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Abstract: In this paper, a discussion of the Landau damping of Langmuir waves is presented together
with a simple derivation which does not require the application of methods of complex analysis. A
general dispersion relation is derived systematically which corresponds to a nonlinear equation. The
latter equation is solved numerically but asymptotic limits are also discussed.

Keywords: Langmuir waves; Landau damping; particle wave interactions

1. Introduction

In the current paper, the damping of plasma waves, also known as Langmuir waves [1],
is explored. Plasma waves are related to electron oscillations and, thus, they are sometimes
called plasma oscillations. The standard description of those waves is based on the mo-
mentum equation (Euler equation) for the electrons, their continuity equation, and Gauss’
law of electrodynamics. Furthermore, it is assumed that the electrons behave like an ideal
gas. In order to find the dispersion relation of Langmuir waves, the aforementioned fluid
equations are linearized leading to the Bohm–Gross dispersion relation (see [2–4]),

ω2 = ω2
p + 3v2

e k2. (1)

Therein, the wave number k, the plasma frequency

ωp =

√
n0e2

meε0
, (2)

and the electron thermal speed

ve =

√
kBT
me

(3)

are used in terms of the electron particle density (particles per volume), n0, the elementary
charge, e, the electron mass, me, the permittivity of free space, ε0, Boltzmann’s constant,
kB, and the absolute temperature, T (in Kelvin). Note, the electron thermal speed comes
straight from the equipartition theorem which states that each degree of freedom has the
average kinetic energy kBT/2. Therefore,

1
2

mev2
e =

1
2

kBT, (4)

is a consequence of having only one degree of freedom due to the one-dimensional motion
of the electrons. This relation can be straight rearranged to obtain Equation (3).

A useful parameter in the description of plasma waves is the Debye length corre-
sponding to the distance over which significant charge separation occurs; it is given by

Physics 2021, 3, 940–954. https://doi.org/10.3390/physics3040059 https://www.mdpi.com/journal/physics
1



Physics 2021, 3

λD =

√
kBTε0

n0e2 . (5)

Then, the electron thermal speed (3) reads:

ve = ωpλD, (6)

and the plasma wave dispersion relation (1) becomes:

ω2 = ω2
p

(
1 + 3λ2

Dk2
)

. (7)

By considering linearized fluid and Maxwell equations, one can show that Langmuir
waves are longitudinal in nature.

In this paper, Landau damping, describing the damping of plasma waves due to the
interaction between the wave and the electrons in the plasma, is revisited. This is a special
case of wave–particle interactions in a plasma. According to [5], the physical mechanism
of Landau damping can be understood as follows: particles having velocities slightly less
than the phase velocity of the wave are accelerated by the wave’s electric field to move
with the wave phase velocity. Therefore, the group of particles moving slightly slower than
the phase velocity gain energy from the wave. In a collisionless plasma characterized by a
Maxwellian distribution (see Section 3), the number of slower particles is greater than the
number of faster particles. Therefore, energy gained from the waves by slower particles is
more than the energy given to the waves by faster particles, thus leading to net damping of
the waves. An example plot is given in Figure 1.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

Figure 1. Maxwellian distribution. The arrow points to the location of the phase speed ω/|k| of the
Langmuir wave. In the considered case, the wave speed is larger than the electron thermal speed.
Particles to the left of the arrow are slower, and particles to the right of the arrow are faster than the
wave. Here we have used the wave number k, the frequency ω, the electron speed v, and the electron
thermal speed ve.

The first theoretical description of Landau damping was presented in [6] and was
based on the Vlasov equation [7]. Although Landau damping was originally derived for
plasma waves, it can also be considered in the context of magnetohydrodynamic waves [8].

The derivation of traditional Landau damping, as provided in [6], is based on Laplace
transforms and complex contour integrations. In [9], it was shown that Landau damping
can also be described by using a Fourier transform and normal mode expansion. The
latter modes are usually called van Kampen modes. In [10], it was demonstrated that
Landau’s and van Kampen’s treatments of plasma oscillations are equivalent. Alternative

2



Physics 2021, 3

and simpler derivations of Landau damping can be found in textbooks, see, e.g., [11].
However, all the aforementioned descriptions are based on contour integrals and other
tools of complex analysis.

In order to avoid using tools of complex analysis, an alternative derivation of Landau
damping is presented in the current article. This approach can be particularly useful for
teaching this topic to undergraduate and graduate students in introductory plasma physics
and magnetohydrodynamics courses.

The reminder of this paper is organized as follows. Section 2 lists the basic equations
used to describe Landau damping. This includes the Vlasov equation, Gauss’ law, and
linearizing those equations. Section 3 contains the derivation of a nonlinear equation for
the dispersion relation, ω = ω(k). Numerical and analytical solutions of this nonlinear
relation are discussed in Sections 4 and 5, respectively. Finally, Section 6 discusses and
summarizes the findings.

2. Basic Equations

In order to describe the statistical behavior of a physical system not in a state of
equilibrium the Boltzmann equation is used. Let us assume that the plasma electrons are
described via the distribution function f (�x,�v, t) which depends on position, �x, and velocity,
�v, of the particles, as well as the time, t. Furthermore, the considered particles experience
an external force, �F, and collisions. With the help of Liouville’s theorem [12], one finds:

d
dt

f
(
�x,�v, t

)
= S

(
�x,�v, t

)
, (8)

where S
(
�x,�v, t

)
describes the collisions. For the total time-derivative of the distribu-

tion function,
d
dt

f
(
�x,�v, t

)
=

∂ f
∂t

+ ∑
n

ẋn
∂ f
∂xn

+ ∑
n

v̇n
∂ f
∂vn

, (9)

can be used. Here, the dot defines time derivative.
Equations (8) and (9) can be combined to find the Boltzmann equation. The collision-

less Boltzmann equation, on the other hand, is given by

∂ f
∂t

+ ∑
n

ẋn
∂ f
∂xn

+ ∑
n

v̇n
∂ f
∂vn

= 0. (10)

In what follows, only this collisionless case is considered. Furthermore, v̇n is replaced
by using Newton’s second law, Fn = mv̇n, to find:

∂ f
∂t

+ ∑
n

vn
∂ f
∂xn

+
1
m ∑

n
Fn

∂ f
∂vn

= 0, (11)

with m being the particle mass.
For the case considered in this paper, where Fn describes Coulomb interactions,

Equation (11) is usually called the Vlasov equation [7]. The Vlasov equation, discussed
here, is commonly used to investigate the interaction between particles and fields. In the
case of Landau damping, this equation describes the interaction between Langmuir waves
and the electrons of the plasma. However, the Vlasov equation is also used as a starting
point to describe the interaction between magnetic turbulence and energetic particles such
as cosmic rays (see, e.g., [13–15]).

For the investigations, presented here, it is sufficient to consider the one-dimensional
case for which the Vlasov equation reads:

∂ f
∂t

+ v
∂ f
∂x

+
1
m

F
∂ f
∂v

= 0. (12)

3
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In the case considered, the force is just the electric force and, thus,

F = qE = qδE, (13)

can be used, where q is the electric charge of the particle. The electric field, δE, therein is
the wave field of the plasma wave. Using this in Equation (12) yields:

∂ f
∂t

+ v
∂ f
∂x

+
q
m

δE
∂ f
∂v

= 0. (14)

In order to solve the Vlasov equation, a perturbation approach of the form,

f
(
x, v, t

)
= f0

(
v
)
+ δ f

(
x, v, t

)
, (15)

is employed.
Here, f0 is the unperturbed distribution often assumed to be Maxwellian (see Section 3

below). The quantity δ f describes the fluctuations corresponding to the deviations from
the unperturbed distributions. These fluctuations are a consequence of the interactions
with the electric field of the wave and are assumed to be small so that the perturbation
approach can be justified. Using Equation (15) in Equation (14) yields in first-order:

∂δ f
∂t

+ v
∂δ f
∂x

+
q
m

δE
∂ f0

∂v
= 0. (16)

Equation (16) is called the linearized Vlasov equation. As a second equation, Gauss’ law,

�∇ · �E =
1
ε0

ρe, (17)

is employed.
Note that SI units are used here rather than Gaussian or cgs units. In the one-

dimensional case considered, Equation (17) becomes:

∂

∂x
δE =

1
ε0

δρe =
q
ε0

∫ +∞

−∞
dv δ f

(
x, v, t

)
, (18)

where the electric charge density δρe is replaced by the velocity integral over the fluctuations
δ f . In order to solve Vlasov and Gauss equations, a Fourier ansatz,

δ f
(
x, v, t

)
∝ δ f

(
k, v, ω

)
ei(kx−ωt),

δE
(
x, t
)

∝ δE
(
k, ω

)
ei(kx−ωt),

(19)

is used.
Using Equation (19) in Equations (16) and (18) yields:

− iωδ f + ivkδ f +
q
m

δE
∂ f0

∂v
= 0, (20)

and
ikδE =

q
ε0

∫ +∞

−∞
dv δ f

(
k, v, ω

)
. (21)

The first equation can be rearranged to read:

δ f = −i
q
m

δE
ω − vk

∂ f0

∂v
. (22)

4
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Using this in Equation (21) yields:

ikδE = −i
q2

ε0m

∫ +∞

−∞
dv

δE
ω − vk

∂ f0

∂v
. (23)

As the electric field does not depend on the particle velocity v, one can cancel δE in
the latter equation. Therefore, the following dispersion relation,

1 = − q2

ε0mk

∫ +∞

−∞
dv

1
ω − vk

∂ f0

∂v
, (24)

is obtained.
The function f0 therein corresponds to the unperturbed particle density per volume.

In the following, the replacement f0 → f0n0 is made and the plasma frequency, defined via
Equation (2), is used. This leads Equation (24) to be rewritten as:

1 +
ω2

p

k2

∫ +∞

−∞
dv

1
ω/k − v

∂ f0

∂v
= 0. (25)

Note, f0 is now the number of particles per velocity meaning that due to normalization,
one needs: ∫ +∞

−∞
dv f0

(
v
)
= 1, (26)

which fixes constants in the distribution function f0.

3. The Dispersion Relation

Let us now discuss the obtained dispersion relation as given by Equation (25). In order
to evaluate this further, the Maxwellian distribution,

f0
(
v
)
=

1√
2π

1
ve

e−v2/(2v2
e ), (27)

is employed.
The latter function is visualized via Figure 1. Note, this is a Maxwellian distribution

in one dimension and, therefore, it is in coincidence with a Gaussian distribution. The
used form is correctly normalized meaning that it satisfies Equation (26). Furthermore, the
electron thermal speed, given by Equation (3), is used. From Equation (27), it follows that:

∂ f0

∂v
= − 1√

2π

v
v3

e
e−v2/(2v2

e ). (28)

Using this, Equation (25) reads:

1 =
ω2

p√
2πkv3

e

∫ +∞

−∞
dv

v
ω − vk

e−v2/(2v2
e ). (29)

Note that it looks like there is a singularity at ω = vk. However, this is not so as long
as ω is a complex number with non-vanishing imaginary part.

The aim here is to derive the dispersion relation ω = ω(k). To this end, let us rewrite
the integral occurring in Equation (29) as:

I
(
ω, k

)
=
∫ +∞

−∞
dv

v
ω − vk

e−v2/(2v2
e ). (30)

To continue,

5



Physics 2021, 3

∫ +∞
−∞ dv e−v2/(2v2

e ) =
∫ +∞
−∞ dv ω−vk

ω−vk e−v2/(2v2
e )

= ω
∫ +∞
−∞ dv 1

ω−vk e−v2/(2v2
e )

− k
∫ +∞
−∞ dv v

ω−vk e−v2/(2v2
e ),

(31)

is considered.
The integral on the left-hand-side of Equation (31) is a usual Gaussian integral which

can be solved via ∫ +∞

−∞
dx e−cx2

=

√
π

c
if Re(c) > 0. (32)

The second integral on the right-hand-side of Equation (31) is the desired integral
I(ω, k) as defined via Equation (30).

Thus, Equation (31) can be rewritten as:

√
2πve = ω

∫ +∞

−∞
dv

1
ω − vk

e−v2/(2v2
e ) − kI

(
ω, k

)
. (33)

Alternatively, this can be written as;

I
(
ω, k

)
=

ω

k

∫ +∞

−∞
dv

1
ω − vk

e−v2/(2v2
e ) −

√
2πve

k
. (34)

Therewith the dispersion relation (29) becomes:

1 =
ω2

p√
2πkv3

e

[
ω

k

∫ +∞

−∞
dv

1
ω − vk

e−v2/(2v2
e ) −

√
2πve

k

]
.

In the remaining integral, the substitution,

x =
v√
2ve

(35)

is employed to derive

1 =
ω2

p√
2πkv3

e

[
ω

k

√
2ve

∫ +∞

−∞
dx

e−x2

ω −√
2vekx

−
√

2πve

k

]
. (36)

To continue, the parameter,

α :=
ω√
2vek

, (37)

is defined.
Note that the latter parameter is a complex number in the general case. Therewith,

one can write Equation (36) as:

1 =
ω3

p√
2πk3v3

e

[
ω

ωp

∫ +∞

−∞
dx

1
α − x

e−x2 −
√

2πvek
ωp

]
. (38)

In the result obtained, Equation (6) can be now used to finally arrive at

1 +
1√

2π
(
λDk

)3

[√
2π
(
λDk

)− ω

ωp
J
(
α
)]

= 0, (39)

where the integral,

J
(
α
)
=
∫ +∞

−∞
dx

1
α − x

e−x2
, (40)

6
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is used.
Let us solve this integral. First, the integral is generalized via

J
(
α, β
)
= e−α2

∫ +∞

−∞
dx

1
α − x

eβ(α2−x2). (41)

Note, we are looking for J
(
α, β = 1

) ≡ J
(
α
)
. One can derive that

d
dβ J(α, β) = e−α2 ∫ +∞

−∞ dx α2−x2

α−x eβ(α2−x2)

= e−α2 ∫ +∞
−∞ dx

(
α + x

)
eβ(α2−x2)

= αe−α2 ∫ +∞
−∞ dx eβ(α2−x2).

(42)

Here, the symmetry of the integral is used and, at the end, one would only need to
solve a Gaussian integral. With the help of Equation (32), one finally derives:

d
dβ

J(α, β) = α
√

πe−α2
β−1/2eβα2

. (43)

Note, here and above, β is assumed to be a positive real number. To continue, the
result is integrated over β:

J
(
α, β = 1

)
= J
(
α, β = 0

)
+ α

√
πe−α2

∫ 1

0
dβ β−1/2eβα2

. (44)

In the integral therein the substitution β = ξ2 is used:

dβ√
β
= 2dξ. (45)

Therewith:

J
(
α, β = 1

)
= J
(
α, β = 0

)
+ 2α

√
πe−α2

∫ 1

0
dξ eα2ξ2

. (46)

In Appendix A, it is demonstrated that

J
(
α, β = 0

)
= −iπe−α2

. (47)

Furthermore, J
(
α, β = 1

)
= J
(
α
)

and, thus, Equation (46) reads:

J
(
α
)
= 2α

√
πe−α2

∫ 1

0
dξ eα2ξ2 − iπe−α2

. (48)

Then, using the substitution t = αξ:

J
(
α
)
= 2

√
πe−α2

∫ α

0
dt et2 − iπe−α2

. (49)

The remaining integral corresponds to an imaginary error function (see, e.g., [16]):

Erfi
(
α
)
=

2√
π

∫ α

0
dt et2

. (50)

Using this in Equation (49) finally yields:

J
(
α
)
= πe−α2[

Erfi
(
α
)− i

]
. (51)

7
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After using Equation (51) in Equation (39), one finds for the dispersion relation:

1 +
1√

2π
(
λDk

)3

{√
2π
(
λDk

)− π
ω

ωp

[
Erfi

(
α
)− i

]
e−α2

}
= 0, (52)

where the parameter α is given by Equation (37). Alternatively, the result obtained can be
written as:

1 + 1(
λDk
)2 −

√
π
2

ω

ωp
(

λDk
)3 Erfi

(
α
)
e−α2

+ i
√

π
2

ω

ωp
(

λDk
)3 e−α2

= 0.
(53)

Furthermore, the parameter α can be rewritten as:

α =
1√
2

ω

ωp

1
λDk

. (54)

Equation (53) is a nonlinear equation for the dispersion relation ω = ω(k). It de-
pends only on two parameters: ωp and λD. Below, numerical and analytical solutions of
Equation (53) are considered.

4. Numerical Solution for the General Case

Instead of dealing with Equation (53), let us return and use Equation (39) as starting
point for numerical investigations. Equation (48) can be written as:

J
(
α
)
= 2α

√
πe−α2

K
(
α
)− iπe−α2

, (55)

where

K
(
α
)
=
∫ 1

0
dξ eα2ξ2

(56)

is used.
Substituting these equations into Equation (39) gives:

1 + 1√
2π
(

λDk
)3

[√
2π
(
λDk

)
− ω

ωp
2α

√
πe−α2

K
(
α
)
+ iπ ω

ωp
e−α2

]
= 0.

(57)

For numerical investigations, it is useful to define the dimensionless quantities,

x := λDk and y := ω/ωp, (58)

so that the parameter α, defined via Equation (54), becomes:

α =
y√
2x

. (59)

Therewith, Equation (57) can be written as:

1 +
1
x2 − y2

x4 e−y2/(2x2)K
(

y√
2x

)
+ i
√

π

2
y
x3 e−y2/(2x2) = 0. (60)

The solution of the latter equation is the complex quantity y as a function of the real
variable x. It is straightforward to solve Equation (60) by using a standard Newton-solver in
combination with MATLAB; the details are given in Appendix B. The numerical solutions
are shown in Figure 2, where the analytical solution obtained for asymptotic limits is also
given. This analytical solution is derived in Section 5 below.
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Figure 2. Visualized is the numerical solution of Equation (60). Shown are the real part of y = ω/ωp

(top two lines) as well as its imaginary part (bottom two lines) versus the variable x = λDk. Compared
are the numerical solution (solid lines) with the analytical limits (dotted lines) given by Equations (82)
and (91), respectively. ωp is the plasma frequency and λD is the Debye length.

5. Analytical Solutions in Asymptotic Limits

In Section 3, the nonlinear Equation (53) was derived and solved numerically. In order
to obtain pure analytical solutions, we consider the case of

|α| ≡ |ω|√
2vek

� 1, (61)

meaning that the phase speed of the wave, ω/k, is assumed to be much larger than
the electron thermal speed, ve. Due to this assumption, one can employ the following
asymptotic expansion (see, e.g., [16]),

Erfi
(
α
) ≈ 1√

πα
eα2
[
1 +

(
2α2)−1

+ 3
(
2α2)−2

]
. (62)

Using the expansion (62) in Equation (53) yields:

1 + 1(
λDk
)2 −

√
π
2

ω

ωp
(

λDk
)3

1√
πα

[
1 + 1

2α2 +
3

4α4

]

+ i
√

π
2

ω

ωp
(

λDk
)3 e−α2

= 0.
(63)

With the help of Equation (54) this equation can be rewritten as:

1 − 1(
λDk

)2
1

2α2

[
1 +

3
2α2

]
+ i

√
π

α(
λDk

)2 e−α2
= 0.

(64)

Using definition (58) of x in Equation (64) gives:

x2 − 1
2α2 − 3

4α4 + i
√

παe−α2
= 0. (65)

To further evaluate Equation (65), let us write

ω = ωR + iδω, (66)

9
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and, therefore,
α = αR + iδα. (67)

In the following, it is assumed that δω and δα are small. As δω corresponds to the
imaginary part of ω, it describes the damping of the Langmuir wave. Thus, the assumption
of small δω and δα corresponds to weak damping.

To continue, let us Taylor-expand and take into account only terms linear in δα:

1
α2 = 1(

αR+iδα
)2 ≈ 1

α2
R
− 2i

α3
R

δα,

1
α4 = 1(

αR+iδα
)4 ≈ 1

α4
R
− 4i

α5
R

δα,

e−α2
= e−(αR+iδα)2 ≈ (1 − 2iαRδα)e−α2

R .

(68)

Using the above equations in Equation (65) yields:

x2 − 1
2α2

R
+ iδα

α3
R
− 3

4α4
R
+ 3iδα

α5
R

+ i
√

π
(
αR − 2α2

Riδα + iδα
)
e−α2

R = 0.
(69)

Taking the real part of the latter equation gives:

x2 − 1
2α2

R
− 3

4α4
R
+
(

2
√

πα2
Rδα −√

πδα
)

e−α2
R = 0. (70)

As soon as αR � 1 is focused on (see, e.g., Equation (61)), the term with the exponential
function can be neglected. Thus, in the lowest-order:

x2 − 1
2α2

R
− 3

4α4
R
= 0. (71)

Due to Equation (37), one gets:

αR =
ωR√
2vek

. (72)

Furthermore, one finds
x = λDk =

ve

ωp
k (73)

as a consequence of Equation (6).
Combining all the above findings, allows us to finally derive from Equation (71):

1 − ω2
p

ω2
R

(
1 + 3

v2
e k2

ω2
R

)
= 0. (74)

This can be rewritten as:

ω4
R − ω2

pω2
R − 3ω2

pv2
e k2 = 0, (75)

which can be understood as a quadratic equation for ω2
R. It has the solutions

ω2
R =

1
2

[
ω2

p ±
√

ω4
p + 12v2

e k2ω2
p

]
. (76)

Therein, taking the plus-sign and employing Equation (6), one finds:

ω2
R =

1
2

ω2
p

[
1 +

√
1 + 12λ2

Dk2
]
. (77)
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So far it was assumed that the restriction, given by Equation (61), is valid. Furthermore,
the damping effect was assumed to be small meaning that δω is small. This essentially
means that ωR � δω. Furthermore, the condition, given by Equation (61), turns into

α2
R ≡ ω2

R
2v2

e k2 � 1. (78)

Using therein Equations (6) and (77) allows us to rewrite this condition:

1 +
√

1 + 12λ2
Dk2 � 4(λDk)2. (79)

It is clear that this can only be valid if

λDk � 1. (80)

Using condition (80) in Equation (77) allows us to Taylor-expand so that one obtains:

ω2
R = ω2

p

(
1 + 3λ2

Dk2
)

. (81)

One can find that the result obtained concides with the plasma wave dispersion
relation of Equation (7). In dimensionless quantities (58):

yR =
√

1 + 3x2. (82)

Considering the imaginary part of Equation (69), one finds:

δα

α3
R
+

3δα

α5
R

+
√

παRe−α2
R = 0. (83)

This equation can be rearranged:

δα = −√
π

α6
R

3 + α2
R

e−α2
R . (84)

As soon as αR � 1:
δα = −√

πα4
Re−α2

R . (85)

From Equation (54) it follows that

αR =
1√
2

ωR
ωp

1
λDk

and δα =
1√
2

δω

ωp

1
λDk

. (86)

Therefore, one finds:

δω = −
√

π

8
ω4

R
ω3

p

1(
λDk

)3 e−α2
R . (87)

Combining Equation (81) and condition (80), one gets ωR ≈ ωp in the lowest order.
Therewith, the result obtained for δω reads:

δω = −
√

π

8
ωp(

λDk
)3 e−α2

R . (88)
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Therein one can use Equations (81) and (86):

α2
R =

ω2
R

2ω2
p

1
(λDk)2

= 1

2
(

λDk
)2

(
1 + 3λ2

Dk2)
= 1

2
(

λDk
)2 +

3
2 ,

(89)

and finds:

δω = −
√

π

8
ωp(

λDk
)3 e

− 1
2λ2

Dk2 − 3
2
. (90)

In dimensionless quantities (58), one gets:

δy = −
√

π

8
1
x3 e−

1
2x2 − 3

2 . (91)

Equations (82) and (91) are visualized in Figure 2 together with the numerical solution
discussed in Section 4. One can immediately see that the agreement between the numerical
solution and the analytical one is much better for smaller values of x corresponding to
small wave numbers. The assumption of small wave numbers is part of the analytical
calculation presented above (see, e.g., Equation (80)) and, therefore, the deviation between
the analytical and numerical solutions for larger wave numbers was predictable.

Note that as soon as the case λDk � 1 is considered, one can further approximate
Equation (90) by

δω = −
√

π

8
ωp(

λDk
)3 e

− 1
2λ2

Dk2 , (92)

which is in perfect agreement with Equation (17) of [6]. A discussion about the validity
and possible improvements of asymptotic formulas for the Landau damping rates of
electrostatic waves can be found in [17].

Using the form (66) in the electric field given by Equation (19), yields:

δE
(
x, t
)

∝ δE
(
k, ω

)
ei(kx−ωt) ∝ e−iωRt+δωt. (93)

As δω < 0 was derived, one finds damping of the electric field associated with the
wave. This damping is the renowned Landau damping and the corresponding damping
rate is given by Equations (90) or (92) depending on the desired accuracy.

6. Discussion and Conclusions

The derivations and discussions, presented in the current paper, are based on lecture
notes I have developed for a course about magnetohydrodynamics. The aim was to obtain
a mathematically simpler description of Landau damping compared to what Landau
originally developed in his seminal paper [6]. This means, in particular, that tools of
complex analysis, such as contour integrals, are avoided and one just solves standard
integrals in combination with imaginary error functions.

Although using methods of complex analysis was avoided throughout the current
paper, one still arrives at the correct Langmuir dispersion relation as given by Equation (81)
as well as the correct Landau damping rate as given by Equation (90). These results were
obtained analytically by employing Equations (61) and (80). The more general dispersion
relation is given by Equation (57) corresponding to a nonlinear equation. However, it can
be solved by using standard tools of computational physics. All findings are visualized
in Figure 2.

Although the main intention behind the current paper was to present a simpler
derivation of known results, Equation (53) is quite general since it does not require to

12
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consider asymptotic limits. Therefore, the method, proposed in this paper, could lead to an
improved understanding of Landau damping in some other limits. Furthermore, it could
be possible that the method developed here can be used to explore other effects such as the
dispersion relation of electron-acoustic waves.

It needs to be emphasized that the exploration of Landau damping is still an active
field of research pursued both in mathematics and in theoretical physics. A comprehensive
overviews of Landau damping which includes some historical remarks, derivations, and
mathematical details can be found in [18,19].
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Appendix A. Some Mathematical Details

Equation (41) can be written as

J
(
α, β
)
= e(β−1)α2

∫ +∞

−∞
dz

1
α − z

e−βz2
. (A1)

Note that α is a complex number, given by Equation (37), and β is a positive real
number. Equation (A1) can be rewritten as:

J
(
α, β
)

= e(β−1)α2 ∫ +∞
−∞ dz α+z

α2−z2 e−βz2

= e(β−1)α2 ∫ +∞
−∞ dz α

α2−z2 e−βz2
,

(A2)

where the symmetry properties of one of the integrals is used. In the limit β → 0,

J
(
α, β → 0

)
= e−α2

∫ +∞

−∞
dz

α

α2 − z2 . (A3)

The remaining integral can be solved via substitution:

z = α tanh
(
y
)
, (A4)

and then,
dz = α

[
1 − tanh2 (y)]dy, (A5)

in the integral. Furthermore, for the inverse hyperbolic tangent function, the relations,

tanh−1 (+ ∞
)
= −1

2
iπ, (A6)

and
tanh−1 (− ∞

)
=

1
2

iπ, (A7)

are employed. Therefore, one gets:

∫ +∞

−∞
dz

α

α2 − z2 = −iπ, (A8)

and, thus:
J
(
α, β → 0

)
= −iπe−α2

. (A9)
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Appendix B. The Newton-Solver

The task is to solve the nonlinear relation given by Equation (60). For convenience, let
us write this equation down again:

1 +
1
x2 − y2

x4 e−y2/(2x2)K
(
α
)
+ i
√

π

2
y
x3 e−y2/(2x2) = 0. (A10)

In the latter, the function,

K
(
α
)
=
∫ 1

0
dz eα2z2

, (A11)

is used, as well as:

x = λDk, y = ω/ωp, and α =
y√
2x

. (A12)

Therewith, one can write:

K
(
x, y
)
=
∫ 1

0
dz e

y2

2x2 z2
. (A13)

The nonlinear relation above is solved via a standard Newton method; see, e.g., in [20].
The task is to find y for a given x; therefore, it is needed to compute y for each x. This y is
obtained via the iteration method,

yn+1 = yn − f (yn)

f ′(yn)
, (A14)

where, in the case considered here,

f (y) = 1 +
1
x2 − y2

x4 e−y2/(2x2)K(x, y) + i
√

π

2
y
x3 e−y2/(2x2). (A15)

Furthermore, one also needs to compute the derivative of the latter function with
respect to y. One derives:

f ′(y) ≡ ∂ f
∂y = −2 y

x4 e−y2/(2x2)K
(

x, y
)
+

y3

x6 e−y2/(2x2)K
(

x, y
)− y2

x4 e−y2/(2x2)K′(x, y
)

+ i
√

π
2

1
x3 e−y2/(2x2) − i

√
π
2

y2

x5 e−y2/(2x2),
(A16)

where

K′(x, y
)
=
∫ 1

0
dz

yz2

x2 e
y2

2x2 z2
(A17)

is used.
Combining Equations (A14)–(A17) determines y for a given x numerically. Performing

these calculations for a set of x values yields the dispersion relation y(x) which was
looked for.
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Abstract: Electromagnetic expulsion acts on a body suspended in a conducting fluid or plasma,
which is subject to the influence of electric and magnetic fields. Physically, the effect is a magneto-
hydrodynamic analogue of the buoyancy (Archimedean) force, which is caused by the nonequal
electric conductivities inside and outside the body. It is suggested that electromagnetic expulsion can
drive the observed plasma counter-streaming flows in solar filaments. Exact analytical solutions and
scaling arguments for a characteristic plasma flow speed are reviewed, and their applicability in the
limit of large magnetic Reynolds numbers, relevant in the solar corona, is discussed.

Keywords: space physics; plasma physics

1. Introduction

Solar filaments are sheets of dense and cool plasma, surrounded by the much hotter
plasma of the solar corona. The relatively low temperatures and high densities of the
filament material suggest that filaments are supported against gravity by a strong magnetic
field B in the solar atmosphere [1].

Early models of solar filaments postulated static or quasi-steady equilibria and ana-
lyzed simplified magnetohydrodynamic (MHD) equations [2,3]. More recent theoretical
models employed a force-free approximation, (∇× B)× B ≈ 0, to successfully describe
the overall filament structure [4,5].

Realistic theoretical models should satisfy a number of observational conditions for
the formation and maintenance of filaments [6]. The modeling of plasma flows in filaments
appears to be of particular interest in relation to their structure and evolution. Observations
clearly demonstrated that even quiescent filaments are not static formations but rather are
systems of jets streaming along the filaments with speeds up to 30 km s−1 [7]. Thermal
nonequilibrium is typically invoked to explain the observed flows [8,9]. However, one of
the puzzles of the small-scale dynamics in filaments is the physical mechanism of counter-
streaming—the observed simultaneous flows with speeds of 5–20 km s−1 in opposite
directions in filament barbs (feet) [10,11].

The purpose of this paper is to advocate the electromagnetic expulsion force, whose
effects are well-known in engineering and industrial applications, as a mechanism of
counter-streaming in solar filaments.

2. Electromagnetically Generated Vortical Flows

Following the original argument of [12], consider an incompressible conducting fluid
(plasma) with density ρ0, temperature T0, and electric conductivity σ0 in a magnetic field
B0. Provided B0 � 4πaj0/c, where c is the speed of light, both B0 and the electric current
density j0 can be assumed to be locally uniform (a is a typical length scale of the problem).
The resulting Lorentz force is also uniform:

f0 =
1
c

j0 × B0. (1)
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Depending on the relative orientations of the gravity force ρ0g, where g is the body
accelerations, and f0, the Lorentz force makes the fluid effectively heavier or lighter. In
either case, the uniform volume force is potential, ∇× f0 = 0, and, just like the gravity
force ρ0g, will be balanced by the pressure gradient:

∇p0 = ρ0g + f0. (2)

Now consider a body (filament) of volume V, with a temperature T1 
= T0 and the
corresponding electric conductivity σ1 
= σ0, submerged in the plasma. The total force
acting on the body is as follows:

F =
∫
V

(ρ1g + f1)dV +
∮
S

p0n dS. (3)

Here,

f1 =
1
c

j1 × B0 (4)

is the Lorentz force inside the filament, ρ1 is the density of the filament, j1 is the current
density inside the filament, n is the inward normal to the surface S, p0 is the gas pressure.
If the current j0 remains uniform in the presence of the body and B0 remains approximately
uniform, then F could be expressed as

F =
∫
V

(ρ1g + f1)dV −
∫
V

∇p0 dV, (5)

and so
F =

∫
V

(ρ1 − ρ0)g dV +
1
c

∫
V

(j1 − j0)× B0 dV. (6)

Here, the first integral is the usual buoyancy (Archimedean) force. The second integral
describes the electromagnetic expulsion force. It vanishes only if the electric current density
remains uniform, j1 = j0, which happens only if σ1 = σ0.

Although the MHD expulsion force is formally similar to the Archimedean force in
hydrodynamics, it is different from the well-known magnetic buoyancy force [13]. The
magnetic buoyancy force is the usual buoyancy force, associated with the density difference
caused by the pressure difference in a magnetostatic equilibrium. By contrast, the expulsion
force is independent of the presence of gravity.

The key point for the following is that the static description is purely illustrative. In
reality, the expulsion force will almost always drive plasma flows. As the current density
is not uniform in the presence of a filament with conductivity σ1 
= σ0, the resulting
Lorentz force j × B/c is generally not potential. Hence, it cannot be balanced by potential
forces such as the gas pressure gradient ∇p0. This is why in general the convective term
ρ0(v · ∇)v, where v is the plasma velocity, and the viscous term η∇2v, where η is the scalar
viscosity, must be taken into account in the equation of motion. Physically, this means that
electromagnetically generated vortical flows must appear in the vicinity of a submerged
body [12]. It is these flows that may naturally explain the plasma counter-streaming in
solar filaments. Assuming an incompressible steady plasma flow, the equation of motion is
as follows:

ρ0(v · ∇)v = −∇p + ρ0g + η∇2v +
1
c

j × B. (7)

The electromagnetic expulsion force, also known as electro-magneto-phoresis, has
been extensively studied under laboratory conditions, motivated by such engineering
applications as the extraction of impurities in liquid metals and the separation of mechanical
mixtures and biological cells [14–16].
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3. Counter-Streaming in Solar Filaments

Although the parameter regime in the solar atmosphere differs significantly from
that under laboratory conditions, the expulsion force might play a role in the filament
dynamics. Solar filaments consist of numerous fine and dense threads with a typical radius
a ≈ 107 cm and temperature T1 ≈ 104 K [1]. For the coronal temperature T0 ≈ 106 K, the
ratio of conductivities inside and outside the filament is

σ1

σ0
=

(
T1

T0

)3/2
≈ 10−3 � 1. (8)

As the electric current density j1 � j0, expected effects of the expulsion force in
filaments should be significant.

The calculation of the general expressions for the electromagnetic expulsion force
and the associated vortical flows is a complicated nonlinear problem. Several particular
cases, however, can be studied in detail. Analytical progress was achieved in the limit
of small ordinary Re = ρ0v0a/η and magnetic Rem = 4πσ0v0a/c2 Reynolds numbers
and a small Hartmann number M = (aB0/c)(4πσ0/η)1/2. In this limit, the convective
derivative can be ignored in the equation of motion, the electromagnetic and dynamic
problems decouple, and exact analytical expressions for the plasma flows and the expulsion
force can be obtained for a sphere and a cylinder with radius a [12,17]. Further analytical
progress was achieved for particles of other shapes by using symmetry considerations and
asymptotic methods [18,19].

As a potentially relevant example, consider a solution to the problem of electromag-
netically driven flows near a cylinder with radius a and electric conductivity σ1 surrounded
by the plasma with conductivity σ0 � σ1 and viscosity η, given the uniform electric current
j0 = (j⊥, 0, j‖) and an approximately uniform magnetic field B0 = (Bx, By, Bz) outside the
cylinder. If the cylinder is co-aligned with the z-axis, the solution for the plasma velocity
outside the cylinder (r > a) is as follows:

vx = 0, vy = 0, (9)

vz(r, φ) =
a2 j⊥
4cη

(Bx sin 2φ − By cos 2φ)

(
1 − a2

r2

)
. (10)

Here, r = (x2 + y2)1/2 and φ = tan−1(y/x) is the polar angle (the counterclockwise
angle from the x-axis in the xy-plane). The solution for a viscous fluid satisfies the standard
boundary condition of vanishing velocity on the surface of the cylinder [17]. The expression
for vz(r, φ) is basically a product of two functions: (Bx sin 2φ − By cos 2φ) describes the
alternating flow directions in the neighboring sectors of the xy-plane, whereas (1 − a2/r2)
for r > a describes a monotonic increase in the speed with distance from the surface of the
cylinder.

Two points are worth stressing. First, the trigonometric dependence of vz on the polar
angle φ means that the oppositely directed flows are naturally predicted by the model.
Second, the flows are generated even when the external magnetic field and electric current
are co-aligned (By = 0 and j⊥Bz = j‖Bx), corresponding to a large-scale force-free magnetic
field in the solar corona, j × B = 0. This is a clear illustration of how the action of the
expulsion force differs from that of the standard j × B force.

The presented velocity profile provides strong motivation for modeling counter-
streaming in solar filaments as electromagnetically generated plasma flows. As far as
characteristic values of the key dimensionless parameters are concerned, for typically
observed flow speeds in solar filaments of order v0 ≈ 10 km s−1, the ordinary Reynolds
number is of the order 10−2, and thus Re � 1 as in the solution above. By contrast, the
magnetic Reynolds number is large, Rem  109 � 1. This is why the solution above
cannot be directly applied to describe flows along the filament threads in the solar corona.
Dimensional arguments, however, suggest a simple formula for the expulsion force density:
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f = −f0Φ(Re, Rem). (11)

The dimensionless function Φ has the following asymptotic behavior [20]:

Φ ≈
{

1, Rem < 1,
1/Rem, Rem > 1.

(12)

These expressions lead to an estimate for the typical plasma speed v0, which is consistent
with observations of counter-streaming in solar filaments in the limit Rem � 1 [21].

To put the qualitative dimensional arguments on a firmer footing, it would be neces-
sary to derive an expression for the plasma velocity in the vicinity of a cylindrical filament
thread, which would remain valid for both small and large values of Rem. Symmetry
dictates that the sought-after solution in cylindrical geometry is independent of z if the
cylinder is oriented along the z-axis, in which case MHD equations reduce to two second-
order partial differential equations with the only parameter being the Hartmann number
M. Solutions of the resulting boundary value problem for particular orientations of the
magnetic field have been constructed [22]. Further analytical progress for arbitrary ori-
entations of the electric current and magnetic field near the filament may be achieved by
deriving asymptotic analytical solutions in the limits of small and large M and by matching
the solutions for M ≈ 1.

4. Discussion

Theoretical and numerical studies of solar filaments traditionally consider idealized,
nearly force-free magnetic field configurations [4,5]. The boundary conditions are con-
trolled by the photospheric plasma flows and magnetic flux emergence. The gas pressure
gradient and the gravity force are among the local forces acting on a filament in the corona,
whose effects can be described by perturbing a large-scale force-free model [23].

Whereas the equilibrium in filaments is primarily determined by a balance between
the Lorentz and gravity forces, the observed counter-streaming remains an unsolved
problem [24]. It is worth stressing that even quiescent filaments are highly dynamic
formations, characterized by mass flows and changes of shape on multiple scales [7].

As argued above, what appears to be missing in the available models of solar fila-
ments is an evaluation of the role of the electromagnetic expulsion force in the filament
dynamics. The expulsion force is an MHD analogue of the usual buoyancy (Archimedean)
force [12,25], which provides a well-known method for engineering applications such as
impurity extraction and the separation of bioparticles [16,26]. A nonuniform distribution
of temperature in filaments leads to a nonuniform electric conductivity and hence to a
nonuniform Lorentz force. The resulting electromagnetic expulsion force is generally non-
potential and naturally drives vortical plasma flows that may correspond to the observed
counter-streaming flows in filaments [21].

Since the model calculation of the counter-streaming flows is performed in an idealized
geometry, it is difficult to speculate whether the model might predict different features for
the flows in different parts of a filament. It is reasonable to expect though that, as long as
the flows are generated in filament barbs, they should also be sustained in the main body
of the filament (along the filament spine) whose mass is supported against gravity by a
magnetic force.

The proposed mechanism may provide an explanation for the observed counter-
streaming in filaments. More generally, the electromagnetic expulsion force may play a
role in the dynamics of cosmic plasma with nonuniform distributions of temperature and
electric conductivity.
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In 1979, I arrived back at the University of Chicago from a two-year stint in Australia
to find a very large German post-doc eagerly awaiting me, so we could work together on
transport of cosmic ray electrons perpendicular to the galactic plane. He was Reinhard
Schlickeiser, with whom I have worked on and off through to the present day. Reinhard
became a very good friend indeed and has just recently retired from being Professor of
Theoretical Astrophysics at the Ruhr-University, Bochum, Germany. We worked very well
together for his post-doc year at Chicago and, as it turned out, also my last year at Chicago.

The basic problem of including convection, adiabatic deceleration, diffusion, and syn-
chrotron radiation loss for cosmic ray electrons in a galactic magnetic field whose strength
decreases with height above the galactic plane, and of then determining the associated
synchrotron radiation spectrum with galactic height, is non-trivial. The importance of the
problem lies in the fact that one measures such radiation with galactic height for a number
of galaxies seen edge on. Many show breaks in the spectral index with height. If the basic
problem could be solved, then the spectral index break and the height at which it occurs
could be used to estimate the galactic wind speed transporting the relativistic electrons out
of the plane of each galaxy. Reinhard and I solved this problem in the year he was there.

I then went to work in the oil industry for five years to get enough money to put
my children through college. I then took a job at the University of South Carolina doing
geology, oil risking, and sundry other matters. As an astrophysical interlude, I was invited
by Reinhard to go and work with him in Bonn for a couple of months in summer 1986.
He and his student Wolfgang Droege had been working for a while on the repowering
problem of supernova relativistic electrons. While in Australia, Jim Caswell and I had
effected a clumsy and palliative solution to the problem, but neither of us was happy with
it, but equally, despite large quantities of beer, neither of us could see how to take the
problem any further. Reinhard and Wolfgang had obtained the basis of a solution figured
out in the time in between (Alfvén wave scattering but with the waves both ahead of
and behind the shock front was the crucial ingredient in correctly solving the problem).
Thus, Reinhard, Wolfgang and I worked first on cleaning up the solution. At the same
time, Reinhard and I were involved in what is known as the secondary to primary ratio
problem. Secondarily produced cosmic rays (by spallation of primary cosmic rays from
the interstellar medium) have a different power spectrum than the primaries. Just before
I left to return to Columbia, South Carolina, Reinhard and I figured out how to do that
problem quantitatively and obtained a theoretical result for the difference in the spectra
that precisely matched that observed.

I was heavily engaged with Jolynn Carroll (now at Tromsoe, Norway) in writing the
final version of the sedimentary processes volume using radionuclides. I had also been
“commuting” across the Atlantic to Germany with the environmental work. On one of
the trips, I stopped off at Bochum where my old friend Reinhard Schlickeiser was now
Professor of Astrophysics. Reinhard had previously asked me if I would proofread a book
he was doing on cosmic ray astrophysics, and I had gone through one version with lots of
recommended changes for him to handle. During my visit, he asked me if I would like to
visit Bochum during the summer of 2001 to handle some astrophysics problems. I told him
that it had been a long time since I had been seriously involved in quantitative astrophysics
and I was not sure he would get value for his money. Reinhard grinned and said “Even
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you cannot be so incompetent” and bet me a case of beer that I could still do problems in
astrophysics. I ended up having to pay the bet of course! Thus, summer 2001 was spent
pleasantly in Bochum doing astrophysics. I was also editing a special issue of a journal at
the same time so my evenings were also very busy.

I spent a second summer in 2002 at Bochum solving astrophysics problems quite
happily during the week and, at weekends, doing basin analysis, environmental, and
economics problems in Halle. That summer turned out to be highly productive. Reinhard
and I found a solution to a twenty-year-old problem in astrophysics concerning the heating
and cooling of the interstellar medium. The disparity between heating and cooling rates
was many orders of magnitude no matter how one tweaked the parameters. This glaring
discordance had survived many attempts to find a solution, including earlier attempts
Reinhard and I had also made. Everyone had worked through the complex problem
assuming the interstellar turbulence was isotropic. We allowed the turbulence to be
anisotropic and then figured out what the degree of anisotropy had to be in order to get
heating and cooling rates to agree. This was the first time anyone had even obtained a
solution to the problem. When the work appeared, the main antagonists wrote things like
the solar wind is not so anisotropic so how can the interstellar medium be? Of course, they
failed to understand that one could turn their question on its head and ask: Why is the
solar wind turbulence so isotropic in comparison to the interstellar medium? I figure it will
be at least a decade before they choose to understand, as is not unusual in science!

In 2005, there was the chance of a stay for a year at the Ruhr University in Bochum
where I would be involved again in plasma astrophysics. Approval came through for a one
year Mercator Professorship for me to do astrophysics at the Ruhr University in Bochum so
again I would be interacting intensively with Reinhard Schlickeiser. The first day of work I
was greeted by Reinhard who had a list of astrophysics problems he thought needed to
be solved and had figured I was the guy to do them. My brain was still locked into some
geology and economic risk problems. I had not had time to finish (or even start) while at
Leipzig so cranking my brain into the astrophysics mode once more was not easy. Indeed,
I ended up doing astrophysics during the day and evenings were spent hammering away
(another pun!) at the geology problems.

My time in Bochum was also spent commuting between Bochum and Halle at week-
ends. The nominal travel time on the train was 4 h. However, a change had to be made
at Hannover and, cleverly, the German rail system had arranged a magnificent 6 minute
overlap time for the connection. Of course, one train was always ten minutes late and,
cunningly, the connecting train was always punctual and so had left the station before the
first train arrived. This punctual lateness of the German rail system meant that the elapsed
time was closer to 6 h rather than the official 4 h. One famous day, when I had to give
the physics colloquium at Bochum at midday, I left Halle on the 5 a.m. train to ensure I
would have plenty of time to set up the projector and such. Amazingly, the train connection
was superbly delayed long enough that I arrived just 10 min before my talk—Reinhard
was having kittens with the panic at the thought I was somewhere lost in the labyrinthian
train system.

On one such trip, I was trying hard to solve one of Reinhard’s problems on the train.
The inebriated football fan next to me sort of bleary-eyed looked at what I was writing and
asked “What language is that?” I answered it was mathematics. A long pause before he
came back with the ultimate question “Can you speak it fluently as well as read and write
it? ” Ah yes, German train rides can be amazingly educational. The long train rides were
actually good for solving problems because there were no interruptions from students and
I cherished the time to concentrate. In this way, a majority of the problems were indeed
roughed out.

By the time my stay in Bochum was over, all of the problems on Reinhard’s list
had been solved ranging from a variety of new plasma instabilities (mostly done with
Robert Tautz and some with Anne Stockem) through to ways of balancing the heating and
cooling rates of the interstellar medium (a basic problem that had defied prior solution for
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nearly twenty years and the general solution extended enormously the funny anisotropic
solution Reinhard and I had worked out in 2002) that was completed with Reinhard and
Felix Spanier, and ending with the solution of a highly nonlinear problem for radiation
production and polarization from gamma ray emission objects (done mainly with Urs
Schaeffer-Rolffs and Robert Tautz). The final farewell dinner was fun not the least reason
being that a chess set was given to me with pictures of the whole group where the chess
pieces normally were placed. The reason for this gift was due to the fact that at lunchtime,
in Bochum, there was a group of us who played chess and simultaneously discussed
science problems. Depending on the difficulty of the science problem, one was guaranteed
to lose concentration on the chess game and thus lose the game—a ploy I suspect was often
used by weaker chess players.

This ends my short overview of how it was to be involved via Reinhard in many of the
astrophysical problems of the last few decades. I hope you enjoyed the short description as
I had fun doing the writing thereof.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The basic characteristics of cylindrical as well as spherical solitary and shock waves in
degenerate electron-nucleus plasmas are theoretically investigated. The electron species is assumed
to be cold, ultra-relativistically degenerate, negatively charged gas, whereas the nucleus species is
considered a cold, non-degenerate, positively charged, viscous fluid. The reductive perturbation
technique is utilized in order to reduce the basic equations (governing the degenerate electron-nucleus
plasmas under consideration) to the modified Korteweg-de Vries and Burgers equations. The latter
are numerically solved and analyzed to detect the basic characteristics of solitary and shock waves in
such electron-nucleus plasmas. The nonlinear nucleus-acoustic waves are found to be propagated
in the form of solitary as well as shock waves in such degenerate electron-nucleus plasmas. Their
basic properties as well as their time evolution are significantly modified by the effects of cylindrical
as well as spherical geometries. The results of this study is expected to be applicable not only to
astrophysical compact objects, but also to ultra-cold dense plasmas produced in laboratory.

Keywords: nucleus-acoustic waves; nonlinear waves; nonplanar geometries

1. Introduction

Recently, Mamun, Amina and Schlickeiser [1,2] have first used the name “nucleus-
acoustic (NA) waves” for the study of NA shock waves in strongly coupled degenerate
plasmas [1] as well as NA solitary waves in self-gravitating degenerate plasmas [2]. The
NA waves (NAWs) are degenerate pressure driven acoustic type of waves. They are
completely new since they exist in degenerate plasmas at absolute zero temperature, but
they do not exist in non-degenerate plasmas at either absolute zero or finite temperature.
The degenerate plasmas [3–5] containing negatively charged degenerate electron gas and
positively charged nucleus or ion fluid have important applications not only in astrophys-
ical compact objects [3–7], but also in ultra-cold dense plasmas produced in laboratory
devices [8–12]. The degenerate electron gas is formed by increasing its pressure more and
more so that it cannot be compressed anymore due to Pauli’s exclusion principle. This
implies that there is no extra space in electron gas for more electrons to exist, and as a result,
the space among electrons is infinitesimally small. This corresponds to an extremely high
density electron gas with Δx → 0 and Δp → ∞, where Δx and Δp are the uncertainties in
position and momentum, respectively. This generates an extremely high pressure because
of Heisenberg’s uncertainty principle, ΔxΔp ≥ h̄/2, where h̄ is the reduced Planck constant.
This pressure is called the electron degenerate pressure [3–6]. The latter is the function of
only number density of the degenerate electron gas.

The electron degenerate pressure Pe can be expressed as [3–6,13]

Pe = Pe0

( Ne

Ne0

)γ

, (1)
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where Ne is the number density of the degenerate electron gas, Ne0 represents Ne and
Pe0 represents Pe at equilibrium, γ = 5/3 and γ = 4/3 are, respectively, for non-
relativistically and cold ultra-relativistically degenerate electron (CUDE) gas, according to
Chandrasekhar [3–5]. However, the CUDE pressure (γ = 4/3) is of the present interest.
The CUDE pressures [5,6,13], Pe and Pe0 can, respectively, be expressed as

Pe = Pe0n
4
3
e , (2)

Pe0  3
4

h̄cN
4
3

e0, (3)

where ne = Ne/Ne0, and c is the speed of light in vacuum. It is clear that the CUDE
pressure Pe depends only on Ne and on its equilibrium value, Ne0.

On the basis of Mamun, Amina and Schlickeiser [1,2], a number of theoretical in-
vestigations [14–22] on nonlinear NAWs in degenerate quantum plasmas under different
situations have been made during the last five years. However, in these studies the length
scale, phase speed and dispersion properties of the NAWs are not defined. The dependent
as well as independent variables are also not properly normalized. There are also some
studies [13,14,22], where “ion-acoustic (IA) waves (IAWs)” are used instead of the NAWs.
This is not correct, since at absolute zero temperature the degenerate electron gas does
not allow the IAWs to exist, but does allow the NAWs to exist. This fact along with the
concept of the IAWs [23,24] have lead Mamun [25] to introduce proper length scale as well
as time scale of the NAWs for the study of the linear propagation of the latter. The linear
dispersion relation for the NAWs [25], propagating in cold degenerate electron-nucleus
plasmas (CDENPs), is given by

ω =
kCq√

1 + k2λ2
Dq

, (4)

where ω is the angular frequency and k is the propagation constant of the NAWs; λDq =

(Z h̄cN 1/3
e0 /4πN0Z2e2)1/2 and τp = ω−1

p = (m/4πN0Z2e2)1/2 are, respectively, the
length scale and the time scale (inverse of the nucleus plasma frequency) of the NAWs;
Cq = λDq/τp = (γPe0/ρn)1/2 = (Z h̄cN 1/3

e0 /m)1/2 is the speed of the NAWs, in which
ρn = mN0 is the nucleus mass density, N0 = Ne0/Z is the equilibrium nucleus number
density, and m (Z) is the mass (charge state) of the nucleus species, and e is the charge of
the proton.

The dispersion relation defined by Equation (4) for the long wavelength NAWs
(kλDq � 1) becomes ω  kCq. There is an important issue on the basic differences
between IAWs and NAWs since the form of their dispersion relations are identical. Their
basic differences can be pinpointed as follows:

• The IAWs are driven by the electron thermal pressure depending on the electron
temperature and number density, whereas the NAWs are driven by the electron
degenerate pressure depending only on the electron number density.

• The non-degenerate plasmas at finite temperature allow the IAWs to exist, but do not
allow the NAWs to exist.

• The degenerate plasmas at absolute zero temperature do not allow the IAWs to exist,
but do allow the NAWs to exist.

• The NAWs and IAWs are completely different from the view of their length scale and
phase speed.

The present paper is attempted to study the basic characteristics of cylindrical as well
as spherical solitary and shock waves associated with the NAWs (defined by Equation (4))
in the CDENPs under consideration. The paper is structured as follows. The normalized
basic equations describing the nonlinear dynamics of the NAWs in the CDENPs under
consideration are provided in Section 2. To study cylindrical and spherical solitary waves,
a modified Korteweg-de Vries (MK-dV) equation is obtained and properly examined in
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Section 3. To identify the basic features of the cylindrical and spherical shock waves, a
modified Burgers (MBurgers) equation is also obtained and critically examined in Section 4.
A brief discussion is given in Section 5.

