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Preface to “Radar Remote Sensing for Applications in

Intelligent Transportation”

The emergence of self-driving vehicles has sparked curiosity among people, and the technology

related to it advances every day. If you were asked to ride in a self-driving vehicle, your first

reaction might be: is it safe to ride in a driverless car? Yes, self-driving cars are meant to improve

traffic efficiency while ensuring safety. To achieve this goal, the millimeter-wave radar, with its

all-weather detection capabilities, has become an important apparatus in the field of self-driving cars.

On this crucial turning point, we launched a Special Issue on radar remote sensing in intelligent

transportation and received 23 manuscript submissions. After fair and rigorous peer review process,

we finally accepted eleven excellent papers covering diverse aspects. Thus, this book reflects the

latest research results of radar remote sensing in intelligent transportation to a certain extent.

The automotive millimeter-wave radar has obvious advantages. However, as an active

transmission remote sensing technology, the signal transmitted by the radar may become a strong

interfering source for neighboring radars. The intensity of this interference signal is usually much

higher than that of the target signal, leading to misjudgment by unmanned driving systems and

eventually turn into potential traffic accidents. As self-driving technology evolves, the demand for

automotive millimeter-wave radar in the market has grown exponentially, and the probability of

interference between radars has also increased. The first paper in this book detects interference zone

numbers before restoring the echoes in the interference area. Specifically, a sparse-based technique

is proposed to suppress non-coherent interference between frequency-modulated continuous wave

radars. First, a low-pass filter-based technique is developed to detect the envelope of the interference.

Next, the marked areas with interference are treated as missing data. Then, the interference

suppression problem is formulated as an echo interpolation recovery problem. Finally, the process of

restoring radar echoes is derived based on the alternating direction method. This method has been

verified by hardware experiments and has achieved good interference suppression performance.

Sharing radar detection information with neighboring vehicles could better compensate for blind

spots in individual vehicle perception and reduce interference. This involves joint communication

and radar sensing integration. As a very promising direction in intelligent transportation, this book

includes two papers on this topic. The second paper designs a radar spatial-temporal transceiver and

communication spatial-temporal codebook in the spectrum coexistence system on moving platforms.

The joint radar and communication waveform often have a high range sidelobe, which will degrade

the target detection performance of an automotive joint radar and communication system. To solve

this problem, the third paper proposes a joint radar and communication complementary waveform

group design method by exploiting the philosophy of the complementary sequence.

The constant false alarm rate (CFAR) detector plays a vital role in adaptive target detection of the

radar. However, traditional CFAR detection algorithms use a sliding window to find the target limit

radar detection speed and efficiency. In such cases, the fourth paper proposes and discusses a CFAR

detection method that transforms the Monte Carlo simulation principle into randomly sampling

instantaneous Range–Doppler data to improve the radar detection ability for moving targets such

as pedestrians and vehicles in traffic environments. The fifth article describes a millimeter-wave

distributed coherent aperture radar that can be used to improve the signal-to-noise ratio of the

target by coherent-on-receive synthesis. The synchronization errors are calibrated with the estimated

coherent parameters of the dominant scatterer, which can be defined as an unknown strong target

in radar detection scenarios. Multi-object tracking based on robust detection is an old but new issue

for self-driving cars. The sixth paper develops a Reweighted Robust Particle Filtering Approach for

ix



Target Tracking in Automotive Radar Applications.

Fascinatingly, as human–computer interaction continues to evolve, hand gestures are assuming

an increasingly vital role in intelligent vehicle control. The seventh paper showcased in this

collection introduces a remarkable multi-hand gesture recognition system that leverages automotive

frequency-modulated continuous wave (FMCW) radar. Furthermore, the eighth paper focuses on

addressing the limitations of traditional radar systems for self-driving. It presents a cutting-edge

target tracking algorithm that harnesses the wealth of information provided by 4D millimeter-wave

radar point clouds. This novel approach enables more accurate estimation of motion states and target

contours, thanks to the higher resolution target point cloud data. It offers a significant advancement

in overcoming the challenges faced by traditional radar systems. Beyond land transportation, the

exploration of sea transportation also takes center stage in this compilation. In the ninth paper, a

groundbreaking hybrid task cascade plus method is proposed, designed to enhance ship instance

segmentation in Synthetic Aperture Radar (SAR) images.

The last two papers are related to radar antenna direction. For automobile radar systems, the

antenna array requires a low sidelobe level (SLL) to reduce interference. A low-SLL planar array

based on linear series-fed patch sub-arrays is presented in the ninth paper. Frequency diverse

array (FDA) produces a beampattern with controllable direction and range by slightly shifting the

carrier frequencies across the elements, which is attractive in many applications. In the last paper,

the analytical expressions of the Cramér-Rao bounds in stochastic signal cases for joint Direction of

Arrival-range estimation using coprime FDA are derived.

Finally, we owe a great deal to many people for this book’s successful publication. The guest

editors would like to express special thanks to the journal editor, Nancy Yang, for her tremendous

help. It can be said that without Nancy’s long-term vision and pragmatic and meticulous cooperation,

this book would not have been published. Nancy’s work ability is outstanding, and she is friendly,

kind-hearted, beautiful and hardworking. The reason why the remote sensing journal is getting better

and better is because of great talents like Nancy. In addition, thanks go to all the paper authors and

reviewers. It is your careful and meticulous work that has contributed to our joint efforts in radar

remote sensing for intelligent transportation.

Zhihuo Xu, Jianping Wang, and Yongwei Zhang

Editors
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Incoherent Interference Detection and Mitigation for
Millimeter-Wave FMCW Radars

Zhihuo Xu 1,2, Shuaikang Xue 1,2 and Yuexia Wang 1,2,*

1 Radar Remote Sensing Group, School of Transportation, Nantong University, Nantong 226019, China
2 School of Information Science and Technology, Nantong University, Nantong 226019, China
* Correspondence: venus@ntu.edu.cn; Tel.: +86-0513-85962369

Abstract: Current automotive radar technology is almost exclusively implemented using frequency
modulated continuous wave (FMCW) radar in the millimeter wave bands. Unfortunately, incoherent
interference is becoming a serious problem due to the increasing number of automotive radars in
dense traffic situations. To address this issue, this article presents a sparsity-based technique for
mitigating the incoherent interference between FMCW radars. First, a low-pass filter-based technique
is developed to detect the envelope of the interference. Next, the labeled regions where interference
is present are considered as missing data. In this way, the problem of mitigating interference is
further formulated as the restoration of the echo using L1 norm-regularized least squares. Finally, the
alternating direction method of the multipliers-based technique is applied to restore the radar echoes.
Extensive experimental results demonstrate the effective performance of the proposed approach.
Compared to state-of-the-art interference mitigation methods, the proposed method remarkably
improves the quality of radar targets.

Keywords: millimeter-wave radar; frequency modulated continuous wave (FMCW); incoherent
interference; sparse optimization

1. Introduction

Radar is a highly robust and reliable sensor for automotive applications [1]. First,
automotive radars measure the relative distance, velocity, and angle of targets through time
delay and phase shift of radio signals, and therefore can perform well in adverse weather
conditions. Second, automotive radars operate in the millimeter wave band and have a
large bandwidth; hence, a high range resolution of 3 cm can be achieved [2]. In addition,
the radar system is both simple and effective, using linear frequency-modulated continuous
wave (FMCW) technology [3]. Therefore, automotive FMCW radar has the advantageous
benefits of small size, light weight, and low power consumption, and is widely used in
self-driving vehicle applications [4].

Active signal transmission is one of the advantages of radar; however, it can cause
serious interference problems with neighboring radars [5–7]. Similar to non-homogeneous
clutter [8,9], radar target detection performance is degraded by incoherent interference.
The interference probability can be reduced by alternating the parameters of radar wave-
forms [10]. Although different FMCW radars use different parameters, incoherent interfer-
ence can occur when the spectrum of the interfering signal overlaps the transmitted wave
of the radar under test. The incoherent interference produces strong noise and even ghost
targets. Consequently, suppressing the incoherent interference in radar images is one of the
most pressing issues for automotive FMCW radars.

Although the mitigation of incoherent interference remains an open problem, sev-
eral interference mitigation approaches have been proposed. The first type of approach
aims to design radar waveforms to overcome the drawbacks of FMCW radar with a fixed
time–frequency relationship. Orthogonal pseudo-random noise waveforms can be de-
signed to reduce the probability of interference [11,12]. Phase-modulated continuous wave

Remote Sens. 2022, 14, 4817. https://doi.org/10.3390/rs14194817 https://www.mdpi.com/journal/remotesensing
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(PMCW) [5] and phase-coded frequency-modulated continuous wave (PC-FMCW) [13]
approaches have been successively proposed to avoid interference with FMCW radars.
However, mutual interference can nevertheless appear between PMCW and FMCW radars.

In order to be applicable to FMCW radar images, signal post-processing techniques
have been used to develop interference suppression methods [14]. Brooker [15] deals with
interference by inverse cosine windowing and substituting zeros for the high-amplitude
transient. Before removal of transient interference by substituting zeros over the period of
interference, accurate interference detection is required in order to determine the location
of the interference. Neemat et al. [16] first used image processing techniques to detect
interference in the short-time Fourier transform (STFT) domain, then carried out beat
signal model parameters estimation analysis using autoregression in the STFT. Finally,
they replaced suppressed beat–frequency frames with linear-predicted interpolated ones.
Jung et al. [17] applied an order statistics–constant false alarm rate (OS-CFAR) algorithm
to identify the interference regions. Then, the Kalman filter was used to estimate the
state and predict the signals in the interference region. After filtering of the signal, large
peaks in the time domain beat signal were reduced and the target signal was estimated.
Wang et al. [18] first cut out the interference-contaminated region of the received signal,
then interpolated the signal samples in the cutout segment using the matrix-pencil method.

Unlike the above-mentioned methods of zeroing or reconstructing the signal for
interference-contaminated areas, processing of the entire received signal is another technical
route to interference suppression. Lee et al. [19] considered the low-intensity target signal
as the noise component to be removed and the high-intensity pulse-like interference signal
as the signal to be retained. Using a wavelet transform and thresholding the wavelet
coefficients of the low-pass filter output, they were able to extract the pulse-like interference
signal. Afterwards, the interference signal was subtracted from the original low-pass
filter output to generate the desired target signals. The beat frequencies of real targets
always present a positive frequency, whereas only the noise and the interference are in the
negative half of the frequency spectrum. Thus, Jin and Cao [20] calculated the power of
the negative frequency as a reference of interference and fed the positive frequency and
negative frequency components into the primary and reference channel, respectively, of
an adaptive noise canceler (ANC). Wu et al. [21] proposed an iterative modified threshold
method based on empirical mode decomposition (IMT-EMD) for interference suppression
in FMCW automotive radars, and applied the consecutive mean square error algorithm
to determine the interference-dominated components after decomposing. Specifically, the
interference problem can be considered as the sum of two component signals, i.e., the
target signal plus the interfering signal. Therefore, interference reduction can be achieved
by separating the interfering signal from the received signal. From this perspective, [22]
developed an interference mitigation technique to successfully separate the interference
from the received signal in the tunable Q-factor wavelet transform domain. Uysal [23]
applied morphological component analysis (MCA) [24] theory to decompose the received
signal into interference and target signals. Rock et al. [25] evaluated a convolution neural
network (CNN)-based method for carrying out interference reduction on real FMCW radar
measurements by combining real measurements with simulated interference in order to
obtain input–output data suitable for training their CNN model.

In summary, the incoherent interference problem is a pressing problem in automotive
FMCW radars that considerably negates the inherent advantages of radar by decreasing
the detection probability and reliability of sensors. Although this challenge has been
investigated and several aforementioned approaches have been developed in this field,
there remains a need for an efficient solution that can help to mitigate the strong interference
in radar images. The contributions of this work to this problem can be summarized
as follows:
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• A simple yet effective interference detection technique using a low-pass filter is pre-
sented, and the presence of interference is further determined from the statistics of
the output envelope of this filter. In this way, the results of interference detection can
indicate the presence or absence of interference. We propose an interference mitigation
algorithm that cannot be started in the absence of interference, which significantly
increases real-time processing performance.

• A sparsity model is presented to reduce the incoherent interference by considering
the interference regions as missing data. Using L1 norm-regularized least squares, an
alternating direction method of multipliers (ADMM)-based technique is been derived
to restore the radar echoes.

• In several comparison experiments, dynamic incoherent interference is generated; the
case of dynamic interference is much closer to the real-world self-driving situation.
In experiments with dynamic interference signals, the comparative performance
of different algorithms is comprehensively evaluated and the potential use of the
algorithms in real roads is further analyzed.

• In addition, both the wavelet-based [19] and the MCA-based [23] methods are im-
proved when using our proposed interference envelop detection approach.

• Our extensive experiments demonstrate that the proposed method significantly out-
performs the state-of-the-art methods on both simulated and real radar interference
mitigation tasks.

The rest of this paper is outlined as follows. Section 2 introduces the formulations
related to the incoherent interference between FMCW radars. Section 3 proposes detection
and mitigation of incoherent interference. Section 4 demonstrates the extensive measure-
ments used to compare the proposed techniques with state-of-the-art methods. Section 5
discusses sparsity-based methods, algorithm complexity, and the impact on performance
of interference regions that lead to missing data components. Finally, we present our
conclusions in Section 6.

2. Incoherent Interference

According to recommendations by the International Telecommunication Union (ITU),
most automotive radars currently operate within the 76–81 GHz bandwidth with FMCW
signals [26]. The transmitted radar signal stx(t) can be written as follows:

stx(t) = Atxcos(2π fct + πkrt2), (1)

where t is time, Atx is the amplitude of the transmitted signal, fc is the center frequency of
the radar, and kr is the chirp rate. Suppose a vehicle at a distance R meters from the radar
is driving at a speed v m/s; then, the corresponding radar echo is described as

srx(t) = Arxcos[2π fc(t− Δt) + πkr(t− Δt)2], (2)

where Arx is the amplitude of the echo, the delay time Δt = 2(R + vt)/c, and c is the
velocity of light.

After the dechirp operation, the received signal is expressed as

rt(t) = Atcos(2πΔtkrt + φr), (3)

where At is the amplitude of the received signal and φr is the phase that includes the target
Doppler information. The frequency of the target signal with respect to time t is further
derived as

ft(t) = Δtkr. (4)

If the neighboring radars and the radar under test have the same transmit waveform,
then coherent interference may appear; false targets are generated when this type of
interference signal enters the radar receiver baseband. Fortunately, this kind of interference
is very unlikely to happen because the phase noise between the radar under test and

3
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interfering radars is not correlated. The transmitted signal of a neighboring radar is
formulated as

stxi(t) = Atxicos[2π fi(t + t0) + πki(t + t0)
2], (5)

where t0 is the time offset with the radar under test as the reference, Atxi is the amplitude,
fi is the center frequency, and ki is the chirp rate for the neighboring radar.

When the transmitted signal of the neighboring radar passes through the receiver of
the radar under test, the interfering signal after dechirping is

ri(t) = Aicos[2π( fc − fi)t + π(kr − ki)t2 − 2πkit0t + φi], (6)

where Ai and φi are the amplitude and residual phase of the interfering signal, respectively.
According to the above equation, the frequency of the interfering signal with respect to
time t is

fi(t) = fc − fi − kit0 + (kr − ki)t. (7)

It can be seen that the above interfering signal is a linear FM signal, which is called
incoherent interference. The part of the interfering signal with a frequency below half of the
radar receiver sampling frequency is fully sampled, and the rest above it is undersampled.

