than 100) of independent trees without smoothing or pruning, the model is

262

Algorithms 2023, 16, 7

able to significantly reduce the variance error in its output. Next, bias error is minimized by
adopting the randomization at bootstrap and feature selections [59], which ensures that the
output of one tree does not interfere with that of others. Lastly, the utilization of the 10-fold
cross-validation method [65] and grid-search method [48,67] autonomously optimized the
hyper-parameters so as to establish optimal input–output correlations as well as account
for outliers.

The DF model can estimate the influence (in terms of importance) of input variables
on the dissolution rate of C3S. The results of this analysis are shown in Figure 2, which is
organized in descending order based on the magnitude of variables’ influence. This rank
is also utilized as a guide for feature selection in the development of the analytical model
in Section 5.

Figure 2. The influence (importance) of input variables based on their contributions towards the C3S
dissolution rate. The permutation of the rank is shown in a descending manner, where variables on
the left side have more influence.

As can be seen in Figure 2, the initial pH, Ca concentration, SSA of C3S, and flow
rate—ranked from high to low—exhibited the strongest influences on the dissolution rate
of C3S. This is expected because the Ca and OH ions (in terms of pH value) are known
to be the main factors that affect the dissolution reaction according to IAP (described in
Section 5) of C3S dissolution, where a high concentration of these ions significantly reduces
the dissolution rate. The SSA of C3S is the third important variable because an increase
in the interface between C3S particles and solvent leads to a monotonical increase of the
dissolution rate [20]. Similarly, the flow rate in the flow chamber with VSI method plays
a significant role, as it determines the speed at which ions are leached from the surface
of the C3S particles, with higher flow rates leading to an increase in the leaching speed.
Temperature is also an important variable, as previous research [27] has shown that the
dissolution rate of minerals increases exponentially with an increase in temperature. Other
ions in the solvent contribute less significantly to the dissolution rate. This is not a surprise,
because no literature has found direct correlations between C3S dissolution rate and those
ions. Interestingly, the Si ion, one of the major ions that affect the dissolution rate of
C3S, was ranked much lower in terms of importance. This is likely because there are
only three solvents in the database that contain Si ions, and the dissolution rates for these
systems show little variation. As a result, the Si ions are less important than they would
be in a larger and more diverse dataset. It should be noted that the importance of input

263

Algorithms 2023, 16, 7

variables can vary depending on the dataset used. Some variables may be found to be more
important in one dataset, while being less significant in another. In this study, only a few
variables were found to have a strong influence on the dissolution rate of C3S. However, in
a different dataset, different variables may exhibit a greater importance.

5. Analytical Model Development

The abovementioned results demonstrate that the DF model can produce predictions
of the dissolution rate of C3S in a high-fidelity manner. However, the use of machine
learning (ML) techniques can have some limitations, such as the “black-box” issue, where
the underlying input–output correlations learned by the model are difficult to interpret.
Additionally, ML models may not be accessible to end users who do not have a program-
ming background. To address these issues, this section introduces an original, closed-form
analytical model that has been distilled from the DF model. This model can be used to
predict the dissolution rate of C3S and provide a better understanding of the input–output
correlations involved.

The development of a reliable analytical model involves a wise selection of input
variables. The inclusion of influential variables is vital to enhance the performance of
the analytical model. Simultaneously, the exclusion of inconsequential variables reduces
the complexity of the model. The new analytical model is developed based on Lasaga’s
model [28], and some new input variables are added to it. We selected Lasaga’s model
as the baseline model because it is the most used model to predict C3S dissolution ki-
netics. This model accounts for the SSA of C3S, solvent pH, temperature, and ions in
solvents. The feature importance, shown in Figure 2, also confirms that those parameters
dominated the dissolution rate of the C3S. It is worth pointing out that only data from
Nicoleau et al. [37,38] was employed to develop the analytical model. This is because the
SSA of C3S is not applicable in Juilland and Gallucci [39].

In the baseline model, the Gibbs free energy of the overall reaction is one of the major
influential variables. To properly quantify this variable, it is important to understand
the dissolution mechanism of C3S. The dissolution process of C3S can be considered as
an inverse nucleation process [13], which is controlled by two major factors: interfacial
properties and the driving force. The interfacial properties include chemical composition,
chemical bond, surface defects, and impurities in crystals. Generally, the dissolution
process can be divided into three steps: (1) horizontal movement at the atomic scale to
form a 2D vacancy; (2) etch pit formation at dislocation; and (3) step retreat at pre-existing
roughness [6,19]. The driving force of the C3S dissolution reaction is defined as the energy
to overcome the activation energy barriers for the first two steps of the dissolution process.
The equation to calculate the driving force is shown in Equation (1) [6,68]:

σ =
Δμ

kT
=

ΔG∗

RT
= ln

(
IAP
KSP

)
(1)

Here, σ is the undersaturation coefficient; Δμ is the difference in chemical potential;
k is the Boltzmann constant; T is the temperature; ΔG∗ is the free energy difference between
the undersaturated solution and the solution in equilibrium; R is the gas constant; IAP
is the ion activity product to reactant species; and KSP is the mineral solubility products.
The dissolution reaction of C3S is expressed in Equation (2) [8], and the IAP is defined in
Equation (3). ai is the ion activity of species i. The chemical equilibrium constant (KSP) for
C3S dissolution has been estimated as 10−17.65 [8,69].

(CaO)3SiO2 + 3H2O → 3Ca2+ + H2SiO2−
4 + 4OH− (2)

IAP = a3
Ca2+ ·a4

OH− ·aH2SO2−
4

(3)

Equation (3) suggests that the value of IAP is solely determined by calcium and
hydroxide ion activity. Thus, a high calcium ion activity leads to an equilibrium for the

264

Algorithms 2023, 16, 7

C3S dissolution, resulting in a slower dissolution rate compared to a solvent without
calcium ions [6,70]. Similarly, a basic solvent significantly decreases the dissolution rate
of C3S by containing a large amount of hydroxide ions. In this study, only H2SiO4

2− was
considered in the IAP calculation because H4SiO4 and H3SiO4

− can deprotonate to form
H2SiO4

2− [71,72]. To clearly observe the influence of IAP on dissolution rate, Figure 3 shows
the correlation between the degree of undersaturation (IAP/Ksp) and the dissolution rate
of C3S. The general trend of the correlation and order of magnitude of changes in the
dissolution rate observed herein are in good agreement with previous studies [6,28]. It is
not surprising that the dissolution rate of C3S decreases as the degree of undersaturation
increases, as a high degree of undersaturation indicates that the solution is approaching
an equilibrium, which reduces the driving force for dissolution.

Figure 3. The correlation between the degree of undersaturation (IAP/Ksp) and the dissolution
rate of C3S. The x-axis shows in a logarithmic scale due to the small magnitude of the degree
of undersaturation.

As previously discussed in the introduction, Strachan [29] has demonstrated that H+

and OH− leach mineral surfaces in different activation energies. Since Lasaga’s model only
accounts for the H+, the new model includes the ion activities of both H+ and OH− in order
to interpret the leaching process. Moreover, especially for C3S dissolution, OH− is one of
the main products of the dissolution reaction, as shown in Equation (2).

Previous studies [32–36] have also shown that the concentration of major cations
(excluding H+) in the solvent can influence the dissolution rate, and this is supported by
the data shown in Figure 2, which highlights the importance of Ca concentration in the
analytical model. However, previous studies have not explored the relationship between
the activity of Ca2+ and the dissolution rate of C3S. Using data from Nicoleau et al. [37,38],
we show this relationship in Figure 4, which plots the natural logarithm of the dissolution
rate of C3S against the initial activity of Ca2+. The correlation is observed as linear (shown
as the red line). This means the relationship between C3S dissolution rate and Ca2+ activity
is exponential. Some outliers can be seen in the Figure, which may be due to the influence
of other parameters, such as temperature and the specific surface area of C3S, on the
dissolution rate. If all other parameters are kept constant, a more ideal linear relationship
should be observed. After embodying OH− and Ca2+, the new analytical model, with
seven input variables, is formed as Equation (4). Here, Ci is the coefficient for each attribute;
T is Temperature (◦C); A is the specific surface area of C3S (m2/g); ai,j is ion activity of
i species at initial/final state (unitless); I is ion strength of initial state (mM); IAP is ion
activity product of final state (unitless); Ksp is C3S solubility product (≈10−17.65 [8,69]).

rate = eC0 ∗ e
C1
T ∗ AC2 ∗ eC3aCa,inital ∗ aC4

OH,inital ∗ aC5
H,inital ∗ IC6 ∗

(
IAP
Ksp

)C7

(4)

265

Algorithms 2023, 16, 7

ln(rate) = C0 +
C1
T +C2 ln(A) + C3aCa,inital + C4 ln(aOH,inital) + C5 ln(aH,inital)

+C6 ln(I) + C7 ln
(

IAP
Ksp

) (5)

Figure 4. The dissolution rate of C3S, expressed in terms of natural logarithm, against the ion activity
of Ca2+ in solvents. The red line indicates the linear correlation.

Phreeqc version 3, a geochemical modeling package, was used to simulate chemical
reactions and ion transportations in natural and polluted water for laboratory and indus-
trial purposes. The program is based on the equilibrium chemistry of aqueous solutions
interacting with other components, including mineral, gas, solid solution, and sorption
surface. The model can produce the concentration of an element, molarity of a compound,
activity of aqueous species, pH, and phase transformation to achieve equilibrium based
on reversible and irreversible chemical reactions [73–75]. In this study, the geochemical
Phreeqc code was employed to calculate ion activity and ion strength of ions in solutions.
Thermodynamic data were obtained from the specific ion interaction theory database to
account for the non-ideality of aqueous solutions and used to calculate the speciation and
saturation index [73,76]. Temperature and concentration of the species are given as initial
conditions with pH as charge balance to calculate the pH, ion strength and ion activity of
Na+, Cl−, OH−, Ca2+, H2SiO4

2−, Cs+, K+, and SO4
2−.

There are seven coefficients and one constant (i.e., Ci) that ought to be optimized.
Two scenarios are considered to optimize the coefficients: (1) C3S dissolves in generic
solvent (pH ≈ 7–13) with a pH range of approximately 7–13, where both H+ and OH− can
leach the surface of C3S; and (2) C3S dissolves in alkaline solvent (pH ≈ 11–13) with a pH
range of approximately 11–13, where OH− is the primary leaching ion. An independent
optimization for the alkaline scenario was performed in order to improve the prediction
accuracy. The optimal values of coefficients were derived from a nonlinear, gradient-descent
scheme [40,42,52,77–79] and Nelder–Mead multi-dimensional simplex algorithm [80,81].

Table 4 shows the optimal coefficients of the analytical model for the generic solvent
scenario. Predicted results of the C3S dissolution rate as produced by the analytical model
based on the coefficient in Table 4 are demonstrated in Figure 5a. Five statistical parameters
pertaining to the predicted results are listed in Table 5. As demonstrated in Figure 5a and
Table 5, the accuracy for predictions made by generic solvent scenario was moderate in terms
of R2 ≈ 0.69 and RMSE ≈ 32.9 μ mol/m2/s. This is expected, because the analytical model
cannot account for all influential factors (e.g., other ions in solvents and some processing
parameters) compared to the DF model. Furthermore, a large deviation of H+ concentration
in neutral and alkaline solvents increases the difficulty of optimizing the simple-structure
analytical model.

266

Algorithms 2023, 16, 7

Table 4. Seven coefficients and one constant (for seven input variables corresponding to the
physicochemical properties of C3S and solvents) optimized for the analytical model of the generic
solvent scenario.

C0 59.7404 C1 −17.0531 C2 −0.3166

C3 −231.8133 C4 1.7087 C5 1.7798

C6 0.0256 C7 −0.0646

(a) (b)

Figure 5. The analytical model’s predictions of C3S dissolution rate against experimental measure-
ments for (a) generic solvent and (b) alkaline solvent. Coefficient of determination (R2) is shown
in the legend, providing a measure of the prediction performance. The dashed line represents the
ideal prediction.

Table 5. R, R2, MAE, MAPE, and RMSE evaluating the prediction performance of the analytical
model for generic and alkaline solvent scenarios against experimental measurements.

Model
Name

R R2 MAE MAPE RMSE

Unitless Unitless μmol/m2/s % μmol/m2/s

Generic Solvent Analytical model 0.8277 0.6851 13.76 55.05 32.90
Alkaline Solvent Analytical model 0.9566 0.9151 4.921 39.77 9.545

Table 6 shows the optimal coefficients of the analytical model for alkaline solvent
scenario. Predicted results of the C3S dissolution rate, as produced by the analytical
model based on the coefficient in Table 6, are demonstrated in Figure 5b. Five statistical
parameters pertaining to the results are listed in Table 5. As shown in Figure 5b and Table 6,
predictions for the dissolution rate of C3S were high-fidelity, with R2 of 0.92 and RMSE of
9.545 μmol/m2/s, respectively. The predictions of the alkaline solvent scenario are superior,
in terms of R2, to those from generic solvent scenario. The high-quality prediction is
expected because the alkaline solvent scenario minimizes the effect from H+; in other words,
the input–output correlations become simpler due to the reduction of the influence of H+.
Therefore, the trend for the simple system can be captured by the analytical model exactly.

267

Algorithms 2023, 16, 7

Table 6. Seven coefficients and one constant (for seven input variables corresponding to the
physicochemical properties of C3S and solvents) optimized for the analytical model of the alka-
line solvent scenario.

C0 −1160.8543 C1 −1476.3562 C2 −0.6632

C3 −256.4132 C4 −37.9113 C5 −37.9089

C6 −0.3445 C7 −0.0978

6. Conclusions

In this study, the DF and analytical models were demonstrated to predict the dissolu-
tion rate of C3S. The DF model was used to predict the dissolution rate of C3S in relation to
temperature, ion concentration in solvent, and pH, which can be directly obtained from
experimental measurements. To the best of the authors’ knowledge, this is the first study to
employ ML to predict the dissolution rate of C3S when it is undersaturated with respect
to a wide range of solvents. Another novel point of this study is the leveraging of the DF
model for evaluating the influence of input variables and using such knowledge to develop
an analytical model.

The database was collected from two distinct experimental setups: reactor connected to
ICP spectrometer and flow chamber with VSI. The DF model was rigorously trained by 75% of
the parent database that consisted of 292 data records. Subsequently, the model was tested
against the remaining 25% of the data records to evaluate prediction performance. The
results demonstrated that the DF model was able to yield reliable predictions, with an R2

value of approximately 0.97, of C3S dissolution rate in the undersaturated solution. The
DF model allows researchers to acquire the dissolution rate of C3S by simply knowing the
ion concentration and temperature of solvents without the cumbersome dissolution experi-
ments. The DF model was also employed to evaluate the influence of input variables on the
dissolution rate of C3S. It was found that the pH value of solvents and the concentration of
Ca2+ exerted significant influences on the dissolution process, while the concentration of
silicate ions had little influence.

The analytical model (only using data from the reactor connected to ICP spectrometer
method) was classified into two scenarios: generic solvent and alkaline solvent. The co-
efficients of the generic solvent and alkaline solvent scenarios were optimized by 92 data
records and 75 data records, respectively. The physiochemical properties—which were
used as inputs for both scenarios—comprised SSA of C3S, temperature, ion activity of Ca2+,
OH−, and H+, ionic strength of solvent, and degree of undersaturation. The results showed
that the analytical model was able to produce reliable predictions of generic solvent with
R ≈ 0.83 and alkaline solvent with R ≈ 0.96 when all coefficients were rigorously opti-
mized. Unlike ML, the analytical model can quantitively interpret aqueous chemistry-
dissolution correlations.

Overall, the DF model is an apposite platform that can be used in the future to study
the dissolution kinetics of cementitious materials. A large volume and diverse database
can further enhance prediction accuracy. By incorporating a wide range of data, the model
can better capture the complex dissolution behavior of cementitious materials. This can
improve the reliability of the model’s predictions, allowing it to be used more effectively
in the design of cementitious materials. Overall, the DF model has the potential to be
a valuable tool for studying the dissolution kinetics of cementitious materials.

Author Contributions: Conceptualization, development, training, and validation of machine learn-
ing and analytical models, and preparation of original manuscript, T.H.; development of analytical
model and preparation of original manuscript, S.A.P.; manuscript review and editing, A.R.; su-
pervision, manuscript review and editing; and funding acquisition, J.H.; supervision, manuscript
review and editing, and funding acquisition, G.S.; conceptualization, manuscript review and edit-
ing, and funding acquisition, A.K. All authors have read and agreed to the published version of
the manuscript.

268

Algorithms 2023, 16, 7

Funding: This study was financially supported by the Leonard Wood Institute (LWI: W911NF-07-
2-0062); the National Science Foundation (NSF-CMMI: 1661609; NSF-CMMI: 1932690; NSF-DMR:
2034856); and the Federal Highway Administration (Award no: 693JJ31950021); the Ministry of
Education and Science of North Macedonia.

Data Availability Statement: The data used in this study are available on request.

Acknowledgments: The authors thank Missouri S&T for providing facilities to accomplish the
experimental and computational work of this research.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Gartner, E.; Hirao, H. A Review of Alternative Approaches to the Reduction of CO2 Emissions Associated with the Manufacture
of the Binder Phase in Concrete. Cem. Concr. Res. 2015, 78 Pt A, 126–142. [CrossRef]

2. Schneider, M. Process Technology for Efficient and Sustainable Cement Production. Cem. Concr. Res. 2015, 78 Pt A, 14–23.
[CrossRef]

3. Ludwig, H.-M.; Zhang, W. Research Review of Cement Clinker Chemistry. Cem. Concr. Res. 2015, 78 Pt A, 24–37. [CrossRef]
4. Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms

of Cement Hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [CrossRef]
5. Juilland, P.; Kumar, A.; Gallucci, E.; Flatt, R.J.; Scrivener, K.L. Effect of Mixing on the Early Hydration of Alite and OPC Systems.

Cem. Concr. Res. 2012, 42, 1175–1188. [CrossRef]
6. Juilland, P.; Gallucci, E.; Flatt, R.; Scrivener, K. Dissolution Theory Applied to the Induction Period in Alite Hydration.

Cem. Concr. Res. 2010, 40, 831–844. [CrossRef]
7. Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997.
8. Oey, T.; Kumar, A.; Falzone, G.; Huang, J.; Kennison, S.; Bauchy, M.; Neithalath, N.; Bullard, J.W.; Sant, G. The Influence of Water

Activity on the Hydration Rate of Tricalcium Silicate. J. Am. Ceram. Soc. 2016, 99, 2481–2492. [CrossRef]
9. Gartner, E.M.; Jennings, H.M. Thermodynamics of Calcium Silicate Hydrates and Their Solutions. J. Am. Ceram. Soc. 1987,

70, 743–749. [CrossRef]
10. Gartner, E.; Gaidis, J.M. Hydration Mechanisms. In Materials Science of Concrete; Skalny, J.P., Ed.; The American Ceramic Society:

Westerville, OH, USA, 1989.
11. Brown, P.W.; Franz, E.; Frohnsdorff, G.; Taylor, H.F.W. Analyses of the Aqueous Phase during Early C3S Hydration.

Cem. Concr. Res. 1984, 14, 257–262. [CrossRef]
12. Tadros, M.E.; Skalny, J.; Kalyoncu, R.S. Early Hydration of Tricalcium Silicate. J. Am. Ceram. Soc. 1976, 59, 344–347. [CrossRef]
13. Cabrera, N.; Levine, M.M. XLV. On the Dislocation Theory of Evaporation of Crystals. Philos. Mag. 1956, 1, 450–458. [CrossRef]
14. Dove, P.M.; Han, N.; De Yoreo, J.J. Mechanisms of Classical Crystal Growth Theory Explain Quartz and Silicate Dissolution

Behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 15357–15362. [CrossRef] [PubMed]
15. Jackson, C.L.; McKenna, G.B. The Melting Behavior of Organic Materials Confined in Porous Solids. J. Chem. Phys. 1990,

93, 9002–9011. [CrossRef]
16. Perez, M. Gibbs–Thomson Effects in Phase Transformations. Scr. Mater. 2005, 52, 709–712. [CrossRef]
17. Cailleteau, C.; Angeli, F.; Devreux, F.; Gin, S.; Jestin, J.; Jollivet, P.; Spalla, O. Insight into Silicate-Glass Corrosion Mechanisms.

Nat. Mater. 2008, 7, 978–983. [CrossRef]
18. Anbeek, C. Surface Roughness of Minerals and Implications for Dissolution Studies. Geochim. Cosmochim. Acta 1992, 56, 1461–1469.

[CrossRef]
19. Brantley, S.L. Kinetics of Mineral Dissolution. In Kinetics of Water-Rock Interaction; Springer: Berlin, Germany, 2008; pp. 151–210.

[CrossRef]
20. Nicoleau, L.; Nonat, A. A New View on the Kinetics of Tricalcium Silicate Hydration. Cem. Concr. Res. 2016, 86, 1–11. [CrossRef]
21. Marchon, D.; Juilland, P.; Gallucci, E.; Frunz, L.; Flatt, R.J. Molecular and Submolecular Scale Effects of Comb-Copolymers on

Tri-Calcium Silicate Reactivity: Toward Molecular Design. J. Am. Ceram. Soc. 2017, 100, 817–841. [CrossRef]
22. Fierens, P.; Kabuema, Y.; Tirlocq, J. Influence de La Temperature de Recuit Sur La Cinetique de l’hydratation Du Silicate Tricalcique.

Cem. Concr. Res. 1982, 12, 455–462. [CrossRef]
23. Fischer, C.; Luttge, A. Pulsating Dissolution of Crystalline Matter. Proc. Natl. Acad. Sci. USA 2018, 115, 897–902. [CrossRef]
24. Casey, W.; Westrich, H. Control of Dissolution Rates of Orthosilicate Minerals by Divalent Metal–Oxygen Bonds. Nature 1992,

355, 157–159. [CrossRef]
25. Ohlin, C.A.; Villa, E.M.; Rustad, J.R.; Casey, W.H. Dissolution of Insulating Oxide Materials at the Molecular Scale. Nat. Mater.

2010, 9, 11–19. [CrossRef] [PubMed]
26. Zhang, L.; Lüttge, A. Aluminosilicate Dissolution Kinetics: A General Stochastic Model. J. Phys. Chem. B 2008, 112, 1736–1742.

[CrossRef] [PubMed]

269

Algorithms 2023, 16, 7

27. Burch, T.E.; Nagy, K.L.; Lasaga, A.C. Free Energy Dependence of Albite Dissolution Kinetics at 80 ◦C and PH 8.8. Chem. Geol.
1993, 105, 137–162. [CrossRef]

28. Lasaga, A.C. Kinetic Theory in the Earth Sciences; Princeton University Press: Princeton, NJ, USA, 1998.
29. Strachan, D. Glass Dissolution Asa Function of PH and Its Implications for Understanding Mechanisms and Future Experiments.

Geochim. Cosmochim. Acta 2017, 219, 111–123. [CrossRef]
30. Ganor, J.; Lasaga, A.C. Simple Mechanistic Models for Inhibition of a Dissolution Reaction. Geochim. Cosmochim. Acta 1998,

62, 1295–1306. [CrossRef]
31. Lasaga, A.C. Chapter 2. Fundamental Approaches in Describing Mineral Dissolution and Precipitation Rates. In Chemical

Weathering Rates of Silicate Minerals; White, A.F., Brantley, S.L., Eds.; De Gruyter: Berlin, Germany, 1995; pp. 23–86.
32. Oelkers, E.H.; Schott, J.; Devidal, J.-L. The Effect of Aluminum, PH, and Chemical Affinity on the Rates of Aluminosilicate

Dissolution Reactions. Geochim. Cosmochim. Acta 1994, 58, 2011–2024. [CrossRef]
33. Oelkers, E.H. General Kinetic Description of Multioxide Silicate Mineral and Glass Dissolution. Geochim. Cosmochim. Acta 2001,

65, 3703–3719. [CrossRef]
34. Oelkers, E.H.; Schott, J. An Experimental Study of Enstatite Dissolution Rates as a Function of PH, Temperature, and Aqueous Mg

and Si Concentration, and the Mechanism of Pyroxene/Pyroxenoid Dissolution. Geochim. Cosmochim. Acta 2001, 65, 1219–1231.
[CrossRef]

35. Hellmann, R. The Albite-Water System: Part II. The Time-Evolution of the Stoichiometry of Dissolution as a Function of pH at
100, 200, and 300 ◦C. Geochim. Cosmochim. Acta 1995, 59, 1669–1697. [CrossRef]

36. Brantley, S.L.; Stillings, L. Feldspar Dissolution at 25 ◦C and Low pH. Am. J. Sci. 1996, 296, 101–127. [CrossRef]
37. Nicoleau, L.; Nonat, A.; Perrey, D. The Di- and Tricalcium Silicate Dissolutions. Cem. Concr. Res. 2013, 47, 14–30. [CrossRef]
38. Nicoleau, L.; Schreiner, E.; Nonat, A. Ion-Specific Effects Influencing the Dissolution of Tricalcium Silicate. Cem. Concr. Res. 2014,

59, 118–138. [CrossRef]
39. Juilland, P.; Gallucci, E. Morpho-Topological Investigation of the Mechanisms and Kinetic Regimes of Alite Dissolution.

Cem. Concr. Res. 2015, 76, 180–191. [CrossRef]
40. Han, T.; Stone-Weiss, N.; Huang, J.; Goel, A.; Kumar, A. Machine Learning as a Tool to Design Glasses with Controlled Dissolution

for Application in Healthcare Industry. Acta Biomater. 2020, 107, 286–298. [CrossRef]
41. Cook, R.; Lapeyre, J.; Ma, H.; Kumar, A. Prediction of Compressive Strength of Concrete: A Critical Comparison of Performance

of a Hybrid Machine Learning Model with Standalone Models. ASCE J. Mater. Civ. Eng. 2019, 31, 04019255. [CrossRef]
42. Han, T.; Siddique, A.; Khayat, K.; Huang, J.; Kumar, A. An Ensemble Machine Learning Approach for Prediction and Optimization

of Modulus of Elasticity of Recycled Aggregate Concrete. Constr. Build. Mater. 2020, 244, 118271. [CrossRef]
43. Liu, H.; Zhang, T.; Anoop Krishnan, N.M.; Smedskjaer, M.M.; Ryan, J.V.; Gin, S.; Bauchy, M. Predicting the Dissolution Kinetics of

Silicate Glasses by Topology-Informed Machine Learning. npj Mater. Degrad. 2019, 3, 32. [CrossRef]
44. Chou, J.-S.; Tsai, C.-F. Concrete Compressive Strength Analysis Using a Combined Classification and Regression Technique.

Autom. Constr. 2012, 24, 52–60. [CrossRef]
45. Omran, B.A.; Chen, Q.; Jin, R. Comparison of Data Mining Techniques for Predicting Compressive Strength of Environmentally

Friendly Concrete. J. Comput. Civ. Eng. 2016, 30, 04016029. [CrossRef]
46. Duan, Z.H.; Kou, S.C.; Poon, C.S. Using Artificial Neural Networks for Predicting the Elastic Modulus of Recycled Aggregate

Concrete. Constr. Build. Mater. 2013, 44, 524–532. [CrossRef]
47. Bangaru, S.S.; Wang, C.; Hassan, M.; Jeon, H.W.; Ayiluri, T. Estimation of the Degree of Hydration of Concrete through Automated

Machine Learning Based Microstructure Analysis—A Study on Effect of Image Magnification. Adv. Eng. Inform. 2019, 42, 100975.
[CrossRef]

48. Gomaa, E.; Han, T.; ElGawady, M.; Huang, J.; Kumar, A. Machine Learning to Predict Properties of Fresh and Hardened
Alkali-Activated Concrete. Cem. Concr. Compos. 2021, 115, 103863. [CrossRef]

49. Elçiçek, H.; Akdoğan, E.; Karagöz, S. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics. Sci. World J.
2014, 2014, e194874. [CrossRef]

50. Xu, X.; Han, T.; Huang, J.; Kruger, A.A.; Kumar, A.; Goel, A. Machine Learning Enabled Models to Predict Sulfur Solubility in
Nuclear Waste Glasses. ACS Appl. Mater. Interfaces 2021, 13, 53375–53387. [CrossRef]

51. Cook, R.; Han, T.; Childers, A.; Ryckman, C.; Khayat, K.; Ma, H.; Huang, J.; Kumar, A. Machine Learning for High-Fidelity
Prediction of Cement Hydration Kinetics in Blended Systems. Mater. Des. 2021, 208, 109920. [CrossRef]

52. Lapeyre, J.; Han, T.; Wiles, B.; Ma, H.; Huang, J.; Sant, G.; Kumar, A. Machine Learning Enables Prompt Prediction of Hydration
Kinetics of Multicomponent Cementitious Systems. Sci. Rep. 2021, 11, 3922. [CrossRef]

53. Han, T.; Ponduru, S.A.; Cook, R.; Huang, J.; Sant, G.; Kumar, A. A Deep Learning Approach to Design and Discover Sustainable
Cementitious Binders: Strategies to Learn from Small Databases and Develop Closed-Form Analytical Models. Front. Mater. 2022,
8, 796476. [CrossRef]

54. Bellmann, F.; Sowoidnich, T.; Ludwig, H.-M.; Damidot, D. Dissolution Rates During the Early Hydration of Tricalcium Silicate.
Cem. Concr. Res. 2015, 72, 108–116. [CrossRef]

55. Damidot, D.; Bellmann, F.; Sovoidnich, T.; Möser, B. Measurement and Simulation of the Dissolution Rate at Room Temperature in
Conditions Close to a Cement Paste: From Gypsum to Tricalcium Silicate. J. Sustain. Cem.-Based Mater. 2012, 1, 94–110. [CrossRef]

270

Algorithms 2023, 16, 7

56. Barret, P.; Ménétrier, D. Filter Dissolution of C3S as a Function of the Lime Concentration in a Limited Amount of Lime Water.
Cem. Concr. Res. 1980, 10, 521–534. [CrossRef]

57. Robin, V.; Wild, B.; Daval, D.; Pollet-Villard, M.; Nonat, A.; Nicoleau, L. Experimental Study and Numerical Simulation of the
Dissolution Anisotropy of Tricalcium Silicate. Chem. Geol. 2018, 497, 64–73. [CrossRef]

58. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
59. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
60. Chen, X.; Ishwaran, H. Random Forests for Genomic Data Analysis. Genomics 2012, 99, 323–329. [CrossRef]
61. Ibrahim, I.A.; Khatib, T. A Novel Hybrid Model for Hourly Global Solar Radiation Prediction Using Random Forests Technique

and Firefly Algorithm. Energy Convers. Manag. 2017, 138, 413–425. [CrossRef]
62. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool

for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [CrossRef]
63. Carlini, N.; Erlingsson, Ú.; Papernot, N. Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications.

arXiv 2019. [CrossRef]
64. Chakravarty, S.; Demirhan, H.; Baser, F. Fuzzy Regression Functions with a Noise Cluster and the Impact of Outliers on

Mainstream Machine Learning Methods in the Regression Setting. Appl. Soft Comput. 2020, 96, 106535. [CrossRef]
65. Schaffer, C. Selecting a Classification Method by Cross-Validation. Mach. Learn. 1993, 13, 135–143. [CrossRef]
66. Crundwell, F.K. On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions. ACS Omega 2017, 2, 1116.

[CrossRef] [PubMed]
67. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
68. Dove, P.M.; Han, N. Kinetics of Mineral Dissolution and Growth as Reciprocal Microscopic Surface Processes across Chemical

Driving Force. AIP Conf. Proc. 2007, 916, 215. [CrossRef]
69. Flatt, R.J.; Scherer, G.W.; Bullard, J.W. Why Alite Stops Hydrating below 80% Relative Humidity. Cem. Concr. Res. 2011,

41, 987–992. [CrossRef]
70. Kumar, A.; Bishnoi, S.; Scrivener, K.L. Modelling Early Age Hydration Kinetics of Alite. Cem. Concr. Res. 2012, 42, 903–918.

[CrossRef]
71. Zhang, Z.; Han, F.; Yan, P. Modelling the Dissolution and Precipitation Process of the Early Hydration of C3S. Cem. Concr. Res.

2020, 136, 106174. [CrossRef]
72. Bullard, J.W.; Scherer, G.W.; Thomas, J.J. Time Dependent Driving Forces and the Kinetics of Tricalcium Silicate Hydration.

Cem. Concr. Res. 2015, 74, 26–34. [CrossRef]
73. USGS—Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction,

One-Dimensional Transport, and Inverse Geochemical Calculations. Available online: https://pubs.usgs.gov/tm/06/a43/pdf/
tm6-A43.pdf (accessed on 13 November 2022).

74. Bothe, J.V.; Brown, P.W. PhreeqC Modeling of Friedel’s Salt Equilibria at 23 ± 1 ◦C. Cem. Concr. Res. 2004, 34, 1057–1063.
[CrossRef]

75. Halim, C.E.; Short, S.A.; Scott, J.A.; Amal, R.; Low, G. Modelling the Leaching of Pb, Cd, As, and Cr from Cementitious Waste
Using PHREEQC. J. Hazard. Mater. 2005, 125, 45–61. [CrossRef]

76. Benavente, D.; Brimblecombe, P.; Grossi, C.M. Thermodynamic Calculations for the Salt Crystallisation Damage in Porous Built
Heritage Using PHREEQC. Environ. Earth Sci. 2015, 74, 2297–2313. [CrossRef]

77. Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
78. Lapeyre, J.; Kumar, A. Influence of Pozzolanic Additives on Hydration Mechanisms of Tricalcium Silicate. J. Am. Ceram. Soc.

2018, 101, 3557–3574. [CrossRef]
79. Meng, W.; Lunkad, P.; Kumar, A.; Khayat, K. Influence of Silica Fume and Polycarboxylate Ether Dispersant on Hydration

Mechanisms of Cement. J. Phys. Chem. C 2016, 120, 26814–26823. [CrossRef]
80. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
81. McKinnon, K.I.M. Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point. SIAM J. Optim. 1998, 9, 148–158.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

271

Citation: Niculescu, M.A.; Ruseti, S.;

Dascalu, M. RoSummary: Control

Tokens for Romanian News

Summarization. Algorithms 2022, 15,

472. https://doi.org/10.3390/

a15120472

Academic Editor: Frank Werner

Received: 31 October 2022

Accepted: 6 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

RoSummary: Control Tokens for Romanian News Summarization

Mihai Alexandru Niculescu 1, Stefan Ruseti 1 and Mihai Dascalu 2,*

1 Computer Science & Engineering Department, University Politehnica of Bucharest, 313 Splaiul Independentei,
060042 Bucharest, Romania

2 Research Technology, 19D Soseaua Virtutii, 060782 Bucharest, Romania
* Correspondence: mihai.dascalu@upb.ro

Abstract: Significant progress has been achieved in text generation due to recent developments in
neural architectures; nevertheless, this task remains challenging, especially for low-resource lan-
guages. This study is centered on developing a model for abstractive summarization in Romanian. A
corresponding dataset for summarization is introduced, followed by multiple models based on the
Romanian GPT-2, on top of which control tokens were considered to specify characteristics for the
generated text, namely: counts of sentences and words, token ratio, and n-gram overlap. These are
special tokens defined in the prompt received by the model to indicate traits for the text to be gener-
ated. The initial model without any control tokens was assessed using BERTScore (F1 = 73.43%) and
ROUGE (ROUGE-L accuracy = 34.67%). Control tokens improved the overall BERTScore to 75.42%
using <LexOverlap>, while the model was influenced more by the second token specified in the
prompt when performing various combinations of tokens. Six raters performed human evaluations
of 45 generated summaries with different models and decoding methods. The generated texts were
all grammatically correct and consistent in most cases, while the evaluations were promising in terms
of main idea coverage, details, and cohesion. Paraphrasing still requires improvements as the models
mostly repeat information from the reference text. In addition, we showcase an exploratory analysis
of the generated summaries using one or two specific control tokens.

Keywords: RoGPT2; control tokens; summarization; text generation; human evaluation

1. Introduction

A remarkable development in Natural Language Processing (NLP) towards creating
models that understand human languages has been observed in recent years. Text genera-
tion is one of the main challenges in the field of NLP, and this task has seen an important
development after the introduction of Transformers [1]. The Transformer uses an encoder–
decoder architecture, self-attention, and positional encodings to facilitate parallel training.
The GPT-2 model developed by OpenAI [2] was the first model with remarkable text
generation capabilities. GPT-2 was trained for predicting the next token in a sequence and
could easily be adjusted for specific tasks. The follow-up improving the GPT-3 model [3]
is more than 10-times larger in terms of the parameters and deduces the task only from
the provided prompt. There have been several open-source variations of the model, such
as GPT-Neo [4] and GPT-J [5]. Other architectures consider a unified framework to cover
text-to-text formats and convert text-based language problems, such as the Text-To-Text
Transfer Transformer (T5) [6]. This model can perform zero-shot learning and deduce the
task from the context of the prompt received as the input, even if it was not presented in
the training stage.

For the Romanian language, there are not many specific resources (i.e., pre-trained
models and datasets), although there has been significant progress in recent years. The most
notable models for Romanian consider the BERT architecture (e.g., RoBERT [7], BERT-base-
ro [8], Distil-BERT [9]) and the GPT-2 architecture (e.g., RoGPT2 [10]) and were developed in
the last 2 years. Romanian has only one available benchmark, namely LiRo [11]. However,

Algorithms 2022, 15, 472. https://doi.org/10.3390/a15120472 https://www.mdpi.com/journal/algorithms
273

Algorithms 2022, 15, 472

the models are small compared to their English counterparts, and there are no available
datasets for common NLP tasks. Overall, Romanian remains a low-resource language
with low international usage (https://www.worlddata.info/languages/romanian.php; last
accessed on 20 October 2022), despite recent efforts in terms of datasets and models; as
such, we argue for the necessity of our efforts to develop tools tailored to this language.

Text summarization is a task of particular importance in NLP centered on extract-
ing critical information from the text using two approaches. First, extractive summa-
rization involves removing the most-important phrases or sentences that include the
main ideas of a text. Second, abstractive summarization considers the generation of
a new summary starting from the text. One of the most popular datasets in English
used for this task is CNN/Daily Mail [12], having a total number of 280,000 examples; the
dataset was afterward extended to other languages, including French, German, Spanish,
Russian, and Turkish, thus generating the large-scale multilingual corpus MLSUM [13].
Another dataset used in studies for abstractive summarization is Extreme Summariza-
tion (X-Sum) [14] to generate a short, one-sentence summary for each news article; X-
Sum was derived from BBC news and consists of 220,000 examples. Another dataset
is Webis-TLDR-17 Corpus [15] with approximately three million examples constructed
with the support of the Reddit community. Extractive summarization in Romanian has
been previously tackled by Cioaca et al. [16] and Dutulescu et al. [17] with small evalu-
ation datasets. We now introduce the first dataset for Romanian abstractive summariza-
tion (https://huggingface.co/datasets/readerbench/ro-text-summarization; last accessed
on 20 October 2022).

A wide variety of architectures has been employed for text summarization, includ-
ing general Transformer-based models [6,18–20] and specific models such as BRIO [21],
ProphetNet [22], or PEGASUS [23]. We aim to provide a baseline abstractive summarizer
for Romanian built on top of RoGPT2 [10] and to control the characteristics of the generated
text. This is an additional step to better imitate human capabilities by considering one or
more specifications that improve the summary. As such, we assessed the extent to which
text generation is influenced by using control tokens specified in the prompt received by
the model to induce specific characteristics of a text. The idea of specifying control tokens
directly in the prompt was exploited first in MUSS [24] and CONTROL PREFIXES [25]. The
GPT-2 model was also used in combination with BERT [26]; however, to our knowledge, the
generation task was not tackled until now in combination with control tokens to manipulate
the characteristics of the generated summary.

Following the introduction of various models for text summarization, evaluating the
quality of a generated text is a critical challenge, which can be even more difficult than the
text generation task itself. Text evaluation is generally performed using synthetic metrics
developed for machine translation, such as Bilingual Evaluation Understudy (BLEU) [27],
Recall Oriented Understudy for Gisting Evaluation (ROUGE) [28], or Metric for Evaluation
for Translation with Explicit Ordering (METEOR) [29]; however, these metrics are limited
as they focus on the lexical overlap. Newer metrics based on Transformers, such as
BERTScore [30], BARTScore [31], or Bilingual Evaluation Understudy with Representations
from Transformers (BLEURT) [32], are much more accurate compared to the classical
metrics. Still, they require more resources (i.e., pre-trained models and higher computing
power) and have longer processing times. Besides comparing automated similarity metrics,
Celikyilmaz et al. [33] argued that a human evaluation is the gold standard for evaluating
a Natural Language Generation (NLG) task; nevertheless, it is the most expensive and
cumbersome to accomplish.

Thus, our research objective is threefold: create a dataset for summarization in Roma-
nian, train a model that generates coherent texts, and introduce control tokens to manipulate
the output easily. Following this objective, our main contributions are the following:

• Publish a clean version of the dataset for Romanian text summarization (https://
huggingface.co/datasets/readerbench/AlephNews; last accessed 20 October 2022).

274

Algorithms 2022, 15, 472

• Develop and publicly release a baseline model built on top of RoGPT-2 available on
HuggingFace (https://huggingface.co/readerbench/RoSummary-large; last accessed
on 20 October 2022), with the corresponding code released on GitHub (https://github.
com/readerbench/RoSummary; last accessed on 20 October 2022).

• Study the use of control tokens for the text characteristics in the case of our summa-
rization task.

2. Method

This section presents the dataset created for the summarization task, the model archi-
tecture, the training method with the control tokens, as well as the methods employed to
evaluate the generated text.

2.1. Corpus

The dataset for the summarization task was constructed by crawling all articles from
the AlephNews website (https://alephnews.ro/; last accessed on 20 October 2022) until
July 2022. The site presents a section with the news summary as bullet points with sentences
representing the main ideas for most articles. This peculiarity of the site enabled the
automatic creation of a reasonably qualitative dataset for abstractive summarization. The
news articles that did not have a summary or were too short were eliminated by imposing
a minimum limit set of 20 characters. This resulted in 42,862 collected news articles. The
news and summary texts were cleaned using several heuristics: these were the repair of
diacritics, the elimination of special characters, the elimination of emoticons, and fixing
punctuation (if it has more points, if it has no punctuation mark, a period is added at
the end of the sentence), eliminating words such as “UPDATE”, “REPORT”, “AUDIO”,
etc. The dataset was split into 3 partitions (i.e., train, dev, and test) with proportions of
90%–5%–5%. Articles with a maximum of 715 tokens based on the RoGPT2 tokenizer were
selected for the test partition; out of 724 tokens, 9 were reserved for the control tokens.
After analyzing the dataset and based on the limitations regarding the sequence length of a
context, the maximum size was set to 724 tokens. In the case of entries from the training
and dev partitions having the combined length of the article and the summary greater
than 724, the article content was divided into a maximum of 3 distinct fragments, which
had the last sentences removed; this was applied to approximately 10% of the entries to
increase the number of examples and to keep the beginning of the news, which contains
key information to be considered. We chose not to apply this augmentation technique for
the entries in the test partition, as this would have altered the content of the original texts
and would have generated multiple artificial test entries; moreover, we limited the text
to the first 715 tokens so that control tokens could also be added when running various
configurations. The total number of examples for each partition was: 47,525 for training,
132 for validation, and 2143 for testing.

2.2. RoGPT2 Model for Summarization

The model was trained to predict the next token using the previous sequence, similar
to the RoGPT2 [10] training for the Romanian language. The model architecture consists
of several decoder layers of architecture Transformers [1], as presented in Figure 1. There
are 3 versions of the model, each with a different number of decoder layers: 12 layers were
used for the base version, 24 layers for the medium version, and 36 layers for the large
version.

Control tokens were used to indicate the task and the characteristics of the generated
text, which are presented in the following subsections. This assumes that the model
maximizes the probability of a subword depending on the context and the previously
generated subwords:

P(w1...m) =
m

∏
i=1

P(wm|w1, w2, w3, ..., wm−1) (1)

275

Algorithms 2022, 15, 472

Cross-entropy was the loss function for the supervised learning task:

LCE = −
n

∑
i=1

tilog(pi) (2)

where ti is the label and pi is the probability of the ith class, or more specifically, a class is
considered the id of a token.

Figure 1. RoGPT2 architecture.

Due to a large number of parameters, the model was trained on TPU v3-8. The batch
size was limited to fit into memory 724 tokens per entry. The Adam optimizer [34], the Re-
duceLROnPlateau (https://keras.io/api/callbacks/reduce_lr_on_plateau/; last accessed
on 20 October 2022) and EarlyStopping (https://keras.io/api/callbacks/early_stopping/;
last accessed on 20 October 2022) callbacks were used.

Three decoder methods for text generation were considered to choose the next token
depending on the tokens generated up to that point and the probability distribution over
the vocabulary.

Greedy search: This strategy is based on choosing a local optimum, in this case
the token with the highest probability, which converges to a local maximum. First, the
probability distribution is generated, and then, the next token is selected by choosing the
highest probability. The procedure continues until the desired length is achieved or the
token indicating the end is found. An advantage of this method is that it is efficient and
intuitive, but it does not guarantee finding a global optimum for the generated sequence;
this can lead to the non-exploration of some branches with a higher probability.