2. Basic Equations

The CDENPs containing the CUDE gas [3–6,26,27] and the cold viscous fluid of any
nucleus like 1

1H or [3–5] or 4
2He or 12

6 C or 16
8 O [6,26,27] are considered. The macroscopic

state of such CDENPs is described in nonplanar geometry as

∂Φ
∂R

=
1

eNe

∂Pe

∂R
, (5)

∂N
∂T

+
1

Rν

∂

∂R
(RνNU ) = 0, (6)

∂U
∂T

+ U ∂U
∂R

= −Ze
m

∂Φ
∂R

− ηn
∂2U
∂R2 , (7)

1
Rν

∂

∂R

(
Rν ∂Φ

∂R

)
= 4πe(Ne −ZN ), (8)

where ν = 1 and ν = 2 represent the cylindrical and spherical geometries, respectivel, N
is the nucleus fluid number density; U is the nucleus fluid speed, Φ is the electrostatic
potential, m and Ze are, respectively, the mass and charge of the nucleus species, T and R
are the time and space variables, respectively, and ηn is the coefficient of dynamic viscosity
for the cold nucleus fluid. To note is that in Equation (5), the inertia of the CUDE gas is
negligible compared to that of the viscous nucleus fluid, and that in Equation (7) the effects
of the self-gravitational field and nucleus degeneracy are negligible in comparison with
those of the electrostatic field and electron degeneracy, respectively.

To describe the equilibrium state of the CDENPs under consideration, it is reasonably
assumed that N = N0, U = 0, and Φ = 0 at equilibrium. Thus, the equilibrium state of the
CDENPs under consideration is described by

Ne0 = ZN0, (9)

Pe0 = K, (10)

where Equation (9) represents the equilibrium charge neutrality condition, and in
Equation (10), K is the integration constant, given by Equation (3).

To find the expression for the normalized ultra-relativistically degenerate electron
number density ne in terms of the normalized electrostatic potential, φ = 3eNe0Φ/4Pe0,
first, substitute Equation (2) and R = rλDq (where r is the normalized space variable) into
Equation (5). Thus, Equation (5) reduces to

∂φ

∂r
= n− 2

3
e

∂ne

∂r
= 3

∂n
1
3
e

∂r
. (11)

Next, integrating Equation (11), and obtaining the integration constant as 3 (since
φ = 0 and ne = 1 at equilibrium), ne can finally be expressed as

ne =

(
1 +

φ

3

)3
. (12)

To normalize Equations (6)–(8), N = nN0, U = uCq, Φ = 4φPe0/3Ne0e, T = tτp,
R = rλDq, ηn = ηλDqCq, and Equation (12) are substituted into Equations (6)–(8). The
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nonlinear propagation of the NAWs in CDENPs is, therefore, governed by the following
normalized equations:

∂n
∂t

+
1
rν

∂

∂r
(rνnu) = 0, (13)

∂u
∂t

+ u
∂u
∂r

= −∂φ

∂r
− η

∂2u
∂r2 , (14)

1
rν

∂

∂r

(
rν ∂φ

∂r

)
= 1 + φ +

φ2

3
+

φ3

27
− n. (15)

Let us note that the length scale, (λDq), and the NA speed, (Cq), depend on the CUDE
pressure, which is given by Equation (3), and that the simple form of the normalized
basic equations given by Equations (13)–(15) are obtained by the special choice of the
normalization used.

3. MK-dV Equation

The MK-dV equation for the nonlinear propagation of the NAWs in the CDENPs is
derived by the reductive perturbation technique (RPT) which requires first the stretching
of the independent variables, r and t as [28]

ξ = ε
1
2 (r − Vpt), (16)

τ = ε
3
2 t, (17)

and next the expansion of the dependent variables, n, u and φ as [28]

n = 1 + εn(1) + ε2n(2) + · · ·, (18)

u = εu(1) + ε2u(2) + · · ·, (19)

φ = εφ(1) + ε2φ(2) + · · ·, (20)

where Vp = ω/kCq is the normalized NAW phase speed, ξ is normalized by λDq, τ is
normalized by τp, and ε is a smallness parameter satisfying 0 < ε < 1.

Using Equations (16)–(20) in the system (13)–(15), taking the coefficients of ε3/2 from
Equation (13) as well as from Equation (14), and the coefficients of ε from Equation (15),
one obtains:

n(1) =
u(1)

Vp
, (21)

u(1) =
φ(1)

Vp
, (22)

Vp = 1. (23)

The relation (23), representing ω = kCq, is the linear dispersion relation for the long
wavelength NAWs, which can also be obtained from Equation (4) for a long wavelength
limit, kλDq � 1. This means that the RPT, utilized here, is valid for the long wavelength
NAWs, and that the phase speed of the long wavelength NAWs is directly proportional to
the square root of the degenerate pressure of the CUDE gas, while inversely proportional to
the square root of the mass density of cold nucleus fluid. Thus, in the NAWs, the pressure
of the CUDE gas gives rise to the restoring force, and the mass density of the nucleus fluid
gives rise to the inertia.
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Again, using Equations (16)–(20) in Equations (13)–(15), keeping the coefficients of
ε5/2 from Equation (13) as well as from Equation (14), and keeping the coefficients of ε2

from Equation (15), one obtains:

∂n(1)

∂τ
+

∂

∂ξ

[
u(2) + n(1)u(1) − Vpn(2)

]
+

ν

Vpτ
u(1) = 0, (24)

∂u(1)

∂τ
+

∂

∂ξ

[
φ(2) +

1
2
[u(1)]2 − Vpu(2)

]
= 0, (25)

∂2φ(1)

∂ξ2 − φ(2) − 1
3

[
φ(1)

]2
+ n(2) = 0. (26)

Now, using Equations (21)–(26), φ(2), u(2) and n(2) can be eliminated to obtain the
MK-dV equation in the form:

∂φ(1)

∂τ
+

ν

2τ
φ(1) +Aφ(1) ∂φ(1)

∂ξ
+ B ∂3φ(1)

∂ξ3 = 0, (27)

where A = 7/6 and B = 1/2 are the nonlinear and dispersion coefficients, respectively.
Let us note that the second term of the MK-dV Equation (27) is due to the effect of

cylindrical or spherical geometry, which disappears for a large value of τ. To examine the
effects of cylindrical and spherical geometries on the NA solitary waves in the CDENPs
under consideration, one has to solve the MK-dV Equation (27) numerically by using the
stationary solitary wave solution [29] of Equation (27) with ν = 0 as an initial profile,

φ = φ0 sech2
(

ζ

Δ

)
, (28)

where φ = φ(1), ζ = ξ − U0τ with U0 and ζ being normalized by Cq and λDq, respectively,
and φ0 = 3U0/A and Δ = 2

√B/U0 are the normalized amplitude and width of the initial
pulse, respectively.

The positive values of A and B along with Equation (28) (with φ0 = 3U0/A,
Δ = 2

√B/U0 and U0 > 0) indicate that the CDENPs under consideration support cylindri-
cal as well as spherical solitary waves with φ > 0. The MK-dV Equation (27) is numerically
solved and analyzed for nonplanar (ν = 1 and ν = 2) geometries. Let us notice that
τ < 0 means that the solitary waves propagate inward the direction of the cylinder or
sphere [30]. It is also used to converse the numerical solution of the MK-dV equation given
by Equation (27). The results are displayed in Figure 1.

Figure 1. Time evolution of (left panel) cylindrical (ν = 1) and (right panel) spherical (ν = 2.0)
nucleus-acoustic (NA) solitary waves in the cold degenerate electron-nucleus plasmas (CDENPs)
under consideration for U0 = 0.1, τ = −20 (solid line), −10 (dotted line), −5 (dashed line), and −2.5
(dashed-dotted line). See text for details.
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It shows that the time evolution of the solitary waves in the CDENPs under considera-
tion are significantly modified by the effects of cylindrical and spherical geometries. It is
observed from Figure 1 that the amplitude of the spherical solitary waves is approximately
two times higher than that of the cylindrical ones, and that the time evolution of the
spherical solitary waves is faster than that of the cylindrical ones.

4. MBurgers Equation

To derive the MBurgers equation for the nonlinear propagation of the NAWs, one can
again employ the RPT [28], but exploit different stretching of the independent variables r
and t as [31,32]

ξ = ε(r − Vpt), (29)

τ = ε2t. (30)

Now, using Equations (29), (30) and (18)–(20) in the system (13)–(15), and taking the
coefficients of ε2 from Equations (13) and (14), and the coefficients of ε from Equation (15),
a set of Equations (21)–(23) is obtained. However, using Equations (29), (30), (18)–(20) in
Equations (13)–(15), and again taking the coefficients of ε3 from Equations (13) and (14),
and the coefficients of ε2 from Equation (15), one obtains:

∂n(1)

∂τ
+

∂

∂ξ

[
u(2) + n(1)u(1) − Vpn(2)

]
+

ν

Vpτ
u(1) = 0, (31)

∂u(1)

∂τ
+

∂

∂ξ

[
φ(2) +

1
2
[u(1)]2 − Vpu(2)

]
= η

∂2u(1)

∂r2 , (32)

φ(2) +
1
3

[
φ(1)

]2 − n(2) = 0. (33)

Using Equations (21)–(23) and (31)–(33), φ(2), u(2) and n(2) can be eliminated to obtain
the MBurgers Equation (34) in the form:

∂φ(1)

∂τ
+

ν

2τ
φ(1) +Aφ(1) ∂φ(1)

∂ξ
= C ∂2φ(1)

∂ξ2 , (34)

where C = η/2 is the dissipation coefficient. One can also see that the second term of the
MBurgers Equation (34) is due to the effect of cylindrical or spherical geometry, which
disappears for a large value of τ.

To define shock wave solution clearly, first, consider ν = 0 in the MBurgers
Equation (34). The latter (for ν = 0) can be expressed as:

∂φ(1)

∂τ
+Aφ(1) ∂φ(1)

∂ξ
= C ∂2φ(1)

∂ξ2 , (35)

which is the standard Burgers equation. To obtain the stationary shock wave solution of
this standard Burgers equation, a frame moving (ζ = ξ − U0τ; τ′ = τ) with the constant
speed U0, the steady state condition (∂φ(1)/∂τ′ = 0) and φ(1) = φ are assumed. These
assumptions reduce Equation (35) to

dφ

dζ
= −U0

C
φ +

A
2C

φ2, (36)

where the integration constant is found to be zero, since φ → 0 and dφ/dζ → 0 at ζ → ∞.
Now, skipping few steps of mathematics of undergraduate level, the shock wave solution
of Equation (6) is given by [31]

φ =
1
2

φm

[
1 − tanh

(
ζ

δ

)]
, (37)
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where φm = 2U0/A and δ = 2C/U0 are, respectively, the amplitude and thickness of the
shock waves. Equation (37) represents the stationary shock wave solution of the MBurgers
Equation (35).

The positive values of A and C along with Equation (37) imply that the CDENPs
under consideration support cylindrical as well as spherical shock waves with φ > 0.

To examine the effects of cylindrical and spherical geometries on the NA shock waves
in the CDENPs under consideration, one has to solve the MBurgers Equation (34) nu-
merically by using the stationary shock wave solution of Equation (34) with ν = 0 as the
initial profile given by Equation (37). The MBurgers equation is numerically solved for
cylindrical and spherical geometries. Let us again notice that τ < 0 means that the shock
waves propagate inward direction of the cylinder and sphere [30], and that τ < 0 is used
to converse its numerical solution. The results are shown in Figure 2.

Figure 2. Time evolution of (left panel) cylindrical (ν = 1) and (right panel) spherical (ν = 2) NA
shock waves in the CDENPs under consideration for U0 = 0.1, η = 1, τ = −20 (solid line), −10
(dotted line), −5.0 (dashed line), and −2.5 (dashed-dotted line). See text for details.

The numerical results, shown in Figure 2, point out that the time evolution of the NA
shock waves in the CDENPs under consideration are significantly modified by the effects
of the cylindrical and spherical geometries. The numerical results observed in Figure 2
indicate that the amplitude of the spherical shock waves is approximately two times higher
than that of the cylindrical ones, and that the time evolution of the spherical shock waves
is faster than that of the cylindrical ones.

The profiles represented by the analytic solution of the standard Burgers Equation (37)
or those obtained from the numerical solutions of the MBurgers Equation (34) are known
as shock waves. The latter are formed when the effect of this dissipation represented
by the term containing C is balanced by that of the nonlinearity represented by the term
containing A.

5. Discussion

The nonlinear propagation of the NAWs in the CDENPs composed of CUDE gas [3–5]
and the viscous fluid of nucleus of any element like 1

1H [3–5] or 4
2He or 12

6 C or 16
8 O [6,26,27]

has been considered to identify the characteristics of the nonlinear waves formed in the
CDENPs under consideration. The results obtained from current study study are as follows:

• The phase speed of the NAWs is given by

Cq =

√
γPe0

ρn
=

√
Z h̄c
mΛe

, (38)

where Equation (3) is used, and Λe = N−1/3
e0 is the inter-electron distance. This

expression indicates that C2
q is inversely proportional to Λe and the mass, m, of a

nucleus species, but is directly proportional to the number of protons, Z , in the
nucleus species. The phase speed does not depend on the temperature of the electron
or nucleus species. This is an unique feature of the NAWs by which the NAWs
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appeared as new waves, and are completely different from the IAWs [23,24] which do
not exist at absolute zero-temperature.

• The dimensional amplitudes of both types of nonlinear waves are determined by
using Equations (3) and (38), and are expressed as:

9
7

√
h̄c
Λe

mV2
0

Ze2 and
27
28

√
h̄c
Λe

mV2
0

Ze2 , (39)

where V0 is the dimensional speed of the frame of reference. These expressions imply
that the amplitudes of the both types of nonlinear waves are directly proportional
to V0, and to the square root of the mass of the nucleus species,

√
m, but inversely

proportional to the square root of the inter-electron distance,
√

Λe, and the number of
the proton,

√Z , in a nucleus species.
• The dimensional widths of both types of nonlinear waves are given by

√
2λDq

√
Cq

V0
and

ηn

V0
. (40)

These expressions imply that the width of the solitary waves is the order of a fraction
of the length scale, λDq, of the waves, since Cq is a fraction of V0 for the formation of the
NA solitary waves. The width of the NA shock waves increases with the dynamical
viscosity coefficient, ηn, of the nucleus fluid, but decreases with the speed, V0.

• The amplitude (width) of the cylindrical NA solitary and shock waves is smaller
(larger) than that of the spherical NA solitary and shock waves. The time evolution of
the spherical solitary and shock waves is faster than that of the NA cylindrical solitary
and shock waves.

• The amplitude (width) of the NA solitary waves is minimum (maximum) for a very
large value of τ, which causes to neglect the effect of cylindrical and spherical geome-
tries, and gives rise to one dimensional (1D) planar NA solitary and shock waves.
Thus, for a large value of τ, 1D planar, cylindrical and spherical solitary and shock
waves are found to be identical.

• The length scale as well as the phase speed, height, and thickness of the NA solitary
and shock waves are completely independent of temperature. These are completely
new linear and nonlinear features of the NAWs under consideration.

The exact analytical solutions of Equations (27) and (34) are difficult to be obtained
because of the nonplanar term (containing ν), where a singularity arises at τ = 0. A
class of analytical solutions of Equation (27) was obtained from the solution of the stan-
dard K-dV equation [33,34]. However, we are interested to find a solitary wave solu-
tion of Equation (27) with the standard boundary condition, viz., lim ξ→−∞ φ(ξ, τ) =
lim ξ→∞ φ(ξ, τ). Therefore, Equation (27) was solved numerically in order to find the spa-
tiotemporal evolution of an initially imposed solitary profile at τ = τmin < 0 with the
standard boundary conditions in (ξ, τ) domain. It was also assumed that the solution
φ(ξ, τ) along with its derivative tends to zero as ξ → ±∞. Further, the solutions of Equa-
tions (27) and (34) with ν = 0 as an initial profiles (i.e., φ(ξ, τmin < 0) = φ0 sech2(ξ/Δ)
for Equation (27) and φ(ξ, τmin < 0) = (φm/2)(1 − tanh [ξ/δ]) for Equation (34)) were
used. The finite difference method was used for numerical solutions. On the other hand,
the traveling wave solutions [35] of combined K-dV-modified K-dV equations as well as
complexly coupled-K-dV equation are obtained by utilizing the technique of the Bäcklund
transformation.

Recently, the trace of nuclei of massive elements, such as 56
26Fe, 85

37Rb, 96
42Mo, etc. in

white dwarf and neutron stars has also been predicted [36,37]. The densities of the stars
are small to neglect their roles in the formation of the NA solitary and shock waves in the
CDENPs [3–6,26,27] under consideration.
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Let us add here that the roles of magnetic field and rotation of neutron stars in the
formation of the NA solitary and shock waves are also important problems, but those are
beyond. the scope of the present study. However, the theory, presented here, is valid for
the long wavelength electrostatic NAWs propagating along the magnetic lines of force of
white dwarfs and non-rotating neutron stars.
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Abstract: The recent associations of neutrinos with blazars require the efficient interaction of rela-
tivistic protons with ambient soft photon fields. However, along side the neutrinos, γ-ray photons
are produced, which interact with the same soft photon fields producing electron-positron pairs.
The strength of this cascade has significant consequences on the photon spectrum in various energy
bands and puts severe constraints on the pion and neutrino production. In this study, we discuss
the influence of the external thermal photon fields (accretion disk, broad-line region, and dusty
torus) on the proton-photon interactions, employing a newly developed time-dependent one-zone
hadro-leptonic code OneHaLe. We present steady-state cases, as well as a time-dependent case, where
the emission region moves through the jet. Within the limits of this toy study, the external fields
can disrupt the “usual” double-humped blazar spectrum. Similarly, a moving region would cross
significant portions of the jet without reaching the previously-found steady states.

Keywords: non-thermal radiation mechanisms; relativistic jets; relativistic processes; BL Lacertae objects

1. Introduction

The theory of the blazar emission was transformed in the early 1990s by the intro-
duction of the so-called external-Compton scenario. The scenario explains the high-energy
component of the spectral energy distribution (SED) through relativistic electrons inverse-
Compton (IC) scattering soft, thermal photon fields that originate outside the jet. This
transformation of blazar research was significantly driven by the works of Reinhard Schlick-
eiser and collaborators employing the accretion disk (AD) as a source for soft external
photons [1–4].

Blazars, a sub-class of active galaxies, are indeed peculiar objects with—in the words
of Reinhard Schlickeiser [5]—

“properties [that] include high optical polarization, extreme optical variability,
flat-spectrum radio emission associated with a compact core, and apparent super-
luminal motion. Such properties are thought to be produced by those few, rare
extragalactic radio galaxies and quasars that are favorably aligned to permit us
to look almost directly down a relativistically outflowing jet of matter expelled
from a supermassive black hole.”

Despite the decades of research that have passed since the advent of the external-
Compton model, a clear consensus on the source of the γ-ray emission in blazars has not
yet been reached.

The low-energy component of the double-humped SED is the least controversial part,
as synchrotron emission of relativistic electrons fits all the required properties (including
the aforementioned polarization). However, the nature of the high-energy component
is subject of intensive discussions. Within leptonic models, it is explained through IC
emission–either with the self-made synchrotron photons (synchrotron-self Compton, SSC)
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or with external photons, such as the AD, photons from the broad-line region (BLR) [6], the
dusty torus (DT) [7,8], or even the cosmic microwave background (CMB) [9,10]. However,
if relativistic jets are also capable of accelerating protons, the γ-rays could also originate
from such interactions, through direct proton-synchrotron emission, or via proton-photon
interactions, causing a cascade of pairs [11–15]. Especially the production of pions would
have the capability to discriminate between the leptonic and the hadronic scenario, as
it would also produce neutrinos. While neutrinos have been associated with blazars
recently [16,17], the significances are not yet sufficient to claim a real detection. Nonetheless,
the discussion is ongoing [18], and the upcoming neutrino observatories KM3NET and
IceCube-Gen2 may provide the definitive answer.

In this study, the hadro-leptonic model is combined with the external soft photons, to
study their influence on the resulting pair cascade and the jet emission. A newly developed
time-dependent, one-zone hadro-leptonic code—OneHaLe—is introduced in Section 2. It is
used in Section 3 to study the influence of the external photon fields by first calculating
steady-state spectra at various locations within the jet, as the region of influence of the
soft photon fields on the jet is strongly distance-dependent. Subsequently, we present the
case of an emission region moving outward passing through the various external photon
fields. We note that the study conducted is a toy model: In order to properly identify the
influence of the external fields, all other parameters of the emission region remain the
same, irrespective of the location. This may have significant consequences for the emerging
spectra. Section 4 provides the discussion of the results and the conclusions.

2. Code Description

The code is based on the recently developed extended hadro-leptonic steady-state code
ExHaLe-jet [19]. In fact, the fundamental equations governing the particle and radiation
processes are the same, and we only provide a brief overview here describing the free
parameters. In the following, quantities in the host galaxy frame are marked with a hat,
while quantities in the observer’s frame are marked by the superscript “obs”. Unmarked
quanitites are either in the co-moving frame of the emission region or invariant.

A spherical emission region is assumed with radius R located a distance z0 from
the black hole within the jet, pervaded by a tangled magnetic field of strength B. The
emission region moves with bulk Lorentz factor Γ under a viewing angle θobs with respect
to the observer’s line-of-sight implying a Doppler factor, δ = [Γ(1 − βΓ cos θobs)]−1, where
βΓ =

√
1 − Γ−2.

The Fokker-Planck equation governing the time-dependent evolution of a given
particle species i (protons, charged pions, muons, or electrons) with spectral density ni(χ)
is given as

∂ni(χ, t)
∂t

=
∂

∂χ

[
χ2

(a + 2)tacc

∂ni(χ, t)
∂χ

]

− ∂

∂χ
(χ̇ini(χ, t)) + Qi(χ, t)− ni(χ, t)

tesc
− ni(χ, t)

γt∗i,decay
. (1)

For numerical reasons, we use the normalized particle momentum, χ = pi/(mic) = γβ,
where pi = γmiβc is the particle momentum, mi is the particle mass, c the speed of light,
γ the particle’s Lorentz factor, and β =

√
1 − γ−2. The first term on the right-hand

side of Equation (1) describes Fermi-II acceleration through scattering of particles on
magnetohydrodynamic waves. The parametrization of [20] is used with a = 9v2

s /4v2
A,

vs and vA the shock speed and Alfvèn speed, respectively, and the energy-independent
acceleration time scale, tacc. This parametrization approximates the momentum diffusion
through hard-sphere scattering.

The second term on the right-hand side of Equation (1) provides momentum changes
χ̇i through gains (Fermi-I acceleration χ̇FI = χ/tacc) and continuous losses. All charged
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particles lose energy through synchrotron radiation and adiabatic expansion of the emis-
sion region. Protons also lose energy through pion production and Bethe-Heitler pair
production, while electrons suffer additional losses through IC scattering of ambient pho-
ton fields. These ambient fields consist of all intrinsically produced radiation fields—such
as synchrotron—as well as the external photon fields, namely the AD, the BLR, the DT, and
the CMB. Naturally, the pion production can turn a proton into a neutron. As we do not
explicitly consider neutrons at this point, this effect is approximated here by a continuous
loss process instead of a catastrophic loss. This channel is marked as “neutron” losses in
Figures 2 and 6, while the nominal pion production cooling term is marked as “pion”.

The remaining three terms on the right-hand side of Equation (1) mark the injection
of particles, the escape of particles from the emission region, and the decay of unstable
particles, respectively. t∗i,decay is the proper decay time scale, which is 2.6 × 10−8 s for

charged pions, and 2.2 × 10−6 s for muons, respectively. As neutral pions decay after
2.8 × 10−17 s into γ rays, Equation (1) is not solved for neutral pions, while their radiation
output is directly calculated from their injection spectrum.

While Fermi-I and II acceleration terms are considered here, we treat them merely as
re-acceleration processes characterized by the acceleration time scale tacc = ηacctesc; namely,
a multiple ηacc of the escape time scale [21]. We do not consider the primary acceleration of
protons and electrons, which may take place in small sub-regions of the larger emission
region [20,22], but approximate it through the injection term Q(χ, t). Here, a simple power-
law injection is used with spectral index si between a minimum and maximum Lorentz
factor, γmin,i and γmax,i, respectively. The injection normalization, Q0,i(t), is given by

Q0,i(t) =
Linj,i(t)
Vmic2

⎧⎪⎨
⎪⎩

2−si(t)

γ
2−si(t)
max,i −γ

2−si(t)
min,i

if si(t) 
= 2(
ln γmax,i

γmin,i

)−1
if si(t) = 2

, (2)

with the injection luminosity, Linj,i, and the volume, V, of the spherical emission region.
The injection functions for pions and muons are calculated directly from the photo-hadron
interactions [23] and decays. Let us again emphasize that Equation (1) is explicitly solved
for (charged) pions and muons.

The escape of particles is described by tesc = ηescR/c, a multiple ηesc of the light travel
time. As ηesc > 1, this mimics the advective flow of particles through the emission region.

Equation (1) is solved with a Chang and Cooper routine [24]; for a detailed description,
see [19,25].

The interaction of protons with photons can result in the creation of pions. Charged
pions decay into muons, which in turn decay into electrons. During both decay processes,
neutrinos are produced. The neutrino spectra are calculated following [19,26,27]. The
secondary electrons produced in this decay chain are injected into the electron-Fokker-
Planck equation along with the primary electrons. Additionally, secondary electrons are
also produced from Bethe-Heitler pair production and γ-γ pair production.

We do not consider explicitly neutrons in this code. Their number density is low
compared to the proton density [13]; so their effect is small. Nonetheless, we plan to rectify
this issue in a future update of the code.

The photon density nph within the emission region is governed by the radiation
transport equation:

∂nph(ν, t)
∂t

=
4π

hν
jν(t)− nph(ν, t)

(
1

tesc,ph
+

1
tabs

)
. (3)

with the frequency ν, the Planck constant h, the emissivity jν, the photon escape time scale
tesc,ph = 4R/3c, and the absorption time scale tabs due to synchrotron-self absorption and
γ-γ pair production. For the latter, all internal and external photon fields are considered.
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From the photon distribution, nph, one can calculate the spectral luminosity in the
observer’s frame:

νobsLobs
νobs = δ4 hν2V

tesc,ph
nph(ν, t). (4)

Equations (3) and (4) hold for all radiation processes within the emission region.
On their way from the source to the observer, γ-ray photons are subject to further

absorption processes. A routine to calculate the important cases of absorption in the BLR
and DT following the prescription in [28] is implemented in the code.

The AD is described with a standard Shakura-Sunyaev disk [29] implying that the
disk is fully described through the mass of the supermassive black hole MBH and its
accretion efficiency ηSS (or Eddington ratio). The proper transformation of the angles into
the comoving frame is considered. The BLR and DT are approximated as isotropic photon
fields in the host galaxy frame within an distance R̂BLR and R̂DT from the black hole, and
their energy distribution is given through a grey-body spectrum of temperature T̂BLR and
T̂DT normalized to a luminosity of L̂BLR and L̂DT, respectively.

The above description holds for both steady-state and time-dependent cases. The
steady state is achieved if the proton and electron densities derived from Equation (1), do
not vary by more than 10−4 compared to the respective values of the previous two time
steps. Time-dependency can be achieved by varying any of the free parameters, in which
case steady states may not be achieved from time step to time step.

3. Influence of the External Fields

Table 1 provides an overview of the free parameters that have been described in the
previous section. The given parameter values are a toy model, which we use to perform
a small parameter study. The parameters are based upon the flat spectrum radio quasar
3C 279 [30], however a direct data comparison is beyond the scope of this paper.

Table 1. Free parameters of the code along with symbols, units, and toy model values. Quantities in
the host galaxy frame are marked with a hat.

Parameter Unit Value

Redshift zred 0.536

Location in jet z0 cm 1.0 × 1016, 1.0 × 1017,
1.0 × 1018, 1.0 × 1019

Magnetic field B G 50
Radius R cm 4.5 × 1015

Bulk Lorentz factor Γ 50
Observation angle θobs deg 1.3
Proton injection luminosity Linj,p erg/s 3.0 × 1043

Proton spectral index sp 2.1
Proton min Lorentz factor γmin,p 4.0 × 105

Proton max Lorentz factor γmax,p 2.5 × 108

Electron injection luminosity Linj,e erg/s 2.0 × 1041

Electron spectral index se 3.0
Electron min Lorentz factor γmin,e 5.0 × 101

Electron max Lorentz factor γmax,e 2.0 × 103

Multiple escape time ηesc 5
Multiple acceleration time ηacc 30
Black hole mass MBH M� 3.0 × 108

AD efficiency ηSS 0.08
BLR luminosity L̂BLR erg/s 2.3 × 1044

BLR temperature T̂BLR K 1.0 × 104

BLR radius R̂BLR cm 7.6 × 1016

DT luminosity L̂DT erg/s 3.0 × 1044

DT temperature T̂DT K 5.0 × 102

DT radius R̂DT cm 4.2 × 1018

Instead, we wish to analyze the influence of the external fields on the SED and the
particle distributions. We chose four locations: close to the AD (z0 = 1 × 1016 cm), within
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the BLR (z0 = 1 × 1017 cm), within the DT (z0 = 1 × 1018 cm), and outside the external
fields (referred to as “jet”, z0 = 1 × 1019 cm). All other parameters remain unchanged,
including the radius and the magnetic field of the emission region. This highlights that
these are indeed toy models meant to study the influence of the external fields without any
degeneracies introduced by varying other parameters.

The result is shown in Figures 1–3. While the SEDs are transformed into the observer’s
frame, the photon spectra are shown as they leave the emission region in the jet. The internal
γ-γ absorption processes are fully considered (the corresponding optical depth τγγ is shown
in Figure 4 left), however no additional absorption of γ rays while traveling through the
photon field of the host galaxy (namely, BLR and DT) or through the cosmological photon
fields (extragalactic background light and CMB) are shown. Any of these photon fields
could additionally (and severely) attenuate the photon flux above 10 GeV. These absorption
processes are, however, not important for the conclusions of this study.

Figure 1. SEDs in the observer’s frame for the four locations: close to the AD (top left), within the
BLR (top right), within the DT (bottom left), and outside the external fields (jet, bottom right). The
black solid line marks the total photon spectrum, while the colored lines mark individual photon
components as labeled. Only those processes are labeled, which are visible in at least one panel. No
external absorption is applied, implying that photon spectra are shown as they leave the jet. The
black dashed line marks the neutrino spectrum.
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Figure 2. Steady-state particle distributions (times Lorentz factor squared), and relevant time scales
as labeled as a function of Lorentz factor γ for the same locations as in Figure 1. For proton losses,
the total, photo-pion, “neutron”, and Bethe-Heitler loss time scales are shown. Adiabatic losses
dominate at lower proton energies, where the loss time scale is constant, while synchrotron losses
may contribute at the highest proton energies. For electron losses, the total, and IC loss time scales
are shown. Synchrotron losses dominate, where IC losses are negligible, while adiabatic losses
are irrelevant.

Figure 3. Steady-state electron injection rates Q (times Lorentz factor squared) as a function of the
Lorentz factor γ as labeled for the same locations as in Figure 1.
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Figure 4. Optical depth τγγ due to γ-γ pair production as a function of frequency (observer’s frame)
for the steady-state cases (left) and the moving-blob case (right) at the different positions within the
jet, as labeled. The thin horizontal line marks τγγ = 1.

Close to the AD, the external fields are very intense, and are further enhanced through
the large chosen bulk Lorentz factor of 50. In turn, the cooling of protons through proton-
photon interactions is very strong (Figure 2), as indicated by the cooling time scales being
dominated by pion production (indicated by the “pion” and “neutron” loss channels) at
Lorentz factors γ > 105. This severely influences the proton distribution function and
results in negligible proton synchrotron emission. The strong pion production, which can
also be seen in the SED (Figure 1) through the neutral pion bump at PeV energies, results in
a significant production of muons and highly relativistic electrons (Figure 3) with Lorentz
factors γ > 1010. Similarly, highly energetic electrons are also injected through Bethe-
Heitler pair production. These electrons produce γ rays through synchrotron emission,
as well as through IC emission for lower-energetic electrons. The γ rays are absorbed
through γ-γ pair production with all photon fields that permeate the emission region. The
strength of the γ-γ absorption is shown in the left panel of Figure 4, and manifests itself
in Figure 1 by the significant flux suppression at energies above 10 GeV. In turn, a strong
electron-positron cascade is initiated. This results in an electron distribution, which is
dominated by secondaries (Figure 3). The resulting electron synchrotron flux (Figure 1)
extends through almost the entire frequency range, destroying the familiar double-hump
shape in the SED. The peak of the flux at γ rays stems from IC scattering of AD photons.

Within the BLR, the proton cooling is drastically reduced at high Lorentz factors with
cooling time scales being longer than the escape time scale of particles at all (relevant)
energies (Figure 2). Unlike in the AD case, where the proton distribution cuts off sharply
at γmax,p, in this case (and the following cases) the proton distribution extends beyond
the injection cut-off because of the (re-)acceleration terms present in Equation (1). The
change in the spectral shape between the AD and BLR cases allows for an enhanced proton
synchrotron emission in the BLR case, influencing the SED at GeV energies (Figure 1).
While pion and Bethe-Heitler pair production are reduced compared to the AD case, the
pair cascade is still very significant (Figure 3) because of γ-γ pair production (Figure 4
left). While the process is less severe than in the AD case, the secondaries still dominate the
electron distribution (Figure 2), and produce synchrotron emission beyond PeV energies.
In the BLR case, IC emission is negligible.

This trend continues in the DT case, as the cascade weakens (Figures 3 and 4 left) and
the more familiar double-humped SED emerges (Figure 1). At ultra-violet (UV) energies in
the SED, a minor contribution from the AD itself is visible. The γ-ray peak is dominated by
proton synchrotron emission, even though the secondary electron synchrotron emission
still dominates at X-ray and TeV energies. The neutral pion bump is below the shown flux
scale, indicating the reduced interaction of protons with photons. In fact, the protons are
completely in a slow-cooling regime (Figure 2).

Lastly, the emission region is located outside the external photon fields in the “jet” case.
While secondary pairs are still being produced (Figure 3), their number is low (Figure 2)
due to low absorption (Figure 4 left), and their flux contribution only shows around photon
energies on the TeV-scale, but at relatively low flux values (Figure 1). Apart from that,
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the SED is dominated by synchrotron emission of protons at X- and γ rays, and primary
electrons in the optical domain. Both peaks are cleanly separated. The AD itself is clearly
visible in the UV range as a big blue bump.

The changes in the cooling strength can also be seen in the energy densities of the
particles, which are given in Table 2. The particle energy densities are always dominated
by protons (by several orders of magnitude compared to the electrons in most cases). The
strong cooling in the AD case results in a low particle energy density, while the reduced
cooling in the other cases results in increased and comparable energy densities. Given the
constant value of the magnetic field in all cases, the ratio of magnetic to particle energy
density decreases from case to case but is always larger than unity.

Table 2. Energy densities in particles upar (in erg/cm3) and the ratio uB/upar of magnetic to particle
energy density. The magnetic energy density in all cases is uB = 100 erg/cm3. The horizontal line
separates the steady-state (top) from the moving (bottom) cases.

Position upar uB/upar

AD 13.4 7.5
BLR 55.6 1.8
DT 59.1 1.7
jet 59.7 1.7

AD 0.38 263
BLR 4.48 22.3
DT 33.3 3.0
jet 59.7 1.7

The different cases are also manifested in the emerging neutrino spectra. With the
weakening production of pions and muons from case to case, the flux of neutrinos also
decreases and drops below the scale of the plots in the “jet” case. The AD case produces
not just the highest neutrino flux, but also a different neutrino spectral shape than the
other cases with a flat maximum (or mildly double-humped structure) over almost three
orders of magnitude in energy. In the BLR and DT case, the neutrino spectra show a single
peak at about 100 PeV. Interestingly, all three cases would be detectable with the future
IceCube-Gen2 instrument [31]. However, the unrealistic SEDs—especially in the AD and
BLR cases—make it seem unlikely that neutrinos could be observed from a blazar–at least,
under this simple set-up.

For the examples discussed above, we have used a bulk Lorentz factor of 50. Hence, if
the emission region were moving, it would cover a lot of space in a relatively short amount
of time because of the Lorentz contraction: ẑ = z0 + ΓβΓct, where t is the time since launch
in the comoving frame, and ẑ is the location of the emission region in the host galaxy frame.
In turn, the external fields, and thus the conditions within the emission region may change
quickly. We try to analyze this, by letting the emission region flow from the base (placed
at six times the Schwarzschild radius (innermost stable circular orbit) of the black hole)
downstream through the jet.

As before, none of the other parameters change, implying that also the primary injec-
tion of protons and electrons continues with the same rate Q and spectral shape throughout
the simulation. This assumes a quasi-instantaneous acceleration of particles [32], as well as
a continuous supply. This is not realistic, as the acceleration of particles also takes time [20].
Additionally, neither the magnetic field B nor the radius R vary. While the radius of the
emission region may not expand as rapidly as the larger jet structure that surrounds it, it
expands nonetheless while it travels through the jet [33] given the high energy densities in
the emission region. While recent observational results [30,34] indicate compact emission
regions beyond the BLR, and maybe even at tens of parsecs from the black hole, it is not
clear whether these are indeed moving emission regions originating close to the black hole
or turbulent cells within a larger flaring region. Similarly, while a high magnetic field can
be expected close to the black hole, the expansion of the emission region causes a drop of
the magnetic field with increasing distance. These considerations highlight once more the
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toy character of this study. Applying such parameter changes are interesting avenues for
future studies beyond the scope of this paper.

Having obtained the full journey of the emission region through the jet, we extract
the SEDs and particle distributions at roughly the same distances as in the steady-state
cases. In fact, given the finite time resolution in the simulation, we extract the SEDs and
particle distribution at the time step closest to the respective distances of the steady-state
models (AD: 9.83 × 1015 cm, BLR: 9.75 × 1016 cm, DT: 9.64 × 1017 cm, jet: 9.75 × 1018 cm).
In order to save computation time, while also properly resolving the initial steps within
the BLR, an adaptive time step of Δtj = 1 × 103+j/20 is used, where j is the step number.
This ensures reasonable accuracy and resolution, and also explains why the time values
given in Figures 5 and 6 are not simple increases by a factor 10, as one would expect. This
is a reasonable trade-off. The results are shown in Figures 5–7, while the optical depth due
to γ-γ pair production is shown in the right panel of Figure 4. Any times and time scales
discussed below are in the comoving frame.

The changes to the SEDs and the particle spectra are profound. The emission region
has passed the AD position after merely 5 ks. The bright external photon fields cause
proton-photon interactions, producing a significant amount of pions (Figure 6), which
decay into photons or muons and pairs. In fact, Figure 7 shows that the injection of pairs
from muon decay is almost at the level as in the steady state (Figure 3), but Bethe-Heitler
produced pairs are about two orders of magnitude below. Similarly, γ-γ pair production
is below the steady-state level, because the internal photon fields (Figure 5) have not yet
been fully developed. In turn, the optical depth due to γ-γ pair production (Figure 4 right)
is not at the steady-state level—merely the absorption caused by external fields is fully
present. One consequence is the reduced absorption of PeV photon energies, allowing
for a very strong flux in the neutral pion bump (Figure 5). The “under-development”
of the internal photon fields is a consequence of the low electron and proton densities
(Figure 6) compared to the steady-state values. The consequence is the absence of the
“nominal” electron synchrotron bump in the infrared domain. The γ rays are dominated by
IC scattering of AD photons—although orders of magnitude below the steady-state case.

The situation only changes mildly until the BLR position is reached after 5.7 × 104 s.
This is still less than the escape times of photons (2 × 105 s) and particles (7.5 × 105 s).
Therefore, particle and photon densities continue to increase. The spectral shape of the
SED shown in Figure 5 is somewhat similar to the steady-state case (Figure 1), but at a
factor of a few reduced in flux. There are a few more details where SEDs differ. In the
γ-ray domain, Figure 5 shows contributions from IC scattering of both the AD and the
BLR. Comparing the IC/AD spectra of the top panels in Figure 5, one notices the similarity
between them. Given that not even one light-crossing time scale has passed since the
launch, the photons produced below have not yet vanished from the emission region,
and therefore continue to contribute to the SED even though the IC/AD production has
reduced a lot at this distance. The IC/BLR spectrum shows a different spectral shape and a
higher flux than in the steady-state case, which can be attributed to the slightly different
shapes in the electron distributions (Figure 6 vs. Figure 2). These are a consequence of the
reduced γ-γ pair production at lower energies (Figure 7). As the protons have also not
reached the steady-state density, their synchrotron flux is reduced compared to the steady
state, while pion and muon production are similarly reduced. Most notably, the neutral
pion decay flux is barely visible at PeV to EeV energies in Figure 5—a reduction of about
an order of magnitude compared to the steady state.

After 5.7 × 105 s, the emission region has reached the DT position. The time the
emission region has traveled is now comparable to the escape time scales of light and
particles. In turn, the SED in Figure 5 is almost equal to the steady-state case (Figure 1),
except for a reduced peak γ-ray flux by a factor of a few. This can be attributed to
the still lower number of protons compared to the steady state, resulting in an equally
reduced proton synchrotron flux. This is also coupled to the low efficiency of proton-
synchrotron emission, implying that the flux needs more time to build compared to the
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electron synchrotron flux, which is basically instantaneous–cf., the cooling time scales in
Figure 6, where electron synchrotron cooling is faster than basically any other time scale
(including the travel time), while the proton synchrotron cooling only dominates at energies
beyond the cut-off of the proton distribution. The IC/AD and IC/BLR components visible
in the SED (Figure 5) exhibit a flux about an order of magnitude below the flux at the BLR
position. This corresponds very well to an exponential decay, as the photons leave the
emission region without being replenished.

The following, relatively long cruise towards the “jet” position (reached after 5.8 × 106 s)
allows for the near-complete relaxation of the emission region towards the steady state that
was obtained above. At this position, SED and particle distributions are practically equal
to the steady-state case.

The particle energy densities change considerably from position to position because of
the accumulation of relativistic particles in the emission region. This is the reason why the
particle energy density at the AD position is about a factor 35 lower than in the steady state
case. This accumulation of particles continues through the other position, increasing the
particle energy density along the way until the jet position, where the previous steady-state
value is obtained. Similarly, the ratio of energy densities is initially very large and decreases
on the way out.

The neutrino spectra shown in Figure 5 indicate as well that the interactions and dis-
tributions require time to unfold. While at the AD position lots of neutrinos are produced,
their flux is a factor of a few below the steady-state flux. At the BLR position the flux
reduction is almost an order of magnitude (similar to the pion flux), while it is closer to the
steady-state flux at the DT position. At the “jet” position, the neutrino flux is reduced a lot,
as in the steady-state case.

Figure 5. Same as Figure 1 but for a moving blob. In each panel, the displayed time is the time that
has passed in the comoving frame since the launch.
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Figure 6. Same as Figure 2 but for a moving blob as in Figure 5. In each panel, the displayed time is
the time that has passed in the comoving frame since the launch.

Figure 7. Same as Figure 3 but for a moving blob as in Figure 5.

4. Discussion and Conclusions

The results of the toy study presented in this paper clearly show the importance of the
external fields in case of the presence of relativistic protons in the jet. Their influence on
the particle evolution is significant resulting in very different steady-state SEDs at different
positions in the jet. Especially at locations within the BLR, the familiar double-humped
SED structure is destroyed. At the DT position, the spectrum is already comparable to
“standard” blazar SEDs, while the “jet” position outside the external fields provides the
cleanest separation between the low-energy and the high-energy bump.

The situation changes entirely when the motion of the emission region is taken into
account. The relatively long source time scales (particle and photon accumulation, interac-
tions, escape) compared to the fast speed imply that the external conditions change too
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fast for the emission region to adapt even until the edge of the DT. Only on “jet” scales is
the previous steady state fully recovered. This, of course, is a consequence of the choice
of Γ = 50, which is a rather extreme value. Lower values on the order of Γ ∼ 10 could
change the situation—especially as it would also significantly reduce the energy density of
the external fields within the emission region. Steady-state solutions might be achieved at
positions much closer to the black hole. Testing this, and the other potential changes to the
model parameters as described above, is however beyond the scope of this paper.

Within the model parameters used in this toy study, the production of neutrinos
depends strongly on the external fields with practically none produced at the “jet” position.
While different parameter sets of the emission region might produce better SED shapes
at positions within the external photon fields, it corroborates the results obtained by
other authors [18,35,36], which makes it difficult to reconcile the neutrino and photon
observations within a one-zone model.

To conclude, the production of neutrinos in a blazar jet in reasonable quantities
remains a challenge, as the requirement for a reasonably dense soft photon field—in order
to produce the required pions—also supports the pair cascade through γ-γ absorption and
Bethe-Heitler pair production. The intrusion of a gas cloud or a star into the jet [37,38]
might provide sufficient numbers of cold protons for direct proton-proton interactions [39],
but the consequences (efficiency of the process, developing pair cascade, etc.) would also
need further studies.
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Abstract: Reinhard Schlickeiser has made groundbreaking contributions to various aspects of blazar
physics, including diffusive shock acceleration, the theory of synchrotron radiation, the produc-
tion of gamma-rays through Compton scattering in various astrophysical sources, etc. This paper,
describing the development of a self-consistent shock-in-jet model for blazars with a synchrotron
mirror feature, is therefore an appropriate contribution to a Special Issue in honor of Reinhard
Schlickeiser’s 70th birthday. The model is based on our previous development of a self-consistent
shock-in-jet model with relativistic thermal and non-thermal particle distributions evaluated via
Monte-Carlo simulations of diffusive shock acceleration, and time-dependent radiative transport.
This model has been very successful in modeling spectral variability patterns of several blazars, but
has difficulties describing orphan flares, i.e., high-energy flares without a significant counterpart
in the low-frequency (synchrotron) radiation component. As a solution, this paper investigates the
possibility of a synchrotron mirror component within the shock-in-jet model. It is demonstrated that
orphan flares result naturally in this scenario. The model’s applicability to a recently observed orphan
gamma-ray flare in the blazar 3C279 is discussed and it is found that only orphan flares with mild
(� a factor of 2–3) enhancements of the Compton dominance can be reproduced in a synchrotron-
mirror scenario, if no additional parameter changes are invoked.

Keywords: active galaxies; blazars; diffusive shock acceleration; radiative transport; gamma-rays

1. Introduction

Blazars are a class of jet-dominated active galactic nuclei. As most convincingly
argued by Reinhard Schlickeiser (RS) in 1996 [1], their broad-band non-thermal emission,
ranging from radio to gamma-rays, must be strongly Doppler boosted due to relativistic
motion of an emission region along the jet, oriented close to our line of sight. The spectral
energy distributions (SEDs) of blazars are dominated by two broad, non-thermal radiation
components. The low-frequency component, from radio to optical/UV/X-ray frequencies,
is generally attributed to synchrotron radiation by relativistic electrons. Most notably,
Crusius and Schlickeiser [2,3] have evaluated the angle-averaged synchrotron emission
from isotropically distributed electrons in random magnetic fields, including plasma effects,
which are now frequently used as the standard expressions for the low-frequency emission
from blazars. However, note also an alternative suggestion by RS in 2003 [4] that the low-
frequency emission may be produced as electrostatic bremsstrahlung, i.e., the scattering
of electrostatic Langmuir waves excited by two-stream instabilities, as expected in the
jet-inter-stellar-medium interaction scenario of Schlickeiser et al. (2002) [5].

Motivated by early γ-ray observations by the SAS-2 and COS-B satellites, already in
1979–1980, RS had considered inverse-Compton scattering as the dominant mechanism
to produce high-energy γ-rays in astrophysical sources, pointing out the importance of
Klein-Nishina effects in the calculation of γ-ray spectra [6–8]. Also in leptonic models for
blazars, inverse-Compton scattering by relativistic electrons in the jet is considered the
dominant high-energy emission mechanism. Target photons for Compton scattering can be
the co-spatially produced synchrotron (or electrostatic bremsstrahlung) radiation, in which
case it is termed synchrotron self-Compton (SSC) emission (e.g., [9,10]). The first suggestion
of target photon fields from outside the jet involved RS in two seminal papers suggesting
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the photon field of the accretion disk as the dominant target photon field [11,12]. Alter-
native sources of external target photons may be the broad-line region (BLR) (e.g., [13]),
a dusty, infra-red emitting torus (e.g., [14]), or other regions of the jet (e.g., [15,16]). The rel-
ativistic motion of the high-energy emission region in a blazar jet through these generally
anisotropic external radiation fields leads to complicated transformation properties from
the active galactic nucleus (AGN) rest frame into the emission-region frame, which were
studied in detail by Dermer and Schlickeiser in 2002 [17]. Which of these potential radiation
fields might dominate, depends critically on the location of the emission region, which can
be constrained by the absence of obvious signatures of γγ absorption of high-energy and
very-high-energy γ-rays by the nuclear radiation fields of the central AGN, with one of
the first detailed discussions of such constraints published by Dermer and Schlickeiser in
1994 [18].

The generation of the non-thermal broadband emission from blazars requires the effi-
cient acceleration of electrons to ultra-relativistic energies. One of the plausible mechanisms
of particle acceleration acting in the relativistic jets of blazars is diffusive shock acceleration
(DSA), which was studied in the context of a general derivation of the kinetic equation
of test particles in turbulent plasmas by RS in two seminal papers in 1989 [19,20] for non-
relativistic shock speeds, while particle acceleration by magnetic turbulence, specifically in
relativistic jets was studied by Schlickeiser and Dermer in 2000 [21]. Particle acceleration at
relativistic shocks has been considered by several authors, using both analytical methods
(e.g., [22–24]) and Monte-Carlo techniques (e.g., [25–29]). The simulations by Niemiec and
Ostrowski [28] and Summerlin and Baring [29] indicate that diffusive shock acceleration
at oblique, mildly relativistic shocks is able to produce relativistic, non-thermal particle
spectra with a wide range of spectral indices, including as hard as n(p) ∝ p−1, where p is
the particle’s momentum.

In two recent papers [30,31], we had coupled Monte-Carlo simulations of diffu-
sive shock acceleration (DSA), using the code of Summerlin and Baring [29], with time-
dependent radiation transfer, based on radiation modules originally developed by Böttcher,
Mause and Schlickeiser in 1997 [32] and further developed as detailed in [33,34]. In those
studies, we found that the particles’ mean free path for pitch-angle scattering, λpas, which
mediates the first-order Fermi process in DSA, must have a strong dependence on particle
momentum, with an index α > 1 for a parameterization of λpas(p) ∝ pα. This likely
indicates a decaying level of magneto-hydrodynamic turbulence with increasing distance
from the shock front. Higher-energy particles, with their larger gyro radii, then probe
more distant regions from the shock front, experiencing less efficient pitch-angle scattering.
Time-dependent simulations of DSA plus radiation transfer were used to fit the multi-
wavelength variability of the blazars 3C279 and Mrk 501 in [31] and the X-ray variability of
1ES 1959 + 650 in [35]. Multi-wavelength flares with approximately equal flare amplitude
in the low-frequency (synchrotron) and high-frequency (Compton) components of the
SED were naturally produced by an increase of the power injected into shock-accelerated
particles, without the need for significant changes of the plasma parameters determining
λpas(p).

However, an orphan γ-ray flare on 20 December 2013, with no significant counterpart
in the synchrotron emission component, reported as Flare B in [36], presented a severe
challenge to this as well as any other single-zone emission model for blazars. A fit to the ob-
served γ-ray flare was possible with a significant hardening of the DSA-generated particle
spectrum as the result of a reduction of the pitch-angle-scattering mean-free path, both in
overall normalization λpas(0) and index α. However, keeping the optical (synchrotron) flux
approximately constant, as observed, required a reduction of the magnetic field by a factor
of 8.7, followed by a gradual recovery to the quiescent-state value with a fine-tuned time
dependence. While the authors argue that such magnetic-field reductions and subsequent
gradual recoveries after the passage of a shock have indeed been observed in interplanetary
shocks (e.g., [37]), it is worth exploring alternative ways to explain orphan γ-ray flares in
blazars within the framework of the shock-in-jet model developed in [30,31].
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One plausible way of producing orphan γ-ray flares in the framework of a leptonic
single-zone blazar model is the temporary enhancement of an external radiation field that
serves as target for inverse-Compton scattering. This is the basis of a class of models termed
synchrotron mirror models, where the synchrotron radiation of the high-energy emission
region traveling along the jet, is reflected by a cloud to re-enter the emission region at
a later time. Such models were first considered by Ghisellini and Madau [38], however
without proper consideration of light-travel time effects, and by Böttcher and Dermer [39]
and Bednarek [40], properly treating light-travel time effects, but considering primarily
the time-dependence of the target-photon energy density without detailed calculations of
the emerging γ-ray spectra. The synchrotron mirror model was more recently re-visited
by Vittorini et al. [41], with a fully time-dependent leptonic synchrotron mirror model
applied to the spectral variability of 3C454.3 in 2010 November, and Tavani et al. [42],
considering also moving mirrors and applying the model to the light curve of the same
flare B of 3C279 considered by [31]. Note a similar model termed the “ring of fire” model
by MacDonald et al. [43,44], where the emission region passes a static synchrotron-emitting
region of an outer sheath of the jet (the “ring of fire”), which produces very similar
variability features as the synchrotron mirror model.

In the present paper, the time-dependent shock-in-jet model of Böttcher and Baring [31]
is extended to include self-consistently a synchrotron-mirror component. Section 2 describes
the additions to the model. Section 3 presents the resulting spectral variability features from
an attempt to apply this model to the orphan γ-ray flare B of 3C279. Section 4 summarizes
and discusses the results.

2. Model Description

The model developed here is a further development of the time-dependent shock-in-
jet model of Böttcher and Baring [31]. In addition to the radiation components already
included in [31] , we now introduce synchrotron emission reflected by a spherical cloud of
radius Rcl at a distance zcl from the central engine, assumed for simplicity to be located
close to the path of the jet, however, not hydrodynamically interacting with it, as considered,
e.g., by the jet-star interaction model [45,46] or the cloud ablation model [47,48]. A mildly
relativistic, oblique shock is propagating along the jet, thus accelerating particles in the local
environment of the shock which constitutes our moving emission region of radius Rb. The
emission region is starting out at time te = 0 (in the AGN rest frame) at a height z0 above
the black-hole—accretion-disk system powering the jet, and is propagating with a bulk
Lorentz factor Γ, corresponding to a speed of βΓc. Thus, at any given time te, the emission
region is located at ze = z0 + βΓ c te.