The total received signal can be considered as the sum of the target signal and the
interfering signal, that is, r(t) = rt(t) + ri(t), as shown in Figure 1. It is worth mentioning
that the power of the target signal is proportional to R−4 while the amplitude of the inter-
ference is proportional to R−a

i , where a is a factor that describes the multi-path transmission
of the interfering signal and Ri is the distance between the interfering radar and the radar
under test. Low-intensity incoherent interference signals have little effect on radar perfor-
mance, and only raise the noise floor. In this work, the intensity of the interfering signal is
considered to be stronger than that of the target signal, which makes it difficult to suppress
the interference. Therefore, 2 ≤ a < 4.

Figure 1. Demonstration of incoherent interference.

3. Proposed Approaches

3.1. Interference Envelope Detection

Interference envelope detection is the first priority in interference mitigation. The
precise location of the interference facilitates the reduction of interference with minimal
computational complexity. After discrete-time quantization sampling, the received signal

4
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can be described as r(n), where n denotes the nth sample. First, the amplitude information
is obtained by taking the modulus of the radar received signal as

Ar(n) = |r(n)|. (8)

Next, one low-pass finite impulse response filter (LP-FIR) is designed to detect the
envelop. The frequency response of the filter is

H(ω) =
K

∑
n=0

hne−jnω, (9)

where K is the order of the filter and hn is a coefficient of the filter. Thus, the impulse
response of the filter can be written as

h(n) =
K

∑
i=0

hiδ[n− i] = hn, 0 ≤ n ≤ K. (10)

There are many methods that can be used to solve the filter coefficients, such as the
window function method and the frequency sampling method [27]. Here, a minimum
mean square error (MMSE)-based method is applied to design the filter.

To simplify the design, h(n) is expected to be even symmetric and the order K is
set as an odd number. Hence, the discrete-time Fourier transform (DTFT) of h(n) can be
rewritten as

H(ω) = e−jω(N+1)/2
(K+1)/2

∑
n=0

hncos
(

ω

(
K + 1

2
− n

))
, (11)

According to the above equation, the phase response of the filter is φ(ω) = e−jω(K+1)/2.
Thus, a desired filter Hd(ω) can be predefined by combining the phase response φ(ω) with
a desired amplitude response. The design of the filter can then be further expressed as an
MMSE problem:

min
h(n)

(
E(ω) =

∫ π/2

−π/2
| H(ω)− Hd(ω) |2 dω

)
. (12)

The above problem is minimized by applying the partial derivative of E(ω) with
respect to h(n) to obtain the solution,

h(n) =
∫ π/2

−π/2
cos(nω)Hd(ω)dω. (13)

Because the frequency of the interference envelope is low, the normalized cutoff
frequency of the filter is set to 0.2, the passband normalized frequency is 0.005, the or-
der of the filter is set to 19, and a filter coefficient vector is designed: h(n) = 0.01 ∗
[0.59, 1.08, 1.91, 2.99, 4.25, 5.61, 6.94, 8.10, 8.97, 9.43, 9.43, 8.97, 8.10, 6.94, 5.61, 4.25, 2.98, 1.91,
1.08, 0.59]. The amplitude response of the filter is shown in Figure 2.

Applying the designed filter to the amplitude sequence, the envelope A(n) can
be obtained:

A(n) =
N−1

∑
k=0

h(k)Ar(n− k), (14)

where N is the length of the received signal.
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Figure 2. The amplitude response of the designed filter.

3.2. Generating Missing Data for Interference Regions

The method for detecting of the interference envelope described above applies to all
the received signals. Next, it is necessary to determine whether there is interference in the
received signal. Because the target echo signals are superimposed as complex sine waves,
the mean and maximum values of the echo amplitude do not differ very much. However,
according to a large number of experiments, the maximum value of the interfering signal
amplitude is at least three times larger than the mean value of the echo amplitude; thus,
the presence of interference is determined by

labelinter =

{
1 max(|A(n)|) > 3 ∗mean(|A(n)|),
0 otherwise.

(15)

In addition, the labelinter label indicates whether the proposed data interpolation
algorithm is stopped or started, reducing the processing complexity. Then, the nth received
signal sample is further determined as either an affected or unaffected sample according to
the following equation:

z(n) =

{
1 labelinter&|A(n)| > β ∗mean(|A(n)|),
0 otherwise.

(16)

where β is a parameter that depends on the power of the interference.
The interfering areas are then set to be missing data:

y∗(n) =
{

0 z(n) = 1,
r(n) z(n) = 0.

(17)

In keeping with the above equations, Figure 3 presents the detected interference
envelope and the received signal with missing data. As can be seen from the plots, the
proposed method is able to effectively detect four interference regions and accurately
identify the affected samples. As plotted in Figure 4, in the absence of interference the
proposed approach accurately sets labelinter as 0, the received signal is identified as the
target signal, and no further interference detection or mitigation is required.
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Figure 3. In the presence of interference (labelinter = 1): (a) the real part of the received signal; (b) the
amplitude of the received signal; (c) the interference envelope detected by LPF; and (d) the received
signal containing the affected samples. The dashed line in the subplots indicates the mean value of
the corresponding signal.
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Figure 4. In the absence of interference (labelinter = 0): (a) the real part of th received signal; (b) the
amplitude of the received signal; (c) the echo envelope detected by LPF; and (d) the received signal
that does not contain affected samples. The dashed line in the sub-figures indicates the mean value of
the corresponding signal.
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3.3. Data Interpolation Using L1 Norm Least Squares Method

Suppose the length of a signal y(n) is N; then, the M-point (M ≥ N) inverse DFT of
the signal y(n) is defined as follows:

y = Wx, (18)

where

W =
1
M

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

1 e
j2π
M · · · e

j(M−1)2π
M

...
...

...

1 e
j(N−1)2π

M · · · e
j(N−1)(M−1)2π

M

⎤⎥⎥⎥⎥⎦,

y = [y(0), y(1), · · · , y(N − 1)]T, and the DFT coefficients x = [x(0), x(1), · · · , x(M− 1)]T.
Therefore, the DFT coefficient is expressed as

x = WHy, (19)

with

WH =

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

1 e
−j2π

M · · · e
−j(N−1)2π

M

...
...

...

1 e
−j(M−1)2π

M · · · e
−j(M−1)(N−1)2π

M

⎤⎥⎥⎥⎥⎦,

and WWH = I.
In the above discussion the target signal is in the form of a complex sine wave, and is

therefore sparse in the DFT domain. Thus, the problem of missing data imputation can be
formulated with the L1 norm as

arg min
x

‖x‖1,

s.t. y∗ = z(Wx),
(20)

where y∗ = [y∗(0), y∗(1), · · · , y∗(N − 1)]T, and z = [z(0), z(1), · · · , z(N − 1)]T.
The target signal with missing data can be reconstructed by minimizing the objec-

tive function:

J(x) =
1
2
‖y∗ − z(Wx)‖2

2 + λ‖x‖1, (21)

where λ is the parameter for the L1 norm term.
The above object function can be further rewritten as

arg min
x

J(x),

s.t. x− v = 0,
(22)

where v is a new variable vector.
Using the augmented Lagrangian method, the above problem is formulated as

LA(x, λ, μ) = J(x) + λ(x− v) +
μ

2
‖x− v‖2

2, (23)

9
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where μ ≥ 0 is a penalty parameter. ADMM is applied to perform minimization with
respect to each of x and v to obtain the following iterations:

xk = arg min
x

λ‖x‖1 +
μ

2
‖x− vk − dk‖2

2,

vk = arg min
v

1
2
‖y∗ − z(Wxk)‖2

2 +
μ

2
‖xk − v− dk‖2

2,

dk+1 = dk − (xk − vk),

(24)

where k is the iteration number and dk is an intermediate variable vector.
First, minimization with respect to x is implemented using a soft thresholding:

xk = soft
(

vk + dk,
λ

2μ

)
, (25)

where the soft thresholding operation is defined as

soft(x, ø) = x ·max(1− ø/|x|, 0).

Next, minimization with respect to v is a constrained least squares regularization.
Because WWH = I, the solution can be simplified as

vk = WH(y∗ − z(Wxk)). (26)

Finally, after convergence of the solution, the estimated received signal is obtained by

ŷ = Wxk. (27)

3.4. Implementation Details

Figure 5 summarizes the procedures of the proposed techniques. Each echo is pro-
cessed one by one, then the DFT-based image focusing algorithm is used to focus the radar
target, and finally a radar image without interference contamination is obtained. In the
radar image focusing algorithm, the data focus is directed to the the ranging and Doppler
domains by applying the Fast Fourier Transform (FFT) method. The vectors vk and dk
are set as zero for the first iteration. Because the intensity of radar echoes is small, the
parameters in Equation (24) can be set according to the mean value of the radar echoes;
specifically, λ can be set to 1 and μ can be set to be proportional to the inverse of the
mean intensity of the received signal. Additionally, the iteration number for missing data
imputation can be set as 20, which produces satisfactory performance.

10
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Figure 5. The procedures of the proposed techniques.

4. Validation Experiments

In the following experiments, the proposed technique is compared with three state-
of-the-art methods. The first approach is one of the simplest ubiquitous signal processing
methods, substituting zeros for the interference regions [15]. The second one represents a
more advanced signal processing method using a three-level Haar wavelet with the hard
thresholding approach [19]. The final comparison is a sparsity-based MCA method that uses
DFT and STFT bases to separate the interfering and target signals, respectively [23]. In the
following comparison experiments, the parameters of the wavelet-based and MCA-based
methods are set according to references [19] and [23], respectively.

Furthermore, both the wavelet-based [19] and MCA-based [23] methods are improved
using the proposed interference envelop detection. Specifically, based on the results of
our proposed interference envelope detection method, only the signals in the interference
regions are replaced by the outputs of the wavelet and MCA methods.

The comparisons are divided into three groups: stationary interference experiments,
dynamic interference experiments, and real radar interference experiments. The first two
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types of experiments are implemented by simulations. In the following experiments, both
the radar under test and the interfering radar are static and the targets are moving. For the
stationary interference experiments, the timing between the victim and interfering radars is
synchronized, and the jamming appears in the same area of the received signal. In practice,
timing synchronization between radars rarely occurs due to relative motion between the
radar under test and the interfering radar, making dynamic interference common. As a
result, interference appears in different regions in the received signal of the radar under
test. Due to the constraints of the experimental conditions, the radar senors in the described
experiments are static; however, the timing between the victim and interfering radars is set
asynchronously in order to simulate dynamic interference.

Additionally, thermal noise is added to the simulated signals. The power of the noise
was calculated as Pnosie = κTeB, where κ is Boltzman’s constant, Te is the noise temperature,
and B is the bandwidth of the radar receiver.

In the case of one-dimensional signals, the signal to interference plus noise ratio (SINR)
is used to objectively evaluate the performance of interference suppression. However, for
two-dimensional radar images, the radar target is focused through two dimensional range
and Doppler domains. Therefore, the peak intensity of the target to interference plus noise
ratio (PTINR) is defined here as an objective evaluation index for interference mitigation.
Using the peak intensity of the focused target, the PTINR is defined as

PTINR =
Ptarget

Pinterference + Pnoise
, (28)

where Ptarget is the peak intensity (power) of the focused target and Pinterference is the power
of the interference.

In addition, the subjective evaluation of radar images is mainly based on the quality of
the focused target, sidelobes of the focused target, noise floor level, and residual interference
distribution as comparative details.

4.1. Simulations

Table 1 provides the simulation parameters for the incoherent interference experiments.
Two interfering sources are developed with different start frequencies and chirp rates. The
distances of the two interfering sources are 30 m and 50 m from the radar under test,
respectively. All the radar sensors are active at the same time. The RCS is 1 m2 and 3 m2 for
two radar targets at 15 m and 30 m, respectively. The target located at 15 m is moving at
5 m/s, while the other target is static. As shown in Figure 6, there are four interference
regions present in the received signal.

Figure 7 illustrates the comparative stationary interference experiments. According
to Figure 7a, the stationary interference is distributed on the axis of zero velocity of the
focused image, causing the second target to be completely swamped by the large amount
of strong noise generated on this axis. Traditional signal processing-based methods such as
the ANC and wavelet-based methods are able to suppress the interfering signal to a certain
extent. However, the interfering signal is much stronger than the target signal, making it
difficult to suppress the interference by traditional signal processing methods, as shown in
the plots. Figure 7c illustrates that the wavelet-based approach has difficulty suppressing
this strong interference. Using the proposed interference envelope method, the improved
wavelet-based method does not perform better; see Figure 7d. This means that the reference
regions have not been successfully recovered. Although the MCA method provides slightly
better results (Figure 7e), there is a considerable amount of interference energy left in the
zero velocity axis, resulting in failure to detect the second radar target. After introducing
the proposed interference envelope detection method to improve the MCA method, both
targets are successfully recovered and the interference signal energy is more effectively
eliminated, as shown in Figure 7f. Figure 7g shows that the simple zero-setting method
avoids the interfering signal. However, due to the loss of the target signal in the interfering
regions, it leads to strong sidelobes in the focused image. According to Figure 7h, the
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proposed method produces a promising focused image that is very close to the ground
truth. In many real-world vehicle scenarios, the primary and interfering radars have
relative motion, producing dynamic interference. Compared with stationary interference,
the interference energy from dynamic interference is distributed in different areas on the
focused image; see Figure 8a. As the interference energy is distributed in different regions
of the image, the interference intensity is relatively lower, and the different interference
suppression algorithms consequently have better performance for dynamic interference
suppression, as shown in Figure 8. Similarly, the proposed interference envelope detection
approach greatly improves the performance of the MCA method; see Figure 8f. Again, as
illustrated in Figure 8h, the proposed approach produces the most focused radar image.

Table 1. Simulation parameters for interference experiments.

Radars Parameters Values

Common parameters
Bandwidth 500 MHz

Sampling rate 10 Msps
Chirp number 128

Radar under test
Start frequency 77 GHz
Chirp duration 51.2 μs

Chirp rate 9.76 × 1012 Hz/s

Interferer 1
Start frequency 77.7 GHz
Chirp duration 25.6 μs

Chirp rate −1.95 × 1013 Hz/s
Distance 30 m

Interferer 2
Start frequency 76.9 GHz
Chirp duration 17.07 μs

Chirp rate 2.93 × 1013 Hz/s
Distance 50 m

Figure 6. The received signal with interference: (a) the real part of the received signal and (b) the
magnitude of the received signal. The regions marked by circles in (b) are the envelopes in which
interference appears.
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Figure 7. Comparisons on stationary interference simulations. (a) Original image; (b) Interference-
free image; (c) Lee et al. [19]; (d) Lee et al. [19] + Proposed interference detection; (e) Uysal [23];
(f) Uysal [23] + Proposed interference detection; (g) Brooker [15]; and (h) The proposed method.

14



Remote Sens. 2022, 14, 4817

Figure 8. Comparisons on dynamic interference simulations. (a) Original image; (b) Interference-
free image; (c) Lee et al. [19]; (d) Lee et al. [19] + Proposed interference detection; (e) Uysal [23];
(f) Uysal [23] + Proposed interference detection; (g) Brooker [15]; and (h) The proposed method.
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Comparisons of object evaluation were conducted as well. The results are reported
in Table 2. The larger PTINRs along with the absence of ghost targets indicate the better
suppression performance of the associated method. The proposed method has the best
performance index in the simulated experiments. Because the static target appears on
the zero velocity line axis of the focused image, and is therefore covered by strong inter-
ference energy, its PTINR value is −6.1 dB. The wavelet-based method and MCA-based
method have limited improvement on this index, while the proposed method can realize
an improvement of up to 19.1 dB, a total improvement of 25.2 dB, which is beneficial for
subsequent target detection and tracking.

Table 2. Comparisons of PTINRs via simulations. The first number in each term is the result of
stationary interference and the second number is the result of dynamic interference.