Beam search: Beam search [35] partially solves the maximum global problem by
keeping the best beam width sequences with a higher total probability. Multiple contents
are generated for each step, and the sequence with the highest probability is chosen at
each step. The advantage of this method is that it obtains better results for relatively small
beam widths, but it requires more memory for a larger beam width or longer sequences,
whereas the text does not vary much, being quite monotone. Beam search also does
not guarantee finding the global optimum. Beam search works quite well when it can

276

Algorithms 2022, 15, 472

approximate the generated text’s length, but has issues when the corresponding length
varies greatly. Holtzman et al. [36] argued that people do not choose the phrase with the
highest probability as the element of unpredictability is important.

Top-p (nucleus) sampling: This method involves choosing the smallest subset of
words with a probability equal to p. Based on the new probability distribution, a new token
is chosen. The advantage of this method is that it achieves results quite close to human ones
and does not require many resources. The disadvantage is that p is fixed and not dynamic.

2.3. Control Tokens

Starting from previous studies presented in the Introduction and related to the specifics
of the summarization task, we chose to specify a set of 4 control tokens representative of
various characteristics of the text, namely:

• NoSentences indicates the number of sentences that the summary should have;
• NoWords indicates the number of words to be generated within the summary;
• RatioTokens reflects how many times the sequence of tokens of the summary must

be longer than the input;
• LexOverlap is the ratio of the number of 4-grams from the summary that also appears

in the reference text; stop words and punctuation marks were omitted.

The first 3 control tokens are purely quantitative and reflect different use-case scenarios:
a summary containing at most a specific number of sentences, a summary having an
imposed number of words, or a compression ratio to be used globally. The last control
token ensures a lower or higher degree of lexical overlap between the two texts.

The prompt for the summarization task was the following:

Text : {article} Summary : {summary} < |endo f text| > (3)

The model learns that, after the control token “Summary:”, it must generate the
summary of the text preceding that token. Control tokens are specified before the token
that indicates the input (i.e., marked by the Text token), while the token specific to the task
is placed after the end. The prompt used for an item from the dataset used for training is
the following:

FeatureToken : {value} Text : {article} Summary : {summary} < |endo f text| > (4)

where FeatureToken is <NoSentences>, <NoWords>, <RatioTokens>, or <LexOverlap>.
Following the initial experimentation, we noticed that the model learns best when

subsequent entries have the same input text, but with different values for the control
tokens and a different text to be generated; this refers to the extraction of fragments from
the original summary and their use as the output. This variation is reflected in the text
to be generated and was used for the <NoSentences>, <NoWords>, and <RatioToken>
control tokens. The generation of multiple variations was applied if the summary text had
more than 3 sentences; thus, incremental examples were generated by adding sentences
and calculating the value for the control token each time. An example for a summary
comprising 4 sentences s1, s2, s3, s4 and <NoWords> would consider two entries in the
training dataset: the first item would consist of the first 3 sentences and the corresponding
<NoWords> for this first shorter summary and a second item where the s4 sentence would
be added and <NoWords> is set at the global count of words from the summary.

Besides training the summarization model with each control token individually, we
also considered combinations of 2 control tokens, namely: <NoWords>-<NoSentences>,
<RatioTokens>-<NoSentences>, and <LexOverlap>-<NoWords>. The combination <NoWords>-
<NoSentences> was chosen because it reflects the most straightforward manner to manually
enforce the length of the summary by an end user (i.e., specify an approximate number
of words and the number of sentences that the generated summary should have). <Ra-
tioTokens> presents the same idea as <NoWords>, only that it is much more difficult to
learn by the model as it represents the ratio between the length of the news and that of the

277

Algorithms 2022, 15, 472

summary. The combination of <LexOverlap>-<NoWords> is interesting because it forces
the model to generate a text with an approximate number of words. Still, the generated text
must not match the one received by the model. <NoWords> indicates how many words
the summary should have, while <LexOverlap> restricts the percentage of combinations
of words that are present in the news and generated text by the model; a small value for
<LexOverlap> indicates that the model must reformulate an idea from the news, whereas a
large value makes the model extract the most important phrases within a word limit.

2.4. Evaluation Metrics

Our evaluations considered both automated and human evaluations of the generated
summaries. We wanted the evaluation of the model to be a sustainable one; for this,
the three evaluation metric methods used were: Recall Oriented Understudy for Gisting
Evaluation (ROUGE) [28] as a classic metric, which is used in the majority of research in the
field of abstract summarization, BERTScore [30], a metric that uses a pre-trained model to
understand the generated text and the reference to provide a better comparison, and human
evaluation. To evaluate the characteristics of the control token, the following metrics were
used: Mean Absolute Error (MAE) and Mean-Squared Error (MSE) for <NoSentences>
and <NoWords>, and the Pearson and Spearman coefficients were used for <RatioTokens>
and <LexOverlap>.

2.4.1. BERTScore

Metrics based on Transformers [1], such as BERTScore [30], have been introduced to
better capture the similarity between texts. BERTScore shows how good and realistic a text
generated by a model is at the semantic level (i.e., the metric considers the meaning of the
text by computing the cosine similarity between token embeddings from the generated
sentences versus the tokens in the given sentences as a reference). The token embeddings
are the numerical representations of subwords obtained using the BERT [37] tokenizer.
The precision, recall, and F1 scores are computed based on the scalar product between the
embeddings in the two texts. Precision refers to the generated text and is calculated as
the average value for the largest scalar product between the embeddings of the generated
sentence and those of the reference sentence; in contrast, recall is centered on the reference
text and is computed in an equivalent manner while considering the embedding of the
reference versus the generated sentence embeddings. The original paper showed good
correlations to human evaluations. Even if BERTScore is more accurate when compared
to classical machine translation metrics, which account for the overlap between words
using n-grams or synonyms (e.g., BLEU, ROUGE), the metric requires a language model
for the targeted language. We used the implementation offered by HuggingFace (https:
//huggingface.co/spaces/evaluate-metric/bertscore; last accessed on 20 October 2022),
which considers mBERT [37] for the Romanian language. The performance metrics are
computed as follows:

PBERT =
1
|x̂| ∑

x̂j∈x̂
maxxi∈x(xT

i x̂j) (5)

RBERT =
1
|x| ∑

xi∈x
maxx̂j∈x̂(xT

i x̂j) (6)

FBERT = 2 ∗ PBERT ∗ RBERT
PBERT + RBERT

(7)

where:

• x is the embedding for the text given as a reference;
• x̂ is the embeddings for the text generated by the model.

2.4.2. Human Evaluation

Human evaluation is considered the gold standard in measuring the quality of gener-
ated text [33], but it is costly and difficult to achieve. For human evaluation, the most-used

278

Algorithms 2022, 15, 472

method is the one by which a form is created, and the respondents are asked to evaluate the
generated text. In our case, correspondents were asked to assess the generated text from the
point of view of five metrics: main idea (i.e., the main idea of the article is present within
the summary), details (i.e., the key information is found in the generated text for irrelevant
ideas), cohesion (i.e., phrases and ideas have a logic), wording/paraphrasing (i.e., the text
is not the same as that of the news and the model-made changes), and language beyond
the source text (i.e., there is a varied range of lexical and syntactic structures). The scores
ranged from 1 to 4, the best being 4. The summary scoring rubric is based on the studies of
Taylor [38] and Westley, Culatta, Lawrence, and Hall-Kenyon [39]. The raters were asked
to evaluate 5 examples chosen randomly from the texts generated using the 3 decoding
methods, and for 3 variants of the model; in total, 45 questions were included in the form.
The Intraclass Correlation Coefficient (ICC3) [40] was calculated for each configuration and
model-version-decoding method to measure the consistency of the evaluations. The form
was sent to people collaborating with our research laboratory to obtain the relevant results,
primarily due to the complexity of the 5 metrics used.

2.5. Experimental Setup

The Adam [34] optimizer started from a learning rate equal to 1 × 10−4 and was
reduced to 4 × 10−6 using the callback ReduceLROnPlateau, for patience equal to 2 and a
factor of 1/e. The patience parameter was set to 1 for combinations of control tokens due to
the task’s complexity and the dataset’s size; the training was more aggressive, modifying
the learning rate if there were no improvements after an epoch. The training was stopped
if no improvements were noticed after 3 epochs for baseline summarization or 4 epochs for
the control token. A context size equal to 724 was considered, and the batch size varied for
each model version: 128 for the base, 24 for the medium, and 16 for the large models. Three
decoding methods were used for text generation: greedy, beam-search, and top-p sampling.
The experiments were performed on TPU v3.8 for training, while the NVIDIA Tesla A100
and NVIDIA Tesla P100 were used for text generation and evaluation. The model received
prompts that contained the summary token and those that specified the characteristics of
the text to be generated.

3. Results

This section presents the results obtained by the models for the summarization task
and the experiments for control tokens. In most experiments, the same configuration was
used for text generation. After training, the following generation strategies were used:
greedy, beam search with a width equal to four, and top p sampling (with top k = 25 and
p = 0.94). In addition, we introduced an exploratory analysis to highlight the benefits of
using control tokens when generating summaries with various specificities.

3.1. News Summary

This experiment aimed to generate summaries for news articles without any particular
characteristics. The model knows that it must generate text after the control token <Sum-
mary>. The evaluation of the model was performed using the metrics: ROUGE [28]
score (the F1-score average was calculated for ROUGE-1, ROUGE-2, ROUGE-L) and
BERTScore [30]. The results are available in Table 1. The medium version using beam
search achieved the best scores (74.34% for BERTScore F1 and 34.67% for ROUGE-L F1),
surpassing the large version with beam search by 0.1% for BERTScore.

279

Algorithms 2022, 15, 472

Table 1. Results for the evaluation of news summaries (bold marks the best results).

Model Decode Method
BERT Score ROUGE

Precision (%) Recall (%) F1 (%)
ROUGE-1

(%)
ROUGE-2

(%)
ROUGE-L

(%)

Greedy 73.35 73.99 73.58 33.60 18.62 33.33
Base Beam Search 73.54 74.68 74.04 34.80 19.91 34.16

Top-p Sampling 72.96 72.99 72.92 30.58 14.52 29.51

Greedy 73.78 74.01 73.80 34.22 19.22 33.94
Medium Beam Search 73.90 74.93 74.34 35.46 20.61 34.67

Top-p Sampling 73.15 72.85 72.94 30.42 14.00 29.21

Greedy 73.76 74.24 73.91 34.14 18.95 33.55
Large Beam Search 73.94 74.70 74.24 34.92 19.95 33.84

Top-p Sampling 73.11 73.01 72.99 30.51 14.18 29.31

3.2. Human Evaluations

The next experiment was to evaluate the model trained on the AlephNews dataset
to generate summaries on the DigiNews test dataset introduced by Niculescu et al. [10].
As the DigiNews dataset does not have a summary for a news story, a human evaluation
was performed to assess the quality of the generated text. The form was completed by six
raters, and the scores from Table 2 consider the average for the five evaluated texts from
each combination.

Table 2. Results for human evaluation (bold marks the best results).

Model Decode Method Main Idea Details Cohesion Paraphrasing Language ICC3(1) ICC3(k)

Greedy 3.10 2.93 3.10 2.46 3.26 0.88 0.98
Base Beam Search 2.73 2.86 2.86 2.03 3.40 0.93 0.99

Top-p Sampling 2.70 2.50 2.53 1.90 3.00 0.92 0.98

Greedy 2.76 2.36 2.46 2.06 2.73 0.88 0.98
Medium Beam Search 3.43 3.36 3.30 2.00 3.56 0.98 1.00

Top-p Sampling 2.56 2.30 3.16 2.63 3.33 0.92 0.98

Greedy 3.73 3.06 3.53 2.30 3.73 0.92 0.99
Large Beam Search 2.23 2.06 2.33 1.56 2.93 0.95 0.99

Top-p Sampling 2.50 2.33 3.26 2.70 3.26 0.85 0.97

3.3. Control Tokens

For the following experiments, control tokens were used individually or in combina-
tion to indicate the characteristics of the generated text, in addition to the one indicating
the task. For the more complex scenarios, we wanted to observe if the model learns a
combination of several control tokens that were not reproduced in the training stage and if
the order of tokes from the prompt matters. BERTScore [30] was used holistically as a means
to compare different combinations; the Mean Absolute Error (MAE) and Mean-Squared
Error (MSE) were considered for <NoSentences> and <NoWords>, whereas the Pearson
and Spearman coefficients were used for <RatioTokens> and <LexOverlap>. Table 3 shows
the best BERTScores obtained for each control token separately; the beam search and top-p
sampling decoding methods were selected because they obtained the most revealing results.
Detailed results for each control token are presented in Tables A1–A4. The best score was
75.42% with the <LexOverlap> control token.

Subsequently, we explored the extent to which the model succeeded in learning
combinations of control tokens, having only examples for each one in the training stage.
The following combinations of control tokens were chosen in line with the argumentation
from the Method Section: <RatioTokens>-<NoSentences>, <NoWords>-<NoSentences>,
<NoWords>-<LexOverlap>. We decided to focus only on the condensed results that

280

Algorithms 2022, 15, 472

consider BERTScore for the medium and large versions using beam search and the top-p
sample as the decoding methods (see Table 4). Tables A5–A10 present the full results of the
previous combinations. The best score was achieved by the combination of <NoWords>-
<LexOverlap> using the medium version with beam search (F1 = 74.95%).

Table 3. BERTScore [30] for control tokens taken individually (bold marks the best results).

Control Token Model Decode Method BERTScore
Precision (%) Recall (%) F1 (%)

Base Beam Search 73.69 73.53 73.54
Top-p Sampling 72.52 72.24 72.32

NoSentences
Medium Beam Search 73.49 74.42 73.89

Top-p Sampling 72.72 73.04 72.83
Large Beam Search 73.90 74.78 74.27

Top-p Sampling 73.34 72.99 73.11

Base Beam Search 74.17 73.67 73.88
Top-p Sampling 72.84 72.56 72.67

NoWords
Medium Beam Search 74.71 74.45 74.55

Top-p Sampling 73.43 73.07 73.23
Large Beam Search 74.90 74.67 74.75

Top-p Sampling 73.53 73.27 73.37

Base Beam Search 74.81 72.48 73.55
Top-p Sampling 73.22 71.59 72.32

RatioTokens
Medium Beam Search 75.45 73.41 74.34

Top-p Sampling 74.11 72.49 73.22
Large Beam Search 74.35 74.66 74.48

Top-p Sampling 73.22 73.37 73.26

Base Beam Search 75.62 74.32 74.89
Top-p Sampling 73.48 73.17 73.27

LexOverlap
Medium Beam Search 75.90 74.94 75.36

Top-p Sampling 73.95 73.88 73.87
Large Beam Search 74.37 73.83 74.05

Top-p Sampling 76.30 74.66 75.42

Table 4. BERTScore [30] for complex control tokens (bold marks the best results).

Control Token Model Decode Method BERTScore
Precision (%) Recall (%) F1 (%)

RatioTokens-NoSentences

Medium Beam Search 74.47 74.34 74.36
Top-p Sampling 73.48 73.00 73.20

Large Beam Search 74.81 74.54 74.63
Top-p Sampling 73.77 73.18 73.43

NoSentences-RatioTokens

Medium Beam Search 72.67 75.28 73.91
Top-p Sampling 71.76 73.96 72.81

Large Beam Search 73.25 75.51 74.33
Top-p Sampling 72.48 73.99 73.19

NoWords-NoSentences

Medium Beam Search 73.98 74.71 74.30
Top-p Sampling 72.94 73.21 73.04

Large Beam Search 74.43 74.71 74.52
Top-p Sampling 73.66 73.47 73.52

NoSentences-NoWords

Medium Beam Search 73.91 75.33 74.58
Top-p Sampling 72.61 73.74 73.15

Large Beam Search 73.46 75.34 74.35
Top-p Sampling 72.73 74.11 73.38

LexOverlap-NoWords

Medium Beam Search 75.05 74.84 74.90
Top-p Sampling 73.49 73.52 73.46

Large Beam Search 74.89 74.60 74.69
Top-p Sampling 73.71 73.69 73.66

NoWords-LexOverlap
Top-p Sampling 73.64 73.76 73.66

Large Beam Search 74.81 74.59 74.65
Top-p Sampling 73.53 73.56 73.50

281

Algorithms 2022, 15, 472

3.4. Exploratory Analysis of Generated Summaries Using Control Token

Besides assessing the performance of various configurations, our aim was also to ex-
plore the extent to which control tokens change the generated texts. As such, we generated
summaries for the same news by varying the values for the control token(s), while assessing
the impact on the quality of the generated summary and its resemblance to the original
text. Given the previous best results, medium and large RoGPT models with beam search
configurations were chosen for this experiment. We experimented with an individual
control token (i.e., <NoSenentences>) that is easily explainable, as well as with a more
complex scenario that forces a compression/expansion of the generated text (i.e., a com-
bination used of <NoSentences>-<NoWords>). The range for <NoSenentences> was 2–5;
there were extremely few training samples with only 1 sentence within the summary, and
our model is incapable of generating such over-condensed summaries. The <NoWords>
control token considered five values −50%, −25%, 0%, +25%, +50%, which signified a
compression of −50% words from the reference summary, all the way to an expansion with
+50% additional words. A sample of 100 news articles from the test partition was chosen,
and BERTScore F1 was calculated for each value of the control token(s); the corresponding
results are presented in Figures 2 and 3. An example of text generation when only the
<NoSentence> was varied is presented in Appendix C.1, whereas Appendix C.2 showcases
the example for <NoSentence>-<NoWords>.

Figure 2. BERTScore for NoSentences.

Figure 3. BERTScore for NoSentences-NoWords.

4. Discussion

The baseline model managed to achieve good results (see Table 1) for the summa-
rization task, and the best results for ROUGE-L (34.67%) and BERTScore (74.34%) were
obtained by the medium version with the beam search decoding method. It is worth noting
that the best results were obtained with the beam search decoding method regardless of
the considered model. Poorer results obtained by the large version are arguable, given the
relatively small size of the dataset.

282

Algorithms 2022, 15, 472

Results from the human evaluations (see Table 2) were also consistent, based on the
obtained ICC3 score. The best score for the main idea was obtained by the large model with
greedy decoding (3.73/4), followed by the medium version with beam search with a score
of 3.43/4, thus arguing that the models managed to identify the main idea from the news.
In terms of the provided details, the best score (3.36/4) was achieved by the medium model
with beam search decoding (see Appendix A.1 for an example). The model managed to
have coherent sentences with an elevated language; this was also shown in the paper that
introduced RoGPT2 [10]. The large model obtained the highest overall score in terms of
cohesion with greedy decoding (3.27/4), followed by the medium model with beam search
with a score of 3.13/4; this lower score is justifiable since the contents of some randomly
sampled news articles were challenging to summarize (see Appendix A.2 for a horoscope
example). Paraphrasing was the main problem of the texts generated by the model since
the models mostly repeated information from the reference text. Nevertheless, the results
obtained by the model are impressive, considering that the human-evaluated news articles
originated from a dataset on which the model was not trained.

The summaries using control tokens obtained better scores than the baseline sum-
marization task (see Table 3). The small differences indicate that a winning configuration
cannot be determined with certainty as the largest difference was up to 2%; however, we
observed that beam search consistently obtained the best results. Despite being the most
complex token, the largest improvement in BERTScore F1 with 1.08% was obtained with
the <LexOverlap> control token. The worst results for controlling text characteristics were
obtained by <NoSentences>, whereas <RatioTokens> obtained a lower BERTScore than
<NoWords> because it is a token more difficult to understand by the model.

Lower performance for combinations of tokens was expected because the dataset is
relatively small and the task difficulty was higher. Then, comparing the performance of
the models on each control token individually, we noticed that a higher performance was
obtained for the second token specified in the prompt; this suggests that the model was
influenced more by the second token from the prompt. The combination <NoWords>-
<LexOverlap> obtained the best overall results, highlighting the benefits of complementar-
ity between control tokens. Overall, the best decoding method was beam search.

When considering the exploratory analysis, the best results when varying the number
of sentences were obtained for values of 2 and 3; this was expected as most summaries
had 3 sentences. The example from Appendix C.1 highlights that the model seems to only
extract sentences from the original text without paraphrasing. With <NoSentences> set at
three, the model copied a central sentence and reiterated it based on a repetition present in
the source text (i.e., the news article contained “Roxana Ispas este fondatoarea brandului
Ronna Swimwear.” and “Roxana Ispas, fondatoare Ronna Swimwear”, which confused the
model). Furthermore, there was a problem when setting the control token to 5 as the model
failed to generate five sentences; nevertheless, it generated considerably longer sentences
than the previous use case with only four sentences.

The best results for the experiment with the <NoSentences>-<NoWords> combination
were obtained when the number of sentences was equal to 2 or 3 and the number of words
was equal to +25% or +50% more words than the original summary. The best BERTScore
was obtained for the medium version with <NoSentence> = 3 and <NoWords> = +25%,
followed by a similar scenario with <NoSentences> = 2 and the same value for <NoWords>.
As exemplified in Appendix C.2, the model takes into account the number of words that
must be generated, i.e., there is a proportional relationship between the length of the
summary and the value of the control token. Furthermore, a higher compression rate given
by a smaller number of words forced the model to generate one less sentence than specified.

5. Conclusions

This paper introduced a novel dataset, a baseline model, and control tokens for ma-
nipulating text characteristics when summarizing texts in Romanian; all previous resources
have been publicly released. Our model obtained overall good results (F1-scores above

283

Algorithms 2022, 15, 472

0.73 in most configurations), indicating that the models learn even from limited samples.
The generated texts were grammatically correct and primarily consistent, as highlighted
by the human evaluation. Using control tokens led to the improvement of BERTScore [30].
The best results were obtained when using beam search as a decoding strategy, while
medium and large models shared similar performances; however, the medium models are
more suitable given the size of the dataset. Higher scores were obtained when only one
control token was used. In contrast, the model emphasized the second token specified in
the prompt when generating the text in complex scenarios.

In terms of future work, we aim to increase the quality and size of our dataset with
examples originating from other news websites targeting specific fields in contrast to
AlephNews, which is a generalist news site. This will ensure a higher diversity of text char-
acteristics and introduce the possibility of new control tokens specific to the new categories.
Moreover, we plan to register the summarization task in the LiRo benchmark [11] to ensure
the development of robust natural-language-understanding systems for Romanian.

Author Contributions: Conceptualization, M.D. and S.R.; methodology, M.D., S.R. and M.A.N.;
software, M.A.N. and S.R.; validation, M.A.N., S.R. and M.D.; formal analysis, S.R.; investigation,
M.A.N. and S.R.; resources, M.A.N.; data curation, M.A.N.; writing—original draft preparation,
M.A.N.; writing—review and editing, M.D. and S.R.; visualization, M.A.N.; supervision, M.D.;
project administration, M.D.; funding acquisition, M.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the “Innovative Solution for Optimizing User Productivity
through Multi-Modal Monitoring of Activity and Profiles – OPTIMIZE”/“Solut, ie Inovativă de Opti-
mizare a Productivităt, ii Utilizatorilor prin Monitorizarea Multi-Modala a Activităt, ii s, i a Profilelor—
OPTIMIZE” project, Contract Number 366/390042/27.09.2021, MySMIS code: 121491.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee of the Faculty of Automated Control and
Computers, University Politehnica of Bucharest.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset for Romanian text summarization is freely available on
HuggingFace (https://huggingface.co/datasets/readerbench/AlephNews; last accessed 20 October
2022); the models built on top of RoGPT-2 are available on HuggingFace (https://huggingface.co/
readerbench/RoSummary-large; last accessed 20 October 2022); the corresponding code is released on
GitHub (https://github.com/readerbench/RoSummary; last accessed 20 October 2022).

Acknowledgments: Special thanks to the TensorFlow Research Cloud (https://www.tensorflow.org/
tfrc; last accessed on 20 October 2022) programs for providing us the Tensor Processing Unit (TPU)
(https://cloud.google.com/tpu/; last accessed on 20 October 2022) that was used to train the models.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer
ICC Intraclass Correlation Coefficient
ROUGE Recall Oriented Understudy for Gisting Evaluation
NLP Natural Language Processing
MSE Mean-Squared Error
MAE Mean Absolute Error
NLG Natural Language Generation
TPU Tensor Processing Unit

284

Algorithms 2022, 15, 472

Appendix A

Appendix A.1

News: “Zona Cheile Râşnoavei, sufocată de gunoaie Un telespectator Digi24 a trimis
o sesizare la autorităţile locale, dar reprezentaţii primăriei ridică neputincioşi din umeri:
au încercat să cureţe, dar romii din apropiere fac mizerie din nou, peste noapte. La câţiva
metri de drumul care duce spre Cheile Râşnoavei, unul din cele mai frumoase locuri de
vizitat din judeţ, frumuseţea peisajului este umbrită de gunoaiele aruncate pe o rază de
mai bine de o sută de metri. Profitând de faptul că zona este marcată ca fiind poligon de
trageri, oamenii au aruncat aici nestingheriţi saci întregi de gunoi, fără să se gândească la
turiştii care trec pe aici sau la felul în care nepăsarea lor strică imaginea oraşului. Cunoscut
pentru cetatea ţărănească şi pentru peisajele de poveste de pe Cheile Râşnoavei, oraşul
Râşnov atrage la fiecare sfârşit de săptămână mii de turişti. Cei care ajung însă la periferie
rămân dezamăgiţi: mormane întregi de sticle, hârtii, gunoi menajer şi chiar cărămizi s-au
adunat aici. Iar în ultima perioadă, localnicii au început să ducă acolo chiar şI gunoaiele din
grajduri. Ovidiu Drăgunoiu locuieşte în Braşov şi este un împătimit al drumeţiilor. Zilele
trecute a vrut să meargă cu câinele la plimbare pe drumul spre Cheile Râşnoavei. A filmat
mizeria şi a anunţat autorităţile. Luaţi la întrebări, reprezentaţii primăriei au găsit rapid o
scuză. „Am făcut ordine acolo, am curăţat, am nivelat zona ca într-o săptămână zona să
fie la loc. Vin cu căruţele, cu sacii, cu fel şI fel de modalităţi ei pun acolo din curte parcă
intenţionat parcă sfidător să arate zona din nou murdară şi plină de mizerie”, a declarat
Marian Ilie, responsabil cu problemele de mediu la Primăria Râşnov. Locuitorii oraşului
sunt si ei afectaţi de mormanele de gunoaie. Nu de puţine ori s-au îmbolnăvit animalele
duse la păscut în zonă. Autorităţie din Râşnov spun că toate gunoaiele vor fi adunate, iar
cei care nu le depozitează corespunzător vor fi amendaţi. Deocamdată însă, nimeni nu a
primit nicio sancţiune.”

Summary: Zona Cheile Râşnoavei, sufocată de gunoaie Un telespectator Digi24 a
trimis o sesizare la autorităţile locale, dar reprezentaţii primăriei ridică neputincioşi din
umeri: au încercat să cureţe, dar romii din apropiere fac mizerie din nou, peste noapte. La
câţiva metri de drumul care duce spre Cheile Râşnoavei, unul din cele mai frumoase locuri
de vizitat din judeţ, frumuseţea peisajului este umbrită de gunoaiele aruncate pe o rază de
mai bine de o sută de metri. La câţiva metri de drumul care duce spre Cheile Râşnoavei,
unul din cele mai frumoase locuri de vizitat din judeţ, frumuseţea peisajului este umbrită
de gunoaiele aruncate pe o rază de mai bine de o sută de metri.

Appendix A.2

News: “HOROSCOP. Leii pleacă într-o vacant, ă mult-as, teptată PES, TI Atent, ie la chel-
tuieli. Nu cedat, i tentat, iilor. BERBEC Se anunt, ă o zi dinamică. Sunt favorizate activităt, ile
intelectuale. TAUR Vă putet, i întâlni cu persoane care vă îndeamnă la comunicare. GEMENI
Suntet, i nemult,umit de ritmul în care se desfăs, oară un proiect. Lucrurile vor reveni la nor-
mal. RAC Este posibil să primit, i nis, te bani din colaborări mai vechi. LEU Putet, i pleca
într-o călătorie pe care o as, teptat, i de mult timp. FECIOARĂ Petrecet, i o seară specială cu
cei dragi. Primit, i vizita copiilor. BALANT, Ă Suntet, i foarte solicitat, i la birou. Avet, i o serie
de responsabilităt, i. SCORPION Foarte implicat, i în relat, ia de iubire, Scorpionii petrec o
seară specială alături de partener. SAGETĂTOR Nu cumpărat, i tot ce vă iese în cale. Mai
mult de jumătate dintre achizit, ii se vor dovedi inutile. CAPRICORN În aceste zile vet, i
vedea rezultate concrete ale muncii dumneavoastră s, i vet, i avea ocazia să vă exprimat,i
ideile. VĂRSĂTOR At,i putea primi o veste importantă, care vă ret, ine la birou. Nu neglijat, i
totus, i, familia.”

Summary: Berbecii pleacă într-o vacant, ă mult-as, teptată PES, TI Atent,ie la cheltuieli.
Nu cedat, i tentat, iilor.

285

Algorithms 2022, 15, 472

Appendix B. Results for Control Tokens

Appendix B.1. Simple Scenarios

Table A1. Results for NoSentences (bold marks the best results).

Model Decode Method Precision (%)
BERTScore
Recall (%)

F1 (%) MSE MAE

Greedy 73.15 72.87 72.92 3.630 0.920
Base Beam Search 73.69 73.53 73.54 0.857 0.661

Top-p Sampling 72.52 72.24 72.32 1.554 1.026

Greedy 73.54 74.08 73.74 0.996 0.814
Medium Beam Search 73.49 74.42 73.89 0.813 0.702

Top-p Sampling 72.72 73.04 72.83 0.955 0.852

Greedy 73.96 73.97 73.90 1.141 0.987
Large Beam Search 73.90 74.78 74.27 0.989 0.870

Top-p Sampling 73.34 72.99 73.11 1.168 1.001

Table A2. Results for NoWords (bold marks the best results).

Model Decode Method Precision (%)
BERTScore
Recall (%)

F1 (%) MSE MAE

Greedy 73.73 73.24 73.43 257.15 9.28
Base Beam Search 74.17 73.67 73.88 114.31 7.55

Top-p Sampling 72.84 72.56 72.67 397.93 9.14

Greedy 74.34 74.04 74.15 529.18 8.11
Medium Beam Search 74.71 74.45 74.55 67.42 5.44

Top-p Sampling 73.43 73.07 73.23 110.34 6.53

Greedy 74.58 74.33 74.42 147.61 6.73
Large Beam Search 74.90 74.67 0.7475 51.87 4.96

Top-p Sampling 73.53 73.27 73.37 77.69 6.10

Table A3. Results for RatioTokens (bold marks the best results).

Model Decode Method Precision (%)
BERTScore
Recall (%)

F1 (%)
Spearman

(%)
Pearson

(%)

Greedy 74.46 71.98 73.10 51.88 30.36
Base Beam Search 74.81 72.48 73.55 59.44 58.09

Top-p Sampling 73.22 71.59 72.32 54.48 40.58

Greedy 75.47 73.41 74.34 54.26 38.19
Medium Beam Search 75.45 73.41 74.34 62.06 63.23

Top-p Sampling 74.11 72.49 73.22 55.08 53.41

Greedy 74.12 74.37 74.21 90.03 55.80
Large Beam Search 74.35 74.66 74.48 93.17 88.23

Top-p Sampling 73.22 73.37 73.26 90.63 84.81

Table A4. Results for LexOverlap (bold marks the best results).

Model Decode Method Precision (%)
BERTScore
Recall (%)

F1 (%)
Spearman

(%)
Pearson

(%)

Greedy 75.13 73.59 74.28 77.68 78.93
Base Beam Search 75.62 74.32 74.89 72.74 69.37

Top-p Sampling 73.48 73.17 73.27 80.38 84.65

Greedy 75.59 74.55 75.01 77.79 0.8074
Medium Beam Search 75.90 74.94 75.36 76.77 74.62

Top-p Sampling 73.95 73.88 73.87 81.78 86.68

Greedy 75.83 74.44 75.07 79.72 83.46
Large Beam Search 74.37 73.83 74.05 79.84 80.29

Top-p Sampling 76.30 74.66 75.42 80.74 86.11

286

Algorithms 2022, 15, 472

Appendix B.2. Complex Scenarios

Table A5. Results for RatioTokens-NoSentences (bold marks the best results).

Model Decode Method Precision (%)
BERTScore

F1 (%)
MSE MAE

Spearman
(%)

Pearson (%)

Recall (%) NoSentences NoSentences RatioTokens RatioTokens

Greedy 73.22 73.44 73.25 1.641 1.019 62.19 42.57
Base Beam Search 73.77 74.07 73.86 1.002 0.714 66.71 66.01

Top-p Sampling 72.56 72.98 72.72 2.678 1.316 64.29 49.99

Greedy 74.39 74.11 74.19 0.974 0.759 74.57 69.14
Medium Beam Search 74.47 74.34 74.36 0.677 0.549 77.70 78.03

Top-p Sampling 73.48 73.00 73.20 1.123 0.808 77.02 68.41

Greedy 74.59 74.17 74.33 0.685 0.555 74.86 72.91
Large Beam Search 74.81 74.54 74.63 0.919 0.757 77.02 74.00

Top-p Sampling 73.77 73.18 73.43 1.027 0.811 74.70 72.85

Table A6. Results for NoSentences-RatioTokens (bold marks the best results).

Model Decode Method Precision (%)
BERTScore

F1 (%)
MSE MAE

Spearman
(%)

Pearson (%)

Recall (%) NoSentences NoSentences RatioTokens RatioTokens

Greedy 73.88 73.41 73.58 1.188 0.829 74.60 45.64
Base Beam Search 74.23 73.89 74.01 0.834 0.599 78.80 75.22

Top-p Sampling 72.87 72.87 72.83 1.774 1.036 76.88 73.45

Greedy 72.22 74.83 73.46 3.707 1.414 82.59 71.82
Medium Beam Search 72.67 75.28 73.91 1.888 1.087 86.45 78.72

Top-p Sampling 71.76 73.96 72.81 3.408 1.537 84.84 81.96

Greedy 72.84 74.77 73.75 2.368 1.309 87.39 76.25
Large Beam Search 73.25 75.51 74.33 1.670 1.077 89.52 85.69

Top-p Sampling 72.48 73.99 73.19 2.629 1.415 89.53 85.21

Table A7. Results for NoWords-NoSentences (bold marks the best results).

Model Decode Method Precision (%)
BERTScore

F1 (%)
MSE MAE

Spearman
(%)

Pearson (%)

Recall (%) NoWords NoWords NoSentences NoSentences

Greedy 73.99 72.82 73.35 291.70 10.80 1.323 0.791
Base Beam Search 74.28 73.46 73.82 190.02 9.66 0.715 0.532

Top-p Sampling 73.01 72.18 72.55 196.83 10.29 1.270 0.875

Greedy 73.86 74.36 74.05 414.65 12.50 1.519 1.023
Medium Beam Search 73.98 74.71 74.30 201.53 11.03 0.905 0.714

Top-p Sampling 72.94 73.21 73.04 232.68 11.69 1.586 1.077

Greedy 74.28 74.26 74.21 294.37 12.43 1.156 0.890
Large Beam Search 74.43 74.71 74.52 239.29 11.55 84.85 69.37

Top-p Sampling 73.66 73.47 73.52 245.23 11.76 1.178 0.925

Table A8. Results for NoSentences-NoWords (bold marks the best results).

Model Decode Method Precision (%)
BERTScore

F1 (%)
MSE MAE MSE MAE

Recall (%) NoWords NoWords NoSentences NoSentences

Greedy 72.93 73.51 73.17 238.36 11.28 1.794 1.063
Base Beam Search 73.30 74.16 73.70 160.75 9.75 1.156 0.773

Top-p Sampling 72.10 72.86 72.44 226.73 11.79 2.284 1.224

Greedy 73.46 74.72 74.05 290.49 11.53 2.083 1.170
Medium Beam Search 73.91 75.33 74.58 148.71 9.42 1.263 0.837

Top-p Sampling 72.61 73.74 73.15 229.48 11.64 2.517 1.290

Greedy 73.33 74.97 74.09 383.55 14.77 4.283 1.226
Large Beam Search 73.46 75.34 74.35 308.95 13.88 1.530 0.985

Top-p Sampling 72.73 74.11 73.38 338.57 13.82 2.529 1.284

287

Algorithms 2022, 15, 472

Table A9. Results for LexOverlap-NoWords (bold marks the best results).

Model Decode Method Precision (%)
BERTScore

F1 (%)
MSE MAE

Spearman
(%)

Pearson (%)

Recall (%) NoWords NoWords LexOverlap LexOverlap

Greedy 74.06 73.86 73.89 577.91 15.65 0.548 0.578
Base Beam Search 73.98 74.28 74.06 470.63 15.35 0.417 0.439

Top-p Sampling 72.99 73.07 72.97 464.38 15.25 57.83 64.11

Greedy 74.76 74.42 74.54 257.78 11.61 68.33 72.44

Medium Beam Search 75.05 74.84 74.90 224.48 1,0.99 64.09 65.60
Top-p Sampling 73.49 73.52 73.46 245.16 11.70 66.07 72.41

Greedy 74.34 74.18 74.21 321.30 12.29 64.58 68.29
Large Beam Search 74.89 74.60 74.69 398.75 12.14 60.77 61.18

Top-p Sampling 73.71 73.69 73.66 289.60 12.36 65.06 69.99

Table A10. Results for NoWords-LexOverlap (bold marks the best results).

Model Decode Method Precision (%)
BERTScore

F1 (%)
MSE MAE

Spearman
(%)

Pearson (%)

Recall (%) NoWords NoWords LexOverlap LexOverlap

Greedy 74.12 73.83 73.90 690.47 15.70 57.18 60.38
Base Beam Search 74.06 74.21 74.06 629.78 15.61 42.64 44.49

Top-p Sampling 72.85 73.02 72.88 436.36 15.30 58.94 66.40

Greedy 74.77 74.44 74.56 263.85 11.78 67.68 71.77
Medium Beam Search 75.08 74.92 74.95 245.22 11.43 64.16 65.61

Top-p Sampling 73.64 73.76 73.66 272.39 12.23 68.80 74.56

Greedy 74.25 74.10 74.13 277.87 12.25 63.87 67.61
Large Beam Search 74.81 74.59 74.65 408.00 12.55 59.81 60.23

Top-p Sampling 73.53 73.56 73.50 282.77 12.42 61.51 65.75

Appendix C. Summaries Generated While Varying Values for Control Token(s)

Appendix C.1. Summaries Generated with <NoSentences>

News: “O româncă a vândut costume de baie de lux în valoare de 2 milioane de
euro în 2020. Cine a fost put,in creativ anul trecut a făcut bani frumos, i. Roxana Ispas este
fondatoarea brandului Ronna Swimwear.A lucrat mai mult, i ani în domeniul juridic, apoi a
avut un business în domeniul consultant,ei, iar acum s-a reprofilat. Face costume de baie de
lux. A profitat de faptul că multe românce au mers anul trecut în vacant,e exotice s, i a făcut
haine de plajă, sutiene s, i chilot, i. S, i nu îi merge rău deloc. Are comenzi din toată lumea
s, i cliente fidele mai ales în Germania, Frant,a sau Dubai. În 2020 Roxana a avut încasări
de 2 milioane de euro.Roxana Ispas, fondatoare Ronna Swimwear: P̈rofilul clientei–cea
care vrea să arăte ca un milion dollar baby. As, a am vândut bine s, i în Madrid s, i la Monte
Carlo s, i la Paris s, i Dubai. Online am vândut prima oară cel mai bine, dar anul trecut a
fost jumate-jumate chiar. În 2021 sper să se dea drumul să călătorim, să fie mult mai ok“.
S, i deja stăm foarte ok la capitolul vacant,e exotice, România se află pe locul 5 în topul
t, ărilor care au trimis cei mai mult, i turis, ti în Maldive. Doar în primele 10 zile din ianuarie
2021 aproape 1500 de turis, ti români au preferat această destinat, ie. I-am depăs, it pe nemt,i,
francezi, elvet, ieni s, i chiar pe americani.”

Original: “Pandemia le-a adus celor îndrăznet, i vânzări urias, e în 2020. Roxana vinde
costume de baie de lux în Frant,a, Germania sau Dubai. Roxana a avut vânzări de 2 milioane
de euro în 2020. România a trimis mai mult, i turis, ti în Maldive decât SUA, Germania
sau Elvet, ia.”

Generate for <NoSentences>=2: “Roxana Ispas este fondatoarea brandului Ronna
Swimwear. Roxana a vândut costume de baie de lux în valoare de 2 milioane de euro
în 2020.”

Generate for <NoSentences>=3: “Roxana Ispas este fondatoarea brandului Ronna
Swimwear. Roxana a vândut costume de baie de lux în valoare de 2 milioane de euro în
2020. Roxana Ispas este fondatoarea brandului Ronna Swimwear.”

288

Algorithms 2022, 15, 472

Generate for <NoSentences>=4: “Roxana Ispas este fondatoarea brandului Ronna
Swimwear. Roxana a vândut anul trecut costume de baie de lux în valoare de 2 milioane de
euro. Roxana Ispas: “Profilul clientei–cea care vrea să arăte ca un milion dollar baby. As, a
am vândut bine s, i în Madrid s, i la Monte Carlo s, i la Paris”.”

Generate for <NoSentences>=5: “Roxana Ispas este fondatoarea brandului Ronna
Swimwear. Roxana a lucrat mai mult, i ani în domeniul juridic, apoi a avut un business în
domeniul consultant,ei. Roxana a vândut costume de baie de lux în valoare de 2 milioane
de euro în 2020. Roxana Ispas: “Profilul clientei – cea care vrea să arăte ca un milion dollar
baby. As, a am vândut bine s, i în Madrid s, i la Monte Carlo s, i la Paris”.”

Appendix C.2. Summaries Generated with the Combination <NoSentences>-<NoWords>

News: “Studenţii de la UMF Craiova sunt voluntari în campania de vaccinare. Când
se termină campania de vaccinare non-stop. Student,ii de la Universitatea de Medicină s, i
Farmacie din Craiova ajută la campania de vaccinare. Spun că doar as, a se pot întoarce în
sălile de curs.Ioana Deaconu e studentă în anul II. Vrea să devină chirurg, dar până acum
n-a reus, it deloc să facă practică în spital, din cauza restrict, iilor anti pandemice. Acum, s-a
înscris voluntar în campania de vaccinare non-stop. Împreună cu prietena ei, Amalia, îi
ajută pe cei care vin la vaccinare să completeze formularele de triaj.Printre primii care au
venit să se vaccineze au fost mai mult, i străini. Ana este studentă în Spania, dar va locui o
perioadă în România, unde a venit să lucreze ca voluntar la o organizat, ie de luptă împotriva
traficului de persoane. Spune că, atunci când a auzit că se poate vaccina fără programare,
nu a stat pe gânduri.Peste 100 de student, i de la Medicină participă, timp de o săptămână, la
campania de vaccinare non-stop de la stadionul Ion Oblemenco.Tudor Băls, anu, prodecanul
Facultăt, ii de Medicină, spune că student,ii nu sunt obligat, i să fie vaccinat, i pentru a putea
participa la cursuri, dar riscurile scad atunci când sunt imunzat, i cât mai mult, i.Campania de
vaccinare non-stop din Craiova se va încheia pe 17 mai. Centrul are 10 fluxuri de vaccinare
ziua s, i două noaptea.”

Original: “Aproximativ 100 de student, i de la UMF Craiova sunt voluntari în campania
de vaccinare. La Craiova, până în data de 17 mai, te pot,i vaccina non-stop, la stadionul
Ion Oblemenco. S, i străinii se pot vaccina, fără programare, la centrul deschis la stadionul
Ion Oblemenco.”

Generate for <NoSentences>=3 and <NoWords>-50%: “Student, ii de la UMF Craiova
ajută la campania de vaccinare non-stop. Ioana Deaconu este studentă în Spania, dar va
locui o perioadă în România.”

Generate for <NoSentences>=3 and <NoWords>-25%: “Student, ii de la UMF Craiova
sunt voluntari în campania de vaccinare non-stop. Ioana Deaconu este studentă în Spania,
dar va locui o perioadă în România, unde a venit să lucreze ca voluntar la o organizat, ie de
luptă împotriva traficului de persoane.”

Generate for <NoSentences>=3 and <NoWords> + 0%: “Student, ii de la UMF Craiova
sunt voluntari în campania de vaccinare non-stop. Ioana Deaconu, studentă în anul II,
spune că doar as, a se pot întoarce în sălile de curs. Peste 100 de student,i de la Medicină
participă, timp de o săptămână, la campania de vaccinare non-stop de la stadionul Ion
Oblemenco.”

Generate for <NoSentences>=3 and <NoWords> + 25%: “Student, ii de la UMF Craiova
sunt voluntari în campania de vaccinare non-stop. Ioana Deaconu, studentă în anul II,
spune că doar as, a se pot întoarce în sălile de curs. Peste 100 de student,i de la Medicină
participă, timp de o săptămână, la campania de vaccinare non-stop de la stadionul Ion
Oblemenco. Campania de vaccinare non-stop din Craiova se va încheia pe 17 mai.”

Generate for <NoSentences>=3 and <NoWords> + 50%: “Student,ii de la Universi-
tatea de Medicină s, i Farmacie din Craiova ajută la campania de vaccinare non-stop. Ioana
Deaconu e studentă în anul II. Vrea să devină chirurg, dar până acum n-a reus, it deloc
să facă practică în spital, din cauza restrict, iilor anti pandemice. Peste 100 de student,i
de la Medicină participă, timp de o săptămână, la campania de vaccinare non-stop de la
stadionul Ion Oblemenco.”