Synchrotron radiation emitted by the emission region at ze is reflected back by the
cloud to re-enter the emission region at a distance zr from the central engine, given by

zr =
2βΓzcl + ze(1 − βΓ)

1 + βΓ
, (1)

at a time (in the AGN rest frame) tr given by

tr = te + 2
zcl − ze

(1 + βΓ)c
. (2)

Equation (2) may be inverted to find the time at which reflected synchrotron radiation
received at time tr has been emitted:

te =
1 + βΓ

1 − βΓ
tr − 2

1 − βΓ

zcl − z0

c
(3)
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implying that reflected synchrotron emission will be received starting at a time t0 (corre-
sponding to te = 0) given by

t0 =
2

1 + βΓ

zcl − z0

c
. (4)

Reflected synchrotron radiation will be received by the emission region until it passes
the cloud at tpass ≈ (zcl − z0)/(βΓc).

The code writes out the observed synchrotron emission spectra, νFsy
ν (te) for every time

step (with times in the observer’s frame) as the shock propagates along the jet. Therefore,
at any time tAGN > t0, one can use Equation (3) to find the time (in the AGN frame) at
which synchrotron radiation reflected back into the emission region, has been emitted.
The synchrotorn flux irradiating the cloud, νFcl

ν , is then found as

νFcl
ν = νFsy

ν (te)
d2

L
(zcl − ze)2 (5)

where dL is the luminosity distance to the source.
Assuming, for simplicity, that the cloud re-radiates a fraction τcl of the impinging

synchroton radiation isotropically, it will emit a spectral luminosity of νLcl
nu = πR2

cl τcl νFcl
ν .

The emission region will thus receive a flux of Reflected Synchrotron (RS—happy coinci-
dence) radiation, in the comoving frame, of

ν′FRS
ν′ (tr) ≈

R2
cl τcl νFsy

ν (te)Γ4 d2
L

4 (zcl − ze)2 (zcl − zr)2 (6)

where ν′ ≈ Γν is the photon frequency in the co-moving frame.
The code evaluates a time-evolving reflected-synchrotron photon field in the emission

region, n′
RS(ε

′, t′r), where ε′ = hν′/(mec2) is the dimensionless photon energy in the
emission-region frame by the interplay of RS emission entering the emission region at
a rate dn′

RS,inj(ε
′, t′r)/dt′r = π R2

bν′FRS
ν′ (tr)/(Vb ε′2 mec2), where Vb is the volume of the

emission region, and escape on an escape time scale t′esc = 3 Rb/(4 c), over a simulation
time step Δt′ as

Δn′
RS(ε

′, t′r) =
(

πR2
b

Vb

ν′FRS
ν′ (tr)

ε′2 mec2
− n′

RS(ε
′, t′r)

t′esc

)
Δt′. (7)

In the above expressions, h is the Planck constant, me the electron mass, and t′r = tr/Γ.
The time-dependent RS photon field resulting from Equation (7) acts target for inverse-

Compton scattering to produce the synchrotron-mirror Compton emission, and synchrotron-
mirror Compton cooling is included self-consistently. For the evaluation of the synchrotron-
mirror Compton emission, it is assumed, for simplicity, that the target photons enter the
jet directly from the front, and the head-on approximation (e.g., [49]) for the Compton
cross section is used. Hence, photons scattered along the viewing direction, making an
angle θ′obs with respect to the jet axis in the co-moving frame of the emission region,
with μ′

obs ≡ cos θ′obs, have been scattered by a scattering angle μ′ = −μ′
obs. The rate density

at which Reflected Synchrotron Compton (RSC) emission is produced, is calculated as

ṅ′
RSC(ε

′
s, Ω′

s) = c
∞∫

0

dε′ n′
RS(ε

′)
∞∫

1

dγ (1 + β μ′
obs) ne(γ)

dσC
dε′s

(ε′, ε′s, μ′) (8)

where
dσC
dε′s

=
π r2

e
γ εe

{
y +

1
y
− 2 ε′s

γ εe y
+

(
ε′s

γ εe y

)2
}

(9)

with εe = ε′ γ (1 + β μ′
obs), y = 1 − ε′s/γ and β =

√
1 − 1/γ2 [49].
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3. Results: Spectral Variability Features

As detailed in the introduction, the study of the synchrotron mirror model developed
here was motivated by the difficulties in modeling the orphan γ-ray flare B of 3C279 in
December 2013 reported by Hayashida et al. [36]. We therefore start with the quiescent-state
parameters of the shock-in-jet model for 3C279 used in [31]. The emission region is set
to start out at z0 = 0.1 pc, and the cloud acting as the mirror is assumed to be located at
zcl = 1 pc. The bulk Lorentz factor is Γ = 15, as used in [31]. The cloud radius is assumed
to be Rcl = 3 × 1017 cm and its reflective fraction is τcl = 0.1. The complete list of model
parameters can be found in Table 1.

Table 1. Relevant model parameters for the case study motivated by the December 2013 flare of 3C279.

Parameter Symbol Value

Electron injection luminosity Linj 1.0 × 1043 erg s−1

Pitch-angle mean free-path (m.f.p.) scaling normalization η0 100
Pitch-angle m.f.p. scaling index α 3.0
Magnetic field B 0.8 G
Electron escape time scale factor ηesc 3.0
Emission region radius Rb 2.0 × 1016 cm
Bulk Lorentz factor Γ 15
Viewing angle θobs 3.82◦
Initial distance of the shock from the black hole (BH) along the jet z0 0.1 pc
Distance of the cloud from the BH zcl 1 pc
Radius of the cloud Rcl 3 × 1017 cm
Reflective fraction of the cloud τcl 0.1
Mass of the BH MBH 5 × 108 M�
Luminosity of the accretion disk Ld 6 × 1045 erg s−1

Black-body temperature of external radiation field Text 300 K
Energy density of external radiation field uext 4 × 10−4 erg cm−3

The resulting sequence of snap-shot SEDs (starting right before the onset of the
synchrotron-mirror Compton emission) is illustrated in Figure 1. It is clear that the model
does produce a significant orphan γ-ray flare, accompanied by a slight reduction of the
synchrotron emission due to the increased Compton cooling of relativistic electrons. The lat-
ter is consistent with the observed evolution of the SED. However, the amplitude of the
orphan γ-ray flare amounts only to an enhancement of the γ-ray flux by a factor of ∼2,
in contrast to the observed dramatic increase by a factor of �10. Even increasing the
synchrotron-mirror efficiency (e.g., by increasing τcl or Rcl; see Equation (6)), does not
increase the γ-ray flare amplitude substantially. The reason for this is that the γ-ray flux is
limited by the available power injected into shock-accelerated electrons, which are already
in the fast-cooling regime, thus radiating very efficiently. Any further enhancement of the
reflected-synchrotron energy density will only suppress the synchrotron emission further,
but not lead to a significant increase of the γ-ray flare amplitude. We therefore conclude
that a pure shock-in-jet synchrotron mirror scenario is not able to produce the observed
large-amplitude orphan γ-ray flare in 3C279 in December 2013. In order to achieve this,
additional power would need to be injected into shock-accelerated electrons, leaving us
with the same difficulties encountered in [31], i.e., requiring a fine-tuned reduction and
gradual recovery of the magnetic field.

Nevertheless, in spite of its inapplicability to this particular orphan flare, it is worth-
while considering this simulation for a generic study of the expected spectral variability
patterns in the shock-in-jet synchrotron mirror model. The multi-wavelength light curves
at 5 representative frequencies (high-frequency radio, optical, X-rays, high-energy [HE,
200 MeV], and very-high-energy [VHE, 200 GeV] γ-rays) are shown in Figure 2. All light
curves in the Compton SED component (X-rays to VHE γ-rays) show a flare due to the
synchrotron-mirror Compton emission. Note that the VHE γ-ray light curve had to be
scaled up by a factor of 1010 to be visible on this plot. Thus, the apparently large VHE
flare is actually at undetectably low flux levels for the parameters chosen here. In contrast,
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the 230 GHz radio and optical light curves show a dip due to increased radiative cooling
during the synchrotron mirror action. The radio dip is significantly delayed compared to
the optical due to the longer cooling time scales of electrons emitting in the radio band.

Figure 1. Spectral energy distributions (SEDs) of 3C279 in 2013–2014, from [36], along with snap-shot
model SEDs from the shock-in-jet synchrotron-mirror model. The dashed vertical lines indicate the
frequencies at which light curves and hardness-intensity relations were extracted. The legend follows
the nomenclature of different periods from Hayashida et al. (2015) [36].

Figure 2. Model light curves in various frequency/energy bands resulting from the synchrotron
mirror simulation illustrated in Figure 1 at the 5 representative frequencies/energies marked by the
vertical dashed lines. Note that the very-high-energy (VHE, 200 GeV) γ-ray flux is scaled up by a
factor of 1010 in order to be visible on the plot.
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Cross-correlation functions between the various light curves from Figure 2 are shown
in Figure 3. As expected from inspection of the light curves, significant positive correlations
between X-rays and the 2 γ-ray bands with only small time lags (γ-rays leading X-rays by
a few hours) and between the radio and optical band, with optical leading the radio by
∼15 h, are seen. The synchrotron (radio and optical) light curves are anti-correlated with
the Compton (X-rays and γ-rays) ones, again with a significant lag of the radio emission by
∼15 h.

Figure 3. Cross-correlation functions between the model light curves in various energy/frequency
bands.

Figure 4 shows the hardness-intensity diagrams for the 5 selected frequencies/energies,
i.e., the evolution of the local spectral index (a, defined by Fν ∝ ν−a) vs. differential flux.
Generally, all bands, except the optical, exhibit the frequently observed harder-when-
brighter trend. Only the radio and X-ray bands show very moderate spectral hysteresis.
The dip in the optical R-band) light curve is accompanied by a very slight redder-when-
brighter trend, likely as the consequence of the increased radiative cooling during the
synchrotron-mirror action.
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Figure 4. Model hardness-intensity diagrams at the selected frequencies/energies. The spectral index
a is defined by Fν ∝ ν−a, so that a smaller value indicates a harder spectrum. The VHE band has
been omitted here due to its unobservably low flux level and very steep local spectral index. Arrow
indicate the evolution in time.

4. Summary, Discussion, and Conclusions

In this paper, the leptonic shock-in-jet blazar model of [31] is extended with the
addition of a self-consistent synchrotron mirror component. This was motivated by the
difficulty in modeling orphan γ-ray flares with such an effectively single-zone model. A
particularly high-amplitude (factor of ∼10) orphan γ-ray flare of the blazar 3C279 from
December 2013 was chosen as a case study. However, the attempt to model this flare with
the shock-in-jet synchrotron mirror model developed here, failed because the maximum
γ-ray flux was limited by the (fixed) amount of power injected into shock-accelerated
electrons, allowing for orphan flares with amplitudes of at most ∼2–3. Higher-amplitude
flares would require an enhanced energy injection into relativistic electrons, in addition to
more efficient pitch-angle scattering, leading to a harder electron spectrum. However, this
would cause the same difficulties of having to decrease the magnetic field, followed by a
fine-tuned recovery to its quiescent state, as were encountered in [31].

More successful model representations of this particular flare of 3C279 were presented
by several authors. Hayashida et al. [36] use the model of Nalewajko et al. [50] to reproduce
this orphan γ-ray flare by introducing an extreme hardening of the electron spectrum, along
with a location of the emission region much closer to the BH and accretion disk. A hard
electron spectrum ne(γ) ∝ γ−1 up to a cut-off energy of a few 1000 is invoked, which may
be difficult, but not impossible, to achieve with standard particle acceleration mechanisms.
Asano and Hayashida [51] employ a time-dependent one-zone model with second-order
Fermi acceleration, where an enhanced acceleration efficiency leads to a hardening of the
electron spectrum, and a significant reduction of the magnetic field is required to suppress a
simultaneous optical flare. While their model represents the γ-ray spectrum during the flare
well, it does predict a non-negligible optical synchrotron flare accompanying the γ-ray flare.
A similar strategy, based on an analytical solution to the steady-state electron distribution,
was adopted by Lewis et al. [52], also requiring a significant reduction of the magnetic
field to suppress a simultaneous optical synchrotron flare. Yan et al. [53] modelled the
orphan-flare SED using a time-dependent single-zone model with rapid electron cooling.
However, it is unclear whether a transition from the quiescent to this flaring state may
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be produced in a natural way. Lepto-hadronic models naturally de-couple the (proton-
initiated) high-energy emission from the (electron-initiated) synchrotron radiation and
therefore offer an alternative way of reproducing orphan γ-ray flares. Paliya et al. [54]
used the time-dependent lepto-hadronic model of Diltz et al. [55] to model the December
2013 orphan γ-ray flare of 3C279. They also considered the possibility of a two-zone
model, with a small emission region emitting an SED with very large Compton dominance,
emerging during the time of the orphan γ-ray flare.

A representative simulation of the shock-in-jet synchrotron mirror scenario was then
used for a generic study of the expected spectral variability patterns. X-ray and γ-ray
light curves as well as radio and optical light curves are significantly correlated with each
other, while radio and optical light curves are significantly anti-correlated, with radio and
optical (synchrotron) dips accompanying the high-energy flare resulting from more efficient
radiative cooling of the electrons. The response in the radio light curves is found to be
delayed by ∼15 h with respect to other bands. In the scenario investigated here, where no
changes to the diffusive shock acceleration process along the entire evolution of the flare are
assumed, significant spectral hysteresis is not expected, but a mild harder-when-brighter
trend in most wavebands is found.

While it is found that the specific December 2013 orphan γ-ray flare of 3C279 can not
be successfully reproduced with this scenario, it may be applicable to other, more moderate
orphan γ-ray flares. Especially the expected anti-correlation between Compton and syn-
chrotron wavebands may serve as a smoking-gun signature of this scenario. The failure of
the shock-in-jet synchrotron mirror model for the December 2013 flare of 3C279 was primar-
ily caused by the fact that the shock-accelerated, relativistic electrons were already in the
fast-cooling regime and radiating very efficiently, as was required by the fit to the quiescent
state of 3C279. If the quiescent emission of a blazar can be produced by a less radiatively
efficient configuration, then the increase in radiative efficiency in the synchrotron mirror
scenario may lead to substantially higher-amplitude flares. A systematic study of different
scenarios and applications to other sources will be presented in a forthcoming publication.
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Abstract: The ability of space plasmas to self-regulate through mechanisms involving self-generated
fluctuations is a topic of high interest. This paper presents the results of a new advanced quasilinear
(QL) approach for the instability of electromagnetic ion-cyclotron modes driven by the relative alpha-
proton drift observed in solar wind. For an extended parametric analysis, the present QL approach
includes also the effects of intrinsic anisotropic temperatures of these populations. The enhanced
fluctuations contribute to an exchange of energy between proton and alpha particles, leading to
important variations of the anisotropies, the proton-alpha drift and the temperature contrast. The
results presented here can help understand the observational data, in particular, those revealing the
local variations associated with the properties of protons and alpha particles as well as the spatial
profiles in the expanding solar wind.

Keywords: solar wind; plasmas; instabilities; waves

1. Introduction

In collision-poor plasmas in space, e.g., solar wind and planetary magnetospheric
environments, the dynamics of plasma particles, and implicitly their macroscopic proper-
ties, are expected to be constrained by the wave turbulence and the enhanced fluctuations,
which are important components of these hot and dilute plasmas [1–3]. Very intriguing
is the ability of these natural plasmas to self-regulate any deviation from kinetic isotropy,
e.g., drifts, beams or anisotropic temperatures in velocity space, most likely, due to the
inexorable implication of the self-generated instabilities [4–6].

In solar plasma outflows, protons (subscript p) are dominant, with a very high relative
density np > 90%, while alpha particles (subscript α) are highly contrasting, with only
nα < 8%, and a drift relative to protons of the order of local Alfvén speed [7–9]. These
relative drifts may ignite the so-called ion-beam instabilities of various electrostatic (ion-
acoustic) or electromagnetic (EM) modes (Alfvénic, magnetosonic). The resulting en-
hanced fluctuations can evolve fast enough so as to affect the regulation of ion drifts and
their anisotropies [10,11], but may also contribute to the preferential heating of minor
ions [5,12–14]. Their number densities, and the relative proton-alpha drift are indeed
observed to decline with heliospheric distance [15,16], most probably due to scattering of
the beaming particles involving self-generated instabilities.

The evolution of growing fluctuations, as well as the effects of their interaction with
anisotropic plasma particles, cannot be captured by a linear theory of dispersion and
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stability, but needs more elaborate modeling and investigation using quasilinear (QL) ap-
proaches or/and numerical simulations [10,17,18]. In this paper, an advanced quasilinear
(QL) approach of the EM ion-cyclotron (EMIC) instabilities, driven by the proton-alpha
relative drifts, is presented as recently predicted by linear theory [11]. Such an extensive
QL analysis is apt to characterize the amplification and saturation of the growing fluctua-
tions in time, but also the relaxation effects on macroscopic properties of ion populations,
including their relative drift speed [10,19]. A QL approach based on velocity moments,
provides a reliable and straightforward description of the EM instabilities driven by the
kinetic anisotropies of plasma particles [20,21], i.e., combinations of ion beams and intrinsic
temperature anisotropies, typically observed in solar wind. The evolution of the main ve-
locity moments, such as drifting or beaming speeds, and temperature components (parallel
and perpendicular to the magnetic field) is confirmed by the numerical simulations, which
also show that transient deformations of the distributions fade over time, while their initial
shape (e.g., bi-Maxwellian with lower drifts for drifting components) is mainly restored
during the relaxation [10,21–24]. More elaborate QL diffusion theories attempting to repro-
duce transient deformations of the anisotropic distribution [25] are however complicated
and restricted thus far to a limited approximation of treating the wave spectral intensity
as fixed and not evolving in time, which make their implementation to fully describe the
saturation of the fluctuations and relaxation of the anisotropic distribution not yet feasible.

2. Quasilinear Kinetic Theory of Proton-Alpha Drift and Anisotropy Instabilities

2.1. Dispersion Relation and Wave Properties

Below, the EMIC-like instabilities, driven either by temperature anisotropies of ion
populations (Section 3.1), or an alpha-proton (small) drift (Section 3.3), or the interplay of
this drift and intrinsic temperature anisotropy (Section 3.2), are examined. Let us start by
overviewing the linear wave properties associated with a plasma in which the ions are
made of majority protons and alpha particles as the minor species. The basic theoretical
framework was already discussed in a recent paper by Rehman et al. [11], but we hereby
give a brief overview for the sake of completeness. The low-frequency waves of interest
satisfy the cold-plasma dispersion relation specified by

c2k2

ω2
pp

=
ε+ε−

ε
,

ε± =
ω

ω ± Ωp
+

nα

np

ω ∓ Ωp ± Ωα

ω ± Ωα
,

ε =
Ω2

p

ω2 − Ω2
p
+

nα

np

Ω2
p

ω2 − Ω2
α

, (1)

where ωpp = (4πnpe2/mp)1/2, Ωp = eB0/mpc, and Ωα = Ωp/2 represent the proton
plasma frequency, proton cyclotron frequency, and the cyclotron frequency associated
with the alpha-particles, respectively, e, np, mp, B0, and c denoting the unit electric charge,
proton number density, proton mass, ambient magnetic field intensity, and the speed of
light in vacuum, respectively. In Equation (1), ω and k stand for the angular frequency and
the wave number, respectively. Assuming that the ambient magnetic field lies along z axis,
B0 = ẑ B0, the wave vector may be assumed to lie in xz plane without loss of generality,
k = x̂ k⊥ + ẑ k‖ = x̂ k sin θ + ẑ k cos θ, where k⊥ and k‖ are perpendicular and parallel wave
vector components with respect to the ambient magnetic field vector, k = (k2

⊥ + k2
‖)

1/2 and

θ = cos−1(k‖/k) being the magnitude of the wave vector and the wave propagation angle,
respectively. Note that the dispersion relation (1) supports the proton-cyclotron resonance
(ω∼Ωp) and the alpha-cyclotron resonance (ω∼Ωα). Instabilities may take place in the
vicinity of these cyclotron frequencies when the appropriate free energies are available.

Among the useful properties of low-frequency waves is the polarization vector.
The unit electric field vector ê = δE/|δE|, where δE denotes the perturbed wave electric
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field, may be defined with respect to three orthogonal vectors, e1 = [(b̂ × k̂)× k̂]/|k̂ × b̂|,
ê2 = (b̂ × k̂)/|k̂ × b̂|, and ê3 = k̂, where k̂ = k/|k| and b̂ = B0/|B0|. For the ge-
ometry of interest, namely, B0 = ẑ B0 and k = x̂ k sin θ + ẑ k cos θ, one can express
e1 = t̂(sin θ/| sin θ|), ê2 = â(sin θ/| sin θ|), and ê3 = κ̂, where κ̂ = x̂ sin θ + ẑ cos θ, â = ŷ,
and t̂ = x̂ cos θ − ẑ sin θ. In short, the unit electric field vector can be expressed by

ê(k) =
δEk

|δEk| =
Kκ̂ + Tt̂ + iâ

(1 + K2 + T2)1/2 . (2)

Thus, the polarization of the wave electric field is determined through the coefficients
K and T. If K = ∞, then the wave is characterized as the longitudinal mode. If either K = 0
or T = ∞, then the mode is a transverse mode. Rehman et al. [11] show that these constants
are determined from the dispersion relation as follows:

K =− M sin θ
ω

Ωp
,

T =− M cos θ
ω

Ωp
,

M =

(
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‖
ω2

pp

)−1(
ω2

ω2 − Ω2
p
+

nα
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α

ω − Ω2
α

)
, (3)

where ε is defined in Equation (1).
Another useful linear wave property is the magnitude of the group velocity,

vg

c
=

2ck
ω2

pp

1
(∂/∂ω)(ck/ωpp)2 . (4)

Rehman et al. [11] show that the quantity (∂/∂ω)(ck/ωpp)2 is given by
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2.2. Proton-Alpha Drift and Anisotropy Instability Growth Rate

The (quasi)-linear growth/damping rate is generally given by [26]

γ =
π

2ω ∑
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where n0 = np + nα denotes the net ambient plasma density, Jn(x) is the Bessel function of
the first kind of order n, and the quantities K, T, and R are given in Equations (3) and (5).

In ref. [11], it is assumed that both the alpha particles (“j = α”) and protons (“j = p”)
are described by drifting Maxwellian distribution functions, but in the present analysis, we
extend the model to include temperature anisotropy. Hence, we keep the electrons cold,
minimizing their influence, and assume that both protons and alpha particles are described
by the drifting bi-Maxwellian distribution functions [27],

f j =
1

π3/2α2
⊥jα‖j

exp

(
− v2

⊥
α2
⊥j

− (v‖ − Vj)
2

α2
‖j

)
, (7)

where f j is normalized to unity (
∫

dv f j = 1); Vj is the drifting velocity along the background
magnetic field, and thermal velocities α⊥,‖j (which may evolve in time) defined in terms of
the corresponding kinetic temperatures T⊥,‖j are

α⊥j =

√
2kBT⊥j

mj
, α‖j =

√
2kBT‖j

mj
. (8)

The assumption of drifting bi-Maxwellian distribution functions is well supported by
observations [28]. In the present discussion the temperature is defined in the unit of energy.
As such, the Boltzmann constant can be set equal to unity kB = 1.

Under the assumption of drifting isotropic Maxwellian model, in ref. [11], the linear
growth/damping rate (6) is derived by carrying out the velocity integration. Under the
more general model (7), the same calculation as that carried out in [11], is repeated. The re-
sult is a straightforward generalization,

γ

Ωp
=− ∑

j

nα

np

mp

mα

π1/2

[1 + (M cos θ)2(ω/Ωp)2]R

∞

∑
n=−∞

Hn
j ηn

j exp
[
−
(

ζn
j

)2
]

, (9)

where mα = 4mp is the alpha-particle mass; M and R are defined in Equations (3) and (5),
respectively, and

ηn
j =

1
k‖α‖j

[
T⊥j

T‖j
(ω − k‖Vj)−

(
T⊥j

T‖j
− 1

)
nΩj

]
,

ζn
j =

ω − nΩj − k‖Vj

k‖α‖j
,

Hn
j =

(
1 +

M2ω2

Ω2
p

)
n2Λn(λj)

λj
− 2
(

λj + M
nω

Ωp

)
Λ′

n(λj),

Λn(x) =In(x)e−x, λj =
k2
⊥α2

⊥j

2Ω2
j

. (10)

Here, In(x) is the modified Bessel function of the first kind of order n.
In the present analysis, it is assumed that the proton and alpha-particle distribution

functions essentially retain their drifting bi-Maxwellian form throughout the time evolution
of the instability whether it be driven by the proton-alpha relative drift or the temperature
anisotropies. This is, of course, an approximation, but as already discussed in the Introduc-
tion, such an approach is well supported by validation against the numerical simulation.
The time evolution of the particle distributions are controlled by the dynamical evolution
of the temperature and drift velocities, T⊥,‖j and Vj, which is discussed below. We note
that the wave energy density evolution is dictated by the QL wave kinetic equation,
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∂

∂t

( 〈
δE2〉

k〈
δB2〉

k

)
= 2γ

( 〈
δE2〉

k〈
δB2〉

k

)
. (11)

2.3. Quasilinear Particle Kinetic Equation and Velocity Moment Equations

The QL evolution of the particle velocity distribution function f j can be described by
the general velocity space diffusion equation for the particles as given by [19,21,26]

∂ fj

∂t
=

1
v⊥

∂

∂v⊥
v⊥

(
D⊥⊥

∂ f j

∂v⊥
+ D⊥‖

∂ f j

∂v‖

)
+

∂

∂v‖

(
D‖⊥

∂ f j

∂v⊥
+ D‖‖

∂ f j

∂v‖

)
, (12)

with

Dab =
πe2

j

m2
j

∫
dk

〈
δE2〉

k

1 + K2 + T2

∞

∑
n=−∞

{
ω

Ωj

[
K sin θ + T

(
cos θ − kv‖

ω

)] Jn(bj)

bj
− J′(bj)

}2

× δ(ω − k‖v‖ − nΩj)ΔaΔb, (a, b =⊥, ‖),

Δ⊥ =
nΩj

ω
, Δ‖ =

v⊥
v‖

ω − nΩj

ω
. (13)

The temporal evolution of velocity moments of the distribution function, such as drift
velocities of the species j and their temperature components T⊥j and T‖j, are given by

dVj

dt
=

∂

∂t

∫
dv v‖ f j,

dT⊥j

dt
=

mj

2
∂

∂t

∫
dv v2

⊥ f j, (14)

dT‖j

dt
=mj

∂

∂t

∫
dv (v‖ − Vj)

2 f j.

Upon substituting the kinetic Equation (12) to the right-hand sides of Equation (14),
and taking partial derivatives, one gets:

dVj

dt
=−

∫
dv

(
D‖⊥

∂ f j

∂v⊥
+ D‖‖

∂ f j

∂v‖

)
,

dT⊥j

dt
=− mj

∫
dv v⊥

(
D⊥⊥

∂ f j

∂v⊥
+ D⊥‖

∂ f j

∂v‖

)
, (15)

dT‖j

dt
=− 2mj

∫
dv (v‖ − Vj)

(
D‖⊥

∂ f j

∂v⊥
+ D‖‖

∂ f j

∂v‖

)
.

Making explicit use of the definitions for diffusion coefficients (13) as well as the
drifting bi-Maxwellian distribution for f j, defined by Equation (7), it is possible to show,
after some straightforward albeit tedious mathematical manipulations, that the velocity
moment kinetic equations that describe the time evolution of Vj, T⊥j and T‖j are given by
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dVj

dt
=

2π3/2e2
j

m2
j c2

∞

∑
n=−∞

∫ ∞

0
dkk

∫ 1

−1
d(cos θ)

| cos θ|〈δB2〉
k

1 + M2(ω/Ωp)2 Hn
j ηn

j e−(ζn
j )

2
,

dT⊥j

dt
=

2π3/2e2
j

mjc2

∞

∑
n=−∞

nΩj

∫ ∞

0
dk
∫ 1

−1
d(cos θ)

× | cos θ|
cos θ

〈
δB2〉

k

1 + M2(ω/Ωp)2 Hn
j ηn

j e−(ζn
j )

2
, (16)

dT‖j

dt
=

4π3/2e2
j

mjc2

∞

∑
n=−∞

∫ ∞

0
dk
∫ 1

−1
d(cos θ)

× | cos θ|
cos θ

(ω − nΩj − k‖Vj)
〈
δB2〉

k

1 + M2(ω/Ωp)2 Hn
j ηn

j e−(ζn
j )

2
,

where the dynamical Equation (16) are now expressed in terms of perturbed magnetic field
energy density, 〈

δB2
〉

k
=

c2k2

ω2

〈
δE2
〉

k
. (17)

Equation (16) together with the wave kinetic Equation (11) describe the dynamics of
the instability, whose growth rate is given by Equation (9) at each time step.

Here we should caution the readers that the assumption of drifting bi-Maxwellian
velocity distribution functions for all time for both protons and alpha particles while simply
calculating for the time evolution of velocity moments that define these distributions is
a highly idealized approach. It is known that for an electrostatic bump-on-tail instability
problem under a one-dimensional approximation, the quasilinear theory predicts a local
deformation of the resonant range of velocity space that leads to the velocity space plateau
formation. For an electromagnetic instability driven by the temperature anisotropy, on the
other hand, it is also known that the quasilinear diffusion takes place, not along the parallel
velocity space, but rather along a circularly path centered around the wave phase speed,
which leads to the pitch-angle space diffusion and the resultant isotropization of the initial
anisotropic temperatures [29,30]. For the present problem of EMIC instability driven
by either the proton-alpha relative drift or the temperature anisotropies, the situation
is more akin to the pitch-angle diffusion saturation picture as discussed by the above-
referenced early literature rather than the velocity space plateau formation. Besides, recent
papers by Harding et al. [31], Melrose et al. [32] discuss that the velocity plateau formation
is relevant only for strictly one-dimensional problems and that for three-dimensional
situations, the quasilinear process involved in the bump-on-tail instability also leads to the
pitch-angle diffusion, which leads to the isotropic velocity distribution function. We thus
believe that our assumption of the drifting bi-Maxwellian velocity distribution functions
with time-varying velocity moments are justified.

3. Numerical Results

In order to aid the numerical analysis Equations (11) and (16) are considered in
dimensionless form. Thus, the normalized quantities equations of relevance are:

τ =Ωpt, x =
ω

Ωp
, q =

ck
ωpp

,

β⊥,‖j =
8πnjT⊥,‖j

B2
0

, β0j =
4πnpmpV2

j

B2
0

, W(x, θ) dq =
4πnpe2

mpc2

〈
δB2〉

k

B2
0

dk, (18)

which stand for non-dimensional time, normalized wave frequency, normalized wave
number, perpendicular and parallel beta’s as well as the squared dimensionless drift speed
for each species, and normalized wave magnetic field energy density. We solved the set
of equations by numerical means. The basic time stepping method is the standard leap
frog scheme. In the numerical analysis, the wave spectrum was separated into the forward
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(θ > 90◦) and backward (90◦ < θ < 180◦) components since the finite drift velocity breaks
the symmetry associated with the forward versus backward wave propagation directions.

Below in this Section, a parametric analysis of the unstable modes, obtained as nu-
merical exact solutions of the system of QL equations, are given. First, simple cases of
instabilities, driven by temperature anisotropies of protons and alpha particles, are con-
sidered, and, then, the complexity of the study is gradually increased by introducing the
cumulative effect of the alpha drift velocity.

3.1. Proton and Alpha Temperature Anisotropy-Driven Cyclotron Instabilities

In order to test the QL derivations obtained here, let us start with three cases describing
cyclotron instabilities, driven either by the anisotropic protons with Ap ≡ T⊥p/T‖p = 2
(case 1). or by the anisotropic alpha particles Aα = 4 (case 2), or, cumulatively, by the
protons with Ap = 2 and alpha particles with Aα = 4 (case 3). The input parameters are
as follows:

• case 1: Ap = 2, β‖p = 2, Aα = 1, β‖α = 0.2;
• case 2: Ap = 1, β‖p = 2, Aα = 4, β‖α = 0.2;
• case 3: Ap = 2, β‖p = 2, Aα = 4, β‖α = 0.2.

Common plasma parameters in these cases are nα/np = 0.05, T‖α/T‖p = 2,
and β0p,α = V2

p,α/v2
A = 0.

Figure 1 presents the results of the QL temporal evolution for the enhanced magnetic
fluctuations δB2/B2

0 =
∫

dk(δBk/B0)
2 (top row), and their effects on the macroscopic

plasma parameters, i.e., proton plasma betas β⊥,‖p (middle), alpha plasma betas β⊥,‖α

(bottom), for the initial plasma parameters corresponding to case 1 (left), 2 (middle), and
3 (right).

Figure 1. Quasilinear (QL) temporal variations for cases 1–3: the magnetic field energy density (top

row), plasma beta parameters for protons (middle row), and alpha particles (bottom row). See text
for details.

For case 1 (left column), the proton cyclotron instability is driven by the initially
anisotropic protons Ap(0) = 2, and enhances the magnetic wave fluctuations δB2/B2

0. As a
direct consequence, protons are subjected to perpendicular cooling and parallel heating,
as indicated by, respectively, the perpendicular (red solid line) and parallel (red dashed
line) components of the proton beta parameter β⊥,‖p. On the other hand, initially isotropic
[Aα(0) = 1] alpha particles are subjected to perpendicular heating and parallel cooling as
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shown by, respectively, the perpendicular (blue solid line) and parallel (blue dashed line)
alpha beta parameters.

For case 2, the initially anisotropic alpha particles [Aα(0) = 4] excite the alpha cy-
clotron instability. The enhanced wave fluctuations (δB2/B2

0) determine a perpendicular
cooling and parallel heating of alpha particles, as reflected by the perpendicular (blue solid
line) and parallel (blue dashed line) alpha beta parameters β⊥,‖α, respectively. In this case
plasma beta parameters of the initially isotropic protons experience perpendicular heating
(red solid line) and parallel cooling (red dashed line).

In case 3, plasma beta parameters for protons and alphas are subjected to perpen-
dicular cooling and parallel heating by the enhanced wave fluctuations. The interplay of
protons and alpha particles temperature anisotropies inhibits the perpendicular cooling of
alpha particles—see the bottom right panel. It is worth noting that all these results are in
agreement with those reported in [10] for different plasma conditions.

Figure 2 summarizes the discussion on the cooling and heating of plasma ions by the
means of temperature anisotropy for protons (red) and alpha particles (blue) Ap,α ≡ β⊥/β‖
in the left panels, and alpha-proton parallel temperature ratio T‖α/T‖p in the right panels.
For case 1, the temperature anisotropy of protons is relaxed as a function of time (τ = Ωpt),
while the initially isotropic alpha particles ended up with large temperature anisotropy
in the perpendicular direction Aα(τmax) > 1. An opposite situation is observed in case 2,
the temperature anisotropy of alpha particles is relaxed in time, while the initially isotropic
protons gain small anisotropy in perpendicular direction Ap(τm) � 1. For case 3, both
proton and alphas anisotropies are relaxed, under action of the enhanced magnetic wave
fluctuations of the accumulated proton and alpha cyclotron instabilities. Moreover, a relax-
ation for the alpha-proton temperature ratio T‖α/T‖p is observed associated only with the
excitation of the proton cyclotron instability (case 1), while in the other two cases (cases 2
and 3) one finds an enhancement of this temperature contrast mainly determined by the
anisotropic alpha particles.

Figure 2. Temporal evolution for cases 1–3: temperature anisotropies (left column) and alpha-proton
temperature ratio (right column). See text for details.

3.2. Interplay of Temperature Anisotropies and Alpha-Proton Drifts

Here, the complexity of the analysis is increased by considering a finite drift velocity
of alpha particles (parallel to the background magnetic field) as an additional source of free
energy. In order to show the effects induced by the drift, the same initial plasma parameters
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as in cases 1, 2 and 3 are considered, but with finite alpha drifts, which here are named
cases 4, 5, and 6, respectively:

• case 4: Ap = 2, Aα = 1, β0α =
V2

α

v2
A
= 1;

• case 5: Ap = 1, Aα = 4, β0α =
V2

α

v2
A
= 0.25;

• case 6: Ap = 2, Aα = 4, β0α =
V2

α

v2
A
= 1.

Figure 3 shows the effects of the drift velocity of alpha particles on the temporal
profiles of the macroscopic plasma parameters associated with the excitation of the proton
cyclotron instability (case 4, left column), alpha cyclotron instability (case 5, middle column),
and proton and alpha cyclotron cumulative instabilities (case 6, right column). Similar
to case 1, the temporal evolution of the proton plasma beta parameters in case 4 are not
affected by the drift velocity of alpha particles. Both alpha plasma beta parameters are
increased in time, but the alphas are heated more in perpendicular direction, and become
anisotropic at the final stage, that is, Aα(τm) > 1. For case 5, only parallel plasma beta
parameter for protons is subjected to heating for a finite alpha drift. The interplay of the
drift velocity and anisotropy of alpha particles enhance the cooling and heating mechanisms
for the perpendicular and parallel alpha plasma betas, respectively; and alpha particles
become less anisotropic, compared to case 2. For case 6, the interplay of three sources of
free energies is considered, i.e., temperature anisotropies of protons and alphas, and the
drift velocity of alpha particles. In this case, there are two opposite effects on the temporal
profiles of the alpha plasma parameters (the first effect is already shown in Figure 1), such
that temperature anisotropy inhibits the relaxation of the temperature anisotropy of alpha
particles in the perpendicular direction, while the second effect is induced by the alpha
drift velocity, markedly stimulating the cooling and heating mechanisms on alpha particles,
which become isotropic at later time, i.e., Aα(τ)∼1. By comparing cases 5 and 6, one can
state that the isotropization of the alpha particles is markedly enhanced with increasing
the drift velocity, i.e., for Vα/vA = 0.5 in case 5, and Vα/vA = 1 in case 6.

Figure 4 summarizes the relaxation of the relative drift and the induction of tempera-
ture anisotropies of proton and alpha particles (left), and the alpha-proton temperature
ratio (right). By contrasting with results in Figure 2, one can extract some effects induced
by a finite alpha drift velocity. In case 4, the relaxation of proton anisotropy is not affected
by the drift velocity of alpha particles, but the induced temperature anisotropy of alpha
particles is much lower in case 4 than that in case 1. Furthermore, the relaxation of the
alpha-proton temperature ratio is lower than that in case 1. For case 5, the alpha drift
velocity slightly enhances the relaxation of alpha particles compared to case 2 (with Vα = 0).
In case 5, the initially isotropic protons remain nearly isotropic over time Ap(τm) � 1.
In case 6, one can see the relaxation of the proton anisotropy is comparable to that in case 3.
However, the presence of alpha drift velocity markedly enhances the relaxation of the
anisotropy of alpha particles, which become isotropic at final stage Aα(τm)∼1. In cases 5
and 6, the induced alpha-proton temperature ratios are enhanced by the initial drift of alpha
particles. In all cases drift velocities are relaxed in time. It is worth to note that relaxation of
the proton anisotropy and alpha drift velocity, and the induction of the alpha temperature
anisotropy in case 4 (top left panel) are in good agreement with those obtained from the
two-dimensional hybrid simulation reported by [33] for different plasma conditions, see
Figure 1 therein.
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Figure 3. QL dynamical evolution for cases 4–6: the magnetic wave energy density (top row), plasma
beta parameters for protons (middle row), and alpha particles (bottom row). See text for details.

Figure 4. The relaxation of the drift velocity and the induced temperature anisotropies (left column),
and alpha-proton temperature ratio (right column) for cases 5 and 6.

3.3. Instability Driven by the Alpha-Proton Drift (Isotropic Temperatures)

In this Section, it is assumed that the protons and alpha particles are initially isotropic,
i.e., Aα,p(0) = 1, and study the alpha cyclotron instability driven by the alpha drift velocity,
and its consequences on the plasma particles. This case is summarized by the following
initial parameters:

• case 7: Ap = 1, β‖p = 0.05, Aα = 1, β‖α = 0.005, β0p =
V2

p

v2
A
= 0, β0α = V2

α

v2
A
= 4.

Figure 5 displays the temporal profiles for wave energy associated with the enhanced
fluctuations (top-left). In this case the beaming cyclotron instability is driven by finite
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alpha-proton drift. Figure 5 also plots the plasma beta parameters of protons (bottom-left)
and alpha particles (top-right), as well as their temperature anisotropies and drift velocity
(bottom-right). The enhanced fluctuations are evident only for the forward propagating
modes, meaning that the beam alpha cyclotron instability is excited in the direction parallel
to the background magnetic field vector. Both components of plasma betas for proton and
alpha particles are increased in time, i.e., as τ = Ωpt increases, but both species are heated
more along the perpendicular direction. Bottom-right panel of Figure 5 summarizes the
consequences of the enhanced fluctuations, presenting the temperature anisotropies of
protons (red) and alpha particles (blue), and alpha drift velocity (black). Both species gain
energy in perpendicular direction and become anisotropic at later stages with Aα,p(tm) > 1.
However, the induced temperature anisotropy of alpha particles is much larger than that
gained by the protons. The drift velocity is relaxed as τ increases. These results are in good
agreement with those obtained recently from 2.5D and 3D hybrid simulations for different
plasma conditions [22]; see Figure 1 in [22].

Figure 5. Case 7: QL dynamical evolution of the magnetic wave energy density (top left panel),
plasma beta parameters for protons (bottom left panel), and alpha particles (top right panel), and for
relaxing the drift velocity and inducing temperature anisotropies (bottom right panel). See text
for details.

For the same plasma parameters as in case 7, but for different initial plasma beta
parameters, the QL analysis is carried out further on:

• case 8: βp = 0.1, βα = 0.01, β0α ∈ [1, 2, dβ0α = 0.25];
• case 9: βp = 0.5, βα = 0.05, β0α ∈ [1, 2, dβ0α = 0.25];
• case 10: βp = 1.5, βα = 0.15, β0α ∈ [1, 2, dβ0α = 0.25].

The result is given Figure 6, where the QL dynamical evolution of the alpha drift
velocity (top), temperature anisotropies of protons (middle row) and alpha particles (bottom
row) as functions of β‖p(τ) (or β‖α(τ)) for different initial plasma betas β‖p(0) = 0.1 (case
8, left column), β‖p(0) = 0.5 (case 9, middle column), and β‖p(0) = 1.5 (case 10, right
column) are displayed. For each case the evolutions for five different initial values of the
alpha drift velocity β0α ∈ [1, 2, dβ0α = 0.25] are computed.

Top panels of Figure 6 show the relaxation of alpha drift velocity as a function of
β‖p(τ). The alpha-proton relative drift speed decreases to a very low level, i.e., Vα/VA → 0,
suggesting a complete relaxation of ion beams. Physically, ions can indeed be scattered
by the resulting fluctuations, contributing to their redistribution in velocity space. In all
these cases, the relaxation of the drift velocity is associated with a heating of protons in
parallel direction. Middle panels show the dynamical evolution of the proton temperature
anisotropy as a function of β‖p(τ).
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These dynamical evolution can be divided into two regimes, the first regime corre-
sponds to low plasma betas, β‖p∼0.1, when protons are slightly heated in the perpendicular
direction and become anisotropic with Ap > 1, confirming the results in Figure 5. The sec-
ond regime starts by increasing β‖p > 0.1 (cases 9 and 10), or when the dynamical evolution
of beta exceeds β‖p(τ) > 0.1. Increasing β‖p enhances the proton heating in parallel direc-
tion, and protons become (parallel) anisotropic at later stages with Ap(τm) < 1. The same
effects are observed for alpha particles in the bottom panels.

The dynamical evolution of the temperature anisotropy of alpha particles as a function
of β‖α(τ) can also be divided into two regimes. For low betas β‖α < 0.1, the alpha particles
are subjected to heating and cooling in the perpendicular and parallel directions, respec-
tively, and alphas become anisotropic at later stages with large anisotropy in perpendicular
direction Aα > 1, confirming the results in Figure 5. The induced temperature anisotropies
of alpha particles Aα > 1 are in general increasing as the drift velocity increases. The sec-
ond regime starts beyond βα = 0.1, when alpha particles gain (induced) temperature
anisotropies only in parallel direction, i.e., Aα < 1.
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Figure 6. Dynamical evolution of the alpha drift velocity (top row), temperature anisotropies of
protons (middle row) and alpha particles (bottom row) as functions of β‖p(τ) (or β‖α(τ)) for cases 8
(left column), 9 (middle column), and 10 (right column). See text for details.

4. Conclusions

In this paper, an advanced quasilinear (QL) analysis of the electromagnetic ion-
cyclotron (EMIC) instabilities, driven by the kinetic anisotropies of protons and alpha
particles, i.e., their relative drift, combined with or without the intrinsic temperature
anisotropies, is presented. Such plasma conditions are specific to the solar atmosphere at
short heliosphere distances, in the outer corona and solar wind. The long term evolution of
the growing fluctuations, triggered by cyclotron instabilities, and also the consequences of
their interaction were characterized with plasma particles, i.e., protons and alpha particles.
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The paper presents for the first time the consequences of both the forward and backward
fluctuations on the relaxation of the drift and temperature anisotropy of alpha and protons.
Comparing the results obtained here with those of [33], where the analysis refers to total
fluctuations, we were able to study the consequences of the backward fluctuations. The non-
uniform relaxation of the macroscopic quantities in Figures 4 and 6 can be explained as a
result of the competition between the backward and forward propagating modes and their
enhanced fluctuations, as explained in [33] based on the hybrid simulations, e.g., in [22].

The results of the parametric study in Section 3 describe the effects from the interplay
of the alpha-proton relative drift velocity and their temperature anisotropies on the satu-
ration of the self-generated cyclotron instabilities and the relaxation of the non-thermal
distributions. For a non-drifting scenario (Figures 1 and 2), the enhanced EMIC fluctuations
are triggered by temperature anisotropy of protons or alphas, and on long term, show
multiple effects on the particles. In addition to a relaxation of the anisotropy to quasi-stable
states (below the thresholds of instability), the induction of a temperature anisotropy (in a
perpendicular direction) to the other initially isotropic species are also observed. The in-
duced temperature anisotropy of alpha particles is in general much larger than that of the
protons. It is also found that the interplay of temperature anisotropies of protons and alpha
particles has an inhibiting effect on the perpendicular cooling of alpha particles during
the relaxation. Moreover, the alpha-proton temperature contrast (T‖α/T‖p) is reduced only
during the excitation of the proton cyclotron instability, but it is enhanced in the presence
of the alpha instability fluctuations.

Comparing to the non-drifting scenario, an initial, relatively small alpha drift velocity
stimulates the enhanced fluctuations and implicitly the relaxation of the alpha tempera-
ture anisotropy (Figures 3 and 4). The relaxation of temperature anisotropy is markedly
enhanced with the increasing drift velocity of alpha particles, whose temperature becomes
isotropic at final stage Aα∼1. One the other hand, in the generation of the proton cyclotron
fluctuations the relaxation of the proton anisotropy is not affected by the alpha drift ve-
locity, but the induced temperature anisotropy of alpha particles is much lower than that
in the non-drifting scenario. In all the cases drift velocities are relaxed as time evolves,
and temporal profiles of the alpha-proton temperature contrast (T‖α/T‖α) are in general
similar to those obtained for the non-drifting populations. However, a finite alpha drift
may lead to an increase of this contrast in the excitation of the alpha cyclotron instability.

In Section 3.3, the QL temporal evolution of the beam alpha cyclotron instability,
driven by the alpha-proton relative drift, is described with both protons and alpha particles
considered initially isotropic (Figure 5). The enhanced fluctuations are associated only with
the forward propagating modes, parallel to the background magnetic field. These fluctua-
tions act back on the particles, reducing their drift velocity as time evolves. Concomitantly,
the instability effectively leads to the perpendicular heating of the protons and alphas,
so that at later stages, both species exhibit the perpendicular temperature anisotropies,
Ap,α > 1. The induced temperature anisotropy of alpha particles is in general much larger
than that gained by protons. Figure 6 displays the QL dynamical evolution of the macro-
scopic plasma parameters, i.e., alpha drift velocity, temperature anisotropies of alphas and
protons, and their temperature contrast, as a function of the parallel plasma betas β‖α,p.
The dynamical evolution shows the relaxation of the drift velocity being associated with a
heating of protons in parallel direction. One can distinguish two regimes conditioned by
the parallel plasma betas β‖α,p in this dynamical evolution of the temperature anisotropies
of protons and alpha particles. First, for β‖α,p < 0.1, protons and alpha particles are heated
in the perpendicular direction and become anisotropic with Ap,α > 1. The second regime
starts beyond β‖α,p = 0.1, when both protons and alpha particles gain induced anisotropy
in parallel direction, i.e., Ap,α < 1. These results are in good agreement with those obtained
from hybrid and PIC simulations reported in the literature, see for instance [10,22,33].

To conclude, the study shows that the interplay of different sources of free energy
present in solar wind has an important impact on the enhanced fluctuations, in particu-
lar those triggered by the EMIC instabilities, which in turn contribute to an exchange of
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energy between proton and alpha particles, leading to important variations of the temper-
ature anisotropies, the proton-alpha drift and the temperature contrast. Future studies
should also consider complementary conditions of more energetic beams (with higher
drifts), which may excite different (e.g., firehose-like, or electrostatic) instabilities, possi-
bly, with different consequences on the relaxation of the populations involved, especially,
on their temperatures [34]. The results obtained here clearly show that self-generated EMIC
instabilities can contribute to the regulation of drifts and anisotropies of ions present in the
solar wind. Note that the QL theory, considered here, contains both parallel and perpen-
dicular unstable solutions, although we do not give the detailed two-dimensional spectral
characteristics associated with the unstable mode. Recently, Liu et al. [35] investigated
the conditions when oblique instabilities are more competitive. In the future, it will be
interesting to compare the QL theory here presented with the findings in [35] by analyzing
the detailed 2D wave spectrum, but this is beyond the scope of the present study.
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Abstract: Global modulation studies with comprehensive numerical models contribute meaningfully
to the refinement of very local interstellar spectra (VLISs) for cosmic rays. Modulation of positrons
and anti-protons are investigated to establish how the ratio of their intensity, and with respect to
electrons and protons, are changing with solar activity. This includes the polarity reversal of the
solar magnetic field which creates a 22-year modulation cycle. Modeling illustrates how they are
modulated over time and the particle drift they experience which is significant at lower kinetic
energy. The VLIS for anti-protons has a peculiar spectral shape in contrast to protons so that the
total modulation of anti-protons is awkwardly different to that for protons. We find that the proton-
to-anti-proton ratio between 1–2 GeV may change by a factor of 1.5 over a solar cycle and that the
intensity for anti-protons may decrease by a factor of ~2 at 100 MeV during this cycle. A composition
is presented of VLIS for protons, deuteron, helium isotopes, electrons, and particularly for positrons
and anti-protons. Gaining knowledge of their respective 11 and 22 year modulation is useful to
interpret observations of low-energy anti-nuclei at the Earth as tests of dark matter annihilation.

Keywords: cosmic rays; galactic anti-matter; solar modulation; solar cycle

1. Introduction

Galactic anti-matter, specifically positrons and anti-protons, has been observed on
Earth simultaneously, continuously and with high precision over prolonged periods of
time by PAMELA [1–3] and AMS-02 [4,5]. Although these missions, deployed in geospace,
were designed to study specific astrophysical characteristics related to galactic cosmic rays
(GCRs), they both have contributed extensively to the study of solar modulation in the inner
heliosphere. For solar modulation and numerical modelling studies, observations of GCRs
lower than ~30 GV are essential, with modulation effects growing in significance the lower
the rigidity is. In this context, PAMELA had recorded GCRs down to ~80 MV from 2006
to 2016, ending just after the recent maximum solar activity. AMS-02 has been recording
GCRs down to ~0.5–1.0 GV since 2011, including the period of solar maximum activity, the
reversal of the heliospheric magnetic field (HMF) and the recent solar minimum period with
published spectra averaged over Bartels rotations until 2017. However, full spectra of anti-
matter particles detected at regular intervals (e.g., every solar rotation) by these missions
have not been published. This lower limit in energy of AMS-02 is not ideal for studying
the exceptional features of solar modulation occurring at lower energy but the consistent
preciseness of these observations over time has opened up other avenues that can be
studied in conjunction with sophisticated numerical models. These recurrently measured
spectra of such a variety of GCRs over an extensive period of time have made it possible
to take also the investigation of the modulation of GCRs with comprehensive numerical
models to a higher level of preciseness at a rigidity range not previously achievable. This
encourages studying modulation effects occurring at Earth that are quite small and which
on its part provides interesting challenges to numerical modeling attempting to explain
these easily overlooked features and the underlying physics on which they are based.
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Observations of GCRs made by the two Voyager spacecraft in the outer heliosphere
have been of utmost importance for modeling efforts on a global scale. Voyager 1 and 2
crossed the heliopause (HP) in August 2012 at 121.6 AU and in November 2018 at 119 AU
from the Sun, respectively, but far apart, about 167 AU, and at different heliographic
latitudes [6,7]. It is now reasonably well known how wide the inner heliosheath is, what
the average distance is between the termination shock (TS) and the HP and where the
HP is located as the preferred modulation boundary (at least in the nose-direction of the
heliosphere). Also, that none or very little modulation of GCRs (e.g., [8–10]) seems to occur
beyond the HP (this region is considered to be the outer heliosheath, depending on the
shape of the heliosphere and given that a heliospheric bow shock may exist; see [11,12].
Since no significant GCR spatial gradients in intensity were observed over this vast outer
heliospheric region, the assumption that the local interstellar spectra (LISs) for GCRs
are arriving isotropically at the heliosphere still seems reasonable (except at very high
rigidity where it is less than 0.1% (e.g., [13,14]). The point is that three-dimensional
(3D) simulations can now be done much less speculatively than before, both in terms of
the spatial dimensions of the heliosphere and what spectra to utilize at the modulation
boundary as very LISs (VLISs), an aspect that will be discussed in depth in the next section.
It is fair to say that the global and total modulation of GCRs between the HP and the Earth
can be described and simulated more convincingly than before. In this context a number of
open publications by the late W.R. Webber and his colleagues can be found on the eprint
archive arXiv. Also important to the aspired enhancement of global numerical modelling
are observations that were made by the Ulysses mission in the inner heliosphere between
1990 and 2009 from which an interpretation could be formed of how GCR modulation may
happen at high heliolatitudes (e.g., [15,16]; and the reviews in [17,18]).