Methods
Target 1 Target 2

(dB) (dB)

Original image 25.6, 29.8 −6.1, 6.2
Ground truth without interference 36.8 25.5

Lee et al. [19] 24.9, 30.2 −3.3, 14.9
Lee et al. [19] + the proposed

interference detection 26.5, 30.8 −2.7, 20.3

Uysal [23] 26.4, 28.9 3.1, 12.5
Uysal [23] + proposed
interference detection 28.6, 35.8 17.7, 23.7

Brooker [15] 19.2, 19.3 15.1, 23.1
The proposed method 31.2 , 36.4 19.1, 24.2

4.2. Real Radar Field Experiments

As shown in Figure 9, real radar interference experiments were conducted using
two Texas Instruments AWR1642 mm wave radars and an electric bicycle traveling at
approximately 5 m/s forward or backward relative to the radar under test. The distance of
the interfering radar was 4 m. The experiment parameters are presented in Table 3.

Figure 10 demonstrates the collected radar data with strong interference. The signal of
the sine wave in the plot is the radar target signal, and the signal that changes suddenly
and quickly with high intensity is the interfering signal. This coincides with the theoretical
derivation in Section 2.

Table 3. Radar parameters used for measurements.

Radars Parameters Values

Common parameters Start frequency 77 GHz
Bandwidth 547.5 MHz

Radar under test

Chirp number 128
Sampling rate 10 Msps

Chirp duration 36.5 μs
Chirp rate 1.5 × 1013 Hz/s

Interferer

Chirp duration 18.25 μs
Chirp rate 3.0 × 1013 Hz/s

Sampling rate 6.25 Msps
Distance 4 m
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Figure 9. Real radar field experiments.

Figure 10. The received signal during the measurement experiments: the plots on the top row is the
real part of the signal, and the plots on the bottom row is the magnitude of the received signal.

Figure 11 presents the comparison results of the real radar interference experiments.
The stationary targets are distributed on the axis of zero velocity of the focused image,
however the moving target is not visible due to strong interference. Compared to the
other approaches, the proposed method has the best performance. As shown in Figure 11a,
the strong interference energy is distributed over the focused radar image. The main
reason for this is that the interfering signal does not repeat at the same location in each
received signal with dynamic interference. Compared to the simulated results, the zeroing
method produces stronger sidelobes on the focused image, which leads to difficulty in
distinguishing between real moving targets; see Figure 11g. The evaluation results reported
in Table 4 indicate that the proposed method has the best performance index in the real
radar experiments.
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Figure 11. Comparisons using real radar data. (a) Original image; (b) Interference-free image; (c) Lee
et al. [19]; (d) Lee et al. [19] + Proposed interference detection; (e) Uysal [23]; (f) Uysal [23] + Proposed
interference detection; (g) Brooker [15]; and (h) The proposed method.
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Table 4. Comparisons using measured real radar data.

Methods PTINRs (dB) Ghost Targets

Original image 5.1 Yes
Ground truth 24.6 No
Lee et al. [19] 5.9 No

Lee et al. [19] + the proposed interference detection 10.3 Yes
Uysal [23] 3.4 Yes

Uysal [23] + the proposed interference detection 15.7 No
Brooker [15] 15.1 Yes

The proposed method 21.2 No

5. Discussion

5.1. Beyond Sparsity-Based Methods

Certain radar targets have a large radar cross-section (RCS), such as metal buildings on
the side of a road, while others have a small RCS, such as pedestrians. All in all, the dynamic
range of the received signal is large. Therefore, it is difficult to extract weak targets in an
interference environment. Unfortunately, sparsity-based methods have a general drawback
in that they tend to remove weak signals as noise. As shown in Figures 7, 8 and 10, the
traditional sparsity-based method [23] can only recover strong targets, and loses weak
targets. The proposed method, although retaining a sparse framework, proposes an
interference detection method that enables signal recovery only for the region where the
interference occurs, thus effectively maintaining the signal energy and suppressing the
interference signal at the same time.

5.2. Computational Complexity

The complexity of the interference suppression algorithm needs to be as small as pos-
sible in order to be suitable for the signal processor of existing automotive millimeter wave
radar chips. Therefore, interference-contaminated region detection-based methods have
advantages in terms of computing complexity. Zero-based detection methods simply set
the interference-contaminated regions to zero, and thus have the least complexity. However,
the focused target obtained with such methods loses information and has many sidelobes.

Except for the zeroing method, the wavelet-based method [19], the MCA-based
method [23], and the proposed technique are all transform-based approaches, meaning
that the computational complexity depends mainly on forward and inverse transformation.
In general, the wavelet-based method has the lowest complexity, followed by the proposed
method. The MCA method has the highest computational complexity due to the use of
both STFT and DFT [23].

5.3. What Is the Percentage of Samples Affected by Interference for Which the Proposed Technique
Remains Valid?

In the proposed technique, a greater proportion of interfering samples produce fewer
effective received samples, thereby reducing range resolution and signal-to-noise ratio.
Therefore, we conducted experiments to investigate the performance of the proposed
technique with respect to the differing percentage of interfering samples. According to
Figures 12 and 13, when the percentage of interfering samples is below 50%, the perfor-
mance of the proposed method is satisfactory. The interference signal is generally in the
shape of a burst in the time domain, and rarely occupies most of the received signal,
allowing the proposed method to cope with the interference in most cases.
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Figure 12. The performance of the proposed technique with respect to different percentages of
interfering samples.
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Figure 13. Comparison of range and Doppler profiles in terms of different percentages of interfer-
ing samples.
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6. Conclusions

In this paper, an effective and feasible interference suppression technique is proposed
for the currently important and challenging issue of incoherent interference between auto-
motive FMCW radars. A detailed derivation of the processing of incoherent interference
signals is presented. A precise interference envelope detection method is proposed based
on a well-designed low-pass filter. This method can avoid interference suppression in cases
where the signal is received without interference, thereby reducing the required amount
of computation. This work considered the interference problem as a missing radar data
problem; the radar target signal is superimposed in complex sinusoidal waves with good
sparse characteristics in the DFT domain. Thus, the radar target signal polluted by the
incoherent interference can be successfully recovered based on the L1 norm least squares
method. Using the proposed method, the radar target can be perfectly focused even in
cases of strong interference. Moreover, two current state-of-the-art methods, namely, the
wavelet-based and MCA-based methods, are improved when using the proposed inter-
ference envelope detection method. Extensive experiments demonstrate the promising
performance of the proposed techniques.

This work shows the effectiveness of suppressing interference in the range and Doppler
domains. However, this work does have limitations; in particular, it does not investigate
interference in spatial multi-channel data. Our future work will focus on interference
reduction for spatial multi-channel radar data.
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Abstract: With the development of intelligent transportation, radar and communication on moving
platforms are competing for the spectrum. In this paper, we propose and demonstrate a new algo-
rithmic framework for radar-communication spectral coexistence system on moving platform with
mutual interference suppression, in which communication rate and the radar signal-to-interference-
plus-noise ratio (SINR) are simultaneously optimized, under the energy constraints for the two
systems and the radar constant modulus constraint. The radar spatial-temporal filter at the receiver
and transmitting waveform are optimized, while the codebook matrix is optimized for the com-
munication system. To cope with the established non-convex problem with triplet variables, we
decouple the original problem into multiple subproblems, for which an alternating algorithm based
on iterative procedures is derived with lower computational complexity. Specifically, the subprob-
lems of communication codebook and radar filter design are convex and the closed-form solutions
can be easily obtained, while the radar waveform optimization is non-convex. Then we propose
a novel scheme by exploiting the alternating direction method of multipliers (ADMM) based on
minorization-maximization (MM) framework. Finally, to reveal the effectiveness of the proposed
algorithm in different scenarios, numerical results are provided.

Keywords: spectrum sharing; non-convex optimization; alternating iteration; ADMM

1. Introduction

With the explosive growth of the wireless information transformation industry [1], the
usage of radar is important in numerous civilian applications, including remote sensing,
collision avoidance, and vehicles intelligent cruise control. Meanwhile, a large amount of
spectrum resources are also occupied by the wireless communication for traffic control,
autonomous driving, and information services [2,3]. For example, the high UHF radars
overlap with GSM communication systems, and the S-band radar systems partially overlap
with Long Term Evolution and WiMax systems [4,5]. Hence, the available spectrum is
becoming more and more cramped. To deal with such issue, spectrum sharing between
radar and wireless communication, as an emerging topic, has attracted considerable atten-
tions and yielded several literatures recently [6–10]. In general, there are two main research
directions. The first research direction refers to the Dual-functional Radar-Communication
Systems, for which a unique platform integrating radar with communication functions is
developed. This joint radar communication (JRC) model enhances information sharing
and has the advantages of low cost, small size, low power consumption, spectrum sharing,
performance improvement and security [5]. Another research direction concentrates on
the radar-communication coexistence systems that operate at the same frequency band,
which results in the joint design of spectrally overlaid systems. In this case, the mutual

Remote Sens. 2022, 14, 5018. https://doi.org/10.3390/rs14195018 https://www.mdpi.com/journal/remotesensing
25



Remote Sens. 2022, 14, 5018

interference between different systems will lead to great challenge to the required Quality
of Service (QoS) even with low-level cross interfering signals [11].

In spectrally overlaid systems, different subsystems have conflicting objective perfor-
mances [12], which will lead to the mutual interference between the subsystems. Therefore,
mutual interference suppression is needed to enable the spectrum sharing and guarantee
the required QoS. Early studies were mainly based on transmitter design and evaluated
the performance of coexistence systems via controlling the mutual interference produced
by competing subsystems, e.g., the radar waveform design addressed a non-convex op-
timization in a spectrally crowded environment [13]; the codebook design improved the
communication rate in the presence of strong radar interference [14]. These literatures
on spectrum sharing address interference management for single-antenna radar or com-
munication systems. To further realize the interference management in multi-antenna
systems, the radar-communication coexistence system using MIMO structure were intro-
duced in [15,16], which both MIMO radar and MIMO communication system use single
antenna transmitter and receiver with long separation. The cooperation between the two
systems means that the antenna positions between the two systems are shared in terms of
knowledge sharing [17]. In addition, thanks to the recent developments of cognitive wire-
less networks, intellisense provides the possibility for the coexistence of radar system and
existing communication system. Radar and communication systems could be conscious
of each other’s existence by sharing messages, thus facilitating the joint design between
radar and communication systems [18–20]. The spectrum sharing co-design of radar and
communication systems using MIMO technology was introduced in [21,22], whereby the
design degrees of freedom (DoFs) under control was adopted at all transmitters in the coex-
istence systems. Since, such co-design requires information sharing between subsystems,
the payback would be less mutual interference and better figure of merit for the coexistence
system. Since spatial-temporal processing has potential advantages in spectrum sharing,
there have been growing interests in the usage of spatial-temporal processing architecture
in the co-design of subsystems. Compared with the conventional spectrum sharing designs,
the spatial-temporal processing architecture collects signals from numerous pulses and
antennas, and accommodatively adjusts the radar spatial-temporal filter, which increases
Doppler resolution and suppresses the clutter and mutual interference simultaneously.
On the algorithmic side, the convex optimization technique, e.g., semidefinite relaxation
technique, is usually developed for the joint design. However, such method suffered from
high computational complexity [12,21].

In general, different critical issues for radar and communication system spectral coex-
istence are developed based on different figures of merits [23]. However, it is worth noting
that few studies have addressed the issue of spectral coexistence on moving platforms,
which exacerbates the location-induced interference and makes the co-design problem
more challenging [24]. For example, as an emerging remote sensing medium, the rise of
autonomous driving leads to increased highway capacity and passenger comfort, which
requires reliable communications to transfer the state information of each platform [25]. In
order to reduce the mutual interference between automotive radars using millimeter wave
frequency modulated continuous wave radars under dense traffic conditions, several meth-
ods to reduce mutual interference have been proposed [26]. For example, [27] introduces
the tunable Q-factor wavelet transform domain and applies it to separate the interference
from target signals. In this spectrum sharing situation, the range-Doppler processing,
detection, and dynamic range enhancement strategies for the radar in autonomous driving
are involved [28,29]. Thus, major challenges in the application of autonomous driving are
the vibration and motion of the platform. The interference mitigation of the autonomous
driving also needs to be considered, including not only the self-interference, but also the
cross interference from the communication system in spectrum sharing scenarios [30]. In
addition, most of the existing designs focus on the optimization with single radar target.
However, in real scenarios, the radar sometimes has to detect multiple targets, e.g., in
multi-target tracking scenarios, in which the adaptive resource management for radar is
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necessary [31,32]. Moreover, the increasing number of constraints would exacerbate the
computational burden.

Against the aforementioned background, a new algorithmic framework is proposed for
the radar-communication spectrum coexistence system on moving platform. We presume
the coexistence system is equipped with MIMO antennas and its spatial-temporal probing
signal can be used as an additional DoFs. To cope with multiple targets, this paper will
investigate the problem of spectrum sharing with a set of separated SINRs for radar.
The DoFs under control consists of the spatial-temporal transmit waveform, the filter of
receiver for the radar, and the spatial-temporal codebook matrix for the communication
system. Then, under multiple constraints, the SINR of radar and communication rate
are formulated for simultaneous optimization. Towards this end, an alternate iteration
algorithm for multiple subproblems is contrived for solving the designed non-convex
triplet variables problem. After a series of manipulations, two convex subproblems are
formulated for communication codebook design and radar filter optimization respectively,
and a non-convex architecture is derived for radar waveform. The convex subproblems
could be solved easily in closed-form, while the non-convex subproblem can be solved by
exploiting the alternating direction method of multipliers (ADMM) based on minorization-
maximization (MM) framework [33]. Finally, a comprehensive performance assessment
is provided.

Notations: CN (c, C) denotes the complex Gaussian distribution with mean c and
variance C. (·)T , (·)H and (·)∗ represent the transpose, Hermitian and conjugate operators,
respectively. vec(C) and det(C) denote the vectorization and determinant of the matrix C.
� and ⊗ denote the Hadamard operator and Kronecker operator respectively. diag(·) and
Tr(·) denote the diagonal operator and trace operator, respectively. As to a complex-valued

vector c, its real-valued forms is defined as cr=
[
�(c)T,	(c)T

]T
. For a complex-valued

matrix C, the real-valued forms is given by Cr=

[ �(C),−	(C)
	(C),�(C)

]
. (c)+ = max(0, c)

represents the positive part of c.

2. Signal Model

As shown in Figure 1, assume two moving narrow band systems using the same
frequency, where a communication system based on MIMO structure is equipped with
MC,t transmit and MC,r receive elements, and a monostatic radar system with MIMO
structure is equipped with MR,t transmit and MR,r receive elements [34]. We consider
the cooperation is coordinated by the control center, which collects information from the
two subsystems, computes jointly optimal designed parameters and sends each scheme
back to the corresponding system. In this work, we address spectrum sharing during the
phase that the receive antennas obtain measurements of the target returns. The information
transformation between the receive antennas and control center, can be viewed as the
interference between two communication systems and is out the scope of the paper [35].
During a Pulse Repetition Time, each transmit antenna of the radar transmits L pulses,
denoted by vector s = vec

[
s(1)T , s(2)T . . . , s(L)T]T ∈ CMR,t L×1, where s(l) ∈ CMR,t×1 is

the radar transmit vector of the l-th epoch. Assume that the M radar far-field moving
targets located at the range gate lm and azimuth θm, an observation signal for M radar
targets at epoch l is modeled as [36–38]

yR(l) =
M

∑
m=1

αmej2π(l−1) fd,m a∗r (θm)a
H
t (θm)s(l − lm) + yi(l) + yc(l) + yn(l), (1)

where αm is the path loss of the m-th target, and E
[|αm|2

]
= σ2

0 , lm is the range cell index of
the m-th radar target related to the range cell of interest. yi(l) and yc(l) represent the com-
munication interference and clutter respectively. yn(l) ∼ CN

(
0, σ2

RIMR,r

)
is the additive

white Gaussian noise. For notational simplicity, we introduce A(θ) = a∗r (θ) aH
t (θ) with
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at(·) and ar(·) denoting the transmit and receive steering vectors, respectively. By defining
yR �

[
yR(1)T , . . . , yR(L)T]T , yi �

[
yi(1)T , . . . , yi(L)T]T , yc �

[
yc(1)T , . . . , yc(L)T]T , and

yn �
[
yn(1)T , . . . , yn(L)T]T , we can have the whole observation vector with a compact

form as

yR =
M

∑
m=1

αm

(
JL(lm)⊗ IMR,r

)
A( fd,m, θm)s + yi + yc + yn, (2)

where
A( fd,m, θm) = diag(p( fd,m))⊗A(θm), (3)

let p( fd,m) =
[
1, ej2π fd,m , . . . , ej2π fd,m(L−1)

]T
represent the temporal steering vector with

fd,m representing the m-th radar target Doppler frequency. JL(d) = (JL(−d))T is a L× L
transform matrix, and its (l1, l2)-th element is given by

[
JL(d)

]
l1,l2

=

⎧⎨⎩
1, d ∈ {−(L− 1), . . . , L− 1}

and l1 − l2 = d,
0, otherwise.