289

Algorithms 2022, 15, 472

References

1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

2. Radford, A.; Wu, J.; Amodei, D.; Amodei, D.; Clark, J.; Brundage, M.; Sutskever, I. Better language models and their implications.
OpenAI Blog 2019, 1, 2. Available online: https://openai.com/blog/better-language-models (accessed on 14 October 2022).

3. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

4. Black, S.; Gao, L.; Wang, P.; Leahy, C.; Biderman, S. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-
Tensorflow. arXiv 2020, arXiv:2101.00027.

5. Wang, B.; Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. 2021. Available online: https:
//github.com/kingoflolz/mesh-transformer-jax (accessed on 14 October 2022).

6. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

7. Masala, M.; Ruseti, S.; Dascalu, M. Robert–a romanian bert model. In Proceedings of the 28th International Conference on
Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 6626–6637.

8. Dumitrescu, S.D.; Avram, A.M.; Pyysalo, S. The birth of Romanian BERT. arXiv 2020, arXiv:2009.08712.
9. Avram, A.M.; Catrina, D.; Cercel, D.C.; Dascălu, M.; Rebedea, T.; Păiş, V.; Tufiş, D. Distilling the Knowledge of Romanian BERTs

Using Multiple Teachers. arXiv 2021, arXiv:2112.12650.
10. Niculescu, M.A.; Ruseti, S.; Dascalu, M. RoGPT2: Romanian GPT2 for Text Generation. In Proceedings of the 2021 IEEE 33rd

International Conference on Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 1–3 November 2021; pp. 1154–1161.
11. Dumitrescu, S.D.; Rebeja, P.; Lorincz, B.; Gaman, M.; Avram, A.; Ilie, M.; Pruteanu, A.; Stan, A.; Rosia, L.; Iacobescu, C.; et al. Liro:

Benchmark and leaderboard for Romanian language tasks. In Proceedings of the Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), Online, 7–10 December 2021.

12. Nallapati, R.; Zhou, B.; Nogueira dos santos, C.; Gulcehre, C.; Xiang, B. Abstractive text summarization using sequence-to-
sequence RNNs and beyond. arXiv 2016, arXiv:1602.06023.

13. Scialom, T.; Dray, P.A.; Lamprier, S.; Piwowarski, B.; Staiano, J. MLSUM: The multilingual summarization corpus. arXiv 2020,
arXiv:2004.14900.

14. Narayan, S.; Cohen, S.B.; Lapata, M. Don’t give me the details, just the summary! topic-aware convolutional neural networks for
extreme summarization. arXiv 2018, arXiv:1808.08745.

15. Völske, M.; Potthast, M.; Syed, S.; Stein, B. Tl; dr: Mining Reddit to learn automatic summarization. In Proceedings of the
Workshop on New Frontiers in Summarization, Copenhagen, Denmark, 7 September 2017; pp. 59–63.

16. Cioaca, V.; Dascalu, M.; McNamara, D.S. Extractive Summarization using Cohesion Network Analysis and Submodular Set
Functions. In Proceedings of the 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2020), Timisoara, Romania, 1–4 September 2020.

17. Dutulescu, A.; Ruseti, S.; Dascalu, M. Unsupervised Extractive Summarization with BERT. In Proceedings of the 24th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2022), Linz, Austria, 12–15
September 2022.

18. Zhong, M.; Liu, P.; Chen, Y.; Wang, D.; Qiu, X.; Huang, X.J. Extractive Summarization as Text Matching. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, 6–8 July 2020; pp. 6197–6208.

19. Liu, Y.; Lapata, M. Text Summarization with Pretrained Encoders. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
Hong Kong, China, 3–7 November 2019; pp. 3730–3740.

20. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, 6–8 July 2020; pp. 7871–7880.

21. Liu, Y.; Liu, P.; Radev, D.; Neubig, G. BRIO: Bringing Order to Abstractive Summarization. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022;
pp. 2890–2903.

22. Qi, W.; Yan, Y.; Gong, Y.; Liu, D.; Duan, N.; Chen, J.; Zhang, R.; Zhou, M. ProphetNet: Predicting Future N-gram for Sequence-to-
SequencePre-training. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online,
16–20 November 2020; pp. 2401–2410.

23. Zhang, J.; Zhao, Y.; Saleh, M.; Liu, P. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. Proc. Int.
Conf. Mach. Learn. 2020, 119, 11328–11339.

24. Martin, L.; Fan, A.; de la Clergerie, É.; Bordes, A.; Sagot, B. MUSS: Multilingual unsupervised sentence simplification by mining
paraphrases. arXiv 2020, arXiv:2005.00352.

25. Clive, J.; Cao, K.; Rei, M. Control prefixes for text generation. arXiv 2021, arXiv:2110.08329.
26. Kieuvongngam, V.; Tan, B.; Niu, Y. Automatic text summarization of COVID-19 medical research articles using BERT and GPT-2.

arXiv 2020, arXiv:2006.01997.

290

Algorithms 2022, 15, 472

27. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting of the Association for Computational Linguistics, Philadelphia, PE, USA, 7–12 July 2002; pp. 311–318.

28. Lin, C. Recall-oriented understudy for gisting evaluation (rouge). Retrieved August 2005, 20, 2005.
29. Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In

Proceedings of the Acl Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 25 June 2005; pp. 65–72.

30. Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.Q.; Artzi, Y. Bertscore: Evaluating text generation with BERT. arXiv 2019,
arXiv:1904.09675.

31. Yuan, W.; Neubig, G.; Liu, P. Bartscore: Evaluating generated text as text generation. Adv. Neural Inf. Process. Syst. 2021, 34,
27263–27277.

32. Sellam, T.; Das, D.; Parikh, A.P. BLEURT: Learning robust metrics for text generation. arXiv 2020, arXiv:2004.04696.
33. Celikyilmaz, A.; Clark, E.; Gao, J. Evaluation of text generation: A survey. arXiv 2020, arXiv:2006.14799.
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Freitag, M.; Al-Onaizan, Y. Beam search strategies for neural machine translation. arXiv 2017, arXiv:1702.01806.
36. Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; Choi, Y. The curious case of neural text degeneration. arXiv 2019, arXiv:1904.09751.
37. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
38. Taylor, L. Assessing Reading-Into-Writing Skills for an Academic Context: Some Theoretical and Practical Considerations. 2013.

Available online: https://github.com/kingoflolz/mesh-transformer-jax (accessed on 14 October 2022).
39. Westby, C.; Culatta, B.; Lawrence, B.; Hall-Kenyon, K. Summarizing expository texts. Top. Lang. Disord. 2010, 30, 275–287.

[CrossRef]
40. Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med.

2016, 15, 155–163. [CrossRef]

291

Citation: La, T.-V.; Dao, M.-S.; Le,

D.-D.; Thai, K.-P.; Nguyen, Q.-H.;

Phan-Thi, T.-K. Leverage Boosting

and Transformer on Text-Image

Matching for Cheap Fakes Detection.

Algorithms 2022, 15, 423. https://

doi.org/10.3390/a15110423

Academic Editors: Xiang Zhang and

Xiaoxiao Li

Received: 17 September 2022

Accepted: 11 October 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Leverage Boosting and Transformer on Text-Image Matching for
Cheap Fakes Detection †

Tuan-Vinh La 1,2,*, Minh-Son Dao 3,*, Duy-Dong Le 4, Kim-Phung Thai 4, Quoc-Hung Nguyen 4 and Thuy-Kieu

Phan-Thi 4

1 University of Information Technology, Ho Chi Minh City 700000, Vietnam
2 Vietnam National University, Ho Chi Minh City 700000, Vietnam
3 National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
4 University of Economics, Ho Chi Minh City 700000, Vietnam
* Correspondence: vinhlt.16@grad.uit.edu.vn (T.-V.L.); dao@nict.go.jp (M.-S.D.)
† This paper is an extended version of our paper published in Proceedings of the 3rd ACM Workshop on

Intelligent Cross-Data Analysis and Retrieval, Newark, NJ, USA, 27–30 June 2022 (https://dl.acm.org/doi/
abs/10.1145/3512731.3534210).

Abstract: The explosive growth of the social media community has increased many kinds of mis-
information and is attracting tremendous attention from the research community. One of the most
prevalent ways of misleading news is cheapfakes. Cheapfakes utilize non-AI techniques such as
unaltered images with false context news to create false news, which makes it easy and “cheap” to
create and leads to an abundant amount in the social media community. Moreover, the develop-
ment of deep learning also opens and invents many domains relevant to news such as fake news
detection, rumour detection, fact-checking, and verification of claimed images. Nevertheless, despite
the impact on and harmfulness of cheapfakes for the social community and the real world, there is
little research on detecting cheapfakes in the computer science domain. It is challenging to detect
misused/false/out-of-context pairs of images and captions, even with human effort, because of the
complex correlation between the attached image and the veracity of the caption content. Existing
research focuses mostly on training and evaluating on given dataset, which makes the proposal
limited in terms of categories, semantics and situations based on the characteristics of the dataset. In
this paper, to address these issues, we aimed to leverage textual semantics understanding from the
large corpus and integrated with different combinations of text-image matching and image captioning
methods via ANN/Transformer boosting schema to classify a triple of (image, caption1, caption2)
into OOC (out-of-context) and NOOC (no out-of-context) labels. We customized these combinations
according to various exceptional cases that we observed during data analysis. We evaluate our
approach using the dataset and evaluation metrics provided by the COSMOS baseline. Compared
to other methods, including the baseline, our method achieves the highest Accuracy, Recall, and
F1 scores.

Keywords: deep learning; computer vision; natural language processing; image-text matching;
cheapfakes; misinformation; transformer encoder

1. Introduction

In recent years, the amount of information and news has dramatically increased due
to the convenience and development of social media. However, besides the benefit of
its growth, it also significantly increases the quantity and impact of misinformation on
individuals and society, which is one of the most dangerous things that threaten democracy,
journalism, and freedom of expression. Fake news disturbs the community on a multimedia
platform and causes fatal consequences in many aspects of reality and for the ordinary
lives of many people. For example, fake news affected the 2016 and 2020 U.S elections.

Algorithms 2022, 15, 423. https://doi.org/10.3390/a15110423 https://www.mdpi.com/journal/algorithms
293

Algorithms 2022, 15, 423

Besides the spread of the amount of false information, the way of spreading mis-
leading information to the community has also changed and evolved in many types and
formations, making it more effective at and convenient for deceiving humans. For example,
the enlargement and popularity of microblogging platforms such as Twitter, Facebook
and Instagram has also increased the speed of spreading rumours and fake news since
social media platforms are becoming more and more usual and necessary things in ordi-
nary life for many people. Furthermore, controlling the content and veracity of posts on
microblogging platforms is difficult since there is a large number of users on the standard
platforms such as Facebook, Twitter and Instagram.

The blossoming of deep learning has opened new domains and technology, one
of which is deepfake [1,2]. Deepfake has received attention from the computer vision
community and is a powerful technique that can manipulate images/videos with high
quality and that are hard to discriminate from unaltered ones. However, despite the
usefulness and effectiveness of deepfake in swaying people’s beliefs, one of the most
prevalent and frequent ways of spreading disinformation is out-of-context photos, which
use unaltered images in news or posts with false context.

Cheapfakes are a type of fake news that utilizes both images and new context. The dan-
ger of cheapfakes is that they are easy and cheap to make. While deepfakes use deep
learning, which takes high technology and complexity to create, cheapfakes make use of
simple and non-AI techniques such as photoshop, manipulating video speed, or unaltered
images/videos from different events with false context, which makes it simple to create
and more common.

Based on the MIT technology review (https://www.technologyreview.com/2020/12/
22/1015442/cheapfakes-more-political-damage-2020-election-than-deepfakes/, accessed
on 7 October 2022), in the 2020 U.S presidential election, deepfakes did not disrupt the US
election, but cheapfakes did. Fazio [3] also warned of the dangers and explained why out-
of-context photos are compelling. First, photos are usually attached to news, and people are
already used to them. Secondly, photos make people faster at retrieving an image-related
event, making it feel more truthful. Lastly, by using photos, posts on social media platforms
will receive more attention and help spread false information.

To meet the emerging requirements of having a good tool for cheapfakes detection
and overcome the limitations of existing works, we propose several approaches that utilize
multimodal representation learning techniques to overcome limitations. By combining
several techniques, including text entailment, image text matching, and boosting algorithms,
our methods have improved performance and assessed the performance of several methods
in cheapfakes detection.

2. Related Work

This section briefly surveys fake news detection methods, including cheapfakes detec-
tion and other subdomain methods.

2.1. Fake News Detection

Fake news has existed for a long time, even before the internet appeared. Recently, fake
news has been one of the most prevalent ways to spread disinformation to human society.
There are many research and public datasets on this issue. Usually, the research topic and
public dataset focus on the textual type of fake news. LIAR [4] and FEVER [5] are two
famous public datasets where data are collected from the news website. Each consists of one
statement and a given claim, with multiple grades to determine the relation and veracity.
Classification news-based linguistic semantic features [6,7] and data mining [8,9] are two
traditional methods for determining the veracity of the news based on the semantics of the
given text. This approach relies on training and the given data, and cannot utilize external
knowledge to verify the news. Based on the development in the data and methods of the
knowledge graph, Refs. [10–12] make use of the knowledge graph as external knowledge.
This approach is ideal in theory, but in reality the knowledge graph suffers from a lack of

294

Algorithms 2022, 15, 423

relation between entities and still has a long way to develop. Although the task usually
focuses on textual fake news, there are many implications for the impact on detecting
disinformation in both images and text.

2.2. Rumour Detection

Alongside fake news detection, rumour detection also has a long history. Rumours
refer to information not confirmed by official sources that spreads on social media plat-
forms. Unlike fake news, which consists primarily of textual information, rumours include
many types of information such as reactions, comments, attached images, user profiles,
and platforms. In rumor spreading, followers play an essential role when directly or di-
rectly contribute 86 exponential increments of rumors by forwarding news with or without
their comments whose content could distort the original one. Hence, understanding the
following (i.e., a series of comments tailored from original news), especially in social net-
works, can help filter out fake news. Because data collected from social networking services
can contain more attributes than data collected from news websites, such as user profiles,
attached relevant posts, reactions, and comments, the data are rich and have complex
attributes. The following research also has various approaches compared to fake news
detection. Tree structure, sequence network [13,14] and graph neural network [15,16] are
common approaches for combining and extracting correlation features on sequence and
time-series data from microblogging.

2.3. Fact Checking

Fact-checking is the task of classifying the veracity of a given claim. It is a time-
consuming task to verify a given claim. People need to search and check the source
website’s reputation and impact. Some given claims even need several professionals and
several days or hours. Many techniques have been researched and developed to reduce
manual fact-checking to settle this issue. There are two popular dataset types for fact-
checking: the first is to verify a given pair of claims and evidence [17]. Prior research has
utilized text entailment [18] to compare semantic relations between claims and evidence.
Liangming et al. [19] also utilized question-answering by generating questions from the
given claim. The second utilizes data on a large scale, and processes based on the technique
of the knowledge graph [20].

2.4. Verify Claim about Images

Besides fake news detection, rumour detection, and fact-checking, verifying claims about
an image has also received attention in recent years. While the above task mainly verifies textual
claims or posts, verifying the claim about the image focuses on the post/claim/caption with the
attached image. This is a challenging task since verifying the veracity of the claim itself is
hard, but verifying if the attached image is related or satisfactory for concluding the truth
or not is even more challenging. Refs. [21–23] extract textual captions and attached images
through corresponding pre-trained models then concatenate and infer through a linear
layer for classifying. La et al. [24] utilized an image–text matching method to measure
correlations between captions and images. Dimitrina et al. [25] also took advantage of
Google image search to enrich information (website, categories of news, and images) and
then made use of TF.IDF to predict veracity.

2.5. Multi/Cross-Modal Representation Learning

In the field of multimodal reasoning and matching, many techniques have been devel-
oped to resolve various challenging tasks such as Visual Question Answering (VQA) [26],
Image Captioning [27], Text-to-Image [28], and Image–Text Matching [29]. Still, there is
much research on the cross-modal between images and text. To verify claims about image
tasks, many methods use the simple technique of extracting features of images through
Convolution Neural Network and concatenating them with textual features to classify the

295

Algorithms 2022, 15, 423

truthfulness of news. This technique is simple yet depends on the training dataset, which
cannot be generalized in reality and for other aspects and types of news.

3. Dataset

This section will briefly introduce the Out-of-Context Detection Dataset in COS-
MOS [30], which we used to assess and evaluate our proposal’s performance. The dataset
was collected from news websites (New York Times, CNN, Reuters, ABC, PBS, NBCLA, AP
News, Sky News, Telegraph, Time, DenverPost, Washington Post, CBC News, Guardian,
Herald Sun, Independent, CS Gazette, BBC) and fact-checking websites. The dataset con-
sisted of the English language in 19 categories and did not consist of digitally-altered or
fake images. The statistic is shown in Figure 1 and Table 1. We recommend readers read [31]
for more details.

Figure 1. Distribution in categories and content of COSMOS dataset.

Table 1. COSMOS Dataset statistic.

Dataset Images Captions Context Annotation

Training 161,752 360,749 �
Validation 41,006 90,036 �
Public Test 1000 2000 �

Train/Validate Set: In the training set, captioned images were collected from the news
website. Each captioned image consisted of one image, one or multiple attached captions,
source URL, entity list in a caption, modified caption in which each entity is replaced by
corresponding ontology, and location of 10 bounding boxes extracted by a pre-trained
Mask-RCNN on MS COCO. Training data did not contain an out-of-context captioned
image. Every captioned image was not-out-of-context and did not have a context label.
Training data consisted of around 200,000 images with 450,000 matching textual captions.
Furthermore, 20% of that was split for the validation set. The example of the captioned
image of the training set is illustrated in Figure 2.

296

Algorithms 2022, 15, 423

Figure 2. Example of the captioned image in the training set. Training data do not contain an
out-of-context captioned image. Every captioned image is not-out-of-context and does not have a
context label.

Test Set: In the test set, captioned images were collected from both news websites and
fact-checking websites. Like the train set, each captioned image of the test set consisted of
an image, captions, source URL, entity list, modified caption, and bounding box. However,
each captioned image contained two corresponding captions in the test set. These captions
always contained one caption not-out-of-context; the remaining caption could be out-of-
context or not-out-of-context. Each captioned image also had context annotation to point
out if that captioned image consisted of out-of-context captions or not. In summary, the test
set contained 1000 captioned images, which included 1000 images and 2000 textual captions.
The example of the captioned image of the test set is illustrated in Figure 3.

Figure 3. Example of the captioned image in the testing set. The captioned image contains one image
and two corresponding captions. These captions always have one caption not-out-of-context; the
remaining caption can be out-of-context or not-out-of-context.

4. Proposed Method

In this section, we will introduce COSMOS baseline [30], our motivation, and explain
and describe our methods.

297

Algorithms 2022, 15, 423

4.1. COSMOS Baseline

In prior research on image and news veracity classification, the method usually aims
to utilize multi-modal by extracting features of text/captions and attached images through
a pre-trained convolution neural network, LSTM [32] or BERT [33], layer and combine
these features by concatenating or sum function with the appropriate objective function.
This approach can take advantage of multiple datasets such as imagenet, MSCOCO, STS,
and MNLI. . . for the basis of understanding and representing semantic information of data
and fine-tuning other news datasets to improve performance.

Besides the advantage of prior research, it is also limited in terms of the dataset’s
attributes. Most of the prior work uses fine-tuning on the new dataset, which makes it
limited in many respects, such as in categories and characteristics of news, and cannot
cover all subjects or situations not included in the dataset.

In COSMOS, the author aims to match the caption with the most correlated object
in the image by utilizing self-supervised learning. To do this, the author first uses Mask-
RCNN [34] on MSCOCO [35] and selects the top 10 ROIs (Region of Interest) with the
highest detection score and additional features of the entire image. For text pre-processing
and processing, the author first makes use of NER (Named Entity Recognition) to generalize
captions and then infers through USE (Universal Sentence Encoder) [36] to extract caption
embedding. Next, the author infers the bounding box and caption embedding through a
linear layer for mapping to the same dimension. The paper also uses max margin ranking
loss [30] as objective/loss function using the equation:

L =
1
N

N

∑
i

max(0, (Sr
IC − Sm

IC) + α), (1)

where Sr
IC, Sm

IC is the measure of similarity between a random caption–image pair and a
matching caption–image pair, and α is the margin parameter. This measure is calculated by
the maximum dot function between 11 ROIs and matching/random caption. The similarity
measure function is illustrated as Equation :

SIC =
N

max
i

(bT
i c), (2)

where bi is the features of the proposal bounding box and c is the features of the caption.
At testing time, for each captioned image (caption1,caption2,image), the COSMOS

method uses the simple if else rule to determine out-of-context captioned images:{
OOC, If IoU(BIC1 , BIC2) > ti & Ssim(C1, C2) < tc

NOOC, otherwise,
(3)

where IoU(BIC1 , BIC2) is the intersection-over-union of two bounding boxes having the
largest value of similarity measure with the corresponding two captions; Ssim(C1, C2) is the
similarity measure defined in cosine space, and ti, tc is the fixed threshold of IoU(BIC1 , BIC2)
and Ssim(C1, C2).

By matching and comparing two captions with the corresponding object, the au-
thor can assess if two captions mention a related subject/object or not (determined by
IoU(BIC1 , BIC2)). If two captions mention a related subject/object and have uncorrelated
semantic similarity (determined by Ssim(C1, C2)), then the given captioned image is out-of-
context. The other situation is not-out-of-context.

4.2. Motivation

By training the model matching caption with the correlated object in the image and
utilizing a pre-trained large-scale textual dataset, the method can utilize the semantic

298

Algorithms 2022, 15, 423

features and understanding of another large-scale dataset, which make it less prone to
overfitting on other tasks or datasets of news or fact verification.

Besides the advantages of the COSMOS baseline, the weakness of this method is that
by utilizing features of the entire image of Mask-RCNN on MSCOCO, it cannot optimize the
express context of the entire image because the Mask-RCNN’s task is object detection, not
descripting. Moreover, the caption usually mentions multiple objects and highly correlates
with the context image.

Based on the insufficiency of the COSMOS method when comparing the image with
the caption, in this paper, we propose and evaluate a method that utilizes a more optimized
method to express content features of the image and better extracts the semantic relation
between two captions. Furthermore, instead of defining a rule for determining out-of-
context captioned images, we combined results from multiple methods by making use of
boosting techniques to improve performance.

4.3. Methodology

This paper proposes two approaches to measuring the correlation between image and
caption: image captioning and image–caption matching.

Image Captioning: For the image captioning approach, we aim to utilize [37] to
generate the content description of an image. We can use a pre-trained large-scale dataset
on the STS [38] task (Semantic Textual Similarity) to measure the correlation between
caption and image by converting the image’s content to textual form.

Image-Caption Matching: For the image-caption matching approach, we utilized a
trained model of image–text matching on the MSCOCO dataset [35] to measure the correla-
tion between caption and image. In this paper, we used the Visual Semantic Reasoning [39]
method to measure the similarity between image and caption. See Figure 4 for illustration.

Figure 4. Illustration of boosting with image captioning method. First, the image will be inferred self-
critically [37] to obtain a description of the image in textual form. Next, RoBERTa(MNLI) is utilized to
extract the correlation between caption1, caption2, and image (NLI(caption1, caption2), NLI(caption1,
captionimage), NLI(caption2, captionimage)).To overcome the difference between training data and
testing data issues and improve performance, we take advantage of the boosting algorithm on the
part of the testing data to combine results from our proposal and the COSMOS baseline.

The VSRN (Visual Semantic Reasoning) [39] method utilizes margin ranking loss as
the objective function. The margin ranking loss objective is the correlation measurement of
the matching caption–image, which is higher than the non-matching caption-image and not

299

Algorithms 2022, 15, 423

trying to make matching caption–image have a matching score higher than the threshold.
As shown in Figure 5, the matching caption image’s matching score has a different range
of values. It can have a lower value compared with different captions and images that do
not match each other. However, compared to the same image with another caption that is
not matching, the correlation measurement of the matching caption image is higher than
that of the non-matching caption image. Based on this attribute of the VSRN method and
margin ranking loss, we normalized the matching score using Equation (4) to overcome
this issue. See Figure 6 for illustration.

Ŝ(I, C) = S(I, C)− 1
2N

N

∑
r
[S(I, Cr) + S(Ir, C)], (4)

where Ŝ defines the normalize matching score, and r defines the random index that satisfies
Cr �= C and Ir �= I. By subtracting the mean of the matching score from the N sample,
the result can express the correlation degree of the given matching image caption compared
with other non-matching image captions.

Figure 5. Example of the matching score between image and caption. Green expresses matching
caption and red expresses non-matching caption. Based on the attribute of margin ranking loss,
compared to one image, matching captions have a higher score than the non-matching caption. Not
every matching caption always has a higher matching score than a non-matching caption.

Hence, to estimate the correlation between two captions better, instead of using only
cosine similarity measures from other methods trained on the STS task [38], we also used
other methods on the NLI task (Natural Language Inference) [40] to express the semantic
relation between two captions. We chose SBERT-WK [41] and RoBERTa [42] to extract
semantic relations between two captions.

One of the difficulties of the COSMOS dataset is that training/validation data have
a different construct from testing data. In training data, each captioned image consists
of only a not-out-of-context pair, and captions are always trustworthy news and match
the image’s context. While in testing data, data consist of out-of-context and not-out-of-
context captioned images. The caption can be fake news, descriptions about the image,
or match/mismatch with the image and other captions. Based on our experience, fine-
tuning training data and evaluating directly on testing data gave poor results. We used
boosting algorithms—which can utilize results from textual entailment (NLI, STS) and
image–caption matching (image–text matching, image captioning) to increase the method’s
accuracy—on the part of the testing dataset to combine semantics understanding from
multiple methods to improve performance and overcome the shift domain issue. We
leveraged ANN and Transformer Encoder as boosting architecture. Six hundred captioned
images were extracted as training data and 400 captioned images as evaluation data.

300

Algorithms 2022, 15, 423

Figure 6. Illustration of boosting with image–caption matching method. First, image, caption1,
and caption2 will be inferred through VSRN [39] and normalized by Equation (4) to obtain matching
scores (Ŝ(I, C1), Ŝ(I, C2)). In addition to enriching semantic correlation information between caption1

and caption2, we make use of RoBERTa(MNLI) to extract the relation between two captions. Similar
to the image captioning method, we take advantage of the boosting algorithm on the part of testing
data to combine results from our proposal and the COSMOS baseline.

We also used a boosting algorithms on a combination of mixed results to compare
the effects of each component. In summary, we evaluated the performance of boosting
algorithms on a set of components:

• Boosting combination of IoU(BIC1 , BIC2) and Ssim(C1, C2) using ANN;
• Boosting combination of IoU(BIC1 , BIC2), Ssim(C1, C2), NLI(C1, C2, Cimage) using ANN [43];
• Boosting combination of IoU(BIC1 , BIC2) and Ssim(C1, C2) using Transformers Encoder;
• Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2), NLI(C1, C2, Cimage) using Transformers

Encoder;
• Boosting combination of IoU(BIC1 , BIC2), Ssim(C1, C2), Ŝ(I, C1), Ŝ(I, C2), NLI(C1, C2)

using ANN;
• Boosting combination of IoU(BIC1 , BIC2), Ssim(C1, C2), Ŝ(I, C1), Ŝ(I, C2), NLI(C1, C2)

using Transformers Encoder,

where NLI(C1, C2) and NLI(C1, C2, Cimage) is the result of RoBERTa [42] on the NLI task
given three pairs of sentences (C1, C2), (C1, Cimage), (C2, Cimage). The result contains
three probabilities of three class that express the semantic relationship between two cap-
tions/sentences: entailment, neutral, and contradiction. We illustrated an example of
boosting with image captioning and image–text matching in Figures 4 and 6.

5. Experimental & Results

This section introduces the dataset and metric used to evaluate our proposed method.
We compare our method to others on the same dataset and metric. The thoughtful discus-
sion also raises the advantages and disadvantages of our method.

5.1. Working Environment

All our experimental methods were implemented on three GPUs NVIDIA Tesla A100
40 GB, Intel Xeon Gold 5220R CPU, and 256 GB RAM. We extracted 600 captioned images
of testing data for boosting and 400 captioned images for evaluating performance.

We used the same settings to make it easy to compare each method’s performance. We
used an Adam optimizer with a 1 × 10−3 learning rate, 4 × 10−5 weight decay, and cross-
entropy loss for an updated model. We used simple ANN and a Transformers Encoder to
boost the results.

301

Algorithms 2022, 15, 423

We set the default target dimension for ANN to 64, fed-forward the activation layer
(PReLU), and inferred through the linear layer to classify the captioned image.

For the Transformers Encoder, we set input features to 16 dimensions, two multi-head
attention, and two layers to extract features. After that, we inferred through the linear layer
to classify the captioned image.

5.2. Evaluation Metrics

To evaluate the effectiveness of our proposal, we used five metrics: accuracy, precision,
recall, and F1-score with the following equation:

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1score =
2 × Recall × Precision

Recall × Precision
, (8)

where:

• True Positives (TP): Number of samples correctly identified as out-of-context;
• True Negatives (TN): Number of samples correctly identified as not-out-of-context;
• False Positives (FP): Number of samples incorrectly identified as out-of-context;
• False Negatives (FN): Number of samples incorrectly identified as not-out-of-context.

5.3. Datasets and Compared Methods

We evaluated our proposals and other methods on 400 captioned image testing
datasets. Table 2 and Figure 7 summarize the result of our proposal compared with
other methods.

Table 2. The Comparisons.

Method Accuracy Precision Recall F1-Score

Spotfake [21] 0.535 0.5252 0.5306 0.5279
EANN [21] 0.63 0.6025 0.6122 0.6185

SBERT-WK [41] 0.77 0.7241 0.8571 0.7850
COSMOS Baseline [30] 0.8325 0.8608 0.8067 0.8329

Tankut et al. [44] 0.8975 0.8738 0.9371 0.9044

Boosting with IoU(BIC1 , BIC2) 0.8375 0.8324 0.8367 0.8346and Ssim(C1, C2) with ANN

Boosting with IoU(BIC1 , BIC2) 0.8425 0.8375 0.8418 0.8396and Ssim(C1, C2) with Transformers Encoder

Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2), 0.865 0.8317 0.9081 0.8682NLI(C1, C2, Cimage) with ANN [43]

Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2), 0.8825 0.8669 0.8979 0.8822NLI(C1, C2, Cimage) with Transformers Encoder

Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2), 0.8875 0.8681 0.9227 0.8946
Ŝ(I, C1), Ŝ(I, C2), & NLI(C1, C2) with ANN

Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2),
0.8975 0.8672 0.9468 0.9053Ŝ(I, C1), Ŝ(I, C2) & NLI(C1, C2)

with Transformers Encoder
Bold factor meaning best evaluation score.

302

Algorithms 2022, 15, 423

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 7. Confusion matrix of (a)Spotfake [23]; (b)EANN [21]; (c) SBERT-WK [41]; (d) COSMOS Base-
line [30]; (e) COSMOS on Steroid [44]; (f) Boosting IoU(BIC1 , BIC2) Ssim(C1, C2) with ANN; (g) Boost-
ing IoU(BIC1 , BIC2) & Ssim(C1, C2) with Transformers Encoder; (h) Boosting with IoU(BIC1 , BIC2),
Ssim(C1, C2) & NLI(C1, C2, Cimage) with ANN; (i) Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2) &
NLI(C1, C2, Cimage) with Transformers Encoder; (j) Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2)

Ŝ(I, C1), Ŝ(I, C2) & NLI(C1, C2) with ANN; (k) Boosting with IoU(BIC1 , BIC2), Ssim(C1, C2) Ŝ(I, C1),
Ŝ(I, C2) & NLI(C1, C2) with Transformers Encoder.

5.4. Discussions

First, we made use of Spotfake [23] as a training baseline approach based on its
simplicity—fine-tuning and concatenating visual and textual embedding to classify the
veracity of the news. We leveraged Spotfake architecture on the given training and test-
ing data of COSMOS. In particular, when training, we created out-of-context content by
selecting captions and images from different sources’ captioned images and not-out-of-
context content from the same source captioned images. When evaluating, we classified
both (caption1, image) and (caption2, image). If both the captions were not-out-of-context,

303

Algorithms 2022, 15, 423

the triplet (caption1, caption2, image) was not-of-context, and the other was out-of-context.
The method gave poor results based on the different attributes between training and testing
data, and the method could not overcome and generalize the issue.

Next, downstream from another dataset approach, we chose EANN. We used the
same method from Spotfake to evaluate the performance—classify both (caption1, image)
and (caption2, image). On the MediaEval2015 dataset [45], EANN could achieve a 71.5%
accuracy point. However, when downstream of COSMOS, the method produced unqual-
ified results, even though MediaEval2015 consists of a large corpus of textual news and
various cases of misused images, similar to the COSMOS dataset. The current training and
downstream approach to a given news dataset is limited in categories, domains, and types
of news and may not perform well in reality.

Compared to the baseline, our methods improved the 6.5% accuracy score. Further-
more, in relation to Tankut et al.’s [44] research, our method has equal accuracy and has
a higher recall and F1-score. Tankut et al. [44] took advantage of handcraft features by
matching the most relevant fake news keywords (fake, hoax, fabrication, supposedly, fal-
sification, propaganda, deflection, deception, contradiction, defamation, lie, misleading,
deceive, fraud, concocted, bluffing, made up, double meaning, alternative facts, tricks,
half-truths, untruth, falsehoods, inaccurate, disinformation, misconception) and alternated
captions in testing datasets with fake words (“was true” and “was not true”) to compare
semantic features. Our methods used various semantic understandings in computer vision
and natural language processing on large-scale datasets to assess the correlation between
the original image and caption. The impact of each image-text matching method is also
present in our paper.

In Figures 8 and 9 we show a few examples of our false negative (FP) and our false
positive (FN) predictions. As we can see in the false negative cases, the content of news
and the abstract relation with the corresponding image are hard to distinguish, even by
humans, and much news needs an expert or time with search tools to determine. For false
positive cases, our method failed to distinguish between the image description (generated
by humans) and false news.

Figure 8. False negative cases. Out-of-context captioned image is classified as not-out-of-context.

304

Algorithms 2022, 15, 423

Figure 9. False positive cases. Not-out-of-context captioned image is classified as out-of-context.

6. Conclusions

We have presented and evaluated multiple approaches to the cheapfakes detection
problem and conducted experiments on the COSMOS dataset. Our work evaluates the
effectiveness of different image–text matching methods, which can leverage semantic
features from large-scale datasets instead of fine-tuning and concatenating features from
text and images, which makes methods limited in the attribute of a given dataset. Compared
to the existing method for cheapfakes detection, we have proposed a method that takes
advantage of attributes from the testing dataset instead of directly alternating and defines
handcraft patterns based on human effort. Moreover, we have extended experiments of
the same theoretical results previously described [43]. Compared to another approach,
our methods achieve competitive results, which achieve equal accuracy and higher recall
and F1-score. Overall, we believe that our method makes a valuable contribution towards
addressing misinformation in news and social media.

In the future, we will consider abstract images that cannot explain or understand with
popular image understanding methods without specific knowledge, such as a photo of
an art painter, a personal event, a snapshot from a film, or a photo of a book cover. We
also consider mapping images and captions into the third coordinator, where additional
knowledge can bridge the semantic/knowledge gap between them. Not but not least,
extending captions using domain knowledge (e.g., hugging face) to enrich the semantic
content of captions and utilize content graphs extracted from images can be another
promising research direction.

Author Contributions: Project administration, M.-S.D.; conceptualization, M.-S.D.; writing—review
and editing, T.-V.L.; writing—original draft preparation, T.-V.L.; methodology, T.-V.L.; formal analysis,
T.-V.L.; validation, T.-V.L.; software, T.-V.L.; funding acquisition, D.-D.L.; data curation, D.-D.L.,
K.-P.T., Q.-H.N. and T.-K.P.-T.; resource D.-D.L., K.-P.T., Q.-H.N. and T.-K.P.-T. All authors have read
and agreed to the published version of the manuscript.

305

Algorithms 2022, 15, 423

Funding: This research is funded by the University of Economic Ho Chi Minh City (UEH) Vietnam
grant number 2022-09-09-1144.

Data Availability Statement: The authors will make the data used in this research available on request.

Acknowledgments: We acknowledge the University of Economic Ho Chi Minh City (UEH) for
funding this research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Westerlund, M. The emergence of deepfake technology: A review. Technol. Innov. Manag. Rev. 2019, 9, 40–53. [CrossRef]
2. Collins, A. Forged Authenticity: Governing Deepfake Risks; Technical Report; EPFL International Risk Governance Center (IRGC):

Lausanne, Switzerland, 2019.
3. Fazio, L. Out-of-Context Photos Are a Powerful Low-Tech Form of Misinformation. Available online: https://mat.miracosta.edu/

mat210_cotnoir/instructor/pdfs-for-class/Out-of-context-photos-are-a-powerful-low-tech-form-of-misinformation.pdf (ac-
cessed on 7 October 2022).

4. Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; Mittal, A. Fever: A large-scale dataset for fact extraction and verification. arXiv
2018, arXiv:1803.05355.

5. Wang, W.Y. “ liar, liar pants on fire”: A new benchmark dataset for fake news detection. arXiv 2017, arXiv:1705.00648.
6. Choudhary, A.; Arora, A. Linguistic feature based learning model for fake news detection and classification. Expert Syst. Appl.

2021, 169, 114171. [CrossRef]
7. Singh, V.; Dasgupta, R.; Sonagra, D.; Raman, K.; Ghosh, I. Automated fake news detection using linguistic analysis and machine

learning. In Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction and
Behavior Representation in Modeling and Simulation (SBP-BRiMS), Washington, DC, USA, 5–8 July 2017; pp. 1–3.

8. Shu, K.; Sliva, A.; Wang, S.; Tang, J.; Liu, H. Fake news detection on social media: A data mining perspective. ACM SIGKDD
Explor. Newsl. 2017, 19, 22–36. [CrossRef]

9. Bharadwaj, P.; Shao, Z. Fake news detection with semantic features and text mining. Int. J. Nat. Lang. Comput. (IJNLC) 2019, 8,
17–22. [CrossRef]

10. Pan, J.Z.; Pavlova, S.; Li, C.; Li, N.; Li, Y.; Liu, J. Content based fake news detection using knowledge graphs. In Proceedings of
the International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; pp. 669–683.

11. Hu, L.; Yang, T.; Zhang, L.; Zhong, W.; Tang, D.; Shi, C.; Duan, N.; Zhou, M. Compare to the knowledge: Graph neural fake news
detection with external knowledge. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021;
pp. 754–763.

12. Wang, Y.; Qian, S.; Hu, J.; Fang, Q.; Xu, C. Fake news detection via knowledge-driven multimodal graph convolutional networks.
In Proceedings of the 2020 International Conference on Multimedia Retrieval, Dublin, Ireland, 26–29 October 2020; pp. 540–547.

13. Ma, J.; Gao, W.; Mitra, P.; Kwon, S.; Jansen, B.J.; Wong, K.F.; Cha, M. Detecting rumors from microblogs with recurrent neural
networks. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15
July 2016.

14. Ma, J.; Gao, W.; Wong, K.F. Rumor Detection on Twitter with Tree-Structured Recursive Neural Networks; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2018.

15. Wu, Z.; Pi, D.; Chen, J.; Xie, M.; Cao, J. Rumor detection based on propagation graph neural network with attention mechanism.
Expert Syst. Appl. 2020, 158, 113595. [CrossRef]

16. Bian, T.; Xiao, X.; Xu, T.; Zhao, P.; Huang, W.; Rong, Y.; Huang, J. Rumor detection on social media with bi-directional graph
convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February
2020; Volume 34, pp. 549–556.

17. Mishra, S.; Suryavardan, S.; Bhaskar, A.; Chopra, P.; Reganti, A.; Patwa, P.; Das, A.; Chakraborty, T.; Sheth, A.; Ekbal, A.; et al.
Factify: A multi-modal fact verification dataset. In Proceedings of the First Workshop on Multimodal Fact-Checking and Hate
Speech Detection (DE-FACTIFY), Vancouver, BC, Canada, 22 Februrary–1 March 2022.

18. Gao, J.; Hoffmann, H.F.; Oikonomou, S.; Kiskovski, D.; Bandhakavi, A. Logically at the factify 2022: Multimodal fact verification.
arXiv 2021, arXiv:2112.09253.

19. Pan, L.; Chen, W.; Xiong, W.; Kan, M.Y.; Wang, W.Y. Zero-shot fact verification by claim generation. arXiv 2021, arXiv:2105.14682.
20. Ciampaglia, G.L.; Shiralkar, P.; Rocha, L.M.; Bollen, J.; Menczer, F.; Flammini, A. Computational fact checking from knowledge

networks. PLoS ONE 2015, 10, e0128193.
21. Wang, Y.; Ma, F.; Jin, Z.; Yuan, Y.; Xun, G.; Jha, K.; Su, L.; Gao, J. Eann: Event adversarial neural networks for multi-modal fake

news detection. In Proceedings of the 24th ACM Sigkdd International Conference on Knowledge Discovery & Data Mining,
London, UK, 19–23 August 2018; pp. 849–857.

306

Algorithms 2022, 15, 423

22. Khattar, D.; Goud, J.S.; Gupta, M.; Varma, V. Mvae: Multimodal variational autoencoder for fake news detection. In Proceedings
of the World Wide Web Conference, San Francisco, CA, USA, 13 May–17 May 2019; pp. 2915–2921.

23. Singhal, S.; Shah, R.R.; Chakraborty, T.; Kumaraguru, P.; Satoh, S. Spotfake: A multi-modal framework for fake news detection.
In Proceedings of the 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), Singapore, 11–13 September
2019; pp. 39–47.

24. La, T.V.; Dao, M.S.; Tran, Q.T.; Tran, T.P.; Tran, A.D.; Nguyen, D.T.D. A Combination of Visual-Semantic Reasoning and Text
Entailment-based Boosting Algorithm for Cheapfake Detection. In Proceedings of the ACM MM 2022, Lisbon, Portugal, 10–14
October 2022.

25. Zlatkova, D.; Nakov, P.; Koychev, I. Fact-checking meets fauxtography: Verifying claims about images. arXiv 2019,
arXiv:1908.11722.

26. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, C.L.; Parikh, D. Vqa: Visual question answering. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2425–2433.

27. Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang, L.; Hu, H.; Dong, L.; Wei, F.; et al. Oscar: Object-semantics aligned
pre-training for vision-language tasks. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28
August 2020; pp. 121–137.

28. Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 18–24 July 2021; pp. 8821–8831.

29. Lee, K.H.; Chen, X.; Hua, G.; Hu, H.; He, X. Stacked cross attention for image-text matching. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 201–216.

30. Aneja, S.; Bregler, C.; Nießner, M. Cosmos: Catching out-of-context misinformation with self-supervised learning. arXiv 2021,
arXiv:2101.06278.

31. Aneja, S.; Midoglu, C.; Dang-Nguyen, D.T.; Khan, S.A.; Riegler, M.; Halvorsen, P.; Bregler, C.; Adsumilli, B. ACM Multimedia
Grand Challenge on Detecting Cheapfakes. arXiv 2022, arXiv:2207.14534.

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
34. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
35. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.
36. Cer, D.; Yang, Y.; Kong, S.y.; Hua, N.; Limtiaco, N.; John, R.S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al.

Universal sentence encoder. arXiv 2018, arXiv:1803.11175.
37. Rennie, S.J.; Marcheret, E.; Mroueh, Y.; Ross, J.; Goel, V. Self-critical sequence training for image captioning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7008–7024.
38. Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; Specia, L. Semeval-2017 task 1: Semantic textual similarity-multilingual and

cross-lingual focused evaluation. arXiv 2017, arXiv:1708.00055.
39. Li, K.; Zhang, Y.; Li, K.; Li, Y.; Fu, Y. Visual semantic reasoning for image-text matching. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4654–4662.
40. Williams, A.; Nangia, N.; Bowman, S.R. A broad-coverage challenge corpus for sentence understanding through inference. arXiv

2017, arXiv:1704.05426.
41. Wang, B.; Kuo, C.C.J. Sbert-wk: A sentence embedding method by dissecting bert-based word models. IEEE/ACM Trans. Audio

Speech Lang. Process. 2020, 28, 2146–2157. [CrossRef]
42. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
43. La, T.V.; Tran, Q.T.; Tran, T.P.; Tran, A.D.; Dang-Nguyen, D.T.; Dao, M.S. Multimodal Cheapfakes Detection by Utilizing Image

Captioning for Global Context. In Proceedings of the 3rd ACM Workshop on Intelligent Cross-Data Analysis and Retrieval,
Newark, NJ, USA, 27–30 June 2022; pp. 9–16.

44. Akgul, T.; Civelek, T.E.; Ugur, D.; Begen, A.C. COSMOS on Steroids: A Cheap Detector for Cheapfakes. In Proceedings of the
12th ACM Multimedia Systems Conference, Istanbul, Turkey, 28 September–1 October 2021; pp. 327–331.

45. Boididou, C.; Andreadou, K.; Papadopoulos, S.; Dang-Nguyen, D.T.; Boato, G.; Riegler, M.; Kompatsiaris, Y. Verifying multimedia
use at mediaeval 2015. MediaEval 2015, 3, 7.

307

Citation: Divyanth, L.G.; Guru, D.S.;

Soni, P.; Machavaram, R.; Nadimi, M.;

Paliwal, J. Image-to-Image

Translation-Based Data

Augmentation for Improving

Crop/Weed Classification Models for

Precision Agriculture Applications.