In the context of establishing VLISs, both Voyager spacecraft have made measurements
in the kinetic energy (KE) range of 3 MeV/nuc to 346 MeV/nuc for protons, total helium and
other light GCR nuclei as well as for electrons (actually negatrons) from 2.7 to 74 MeV [19].
The energy range for these particles was specified somewhat differently in [20,21] also
reported observations for the secondary GCR isotopes H-2 (2H1 deuteron), and He-3
(3He2), apart from protons and He-4 (4He2), as primary particles. However, anti-matter
such as positrons and anti-protons are not measured by them, so that it remains an issue
what to use at these low rigidities for their VLISs in global modeling. Fortunately, solar
modulation can be considered negligible at an appropriate high enough rigidity where
precise measurements now exist so that at least their VLISs are easily determined at
these high rigidity values. The only point of contention here is at what rigidity the solar
modulation of GCRs truly commences [22].

A way to test for dark matter annihilation may be found in observations of low-
energy anti-nuclei in GCRs, such as anti-protons, anti-deuteron and anti-helium, making
the proper numerical study of the modulation of these anti-particles in the heliosphere
imminent. Rudimentary modulation models, such as the Force-Field model [23] and
analytical variations there-of (e.g., [24]), are inadequate for this purpose and can easily
yield misleading results when it comes to precise modeling as pointed out in [25–28].

The layout of this paper is as follows: First the essence of the basic transport theory
used for numerical models and our modeling approach to solar modulation studies are
briefly described, including global modulation parameters, as well as the diffusion coef-
ficients in terms of their rigidity dependence. Particle drifts are discussed and what the
drift related predictions for solar modulation are and how it manifests from the difference
between the modulation of electrons and positrons, protons and anti-protons and what dif-
ferences there are between positrons and anti-protons. In Section 3, the manner is discussed
in which the relevant VLISs are established by using both observations and numerical
modulation models. In Sections 4 and 5 simulations of the modulation of positrons and
anti-protons are shown in particular and the differences between them are discussed. A
brief discussion is given on the modulation of other types of anti-matter, with a summary
and a compilation of computed VLISs in the conclusion.
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2. Numerical Model and Modeling Approach to Solar Modulation Studies

2.1. Theory and Assumptions

The modeling here is based on solving numerically the transport equation (TPE)
derived in [29]:

∂ f
∂t

= ∇.(K.∇ f )− (V + 〈vD〉).∇ f +
1
3
(∇.V

)
∂ f

∂ln p
, (1)

where f (r , p, t) is the omnidirectional GCR distribution function, p is particle momentum, r

is the heliocentric position vector and t is time. The differential intensity of GCRs is given
by I = p2f or equivalently I = R2f, where R is rigidity in GV. The terms on the right-hand
side represent diffusion, convection, gradient and curvature drifts, and adiabatic energy
changes. The solar wind velocity is V = V(r, θ)er. Adiabatic energy losses occur when
∇.V > 0 which applies to most of the heliosphere. The diffusion tensor K consists of three
distinct diffusion coefficients (DCs), first, K‖ which is parallel to the average HMF, K⊥r
which is radially perpendicular to this field and K⊥θ which is perpendicular to this field
in the heliospheric polar direction. The averaged guiding center drift velocity for a near
isotropic distribution is given by

〈vD〉 = ∇× (eBKD) (2)

with eB = B/B. Here, KD is the drift coefficient (in the literature it is also indicated with KA)
where B is the magnitude of the background HMF at a given position in the heliosphere,
the value of which changes spatially and with solar activity.

The global HMF is assumed to have a basic Parkerian geometry in the equatorial
plane, but modified in the polar regions similar to the approach of [30]; for a full description
of this particular aspect, see [31]. The global latitudinal dependence of the V is assumed
to change from 430 km s−1 in the equatorial plane to 750 km s−1 in the polar regions only
during solar minimum activity in accordance with Ulysses observations (see [32], and
reference there-in; and reviews [17,18,33]). The HP position is assumed at 122 AU, with any
asymmetry in the shape of the heliosphere considered to be negligible for GCR modulation
studies (e.g., [34,35]). The position of TS is changed according to solar activity levels [36]
from 88 AU (e.g., in 2006) to 80 AU (e.g., in 2009). The shock compression ratio of 2.5 is
assumed for the TS consistent with observations [37,38] in order to account for the drop in
V beyond the TS as assumed in the model. For details on this modeling approach, see [39]
and references there-in. However, the re-acceleration of GCRs at the TS is not considered
for this study; for details on such a modeling approach; see [40,41].

This 3D numerical model and all relevant assumptions were comprehensively de-
scribed in [42–46]. The main features of this model and several applications can also be
found in these publications as well as those recently published [47–51]. For general reviews
on solar modulation, see [27,33,52–54] and for reviews on deriving transport equations for
GCRs, see [26,55,56] for those applicable to heliospheric transport.

2.2. Modeling Approach

The method and procedures followed here consist of the following: The VLIS for
electrons and protons were established as the first step and then used in the 3D modulation
model to reproduce the observed electron and proton spectra at the Earth from PAMELA
for 2006 to 2009, thus focussing at first on solar minimum conditions. This was extended to
include both PAMELA and AMS-02 spectra for after solar minimum to full maximum con-
ditions, including the reversal of the HMF polarity during solar maximum and afterwards
up to the present solar minimum. In this manner the model, with its assumptions about the
global heliosphere as well as all the modulation parameters, DCs and the drift coefficient
were tested and vindicated. The set of proton modulation parameters was applied to other
GCR nuclei, e.g., helium isotopes as well as anti-protons over time (solar activity) and the
electron parameter set was applied to positron modulation. This assures that the modeling
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parameters are not changed in an ad hoc and inconsistent manner for the purpose of simply
fitting observational data sets at the Earth, including those for GCR anti-matter.

The only differences in the modulation of protons and anti-protons are their global
drift directions in the heliosphere, and of course, their VLISs; similarly the only differences
in the modulation of electrons and positrons are their VLISs and their global drift directions.
The latter is of course responsible for the charge-sign dependent modulation effect over
a 22-year cycle related to the reversal of the HMF polarity as will be discussed further in
what follows.

Reproducing the precise observational spectra on Earth, especially at higher R, is being
studied to determine refinements to the rigidity dependence of the DCs over time. This
approach allows that the mentioned three DCs and the drift coefficient can be quantified
in terms of their rigidity so that the ‘free parameter space’ in these models has become
significantly reduced. How the 11-year and specifically the 22-year modulation cycles come
about are explained, including charge-sign effects, the physics of which is not described by
the Force-Field modulation approach (e.g., [27,57–59]).

The 3D numerical model for this modulation study is for a steady-state, so that
∂ f /∂t = 0 in Equation (1), so that modulation effects shorter than 27-days and all transient
events such as Forbush decreases or co-rotating interaction regions cannot be adequately
described with this model. Determination of the averaged values for modulation parame-
ters that vary with solar activity is an important part of the modeling approach, specifically
the tilt angle α of the heliospheric current sheet (HCS) and the magnitude B of the HMF,
both considered as good proxies for solar activity when it comes to charged particles; see
also [60,61]. These variations in α and B are used in the numerical model to set up realistic
modulation conditions for each epoch.

The top panel of Figure 1 shows α at Earth from 2005 to 2018 [62] together with
the calculated 15-month smoothed moving averages (SMAs) as used in the model. The
observed B values at the Earth are shown in the bottom panel for the same period [63]
together with the corresponding SMA. Also shown in this figure is the period when no
well-defined HMF polarity was reported, as indicated by the shaded band, and during
which the HMF polarity reversal occurred [64]. There seems no consensus on the exact
time span of this band as discussed in [65]. However, important is that before this period
the polarity of the HMF was A < 0 and afterwards A > 0; see the detailed discussion in
Section 2.5.1. The lowest values of both α and B occurred in 2009 as part of that prolonged
solar minimum, of which the specific modulation effects were discussed in detail in [42]. It
is expected that similar low values may occur during the present solar minimum period.
The highest values for α occurred around the beginning of 2013, with extraordinary high
but temporary values in 2011 and late in 2014, but for B the highest values occurred in late
2014, remaining relatively high until the end of 2015.

2.3. Rigidity Dependence of the Diffusion Coefficients

The DCs for GCR modulation in the heliosphere are related to the particles’ mean free
paths (MFPs), λ, through K = (v/3)λ with v = βc the particle’s speed, c the speed of light so
that β is the corresponding ratio. The relationship between, e.g., λ‖ and K‖ is given then by
K|| = (v/3)λ|| = (βc/3)λ||, similarly for K⊥r,K⊥θ and KD. The rigidity dependence of the
three relevant MFPs λ‖,λ⊥r,λ⊥θ and the drift scale λD are shown in Figure 2 for positrons
in the left panel and for anti-protons in the right panel for yearly averages from 2006 to 2017
as established in [45,60,66,67] in order to reproduce the corresponding observed electron
and positron spectra, and the proton and anti-proton spectra at Earth.
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Figure 1. The 27-day averaged values for the heliospheric current sheet (HCS) tilt angle (top panel; black line) and magnitude
of the heliospheric magnetic field (HMF) (bottom panel; black line) at the Earth from January 2005 to December 2018 along
with the calculated 15-month smoothed moving averages (SMA; red dots) as applied in the model. The period with no
well-defined HMF polarity is indicated by the shaded band during which the HMF polarity reversal took place changing
from A < 0 to A > 0. These entities serve as good proxies for solar activity when it comes to charged cosmic particles.

Figure 2. The particles’ mean free paths (MFPs) λ‖ λ⊥r, λ⊥θ and drift scale λD(≡ λA) as a function of rigidity at Earth, for
positrons (left panel) and anti-protons (right panel), averaged yearly from 2006 to 2017; solid lines indicate the parallel
MFPs, dashed-dotted lines indicate the perpendicular MFPs (middle set of curves) and the drift scale (lower set of curves),
with different colours for each year as indicated; values of λ⊥r and λ⊥θ are the same at Earth.
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Figure 2 illustrates important aspects of how positrons and anti-protons (and electrons
and protons) in terms of the R dependence of their MFPs are modulated, apart from
the depicted time-dependence which is discussed later. Both these particle types have a
different R dependence for the three MFPs at low compared to high R; for positrons this
change in spectral slope occurs typically around ~0.4 GV and for anti-protons around
~4 GV, with steeper slopes consistently above these turn-point (tipping point) in R. The
R-dependence of λ⊥r and λ⊥θ are the same and modestly different from λ‖ at high R but
not at low R; overall λ⊥r and λ⊥θ are only about 2% of the value of λ‖ but their values
differ away from the equatorial plane of the simulated heliosphere (see [45]). The MFPs for
positrons (and electrons) have a characteristic slope, almost independent of R below ~0.4
GV, which means that the total value of the modulation of these particles between the HP
and the Earth is the same below 0.4 GV because their modulation is diffusion-dominated
in this rigidity range, not adiabatically-dominated as for protons and anti-protons. This
aspect was elaborately illustrated with GCR spectra [45,60,66,67] and relates to what was
discussed theoretically in [68–70] and from a turbulence theory point of view in [55,71].
The drift scale also shows a difference at high R (where λD ∝ R) compared to low R, with
the change in spectral slope occurring typically between 1–2 GV for both positrons and
anti-protons. This significantly steeper decrease in λD for R < ~1 GV has been reported
and studied comprehensively with numerical models (e.g., [72], and references there-in)
and theoretically (e.g., [73,74], and references there-in).

In the modeling used here it is assumed that the DCs (and MFPs) in terms of their
spatial dependence scale proportional to B0/B with B0 = 1 nT. This is the simplest and most
pragmatic approximation to turbulence theory that can be assumed for DCs in numerical
models and has turned out to be quite reasonable; for discussions and applications of more
complicated assumptions regarding the relationship between these DCs and heliospheric
turbulence; see [72,75–78]. Mathematical expressions for the R-dependence of the three
MFPs, and the drift scale, as shown in Figure 2, are not repeated here (they are quite
lengthy and would take up a substantial amount of space). They were given extensively
in [48,60,72], and many were also utilized in [47,79–81].

2.4. Time Dependence of the Diffusion Coefficients

Another intriguing aspect of what is depicted in Figure 2 is the time variation found
for the R dependence of the MFPs. For anti-protons their time variation is largest below
4 GV with a remarkable spread in values between 2006 and 2017, at the lowest R this spread
is in the order of a factor of 10 but much less above 4 GV, about a factor of 3. This is a
manifestation of the larger modulation that GCRs nuclei experience the lower the rigidity.
For positrons (and electrons) this is different; the spread in time is significant for R > 0.4 GV,
in the order of a factor of 10 but less significant below this value. The latter is based on
comparing the model with published PAMELA observations for the solar minimum period
before 2010; for electrons the observational cut off was established at ~80 MeV but originally
higher for positrons at ~200 MeV because of statistics [2,82]; with AMS-02 observations
from R > 0.5 GV but usually published for R ≥ 1 GV ([5] and references there-in). This
aspect, as well as the apparent steady behaviour in terms of rigidity, is therefore difficult to
investigate more precisely, also complicated by Jovian electrons that dominate the spectrum
at the Earth below ~50 MeV [83,84]. Although observations (detection) of electrons and
positrons at lower R in geospace are intricate [85,86], such data will be quite useful for
future analysis. For λD this time dependence is about the same at all rigidities, although
somewhat less for R < ~1 GV than above; see also [81].
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Emphasizing the significance of the mentioned time dependence, Figure 3 shows λ‖
λ⊥r, λ⊥θ and λD as determined for protons (assumed to be valid also for anti-protons)
but now averaged over three distinct periods, for solar minimum conditions from 2006
to 2008, for increasing solar activity from 2011 to 2013 and then for maximum activity
conditions from 2013 to 2015, in order to reproduce both PAMELA and AMS02 proton
and antiproton spectra. Qualitatively, similar behaviour is shown as in Figure 2 but now
it clearly illustrates how the time dependence differ below and above ~10 GV; below this
value the MFPs decrease progressively and significantly from 2006–08 to 2013–15 but the
opposite, and at a much smaller scale, occurs above this value. This seems counterintuitive,
but similar behaviour (trends) using precise spectra from AMS-02, was reported also
in [80,81,87] and implies that GCRs with R > 10 GV have somewhat smaller MFPs at solar
minimum than at solar maximum; as such quite an interesting aspect of solar modulation at
higher rigidity. In this context, it is well known that time trends in modulation is occurring
differently at low and high rigidity during A > 0 and A < 0 cycles; see the discussion
in [88,89], and references there-in, and recent modeling studies (e.g., [81]).

Figure 3. The MFPs, λ‖, λ⊥r, λ⊥θ , and the drift scale λD(≡ λA), from top to bottom, are shown for
protons (assumed to be the same for anti-protons) as a function of rigidity but now averaged over
three distinctive periods for solar minimum conditions from 2006–2008 (red lines), for increasing
solar activity from 2011–2013 (grey lines) and for maximum activity conditions from 2013–2015 (blue
lines); at Earth λ⊥θ = λ⊥r.

An example of the time dependence of λ‖ at the Earth is shown in Figure 4 for
protons and anti-protons at 1 GV from July 2006 to May 2017. The period with no well-
defined HMF polarity is indicated again by the shaded band, during which the HMF
polarity changed from A < 0 to A > 0. During the A > 0 solar minimum λ‖ had reached
a maximum value in late 2009 and then decreased systematically to reach a minimum
value in early 2015, apparently several months after the reversal of the HMF polarity was
completed. The value in 2017 is already close to that in 2006 which was the beginning of
the previous prolonged solar minimum. This investigation will be continued when new
AMS-02 spectra get published for the present solar minimum (before and after 2020). A
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similar time-dependence was found for positrons and electrons in [62] with qualitative
similar results.

Figure 4. Parallel MFP λ‖, at the Earth based on the simulations (this work) of 1 GV protons and
anti-protons from July 2006 to May 2017. The period with no-well-defined HMF polarity is indicated
by the shaded band during which the HMF polarity reversal occurred, changing from A < 0 to A > 0,
the latter being the present modulation state.

2.5. Particle Drifts in the Heliosphere

As alluded to above, the solar modulation effects on GCRs of global gradient and
curvature drifts, including the effect of the wavy HCS, are known and reported extensively
since its introduction [90] and first modelled in 3D [91]. The main predictions are mentioned
in the next section. Global particle drifts is one of the four main modulation processes as
described in Equation (1). As numerical models have become more sophisticated, including
the stochastic differential equation (SDE) approach to modulation modeling [9,31,92,93]
and as new long-term and precise observations have become available from time to time,
the insight on how large drift effects are and how this may change with rigidity, with space
and with solar activity, as well as from one 11-year cycle to the next one, has significantly
improved since the 1980’s.

It has been realized that what is known theoretically as weak-scattering drift is an
oversimplification. This is obtained by assuming that in the heliosphere ωτ >> 1, where
ω is the gyro-frequency of a charged particle in the HMF as a given location and with τ a
time scale defined by its scattering so that the drift coefficient simplifies to:

KD =
βR
3B

(ωτ)2

1 + (ωτ)2 =
βR
3B

. (3)

This expression was used in earlier numerical models and obviously has an uncompli-
cated rigidity dependence, with its spatial dependence determined by what is assumed for
B. During the Ulysses mission it became evident that this gives a far too large drift effect
concerning the observed GCR latitudinal intensity gradients [17,33,39,54] at low rigidity,
typically at R < 1 GV. This mission also indicated that Parker’s descriptions of the global
HMF structure is an oversimplification [94]. Nowadays, it is common practice in numerical
modeling to modify KD at lower rigidities as shown in Figures 2 and 3, and to modify the
global geometry of the HMF to some degree; see [35,48,72] for the appropriate expressions

86



Physics 2021, 3

and [31,94] for a study on HMF and HCS modifications. An extensive theoretical study on
the reduction of particle drift, using various assumptions for heliospheric turbulence, was
described in [74] (and references there-in) with previous related studies in, e.g., [73].

Apart from these explicit reductions of particle drift, the more subtle reduction of
drift related modulation effects is done through changing diffusion which follows from
the inspection of Equation (1) according to which the drift velocity is multiplied by ∇ f
(in effect the spatial gradients of the GCR intensity in the heliosphere at a given position
and KE). This means that when these gradients are changed through changing any of the
three DCs, drift effects consequently change. This is considered an implicit reduction of
drift effects, not directly affecting the drift coefficient In this context, what is assumed, for
example, for K⊥θ is quite important because it affects directly the intensity gradients in the
polar regions of the heliosphere and therefore the corresponding drift related modulation
effects see also [72,84].

Another aspect of interest is how drift effects change with solar activity. At first,
these effects were changed in simulation studies only through changing the waviness
(tilt angles) of the HCS and later followed by changing B as it changes with solar activity.
These aspects were simulated comprehensively in [95–97] who also introduced the concept
of global merged interaction regions (GMIRs) into drift modeling; for more recent such
simulations, see also, e.g., [98,99]. Simulations of these GMIRs showed that they could
easily dominate the level of GCR modulation depending on how extensive in space they
are and how many of them form beyond 5–10 AU during phases of higher solar activity.
Particle drifts appeared to be dominant during solar minimum epochs (see review [100])
but how much particle drifts remains during periods of high solar activity could not be
answered conclusively. However, afterwards it became clear that KD (or λD) is required
to be scaled with time in order to reproduce GCR observations over extended periods of
time, specifically from the Ulysses mission; see reviews [17,18,33]. Examples of numerical
simulation utilizing such an approach were given in [34,101–103] who also studied other
modulation effects such as the role of the TS and inner heliosheath. Later, [104,105]
applied a time-dependent scaling factor in their numerical model to reproduce GCRs at
the Earth and especially along the trajectories of the two Voyager spacecraft. The first
numerical calculations on specifically how KD scales (effectively being reduced) over
periods of increased solar activity up to solar maximum conditions was given in [106]
when comparing their simulations to Ulysses observations. They found that relatively little
particle drift (<10%) remained during the solar maximum periods of 1990–91 and 2000–02.
Recently, [45,62] determined how much particle drift is needed at 1 GV to explain the
time dependence from 2006 to 2015 related to the observed precise electron and positron
spectra from PAMELA and AMS-02 during each solar activity phase, especially during the
polarity reversal phase when no well-defined HMF polarity was present. The equivalent
result based on our simulations of proton and anti-proton modulation is shown in Figure 5.
Evidently, very little drift is found and required for the period of maximum solar activity.

2.5.1. Drift Related Modulation Effects

A main feature of drift related modulation is that the particle drift velocity field repeats
its configuration every 22 years because it changes direction when the solar magnetic field
flips over during every period of maximum solar activity. The northern and southern
polar field then reverses sign so that if the direction in the northern hemisphere had been
outwards it became inwards after the reversal. This process is known as the ‘polarity’
change of the solar magnetic field. The time it takes for the reversal to be completed
differs from one solar maximum to the next one and how the process happens in time
is always different for the northern polar field than for the southern field; see, e.g., [64].
From the view point of charged-particle drifts and solar modulation, the important aspect
is that this period is characterized as a time with no well-defined HMF polarity and that
it usually lasts more than a year. To briefly recap: The drift cycles are called A < 0 (e.g.,
2001–2012) when positively charged GCRs (protons, positrons, GCR nuclei.) drift inward

87



Physics 2021, 3

to the inner heliosphere mainly through the equatorial regions of the heliosphere, and in
the process encounter the wavy HCS, and outward via the polar regions of the heliosphere.
Negatively charged particles (electrons, anti-protons, anti-matter nuclei) then drift inwards
and downwards to the Earth mostly from the polar regions and then outward mainly
through the equatorial regions. During an A < 0 phase, it is expected that the changing
wavy HCS plays an important even dominant role in the modulation of positively charged
particles, whereas for an A > 0 polarity phase the drift directions become reversed so that
negatively charged particles encounter the HCS during their entry.

Figure 5. The drift scale, λD, at the Earth as a function of solar activity from July 2006 to May 2017,
based on simulations of 1 GV proton and antiproton modulation; see also [60,66,67]; shaded band as
in Figure 4.

The consequence of what is described above is that it produces a 22-year modulation
cycle, not just in the GCR intensity-time profiles but also spatially in terms of the distribu-
tion of the radial and latitudinal intensity profiles in the heliosphere (and consequently
the spatial gradients), and with the charge-sign dependent effect probably the most spec-
tacular. Illustrative examples of the observation of this phenomenon with the Ulysses
mission [15,107] and subsequent modeling was given in [108]. A full list of these drift
related phenomena were given in the review [59].

A very subtle drift effect, not always mentioned, is the prediction that proton spectra
for A < 0 solar minimum cycles compared to A > 0 minimum cycles should exhibit a
spectral cross-over with means that below this cross-over rigidity the differential intensity
is higher in the A > 0 than in the A < 0 cycles but not above this rigidity [109–111], as long
as solar activity is at the same level. This phenomenon is discussed in detail in [88,89],
especially how it is predicted with precise numerical modeling and how difficult it is to
find and confirm observationally but surely possible now that precise long-term spectral
observations have become available.
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During the prolonged solar minimum before 2010, PAMELA had observed and con-
firmed the charge-sign dependent effect between electrons and protons conclusively [112]
and later reported how this effect for electrons and positrons had changed with the reversal
of the HMF polarity [2,113], although smaller than predicted by the leading drift models
of that time [59]. Such an effect was also found for the very first time in the recover times
of observed proton and electron Forbush decreases [114] and comprehensively modelled
by [115]. The charge-sign dependent effect during the recent HMF polarity reversal was
also observed and reported by AMS-02 [5], confirming the PAMELA observations, and is
discussed further in Sections 4 and 5 comparison with our drift modeling.

3. The Question of VLISs at the Heliopause

The VLISs for GCRs are required as input spectra for the numerical modelling of
their total and global modulation in the heliosphere [46,116–121]. For each type of charged
cosmic particles such a specific input spectrum is considered to be unmodulated by solar
activity beyond the HP. Global modulation modelling relates these VLISs to the correspond-
ing observations at the Earth, through the physics contained in the assumed transport
model applicable to the heliosphere. In order to reproduce (simulate) observed spectra
over a wide rigidity range at the Earth for any type of GCRs, their associated VLISs must
first be determined and evaluated against galactic propagation models such as GALPROP
(e.g., [121–123]) and then tested and vindicated with comprehensive 3D modulation models
as described here.

After Voyager 1 had observed GCRs at and beyond the HP, the question came up
whether these spectra at ~122 AU, technically just heliopause spectra, could be used as
VLISs and if the latter are truly the same as pristine LIS (say, 1000 AU away from the Sun)
and if they were on their part truly the same as the averaged Galactic spectra (parsecs
away). These questions have led to predictions done with SDE type modulation models
that GCRs may be modulated even beyond the HP implying that the heliopause spectra
were not the same as LISs and that the HP should not be considered the true modulation
boundary. The original prediction [124] had come to such a conclusion but refined models
later on predicted far less modulation (e.g., [125]) with [9] eventually illustrating with
a comprehensive SDE study under what conditions at and just beyond the HP such
modulation may happen or not, and why most recent Voyager 1 observations are consistent
with no intensity gradient as mentioned above. These studies and also modeling of the TeV
cosmic ray anisotropy [14] have been able to supply interstellar propagation parameter
values. It is worth mentioning that disturbances related to solar activity have indeed been
observed beyond the HP implying that the outer heliosheath is somewhat influenced by
solar activity but apparently not to the extent that GCRs are impacted to show a subsequent
modulation type response; see, e.g., the discussion in [10].

At first, establishing VLISs explicitly for solar modulation studies had been done by
simply finding a statistical fit to the mentioned observations at low and at very high KE, but
with values in between nothing more than estimates of the value and shape of the respective
VLISs. This approach was followed for electrons [43,126] and for protons [42,44,127] and
used in a comprehensive 3D modulation model; see also [27,116]. Similar approaches
were followed in [47,119] with a different approach in [128]. As expected these attempts
(statistically fitting observations) produce VLISs within about 10% of each other.

Precisely measured spectra at the Earth up to kinetic energy (KE) well above where
modulation is assumed to become negligible [22] contribute significantly to the improved
understanding of VLIS, providing meaningful constraints to galactic propagation models,
and for the study of astrophysical concepts and explanations. However, the spectral value
and shape of the VLIS above ~500 MeV up to whatever KE where solar modulation is
considered negligible have remained uncertain to a large degree (see also the comple-
mentary discussion in [57]). Addressing this shortcoming, galactic propagation models
are the main option, although there surely are other ways (e.g., [129,130]). Several such
galactic propagation models of varying complexity have been developed over time; see,
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e.g., [123,131,132], including the SDE approach of [133]. However, the GALPROP code,
being made available on-line, is an obvious choice to use and have been applied extensively
to reproduce Voyager, PAMELA and AMS-02 observations also being used as constraints
to these models. For typical examples of this approach where modulation models are used
in conjunction with Galactic propagation models, see [19,46,117–119] also being discussed
further below. Less sophisticated galactic propagation models, such as the so-called Leaky
Box Model, had also been used; see, e.g., [21,134] where this model is applied extensively,
and which nevertheless have provided useful insight into what VLISs may be. Of course,
computing LISs with GALPROP for secondary GCRs are intrinsically more complicated
than for GCR protons and nuclei. It is known from applying GALPROP that the spectral
shape of the positron and anti-proton LISs are very different so it makes for quite interesting
modulation differences between these anti-matter GCRs as shown below as the main focus
of the present study.

This self-consistent approach has been followed in order to refine the computed LISs
from GALPROP to transform them into VLISs. This means that the physics in GALPROP
is attuned to comply with observational constraints from Voyager 1 and 2, PAMELA and
AMS-02, and importantly, also providing in the process the shape of the VLISs in the middle
range of KE, typically between 200 MeV/n to 30 GeV/n. We consider this approach as an
improvement to using statistical fits to the mentioned observations. The VLISs obtained in
this manner are then used as input (unmodulated) spectra in our 3D modulation model
described above.

The next level of observational constraints comes forward when applying the 3D mod-
ulation model. Apart from having to reproduce spectra at the Earth over a wide range of
KE, the model also has to reproduce spatial intensity gradients, both latitudinal as observed
by Ulysses in the inner heliosphere, and radial as observed by the Voyagers from the Earth
to the TS, and then from the TS to the HP, which is totally different from modulation up to
the TS. The inner heliosheath causes what may be considered an additional modulation
‘barrier’ which has a completely different level of effects on GCRs of low KE than high
KE. An example of this comprehensive approach to proton modulation is given in [39]
and lately in [120]. The same model is then applied to GCR electrons as given in [111]
and also positrons [135]. Once the model has reached this level of sophistication, it can be
applied with confidence to predict the VLIS at the HP for positrons and anti-protons, in
fact for all GCRs for which no observations exist beyond the HP as done in [121] with their
HelMod approach. Utilizing the precise observations at the Earth, the VLISs for all GCRs
may be fine-tuned based on the output of the modulation model at high rigidity. This
procedure has been followed for protons [48], for total helium and separately for the two
helium isotopes [48–51], as well as for electrons and positrons [45,60,67] and for protons
and anti-protons [66].

In Figure 6 three examples of the VLISs obtained in this manner are shown, here
depicted for protons, electrons and total helium (He-4 plus He-3) at the HP (122 AU) as
specified in our modulation model. At high enough KE where solar modulation is assumed
insignificant, these VLISs are required to match the observations at Earth. Evidently, as the
KE decreases, the deviation of these observations at Earth from the corresponding VLIS
increases as solar modulation becomes progressively larger.
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Figure 6. The very local interstellar spectra (VLISs) at the heliopause (HP) (122 AU) for galactic
protons (black line), electrons (blue line) and total helium (red lines) with observations at the HP
from Voyager 1 [19] and Voyager 2 [7], and corresponding spectra at the Earth from AMS-02 [5] and
PAMELA [80,136,137].

4. Positron Modulation

Before the precise, simultaneous and long-term measurements of anti-matter at Earth,
charge-sign dependent solar modulation was mostly studied using electrons (negatrons as
the sum of electrons and positrons), protons and helium of the same rigidity (e.g., [15]).
The first robust observational evidence of charge-sign dependent solar modulation was
reported in [138] and modelled in [139] using a drift model which, today, is known as
a first generation drift model. These type of drift models predicted that during A > 0
polarity cycles the intensity ratio of negative to positively charged particles as a function
of time should exhibit a ∧ shape profile while during A < 0 cycles it should exhibit a ∨
shape around minimum modulation periods, but when only the waviness of the HCS
was changed with time [140]; for updates and new insights, see Figures 2 and 3 in [141].
It was found that when other modulation parameters were also changed with time in
later generation drift models these distinctive shapes fade and are been smoothed out
(e.g., [106]).

Comprehensive modeling was done for electron and positron modulation in the
global heliosphere [101,102] relying on the computations of galactic spectra [142–144] as
alternative to the GALPROP calculations [121]. These modulation models were more
advanced and also included the effects of the solar wind TS and the role of the inner
heliosheath which was considered state-of-the-art at that time but not much attention
was given to comparisons between these modulation predictions and observations at
the Earth. This has changed since the first positron spectra from PAMELA [2,113,145]
became available. Follow-up simulations done for positrons in [135] were based on new
VLISs with the focussed on detailed aspects of the solar modulation of positrons during
the extraordinary quiet solar modulation period from 2006–2009. For the first time, a
meaningful modulation factor in the heliosphere was computed for positrons, from 50 GeV
down to 1 MeV, as well as the electron to positron ratios as a function of time and rigidity
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for the mentioned period. In the next section, the focus is on contemporary modeling of
these GCR positrons.

4.1. The VLIS and Modulated Spectra

A comprehensive numerical study of the modulation of galactic electrons and positrons
was reported in [60]. First, they established the VLISs for electrons using the process de-
scribed above [46] by adjusting the appropriate physics in the web version of the GALPROP
code [146] (and references there-in) to reproduce both the observed Voyager 1 and 2 electron
intensity levels from beyond the HP and the high KE observations from PAMELA where
solar modulation is considered negligible. Since positron data is not available beyond
the HP, the spectral shape of the positron VLIS at low KE is based on what GALPROP
produced but empirically modified as explained in [45,67] to improve the reproduction of
observed spectra at Earth. As mentioned, the only known differences in the heliospheric
modulation of electrons and positrons are the particle drifts that they experience and their
respective VLISs.

The computed VLIS for electrons and positrons are shown in Figure 7 together with
observations for galactic electrons from PAMELA from January to December 2009 [82],
from AMS-02 from May 2011 to May 2017 [5] and from Voyager 1 [6,19] and Voyager 2 [7],
with positron observations from PAMELA [113] and AMS-02 [5]. As for Figure 6, solar
modulation is assumed insignificant at high enough KE where these VLISs are required to
match the Earth observations. Again, the deviation of these observations at the Earth from
the corresponding VLISs increases as solar modulation becomes progressively larger with
decreasing KE.

Figure 7. The computed VLIS for electrons (black line) from [43] and positrons (blue line) from [45] in
comparison with observations from Voyager 1 [6,19] and Voyager 2 [7] at the HP, and observational
averages from PAMELA [113] and AMS-02 [5] at the Earth as indicted in different colours. Figure is
amended from [60].

In Figure 8, the modulation of positrons during extraordinary quite modulation
conditions is shown as computed spectra at Earth compared to PAMELA data [113] for
the period July to December 2009 (A > 0 cycle), and corresponding computed spectra
throughout the heliosphere at 10 AU, 50 AU and 100 AU in the equatorial plane with
respect to the VLIS at 122 AU. Examples of how large this modulation may be for an A > 0
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cycle were given in [67], which can be tested once AMS-02 positron spectra are published
for the present solar minimum period. Neutron monitors at ground level have already
reached maximum counts in mid-2020 (see, e.g., [147]).

Figure 8. Computed positron spectra at Earth (blue line) compared to PAMELA data for the period
July to December 2009 (A < 0 cycle), and corresponding spectra predicted for 10 AU, 50 AU and
100 AU with respect to the VLIS at 122 AU (upper black line) from [45,67].

4.2. Drift Effects

Figure 9 illustrates the predicted drift effects relevant to positrons displayed as com-
puted spectra at Earth for modulation conditions applicable to the second halves of 2006
and 2009 (indicated as 2006b and 2009b) for the A < 0 cycle compared to the A > 0 cycle
assuming the same modulation conditions. These spectra are shown with respect to the
assumed VLIS at 122 AU. Evidently, focussing on the qualitative features, drift effects grad-
ually subside with decreasing KE to vanish completely at low enough KE. For increasing
and higher KE these effects gradually subside to become relatively small above a few GeV.
This happens differently at higher KE than at the lower KE. Important is that the intensity
for A > 0 cycles is predicted consistently higher than for A < 0 cycles, under the same
modulation conditions, but not at all rigidities; note that the subtle phenomenon of the
cross-over of these A > 0 and A < 0 spectra between 1–2 GeV is also present for these GCRs
so that it is not obvious where these drift effects completely disappear with increasing KE.
Modelling details related to this figure were reported in [45].

The quantitative features are displayed in Figure 10 by plotting the ratio of intensities
for A < 0 to A < 0, first for the periods 2006b and 2009b for both electrons and positrons.
In the left panel the ratios are shown at Earth related to Figure 9. The largest drift effects
are occurring between 200 MV and 600 MV, progressively phasing out with decreasing
rigidity to fade away below ~100 MV. Drift effects also subside with increasing rigidity
(KE), but more strongly than at low rigidity, producing in the process the spectral cross-over
phenomenon. As mentioned above, the inspection of the difference between A > 0 and
A < 0 spectra above 1–2 GV in Figure 9 shows this cross-over, clearly evident in the ratios,
so that A < 0 becomes higher than A > 0, in contrast to what happens at lower rigidity
(KE). It appears that drift effects dissipate above ~10 GV but how small it gets before
completely subsiding still needs to be investigated thoroughly (related to which rigidity
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solar modulation really commences at). In the right panel of Figure 10 the predicted ratios
are shown at 10 AU, 50 AU and 100 AU in the equatorial plane, in addition to those at
1 AU. Evidently, drift effects decrease with increasing radial distance, from a maximum
ratio of ~2.5 at 1 AU to ~1.2 at 100 AU; see also [35,148] who simulated drift effects for
GCRs throughout the heliosphere. These results are consistent to what [84] reported for
drift effects on electrons; see also predictions made for the two drift cycles for electrons
and protons in [111].

Figure 9. Predicted drift effects for positrons are displayed based on the differences in computed
spectra between A > 0 (dashed lines) and A < 0 drift cycles (coloured solid lines). Modulation
conditions applicable to the second halves of 2006 and 2009, indicated at 2006b and 2009b, are
simulated for both cycles. The predicted spectra are shown at Earth with respect to the assumed
VLIS] at 122 AU (black solid line). Figure is adapted from [45].

The charge-sign dependence displayed in Figure 10 is further highlighted in the next
two figures by plotting the ratio of electron to positron intensities (e−/e+) as a function
of KE, as well as for (e+/e−) in the bottom parts for illustrative purposes because it has
been reported as such many times. These computed ratios are shown in Figure 11 at Earth
with respect to the ratio of the two respective VLIS. The simulations are done for 2006b
and 2009b modulation conditions so that a comparison can be made to the PAMELA
observations [2,113] of electrons and positrons for these well-defined solar minimum
periods. In Figure 12, these ratios are repeated for the A < 0 cycle as shown in Figure 11
but now also including the predicted ratios for an A > 0 drift cycle (the present solar epoch)
assuming modulation conditions to be the same as in 2006b and 2009b. This serves to
highlight the difference in these ratios between the two drift cycles.
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Figure 10. (Left panel) Predicted drift effects at Earth for positrons and electrons in terms of the intensity ratios between
A > 0 and A < 0 drift cycles. This relates to what is shown in Figure 9 for positrons, again displayed for modulation
conditions applicable to 2006b and 2009b. (Right panel) Drift effects for positrons and electrons at 1 AU, and predicted for
10 AU, 50 AU and 100 AU in the heliospheric equatorial plane. In this latter case modulation conditions for 2006b only
are simulated.

Figure 11. Ratio of electron to positron intensities (e−/e+) is shown as a function of kinetic energy
(KE at Earth with respect to the ratio of the two respective VLIS (black lines) at 122 AU. In the lower
part of the panel, the equivalent (e+/e−) is shown for illustrative purposes. Simulations are done for
modulation conditions as in 2006b (blue lines) and 2009b (red lines) in comparison with PAMELA
observations [2,82,113] during this solar minimum A < 0 drift cycle.
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Figure 12. Same as Figure 11 (solid lines), but showing additionally ratios predicted for an A > 0 drift
cycle, the present minimum epoch (dashed lines), assuming identical modulation conditions as in
2006b and 009b, respectively; following the colour coding as indicated in the legends.

An illustration of how charge-sign dependent modulation changes with time (solar ac-
tivity), the observed and simulated ratios (e+/e−) are shown in Figure 13 for 1.01–1.46 GeV
and for Bartels rotation numbers 2426 to 2506 (mid-2011 to mid-2017). The simulated ratios
are based on reproducing the AMS-02 electron and positron spectra for these periods. Evi-
dently, the simulations agree well with the observations displaying how the ratio changes
from a low value before the reversal period to a significantly higher value afterwards.
Figure 14 shows simulated ratios based on reproducing the observed PAMELA ratio [2]
for 1.01–2.5 GeV over a longer period from 2006 to 2016. Modelling details related to this
figure were reported in [60].

Figure 13. The simulated (e+/e−) ratio (blue circled point and smoothed line) as a function of time (solar activity) based
on reproducing the AMS-02 electron and positron spectra [5] for this period from mid-2011 to mid-2017 shown here for
1.01–1.46 GeV in comparison with the observed ratio. Shaded band again indicates the period of no well-defined HMF
polarity, with the A < 0 cycle before and the A > 0 cycle after this reversal period.
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Figure 14. The simulated (e+/e−) ratio (black line with grey band) as a function of time (solar activity) based on reproducing
the PAMELA observed ratio [2] here shown at 1.01–2.5 GeV (circled blue points with error bars) for this period. Vertical
shaded band is as before. Modeling results are shown along with the standard error of mean (SEM; deviation/

√
n). Figure

amended from [60].

5. Anti-Proton Modulation

The first prediction of drift effects pertinent to anti-proton modulation was made
in [149]. This early, first generation drift model, with the HP assumed at only 50 AU,
predicted a change of a factor of ~8 in the anti-proton to proton ratio at 300 MeV between
an A > 0 minimum and an A < 0 solar minima but about half of that for periods of
increased solar activity. The LIS for protons and anti-protons were typical of what had been
used then. The only time-dependent change in this modulation model was the tilt angle
so what was predicted for solar maximum conditions was significantly over estimated.
Comprehensive modeling was later done for anti-proton modulation in [101,102,150]
relying on computations of galactic spectra with the GALPROP code [122]. Apart from
drifts, their model also included the effects of the TS and the role of the outer heliosheath.
These models predicted lesser drift effects than first generation models but they also
consistently applied an overall reduction factor to the drift coefficient. The modulated anti-
proton spectra at Earth reported in [102] differed by a factor of 1.5 below 100 MeV between
the two drift cycles and also illustrated how the anti-proton to proton ratio changed from
solar minimum to maximum.

Later, a 3D modulation model was used in [93] based on solving SDEs to study the
modulation of protons and anti-protons and found a maximum drift effect of a factor of
~10 below ~100 MeV which gradually subsides with increasing KE to become negligible
above 10 GeV. These predicted effects are large so that no attention was then given to
smaller modulation effects above a few GeV as is done nowadays with the availability
of precise GCR spectra. Recently, aspects of the modeling of anti-protons were reported
in [28,119,151]; the latter raising additional questions about what the VLIS for anti-protons
may be. In what follows the modelling study given here is described based on the approach
outlined in this paper on how to obtain what can be considered a realistic anti-proton VLIS
for solar modulation studies.

To recap concisely, the approach mentioned above is focus on gauging the numerical
model and validating the modulation parameters on reproducing the observed protons
and helium spectra at the HP at low KE and at Earth at much higher KE; see also [48–51].
The model is then applied to anti-protons with the assumption that there is no fundamental
reason for anti-protons to be differently modulated than protons apart from the drift
field directions that changes every 11 years. It is thus implied that anti-protons have
the exact same MFPs as well as the drift scale than protons but oppositely directed drift
velocity fields.
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5.1. The Anti-Proton VLIS and Modulated Spectra

The numerical modeling described here is focussed on the PAMELA anti-proton
spectra averaged from 2006 to 2009 to obtain improved statistics [145,152,153] which as such
has less uncertainty than observations reported before this mission. The availability of very
precise proton spectra for the same period and from the same detector makes the gauging
process of the modeling much easier. The physics in the GALPROP code is adjusted to
determine two possible anti-proton LISs which is then used in the modulation code at
122 AU to compute the corresponding modulated spectra at Earth based on the equivalent
study of proton modulation. The procedure, followed here, including the adjustment
of relevant physics in GALPROP, is described in [46,57]. It is worth mentioning that
doing this for positrons and anti-protons is more complicated because they are secondary
GCRs thus influenced by how they are created in galactic space through nuclear cross-
sections. The two LISs computed with GALPROP are the plain diffusion (PD) and the
reacceleration (REAC) approach, the latter being our preferred model for computing the
LIS for protons. These two LISs are shown in Figure 15, the PD-model considered as the
upper limit (black dotted line) and the REAC-model as the lower limit (black dashed line).
The corresponding modulated spectra at Earth are computed based on the modulation
parameters that worked optimally for protons for the solar minimum period 2009. These
modulated spectra are compared to the mentioned PAMELA data. Inspection of these
results shows that the REAC-model produces a LIS, specified in our modulation model as
the HP (122 AU), that goes through the observational data at the Earth and thus fails to be
considered as a realistic VLIS in our opinion. The PD-model gives a modulated spectrum
significantly above the observations, which we anticipated because the same result was
found for protons. This dilemma causes us to calculate an averaged VLIS (black solid line),
using the two mentioned GALPROP spectra, and of which the corresponding modulated
spectrum (red solid line) reproduces the observations reasonably well. We also repeated
the modulation part using modulation conditions as found for protons for 2006 but found
less agreement with these anti-proton observations; this modulated spectrum is found
a factor 0.8 lower at its peak value. We therefore decided to settle on this averaged LIS
(called LIS 3, Adjust, in this figure) as the optimal VLIS for further anti-proton modulation
studies below 1 GeV. Adding earlier observations for anti-protons from balloon flights to
this picture did not provide additional modulation insight and are not shown; see reviews
of these earlier observations in, e.g., [145,154,155].

The modulation of anti-protons between the HP and the Earth, as illustrated in
Figure 15, requires some additional remarks because it is rather peculiar in the sense that:

(1) The shape of the VLIS is quite different from GCR nuclei, having between 500 MeV
and 1 GeV a spectral slope close to the slope evident in the modulated spectra below
500 MeV at Earth. This slope at Earth is caused by adiabatic energy losses inside the
heliosphere and is a characteristic of modulated spectra for protons, anti-protons and
all GCR nuclei (see also [48]). The shape of the VLIS of these particles below 200 MeV
is therefore not reflected at Earth because of these energy losses inside the heliosphere;
for illustrations of this modulation effect, see, e.g., [25,156].

(2) The total amount of modulation for anti-protons is far less than for protons of the
same rigidity because of the very different shape of their VLISs, which for interest
sake is compared to the VLIS for protons in Figure 16. As alluded to above, note
where the peak in the anti-proton VLIS occurs compared to that for protons and how
completely different the spectral slopes are at both low and high rigidities. The VLIS
for protons is computed with GALPROP and normalized to PAMELA data at 100 GeV
but the anti-proton spectrum is adjusted as described above.
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Figure 15. Computed LISs for anti-protons as a function of kinetic energy using two GALPROP
models as described in the text, here indicated at 122 AU as LIS 1 Lower (dashed line) and LIS 2
Upper (dotted line). Corresponding modulated spectra at the Earth (red lines), based on modulation
conditions for 2009, are found either too high or too low so that an averaged LIS is calculated as LIS 3
Adjust (black solid line) with the corresponding modulated spectrum (solid red line) reproducing
optimally PAMELA observations averaged for 2006 to 2009 [152] (filled circles with error bars).

Figure 16. Computed VLISs for galactic protons [46,127] (left-side scale; black line) and for anti-
protons (right-side scale; blue line) as a function of rigidity shown here for comparative reasons;
apart from the peak values, note the vastly different spectral slopes at both low and high rigidity.
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The computed, modulated anti-proton spectra at the Earth are shown in Figure 17
with respect to the assumed VLIS at 122 AU for anti-protons in both panels. Here, they are
compared to AMS-02 observations averaged over the period 19 May 2011 to 26 May 2015 [4]
in the left panel and to PAMELA observations on the right-side as in Figure 15, repeated
here in a less cluttered panel. Although the modulated spectrum for 2006–2009 is in good
agreement with the PAMELA data, the corresponding modulated spectrum for 2011–2015
is not agreeing at all rigidities with the AMS-02 observations. It is still quite reasonable
in our view, given that the period after 2009 had experienced increased solar activity so
that averaging over such a relatively long period makes the reproduction of observations
more challenging. When applying our model for maximum solar activity conditions such
as in early 2014, the peak value of the modulated anti-proton differential intensity in units
as shown in Figure 17, drops to ~1.3 × 10−2 at 2 GeV whereas at a 100 MeV it drops to
~1.2 × 10−3 and at 10 MeV to ~1.2 × 10−4.

Figure 17. Modulated anti-proton spectra as computed with this work modulation model compared here with long-time
averaged observations from PAMELA (July 2006–December 2009) [152] in the right-side panel and AMS-02 (May 2011–May
2015) [4] in the left-side panel as. The VLIS in each panel is shown as solid black lines and the computed, modulated spectra,
averaged over corresponding periods, are shown by solid blue lines. SEM indicates standard error of mean (standard
deviation/

√
n).

The total modulation factor for anti-protons is shown in Figure 18; this is the factor that
the VLIS is reduced between the HP and Earth because of solar modulation as a function
of KE and computed for the period 2015b (averaged over the last six months of 2015) when
B at the Earth was observed to be at a maximum. This factor thus represents the total
modulation over a distance of 121 AU during solar maximum modulation conditions. In
this case solar modulation was assumed in the model to commence at 100 GeV. Compared
to the simulated modulation factor for protons and electrons [27] and for positrons [45],
this factor for anti-protons is much less at low KE and depicts a peculiar form (flatness)
from ~300 MeV to around 2 GeV which is absent for protons.
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Figure 18. The total modulation factor for anti-protons as a function of KE at Earth with respect to
the normalized VLIS specified at 122 AU; here computed for the period 2015b.

For the time being, we prefer to refrain from adjusting the VLIS for anti-protons
simply to produce a better fit to the averaged AMS-02 data as shown in Figure 17; see [157].
The averaging of observational data over long periods is a complicating aspect when
precise modeling is an objective. However, this issue remains important so we hope
that observations which are analysed on a shorter observational time–scale will become
available for the present solar minimum period.

5.2. Charge-Sign Dependence

After reproducing the AMS-02 proton and averaged anti-proton spectra, the subse-
quent anti-proton to proton ratio was calculated (simulated) as a function of time, from
2011–2017, for KE of 1.0–1.5 GeV. This is shown in Figure 19, with the ratio normalized to
the value in 2006. It follows that this ratio increases gradually from 2011 to 2017, to reach a
maximum in Nov-Dec 2013, and then decreases back to a minimum in Jan 2017. In order to
reproduce the AMS-02 ratio, and in addition to varying the DCs (shown in Figure 4), we
had to keep the drift scale (or drift coefficient) at a minimum level for the solar maximum
period, and then had to increase it gradually to a maximum value as solar activity decreases
to a minimum. What is shown here relates to what was shown in Figure 5 for the drift
scale, at its maximum value during the 2006–2009 minimum epoch to decrease gradually
up to its smallest value for the 2012–2014 reversal period, and then increasing gradually
back to a maximum value in Dec 2016.

The numerical simulations for the anti-proton to proton variation with time reported
in [158] produced large jumps during solar maximum period associated with the change
in the HMF polarity because in their modeling approach drift was not changed with
solar activity, similar to what was done with first generations drift models before the
Ulysses mission [15–17,33]; see, e.g., [149]. The simulated anti-proton to proton ratio,
not normalized and for a shorter time scale, is repeated in Figure 20 for the KE range
1.0–1.5 GeV as a function of time given by Bartels rotation numbers from 2426 to 2506 (May
2011 to May 2017) as reported by AMS-02.
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Figure 19. Computed anti-proton to proton ratio as a function of time for 1.0-2.0 GeV at the Earth, here normalized to the
value in 2006b. Points indicate model results, interpolated and smoothed as indicated by the solid line. The HMF reversal
period with no well-defined polarity is indicated as before. How solar activity has progressed over this period, is shown in
Figure 1.

Figure 20. Similar to Figure 19, now enlarged and not normalized, showing the computed anti-proton to proton ratio for
Bartels rotation numbers 2426–2506 (May 2011–May 2017), here for KE of 1.0–1.5 GeV. Circled points indicate model results,
interpolated and smoothed as indicated by the solid line.
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Let us emphasize that in order to obtain these ratios over time it is necessary to adjust
the DCs and very specifically the drift coefficient systematically over time, with the latter
becoming very small during the HMF polarity reversal period; see also Figures 4 and 5
above. This modeling study highlights the modulation differences between anti-protons
and protons especially for the reversal period. In the next section, the focus will be on the
difference between positron and anti-proton modulation.

6. Differences between Positron and Anti-Proton Modulation

A display of the main differences between positron and anti-proton modulation needs
to start off with showing the enormous difference between the positron and anti-proton
VLISs as used for this study. This is shown in Figure 21 in comparison with observations
from PAMELA [113,152,153], illustrative of the observed positron and anti-proton spectra
at the Earth based on the total modulation from 1 AU up to the HP at 122 AU during solar
minimum conditions. Evidently, these two VLISs differ significantly the lower the KE, with
the positron intensity exceeding the anti-proton intensity by a factor of up to 107 below
10−2 GeV. In contrast, the electron intensity exceeds the proton intensity by a factor of
maximum 10 at this KE [111,135].

Figure 21. Computed VLISs for galactic positrons (solid blue line) and anti-protons (solid black line)
along with observations from PAMELA [113,152] here averaged over 2006–2009, as examples of
modulated positron and anti-proton spectra at the Earth based on the total modulation from 1 AU to
the HP at 122 AU during solar minimum conditions.

6.1. Positron to Anti-Proton Ratio as a Function of Rigidity

Figure 22 displays the ratio of the VLISs of positrons and anti-protons (solid black line)
together with the corresponding simulated positron to anti-proton modulated ratio at the
Earth for modulation conditions as in 2006b (red lines) and 2009b (blue lines), for both drift
cycles A < 0 and A > 0. The latter serves as predictions for the present solar minimum epoch.
The observational ratio above 1 GV is from [4], matching the simulations reasonably well.
The difference between the A < 0 and A > 0 cycles is indicative of the extent of drift effects
for these GCRs, evidently becoming quite large below 1 GV. These differences relate to
what was shown in Figure 2, according to which the positron modulation is dominated by
diffusion at lower rigidity (with relatively large and steady MFPs) in contrast to anti-proton
modulation which is dominated by adiabatic energy losses at low rigidities as the MFPs
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get systematically smaller with decreasing rigidity. The causes of these modulation effects
are similar to the differences between electron and proton modulation [111] except for the
charge-sign dependence which is not at play between positrons and anti-protons.

Figure 22. Ratio of the VLISs of positrons (e+) and anti-protons (solid black line) as a function of
rigidity together with the corresponding simulated positron to anti-proton ratio at the Earth for
modulation conditions in 2006b (red lines) and 2009b (blue lines) and for both drift cycles A < 0
and A > 0. The latter, indicated as green and grey lines, serve as predictions for the present solar
minimum epoch. Observational ratio (blue circles) above 10 GV is from [4].