(4)

Figure 1. A Photo illustration of Radar and Communication Spectral Coexistence on Vehicle Platform.

Moreover, assume the j-th clutter or the c-th interference from communication system
is distributed in the range-azimuth bin

(
r{j,c}, k

)
, r{j,c} ∈

{
0, . . . , L̃− 1

}
, k ∈ {0, . . . , K− 1}.

L̃ ≤ L represents the number of range rings, and K denotes the number of discrete azimuth
segments, then the clutter obeys the model

yi(l) =
J

∑
j=1

αj ej2π fd,j(l−1)
A(θj) s(l − rj), 0 ≤ rj ≤ l − 1, (5)

where αj denotes the complex amplitude with E
[|αj|2

]
= σ2

j , fd,j and θj denote the normal-
ized Doppler frequency and azimuth of the j-th clutter, respectively.

Suppose the normalized Doppler frequency fd,j ∼ U
(

f̄d,j − ε j
2 , f̄d,j +

ε j
2

)
, j ∈ 1, 2, . . . , J

with mean f̄d,j , where ε j denotes the uncertainty of f̄d,j. Then the covariance matrix of
clutter is given by

E

[
yi(l1)yH

i (l2)
]
=

J

∑
j=1

σ2
j A(θj)s(l1 − rj)s

H(l2 − rj)A
H(θj)e

j2π f̄d,j(l1−l2)
sin

[
πε j(l1 − l2)

]
πε j(l1 − l2)

. (6)
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As to the m-th radar target at the range gate lm, the clutter covariance matrix with a
compact form can be expressed as

Σyi (s, lm) = E
[
yiy

H
i
]

=
J

∑
j=1

(
JL

(
rj − lm

)⊗A
(
θj
))[(

ssH)� Ξj
](

JL
(
rj − lm

)⊗A
(
θj
))H , (7)

where
Ξj = σ2

j Φ
f̄d,j
ε j ⊗ ΥMR,t , (8)

Φ
f̄d,j
εj (l1, l2) = ej2π f̄d,j(l1−l2) sin[πε j(l1−l2)]

πε j(l1−l2)
, ∀(l1, l2) ∈ {1, 2, . . . , L}2, (9)

with 1MR,t = [1, 1, . . . , 1]T , ΥMR,t = 1MR,t 1
T
MR,t

, and σ2
j denoting the corresponding power of

the j-th clutter.
In narrow band communication systems where the maximum excessive delay of P

interference signals is much smaller than the sampling interval Ts, i.e., max
p =p′

∣∣∣rp − rp′
∣∣∣ �

Ts [39], we get rp ≈ rc, ∀p, which means that P communication interferences fall in the same
range ring rc to the radar receiver. In this case, we consider P channels for communication
interference: the p-th path with angle of departure ϕp, angle of arrival θp and fading
coefficient η1(p), the expression is written as

B1 =
P

∑
p=1

η1(p) a∗r (θp)b
H
t (ϕp) =

P

∑
p=1

η1(p)B1,p, (10)

where η1(p) represents the fading coefficient of the p-th propagation path, and bt(ϕp) is
the p-th transmit steering vector from the communication systems. We thus define:

ΞC � Ψ
f ′d,p ⊗ ΥMC,t , (11)

in which
Ψ

f ′d,p(l1, l2) = ej2π f ′d,p(l1−l2), ∀(l1, l2) ∈ {1, 2, . . . , L}2, (12)

and ΥMC,t = 1MC,t 1
T
MC,t

, where f ′d,p denotes the Doppler shift of the p-th communication
signal. Then, the covariance matrix of communication interference will have a similar form
as the clutter component (7), i.e.,

Σyc(X, lm) = E
[
xCxH

C
]

=
P
∑

p=1

(
JL

(
rp − lm

)⊗ B1,p
)[
E
[
xxH]� ΞC

](
JL

(
rp − lm

)⊗ B1,p
)H

=
P
∑

p=1

(
JL

(
rp − lm

)⊗ B1,p
)
[X� ΞC]

(
JL

(
rp − lm

)⊗ B1,p
)H ,

(13)

where the communication codewords are denoted by x =
([

x(1)T , . . . , x(L)T])T with
x ∼ CN (0, X) [40]. In order to reduce the complexity of design, we only optimize the
space-time covariance matrix X.

Concerning the communication system, the received signal can be expressed as

zC = Ĥx +
Q

∑
q=1

B̂2

(
fd,q, q

)
s + nC, (14)
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where Ĥ = (IL ⊗H), H is channel matrix. B̂2

(
fd,q, q

)
= diag

(
p
(

fd,q

))
⊗ B2,q, B2,q =

b∗r (ϕq) aH
t (θq), where br(ϕq) represents the receive steering vector of the q-th path. Similar

to the definition of (10), we set

B2 =
Q

∑
q=1

η2(q)B2,q, (15)

where η2(q) represents the fading coefficient of the q-th propagation path at the communi-
cation receiver, Q is the number of paths impacting on the communication receiver, and
nC ∼ CN

(
0, σ2

CIMC,r L

)
denotes the additive white Gaussian noise. It is supposed that

the channel matrices H, B1 and B2 are fully known at the spectral coexistence system.
Practically, the information can be periodically communicated by a pilot channel [41,42].
However, the exact direction information may not be obtained because of the possible
mismatches. Therefore, we assume that {θ} and {ϕ} are independent random variables
and can be expressed as

θ̃m ∼ U[θm −�m, θm + �m], m = 0, · · · , M
θ̃j ∼ U

[
θj −�j, θj + �j

]
, j = 0, · · · , J

θ̃p ∼ U
[
θp −�p, θp + �p

]
, p = 0, · · · , P

ϕ̃p ∼ U
[
ϕp −�p, ϕp+�p

]
, p = 1, · · · , P

θ̃q ∼ U
[
θq −�q, θq + �q

]
, q = 0, · · · , Q

ϕ̃q ∼ U
[
ϕq −�q, ϕq+�q

]
, q = 1, · · · , Q,

(16)

where �m, �j, �p, �q are the uncertainties on the corresponding direction information.

3. Problem Formulation

Since improving the accuracy of parameter estimation and signal detection in presence
of interference can be achieved by a higher SINR level, we take maximizing the output
SINR as a criterion for radar transceiver design. Specifically, by assuming wm = 0, the
SINRm(X, s, wm) for the m-th target can be written as

SINRm(X, s, wm) =
σ2

0

∣∣∣wH
m

(
JL(lm−lm)⊗IMR,r

)
A( fd,m ,θm)s

∣∣∣2
wH

m(Σys (s,lm)+Σyi (s,lm)+Σyc (X,lm)+σ2
RI)wm

, (17)

where

Σys(s, lm) = E
[
ysy

H
s
]

=
M
∑

i=1,i =m
σ2

0

(
JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)ssH

((
JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)

)H
,

(18)

with

ys =
M
∑

i=1,i =m
αi

(
JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)s (19)

denoting the interference term produced by the other M− 1 radar targets.
For the radar, the SINR in (17) given the scope of inspection can be regarded as a

relevant figure of merit. For this purpose, assuming
∣∣wH

mA( fd,m, θm)s
∣∣ = 0, the figure of

merit is given by

SINR(X, s, wm) = (
M
∑

m=1

ζm
SINRm(X,s,wm)

)−1, (20)

where {ζm} is a positive weight. For simple numerical description, we define Σin(X, s, lm)
Δ
=

Σys(s, lm) + Σyi (s, lm) + Σyc(X, lm) + σ2
RIMR,t L. Based on the above guidelines, for the com-

munication system, the covariance matrix of the interference-plus-noise can be formu-
lated as
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RCin =
Q
∑

q=1
B̂2

(
fd,q, q

)(
ssH)

B̂H
2

(
fd,q, q

)
+ σ2

CIMC,r L. (21)

In order to match RCin, we define the “communication rate” of the space-time commu-
nication channel as

C(X, s)
Δ
= 1

MC,t MC,r
log2 det

(
IMC,r L + R−1

CinĤXĤH
)

. (22)

Our goal is to optimize the communication system rate and radar output SINR simul-
taneously. Due to the fact that the energy of the transmitter is limited in most cases and
to obtain desirable properties according to envelope constancy and sidelobe levels with a
reference signal s0, we require the shape of radar waveform with normalized transmitted
energy ‖s‖2 = 1 satisfying [43]

‖s− s0‖∞ ≤ γ, (23)

where γ rules the degree of the similarity. The above constraint can be equivalently
converted to

(s− s0)
HBi(s− s0) ≤ γ, i = 1, · · · , MR,tL, (24)

where Bi ∈ CMR,t L×MR,t L represents a square matrix where all elements except (i, i)-th
element equal to 1 are 0. Regarding to the communication system, we put an energy
constraint on the transmitter, namely

E

[
Tr

(
xxH

)]
= Tr(X) ≤ EC. (25)

According to [44], the classic SINR maximization problem of radar can be solved via
the MVDR criterion. Without loss of generality, by setting wH

m

(
IL ⊗ IMR,r

)
A( fd,m, θm)s =

wH
mA( fd,m, θm)s = ε for ∀m with the constant ε = 1, we reformulate the radar SINR as

SINR(X, s, wm) =

(
M

∑
m=1

ζmwH
m Σin(X, s, lm)wm

)−1

. (26)

Finally, we recommend minimizing an appropriate weighted radar residual interfer-
ence power and communication rate, i.e.,

min
X,s,wm

ω1

M
∑

m=1
ζmwH

m Σin(X,s,lm)wm

|F�
1 | −ω2

C(X,s)
|F�

2 | ,

s.t. wH
mA( fd,m, θm)s = ε, m = 1, · · · , M,

(s− s0)
HBi(s− s0) ≤ γ, i = 1, · · · , MR,tL,

Tr(X) ≤ EC,
‖s‖2 = 1,

(27)

where F1 =
M
∑

m=1
ζmwH

m Σin(X, s, lm)wm represents the interference-plus-noise power, and

F2 = −C(X, s) is given by (22). Assuming that F�
1 and F�

2 are the corresponding achiev-
able optima values. 0 ≤ ω1 ≤ 1 and 0 ≤ ω2 ≤ 1 are weighted parameters. Typically,
ω1 + ω2 = 1, which reflects the degree of importance of the two conflicting objectives in the
coexistence system. In the following section, we will derive the solutions to problem (27)
through the proposed algorithm framework.

4. The Designed Alternating Procedure

Problem (27) is non-convex relating to the triplet parameters (X, s, wm), and finding
the solutions would cause a daunting complexity. We develop an alternating algorithm on
the basis of the following iterative procedure.
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4.1. Communication Transmit Codebook Optimization

Firstly, we optimize X while s and wm are fixed:

min
X

ω1

M
∑

m=1
ζmwH

m Σin(X,s,lm)wm

|F�
1 | −ω2

C(X,s)
|F�

2 | ,

s.t. Tr(X) ≤ EC.

(28)

Theorem 1. Let Wm = wmwH
m, then the residual interference-plus-noise of is given by

M

∑
m=1

ζmwH
m Σin(X, s, lm)wm = Tr

(
Σ̄yc(Wm)X

)
+ κ1, (29)

where κ1 is a positive item independent of X. Σ̄yc(Wm) =
M
∑

m=1
ζmΣ̄yc(Wm, lm), and

Σ̄yc(Wm, lm) =
P

∑
p=1

(
JL

(
rp − lm

)⊗ B1,p
)H

[Wm � Ξ̄C]
(
JL

(
rp − lm

)⊗ B1,p
)
. (30)

Proof of Theorem 1. It can be shown that the communication interference onto the radar
can be expressed as

wH
m Σyc(X, lm)wm

=
P
∑

p=1
E

[
xH(

JL
(
rp − lm

)⊗ B1,p
)H

[Wm � Ξ̄C]
(
JL

(
rp − lm

)⊗ B1,p
)
x
]

= Tr

(
P
∑

p=1

(
JL

(
rp − lm

)⊗ B1,p
)H

[Wm � Ξ̄C]
(
JL

(
rp − lm

)⊗ B1,p
)
X

)
= Tr

(
Σ̄yc(Wm, lm)X

)
,

(31)

where
Ξ̄C =

(
Ψ

f ′d,p(l1, l2)
)∗ ⊗ ΥMR,r . (32)

Based on (31), we have

M

∑
m=1

ζmwH
m Σin(X, s, lm)wm =

M

∑
m=1

ζmTr
(
Σ̄yc(Wm, lm)X

)
+

M

∑
m=1

ζmwH
m

(
Σys(s, lm) + Σyi (s, lm) + σ2

RI
)

wm︸ ︷︷ ︸
κ1

,
(33)

which completes the proof.

By exploiting Theorem 1, the subproblem (28) can be transformed as

min
X

ω1
Tr(Σ̄yc (Wm)X)

|F�
1 | −ω2

C(X,s)
|F�

2 | ,

s.t. Tr(X) ≤ EC,
(34)

which is a convex problem involving multiple matrix variables. Therefore, by using
standard convex optimization techniques, the above problem can be solved with the

complexity of O
((

(LMC,t)
2
)3.5

)
. The Lagrange dual method is used for the problem (34)

and thus a low-cost closed-form solution can be obtained. Ignoring the items that do not
rely on X, the Lagrangian of (34) can be expressed as
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L(X, μ0) = μ0(Tr(X)− EC) +
w1
|F�

1 |Tr
(
Σ̄yc(Wm)X

)
− w2
|F�

2 |MC,t MC,r
log2 det

(
IMC,r L + R−1

CinĤXĤH
)

,
(35)

where μ0 ≥ 0 is the dual variable. Then, the dual problem be formulated as

max
μ0≥0

inf
X�0

L(X, μ0)
Δ
= max

μ0≥0
g(μ0), (36)

where g(μ0) denotes the duality function. In addition, since (34) is convex satisfying Slater’s
condition and strong duality [45], i.e., the dual gap is set to zero. By using the "water-filling
(WF)", the optimal solution can be indicated as

X�(μ0) =

(
w1Σ̄yc (Wm)

|F�
1 | + μ0IMC,t L

)−1/2
ŨΣ̃ŨH

(
w1Σ̄yc (Wm)

|F�
1 | + μ0IMC,t L

)−1/2
, (37)

where X�(μ0) denotes the optimal X for a given μ0, and Ũ denotes the right singularity
matrix of H̃, the expression is given as

H̃ = R−1/2
Cin Ĥ

(
w1Σ̄yc(Wm)∣∣F�

1

∣∣ + μ0IMC,t L

)−1/2

, (38)

Σ̃ = diag(γ̃1, . . . , γ̃r), γ̃i =

(
w2

|F�
2 |MC,t MC,r

− 1/σ̃2
i

)+

, i = 1, . . . , r. r represents the rank of

H̃, σ̃i denotes the i-th positive singular value of the matrix H̃, and
Mmin
∑

i=1
γ̃i = EC, where

Mmin � min(MC,tL, MC,rL). μ0 can be obtained via the bisection method fulfilling the
power constraint.