Algorithms 2022, 15, 401. https://

doi.org/10.3390/a15110401

Academic Editor: Frank Werner

Received: 19 September 2022

Accepted: 27 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Image-to-Image Translation-Based Data Augmentation for
Improving Crop/Weed Classification Models for Precision
Agriculture Applications

L. G. Divyanth 1,2, D. S. Guru 3, Peeyush Soni 1, Rajendra Machavaram 1, Mohammad Nadimi 2

and Jitendra Paliwal 2,*

1 Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

2 Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
3 Department of Studies in Computer Science, University of Mysore, Mysore 570006, India
* Correspondence: j.paliwal@umanitoba.ca

Abstract: Applications of deep-learning models in machine visions for crop/weed identification
have remarkably upgraded the authenticity of precise weed management. However, compelling
data are required to obtain the desired result from this highly data-driven operation. This study
aims to curtail the effort needed to prepare very large image datasets by creating artificial images
of maize (Zea mays) and four common weeds (i.e., Charlock, Fat Hen, Shepherd’s Purse, and small-
flowered Cranesbill) through conditional Generative Adversarial Networks (cGANs). The fidelity
of these synthetic images was tested through t-distributed stochastic neighbor embedding (t-SNE)
visualization plots of real and artificial images of each class. The reliability of this method as a data
augmentation technique was validated through classification results based on the transfer learning of
a pre-defined convolutional neural network (CNN) architecture—the AlexNet; the feature extraction
method came from the deepest pooling layer of the same network. Machine learning models based
on a support vector machine (SVM) and linear discriminant analysis (LDA) were trained using
these feature vectors. The F1 scores of the transfer learning model increased from 0.97 to 0.99,
when additionally supported by an artificial dataset. Similarly, in the case of the feature extraction
technique, the classification F1-scores increased from 0.93 to 0.96 for SVM and from 0.94 to 0.96 for
the LDA model. The results show that image augmentation using generative adversarial networks
(GANs) can improve the performance of crop/weed classification models with the added advantage
of reduced time and manpower. Furthermore, it has demonstrated that generative networks could be
a great tool for deep-learning applications in agriculture.

Keywords: generative adversarial networks; deep-learning; crop/weed classification; transfer learn-
ing; feature extraction

1. Introduction

The potential of deep-learning algorithms has been demonstrated in almost all stages
of agricultural activities, paving the way for efficient handling and non-destructive eval-
uation [1–7]. One of the agricultural domains that could benefit from these algorithms is
weed management. It is well-known that efficient weed control is one of the inevitable
contributing factors towards sustainable agriculture as it can positively contribute to plant
growth, yield, and quality while minimizing the need for weedicides. However, manual
and traditional weed removal methods have been labor-intensive and inefficient. In this
regard, scholars have developed numerous deep-learning models based on convolutional
neural networks (CNNs) to classify various crops and weed species [8–11]. Moreover,
machinery based on machine vision has been developed to provide profound solutions for
weed management [12–15].

Algorithms 2022, 15, 401. https://doi.org/10.3390/a15110401 https://www.mdpi.com/journal/algorithms
309

Algorithms 2022, 15, 401

Although deep-learning networks have enhanced the authenticity of automated
crop/weed classification algorithms, the technique suffers from mining large amounts of
data that are collected from various geographic conditions. Furthermore, a majority of
in-field weed identification tasks require pixel-level annotations [16–18]. Overall, acquiring
huge amounts of data and the preparation of ground truth is a tedious task, especially for
precision agriculture applications [19].

Though many open-source agriculture datasets have been available in recent years,
the quality and amount of data do not meet the requirements of researchers [19,20]. In
addition, models trained with such data fail to generalize and are not robust enough to be
used in diverse practical environments [21]. One way to overcome these difficulties is by
adopting image geometric- and intensity-based data augmentation [22]. In addition, when
CNNs are employed for machine vision tasks, transfer learning is preferred [23,24], where
a pre-trained deep-learning model is fine-tuned with an available dataset for a particular
task [25]. This approach has seen a lot of utilization for in-field weed identification [26–28].
For instance, Espejo-Garcia et al. developed a solution based on feature extraction from
deep layers of various transfer-learned CNN models for automated crop and weed identifi-
cation [26]. Chen et al. performed a similar study based on transfer learning for identifying
weeds in cotton production systems [27]. Both of the above studies recorded classification
accuracies greater than 95%. However, such traditional image augmentation techniques
and transfer learning provide highly correlated images and only little additional informa-
tion to the deep-learning model. This not only reduces the ability of the model to generalize
but leads to over-fitting problems.

In recent years, another advancement in deep learning, in the form of generative
adversarial networks (GANs), has proven to be very efficient for data augmentation and
image enhancement [29]. GANs can generate artificial-realistic images using existing
image data. The combination of these artificial and original images could enhance the
development of subsequent models. GANs have been effectively applied to various tasks,
such as human identification [30], organ segmentation [31], and emotion classification [32].
These models have also been used for machine-vision applications in agriculture, such as
generating images of specific plants [33,34], plant disease recognition [35], grain quality
analysis [4], and for synthesizing images of plant seedlings [36]. A few studies have also
utilized GANs to assist in deep-learning-based operations in precision weed management
(Table 1). With numerous architectures of GANs available, a performance comparison
study was performed on the different combinations of a GAN model and a CNN-based
classification model for designing a crop/weed classification pipeline tested on images
of tomato crops and black nightshade [37]. The authors obtained the highest accuracy of
99.07% and firmly concluded that GANs improve the classification performance of CNN
networks. A few other studies used GANs to generate multi-spectral images of crops
and weeds [38]. In all the discussed works, GANs were used to synthesize the entire
crop/weed/agricultural field image without any attention to the location and shape of the
desired object in the image. It was observed that the generalizability of such networks over
the texture and morphology-based features of the target classes was sub-optimal.

Henceforth as an improvement, in this study, we performed image generation using
a conditional GAN (cGAN) based on the image-to-image translation concept [40]. The
primary objective here was to synthesize the images by preserving (conditioning) the
original footprint of the objects in the real image, such as the shape of the plants. The
real images of a particular class, along with their pixel-wise labels, were combinedly and
fed into the GAN model to train it and, eventually, to obtain the artificial images of the
respective classes. The image synthesis network exploited here is similar to the pix2pix
conditional adversarial network, a very commonly used model for image translation
tasks [40]. Secondly, the validity of a classification task using the newly derived dataset
was assessed for the two commonly adopted techniques, i.e., transfer learning [26,28] and
the feature extraction method [41–44]. For the above tasks, a pre-defined, state-of-the-art
CNN architecture, the AlexNet [45], was employed. In the feature extraction technique,

310

Algorithms 2022, 15, 401

features from deep layers of the AlexNet were extracted to develop machine learning
models using the support vector machines (SVM) and linear discriminant analysis (LDA)
classifiers. Hence, the major objectives of this work are (i) the implementation of cGAN
as a data augmentation approach to synthesize realistic plant images and analyze cGAN
performance and (ii) to study the combination of cGANs and the classification algorithms
for improving crop/weed species identification.

Table 1. Summary of previous studies on the application of GANs for crop/weeds identification tasks.

Purpose
Crop Production

System
Image Synthesis

Technique
Results/Conclusion Reference

Synthetic RGB images of
individual tomato and black

night-shade plants were
generated for improving

classification performance.

Tomato Conventional GANs

F1-score of 0.86 was obtained
when GAN-based
augmentation was

performed, compared to 0.84
without the artificial dataset.

[37]

Generation of multi-spectral
images of agricultural fields
for semantic segmentation of

crop/weeds.

Sugarbeet Conditional GAN
(cGAN)

Intersection over union
(mIoU) value was improved

to 0.98 from 0.94 for
background class and to 0.89

from 0.76 for vegetation.

[38]

Artificial data were
generated using

UAV-acquired images for
supporting crop/weed

species identification at an
early stage.

Strawberry and peas Semi-supervised GAN
(SGAN)

Classification accuracy of
90% was achieved using only

20% of labelled dataset.
[39]

2. Materials and Methods

2.1. Dataset and Pre-Processing

The dataset consisted of five classes, including maize (Zea mays) and four weed
species commonly identified in maize production systems, namely, Charlock (Sinapis
arvensis), Fat Hen (Chenopodium album), Shepherd’s purse (Capsella bursa-pastoris), and
Small-flowered Cranesbill (Geranium pusillum). The dataset was derived from Kaggle’s
image data of the crop and weed seedlings at different growth stages, a public image dataset
offered by Giselsson et al. [46]. Each class contained 200 RGB images at various growth
stages (5–8 weeks) and illumination effects. These images were manually and binary
segmented at pixel level using the Image Segmenter app of MATLAB R2020a and the Image
Processing toolbox to distinguish the vegetation from the background. These semantic-
segmented images were arranged in class-wise folders, as such so that the sequence of
images matched the corresponding real image folder. This allowed for the easier pairing
of real and segmented images, which was necessary during the cGAN training process.
Figure 1 shows some sample images from the dataset along with their binary-segmented
counterparts. The images were resized to a size of 256 × 256 pixels.

311

Algorithms 2022, 15, 401

Figure 1. Sample images of (a) Charlock, (b) Fat Hen, (c) Shepherd’s purse, (d) Small-flowered
Cranesbill, and (e) Maize.

2.2. Image Synthesis through GAN

The size of the dataset used here is small when compared to the ones generally
employed in learning-based machine-vision tasks. Hence, augmentation through the ad-
versarial networks was performed to increase the size of the dataset. Typically, a GAN
architecture comprises a generator network that generates artificial images and a discrim-
inator that aims to differentiate these artificial images from the real images [29]. Both
components are simultaneously trained in an adversarial manner, in which the generator
aims to entrap the discriminator using its artificial images. The first proposed GAN models
did not have control over any auxiliary information on the data that were being synthesized.
Later, researchers introduced a conditional variable into the network’s objective functions
that contained the network over a particular attribute to synthesize images with the desired
features [47]. For instance, GANs were conditioned on text descriptions for text-to-image
synthesis and on class labels to generate MNIST dataset digits [48]. Image conditional GAN
was first studied by Isola et al. [40] for image-to-image translations.

In cGANs, the generator and discriminator networks are conditioned on the class label
y, i.e., mapping to y is learned from the input image (or source image) x and the random
vector z. The objective function can be given as:

LcGAN(G, D) = Ex,y[log D(x, y)] + Ex,z[log(1 − D(x, G(x, z)))] (1)

312

Algorithms 2022, 15, 401

The cGAN architecture employed here is very similar to the model proposed in its
original work for image-to-image translation, called the pix2pix GAN [40]. The model is
trained with paired images, i.e., the real and binary analog, in order to learn to map the
features of these images. The attributes of the output image are conditioned by the source
images (here, the binary images act as the source images). Suppose T ∈ € w×h is the binary
mask of an image with width w and height h pixels, the network’s goal is to make the
model learn a mapping function that converts I into a photo-realistic image. Figure 2 shows
the image generation workflow. The generator follows the U-Net framework [49], and the
discriminator classifier is based on the PatchGAN [50]. The U-Net is an encoder-decoder
network where the input is first down-sampled to a bottleneck layer and then up-sampled
from this point. Moreover, skip connections (which concatenate the channels for the two
layers) are added between the i-th and n − i-th layers (n is the total number of layers). The
PatchGAN discriminator classifies every patch in the image as real or artificial and the final
output is determined by the average response. Overall, the generator model used here is a
set of convolutional down-sampling layers and transpose convolutional up-sampling layers
that are blended through a bottle-neck layer. The discriminator consists of six convolutional
layers, such as an 8 × 8 pixel patch, which is obtained at the end. From this patch, the
binary classification result (real image or generated image) is acquired.

Figure 2. Training procedure for image generator through L1 and GAN loss functions.

To monitor the fidelity of the generated images after each iteration, the t-distributed
stochastic neighbor embedding (t-SNE) visualization is used. The t-SNE algorithm presents
the similarities between the samples by iteratively comparing the probability distribution
of the different data points in high- and low-dimensional spaces [51]. By applying t-SNE
to the real and generated images, the similarities and variances of the images can be
further analyzed. Once the training is complete, new images are generated and amassed to
analyze through the classifiers (see Sections 2.3 and 2.4). An Acer Nitro 5 Intel Core i5 9th
Generation Laptop (32GB/1 TB HDD/Windows 10 Home/GTX 1650 Graphics) was used
to run the MATLAB application.

2.3. Classification through Transfer Learning

In this study, we focus on a popular CNN architecture—AlexNet [45], which was
designed in the context of the “Large Scale Visual Recognition Challenge” (ILSVRC) [52]
for the ImageNet dataset [53]. AlexNet effectively comprises five convolution layers, three
fully connected (FC) layers, and a Softmax layer. The first, second, and fifth convolution
layers are followed by a max-pooling layer with a pool size of 3 × 3 and strides of 2 × 2.

313

Algorithms 2022, 15, 401

The convolution layers were furnished with half-padding and ReLU activation function
layers. The details on the number of filters and the layer-wise operations are presented
in Figure 3. To implement transfer learning, the last three layers of the network—an FC
layer configured for 1000 classes; a Softmax layer; and the final classification layer were all
replaced with an FC layer for 5 classes, followed by a Softmax layer and a classification
layer, with their weights initialized through the Glorot normal method.

Figure 3. Illustration of the original AlexNet [45] architecture.

In order to fit AlexNet’s input size, the images were resized to a dimension of
227 × 227 pixels. The evaluation was performed in two steps: firstly, the model was
trained only with the real images, and then the real and artificial images were simultane-
ously used for training. Additional augmentations, such as image rotations, translations,
and reflections along the x- and y- axes were specified for both cases. Regarding the train-
ing options, the gradient descent with momentum (sgdm) was chosen as the optimizer
with an initial learning rate set to 0.001, a momentum of 0.9, and a weight decay factor of
0.0001. The training was limited to a maximum of 1000 epochs, with a mini-batch size of
32. The results of this transfer-learning model on the training and test sets are presented in
Section 3.2.

2.4. Classification through Feature Extraction Technique

The convolutional layers in CNN summarize the features associated with each class
through a set of filters, carrying the aspects of the input image to the subsequent layers [54].
In the feature extraction method, the features were derived from the deep layers of a CNN,
and a machine learning-based model was developed based on these features [55]. An
activation map was derived from the first convolution layer of the CNN and is represented
in Figure 4. In this study, the features from the global pooling layer of AlexNet (pool5 layer)
were extracted, which provided a vector of 9216 features. Due to a very high-dimensional
feature map, the principal component analysis was applied to select only the components
that explained 97% of the total variance.

314

Algorithms 2022, 15, 401

Figure 4. Visualization of activations of the first Conv-layer of Alexnet.

The entire workflow is depicted in Figure 5. After deriving these features, two classi-
fiers, namely, SVM and LDA, were adopted for classification purposes. These classifiers
were chosen due to their exceptional performances in many agricultural datasets over
other machine learning algorithms [42,56]. The performance of the developed models was
analyzed using precision, recall, and F1-score metrics, given by:

Precision =
True positives

Number o f predicted samples
(2)

Recall =
True positives

Actual number o f samples
(3)

F1 − score = 2
Precision · Recall
Precision + Recall

(4)

Figure 5. Workflow for the artificial image synthesis through adversarial network and crop/weeds
classification.

2.4.1. Support Vector Classification

Support vector machines (SVMs) have been widely used as a classifier for weed
identification. Wu and Wen [57] performed crop/weed classification on a dataset of maize
crops and four weed species images using SVM on image color and texture features. Later,
they also included shape features in the SVM model and tested their performance using
three different kernel functions (polynomial, sigmoid, and RBF) [58]. According to Wong
et al. [59], multi-class classification using SVMs generates the best probabilistic output.
They trained an SVM model to differentiate the monocotyledon weeds, Ageratum conyzoides,

315

Algorithms 2022, 15, 401

and Amaranthus palmeri weeds from other weeds for selective spraying. Many other studies
have also utilized the different versions of SVMs and discussed their advantages [60,61].

In SVM, the classification is performed by identifying a hyper-plane that differentiates
the classes very well. The algorithm aims to maximize the minimum distance between a
point and the discriminating hyper-plane [57]. In this study, the radial basis function (RBF)
was used to transform the feature space. This function computes the element (i, j) of the
Gram matrix G as:

G
(
xi, xj

)
= exp

(
−∣∣∣∣xi − xj

∣∣∣∣2
)

(5)

where, xi and xj are the i-th and j-th observations of the training set.

2.4.2. Linear Discriminant Analysis

Discriminant analysis is based on the principle that different classes generate data
based on various Gaussian distributions (multi-dimensional and normal distributions).
Being a supervised technique, it collects information from all the variables and plots a
new margin so that the classification outcome is at its best. In LDA, the attributes are
assumed to be a Gaussian mixture distribution with different means but with a common
covariance matrix. To recall, this matrix contains the variance of the data along the diagonal
and covariance along with the corresponding off-diagonal elements. The center of the
distribution is determined by the mean, and the shape is determined by the covariance
matrix. Once the distributions are fitted, the boundaries are estimated by determining the
points around them where the probabilities are similar.

Assuming there are C classes (all having a multivariate normal distribution), let Σ and
μc (c = 1, 2, . . . , C) be the covariance matrix and the mean vector of the distribution of
the samples in the c classes. Say, xi,c is the i-th sample in class c, the objective of LDA is to
assign this observation to class ĉ, minimizing the function h given by

h = (xc,i − μĉ)
TΣ−1(xc,i − μĉ) (6)

The mathematics and computations behind the discriminant analysis and its regu-
larized version can be further explored in [62] and [63]. These classifiers have also been
extensively used for classification tasks in precision agriculture applications [56,64,65].

3. Results and Discussions

3.1. Evaluation of Generated Images

Before evaluating the results of the classification task, we assessed the fidelity of the
generated images. The real and generated images for each class are shown in Figure 6.
One can see that after around 60 iterations, the model started producing plausible artificial
images. To give a fair insight into the image impression, a t-SNE method of visualization
was adopted for 100 real and generated images for each class (see Figure 7). The dimension-
reduction technique was used to plot the data points in a two-dimensional plot. Some
outliers were identified in the t-SNE plot for Charlock. However, the synthetic Charlock
images closely exhibit the shape and color features of the original images. For other classes,
a similar distribution of the points corresponding to the actual and artificial images denoted
that pertinent features are adequately learned and produced through the GAN. The artificial
images preserved the key features of the real images and widened the coverage of the
training dataset.

316

Algorithms 2022, 15, 401

Figure 6. Sample ground truth images and generated images at different epochs during GAN
training. Column-wise from left to right: Charlock, Fat Hen, Shepherd’s purse, Small-flowered
Cranesbill, Maize.

317

Algorithms 2022, 15, 401

Figure 7. t-SNE visualization plots for real (green points) and synthetic (red) images for all five
classes—(a) Maize, (b) Charlock, (c) Shepherd’s purse, (d) Fat Hen, and (e) Small-flowered Cranesbill.

Hence, realistic images were generated with the help of GAN, which could augment
the existing crop/weed dataset. The advantage of GAN-based augmentation includes
a reduced annotation workload since the generated images can be associated with the
same segmentation mask created earlier. Moreover, the classification model can generalize
better when trained with a dataset comprising GAN-generated images, especially on
shape-based features. Apart from this, GANs can also be used to enhance image clarity,
which was observed in the case of some real images, especially of the maize crop. The
GAN-synthesized images have the potential to replace erroneous and ill-advised real data.
In addition, some real images contained irrelevant objects (such as the labels, referring
to the image of Fat Hen in Figure 6) in the background, and the model was successful in

318

Algorithms 2022, 15, 401

replacing them with the ground appearance, thus exhibiting its potential to create a variety
of environmental and background conditions.

One drawback to this GAN model is its inability to learn and reproduce textural
features, though it performs exceptionally well in acquiring the shape and color attributes.
Notably, in the images of Shepherd’s purse, where the textural appearance of the weed was
quite imperative, the model could not fabricate them into artificial images. This might pose
a problem for classification when the crops and weeds have a similar physical appearance.
For further operations, 200 images were generated for each class through the developed
GAN to boost the training dataset.

3.2. Classification Results and Evaluation
3.2.1. Performance Analysis of Transfer Learning Method

As a means of performance comparison to the transfer learning approach with and
without GAN-based data augmentation, the results of the AlexNet model that was trained
using the real images were initially compiled. The dataset was geometrically augmented by
random rotations, translations, and reflections. Later, the model was trained again from the
initial condition with both the real and generated images to analyze the potency of image
data augmentation through GAN. Henceforth, 200 new images were generated for each
class to support the training set. Briefly, the combined dataset utilized for the final model
had 2000 images in total (400 images per class), out of which 75 real images from each class
were reserved for testing purposes. Table 2 clearly summarizes the image distribution for
the training and testing.

Table 2. Summary of data distribution for each class.

Dataset Charlock Fat Hen
Shepherd’s

Purse
Cranesbill Maize

Real images 200 200 200 200 200

Artificial images 200 200 200 200 200

Total 400 400 400 400 400

Training images 325 325 325 325 325

Test images 75 75 75 75 75

After training with the original (real) dataset, the CNN model produced a classification
F1-score of 0.970. After adding artificial images, the F1-score of the CNN (denoted as GAN-
TL) improved remarkably and reached a value of 0.986. The statistical classification results
on the test set have been recorded in Table 3. In addition, the accuracy improved to 98.40%
from the previously attained 97.07% (without GAN augmentation) in the test data. A
remarkable increment in the performance metrics was observed for Shepherd’s Purse
and Fat Hen, while the results remained unchanged for the maize and Cranesbill classes
(Table 3). Overall, image augmentation with the help of a conditional GAN resulted in an
improved classification result through the transfer learning method.

Table 3. Analysis of the classification results based on the transfer learning method. TL and GAN-
TL refer to the models trained with the real image data, and combined real and artificial datasets,
respectively.

Class Name
Precision Recall F1-Score

TL GAN-TL TL GAN-TL TL GAN-TL

Charlock 0.9493 0.9615 1.0000 1.0000 0.9739 0.9804

Fat Hen 0.9136 0.9868 0.9867 1.0000 0.9487 0.9934

319

Algorithms 2022, 15, 401

Table 3. Cont.

Class Name
Precision Recall F1-Score

TL GAN-TL TL GAN-TL TL GAN-TL

Shepherd’s Purse 1.0000 1.0000 0.8801 0.9333 0.9362 0.9655

Cranesbill 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Maize 1.0000 1.0000 0.9867 0.9867 0.9933 0.9933

3.2.2. Performance Analysis of Feature Extraction Technique

The feature extraction-based classification models were developed using the activa-
tions derived from the global pooling layer of the CNN. Again, the models were developed
in two stages, first on the dataset of real images and then on the combined dataset. Since
the feature vector obtained from AlexNet had 9216 activations, it offered a wide range
of features for classification. The important reason behind choosing AlexNet over other
state-of-the-art models was its small convolution kernel sizes and network architecture,
which supported the extraction of fine-grain details in the images. The performance of the
models trained through SVM and LDA classifiers were compared.

The classification results on the test data have been recorded in Tables 4 and 5, con-
taining the mean precision, recall, and F1 scores for the five independent runs. The overall
accuracy registered by LDA (GAN-LDA) and SVM classifiers (GAN-SVM) was 96.0%. In
the training data, LDA performed slightly better than SVM (94.3% and 92.4%). As antici-
pated, the synthetic images enhanced the performance of both classifiers. The F1-score of
the SVM model increased from 0.935 to 0.960, and that of the LDA model increased from
0.943 to 0.959.

Table 4. Analysis of classification results of SVM on deep features of AlexNet. The SVM and GAN-
SVM refer to the SVM models trained with the real image data, and combined real and artificial
datasets, respectively.

Class Name
Precision Recall F1-Score

TL SVM-TL TL SVM-TL TL SVM-TL

Charlock 0.8537 0.9012 0.9333 0.9733 0.8975 0.9358

Fat Hen 0.9571 0.9722 0.8933 0.9333 0.9241 0.9523

Shepherd’s Purse 0.9589 0.9863 0.9333 0.9333 0.9459 0.9591

Cranesbill 0.9726 0.9740 0.9467 0.9600 0.9594 0.9669

Maize 0.9351 0.9722 0.9600 1.0000 0.9474 0.9859

Table 5. Analysis of classification results of LDA on deep features of AlexNet. The LDA and GAN-
LDA refer to the LDA models trained with the real image data, and combined real and artificial
datasets, respectively.

Class Name
Precision Recall F1-Score

TL LDA-TL TL LDA-TL TL LDA-TL

Charlock 0.9853 0.9857 0.8933 0.9200 0.9370 0.9517

Fat Hen 0.9324 0.9589 0.9200 0.9333 0.9261 0.9459

Shepherd’s Purse 0.9452 0.9474 0.9200 0.9600 0.9324 0.9537

Cranesbill 0.9242 0.9615 1.0000 1.0000 0.9606 0.9804

Maize 0.9367 0.9487 0.9867 0.9867 0.9611 0.9673

Tables 4 and 5 demonstrate that the GAN-based augmentation method can provide
an excellent performance boost to different classifiers, especially when developed using a

320

Algorithms 2022, 15, 401

limited dataset. Furthermore, Figure 8 presents the best testing confusion matrices upon
using the original and GAN-augmented images. In the case of LDA, the performance of
certain classes, such as maize and Charlock did not change much on applying GAN-based
augmentation. However, the results of classes, such as Cranesbill and Fat Hen, improved
significantly. This is because Cranesbill and Fat Hen are relatively more complicated in
shape, requiring more data by the network to learn the features. In contrast, the features
of maize and charlock are simple and distinct; hence, they are easier for the classifiers to
perform the classification task. From the F1 scores of all the classes, it can be observed that
the GAN-based image augmentation provided more information and enhanced the perfor-
mance of transfer learning, as well as the feature extraction techniques for the crop/weed
classifications.

In previous works, classification accuracies greater than 90% have been achieved using
SVM and LDA classifiers, especially for crop/weed classifications. Accuracies between
92 and95% were achieved using SVM on the color and texture features for identifying
four common weed seedlings in the maize production systems [57]. When morphological
features were added to the feature space, an improved accuracy of 96.5% was obtained
using RBF-SVM [58]. In another study, local binary pattern-based texture features yielded
a 98.5% accuracy with RBF as the kernel function [66]. Siddiqi et al. used the stepwise LDA
to classify weeds into three classes: broad weed, narrow weed, and other weed species [67].
Their method accorded 98.1% overall accuracy on a database of 1200 images. In the case of
deep-learning-based classifications, most studies used a transfer learning approach rather
than training the CNN from scratch. For identifying weeds in cotton and tomato fields, the
performances of seven state-of-the-art CNNs were evaluated [26]. All the models registered
classification F1-scores greater than 88%.

Moreover, the fine-tuning method was compared with a feature-extraction approach
for all the adopted CNNs [26]. They observed that most of the networks gave better
results through the feature-extraction approach—a similar inference from this study as well.
Similarly, the Alexnet CNN architecture was transfer-learned with potato and sugar beet
plant image datasets for binary classification [68]. The model’s accuracy was 98.0%, with
an average prediction time of fewer than 0.1 s, supporting real-time applications. As an
improvement, Chen et al. evaluated 35 CNN architectures for classifying 15 weed species
in cotton production systems, for which ten of them achieved an F1 score greater than
95% [27]. These results show that the classification models in this study have provided
performances comparable to those previously developed.

Overall, the results indicate that data augmentation through GANs can increase the
training resources needed for classifiers, enabling researchers to develop better imaging-
based predictors. The authors believe that the proposed methodology can revolutionize
intelligent crop/weed classifiers. An interesting topic for future work could be to exam-
ine the capability of the proposed approach on other machine vision-based applications,
such as fruit maturity detection [69,70], fruit grading [71], agri-food product microstruc-
tural evaluation [65,72,73], crop disease identification [74], and crop growth and yield
monitoring [75–77].

321

Algorithms 2022, 15, 401

Figure 8. Best testing confusion matrices based on—(a) Transfer learning (GAN-TL), (b) Feature
extraction—SVM (GAN-SVM), and (c) Feature extraction—LDA (GAN-LDA), using both real and
GAN-synthesized datasets.

322

Algorithms 2022, 15, 401

4. Conclusions

This study explored the potential of cGAN-based data augmentation techniques for
improving imaging-based crop/weed classification. Using cGAN, artificial images were
generated to double the training data of the available classes. The t-SNE method was
used for the fidelity inspection of the new images, and the t-SNE plots showed high
similarities between the feature distributions of real and artificial images. The performance
of crop/weed classification with and without the artificial images was examined via two
approaches viz. transfer learning and feature extraction. The obtained results confirmed
the capability of the cGAN-based technique to improve the performance of crop/weed
classifiers. Overall, this study opens a new pathway for implementing GANs, not only
for crop/weed classification but also for the development of other machine vision-based
precision agriculture systems.

Author Contributions: Conceptualization, L.G.D., D.S.G., R.M. and P.S.; methodology, L.G.D.; vali-
dation, L.G.D.; formal analysis, L.G.D.; investigation, L.G.D., D.S.G. and P.S.; resources, L.G.D., P.S.,
M.N. and J.P.; writing—original draft preparation, L.G.D.; writing—review and editing, D.S.G., R.M.,
P.S., M.N. and J.P.; supervision, P.S. and J.P.; project administration, P.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Canada Foundation for Innovation (CFI) grant num-
ber 33090 and the Natural Sciences and Engineering Council of Canada (NSERC) grant number
RGPIN2021-03350. The authors would also like to thank the financial support provided by Mitacs.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding authors, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Q.; Liu, Y.; Gong, C.; Chen, Y.; Yu, H. Applications of Deep Learning for Dense Scenes Analysis in Agriculture: A Review.
Sensors 2020, 20, 1520. [CrossRef] [PubMed]

2. Divyanth, L.G.; Ahmad, A.; Saraswat, D. A Two-Stage Deep-Learning Based Segmentation Model for Crop Disease Quantification
Based on Corn Field Imagery. Smart Agric. Technol. 2022, 3, 100108. [CrossRef]

3. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674.
[CrossRef] [PubMed]

4. Divyanth, L.G.; Chelladurai, V.; Loganathan, M.; Jayas, D.S.; Soni, P. Identification of Green Gram (Vigna Radiata) Grains Infested
by Callosobruchus Maculatus Through X-Ray Imaging and GAN-Based Image Augmentation. J. Biosyst. Eng. 2022, 47, 302–317.
[CrossRef]

5. Wani, J.A.; Sharma, S.; Muzamil, M.; Ahmed, S.; Sharma, S.; Singh, S. Machine Learning and Deep Learning Based Computational
Techniques in Automatic Agricultural Diseases Detection: Methodologies, Applications, and Challenges. Arch. Comput. Methods
Eng. 2021, 29, 641–677. [CrossRef]

6. Sivakumar, C.; Chaudhry, M.M.A.; Nadimi, M.; Paliwal, J.; Courcelles, J. Characterization of Roller and Ferkar-Milled Pulse
Flours Using Laser Diffraction and Scanning Electron Microscopy. Powder Technol. 2022, 409, 117803. [CrossRef]

7. Erkinbaev, C.; Nadimi, M.; Paliwal, J. A Unified Heuristic Approach to Simultaneously Detect Fusarium and Ergot Damage in
Wheat. Meas. Food 2022, 7, 100043. [CrossRef]

8. Pantazi, X.E.; Moshou, D.; Bravo, C. Active Learning System for Weed Species Recognition Based on Hyperspectral Sensing.
Biosyst. Eng. 2016, 146, 193–202. [CrossRef]

9. Tang, J.L.; Chen, X.Q.; Miao, R.H.; Wang, D. Weed Detection Using Image Processing under Different Illumination for Site-Specific
Areas Spraying. Comput. Electron. Agric. 2016, 122, 103–111. [CrossRef]

10. Raja, R.; Nguyen, T.T.; Slaughter, D.C.; Fennimore, S.A. Real-Time Weed-Crop Classification and Localisation Technique for
Robotic Weed Control in Lettuce. Biosyst. Eng. 2020, 192, 257–274. [CrossRef]

11. Sabzi, S.; Abbaspour-Gilandeh, Y.; Arribas, J.I. An Automatic Visible-Range Video Weed Detection, Segmentation and Classifica-
tion Prototype in Potato Field. Heliyon 2020, 6, e03685. [CrossRef] [PubMed]

12. Lee, W.S.; Slaughter, D.C.; Giles, D.K. Robotic Weed Control System for Tomatoes. Precis. Agric. 1999, 1, 95–113. [CrossRef]
13. Utstumo, T.; Urdal, F.; Brevik, A.; Dørum, J.; Netland, J.; Overskeid, Ø.; Berge, T.W.; Gravdahl, J.T. Robotic In-Row Weed Control

in Vegetables. Comput. Electron. Agric. 2018, 154, 36–45. [CrossRef]

323

Algorithms 2022, 15, 401

14. Chang, C.L.; Lin, K.M. Smart Agricultural Machine with a Computer Vision-Based Weeding and Variable-Rate Irrigation Scheme.
Robotics 2018, 7, 38. [CrossRef]

15. Grimstad, L.; From, P.J. The Thorvald II Agricultural Robotic System. Robotics 2017, 6, 24. [CrossRef]
16. Yu, H.; Men, Z.; Bi, C.; Liu, H. Research on Field Soybean Weed Identification Based on an Improved UNet Model Combined

With a Channel Attention Mechanism. Front. Plant Sci. 2022, 13, 1881. [CrossRef]
17. Kamath, R.; Balachandra, M.; Vardhan, A.; Maheshwari, U. Classification of Paddy Crop and Weeds Using Semantic Segmentation.

Cogent Eng. 2022, 9, 2018791. [CrossRef]
18. Sodjinou, S.G.; Mohammadi, V.; Sanda Mahama, A.T.; Gouton, P. A Deep Semantic Segmentation-Based Algorithm to Segment

Crops and Weeds in Agronomic Color Images. Inf. Process. Agric. 2022, 9, 355–364. [CrossRef]
19. Lu, Y.; Young, S. A Survey of Public Datasets for Computer Vision Tasks in Precision Agriculture. Comput. Electron. Agric. 2020,

178, 105760. [CrossRef]
20. Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based

Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [CrossRef]
21. Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Fountas, S. Improving Weeds Identification with a Repository of Agricultural

Pre-Trained Deep Neural Networks. Comput. Electron. Agric. 2020, 175, 105593. [CrossRef]
22. Moazzam, S.I.; Khan, U.S.; Tiwana, M.I.; Iqbal, J.; Qureshi, W.S.; Shah, S.I. A Review of Application of Deep Learning for Weeds

and Crops Classification in Agriculture. In Proceedings of the 2019 International Conference on Robotics and Automation in
Industry (ICRAI), Rawalpindi, Pakistan, 21–22 October 2019. [CrossRef]

23. Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using Deep Transfer Learning for Image-Based Plant Disease Identification.
Comput. Electron. Agric. 2020, 173, 105393. [CrossRef]

24. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A Comparative Study of Fine-Tuning Deep Learning Models for Plant Disease
Identification. Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]

25. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
26. Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Fountas, S.; Vasilakoglou, I. Towards Weeds Identification Assistance through

Transfer Learning. Comput. Electron. Agric. 2020, 171, 105306. [CrossRef]
27. Chen, D.; Lu, Y.; Li, Z.; Young, S. Performance Evaluation of Deep Transfer Learning on Multi-Class Identification of Common

Weed Species in Cotton Production Systems. Comput. Electron. Agric. 2022, 198, 107091. [CrossRef]
28. Xu, Y.; Zhai, Y.; Zhao, B.; Jiao, Y.; Kong, S.; Zhou, Y.; Gao, Z. Weed Recognition for Depthwise Separable Network Based on

Transfer Learning. Intell. Autom. Soft Comput. 2021, 27, 669–682. [CrossRef]
29. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 139–144.
30. Zheng, Z.; Zheng, L.; Yang, Y. Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline in vitro.

In Proceedings of the 2017 International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3774–3782.
[CrossRef]

31. Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic Data Augmentation Using GAN for Improved
Liver Lesion Classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018; pp. 289–293. [CrossRef]

32. Zhu, X.; Liu, Y.; Li, J.; Wan, T.; Qin, Z. Emotion Classification with Data Augmentation Using Generative Adversarial Networks.
In Advances in Knowledge Discovery and Data Mining; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018;
Volume 10939 LNAI, pp. 349–360. [CrossRef]

33. Giuffrida, M.V.; Scharr, H.; Tsaftaris, S.A. ARIGAN: Synthetic Arabidopsis Plants Using Generative Adversarial Network. In
Proceedings of the 2017 International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2064–2071. [CrossRef]

34. Divyanth, L.G.; Marzougui, A.; González-Bernal, M.J.; McGee, R.J.; Rubiales, D.; Sankaran, S. Evaluation of Effective Class-
Balancing Techniques for CNN-Based Assessment of Aphanomyces Root Rot Resistance in Pea (Pisum sativum L.). Sensors 2022,
22, 7237. [CrossRef]

35. Arsenovic, M.; Karanovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. Solving Current Limitations of Deep Learning Based
Approaches for Plant Disease Detection. Symmetry 2019, 11, 939. [CrossRef]

36. Madsen, S.L.; Dyrmann, M.; Jørgensen, R.N.; Karstoft, H. Generating Artificial Images of Plant Seedlings Using Generative
Adversarial Networks. Biosyst. Eng. 2019, 187, 147–159. [CrossRef]

37. Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Vali, E.; Fountas, S. Combining Generative Adversarial Networks and Agricul-
tural Transfer Learning for Weeds Identification. Biosyst. Eng. 2021, 204, 79–89. [CrossRef]

38. Fawakherji, M.; Potena, C.; Pretto, A.; Bloisi, D.D.; Nardi, D. Multi-Spectral Image Synthesis for Crop/Weed Segmentation in
Precision Farming. Rob. Auton. Syst. 2021, 146, 103861. [CrossRef]

39. Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Alam, M. A Novel Semi-Supervised Framework for UAV Based Crop/Weed
Classification. PLoS ONE 2021, 16, e0251008. [CrossRef] [PubMed]

40. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [CrossRef]

41. Khurana, G.; Bawa, N.K. Weed Detection Approach Using Feature Extraction and KNN Classification. In Advances in Electrome-
chanical Technologies; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 671–679. [CrossRef]

324

Algorithms 2022, 15, 401

42. Jin, X.; Che, J.; Chen, Y. Weed Identification Using Deep Learning and Image Processing in Vegetable Plantation. IEEE Access 2021,
9, 10940–10950. [CrossRef]

43. Wang, A.; Zhang, W.; Wei, X. A Review on Weed Detection Using Ground-Based Machine Vision and Image Processing Techniques.
Comput. Electron. Agric. 2019, 158, 226–240. [CrossRef]

44. Sunil, G.C.; Zhang, Y.; Koparan, C.; Ahmed, M.R.; Howatt, K.; Sun, X. Weed and Crop Species Classification Using Computer
Vision and Deep Learning Technologies in Greenhouse Conditions. J. Agric. Food Res. 2022, 9, 100325. [CrossRef]

45. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 60, 84–90. [CrossRef]

46. Giselsson, T.M.; Jørgensen, R.N.; Jensen, P.K.; Dyrmann, M.; Midtiby, H.S. A Public Image Database for Benchmark of Plant
Seedling Classification Algorithms. arXiv 2017, arXiv:1711.05458. [CrossRef]

47. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [CrossRef]
48. Reed, S.; Akata, Z.; Yan, X.; Logeswaran Reedscot, L.; Schiele, B.; Lee Schiele, H. Generative Adversarial Text to Image Synthesis.

In Proceedings of the International Conference on Machine Learning (ICML 2016), New York, NY, USA, 19–24 June 2016;
pp. 1060–1069.

49. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of
the International Conference on Medical Image Computing and Computer-Assisted Intervention 2015, Munich, Germany, 5–9
October 2015; Volume 9351, pp. 234–241. [CrossRef]

50. Li, C.; Wand, M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In Proceedings of
the European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9907 LNCS,
pp. 702–716. [CrossRef]

51. van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
52. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
53. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings

of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2010; pp. 248–255.
[CrossRef]

54. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, Boston, MA, USA, 7–12
June 2015; pp. 1–9. [CrossRef]

55. Wiatowski, T.; Bolcskei, H. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction. IEEE Trans.
Inf. Theory 2018, 64, 1845–1866. [CrossRef]

56. Nanehkaran, Y.A.; Zhang, D.; Chen, J.; Tian, Y.; Al-Nabhan, N. Recognition of Plant Leaf Diseases Based on Computer Vision. J.
Ambient Intell. Humaniz. Comput. 2020, 1, 1–18. [CrossRef]

57. Wu, L.; Wen, Y. Weed/Corn Seedling Recognition by Support Vector Machine Using Texture Features. African J. Agric. Res. 2009,
4, 840–846.

58. Wu, L.; Wen, Y. Application of Support Vector Machine for Identifying Single Corn/Weed Seedling in Fields Using Shape
Parameters. In Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6
December 2010. [CrossRef]

59. Wong, W.K.; Chekima, A.; Mariappan, M.; Khoo, B.; Nadarajan, M. Probabilistic Multi SVM Weed Species Classification for Weed
Scouting and Selective Spot Weeding. In Proceedings of the 2014 IEEE International Symposium on Robotics and Manufacturing
Automation (ROMA), Kuala Lumpur, Malaysia, 15–16 December 2014; pp. 63–68. [CrossRef]

60. Karimi, Y.; Prasher, S.O.; Patel, R.M.; Kim, S.H. Application of Support Vector Machine Technology for Weed and Nitrogen Stress
Detection in Corn. Comput. Electron. Agric. 2006, 51, 99–109. [CrossRef]

61. Venkataraju, A.; Arumugam, D.; Stepan, C.; Kiran, R.; Peters, T. A Review of Machine Learning Techniques for Identifying Weeds
in Corn. Smart Agric. Technol. 2022, 3, 100102. [CrossRef]

62. Friedman, J.H. Regularized Discriminant Analysis. J. Am. Stat. Assoc. 1989, 84, 165–175. [CrossRef]
63. Guo, Y.; Hastie, T.; Tibshirani, R. Regularized Linear Discriminant Analysis and Its Application in Microarrays. Biostatistics 2007,

8, 86–100. [CrossRef]
64. Qadri, S.; Khan, D.M.; Ahmad, F.; Qadri, S.F.; Babar, M.E.; Shahid, M.; Ul-Rehman, M.; Razzaq, A.; Shah Muhammad, S.; Fahad,

M.; et al. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data. Biomed Res. Int. 2016, 2016,
8797438. [CrossRef]

65. Nadimi, M.; Loewen, G.; Paliwal, J. Assessment of Mechanical Damage to Flaxseeds Using Radiographic Imaging and Tomogra-
phy. Smart Agric. Technol. 2022, 2, 100057. [CrossRef]

66. Ahmed, F.; Bari, A.S.M.H.; Shihavuddin, A.S.M.; Al-Mamun, H.A.; Kwan, P. A Study on Local Binary Pattern for Automated
Weed Classification Using Template Matching and Support Vector Machine. In Proceedings of the 2011 IEEE 12th International
Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November 2011; pp. 329–334.
[CrossRef]

67. Siddiqi, M.H.; Lee, S.-W.; Khan, A.M. Weed Image Classification Using Wavelet Transform, Stepwise Linear Discriminant
Analysis, and Support Vector Machines for an Automatic Spray Control System. J. Inf. Sci. Eng. 2014, 30, 1227–1244. [CrossRef]

325

Algorithms 2022, 15, 401

68. Suh, H.K.; IJsselmuiden, J.; Hofstee, J.W.; van Henten, E.J. Transfer Learning for the Classification of Sugar Beet and Volunteer
Potato under Field Conditions. Biosyst. Eng. 2018, 174, 50–65. [CrossRef]

69. Sabzi, S.; Abbaspour, Y.; Nadimi, M.; Paliwal, J. Non-destructive estimation of physicochemical properties and detection of
ripeness level of apples using machine vision. Int. J. Fruit Sci. 2022, 22, 628–645. [CrossRef]

70. Kheiralipour, K.; Nadimi, M.; Paliwal, J. Development of an Intelligent Imaging System for Ripeness Determination of Wild
Pistachios. Sensors 2022, 22, 7134. [CrossRef] [PubMed]

71. Hosainpour, A.; Kheiralipour, K.; Nadimi, M.; Paliwal, J. Quality assessment of dried white mulberry (Morus alba L.) using
machine vision. Horticulturae, 2022; In press.

72. Li, X.; Guillermic, R.M.; Nadimi, M.; Paliwal, J.; Koksel, F. Physical and microstructural quality of extruded snacks made from
blends of barley and green lentil flours. Cereal Chem. 2022, 99, 1112–1123. [CrossRef]

73. Nadimi, M.; Divyanth, L.G.; Paliwal, J. Automated detection of mechanical damage in flaxseeds using radiographic imaging and
machine learning. Foods Bioprocess Technol. 2022, In press.

74. Nadimi, M.; Brown, J.M.; Morrison, J.; Paliwal, J. Examination of wheat kernels for the presence of Fusarium damage and
mycotoxins using near-infrared hyperspectral imaging. Meas. Food 2021, 4, 100011. [CrossRef]

75. Nadimi, M.; Loewen, G.; Bhowmik, P.; Paliwal, J. Effect of laser biostimulation on germination of sub-optimally stored flaxseeds
(Linum usitatissimum). Sustainability 2022, 14, 12183. [CrossRef]

76. Nadimi, M.; Sun, D.W.; Paliwal, J. Effect of laser biostimulation on germination of wheat. ASABE Appl. Eng. Agric. 2022, 38, 77–84.
[CrossRef]

77. Nadimi, M.; Sun, D.W.; Paliwal, J. Recent applications of novel laser techniques for enhancing agricultural production. Laser Phys.
2021, 31, 053001. [CrossRef]

326

Citation: Namdari, A.; Samani, M.A.;

Durrani, T.S. Lithium-Ion Battery

Prognostics through Reinforcement

Learning Based on Entropy Measures.