6.2. Positron to Anti-Proton Ratio as a Function Time

The time dependence of the simulated positron to anti-proton ratio is shown in
Figure 23 at two rigidity intervals: 1.0–2.0 GV (top panel) and 0.5–1.0 GV (bottom panel).
The standard error of mean (SEM; standard deviation/

√
n) is shown here for the modeling

results (solid line with shaded grey band). Evidently, the largest values are obtained in 2009
with the smallest values during solar maximum activity, at the beginning of the reversal
period. The variation with time is mainly because of the relatively larger modulation
the positrons experience in contrast to the awkward behaviour of the anti-protons as
described in relation to Figure 17. The large difference in the ratio values between these
two adjacent rigidity intervals is conspicuous and illustrative of how the vast the difference
become between the modulated spectra for these two types of anti-particles, also evident
in Figures 21 and 22.
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Figure 23. Examples of the simulated positron (e+) to anti-proton ratio as a function of time, from 2007 to 2017, at 1.0–2.0 GV
(top panel) and 0.5–1.0 GV (bottom panel). Shaded grey bands indicated the standard error of mean (SEM; standard
deviation/

√
n). Vertical shaded band is the same as used before. How solar activity has progressed over this period, is

shown in Figure 1.

7. On the Modulation of Other Types of Anti-Matter

A way to test dark matter annihilation may be found in observations at the Earth of
low-energy anti-nuclei in GCRs, such as anti-protons (see [154] describing BESS as one of
the early ground-breaking anti-matter experiments), also anti-deuteron and anti-helium
(e.g., [159]), which makes proper, realistic and precise modulation modeling eminent. This
requires the study of all four major modulation processes including particle drifts that
creates a 22-year modulation cycle, which is not described by the Force-Field approach to
solar modulation. Applying a drift model to anti-deuteron (e.g., [160,161]) is in reach once
the modulation of deuteron can be done properly with the modeling approach used here
and when relevant precise spectral observations are published (e.g., [162,163]). Estimates
exist for the LIS for deuteron and anti-deuteron (e.g., [164], and references there-in) and
some effort has already been made for deuteron modulation modeling as shown in [57]
based on deuteron observations at the HP from Voyager 1 [21] and from PAMELA [136,165]
but only over a limited energy range. A next step in precise modeling should include
the study of the solar modulation of anti-helium (e.g., [166,167]). However, this needs
additional and dedicated investigation beyond the scope of the present study.

8. A Composition of VLISs

Here, a composition of computed VLISs is provided following the procedure described
above for the purpose of pursuing precise global modelling of solar modulation for GCRs,
similar to [57]. This is shown in Figure 24 which displays the VLISs for protons, deuteron
H-2 (2H1) He-3 (3He2), He-4 (4He2), electrons, and particularly for positrons and anti-
protons. It is interesting to note that the VLIS for electrons with KE < ~80 MeV has the
largest flux of all GCRs so the question arises what the electron LIS may be down to
1 MeV and at even lower KE? Studying electron modulation to this very low energy at the
Earth is difficult because adiabatic energy losses becomes large for electrons only with KE
below their rest energy, apart from the dominating presence of Jovian electrons in the inner
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heliosphere below ~50 MeV [83,84,168,169]. The large flux of positrons below ~300 MeV,
even larger than the flux for He-4 is worth noting whereas the H-2 flux is significantly larger
than for He-3 below ~200 MeV/n. Not surprising is the low position of the anti-proton
VLIS in this hierarchy of astrophysical charged particles.

Figure 24. Compilation of computed VLISs shown here for protons, He-3, He-4, deuteron (H-2),
electrons, positrons and anti-protons, following the colour coding as indicated in the legend.

The VLIS for deuteron as displayed in Figure 24 is not considered as the final word.
However, we are confident that the VLISs for protons, anti-protons, electrons, positrons
and total He (sum of both isotopes) are already close to what may be considered as optimal
for solar modulation studies. Small adjustments to these VLISs at high rigidities, above a
few GeV/n, may be required as the study of very small modulation effects at these high
rigidities get better, again owing to these precise measurements being made at Earth and
the accompanying precise modeling of the total modulation of GCRs in the heliosphere.
Qualitatively, minor adjustments will not affect the obtained results on the computed
charge-sign dependent ratios as a function of rigidity as shown in Figure 10 to Figure 16
for electrons and positrons and for protons and anti-protons in Figures 19 and 20.

Since we focus on the refinements of VLISs to be used in heliospheric modulation
models, no discussion on how astrophysical aspects can change LISs and how that relates
to the VLIS specified at the HP is done here. Examples of such details can be found, e.g.,
in [159,160,164,170–172]. If such studies would produce VLISs which were significantly
different in terms of their spectral shapes (rigidity dependence) from what is presented
here, they should be evaluated with comprehensive modulation models to determine their
impact on the results obtained.

9. Summary and Conclusions

Determining the global and total modulation of GCRs in the heliosphere more meticu-
lously than before has become possible because aspects such as the position of the TS and
especially the HP are reasonably settled. Consensus on the actual shape of the heliosphere
has not yet been reached (e.g., [12]) but so far there exists no conclusive evidence that the
shape of the heliosphere [34,148] plays a real dominant role in the total modulation of
GCRs observed at Earth.

Sophisticated solar modulation modelling of protons, electrons and total Helium
has made it possible to refine the VLISs for all GCR nuclei, with the emphasis in this
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study on positrons and anti-protons. This approach, together with precise observations at
Earth, contribute in restraining the uncertainties in the VLIS even for GCRs not observed
by the Voyager spacecraft beyond the HP. Evidently, global modulation studies with
comprehensive numerical models contribute meaningfully to the testing and refinement of
the VLISs for GCRs.

The modeling presented here includes the effects of the solar magnetic field chang-
ing it’s ‘polarity’ to create a 22-year modulation cycle and illustrates differences in how
positrons and anti-protons are modulated over time and specifically how much particle
drifts they experience which is significant at kinetic energies lower than a few GeV. Because
the VLIS for anti-protons has a very peculiar spectral shape in contrast to the one for
protons, the total modulation of anti-protons is awkwardly different compared to that for
protons and other GCR nuclei.

The total modulation factor for anti-protons as a function of KE at Earth is computed
with respect to the VLIS specified at the HP (122 AU); see Figure 18. The detailed anti-
proton to proton ratio as a function of solar activity is computed for an 11-year period and
serves as a prediction of what happens over periods of extreme solar activity and a change
in the HMF polarity (Figures 19 and 20). This prediction deviates from other predictions
on how this ratio changes during maximum solar activity; see, e.g., [149,158,173]. We
found that this ratio decreases generally with decreasing solar activity and increases with
increasing solar activity to reach a peak value during maximum solar activity, making
a gradual change towards a peak value during this period. This ratio at 1–2 GeV may
change as much as a factor of 1.5 over a solar cycle and the differential intensity for anti-
protons may decrease by a factor of 2 at 100 MeV from solar minimum to solar maximum.
Acquiring these charge-sign dependent ratios over time at the Earth it is necessary to adjust
the heliospheric DCs and very specifically the drift coefficient systematically with solar
activity, with the latter becoming quite small during the HMF polarity reversal period; see
Figures 2–5.

The ratio of the VLISs of positrons to anti-protons are determined together with the
corresponding simulated positron to anti-proton ratio at the Earth, based on modulation
conditions that existed in 2006 and 2009, done for both drift cycles, A < 0 and A > 0. The
latter serves as predictions for the present solar minimum epoch.

A composition of computed VLISs is given in Figure 24 for the purpose of pursuing
precise global modelling of solar modulation for these GCRs. It follows that the VLIS for
electrons with KE < ~80 MeV has the largest flux of all GCRs with the anti-proton flux by
far the lowest.
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Abstract: The propagation of dissipative electrostatic (ion-acoustic) solitary waves in a magnetized
plasma with trapped electrons is considered via the Schamel formalism. The direction of propagation
is assumed to be arbitrary, i.e., oblique with respect to the magnetic field, for generality. A non-
Maxwellian (nonthermal) two-component plasma is considered, consisting of an inertial ion fluid,
assumed to be cold for simplicity, and electrons. A (kappa) κ-type distribution is adopted for the
electron population, in addition to particle trapping taken into account in phase space. A damped
version of the Schamel-type equation is derived for the electrostatic potential, and its analytical
solution, representing a damped solitary wave, is used to examine the nonlinear features of dissipative
ion-acoustic solitary waves in the presence of trapped electrons. The influence of relevant plasma
configuration parameters, namely the percentage of trapped electrons, the electron superthermality
(spectral) index, and the direction of propagation on the solitary wave characteristics is investigated.

Keywords: dissipative solitary waves; magnetized plasma; superthermal trapped electrons; kappa
distribution; Schamel equation; oblique propagation of electrostatic plasma waves; suprathermals

1. Introduction

The occurrence of highly energetic particles is a ubiquitous feature in space plasmas
(e.g., in the ionosphere, the auroral zone, solar wind, and at the mesosphere, etc.) and in
laboratory plasmas [1–12]. The velocity distribution in such plasmas may deviate from the
usual thermal Maxwellian distribution, developing a long-tail for high-velocity arguments
due to an excess in the fast (superthermal) part of the population; such a behavior is effec-
tively modeled by a (kappa) κ-type distribution function [1,4,12–19]. The kappa distribution
function was initially postulated by Vasyliunas [1] in an effort to reproduce the observed
power-law dependence at high velocities [17,20,21]. Since then, a large number of stud-
ies adopted kappa distributions, combining theoretical [18,19,22,23], computational [24],
and even experimental [25,26] approaches to study the effect of superthermal particle
populations on wave dynamics in different plasma environments.

Particle “trapping”, i.e., the fact that a portion of, for example, the electron population
remains confined in a finite region—thus generating vortices—in phase space, is an intrinsic
characteristic of plasma dynamics, often overlooked in studies based on basic fluid theory.
Phase-space structures, known as “electron-holes” are thus formed due to particles trapped
in the wave potential. This mechanism, initially predicted via kinetic theory [27–29], was
later observed in space and in the laboratory [30–36], and it was also shown to occur
spontaneously in computer simulations [37]. Of particular relevance to current study is
the fact that Simpson et al. [38] reported the presence of trapped electrons in the Saturnian
magnetic field, an environment characterized by the existence of κ-distributed electrons
with values of κ  2–4, as confirmed by Schippers et al. [34]. It is therefore important to
consider the effect of particle nonthermality and trapping effect simultaneously to explore
the properties of different electrostatic modes.
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As regards the theoretical modeling of particle trapping, Schamel’s original papers [27,28]
showed that trapped particles led to a vortex-like electron distribution, and the kinetic
model was shown to be associated with a modified version of the known integrable
Korteweg–de Vries (KdV) partial differential equation. The “Schamel equation” [28,39–42]
describes the evolution of nonlinear electrostatic waves under the influence of a fractional
nonlinearity (in contrast with the standard KdV theory where quadratic nonlinearity is
dominant). A number of theoretical studies followed [43–49] in an effort to investigate the
properties of nonlinear waves (solitary waves, shocks) in the presence of trapped particles,
using first principles.

The combined effect of electron superthermality and phase-space trapping was first
considered by Williams et al. [40], who adopted the Schamel equation approach to model
and characterize ion-acoustic solitary waves in an unmagnetized electron-ion plasma with
κ-distributed electron populations subject to trapping. Following that study, the combined
effect of electron superthermality and trapping was considered by Sultana and cowork-
ers [41,42] (on ion-acoustic modes in collisionless plasmas) and by Hassan et al. [50], who
investigated the nonlinear features of electron-acoustic waves in a magnetized plasma and
considered the combined effect of electron trapping and electron superthermality. The
study led by Hassan et al. [50] focused on electron-acoustic waves, a mode known to
occur exclusively in the simultaneous presence of two distinct electron populations (usually
referred to as the ‘cold’ and the ‘hot’ electrons), as it relies in fact on the inertia being
provided by the cold electron component and the restoring force being provided by their
hot counterpart. The associated (electronic) dynamical frequency scales are clearly distinct
from the (slower, ionic) scales that are typical of the study presented here.

To our best knowledge, there is no rigorous and systematic study of the nonlinear
propagation of the ion-acoustic waves in a magnetized collisional plasma in the presence
of trapped κ-nonthermal electrons. The investigation at hand is therefore an attempt
to fill in this gap by presenting a rigorous and systematic study of the characteristics
of ion-acoustic waves propagating in a magnetized κ-nonthermal plasma [41], taking
into account the combined impact of electron trapping and of a suprathermal electron
distribution, in account of the inherent plasma collisionality. The main focus here is to
investigate the influence of particle trapping on the dynamics of dissipative solitary waves,
and also to analyze the effect of the ambient magnetic field and its interplay with wave
damping and how these affect the characteristics of obliquely propagating ion-acoustic
solitary excitations.

This article is organized as follows. The basic formalism is presented in the following
Section 2. A dissipative version of the Schamel equation is derived via a multiscale pertur-
bative approach, and the detail about the nonlinear, dispersion, and dissipative term, is
discussed in Section 3. The propagation nature (basic features) of dissipative ion-acoustic
waves for different relevant plasma (configuration) parameters is studied numerically in
Section 4. Finally, the results obtained are summarized in the concluding Section 5.

2. Basic Plasma-Fluid-Dynamic Formalism

An electron-ion plasma is considered here being embedded in a uniform magnetic
field directed along the z-axis, i.e., B0 = B0ẑ. Due to their large mass (relative to the
electrons), inertial ions are modeled as a cold fluid, i.e., their thermal pressure is neglected
for simplicity. At the ionic scale of interest, the electron inertia may be neglected: the
electrons are assumed to deviate from thermal equilibrium, and hence, a κ-type distribution
will be explicitly adopted to model their distribution. For the purpose of this analysis,
the combined effect of electron trapping and superthermality is considered, following the
steps outlined in Ref. [40].

Charge neutrality at equilibrium imposes: zini0 − ne0 = 0, where ni0 and ne0 denote
the unperturbed ion and electron number densities, respectively, while zi is the charge state
of the ion component (e.g., 1, 2,. . .; the value of zi is left arbitrary here, for generality).
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We are interested in modeling the dynamics of ion-acoustic excitations, whose phase
speed vph may well exceed the ion thermal speed, but is far smaller than the electron
thermal speed. The following fluid evolution equations are considered:

∂ni
∂T

+∇.(niui) = 0 , (1)

∂ui
∂T

+ (ui.∇)ui = − zie
mi

∇Φ

+
zieB0

mi
(ui × ẑ)− νiui , (2)

∇2Φ = 4πe(ne − zini) , (3)

where ni (ne) denotes the number density of the ion (electron) species, ui is the ion fluid
speed, Φ is the electrostatic wave potential (all these quantities are dynamic functions of
space and time), and e is electron charge. An ad hoc damping term is introduced in the fluid
equation of motion (momentum conservation equation) to account for, e.g., ion-neutral
collisions; the collision frequency νi was defined to this effect.

The combined effect of electron trapping and deviation from Maxwell-type equilibrium
was studied analytically in Ref. [40]; the tedious algebraic procedure need not be reproduced
here, but the main steps are summarized. A modified κ-distribution function, effectively
taking into account the trapped part of the electron population (i.e., for electrons trapped
in the wave potential if their energy Ee < 0) is given by [40]

f (v, φ) =
Γ(κ)√

2π(κ − 3/2)1/2 Γ(κ − 1/2)

×
[

1 + β

(
v2/2 − φ

κ − 3/2

)]−κ

for Ee ≤ 0 . (4)

Here, v is the velocity, φ is the electrostatic potential, and κ is the superthermality index
(measures deviation from the Maxwell–Boltzmann distribution), while β (<1) quantifies the
efficiency of electron trapping. The known vortex-type distribution for trapped Maxwellian
electrons is recovered in the limit κ → ∞. The number density of the electrons is obtained
by integration as [40]

ne(φ) =
∫ −√2φ

−∞
f κ
e (v, φ) dv +

∫ √
2φ

−√2φ
f (v, φ) dv

+
∫ ∞
√

2φ
f κ
e (v, φ) dv , (5)

where f κ
e (v, φ) is the κ-distribution function for the free electrons; details can be found in

Ref. [17].
By normalizing all variables, one obtains the following system of (dimensionless)

equations:

∂n
∂t

+ ∇̃.(nu) = 0 , (6)

∂u

∂t
+ (u.∇̃)u = −∇̃φ + Ωc(u × ẑ)− νu , (7)

∇̃2φ  1 − n + a1φ + a2φ3/2 + a3φ2 , (8)

where n = ni/ni0, u = [miu2
i /(ziTe)]1/2 with mi being the mass of ion, Te being the electron

temperature (Boltzmann’s constant kB is omitted where obvious), the electrostatic potential
φ = eΦ/Te, λD = (Te/4πe2zini0)

1/2, t = ωp,iT (where ωp,i = (4πe2z2
i ni0/mi)

1/2 is the
ion plasma frequency, and T is the inverse of the ion plasma frequency), Ωc = ωc,i/ωp,i
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(where ωc,i = zieB0/mi) is the reduced cyclotron frequency, and ν = νi/ωp,i (note that all
frequencies were scaled by the ion plasma frequency for convenience). The information
related to electron trapping, for κ-distributed electrons, is “hidden” in the coefficients a1, a2,
a3 entering the normalized expression of Poisson Equation (8), which are given by [40]

a1 =
2κ − 1
2κ − 3

, a2 =
8
√

2/π(β − 1) κ Γ(κ)
3(2κ − 3)3/2 Γ(κ − 1/2)

,

a3 =
4κ2 − 1

2(2κ − 3)2 . (9)

Once a solution for the electrostatic potential φ is formally obtained, the trapped
electron population’s density obtained from Equation (5) can be expressed as [40]

ne  1 + a1φ + a2φ3/2 + a3φ2 · · · , (10)

which to be substituted into Poisson Equation (8). The known analogous expression for the
trapped electron number density in the case of Maxwellian plasma [28] is readily recovered
here, upon considering the limit κ → ∞ in the latter relation. On the other hand, the limit of
Equation (10) as β → 1 leads to the classical expression for κ-distributed electrons; see e.g.,
Ref. [51] and elsewhere. Finally, the Maxwellian limit for free electrons, viz. a1 = 2a3 = 1,
is recovered by considering β → 1 and κ → ∞, reducing the electron density dependence
to eφ  1 + φ + φ2/2, as expected.

The closed system of Equations (6)–(8), describes the evolution of the plasma (fluid)
state variables, and forms the basis of the analysis here.

3. A Schamel Equation for Damped Ion-Acoustic Waves (IAWs)

To model small-amplitude ion-acoustic excitations (dissipative solitary waves) within
the model under consideration, one needs to proceed by defining a set of stretched coordi-
nates as

ξ = ε1/4 (lx x̂ + lyŷ + lzẑ − vpt
)

, τ = ε3/4 t , (11)

where ε (�1) is a small parameter that measures the strength of the nonlinearity, vp is a
constant to be determined (in fact, representing the phase speed, scaled by the ion sound
speed, c0 = (ziTe/mi)

1/2), and lx, ly and lz, are directional cosines of the wave vector k

along the x, y and z axes, respectively (for instance, lz = (k · ẑ)/k), hence l2
x + l2

y + l2
z = 1.

Let us recall that the position variables x, y and z are all normalized by λD, while τ is
normalized by the ion plasma period ω−1

p,i . The above Ansatz, which was first introduced in
Ref. [28] and then later adopted by various authors (e.g., [40,52]), essentially describes a
Galilean transformation into a slowly varying moving frame, wherein the time variation of
the structure is even slower in time.

The dependent variables n, u and φ may now be expanded near the equilibrium states
as power series of ε as follows:

n = 1 + εn1 + ε3/2n2 + . . . ,
ux = ε5/4 u1,x + ε3/2 u2,x + . . . ,
uy = ε5/4 u1,y + ε3/2 u2,y + . . . ,
uz = ε u1,z + ε3/2 u2,z + . . . ,
φ = εφ1 + ε3/2φ2 + . . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12)

To close the series expansion of the variables, a weak dissipation [53–55] to be considered
due to ion-neutral collisions by assuming that the damping coefficient scales as ν = ε3/4ν0.

Let us now proceed by substituting expansions (11) and (12) into the considered fluid
plasma model Equations (6)–(8) and collecting various terms arising in each order in ε.
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The phase speed vp is obtained as a compatibility constraint upon considering the lowest
order contributions in ε from each of the equations; the resulting expression reads:

vp = lz/
√

a1 . (13)

This expression for the phase speed vp depends on the angle θ (via lz = cos θ) and on the
electron superthermality index κ. Considering parallel propagation (lz = 1), the known
expression for the ion sound speed in nonmagnetized plasma [22,40] is recovered as
expected. Recovering dimensions for a minute, for physical transparency, Equation (13)
leads to

Vp =
ω

k
= λD ωp,i

lz√
a1

=

(
ziTe

mi

)1/2(2κ − 3
2κ − 1

)1/2
lz , (14)

where ω, k and Vp here denote the wave (angular) frequency, the wavenumber and the
phase speed (in the dimensional form), respectively. The acoustic (“sound”) speed is thus
recovered for infinitely large κ, while a lower value (i.e., predicting slower solitary waves)
is predicted for small κ, in agreement with earlier theoretical predictions [22] and with
space observations [21].

The variation of the ion-acoustic phase speed, vp, versus the electron’s superthermal-
ity index, κ, is depicted in Figure 1, suggesting a slower phase speed in a plasma with
significant portion of the electrons in the superthermal region (i.e., lower values of κ), when
compared with the case of thermal (Maxwellian) electron. The phase speed is higher for
parallel propagation than for oblique propagation, as shown in Figure 1. As expected,
the curve tends to unity, asymptotically (vp → 1) for infinite kappa and for parallel propa-
gation, prescribing the acoustic speed (in electron-ion plasma) as the phase speed in the
Maxwellian limit.
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Figure 1. Phase speed, vp, versus electron superthermality index, κ, and obliqueness angle,
θ = cos−1 lz, where lz is a directional cosine of the wave vector k along z-axis.

The perpendicular (x and y) components of the electric field related drift of the ion
fluid, in terms of the electric potential φ1, can be obtained by separating the y and x-
components of the momentum equation, respectively, as

u1,x = − ly
Ωc

∂φ1

∂ξ
, (15)

and u1,y =
lx

Ωc

∂φ1

∂ξ
. (16)

Following an analogous procedure, the parallel (z) component of the ion fluid velocity
is obtained as

u1,z =
lz
vp

φ1 , (17)
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Finally, in leading order, the perturbation of the ion density n  1 + εn1 +O(ε3/2) is
obtained as

n1 =

(
lz
vp

)2
φ1 . (18)

The next order in ε (obtained upon separating ε3/2 from the momentum equation)
leads to the x and y-components of the second order drift velocity of the ion fluid in
the form

u2,x =
lxvp

Ω2
c

∂2φ1

∂ξ2 , (19)

u2,y =
lyvp

Ω2
c

∂2φ1

∂ξ2 , (20)

Following the same procedure (i.e., separating coefficient of ε7/4 from the continuity
and the z-component of the momentum equations, and then ε3/2 from the Poisson equation)
and eventually eliminating n2, u2,z, and φ2, one is led to a nonlinear partial differential
equation (PDE) in the form

∂ψ

∂τ
+ Aψ1/2 ∂ψ

∂ξ
+ B

∂3ψ

∂ξ3 + Cψ = 0 , (21)

where, for brevity, the leading contribution of the electrostatic potential is denoted by
ψ = φ1.

Equation (21), which bears the structure of the original Schamel equation [28], with the
addition of the last term (arising due to collisions being taken into account), represents
an evolution equation for an electrostatic potential disturbance, φ  εψ +O(ε3/2), in a
region where the trapped electrons are present. The algebraic scheme implied is obvious:
once ψ is obtained from Equation (21), the leading contributions for the ion density and for
the ion fluid speed (three) components can be obtained from (four) Equations (15)–(18).

The nonlinearity coefficient A, which is responsible for wave steepening, is given by

A = −3
4

v3
p

l2
z

a2 = −3
4

a2

a3/2
1

lz . (22)

The nonlinearity dependence enters via both θ and κ, as expected: this is seen in
Figure 2a.

On the other hand, the dispersion coefficient B—which is responsible for wave
broadening—is given by

B =
v3

p

2l2
z

(
1 +

1 − l2
z

Ω2
c

)
. (23)

The expression for the coefficient B can be simplified upon setting v3
p/2l2

z = lz/2a3/2
1 ,

showcasing the dependence of B on the propagation angle (via lz) and on κ (via a1),
as shown in Figure 2b. The influence of the magnetic field (via Ωc) disappears in the
case of parallel propagation (lz = 1), thus recovering a one-dimensional damped Schamel
equation for unmagnetized plasma (this was intuitively expected, since the Larmor force
has no component in the direction of the magnetic field, and thus does not affect parallel
wave propagation).

Finally, the dissipative term C is given by

C =
ν0

2
, (24)

as imposed by compatibility requirements (i.e., balancing various terms occurring in the
same order in ε).
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Figure 2. Nonlinearity term A (a) and dispersion term B (b) versus κ and obliqueness angle θ

for β = 0.5 and Ωc = 0.3, where β denotes the efficiency of electron trapping and Ωc is the ratio of
the the reduced cyclotron frequency to the ion plasma frequency.

Interestingly, both A and B vanish for perpendicular propagation (i.e., for
lz = cos(π/2) = 0), as seen in Figure 2. On the other hand, considering parallel propa-
gation (lz = cos(0) = 1) and the Maxwellian limit (infinite κ), one finds vp = 1 (acoustic
speed), while the two coefficients become A = (1 − β)/

√
π and B = 1/2, thus recovering

exactly the analytical form of the original Schamel equation [28]. Figure 2 examines the
influence of superthermality index κ and the obliqueness θ on the nonlinear term A and the
dispersion term B. One can see that the (value of the) nonlinearity term increases, while the
dispersive term decreases, if one assumes stronger deviation from the Maxwellian equilib-
rium, i.e., for small value of the κ parameter. On the other hand, for fixed κ, the nonlinearity
term A attains its highest value for parallel propagation (θ = 0), as shown in Figure 2.

The dispersive term shows slightly more perplex behavior by increasing with growing
θ, reaching a maximum, and then going to zero—as said above—for θ = π/2. It is evident
in Equation (22) and in Figure 3a that a2 → 0, and, hence, A → 0 in the limit β → 1;
therefore, the nonlinear Equation (21) is not valid in the absence of trapped electrons.
On the other hand, the dispersive term decreases with stronger magnetic field, as seen in
Figure 3b.
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Figure 3. (a) Nonlinearity term A versus β. A does not depend on the magnetic field. (b) Dispersion
term B versus Ωc. B does not depend on β. θ = 10◦ is assumed and κ = 2, 3, 5, 10, and ∞ (top to
bottom in (a) and bottom to top in (b)).

4. Parametric Analysis

In this Section, we are interested in tracing the influence of different plasma configu-
ration parameters, such as the superthermality (spectral) index, κ, the electron trapping
parameter, β, the collisional term, ν, the obliqueness angle, θ, and the ambient magnetic
field (strength), B0, on the propagation characteristics of ion-acoustic solitary waves within
the model under consideration. To see how these plasma configuration parameters affect
the dynamical properties of solitary waves, first, dissipative effect is assumed to be negligi-
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ble: ν → 0. The damped Schamel Equation (21) then reduces to a κ-dependent form of the
Schamel-type equation [28], which possesses a solitary wave solution in the form [28,40]

ψ(ξ, τ) = ψ0 sech4
(

ξ − u0τ

δ

)
, (25)

representing a pulse-shaped excitation with amplitude ψ0 = (15u0/8A)2, width δ =√
16B/u0 and velocity u0 in the moving reference frame (note that the actual speed in

the laboratory frame is vp + εu0, so the pulse structure is superacoustic; recall that vp is
essentially the sound speed). The product ψ0δ4 = (30B/A)2 is constant for a given (fixed)
set of plasma parameters, that is in fact independent of u0. The electric field E (=−∇ψ)
which is associated with the solitary potential in Equation (25) is of the form:

E = −E0 sech4
(

ξ − u0τ

δ

)
tanh

(
ξ − u0τ

δ

)
, (26)

where E0 = 225 u2
0/(16A2δ) (this is actually the norm of the vector; the respective compo-

nents are regulated by the direction cosines lx,y,z; recall that l2
x + l2

y + l2
z = 1). The pulse form

for the potential is shown in Figure 4, while the associated bipolar electric field structures
are shown in Figure 5b,d.

To trace the dynamical evolution of the solitary wave solution and to elucidate the
role of different plasma configuration parameters on the properties of (nonlinear) solitary
waves, the nonlinear damped Schamel Equation (21) was solved numerically by using the
Wolfram MATHEMATICATM software package, adopting the solitary wave solution (25) as
initial condition.
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Figure 4. (a) The ion-acoustic solitary potential pulse ψ versus the space coordinate ξ and the time
τ. (b) Potential pulse versus ξ at different time instants. Here, β = 0.5, κ = 3, Ωc = 0.2, ν = 0.01,
θ = 10◦, and u0 = 0.01 are used. See text for details.

The time evolution of dissipative ion-acoustic solitary potential waveforms (pulses)
is shown in Figure 4. The analytical solution (25) was adopted at an initial condition, and
then Equation (21) was solved numerically for ν 
= 0. As expected, the pulse amplitude
decreases in time due to the damping, as illustrated in Figure 4.

The influence of the trapping parameter β and also of the superthermality (spectral)
index κ was investigated numerically; a snapshot at τ = 50 (dimensionless units) is shown
in Figure 5. Here, Ωc = 0.2, ν = 0.01, u0 = 0.01, τ = 50, and θ = 10◦ are used. One can
see that both the height and the width of the solitary wave are affected by the trapping
parameter β (Figure 5a) and by the value of κ (Figure 5c). As β increases, the waves become
taller in amplitude, but the width remains unchanged; see Figure 5a. An increase in plasma
superthermality (that is, a smaller value of κ) results in shorter and narrower solitary waves,
as seen in Figure 5c. These results recover the theoretical predictions of Ref. [41] for the
collision-free case, i.e., for ν = 0.

A similar investigation is shown in Figure 6, where the solitary wave solution (25) was
obtained numerically for κ = 3, β = 0.5, u0 = 0.01, τ = 50, and θ = 10◦. The role of the
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magnetic field (strength) B0 (via Ωc) is shown in Figure 6a. As B0 increases, the width of
the solitary wave decreases, while the amplitude is unaffected.

Finally, in Figure 6b, various values of the collisional parameter ν are considered (keeping
all other values fixed). As expected, the pulse amplitude decreases with higher dissipation.
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Figure 5. (a) Effect of trapping parameter β on electrostatic solitary wave (pulse) profile and (b) asso-
ciated electric field structures for κ = 3. (c) Effect of superthermality index κ on solitary pulse and
(d) associated electric field for β = 0.5. Here, Ωc = 0.2, ν = 0.01, u0 = 0.01, τ = 50, and θ = 10◦

are used.
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Figure 6. Effect of (a) external magnetic field Ωc (for ν = 0.01) and of (b) collisionality parameter
ν (for Ωc = 0.1) on electrostatic solitary waves (pulses) for κ = 3, β = 0.5, u0 = 0.01, τ = 50,
and θ = 10◦.

5. Conclusions

In this paper, the basic features of damped ion-acoustic solitary waves were inves-
tigated in the presence of trapped superthermal electrons described by a κ-type (non-
Maxwellian) distribution [40]. The effect of ion-neutral collisions was also taken into
account, leading to wave damping as expected.

The reductive perturbation approach were adopted to derive a nonlinear Schamel-
type partial differential equation featuring an additional damping term. The solitary
wave solution of the standard (nondissipative) Schamel equation was used to solve the
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damped Schamel equation numerically and to analyze the basic features of dissipative
ion-acoustic solitary waves. The amplitude of solitary waves was found to decrease, while
their width becomes narrower with an increase in superthermality (i.e., for a stronger
deviation from Maxwellian equilibrium). The proportion of trapped electrons also affects
solitary waves, since their amplitude increases in the presence of a larger proportion of
trapped electrons in the plasma; on the other hand, rather counter-intuitively, their width
remains the same. The above behavior was also observed via numerical integration of the
dissipative Schamel equation.

While the nonlinear term is independent of the external magnetic field, the dispersive
term depends strongly on the external magnetic field and in fact decreases for strong
magnetic field (strength) values. Therefore, a steeper solitary wave with same maximum
amplitude will be expected to occur in the presence of a stronger magnetic field, as con-
firmed by the numerical simulation here.

The current study focused on the ‘simplest’ version of a fluid model for magnetized
plasma, i.e., assuming a uniform magnetic field and neglecting drift forces. A drift-kinetic
approach would require the electrons to create a more complete picture to correctly account
for the non-negligible E × B drift, for example. These aspects, as investigated, e.g., by
Jovanoviç et al. [56], and summarized by Eliasson and Shukla [57], lie beyond the scope
of the present study (weak ∼ ε excitations were considered here which, in addition to the
absence of an ambient electric field (bias), prescribe a negligible E × B drift).

The fundamental trapping scenario was considered in this paper, (the so-called β-
trapping effect). It may occur, however, that the filamentation process in the final state of
pattern formation in the electron phase space results in multiple electron transfer taking
place through the separatrix; in turn, leading to additional trapping scenarios. In that case,
the electric wave potential may not be expressed in a closed algebraic form, and new types
of nonlinear structures may arise, as recently pointed out by Schamel [58,59]. As argued
there, the existing wave theory for phase space holes, based on the linear Landau–van
Kampen approach, overlooks these trapping and coherence aspects in pattern formation,
and thus fails to account for a plethora of nonlinear phenomena, which are nonetheless
predicted by this new approach [58,59]. Covering these aspects may form the focus of
future studies.

The results, obtained here, aim to contribute to the understanding of the salient
features of nonlinear electrostatic perturbations in non-Maxwellian plasmas, in account of
electron trapping in phase space.
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Abstract: Transport of energetic electrons in the heliosphere is governed by resonant interaction with
plasma waves, for electrons with sub-GeV kinetic energies specifically with dispersive modes in the
whistler regime. In this paper, particle-in-cell simulations of kinetic turbulence with test-particle
electrons are performed. The pitch-angle diffusion coefficients of these test particles are analyzed and
compared to an analytical model for left-handed and right-handed polarized wave modes.

Keywords: cosmic-ray transport; turbulence; plasma waves; particle-in-cell simulations

1. Introduction

The solar wind and most phases of the interstellar medium are strongly turbulent
media with high magnetic Reynolds numbers of 1014 [1]. Turbulence manifests itself in a
spectrum of plasma waves at various length scales and frequencies. The energy distribution
as a function of the frequency follows a characteristic power law. The current understanding
of the turbulent processes is such that energy is injected at large scales, i.e., at small wave
numbers and frequencies, and then cascades to smaller spatial scales.

The energy spectrum can be divided into several regimes, each may span several
orders of magnitude in wave number or frequency. At the largest scales, the injection range
is found, which then transitions into the inertial range. The inertial range can be described
by magnetohydrodynamic (MHD) theory, and turbulence is dominated by the interaction
of Alfvén waves. At smaller scales, kinetic effects of the particles come into play.

This high wave number regime is often referred to as the kinetic, dispersive, or
dissipation range of the spectrum, since the waves become dispersive and dissipation starts
to set in. While the spectrum extends to even smaller scales, damping eventually becomes
dominant and leads to an exponential cutoff of the energy spectrum.

Power-law distributions of the fluctuating magnetic energy are expected in the injec-
tion, inertial, and dissipation range of the spectrum. However, the spectral indices may
differ among the individual regimes. Goldreich and Sridhar [2,3] presented a detailed
model of the turbulent energy cascade in the inertial regime. Their model predicts a spec-
tral index of −5/3, which actually seems to be realized in the solar wind [4]. Subsequent
models by Galtier et al. [5,6] give rise to a spectral index k−2

⊥ .
Kinetic turbulence in the dissipation range is an active field of research [7]. In particular,

the composition of the wave spectrum is subject to discussion, because a transition from
non-dispersive Alfvén waves to dispersive wave modes is expected. Possible candidates
for the waves in the dissipation range are the so-called kinetic Alfvén waves (KAWs) and
whistler waves [8].
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The impact of kinetic turbulence on the transport of energetic particles is another major
topic. The transport of energetic protons is well described by models of Alfvénic turbulence,
since the protons mainly interact with these waves at low frequencies. The theoretical
framework of quasi-linear theory (QLT) can be used to describe particle transport by a
series of resonant interactions with the magnetic fields of Alfvén waves, which leads to
scattering of the particles [9–11]. This theory describes changes of the particles’ pitch
angles (the angle of the velocity vector relative to a background magnetic field), momenta,
or positions as diffusion processes and allows to predict diffusion coefficients and other
quantities, such as the mean free path, which can be compared to observations.

Dispersive waves are more difficult to handle in (analytical) theory. Nonetheless,
QLT can also yield predictions for particle transport in a medium containing dispersive
waves [12,13]. The introduction of dispersive waves can even solve some of the problems
that are encountered if a purely Alfvénic spectrum of waves is assumed [14]. Still, the
model remains an approximation, and computer simulations are used to clarify some of the
details that are not included in the analytical theory. Different kinds of simulations are used
to study different physical regimes and processes—from the acceleration of particles [15,16]
to the transport of energetic particles—considering both non-dispersive [17] and dispersive
waves [18,19].

The key problem that has been chosen for the subject of this study is the process of
electron transport in dispersive turbulence. The transport of electrons at sub-GeV energies
has been of high interest for quite some time [20]. As mentioned above, particle acceleration
in Alfvénic turbulence in the inertial range is well understood. However, turbulence on
kinetic scales still poses problems for both observations and modeling.

2. Theory

2.1. Turbulence Theory

From the observations, it is not entirely clear which types of plasma waves constitute
the spectrum of turbulent waves in the dispersive and dissipative regime. KAWs and
whistler waves are both possible candidates [8]. While KAWs represent the continuation
of the Alfvén mode (Equation (13) below) in the dispersive regime with very large per-
pendicular wave numbers (perpendicular wavelength in the range of proton gyroradius),
whistler waves (Equation (16) below) are right-handed polarized modes at large wave
numbers. It is reasonable to assume that non-dispersive Alfvén waves simply transition
to KAWs. However, observations reveal that whistler waves are also present in various
regions of the heliosphere, such as in the interplanetary medium [21], close to interplane-
tary shocks [22,23] or planetary bow shocks [24], and also in the Earth’s ionosphere and
foreshock region [25,26].

Whereas left-handed polarized Alfvén waves are damped by protons and cannot
cascade to frequencies above the proton cyclotron frequency, a spectrum of whistler waves
may extend to frequencies beyond the ion-cyclotron frequencies. Whistler waves primarily
interact with electrons and are also damped by electrons at higher frequencies (close to the
electron cyclotron frequency). This is an interesting aspect of kinetic turbulence, since a
population of whistler waves can heat the electrons in the solar wind or even accelerate
particles in the high-energy tail of the thermal spectrum.

Kinetic turbulence includes the smallest length scales, where the interaction of waves
and particles becomes important. Although the wave-particle interactions are not ex-
plicitly included in the theory, their effect has to be considered by allowing dispersive
waves and damping. This regime is generally more complicated and less understood than
MHD turbulence.

The general picture associated with turbulence is as follows. Energy is injected into
the system at a large outer scale, small wave numbers k. The energy is transported via the
interaction of waves to smaller spatial scales (larger wave numbers), and the (magnetic)
energy spectrum, EB(k), follows a power-law distribution. This is the inertial range. The
spectrum steepens as the kinetic regime or dissipation range is reached, but energy is
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still transported to smaller scales. First, only ion effects will start influencing the plasma
dynamics, but at even larger wave numbers, the electrons can also interact with the plasma
waves. This is where the energy spectrum is cut off. One aspect that has been discussed
in greater detail since the seminal paper of Goldreich and Sridhar [3] is the possible
anisotropy with respect to the background magnetic field: the turbulent spectrum may
behave differently depending on wave numbers parallel (k‖) or perpendicular (k⊥) to the
background magnetic field.

The special case of whistler turbulence has been discussed in greater detail. The
properties of this whistler turbulence have been analyzed using kinetic simulations in
two [27,28] and three [29–32] dimensions. These studies suggest a steeper energy spectrum
than for Alfvénic turbulence, with a spectral index s in the range between −3.7 and −5.5
and a possible break in the energy spectrum [32]. Results by Chang [30] also suggest that
the wave vector anisotropy depends on the choice of the plasma beta. A relatively isotropic
spectrum is obtained for a plasma beta β ∼ 1, whereas β < 1 yields an anisotropic cascade
which favors the transport of energy to larger k⊥. The plasma beta is the ratio of thermal
to magnetic energy. The anisotropy additionally depends on the energy deployed to the
electromagnetic fields of the turbulent whistler waves [29].

2.2. Subluminal Parallel Waves in Cold Plasmas

In warm thermal plasmas with low plasma betas, the real part of the dispersion
relation agrees well with the cold plasma dispersion relation, so, the latter is used here.
In addition, the resonance broadening effects, caused by a finite imaginary part of the
dispersion relation in warm plasmas implying a finite weak-damping rate; those effects
were considered by Schlickeiser and Achatz [33].

Using the convention of frequencies ω > 0, where ω is the real part of the generally
complex frequency, but k‖ ∈ [−∞, ∞] (here, the case k⊥ = 0, also known as slab case, is
treated), the dispersion relation of right-handed (“R”) and left-handed (“L”) polarized
undamped low-frequency (ω ≤ Ωe,0, with Ωe,0 being the electron gyrofrequency) parallel
Alfvén wave in a cold electron-proton background plasma reads [34]:

n2
L = 1 −

ω2
pi

ω(ω − Ωi)
− ω2

pe

ω(ω + Ωe)
, (1)

n2
R = 1 −

ω2
pi

ω(ω + Ωi)
− ω2

pe

ω(ω − Ωe)
, (2)

k2
‖c2

ω2
L,R

= 1 −
ω2

pi

ω(ω ∓ Ωi)
− ω2

pe

ω(ω ± Ωe)
, (3)

k2
‖c2

ω2
L,R

− 1 = − c2Ω2
i

v2
A

M + 1
(ω ∓ Ωi)(ω ∓ MΩi)

(4)

with the proton-to-electron mass ratio, M = mp/me = 1836, and the Alfvén speed,
vA = βAc = 2.18 × 1011B[G]n−1/2

i [cm−3] Here, ωpi is the ion plasma frequency, ωpe is
the electron plasma frequency, Ωi is the ion gyrofrequency, Ωe is the electron gyrofrequency,
B is the magnetic field, β is the plasma beta, and c is the speed of light. For subluminal
wave phase speeds,

∣∣∣Vphase

∣∣∣ =
∣∣∣∣∣ωL,R

k‖

∣∣∣∣∣� c, (5)

which has to be checked a posteriori, the dispersion relation (4) simplifies to

k2
‖c2

ω2
L,R

 − (M + 1)Ω2
i ω2

L,R

v2
A(ω ∓ Ωi)(ω ∓ MΩi)

. (6)
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It is convenient to introduce dimensionless frequencies and parallel wave numbers
by defining

yL,R =
ωL,R

Ωi
> 0 and k =

k‖
kc

, (7)

respectively, with

kc =
Ωi
vA

, (8)

so that the subluminal dispersion relation becomes

k2 = − (M + 1)y2
L,R

(yL,R ∓ 1)(yL,R ± M)
(9)

with the two solutions,

k1,2 = −
√
(M + 1)yL,R√

(yL,R ∓ 1)(yL,R ± M)
. (10)

As yL,R is always positive, the solution k1 > 0 describes forward-moving waves with
positive phase speed, whereas the negative solution k2 = −k1 < 0 describes backward-
moving waves.

2.2.1. Left-Handed Modes

Equation (9) indicates that no left-handed polarized solution with yL > 1 exists, so, a
further simplification of Equation (9) for left-handed polarized waves is possible, assuming
that M � 1:

k2  y2
L

1 − yL
(11)

with the solutions,

yL(k) =
k2

2
±
√

k
2

√
k2 − 4 

{
|k| for k � 1,
1 − 1/k2 for k � 1,

(12)

corresponding to

ωL 
{

VA|k‖| for k‖ � kc ,

Ωi

(
1 − k2

c /k2
‖
)

for k‖ � kc .
(13)

2.2.2. Right-Handed Modes

The right-handed solutions of Equation (9),

k2 = − (M + 1)y2
R

(yR + 1)(yR + M)
, (14)

can be approximated under the assumption that M � 1:

yR =
(M + 1)k2

2(1 + k2 + M)

(
1 − 2

M + 1
+

√
1 +

4M
k2(M + 1)

)
. (15)

Depending on k, different regimes can be identified:

ωR =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

VA|k‖| for |k‖| < kc ,

Ωi +
V2

Ak2
‖

Ωi
for kc ≤ |k‖| ≤ M1/2kc ,

Ωe

(
1 − Mk2

c
k2
‖

)
for |k‖| > M1/2kc .

(16)
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The first range describes the linear dispersion regime, the second range is the whistler
regime, and the last range is the electron–cyclotron range. While these approximate
solutions provide good estimates to the real solution, there is a major problem: the solutions
do not provide continuous coverage. An alternative approximation is

yR(k)  |k|(1 + |k|). (17)

In the following, the particle scattering by parallel waves at electron or ion cyclotron
frequencies are ignored as soon as these are highly damped in a realistic warm thermal
plasma, so that the resonant interaction does not apply; see [33] for a discussion of wave-
particle interactions with damped waves. For left-handed and right-handed polarized waves,
this restricts the normalized wave numbers to values of k ≤ 1 and k ≤ M, respectively.

2.3. Particle Transport

Any charged particle of given velocity v, Lorentz factor γ = (1 − (v2/c2))−1/2, pitch-
angle cosine μ = v‖/v, mass m, charge qi = e|Zi|Q with Q = sgn(Zi), Zi being the ion
charge number, and relativistic gyrofrequency Ω′ = QΩ/γ with positive Ω = |q|B0/(mc)
with Ω being the particle’s non-relativistic gyrofrequency, q being the electric charge, and
B0 being the magnetic background field, interacts with parallel right-handed and left-
handed polarized plasma waves whose wave number, k, and real frequency, ωR,L, obey the
resonance condition,

vμk‖ − ωR,L(k‖)∓
QΩ

γ
= 0. (18)

Introducing

x =
p

mec
, ε =

vA
v

= βA
(1 + x2)1/2

x
, (19)

with the particle momentum p and the dimensionless frequency and wave number (7), the
resonance condition (18) reads:

Ω
(

μk
ε

− yR,L(k)∓ Si

)
= 0 (20)

with

Si =
Q|Zi|mp

mγ
=

1
γ

{
1 for protons,
−M for electrons.

(21)

The quasilinear Fokker–Planck coefficient for the pitch-angle cosine, μ, is given by

Dμμ(μ) =
π2Ω2(1 − μ2)

B2
0

∫ ∞

−∞
dk‖

×
⎡
⎣gR(k‖) δ(vk‖ − ωR − Ω′)

(
1 − μωR

k‖v

)2

(22)

+ gL(k‖) δ(vk‖ − ωL + Ω′)
(

1 − μωL
k‖v

)2
⎤
⎦

with the magnetic fluctuation spectra of right/left-handed polarized waves gR,L(k‖), where
the total magnetic field fluctuations are determined as in [35]:

(δB)2 = 2π
∫ ∞

−∞
dk‖[gL(k‖) + gR(k‖)]. (23)

In Equation (22), the frequencies ωR,L(k‖) are determined by the solutions of the disper-
sion relations, discussed in Section 2.2 above. The function δ(x) is the Dirac delta function.
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In terms of the normalized wave number, k‖ = kck, and frequency, ωR,L = ΩiyR,L, the
Fokker–Planck coefficient (22) reads:

Dμμ(μ) =
π2Ω2kc(1 − μ2)

Ω2
i B2

0

∫ ∞

−∞
dk‖

×
⎡
⎣gR(k‖) δ(kμ/ε − yR(k)− Si)

(
1 − μωR

k‖v

)2

(24)

+ gL(k‖) δ(kμ/ε − yL + Si)

(
1 − μωL

k‖v

)2
⎤
⎦.

The calculation of the Fokker–Planck coefficient requires a knowledge of the magnetic
fluctuation spectra. The correct theoretical description is complicated, as described in
Section 2.1 above, but results from numerical calculations can be inferred.

Deriving the Fokker–Planck coefficients in general is quite an involved task but one
can derive some limiting cases. It is helpful to account for the relative abundance of forward-
moving and backward-moving waves and the corresponding polarization states. Let us
introduce the cross helicities, HL,R ∈ [−1, 1] for left/right-handed polarized waves to ex-
press the spectra (23) of backward-propagating (“b”) and forward-propagating (“f”) waves:

gb
L,R =

1 − HL,R

2
gL,R(k)Θ(−k), (25)

g f
L,R =

1 + HL,R

2
gL,R(k)Θ(k). (26)

The step function Θ(±k) appears because backward-moving and forward-moving
waves only occur at negative and positive wave numbers, respectively. In general, these cross
helicities can depend on the wave number, but throughout this article isospectral turbulence is
adopted, where HL,R are constants (independent of k). The magnetic helicity σ(k) ∈ [−1, 1]
characterizes the relative abundances of left-handed and right-handed polarized waves:

gL(k) =
1 + σ(k)

2
gtot(k), (27)

gR(k) =
1 − σ(k)

2
gtot(k) (28)

where gtot(k) is the total wave abundance at a specific wave number. For parallel plasma
waves, σ(y > 1) = −1 as soon as no left-handed polarized waves exist at these
normalized frequencies.

Using the helicities introduced, the Fokker–Planck coefficient (24) reads:

Dμμ(μ) =
π2Ω2kc(1 − μ2)

Ω2
i B2

0

∫ ∞

−∞
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×
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k
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k
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(29)
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k

)2

+ (1 + HL)(1 − σ(k)) δ(−kμ/ε + yR(k)− Si)
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k

)2
]

.
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2.3.1. Interactions in the Whistler Regime

For frequencies above the ion cyclotron frequency, only right-handed waves exist
obeying the dispersive whistler mode dispersion relation. As discussed above, the turbulent
spectrum typically has a much softer spectral index than 2 (theoretical values are in the
range of 3 to 6 [7,36]) in this case.

We consider the case HR = −1 and σ(k) = −1, only backward-moving right-handed
polarized waves, which reduces the Fokker–Planck coefficient (29) to

Dμμ(μ) =
π2Ω2kc(1 − μ2)

Ω2
i B2

0

∫ ∞

k0

dk‖gtot(k) (30)

×
[

δ(kμ/ε + yR + Si)

(
1 +

εμyR(k)
k

)2
]

.

The result for forward-moving waves is similar:

Dμμ(μ) =
π2Ω2kc(1 − μ2)

Ω2
i B2

0

∫ ∞

k0

dk‖gtot(k) (31)

×
[

δ(−kμ/ε + yR + Si)

(
1 − εμyR(k)

k

)2
]

.

With Equation (17), the resonance condition with positive values of k reads:

0 = Si + k
μ

ε
+

{
|k| for k ≤ 1,
k2, for 1 ≤ k ≤ M1/2 = 43.

(32)

It can be shown that this equation for protons and electrons has only one solution
kr > 0. In the Alfvénic wave number range (k ≤ 1), this is trivial: kr = −Si/(1 + (μ/ε)),
which can be positive depending on the signs of Si and μ.

In the whistler wave number range (0 ≤ k ≤ 43), the proof is a bit more involved.
Here, Equation (32) has two solutions:

k1 =
1
2

(√
μ2

ε2 − 4Si − μ

ε

)
, (33)

k2 = −1
2

(√
μ2

ε2 − 4Si +
μ

ε

)
. (34)

To obtain real-valued solutions (33) and (34), the condition μ2 ≥ 4Siε
2 must be fulfilled.

Assuming that this is fulfilled, one notes that for non-negative values of μ ≥ 0, the solution
k2(μ ≥ 0) < 0 is always negative, leaving only one solution for kr = k1(μ ≥ 0) > 0.
Alternatively, for negative values of μ = −|μ| the solutions (33) and (34) become

k1(μ < 0) =
1
2

(√
μ2

ε2 − 4Si − |μ|
ε

)
, (35)

k2(μ < 0) =
1
2

(
|μ|
ε

−
√

μ2

ε2 − 4Si

)
. (36)

To further evaluate the solution, it is necessary to distinguish between positive (for
protons) and negative values (for electrons) of Si. For electrons the solution k2(μ < 0) < 0
is again always negative. For protons, both solutions (35) and (36) are positive, but the
second one is

k2(μ < 0, Si > 0) ≤ S1/2
i =

1
2γ

< 1 (37)
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always (for protons Si = 1/
√

2γ). This solution is positive but is in contradiction with the
above-made assumption of the modes in the whistler regime with k > 1. This leaves us
with only one solution for the resonant wave number kr = k1(μ < 0, Si > 0) in the whistler
wave number range.

One then obtains:

Dμμ(μ) =
π2Ω2kc(1 − μ2)

Ω2
i B2

0
Θ(kr − k0)Θ(M1/2 − kr)

× gtot(kr)∣∣∣dyR
dk + μ

ε

∣∣∣
k=kr

(
1 +

εμyR(kr)

kr

)2

. (38)

The case of forward-moving right-handed polarized waves is similar to the backward-
moving ones. The main difference is the resonant wave number,

kr =
1
2

(√
μ2

ε2 − 4Si +
μ

ε

)
. (39)

2.3.2. Alfvén and Whistler Contributions

The total Fokker–Planck coefficient can be written as a sum of Alfvén and
whistler contributions:

Dμμ(μ) = DA
μμ + DW

μμ. (40)

For the Alfvén wave Fokker–Planck coefficient, inserting the asymptotic expansions
yR,L(k ≤ 1)  k of Equations (12) and (15) one obtains:

DA
μμ(μ) =

π2Ω2kc(1 − μ2)

Ω2
i B2

0

∫ 1

k0

dk‖gtot(k)

× {(1 + εμ)2[(1 − HR)(1 − σ) δ(k(1 + μ/ε) + Si)

+ (1 − HL)(1 + σ) δ(k(1 + μ/ε)− Si)] (41)

+ (1 − εμ)2[(1 + HR)(1 − σ) δ(k(1 − μ/ε) + Si)

+ (1 + HL)(1 + σ) δ(k(1 − μ/ε)− Si)]}.