4.2. Radar Receive Filter Optimization

For the second step, given s and X, the optimization of the receive filter is solved by
the MVDR criterion:

wm =
Σin(X, s, lm)

−1A( fd,m, θm)s

A( fd,m, θm)s
HΣin(X, s, lm)

−1A( fd,m, θm)s
, l = 1, . . . , M. (39)

Thus the filter for each radar target can be computed.

4.3. Radar Transmit Waveform Optimization

In the third step, we consider to optimize s with fixed wm and X, for which the
subproblem can be converted to

min
s

ω1

M
∑

m=1
ζmwH

m Σin(X,s,lm)wm

|F�
1 | −ω2

C(X,s)
|F�

2 | ,

s.t. wH
mA( fd,m, θm)s = 1, m = 1, · · · , M,

(s− s0)
HBi(s− s0) ≤ γ, i = 1, · · · , MR,tL,

‖s‖2 = 1,

(40)

which is non-convex because of the right side of the cost function and the quadratic equation
constraints. Generally, it is difficult to straightforwardly tackle such a non-convex problem
and there is no closed-form solution. Therefore, we first derive a minorizing function
for the communication rate (right-hand side) of the objective function, i.e., C(X, s), and
then an iteration procedure with lower computational complexity based on MM-ADMM
is developed.
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4.3.1. Minorizing Function Construction

We first simplify the radar interference term of the original problem before building
the minorizing function for the transmission rate. The energy at the output of the radar
filter can be rewritten as follows by ignoring the parts that don’t depend on s in the first
portion of the objective function in (40).

wH
m Σys(s, lm)wH

m

= wH
m

M
∑

i=1,i =m
σ2

0

(
JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)ssH((

JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)

)H
wm

= sH
(

M
∑

i=1,i =m

((
JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)

)H
wmwH

m

σ2
0

(
JL(li − lm)⊗ IMR,r

)
A( fd,m, θm)

)
︸ ︷︷ ︸

Σ̄ys (s,lm)

s.

(41)

Following the same line of derivation, the filtered radar clutter power can be ex-
pressed as

wH
m Σyi (s, lm)wm

= sH

{
J

∑
j=1

(
JL

(
rj − lm

)⊗A
(
θj
))H

[
diag(wm)Ξ̄jdiag(wm)

H
](

JL
(
rj − lm

)⊗A
(
θj
))}

s

= sH

{
J

∑
j=1

(
JL

(
rj − lm

)⊗A
(
θj
))H[

Wm � Ξ̄j
](

JL
(
rj − lm

)⊗A
(
θj
))}

︸ ︷︷ ︸
Σ̄yi (Wm ,lm)

s

= sHΣ̄yi (Wm, lm)s,

(42)

with

Ξ̄j = σ2
j

(
Φ

f̄d,j
εj (l1, l2)

)∗
⊗ ΥMR,r , ∀(l1, l2) ∈ {1, . . . , L}2. (43)

For ease of notation, we set Σ̄s(Wm) =
M
∑

m=1
ζm

(
Σ̄ys(s, lm) + Σ̄yi (Wm, lm)

)
. The com-

munication rate is convex in respect of s, to tackle the maximizing problem, the rate is
rewritten as

C(X, s) =
1

MC,t MC,r
log2 det

(
RCin + ĤXĤH

)
︸ ︷︷ ︸

f1(s)

− 1
MC,t MC,r

log2 det(RCin)︸ ︷︷ ︸
f2(s)

.
(44)

Next, we construct two functions that minorize f1(s) and f2(s) in (44), as a result of
which the MM algorithm can be used to solve the problem (40).

Theorem 2. Define F = ssH and F(k0) = s(k0)
(

s(k0)
)H

, assume S is the feasible set for F. As to

any F, F(k0) ∈ S , a valid surrogate function, C̃
(

F, F(k0)
)

at the k0-th iteration, can be formulated as

C̃
(

F, F(k0)
)
= Tr

(
Υ(k0)Γ1(F)

)
+ Tr

(
Γ2

(
F(k0)

)
F
)
+ κu, (45)

where κu is a term independent of F,
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Γ1(F) =

⎡⎢⎢⎢⎣
R̃−1 R̃−1

Q
∑

q=1
B̂2

(
fd,q, q

)
FB̂H

2

(
fd,q, q

)
R̃−1 IMC,r L + R̃−1

Q
∑

q=1
B̂2

(
fd,q, q

)
FB̂H

2

(
fd,q, q

)
⎤⎥⎥⎥⎦, (46)

Γ2

(
F(k0)

)
Δ
= −

(
∂ f2(F)

∂F

)T

F=F(k0)

= −
Q
∑

q=1

(
B̂2

(
fd,q, q

))H
(

Q
∑

q=1
B̂2

(
fd,q, q

)
F(k0)

(
B̂2

(
fd,q, q

))H
+ σ2

CIMC,r L

)−1

B̂2

(
fd,q, q

)
,

(47)

Υ(k0) = −Γ1

(
F(k0)

)−1
EH

(
EHΓ1

(
F(k0)

)
E
)−1

EΓ1

(
F(k0)

)−1
. (48)

with R̃ = σ2
CIMC,r L + ĤXĤH and E =

[
IMC,r L 0MC,r L×MC,r L

]
.

Proof of Theorem 2. As to the function f1, by exploiting the property of matrix determi-
nant, we have:

log2 det
(
RCin + ĤXĤH)

= −log2 det

(
Q
∑

q=1
B̂2

(
fd,q, q

)(
ssH)

B̂H
2

(
fd,q, q

)
+ R̃

)
.

(49)

Based on the Woodbury matrix identity, for given matrices A, B, U, V, we have

(A + UBV)−1 = A−1 + A−1UBVA−1(I + UBVA−1)−1. (50)

Then, the inverse of the matrix in (49) becomes to(
R̃ +

Q
∑

q=1
B̂2

(
fd,q, q

)(
ssH)

B̂H
2

(
fd,q, q

))−1

= R̃−1 + R̃−1
Q
∑

q=1
B̂2

(
fd,q, q

)(
ssH)

B̂H
2

(
fd,q, q

)
(

IMC,r L + R̃−1
Q
∑

q=1
B̂2

(
fd,q, q

)(
ssH)

B̂H
2

(
fd,q, q

))−1

R̃−1.

(51)

By exploiting the block matrix inversion property, the right-hand side of (51) can be
transformed to EHΓ−1

1 (F)E. Note that log det
(

EHΓ−1
1 (F)E

)
is convex with respect to Γ1(F).

The convex function can be minorized by its supporting hyperplanes, i.e.,

log det
(

EHΓ−1
1 (F)E

)
≥ f1

(
s, s(k0)

)
= log det

(
EHΓ−1

1

(
F(k0)

)
E
)

+Tr
(

Υ(k0)
(

Γ1(F)− Γ1

(
F(k0)

)))
,

(52)

where Υ(k0) denotes the gradient of log det
(
EHΓ1(F)E

)
at Γ1

(
F(k0)

)
. Concerning the second

term of (44), it is simple to demonstrate that function f2(s) is a convex function with respect
to F = ssH and we have

−log2 det

(
Q
∑

q=1
B̂2

(
fd,q, q

)
(F)B̂H

2

(
fd,q, q

)
+ σ2

CIMC,r L

)

≥ −log2 det

(
Q
∑

q=1
B̂2

(
fd,q, q

)(
F(k0)

)
B̂H

2

(
fd,q, q

)
+ σ2

CIMC,r L

)
+ Tr

(
Γ2

(
F(k0)

)(
F− F(k0)

))
,

(53)
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where Γ2

(
F(k0)

)
denotes the gradient of f2(F) at F(k0). Ignoring the terms that do not

depend on F, (45) can be derived from (52) and (47).
To make the formulation of the minorizer (52) simpler, Υ(k0) can be partitioned as

Υ(k0) =

⎡⎣ Υ
(k0)
11 Υ

(k0)
12(

Υ
(k0)
12

)H
Υ
(k0)
22

⎤⎦. (54)

Then the expression of Tr
(

Υ(k0)Γ1(F)
)

in (45) can be transformed as

Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
Υ
(k0)
11 +Υ

(k0)
12

)
R̃−1+

(
Υ
(k0)
12

)H
R̃−1

Q
∑

q=1
B̂2

(
fd,q, q

)
FB̂

H
2

(
fd,q, q

)
+ Υ

(k0)
22(

IMC,r L + R̃−1
Q
∑

q=1
B̂2

(
fd,q, q

)
FB̂

H
2

(
fd,q, q

))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝

Q
∑

q=1
B̂H

2

(
fd,q, q

)(
Υ
(k0)
12

)H
R̃−1

B̂2

(
fd,q, q

)
+

Q
∑

q=1
B̂H

2

(
fd,q, q

)
Υ
(k0)
22 R̃−1B̂2

(
fd,q, q

)

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Γ12

F

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ κu,

(55)

which completes the proof.

According to Tr(DS) = Tr
(
DssH)

= sHDs and omitting the constant terms, the
problem (40) can be turned into:

min
s

sHΓ(k0)s,

s.t. wH
mA( fd,m, θm)s = 1, m = 1, · · · , M,

(s− s0)
HBi(s− s0) ≤ γ, i = 1, · · · , MR,tL,

‖s‖2 = 1.

(56)

where Γ(k0) = w1
|F�

1 | Σ̄s(Wm)+
w2
|F�

2 |Γ12. Problem (56) is non-convex quadratically-constrained

quadratic program (QCQP), which is difficult to solve. However, such a problem can be
addressed using CVX tools with O(MR,tL)

4.5 (see [46] for details). In the following, an iter-
ation procedure with lower computational complexity based on MM-ADMM is developed.

4.3.2. Radar Transmit Waveform Optimization Based on ADMM

To overcome the problem(56), we exploit the ADMM algorithm. It can be shown that
problem (56)’s first restriction can be equivalently rewritten as

sH(A( fd,m, θm))
HWm(A( fd,m, θm))s = 1, m = 1, · · · , M. (57)

Take note that the following decomposition is always valid

A( fd,m, θm)
HWmA( fd,m, θm) = TH

mTm, m = 1, · · · , M, (58)

where Tm ∈ CMR L×MR L is rank-one Hermitian matrix. Problem (56) is equivalent to

min
s

sHΓ(k0)s,

s.t. sHTH
mTms = 1, m = 1, · · · , M,

(s− s0)
HBi(s− s0) ≤ γ, i = 1, · · · , MR,tL,

‖s‖2 = 1.

(59)
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We assume that the real-valued forms of s, s0, Γ(k0), Tm, and Bi are denoted by sr sr,0,
Γr, Tr,m, and Br,i, respectively. Problem (59) can be recast into the following real-valued
form by inserting the variables f, gi and h

min
sr , f, {gi}

sT
r Γrsr, (60a)

s.t. fm = Tr,msr, m = 1, · · · , M, (60b)

gi = Br,i(sr − sr,0), i = 1, · · · , MR,tL, (60c)

h = sr, (60d)

‖fm‖2 = 1, m = 1, · · · , M, (60e)

‖gi‖2 ≤ γ, i = 1, · · · , MR,tL. (60f)

‖h‖2 = 1. (60g)

The Lagrangian of (60) is

L(sr, {fm}, {gi}, h, {om}, {ςi}, π) =

sr
TΓrsr +

M
∑

m=1

(
oT

m(Tr,msr − fm) +
ρ1
2 ‖Tr,msr − fm‖2

)
+

MR,t L
∑

i=1

(
ςT

i (Br,i(sr − sr,0)− gi) +
ρ2
2 ‖Br,i(sr − sr,0)− gi‖2

)
+
(

πT(sr − h)+
ρ3
2 ‖sr − h‖2

)
,

(61)

the Lagrange multipliers {om}M
1 , {ςi}MR,t L

1 and π correspond to the (60b), (60c) and (60d)
respectively; and the positive parameters ρ1, ρ2 and ρ3 are corresponding penalties. The
penalties are chosen based on the eigenvalues of Γr [47] (Theorem 4). The procedure of
ADMM method is given as:

s
(k1+1)
r = arg min

sr
L
(

sr, f
(k1)
m , . . . , ς

(k1)
i

)
, (62a)

f
(k1+1)
m = arg min

fm
L
(

s
(k1+1)
r , fm, g

(k1)
i , . . . , ς

(k1)
i

)
, (62b)

g
(k1+1)
i = arg min

gi
L
(

s
(k1+1)
r , f

(k1+1)
m , gi, o(k1), . . . , ς

(k1)
i

)
, (62c)

h
(k1+1)
i = arg min

h
L
(

s
(k1+1)
r , . . . , hi, o(k1), π

(k1)
i , ς

(k1)
i

)
, (62d)

o(k1+1)
m =o(k1)

m + ρ1

(
Tr,ms

(k1+1)
r − f

(k1+1)
m

)
, (62e)

ς
(k1+1)
i =ς

(k1)
i + ρ2

(
Br,i

(
s
(k1+1)
r − sr,0

)
− g

(k1+1)
i

)
. (62f)

π(k1+1)=π(k1) + ρ3

(
s
(k1+1)
r − g(k1+1)

)
. (62g)

4.3.3. Update of sr

The optimization of (62a) can be rewritten as

s
(k1+1)
r = arg min

sr
sT

r Γrsr +
M
∑

m=1

((
o(k1)

)T
Tr,msr+

ρ1
2

∥∥∥Tr,msr − f
(k1)
m

∥∥∥2
)
+

MR,t L
∑

i=1

((
ς
(k1)
i

)T(
Br,i(sr − sr,0)

−gi

)
+ ρ2

2 ‖Br,i(sr − sr,0)− gi‖2
)
+

((
π(k1)

)T
sr

+ ρ3
2

∥∥∥sr − h(k1)
∥∥∥2

)
.

(63)
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The first order optimality conditions for (63) are

0MR,t L =2Γrsr +
M

∑
m=1

(
TT

r,mo
(k1)
m + ρ1TT

r,m

(
Tr,msr − f(k1)

))

+
MR,t L

∑
i=1

(
BT

r,iς
(k1)
i + ρ2BT

r,i((Br,isr − sr,0)− gi)

)
+

(
π(k1)+ρ3

(
sr − h(k1)

))
, (64)

where 0a signifies a column vector of a-dimensional with all-zero entries, leading to

s
(k1+1)
r =

(
2Γr + ρ1

M
∑

m=1
TT

r,mTr,m + ρ2

MR,t L
∑

i=1
BT

r,iBr,i + ρ3I

)−1

(
ρ1

M
∑

m=1
TT

r,mf
(k1)
m + ρ2

MR,t L
∑

i=1
BT

r,i

(
sr,0 + g

(k1)
i

)
+ ρ3h(k1)

− M
∑

m=1
TT

r,mo
(k1)
m −

MR,t L
∑

i=1
BT

r,iς
(k1)
i −π(k1)

)
.

(65)

4.3.4. Update of fm

The optimization of (62b) can be rewritten as

min
{fm}

−
(

o
(k1)
m

)T
fm+

ρ1
2 ‖Tr,msr − fm‖2

s.t. ‖fm‖2 = 1, m = 1, · · · , M,
(66)

whose closed-form solution is

f
(k1+1)
m =

f̃
(k1+1)
m∥∥f̃
(k1+1)
m

∥∥ , (67)

with f̃
(k1+1)
m = Tr,ms

(k1+1)
r + o(k1)

m /ρ1.