Algorithms 2022, 15, 393. https://

doi.org/10.3390/a15110393

Academic Editor: Frank Werner

Received: 28 August 2022

Accepted: 20 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Lithium-Ion Battery Prognostics through Reinforcement
Learning Based on Entropy Measures

Alireza Namdari 1, Maryam Asad Samani 2 and Tariq S. Durrani 3,*

1 Department of Industrial Engineering and Engineering Management, Western New England University,
Springfield, MA 01119, USA

2 Department of Electrical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
3 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK
* Correspondence: t.durrani@strath.ac.uk; Tel.: +44-(0)-141-548-2540

Abstract: Lithium-ion is a progressive battery technology that has been used in vastly different
electrical systems. Failure of the battery can lead to failure in the entire system where the battery is
embedded and cause irreversible damage. To avoid probable damages, research is actively conducted,
and data-driven methods are proposed, based on prognostics and health management (PHM) systems.
PHM can use multiple time-scale data and stored information from battery capacities over several
cycles to determine the battery state of health (SOH) and its remaining useful life (RUL). This results in
battery safety, stability, reliability, and longer lifetime. In this paper, we propose different data-driven
approaches to battery prognostics that rely on: Long Short-Term Memory (LSTM), Autoregressive
Integrated Moving Average (ARIMA), and Reinforcement Learning (RL) based on the permutation
entropy of battery voltage sequences at each cycle, since they take into account vital information from
past data and result in high accuracy.

Keywords: lithium-ion battery; prognostics; long short-term memory; ARIMA; reinforcement learning

1. Introduction

1.1. Lithium-Ion Batteries

Lithium-ion batteries, as the primary power source in electric vehicles, have attracted
significant attention recently and have become a focus of research. It is assumed that
lithium-ion batteries have the inherent potential for building future power sources for
environmentally friendly vehicles [1].

Lithium-ion batteries are the best option for electrical vehicles due to their high-quality
performance, capacity, small volume, light weight, low pollution, and rechargeability with
no memory effect [2]. However, battery performance degrades when facing poor pavement
conditions, temperature, and load changes. This leads to leakage, insulation damage, and
partial short-circuits. Consequential situations can arise if these failures are not detected
timeously [3,4]. As an example, several Boeing 787 aircraft caught fire because of lithium-
ion battery failure in 2013, causing the airliners to be grounded [5]. Hence, it is necessary to
detect performance degradations timeously and estimate future battery performance. This
is where battery prognostics and health management (PHM) plays an important and vital
role. PHM determines the battery state of health prediction (SOH) and battery remaining
useful life prediction (RUL) of the product using possible failure information in the system,
thus yielding improved system reliability and stability in the actual life-cycle of the battery.

Battery PHM and a battery management system (BMS) are important to ensure the
reliable and safe functionality of energy storage units [6]. Battery RUL prediction, battery
SOH prediction, and battery capacity fade prediction are among the topics which have
drawn more attention from researchers in the recent decade [7]. However, these tasks are
very difficult, as battery degradation has a complex nature and numerous factors must be
taken into consideration [8,9].

Algorithms 2022, 15, 393. https://doi.org/10.3390/a15110393 https://www.mdpi.com/journal/algorithms
327

Algorithms 2022, 15, 393

1.2. Entropy Measures

Entropy is a measurement metric for irregularities in time series data, and is used to
quantify the stochastic process in data analyses [10]. It was first introduced in classical
thermodynamics, and has applications in diverse fields such as chemistry and physics,
biological systems, cosmology, economics, sociology, weather science, climate change
research, and information systems. Entropy has expanded to far-ranging fields and systems.
Shannon, Permutation, Renyi, Tsallis, Approximate, and Sample entropy measures are
some of the conceptions of entropy regularly in use [11].

From the afore-mentioned entropies, permutation entropy (PE) is a simple and robust
approach to calculating the complexity of a non-linear system using the order relations
between values of a time series and assigning a probability to the ordinal patterns. The
permutation entropy measure technique works flexibly; it is computationally efficient, and
has a range of several thousand parameter values similar to Lyapunov exponents. PE is
discussed in more detail in Reference [12]. In this study, PE of the discharge battery voltage
sequences is calculated and used as an input to the proposed models.

1.3. ML and DL Techniques

Recently, Machine Learning (ML) and Deep Learning (DL) algorithms have found
very significant and useful applications in research and practice. These concepts have been
used to develop various models for predicting different characteristics in diverse fields.
In general, ML and DL algorithms aim to capture information from past data, learn from
that data, and apply what they have learned to make informed decisions. Therefore, the
associated systems are not required to be broadly programmed in all aspects.

ML is used to synthesize the fundamental relationships between large amount of data
to solve real-time problems such as big-data analytics and evolution of information [13].
DL, in turn, is able to process a large number of features and, hence, is preferred when
computing huge datasets and unstructured data. DL facilitates analysis and extraction of
important information from raw data by using computer systems. [14]. Different types of
parameters with various quantities can be applied to the developed models as the input to
obtain expected predictive variables as the output.

Deep Learning techniques, including Long Short-Term Memory (LSTM) [15] and
Reinforcement Learning (RL) [16], can fit numerical dependent variables and have great
generalization ability, and therefore, are applicable to battery data. The LSTM algorithm, a
Deep Learning algorithm with multiple gates, performs on the basis of updating and storing
key information in the time series data [15], and is applicable to battery prognostics. The RL
algorithm, on the other hand—as one of the latest Deep Learning methods and tools—has
the capability of creating a simulation of the whole system and making intelligent decisions
(i.e., charge, replace, repair, etc.) after it is utilized to predict the battery RUL and SOH for
the purpose of battery PHM and BMS [16].

1.4. Research Objective

In this study, the objective is to progress the study of lithium-ion battery performance
based on battery SOH and RUL prognostics. To do so, we propose an entropy-based
Reinforcement Learning model, predict the next-cycle battery capacity, and compare the
numerical results from the proposed entropy-based RL models to those from two other
data-driven methods—namely, ARIMA and LSTM—which are both constructed based
on the same input variable (i.e., permutation entropy of voltage sequences at each cycle).
Permutation entropy of the battery discharge voltage, as well as the previous battery
capacities, are given to these models as input variables. Finally, evaluation metrics such as
MSE, MAE, and RMSE are applied to the proposed methods to compare the observed and
predicted battery capacities.

Based on Figure 1, the remainder of this work consists of the following sections. First,
battery data is prepared and provided for the study. The data is then analyzed from different
points of view. Based on the data analysis, various models are proposed for lithium-ion

328

Algorithms 2022, 15, 393

battery performance using ML and DL techniques. We evaluate and compare the models
in detail in the next sections. Finally, conclusions are presented in the last section.

Figure 1. Prediction system for the lithium-ion batteries.

2. Related Work

In the current literature, entropy-based predictive models for battery prognostics, as
well as other predictive models, have been researched and tested. Table 1 illustrates a brief
overview of some of the most relevant and recently published papers that use data-driven
methods for lithium-ion battery prognostics.

Table 1. An overview of different approaches to lithium-ion battery prognostics.

Ref. Data Methods Results

[17]
NASA Ames Prognostics
Center of Excellence (PCoE)
database

Deep neural networks
(DNN)

The proposed model successfully predicts the SOH
and RUL of the lithium-ion battery but is less effective
when real-time processing comes into play.

[18]
Center for Advanced Life
Cycle Engineering (CALCE) at
the University of Maryland

Deep neural networks
(DNN)

The ANN predicts the battery State of Charge values
with accuracy using only voltage, current, and
charge/discharge time as inputs and achieves an MSE
of 3.11 × 10−6.

[19] NASA Ames Long short-term memory
(LSTM)

The proposed model has a better performance for the
time series problem of li-ion battery prognostics and a
stronger learning ability of the degradation process
when compared to other ANN algorithms.

[20] NASA lithium-ion battery
dataset

Long short-term memory
(LSTM)

The method produces exceptional performances for
RUL prediction under different loading and operating
conditions.

[21]
Data repository of the NASA
Ames Prognostics Center of
Excellence (PCoE)

Autoregressive integrated
moving average (ARIMA)

The RMSE of the model for the RUL prognostics
varies in the range of 0.0026 to 0.1065.

[22]
Lithium-ion battery packs
from forklifts in commercial
operations

Autoregressive integrated
moving average (ARIMA)

The ARIMA method can be used for SOH prognostics,
but the loss function indicates further enhancement is
needed for the environmental conditions.

[23] NASA prognostic model
library Reinforcement Learning (RL)

RL model enables accurate calibration of the battery
prognostics but has only been tested on simulated
data and sim-to-real transfer needs to be made to test
the proposed algorithm on real data.

[24] SPMeT Reinforcement Learning (RL)

The proposed method can extend the battery life
effectively and ensure end-user convenience.
However, experimental validation needs to be
implemented for the optimal charging strategy.

329

Algorithms 2022, 15, 393

Table 1. Cont.

Ref. Data Methods Results

[25] Simulated datasets Ensemble Learning
A data-driven method known as Ensemble Learning is
presented for predicting degradation in a time-varying
environment.

[26]

Experimental data from
multiple lithium-ion battery
cells at three different
temperatures

Sparse Bayesian

The authors present a Sparse Bayesian model based on
sample entropy of voltages for estimating SOH and
RUL. It is shown that the Sparse Bayesian model
outperforms the Polynomial model with the same
input and target data.

[27] Collected data through an
experimental study

Unscented Particle Filter and
Support Vector Regression

A hybrid model based on a combination of a
data-driven method and a model-based approach is
presented, which results in higher accuracy compared
to each model individually.

The literature review reveals a research gap, which can be summarized as follows.
Most of the research undertaken so far has relied on traditional Machine Learning and
Deep Learning methods. However, the RL method is recognized as an area with room
for exploration. Based on these findings, this paper is devoted to filling this gap in the
research. LSTM and ARIMA methods are also studied as state-of-the-art models, which
can be developed based on the entropy measures and compared with the RL method.

The main contribution of our study is the proposal of a Reinforcement Learning
model based on the permutation entropy of the voltage sequences for predicting the next-
cycle battery capacity. To the best of our knowledge, an RL model for lithium-ion battery
prognostics, using entropy measures as the input, has not been previously tested in the
literature. Additionally, we compare the numerical results from our proposed entropy-
based RL model with the results from the state-of-the-art models (i.e., ARIMA and LSMT),
which are built based on entropy measures for a fair and reliable comparison.

3. Data and Battery Specifications

The datasets used in this study were retrieved from the Center for Advanced Life
Cycle Engineering (CALCE) at the University of Maryland [28]. The studied batteries are
graphite/LiCoO2 pouch cells with a capacity rating of 1500 mAh, weight of 30.3 gm, and
dimensions of 3.4 × 84.8 × 50.1 mm, labeled as PL19, PL11, and PL09. Table 2 shows the
number of cycles in each dataset.

Table 2. Battery Cycles.

Batteries # of Cycles

PL19 526
PL11 702
PL09 528

Figure 2 illustrates the battery capacities over the number of cycles and indicates the
decrease in capacities as the number of cycles increases. It can also be observed that in PL09
and PL19 capacities are discrete, while in PL11, they differ continuously.

Since the battery capacity and entropy were not observed in all cycles, we have
estimated each unrecorded capacity value and its related entropy using the average of its
previous and next known capacity and entropy value. By doing so, we have increased the
number of data, and hence, the proposed models can be trained and tested more accurately.

Figures 3–5 indicate the resultant capacities and entropies after filling the missing data.

330

Algorithms 2022, 15, 393

Figure 2. Capacity vs. Cycle for PL11, PL19, and PL09.

Figure 3. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL19.

Figure 4. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL11.

Figure 5. Capacity vs. Cycle (left) and Entropy vs. Cycle (right) for PL09.

331

Algorithms 2022, 15, 393

4. Methodology

The mathematical notations used throughout this paper are summarized in Table 3.

Table 3. Glossary.

Indices

n Number of time series data
T Number of times the permutation is found in time series data

Variables

xt Input variable (permutation entropy of battery voltage) at step t
yt Observed battery capacity at step t
ŷt Output variable (predicted battery capacity) at step t
ht Previous state at step t
ct Current state at step t
c̃t Intermediate cell state at step t
it Input gate at step t
ft Forget gate at step t
ot Output gate at step t
p Order of auto-regression
d Order of difference
q Order of moving average
st State at step t
at Action at step t
rt Reward at step t
R Sum of the rewards
α Learning rate
γ Discount factor
Qst . at

Q Table for states and actions at step t

Parameters

PE Permutation entropy
D Order of permutation entropy
τ Time delay in data series
V Time series data matrix
li Columns in V
π Permutation pattern
P Relative probability of each permutation
Wi, Wf , Wo, Wc, Ui, Uf , Uo, Uc Weights in LSTM cells
bi, b f , bo, bc bias vectors in LSTM cells
θ,∅ ARIMA coefficients
εt Normal white noise with zero mean

In the following subsections, permutation entropy calculation and the proposed
models will be discussed.

4.1. Permutation Entropy

To compute a D order permutation entropy for a one-dimensional set of time series
data with n data points, the following steps are taken [29]. First, the data is partitioned into
a matrix with D rows and n − (D − 1)τ columns, where τ is the delay time.

V =

⎡⎢⎢⎢⎣
v(1)
v(2)

...
v(n)

v(1 + τ)
v(2 + τ)

...
v(n + τ)

· · ·
· · ·

· · ·

v(1 + (D − 1)τ)
v(2 + (D − 1)τ)

...
v(n + (D − 1)τ)

⎤⎥⎥⎥⎦ (1)

After rebuilding the data, π is defined as the permutation pattern for V columns:

π = {l0.l1.lD−1} = {0.1.D − 1} (2)

332

Algorithms 2022, 15, 393

The relative probability of each permutation in π is calculated as below:

P(π) =
T

n − D + 1
(3)

where T is the number of times the permutation is found in the time series. Finally, the
relative probabilities are used to compute the permutation entropy:

PE = −
D!

∑
i=1

P(π) log2 P(π) (4)

An algorithm for the permutation entropy computation is presented below.

Algorithm 1: Permutation Entropy

Step1 Reshape the data series into a matrix as in Equation (1)

Step2 Find the permutation patterns π

Step3 Calculate the probability of each permutation in π

Step4 Compute PE as in Equation (4)

Permutation entropy of the coarse-grained battery voltage is extracted, as in Figure 6.
Despite the noise affecting the entropies, in PL11, the differences in the entropies are
relatively small compared to the earlier cycles, while the deviations increase as the number
of cycles increases. In PL19, the range of entropy is approximately constant over a different
number of cycles; however, in PL09, they are completely random.

Figure 6. Entropy vs. Cycles for PL11, PL19, and PL09.

After data analysis, we split the data into train and test subsets. The proposed models
utilize approximately 90% of the data for training purposes and take the rest for evalua-
tion, as in Figure 7. The mechanism through which the training/test ration is selected is
explained in the following sections.

Figure 7. Train–Test split schematic.

4.2. Predictive Models

The predictive models are presented in this section as follows.

4.2.1. LSTM

Long Short-Term Memory, known simply as LSTM, is a framework for a recurrent neu-
ral network (RNN) which avoids the problem of long-term dependency. Unlike standard
feedforward neural networks, LSTM has feedback connections, and hence, it can update

333

Algorithms 2022, 15, 393

and store necessary information. It has been widely utilized in time series forecasting in
different fields of science in recent years [30].

A unit LSTM cell consists of an input gate it, forget gate ft, and an output gate ot.
Each gate receives the current input xt, the previous state ht−1, and the state ct−1 of the
cell’s internal memory. xt, ht−1, and ct−1 are passed through non-linear functions, which
yield the updated ct and ht [31]. Considering Wi, Wf , Wo, Wc and Ui, Uf , Uo, Uc as the
correspondig weights matrices and bi, b f , bo, bc as the bias vectors, each LSTM cell operates
based on the following Equations.

it = σ(xtUi + ht−1Wi + bi) (5)

c̃t = tan h(xtUc + ht−1Wc + bc) (6)

ft = σ
(

xtUf + ht−1Wf + b f

)
(7)

ct = ft ∗ Ct−1 + it ∗ c̃t (8)

ot = σ(xtUo + ht−1Wo + bo) (9)

ht = tan h(ct) ∗ ot (10)

In this study, all three gates take permutation entropy of the battery voltage at cycle t
and the battery capacity at cycle t − 1 as their input variables, xt and ct−1, and output the
estimated battery capacity, ŷ, for the given inputs as shown in Figure 8. Furthermore, an
algorithm is presented for the proposed LSTM model.

Figure 8. Schematic of a unit LSTM cell.

Algorithm 2: LSTM

Input: x = {PE1. PE2.PEn}: Permutation Entropy of Battery Voltage and ct−1;

Output: ŷ = {Capacity1.Capacity2. Capacityn}: Battery Capacity;

for t in range(epoch) do

Step1 Calculate it
Step2 Determine c̃t

Step3 Calculate ft

Step4 Update ct

Step5 Calculate ot

Step6 Update ht

Step7 Determine the output ŷ = LSTMforward(x)
Step8 Compute the loss function as Equations (20)–(22)

end

334

Algorithms 2022, 15, 393

4.2.2. ARIMA

The Autoregressive Integrated Moving Average (ARIMA) method is proposed as a
technique for statistical analysis in time series data. An ARIMA model is a combination
of the autoregressive (AR) and moving average (MA) models. The ARIMA model can be
explained according to three notations—p, d, and q—which define the type of the ARIMA
model:

- p : order of auto-regression
- d : order of difference
- q : order of moving average

For AR (p), we have:

ŷt = ∅1yt−1 +∅2yt−2 + · · ·+∅pyt−p + εt (11)

MA (q) can be described as follows:

ŷt = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (12)

ARMA (p.q) is a combination of AR (p) and MA (q), and is described as below:

ŷt = ∅1yt−1 + · · ·+∅pyt−p + εt − θ1εt−1 − · · · − θqεt−q (13)

where yt and ŷt, respectively, are the observed and estimated values; ∅ and θ, respectively,
are coefficients; and εt is a normal white noise process with zero mean.

ARIMA is an advanced version of ARMA, which also works well for non-stationary
time series data. To convert the non-stationary to stationary data, a data transformation
is needed using a d-order difference equation [32]. Consequently, ARIMA (p.d.q) can be
described as Equation (14).

ŵt = ∅1wt−1 + · · ·+∅pwt−p + εt − θ1εt−1 · · · − θqεt−q (14)

where wt = ∇dyt and ∇ is the gradient operator. When d = 0, Equation (14) is the same as
Equation (13) and, thus, ARIMA acts the same as ARMA. p and q are initialized using the
autocorrelation function (ACF) and partial autocorrelation function (PAFC).

AFC measures the average correlation between data points in a time series and pre-
vious values of the series measured for different lag lengths. PACF is the same as ACF,
except that each correlation controls for any correlation between observations of a shorter
lag length [32].

Figure 9 demonstrates the ARIMA framework from the input data stage through the
prediction stage.

Figure 9. ARIMA framework.

In this study, an ARIMA model is proposed to predict future battery capacities. Since
we are working with a non-stationary time series, we have made a data transformation
with d = 1. p and q, respectively, are set to 5 and 0, and thus, predictions were made with
ARIMA (5.1.0). The rationale behind choosing the order of the ARIMA model is as follows.
We compare the results from a range of non-negative integers, p = [1, 10] (extracted from
the existing literature), and select the optimal number of time lags for the autoregressive
model, which results in minimal errors compared to other orders in that range. The results
from the optimal model are displayed and reported here.

There is a battery voltage sequence at each cycle (i.e., a time series of voltages at each
cycle). We first compute the permutation entropy of each voltage sequence according to the

335

Algorithms 2022, 15, 393

corresponding algorithm; then, we use the time series of the permutation entropy measures
(i.e., one entropy measure at each cycle) as an input in the ARIMA model, compare them
with the deviations in the battery capacities, and predict the next-cycle battery capacity as
an output of the model.

An algorithm for the ARIMA model is presented as follows.

Algorithm 3: ARIMA

Input: x = {PE1.PE2.PEn}: Permutation Entropy of Battery Voltage Sequences at each Cycle;

Output: ŷ = {Capacity1.Capacity2. Capacityn}: Battery Capacity;

- Make time series data stationary with appropriate d;
- Initialize p and q using ACP and PACF;
- Fit ARIMA (p.d.q) to data;
- Predict the next-cycle capacity as Equation (14);
- Calculate the loss function using Equations (20)–(22).

4.2.3. Reinforcement Learning

Reinforcement Learning (RL) is a type of multi-layered neural network, and has
become a focus of research in modern artificial intelligence. The concept is based on
rewarding or punishing an agent’s performance in a specific environment. A state is a
description of the environment made to provide the necessary information for the agent to
decide at each time step. For each and every state s, the agent has a number of selecting
actions a to make decisions from. A policy is required, based on a cost function, to map
each state to the optimal action with the consideration of maximizing its reward function
during the episode [33].

Reinforcement Learning has real-life applications in various fields such as driving cars,
landing rockets, trading and finance, diagnosing patients, and so on. This Deep Learning
technique differs from supervised learning, as it does not require correct sets of actions and
labeled input/output pairs [34]. Instead, the goal is to find a balance between exploration
and exploitation. Figure 10 illustrates the schematic of a general Reinforcement Learning
structure and its Equations are described as follows.

Figure 10. Reinforcement Learning Schematic.

at ∼ π(at|st) (15)

st+1 ∼ fstate(st+1|st.at) (16)

rt+1 = freward(st. at.st+1) (17)

R =
∞

∑
t=0

γtrt+1 (18)

Qnew
st . at = Qold

s. at + α

⎛⎜⎜⎝
Target︷ ︸︸ ︷

rt + γmaxQnext s−a
st+1. a −

Prediction︷ ︸︸ ︷
QQ

st . at

⎞⎟⎟⎠ (19)

336

Algorithms 2022, 15, 393

In this study, we have considered the permutation entropy of the battery voltage as
the states and the capacities as the actions, which should be taken at each state based on
the given entropy. An algorithm for the RL model is presented in the following.

Algorithm 4: Reinforcement Learning

States: s = {PE1. PE2.PEn}: Permutation Entropy of Battery Voltage;

Actions: a = {Capacity1.Capacity2. Capacityn}: Battery Capacity;

Define the optimal policy;

Initialize the parameters α and γ;

for t in range (epoch) do

Calculate at using the optimal policy

Determine st+1 as a function of the state and the previous state and action

Compute rt+1 and R
Update Qst . at

using Equation (19)

Evaluate the estimation using the following loss function as in Equations (20)–(22)

end

The hyperparameters of the proposed models define how they are structured. Optimal
hyperparameters are approximated so that the loss is reduced. In other words, we explore
various model architectures and search for the optimal values in the hyperparameter space
to minimize the resulting performance metrics; for instance, Mean Squared Error. For
this purpose, in the three models, grid search is used for tuning the hyperparameters and
achieving reliable comparisons between the numerical results from the models. A model is
built for each possible combination of all of the hyperparameter values; next, the models
are evaluated based on the performance metrics, and then the architecture which produces
the best results is selected. The results and findings are reported in the following section.

5. Results and Findings

The numerical results and findings are presented in this section as follows.

5.1. Performance Measures

To evaluate the performance of the proposed models, we present the observed and
predicted battery capacities for ARIMA and LSTM models and the reward and loss func-
tions obtained from the RL model. Furthermore, we compare the observed and predicted
battery capacities gained from each of these models using three performance metrics [35]
as shown below:

Mean Squared Error (MSE):

MSE =
1
n

n

∑
t=1

(yt − ŷt)
2 (20)

Mean Absolute Error (MAE):

MAE =
1
n

n

∑
t=1

|yt − ŷt| (21)

Root Mean Squared Error (RMSE):

RMSE =
√

MSE =

√
1
n

n

∑
t=1

(yt − ŷt)
2 (22)

where yt and ŷt, respectively, are the observed and predicted capacity at cycle t, and n is
the number of test data.

337

Algorithms 2022, 15, 393

5.2. Numerical Results

The observed and predicted battery capacities results from ARIMA and LSTM models
are shown in Figures 11–13. Based on the graphs obtained, it can be seen that in all three
datasets the ARIMA model predictions are following the trends in the test data, and so,
yields better results as compared to the LSTM model for predicting the time series of battery
capacities.

Figure 11. Train, test, and predicted data results from ARIMA and LSTM models for PL19.

Figure 12. Train, test, and predicted data results from ARIMA and LSTM models for PL11.

Figure 13. Train, test, and predicted data results from ARIMA and LSTM models for PL09.

The early battery-life prediction, which includes a prediction of the battery cycles at
earlier cycles, is performed, and the results are displayed in Figures 14–16. It is observed that
the deviation between the predicted capacities and the actual capacities are not significant,
indicating that the proposed ARIMA and LSTM models are capable of predicting battery
capacities at earlier cycles.

338

Algorithms 2022, 15, 393

Figure 14. Train, test, and predicted data results from ARIMA and LSTM models for PL19.

Figure 15. Train, test, and predicted data results from ARIMA and LSTM models for PL11.

Figure 16. Train, test, and predicted data results from ARIMA and LSTM models for PL09.

In the RL model, as demonstrated in Figure 17, the reward values have an impressive
increase and immediately become stable with some noise. The loss values increase at first;
however, after approximately 250 epochs, they decline to 0, which verifies the procedure of
Reinforcement Learning.

To find the best data split ratio, our proposed RL approach is initially trained using
shuffled datasets with five different training ratios (70%, 75%, 80%, 85%, and 90%). After-
wards, Mean Squared Error (MSE) is utilized as a loss function to evaluate the obtained
results. Based on Table 4, the best accuracy is gained by using 90% of each dataset for
training purposes and using the rest for the testing process (Figure 18). Finally, this ratio is
applied to training the other two models (LSTM and ARIMA). To save space, the results
from the LSTM and ARIMA models are not reported here. The results from the other two
models are consistent with those from RL (i.e., the best training ratio of 10%).

339

Algorithms 2022, 15, 393

Figure 17. Reward and Loss Function (RL model).

Table 4. MSE Value for Different Training Ratios for the RL model.

Battery
Training Ratio

70% 75% 80% 85% 90%

PL19 0.0422 0.0618 0.0179 0.0008 0.0002
PL11 0.0718 0.0465 0.0153 0.0156 0.0084
PL09 0.0209 0.0007 0.0006 0.0003 0.0003

Figure 18. Finding the best Train–Test Split.

5.3. Comparisons

Tables 5–7 represent a snapshot comparison of the aforesaid models for the PL19,
PL11, and PL09 datasets, respectively. As the results show, in all datasets, ARIMA slightly
surpasses the LSTM and RL models since it results in the smallest MSE, MAE, and RMSE
values. However, the differences are not significant, and for PL19 and PL11, ARIMA and
RL yield approximately the same values of performance measures. It is concluded that
LSTM and RL also result in minor errors.

Table 5. MSE, MAE, and RMSE values for the predictive models (PL19).

Evaluation Metric LSTM ARIMA RL

MSE 0.00003 0.00001 0.0002
MAE 0.00417 0.00001 0.00005
RMSE 0.00580 0.00003 0.00009

340

Algorithms 2022, 15, 393

Table 6. MSE, MAE, and RMSE values for the predictive models (PL11).

Evaluation Metric LSTM ARIMA RL

MSE 0.00011 0.00001 0.0084
MAE 0.00012 0.00026 0.00054
RMSE 0.01095 0.00066 0.00090

Table 7. MSE, MAE, and RMSE values for the predictive models (PL09).

Evaluation Metric LSTM ARIMA RL

MSE 0.00001 0.00001 0.0003
MAE 0.00171 0.00001 0.03997
RMSE 0.00200 0.00002 0.05751

From Tables 5–7, it is observed that the ARIMA model yields smaller errors compared
to the LSTM model. ARIMA, which is a mean-reverting process, has the ability to pre-
dict battery capacities with smaller deviations. However, the LSTM model—which is a
recurrent network—attempts to avoid the long-term dependency by storing only necessary
information, and thus, it is unable to probabilistically exclude the input (i.e., previous
permutation entropy of battery voltage sequences) and the recurrent connections to the
units of the network from the activation and weight updates while the model is being
trained. Consequently, the deviations between the actual battery capacities and the pre-
dicted capacities resulting from the LSTM model are greater than those resulting from the
ARIMA model. The results displayed on Figures 11–13 are consistent with the Tables.

6. Conclusions

In lithium-ion battery applications, failures in the system can be minimized by per-
forming prognostics and health management. Data-driven methods are one way of doing
so, and identify the optimal replacement intervals or the optimal time for changing the
battery in an appropriate manner. This paper presents three different models (LSTM,
ARIMA, and RL), which all are built based on the permutation entropies of the battery
voltage sequences, for next-cycle battery capacity prediction using the status of the previous
states. In various data conditions, different models may be required; having a collection
of models, even for the same purpose, can be useful. In addition to accurate prediction of
battery capacities based on the ARIMA model, it is shown that the LSTM and the proposed
entropy-based RL models have similar performance and both result in small errors.

Author Contributions: Conceptualization, A.N.; methodology, A.N.; software and coding, M.A.S.
and A.N.; validation, A.N. and M.A.S.; formal analysis, M.A.S. and A.N.; model and algorithm
design, M.A.S. and A.N.; investigation, A.N.; resources, A.N.; data curation, A.N.; writing—original
draft preparation, M.A.S. and A.N.; writing—review and editing, A.N. and M.A.S.; visualization,
M.A.S. and A.N.; supervision, A.N. and T.S.D.; project administration, A.N. and T.S.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from Dr.
Alireza Namdari.

Conflicts of Interest: The authors declare no conflict of interest.

341

Algorithms 2022, 15, 393

References

1. Shimamura, O.; Abe, T.; Watanabe, K.; Ohsawa, Y.; Horie, H. Research and development work on lithium-ion batteries for
environmental vehicles. World Electr. Veh. J. 2007, 1, 251–257. [CrossRef]

2. Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold
temperatures. Appl. Energy 2016, 164, 99–114. [CrossRef]

3. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation
among the whole life cycle. eTransportation 2019, 1, 100005. [CrossRef]

4. Wu, L.; Fu, X.; Guan, Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven
methodologies. Appl. Sci. 2016, 6, 166. [CrossRef]

5. Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability.
Energies 2013, 6, 4682–4695. [CrossRef]

6. Ge, M.F.; Liu, Y.; Jiang, X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion
batteries. Measurement 2021, 174, 109057. [CrossRef]

7. Li, X.; Zhang, L.; Wang, Z.; Dong, P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining
the long short-term memory and Elman neural networks. J. Energy Storage 2019, 21, 510–518. [CrossRef]

8. Li, P.; Zhang, Z.; Xiong, Q.; Ding, B.; Hou, J.; Luo, D.; Rong, Y.; Li, S. State-of-health estimation and remaining useful life
prediction for the lithium-ion battery based on a variant long short term memory neural network. J. Power Sources 2020,
459, 228069. [CrossRef]

9. Tran, M.K.; Panchal, S.; Khang, T.D.; Panchal, K.; Fraser, R.; Fowler, M. Concept review of a cloud-based smart battery management
system for lithium-ion batteries: Feasibility, logistics, and functionality. Batteries 2022, 8, 19. [CrossRef]

10. Atkins, P. The Laws of Thermodynamics: A Very Short Introduction; Oxford University Press (OUP): Oxford, UK, 2010.
11. Namdari, A.; Li, Z.S. A Multiscale Entropy-Based Long Short Term Memory Model for Lithium-Ion Battery Prognostics. In

Proceedings of the 2021 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, USA, 7–9
June 2021; pp. 1–6.

12. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.
[CrossRef]

13. Awad, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Springer
Nature: Berlin/Heidelberg, Germany, 2015.

14. Singh, B.; Desai, R.; Ashar, H.; Tank, P.; Katre, N. A Trade-off between ML and DL Techniques in Natural Language Processing. In
Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1831, p. 0120025.

15. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction
of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

16. Li, W.; Cui, H.; Nemeth, T.; Jansen, J.; Uenluebayir, C.; Wei, Z.; Zhang, L.; Wang, Z.; Ruan, J.; Dai, H.; et al. Deep reinforcement
learning-based energy management of hybrid battery systems in electric vehicles. J. Energy Storage 2021, 36, 102355. [CrossRef]

17. Khumprom, P.; Yodo, N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm.
Energies 2019, 12, 660. [CrossRef]

18. Almeida, G.; Souza, A.C.; Ribeiro, P.F. A Neural Network Application for a Lithium-Ion Battery Pack State-of-Charge Estimator
with Enhanced Accuracy. In Multidisciplinary Digital Publishing Institute Proceedings. Proceedings 2020, 58, 33. [CrossRef]

19. Long, B.; Li, X.; Gao, X.; Liu, Z. Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks
model. Energies 2019, 12, 3271. [CrossRef]

20. Hinchi, A.Z.; Tkiouat, M. A deep long-short-term-memory neural network for lithium-ion battery prognostics. In Proceed-
ings of the International Conference on Industrial Engineering and Operations Management, Paris, France, 26–27 July 2018;
pp. 2162–2168.

21. Chen, L.; Xu, L.; Zhou, Y. Novel approach for lithium-ion battery on-line remaining useful life prediction based on permutation
entropy. Energies 2018, 11, 820. [CrossRef]

22. Huotari, M.; Arora, S.; Malhi, A.; Främling, K. A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks: Li-Ion
Batteries Case-Study. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Portland, OR,
USA, 16–19 November 2020; Volume 84560, p. V008T08A021.

23. Unagar, A.; Tian, Y.; Chao, M.A.; Fink, O. Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning.
Energies 2021, 14, 1361. [CrossRef]

24. Kim, M.; Baek, J.; Han, S. Optimal Charging Method for Effective Li-ion Battery Life Extension Based on Reinforcement Learning.
arXiv 2020, arXiv:2005.08770.

25. Wang, L.; Lu, D.; Wang, X.; Pan, R.; Wang, Z. Ensemble learning for predicting degradation under time-varying environment.
Qual. Reliab. Eng. Int. 2020, 36, 1205–1223. [CrossRef]

26. Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian
predictive modeling. IEEE Trans. Ind. Electron. 2015, 63, 2645–2656. [CrossRef]

27. Peng, X.; Zhang, C.; Yu, Y.; Zhou, Y. Battery remaining useful life prediction algorithm based on support vector regression and
unscented particle filter. In Proceedings of the 2016 IEEE International Conference on Prognostics and Health Management
(ICPHM), Ottawa, ON, Canada, 20–22 June 2016; pp. 1–6.

342

Algorithms 2022, 15, 393

28. He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the
Bayesian Monte Carlo method. J. Power Sources 2011, 196, 10314–10321. [CrossRef]

29. Namdari, A.; Li, Z. A review of entropy measures for uncertainty quantification of stochastic processes. Adv. Mech. Eng. 2019, 11,
1687814019857350. [CrossRef]

30. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory based recurrent neural network architectures for large vocabulary
speech recognition. arXiv 2014, arXiv:1402.1128.

31. Elsaraiti, M.; Merabet, A. Application of Long-Short-Term-Memory Recurrent Neural Networks to Forecast Wind Speed. Appl.
Sci. 2021, 11, 2387. [CrossRef]

32. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,
USA, 2015.

33. Abedi, S.; Yoon, S.W.; Kwon, S. Battery energy storage control using a reinforcement learning approach with cyclic time-dependent
Markov process. Int. J. Electr. Power Energy Syst. 2022, 134, 107368. [CrossRef]

34. Haney, B. Reinforcement Learning Patents: A Transatlantic Review. In Transatlantic Technology Law Forum; Working Paper Series;
Stanford Law School: Stanford, CA, USA, 2020.

35. Namdari, A.; Li, Z.S. An Entropy-based Approach for Modeling Lithium-Ion Battery Capacity Fade. In Proceedings of the 2020
Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 27–30 January 2020; pp. 1–7.

343

Citation: Galanis, N.-I.; Vafiadis, P.;

Mirzaev, K.-G.; Papakostas, G.A.

Convolutional Neural Networks: A

Roundup and Benchmark of Their

Pooling Layer Variants. Algorithms

2022, 15, 391. https://doi.org/

10.3390/a15110391

Academic Editor: Frank Werner

Received: 9 September 2022

Accepted: 18 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Convolutional Neural Networks: A Roundup and Benchmark
of Their Pooling Layer Variants

Nikolaos-Ioannis Galanis, Panagiotis Vafiadis, Kostas-Gkouram Mirzaev and George A. Papakostas *

MLV Research Group, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece
* Correspondence: gpapak@cs.ihu.gr

Abstract: One of the essential layers in most Convolutional Neural Networks (CNNs) is the pooling
layer, which is placed right after the convolution layer, effectively downsampling the input and
reducing the computational power required. Different pooling methods have been proposed over
the years, each with its own advantages and disadvantages, rendering them a better fit for different
applications. We introduce a benchmark between many of these methods that highlights an optimal
choice for different scenarios depending on each project’s individual needs, whether it is detail
retention, performance, or overall computational speed requirements.

Keywords: Convolutional Neural Network (CNN); pooling; deep learning; computer vision; image
analysis; benchmark

1. Introduction

Computer vision can be described as the way machines interpret images and is a
field of AI that trains computers to comprehend the visual world [1]. During the last
20 years, computer vision has evolved rapidly, with deep learning and especially Deep
Convolutional Neural Networks (D-CNNs) standing out among other methodologies. The
accuracy rates for object classification and identification have increased to the point of being
comparable to that of humans, enabling quick automated image detection and reactions to
optical inputs.

CNNs are considered unquestionably the most significant artificial neural network
architecture for any computer vision and image analysis project at the moment. Making
an appearance in the 1950s with simple and complex cell biological experiments [2,3] and
officially introduced in the 1980s [4] as a neural network model for a mechanism of visual
pattern recognition, they have progressed greatly over the last years until today’s complex
pre-trained computer vision models. One of the main applications of deep learning and
CNN’s is that of image classification where the system tries to identify a scene or an object
inside it. CNNs can also be taken a step further, by using one or more bounding boxes to
recognize and locate multiple objects inside an image.

Many traditional machine learning models such as Support Vector Machine (SVM) [5]
or K-Nearest Neighbor (KNN) [6] were used for image classification before CNNs, where
each individual pixel was considered a feature. With CNNs, the convolution layer was
introduced, breaking down the image into multiple features, which are used for predicting
the output values. However, since convolution itself is a demanding computation, pooling
was introduced to make the overall process less resource intensive along the network. This
method reduces the overall amount of computations required, essentially downsampling
the input every time it is applied while trying to maintain the most important information.

In this review, we attempt to summarize many of the pooling variants along with
the advantages and disadvantages of each individual method, while also comparing their
performance in a classification scenario with three different datasets.

Initially, the pooling methods are presented one by one, providing an overview of
each approach. In the end, we summarize the models and datasets that each method uses

Algorithms 2022, 15, 391. https://doi.org/10.3390/a15110391 https://www.mdpi.com/journal/algorithms
345

Algorithms 2022, 15, 391

in a table, as a preamble to the testing methodology, which is explained right after. Finally,
we present and analyze our benchmark results, focusing on the performance and ability to
retain the details of the original input.

2. Materials and Methods

2.1. Related Work

The following content is separated into two sections: a roundup of pooling methods
summarizing each approach and a benchmark of their performance taking into account
multiple factors, focusing on 2D image applications. There have been some review papers
on this subject in the past, mostly summarizing the theory behind individual proposals.

Some of them are quite extensive [7,8] and may reference the test results from various
external sources [8], though this type of compilation is not ideal for a direct comparison
since each experiment is performed under different conditions (model, hardware, etc.).
Others focus on deep architectures or neural networks in general, including only some of
the pooling methods along with their main research subject [9,10]. In some cases, there
are even small-scale tests, but they are targeted at very specific use cases, such as medical
data [11].

To our best knowledge, though the subject is similar—which may cause some overlap-
ping content—there has not been an extended benchmark implementation using the same
environment so that there can be a direct comparison between the methods’ performances.

2.2. Pooling the Literature

The publications that this review was based on were located by searching for a combi-
nation of the terms “Pooling” and “CNN” or “Convolution” (and their derivatives, such as
“convolutional”) in the title, keywords, and abstract. After shortlisting some of the results,
further literature was added by extensively searching through references and related publi-
cations of the initially selected papers, focusing on the applications of CNNs and not the
generic subject. While there are some references in 1990 when Yamaguchi introduced the
concept of Max pooling [12], most pooling proposals and ideas appear to be chronologically
placed in the last decade. Figure 1 shows a steady interest in the general subject of pooling
for the last decade, perhaps with small increases or decreases per year.

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

0

500

1000

1500

2000

Figure 1. Publications for total results about pooling for CNNs in Scopus.

2.3. Let the Pooling Begin

Three of the most common pooling methods are Max pooling, Min pooling, and
Average pooling. As their names suggest, for every area of the input where the sliding
window focuses, the maximum, minimum, or average value is calculated accordingly.

Average pooling (also referred to as Mean pooling) has the drawback that it takes
into consideration all values regardless of their magnitude, and even worse, in some cases
(depending on the activation function that is used), strong positive and negative activations
can cancel each other out completely.

On the other hand, Max pooling captures the strongest activations while ignoring
other weaker activations that might be equally important, thus erasing input data, while
also tending to overfit frequently and not generalizing very well. While most of the other
methods try to either improve, combine, or even completely replace these “basics”, they

346

Algorithms 2022, 15, 391

still tend to be widely used due to their efficiency, ease of use, and low computational
power required. Let us explore each of the available methods in detail.

2.3.1. Max and Min Pooling

Max pooling is one of the most-common pooling methods, which selects the maxi-
mum element from the area of the feature map covered by the kernel applied, as seen in
Figure 2. Depending on the filter and stride, the outcome is a feature map having the most
distinguished features of the input [13]. On the other hand, Min pooling does the exact
opposite, selecting the minimum element from the selected area. As expected, Max pooling
tends to retain the lighter parts of the input when it comes to images, while Min pooling
does the same with the darker parts.

6 2 8 1 7 9

5 0 2 8 6 4

3 8 6 7 2 0

6 1 8 4 2 0

2 × 2 Max pooling

Filter/Kernel 6 8 9

8 8 2
2

2

Figure 2. An example of Max pooling’s functionality [14].

2.3.2. Fractional Max Pooling

Fractional Max Pooling (FMP) [15] is, as its name suggests, a variant of Max pooling,
but the reduction ratio can be a fraction as well, instead of an integer. The most important
parameter is the scaling factor a by which the input image will be downscaled, with
1 < a < 2. Considering an input of size Nin × Nin, we select two sequences of integers
ai, bi that start at 1, and they are incremented by 1 or 2 and end at Nin. These sequences
can be either completely random or pseudorandom when they follow the equation ai =
ceil(a ∗ (i + u)), where a is the scaling factor and u is a number in the range (0, 1). Then,
the input is split into pooling regions, either disjoint or overlapping using the respective
variant of Formula (1), and the Max value for each region is retained.

Pi,j = [ai−1, ai − 1]× [bj−1, bj − 1] or Pi,j = [ai−1, ai]× [bj−1, bj] (1)

where

P : the pooling region
ai, bi : integer sequences according to the FMP algorithm

According to the writers’ experiments, overlapping FMP seems to have better results
than the disjoint alternative, while a random choice of the sequences ai, bi distorts the
image, in contrast with the pseudorandom ones. Overall, FMP’s performance appears to
be better than that of Max pooling.

2.3.3. Row-Wise Max-Pooling

Row-wise Max pooling is referred to alongside a deep panoramic representation for
3D shape classification and recognition called DeepPano [16]. A panoramic view is created
from the projection of the 3D model as a cylinder to its principle axis. The pooling layer
is placed after the last convolution layer and uses the highest value of each row in the
input map. The suggested methodology appears to be rotation-invariant according to the
experiments, since its output is not affected by the rotation of the 3D shape input.

347

Algorithms 2022, 15, 391

2.3.4. Average Pooling

Average pooling has a similar function as Max pooling, but it calculates the average
value of the pooled area [17], as seen in Figure 3.

6 2 8 1 7 9

5 0 2 8 6 4

3 8 6 7 2 0

6 1 8 4 2 0

2 × 2 avg pooling

Filter/kernel 3.25 4.75 6.5

4.5 6.25 1
2

2

Figure 3. An example of Average pooling’s functionality [14].

Average pooling, in contrast to Max pooling, which seeks the top features, extracts a
patch of features, makes some calculations based on them, and returns a smoother result.
This may lead to lower accuracy. In general, it depends on the density of the features
(pixels) and the use of the output product.

2.3.5. Rank-Based Pooling

The rank-based pooling methods [18] are an alternative to Max pooling, with three
variants: rank-based Average pooling (RAP), rank-based weighted pooling (RWP), and
rank-based stochastic pooling (RSP). The most-important characteristics of these meth-
ods are:

• The top features can be easily identified by their ranks.
• Ranks remain slightly unchanged from the activation values.
• Ranking can avoid scaling across value-based methods.

Before applying any of the three methods, the ranking process takes place, where an
activation function is applied to the individual elements, and they are sorted in descending
order according to that function’s value.

RAP attempts to resolve the main issues of Max and Average pooling, which are the
information loss of non-Max values in Max pooling and the information being downgraded
due to near-zero negative activations in Average pooling. It does so by using an average of
the top t important features, where t is a predefined downsizing threshold—if we want to
downsize, for instance, by a factor of 2 and the kernel has a size of 2 × 2, t will have the
value of 2 as well. Then, we set weights for all the elements within the kernel, with the top
t having a weight of 1/t, whereas all other weights are set to 0, and the output is calculated
from Equation (2).

sj =
1
t ∑

i∈Rj,ri≤t
ai (2)

where a is the activation function value and t is the rank threshold that determines which
activation affects the averaging.