The whistler contribution is calculated above, while for completeness is given here in
the same form:

DW
μμ(μ) =

π2Ω2kc(1 − μ2)

Ω2
i B2

0

∫ M1/2

1
dk‖gtot(k)

×
[
(1 + εμ)2(1 − HR)(1 − σ) δ(k2 + kμ/ε + Si) (42)

+ (1 − εμ)2(1 + HR)(1 − σ) δ(k2 − kμ/ε + Si)
]
.

2.3.3. Electrons

The Fokker–Planck coefficient derived in the previous section hold for any particle.
In general, the integration is not complicated as the delta function of the resonance condition
helps to simplify the calculations. However, a specific turbulent spectrum has to be defined.
We refrain from performing the integral here but point out which interaction will take place.
There is a clear difference between electrons and protons, and the discussion in this Section
is limited to the electron case.

For Alfvén waves, one can distinguish the interaction of electrons with forward/backward-
moving left/right-handed modes. Defining
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μR(x) =
βA(M −√

1 + x2)

x
, (43)

μL(x) =
βA(M +

√
1 + x2)

x
, (44)

one can constrain the waves for which the resonant interaction with electrons is possible:

1. backward-moving right-handed polarized Alfvén waves for all pitch-angle cosines with
μ ≥ μR(x) and μ ≥ −ε = −βA

√
1 + x2/x;

2. backward-moving left-handed polarized Alfvén waves for all pitch-angle cosines with
μ ≤ μL(x); and μ ≤ −ε = −βA

√
1 + x2/x

3. forward-moving right-handed polarized Alfvén waves for all pitch-angle cosines with
μ ≤ μR(x) and μ ≥ ε = βA

√
1 + x2/x;

4. forward-moving left-handed polarized Alfvén waves for all pitch-angle cosines with
μ ≥ μL(x) and μ ≥ ε = βA

√
1 + x2/x.

For whistler waves, additionally

μ0(x) =
βA M1/2(

√
1 + x2 − 1)

x
(45)

is defined. The resonant interaction takes place within the following range:

− μ0(x) ≤ μ ≤ μR(x), (46)

The resulting total Fokker–Planck scattering coefficient is shown in Figure 1.
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Figure 1. The pitch-angle dependence of the Fokker–Planck scattering coefficient model calculation
for electrons at extreme ends. A power-law spectrum with with spectral index s = 3 in the wave
number range 0.01 < k < M1/2, where M is the proton-to-electron mass ratio, is assumed. Electrons at
80 keV and 3 MeV are considered. The proton gyrofrequency Ωp = 5× 104 Hz, and the Alfvén speed
vA = 0.001c in fractions of the speed of light c.

3. Numerical Methods

3.1. Particle-in-Cell Simulations

To be able to model dispersive waves of different kinds and to obtain a self-consistent
description of electromagnetic fields and charged particles in the plasma, a fully kinetic
particle-in-cell (PiC) approach [37] is employed here. In particular, the explicit second-order
PiC code ACRONYM [38] is used which is fully relativistic, parallelized and three-dimensional.
Although the PiC method might not be the most efficient numerical technique when dealing
with proton effects, we still favor this approach because of its versatility. A more detailed
discussion of advantages and drawbacks as well as a direct comparison of PiC and MHD
approaches with the specific problem of the interaction of protons and left-handed polarized
waves can be found in Sections 3 and 6 of Ref. [39]. However, the PiC approach is well-suited
for the study of electron scattering as soon as the time and length scales of electron interactions

135



Physics 2022, 4

are closer to the scales of time step lengths and cell sizes in PiC simulations, thus reducing
computing time compared to simulations, in which proton interactions are studied.

The details of the PiC code are not discussed here. The simulation technique used
here does not differ from standard techniques. Two points, however, to be mentioned: the
initialization of turbulence and the tracking of test particles. Turbulence is discussed in
Section 3.1.1 just below, because the numerical treatment is inherently connected to the
physical processes of turbulence. The treatment of energetic particles is divided into to two
parts: the injection of particles and the analysis of the particle data.

3.1.1. Setup of Turbulence Simulations

Here, a simulation setup that was inspired by Gary et al. [27] is used. Waves are
initialized at low k, k < Ωi/VA. The layout of the initial waves in the wave number space
is explained below and is drawn in Figure 2 for the two-dimensional setup. However, in
the PiC simulation, the velocity space and the electromagnetic fields are considered three-
dimensional. As shown below, the two-dimensional simulations give an energy cascade
similar to that of the three-dimensional simulations. As highlighted by Gary et al. [29],
the three-dimensional case differs mainly in the anisotropy and a break at k⊥c/Ωe. The
question whether particle transport is different in two and three dimensions may be
understood from the fact that particle motion is still three-dimensional. The theoretical
description is assuming gyrotropy anyway, so the different perpendicular directions are
therefore averaged out.

In the simulations, the natural mass ratio, mp/me = 1836, is used. Waves are initialized
with equal amplitudes and a random phase angle. The total magnetic energy density of the
initial waves is set to 10% of the energy density of the background magnetic field. This can
be expressed by δB2/B2

0 = 0.1, where δB2 = ∑j δB2
j and j denotes individual waves.

To analyze the simulations, the spectra of the magnetic energy density, EB = |�B2(�k)|/(8 π),
in wave number space are considered. A two-dimensional energy spectrum, EB(k‖, k⊥),
can be obtained by Fourier transforming the field data to obtain the perpendicular coordi-
nate k⊥. The parallel direction is equivalent to the z-direction of the simulation, whereas
the perpendicular direction is represented by the x-direction in a two-dimensional simula-
tion or by the x-y-plane in a three-dimensional simulation. A one-dimensional spectrum
EB(k) can be obtained by integrating over the angle θ in the k‖-k⊥-plane. Additional one-
dimensional spectra, EB(k‖) and EB(k⊥), are obtained by integrating EB(k‖, k⊥) over k⊥
and k‖, respectively.

Electron transport is studied in two simulations, S1 and S2. The aim is to resolve
several wave numbers in both the undamped and damped regimes of the whistler mode.
This should allow us to see differences in the spectral slope or the anisotropy in both
regimes. To resolve the relatively large spatial scales of the undamped regime, large
simulation boxes are required. Thus, the decision was taken to restrict the investigations to
two-dimensional setups.

Simulations S1 and S2 are characterized by the physical and numerical parameters
listed in Tables 1 and 2, respectively.

The setups are aimed to simulate decaying turbulence with a set of 42 initially excited
whistler waves according to Figure 2.

Table 1. Physical parameters for simulations S1 and S2: electron plasma frequency, ωp,e electron
cyclotron frequency, Ωe, and thermal speed, vth,e of electrons, sum δB2 of the squares of the magnetic
field amplitudes of the individual waves, and plasma beta β.

Simulation ωp,e (rad/s) |Ωe| (ωp,e) vth,e δB2/B2
0 β

S1 1.966 × 108 0.447 0.10 c 0.10 0.20
S2 1.966 × 108 0.447 0.05 c 0.10 0.05
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Table 2. Numerical parameters for the two-dimensional simulations S1 and S2: number of cells, N‖
and N⊥, in the directions parallel and perpendicular to the background magnetic field, respectively;
number of time steps, Nt, grid spacing, Δx, time step length Δt, and the number of particles (electrons
and protons combined) per cell (ppc).

Simulation N‖ (Δx) N⊥ (Δx) Nt (Δt) Δx (c ω−1
p,e ) Δt (ω−1

p,e ) ppc

S1 2048 2048 1.0 × 105 7.0 × 10−2 4.1 × 10−2 256
S2 2048 2048 1.0 × 105 3.5 × 10−2 2.0 × 10−2 256

kz

kx

Figure 2. Schematic representation of two-dimensional wave number space. The discretized wave
vectors are represented by the gray boxes, and the axes mark the directions parallel (kz) and perpen-
dicular (kx) to the background magnetic field �B0 in the case of a two-dimensional simulation. For the
simulation of decaying turbulence in two dimensions, a set of 42 initial waves is excited, where each
wave occupies one position on the grid. These positions are indicated by the blue boxes in accordance
with the setup specified by Gary [27].

3.1.2. Turbulence Spectra

Here, the simulations S1 and S2 with the parameters from Tables 1 and 2 are
briefly discussed.

Figure 3 shows the perpendicular spectra EB(k⊥) of the magnetic field energy from
simulations S1 (Figure 3a) and S2 (Figure 3b). At small, perpendicular wave numbers, the
magnetic energy distribution follows a power-law with spectral index s⊥ = −3.1 and −3.0
for S1 and S2, respectively. After the break, the spectra steepen, and significant differences
between both simulations become obvious in the different spectral indices.

The numerical noise level in simulation S2 is about one order of magnitude lower than
in S1, which allows an energy cascade to higher wave numbers. This can be explained
by the lower plasma temperature in S2, leading to less kinetic energy of the particles and
therefore less fluctuations in the electromagnetic fields. The flatter spectrum in S2 (after the
break; compared to S1) agrees with results from Chang [30], who reported a more efficient
perpendicular energy transport with decreasing plasma beta β.

Chang [30] also observed stronger anisotropy in simulations with lower β. However,
this is not supported by the data from simulations S1 and S2. The parallel spectra EB(k‖)
are depicted in Figure 4. In both cases, the parallel spectra do not contain a break and
are steeper than the perpendicular spectra at small wave numbers. For S1, the parallel
spectrum reaches the noise level approximately at the position where cyclotron damping is
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assumed to set in. Figure 4a,b, however, shows that the parallel spectrum in simulation S2
extends to wave numbers in the damped regime. The slope does not change at the transition
into the dissipation range and is flatter than the slope in the perpendicular spectrum at
corresponding k⊥. Thus, the parallel energy transport is assumed to dominate at large
wave numbers. Unfortunately, the turbulent cascade reaches the numerical noise level
prior to that.
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Figure 3. Normalized magnetic field energy distribution EB(k⊥)/EB0 over the perpendicular wave
number, k⊥ normalized to c/ωp, for simulations S1 (a) and S2 (b). Here, EB0 is the magnetic field
energy of the background, ωp is the plasma frequency, and c is the speed of light. The data are
obtained at four times t|Ωe| as indicated, where Ωe is the electron gyrofrquency. At the earliest time
steps, the spectra reach their steady states. Later in the simulations, the shapes of the spectra do not
change significantly. Power-law fits to the data are indicated by the black lines at times t |Ωe| = 1090.1
(a) and 547.1 (b). The corresponding spectral indices are highlighted by the arrows.
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Figure 4. Normalized magnetic field energy distribution EB(k‖)/EB0 over the parallel wave number,
k‖ normalized to c/ωp, for simulations S1 (a) and S2 (b). The data are obtained at four times t|Ωe| as
indicated. The spectra reach their steady state at the earliest time steps. Power-law fits to the data
are indicated by the black lines at times t |Ωe| = 1090.1 (a) and 547.1 (b). The spectral indices are
highlighted by the arrows. The dashed vertical lines indicatethe expected onset of cyclotron damping
for purely parallel propagating waves.

The energy distribution EB(k‖, k⊥) in two-dimensional wave number space supports
the claim that parallel energy transport becomes important in simulation S2, as Figure 5
shows. Figure 5b shows the distribution of magnetic field energy in simulation S2. Although
hardly any (quasi-)parallel waves are produced above k‖ c/ωp ≈ 1 (where cyclotron
damping sets in), this critical parallel wave number can be passed at higher k⊥. At small
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wave numbers, however, the perpendicular cascade clearly dominates. In simulation S1,
the situation is different, as Figure 5a shows. The perpendicular cascade at small wave
numbers is similar to S2, as expected, but at larger k⊥, there is hardly any energy transport
to higher parallel wave numbers, in agreement with the spectra given in Figures 3 and 4.
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Figure 5. Two-dimensional magnetic field energy distribution in wave number space for simulations
S1 (a) and S2 (b). Note different scales on the axes of (a) vs. (b).

3.2. Simulation of Energetic Particles

In order to study wave-particle scattering, a specific initialization of a test particle
population is prepared. The ACRONYM code allows for different particle species (typically
protons and electrons, but also positrons or heavier ions) and different particle populations (a
background plasma and, for example, additional jet populations, non-thermal particles, etc.).

The simulations S1 and S2, discussed here, employ a thermal background plasma (see
Table 1) and an additional population of non-thermal test particles to study the transport
of energetic electrons. It is found that the test particles have no noticeable influence on
the background plasma, even if the ratio Nt/Nbg of numerical particles in the test to the
background particle population is of the order of unity.

3.2.1. Initialization and Analysis

Test particles are initialized as a mono-energetic population; i.e., the particles have
the same absolute speed, but their direction of motion is chosen randomly. The speed is
calculated from the resonance condition for waves in the plasma. Solving Equation (18) for
the speed of a particle of species α yields:

vα =

∣∣∣∣∣∣
k‖ ω |μres| ± |Ωα|

√
k2
‖ μ2

res + (Ω2
α − ω2)/c2

k2
‖ μ2

res + Ω2
α/c2

∣∣∣∣∣∣, (47)

where μres is the desired resonant pitch-angle cosine. The sign in the numerator changes
depending on the polarization of the wave, its direction of propagation, and the parti-
cle species.

The directions of motion of the bulk of the test particles are chosen at random, using
the speed calculated from Equation (47), a random polar angle cosine μ, and a random
azimuth angle φ. This yields an isotropic distribution of the velocity vectors in μ-φ space.
It is convenient to choose an isotropic distribution in μ = cos θ (instead of θ), because
the analysis of pitch-angle scattering relies on the pitch-angle cosine and not on the pitch-
angle itself.
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A fraction of the test particle population is not initialized as described above, but
instead uses a parabolic distribution of polar angle cosines. This is done by assigning

μ = A (R + B)1/3 − C (48)

to the particles, where R is a random number between zero and one, and A, B, and
C are parameters describing the shape of the parabola. The parabolic distribution is
required for the analysis of pitch-angle scattering using the method of Ivascenko et al. [40].
Ivascenko et al. suggest the use of a half-parabola, i.e., A = 2, B = 0, C = 1, but other
distributions are also possible (see Figure 6). The resulting angular distribution of the entire
test particle population is, therefore, not entirely isotropic.
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Figure 6. A fraction of the test particle population has pitch-angle cosines assigned according to a
parabolic distribution. Left panel: the assigned pitch-angle cosine μ as a function of the random
number R ∈ [0, 1], which is used to generate the distribution. The curves follow Equation (48)
and employ two sets of parameters A, B, and C, as indicated. Right panel: the resulting particle
distribution f (μ) as a function of μ. The purple lines employ the parameters suggested by Ivascenko
et al. [40], whereas the green curves show an improved implementation that is used in the ACRONYM
code. Note that the derivative d f (μ)/dμ 
= 0 over the whole range of pitch-angle cosines in the latter
case, whereas it becomes zero at μ = −1 when the parameters of Ivascenko et al. [40] are used.

The technique described above to create a population of energetic test particles
for the study of wave-particle scattering was designed for a single plasma wave in the
simulation [41]. However, it can also be applied to simulations with several plasma waves.

The test particle population is not injected at the start of the simulations S1 and S2 but
at a later time tinj for the following reason: it is expected that turbulence develops from the
initial conditions of the simulation, i.e., from a small set of seed waves that interact and
start the turbulent cascade. This process takes time, and it may be desired to wait until
a turbulent cascade is established before the transport of energetic test particles can be
studied. Therefore, an optional deployment of test particles at later times in the simulation
is favored. The particles are created at a a pre-defined time step, and the initialization
is carried out as described earlier. Those particles can then be tracked for the rest of
the simulation.

To evaluate particle transport in the turbulent plasma, the test particle data can
be analyzed after the simulation to obtain the diffusion coefficient Dμμ. The diffusion
coefficient is calculated from a simplified Fokker–Planck equation, Equation (22), where
pitch-angle diffusion is assumed to be the only relevant diffusion process:

∂ fα

∂t
− ∂

∂μ
Dμμ

∂ fα

∂μ
= 0. (49)

This equation can be rewritten to yield

∂ fα(μ, t)
∂t

=

(
dDμμ(μ)

dμ

)
∂ fα(μ, t)

∂μ
+ Dμμ(μ)

∂2 fα(μ, t)
∂μ2 . (50)
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The method described by Ivascenko et al. [40] is based on integrating Equation (49)
over μ, which yields the pitch-angle current jμ:

μ∫
−1

μ
∂ fα(μ, t)

∂t
= Dμμ(μ)

∂ fα(μ, t)
∂μ

= −jμ. (51)

The diffusion coefficient is then obtained by dividing jμ by ∂ fα/∂μ.

3.2.2. Physical Parameters

Using the setups of simulations S1 and S2, the transport of energetic electrons in
kinetic turbulence is studied. In the following, the exact parameters for the test particle
energy distribution are presented.

In simulations S1 and S2, decaying whistler turbulence is simulated, as was shown in
the Section 3.2. As can be seen in the magnetic energy spectra presented in Figures 3 and 4, a
steady state in terms of the power-law slope of the spectral energy distribution is established
after a given time in each of the two simulations. As soon as this stage of the simulation is
reached, a population of energetic test electrons can be injected as described in Section 3.2.1.

The time step for the checkpoint and subsequent restart is chosen to be t |Ωe| = 726.8
for S1 and t |Ωe| = 364.7 for S2. For each of these two setups, six test electron configurations
are prepared. The simulations are labeled according to the physical setup (S1 or S2) followed
by a letter referring to the test particle configuration (“a” through “f”). The parameters of
the test particles can be found in Table 3 and describe the test electron speed ve and kinetic
energy Ee.

Table 3. Test electron characteristics for the simulations of particle transport: test electron speed ve

and corresponding kinetic energy Ekin,e. The individual simulations (letters “a” through “f”) are
based on the simulations of kinetic turbulence Sj with j = 1 and 2, which are described in Section 3.1.2
(Tables 1 and 2). Note that simulations Sje and Sjf employ the same test electron energies. However,
they differ in the way the test electron distribution is initialized (see text).

Simulation Sja Sjb Sjc Sjd Sje Sjf

ve (c) 0.546 0.862 0.941 0.979 0.999 0.999
Ekin,e (eV) 1.0 × 105 5.0 × 105 1.0 × 106 2.0 × 106 1.0 × 107 1.0 × 107

The test electron energy is increased from simulation S1a (S2a) to S1e (S2e). Simulation
S1f (S2f) uses the same particle energy as S1e (S2e), but a different parabolic angular
distribution of the particles. Here the particle density f (μ) increases with increasing μ,
while in the other simulations it decreases with increasing pitch-angle cosine. This change
in the pitch-angle distribution allows to check for systematic errors in the particle data.

4. Results

Pitch-Angle Diffusion Coefficients

The test particle simulations are analyzed as described in Section 3.2.1. The energetic
electrons are tracked for several electron cyclotron time scales, and the resulting pitch-angle
diffusion coefficients Dμμ are presented in Figures 7 and 8 for data based on the setup of S1
and S2, respectively. Time is measured as the interval Δt from the time of the injection of
the particles to the current time step.

The results of both sets of simulations, one based on S1 and the other based on S2,
do not differ qualitatively, as would be expected from the two setups. The only difference
between the physical parameters for S1 and S2 is the plasma temperature, which has no
direct influence on the test electrons. Although the magnetic energy spectrum differs at high
wave numbers (see Figure 3), the distribution of magnetic energy at small wave numbers
is very similar. As it is explained below, this low-wave-number regime represents the
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dominant influence on particle transport. Thus, the two sets of simulations are discussed
simultaneously in what follows.

Although particle data can be obtained for an arbitrary number of time steps, the
interval that can be used for the analysis is still limited. The method of Ivascenko et al. [40]
critically depends on the particle distribution f (μ) in pitch-angle space. In order for the
method to work, the initial distribution must be slightly disturbed, but the perturbations
must not be too strong. This leaves only a brief period of time for the optimal efficiency of
the method.

Figures 7a and 8a show the typical behavior of the derived Dμμ over time. Shortly
after the injection of the test electrons, the perturbations of f (μ) are small, resulting in a low
amplitude of Dμμ (purple lines). With increasing time, the amplitude grows and reaches
a maximum (green and blue lines). At later times, the amplitude decreases again, as the
perturbations become too strong and the method becomes unreliable (orange lines). The
other panels of the two figures show the time evolution until the maximum amplitude of
Dμμ is reached for other test electron energies.

Although the turbulent cascade is assumed to be symmetric about μ = 0, the panels
of Figures 7 and 8 show an obvious asymmetry in the pitch angle diffusion coefficients
derived from the test electron data. The amplitude of Dμμ is generally larger for μ < 0.
While the energy spectrum itself is isotropic in μ, one could argue that the polarization of
the waves’ magnetic fields relative to the direction of the background magnetic field B0 is
different (i.e., the plasma physics definition of the polarization).

The magnetic helicity of the plasma waves is one of the possible causes of this
anisotropy. Another reason for the asymmetry found in Figures 7 and 8 is that the parabolic
distribution f (μ) of the test particles implies that there are more test electrons at negative
pitch-angle cosines (except for simulations S1f and S2f). Therefore, the particle statistics is
more reliable for negative μ, and the method of Ivascenko et al. [40] produces more accurate
diffusion coefficients. While Dμμ can also be calculated for μ > 0, it is more prone to errors,
and statistical fluctuations play a more important role, as Figure 9 indicates. However,
small-scale statistical fluctuations can be suppressed by use of a Savitzky-Golay filter, as
suggested by Ivascenko et al. [40].

Especially for early time steps, it can be seen that Dμμ is found to diverge at μ = 1.
This is, of course, not a physical effect. At μ = 1, the derivative of the initial parabolic
distribution f (μ) becomes (almost) zero. In this case, the method of Ivascenko et al. [40]
becomes numerically unstable.

Another numerical effect causes Dμμ to become negative. This can be seen in Figure 8d
and Figure 8e for early times. Negative solutions are most likely related to statistical
fluctuations in the particle distribution, which drown the signal at early times, when the
physically motivated perturbations of f (μ) are still developing.

Besides these flaws, the derived pitch-angle diffusion coefficients appear reasonable.
They develop a (more or less) symmetric shape about μ = 0, indicating that neither
direction is preferred. This is expected from the setup of the turbulence simulations S1
and S2, which employ a symmetric layout of initial waves and therefore should produce
turbulent cascades that are symmetric in μ. This, however, cannot be proven by the plots of
the energy distribution in wave number space, since the information about the direction of
propagation of the waves is lost.

An interesting observation is that the pitch-angle diffusion coefficients grow in ampli-
tude with the particle energy increasing from 100 keV to 2 MeV. At the highest test electron
energy, however, the amplitude of Dμμ is significantly lower than in all other cases. Both
Figures 7e and 8e also show that Dμμ forms a single peak close to μ = 0 in the case of the
highest electron energy, whereas all other simulations produce a double peak structure. The
reason for these differences is not clear. However, it is assumed that the different behavior
of the 10 MeV electrons is related to their scattering characteristics. These high energy
particles resonate with all of the initially excited waves in the simulations (see Figure 2),
which is not the case in the simulations of less energetic electrons. Since the initial waves
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contain the most energy, they are also assumed to significantly influence particle transport,
especially if wave–particle resonances may occur.

In fact, the Dμμ in Figures 7e and 8e exhibit distinct peaks at early times (purple
and green curves). Similar behavior is also found in simulations S1f and S2f, which are
not included in Figures 7 and 8. For the example of one time step in simulation S1f, the
peak structures in Dμμ are related to wave–particle resonances calculated according to
Equation (18). The result is shown in Figure 10, where the colored vertical lines mark the ex-
pected positions of resonances. It can be seen that the resonances coincide with the positions
of the peaks in Dμμ. The region around μ = 0 is most densely populated by resonances,
which might explain the single peak in Dμμ at later times as seen in Figures 7e and 8e.
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Figure 7. Pitch-angle diffusion coefficients Dμμ for test electrons with different energies for simula-
tions S1a to S1e (a–e). The colored lines denote the diffusion coefficients derived from the simulation
data at various times. The black lines represent the model predictions derived in Section 2.3.3.
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Finally, Figures 7 and 8 also include the model predictions from Equations (41) and (42).
Some of the parameters required can be directly obtained from the setup of the simulations:
the ratio δB2/B2

0 is listed in Table 1, and the test electron speed speed ve and the electron
cyclotron frequency Ωe are found in Table 3. However, the minimum wave number kmin, the
spectral index s, and the cross helicity and magnetic helicity are not as trivial to find.
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Figure 10. Pitch-angle diffusion coefficient Dμμ at one point in time as derived from the data of
simulation S1f (black line). A noticeable number of peaks in Dμμ coincide with the positions of
wave–particle resonances predicted by the resonance condition (18), which are marked by the colored,
vertical lines. The colors denote the parallel wave numbers k‖ (in numerical units) from one to
four: purple, green, red, and orange. The line style refers to perpendicular wave numbers k⊥ (also
in numerical units) from zero to three: solid, dashed, dotted, dot-dashed. For example, the red
dashed lines represent the resonance with a wave at (k‖ = ±3, k⊥ = 1). Only resonances of the
first order, i.e., N = ±1 in Equation (18), are shown. Note that k⊥ does not enter the resonance
condition explicitly but is required to calculate the frequency ω(k‖, k⊥) according to the cold plasma
dispersion relation.

For the minimum wave number, the magnetic energy spectra in Figures 3 and 4 have
been considered. The second smallest resolved wave number kmin = 2 Δk has been chosen,
where Δk is the grid spacing in wave number space. In a square simulation box, where the
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numbers of grid cells N‖ and N⊥ in the parallel and perpendicular directions are equal, the
grid spacing is given by Δk = 2 π/(N‖ Δx) = 2 π/(N⊥ Δx). The minimum wave number
kmin marks the beginning of the downward slope of the energy spectrum. Waves at small
wave numbers are assumed to dominate the interaction with the particles due to their high
energy content and the steep spectral slope. Therefore, the spectral index s = |s⊥| = 3.1
was chosen, in accordance with the index of the perpendicular spectrum in Figure 3a. This
spectral index corresponds to simulation S1, but since the index in S2 is similar, s = 3.1 was
used in both cases.

Finally, the magnetic helicity σ was chosen to be 0. The effect is in fact rather small
since electrons mostly resonate with right-handed polarized modes.

From this starting point, the three parameters kmin, s, and HR were fitted according to
the numerical data from each simulation. The resulting parameters, which are used in the
plots in Figures 7 and 8, are listed in Table 4. It can be seen that most simulations can be
described with the initial choices for kmin and s explained above.

Table 4. Parameters assumed for the model: spectral index s, cross-helicity HR, and minimum wave
number kmin. The latter is given in units of the grid spacing Δk = {4.4, 8.7} × 10−2 ωp/c in wave
number space in simulations S1 and S2, respectively.

Simulation S1a S1b S1c S1d S1e S1f S2a S2b S2c S2d S2e S2f

s 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
HR 1.00 0.55 0.55 0.26 0.26 0.25 0.99 0.59 0.42 0.26 0 0

kmin (Δk) 2 2 2 2 1 1 2 2 2 2 1 1

In general, the model describes the data surprisingly well. Position and amplitude
of the maxima and the inclination of the flanks are in good agreement. The contributions
at μ = 0 are in disagreement; this is however not unexpected as for quasi-linear theory.
Still, a non-zero contribution at medium energies is found, which is different from a non-
dispersive quasi-linear approach. The agreement of the model and the simulation results
also supports the claim that the waves at small wave numbers dominate the interactions
with the particles. Otherwise, the spectral index s would have to be changed according to
the particle energy. The low energy particles, e.g., 100 keV, resonate with plasma waves
in the high wave number regime, where the spectrum is steeper. Thus, according to
Figures 3 and 4, the effective spectral index s should increase for these particles, if the
resonant interactions with high-k waves were important. However, this seems not to be the
case. But as the results in Figures 7 and 8 show, a change of the model equations for Dμμ is
not necessary.

The model only fails for the simulations of 10 MeV-electrons (S1e, S1f, S2e, S2f). This
might already be expected from the considerations discussed above: the high energy
electrons are able to resonate with the initially excited waves. These waves contain the
most energy and thus dominate the interaction of the particles with the turbulent spectrum.
However, the initial waves cannot be considered to be part of the power-law spectrum
itself. As Figures 3 and 4 show, the energy distribution forms a plateau at smallest wave
numbers, where the initial waves are located. The initial waves are also only few in number,
thus not forming a continuous spectrum but a population of distinct, individual waves.
Representing a continuous spectrum on a discretized grid is always doomed to fail, but at
larger wave numbers, the higher number of individual waves at least creates a rudimentary
approximation of a continuum. Thus, the whole model assumption, i.e., a continuous
power-law spectrum, is invalid. As Figure 10 shows, the pitch-angle diffusion coefficient
derived from the simulation data can be described reasonably well by individual resonances
with a number of waves.

Finally, it is worth taking a look at simulations S1f and S2f, which have not been
discussed so far. These simulations, which employ the same test electron energies as
S1e and S2e, were carried out to test whether the initial particle distribution f (μ) has
an influence on the resulting Dμμ. It was already discussed above that the statistical
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fluctuations tend to become more noticeable at those μ where fewer particles are located.
Thus, reversing the slope of the initial parabola should shift the dominant influence of
statistical fluctuations from positive μ to negative.

Figure 11 depicts the pitch-angle diffusion coefficients derived from simulations S2e
and S2f in panels a and b, respectively. This example is chosen because physical results for
Dμμ are only obtained at negative μ at early times in S2e. Should this also be the case in S2f,
this would mean that some physical process prefers the interaction of waves and energetic
particles that propagate opposite to the background magnetic field. However, as Figure 11
shows, this is not the case. The pitch-angle diffusion coefficient derived from S2f appears
to be more symmetric about μ = 0 at early times.
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Figure 11. Comparison of the pitch-angle diffusion coefficients Dμμ derived from the test electron
data of simulations S2e (a) and S2f (b). The two simulations differ by the slope of the parabolic
particle distribution f (μ) used to initialize the test electrons. The asymmetry of Dμμ in S2e at early
times is not reproduced by S2f, which suggests a numerical or statistical reason for the asymmetry.
At late times, the Dμμ become similar, with a single peak near μ = 0 in both simulations.

At late times both simulations produce a single peak in Dμμ, which is located near
μ = 0. The peak is slightly shifted to negative μ in both S2e and S2f. This may hint at a
physical process leading to the peak not being centered exactly around μ = 0. Such an
asymmetry is sometimes predicted in theoretical models, e.g., Schlickeiser [11]. However,
considering the results of simulations of energetic particles and their interaction with
individual waves, an asymmetry is not expected here.

Thus, the results of simulations S2e and S2f depicted in Figure 11 do not entirely agree
with the expectations. It might be worthwhile to investigate the behavior of the pitch-
angle diffusion coefficient in more detail in a future project. Changing the initial particle
distribution f (μ) once more (e.g., by altering the parameters A, B, and C in Equation (48))
or reversing the direction of the integration over μ in the method of [40] might help to
distinguish between a physically motivated asymmetry and numerical artifacts.

5. Conclusions

In this paper, a set of pitch-angle diffusion coefficients for dispersive whistler waves are
derived. Using a particle-in-cell code turbulence in the dispersive regime was simulated.
Test particle electrons were injected into the simulated turbulence and their transport
parameters were derived.

The conducted turbulence simulations yield power-law spectra of the magnetic field
energy in wave number space. The measured spectral indices are in agreement with the
findings of Refs. [27,29]. Numerical noise limits the energy spectra at high wave numbers,
thus hindering the production of an energy cascade in the dissipation range.
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While the theory is limited to parallel waves, simulations were performed in two-
dimensional wave-number space. The theoretical description of oblique, dispersive waves
is not practically doable, while one-dimensional turbulence simulations are not producing
an energy cascade. The approximation of a parallel spectrum makes this difference between
dimensionalities reasonable.

The simulations of energetic particle transport in kinetic turbulence show that the
steep energy spectrum leads to wave–particle interactions primarily in the low wave
number regime. While low-energy particles, in principle, resonate with waves in the
dispersive or dissipative regime of the turbulent cascade, these interactions are subordinate
to interactions with non-resonant waves at lower wave numbers. The reason for this is that
the energy content of dispersive waves decreases rapidly with increasing wave number
due to the steep power-law spectrum. Thus, the waves at low wave numbers dominate the
spectrum as far as particle transport is concerned.

This can be seen when comparing simulation data to the theoretical model. The test
electron data from the simulations allows us to derive pitch-angle diffusion coefficients
Dμμ using the method of [40]. The presented model for Dμμ in plasma turbulence with
dispersive waves allows for the prediction of pitch-angle diffusion coefficient for Alfvén
and whistler turbulence.

Simulation data and model match rather well for low-energy electrons. Contributions
at μ = 0 are not modeled correctly as is expected for a quasi-linear model. The cross-
helicity assumed in model parameters may not necessarily represent the cross-helicity of
the plasma, but may be to some degree a numerical artifact. At higher electron energies,
particles interact with the small number of excited plasma waves, which are used as a
seed population for the generation of kinetic turbulence. The resulting Dμμ does not match
the prediction for the interaction with the (continuous) turbulent spectrum but can be
explained by resonant scattering with several waves at discrete wave numbers.

In general simulations, dispersive whistler turbulence and the corresponding particle
transport are possible but are also still too expensive in terms of computing resources.
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Abstract: Towards the aim of mastering level 5, a fully automated vehicle needs to be equipped
with sensors for a 360◦ surround perception of the environment. In addition to this, it is required to
anticipate plausible evolutions of the traffic scene such that it is possible to act in time, not just to
react in case of emergencies. This way, a safe and smooth driving experience can be guaranteed. The
complex spatio-temporal dependencies and high dynamics are some of the biggest challenges for
scene prediction. The subtile indications of other drivers’ intentions, which are often intuitively clear
to the human driver, require data-driven models such as deep learning techniques. When dealing
with uncertainties and making decisions based on noisy or sparse data, deep learning models also
show a very robust performance. In this survey, a detailed overview of scene prediction models is
presented with a historical approach. A quantitative comparison of the model results reveals the
dominance of deep learning methods in current state-of-the-art research in this area, leading to a
competition on the cm scale. Moreover, it also shows the problem of inter-model comparison, as many
publications do not use standardized test sets. However, it is questionable if such improvements
on the cm scale are actually necessary. More effort should be spent in trying to understand varying
model performances, identifying if the difference is in the datasets (many simple situations versus
many corner cases) or actually an issue of the model itself.

Keywords: automated driving; data-driven modeling; deep learning; scene prediction; trajectory
prediction

1. Introduction

In the last five years, huge progress has been made in the technology of self-driving
cars. Advanced Driver Assistance Systems (ADAS) have become very mature and are part
of any new vehicle nowadays. First, functions beyond the ADAS level, e.g., lane keeping
or lane change assistance, were introduced into the series market of conventional Original
Equipment Manufactures (OEMs). Even more compelling were the advances in higher
automated driving levels made by Tesla with the autopilot and full self-driving capability
functions [1], even though, other than the feature’s names would suggest, the driver is still
responsible and needs to monitor the driving process at all times.

The Society of Automotive Engineers (SAE) defines [2] six levels of Automated Driving
(AD) (see Figure 1). ADAS systems are limited to levels 1 and 2, where the human driver is
still the one operating the vehicle. Although the system can take full control already for
specific use cases at level 2, the human driver needs to be attentive all the time, meaning
eyes on the traffic at any time. It allows for temporary hands-off but the system reminds
the driver to take back control after a short time period.

Physics 2022, 4, 132–159. https://doi.org/10.3390/physics4010011 https://www.mdpi.com/journal/physics
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control by
the vehicle

Full driving
control for
specific use

cases

Driver has to
take control
upon request

System goes
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case of
problem

System can
handle all
situations

Figure 1. Automated driving (AD) levels according to the definition of the Society of Automotive
Engineers.

The actual AD use case starts from level 3. The challenging task in designing a level 3
system is that a human driver who can go hands- and eyes-off must be notified on time
to take back control in a period of around 10 s. Bridging the time span of 10 s in case of
a complex situation is a great challenge such that some OEMs are discussing the strategy
of skipping this level, going straight to high automation level 4. Here, in contrast to the
reaction times of human drivers, the vehicle can handle problems on its own within just
fractions of a second, or go to a fail-safe condition if no other solutions can be found.
The final level 5 can handle all kinds of situations and use cases. A steering wheel might
not be present anymore.

In 2019, the first autonomous taxi fleets were announced for the year 2020 [3]. However,
this was delayed partially due to legislation and partially due to technical issues. Only
slowly, the first test cases have been introduced. While the use case automated highway
driving or level 4 driving on well-defined urban test fields can be handled quite well
already, the big challenge is handling fully AD level 5 for all possible scenarios and corner
cases. This includes strongly populated cities where it is not possible to anticipate the traffic
scene for more than 1–2 s reliably or situations that occur very seldom.

The advantages of AD are numerous and quite obvious: an increase in comfort for the
passengers, along with more flexibility for young, old or disabled persons. Furthermore,
AD will reduce the number of accidents. A simulation study of fatal crashes predicted a
reduction of collisions by 82% [4]. Naturally, also machines will fail but the amount and
severeness of accidents is expected to be less compared to human drivers. This aspect
is followed by a number of ethical questions, e.g., how to decide which action to take in
case of an unavoidable crash? This is still a question under discussion. Moreover, human
failures are better accepted than accidents caused by a machine. A further advantage to
mention is that driverless systems can be optimized in economic aspects. Car sharing
concepts are being designed which will reduce the number of required vehicles by efficient
usage and fewer parking spaces will be needed. Traffic jams often occur due to inattentive
drivers and unnecessary braking maneuvers [5]. This can easily be avoided in driverless
traffic with the help of car-to-car communication [6].

While trying to reach the goal of fully automated vehicles, it is important having in
mind the demands of the industry. First, AD vehicles need to be equipped with multiple
sensors. However, the costs need to be low enough that either individual rides with a robo-
taxi service or the purchase of an actual automated vehicle is affordable, which obviously
addresses people of different income classes. Second, current systems are often requiring
high-performing computer hardware. The aim is to go towards embedded systems which
are drastically limited in run-time and memory. Last but not least, an AD system has to
be robust and secure, meaning that faulty sensors or adversarial attacks [7,8] need to be
handled reliably. In order to get permission to drive on public roads, a company needs to
undergo a formal procedure that guarantees the functional safety of the system. This latter
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topic is not trivial and is still a road blocker for bringing some technical applications to
the market.

Despite the recent advances in AD, there still exist challenges which are some of the
main reasons why fully AD cars cannot be brought onto the streets yet. One of the most
challenging problems focused on in this review and being a field of increasingly active
research is the prediction of future traffic participants’ behavior. The intentions that lead to
certain maneuvers or actions are not always obvious but rather hidden as latent factors.
Being able to identify such intentions several seconds before the event, makes it possible to
comfortably adjust the own driving trajectory.

A second major challenge is the handling of uncertainties. The perception of the
environment is associated with uncertainties, especially when fusing information from
different sources. On the one hand, multiple signals provide redundancy and thus more
reliability, on the other hand, creating higher uncertainties if the individual signals do not
match. Based on these signals, robust environment models need to be developed for a
planning of the ego vehicle trajectory. The problem is highly complex and dynamic due to
unpredictable external factors, e.g., changing weather conditions, varying environments
possibly without road marking or sudden movements of humans and cyclists. Deep
learning techniques are quite robust against these uncertainties.

Scene prediction is a field of active research with increasing interest as can be seen from
Figure 2. In the following, this review is delimited from previous surveys. Surveys on AD
often focus on perception issues and challenges related to fusion of different sources [9–11]
or psychological aspects related to the interaction between the human driver and the
machine [12–14]. Some earlier surveys of scene prediction give a good overview of the
different approaches but do not consider yet advanced deep learning techniques [15,16].
The review by Xue et al. [17]. focuses on scene understanding, event reasoning and
intention prediction, distinguishing between short-term predictions (time horizon of a few
seconds) and long-term predictions (time horizon of several minutes) but is kept on a rather
high level in terms of methodology.
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Figure 2. Number of papers per year addressing scene prediction (based on [18]).

Scene prediction often takes over new deep learning techniques from the field of natu-
ral language processing, a fast moving research area where huge progress has been made in
the last three years. Naturally, those latest techniques are contained only in the most recent
reviews. Refs. [19,20] highlight the importance of deep learning models but put emphasis
on the visual information as input source, such as feature extraction from 3-dimensional
(3D) images and videos. In the study by Yin et al. [21] and Tedjopurnomo et al. [22], deep
learning techniques are presented in detail but the evaluation is done for traffic flow models.
Such models have a time horizon of several minutes in contrast to the models in the paper
at hand which are on the horizon of up to 10 s.

153



Physics 2022, 4

In contrast to the paper by Rasouli [23], where a detailed overview of state-of-the-
art deep learning techniques is also presented, here, the approach of a historical review
is chosen by analyzing the development of the methodology in this field of research.
A comparison of the model results reveals the dominance of neural networks in current
state-of-the-art methods. We experience the difficulty of quantitative inter-model compari-
son from [23] since many models are not evaluated on standardized test datasets. However,
the value of a competition of performance improvements on the cm scale is questioned
here. The focus should be rather on understanding the reasons for significantly varying
performances on different datasets which has not been addressed in detail yet.

The review starts with a concise introduction to AD in Section 2 with the aim of
placing scene prediction in the context of AD and describing the challenges. In Section 3,
the standard models for scene prediction are presented. The historical context and major
achievements in scene prediction are presented in Section 4, followed by a short presen-
tation of publicly available datasets in Section 5. The model comparison is discussed in
Section 6. Finally, conclusions are drawn and future challenges are addressed in Section 7.

2. The Context of Scene Prediction for Automated Driving

2.1. Sensors

The foundation of a well-performing AD system is a robust perception model. This can
only be achieved with a redundant sensor setup, e.g., such as the one shown in Figure 3.

Figure 3. Example sensor setup for a self-driving vehicle.

Besides standard sensors such as an Integrated Motion Unit (IMU) for measuring
acceleration and a Global Positioning System (GPS), AD vehicles are typically equipped
with a camera system, radars, and Lidars, each providing a 360◦ surround view in the best
case. The variety of sensors takes advantage of the different physical properties but also
brings redundancy to the system.

The optical camera is usually good for classification tasks such as distinguishing the
type of a road user, recognizing lane markers or traffic signs. While the performance on
measuring distances and velocities is rather weak, this information can be retrieved well
from radars. Lidars are complementary to the other two sensors, showing only a few
weaknesses. Distances and velocities can be estimated with very high accuracy. The only
disadvantage are the high costs of a Lidar system.
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Furthermore, high-definition maps as an additional sensor are currently being inte-
grated into level 2+ systems, providing a spatial resolution of a few centimeters. This
information is especially important for the urban environment. The detailed road infras-
tructure, such as lane marking and shape or traffic lights and signs, is collected in huge
data collection campaigns and is then abstracted with the above mentioned sensor output.

2.2. Evolutionary versus Revolutionary Approach

According to the above definition of AD levels, current series market technology has
reached level 2+. This is an intermediate level between 2 and 3 which has been introduced
to indicate that level 2 has technically been exceeded already. Due to some technical and
legal aspects which are also discussed in this paper, the transition to level 3 is not trivial
and has not been accomplished yet. There are basically two strategies for progressing to
higher automation levels: conventional OEMs and Tier 1 suppliers follow a conventional
bottom-up approach, which is often also called an evolutionary approach. It consists of
a building block architecture as shown in Figure 4. The task automated driving is broken
down into three main components: a perception of the environment, a decision making
part with the sub-task scene prediction located in the module behavior planning, and an acting
part. Each of such components is further broken down into smaller modules so that an
individual module itself can be tested in terms of function safety and quality.

Sensors Perception & scene
understanding

Behavior & motion
planning

Control

IMU

GPS

Camera

Radar

Lidar

Others

Localization

Sensor fusion &

plausibilisation

Route

planning

Behavior

planning

Trajectory

planning

Longitudinal

control

Lateral

control

Figure 4. Simplified high-level architecture for self-driving vehicles following the conventional
approach of most OEMs and Tier1s. See text for details.

Companies such as Waymo or Zoox follow a fundamentally different approach, often
called the disruptive or revolutionary approach. Taking the human as a potential operator
of the vehicle out of the loop allows for entirely different vehicle concepts. For instance,
in a level 5 there is no need to equip the vehicle with driving control input devices such as a
steering wheel or pedals. Therefore, an electric vehicle could become direction-independent,
making it equally drive forward and backward. A separate scene prediction module or
sub-module may not be required in this approach anymore.

2.3. Scene Prediction and Its Challenges

The goal of scene prediction is to anticipate how a traffic scene will evolve within
the next seconds. All relevant agents contributing to the scene are described by their
states (position, velocity and heading angle), which shall be predicted with the highest
accuracy possible. A relevant agent or object is one that influences the trajectory of the ego
vehicle within the considered time frame. For SAE level 3, it is aimed to reach a prediction
horizon in the order of 10 s. Based on the prediction, the ego trajectory can be planned and
maneuvers can be executed.
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Among the biggest challenges in scene prediction are the complex spatio-temporal
dependencies and high dynamics. In addition an action of a traffic participant is affecting all
surrounding participants. These subtile indications are not obvious and thus not possible to
describe with simple physical models. Data-driven techniques and especially deep learning
models have the potential to make these predictions and to satisfy the challenges. Simple
data-driven models identify the most common trajectories in historical data, deriving
typical maneuver classes. More advanced and deeper models are capable of identifying
typical patterns self-consistently, often generating the most likely trajectories associated
with a probability. The requirement is that the scene prediction should anticipate intented
actions of others in the scene with some time ahead at least as well as or better than a human
driver. This also means, however, that one needs to accept the existance of unpredictable
situations, such as sudden decisions, which neither a human driver, nor an automated
scene prediction could ever anticipate.

The uncertainties from perception, which have already been mentioned as AD chal-
lenge, are also a determining factor for the performance of a scene prediction model.
In order to understand the current situation, the system has to make the right decisions of-
ten based on noisy or sparse data. Additionally, for this aspect, deep learning models show
the best performance compared to other approaches due to their ability for generalization.

3. Methods for Scene Prediction

In this section, the most widely applied methods for scene prediction are presented.
These models are generic models, not specific to scene prediction or AD, and can be
divided into model-driven and data-driven approaches. The first have a rather small
prediction horizon which is why they only play a minor role these days but are mentioned
for completeness.

3.1. Model-Driven Approaches for Scene Prediction
3.1.1. Kinematic Models

The simplest approach for extrapolating the trajectory of a traffic participant is by
considering purely the kinematics of an object. Thus, the object’s trajectory x(t), x ∈ R

2

and t is the time, in the plane is simply described by:

x(t) = x(0) + vt +
1
2

at2 (1)

with v being the velocity and a the acceleration. Often, the assumption of constant velocity
or constant acceleration is made, which works well for highway situations with not much
traffic, but cannot take into account more dynamic situations which involve interactions
among the traffic participants. A more sophisticated approach is applying a transformation
into a curvi-linear coordinate system, resulting in a more consistent driving behavior.

3.1.2. Dynamic Models

More advanced models also take into account the different forces acting on an object.
The models usually start from the action,

S(q) =
∫ t2

t1

L(t, q(t), q̇(t))dt, (2)

where L(q, q̇, t) is the Lagrangian depending on the generalized coordinates q, their t-
derivatives q̇ and time t. In the context of curvy roads, the jerk j(t) = ȧ(t) is especially
important for vehicle dynamics.
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Such models can become quite complicated, while still describing only a small time
horizon, which is why they receive only minor attention in the context of scene prediction.

3.1.3. Adding Uncertainties to the Model

Uncertainties in the prediction of moving objects are commonly addressed by adding a
Gaussian noise term, a normal distribution centered around the mean value. This approach
is closely connected to the Kalman filter [24] which assigns a Gaussian noise profile to
the sensor measurement. The uncertainty is then propagated iteratively in a step-wise
calculation of the estimated rajectory,

x(t + Δt) = Φ(t + 1; t)x(t) + u(t), (3)

where Φ is the transition matrix and u a Gaussian noise term with expectation value zero.
Monte Carlo simulations are a further method for considering uncertainties in model-

driven approaches [25]. Starting from a set of input variables, the vehicle trajectories
are modeled based on physical assumptions and sampling of dynamic variables. This
technique also allows to introduce contraints, e.g., due to road boundaries.

3.2. Data-Driven Approaches for Scene Prediction

In data-driven development, the modelling can be done only on a large database
of recorded or simulated traffic situations. The first step in model building is feature
extraction, which covers the identification of relevant data and data preprocessing. These
data are then used for deriving a generalized model.

3.2.1. Classic Methods

While deep learning models have become state-of-the-art for traffic modelling, let us
first give a brief overview of classic data-driven approaches.

Hidden Markov Models

Markov processes are statistical models that describe the probability or likelihood of
observation sequences [26]. Given a system with N distinct states, S1, . . . , SN , at any time t,
the probability of state transitions between two states is:

aij = P[qt = Sj|qt−1 = Si] for 1 ≤ i, j ≤ N, (4)

with qt being the observable state at time t. The transition probabilites can be extracted
from a set of data.

Hidden Markov Models (HMMs) [26] are a further extension of Markov processes
for non-observable, underlying states. Equation (4) applies also in this case, with an
important difference of non-observable states, S = S1, . . . , SN , and M distinct observations,
V = v1, . . . , vM. The distribution of observed states is then given by:

pj(α) = P[qt = Sj], for 1 ≤ j ≤ N, 1 ≤ α ≤ M. (5)

The aim is to model the above parameters such that the observed sequence of states
is correctly modeled. The transition probabilities as well as the relationship between the
observed states and non-observable events is learned from data.

In the context of scene prediction it is the prediction of consecutive traffic maneuvers.
The drawback of this method is that it considers distinct maneuvers and does not take into
account interactions of traffic participants [26].

Regression Models

For a given dataset, regression models find a continuous function to describe the
relationship between independent and dependent variables. Different types of regression
models exist and the choice depends on the problem formulation. Polynomial regression
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models work well for trend forecasting. Logistic regression outputs values between 0 and 1
and is therefore good for classification tasks. Bayesian regression assumes that the data is
described by a normal distribution, trying to estimate the posterior probability based on a
prior distribution.

3.2.2. Neural Networks

The output of a neural network is either a classification or regression. In correspon-
dence to biological neurons in the brain, the model consists of artifical neurons (knots) and
connections (edges) which are stacked in layers. The impact of a transmitted information
from one neuron to another is modeled by a weighted connection.

Feed-Forward Neural Network

In a simple Feed-Forward Neural Network (FFNN), the information is passed from
one layer to the next by a simple weighted summation of the input, see Figure 5. The output
at any neuron k in the higher layer is given by yk = σ[∑N

i=0 WikXi + Bk] with a non-linear
activation function, σ, input, X = (X0, . . . , XN), weight matrix, W, of RN×m, and bias, B, of
R

m. The compact form can be written as:

y = σ
[
WT X + B

]
(6)

with y = (y0, . . . ym) and B = (B0, . . . , Bm). The weights and bias terms are learned in an
iterative process via the backpropagation algorithm [27].

1 X0 . . . XN

y0 yk ym

Bk W0k WNk

Figure 5. A simple feed-forward neural network. See text for details.

One shortcoming of feed-forward neural networks in the context of scene prediction is
that they do not directly model temporal dependencies. Instead, temporal information has
to be manually encoded into the input representation, of which there are many. Finding a
good representation then becomes itself a complicated task.

Recurrent Neural Network

For time series prediction tasks a more sophisticated network structure is generally
used. In Recurrent Neual Networks (RNN) the information from previous time steps is
stored in so-called memory cells, i.e., feedback loops that memorize the information in hid-
den state vectors. This is shown in Figure 6 for a simple RNN model with a feedback loop.

X0 . . . XN

ykht

W0k

WNk

Figure 6. A simple recurrent neural network. See text for details.
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The additional state vector,

ht = σ[WXt + Uht−1 + B], (7)

serves for memorizing information. The matrix U is a further parameter that needs to be
learned during the training process. ht and yk are identical in this case.

Long Short-Term Memory

Simple RNN models provide the benefit of storing past information but they show
some major problems. The stored information is limited to short sequences only and
they are hard to train since they suffer from vanishing and exploding gradients [28,29].
A more robust RNN architecture that almost completely circumvents these problems, is the
long short-term memory neural network (LSTM) [30]. This neural network architecture is
capable of memorizing hundreds of time steps. The problem of vanishing and exploding
gradients is solved by the introduction of three so-called gates (input, forget, and output
gate) controlling the flow of information through the LSTM layer and a truncation of the
gradients in the learning algorithm.

The architecture of an LSTM is shown in Figure 7. Similar to the simple RNN, one input
to a LSTM cell is the input from the layer before at current time step t, Xt. Additionally,
a second input is the hidden state vector from the previous time step ht−1. This state
vector stores the short-term information. On the other hand, an additional cell state ct−1 is
introduced which stores the long-term information. The output of the LSTM cell is again yt
as well as the hidden and cell state vectors, ht and ct. Note that only yt is passed to the next
layer, which is identical to ht. The details of the computation are given in Appendix A.
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Figure 7. A long short-term memory neural network. See text for details.

There exist several variations of the LSTM architecture, e.g., the Gated Recurrent Unit
(GRU), a simpler form with only two gates. The number of trainable parameters is reduced,
thus it is very efficient and performs especially well on smaller data sets. The original
GRU architecture [31] consists of a reset gate and an update gate. More details are given in
Appendix B.

3.2.3. Encoder–Decoder Models and Attention Mechanism

Natural language processing is one of the hottest topics in machine learning these
days. It was found that those models perform well also in other fields, such as scene
prediction. One major improvement is the so-called attention mechanism. It is based on an
encoder–decoder architecture, a sequence-to-sequence model.

A simple encoder–decoder model is shown in Figure 8, each consisting of a single
recurrent unit. The encoder takes as input a time series X of length M, for which the hidden
states are calculated. Only the last hidden state, hM, is passed to the decoder, where it
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serves as the initial state vector. The decoder takes as input the state vector, hM, as well as
one item at a time of the labeled output sequence, such that it can predict the next item in
the sequence based on the previous output, i.e., <start>→ y0, y0 → y1, . . . , yL →<end>.