4.3.5. Update of gi

Problem (62d) can be rewritten as

arg min
{gi}

−
(

ς(k1)
)T

gi +
ρ3
2

∥∥Br,i

(
s
(k1+1)
r − sr,0

)
− g

(k1+1)
i

∥∥2

s.t. ‖gi‖2 ≤ γ.
(68)

The solution can be achieved via proximal algorithm, i.e.,

g
(k1+1)
i =

⎧⎨⎩ g̃
(l2+1)
i , if

∥∥g̃
(k1+1)
i

∥∥ ≤ √γ√
γ∥∥g̃

(k1+1)
i

∥∥ g̃
(k1+1)
i , otherwise, (69)

with g̃
(k1+1)
i = Br,i

(
s
(k1+1)
r − sr,0

)
+ ς(k1)

/
ρ3.

4.3.6. Update of h

The optimization of (62c) can be rewritten as

arg min
h

−
(

π(k1)
)T

h+ ρ3
2

∥∥∥s
(k1+1)
r − h

∥∥∥2

s.t. ‖h‖2 = 1,
(70)
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the solution is given as

h(k1+1) =
h̃(k1+1)∥∥h̃(k1+1)

∥∥ , (71)

with h̃(k1+1) = s
(k1+1)
r + π(k1)/ρ3.

As to the computational complexity for the developed formulation, the X can be
optimized by using WF with O(MC,tL)

3. The optimized wm can be obtained based on (39)

with complexity O(
(MR,rL)3). The complexity of sr is O

(
(MR,tL)

3
)

at each iteration
due to the matrix inverse; the other variables requires the computational complexity
linearly with MR,tL [48]. Finally, Algorithm 1 summarizes the overall technique of the
alternating approach. Notice that the above ADMM method which directly handles the
transformed non-convex problem may not always ensure the convergence theoretically.
Suitable initializations and penalty parameters are necessary to ensure convergence. Hence,
the penalties are chosen based on the eigenvalues of Γr in (60) and the initialization of s is
set to be s0 [47] (Theorem 4).

In such monostatic radar and communication spectral coexistence system on moving
platform, the cooperation is coordinated by the control center. The information from
radar and communication systems is collected by the control center. However, such
information will be aging or not usable due to time lag between the channel estimation
phase / optimization phase and deployment phase. In order to improve the real-time
performance, we will try to improve the hardware of each subsystem to enhance its own
computing power, and cancel the control center in the future work. That is, the radar and
communication systems calculate their own optimal signaling scheme through the collected
information [49].

Algorithm 1 Procedure for X, wm and s Optimization

Input: w0 = 1√
L

IL ⊗ a∗r (θ0), s0 = 1√
L

IL ⊗ a∗t (θ0), w1, H, B1, B2.

Initialize: Let k1 = k2 = 0, w(k2) = w0, s(k2) = s0, λ1 ≥ 0, λ2 ≥ 0;
Output: X(k2+1), w(k2+1), s(k2+1).
1. Repeat
2. Set k2 ← k2 + 1;
3. Compute X(k2) via (37), with w = w(k2−1) and s = s(k2−1) respectively;
4. Compute w(k2) via (39) with X = X(k2) and s = s(k2), respectively;
5. Set k0 = 1;
6. Compute Γ(k0) = w1

|F�
1 | Σ̄s(Wm) +

w2
|F�

2 |Γ12 in (56);

7. While
∣∣∣sHΓ(k0+1)s− sHΓ(k0)s

∣∣∣ is small than a threshold do

8. Repeat
9. Set k1 ← k1 + 1;

10. Calculate s
(k1+1)
r by (65);

11. Calculate f(k1+1) by (69);

12. Calculate g
(k1+1)
i by (71), for all i = 1, · · ·MR,tL;

13. Calculate o(k1+1) and π
(k1+1)
i , for all i = 1, · · ·MR,tL, using (62e) and (62g), respec-

tively;
14. Until the convergence of ADMM is reached;
15. s(k0) ← s(k1+1);
16. Set k0 ← k0 + 1;
17. end

18. s(k2) ← s(k0+1);
19. Until the change of the objective function in (27) is small than a threshold.
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5. Results and Discussion

In simulations, the radar has MR,t = 6 transmit antennas and MR,r = 6 receive
antennas, and the communication has MC,t = 3 transmit antennas and MC,r = 3 receiver
antennas. We set L̃ = 6 as the code length. The noise variance of coexistence system is
σ2

R = σ2
C = 0.001. We set EC = 1 for energy constraint of communication system. And with

zero mean and unit variance, H uses the Rayleigh fading channel.
As to the considered coexistence system, e.g., as shown in Figure 1, the vehicles in

an intelligent transportation system that needs to share information in a rapidly changing
environment, and the radar requires a wide Doppler range to detect fast vehicles and
slow pedestrians. Thus, some other parameters can be given as follows. For the radar, the
directions of two targets are located at−10◦ and 10◦, respectively, with normalized Doppler
frequencies 0.2 and −0.3, respectively. The clutters are evenly distributed in

[−π
2 , π

2
]

with
a discrete azimuth of 90 in each ring. Similarly, for all clutters, we consider rj = 0 and
ε j = 0.04. For the mutual interference P = Q = 10 between two systems. We assumed
that the azimuth of B1 is distributed in [−40◦,−20◦], { fd,q} ∈ [0.2, 0.35], {r′c = 0} and
INRR = 15dB. As to B2, we assume that angle parameters are randomly distributed in
[20◦, 30◦] with the associated Doppler shift of { fd,p} ∈ [−0.35,−0.2] and INRC = 25dB.
Except where otherwise noted, the uncertainties on the direction information are set as
�m = �j = �p = �q = 3◦. The similarity parameter is set as γ = 0.1. The radar reference
waveform s0 is exploited with Linear Frequency Modulation. The penalty parameters are
set as ρ1 = ρ2 = ρ3 = 1. We set ω1 = ω2 = 0.5 .

Firstly, we evaluate the convergence behavior of the proposed design versus γ. In
Figure 2, the objective value under different outer iteration numbers is investigated. It can
be shown that the proposed design converges for all values of the similarity parameter
γ that are taken into consideration, and γ = 1.8 provides the best performance, which
is reasonable because the larger similarity parameter γ could provide additional DoFs
in procedure.
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Figure 2. The objective value with outer iteration number under different similarity parameter γ.

In Figure 3, the constraint convergence in s optimization is examined. The residuals
for auxiliary variables are defined as follows in the ADMM procedure:
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d fmax = maxm=1,··· ,M
∥∥∥Tr,ms

(k1)
r − f(k1)

∥∥∥,

dgmax = maxi=1,··· ,MR,t L

∥∥∥Br,is
(k1)
r − sr,0 − g

(k1)
i

∥∥∥,

dh =
∥∥∥s

(k1)
r − h(k1)

∥∥∥.

(72)

As to better illustrate the constraint convergence in s optimization, we set the ter-
mination tolerances in (72) as 10−5 [50]. Figure 3 reports the residuals of the constraints
from (60b) to (60d) versus k1 of ADMM. It can be shown that the stopping criterion is
satisfied for all considered constraints.
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Figure 3. The residuals of (60b) to (60d) vs the k1 of Algorithm 1.

Figure 4 shows the radar cross-ambiguity function’s (CAF) [46] about the radar target
response for outer iteration number k0 = {10, 40}. It can be observed that the main lobes
are at the target location, null is at the communication interference location, and the clutter
ridge is dispersed diagonally. Furthermore, it can be demonstrated that the value drops
as the number of iterations increases in the interference region including clutter and the
interference from communication system. This trend highlights that Algorithm 1 is able
to suitably shape the CAF for interference suppression within small iterations, i.e., the
proposed design provides fast convergence properties.

The performance of the developed design is next examined in relation to various
mutual interference strengths with INRR = INRC. As a benchmark, we also consider the
objective values obtained by exploiting different algorithms: the Semi-Definite Program-
ming (SDP) and randomization procedure (labeled as “Joint Design with SDP-R” ) for
s optimization [51], the transmit design for X and s optimization (labeled as “Transmit
Optimized”), as well as the disjoint design, namely, no mutual interference management
(labeled as “Uncooperative Optimized”). Figure 5 expresses the objective value in terms
of INRR = INRC for various levels of mutual interference channel. We can see that the
objective value grows as the INR increases; the proposed joint design provides the best
performance. The primary reason is that more DoFs can be achieved in the coexistence
system, which also implies the necessity of the joint design for spectrum sharing system in
practical applications. Correspondingly, Figures 6 and 7 express the radar SINR and com-
munication rate in terms of INRR = INRC for various levels of mutual interference channel.
It can be shown that the two system performance degrade with the mutual increasing. It
is interesting to notice that, for the uncooperative optimized design, the communication
rate is better than the joint solution, the main reason is that the weighted design can adjust
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the priority of the two systems, and in this scenario, the better radar performance can be
achieved as shown in Figure 6.

(a) (b)

(c) (d)

Figure 4. Doppler-azimuth plane of CAF of radar multi-targets for outer iteration number
k2 = {10, 40}: (a) w∗1 and s∗, k2 = 10, (b) w∗1 and s∗, k2 = 40, (c) w∗2 and s∗, k2 = 10, (d) w∗2
and s∗, k2 = 40 (solid line rectangles and ellipse respectively denote the locations of the radar targets,
the interference sources from communication system).

Moreover, Figure 8 depicts the Doppler-azimuth plane of radar CAF. In the scenario,
the number of radar target is set as one and the target is located at 10◦ with fd,m = −0.3,
the other parameters remain the same as Figure 4. For comparison, the concept of radar
SINR optimization with communication rate constraint is used (see e.g., [46,52]). The
communication rate is required to be greater than 4. It can be demonstrated that both
systems have strong convergence qualities. Additionally, it can be noticed that the proposed
design has more prominent peak values for the radar target and lower values at the clutter
ridge and communication interference ranges, implying that the proposed formulation
performs better. In effect, the formulation of radar optimization with communication
constraint would lead to performance degradation due to the shrinkage operation for the
set of lower bound of communication rate.
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Figure 5. The objective value under different INRR = INRC of mutual interference.

Figure 6. The radar SINR under different INRR = INRC of mutual interference.

To further investigate the system performance in the environment of dynamic varia-
tion, the sensitiveness of the previous strategies is examined. In particular, assume that the
estimated channel matrices are B̂1 = B1 +ΔB1 and B̂2 = B2 +ΔB2, where ΔB1 = e2

1 ‖ B1 ‖2
F

and ΔB2 = e2
1 ‖ B2 ‖2

F denote the channel estimation error matrices. In this exemplification
study, e2

1 is set to be 0.1. The other parameters remain unchanged. Figure 9 shows the
objective value under different INRR = INRC of mutual interference for channel mismatch.
Combing the results in Figure 5, some degradations are observed, but the proposed design
still effectively mitigates both the clutter and the mutual interference.
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Figure 7. The communication rate under different INRR = INRC of mutual interference.

(a) (b)

Figure 8. Doppler-azimuth plane of CAF for iteration number k2 = {10, 50} for different formulations.

Figure 9. The objective value under different INRR = INRC of mutual interference for channel mismatch.
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6. Conclusions

In this paper, we aim to jointly design the radar spatial-temporal transceiver and the
communication spatial-temporal codebook in the spectrum coexistence system on moving
platforms. Owing to the non-convexity of the original formulated problem, an alternate
scheme is developed to optimize the designed DoFs based on the dual algorithm, the
MVDR method and MM-ADMM. Analytical proofs have been provided for the algorithms’
convergences. Finally, the simulation results are shown to verify the performance of the
proposed algorithm.
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Abstract: The joint radar and communications (JRC) waveform often has a high range sidelobe, which
will degrade the target detection performance of an automotive JRC system. To solve this problem,
a joint radar and communications complementary waveform group (JRC-CWG) design method is
proposed in this paper by exploiting the philosophy of the complementary sequence. In the JRC-
CWG, the traditional unimodular communications waveforms, such as the binary phase shift keying
(BPSK) waveform, are used to perform the communications function. The sum of the autocorrelation
function (SACF) of JRC-CWG is optimized to minimize the sidelobe level. Furthermore, considering
that the JRC-CWG has poor Doppler resilience, a Doppler-resilient joint radar and communications
complementary waveform (DR-JRC-CWG) design method is proposed to improve the Doppler
resilience. Finally, the simulation results show that the proposed JRC-CWG and DR-JRC-CWG have
superior radar performances without the degradation in communications performance in terms of
the bit error rate (BER).

Keywords: joint radar and communications; complementary sequence; joint radar and
communications complementary waveform group; Doppler resilience

1. Introduction

In recent years, with the development of automotive radar and communications
technologies, more and more radar and communications systems have been deployed in
vehicles [1,2]. For example, in an intelligent transportation system (ITS), both radar and
communications devices are integrated in a vehicle [3]. In an ITS, the vehicle needs to
convey information to other cars or communications base stations via a communications
device and detects targets including other vehicles, pedestrians, and roadblocks via a
radar device. However, with the development of the fifth-generation (5G) communications
technology and the millimeter-wave radar technology, radar and communications systems
tend to use the same frequency bands, which will result in mutual interference between
these two systems [4]. Since the space in a vehicle is limited, radar and communications
devices have to be deployed close together, which aggravates the interference between
radar and communications systems in vehicles [5]. Moreover, with the increasing demand
for spectral resources for both radar and communications systems, the shortage of spectral
resources becomes more and more serious [6]. To solve these problems, joint radar and
communications (JRC) systems are proposed, which can alleviate the interference between
radar and communications and improve the efficiency of spectral resources [7].

Usually, JRC systems can be divided into two types [8]. One type is called the co-
existence JRC system, wherein radar and communications are regarded as two individuals.
The co-existence JRC system aims at minimizing the mutual interference between radar
and communications subsystems [9]. The other type is termed the co-use JRC system, in
which the transmit waveforms are optimized to simultaneously carry out both radar and com-
munications functions [10] to avoid mutual interference between radar and communications.
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49



Remote Sens. 2023, 15, 645

In the co-existence JRC system, radar and communications occupy different resources
in some domains, such as the time domain, frequency domain [11], spatial domain [12],
and so on [5]. For example, in the co-existence JRC system, radar and communications
can work in different time slots [13]. The main defect of this approach is that radar and
communications cannot operate at the same time. In [14,15], a spectral notching JRC
system is proposed with the assumption that the bandwidth of radar is much greater than
that of communications. In this system, radar and communications operate in different
frequencies, although they can work at the same time. In [16], a JRC system that performs
radar and communications functions in different directions is investigated. In this system,
the transmit waveforms of each element of the array are optimized to synthesize specific
radar or communications waveforms in the desired radar and communications directions.

To design a co-use JRC system, the main challenge is how to make an optimal trade-off
between radar and communications functions [13,17,18]. In order to perform the radar
function in the mainlobe of the array and convey the communications information in the
sidelobe simultaneously, various methods are proposed in [19,20]. In [19], the sidelobe of
the transmit beam is devised to transmit communications information at different pulse
repetition intervals (PRIs), and the mainlobe of the transmit beam is designed to remain
unchanged to guarantee radar performance. As an extension, the method in [19] is used for
multi-user scenarios in [20]. The main shortcoming of this kind of JRC system is the low
communications rate since only one communication symbol is conveyed in each PRI [19,20].

To increase the communications rate, the traditional communications waveforms
are modified to perform both radar and communications functions in [21]. The key to
this type of method is to modify the traditional communications waveforms to satisfy
radar demands [22]. One typical example is the JRC waveform based on the orthogonal
frequency division multiplexing (OFDM) waveform [23–25], which has a considerably high
communications rate [26]. However, the OFDM waveform has a nonconstant modulus.
In order to detect targets as far as possible, the amplifier of the radar transmitter usually
operates in the nonlinear region [27]. However, this will cause serious distortion when
the transmit waveform has a nonconstant modulus, and the radar and communications
performance will be degraded [28]. In view of this, a JRC waveforms design method based
on unimodular waveforms has been studied [29].