RWP takes into consideration that each region in an image might not be equally
important, thus setting rank-based weights for each activation. Thus, the pooling output
now changes to Equation (3).

sj =
1
t ∑

i∈Rj

piai (3)

348

Algorithms 2022, 15, 391

where a is the activation value and the probability p that is used for each weight is given
by the ranking Equation (4) where b is a hyper-parameter, r is the rank of activations, and
n is the size of the pooling area.

pr = b(1 − b)r−1, r = 1, . . . n (4)

Lastly, Equation (5) is used for RSP in a very similar way to RWP.

sj = αi, where i ∼ Multinomial(p1, . . . , pn) (5)

where α is the activation value for each element in the pooled region. Then, the final activa-
tion values are sampled based on probabilities p calculated by a multinomial distribution,
based on Formula (4).

2.3.6. Mixed, Gated, and Tree Pooling

Mixed pooling [19] combines Max and Average pooling, selecting one of these two
methods, outperforming both of them when used separately. Lee et al. proposed two
different variants along with the base one: mixed Max–Average pooling, and gated Max–
Average pooling, along with an alternative method for tree pooling. An overview of the
three methods can be seen in Figure 4.

(a) (b)
(c)

Figure 4. A schematic comparison of the three proposed operations in [19]: (a) mixed Max–Average
pooling, (b) gated Max–Average pooling and (c) tree pooling with 3-level binary tree.

In mixed Max–Average pooling, a parameter a is learned and can be different per the
whole network, per layer, or per pooling region. Then, the output of the pooling layer is
computed by Equation (6):

f mix(x) = a f Max(x) + (1 − a) f avg(x) (6)

where:

x : the input to be pooled;
a : a learned parameter;
σ(wTx) : a sigmoid function, 1/(1 + exp(−wTx)).

In gated Max–Average pooling, a mask of weights is learned and the inner product
of that mask with the pooled region passed through a sigmoid function is used to decide
whether to use Max or Average pooling. This mask can differ per network, layer, or
region. The output is then calculated as described in Equation (7). According to the
method’s paper [19], in a comparison between this method and mixed Max–Average
pooling, it appears that the gated variant performs consistently better.

fgate(x) = σ(wTx) fMax(x) + (1 − σ(wTx)) favg(x) (7)

where:

349

Algorithms 2022, 15, 391

x : the input to be pooled;
w : the learned mask of weights;
T : the transpose operator;
σ(wTx) : a sigmoid function, 1/(1 + exp(−wTx)).

A third alternative was proposed in the same paper for tree pooling, where a binary
tree is used and the pooling filters are learned. The tree level is a pre-defined parameter,
and each node holds a learned pooling filter. Furthermore, gating masks are used in a
similar way as described for gated pooling previously. Thus, the pooling result for each
node is described by the function (8), and the output of the pooling method is the calculated
output for the root node.

fm(x) =

{
νT

m if leaf node

σ(wT
mx) fm,le f t(x) + (1 − σ(wT

mx)) fm,right(x) if internal node
(8)

where:

ν : the learned filter for each node;
w : the learned mask of weights;
m : the tree node index;
T : the transpose operator;
σ(wT

mx) : a sigmoid function, 1/(1 + exp(−wT
mx)).

2.3.7. LP Pooling

Sermanet et al. [20] proposed LP pooling as part of an architecture to recognize house
numbers. It is essentially another alternative to the Average and Max pooling methods,
closer to the one or the other depending on the value of P, a predefined parameter chosen
during the setup of the layer. This method is a sort of weighted function ending up with
higher weights for more important features and lower for the lesser ones, which can be
applied by using Formula (9).

O = (∑ ∑ I(i, j)P × G(i, j))1/P (9)

where O is the output, I is the input, and G is a Gaussian kernel. We should also note that
when P = 1, it is essentially Gaussian averaging, while when P = ∞, it is similar to Max
pooling. Using this type of pooling, the authors managed to achieve an average of about 4%
better accuracy than Average pooling for the Street View House Numbers (SVHN) dataset.

2.3.8. Weighted Pooling

Weighted pooling [21] is a pooling strategy that aims to use the weighted average
number of matches in a particular match. This is achieved by assigning different weights
to different activation methods based on common information. Three main features of
weighted pooling are, firstly, the amount of information of the pooling area is quantified by
information theory for the first time. Second, each activation’s benefaction is quantified for
the first time, and these contributions reduce the uncertainty of the pooling area in which it
is placed. Last, for selecting a senator in this pooling area, the weight of each activation
clearly overtakes the value of activation.

2.3.9. Stochastic Pooling

Stochastic pooling [22] attempts to improve the commonly used Max and Average
pooling and their previously mentioned drawbacks, by selecting the pooled values of the
input based on probabilities. According to this suggestion, a probability pi is calculated
for each of the elements inside the pooling region using Formula (10), and then, one of the
elements with a probability greater than zero is chosen randomly. This method though
does appear to have a drawback similar to that of Max pooling, since important parts of the

350

Algorithms 2022, 15, 391

input might be ignored in favor of other parts with non-zero probabilities. The stochastic
pooling strategy can be joined with any other forms of regulation such as dropout, data
augmentation, weight decay, and others to avoid overfitting in deep convolutional network
training.

pi, j =
ai

∑k∈Rj
ak

(10)

where:

a : the applied activation function;
R : the pooled region;
j : the index of the pooled region.

2.3.10. Spatial Pyramid Pooling

Spatial Pyramid Pooling (SPP) was inspired by the bag-of-words model [23], which
is one of the best-known representation algorithms for object categorization. The fully
connected layers at the end of the CNNs require a fixed length input. Spatial pyramid
pooling [24] attempts to fix that by converting the input of any size into a predefined
fixed length, essentially removing that fixed-size constraint, which might be problematic.
Basically, a fixed-size window with a constant stride makes the output be relative to the
input. On SPP layers the stride, and the pooling window are proportional to the input
image, so the output can be a fixed size. The name came from the ability of the layers to
apply more than one pooling operation and combining the outcome prior to moving on to
the next layer, as described in Figure 5.

Figure 5. A network structure with a spatial pyramid pooling layer [25].

2.3.11. Per-Pixel Pyramid Pooling

The largest pooling window used in per-pixel pyramid pooling [26] differs from the
original spatial pyramid pooling method, in order to manage obtaining the desired size
of the receptive field. This may have as a result the loss of some of the finer details. For
that reason, more than one pooling layer with different window sizes is applied, and the
outputs are combined to create new feature maps. This pooling task is executed for every
pixel without strides. The output is calculated by Equation (11).

P4P(F, s) = [P(F, s1), . . . , P(F, sM)] (11)

where s is a vector with M elements, F is the pooling function applied, and P(F,si) is the
pooling operation with an si-sized kernel and stride 1.

351

Algorithms 2022, 15, 391

2.3.12. Fuzzy Pooling

The Type-1 fuzzy pooling [27] is achieved by combining the fuzzification, aggregation,
and defuzzification of feature map neighborhoods. The method is applied using the
following steps:

1. The input of depth n is sampled with a kernel of size k × k and a specific stride σ to
obtain a set of patches p.

2. For each patch, we apply a set of ν membership functions μν, obtaining a set of fuzzy
patches πn

ν = μν(pn).
3. Each fuzzy patch is summed, resulting in a sum sn

πν
.

4. For each patch, the fuzzy patch with the highest sum of the previous step is selected
out of the total set of ν fuzzy patches (π′).

5. Finally, the dimensionality is reduced using Equation (12):

p′n =
∑k

i=1 ∑k
j=1 (π

′n
i,j · pn

i,j)

∑k
i=1 ∑k

j=1 π′n
i,j

(12)

2.3.13. Overlapping Pooling

Overlapping pooling was proposed as part of a paper with the suggestion of an
architecture that classifies the ImageNet LSVRC-2010 dataset [28]. The idea behind it that
can be applied to most—if not all—pooling methods is setting a smaller stride than the
kernel size, so that there is overlap between neighboring pooled regions. The experiments
with the proposed architecture showed that the top 1 and top 5 error rates were reduced
by 0.4% and 0.3%, respectively for the case of Max pooling, while the model seemed to
overfit slightly less when using overlapping—while that was rather an observation, and no
specific evidence was presented.

2.3.14. Superpixel Pooling

Superpixel is a term for 2D image segments. Essentially, superpixel pooling [29], just
like overlapping pooling, is not a pooling method itself, but a method of applying a pooling
function such as the Max or Average. The difference is that, instead of using a standard
square sliding kernel as in other methods, the 2D image is already segmented—usually
based on edges. Then, the selected pooling function is applied in each segment. This
process reduces the computational cost significantly, while preserving a high accuracy in
the models used.

2.3.15. Spectral Pooling

While most other methods process the input in the spatial domain, spectral pooling [30]
takes it to the frequency domain, pools the input, and then, returns the output back to
the spatial domain. One of the main advantages is that information is preserved better—
compared to other common methods such as Max pooling—since lower frequencies tend
to contain that information and higher frequencies usually contain noise.

The application of this type of pooling is rather straightforward, applying a Discrete
Fourier Transform (DFT) to the input, cropping a predefined size window from the center,
and returning it back to the spatial domain by using the inverse DFT.

Obviously, a significant issue is the computational cost, since the DFT is required—
both forward and inverse. That overhead though can be minimized when the FFT is used
for the calculation of the convolution in the previous layer, thus limiting its use only to
such scenarios. Zhang et al. [31] suggested an alternative implementation based on the
Hartley transform, which might require less computational power while retaining the same
amount of information.

2.3.16. Wavelet Pooling

The wavelet pooling method [32] features a completely different approach compared
to the previously mentioned ones that use neighboring inputs, attempting to minimize the

352

Algorithms 2022, 15, 391

artifacts produced during the process of pooling. It is based on the Fast Wavelet Transform
(FWT), a transformation that is applied twice on the input, once on the rows, and once again
on the columns. Then, the input features are reconstructed using only the second-order
wavelet sub-bands by applying the Inverse FWT (IFWT), reducing by half the total image
features.

Unfortunately, though on the MNIST dataset, the wavelet pooling managed to outper-
form other competitors, on other datasets (CFAR-10, SHVN, KDEF), simpler methods such
as Average or Max pooling performed better. Furthermore, as one can see in Table 1, the
computational power required appears to be 110 K mathematical operations for the simpler
MNIST dataset, which goes up to a tremendous total of 6.2 M for the KDEF dataset, com-
pared to 3.5 K and 29 K—200-times less—operations required by the much simpler-to-apply
Average pooling.

Table 1. A comparison of the total mathematical operations required per method [32].

MNIST CIFAR-10 SHVN KDEF

Max 6.2 K 13 K 26 K 50 K
Avg 3.5 K 7.4 K 15 K 29 K
Mixed 4.8 K 10 K 20 K 40 K
Stochastic 10.6 K 22 K 45 K 86 K
Wavelet 110 K 405 K 810 K 6.2 M

2.3.17. Intermap Pooling

To achieve an increase in robustness for spectral variations of audio signals and
acoustic features, Intermap Pooling (IMP) was introduced [33]. This was accomplished
by the addition of a convolution maxout layer (IMP), which groups the feature maps, and
then the Max activation function at each position is chosen.

2.3.18. Strided Convolution Pooling

Ayachi et al. [34] proposed strided convolution as a drop-in replacement for Max
pooling layers with the same stride and kernel size, attempting to make the CNNs more
memory efficient. The convolution function that is applied is:

ci,j,n(f) = σ(∑k
h=0 ∑k

w=0 ∑m
u=0 θh,w,u,n fg(h, w, i, j, u)) (13)

where σ is the activation function, n ∈ [0, m] is the total number of output feature maps
of the previous convolution layer, k is the kernel size, (w, h, n) are the width, height, and
number of channels, and finally, θ is the kernel of the convolution weights, and it is θ = 1 if
n = u, or θ = 0 otherwise.

In Table 2, one can easily see that the replacement of the pooling layer with the strided
convolution does seem promising, since it actually reduces the total memory required by
each model while also increasing the overall accuracy.

Table 2. Model size and top 5 error reduction before and after replacing the Max pooling layer with
strided convolution for the ILSVRC2012 classification challenge [34].

VGG Net Google Net Squeeze Net

Original 528 MB 51.1 MB 4.7 MB
Strided Conv 493 MB 42.6 MB 3.2 MB
Original top 5 error (%) 8.1 9.2 19.7
Strided Conv top 5 error (%) 6.6 8.7 17.8

2.3.19. Center Pooling

Center pooling [35] is a pooling method used for object detection and intends to
identify distinct and more recognizable visual patterns. In an output feature map, we

353

Algorithms 2022, 15, 391

obtain the maximum values for a pixel in it is vertical and horizontal axis and add them—
which will show us if that pixel is a center keypoint, which is the center of a detected object
within an image.

2.3.20. Corner Pooling

On the other hand, corners usually are located outside the objects, which do not
have local relative features. Therefore, corner pooling [36] was introduced to solve this
problem. Corner pooling finds the maximum values on the boundary directions and, in this
way, identifies the corners. This has an effect on making the corners sensitiveto the edges.
Addressing this issue, in order to let corners identify the visual patterns of the objects if
needed, we use the cascade corner pooling method. Detecting the corners of an object can
help define the edges of an object itself better.

2.3.21. Cascade Corner Pooling

Cascade corner pooling [37] looks like a combination of center and corner pooling, by
taking the maximum values in both the boundary directions and internal directions of the
objects. Initially, from each boundary, it finds a boundary maximum value, then proceeds
to look inside the location of the boundary maximum value to obtain an internal maximum
value, and finally, it adds them together. As a result, the corners obtain both the boundary
information and the visual patterns of objects.

2.3.22. Adaptive Feature Pooling

Adaptive feature pooling [38] is used to gather features from all layers for each object
detection proposition and merges them for the upcoming prediction. For each one, they
are mapped at other feature levels. It is usually used to pool grids of features from each
level. A fusion function (maximum or sum of elements) is then used to secure the grids of
features from different levels.

2.3.23. Local-Importance-Based Pooling

Local-Importance-based Pooling (LIP) [39] is a pooling layer that can increase discreet
features during the downsampling process by learning adaptive weightings based on
inputs. Using this kind of didactic network, the importance function now is not limited
to manual forms and has the ability to recognize the criterion for the discriminativeness
of features. Furthermore, the size of the LIP window is limited to a minimum dimension,
so that it is not less than the step of making full use of the feature map and avoiding the
issue of a defined sampling interval. More specifically, the importance function in LIP is
implemented by a tiny fully convergent network, which learns to generate the importance
map based on end-to-end inputs [40].

2.3.24. Soft Pooling

Soft Pooling (SoftPool) [41] is a quick and effective kernel-based process that aggre-
gates exponentially weighted activations, as described in Formula (14). In comparison
with a number of other methods, SoftPool holds more information in the downsampled
activation maps, so by having a more sophisticated downsampling process, the result
returns better classification accuracy. It can be used to downsample 2D images and 3D
video activation maps.

wi =
eai

∑j∈R eaj
(14)

where:

a : the activation value;
i, j : the pooled region index.

354

Algorithms 2022, 15, 391

3. Putting the Methods to the Test

3.1. The Benchmark Setup

In order to choose the optimal architecture and datasets to use for our benchmark,
Table 3 was compiled. which summarizes what was used for each method in the corre-
sponding paper.

Table 3. A cumulative table of models and datasets used in each method’s publication.

Method Model(s) Datasets

Fractional Max [15] Custom CNN CIFAR-10, CIFAR-100, MNIST, CASIA-OLHWDB1.1
Row-wise Max [16] Custom CNN ModelNet-10, ModelNet-40
Rank-based [18] Custom CNN MNIST, CIFAR-10, CIFAR-100, NORB
Mixed [19] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
Gated [19] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
Tree [19] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
LP [20] Custom CNN SVHN
Stochastic [22] Custom CNN MNIST, CIFAR-10, CIFAR-100, SVHN
Spatial pyramid [24] ZF-5, Convnet-5, Overfeat-5/7 VOC 2007, Caltech 101, ILSVRC 2014, ImageNet 2012
Per-pixel pyramid [26] Custom CNN Middlebury benchmark “training dense” [42]
Fuzzy [27] LeNet MNIST, Fashion-MNIST, CIFAR-10
Overlapping [28] Custom CNN ILSVRC 2010, ILSVRC 2012/2013, ImageNet2012
Super-pixel [29] VoxResNet IBSR, Cityscapes
Spectral [30] Custom CNN CIFAR-10, CIFAR-100
Wavelet [32] MatConvNet [43] MNIST, CIFAR-10, SVHN, KDEF
Weighted [21] Custom CNN CIFAR-10, MNIST, PASCAL VOC 2007
Intermap [33] Custom CNN Switchboard-I Release 2

Strided convolution [34] VGG11-19, GoogleNet,
SqueezeNet ILSVRC 2014, ILSVRC 2012

Center [35] CenterNet MS-COCO
Corner [36] CornerNet MS-COCO
Cascade corner [35] Cascade R-CNN MS-COCO
Adaptive feature [38] Mask R-CNN (/w Caffe) MS-COCO, Cityscapes, MVD
Local-importance-based [39] ResNet, DenseNet MS-COCO, ImageNet 1K

Soft [41] ResNet, DenseNet, ResNeXt, In-
ceptionV1

ImageNet 1K, DIV2K, Urban 100, Manga 109, Flicker 2K, Ima-
geNet 1K, HACS, Kinetics-700, UCF-101

It seems that less-potent architectures are preferred in most cases. This is probably
because they usually achieve a lower overall performance, but that also means that the
impact of changing the pooling layer will be better highlighted. Thus, a similar model
was chosen, a LeNet5 architecture with 2 convolution layers, 2 respective interchangeable
pooling layers, and 2 fully connected layers, as shown in Figure 6.

Convolution

Pooling Convolution

Pooling

Input

C1

P2 P4

C3 FC5
FC6 Output

Figure 6. The CNN architecture used for the tests.

Regarding the datasets, the MNIST, CIFAR10, and CIFAR100 were used, since it seems
from Table 3 that these are commonly used in the reviewed papers. They are also ideal since
we had to make sure they were interchangeable for the exact same architecture without
changes to the fully connected layer(s), just by modifying the total output class parameter.

355

Algorithms 2022, 15, 391

Lastly, we focused on testing pooling methods that can be used as a direct drop-in
replacement for the Max pooling layer, with a kernel size and stride of size 2, in order to
reduce each dimension by half—applying parameters that would provide similar results
wherever required (like a 0.5 scaling factor, for instance, for the spectral pooling layer).
Stochastic gradient descent was used as an optimizer, with a learning rate of 0.01 and
momentum of 0.9 over 300 epochs.

3.2. Performance Evaluation

For the performance comparison, we used the standard top 1 and top 5 testing accuracy
(higher is better); for the computational complexity, we used the time required per epoch
(lower is better), while also including three indicators, which can provide better insight
into how well the details of the original image are maintained—for all three (higher values
are better):

Root-Mean-Squared Contrast (RMSC) [44], as defined in Formula (15) for a M × N
image:

RMSC =

√√√√ 1
M × N

M−1

∑
i=0

N−1

∑
j=0

(xij − x)2 (15)

where
xij : each pixel of the image;
x : (∑M−1

i=0 ∑N−1
j=0 xij)/(M × N).

Peak-Noise-to-Signal Ratio (PSNR) [45], as defined in Formula (16) for a M × N
image:

PSNR = 20log10

(MAX f√
MSE

)
(16)

where:

MSE : (Mean-Squared Error) = (∑M−1
i=0 ∑N−1

j=0 ‖ f (i, j)− g(i, j)‖2)/(M × N);
f : the data of the original image;
g : the data of the pooled image;
MAX f : the maximum signal value of the original image.

Structural Similarity Index (SSIM) [46], which is defined by three combined metrics
for luminance, contrast, and structure and can be simplified for two signals x, y in the form
seen in Formula (17):

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y)(σ
2
x + σ2

y + C2)
(17)

where:
μx, μy : the pixel mean μx = ∑N

i=1 xi/N;

σx, σy : standard deviation σx =
√

∑N
i=1 (xi − μx)2/(N − 1);

σxy : ∑N
i=1 (xi − μx)(yi − μy)/(N − 1);

C1 : (k1L)2;
C2 : (k2L)2;
L : the dynamic range of pixels, 255 for 8-bit grayscale images;
k1 : A small constant <1, 0.01 used in the paper experiments;
k2 : A small constant <1, 0.03 used in the paper experiments.

All tests were performed using a PyTorch implementation of the methods, on an
Nvidia GTX1080 GPU.

356

Algorithms 2022, 15, 391

4. Results

4.1. Details Retention

As previously described, three metrics were used as a means of comparison for how
well details are preserved after pooling the original input. The first one is the Root-Mean-
Squared Contrast (RMSC) [44], which is the standard deviation of the pixel intensities,
which indicates how well the contrast levels are maintained between the input and output.
The second, the Peak-Noise-to-Signal Ratio (PSNR) [45], shows how strong the original
image signal is compared to the introduced noise due to pooling. Lastly, the Structural
Similarity Index (SSIM) [46] can range from −1 to 1 and shows the actual similarity between
the input and output of the pooling layer.

In Table 4, Average pooling appears to be the best choice, since it shows the best SSIM
values across all dataset tests. Furthermore, it achieved a top ranking PSNR as well for
two out of the three datasets—which can be interpreted as a low level of introduced noise.
When it comes to the RMSC, though other methods achieved better values, Average pooling
kept up, and as we can see in the pooling layers’ output examples, higher contrast is not
always good, at least when it comes to comparing similarities with the original image.

Table 4. The details’ retention indicators of our benchmark. The best value for each metric in each
separate dataset is highlighted.

MNIST CIFAR10 CIFAR100
RMSC PSNR SSIM RMSC PSNR SSIM RMSC PSNR SSIM

Max 0.35 65.66 0.76 0.17 68.69 0.82 0.26 66.84 0.80
Adaptive Max 0.35 65.66 0.76 0.17 68.69 0.82 0.26 66.84 0.80
Fractional Max 0.35 65.66 0.76 0.17 68.69 0.82 0.26 66.84 0.80
Average 0.28 69.47 0.89 0.15 75.52 0.86 0.26 70.80 0.84
Mixed 0.16 70.54 0.85 0.16 70.54 0.85 0.26 69.03 0.82
Gated 0.30 68.49 0.83 0.14 72.24 0.85 0.26 69.22 0.82
Tree (Level 2) 0.53 60.57 0.69 0.33 53.74 0.62 0.46 54.84 0.73
LP (L2) 0.57 58.66 0.61 0.29 55.02 0.66 0.52 52.43 0.66
Stochastic 0.15 70.67 0.83 0.15 70.66 0.83 0.26 68.91 0.81
Fuzzy 0.55 59.95 0.68 0.29 55.20 0.67 0.52 52.58 0.66
Overlapping Max 0.40 60.46 0.56 0.18 64.92 0.70 0.25 62.01 0.58
Spectral 0.58 58.72 0.66 0.30 55.08 0.61 0.53 52.53 0.57
Wavelet 0.26 69.47 0.89 0.15 72.52 0.86 0.26 70.80 0.84
Local Importance 0.31 67.76 0.81 0.15 71.51 0.86 0.26 70.01 0.84
Soft 0.29 62.92 0.65 0.15 67.87 0.67 0.27 65.91 0.63

In Figures 7–9, a sample input of each dataset is presented, as well as the respective
output for each pooling layer. Each method might have a tendency to favor higher or lower
values of the input pixels, while some increase the contrast significantly.

Combined with the results of Table 4, it seems that Average pooling indeed achieved
a result that was very close to the original image. On the other hand, tree, l2, fuzzy, and
spectral pooling introduced a much higher contrast to the image, generating an output that
was very different from the original input.

357

Algorithms 2022, 15, 391

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
Figure 7. The MNIST “5” original image (a) and the respective results of the first pass of pooling for
the methods Max (b), adaptive Max (c), fractional (d), Average (e), mixed (f), gated (g), tree (h), l2 (i),
stochastic (j), fuzzy (k), overlapping Max (l), spectral (m), wavelet (n), LIP (o), and SoftPool (p).

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
Figure 8. The CIFAR10 frog original image (a) and the respective results of the first pass of pooling
for the methods Max (b), adaptive Max (c), fractional (d), Average (e), mixed (f), gated (g), tree (h), l2
(i), stochastic (j), fuzzy (k), overlapping Max (l), spectral (m), wavelet (n), LIP (o), and SoftPool (p).

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
Figure 9. The CIFAR100 horse original image (a) and the respective results of the first pass of pooling
for the methods Max (b), adaptive Max (c), fractional (d), Average (e), mixed (f), gated (g), tree (h), l2
(i), stochastic (j), fuzzy (k), overlapping Max (l), spectral (m), wavelet (n), LIP (o) and SoftPool (p).

4.2. Model Performance

In Table 5, the accuracy of the individual pooling methods is presented, along with
the time required per epoch. It appears that for the MNIST, perhaps due to the ease of the
dataset, the results were almost identical. Though, in the previous section, Average pooling
appeared to “win the battle” of details’ retention, here, it is obvious that Max pooling and
its variants—especially overlapping Max pooling—seemed to perform much better.

358

Algorithms 2022, 15, 391

Table 5. The top 1/top 5 validation accuracy and time required per epoch for each model.

MNIST CIFAR10 CIFAR100
TOP-1 TOP-5 Time TOP-1 TOP-5 Time TOP-1 TOP-5 Time

Max 0.99 1.00 8 s 0.60 0.95 8 s 0.31 0.60 8 s
Adaptive Max 0.99 1.00 7 s 0.65 0.97 8 s 0.31 0.59 8 s
Fractional Max 0.99 1.00 8 s 0.64 0.97 8 s 0.32 0.61 8 s
Average 0.99 1.00 8 s 0.59 0.95 8 s 0.27 0.55 8 s
Mixed 0.99 1.00 8 s 0.61 0.96 8 s 0.30 0.58 8 s
Gated 0.99 1.00 10 s 0.61 0.96 10 s 0.31 0.60 10 s
Tree (Level 2) 0.99 1.00 11 s 0.58 0.95 11 s 0.28 0.56 11 s
LP (L2) 0.99 1.00 8 s 0.63 0.96 8 s 0.30 0.59 8 s
Stochastic 0.99 1.00 9 s 0.60 0.95 9 s 0.31 0.59 9 s
Fuzzy 0.97 1.00 14 s 0.57 0.95 13 s 0.19 0.44 13 s
Overlapping Max 0.99 1.00 8 s 0.65 0.97 8 s 0.34 0.63 8s
Spectral 0.99 1.00 8 s 0.60 0.95 8 s 0.29 0.57 8 s
Wavelet 0.99 1.00 10 s 0.59 0.95 10 s 0.29 0.56 10 s
Local Importance 0.99 1.00 10 s 0.58 0.95 9 s 0.28 0.56 9 s
Soft 0.99 1.00 8 s 0.57 0.95 8 s 0.28 0.57 8 s

Figures 10–12 show the top 1 accuracy of the model over the 300 training epochs
of the benchmark. In Figure 12, it is clear that overlapping Max pooling is the overall
better-performing method for CIFAR100, significantly outperforming the rest—though the
difference is not that obvious for the other two datasets.

When it comes to complexity, most methods required about 8 s per epoch, with some
requiring a much increased time—which might perhaps perform much better with a C++
implementation. Overlapping Max pooling had one of the lowest times required per epoch,
giving it yet another advantage. On the other hand, some methods managed to converge
much more quickly. For instance, tree, l2, spectral, and Average pooling seemed to require
far less than 100 epochs to obtain the highest possible accuracy. Thus, l2 might be a better
choice after all, since it achieved a high accuracy in fewer epochs and one of the lowest
processing times per epoch.

Figure 10. The top 1 accuracy of the models for the MNIST dataset over the epochs.

359

Algorithms 2022, 15, 391

Figure 11. The top 1 accuracy of the models for the CIFAR10 dataset over the epochs.

Figure 12. The top 1 accuracy of the models for the CIFAR100 dataset over the epochs.

On a closing note, the overall selected amount of 300 epochs might be a bit higher
than required since most methods achieved their peak accuracy at less than 100–150 epochs.
The high amount of epochs though did make sure that there were enough for each method
to achieve the best performance possible.

5. Discussion

As expected, there is no “absolute best” for the pooling layer—one that may work
great for one application might not even be viable for another. Though overlapping Max
pooling seemed to be the “winner” of this benchmark, there may be different scenarios
where other commonly used methods may be more suitable—such as, for instance, when
detail retention is important, Average pooling is a better choice and easy to implement and
has similar performance. Therefore, the choice of the proper pooling layer is not always
that simple and straightforward.

360

Algorithms 2022, 15, 391

One of the most important factors is probably the overall computational power re-
quired. Since the convolution layer itself is resource-heavy and the pooling layer’s role is to
“relieve” part of that load, it would be expected for the added overhead to be as minimal as
possible.

Other factors that one should keep in mind are the level of invariance required—
usually when the input is a video or highly variable images of similar objects—and the
overall detail retention that is required. Of course, a combination of two or even more
pooling methods could be applied to further improve the overall accuracy of the output.
Some might even prefer simpler methods due to their ease of implementation—in the case
where a rapid prototype would be adequate as a proof of concept. Taking into consideration
all the model’s requirements and even the personal favorites of the development team is
what usually drives the final selection of the pooling layer.

6. Conclusions

CNNs are an important part of computer vision, and pooling can significantly reduce
their overall processing, allowing the implementation of models and architectures with
far fewer resources than would normally be required. We created a roundup of many of
the pooling methods that have been proposed so far—though it might not be exhaustive—
summarizing each approach and a benchmark for a practical comparison.

Overlapping Max pooling appeared to perform better than the rest, at least for the
selected datasets. Even though it might be next to impossible to pinpoint and test every
single variation for all existing pooling methods, hopefully, it will be more than enough
to function as a starting point for every researcher and machine learning scientist in
order to help choose the one that is more appropriate or even inspire new approaches or
improvements for current implementations.

Author Contributions: Conceptualization, G.A.P.; methodology, N.-I.G., P.V. and K.-G.M; software
N.-I.G., P.V. and K.-G.M.; validation N.-I.G.; formal analysis, N.-I.G., P.V. and K.-G.M; investigation,
N.-I.G., P.V. and K.-G.M; resources, N.-I.G., P.V. and K.-G.M; data curation, N.-I.G.; writing—original
draft preparation, N.-I.G., P.V. and K.-G.M; writing—review and editing, N.-I.G.; visualization,
N.-I.G., P.V.; supervision, G.A.P.; project administration, N.-I.G.; funding acquisition, G.A.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The source code of this study is available via https://github.com/
MLV-RG/cnn-pooling-layers-benchmark/, (accessed on 8 September 2022).

Acknowledgments: This work was supported by the MPhil program “Advanced Technologies in
Informatics and Computers”, hosted by the Department of Computer Science, International Hellenic
University, Kavala, Greece.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach; Prentice Hall: Upper Saddle River, NJ, USA, 2002
2. Carandini, M. What simple and complex cells compute. J. Physiol. 2006, 577, 463–466. [CrossRef]
3. Movshon, J.A.; Thompson, I.D.; Tolhurst, D.J. Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J.

Physiol. 1978, 283, 53–77. [CrossRef] [PubMed]
4. Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition.

In Competition and Cooperation in Neural Nets; Springer: Berlin/Heidelberg, Germany, 1982; pp. 267–285.
5. Lin, Y.; Lv, F.; Zhu, S.; Yang, M.; Cour, T.; Yu, K.; Cao, L.; Huang, T. Large-scale image classification: Fast feature extraction and

svm training. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1689–1696.
6. Zhang, H.; Berg, A.C.; Maire, M.; Malik, J. SVM-KNN: Discriminative nearest neighbor classification for visual category

recognition. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2126–2136.

7. Akhtar, N.; Ragavendran, U. Interpretation of intelligence in CNN-pooling processes: A methodological survey. Neural Comput.
Appl. 2020, 32, 879–898. [CrossRef]

361

Algorithms 2022, 15, 391

8. Sharma, S.; Mehra, R. Implications of pooling strategies in convolutional neural networks: A deep insight. Found. Comput. Decis.
Sci. 2019, 44, 303–330. [CrossRef]

9. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

10. Gholamalinezhad, H.; Khosravi, H. Pooling Methods in Deep Neural Networks, a Review. arXiv 2020, arXiv:2009.07485.
11. Nirthika, R.; Manivannan, S.; Ramanan, A.; Wang, R. Pooling in convolutional neural networks for medical image analysis: A

survey and an empirical study. Neural Comput. Appl. 2022, 34, 5321–5347. [CrossRef] [PubMed]
12. Yamaguchi, K.; Sakamoto, K.; Akabane, T.; Fujimoto, Y. A neural network for speaker-independent isolated word recognition.

In Proceedings of the First International Conference on Spoken Language Processing, Kobe, Japan, 18–22 November 1990.
13. Murray, N.; Perronnin, F. Generalized Max pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2473–2480.
14. Thoma, M. LaTeX Examples. 2012. Available online: https://github.com/MartinThoma/LaTeX-examples (accessed on 8

September 2022).
15. Graham, B. Fractional Max-pooling. arXiv 2014, arXiv:1412.6071.
16. Shi, B.; Bai, S.; Zhou, Z.; Bai, X. Deeppano: Deep panoramic representation for 3-d shape recognition. IEEE Signal Process. Lett.

2015, 22, 2339–2343. [CrossRef]
17. Zubair, S.; Yan, F.; Wang, W. Dictionary learning based sparse coefficients for audio classification with Max and Average pooling.

Digit. Signal Process. 2013, 23, 960–970.
18. Shi, Z.; Ye, Y.; Wu, Y. Rank-based pooling for deep convolutional neural networks. Neural Netw. 2016, 83, 21–31. [CrossRef]

[PubMed]
19. Lee, C.Y.; Gallagher, P.W.; Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree.

In Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 464–472.
20. Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. In Proceedings

of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3288–3291.
21. Zhu, X.; Meng, Q.; Ding, B.; Gu, L.; Yang, Y. Weighted pooling for image recognition of deep convolutional neural networks.

Clust. Comput. 2019, 22, 9371–9383. [CrossRef]
22. Zeiler, M.D.; Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. arXiv 2013, arXiv:1301.3557.
23. Zhang, Y.; Jin, R.; Zhou, Z.H. Understanding bag-of-words model: A statistical framework. Int. J. Mach. Learn. Cybern. 2010,

1, 43–52. [CrossRef]
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
25. ResearchGate. Available online: https://tinyurl.com/researchgateSPPfigure (accessed on 14 May 2021).
26. Park, H.; Lee, K.M. Look wider to match image patches with convolutional neural networks. IEEE Signal Process. Lett. 2016,

24, 1788–1792. [CrossRef]
27. Diamantis, D.; Iakovidis, D. Fuzzy Pooling. IEEE Trans. Fuzzy Syst. 2020, 29, 3481–3488. [CrossRef]
28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
29. Schuurmans, M.; Berman, M.; Blaschko, M.B. Efficient semantic image segmentation with superpixel pooling. arXiv 2018,

arXiv:cs.CV/1806.02705.
30. Rippel, O.; Snoek, J.; Adams, R.P. Spectral representations for convolutional neural networks. arXiv 2015, arXiv:1506.03767.
31. Zhang, H.; Ma, J. Hartley Spectral Pooling for Deep Learning. arXiv 2018, arXiv:1810.04028.
32. Williams, T.; Li, R. Wavelet pooling for convolutional neural networks. In Proceedings of the International Conference on

Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
33. Lee, H.; Kim, G.; Kim, H.G.; Oh, S.H.; Lee, S.Y. Deep CNNs Along the Time Axis with Intermap Pooling for Robustness to

Spectral Variations. IEEE Signal Process. Lett. 2016, 23, 1310–1314. [CrossRef]
34. Ayachi, R.; Afif, M.; Said, Y.; Atri, M. Strided convolution instead of Max pooling for memory efficiency of convolutional

neural networks. In Proceedings of the International Conference on the Sciences of Electronics, Technologies of Information and
Telecommunications, Genoa, Italy and Hammammet, Tunisia, 18–20 December 2018; Springer: Berlin/Heidelberg, Germany,
2018; pp. 234–243.

35. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6569–6578.

36. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

37. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution
representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [CrossRef] [PubMed]

38. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.

39. Gao, Z.; Wang, L.; Wu, G. Lip: Local importance-based pooling. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3355–3364.

362

Algorithms 2022, 15, 391

40. Hyun, J.; Seong, H.; Kim, E. Universal pooling—A new pooling method for convolutional neural networks. Expert Syst. Appl.
2021, 180, 115084. [CrossRef]

41. Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining activation downsampling with SoftPool. arXiv 2021, arXiv:2101.00440.
42. Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis.

2002, 47, 7–42. [CrossRef]
43. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International

Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692.
44. Peli, E. Contrast in complex images. JOSA A 1990, 7, 2032–2040. [CrossRef]
45. Instruments, N. Peak Signal-To-Noise Ratio as an Image Quality Metric. 2013. Available online: https://www.ni.com/en-us/

innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html (accessed on 8 September 2022).
46. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]

363

Citation: Saberironaghi, A.; Ren, J.;

El-Gindy, M. Defect Detection

Methods for Industrial Products

Using Deep Learning Techniques: A

Review. Algorithms 2023, 16, 95.

https://doi.org/10.3390/a16020095

Academic Editors: Xiang Zhang

and Xiaoxiao Li

Received: 24 December 2022

Revised: 25 January 2023

Accepted: 3 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Review

Defect Detection Methods for Industrial Products Using Deep
Learning Techniques: A Review

Alireza Saberironaghi 1, Jing Ren 1 and Moustafa El-Gindy 2,*

1 Department of Electrical, Computer and Software Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada

2 Department of Automotive and Mechatronics Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada

* Correspondence: moustafa.el-gindy@ontariotechu.ca; Tel.: +1-905-721-8668 (ext. 5718)

Abstract: Over the last few decades, detecting surface defects has attracted significant attention as a
challenging task. There are specific classes of problems that can be solved using traditional image
processing techniques. However, these techniques struggle with complex textures in backgrounds,
noise, and differences in lighting conditions. As a solution to this problem, deep learning has recently
emerged, motivated by two main factors: accessibility to computing power and the rapid digitization
of society, which enables the creation of large databases of labeled samples. This review paper aims
to briefly summarize and analyze the current state of research on detecting defects using machine
learning methods. First, deep learning-based detection of surface defects on industrial products
is discussed from three perspectives: supervised, semi-supervised, and unsupervised. Secondly,
the current research status of deep learning defect detection methods for X-ray images is discussed.
Finally, we summarize the most common challenges and their potential solutions in surface defect
detection, such as unbalanced sample identification, limited sample size, and real-time processing.

Keywords: defect detection; surface defect detection; defect detection for X-ray images; defect
recognition; deep learning

1. Terminology

• Support Vector Machine (SVM): an algorithm used in supervised learning for classify-
ing and performing regression tasks.

• Region of Interest (ROI): an area within an image or video that is deemed particularly
significant or relevant.

• Local Binary Patterns (LBP): a technique used in computer vision for extracting features
and analyzing images.

• Reduced Coordinate Cluster Representation (RCCR): a method for representing and
processing image data for object recognition that is efficient.

• Convolutional Neural Network (CNN): a neural network architecture commonly used
for image and video processing tasks.

• Zero Defect Manufacturing (ZDM): a strategy to eliminate defects in the manufacturing
process and improve quality.

• Deep Neural Network (DNN): a neural network architecture with multiple layers,
commonly used for image recognition and natural language processing tasks.

• MobileNet Single Shot MultiBox Detector (MobileNet-SSD): a lightweight convolu-
tional neural network that is designed for real-time object detection on mobile and
embedded devices.

• Fully Convolutional Network (FCN): a neural network architecture used for semantic
segmentation tasks.

• Region-based Convolutional Neural Network (RCNN): a neural network architecture
used for object detection tasks.

Algorithms 2023, 16, 95. https://doi.org/10.3390/a16020095 https://www.mdpi.com/journal/algorithms
365

Algorithms 2023, 16, 95

• Autoencoders (AEs): a neural network architecture used for unsupervised learning
tasks such as dimensionality reduction and anomaly detection.

• Generative Adversarial Networks (GANs): a neural network architecture used for
generative tasks such as image synthesis and image-to-image translation.

• Self-Organizing Map based (SOM-based): an unsupervised learning algorithm that
organizes data into a 2D grid of clusters.

• General-purpose Annotation of Photos and Replica (GAPR) datasets: created by the
German Pattern Recognition Association, is a collection of images specifically designed
for the detection of texture defects.

• German Association for Pattern Recognition (DAGM) datasets: a collection of images
specifically designed for the detection of textured surfaces.

• Northeastern University (NEU) datasets: created by Northeastern University, a collec-
tion of images of surface defects that includes six different types of defects.

• Convolutional Denoising AutoEncoder (CDAE): a type of autoencoder designed to
remove noise from images.

• Non-Destructive Testing (NDT): a method of evaluating the properties of a material,
component, or system without causing damage.

• VGG: VGG is a pioneering object-recognition model that can have up to 19 layers.
Created as a deep CNN, it surpasses other models on many tasks and datasets apart
from ImageNet. VGG is still a widely used architecture for image recognition today.

• Mean Average Precision (mAP): a metric used to evaluate the performance of object
detection models, that calculates the average precision across different classes and
object instances.

2. Introduction

Several factors affect the quality of manufactured products during the manufacturing
process, including poor working conditions, inadequate technology, and various other
factors. Among product defects, poor product quality is most visible in surface defects.
Therefore, detecting product surface defects [1] ensures a high qualification ratio and
reliable quality.

A defect is generally defined as an absence or area that differs from a normal sample.
Figure 1 compares normal samples with defective samples of industrial products.

Figure 1. Normal samples of industrial products are compared to defective samples. The first row
contains good samples, and the second, third, and fourth rows contain defective samples. The first,
second, third, fourth, and fifth columns display wood, grid, capsule, leather, and bill, respectively,
and there are three types of defects listed below the image.

366

Algorithms 2023, 16, 95

In the past, identifying defects was carried out by experts, but this process was
not efficient. One major reason for this was that human subjectivity greatly affected the
detection results. Additionally, human inspection alone cannot meet the need for real-time
detection, and thus, it is not able to fulfill all the necessary requirements.

A significant amount of time has been dedicated to using traditional methods to detect
surface defects. When differentiation exists between the defect color and the background,
traditional image processing methods can perform well. Traditional methods in terms of the
product’s features can be categorized into three types: texture-based features, color-based
features, and shape-based features.

Several studies have used specialized techniques for detecting surface defects. In
color-based feature, for instance, literature [2] proposed a technique involving the use
of a percentage of the feature of color histogram and a vector texture feature to classify
image blocks to detect surface defects on wood; this method has been proven effective by
experiments, especially with defects involving junctions. In Figure 2, the method results
are shown.

Figure 2. An example of the result of wood defect detection using the presented technique in [2].

Research conducted in literature [3] employed cosine similarity to verify the validity
of the periodic law in magneto-optical images by utilizing the color moment feature. This
method was successful in identifying the appropriate magneto-optical image for detecting
and locating welding defects. Literature [4] describes a two-step technological process for
SVM-based and color histogram-based defect detection in particle boards, followed by
localization of defects using smoothing and thresholding. According to literature [5], color
moment features and FSIFT features were merged based on their magnitude of influence
for the purpose of resolving the tile surface defect problem not being adequately described
by a single feature.

In terms of shape-based feature methods, literature [6] proposed a method of detecting
cutting defects on magnetic surfaces. In this method, the image of the magnetic surface is
reconstructed using the Fourier transform and Hough transform, and, in order to obtain
defect information, the gray difference between the original image and the reconstructed
image is compared. A method for identifying defects on bottle surfaces was presented
in reference [7]. This method includes a step for extracting regions of interest, where the
boundary line of the light source is determined using a fast Hough transform algorithm.
In [8], global Fourier image reconstruction and template matching were proposed as
a method for detecting and locating small defects in aperiodic images. Literature [9]
described how to detect surface defects on small camera lenses using Hough transforms,
polar coordinate transforms, weighted Sobel filters, and SVM algorithms. Different types of
defects were detected in several test images. In Figure 3, red highlights are used to indicate
defects such as stains, scratches, and dots.

367

Algorithms 2023, 16, 95

Figure 3. A camera lens with several defects: (a) original image and (b) converted result based on
inspection result and polar coordinate transformation [9].