LSTM LSTM
State vector

hMh0

X1 . . . XM <start> +y1 . . . yL

y1 . . . yL+ <end>

Encoder Decoder

Figure 8. A simple encoder–decoder model for time series. See text for details.

Attention models extend this architecture by outputting not only the final state vector
hM but all hidden states which are then combined to a context vector [32]. The context
vector is a weighted sum of the hidden states:

h′ =
M

∑
m=1

αmhm (8)

with the weights being normalized with a softmax function:

αm =
exp(bm)

∑M
k=1 exp(bk)

. (9)

bk is a trainable parameter which takes the context vector and the hidden states of the
decoder as input. In this approach, the model gets information from all hidden states. It is
trained to adjust the weights in a way that it gives higher value—or attention—to more
important parts of the input sequence.

Variational Autoencoder

An autoencoder is a system of encoder and decoder which is used in an unsupervised
learning fashion. When data is fed into the encoder, it learns an abstraction into latent space
by dimensionality reduction. The decoder receives the output from the encoder and is then
trained to reconstruct the original data. The original data thus serves as the ground truth
label during the training process, with the goal of minimizing the reconstruction error.

The problem with the simple autoencoder is that it tends to overfit the latent represen-
tation if no regularisation methods are used. Therefore, during encoding into latent space
not just one data sample is used but a probability distribution with mean and standard
deviation, often a Gaussian distribution, resulting in multiple different model outcomes.
This extension of the simple autoencoder is called a variational autoencoder [33]. It be-
came very popular in computer vision for generation of virtual images, especially in the
context of StyleGAN2 [34]. The idea is to use the model reconstruction for generating new
data samples.

A conditional variational autoencoder [33] learns a distribution of a so-called latent
variable z. One part of the training objective, the Evidance Lower Bound (ELBO) is the
Kullback–Leibler-divergence between the prior and the posterior distribution of the latent
variable (the second part of the loss function is the data log likelihood). For trajectory
prediction, the prior is usually only conditioned on the observation period, while the
posterior is conditioned on the observation period and the ground truth future trajectory.
During training, the model is supposed to learn to approximate the posterior distribution
with the prior distribution, as the information about the ground truth future trajectory is
not available during inference. Instead it is actually the task of the model to predict this
future trajectory. While inference the prior is used to sample an actual value z from the
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latent variable distribution z. This sample is then used to condition the trajectory prediction
on. Repetitive sampling from z allows to generate an entire probability distribution for the
prediction. Therefore, such a distribution can capture all the initially addressed issues of
uncertainty, ambiguity, and multi-modality due to the variety of those trajectory samples.
Often the conditional variational autoencoder framework is combined with a RNN-based
encoder–decoder architecture.

Convolutional Neural Network Models

Time series can also be handled quite well with 1D Convolutional Neural Networks
(CNNs). As the name suggests, 1D CNNs use a 1D filter kernel in order to apply con-
volutions [35]. The discrete 1D convolution for a time series X = (X0, . . . , XN) is then
given by

ϕi = (X ∗ K)(i) =
M

∑
m=0

Xi−m∗s km (10)

with 1D filter kernel K = (k0, . . . , kM) which is a trainable parameter for the network. The di-
mension length M of the filter kernel is specified by the user and determines the length
of the time sequence that is taken into account, as well as the stride s which determines
the frequency at which the input sequence is sampled. For combining spatio-temporal
information, the model can be extended to higher dimensions. The biggest advantage in
comparison to standard feed-forward-neural networks is that the input representation, this
means which features are important and should be extracted, here can be learned.

Transformer Models

Another powerful state-of-the-art neural network model from natural language process-
ing is the transformer architecture [36]. Such models consist of several stacked encoders and
decoders, each constructed in the same way: a combination of attention and FFNN layers.

The input is passed sequentially along the stacked encoders and decoders, respectively,
but also from each encoder to the corresponding decoder. The self attention layers serve as
putting an item of a sequence in the entire context and can determine its importance for the
entire sequence.

Graph Neural Network Models

An alternative representation of the data is used in Graph Neural Networks (GNN)
which have become popular recently [37]. The input data is presented in a graph structure,
which reflects the structure of the system. This approach provides the benefit that only
existing connections are considered, in contrast to a fixed array representation in the
previous approaches. Therefore, CNNs can be considered as special cases of GNNs, where
the local connectivity of all nodes represented by convolutional filters. It is especially
effective when dealing with sparse data.

A graph is made up of nodes N and edges E (see Figure 9):

G = (N, E). (11)

The binary adjacency matrix A contains the relationships of the nodes, which can be
either undirected (A is symmetric) or directed (A is not symmetric). Furthermore, each
node is associated with a feature matrix X. The goal is to train a neural network that takes
a representation of the graph structure as input, which is then being transformed into
an embedding.
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Figure 9. Left: Graph representation. Right: Aggregation of neighbors for node embedding. See text
for details.

The key idea with GNNs is that the node embeddings are learned with neural networks.
A popular approach is the GraphSAGE [38], a graph convolution network (GCN), where
all neighbors of a target node are identified and their contribution to a mother node is
aggregated. The squares in Figure 9 represent neural networks. The node messages are
then calculated in the following way. The first embedding in the 0-th layer is just the node
feature itself,

h0
v = Xv, (12)

with v referring to the v-th node. Embeddings in further layers are then calculated as

hl+1
v = σ

(
Wl+1 · CONCAT

[
hl

v, hl+1
N(v)

])
(13)

for l ∈ (0, · · · , L− 1) with L the number of embedding layers, N(v) being the neighborhood
function and weight matrix Wl and CONCAT being the concatenation function [38].

4. Historical Review of Relevant Work

This Section illustrates the evolution of the field scene prediction from a historical point
of view. Contributions with highest impact, starting from the beginnings of this field of
research, and ending with the state-of-the-art research are highlighted. The presented
selection is based on the impact on the community, quantified by the number of citations in
the context of AD.

As highlighted here, there has been a strong increase in the amount of research that was
done on trajectory prediction in the past five years. Additional expertise has been focused
on vehicle trajectory prediction originating from the robotics, deep learning, and computer
vision community. Beside leading to great progress on the problem itself, the gathering
of researchers and research groups in this field has led to a strong parallelization of that
research. So, many similar approaches were developed around the same time, leading
to clusters of certain methods. Compared to less intensive investigated research fields,
this also has led to a less successive development in the research history of trajectory
prediction. Due to the great progress made in the last few years there emerges one import
question: How accurate does trajectory prediction have to be (to enable a certain level
of automation–according to the SAE definition)? Or shorter: How accurate is accurate
enough? While the exact answer to this question is out of scope of this paper and seems
very hard to answer too, there is one important aspect for us regarding its core. Due to the
continuing focus on certain datasets for the development and the provided infrastructure
and Application Programming Interfaces (APIs), trajectory prediction gradually becomes a
research challenge. While the competition between single researches and research groups
leads to more and more precise prediction models, improvements in the magnitude of
centimeters may decide about the order on the leader board but it is an open question how
much such improvements contribute a better driving experience of an automated vehicle.
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Closing the loop, this is related to the challenge of a very active and dynamic research field
and how to interpret and evaluate the results. Less recent approaches are characterized by
an additional problem, which is related to used data. While the most recent approaches
focus on only very few datasets for evaluation, older papers have worked on different
datasets, making it hard to compare those approaches and their results against each other.
All those thoughts motivated the structure of the upcoming chapter, the selection of the
presented papers, and their evaluation and assessment.

The term “scene prediction”, as used in this paper, is a fully self-consistent descrip-
tion for predicting all traffic participants in a certain area constituting one driving situa-
tion. Since this is a very complex task, initially only sub-tasks of scene prediction were
focused on.

4.1. Recognition of Other Drivers’ Intentions

First approaches towards the modeling of traffic behavior were focused on specific
use cases. The first highlighted use case is the lane change prediction. Then, the use
case of car-following, which focuses only on the longitudinal part of the trajectory, is
briefly presented.

4.1.1. Lane Change Prediction

The goal of the lane change prediction is to identify the intention of other drivers to
change the lane. It is possible to detect such an intention several seconds before the actual
event, such that the automated ego vehicle can prepare to react on it.

The input to such a model is usually a feature vector X describing the state of a target
vehicle for a history over discrete time steps. X contains the distance and relative velocity
to the ego vehicle and surrounding vehicles in the vicinity of the target vehicle. The output
is a classification of the maneuver with classes “lane change left”, “lane change right” and
“lane keeping”.

The first step towards tackling the lane change use case was understanding the under-
lying decision process. In 1986, Gipps identified the three central items before making a
lane change as (i) the physical possibility for changing the lane, (ii) the necessity as well
as (iii) the desirability which were decided upon in a flowchart [39]. The describing terms
were initially addressed by simple mathematical formulas, providing the fundamentals
for a microscopic approach. Based on this study, Toledo et al. [40] refined the model by a
probabilistic description of the utility terms.

Most of the following publications consider this decision process as a latent variable
which is not directly observable, and focus on classifying whether a lane change is going
to happen. Hunt and Lyons [41] developed a simple neural network, which is a great
method for classification tasks, achieving reasonable results on a simulation data set.
The encountered problems during model development were “little guidance [...] available
on the selection of network architecture and the most appropriate paradigm” [41] which is
the determining factor for the success of the outcome, as well as the worse performance on
real data during inference.

A study [42] that received much attention, analyzed the driver’s behavior during the
lane change process and found that the typical sine-wave steering pattern was accompanied
by a slight deceleration before the actual maneuver. Surprisingly, only 50% of the events
had an activated turn indicator signal with 90% reaching into the lane change maneuver.
By observing the eye movement, it was found that the driver takes off focus from the
current driving lane approximately 5 s before the start of the lane change.

A typical approach for modeling the intention of the driver are HMMs. It seems that the
probabilistic step-wise state progression fits well the execution of a lane change maneuver.
The probabilistic modeling of the state transitions, allows to predict the maneuver approx-
imately 1 s before it takes place [43,44]. Approaches based on Bayesian statistics which are
often combined with Gaussian mixture models achieved similar performance [45–48]. Only
few publications use physics-based models, e.g., describing the traffic flow as a continuous
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fluid [49]. More recent approaches rely on machine learning techniques such as support
vector machines [50–52] or neural networks [16,53,54].

4.1.2. Car-Following

A further use case is car-following, which is similar to the adaptive cruise control
function and part of lane keeping. In order to keep a dynamic safety distance to a leading
vehicle, a smooth acceleration model is required to avoid immediate reaction on any
sudden acceleration or braking of the leading vehicle. Interestingly, the first models were
developed for city traffic, which for scene prediction is a use case considered more difficult
than highway driving.

The input to car-following models is usually a feature vector X, where spatial coordi-
nates and velocities are one-dimensional and aligned with the driving direction. The output
of this model is an acceleration or velocity for the ego vehicle.

Due to the reduced dimensionality of the problem, this use case is more often ap-
proached with physics-based models; see, e.g., [55,56]. Here, the study by Helbing and
Tilch in 1998 [57], which received more than 5000 citations, to be mentioned. The authors
developed a generalized force model which uses the formalism of molecular dynamics
for many particle systems. Equations of motion describe the effective acceleration and
deceleration forces. The so-called social forces acting on an agent tries to reflect internal
motivations. Context information such as speed limits, acceleration capabilities of vehicles,
the average vehicle length, visibility and reaction time were introduced as direct parameters.
The advantage of this model is a good understanding and insight into the model due to
easy interpretation of the parameters.

4.2. Full Trajectory Prediction

Trajectory prediction is so complex that (almost) all approaches are data-driven.
The difficulty lies in the modeling of all factors determining the internal object states
and perception. The input to the model is a feature vector X of the observed scene. X

can be represented by trajectory coordinates (Figure 10, left), occupied grid cells on an
occupancy map (Figure 10, right), semantical features or a combination of those. These
data are collected with sensors and can be raw or further processed signals. The output
is a prediction of the positions and states of all traffic participants within a defined time
horizon. The output can be a binary classification for an occupancy grid, or a regression
model outputting floating numbers for future trajectory points of the objects.

Figure 10. Left: Objects are represented by their position and velocity. Right: Objects are associated
to a cell in an occupancy grid.

In Table 1, quantitative evaluation results of full trajectory prediction models are
collected. If available, the Final Displacement Error (FDE), Average Displacement Error
on the entire trajectory (ADE), Root Mean Squared Error (RMSE) or Mean Absolute Error
(MAE) is given with prediction horizons in brackets. For an evaluation of multiple modes,
the number of samples K is also mentioned.

164



Physics 2022, 4

Table 1. Overview of publications on scene prediction for AD. Neural network models are grouped
under “L” (LSTM/GRU), “C” (CNN), “G” (GNN), and “A” (Attention). Some papers are also
available at [58]. For the error it is specified the number of modes, K, over which the prediction is
sampled, if applicable. See abbreviations list.

Authors Data Year Method Horizon [s] Metrics Error [m]

Hermes et al. [59] real 2009 Clustering 3 RMSE 5.0 ± 0.6
Houenou et al. [60] real 2013 CYRA 4 RMSE 0.45
Deo et al. [61] real 2018 VGMM 5 MAE 2.18
Casas et al. [62] real 2018 C 3 MAE 1.61
Park et al. [63] real 2018 L 2 MAE 0.93 (K = 5)
Cui et al. [64] real 2019 C 6 ADE 2.31 (K = 3)
Altche et al. [65] NGSIM 2017 L 10 RMSE 0.65 1

Deo et al. [66] NGSIM 2018 L+C 5 RMSE 4.37
Chandra et al. [67] NGSIM 2019 L+C 5 ADE/FDE 5.63/9.91
Zhao et al. [68] NGSIM 2019 L+C 5 RMSE 4.13
Tang et al. [69] NGSIM 2019 G+A 5 RMSE 3.80 (K = 5)
Song et al. [70] NGSIM 2020 L+C 5 RMSE 4.04
Chandra et al. [71] NGSIM 2020 G+L 5 ADE/FDE 0.40/1.08
Lee et al. [72] KITTI 2017 L+C 4 RMSE 2.06
Choi et al. [73] KITTI 2020 G+L+C 4 ADE/FDE 0.75/1.99 (K = 10)
Lee et al. [72] SDD 2017 L+C 4 RMSE 5.33
Chai et al. [74] SDD 2019 C 5 ADE 3.50 (K = 5)
Mangalam et al. [75] SDD 2020 A 5 ADE/FDE 0.18/0.29 (K = 20)
Tang et al. [69] Argoverse 2019 G+A 3 ADE 1.40 (K = 3)
Chandra et al. [71] Argoverse 2020 G+L 5 ADE/FDE 0.99/1.87
Park et al. [76] Argoverse 2020 L+A 3 ADE/FDE 0.73/1.12 (K = 6)
Song et al. [77] Argoverse 2021 L+C+A 3 ADE/FDE 1.22/1.56 (K = 6)
Zeng et al. [78] Argoverse 2021 G+C 3 ADE/FDE 0.9/1.45 (K = 6)
Casas et al. [79] nuScenes 2020 G+C 3 RMSE 1.45
Phan-Minh et al. [80] nuScenes 2020 C 6 ADE/FDE 1.96/9.26 (K = 5)
Liang et al. [81] nuScenes 2020 L+C 3 ADE/FDE 0.65/1.03
Park et al. [76] nuScenes 2020 L+A 3 ADE/FDE 0.64/1.17 (K = 6)
Narayanan et al. [82] nuScenes 2021 C+L 4 ADE/FDE 1.10/1.66 (K = 10)
Casas et al. [79] ATG4D 2020 G+C 3 RMSE 0.96
Liang [81] ATG4D 2020 L+C 3 ADE/FDE 0.68/1.04
Chandra et al. [71] Lyft 2020 G+L 5 ADE/FDE 2.65/2.99
Chandra et al. [71] Apolloscape 2020 G+L 3 ADE/FDE 1.12/2.05
Li et al. [83] INTERACTION 2020 G+C+A 5 ADE/FDE 1.31/3.34
Choi et al. [73] H3D 2020 G+L+C 4 ADE/FDE 0.42/0.96 (K = 10)
Song et al. [70] HighD 2020 L+C 5 RMSE 2.63
Mohta et al. [84] X17k 2021 C 3 FDE 0.85

1 Only lateral position considered.

4.2.1. 1980s–2015

A very early model following the disruptive approach for an end-to-end ego path
planning was suggested by Pomerleau in 1989 [85]. This neural network based model
received much attention with a novel approach using camera and laser data as input, out-
putting the road curvature which was followed for lane centering. The network contained
one hidden layer only and completed training in just half an hour. Due to the simplicity of
the framework, laser data was found to play only a minor role. Pomerleau recognized the
importance of this study with the concluding remark: “We certainly believe it is important
to begin researching and evaluating neural networks in real world situations, and we think
autonomous navigation is an interesting application for such an approach” [85]. Further
work picked up on this approach, applying fully connected neural networks, but reduc-
ing the problems to lane change decisions [41,86]. These models were mainly trained on
simulated data.

165



Physics 2022, 4

It was recognized that the motion of an object followed characteristic patterns. There-
fore, unsupervised clustering techniques were applied for classification of these trajectory
types. The advantage of this technique is that it allows for a long-term prediction of the
trajectory, given that the correct maneuver class was identified.

Vasquez and Fraichard [87] followed this approach by applying a pairwise clustering
algorithm based on a dissimilarity measure on simulated and real data. After calculating
the mean value and standard deviation of the clusters, the likelihood was estimated
that an observed trajectory belongs to a cluster. This paper considers pedestrian motion
patterns. The observed problems are that an early prediction is associated with a high error,
and individual aspects of the trajectories could not be taken into account. Li et al. [88]
used a multi-stage approach on clustering techniques. The algorithms were optimized by a
strategy of refinement, first creating general clusters which are then processed by a second
clustering algorithm.

Hermes et al. [59] make use of the radial basis functions, which were used as a priori
probability for trajectory prediction. Among the highlighted references, this study was
found to be the first with a quantitative evaluation of experimental results on trajectory
prediction. 24 test trajectories from real drives were evaluated regarding the RMSE. Al-
though their model did not outperform the standard model on straight trajectories, it
showed strong improvement for curves.

HMMs are also used for scene prediction. The input is a graph with nodes containing
the object states and edges as transitions between the states. The initial state is a stochastic
representation of the states, the transition probabilities are then evaluated iteratively in
discrete time steps. Hidden refers to the fact that the object states are not directly ob-
servable. The process then contains two steps: determination of structure (number of
nodes + edges) and parameters (state prior, transition and observation probabilities) which
are learned. Often clustering techniques are used to determine the structure of the HMM.
Vasquez et al. [89] use growing HMM, meaning that their model can change its structure.
The data was taken on parking spots, resulting in a model error on the range of meters.

In 2013, a dynamic approach by Houenou et al. [60] received quite some attention.
The Constant Yaw Rate and Acceleration (CYRA) model, using constant yaw rate and
acceleration, selects the best trajectory which minimizes a cost function depending on
acceleration and maneuver duration. The model achieves a very low mean displacement
error, but it was evaluated on their own collected dataset only and is thus not comparable
to other models.

4.2.2. 2016: The Rise of Deep Learning Techniques

In 2016 and following years, a shift in techniques is observable. The number of
papers using neural networks strongly increases and a more systematic evaluation of object
positions is observable.

The objects’ states can be represented as sequences of discrete historical data spanning
usually a few seconds, e.g., X = (Xt−ΔT , Xt−ΔT+1, ..., X−1, X0), where xi stands for position,
velocity or any other physical quantity at a given time t within the observed time frame ΔT.
The goal of the model is to predict the state variables at the end of the observation period.
At inference, this time should lie some seconds in the future. Time series can be described
well with simple RNN or LSTM networks. Therefore, it is not surprising that many authors
jumped on this trend after the first models appeared in the community. The first LSTM
models were still used for classification of maneuvers [54,90] but prediction horizons up
to 10 s suddenly seemed within reach [65]. The simplest LSTM models are lacking a
description of mutual interactions of the traffic participants which was then approached by
representing the objects on an occupancy grid [91] as visualized in Figure 10 (right).

This drawback was furthermore addressed in the following more complex models.
By introducing a concatenation layer, in which the information from individual LSTMs
is brought together, the context information could be modeled. The term “social pool-
ing” became popular [66,92], describing the interdependencies of all agents in the scene,
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which was originally developed for human trajectory prediction [93–95]. Furthermore,
multi-modality came into focus, in which possible outcomes of the same initial context
were modeled. Either of these aspects became a standard ingredient for most of the
following models [62,64,96,97]:

The DESIRE framework [72] models the trajectories of each agent in RNN encoders,
which are then concatenated and combined with the scene context from a standard convolu-
tional layer. They found that a 2 s history is enough to predict 4 s ahead. It is one of the first
papers that propose an RNN-based encoder–decoder structure. The RNN encoder captures
the motion pattern of the observation period and determines a latent representation of the
temporal data. This latent representation can now easily be concatenated with other data,
e.g., feature maps resulting from a CNN that processes an image representation of the static
scene context. Finally, either the original latent representation of the RNN encoder or a
concatenated tensor is used as input for the RNN-based decoder, which predicts the future
waypoints of vehicles in a recurrent and auto-regressive fashion. If the latent representation
from the encoder is extended by additional information, the decoder is able to condition its
prediction not only on the previous motion of a certain vehicle but also takes into account
further information which enables much more accurate predictions.

Another feature that has become very popular in trajectory prediction during the last
few years is the Conditional Variational Autoencoder framework [33,72]. The basic idea
for using this kind of generative model in trajectory prediction, is to capture uncertainty,
ambiguity, and multi-modality. Due to the lacking of knowledge about the intention and
inner state of drivers controlling the surrounding vehicles, the future trajectory of those
vehicles can only be estimated but not precalculated exactly. In many situations given a
specific motion of a vehicle during the observation period, different future evolutions of
that trajectory are possible and in accordance to the behavior of other traffic participants
and the traffic rules in general. Such situations require more than a single prediction
to better capture the entire probability distribution over the future trajectory. Therefore,
generative models are able to predict multiple possible trajectory predictions.

Such an approach was followed by Xu et al. [98], who worked on large scale crowd-
sourced video data, using an LSTM temporal encoder fused with a fully convolutional
visual encoder and a semantic segmentation as side task. Further works combining an
LSTM encoder–decoder structure with semantic information followed, the semantic in-
formation in form of a maneuver classification as input for trajectory modeling [99] or
combination of LSTM and CNN layers [67,68]. Park et al. combined their encoder–decoder
model with a beam search algorithm to keep the k best models as trajectory candidates [63].

Time series can also be forecasted well with the CNNs. The input to such a network is
similar to LSTMs, a sequence of state representations. The historical context information is
filtered with the 1-dimensional temporal CNN kernel, with its size determining the length
of the time window. Some authors favor this approach [100], since CNNs are easier to train
than LSTMs. A model using a pure CNN model was realized by Luo et al. [101], who used
a 4D tensor as input to their model where only one dimension is reserved for the temporal
information, and the three remaining dimensions contain spatial information. 3D point
clouds measured by the sensors were processed in a tracking model and assigned to an
occupancy grid. The output of their model is a detection of bounding boxes for n timesteps.
The authors claim that their model is more robust to occlusion.

To summarize, at this stage models were aiming at better imitating the human behavior.

4.2.3. GNNs, Attention and New Use Cases

A new trend in representation of the acting agents for neural network models, were
graph models [102–109]. Describing the connections between objects in a graph structure in
opposition to an occupancy grid, is a huge advantage if there are only sparse connections
between the objects. The input to such a neural network is a graph as visualized in Figure 9.
The nodes represent the objects, with feature vectors holding, e.g., positions, velocities
etc., and the edges are the connections between the objects. This reflects interactions
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between vehicles and the interdependencies in their motion naturally and allows for
efficient implementation as well as calculation. The information aggregation step (similar
to message passing in graphical models) in such GNN models can also be considered as the
approximation of negotiation processes that result from manual driving of humans sharing
the available space or even the same lane on the street. The input is usually turned to an
embedding which then serves for further evaluation with RNN- or CNN-based models.
An unusual approch was taken by Yu et al. [110], who processed time information in a
spectral graph convolution. Later models usually work on the time data itself, e.g., [111].
Since 2019 the models were getting very complex with a lot of combinations of different
building blocks.

In 2019, attention models were introduced in the field of trajectory
prediction [112–117]. In [113,118,119], the attention module is used to prevent to pre-define
an exact graph structure of a given traffic situation. Instead all the traffic participants are
considered and the attention modules determines the attention weights that correspond to
the degree one vehicle determines the motion of another one while predicting the vehicle’s
trajectories at the same time. Since usually the attention weights are calculated based on
the hidden states of an RNN-based encoder, attention is not able to focus on the spatial
dimension by means of the position of those vehicle but also on the temporal dimension
because the attention weights are calculated for every single time step. Therefore, it learns
to give more importance to the relevant latent features and thus, pushed the performance
of the interaction-aware models.

Later, graph convolutions were used as input to the attention model, where the
attention was given to both, spatial and temporal data [69,111]. Tang et al. [69] stress the
importance of multi-modality in closed-form in opposition to Monte Carlo models which
are not capable of this. They claim the strong achievement of their contribution being a
model that is scalable for any number of agents in a scene.

Additionally, a few first transformer models have entered the field of scene prediction,
currently with the focus more on human traffic prediction [120,121] or long-term traffic
flow (time interval on several minutes) [122]. As in Natural Language Processing (NLP)
transformers partially begin to challenge RNN-based sequence-to-sequence models in
(human) trajectory too, demonstrating the importance of the attention module in those
tasks. Different from NLP, where the order of words in a sentence may change without
modifying its meaning, the order of trajectory points cannot be changed without entirely
confusing its plausibility. However, the successive processing of the time series input data
gets lost when transformers are used for trajectory prediction in contrast to RNN-based
models. This could be one reason why Transformers are still relatively rare in the landscape
of trajectory prediction models while RNNs continue to be used as an integral part of most
approaches. At the same time, this lack of sequence information provides the benefit of
reduced computation time due to the possibility of parallelization.

Multi-modality was also brought more into focus by Chai et al. [74]. The authors used
a 3D fully convolutional network in space and time, combined with static information for
all agents, which generates a feature map. In a second state, this information is evaluated
in an agent-centric network, outputting anchors for trajectory per agent. The output is in
form of a bi-variate Gaussian model, which gives different weights to the samples to better
approximate the distribution. A similar approach for the urban use case was followed by
Phan-Minh et al., where map information was used as additional input [80].

A shift towards urban use cases was observable [76,78,82,123,124]: the difficulties are
the variety of traffic participants and shorter time scales. A work that especially focuses
on heterogeneous traffic is the 4D LSTM approach by Ma et al. [125]. Casas et al. [79] use
17 binary channels as input to a CNN for encoding different semantics, combining this
information with a graphical representation of the agents’ states and map information.
Further semantics were included in the paper by Chandra et al. [71], by predicting if
surrounding vehicles are overspeeding or underspeeding. This is used as additional input
to the network, as well as regularization methods based on spectral clustering. Li et al. [83]

168



Physics 2022, 4

use a graph double attention network with a kinematic contstraint layer on top for assessing
the physical feasibility of predicted maneuvers. Model robustness was tested for missing
sensor input and found performing well by Mohta et al. [84].

Recent advances try to integrate the planning step into the traffic prediction. A stan-
dard pipeline takes the motion forecasts from scene prediction as output and ego planning
is done separately, decoupled from the forecasting step. The new approach takes a hypo-
thetical ego trajectory and integrates this information in the multi-agent forecasting. Such a
coupled approach was used in [70], taking as input the future planning of the ego vehicle
and past trajectories of the agents in the proximity of the ego vehicle. The output is a
distribution of likely trajectories. Using a LSTM encoder to capture the temporal structure
with social pooling, abstraction of interactions is done in a fusion module based on CNN
architecture. The same group [77] suggested a different model with a top layer with explicit
kinematic constraints by working in a curvilinear frame. Using a 1D CNN for temporal
encoding and several LSTMs as well as attention for interaction modeling, their model is
robust to missing information due to occluded objects. The problem with such approaches
is still the real-time performance since the integrated task requires a lot of computation.

A completely different approach, for which we do not want to go into the details but
nevertheless mention, is imitation learning. The idea is that a (driving) policy shall be
learned that imitates the actions of an expert. The interested reader can refer
to, e.g., [126,127].

5. Public Datasets

First, a quick overview of publicly available datasets which are most frequently
used for training and evaluation of scene prediction models is given. The purpose of
the training data in the context of learning-based models is obvious. After training (and
validation) a separate test dataset is needed to evaluate the trained models. This enables
advanced analysis, continuous development, and a comparison to competitive and baseline
approaches. Therefore, datasets are an essential piece in the entire development pipeline
for designing and engineering scene prediction models.

The Next Generation SIMulation (NGSIM) dataset [128] was recorded in California on
the highways US 101 and I-80. Data collection was done from the top of nearby buildings
through a set of synchronized cameras with a sampling rate of 10 Hz. Thus, the exact
location of each object is known.

The Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI)
dataset [129] was recorded in Germany on rural roads, highways, and inner-cities. It
contains several hours of traffic scenarios, taken with stereo cameras and 3D laser scanner
mounted on a measurement vehicle.

The Argoverse dataset [130] was recorded in the United States, in Pittsburgh and
Miami. It contains more than 30,000 scenarios sampled at a rate of 10 Hz with 360◦ camera
and Lidar, which were aligned with map information. The data is already split into training,
validation and test sets, each with a prediction horizon of 3 s.

The nuScenes dataset [131] was recorded in Boston and Singapore (left- and right-
handed traffic) with a sensor system of 6 cameras, 5 radars, 1 Lidar, IMU and GPS. Fur-
thermore, it provides detailed map information. Each of the 1000 recorded scenes has a
length of 20 s. It contains 3D manually labeled bounding boxes for several object classes,
with additional annotations regarding the scene conditions and human activity and pose
information. This dataset is thus useful for urban use cases.

6. Discussion

The dominance of deep learning models for fully self-consistent scene prediction is
obvious when comparing the methods in Table 1. Only few approaches based on models
other than Neural Networks can be found among the papers with highest impact in the
field. To note is that it is not possible to quantitatively compare the model results which
have been evaluted only on private datasets [59–64]. Especially the very low root mean
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squared error of 0.45 m in the paper of Houenou et al. [60] is difficult to evaluate. The model
performance depends heavily on the scenarios that are evaluated. Straight highway driving
with little traffic is a simple task and should be tackled well by any model, whereas on
the other hand curvy roads with lots of traffic participants doing multiple maneuvers are
very challenging.

For the standardized datasets in Table 1, the models all use either LSTM-, CNN- or
Attention-based models. Additionally, here, due to the different time horizons, only a
qualitative performance estimate is given. There exist predefined test datasets only for
Argoverse and nuScenes, which are thus the only datasets allowing a quantitative model
performance comparison. An intra-dataset comparison shows that the Attention Network
gives especially good performance [69,75,76].

Please note that at the time of submission, the Argoverse leaderboard [132] has a mini-
mum average displacement error of 0.7897 m. Therefore, the result of minADE = 0.73 m
in [76] is questionable.

It is also interesting to see that the same model sometimes performs well on one
dataset but rather poorly on another, e.g., for Tang et al. [69] with a RMSE of 3.80 m on the
NGSIM dataset being among the top results and the minADE = 1.40 m on the Argoverse
dataset is just an average result.

One observes a competition of model improvement which is taking place on the cm
scale by now. However, it is questionable if time and resources are invested at the right
place since such performance improvements might not make a difference when deploying
a scene prediction model in the final AD architecture. It is rather important to understand
the differences in the model performance on different datasets. The distribution of cases
could be different, one dataset containing many situations of straight highway driving
with little traffic, while the other dataset contains dense traffic with many corner cases and
unpredictable situations. However, it could be an issue in the model itself that is trimmed to
a latent feature in a specific dataset. Therefore more effort should be spent on this question.

7. Conclusions and Outlook

It is difficult to estimate the performance of some earlier model results since they have
often been evaluted on private datasets. The model performance depends heavily on the
constitution of scenarios. Maneuvers and scenarios are not standardised, thus datasets
with long intervals of straight highway driving will give better performance than highly
crowded or curvy scenarios. Future research will benefit if methods are evaluated on public
datasets, whose number will hopefully grow, since they facilitate inter-model comparisons.

Often a significant difference in the displacement error can be observed when com-
paring the model performance on two different datasets. This poses questions regarding
the generalisation of models: if a model was developed on a public dataset, how will it
perform in a different environment or with a new sensor model? This should be tackled by
increasing the amount of data on which a model is tested. Realistic simulations can support
testing but here one is facing the challenging task of modeling a realistic environment.

A further issue, which is addressed seldomly in the referenced publications, is online
learning. Updating a model on the fly can be dangerous since the model cannot be tested
rigorously. Nevertheless, an algorithm should be running in parallel which can detect
anomalies for further analysis and collects data for updating the model in a postprocessing
step. This way, corner cases can be identified. Anomaly detection is furthermore necessary
in order to protect against adversarial attacks [60]. Guaranteeing a safe system is one of
the most central research questions these days. Everyday huge amount of data is collected
which can be used for model updates. Even large cloud storages will reach their limitation.
Thus, it is important to wisely select data for storing, most efficiently in a preprocessing
step already in the vehicle before sending the data to the cloud.
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In the context of efficient data usage, research opportunities are to be found in strate-
gies such as transfer learning and active learning. Transfer learning makes use of already
well performing models from a different domain which can be fine-tuned for the specific
task. It was shown initially for computer vision applications that this approach leads to
amazing performances [133]. Active learning is an incremental learning process, which
is especially useful if data is sparse. The data is rated on a trained model concerning its
information content, which is then used for model updates [134].

Scene prediction models based on neural networks often use a combination of many
different architectures, i.e., a graphical representation, recurrent models and attention as
well as convolutions for semantic information. For urban use cases map information is
often integrated. The observed trend towards a complete scene prediction is not far from
the disruptive approach. The argument against the disruptive approach was that such an
algorithm cannot be tested for functional safety. Thus, it is necessary to think about the
degree of complexity that is still manageable for testing.

When scene prediction models are robust enough, the next step will be the industriali-
sation of the product for a broad target market. Currently required sensor equipment is
cost-intensive, using HD (high density) maps, camera, radar, Lidar, GPS and many more,
and often can fill up the entire trunk of a car. Strategies for a minimalization of the costs and
material require new approaches such as discretization of neural networks for deployment
in embedded systems [135,136]. Alternative strategies follow using only a subset of the
sensors, e.g., neglecting the costly Lidar technology, while still aiming at a comparable
perception performance. The product costs eventually determine the target group of the
self-driving vehicle. If it is not affordable for persons with a regular income, the business
model will address high-value customers and mobility as a service.

A further streamline in the deep learning community is the development of a The
so-called weak artificial intelligence is limited to specific tasks. A strong or general AI shall
be able to handle multiple tasks, similar to a human [137]. Fitting into this picture, the latest
approaches focus on a coupling of prediction and planning, as presented in the previous
section. For such models, the functional safety aspect can only be satisfied if this is done in
a multi-stage approach. From the complex model intermediate results need to be extracted
which can be interpreted and evaluated, such as optimization of implicit layers [138].
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Abbreviations

The following abbreviations are used in this manuscript:
AD Automated Driving
ADAS Advanced Driver Assistance System
ADE Average Displacement Error
API Application Programming Interface
CNN Convolutional Neural Network
CVAE Conditional Variational Auto Encoder
CYRA Constant Yaw Rate and Acceleration
ELBO Evidence Lower Bound
FDE Final Displacement Error
FFNN Feed-Forward Neural Network
GNN Graph Neural Network
GPS Global Positioning System
GRU Gated Recurrent Unit
HD High Density
HMM Hidden Markov Model
IMU Integrated Motion Unit
LSTM Long Short-Term Memory Network
MAE Mean Absolute Error
NLP Natural Language Processing
OEM Original Equipment Manufacture
RNN Recurrent Neural Network
RMSE Root Mean Squared Error
SAE Society of Automotive Engineers

Appendix A. Long Short-Term Memory Networks

There are several gates in which the information is processed. The forget gate deter-
mines which information shall be kept in memory by adapting the weight matrices Wf , Uf
and bias Bf ,

ft = σ
[
Wf Xt + Uf ht−1 + Bf

]
. (A1)

The non-linear activation function is usually a sigmoid function, σ(x) = 1/(1 +
exp(−x)), limiting the output ft to the range [0, 1].

Similarly, the input gate determines which information shall be added to the long-
term memory,

it = σ[WiXt + Uiht−1 + Bi] (A2)

with corresponding weight matrices Wi and Ui, as well as bias Bi.
The output gate receives similar input,

ot = σ[WoXt + Uoht−1 + Bo]. (A3)

One can also identify a simple RNN cell, which usually applies tanh as
activation function,

c̃t = tanh[WcXt + Ucht−1 + Bc]. (A4)

The long-term memory is then calculated as

ct = ft · ct−1 + it · c̃t, (A5)

A combination of the forget gate, ft, and input gate, it, as well as the long-term state
vector of the previous time step, ct−1, and the output of the simple RNN cell at the current
time step, c̃t.

The short-term memory and cell output are updated with the output gate, ot, and
long-term state vector, ct,

ht = ot · tanh(ct). (A6)
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Additionally, in this case, the output to the following layer, yt, is identical to the state
vector, ht.

Appendix B. Gated Recurrent Unit

The GRU is a simpler form with only two gates. The original GRU architecture [31]
consists of a reset gate,

rt = σ[WrXt + Urht−1 + Br] (A7)

with weight matrices Wr and Ur, as well as an update gate,

zt = σ[WzXt + Uzht−1 + Bz] (A8)

with weight matrices Wz and Uz. The hidden state vector is calculated as

ht = zt · ht−1 + (1 − zt) · h̃t (A9)

with
h̃t = tanh[WhXt + Uh(rt · ht−1) + Bh]. (A10)
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Abstract: In this paper, the effects of wave–wave interactions of the lowest order, i.e., three-wave
interactions, on parallel-propagating Alfvén wave spectra on a closed magnetic field line are con-
sidered. The spectra are then used to evaluate the transport parameters of energetic particles in
a coronal loop. The wave spectral density is the main variable investigated, and it is modelled
using a diffusionless numerical scheme. A model, where high-frequency Alfvén waves are emitted
from the two footpoints of the loop and interact with each other as they pass by, is considered. The
wave spectrum evolution shows the erosion of wave energy starting from higher frequencies so that
the wave mode emitted from the closer footpoint of the loop dominates the wave energy density.
Consistent with the cross-helicity state of the waves, the bulk velocity of energetic protons is from the
loop footpoints towards the loop apex. Protons can be turbulently trapped in the loop, and Fermi
acceleration is possible near the loop apex, as long as the partial pressure of the particles does not
exceed that of the resonant waves. The erosion of the Alfvén wave energy density should also lead to
the heating of the loop.

Keywords: Alfvén waves; wave–wave interactions; magnetic loops; solar corona; particle transport;
numerical methods; modelling

1. Introduction

Coronal loops are closed magnetic field structures in the solar atmosphere, filled with
dense plasma [1]. They vary greatly in length, ranging from tens to tens of thousands of
kilometers, or even further. Loops are important in many regions of the corona, including
the active regions where the solar active phenomena, such as flares, are hosted [2].

Non-thermal spectral line broadening, most likely caused by high-frequency Alfvén
waves, has been observed in coronal loops; see, e.g., [3–6], so the transport of these waves
in loops is of interest. Under the Wentzel-Kramers-Brillouin (WKB) approximation, a
magnetohydrodynamic (MHD) wave propagates in a static background plasma conserving
its frequency and refracting under the laws of geometric optics. Alfvén waves have the
property that their group velocity is directed along the magnetic field and the refraction
of the wave vector is towards the lower values of the Alfvén speed. If the field line is
anchored to the solar surface only at one end, all waves injected at the Sun propagate in
the same direction along the field, i.e., outward from the Sun. However, in the case of a
closed field line, i.e., a loop, both ends of the field line can inject waves into the loop. This
leads us to a situation where counter-propagating waves are present. Thus, wave–wave
interactions between counter-propagating waves become a topic of investigation to find out
how the spectral energy density of the waves is evolving beyond the WKB approximation.
Three-wave interactions have been studied theoretically (see, e.g., [7–9]), numerically (see,
e.g., [10–12]), and experimentally (see, e.g., [13,14]). Their descriptions in coronal (see,
e.g., [15]), and solar-wind (see, e.g., [16,17]) plasmas, have been a topic of recent research.

MHD wave spectra in magnetized plasmas determine the transport parameters of
energetic charged particles [18], which are an important element of solar eruptions such
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as solar flares and coronal mass ejections; see, e.g., [19–21]. Under the weak turbulence
approximation, wave–wave interactions can, to the lowest order, be treated as three-wave
interactions [22], where two waves either coalesce to produce a single wave or a single
wave decays to produce two waves.

In this paper, the effect of three-wave interactions on Alfvén waves propagating in
coronal loops is considered. The influence of these on the wave spectra is studied, and
the spectra to compute the transport parameters of energetic particles in these loops is
used. The modification of the spectra by the three-wave interactions are discussed, and the
consequences of the resulting spectra on particle transport inside the loops are considered.
It is shown that under plausible assumptions of injected wave spectral energy densities,
three-wave interactions lead to a significant modification of wave spectra and the mode
of particle transport inside the loop. The study concludes that wave–wave interactions in
coronal plasmas should be considered when the coupled evolution of waves and particles
is modelled.

2. Theory

To investigate the three-wave interactions of two Alfvén waves and a magnetosonic
wave, the model of Chin and Wentzel [22,23] is used which has been extended, e.g., by
Zhao et al. [24] and Modi and Sharma [25], and applied to the case of two Alfvén waves
and a sound wave by Vainio and Spanier [26] to calculate the cross-helicity of Alfvén waves
downstream of a fast-mode shock. Only the low-plasma-β regime, where the Alfvén speed
is larger than the sound speed, a condition applicable to most of the corona and inner
solar wind [27], is studied. For simplicity, the study is limited to the discussion of waves
propagating parallel and anti-parallel to the magnetic field. Eigenmodes propagating
along the mean magnetic field are circularly polarized and the conservation of angular
momentum is equivalent to conservation of polarization in three-wave interactions [28].
In the non-dispersive limit, the same evolution equation applies to both left-handed and
right-handed waves. When computing the particle transport coefficients, it is assumed
that both circular polarization states have the same intensity, which would be the case for
linearly polarized waves. The three-wave interactions applicable to such conditions are an
Alfvén wave decaying into a sound wave and a counter-propagating Alfvén wave, or the
coalescence of an Alfvén wave and a sound wave into an Alfvén wave, i.e.,

A± ←→ A′∓ + S±, (1)

where A and A′ denote Alfvén waves, S denotes sound waves, and the + (−) sign denotes
a wave propagating parallel (anti-parallel) to the magnetic field. The three-wave interaction
requires the resonance conditions,

ω±
A = ω∓

A′ + ω±
S

k±A = k∓A′ + k±S ,
(2)

to be met, where ω is the wave angular frequency, k is the wave number, ω±
A = ±k±AvA

and ω±
S = ±k±S cS are the dispersion relations of the waves (applicable to the primed ones,

as well), vA = B/
√

μ0ρ is the Alfvén speed, cS =
√

γP/ρ is the sound speed, B is the
magnetic field magnitude, ρ is the mass density, P is the thermal pressure, and γ is the
adiabatic index of the plasma. In the convention used, ω > 0 and the sign of k denotes the
propagation direction of the wave. Using the resonance conditions and dispersion relations,
one can solve the wave numbers and frequencies of the decay products. In particular, for
the Alfvén waves

ωA
ωA′

= − kA
kA′

=
vA + cS
vA − cS

≡ RA, (3)

where primed (unprimed) quantities are for waves on the right-hand (left-hand) side of
Equation (1).
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The model considered uses the simplified coronal loop presented in Figure 1 to elimi-
nate the effects of field-line geometry on the wave distribution. In particular, it is assumed
that the wave speeds remain constant over the whole length of the loop and that the
loop has an Alfvén speed lower than its surroundings to allow waves to be ducted and
maintain their wavevector as parallel/anti-parallel to the field. Additionally, gravitational
stratification is neglected to have a constant density and temperature along the loop length.

Figure 1. A depiction of the simplification of the closed field lines of the magnetic field of the Sun. The
curved magnetic field line is straightened so that geometrical factors can be ignored in the simulation.
The colored arrows indicate the injection points of wave energy to the magnetic field line, blue being
the parallel wave mode injection point and red being the anti-parallel wave mode injection point.

Finally, sound waves in a coronal plasma are assumed to quickly damp by thermal
particles, leading to only the reactions proceeding from left to right in Equation (1) being
relevant. This simplifies the three-wave interaction term in the wave evolution equation so
that all terms proportional to sound-wave intensity vanish. Thus, the equations governing
the evolution of the Alfvén waves are [26]

∂E±(x, ω, t)
∂t

± vA
∂E±(x, ω, t)

∂x
= Γ±(x, ω, t)E±(x, ω, t), (4)

where

E± = |k|ω±N±
A /UB (5)

are the normalized spectral energy densities of the Alfvén waves propagating parallel (+)
and anti-parallel (−) to the field, ω± are the wave frequencies in the respective directions,
N±

A are the wave action densities in the respective directions, and UB is the background
magnetic field energy density. Here, the left-hand side implements the spatial transport
of wave-energy density along the magnetic field and the right-hand side the evolution
of wave-energy densities due to wave–wave interactions. The net growth rates due to
three-wave interactions are given as [26]

Γ±(x, ω, t) =
πωv3

A
cS(v2

A − c2
S)

[E∓(x, ωRA, t)− E∓(x, ω/RA, t)].

The rate is dependent only on the energy density of the counter-propagating wave
mode. In particular, the term describes counter-propagating waves from angular frequency
ωRA decaying into waves at angular frequency ω and those, in turn, decaying into counter-
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propagating waves at ω/RA. The frequency domain under consideration extends to proton
cyclotron frequency only, since dispersive effects [7,8,28] are not considered in the model.

Wave–particle interactions between energetic charged particles and MHD waves can
be described as a resonant elastic scattering of particles in the frame co-moving with the
waves [29–31]. In a homogeneous mean magnetic field, when scattering is strong enough
to keep the particle distribution close to isotropic, the spatial transport of particles is a
diffusion–advection process, where the advection velocity is determined by the mean
velocity of the waves and the diffusion coefficient is determined by the rate of scattering. In
addition, adiabatic particle energy changes result from gradients of the advection velocity
and stochastic acceleration from counter-propagating waves scattering particles in the same
volume [18,29]. To analyze the effect of the Alfvén waves on charged particles, here, the
transport equations are used, as derived by Schlickeiser [18]:

∂F
∂t

=
∂

∂x

(
κ

∂F
∂x

)
− 1

4p2
∂

∂p
(p2va1)

∂F
∂x

+
1
4

v
∂a1

∂x
∂F
∂p

+
1
p2

∂

∂p

(
p2a2

∂F
∂p

)
+ S0, (6)

κ =
v2

8

∫ +1

−1

dμ(1 − μ2)2

Dμμ
, (7)

a1 =
∫ +1

−1
dμ

(1 − μ2)Dμp

Dμμ
, (8)

a2 =
1
2

∫ +1

−1
dμ

(
Dpp −

D2
μp

Dμμ

)
, (9)

where F = F(x, p, t) is the pitch-angle averaged distribution function of the energetic
particles, p and v are the particle momentum and speed, κ is the spatial diffusion coefficient,
a1 is the coefficient of advection and adiabatic cooling, a2 is the coefficient of momentum
diffusion, and S0 is the particle source. In the integrals, μ is the cosine of pitch angle and
Dμμ, Dμp, and Dpp are the Fokker–Planck coefficients related to momentum-space diffusion
produced by wave–particle interactions [18]. For the normalized wave energy density, E,
they have the following forms:

Dμμ =
π

4
Ω(1 − μ2)

[(
1 − μvA

v

)2

E+(ω+) +

(
1 +

μvA

v

)2

E−(ω−)
]

, (10)

Dμp =
π

4
Ω(1 − μ2)

vA p
v

[(
1 − μvA

v

)
E+(ω+)−

(
1 +

μvA

v

)
E−(ω−)

]
, (11)

Dpp =
π

4
Ω(1 − μ2)

v2
A p2

v2

[
E+(ω+) + E−(ω−)

]
, (12)

where

ω± = Ω
vA

|vμ ∓ vA| (13)

is the wave frequency of parallel/anti-parallel (+/−) propagating waves resonant with parti-
cles of speed v and pitch-angle cosine μ and Ω is the (relativistic) particle cyclotron frequency.

Because of the use of MHD dispersion relations, only ion transport can be considered.
Additionally, since the discussion is limited to the frequency range below the ion-cyclotron
frequency, one needs to deal with the resonance gap resulting from the cut-off in the
spectrum. This is achieved by extrapolating the spectra E±(ω) with a spectral index of δ′
from the last frequency considered below the cyclotron frequency, where δ′ is defined as

δ′ = δ + 2
3

,
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and δ is the spectral index (E ∝ ωδ) solved from the last two cells below the cyclotron
frequency. This produces Fokker–Planck coefficients that are approximately consistent with
ion-cyclotron waves, with the same spectral index in wavenumber as the highest-frequency
Alfvén waves, being responsible for scattering across the gap [32].

3. Numerical Methods

The wave evolution equations are solved on a two-dimensional (x, ω) grid as a func-
tion of time. The waves are transported in the spatial dimension using a diffusionless
scheme, where wave spectral energy densities are propagated by one grid-cell of size Δx
per each time step, Δt. Thus, as the Alfvén speed is constant in the presented model, the
time step is defined as

Δt =
Δx
vA

. (14)

In the angular frequency direction, a logarithmic grid spacing with the last cell ωN
being equal to the proton cyclotron frequency Ωp is employed. Solving the rest of the cells
from there onwards:

ωN = Ωp,

ωj−1 = ωjR−1
A ,

(15)

where N denotes the last cell of the grid and j = 1, . . . , N. The lowest frequency on the grid
is set to a sufficiently low value to prevent boundary effects from altering the results of the
simulation.

Operator splitting is used so that the spatial transport half-cycle is followed by a
half-cycle implementing the wave–wave interactions in a time-explicit scheme. Thus, the
approximate solution to the evolution Equation (4) can be written as a single step as

E±(xi, ωj, t + Δt) = E±(xi∓1, ωj, t)

× exp
{ Δtπωjv3

A

cS(v2
A − c2

S)
[E∓(xi, ωj+1, t)− E∓(xi, ωj−1, t)]

}
.

(16)

Waves are injected from both ends of the spatial domain and those incident on the
spatial boundaries from inside the domain are absorbed. The boundary values for the
frequency domain are determined as follows: The lower boundary condition is set as

E±(x, ω0, t) = E±(x, ω1, t). (17)

The upper boundary is set by assuming that cyclotron waves are damped by thermal
plasma ions at the lowest wavelengths. That is,

E±(x, ωN , t) = 0 (18)

is taken.
The parameters used in the simulations are chosen from ranges provided by [33] for

the magnetic field strength and [1] for the rest:

vA = 2000 km/s,

cS = 200 km/s,

B = 0.03 T,

x ∈ [0, L], L = 10,000 km, 30,000 km

Δx = 20 km, 5 km,

ω ∈ [ω0, Ωp],
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from which one can solve for the cyclotron frequency used as the upper boundary for the
angular frequency axis,

Ωp =
eB
mp

≈ 2.87365 × 106 s−1, (19)

where e and mp are the charge and mass of a proton.
The wave spectra injected at the spatial boundaries are formulated so that the spectrum

is flat at low frequencies, below ωin, and obeys a power-law with a spectral index of −(q− 1)
thereafter. The spectrum is also set to equal zero at the cyclotron frequency to synergize
with the frequency boundary condition. The resulting form is

E+(0, ω) = α

√√√√( ω
q−1
in

(ω2
in + ω2)(q−1)/2

)2

−
(

ω
q−1
in

(ω2
in + ω2

N)
(q−1)/2

)2

(20)

where α is a normalization value. Here, q = 5/3 is used throughout the study.
Additionally, the injection spectrum contains a temporal ramp to provide a gradual

increase in the wave spectral energy densities. The simulation reaches the steady-state
injection after the time tramp. Thereafter, once a full wave-transport time has passed
(t > tramp + L/vA), a steady state emerges.

Thus, the injection spectrum for the wave mode propagating in the positive x direction
is of the form

E+(0, ω, t) = E+(0, ω)×
[

1 − tramp − t
tramp

H(tramp − t)
]

, (21)

where tramp is a parameter that controls the duration of the ramping up of the injection and
H the Heaviside step function. The injection of the wave mode propagating in the negative
x direction is identical, except that it is set at the other boundary, x = L.

The assumption of broadband wave emission is not based on a particular physical
model of Alfvén wave generation in the footpoints of the coronal loop. To note, however,
is that similar modelling has been applied, e.g., in connection with cyclotron heating
on open field lines; see, e.g., [34,35]. Additionally, the observed heliospheric turbulence
evolution suggests a broadband power spectrum of the form P( f ) ∼ 1/ f , identical to those
considered here at low frequencies, being eroded by turbulent processes (see, e.g., [36]).
The heliospheric fluctuations are, of course, observed at lower frequencies but the spectrum
below the correlation scale still spans several orders of magnitude. Thus, we regard the
assumption of broadband wave emission from the footpoints of the loop as a reasonable,
albeit not the only possible, assumption.

4. Results

The results on wave spectra are presented as a set of contour plots depicting the wave
spectral energy density E in x and ω, and plots of E as a function of the wave frequency ω
from three locations in the simulation box. The angular frequency range to be investigated
was chosen to correspond to wavelengths above 10 km, and up to the proton cyclotron
frequency. Figure 2 presents the spectra with a normalization value of α = 3 × 10−5. One
can see the three-wave interactions having the largest effect at high frequencies. The wave
spectra evolve so that the wave modes propagating away from the closer end of the loop
(the surface of the Sun) dominate. In the centre of the loop, both wave spectra are equal, as
required by symmetry.