Nevertheless, the JRC waveforms proposed in [23–25,29] have high autocorrelation
sidelobe levels. In an automotive radar, if the autocorrelation sidelobe level of the transmit
waveform is high, the returns from targets with small radar cross sections (RCSs) may be
submerged by the sidelobes of targets with large RCSs at receivers [30]. In view of this, to
ensure the radar performance of JRC systems, transmit waveforms with low autocorrelation
sidelobe levels are required in JRC systems. To design unimodular JRC waveforms with
low sidelobe levels, a JRC waveform combining the linear frequency modulation (LFM)
waveform and the binary phase-shift keying (BPSK) waveform is proposed in [31,32]. The
JRC waveform is obtained by directly multiplying the BSPK waveform with the LFM wave-
form. For the BPSK in this method, the angular separation between the modulated bits
“1” and “0” is set to be φδ(φδ < π) rather than π as with the traditional BPSK waveforms.
Using this method, the designed JRC waveform in [31,32] can achieve a better autocorre-
lation performance with the degradation in the bit error rate (BER). In [13], based on the
traditional unimodular communications waveform, the author designs a JRC waveform
by optimizing the phase perturbation in each chip, which is named the optimized phase
perturbation (OPP) waveform. To keep the JRC waveform with a low BER, the phase
perturbation of each chip of the JRC waveform is constrained by an upper bound.

The aforementioned co-use JRC waveforms are all obtained by using single waveforms.
However, the autocorrelation sidelobe of a single waveform cannot be decreased to as low
as possible [33]. To further decrease the autocorrelation sidelobe level of JRC waveforms,
a feasible way is to exploit the philosophy of the complementary sequence set (CSS) to
design co-use JRC waveforms. A CSS contains multiple subsequences. The sum of the
autocorrelation function (SACF) of subsequences in the CSS is the Kronecker delta function,
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i.e., all sidelobes of the SACF of subsequences are zero [34]. This property makes CSS a
promising sequence to be used to design waveforms with low range sidelobe levels, which
has been shown in radar applications [35,36]. In our work, the philosophy of the CSS is
exploited to design the JRC waveforms.

In this paper, based on CSSs, two co-use JRC waveforms design methods are proposed.
At first, unimodular JRC waveforms with low sidelobe levels are devised, which are called
the JRC complementary waveform group (JRC-CWG). The devised JRC-CWG has a consid-
erably low sidelobe level as well as good communications performance. Each JRC-CWG
contains two kinds of unimodular waveforms. One kind of waveform carry out both radar
and communications functions, and are termed waveforms with communications infor-
mation (WCI). The traditional communications waveforms, such as the BPSK waveforms,
are employed as the WCIs. The other kind of waveform in the JRC-CWG are called the
waveforms to be optimized (WTO), which are optimized to suppress the sidelobe level
of the JRC-CWG. Furthermore, considering that the Doppler resilience of the designed
JRC-CWG is poor [37–39], a Doppler-resilient JRC complementary waveform (DR-JRC-
CWG) design method is proposed. To design the DR-JRC-CWG, the Doppler sensitivity of
the designed JRC-CWG is analyzed first. Specifically, the Taylor expansion terms of the
ambiguity function (AF) of the JRC-CWG near the region of zero Doppler shift are derived,
and this shows that the nonzero-order Taylor expansion terms will impact the Doppler
resilience of JRC-CWG. Hence, the coefficients of the low-order Taylor expansion terms
are utilized in the formulated optimization problem to design the DR-JRC-CWG. To solve
these optimization problems, an iterative algorithm is proposed based on the framework of
the Fletcher–Reeves conjugate gradient (FR-CG) algorithm and the FFT algorithm.

The contributions of our work are summarized as follows:

(1) A new co-use JRC waveform is devised by exploiting the philosophy of the comple-
mentary sequence and is called the JRC-CWG.

(2) Compared with the JRC waveforms proposed in [31] and [13], the designed JRC-CWG
has a much lower sidelobe level and better communications performance in terms
of BER.

(3) A new Doppler resilient waveform design method is proposed to design the DR-
JRC-CWG that is not sensitive to Doppler shift caused by the relative radial velocity
between the vehicle and target.

(4) An algorithm based on the framework of the FR-CG algorithm and the FFT algorithm
is proposed to design the DR-JRC-CWG.

The rest of this paper is organized as follows. In Section 2, the model of JRC-CWG
and the signal processing procedure at radar and communications receivers are introduced.
In Section 3, the optimization problems for the JRC-CWG and DR-JRC-CWG design are
developed and the optimal JRC-CWG and DR-JRC-CWG are devised. In Section 4, several
simulation results are presented. Discussions are drawn in Section 5. Finally, a conclusion
is made in Section 6.

Notations: Non-bold letters and bold lower-case letters represent scalars and vectors,
respectively. Bold capital letters represent matrices. The n-th element of vector s is repre-
sented as s(n), and the k-th row and n-th column entry of matrix F is represented as F(k, n).
0K×N denotes the K × N matrix of zeros. The N-order identity matrix is denoted by IN .
(·)∗, (·)T , and (·)H stand for conjugate, transpose, and conjugate transpose, respectively.
‖ · ‖F denotes the Frobenius norm. � represents the Hadamard product operator. | · | takes
the absolute value of each element of a vector or matrix. Re{·} denotes the real part of a
complex value. C denotes the complex space.

2. JRC-CWG Model

2.1. Transmit JRC-CWG Model

In this paper, we consider an ITS as shown in Figure 1. In Figure 1, the yellow car that
is equipped with an automotive JRC system transmits the JRC waveforms to detect the
white bus and simultaneously sends communications information to it.
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Figure 1. Intelligent transportation system.

In this paper, we consider that the transmit JRC waveform is the JRC-CWG, as shown
in Figure 2. There are G groups of JRC-CWGs transmitted in each coherent processing
interval (CPI) to perform radar and communications jointly. Each JRC-CWG contains M
waveforms, and, hence, there are GM waveforms that will successively be transmitted with
a fixed PRI, denoted as T in Figure 2. Let Sg =

[
sg,1, sg,2, . . . , sg,M

] ∈ CN×M be the matrix
formed by the waveforms of the g-th JRC-CWG. sg,m is the m-th transmit waveform in the
g-th JRC-CWG, which is denoted as

sg,m =
[
sg,m(1), sg,m(2), . . . , sg,m(N)

]T (1)

rM rM + M G G rG M rG M + G M

tT T
G

Figure 2. The transmit waveform model of the JRC-CWGs.

In (1), sg,m(n) = 1√
N

ejθg,m(n) denotes the n-th entry of sg,m; θg,m(n) represents the phase
of sg,m(n); and N is the length of sg,m.

In each transmit JRC-CWG, the first Mr transmit waveforms are WTOs, which are
represented by solid bars, and the last Mc transmit waveforms are WCIs, which are repre-
sented by shadowed bars in Figure 2. Clearly, it can be seen that M = Mr + Mc. That is to
say, the whole JRC-CWG consists of WTOs and WCIs. In order to perform the communi-
cations function, the traditional unimodular communications waveforms, such as BPSK
waveforms, will be employed as the WCIs. The WCIs are determined by the transmitted
communications information. In order to improve the radar performance, the WTOs are
optimized to suppress the sidelobe level of the whole JRC-CWG.

In this paper, we consider a radar and communication system with a single transmit
antenna. It is worth noting that the proposed JRC-CWG is also applicable for multiple
transmit antennas and receive antennas. This will be discussed in our future work.

2.2. Receive Signal Model at the Radar Receiver

The receive signal model at the radar receiver is shown in Figure 3a. For the sake of
simplicity, we only consider returns from one point target in this paper. It can be easily
extended to more general scenarios. Furthermore, it is reasonable to assume that the
velocity of the vehicles is low. Hence, the Doppler shift of the returns in one PRI can be
regarded as a constant value. Thus, the sampled return from a point target at the radar
receiver of the JRC system can be represented as

sr
g,m = δgρej2π fdT(m−1)sg,m + ng,m (2)
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where δg is the complex scattering coefficient including the path loss and RCS of the target.
According to [40,41], the RCS of a target can be described using the Swerling I model,
i.e., the RCS of the target does not fluctuate in each CPI, and it will only fluctuate during
different CPIs. Further to this, the path loss can be regarded as a constant value in each
CPI. Thus, we assume that δg is a constant value in the g-th CPI. ρ = ej2π fdT[(g−1)M],
and fd = 2v/λ denotes the Doppler frequency, where v is the relative radial velocity
between the JRC system and the target, and λ is the wavelength of the transmit waveforms.
ng,m ∈ CN×1 is the vector of complex Gaussian white noise.
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Figure 3. (a) Receive signal at the radar receiver. (b) Signal processing procedure.

The signal processing procedure at the radar receiver is shown in Figure 3b. hMF
g,m

denotes the matched filter of sg,m. As depicted in Figure 3b, the matched filter output of
the g-th JRC-CWG returns are coherently accumulated, which can be denoted as

yr
g = δgρ

M

∑
m=1

ej2π fdT(m−1)rg,m +
M

∑
m=1

n’
g,m (3)

where n’
g,m ∈ CK×1 (K = 2N − 1) is the matched filter output of ng,m, which is still a Gaus-

sian white noise vector. rg,m =
[
rg,m(1− N), . . . , rg,m(−1), rg,m(0), rg,m(1), . . . , rg,m(N − 1)

]T

denotes the auto correlation function of sg,m, where

rg,m(n) = sH
g,mUnsg,m, for n = 0, 1, . . . , N − 1 (4)

and rg,m(n) = r∗g,m(−n), for n = 1− N, 2− N, . . . ,−1. Un is expressed as

Un =

[
0n×(N−n) IN−n

0(N−n)×(N−n) 0(N−n)×n

]
, n = 0, 1, . . . , N − 1 (5)

2.3. Receive Signal Model at the Communications User

The signal received by the communications user is denoted as sc
g,m in Figure 4,

where [42]
sc

g,m = δhsg,m + nc
g,m (6)
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Figure 4. Receive signal at the communications user.

δh is the communications channel coefficient [42,43], and nc
g,m is the vector of complex

Gaussian white noise at the communications receiver.
Note that all the signals transmitted by the JRC systems, including the WTOs and the

WCIs are received by the communications user. Only the WCIs need to be decoded by the
user. It is assumed that the user knows the number of the WTOs Mr, and the number of
WCIs Mc in each JRC-CWG. In view of this, WCIs can be extracted, and the communications
messages can be decoded according to the modulation scheme of the WCIs.

The communications rate and BER are usually utilized to measure the performance of
communications. The communications rate of the JRC-CWG can be represented as

Rb =
Mc

M · T
NB0 bit/s (7)

where Mc is the number of WCIs in each JRC-CWG; M is the number of waveforms in each
JRC-CWG; T is the PRI; N is the length of each WCI; and B0 is the number of bits carried
by each symbol of the WCI. For instance, if the BPSK waveforms are employed as the WCI,
B0 = 1. If the 16-PSK waveforms are employed as the WCI, B0 = 4.

Since the traditional unimodular communications waveforms are employed as the
WCIs, the BER of the JRC-CWG is the same as that of the traditional constant modulus
communications waveform under the same condition.

3. JRC-CWG and DR-JRC-CWG Design

3.1. JRC-CWG Design with Low Sidelobe Level

In the ITS, when the relative radial velocity between the JRC system and the target
is small or can be obtained, the effect of Doppler shift on the matched filter output can be
ignored. For this case, the JRC-CWG design method is proposed without considering the
Doppler shift in this section.

3.1.1. Problem Formulation

When the relative radial velocity v is 0, (3) can be rewritten as

yr
g = δgfg +

M

∑
m=1

n’
g,m (8)

where fg =
M
∑

m=1
rg,m is defined as the SACF of the g-th JRC-CWG. To suppress the sidelobe

level of fg while designing the unimodular JRC-CWG, the optimization problem can be
formulated as [39]

min
SR

g

1
M fH

g fg − 1

s.t.
∣∣sg,m(n)

∣∣ = 1√
N

m = 1, 2, . . . , M, n = 1, 2, . . . , N
(9)

where SR
g =

[
sg,1, . . . , sg,Mr

] ∈ CN×Mr is the matrix formed by all WTOs of the g-th JRC-
CWG. The g-th optimal JRC-CWG can be obtained by solving the optimization problem
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in (9). To obtain G optimal JRC-CWGs, G optimization problems similar to (9) should
be solved in parallel. The proposed optimization problem is a fourth-order polynomial
minimization problem with nonlinear constraints, which is hard to be solved. Note that
the objective function can be transformed into a frequency domain using the Wiener–
Khinchin theorem, which can be performed by applying the FFT algorithm to reduce
the computational complexity. Moreover, by only optimizing the phase of WTOs, the
constraints in (9) can be cancelled. Hence, (9) can be transformed to be

min
Θg

[
M

∑
m=1

xg,m � x∗g,m

]H[
M

∑
m=1

xg,m � x∗g,m

]
(10)

where Θg =
[
θg,1, . . . ,θg,Mr

] ∈ CN×Mr is the phase of WTOs in SR
g . xg,m = F̃K s̃g,m, where

s̃g,m =
[
sT

g,m 0T
(N−1)×1

]T
, and F̃K is the K(K = 2N − 1) point discrete Fourier transform

(DFT) matrix.

3.1.2. JRC-CWG Design Algorithm

In this section, an algorithm based on the framework of the FR-CG algorithm and the
FFT algorithm is applied to solve (10).

Define

D
(
Θg

)
=

[
M

∑
m=1

xg,m � x∗g,m

]H[
M

∑
m=1

xg,m � x∗g,m

]
(11)

To solve (10), the gradient of D
(
Θg

)
with respect to Θg is required to be derived.

To achieve this, the gradient of D
(
Θg

)
with respect to θg,m(n) (m ≤ Mr) is derived first.

According to the definition of the gradient of the real-valued function with respect to
complex variables in [44], the gradient of D

(
Θg

)
with respect to θg,m(n) is represented as

∂D(Θg)
∂θg,m(n) =

∂D(Θg)
∂sg,m(n) ·

∂sg,m(n)
∂θg,m(n) +

∂D(Θg)
∂s∗g,m(n) ·

∂s∗g,m(n)
∂θg,m(n)

= j
∂D(Θg)
∂sg,m(n) · sg,m(n)− j

∂D(Θg)
∂s∗g,m(n) · s∗g,m(n)

(12)

In (12), j represents the imaginary unit. According to the chain rule, we can determine that

∂D(Θg)
∂sg,m(n) =

K
∑

k=1

∂D(Θg)
∂γg(k)

∂γg(k)
∂xg,m(k)

∂xg,m(k)
∂sg,m(n)

=
K
∑

k=1
γ∗g(k)x∗g,m(k)F̃K(k, n)

(13)

and
∂D(Θg)
∂s∗g,m(n) =

K
∑

k=1

∂D(Θg)
∂γ∗g(k)

∂γ∗g(k)
∂x∗g,m(k)

∂x∗g,m(k)
∂s∗g,m(n)

=
K
∑

k=1
γg(k)xg,m(k)F̃

∗
K(k, n)

(14)

In (13) and (14), γg(k) is the k-th element of γg, and γg =
M
∑

m=1
xg,m � x∗g,m. From (13)

and (14), we can determine that

∂D
(
Θg

)
∂sg,m(n)

=

[
∂D

(
Θg

)
∂s∗g,m(n)

]∗
(15)
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From (12) to (15), the gradient of D
(
Θg

)
with respect to θg,m can be represented as

∂D(Θg)
∂θg,m

=
{

V
[
F̃K

(
2γg � x∗g,m

)]}
� (

jsg,m
)

+
{

V
[
F̃

H
K

(
2γg � xg,m

)]}
�

(
−js∗g,m

)
= 2Re

{{
V
[
F̃K

(
2γg � x∗g,m

)]}
� (

jsg,m
)} (16)

where V =
[
IN , 0N×(N−1)

]
. Using (16), the gradient of D

(
Θg

)
with respect to Θg can be

calculated, and the FR-CG algorithm can be applied to solve (10). Note that (10) and (16)
can be calculated with the FFT algorithm to reduce computational complicity. The detailed
algorithm for designing the g-th JRC-CWG is summarized in Algorithm 1.