In the texture-based feature method, for example in [10], a multi-block local binary
pattern (LBP) algorithm has been improved. In addition to having the simplicity and
efficiency of LBP, this algorithm ensures high recognition accuracy by varying the block
size to describe defect features. According to the experiment, the method has the speed
to meet online real-time detection requirements (63 milliseconds/image), outperform the
widely used scale-invariant feature transform (SIFT), speed up robust features (SURF),
and gray-level co-occurrence matrix (GLCM) algorithms for recognition accuracy (94.30%),
demonstrating that MB-LBP can be used to detect images in real time online. Literature [11]
used a fuzzy model that was based on extracting GLCM features and processed it using
MATLAB. The model took in three variables as inputs: autocorrelation, square root of
variance, and the number of objects. Using fuzzy logic on ceramic defects, the accuracy of
the ceramic inspection process with a light intensity of 300 lx, camera distance of 50 cm, and
a 1.3 MP or 640 × 480 pixel image size was determined using the training data of 96.87%,
and the accuracy of the real-time system was 92.31%. According to literature [12], features
such as Reduced Coordinated Cluster Representation (RCCR) are used to form a one-class
classifier. An algorithm based on texture periodicity estimates the primitive unit size of
defect-free fabrics during the training phase. After splitting the fabrics into samples of one
unit, RCCR features are used in a one-class classifier to learn their local structure. In [13],
morphological filters are used to detect defects on billet surfaces in order to distinguish
them from scales. With the help of morphological erosion and dilation techniques with
repetition, the image is converted into a binary image by using morphological top-hat
filtering and thresholding. The detection efficiency of the proposed algorithm is evaluated
using real billet images to evaluate its performance. The proposed algorithm is found to be
effective and suitable for analyzing billet images with scales in experiments. According
to literature [14], the GLCM is defined as the fabric image’s characteristic matrix. To
distinguish defect-free from defective images, Euclidean distance is used and, in order
to determine the pattern period, the autocorrelation function is used. In this paper, the
authors discussed two GLCM parameters in relation to Euclidean distances. Furthermore,
in addition to being concise and objective, Euclidean distances have the advantage of being
reliable and objective for defect detection. According to the algorithm’s tests, it is not
only accurate, but also more adaptable to yarn-dyed fabrics with short organization cycles.
Table 1 summarizes recent applications of machine learning algorithms for surface defect
detection in industrial products, categorized by texture, color, and shape features. Table 2
compares the strengths and weaknesses of feature-based methods for detecting surface
defects, including accuracy, computational efficiency, and robustness. These tables provide
an overview of the diversity of approaches and key factors affecting performance in the
field of surface defect detection.

368

Algorithms 2023, 16, 95

Table 1. Recent applications using machine-learning-based vision algorithms for detecting sur-
face defects in industrial products, categorized into three categories based on texture, color, and
shape features.

Approach Reference Feature Target Performance

Te
xt

u
re

-
ba

se
d

[11] Gray level co-occurrence matrix Ceramic Recognition rate: 92.31%
[13] Mathematical morphological Billet Accuracy: 87.5%
[15] Fractal model Steel Accuracy: 88.33%
[16] Gabor filter Steel billet Thin crack: 91.9% and corner crack: 93.5%

C
ol

or
-b

as
ed

[3] Bivariate color histogram Particleboards Can effectively detect and localize defect

[17]
Color coherence vectors
combined with texture features
as a basis

NWPU-RESISC45
data sets Accuracy: 96.66%

[18] Color histogram Cementitious
materials

ERT can be efficient for situ monitoring
and defect detection of cement mortar

Sh
ap

e-
ba

se
d

[6] Fourier image Magnet Can automatically detect surface-cutting
defects in magnets

[8]

Comparison of the whole
Fourier spectra between the
template and the inspection
image

Non-periodical
pattern images

Can detect various types of non-repeating
patterns in the electronic industry, even
those as small as one pixel wide, making
it useful for identifying defects

[9]
A circle Hough transformation,
weighted Sobel filter, and polar
transformation

Compact camera
lens

Able to identify defects in complicated
circular inspection areas and has been
proven to be highly effective

Table 2. An overview of the strengths and weaknesses of various feature-based methods for detecting
surface defects in industrial products.

Approach Reference Method Strengths Weaknesses

Te
xt

ur
e-

ba
se

d

[10]
Multi-block local
binary pattern
(LBP) algorithm

High recognition accuracy and meets
online real-time detection
requirements; robust to rotation and
scaling; fast processing time

Does not perform well with defects
that do not involve texture changes;
may not be able to detect defects with
low contrast;

[11]
Fuzzy model based
on GLCM
extraction

Can be useful for detecting defects in
images with low contrast or noise,
where other methods may fail

Not as good at detecting defects that
have a very different texture than the
one used to train the model; may not
be as accurate as deep learning-based
methods, which can learn from data
and adapt to new types of defects

[12]

Reduced
Coordinated
Cluster
Representation
(RCCR)

Good at detecting defects with high
precision, as it is able to extract
features of the defects and identify
them; good at detecting defects in
images with low contrast or noise, as
it is able to extract features that are
robust to these challenges

It is limited to detecting specific types
of defects (based on the specific
clustering method and feature
extraction technique used), which can
make it less suitable for more complex
or varied defects

369

Algorithms 2023, 16, 95

Table 2. Cont.

Approach Reference Method Strengths Weaknesses

C
ol

or
-b

as
ed

[2]
Color histogram
and vector texture
feature

Proven to be effective with defects
involving junctions; able to handle
multiple input features

Not be suitable for detecting defects in
textures with complex patterns; may
not work well for defects that do not
involve changes in color

[3]
Cosine similarity
and color moment
feature

A robust method for comparing
similarity between images, which can
be useful for detecting small defects
that are difficult to see with the naked
eye; are able to identify different types
of defects with high precision, as they
are able to extract features of the
defects and identify them

May require additional preprocessing
steps, such as image enhancement
techniques, to improve their
performance; do not have the ability
to learn from data as compared to
deep learning based methods, which
can make them less adaptable to new
types of defects or variations in the
data

[4]
SVM-based and
color
histogram-based

High accuracy rate; able to extract
useful information from the color of
an image, which can be useful for
detecting defects that are based on
color variations, such as stains or
discolorations

May not perform well with other
types of materials; may not be able to
detect defects with low contrast

[5]
Color moment
features and FSIFT
features

Successful in resolving tile surface
defect problem not being adequately
described by a single feature

May not perform well with defects
that do not involve color changes; not
be able to detect defects with low
contrast

Sh
ap

e-
ba

se
d

[6]
Fourier transform
and Hough
transform

Good at detecting periodic patterns,
which can be useful for detecting
defects in materials with repeating
patterns, such as in fabrics or metals

Do not have the ability to learn from
data as compared to deep learning
based methods, which can make them
less adaptable to new types of defects
or variations in the data

[7] Fast Hough
transform

Good at detecting linear features, such
as cracks or scratches, in an image;
good at detecting defects with high
precision, as it is able to extract
features of the defects and identify
them.

Is not as good at detecting defects in
images with low contrast or noise,
which can make it less effective in
some industrial applications; does not
have the ability to learn from data as
compared to deep learning based
methods, which can make it less
adaptable to new types of defects or
variations in the data

[8]

Global Fourier
image
reconstruction and
template matching

Good at detecting small defects, such
as scratches or cracks, in an image by
reconstructing the original image from
the Fourier domain

Limited to detecting specific types of
defects (based on the specific
templates or reconstruction of the
Fourier domain), which can make
them less suitable for more complex or
varied defects

Using only one feature or one class of features on industrial products is rarely sufficient
because their surfaces typically contain a variety of information. Consequently, many
features are used in combination in practical applications, making it difficult to detect
defects. Additionally, feature-based approaches are highly effective when they detect
defects in images with little or no variation, and when defects appear on surfaces in a
consistent pattern. Considering the wide range of uncertainties in industrial settings, it
is important to develop methods that are adaptable to such wide ranges of variations in
defect intensity, shape, and size.

Deep learning models based on convolutional neural networks (CNN) have had a
lot of success in various computer vision fields, such as recognizing faces, identifying
pedestrians, detecting text in images, and tracking targets. Additionally, these models
are used in a wide range of industrial settings for defect detection. This includes both

370

Algorithms 2023, 16, 95

commercial and industrial applications, such as in the automotive industry for detecting
defects in cars. The deep-learning-based surface defect detection software is employed in
these settings to improve the efficiency and accuracy of the defect detection process.

Recently, several papers covering the latest techniques, applications, and other aspects
have been published on deep learning in defect detection [19]. Literature [12] describes the
different types of defects and compares mainstream and deep learning methods for defect
detection. Various defect detection techniques are discussed in literature [20], including
ultrasonic inspection, machine vision, and deep learning. Literature [21] focuses on the
use of AI-enhanced metrology, computer vision, and quality assessment in the Zero Defect
Manufacturing (ZDM) process. The study also highlights the use of IoT/IIoT technology
as a means of supporting these tools and implementing AI algorithms for data processing
and sharing. Literature [22] discusses deep learning methods for detecting surface defects,
then discusses three critical issues related to small samples and real-time defects detection.
In [23,24], the authors analyze and compare the benefits and drawbacks of the above meth-
ods. There are also defect detection surveys in several application domains, including fabric
defects [25], corrosion detection [26], pavement defects [27], metal defect detection [28],
and industrial applications [29]. The investigation shows that, in the field of surface defect
detection of industrial products, there is currently a limited literature review on machine
learning methods, and while some papers summarize the challenges and problems, the
mentioned solutions are not systematic. The first section of this paper addresses the above
issues by summarizing the research status on the detection of surface defects on industrial
products using deep learning algorithms and then discusses the issues in the process of
industrial surface defect detection, such as unbalanced sample identification problems,
small sample problems, and real-time problems.

This paper is organized as follows. Section 3 provides an overview of deep learning
methods for surface defect detection in industrial products from three perspectives, along
with a common dataset for surface defect detection. In Section 4, we summarize the recent
research status of deep learning methods for X-ray image defect detection. A discussion
of the main problems and their solutions is provided in Section 5. In Section 6, a brief
description of future research directions is provided and Section 7 concludes the paper
with a conclusion.

3. Deep Learning Surface Defect Detection Methods for Industrial Products

Deep learning has become increasingly popular in the field of defect detection due
to its rapid development. This section summarizes the state of research on inspection of
industrial products for detecting surface defects. Learning-based approaches are classified
as supervised, semi-supervised, and unsupervised. The performance of learning-based
methods is best optimized when large datasets are provided. In particular, supervised
techniques perform well when there are sufficient examples of each class in the dataset.

3.1. Supervised

Supervised detection requires large datasets of defect-free and defective samples
labeled in a training set. Since all the training data is labeled, detection rates can be very
high. It must be noted, however, that supervised detection may not always the most
effective approach due to the imbalance of classes in the datasets. There are a number of
datasets that supervised learning methods use, including the fabric dataset [30], rail defect
dataset [31], and railroad dataset [32].

Deep neural networks and feature extraction and classification methods used in
supervised methods differ in their structures. For example, detecting cross-category defects
without retraining was proposed using a two-layer neural network in the literature [33].
Based on structural similarities between image pairs, the method learns differential features,
which may result in some structural similarities among different classification objects. This
method has been shown to be able to detect defects in different types of factories based on
experiments in real factory datasets. Literature [34] suggests that the composition of kernels

371

Algorithms 2023, 16, 95

is more important than the number of layers when it comes to detection results. To detect
small defects and textures in surface images, it is necessary to use a sample image that is
large enough for computational accuracy and reducing the cost of the network. ShuffleNet
uses convolution of pointwise groups and channel shuffle as two new techniques to achieve
this goal. Literature [35] proposes a novel in-line inspection system for plastic containers
based on ShuffleNet V2. The system can be used to inspect images on complex backgrounds
as well. In [36], they proposed ShuffleDefectNet, a deep-learning-based defect detection
system that achieved 99.75% accuracy on the NEU dataset.

Reference [37] suggested that shallow CNN networks can be used to identify anoma-
lies. To train the model, only negative images are used and the research employs full-size
images. The argument is that it is not necessary to have full-size examples of both defective
and defect-free samples, as the negative samples already have pixels that correspond to the
defect-free regions. Based on the Fast R-CNN model, Faster R-CNN introduces a region
proposal network (RPN), which enables an end-to-end learning algorithm. This leads to
a near-costless regional recommendation algorithm that significantly improves the speed
of target detection. Faster R-CNN was used in [38] to detect PCB surface defects, a new
network was proposed combining ResNet50, GRAPN residual units, and ShuffleNetV2.
Using a cascaded RCNN structure, as described in literature [39], the defect detection
problem of power line insulators can be changed into a two-level target detection problem;
the results are shown in Figure 4.

Figure 4. The results of insulator defect detection. The green box represents the non-defective
insulator, and the red box represents the defective insulator [39].

In limited hardware configurations, MobileNet-SSD [9] improves real-time object
detection performance. There is no need to sacrifice accuracy for the reduction of parameters
in this network. An SSD network classifies regression and boundary box regression using
various convolution layers. Translation invariance and variability are resolved in this
model, resulting in good detection precision and speed. Object detection is effective when
defects have regular or predictable shapes [40]. Additional preprocessing steps can be
applied to more complex defect types. Fully Convolutional Networks (FCNs) use all
convolutional layers as network layers; label maps can be directly derived using pixel-level
prediction. To achieve accurate results, a deconvolution layer with larger data sizes is
used. In literature [41], FCN and Faster R-CNN were combined to develop a deep learning
model that could detect stains, leaks, and pipeline blockages in tunnels. A method for
segmenting defects in solar cell electroluminescence pictures was presented in [42]. A
defect segmentation map was obtained in one step by combining FCN with a specific
U-net architecture.

372

Algorithms 2023, 16, 95

3.2. Unsupervised

Research has begun to explore unsupervised methods to overcome the disadvantages
of supervised methods. By learning the inherent characteristics of the input training data,
the machine can learn some of its own characteristics and connections when there is no
label information and automatically classifies the input training data based on the pattern
of these unlabeled data [43]. It automatically classifies these unlabeled data based on
inherent characteristics and connections between the data. Methods based on reconstruction
and embedding similarity are the most commonly used to detect surface defects among
unsupervised learning methods. Reconstruction-based methods such as autoencoders
(AEs) and Generative Adversarial Networks (GANs) are most commonly used. Popular
algorithms include PaDIM [44], SPADE [45] PatchCore [46], etc. In [47], an algorithm based
on DBN was proposed for detecting defects in solar cells. Both training and reconstructed
images were used as supervision data by the fine-tuning network of the BP algorithm.
Literature [48] proposed a multi-scale convolutional denoising autoencoder with high
accuracy and robustness that synthesizes the results of multiple pyramid levels.

A SOM-based detection method was proposed in [49] for determining the difference
between normal and defective wood. The first stage involves detecting suspected defect
areas, and the second stage involves separately inspecting each defect area. A detection
method that uses GANs was proposed in reference [50]. The method is divided into
two stages: first, a generative network and a learning mechanism based on statistical
representation are used to detect new areas. In the second stage, defects and normal
samples are directly distinguished using the Frechet distance. The solar panel dataset was
used to test the method, and it achieved 93.75% accuracy.

A multiscale AE with fully convolutional neural networks has been proposed [51], in
which each FCAE sub-network directly obtains the original feature image from the input
image and performs feature clustering. Utilizing a fully convolutional neural network,
the residual images were combined to create the defect image. PatchCore, introduced in
literature [46], is a technique for identifying and isolating abnormal data in scenarios where
only normal examples are available. It balances the need to retain normal context through
memory banks of patch-level features extracted from pre-trained ImageNet networks and
minimize computational time via coreset subsampling to create a leading system for cold-
start image anomaly detection and localization that is efficient on industrial benchmarks.
On MVTec, the algorithm demonstrated an AUROC of over 99%, while also being highly
efficient in small training set scenarios. Literature [52] presented a GAN-based surface
vision detection framework that uses OTSU to segment fusion feature response maps and
fuses the responses of the three layers of the GAN discriminator. The framework has
been proven effective on datasets of wood cracks and road cracks. As shown in Figure 5,
ref. [53] proposed a GAN-based method for detecting strip steel surface defects, in which
the generator G uses encoding and the hidden space features in the penultimate layer are
fed into a SVM to detect defects. The test results on images provided by the Handan Iron
and Steel Plant indicated good accuracy. It is more effective at detecting texture images;
however, its accuracy still needs to be improved.

373

Algorithms 2023, 16, 95

Figure 5. Presenting the results of experiments on six defect samples using four methods. The defect
types are listed in the first column and include drops tar, shadow, floating, crush, pitted surface and
scratch. The results from traditional manual feature extraction methods (CPICS-LBP, AEC-LBP, HWV
and the proposed method in [53]) are shown in columns 2–5. The experiment compares the proposed
method with current state-of-the-art methods in detecting strip steel surface defects.

3.3. Semi-Supervised

As a result of combining the properties of supervised and unsupervised methods, semi-
supervised methods are developed. Only normal samples are used as training data for semi-
supervised defect detection and a defect-free boundary is learned and set, and any samples
outside the boundary are considered anomalous. Since there are few defective samples
to be obtained, the method is extremely useful. Nevertheless, this method has lower
accuracy in defect detection compared to supervised methods. Unlabeled sample data can
be automatically generated by semi-supervised methods without manual intervention.

A framework for identifying defects in PCB solder joints was proposed in litera-
ture [54], which utilizes a combination of active learning and self-training through a sample
query suggestion algorithm for classification. The framework has been demonstrated to
improve classification accuracy while reducing the need for manual annotations. A semi-
supervised model of convolutional autoencoder (CAE) and generative adversarial network
is proposed in [55]. After training with unlabeled data, the stacked CAE’s encoder network
is retained and input into the SoftMax layer as a GAN discriminator. Using GAN, false
images of steel surface defects were generated to train the discriminator. For the detection
of steel surface defects, literature [56] developed a WSL framework combining localization
networks (LNets) and decision networks (DNets), with LNets trained by image level labels
and outputs a heat map of potential defects as input to DNets. Through the use of the
RSAM algorithm to weight the regions identified by LNet, the proposed framework has
been demonstrated to be effective on real industrial datasets. The application prospects
for weakly supervised methods are also wide because the methods simultaneously com-

374

Algorithms 2023, 16, 95

bine advantages of both supervised and unsupervised methods. There are few weakly
supervised methods for detecting surface defects in industrial products. The literature [57]
proposed a deep learning algorithm to learn defects from a variety of defect types with an
unbalanced training sample pool for PCBA manufacturing products. In this method, an
overall defect recognition accuracy of 98% is achieved in PBCA images using a novel batch
sampling method and the sample weighted cost function.

A semi-supervised learning system that generates samples to detect surface defects
was proposed according to the literature [58]. As part of the semi-supervised learning
part, two CDCGAN and ResNet18 classifiers were used, and the NEU-CLS dataset was
used to compare the two classifiers. In this way, supervised learning and transfer learning
are both shown to be inferior to the method. A convolutional neural network structure
based on residual network structures was proposed in [59] by stacking two layers of
residual building modules together, resulting in a 43-layer convolutional neural network,
while at the same time by appropriately increasing the network width; a more balanced
network depth and network width can be obtained and accuracy can be improved. The
network structure shows good performance on the DAGM, NEU steel, and copper clad
plate datasets. Table 3 provides an overview of recent research in surface defect detection,
including classifications of targets and Table 4 evaluates the strengths and weaknesses of
deep learning techniques for detecting surface defects in industrial products, including
accuracy, computational efficiency, and robustness. These tables give a comprehensive
understanding of current research and the considerations for using deep learning in surface
defect detection. Table 5 lists a selection of commonly used datasets for training and testing
algorithms for detecting surface defects in industrial products. The datasets are classified
based on the type of industrial products they are intended for. This information is useful
for researchers and practitioners looking for suitable datasets for their work in the field of
surface defect detection.

Table 3. An overview of recent research publications as well as classifications based on targets.

Reference Year Method Target Performance

[46] 2022 PatchCore

MVTec benchmark
datasets, the

ShanghaiTech Campus
dataset (STC), and the
Magnetic Tile Defects

dataset (MTD)

Demonstrated a high level of performance
on the MVTec dataset with an AUROC of
over 99% and a particularly strong ability
to perform well with small training sets

[60] 2019 CNN Steel
This method achieves significantly higher
recognition accuracy for steel surface
defects than state-of-the-art classifiers

[55] 2019 GAN Steel
CAESGAN achieves the best classification
rate compared to traditional methods,
especially for hot rolled plates

[61] 2019 SDD and ResNet Steel Steel surface defect detection can be
performed with high speed and accuracy

[62] 2019 Faster-RCNN Steel
Achieved higher detection accuracy and
more accurate location of defects,
especially for tiny and slender defects

[63] 2018 CNN DAGM dataset Can achieve a 99.8% accuracy rate in
detecting defects

[64] 2016 CNN DAGM dataset
This method demonstrates a low false
alarm rate and excellent defect detection
results

375

Algorithms 2023, 16, 95

Table 3. Cont.

Reference Year Method Target Performance

[65] 2019 FCN DAGM dataset
A defect image (512 × 512) can be
processed each second, with more than
99% of pixel accuracy

[66] 2017 2-stage FCN
framework DAGM dataset Able to achieve meaningful results in

terms of performance and speed

[34] 2016 CNN Texture

In comparison to traditional manual
inspection systems, this method offers
several advantages in time and cost
savings

[67] 2018 AutoEncoder Various materials
Compared to traditional hand-engineered
feature extraction methods, this approach
is more generic

[68] 2020 CNN On the datasets, it is possible to achieve
100% recall and high precision

[69] 2021 YOLOv5 PCB Can achieve a 0.7% mAP promotion on
HRIPCB dataset

[70] 2021 YOLOv3 PCB

The detection rate increases to 63 frames
per second due to an increase in mAP of
92.13%. As a result, PCB surface defect
detection has increased application
prospects

[71] 2021 CNN Flexible printed circuit
boards (FPCBs)

Achieves 94.15% mean average precision
(mAP) in comparison with existing
surface defect detection networks

[72] 2022 CNN Rails
Detected 98.2% of defects at the image
level and 97.42% at the pixel level,
respectively

[73] 2021 YOLOv3 RailwayHub

High-speed rail wheels can be detected
more accurately and many defects can be
located with greater accuracy with this
system

[74] 2019 Faster R-CNN Railway insulator Algorithms superior to others

[75] 2017 CNN and SVM Metal surface

In classification, this method outperforms
both state-of-the-art traditional
handcrafted features and other deep
ConvNet features extracted from a
preselected best layer based on several
anomaly and texture datasets

[76] 2021 CNN Metal Workpiece
It has strong adaptability and is capable of
automatically extracting and detecting
defects

[77] 2021 YOLOv5 Insulator

It reduces unsafe manual detection and
increases detection efficiency by
effectively identifying and locating
insulator defects across transmission lines

[78] 2021 Mask R-CNN Insulator Detection accuracy: 87.5%

[79] 2021 SE-YOLOv5 Fabric

As compared to the original YOLOv5, the
improved SE-YOLOv5 has a higher
accuracy, generalization ability, and
robustness for detecting fabric defects

376

Algorithms 2023, 16, 95

Table 3. Cont.

Reference Year Method Target Performance

[80] 2021 YOLOv4 Fabric
Can quickly and accurately locate defects,
and can also be used in other defect
detection industries

[81] 2022 UNet Fabric Detection accuracy rate: 99%

[82] 2022 SVM Non-woven fabric It is highly accurate and performs well in
real time

[83] 2021 Faster R-CNN Aluminum

In comparison with the original algorithm,
this algorithm achieved 78.8% mean
average accuracy (mAP), which is 2.2%
higher

[84] 2018 CNN Copper clad lamination
surface Accuracy rate: 98.2%

[85] 2019 Faster-RCNN and
feature fusion

(GAPR) texture defect
dataset

Performs well under various conditions
and has good adaptability

[86] 2022
Autoencoder and

morphological
operation

Textile Superior performance to other prevailing
models

[87] 2019 Faster R-CNN Weel hub
It is simpler, faster, and more accurate
than both R-CNN and YOLOv3 methods
for wheel hub defects

[88] 2022 YOLOv3 Polarizer
There is a slight increase in its mAP over
YOLOv3, and it has a detect speed
increase of 44% to 121 frames per second

[89] 2021 Faster R-CNN Belt Layer of Radial
Tire

False negatives and false positives
decrease by 7.79%, 3.4%, and 5%,
respectively, compared with the vanilla
Faster R-CNN

[90] 2017 CNN Pavement crack
analysis

Accurately detects pavement cracks and
evaluates their types

[91] 2022 YOLO v5 Solar Cell Solar cell EL images were used to train the
model, which achieved 89.64% mAP

[92] 2017 CNN Mangosteen Recognition accuracy: 97%

[93] 2017 CrackNet Crack detection on 3D
asphalt surfaces

With 200 3D images, CrackNet achieved
high precision

[94] 2021 R-CNN Textile fabric Defect detection accuracy improved by
4.09% to 95.43%

[95] 2020 CNN AigleRN and
DAGM2007

Can achieve high detection accuracy and
efficiency

[96] 2019 Faster R-CNN Aluminum profile
With regard to the multiscale
defect-detection network, it achieved a
75.8% mAP over Faster R-CNN

[97] 2022 MobileNetV3 Sanitary ceramics

With the Faster R-CNN method, detection
speed is improved by 22.9%, precision is
improved by 35.0%, and memory
consumption is reduced by 8.4%
compared to the SSD, YOLO V3, and
one-stage SSD methods

[98] 2017 CNN Welding Recognition accuracy rate: 95.83%

377

Algorithms 2023, 16, 95

Table 3. Cont.

Reference Year Method Target Performance

[99] 2017 CNN Concrete cracks

The CNN is trained on 40,000 images with
a resolution of 256 × 256 pixels and
achieves an accuracy rate of
approximately 98%

[100] 2022 YOLOv5 Plastic Superior performance to other prevailing
models

[101] 2019 SDD-CNN Roller subtle Accuracy rate: 99.56%

[102] 2018 GAN MPCG (Mobile Phone
Cover Glass)

MPCG defects can be detected with high
accuracy of 98%

[103] 2022 YOLOv5 Ceramic ring Accuracy rate: 89.9%

[104] 2018 CNN Solar cell Recognition rate: 94.30%

[105] 2022
Wavelet

Decomposition and
CNN

Automobile Pipe Joints

Reduces the impact of uneven
illumination, random noises, and texture
processing on defect classification
accuracy, and the SVM classification
method demonstrates an accuracy of
approximately 83% for identifying the
presence of no defects, pits, and scratches
in a given set of data

[106] 2021
Multi-Feature

Fusion and
PSO-SVM

Lithium Battery Pole
Piece Average recognition rate: 98.3%

[107] 2018 CNN Shinny surfaces Classification rate: around 89%

[108] 2017 DL-based ASI NEU, Weld, and wood
defect database

Can improve the accuracy by 0.66% to
25.50% for datasets

[109] 2022 SCED-Net Steel Coil

As compared to recent networks used in
steel coil end face detection and some
classical object detection networks, this
method offers better performance

[110] 2021

FFCNN consists of
(feature extraction

module, feature
fusion module, and

decision-making
module)

Magnetic Tile

The performance of a combination of
mean fusion and Resnet-50 with CBAM is
97.0%, while the combination of max
fusion and Resnet-50 with CBAM has an
accuracy rate of 95.0%

[111] 2018 AlexNet and SVM Custom dataset Detection Accuracy: 99.201%

[112] 2021 YOLOv3 Chip mAP REACHES 86.36%

[113] 2017 CNN and a voting
mechanism

Metallic gasket, DAGM
defects, and screw

image

Performs well in arbitrary textured
images as well as in images with special
structures, proving that it is superior to
traditional detection algorithms

[114] 2022 CNN High Voltage Circuit
Breaker

The network model has been shown to be
able to accurately detect four different
levels of rust through experimental
results, with a success rate of 94.25%

378

Algorithms 2023, 16, 95

Table 4. Strengths and weaknesses of different techniques for detecting surface defects on industrial
products using deep learning.

Approach Reference Method Strengths Weaknesses

Supervised

[33] Two-layer neural
network

Able to detect cross-category defects
without retraining; simplicity of the
structure of the model allows for
faster training and inference

Limited to only two layers; may
not be able to extract complex
features; the simplicity of the
model may make it less robust to
noise and other variations in the
input data

[34] Composition of
kernels

Efficient network architecture for
detecting small defects and textures in
surface images

Lack of emphasis on the number
of layers may lead to suboptimal
results

[35,36] ShuffleNet Can only be trained with negative
images

May not perform well on larger;
more complex datasets

[37] Shallow CNN
Significantly improves detection
speed and can be used for end-to-end
learning

Limited to identifying anomalies
and may not perform well on
more complex defects

[38] Faster RCNN

Requires a separate region proposal
network; significantly improves the
speed of target detection; can detect
objects of different scales.

Might not perform well on highly
cluttered scenes with many
overlapping objects.

[39] Cascaded RCNN

Can effectively solve the defect
detection problem for specific
applications such as power line
insulators

May not perform well on defects
with irregular or unpredictable
shapes

[9] MobileNet-SSD
Highly efficient and capable of
real-time object detection in limited
hardware configurations

May not perform as well as other
models on larger, more complex
datasets

[42] FCN
Can achieve high accuracy and
directly output label maps at the
pixel-level

Can be computationally expensive,
especially when used with large
datasets

Unsupervised

[46] PatchCore
Identifies and isolates abnormal data
in scenarios where only normal
examples are available

May not perform as well as other
models on larger and more
complex datasets

[47] DBN

Utilizes both training and
reconstructed images as supervision
data for fine-tuning; can learn useful
features from the data without the
need for manual feature extraction,
which can save time and resources

May not have the capacity to
identify more complex features in
the images

[48]

Multi-scale
convolutional
denoising
autoencoder

High precision and robustness by
combining results from multiple
pyramid levels; can effectively remove
noise from the input data, which can
improve the performance of defect
detection in noisy images

May not be able to generalize well
to new unseen data, especially if
the data is vastly different from
the training data; computationally
expensive to train, especially when
the input data is high-dimensional,
which can be a limitation in
real-time applications

[49] SOM-based
detection

Can effectively cluster and classify
high-dimensional data, which can be
useful for detecting defects in images
and other types of data

Can be sensitive to the initial
conditions of the map and the
choice of parameters, which can
make it challenging to obtain
accurate and consistent results

[50] GANs
Two-stage process for detecting new
areas and directly distinguishing
defects and normal samples

GANs can be difficult to train and
may require a large amount of data

379

Algorithms 2023, 16, 95

Table 4. Cont.

Approach Reference Method Strengths Weaknesses

[51]
Multiscale AE with
fully convolutional
neural networks

Obtains the original feature image and
performs feature clustering through
each FCAE sub-network; can
effectively learn spatial relationships
between pixels, which can be useful
for detecting defects in images

May struggle with detecting small
or subtle defects, which may not
be easily distinguished from
normal patterns in the input data

[52]
GAN-based surface
vision detection
framework

Proven effective on datasets of wood
cracks and road cracks; can be used to
generate images that can be used to
improve the interpretability of the
model and help identify the specific
features that are used to detect defects

May struggle to generate
high-quality images if the training
dataset is small or of poor quality;
may face mode collapse problem,
where the generator produces only
a small subset of all possible
outputs

[53]

GAN-based
method for
detecting strip steel
surface defects

Tailored for detecting strip steel
surface defects, it could be more
effective and accurate than
general-purpose models

Performance may be limited to the
specific application of detecting
strip steel surface defects and may
not generalize well to other types
of defects or materials

Semi-
Supervised

[54] Active learning and
self-training

Improves classification accuracy while
reducing the need for manual
annotations

Can be limited by the quality of
the unlabeled data, which may
contain a large number of
examples that are not relevant to
the task at hand

[55]

Convolutional
Autoencoder and
Generative
Adversarial
Network

Allows the model to effectively extract
high-level features from the input
data, which can be useful for detecting
defects

May struggle to generate
high-quality images if the training
dataset is small or of poor quality

[56] WSL framework
Combines localization networks and
decision networks for effective
detection of real industrial datasets

May not perform well on images
with intricate backgrounds

[58] Semi-supervised
learning system

Generates samples to detect surface
defects with improved accuracy
compared to supervised and transfer
learning methods

May not perform well on images
with intricate backgrounds

[59] Residual network
structures

Shows good performance on DAGM,
NEU steel, and copper clad plate
datasets with a balanced network
depth and width

May require more computational
resources to train

Table 5. A list of common surface defect datasets with classifications for industrial products.

Name and Reference Target Link

MVTec AD [115] Various materials http://mvtec.com/company/research/datasets (accessed on 2 February 2023)

Steel Defect Detection Steel https://kaggle.com/c/severstal-steel-defect-detection/data (accessed on 2
February 2023)

GC10–Det [116] Metal https://kaggle.com/alex000kim/gc10det (accessed on 2 February 2023)
Industrial Metallic
Surface Dataset Metal https://kaggle.com/datasets/ujik132016/industrial-metallic-surface-dataset

(accessed on 2 February 2023)

Bridge Cracks [117] Bridge https://github.com/Iskysir/Bridge_Crack_Image_Data (accessed on 2 February
2023)

Fabric defect dataset Fabric https://kaggle.com/datasets/rmshashi/fabric-defect-dataset (accessed on 2
February 2023)

380

Algorithms 2023, 16, 95

Table 5. Cont.

Name and Reference Target Link

DeepPCB dataset [118] PCB https://github.com/tangsanli5201/DeepPCB (accessed on 2 February 2023)

PCB Defects PCB https://kaggle.com/datasets/akhatova/pcb-defects (accessed on 2 February
2023)

PCB DSLR DATASET PCB https://zenodo.org/record/3886553#.Y1dNl3bMKUk (accessed on 2 February
2023)

Structural Defects
Network (SDNET)
2018 [119]

Concrete https://kaggle.com/datasets/aniruddhsharma/structural-defects-network-
concrete-crack-images (accessed on 2 February 2023)

COncrete DEfect
BRidge IMage Dataset Concrete https://zenodo.org/record/2620293#.Y1dPO3bMKUk (accessed on 2 February

2023)
Surface Crack
Detection Dataset [120] Concrete https://kaggle.com/arunrk7/surface-crack-detection (accessed on 2 February

2023)
Pavement crack
dataset Pavement https://github.com/fyangneil/pavement-crack-detection (accessed on 2

February 2023)
Cracks and Potholes in
Road Images Dataset Road https://biankatpas.github.io/Cracks-and-Potholes-in-Road-Images-Dataset

(accessed on 2 February 2023)
Crack Forest Datasets
[121] Road https://github.com/cuilimeng/CrackForest-dataset (accessed on 2 February

2023)
T ianchi aluminum
profile surface defect
dataset

Aluminum https://tianchi.aliyun.com/competition/entrance/231682/information
(accessed on 2 February 2023)

Solar cell EL image
defect detection Solar panel https://ieee-dataport.org/documents/photovoltaic-cell-anomaly-detection-dataset

(accessed on 2 February 2023)
Elpv-dataset [122] Solar panel https://github.com/zae-bayern/elpv-dataset (accessed on 2 February 2023)
Magnetic tile surface
defects [123] Tile https://github.com/abin24/Magnetic-tile-defect-datasets (accessed on 2

February 2023)
Dataset for Rail
Surface Defects
Detection

Rail https://arxiv.org/abs/2106.14366 (accessed on 2 February 2023)

Railway Track Fault
Detection Rail https://kaggle.com/datasets/salmaneunus/railway-track-fault-detection

(accessed on 2 February 2023)

4. Deep Learning Defect Detection Methods for X-ray Images for Industrial Products

Non-destructive testing (NDT) is a method that uses radiography or ultrasound
technologies to discover faults without causing damage to the detected objects. It is widely
used in engineering industries to detect and evaluate defects in materials of all types.

An important technique in non-destructive testing is radiographic testing, which uses
X-rays to identify and evaluate flaws or defects, such as cracks or porosities. Defects can
appear in X-ray images in many shapes and sizes, making detection difficult. The images
are often low contrast and noisy, making identification of defects difficult.

The traditional approach for identifying defects in industrial products is for human
operators or experts to visually inspect radiographs. However, this method can be subjec-
tive and prone to errors. Additionally, the process of examining a large number of images
can be time-consuming and may lead to misinterpretations. However, there have been
significant advancements in the field of defect detection in recent years, thanks to the
emergence of deep learning techniques. As a result, a number of methods for detecting
defects have been proposed, which are more efficient and reliable than the conventional
approach. This section aims to provide a summary of current research on industrial product
defect detection methods using X-ray images. Specifically, it covers the use of deep learning
techniques such as convolutional neural networks and generative adversarial networks to
analyze radiographic images and identify defects with a high degree of accuracy. These
methods have the potential to reduce the subjectivity and human errors associated with
the traditional approach, as well as the time required for inspection. Additionally, they can
be trained to improve over time with more data, making them more robust and reliable.

381

Algorithms 2023, 16, 95

A proposed system in literature [124] aimed to automate the process of inspecting
and monitoring the condition of machines in the hard metal industry by analyzing defects
in real production samples. Three models were created to analyze different types of
data, a method called stacked generalization ensemble was applied and a random forest
classifier was utilized to combine and analyze the results of the microprofilometer and
ultrasound models. The fusion model was found to have improved performance and
higher classification accuracy (88.24%) as compared to the individual models. Additionally,
the shop floor model was able to effectively identify breakdowns during the manufacturing
process and the ultrasound model was found to have better classification scores compared to
the VGG-19 model. According to literature [125], a three-stage deep learning algorithm was
proposed for detecting bubble patterns in engines. The algorithm consisted of training an
autoencoder using normal images, fixing the coefficients of the encoder, and training a fully-
connected network using both normal and defective images. To improve the performance
of the network, the entire system was fine-tuned. According to [126], a CNN model was
designed with ten layers that belong to six grades for detecting defects in X-ray welding
images. It was possible to achieve 98.8% classification accuracy using CNN if the ReLU
activation function was used for X-ray welding image recognition. A real-time X-ray image
analysis method using Support Vector Machines (SVMs) was presented in [127]. Using a
background subtraction algorithm, all potential defects were segmented, and three features
were extracted, including the defect area, the grayscale average difference, and the grayscale
standard deviation. In order to distinguish non-defects from defects, the extracted features
were input into an SVM classifier. A real-time X-ray image defect detection method based
on the proposed method reduced undetected defects and false alarms. Another SVM-based
method for detecting weld defects was described in [128]. The training SVM is trained
by extracting three feature vectors from potential weld defects using grey-level profile
analysis. In the last step, the SVM is trained to differentiate between defects that are real and
those that are potential. A high percentage of correct detections could be achieved using
the proposed method. For detecting insert molding in automotive electronics, ref. [129]
proposed a Yolov5-based DR image defect detection algorithm. Width and a window level
are adjusted in the preprocessing stage of the acquired data, and fast guided filtering is used
for edge retention. Using the overlap, tiny anomalies are detected, and a multi-task dataset
is constructed. Using Ghost, which replaces the standard convolutional network with
the backbone network with enhanced features, the number of parameters can be further
reduced. Moreover, CSP-modules are embedded in the neck and backbone of the network
to enhance feature extraction. As a result of adding the transformer attention module after
spatial pyramid pooling, over-fitting can be avoided while computational effort can be
reduced. DR data-based Yolo series target detection algorithms are used as a final step
to conduct consistent experiments. For detecting bead toe errors, ref. [130] proposed a
lightweight semantic segmentation network. An encoder extracts the texture features of
different regions of the tire in the network first. Then, to fuse the encoder’s output feature,
a decoder is introduced. A reduction in the dimension of the feature maps has allowed
the positions of the bead toe to be recorded in the X-ray image. An index of local mIoU
(L-mIoU) is proposed to evaluate the final segmentation effect. YOLOv3_EfficientNet is
used as the backbone of the methodology instead of YOLOv3_darknet53. It results in
a substantial improvement in YOLOv3 mean average precision, as well as a substantial
reduction in inference time and storage space. DR image features are then used to enhance
the data, thereby increasing the diversity of the clarity and shape of defects. With depth
separable convolution, models can be deployed on embedded devices with acceptable
accuracy loss ranges. A method was presented in [131] that utilizes deep learning with
X-ray images to detect defects in aluminum casting parts used in automobiles, with the
goal of improving the accuracy of both the algorithm and data augmentation. The study
found that using Feature Pyramid Networks (FPNs) resulted in a 40.9% increase in Mean
of Average Precision (mAP) value, making it the most effective modification. Additionally,
using RoIAlign instead of RoI pooling in Faster R-CNN improved the accuracy of bounding

382

Algorithms 2023, 16, 95

box location. The study also proposed various data augmentation methods to compensate
for the limited availability of X-ray image datasets for defect detection. The results showed
that the mAP values for each data augmentation method reached an optimal value and
did not continue to increase as the number of datasets increased. Overall, the proposed
improvements to the Faster R-CNN algorithm resulted in better performance for X-ray
image defect detection of automobile aluminum casting parts. Using the Faster R-CNN
detection model with X-ray preprocessing was applied to the detection of tire defects
in [132] to improve curve fitting performance. Faster R-CNN precision and recall of defects
were improved by adjusting its feature extractor, proposal generator, and box classifier.
According to literature [133], triplet deep neural networks can be used to detect weld
defects. X-ray images are first preprocessed into relief images to make defects easier to
identify. Following that, a deep network is constructed based on triplets, and a feature
vector is obtained by mapping the triplets. The distance between similar defect feature
vectors and the distance between different types of defect feature vectors must be closer. The
SVM is also used for automatic detection and classification of weld defects. Based on the
results of two experiments, the proposed method is capable of effectively detecting multiple
defects. Tables 6 and 7 together provide a comprehensive overview of the current state of
research and practices in the field of deep learning for defect detection in X-ray images.
Table 6 summarizes recent research publications, and Table 7 compares the strengths and
weaknesses of different techniques. This information can be valuable for anyone interested
in the advancement of this field.

Table 6. Recent publications on deep learning defects detection in X-ray images.

Reference Method Target Performance

[125] Three-Stage Deep Learning
Algorithm Engines Accuracy rate: above 90%

[126] Convolutional Neural
Network (CNN) Welding Recognition accuracy can be more than 90%

[127] Support Vector Machine
(SVM) Welding Accuracy rate: 99.4%

[128] Support Vector Machine
(SVM) Welding Rate of detection is approximately 99.1%

[129] Yolov5 Insert Molding Recognition accuracy: 93.6%

[130] Lightweight semantic
segmentation network Tire Achieved 97.1% mIoU and 92.4% L-mIoU for 512 ×

512 input images

[131] Faster R-CNN
Automobile
casting aluminum
parts

RoIAlign showed a significant improvement in the
accuracy of bounding box location compared to RoI
pooling, resulting in an increase of 23.6% accuracy
under Faster R-CNN

[132] Faster R-CNN Tire
Compared with other methods, this method is
capable of achieving a higher level of detection
accuracy

[133] Triplet Deep Neural Network Welding Can be more effective than traditional methods.

[134] Deep Convolution Neutral
Networks

Aluminum
Conductor
Composite Core
(ACCC)

Can be effective in recognizing small and
inconspicuous defects, with a 3.5% improvement in
mean Average Precision compared to RetinaNet

[135]
Unsupervised Learning with
Generative Adversarial
Network

Tire A tire X-ray dataset achieves 0.873 Area Under
Curve (AUC)

383

Algorithms 2023, 16, 95

Table 6. Cont.

Reference Method Target Performance

[136] R-CNN Metal
Can eliminate time-consuming and inconsistent
criteria while making judgments more efficient and
accurate

[124] Deep Neural Networks
(DNNs)

Actual samples
from the hard
metal production
industry

Indicates that the fusion model outperforms the
separate models in terms of recall (100%), precision
(60%), F-score (75%), and accuracy (88.24%)

Table 7. Strengths and weaknesses of different deep-learning techniques for identifying defects in
X-ray images.

Reference Method Strengths Weaknesses

[125]
Three-stage Deep
Learning
Algorithm

Ability to adapt to different types of
patterns; the three-stage approach
allows for more accurate and efficient
detection of defects

The accuracy of the model can depend on the
specific models used in each stage, if the
models are not well-suited for the task, the
performance may suffer

[126] CNN model with
10 layers

Ability to achieve high classification
accuracy May not work well with other types of images

[127] SVM-based
method

Achieved real-time X-ray image
analysis and reduced undetected
defects and false alarms; can work well
with small datasets

SVM’s can be sensitive to the choice of kernel
and parameters

[129]

Yolov5-based DR
image defect
detection
algorithm

Ability to detect tiny anomalies and
improve edge retention by using fast
guided filtering

May not work well with other types of images
or industries

[130]

Lightweight
semantic
segmentation
network

The dimension reduction allows for
accurate recording of bead toe positions
in X-ray images; can be trained to work
with different types of x-ray images,
such as mammograms or chest x-rays

The model may not generalize well to different
types of images

[131]

Deep learning with
X-ray images and
Feature Pyramid
Networks (FPNs)

40.9% increase in Mean of Average
Precision (mAP) value, can effectively
detect objects at different scales, which
is important for defect detection in
X-ray images as defects can be small
and difficult to spot

May have a high false positive rate as X-ray
images can have many benign structures that
could be mislabeled as defects

[132]

Faster R-CNN
detection model
with X-ray
preprocessing

Improved curve fitting performance;
able to handle multiple defect classes;
can handle images of different scales,
which is important for defect detection
in X-ray images, as defects can be small
and difficult to spot

Limited to specific type of image and specific
type of defect; may have a high false positive
rate as X-ray images can have many benign
structures that could be mislabeled as defects

[133] Triplet deep neural
network

Effective at detecting multiple defects,
it works well with X-ray images, by
preprocessing them into relief images
to make defects easier to identify

It may not generalize well to different types of
images

[124]
Stacked
Generalization
Ensemble

Improved performance and higher
classification accuracy compared to
individual models; ability to effectively
identify breakdowns during
manufacturing process; the ensemble
approach can improve the robustness
of the model by combining the
strengths of multiple models

May not work well with other industries or
types of defects

384

Algorithms 2023, 16, 95

5. Problems and Solutions

5.1. Unbalanced Sample Identification Problem

In industrial products, surface defects can also be detected with deep learning using
unbalanced sample sets [137,138]. To train the deep learning model, it is usually necessary
to have a balanced sample set of samples of different categories. This ideal situation,
however, almost never occurs in the real world. More often than not, the majority of data
in the dataset comes from “normal” samples, while “defective” or “abnormal” samples
only make up a small portion. Supervised learning is one of the main tasks that suffers
from unbalanced sample identification. The algorithm will therefore pay more attention
to categories with larger data volumes and underestimate categories with smaller data
volumes, affecting the model’s generalization and prediction abilities. The data-level
process methods aim to maintain a consistent number of samples for all types within the
training set. Resolving the unbalanced sample identification issue at the data level can be
broken down into five categories: data resampling, data augmentation, class equalization
sampling, data source, and synthetic sampling. It is necessary to collect more samples
in fewer categories from the data source. By horizontally or vertically flipping, rotating,
zooming, cropping, and other operations, we can purposefully increase the number of
sample data in each category.