To compute the Fokker–Planck coefficients, the value of E±(ω±) is logarithmically
interpolated from the simulation data at the resonant frequency ω±(μ). At values of μ
close to ±vA/v, the resonant frequency falls outside the grid, producing the well-known
resonance gap. In this study, it is assumed that processes such as wave dispersion [32]
and/or resonance broadening [37] fill the gap and prevent the integrals of the Fokker–
Planck coefficients from diverging. In particular, the gap is filled by extrapolating the
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spectral energy density values from the last simulated frequency value on the grid (ωN−1)
to the region above that resonant frequency, as if scattering in the resonance gap would
be caused by ion-cyclotron waves with a wavenumber spectrum extrapolated from the
Alfvénic range to the ion-cyclotron range (see Section 2 above).

Figure 2. Steady state of the simulation of a coronal loop with equal wave spectral energy density
injections at both footpoints. Upper plots contain the parallel-propagating wave spectrum and bottom
plots contain the anti-parallel-propagating wave spectrum. The plots on the left contain slices of the
wave spectral energy density data at three locations, which are color coded to match the dashed lines
on the contour plots. The normalization value for this simulation is α = 3 × 10−5, the loop size L =
10,000 km, and the spatial cell size Δx = 20 km.

Let us consider protons with speeds v = 10 vA. The calculations are non-relativistic, in
line with v � c (with c being the speed of light) applicable for the parameters studied in
this paper.

The bulk velocity of the energetic particles is derived using Equations (6) and (8). If
only the leading order dependence of a1 on momentum (a1 ∼ p/v) is accounted for, the
bulk velocity of energetic protons becomes

u =
3v
4p

a1 =
3v
4p

∫ +1

−1
dμ

(1 − μ2)Dμp

Dμμ
. (22)

The integral is evaluated from the Fokker–Planck coefficients using the trapezoidal
rule.

The results for simulations with different normalization values α can be seen in
Figure 3. In higher injection spectral energy density simulations, particles move away from
the surface of the Sun at the Alfvén velocity in almost all of the spatial domain. With lower
energy densities, the region in the middle of the loop with a lower bulk speed broadens. The
bulk speed approaches zero as the injection spectral energy density vanishes, as expected
for non-interacting waves injected at equal intensities from both ends of the loop.
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Figure 3. The calculated bulk velocity of energetic particles normalized to the Alfvén velocity in
simulations of a coronal loop with the size L = 10,000 km and the spatial cell size Δx = 20 km.
Different normalization values α are denoted in the legend.

Next, spatial diffusion is considered. The scattering mean free path for the particles is
derived using Equation (7) as

λ ≡ 3
v

κ =
3v
8

∫ +1

−1

dμ(1 − μ2)2

Dμμ
. (23)

The mean free paths of simulations with different spectral energy densities are pre-
sented in Figure 4. In the two lowest presented wave spectral energy densities, mean free
paths exceed the loop size, but in the two higher spectral energy densities, the mean free
paths are smaller than the loop length. This allows the particles to be efficiently isotropized
in the loop, a requirement for the diffusion approximation employed in the transport
equation to be valid.

The actual mode of transport of particles inside the loop is determined by the diffusion
length, and the length scale particles can diffuse upstream in a flow. For a constant spatial
diffusion coefficient and bulk speed (and neglecting momentum diffusion), the transport
equation reads

u
∂F
∂x

=
∂

∂x

(
κ

∂F
∂x

)

and can be solved as

F = A + B exp
{

ux
κ

}
,

where A and B are constants to be determined by boundary conditions. One can see that
the diffusion length, l = κ/u = (v/3u)λ, is the scale height of the distribution. Thus, a
loop with a size certainly larger than the diffusion length can turbulently trap particles
with a converging flow of the scattering centres towards the loop apex.

The diffusion lengths of different wave spectral energy density simulations are pre-
sented in Figure 5. As the diffusion length diverges in the middle of the loop (since u = 0
there), the diverging part is cut off in the figure. The diffusion length exceeds the loop
length in all injection cases considered, leading to the conclusion that with these wave
spectral energy densities the particles would not be confined in the loop but would be able
to diffuse out of it quite efficiently.
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Figure 4. The calculated mean free path of particles in simulations of a coronal loop with the size
L = 10,000 km and the spatial cell size Δx = 20 km. Different normalization values α are denoted in
the legend.

Figure 5. The calculated diffusion lengths of energetic particles for simulations of a coronal loop
with the size L = 10,000 km and the spatial cell size Δx = 20 km. The curves are cut off to avoid
presenting the diverging values of the diffusion length in the middle. Different normalization values
α are denoted in the legend.

In order to study this further, longer loops were then investigated. In Figure 6, a 30,000
km loop with a lower injection spectral energy density is presented and compared with the
10,000 km loop with a higher injection spectral energy density presented in Figure 2. An
interesting result is the invariant nature of the product between the wave spectral energy
density and the loop length: scaling the injected wave spectral energy inversely with the
loop length produces identical-shaped wave spectral energy densities in a scaled spatial
coordinate and frequency, i.e., in steady state,

E±
L1
(ξL1, ω)L1 = E±

L2
(ξL2, ω)L2, (24)
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where ξ = x/L ∈ [0, 1] is the dimensionless spatial coordinate scaled to the length of the
loop. This can be seen to hold also by applying these scaling laws to the wave transport
Equations (4) and assuming a steady state.

Figure 6. Steady state of the parallel-propagating wave mode of a simulation of a L = 30,000 km
coronal loop with equal wave spectral energy density injections at both edges. The anti-parallel-
propagating wave information is omitted due to symmetry with the parallel-propagating wave
information. The plot on the left contains slices of the wave spectral energy density data at three
locations, which are color coded to match to the dashed lines on the contour plots. The normalization
value is α = 1 × 10−5.

To investigate the evolution of the particle transport properties, analyses of the bulk
velocity, mean free path, and diffusion length were conducted on the 30,000 km loop with
injection normalization parameters α = 1 × 10−5, 3 × 10−5 and to the 10,000 km loop
with identical injections. The results are presented in Figures 7–10, where the particle
transport coefficients are plotted along the dimensionless spatial coordinate ξ. The curves,
representing the spectra, given in Figures 2 and 6, lie on top of each other, as expected. The
other cases are ordered so that the higher injection spectral energy density corresponds to
the steeper gradient of the bulk speed. The case with a longer loop and higher spectral
energy density of the waves now demonstrates a regime where the loop length exceeds the
diffusion length and the turbulent trapping of protons in the loop apex seems plausible.

Figure 7. The calculated energetic particle bulk velocities for simulations of coronal loops with the
sizes L = 10,000 km and L = 30,000 km. The 30,000 km loop, α = 3 × 10−5 simulation has a spatial cell
size Δx = 5 km and the rest have a spatial cell size Δx = 20 km. The loop lengths in kilometers and
normalization values for the curves are displayed in the legend in the mentioned order.
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Figure 8. The calculated energetic particle mean free paths for simulations of coronal loops with the
sizes L = 10,000 km and L = 30,000 km. The 30,000 km loop, α = 3 × 10−5 simulation has a spatial cell
size Δx = 5 km and the rest have a spatial cell size Δx = 20 km. The loop lengths in kilometers and
normalization values for the curves are displayed in the legend in the mentioned order.

Figure 9. The calculated energetic particle diffusion lengths for simulations of coronal loops with the
sizes L = 10,000 km and L = 30,000 km. The 30,000 km loop α = 3 × 10−5 simulation has a spatial cell
size Δx = 5 km and the rest have a spatial cell size Δx = 20 km. The loop lengths in kilometers and
normalization values for the curves are displayed in the legend in the mentioned order.
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Figure 10. The calculated stochastic acceleration rate of particles for simulations of coronal loops
with the sizes L = 10,000 km and L = 30,000 km. The normalization value used for both simulations is
α = 3 × 10−5. The longer loop has a spatial cell size Δx = 5 km and the smaller loop Δx = 20 km.

For these cases, where the bulk velocity is directed towards the loop apex and particles
can be confined there diffusively, the model predicts an interesting situation, where first-
order Fermi acceleration operates in the loop apex. The requirement of the diffusion
length being longer than the gradient scale of the velocity while being shorter than the
two “upstream regions” is a shock-like situation where particles can scatter back and forth
from converging scattering centres and gain energy while being confined. The particle
acceleration time scale in diffusive shock acceleration is [38]

τDSA =
3

Δu

(
κ1

u1
+

κ2

u2

)
, (25)

where κ1(2) and u1(2) are the upstream (downstream) diffusion coefficient and bulk speed
and Δu = u1 − u2. Applying the analogy of the setup to diffusive shock acceleration, i.e.,
replacing κ1 = κ2 = κ, u1 = u2 = vA and Δu = 2vA, one can express the first-order Fermi
acceleration time scale as

τI =
3κ

v2
A

=
λv
v2

A
, (26)

which for the considered case of v = 10 vA, vA = 2000 km/s and λ ≈ 3000 km gives about
τI = 15 s.

The loop apex is also a potential location for second-order Fermi acceleration, as
waves propagating in both directions along the field are present there. Thus, the rate of
stochastic acceleration of particles (Figure 10) is also investigated. Let us define it using the
coefficient of momentum diffusion a2 (Equation (9)), as τ−1

II = a2/p2, where p is the particle
momentum i.e., τII is the time scale needed for the particles to diffuse a “distance” p in
momentum space. The values for the second-order Fermi acceleration rate τ−1

II displayed in
Figure 10 are visibly lower than the rate of the first-order Fermi acceleration, τ−1

I ≈ 0.07 s−1.

5. Discussion and Conclusions

Above, wave transport in a coronal magnetic loop was considered including the effect
of three-wave interactions between the counter-propagating Alfvén waves. For wave
energy densities still in the weak-turbulence regime (i.e., with values of E± far lower than
unity), it was demonstrated that the interaction of counter-propagating waves erodes the
spectrum of the wave mode emitted from the larger distance and leaves the wave field
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dominated by waves emitted from the closer footpoint. The spectrum erodes in particular at
high frequencies. Additionally, the compatibility of the wave amplitudes of the simulation
to spectral observations of nonthermal velocities in active regions is investigated. The
Alfvén wave amplitude fulfills [39]

δV = vA
δB
B

, (27)

⇒ 〈(δB)2〉
B2 =

〈(δV)2〉
v2

A
, (28)

where δV is the amplitude of the velocity fluctuations and δB is the amplitude of the
magnetic field fluctuations. On the other hand, one can write:

〈(δB)2〉
B2 =

1
2

∫
E(ω)

ω
dω (29)

due to the definition of E(ω) as the energy density of the waves (per ln k or ln ω, equiva-
lently) divided by the magnetic field energy density. Using an Alfvén wave amplitude of
30 km/s from nonthermal velocity measurements [40] and the Alfvén speed of 2000 km/s
from the simulation parameters used, one obtains 〈(δB)2〉/B2 = 2.25 × 10−4 as an upper
limit consistent with observations. Estimating the integral (29) throughout the simula-
tion box for the highest injection value case of α = 3 × 10−5 and L = 30,000 km gives
〈(δB)2〉/B2 < 6.2 × 10−5, showing that the highest values of α used in the presented
simulations are still comfortably below the limit set by the observations.

One of the major simplifications in the modelling here was the restriction to parallel-
propagating waves. If this simplifying assumption is dropped, wave–wave interactions
will lead to the development of the spectrum in the perpendicular direction, which may
take over the parallel evolution modelled in our study [41]. Wave transport processes such
as ducting [42] could allow for the parallel nature of the high frequency Alfvén waves
to be maintained, but further studies should be performed to identify the parameters of
the coronal loops that could sustain the parallel evolution of the three-wave interactions.
Wave–particle interaction processes that produce the highest growth rates for the field-
aligned wave modes could also lead to parallel waves dominating but such systems would
naturally have more complicated wave transport than this simplified model, where the
waves are generated in the loop legs.

In the present study, loops of intermediate lengths were considered corresponding to
scales applicable to active regions [1]. It was shown that wave–wave interactions can lead
to wave distributions that yield very interesting parameters for charged-particle transport:
(1) The bulk velocity of ions interacting with the Alfvén waves is generally directed from
the loop legs to the loop apex and is close to the Alfvén speed for most part of the loop if
the wave spectral energy density injected into the loop exceeds a threshold value. (2) The
diffusion length of energetic (∼MeV) protons can be shorter than the loop length, allowing
particles to be turbulently trapped in the loop. (3) The converging velocity of the scattering
centres can make the loop apex act as a Fermi acceleration site; the first-order acceleration
process seems to dominate over the second-order process, at least with the parameters
studied in the modelling here.

However, to point out is that no back-reaction effects of the accelerated particles on
the waves were considered in our brief analysis [43,44]. If the accelerated particle pressure
greatly exceeds the resonant wave pressure (half of the wave spectral energy density
for Alfvén waves), particles streaming away from the acceleration site at the loop apex
would actually dampen the waves propagating towards the apex and amplify the waves
that propagate towards the footpoints of the loop [43]. Thus, the theory presented here
only applies in situations where the externally driven waves are strong enough that their
pressure exceeds the partial pressure of the accelerated particles resonant with them. This
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implies that a full model with all weak-turbulence effects (wave–wave and wave–particle
interactions) included would have a natural way of quenching the Fermi acceleration
mechanism at the apex.

Let us also point out that as the model predicts the erosion of Alfvén wave spectra by
the emission and subsequent absorption of sound waves by the thermal plasma, it leads to
the heating of the loop, which might seed the acceleration process with particles from the
thermal tail. This is, however, to be a subject of further investigations.
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Abstract: After the successful detection of cosmic high-energy neutrinos, the field of multiwavelength
photon studies of active galactic nuclei (AGN) is entering an exciting new phase. The first hint of a
possible neutrino signal from the blazar TXS 0506+056 leads to the anticipation that AGN could soon
be identified as point sources of high-energy neutrino radiation, representing another messenger
signature besides the established photon signature. To understand the complex flaring behavior at
multiwavelengths, a genuine theoretical understanding needs to be developed. These observations
of the electromagnetic spectrum and neutrinos can only be interpreted fully when the charged,
relativistic particles responsible for the different emissions are modeled properly. The description
of the propagation of cosmic rays in a magnetized plasma is a complex question that can only be
answered when analyzing the transport regimes of cosmic rays in a quantitative way. In this paper,
therefore, a quantitative analysis of the propagation regimes of cosmic rays is presented in the
approach that is most commonly used to model non-thermal emission signatures from blazars, i.e.,
the existence of a high-energy cosmic-ray population in a relativistic plasmoid traveling along the jet
axis. It is shown that in the considered energy range of high-energy photon and neutrino emission,
the transition between diffusive and ballistic propagation takes place, significantly influencing not
only the spectral energy distribution, but also the lightcurve of blazar flares.

Keywords: cosmic rays; cosmic-ray diffusion; active galactic nuclei (AGN)

1. Introduction

Active galactic nuclei (AGN) are among the most enigmatic objects in the universe.
With luminosities in excess of 1037 W (1044 erg s−1), they represent the most luminous,
continuous sources of radiation. With their central supermassive black holes (SMBHs), they
provide an environment that can help us to understand black holes at work. The question of
how energy is transferred from the black hole and/or the accretion disk to launch gigantic
radio jets is still largely unsolved and subject to ongoing research. AGN also constitute
one of the few sites in the universe that provide enough energy on total to serve as a
candidate for the observed flux of ultra-high energy cosmic rays (UHECRs) and might be a
key to understand particle acceleration up to the highest observed particle energies; see,
e.g., [1,2] for summaries. As one of the very few source classes, active galaxies provide
an astrophysical, extreme environment which might be suited to accelerate particles to an
incredible amount of 1020 eV (see, e.g., [3]). These sources are therefore also considered to
contribute to the diffuse astrophysical high-energy neutrino flux as measured by IceCube
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at Earth [4]. In particular, the sub-class of blazars is known for their strong short- and long-
term variability, especially (but not exclusively) at gamma-ray energies. In the literature,
blazar jets are often discussed to be dominated by leptonic particle processes, which fit
observational quiescent data of blazar spectral energy densities (SEDs; see [5–7]). Yet, the
understanding of the complex, time-variable structure of the SEDs is still far from being
understood in full detail. Additionally, the picture of an electron-positron plasma in the jet
is not the only possibility, and an electron–proton (hadron) plasma is certainly a realistic
option. Thus, in the past decades, AGN jets and particularly blazar emissions have also
been argued to naturally contain hadronic components, which would not only contribute
to the emission of electromagnetic radiation in blazars [8], but also lead to the production
of secondary high-energy neutrinos [9–11]. The general detection of up to PeV high-energy
neutrinos of astrophysical origin observed by IceCube [4] has started to shed more light on
the non-thermal high-energy universe. From the distribution of events in the projected sky,
it is clear that the flux is not focused in the galactic plane, and that it is therefore likely to
contain a significant extragalactic component, see, e.g., Becker Tjus and Merten [12] for a
summary. In the past few years, several possible associations of neutrinos with astrophysi-
cal objects have been identified. Each of these is at a ∼3σ confidence level so far and serves
as first evidence. A first hint for an association of a high-energy neutrino with a blazar
comes from the source TXS 0506+056. In September 2017, a neutrino of ∼300 TeV could
be associated with an exceptional gamma-ray flare at GeV energies from this source. This
gamma-neutrino correlation can be estimated to have a significance of 3σ by combining
data of the IceCube neutrino observatory and Fermi-LAT [13]. This detection initiated
a dedicated search for neutrino clustering in the ∼10 years of IceCube data around the
position of TXS 0506+056, with the result that there was an enhanced flux of neutrinos in a
half-year period from September 2014 to March 2015, also with a statistical significance of
∼3σ of being incompatible with the background hypothesis [14].

In order to explain the neutrino signatures detected from the direction of TXS 0506+065,
hadronic jet models have been applied (e.g., [15–19]). The two potential flares appear quite
different in their evolution: the neutrino signal above the atmospheric background detected
in 2014/2015 lasted about 100 days and consisted of about 8–18 neutrinos with energies of
10–100 TeV, and the gamma-ray light curve at GeV is in a minimum state [14]. The 2017
detection is based on one single high-energy neutrino with extreme energy (∼300 TeV). A
gamma-ray flare was observed in coincidence with the arrival of the neutrino. It has been
noted by Kun et al. [20], however, that at the exact time of the neutrino detection, even
here the GeV gamma-ray flux was at a local minimum and only rose to a high emission
state shortly after the neutrino detection. It was argued in [20] that this observation is
consistent with a model for which the neutrinos are produced in a high-density medium in
which gamma-rays are absorbed, which either becomes less dense with time or for which
the gamma-rays take some time to cascade down to GeV energies before escaping.

By now, there are tens of possible associations of neutrinos and AGN jets [21–23]. With
IceCube in continued operation, this number will further increase in the upcoming years,
with the expectation to finally confirm at least some of these sources at the >5 sigma level to
be neutrino emitters. One common conundrum in all of the different high-energy neutrino
detections (diffuse and potential sources) is the lack of TeV, but even GeV gamma-ray
emission. Hadronic interactions that are responsible for neutrino production inevitably
lead to the co-production of high-energy gamma rays. The reason is that neutrinos are
produced from the subsequent decay of charged pions and kaons, which in turn are
produced in a fixed ratio of neutral pions and kaons, leading to the production of gamma
rays with an energy threshold at the mass of the pion, Eγ, min = mπ0 c2/2 = 70 MeV,
with c being the speed of light. Comparing the detected diffuse neutrino flux with the
measured extragalactic, diffuse component of gamma rays leads to the conjecture of a
source environment that must absorb the gamma rays at energies >GeV [24,25]. The
absorption of photons can be due to a strong accretion disk, as it has been discussed in,
e.g., Brodatzki et al. [26] for the case of TeV emission. The potential neutrino source fluxes
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from the 2014/2015 TXS signature also indicates that, in order to match the observed
gamma-ray flux, it must be diminished significantly at >GeV energies to make the neutrino
production model work. Such a model of gamma-ray absorption can even be used as
a tracer in the searches for associations of high-energy neutrinos with blazars. That is,
rather than searching for an enhanced gamma-ray flux, the neutrinos can actually arrive
at times of reduced gamma-ray activity [20]. Such a scenario can be produced for regions
of extreme gas or photon densities. In the first case, the photons will interact with the
dense gas via Compton scattering. In the second case, gamma–gamma interactions will
lead to electromagnetic cascades. It is clear that in both scenarios, the energy of the high-
energy gamma rays will be deposited at much lower energies. If these environments only
become transparent at MeV energies as suggested by, e.g., Halzen et al. [15], this is not
observable now, as a dedicated mission for MeV detection of the gamma-ray sky is currently
missing. Future missions like e-Astrogam, MeVCube, or AMEGO will shed more light on
these questions. At this point, the theoretical models are being challenged by GeV-TeV
measurements, which indicate that there is no significant increase in the energy output
connected to the neutrinos.

In general, the modeling of the steady-state emission, but even more the modeling of
the flares is complex and requires a complete consideration of the jet physics, including
different scenarios for the acceleration region, gas and photon targets, as well as the
magnetic field structure. The latter is highly important for the proper modeling of the
diffusive cosmic-ray transport, which is relevant for the evolution of the flares, both for the
leptonic and hadronic signatures [19]. Quantitative theoretical modeling is necessary to
establish a physical connection of the neutrinos to the blazars. Mere directional coincidence
is not enough, because the angular uncertainty of the neutrino events is larger than 1◦,
making source identification difficult without theoretical input.

Models of high-energy neutrino and electromagnetic up to gamma-ray emission in
the jets of AGN cover a variety of scenarios and parameter spaces. Blazars are known
to be highly variable across the electromagnetic spectrum, with a variety of models put
forward to explain these flares. Such models include, among others, particle acceleration
via internal shocks in the jet (see, e.g., [3,9,10,27]) and reconnection driven plasmoids (see,
e.g., [19,28,29]). These latter relativistic and compact structures have been discussed in the
literature since the 1960s [30,31]. What here is referred to as plasmoid is often called blob in
the literature, meaning compact, dense structures traveling with relativistic speeds along
the jet axis. The term “plasmoid” is preferred here, as it is typically used in the context of
the plasmoid creation via magnetic reconnection events. In this scenario, the injection of
a relativistic plasma into the system (here the AGN jet) can lead to reconnection events
that, under certain circumstances, lead to the plasmoid instability that breaks down the
streaming plasma into small blobs, i.e., the plasmoids. In this scenario, charged particles
can be pre-accelerated in the reconnection events. While non-relativistic reconnection is
limited to below-knee energies [32], relativistic reconnection can be much more efficient [33],
also by further acceleration via a Fermi second-order process when the particles scatter
in between the plasmoids. Such an acceleration scenario can solve the long-standing
injection-problem. They also justify the assumption that the cosmic-ray population is
distributed homogeneously in the plasmoid, as the turbulent field in the plasmoid is used
to isotropize the direction of the incoming particles. The assumption of a homogeneously
distributed population is implicit in those models that do not resolve the blob, but work
with timescales. In test-particle simulations, it is a reasonable approach to start with a
homogeneous distribution, as done in this paper.

The modeled hadronic component of proton-proton interaction was discussed by
Eichmann et al. [27]; the modeling of leptonic and (lepto-)hadronic emission by Christie
et al. [34], Keivani et al. [35] for the case of TXS 0506+056. Other flare models based on
external factors include gas clouds entering the base of jets [36–38] and jets of former binary
AGN drilling through their own dust tori and/or accretion disks after being redirected by
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the merger of their host black holes [39]. Such scenarios of high density all tend to be more
hadron-dominated due to the nature of their occurrence.

Figure 1 shows a sketch of an AGN with a jet. Also shown are the photon and/or gas
targets (yellow/red). The structure of the large-scale magnetic field is shown in blue. A
turbulent component of the magnetic field exists as well and is not drawn in the figure,
but only indicated by purple text. The structure of the gas/photon fields is highly relevant
for the particle interactions and therefore needs to be included in the models in three
dimensions. The same is true for the magnetic field structure as the synchrotron radiation
is sensitive to the direction of the field. For a diffusive transport description, it is also highly
relevant as it is often assumed that the propagation is dominantly along the field lines
with a smaller component perpendicular to the field. In fact, the perpendicular diffusion
coefficient can even dominate the picture if the magnetic field turbulence level is δB/B > 1,
something that is certainly possible in these extreme environments.

Figure 1. Structure of an active galactic nucleus (AGN) with a jet. Yellow/red components are targets
for cosmic-ray interactions with gamma rays or gas. Blue colors indicate the likely structure of the
magnetic field along the jet. Particle acceleration happens either at the shock fronts or in context with
the relativistic plasmoids.

Current state-of-the-art of numerical codes include many of the necessary features.
The codes and their most important properties are summarized in Table 1. Cerruti et al. [40]
compared the codes for blazar hadronic models (with the exception of the CRPropa code).
The models are typically designed to numerically solve the transport equation including
loss processes from which the secondary particle radiation from electrons and protons can
be calculated. A loss term for the particle transport is usually included via a timescale,
i.e., a term −n/τ, where n is the particle density and τ is the characteristic timescale.
In [8,41,42], the timescale is chosen to be the ballistic one, τ = c/R (where R is the radius of
plasmoid), thus being energy-independent. Gao et al. [43] has argued that the propagation
is of diffusive nature so that the escape time of particles is assumed to be a factor of 10 times
longer than the ballistic one, but still assumed to be energy-independent. However, there
are models that implement the escape of particles with a diffusive, energy dependent
approach Rodrigues et al. [44] modeled the particle escape by distinguishing between the
two most extreme cases, i.e., escape via diffusion and escape via advection and argue that
the physical escape spectrum will emerge in between these two scenarios. All of these
models are designed to model propagation and particle interaction in blazars. Due to the
strong variability of the sources, it can be deduced that the signal must come from the very
compact region on the order of 1014 m. This makes the plasmoid model favorable over an
approach of shock acceleration and explains why all codes focus on such an approach.
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Table 1. Basic properties of state-of-the-art blazar propagation codes. A detailed comparison of the
codes in this table for blazar hadronic models was presented by Cerruti et al. [40], with the exception
of CRPropa code.

Code AM3 PARIS ATHEνA Böttcher CRPropa
Gao et al. [43] Cerruti et al. [41] Dimitrakoudis et al. [42] Böttcher et al. [8] Hörbe et al. [19]

Transport equation yes yes yes yes yes
Ballistic no no no no yes
Steady state yes yes yes yes yes
Time dependent yes no yes no yes
magnetic-field turbulent (isotropic) turbulent (isotropic) turbulent (isotropic) turbulent (isotropic) turbulent (isotropic),

regular (helical)
Diffusion 1-dim 1-dim 1-dim 1-dim 3-dim
Photohadron yes yes yes yes yes
Hadron-hadron no no no no yes

A new code for propagation of particles in relativistic plasmoids has been developed
recently [19]. This new framework has been derived from the public transport code CR-
Propa 3.1 [45]. The advantage with this numerical approach is that ballistic propagation can
be performed in a test particle approach, thus not relying on the simplifying assumption of
time-scales. Further, a second transport framework is integrated in CRPropa 3.1, which
is the solution of the transport equation via the stochastic differential equations (SDEs)
approach. This approach enables us to solve the transport equation via pseudo-particle
propagation, which makes it compatible to be used in the ballistic test-particle propagation
of CRPropa. The SDE approach is designed to include a full diffusion tensor, which is also
an improvement when compared to other codes. A CRPropa modification presented in
Hörbe et al. [19] makes use of the modular structure of CRPropa to create a propagation
environment of a plasmoid traveling along the jet axis. The photon field of a thin accretion
disk is implemented at the foot of the jet for gamma–gamma and proton–gamma inter-
actions. Technically, the propagation is done in the reference frame of the plasmoid and
then transferred into the observer’s frame. The plasmoid itself contains a plasma with
a constant density nplasma, which is considered as a target for cosmic-ray interactions as
well. The magnetic field, in which the particles propagate, was assumed to be of purely
turbulent nature of Kolmogorov type in [19]. Due to the modular structure of the code, it
can easily be changed to include a regular component as well, to change the nature of the
turbulence, etc.

In this paper, the spotlight is put on the propagation regime in the plasmoids of
blazars. In Section 2, the energy, at which a transition between diffusive and ballistic
propagation happens and the consequences such a transition has for the description of
SEDs and lightcurves of blazars are quantified. In Section 3, the influence of a first phase
of ballistic propagation before the limit of diffusion is reached in time is investigated and
the necessity to go from a diffusive approach to the description via the telegraph equation
is discussed. In Section 4, first test simulations to investigate a possible difference in the
flaring behavior in the diffusive vs. ballistic description is performed. Conclusions and
outlook are given in Section 5.

2. The Space-Domain: Diffusive vs. Ballistic Propagation

As discussed above, propagation of charged particles in a turbulent (plus regular)
magnetic field can be of fundamentally different nature depending on the astrophysi-
cal setting, in particular concerning the parameters of the particle energy, E, the ratio,
δB/B, of the turbulent to regular magnetic field, and the correlation length, lc, of the
field as the lower boundary for the deterministic description of the magnetic field lines.
Reichherzer et al. [46] quantified five propagation regimes with respect to the particle’s re-
duced rigidity ρ = rg/lc, with rg = E/(c q B) as the relativistic gyro radius and lc ≈ lmax/5
as the correlation length. Here, lmax = 2π/kmin is the maximum scale of the magnetic
turbulence spectrum, connected to the lowest wave number kmin, defined by the turbu-
lence injection scale. Diffusive propagation corresponds to the resonant-scattering regime
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(RSR). This regime is only valid for particles that can scatter with the entire spectrum of
wavelengths kmin < k < kmax, where kmax = 2π/lmin is the dissipation scale. The general
scheme of resonant scattering then breaks down toward the lowest and highest reduced
rigidities. At the lower boundary, when scattering does not happen with the entire angular
spectrum anymore, mirroring occurs more and more often, altering the diffusion coefficient.
It is expected that this regime is not relevant for particles in AGN plasmoids, as the gyro
radius of ∼TeV-PeV particles that are considered here in magnetic fields of ∼G strength
fulfills the boundary condition ρ > lmin/(π lc δB/B) [46]. The situation is different toward
large reduced rigidities, for which particles propagate in a quasi-ballistic way: for gyro radii
that start to reach the correlation length of the system, meaning for plasmoids also coming
closer to the actual size of the system, only a few gyrations are performed by the particles
before leaving the source. This is happening close to the Hillas limit of the source. It is clear
that the number of gyrations then does not suffice for a diffusive description.

The quasi-ballistic regime becomes relevant at a reduced rigidity of ρ = rg/lc � 5/(2π) [46].
Inserting the relativistic gyro radius, the energy at which the ballistic regime becomes
dominant is given as

E � 5
2π

· lc · c · q · B . (1)

For a given parameter set of magnetic field strengths, coherence lengths of the turbu-
lence, and particle energies, Equation (1) can be applied to determine in what regimes the
particles are propagating in typical astrophysical sources of cosmic rays [47]. Normalized
to a standard set of parameters, the equation becomes

E � Z ·
(

lc
1011 m

)
·
(

B
0.42 G

)
· 1015 eV . (2)

This implies that for protons (the atomic number Z = 1) in a source region with a
parameter set lc = 1011 m and B = 0.42 G, diffusive propagation is happening below
energies of 1015 eV, ballistic propagation needs to be applied above 1015 eV. For other
parameter combinations, this transition energy can be calculated accordingly, always with
ballistic propagation above the energy, diffusive transport below.

Figure 2 shows the energy limits for protons as a function of the product B · lc. The
grey shaded area illustrates diffusive and the blue area ballistic propagation, with the
transition between the resonant scattering regime and the quasi-ballistic regime indicated
as the solid line in between, following Equation (1). The area of ballistic propagation in
blue is bounded by the maximum possible proton energies according to the Hillas-Limit
in each parameter space. The horizontal lines indicate the energies for the knee (1015 eV),
ankle (1018.5 eV), and maximum observed energy (1020 eV).

The parameter space covered by the plasmoids is approximated to be in the range
1010 m < lc < 1014 m. This range is based on the assumption that the plasmoids have
a radius on the order of R ∼ 1012–1016 m, using a correlation length of lc = 0.01 · R as
described above. As the plasmoids are launched at the foot of the jet, magnetic fields
are large, on the order of 10−3 G < B < 10 G. What we want to understand is how the
propagation of particles needs to be performed to describe the multimessenger emission
from AGN in the plasmoid-model. The energy range of interest for high-energy photons
reaches from GeV energies up to approximately 1016 eV, neutrino detection happens in
an energy range corresponding to proton energies of approximately 2 · 1013 eV to 1017 eV.
Figure 2 shows the relevant parameter space, displayed as B · lc on the x-axis, a fraction
will be diffusive (grey area) at lower energies. The high-energy part before reaching the
Hillas limit (colored, thick line) needs to be performed in the ballistic limit (blue area).
A first extreme example is a combination B · lc = 108 G m, where diffusive propagation
happens up to ∼1012.5 eV, ballistic propagation up to the Hillas limit at around 1014.5 eV.
These would be sources with a relatively low acceleration limit, as the combination of
R and B only allows for maximum energies below the knee. More realistic parameter
combinations that would allow the sources to reach the maximum observed energy would
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be a combination of B · lc = 1014 G m. In this case, diffusive propagation needs to be
performed up to 1018.5 eV, ballistic propagation needs to be performed up to the Hillas limit
at 1020.5 eV.

Figure 2. Illustration of the transition between the quasi-ballistic regime (in blue) and the resonant
scattering regime (in grey) in the dependence of the magnetic field strength, B, correlation length of
the magnetic field, lc, and particle energy, E. In a simplified approach, it is assumed here that particles
in the quasi-ballistic regime propagate ballistically and in the resonant scattering regime diffusively.
The position of the diagonal line represents the transition energy from diffusive (below) to ballistic
(above) for protons (the atomic number Z = 1), determined by Equation (1). Diffusive propagation is
expected for the result of a parameter combination below the line, while ballistic propagation lies
above the line.

This result has immediate consequences on the observed energy spectra: a break in
the energy behavior of the timescales applied in simplified transport equation approaches,
where the term −n/τesc describes the escape, is expected to be observed: For ballistic
transport, the timescale needs to be chosen as a constant value, τballistic

esc = R/c, while
it becomes energy dependent in the case of diffusive propagation, τdiffusive

esc = R2/κ ∝√
R E−δ, with κ = κ0 · Eδ as the diffusion coefficient, for which the energy dependence can

be approximated as a power-law behavior with an index δ that depends on the underlying
magnetic turbulence, in this description being in the limit of quasi-linear theory, i.e.,
δB/B � 1. Such a change in the timescale directly induces a change in the shape of the
spectral energy distribution: applying the leaky box model, the emitted proton spectrum
follows approximately n(E) ∼ Q(E) · τesc(E). Those secondary photons and neutrinos that
are induced by (photo-)hadronic interactions basically mirror that behavior in the energy
range above the threshold for the process, so that even these are in first approximation
proportional to the escape time and the primary injection spectrum Q(E), nγ,ν ∝ Q(E) ·
τesc. Assuming an injection spectrum Q(E) ∝ E−2.3 and Kolmogorov-type turbulence,
τdiffusive

esc ∝ E−0.3, the SED is expected to behave as

nγ,ν(E) ∝
{

E−2.6
γ,ν E < Eγ,ν

transition
E−2.3

γ,ν E > Eγ,ν
transition .

(3)

That means for a typical parameter combination of lc = 1011 m and B = 0.42 G, the
transition energy for protons is ECR

transition = 1015 eV. This translates (see, e.g., [1]) into a
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transition energy for photons of Eγ
transition ≈ 1/10 · ECR

transition ≈ 1014 eV. These 100 TeV
photons are currently barely accessible for gamma-ray telescopes, and so the propagation
in a purely diffusive regime is reasonable. Purely ballistic transport, however, leads to a
spectrum that is too flat, as the steepening by the diffusive escape timescale due to the
diffusion tensor is neglected.

For neutrinos, the transition energy is Eν
transition ≈ 1/20 · ECR

transition ≈ 5 · 1013 eV. As the
neutrinos detected by IceCube are in the energy range 10 TeV to a few PeV, this transition
region can fall right into the relevant parameter range, so that a combination of ballistic
and diffusive propagation needs to be considered. A break in the observed neutrino energy
spectrum from a steeper to a flatter behavior is therefore expected in such a scenario. If
such a break is observed, it can be used to estimate the parameter combination B · lc. To
summarize the above result in the context of the propagation of particles in the plasmoids
of blazars, it is shown that it is of high importance to evaluate the transport regime and
adjust it accordingly to the problem under consideration in order to receive reliable results.

3. The Time-Domain

The result from the previous section applies to steady-state sources with δn/δt ≈ 0,
where it is implicitly assumed that all particles have already had the time to reach a steady-
state limit in their propagation; here, t denotes the time. However, blazars are highly
variable objects and individual flares are often modeled by injecting a high-energy particle
population on short timescales. Particle acceleration time-scales in reconnection events
responsible for the blob creation in relativistic sources are on order of τacc ∼ E/(qBc2),
which is typically much shorter than the escape timescales (see, e.g., [48]), motivating a
two-zone scenario where acceleration is typically performed in a first step, propagation
afterwards.

While there is scientific consensus that the description of the transport process of
particles in turbulent fields is ensured by the general concept, discussed in Section 2 in the
limit of infinitely large times, the question arises under which conditions and on which
timescale such a limit consideration is appropriate. In this section, criteria are derived for
which, in a given plasmoid setup, the diffusive approximation still holds.

The general problem of assuming diffusive propagation during the initial propagation
process, for which the diffusive limit is not yet granted, is expressed in the following points:

• The solution of the diffusion equation results in a Gaussian spatial distribution of the
particles in the plasmoid. However, especially in the initial transport phase, this has
the consequence that the particles are granted a non-vanishing probability of reaching
positions in the plasmoid, which they cannot reach at the initial time due to their
finite speed.

• Numerical simulations show a linear increase of the running diffusion coefficient,
caused by ballistic particle trajectories until a constant value is reached that is known
as the final diffusion coefficient κ and used within the numerical and theoretical
computations of diffusive transport. The discrepancy between the final diffusion coef-
ficient and the actual running diffusion coefficient approaches zero as the propagation
length increases, but is significant at the beginning.

3.1. Timescale for Transition to Diffusive Propagation

Whereas the consideration of particle transport via the diffusion equation and its
solution of a Gaussian particle distribution cannot distinguish between the initial, ballistic
propagation and the subsequent diffusive propagation, the telegraph equation has recently
been attributed this ability [49–52]:

∂ f
∂t

+ τ
∂2 f
∂t2 = κ

(
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2

)
, (4)

where x, y and z are space coordinates.
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The telegraph timescale τ describes the transition between these two propagation
phases. This timescale enables us to make a statement about when the diffusive phase is
established and when the description of the particle transport via the diffusion equation is
sufficiently accurate. If the initial ballistic phase is neglected, τ disappears and the telegraph
equation turns into the known diffusion equation. By neglecting adiabatic focusing, the
telegraph timescale yields [49]:

τ =
3v

8λ‖

1∫
−1

dμ

⎛
⎝ μ∫

0

dμ′ 1 − μ′2

Dμμ(μ′)

⎞
⎠

2

, (5)

with μ being the cosine of the pitch angle and Dμμ being the pitch-angle Fokker-Planck
coefficient that, in a negligible background field (δB � B0), yields [53]

Dμμ = (1 − μ2)D. (6)

Here, D is the pitch-angle Fokker–Planck coefficient at 90◦. The mean-free path λ‖ is
defined as

λ‖ =
3v
8

1∫
−1

dμ
(1 − μ2)2

Dμμ(μ)
, (7)

where v denotes the particle velocity.

3.2. Quantifying the Time Needed to Achieve Certain Levels of Diffusivity

Since the diffusion equation assumes diffusive transport at all times and, furthermore,
the solution uses the final diffusion coefficient, κ, over all timescales, the norm N of the
solution remains constant in time:

N = 4π

∞∫
0

dr r2 fdiff(r) = 4π

∞∫
0

dr
r2

(4πtκ)3/2 exp
(
− r2

4κt

)
= 1 . (8)

The norm may be interpreted as the fraction of particles participating in diffusion [52].
On the other hand, the solution of the isotropic telegraph equation yields:

ftelegraph(r, t) =
e−t/2τ

4πκ3/2

[
δ
(
t − r

√
τ/κ

)
r/

√
κ

I0

(
1
2

√
t2

τ2 − r2

κτ

)

+
Θ
(
t/
√

τ − r/
√

κ
)

2τ3/2
√

t2

τ2 − r2

κτ

I1

(
1
2

√
t2

τ2 − r2

κτ

)⎤⎦. (9)

Here, δ(. . .) is the Dirac’s delta function, Θ(. . .) is the Heaviside step function, and
Iν(. . .) is the modified Bessel function. The norm can be computed individually on each of
the two terms of the function:

N =
∫

ftelegraph(r, t)dr =
∫ e−t/2τ
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[
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)⎤⎦dr . (10)
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The delta function simplifies the first part to t/τ and the second part can be solved by
employing Bessel function integration rules. The details of the calculation are omitted. The
norm yields

N = 1 − exp
(
− t

τ

)
. (11)

In this scenario, no particles are diffusive at the beginning. With time, the number
of diffusive particles increases exponentially until the value for large propagation times
approaches the maximum value with all particles in a diffusive state.

Rearranging the equation leads to a calculation rule for the propagation time tdiff,N
required to establish a certain diffusion level:

tdiff,N = − ln (1 − N)τ . (12)

The relation (11) is shown in Figure 3 in comparison with the constant number of
diffusing particles in the case of modeling the transport with the diffusion equation. The
initial phase of a flare of cosmic rays is therefore in a non-diffusive state until the steady-
state limit is reached as shown in Figure 3. Note that the derivations made here for a purely
turbulent field also apply to the generalized case of an additional directional magnetic field
component, since the timescales for reaching the diffusive phase during transport parallel
and perpendicular to the directional background field are identical for a large parameter
space [54].

Figure 3. Comparison of the time evolution of the ratio of particles that are already diffusively
propagating on average. The solution of the diffusion equation leads to the fact that particles always
propagate diffusively. The solution of the telegraph equation shows an increase in the diffusively
propagating particles with time and an approach to the maximum value.

In Section 4, this scenario is evaluated for the conditions in a plasmoid.

3.3. Conditions for Plasmoid Settings

In what follows, the critical time to reach diffusive propagation is expressed as a
function of the blob properties and the particle energy. The resulting estimates give an
overview of the expected type of propagation for special parameter combinations. For this
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purpose, let us start with the definition of the timescale connected to the mean free path, λ,
of the particle,

τ =
λ

v
=

3κ

v2 , (13)

where λ = 3κ/v is expressed as a function of the diffusion coefficient. Here, the case of
isotropic turbulence without background field is considered in which case Bohm diffusion
to be applied with a linear energy dependence in the resonant-scattering regime, κ ∝ E. In
the quasi-ballistic regime, the diffusion coefficient becomes κ ∝ E2. The transition between
the two regimes is given at a reduced rigidity of ρ ≈ 5/(2π), so that the diffusion coefficient
can be written as

κ = κ0

(
ρ

ρ0

)ε

with

{
ε = 1 for ρ � 5/(2π) ,
ε = 2 for ρ � 5/(2π) ,

(14)

where κ0 and ρ0 are normalisation constants and ρ0 = 5/(2π) is chosen, so that κ0 becomes
the value of the diffusion coefficient at the chosen value of ρ0.

It follows for the timescale:

τ =
3κ0

v2

(
ρ

ρ0

)ε

with

{
ε = 1 for ρ � 5/(2π) ,
ε = 2 for ρ � 5/(2π) ,

(15)

finally leading to an expression for the propagation time required to reach a certain diffusion
level N (from Equation (12))

tdiff,N = − ln (1 − N)
3κ0

v2

(
2πρ

5

)ε

with

{
ε = 1 for ρ � 5/(2π) ,
ε = 2 for ρ � 5/(2π) .

(16)

By inserting the definition of the reduced rigidity, this relation can be expressed as
functions of E, B and lc:

tdiff,N = − ln (1 − N)
3κ0

v2

(
2πE

5qcBlc

)ε

with

{
ε = 1 for ρ � 5/(2π) ,
ε = 2 for ρ � 5/(2π) .

(17)

The time tdiff,N needed for the fraction N of the particles to be diffusive depends on
the parameters E, B and lc. Figure 4 shows this condition for different plasmoid parameters.
The figure shows the influence of the particle energy, the magnetic field properties, and
the trajectory on the fraction of already diffusively propagating particles. The vertical
lines indicate the timescales required for particles on ballistic trajectories to travel one
plasmoid radius. This timescale has the same order as typical escape times of charged
particles during initial ballistic propagation. If there is not yet a significant fraction of
diffusive particles at the vertical lines for the respective plasmoid radii, the particles must
be considered completely ballistic. For example, charged particles with E = 1 TeV, B = 1 G,
and lc = 1010 m can be treated diffusively in plasmoids with R = 1016 m, but must be
treated via equation-of-motion approaches at smaller radii such as R = 1014 m, R = 1012 m,
and R = 1010 m.
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Figure 4. Fraction of particles, N, that are diffusive as a function of propagation time, t, for different
blob parameters and particle energies. The vertical lines illustrate the time required for ballistic
particle propagation to traverse the respective blob radii.

4. Simulations: Ballistic vs. Diffusive Simulation Results

In this Section, the effect of ballistic vs. diffusive propagation is investigated by
performing simulations of cosmic-ray transport in the plasmoid of is applied an AGN
traveling along the jet axis. Here, interactions with photon and gas targets are considered
to be switched off in order to focus on the effects coming from cosmic-ray propagation, but
otherwise follow the procedure described in [19]. This is done as a first step to understand
the influence of the change in the propagation regime, so that in future studies, one can
calculate the neutrino and gamma-ray spectra, adding the effect of hadronic cascades. This
allows us to disentangle the two effects of the change in the flare due to propagation vs.
interaction. For now, focus is on the effect of the change in propagation regime, future
work will then also quantify changes through interactions. The parameter set used in the
simulation is summarized in Table 2. In addition, not only simulations with the equation-
of-motion [55] are performed, but diffusive propagation applied by using the module
DiffusionSDE in CRPropa 3.1 [45], which solves the transport equation with a diffusion
term κΔn. In order to have a quantitative comparison, first, one needs to calculate the
diffusion coefficient κ as an input to the diffusive simulation from the ballistic part. This is
done here for energies from 105 GeV up to 108 GeV. Here, the Taylor Green Kubo (TGK)
formalism is applied as described in [46] (see also references therein). The simulation
parameters from Table 2 are chosen to minimize numerical errors such as the interpolation
effect of turbulence [56,57].
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Table 2. Simulation parameters, given in the rest frame of the plasmoid. All simulations are performed
in a modified version of CRPropa 3.1 as presented in Hörbe et al. in [19] with further additions made
for this paper as described above.

Parameter Value

Proton energy, Ep 105 GeV–108 GeV
Plasmoid radius, R 1013 m
Plasmoid Lorentz factor, Γ 10
Magnetic field: Initial root-mean-square (RMS) value B0 1 G
Magnetic field: Turbulence & spectral index α Kolmogorov-type, α = −5/3
Magnetic field: Correlation length, lc (2/3) · 1011 m
Magnetic field: Grid points (512)3

Magnetic field: Spacing, ΔsG R/(256 · 32 · 2)
Magnetic field: lmin 2ΔsG
Propagation module (CRPropa intern): Ballistic PropagationBP
Propagation module (CRPropa intern): Diffusive DiffusionSDE
Propagation step size 10−3R

Figure 5 shows the result of the running diffusion coefficient κ(t). For low energies, i.e.,
105 GeV (brown), 105.5 GeV (purple), 106 GeV (red), and 106.5 GeV (green), particles reach a
plateau after an initial ballistic phase as described in Section 3, which can be used as the
steady-state diffusion coefficient. For larger energies (107 GeV, orange, and 108 GeV, blue),
such a convergence is not observed. The reason is that the particles leave the plasmoid
before being able to reach a steady-state diffusion limit. Therefore, the first three values of
the steady-state diffusion coefficient are used to determine the energy dependence κ(E).

Figure 5. Running diffusion coefficient, κ, for energies 105 GeV to 108 GeV. A plateau is built up
for energies between 105 GeV < E < 106 GeV. Toward higher energies, the coefficient breaks off as
the particles leave the plasmoid before they can reach the steady-state diffusion coefficient. This is
consistent with the calculated energy for a transition between a ballistic and diffusive behavior at
106 GeV.

In Figure 6, the values averaged from the plateau in Figure 5 are shown with the
corresponding error bars. In the simulation setup, the magnetic field is a purely turbulent
one. That means Bohm diffusion is at work, and the energy dependence is expected to
be κ = κ0 · (E/ GeV); see, e.g., [12]. We therefore perform a linear regression and find
κ0 = 1013.54±0.06. For the simulations considered, the calculated values are used for the three
energies, where this was possible in a reliable way (105 GeV to 106 GeV). For larger values,

207



Physics 2022, 4

the result from the linear regression is used to determine the diffusion coefficient. From the
findings of Section 2, one expects the ballistic and diffusive flares to provide approximately
the same results until the transition energy is reached according to Equation (1), for the
set of parameters used (see Table 2); this happens at around 106 GeV. From the results
of Section 3, a deviation between the diffusive and ballistic approach is expected to be
largest at small times and the two approaches should converge toward large times, when
the steady-state diffusion coefficient is reached. As can be seen from Figure 5, this effect is
energy dependent and for low energies (105 GeV), the diffusive steady-state is reached at
around 103 s, while it takes � 104 s for the highest energies (E > 107 GeV).

Figure 6. Steady-state diffusion coefficient as a function of energy for particles between 105 GeV and
106 GeV. A linear regression for the function κ(E) = κ0 · (E/GeV) is performed, with the uncertainty
band depicted as gray shaded area. Here, κ0 is the normalisation constant. The linear behavior with
energy is based on the assumption that Bohm diffusion is dominant in the purely turbulent field.

Figure 7 shows the flaring behavior for a monochromatic energy flare at E = 105 GeV.
The diffusive description shows an especially large enhancement with respect to the
equation-of-motion approach at early times below 103 s, in accordance with the find-
ings of Section 3. The behavior of dN/dt is similar for both approaches, with a small shift
that can be explained by the uncertainties in the numerical determination of the diffusion
coefficient used here for the diffusive approach. In the diffusive transport regime for a
constant diffusion coefficient, one expects 〈Δx〉 ∝ t1/2. This results in the differential
particle number dN/dt ∝ t−1/2 of escaping particles. Note that, due to the steady escape,
the decrease in the number of remaining particles in the plasmoid leads to a strong cut-off
at large times. Since, in the diffusive approach, more particles initially leave the plasmoid,
the particle density in the plasmoid is lower than in the equation-of-motion approach, so
that an earlier cut-off is visible.

Figure 8 shows the flare for diffusive and equation-of-motion behavior at 108 GeV.
Here, one obtains a visible difference between the two flares, with the diffusive approach
yielding a dominant contribution at early times. In contrast to the diffusive regime with
dN/dt ∝ t−1/2, one expects a constant differential particle number for the ballistic transport
regime with 〈Δx〉 ∝ t. The initial slight drop for the equation-of-motion may be explained
by statistical deviations from the initial homogeneous particle distribution in the plasmoid,
especially when slightly more particles are in the outer spheres of the plasmoid at t = 0.
Since, in the diffusive case, significantly more particles initially leave the plasmoid, the
particle density in the plasmoid is much lower than in the equation-of-motion approach, so
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that a cut-off is visible much earlier in the diffusive approach. Thus, these test simulations
emphasize the importance of propagating the particles in the proper transport regime.
Only a thorough analysis of the transport properties will lead to a prediction that can be
compared to the observation of non-thermal emission from blazars.

Figure 7. Cosmic-ray flare (E = 105 GeV) from a blazar in the diffusive propagation model (orange
downward triangle) and in the ballistic propagation model (blue upward triangle) as differential
particle number per unit time, dN/dt, over time. The total number of particles injected into the
simulation is Ninj = 105.

Figure 8. Cosmic-ray flare (E = 108 GeV) from a blazar in the diffusive propagation model (orange
downward triangle) and in the ballistic propagation model (blue upward triangle) as differential
particle number per unit time dN/dt over time. The number of injected particles is Ninj = 105.

5. Conclusions

In this paper, the propagation regimes in plasmoids of blazars are investigated as
sources of high-energy cosmic rays, which in turn become emitters of high-energy gamma-
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rays and neutrinos. To explain the spectral energy distributions and lightcurves of this
high-energy emission, it is shown that it is necessary to distinguish between the different
energy and time regimes of ballistic and diffusive transport. At early times and at high
energies, the particles are still in the ballistic regime. At late times or in scenarios, for
which the injection of high-energy cosmic rays is significantly longer than the characteristic
timescale τ � R/c, with R being rthe radius of plasmoid and c the speed of light, the
diffusive approach needs to be applied. The details of this transport modeling have an
impact on both the spectral energy distribution, and on the temporal evolution of a flare.
For the energy behavior, the diffusive part of the spectrum is steepened by the diffusion
timescale, which is dominated by the diffusion coefficient. The ballistic part, on the other
hand, is connected to an energy-independent escape timescale, thus leading to an emission
spectrum close to the acceleration spectrum. When looking at the flaring behavior, it is
shown that diffusive approach and transport with the equation-of-motion approach yield
about the same result at low energies around 105 GeV, where the diffusive approach is
accurate at times above ∼103 s. That means that if the equation-of-motion approach is
performed with the correct parameter setting, the same result is expected at times larger
than 103 s, which is confirmed within a factor of ∼2. When approximating this behavior
with an escape timescale, the diffusive timescale needs to be applied.

At large energies (108 GeV), it can be shown that the diffusive and equation-of-motion
approaches lead to quite different flaring behaviors. Here, only the equation-of-motion
approach yields a correct result, as it can reproduce the ballistic behavior. It can be approx-
imated in a transport equation approach by applying an energy-independent (ballistic)
escape time.

As for the observation of neutrinos, we predict that spectral energy distributions
of blazars like TXS0506+056 should have a break in the spectrum at a neutrino energy
around 5 · 1013 eV. If blazars are responsible for the diffuse neutrino emission, a break at
the same energy is predicted. For the gamma-ray and neutrino lightcurves of blazars like
TXS0506+056, one would expect the behavior of the variability time to be affected by the
effect of a ballistic behavior at early times that turns into a diffusive behavior at later times.
In particular, when simulating these flares, the shape of the flare will be misinterpreted
when using the diffusion approximation at the highest energies, because it breaks down as
the particles escape faster than the diffusion time scale.
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