Regarding data resampling [139,140], it is good to resample a sample set to change the
proportion of samples in each category, including oversampling and undersampling. Class
equalization sampling groups samples by categories and generates sample lists for each
category. To ensure that each category has an equal chance of participating in training, a
random category is selected during training, and samples are randomly selected from the
corresponding sample list. Synthetic samples [141] are generated by combining various
characteristics of an existing sample to create a new sample. Using this method, you can
create a new sample by randomly selecting a value from the feature.

5.2. Small Sample Problem

As a result of continuous optimization of industrial processes, the number of defective
samples has decreased. This makes it difficult to use deep learning methods to detect
surface defects in industrial products, since there are fewer and fewer defect images
available for deep learning. Overfitting problems in training can easily occur with small
samples [142]. Transfer learning applies knowledge gained from one task to a different
but related task when there is insufficient data to complete the target task. Consequently,
transfer learning is also a critical method for solving the small sample problem. For surface
defect detection, literature [143,144] used VGG networks and transfer learning to detect
emulsion pump bodies, printed circuit boards, transmission line components, steel plates,
and wood surfaces. Fabric surface defect detection using DenseNet and transfer learning
was described in [145]. The combination of transfer learning and AlexNet was used to
detect surface defects on solar panels and fabrics in [146,147]. Solving the small sample
problem can also be achieved by optimizing the network structure. For the first time,
GAN was used for image anomaly detection with the AnoGAN model [148] in 2017. A
continuous iterative optimization process is used to find an image that matches the test
image closest in the latent space, and then DCGAN is used to detect anomalies in that
image. The f-AnoGAN model was introduced in [149]. This model proposes a method of
encoding an image so that latent points can be quickly mapped, and then using WGAN to
detect anomalies. As a result of the introduction of an encoder, the AnoGAN’s iterative
optimization process is much faster and less time-consuming. Additionally, the GANomaly
model was proposed in [150] in 2018. It detects abnormal samples by comparing latent
variables obtained by coding with latent variables obtained by reconstructing. There is
no requirement for training with negative samples in any of the above models. It is also
possible to obtain many sample images by enlarging the data. Using synthetic defects [151],
the decorated plastic part dataset is expanded by adding synthetic defects to the defect-free

385

Algorithms 2023, 16, 95

image. Literature [152] described a technique for generating defect representations that
combine hand-made and unsupervised learning features.

5.3. Real-Time Problem

It is essential to consider real-time problems when performing surface defect detection
in real industrial environments. Real-time detection problems involve reducing detection
time and improving detection efficiency to maintain roughly the same accuracy. Research
has been conducted on real-time problems by some scholars. To detect surface defects on
printed circuit boards, literature [153] suggested combining SSIM and MobileNet. Com-
paring the proposed algorithm with Faster R-CNN, it maintained high accuracy while
being at least 12 times quicker than the existing algorithm. Literature [154] developed a
novel 11-layer CNN model for detecting welding defects in robotic welding manufacturing.
The proposed method was capable of detecting metal additive manufacturing in real time,
which meets specific requirements for online detection.

6. Discussion

Deep learning technology has revolutionized the field of defect detection in industrial
products. However, finding a suitable deep learning model for solving the defect detection
problem is very difficult due to the particularities of industrial scenarios. In the coming
years, deep learning will encounter challenges and trends as it becomes more widely used
in industrial fields. A brief description of recent trends and future research directions is
provided in this section.

• Integrating deep learning with other methods:

By incorporating other techniques such as traditional image processing, the robustness
and performance of the defect detection system in challenging conditions can be enhanced.
For instance, using traditional image processing techniques to preprocess the images before
inputting them into a deep learning model can improve the quality of the data and make it
easier for the model to effectively detect defects. Additionally, integrating deep learning
with other techniques, such as physics-based simulations, can provide better understanding
of the underlying physical causes of defects and lead to the development of more efficient
and effective defect detection methods.

• Adjustment to various lighting scenarios:

Examining industrial products frequently occurs under diverse lighting conditions,
which can make it hard to identify defects. Research in this field could concentrate on devel-
oping techniques for adapting to various lighting conditions and using them to enhance the
precision of defect detection. This could include methods such as image enhancement tech-
niques, color constancy techniques, and multiple exposure fusion techniques, to improve
the visibility of defects in different lighting conditions. Additionally, research could also
focus on developing deep learning models that are robust to changes in lighting conditions,
such as using adversarial training methodologies, to improve the robustness of the model.
This may lead to a more accurate and reliable defect detection system that can function in a
wide range of lighting scenarios.

• Transparent AI:

To be implemented in industrial environments, defect detection systems need to be
transparent and explainable. Research in this field could focus on developing techniques to
make deep-learning-based defect detection systems more understandable, so that users
can comprehend why a defect was missed or incorrectly identified.

• All aspects need to be taken into account:

In order for a defect detection system to perform well, it must take into account various
factors. There are many factors that can influence the accurate detection of defects, such as
defect size, shape, the technique for image acquisition, alignment and distortion of images,

386

Algorithms 2023, 16, 95

resolution of images, and algorithmic speed, among others. It is important to consider all
of these factors when creating a mature and successful method.

• Limited number of defect samples:

In many industrial applications, deep learning methods require a large training dataset
and have high computational costs, and the number of defect samples is often insufficient
to detect defects. Additionally, as the product line is frequently updated, new defect types
are introduced and the detection process becomes more challenging. When training on
normal samples, a simple defect detection method does not have any issues dealing with a
small defect dataset, but, when it comes to defect localization and classification, the size of
the dataset containing defects can be a challenge.

• Utilizing transfer learning:

Defect patterns may be shared between two different application domains. There may
be similarities in the morphology of cracks in two different materials, but they may be
different in their sizes and colors. It is currently necessary to train two different networks in
order to use current approaches. A well-trained, tested network can transfer its knowledge
to a new network to speed up the training process. Currently, transfer learning is not
effectively utilized in most approaches.

• Multi-modal sensor integration:

Defect detection in industrial products often relies on visual inspections using cameras
or other imaging devices. However, incorporating other types of sensors, such as thermal,
acoustic, or vibration sensors, can provide additional information that can aid in the
detection of defects. Research in this area could focus on developing methods for integrating
data from multiple sensors and using it to improve the accuracy of defect detection. This
could include techniques such as sensor fusion, where data from multiple sensors is
combined to provide a more comprehensive view of the product, or methods for combining
deep learning with other types of sensor data, such as sensor data from IoT devices.

• Continuous learning:

In industrial environments, the product line is frequently updated, and new defect
types are introduced. Research in this area could focus on developing methods for continu-
ous online learning, which can be used to adapt the defect detection system as new data is
acquired and new defects are introduced. This could include online learning techniques,
where the system can continuously update its knowledge as new data is acquired, or active
learning methods, where the system can actively select the most informative images for
annotation. This would allow the system to adapt to changes in the product line and
improve its performance over time.

• Real-time detection:

There are only a few existing defect detection methods that are implemented in real
time. In order to apply these methods to real-time inspection scenarios in the future,
computationally efficient methods must be developed among these methods in order to
achieve detection success rates in real time.

• Reducing the complexity:

Users of defect detection methods are interested in understanding why a defect has
been missed or incorrectly identified in an acceptable part when such a method fails to
find the defect. The majority of deep learning methods follow a complex architecture,
so humans have difficulty understanding the decision-making process and providing a
rationale for failure. When it comes to deploying and improving the performance of a
system, this can be a challenge. Moreover, in industrial applications, lightweight deep
learning networks will be easier to deploy. Often, the processing resources used to support
artificial intelligence computations are valuable in quality inspections on production lines
and industrial maintenance monitoring. By using lightweight networks, the prediction

387

Algorithms 2023, 16, 95

system’s workload can be effectively reduced, which is extremely beneficial for simple
terminal deployments and can also reduce costs and performance.

• A common reference database:

Testing can be conducted on different databases, though several studies have failed
to provide satisfactory results due to inconsistency in such databases and a lack of test-
ing samples. Additionally, most of the studies presented in this review have their own
databases with varying sizes and quality. To evaluate and compare performance in the
future, a common reference database would be helpful.

7. Conclusions

Deep learning is rapidly gaining momentum as a powerful tool in the field of defect
detection on industrial products. In this paper, we conducted a comprehensive review of
the current state-of-the-art in the use of machine learning methods for detecting defects in
industrial products. We specifically focused on deep learning methods for detecting surface
defects and defects from X-ray images, and provided a detailed overview of the different
techniques and algorithms that have been proposed in these areas. We also discussed
some of the key challenges and limitations of these methods, and highlighted potential
solutions to these problems. The goal of this review was to provide researchers with a
clear understanding of the current state-of-the-art in the field of surface defect detection for
industrial products, and to serve as a reference for future research in this area.

Author Contributions: Authors contributed as follows: Conceptualization, A.S. and J.R.; methodol-
ogy, J.R. and M.E.-G.; funding acquisition, J.R. and M.E.-G.; investigation, A.S., J.R. and M.E.-G.; writ-
ing original draft preparation, A.S. and J.R.; writing—review and editing, A.S., J.R. and M.E.-G.; super-
vision, J.R. and M.E.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada
(NSERC), grant number 210471.

Data Availability Statement: In the manuscript, you will find a list of the corresponding websites.

Conflicts of Interest: There are no conflicts of interest between the authors.

References

1. Rasheed, A.; Zafar, B.; Rasheed, A.; Ail, N.; Sajid, M.; Dar, S.H.; Habib, U.; Shehryar, T.; Mahmood, M.T. Fabric Defect Detection
Using Computer Vision Techniques: A Comprehensive Review. Math. Probl. Eng. 2020, 2020, 8189403. [CrossRef]

2. Song, W.; Chen, T.; Gu, Z.; Gai, W.; Huang, W.; Wang, B. Wood Materials Defects Detection Using Image Block Percentile Color
Histogram and Eigenvector Texture Feature. In Proceedings of the First International Conference on Information Sciences,
Machinery, Materials and Energy, Chongqing China, 11–13 April 2015.

3. Ma, N.; Gao, X.; Wang, C.; Zhang, Y.; You, D.; Zhang, N. Influence of Hysteresis Effect on Contrast of Welding Defects Profile in
Magneto-Optical Image. IEEE Sens. J. 2020, 20, 15034–15042. [CrossRef]

4. Prasitmeeboon, P.; Yau, H. Defect Detection of Particleboards by Visual Analysis and Machine Learning. In Proceedings of the
2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Luang Prabang, Laos, 2–5 July
2019; pp. 1–4. [CrossRef]

5. Li, J.H.; Quan, X.X.; Wang, Y.L. Research on Defect Detection Algorithm of Ceramic Tile Surface with Multi-feature Fusion.
Comput. Eng. Appl. 2020, 56, 191–198.

6. Wang, F.l.; Zuo, B. Detection of surface cutting defect on magnet using Fourier image reconstruction. J. Cent. South Univ. 2016, 23,
1123–1131. [CrossRef]

7. Wang, J.; Fu, P.; Gao, R.X. Machine vision intelligence for product defect inspection based on deep learning and Hough transform.
J. Manuf. Syst. 2019, 51, 52–60. [CrossRef]

8. Tsai, D.M.; Huang, C.K. Defect Detection in Electronic Surfaces Using Template-Based Fourier Image Reconstruction. IEEE Trans.
Compon. Packag. Manuf. Technol. 2019, 9, 163–172. [CrossRef]

9. Chang, C.-F.; Wu, J.-L.; Chen, K.-J.; Hsu, M.-C. A hybrid defect detection method for compact camera lens. Adv. Mech. Eng. 2017,
9, 1687814017722949. [CrossRef]

10. Liu, Y.; Xu, K.; Xu, J. An Improved MB-LBP Defect Recognition Approach for the Surface of Steel Plates. Appl. Sci. 2019, 9, 4222.
[CrossRef]

11. Putri, A.P.; Rachmat, H.; Atmaja, D.S.E. Design of Automation System for Ceramic Surface Quality Control Using Fuzzy Logic
Method at Balai Besar Keramik (BBK). MATEC Web. Conf. 2017, 135, 53. [CrossRef]

388

Algorithms 2023, 16, 95

12. Yang, J.; Li, S.; Wang, Z.; Dong, H.; Wang, J.; Tang, S. Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive
Survey and Current Challenges. Materials 2020, 13, 5755. [CrossRef]

13. Lee, D.; Kang, Y.; Park, C.; Won, S. Defect Detection Algorithm in Steel Billets Using Morphological Top-Hat filter. IFAC Proc. Vol.
2009, 42, 209–212. [CrossRef]

14. Zhu, D.; Pan, R.; Gao, W.; Zhang, J. Yarn-Dyed Fabric Defect Detection Based On Autocorrelation Function And GLCM. Autex
Res. J. 2015, 15, 226–232. [CrossRef]

15. Gao, X.; Xie, Y.; Chen, Z.; You, D. Fractal feature detection of high-strength steel weld defects by magneto optical imaging. Trans.
China Weld. Inst. 2017, 38, 1–4. [CrossRef]

16. Yun, J.P.; Choi, S.H.; Kim, J.W.; Kim, S.W. Automatic detection of cracks in raw steel block using Gabor filter optimized by
univariate dynamic encoding algorithm for searches (uDEAS). NDT E. Int. 2009, 42, 389–397. [CrossRef]

17. Li, Y.; Liu, M. Aerial Image Classification Using Color Coherence Vectors and Rotation & Uniform Invariant LBP Descriptors. In
Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Chongqing China, 12–14 October 2018; pp. 653–656. [CrossRef]

18. Ren, H.; Tian, K.; Hong, S.; Dong, B.; Xing, F.; Qin, L. Visualized investigation of defect in cementitious materials with electrical
resistance tomography. Constr. Build. Mater. 2019, 196, 428–436. [CrossRef]

19. Ma, Y.; Li, Q.; He, F.; Liu, Y.; Xi, S. Adaptive segmentation algorithm for metal surface defects. Chin. J. Sci. Instrum. 2017, 38,
245–251.

20. Li, S.; Yang, J.; Wang, Z.; Zhu, S.; Yang, G. Review of Development and Application of Defect Detection Technology. Acta Autom.
Sin. 2020, 46, 2319–2336.

21. Papageorgiou, E.I.; Theodosiou, T.; Margetis, G.; Dimitriou, N.; Charalampous, P.; Tzovaras, D.; Samakovlis, I. Short Survey of
Artificial Intelligent Technologies for Defect Detection in Manufacturing. In Proceedings of the 2021 12th International Conference
on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–7. [CrossRef]

22. Tao, X.; Hou, W.; Xu, D. A Survey of Surface Defect Detection Methods Based on Deep Learning. Acta Autom. Sin. 2020, 47,
1017–1034.

23. Zhang, Z.; Pang, W.; Xie, W.; Lv, M.; Wang, Y. Deep Learning for Real-time Applications: A Survey. J. Softw. 2020, 31, 2654–2677.
24. Ma, S.; Wu, N.; Li, X. Deep learning with big data: State of the art and development. CAAI Trans. Intell. Syst. 2016, 11, 728–742.
25. Kumar, A. Computer-Vision-Based Fabric Defect Detection: A Survey. IEEE Trans. Ind. Electron. 2008, 55, 348–363. [CrossRef]
26. Ahuja, S.K.; Shukla, M.K. A survey of computer vision based corrosion detection approaches. In International Conference on

Information and Communication Technology for Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 55–63.
27. Cao, W.; Liu, Q.; He, Z. Review of Pavement Defect Detection Methods. IEEE Access 2020, 8, 14531–14544. [CrossRef]
28. Fouzia, M.T.; Nirmala, K. A literature survey on various methods used for metal defects detection using image segmentation.

Evaluation 2010, 5, 8.
29. Czimmermann, T.; Ciuti, G.; Milazzo, M.; Chiurazzi, M.; Roccella, S.; Oddo, C.M.; Dario, P. Visual-Based Defect Detection and

Classification Approaches for Industrial Applications—A SURVEY. Sensors 2020, 20, 1459. [CrossRef] [PubMed]
30. Silvestre-Blanes, J.; Albero-Albero, T.; Miralles, I.; Pérez-Llorens, R.; Moreno, J. A Public Fabric Database for Defect Detection

Methods and Results. Autex Res. J. 2019, 19, 363–374. [CrossRef]
31. Faghih-Roohi, S.; Hajizadeh, S.; Núñez, A.; Babuska, R.; De Schutter, B. Deep convolutional neural networks for detection of rail

surface defects. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada,
24–29 July 2016; pp. 2584–2589. [CrossRef]

32. Gan, J.; Li, Q.; Wang, J.; Yu, H. A Hierarchical Extractor-Based Visual Rail Surface Inspection System. IEEE Sens. J. 2017, 17,
7935–7944. [CrossRef]

33. Luan, C.; Cui, R.; Sun, L.; Lin, Z. A Siamese Network Utilizing Image Structural Differences For Cross-Category Defect Detection.
In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28
October 2020; pp. 778–782. [CrossRef]

34. Park, J.-K.; Kwon, B.-K.; Park, J.-H.; Kang, D.-J. Machine learning-based imaging system for surface defect inspection. Int. J. Precis.
Eng. Manuf.-Green Technol. 2006, 3, 303–310. [CrossRef]

35. Liang, Q.; Zhu, W.; Sun, W.; Yu, Z.; Wang, Y.; Zhang, D. In-line inspection solution for codes on complex backgrounds for the
plastic container industry. Measurement 2019, 148, 106965. [CrossRef]

36. Anvar, A.; Cho, Y.I. Automatic Metallic Surface Defect Detection using ShuffleDefectNet. J. Korea Soc. Comput. Inf. 2020, 25, 19–26.
37. Racki, D.; Tomazevic, D.; Skocaj, D. Towards surface anomaly detection with deep learning. Procedia CIRP 2019, 79, 484–489.
38. Hu, B.; Wang, J. Detection of PCB Surface Defects With Improved Faster-RCNN and Feature Pyramid Network. IEEE Access 2020,

8, 108335–108345. [CrossRef]
39. Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of Power Line Insulator Defects Using Aerial Images Analyzed

With Convolutional Neural Networks. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1486–1498. [CrossRef]
40. Song, L.; Li, X.; Yang, Y.; Zhu, X.; Guo, Q.; Yang, H. Detection of Micro-Defects on Metal Screw Surfaces Based on Deep

Convolutional Neural Networks. Sensors 2018, 18, 3709. [CrossRef]
41. Gao, X.; Jian, M.; Hu, M.; Tanniru, M.; Li, S. Faster multi-defect detection system in shield tunnel using combination of FCN and

faster RCNN. Adv. Struct. Eng. 2019, 22, 2907–2921. [CrossRef]

389

Algorithms 2023, 16, 95

42. Balzategui, J.; Eciolaza, L.; Arana-Arexolaleiba, N. Defect detection on Polycrystalline solar cells using Electroluminescence and
Fully Convolutional Neural Networks. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration
(SII), Honolulu, HI, USA, 12–15 January 2020; pp. 949–953. [CrossRef]

43. Dike, H.U.; Zhou, Y.; Deveerasetty, K.K.; Wu, Q. Unsupervised Learning Based On Artificial Neural Network: A Review. In
Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October
2018; pp. 322–327. [CrossRef]

44. Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and
Localization. arXiv 2020, arXiv:2011.08785.

45. Cohen, N.; Hoshen, Y. Sub-Image Anomaly Detection with Deep Pyramid Correspondences. arXiv 2020, arXiv:2005.02357.
46. Roth, K.; Pemula, L.; Zepeda, J.; Schölkopf, B.; Brox, T.; Gehler, P. Towards Total Recall in Industrial Anomaly Detection. arXiv

2021, arXiv:2106.08265.
47. Wang, X.; Li, J.; Yao, M.; He, W.; Qian, Y. Solar Cells Surface Defects Detection Based on Deep Learning. Pattern Recognit. Artif.

Intell. 2014, 27, 517–523.
48. Mei, S.; Yang, H.; Yin, Z. An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces.

IEEE Trans. Instrum. Meas. 2018, 67, 1266–1277. [CrossRef]
49. Silvén, O.; Niskanen, M.; Kauppine, H. Wood inspection with non-supervised clustering. Mach. Vis. Appl. 2003, 13, 275–285.

[CrossRef]
50. Lai, Y.T.K.; Hu, J.S. A Texture Generation Approach for Detection of Novel Surface Defects. In Proceedings of the 2018 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 4357–4362. [CrossRef]
51. Yang, H.; Chen, Y.; Song, K.; Yin, Z. Multiscale Feature-Clustering-Based Fully Convolutional Autoencoder for Fast Accurate

Visual Inspection of Texture Surface Defects. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1450–1467. [CrossRef]
52. Zhai, W.; Zhu, J.; Cao, Y.; Wang, Z. A Generative Adversarial Network Based Framework for Unsupervised Visual Surface

Inspection. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018; pp. 1283–1287. [CrossRef]

53. Liu, K.; Li, A.; Wen, X.; Chen, H.; Yang, P. Steel Surface Defect Detection Using GAN and One-Class Classifier. In Proceedings of
the 2019 25th International Conference on Automation and Computing (ICAC), Lancaster, UK, 5–7 September 2019; pp. 1–6.
[CrossRef]

54. Dai, W.; Mujeeb, A.; Erdt, M.; Sourin, A. Soldering defect detection in automatic optical inspection. Adv. Eng. Inform. 2020,
43, 101004. [CrossRef]

55. Di, H.; Ke, X.; Peng, Z.; Dongdong, Z. Surface defect classification of steels with a new semi-supervised learning method. Opt.
Lasers Eng. 2019, 117, 40–48. [CrossRef]

56. Xu, L.; Lv, S.; Deng, Y.; Li, X. A Weakly Supervised Surface Defect Detection Based on Convolutional Neural Network. IEEE
Access 2020, 8, 42285–42296. [CrossRef]

57. Ren, J.; Gabbar, H.A.; Huang, X.; Saberironaghi, A. Defect Detection for Printed Circuit Board Assembly Using Deep Learning.
In Proceedings of the International Conference Control Science and System Engineering (ICCSSE), Guangzhou, China, 14–16
July 2022.

58. He, Y.; Song, K.; Dong, H.; Yan, Y. Semi-supervised defect classification of steel surface based on multi-training and generative
adversarial network. Opt. Lasers Eng. 2019, 122, 294–302. [CrossRef]

59. Zheng, X.; Wang, H.; Chen, J.; Kong, Y.; Zheng, S. A Generic Semi-Supervised Deep Learning-Based Approach for Automated
Surface Inspection. IEEE Access 2020, 8, 114088–114099. [CrossRef]

60. Fu, G.; Sun, P.; Zhu, W.; Yang, J.; Cao, Y.; Yang, M.Y.; Cao, Y. A deep-learning-based approach for fast and robust steel surface
defects classification. Opt. Lasers Eng. 2019, 121, 397–405. [CrossRef]

61. Akhyar, F.; Lin, C.Y.; Muchtar, K.; Wu, T.Y.; Ng, H.F. High Efficient Single-stage Steel Surface Defect Detection. In Proceedings of
the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21
September 2019; pp. 1–4. [CrossRef]

62. Li, K.; Wang, X.; Ji, L. Application of Multi-Scale Feature Fusion and Deep Learning in Detection of Steel Strip Surface Defect.
In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin,
Ireland, 17–19 October 2019; pp. 656–661. [CrossRef]

63. Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product
quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [CrossRef]

64. Weimer, D.; Scholz-Reiter, B.; Shpitalni, M. Design of deep convolutional neural network architectures for automated feature
extraction in industrial inspection. CIRP Ann. 2016, 65, 417–420. [CrossRef]

65. Qiu, L.; Wu, X.; Yu, Z. A High-Efficiency Fully Convolutional Networks for Pixel-Wise Surface Defect Detection. IEEE Access
2019, 7, 15884–15893. [CrossRef]

66. Yu, Z.; Wu, X.; Gu, X. Fully convolutional networks for surface defect inspection in industrial environment. In International
Conference on Computer Vision Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 417–426.

67. Mujeeb, A.; Dai, W.; Erdt, M.; Sourin, A. Unsupervised Surface Defect Detection Using Deep Autoencoders and Data Augmen-
tation. In Proceedings of the 2018 International Conference on Cyberworlds (CW), Singapore, 3–5 October 2018; pp. 391–398.
[CrossRef]

390

Algorithms 2023, 16, 95

68. Deng, Z.; Yan, X.; Liu, X. Extremal Region Analysis based Deep Learning Framework for Defects Detection. In Proceedings of the
2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China,
6–8 November 2020; pp. 142–145. [CrossRef]

69. Wang, X.; Zhang, X.; Zhou, N. Improved YOLOv5 with BiFPN on PCB Defect Detection. In Proceedings of the 2021 2nd
International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Hangzhou, China, 5–7 November 2021;
pp. 196–199. [CrossRef]

70. Lan, Z.; Hong, Y.; Li, Y. An improved YOLOv3 method for PCB surface defect detection. In Proceedings of the 2021 IEEE
International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021;
pp. 1009–1015. [CrossRef]

71. Luo, J.; Yang, Z.; Li, S.; Wu, Y. FPCB Surface Defect Detection: A Decoupled Two-Stage Object Detection Framework. IEEE Trans.
Instrum. Meas. 2021, 70, 1–11. [CrossRef]

72. Zhang, Q.; Wu, B.; Shao, Y.; Ye, Z. Surface Defect Detection of Rails Based on Convolutional Neural Network Multi-Scale-Cross
FastFlow. In Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI),
Chengdu, China, 19–21 August 2022; pp. 405–411. [CrossRef]

73. Yu, Y.; Wang, M.; Wang, Z.; Zhou, P. Surface Defect Detection of Hight-speed Railway Hub Based on Improved YOLOv3
Algorithm. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), Xi’an, China, 25–27 May 2021; pp. 1386–1390. [CrossRef]

74. Kang, G.; Gao, S.; Yu, L.; Zhang, D. Deep Architecture for High-Speed Railway Insulator Surface Defect Detection: Denoising
Autoencoder With Multitask Learning. IEEE Trans. Instrum. Meas. 2019, 68, 2679–2690. [CrossRef]

75. Natarajan, V.; Hung, T.Y.; Vaikundam, S.; Chia, L.T. Convolutional networks for voting-based anomaly classification in metal
surface inspection. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON,
Canada, 22–25 March 2017; pp. 986–991. [CrossRef]

76. He, H.; Yuan, M.; Liu, X. Research on Surface Defect Detection Method of Metal Workpiece Based on Machine Learning. In
Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11
April 2021; pp. 881–884. [CrossRef]

77. Feng, Z.; Guo, L.; Huang, D.; Li, R. Electrical Insulator Defects Detection Method Based on YOLOv5. In Proceedings of the
2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; pp. 979–984.
[CrossRef]

78. Hu, M.; Ju, X. Two-stage insulator self-explosion defect detection method based on Mask R-CNN. In Proceedings of the 2021
2nd International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Shenyang, China, 17–19
December 2021; pp. 13–18. [CrossRef]

79. Zheng, L.; Wang, X.; Wang, Q.; Wang, S.; Liu, X. A Fabric Defect Detection Method Based on Improved YOLOv5. In Proceedings
of the 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2021;
pp. 620–624. [CrossRef]

80. Liu, Q.; Wang, C.; Li, Y.; Gao, M.; Li, J. A Fabric Defect Detection Method Based on Deep Learning. IEEE Access 2022, 10, 4284–4296.
[CrossRef]

81. Liu, K.H.; Chen, S.J.; Liu, T.J. Unsupervised UNet for Fabric Defect Detection. In Proceedings of the 2022 IEEE International
Conference on Consumer Electronics—Taiwan, Taipei, Taiwan, 6–8 July 2022; pp. 205–206. [CrossRef]

82. Huang, Y.; Yi, M.; Yang, W.; Yang, M. Research on surface defect intelligent detection technology of non-woven fabric based
on support vector machine. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and
Algorithms (EEBDA), Changchun, China, 24–26 February 2022; pp. 895–898. [CrossRef]

83. Li, L.; Jiang, Z.; Li, Y. Surface Defect Detection Algorithm of Aluminum Based on Improved Faster RCNN. In Proceedings of the
2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN), Xi’an, China, 19–21 August
2021; pp. 527–531. [CrossRef]

84. Sison, H.; Konghuayrob, P.; Kaitwanidvilai, S. A Convolutional Neural Network for Segmentation of Background Texture and
Defect on Copper Clad Lamination Surface. In Proceedings of the 2018 International Conference on Engineering, Applied
Sciences, and Technology (ICEAST), Phuket, Thailand, 4–7 July 2018; pp. 1–4. [CrossRef]

85. Lin, Z.; Guo, Z.; Yang, J. Research on texture defect detection based on faster-rcnn and feature fusion. In Proceedings of the 2019
11th International Conference on Machine Learning and Computing, Zhuhai, China, 22–24 February 2019; pp. 429–433.

86. Wang, D.; Yu, W.; Lian, P.; Zhang, M. Textile Defect Detection Algorithm Based on Unsupervised Learning. In Proceedings of the
2022 7th International Conference on Image, Vision and Computing (ICIVC), Xi’an, China, 26–28 July 2022; pp. 81–86. [CrossRef]

87. Sun, X.; Gu, J.; Huang, R.; Zou, R.; Giron Palomares, B. Surface Defects Recognition of Wheel Hub Based on Improved Faster
R-CNN. Electronics 2019, 8, 481. [CrossRef]

88. Chen, L.; Zhou, Y.; Zhou, H.; Zu, J. Detection of Polarizer Surface Defects Based on an Improved Lightweight YOLOv3 Model.
In Proceedings of the 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP),
Hangzhou, China, 8–10 July 2022; pp. 138–142. [CrossRef]

89. Li, P.; Dong, Z.; Shi, J.; Pang, Z.; Li, J. Detection of Small Size Defects in Belt Layer of Radial Tire Based on Improved Faster
R-CNN. In Proceedings of the 2021 11th International Conference on Information Science and Technology (ICIST), Chengdu,
China, 21–23 May 2021; pp. 531–538. [CrossRef]

391

Algorithms 2023, 16, 95

90. Wang, X.; Hu, Z. Grid-based pavement crack analysis using deep learning. In Proceedings of the 2017 4th International Conference
on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 8–10 August 2017; pp. 917–924. [CrossRef]

91. Zhang, M.; Yin, L. Solar Cell Surface Defect Detection Based on Improved YOLO v5. IEEE Access 2022, 10, 80804–80815. [CrossRef]
92. Azizah, L.M.; Umayah, S.F.; Riyadi, S.; Damarjati, C.; Utama, N.A. Deep learning implementation using convolutional neural

network in mangosteen surface defect detection. In Proceedings of the 2017 7th IEEE International Conference on Control System,
Computing and Engineering (ICCSCE), Penang, Malaysia, 24–26 November 2017; pp. 242–246. [CrossRef]

93. Zhang, A.; Wang, K.C.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated pixel-level pavement crack
detection on 3d asphalt surfaces using a deep-learning network. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [CrossRef]

94. Li, Y.; Wang, Z. Research on Textile Defect Detection Based on Improved Cascade R-CNN. In Proceedings of the 2021 International
Conference on Artificial Intelligence and Electromechanical Automation (AIEA), Guangzhou, China, 14–16 May 2021; pp. 43–46.
[CrossRef]

95. He, Z.; Liu, Q. Deep Regression Neural Network for Industrial Surface Defect Detection. IEEE Access 2020, 8, 35583–35591.
[CrossRef]

96. Wei, R.; Bi, Y. Research on Recognition Technology of Aluminum Profile Surface Defects Based on Deep Learning. Materials 2019,
12, 1681, PMCID:PMC6566656. [CrossRef]

97. Hang, J.; Sun, H.; Yu, X.; Rodríguez-Andina, J.J.; Yang, X. Surface Defect Detection in Sanitary Ceramics Based on Lightweight
Object Detection Network. IEEE Open J. Ind. Electron. Soc. 2022, 3, 473–483. [CrossRef]

98. Khumaidi, A.; Yuniarno, E.M.; Purnomo, M.H. Welding defect classification based on convolution neural network (CNN) and
Gaussian kernel. In Proceedings of the 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA),
Surabaya, Indonesia, 28–29 August 2017; pp. 261–265. [CrossRef]

99. Cha, Y.-J.; Choi, W.; Buyukozturk, O. Deep learning-based crack damage detection using convolutional neural networks.
Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

100. Roslan, M.I.B.; Ibrahim, Z.; Aziz, Z.A. Real-Time Plastic Surface Defect Detection Using Deep Learning. In Proceedings of the
2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 21–22 May 2022; pp.
111–116. [CrossRef]

101. Xu, X.; Zheng, H.; Guo, Z.; Wu, X.; Zheng, Z. SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller
Defect Inspection. Appl. Sci. 2019, 9, 1364. [CrossRef]

102. Yuan, Z.-C.; Zhang, Z.-T.; Su, H.; Zhang, L.; Shen, F.; Zhang, F. Vision-based defect detection for mobile phone cover glass using
deep neural networks. Int. J. Precis. Eng. Manuf.-Green Technol. 2018, 19, 801–810. [CrossRef]

103. Guan, S.; Wang, X.; Wang, J.; Yu, Z.; Wang, X.; Zhang, C.; Liu, T.; Liu, D.; Wang, J.; Zhang, L. Ceramic ring defect detection based
on improved YOLOv5. In Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning &
International Conference on Computer Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022;
pp. 115–118. [CrossRef]

104. Chen, H.; Pang, Y.; Hu, Q.; Liu, K. Solar cell surface defect inspection based on multispectral convolutional neural network.
J. Intell. Manuf. 2018, 31, 453–468. [CrossRef]

105. Yang, Z.; Zhang, M.; Li, C.; Meng, Z.; Li, Y.; Chen, Y.; Liu, L. Image Classification for Automobile Pipe Joints Surface Defect
Detection Using Wavelet Decomposition and Convolutional Neural Network. IEEE Access 2022, 10, 77191–77204. [CrossRef]

106. Xu, C.; Li, L.; Li, J.; Wen, C. Surface Defects Detection and Identification of Lithium Battery Pole Piece Based on Multi-Feature
Fusion and PSO-SVM. IEEE Access 2021, 9, 85232–85239. [CrossRef]

107. Maestro-Watson, D.; Balzategui, J.; Eciolaza, L.; Arana-Arexolaleiba, N. Deep learning for deflectometric inspection of specular
surfaces. In The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 280–289.

108. Ren, R.; Hung, T.; Tan, K.C. A Generic Deep-Learning-Based Approach for Automated Surface Inspection. IEEE Trans. Cybern.
2018, 48, 929–940. [CrossRef]

109. Li, Y.; Lin, S.; Liu, C.; Kong, Q. The Defects Detection in Steel Coil End Face Based on SCED-Net. In Proceedings of the 2022
International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–6. [CrossRef]

110. Xie, L.; Xiang, X.; Xu, H.; Wang, L.; Lin, L.; Yin, G. FFCNN: A Deep Neural Network for Surface Defect Detection of Magnetic Tile.
IEEE Trans. Ind. Electron. 2021, 68, 3506–3516. [CrossRef]

111. PLien, C.; Zhao, Q. Product Surface Defect Detection Based on Deep Learning. In Proceedings of the 2018 IEEE 16th Intl Conf
on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
Athens, Greece, 12–15 August 2018; pp. 250–255. [CrossRef]

112. Yang, X.; Dong, F.; Liang, F.; Zhang, G. Chip defect detection based on deep learning method. In Proceedings of the 2021
IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021;
pp. 215–219. [CrossRef]

113. Wu, X.; Cao, K.; Gu, X. A surface defect detection based on convolutional neural network. In International Conference on Computer
Vision Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 185–194.

392

Algorithms 2023, 16, 95

114. Lei, S.; Guo, Y.; Liu, Y.; Li, F.; Zhang, G.; Yang, D. Detection of Mechanical Defects of High Voltage Circuit Breaker based on
Improved Edge Detection and Deep Learning Algorithms. In Proceedings of the 2022 6th International Conference on Electric
Power Equipment-Switching Technology (ICEPE-ST), Seoul, Republic of Korea, 15–18 March 2022; pp. 372–375. [CrossRef]

115. Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD—A Comprehensive Real-World Dataset for Unsupervised Anomaly
Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 15–20 June 2019; pp. 9584–9592. [CrossRef]

116. Lv, X.; Duan, F.; Jiang, J.-j.; Fu, X.; Gan, L. Deep Metallic Surface Defect Detection: The New Benchmark and Detection Network.
Sensors 2020, 20, 1562. [CrossRef]

117. Li, L.; Ma, W.; Li, L.; Lu, C. Research on Detection Algorithm for Bridge Cracks Based on Deep Learning. Acta Autom. Sin. 2019,
45, 1727–1742.

118. Tang, S.; He, F.; Huang, X.; Yang, J. Online PCB Defect Detector on A New PCB Defect Dataset. arXiv 2019, arXiv:1902.06197.
119. Dorafsha, S.; Thomas, R.J.; Maguire, M. SDNET2018: An annotated image dataset for non-contact concrete crack detection using

deep convolutional neural networks. Data Brief. 2018, 21, 1664–1668. [CrossRef]
120. Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of

the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712.
[CrossRef]

121. Cui, L.; Qi, Z.; Chen, Z.; Meng, F.; Shi, Y. Pavement Distress Detection Using Random Decision Forests; Springer: Sydney, NSW,
Australia, 2015; pp. 95–102.

122. Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F.; Riess, C. Automatic classification of defective
photovoltaic module cells in electroluminescence images. Sol. Energy 2019, 185, 455–468. [CrossRef]

123. Huang, Y.; Qiu, C.; Guo, Y.; Wang, X.; Yuan, K. Surface Defect Saliency of Magnetic Tile. In Proceedings of the 2018 IEEE 14th
International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 612–617.
[CrossRef]

124. Kotsiopoulos, T.; Leontaris, L.; Dimitriou, N.; Ioannidis, D.; Oliveira, F.; Sacramento, J.; Amanatiadis, S.; Karagiannis, G.; Votis,
K.; Tzovaras, D.; et al. Deep multi-sensorial data analysis for production monitoring in hard metal industry. Int. J. Adv. Manuf.
Technol. 2021, 115, 823–836. [CrossRef]

125. Ren, J.; Ren, R.; Green, M.; Huang, X. Defect Detection from X-Ray Images Using A Three-Stage Deep Learning Algorithm. In
Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada,
5–8 May 2019; pp. 1–4. [CrossRef]

126. Li, Y.; Gao, W. Research on X-ray welding image defect detection based on convolution neural network. J. Phys. Conf. Ser. 2019,
1237, 032005. [CrossRef]

127. Shao, J.; Shi, H.; Du, D.; Wang, L.; Cao, H. Automatic weld defect detection in real-time X-ray images based on support vector
machine. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October
2011; pp. 1842–1846. [CrossRef]

128. Wang, Y.; Guo, H. Weld Defect Detection of X-ray Images Based on Support Vector Machine. IETE Tech. Rev. 2014, 31, 137–142.
[CrossRef]

129. Wang, B.; Huang, F. A Lightweight Deep Network for Defect Detection of Insert Molding Based on X-ray Imaging. Sensors 2021,
21, 5612. [CrossRef]

130. Yi, X.; Peng, C.; Zhang, Z.; Xiao, L. The defect detection for X-ray images based on a new lightweight semantic segmentation
network. Math. Biosci. Eng. 2022, 19, 4178–4195. [CrossRef] [PubMed]

131. Du, W.; Shen, H.; Fu, J.; Zhang, G.; He, Q. Approaches for improvement of the X-ray image defect detection of automobile casting
aluminum parts based on deep learning. NDT E Int. 2019, 107, 102144, ISSN 0963-8695. [CrossRef]

132. Chen, J.; Li, Y.; Zhao, J. X-ray of Tire Defects Detection via Modified Faster R-CNN. In Proceedings of the 2019 2nd International
Conference on Safety Produce Informatization (IICSPI), Chongqing, China, 28–30 November 2019; pp. 257–260. [CrossRef]

133. Liu, X.; Liu, J.; Qu, F.; Zhu, H.; Lu, D. A Weld Defect Detection Method Based on Triplet Deep Neural Network. In Proceedings of
the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 649–653. [CrossRef]

134. Hu, Y.; Wang, J.; Zhu, Y.; Wang, Z.; Chen, D.; Zhang, J.; Ding, H. Automatic defect detection from X-ray Scans for Aluminum
Conductor Composite Core Wire Based on Classification Neutral Network. NDT E Int. 2021, 124, 102549, ISSN 0963-8695.
[CrossRef]

135. Wang, Y.; Zhang, Y.; Zheng, L.; Yin, L.; Chen, J.; Lu, J. Unsupervised Learning with Generative Adversarial Network for Automatic
Tire Defect Detection from X-ray Images. Sensors 2021, 21, 6773. [CrossRef]

136. Lin, C.H.; Ho, C.W.; Hu, G.H.; Kuo, P.C.; Hu, C.Y. Alloy Cast Product Defect Detection Based on Object Detection. In Proceedings
of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Hualien City,
Taiwan, 16–19 November 2021; pp. 1–2. [CrossRef]

137. Tao, X.; Li, Q.; Ren, C.; Guo, W.; He, Q.; Liu, R.; Zou, J. Affinity and class probability-based fuzzy support vector machine for
imbalanced data sets. Neural. Netw. 2020, 122, 289–307. [CrossRef] [PubMed]

138. Ali-Gombe, A.; Elyan, E. MFC-GAN: Class-imbalanced dataset classification using Multiple Fake Class Generative Adversarial
Network. Neurocomputing 2019, 361, 212–221. [CrossRef]

393

Algorithms 2023, 16, 95

139. Bennin, K.E.; Keung, J.W.; Monden, A. On the relative value of data resampling approaches for software defect prediction. Empir.
Softw. Eng. 2019, 24, 602–636. [CrossRef]

140. Li, M.; Xiong, A.; Wang, L.; Deng, S.; Ye, J. ACO Resampling: Enhancing the performance of oversampling methods for class
imbalance classification. Knowl. Based Syst. 2020, 196, 105818. [CrossRef]

141. Potharaju, S.P.; Sreedevi, M.; Ande, V.K.; Tirandasu, R.K. Data mining approach for accelerating the classification accuracy of
cardiotocography. Clin. Epidemiol. Glob. Health 2019, 7, 160–164. [CrossRef]

142. Lv, Y.; Ma, L.; Jiang, H. A Mobile Phone Screen Cover Glass Defect Detection MODEL Based on Small Samples Learning. In
Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019;
pp. 1055–1059. [CrossRef]

143. Zhu, C.; Zhou, W.; Yu, H.; Xiao, S. Defect Detection of Emulsion Pump Body Based on Improved Convolutional Neural Network.
In Proceedings of the 2019 International Conference on Advanced Mechatronic Systems (ICAMechS), Shiga, Japan, 26–28 August
2019; pp. 349–352. [CrossRef]

144. He, T.; Liu, Y.; Xu, C.; Zhou, X.; Hu, Z.; Fan, J. A Fully Convolutional Neural Network for Wood Defect Location and Identification.
IEEE Access 2019, 7, 123453–123462. [CrossRef]

145. Dafu, Y. Classification of Fabric Defects Based on Deep Adaptive Transfer Learning. In Proceedings of the 2019 Chinese
Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 5730–5733. [CrossRef]

146. Şeker, A. Evaluation of Fabric Defect Detection Based on Transfer Learning with Pre-trained AlexNet. In Proceedings of the 2018
International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–4.
[CrossRef]

147. Zyout, I.; Oatawneh, A. Detection of PV Solar Panel Surface Defects using Transfer Learning of the Deep Convolutional Neural
Networks. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai,
United Arab Emirates, 4 February–9 April 2020; pp. 1–4. [CrossRef]

148. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative
Adversarial Networks to Guide Marker Discovery. In International Conference on Information Processing in Medical Imaging; Springer:
Philadelphia, PA, USA, 2017; pp. 146–157.

149. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast unsupervised anomaly detection with
generative adversarial networks. Med. Images Anal. 2019, 54, 30–44. [CrossRef]

150. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training. In
Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2018; pp. 622–637.

151. Haselmann, M.; Gruber, D.P. Pixel-Wise Defect Detection by CNNs without Manually Labeled Training Data. Appl. Artif. Intell.
2019, 33, 548–566. [CrossRef]

152. Mei, S.; Yang, H.; Yin, Z. Unsupervised-Learning-Based Feature-Level Fusion Method for Mura Defect Recognition. IEEE Trans.
Semicond. Manuf. 2017, 30, 105–113. [CrossRef]

153. Xia, B.; Cao, J.; Wang, C. SSIM-NET: Real-Time PCB Defect Detection Based on SSIM and MobileNet-V3. In Proceedings of the
2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, 22–24
November 2019; pp. 756–759. [CrossRef]

154. Zhang, Z.; Wen, G.; Chen, S. Weld image deep learning-based on-line defects detection using convolutional neural networks for
Al alloy in robotic arc welding. J. Manuf. Process. 2019, 45, 208–216. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

394

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Algorithms Editorial Office
E-mail: algorithms@mdpi.com

www.mdpi.com/journal/algorithms

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-0365-8831-5