Algorithm 1: The JRC-CWG design algorithm.

Input: G, Mc, Mr, N, the threshold ε, and WCIs.
Step 1: Initialize Θ

(0)
g =

[
θ
(0)
g,1 , . . . ,θ(0)

g,Mr

]
, let k0 = 0, α0 = 0, and the search direction Ṽ

(0)
d = 0N×Mr .

Step 2: Calculate the gradient matrix G̃
(k0)
g =

[
g̃
(k0)
g,1 , g̃

(k0)
g,2 , . . . g̃

(k0)
g,Mr

]
using (16), where

g̃
(k0)
g,m = ∂D

[
Θ

(k0)
g

]
/∂θ

(k0)
g,m .

Step 3: Calculate the search direction Ṽ
(k0+1)
d = −G̃

(k0)
g + αk0 Ṽ

(k0)
d .

Step 4: Compute Θ
(k0+1)
g = Θ

(k0)
g + λk0 Ṽ

(k0+1)
d , where λk0 is the optimal solution that minimizes

D
[
Θ

(k0+1)
g

]
, which is obtained with the line search method [45].

Step 5: If
∣∣∣D[

Θ
(k0+1)
g

]
− D

[
Θ

(k0)
g

]∣∣∣ ≤ ε, go to Output,
else (1) Let k0 = k0 + 1;

(2) Calculate the gradient matrix G̃
(k0)
g =

[
g̃
(k0)
g,1 , g̃

(k0)
g,2 , . . . g̃

(k0)
g,Mr

]
using (16),

where g̃
(k0)
g,m = ∂D

[
Θ

(k0)
g

]
/∂θ

(k0)
g,m ;

(3) Calculate αk0 = ‖G̃
(k0)
g ‖2

F
/‖G̃

(k0−1)
g ‖2

F
;

(4) Turn to Step 3.

Output: The phase of WTOs Θ
(k0+1)
g .

3.1.3. Computational Complexity Analysis

For the proposed algorithm to design the JRC-CWG in Algorithm 1, the computa-
tional complexity of step 2 is O(Mr(M + 1)K log2(K)). The computational cost of step 3
is O(NMr). In step 4, the computational complexity is O

(
ÑMK log2(K)

)
, where Ñ is the

search time to obtain λk0 with the line search method. In step 5 (2), the computational
complexity is O(Mr(M + 1)K log2(K)), and the computational cost of step 5 (3) is O(NMr).
The total computational complexity of each iteration of the JRC-CWG design algorithm
is approximately O

(
Mr(M + 1)K log2(K) + ÑMK log2(K) + 2NMr

)
. Hence, the compu-

tational complexity of the JRC-CWG design algorithm in Algorithm 1 is approximately
O
(

L̃Mr(M + 1)K log2(K) + L̃ÑMK log2(K) + 2L̃NMr
)
, where L̃ is the number of iterations.

3.2. DR-JRC-CWG Design

In Section 3, we have designed the JRC-CWG under the assumption that the relative
radial velocity v between the JRC system and the target is known or can be ignored.
However, the accurate v is hard to be obtained, or v cannot be ignored in practice. The
range sidelobe level of the received JRC-CWG will increase if v cannot be compensated
at the radar receiver. To decrease the range sidelobe level of the received JRC-CWG with
Doppler shift, a Doppler-resilient JRC-CWG, i.e., the DR-JRC-CWG is devised in this section.
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3.2.1. Doppler Sensitivity Analysis

According to (3), the sum of matched filter outputs of the g-th JRC-CWG with Doppler
shift fd is

yr
g(n, fd) = δgρ

M

∑
m=1

ej2π(m−1) fdTsH
g,mUnsg,m +

M

∑
m=1

n’
g,m (17)

As shown in (17), the Doppler frequency fd will affect the range sidelobe level of
the JRC-CWG. It is necessary to design the DR-JRC-CWG when fd cannot be accurately
acquired.

According to (17), the AF of the g-th JRC-CWG is defined as

yg(n, ϕd) =
M
∑

m=1
ej2π(m−1)ϕd sH

g,mUnsg,m,

for n = 0, 1, . . . , N − 1
(18)

and yg(n, ϕd) = y∗g(−n, ϕd), for n = 1− N, 2− N, . . . ,−1, where ϕd = fdT is the normal-
ized Doppler frequency.

Next, the AF of the g-th JRC-CWG is analyzed using the Taylor formula, and we will
show how the nonzero-order Taylor expansion terms affect the Doppler resilience of the
JRC-CWG. The Taylor expansion of the AF of the g-th JRC-CWG around ϕd = 0 can be
represented as

yg(n, ϕd) =
∞

∑
q=0

M
∑

m=1
(m− 1)qsH

g,mUnsg,m

q!
(j2πϕd)

q (19)

Introduce βg,q =
[
βg,q(1− N), . . . , βg,q(0), . . . βg,q(N − 1)

]T , where

βg,q(n) = 1
q!

M
∑

m=1
(m− 1)qsH

g,mUnsg,m

for n = 0, 1, . . . , N − 1
(20)

and βg,q(n) = β∗g,q(−n), for n = 1− N, 2− N, . . . ,−1, and then, (19) can be rewritten as

yg(n, ϕd) =
∞

∑
q=0

βg,q(n)(j2πϕd)
q (21)

Let
Pg,q(n, ϕd) = βg,q(n)(j2πϕd)

q (22)

Then, (21) can be rewritten as

yg(n, ϕd) =
∞

∑
q=0

Pg,q(n, ϕd). (23)

In (23), yg(n, ϕd) can be regarded as the summation of Pg,q(n, ϕd) for different q. When
q = 0, we will obtain

Pg,0(n, ϕd) =
M

∑
m=1

sH
g,mUnsg,m (24)

In (24), it can be seen that Pg,0(n, ϕd) is the SACF of the g-th JRC-CWG. This indicates
that only the zero-order Taylor expansion term is considered in the optimization problem
(10). However, according to (23), if only the zero-order Taylor expansion term Pg,0(n, ϕd) is
considered in the JRC-CWG design, the nonzero-order Taylor expansion terms of yg will
deteriorate the Doppler resilience of the JRC-CWGs. Hence, to suppress the sidelobe level
of the JRC-CWG around ϕd = 0, more Taylor expansion terms of yg, i.e., Pg,q, should be
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optimized. Moreover, according to (20) and (22), as q increases, the value of Pg,q(n, ϕd)
decreases because of the term 1/q!. This means that some lower order of Pg,q has the major
effect on the Doppler resilience of the JRC-CWG. Furthermore, according to (22), when
optimizing Pg,q, the term (j2πϕd)

q can be regarded as a constant. Hence, it is reasonable
to optimize Pg,q by optimizing βg,q. In summary, to design the DR-JRC-CWG, βg,q for
q = 0, 1, . . . , Q, should be jointly optimized.

3.2.2. Problem Formulation

From the discussion above, the optimization problem to design the g-th DR-JRC-CWG
can be represented as

min
SR

g

Q
∑

q=0
w̃q

(
1

Ẽ(q)β
H
g,qβg,q − 1

)
s.t.

∣∣sg,m(n)
∣∣ = 1√

N
m = 1, 2, . . . , M, n = 1, 2, . . . , N

(25)

where Ẽ(q) = 1
q! ·

M
∑

m=1
(m− 1)q, and w̃q is the weight satisfying

Q
∑

q=0
w̃q = 1. Similar to (10),

to obtain G optimal DR-JRC-CWGs, G optimization problems similar to (25) should be
solved in parallel. It can be seen that when Q = 0, the optimization problem in (25) will
be the optimization problem in (9). Similar to (10), the optimization problem (25) can be
transformed into

min
Θg

Q

∑
q=0

w̃q

[
M

∑
m=1

(m− 1)qxg,m � x∗g,m

]H[
M

∑
m=1

(m− 1)qxg,m � x∗g,m

]
(26)

3.2.3. DR-JRC-CWG Design Algorithm

For simplicity, let

Ddop
(
Θg

)
=

Q

∑
q=0

w̃qhg,q
(
Θg

)
(27)

where hg,q
(
Θg

)
=

[
M
∑

m=1
(m− 1)qxg,m � x∗g,m

]H[
M
∑

m=1
(m− 1)qxg,m � x∗g,m

]
. The gradient of

Ddop
(
Θg

)
with respect to Θg can be represented as

∂Ddop
(
Θg

)
∂Θg

=
Q

∑
q=0

w̃q
∂hg,q

(
Θg

)
∂Θg

(28)

The gradient of hg,q
(
Θg

)
with respect to θg,m (m ≤ Mr) is

∂hg,q
(
Θg

)
∂θg,m

= 2Re
{
(m− 1)q

{
V
[
F̃K

(
2γg,q � x∗g,m

)]}
� (

jsg,m
)}

(29)

where γg,q =
M
∑

m=1

[
(m− 1)qxg,m � x∗g,m

]
. The derivation of (29) is similar to that in (16). In

addition, (27) and (29) can be computed using the FFT algorithm to reduce the computational
complexity. The DR-JRC-CWG design algorithm is summarized in Algorithm 2.
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Algorithm 2: The DR-JRC-CWG design algorithm

Input: G, Mc, Mr, N, w̃q, the threshold ε, Q, and WCIs.

Step 1: Initialize Θ
(0)
g =

[
θ
(0)
g,1 , . . . ,θ(0)

g,Mr

]
, and let k0 = 0, α0 = 0, and Ṽ

(0)
d = 0N×Mr .

Step 2: Calculate the gradient matrix G̃
(k0)
g =

[
g̃
(k0)
g,1 , g̃

(k0)
g,2 , . . . g̃

(k0)
g,Mr

]
using (28) and (29), where

g̃
(k0)
g,m = ∂D

[
Θ

(k0)
g

]
/∂θ

(k0)
g,m .

Step 3: Calculate the search direction Ṽ
(k0+1)
d = −G̃

(k0)
g + αk0 Ṽ

(k0)
d .

Step 4: Compute Θ
(k0+1)
g = Θ

(k0)
g + λk0 Ṽ

(k0+1)
d , where λk0 is the optimal solution that minimizes

Ddop

[
Θ

(k0+1)
g

]
, which is obtained with the line search method.

Step 5: If
∣∣∣Ddop

[
Θ

(k0+1)
g

]
− Ddop

[
Θ

(k0)
g

]∣∣∣ ≤ ε, go to Output,
else (1) Let k0 = k0 + 1;
(2) Calculate the gradient matrix G̃

(k0)
g =

[
g̃
(k0)
g,1 , g̃

(k0)
g,2 , . . . g̃

(k0)
g,Mr

]
using (28) and

(29), where g̃
(k0)
g,m = ∂D

[
Θ

(k0)
g

]
/∂θ

(k0)
g,m ;

(3) Calculate αk0 = ‖G̃
(k0)
g ‖2

F
/‖G̃

(k0−1)
g ‖2

F
;

(4) Turn to Step 3.

Output: The phase of WTOs Θ
(k0+1)
g .

3.2.4. Computational Complexity Analysis

For the DR-JRC-CWG design algorithm in Algorithm 2, the computational complexity
of step 2 is O((Q + 1)Mr(M + 1)K log2(K)). The computational cost of step 3 is O(NMr).
The computational complexity of step 4 is O

(
(Q + 1)ÑMK log2(K)

)
, where Ñ is the search

time to obtain λk0 with the line search method. Moreover, in step 5 (2), the computational
complexity is O((Q + 1)Mr(M + 1)K log2(K)), and the computational cost of step 5 (3) is
O(NMr). Then, the total computational complexity of each iteration of the DR-JRC-CWG de-
sign algorithm is approximately O

(
(Q + 1)

(
Mr(M + 1) + ÑM

)
K log2(K) + 2NMr

)
. Hence,

the computational complexity of the DR-JRC-CWG design algorithm in Algorithm 2 is ap-
proximately O

(
L̃(Q + 1)

(
Mr(M + 1) + ÑM

)
K log2(K) + 2L̃NMr

)
, where L̃ is the number

of iterations.

4. Results

In this section, several simulation results are given to evaluate the performances of the
designed JRC-CWG and the DR-JRC-CWG. In the following, unless otherwise mentioned,
the number of groups G of the JRC-CWG or the DR-JRC-CWG is set to be 1. The peak-
to-sidelobe ratio (PSLR) of SACF of the JRC-CWG and the DR-JRC-CWG is utilized to
measure their sidelobe performance. The BPSK and the 16-PSK waveforms are employed
as the WCIs for the designed JRC-CWG and DR-JRC-CWG. For the WCIs with BPSK
modulation, the JRC-CWG is denoted as the JRC-CWG-BPSK, and the DR-JRC-CWG is
denoted as DR-JRC-CWG-BPSK in the following. For the WCIs with 16-PSK modulation,
the JRC-CWG and the DR-JRC-CWG are denoted as the JRC-CWG-16-PSK and the DR-JRC-
CWG-16-PSK, respectively.

4.1. Performance of the JRC-CWG

Let the number of WCIs Mc in each JRC-CWG be fixed to 1, and the sidelobe perfor-
mance of the JRC-CWG with different numbers of waveforms M used in each JRC-CWG is
shown in Figure 5. The sidelobe performances of the two other JRC waveforms, i.e., the
LFM-BPSK waveform in [31] and the OPP waveform in [13], are also shown in Figure 5.
In Figure 5, the OPP-BPSK denotes the OPP waveforms modulated by the BPSK wave-
forms. The length of each JRC waveform in Figure 5 is N = 64. To measure the sidelobe
performance of the LFM-BPSK waveforms and the OPP-BPSK waveforms, the PSLR of
SACF of M different LFM-BPSK waveforms and M different OPP-BPSK waveforms are
calculated, respectively.
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(a) (b) 

 
(c) (d) 

Figure 5. (a) PSLRs of the JRC waveforms with different number of waveforms M in each JRC-CWG.
(b) SACF with M = 2. (c) SACF with M = 4. (d) SACF with M = 6.

In Figure 5a, the PSLRs of the JRC waveforms versus M are given. Moreover, the
SACFs of the JRC waveforms with the number of waveforms M =2,4,6 are shown, respec-
tively, in Figure 5b–d. In Figure 5a, when M increases, the PSLR of all JRC waveforms
decreases, and the PSLRs of the designed JRC-CWG-BPSK and the JRC-CWG-16-PSK
decrease faster than those of the other two JRC waveforms. Specifically, when M = 2,
the PSLR of the JRC-CWG-BPSK is 4.8 dB lower than that of the OPP-BPSK waveform,
and 14.1 dB lower than that of the LFM-BPSK waveform. When M = 2, the PSLR of the
designed JRC-CWG-16-PSK is 3.9 dB lower than that of the OPP-BPSK waveform and
13.2 dB lower than that of the LFM-BPSK waveform. When M = 4, the PSLRs of the
designed JRC-CWG-BPSK and JRC-CWG-16-PSK are at least 120 dB lower than those
of the OPP-BPSK waveform and the LFM-BPSK waveform. As depicted in Section 2,
M = Mr + Mc, where Mr is the number of WTOs employed in each JRC-CWG. Thus, Mr
will increase with the increasing M when Mc is fixed. With the increase in Mr, more degrees
of freedom will be employed to suppress the sidelobe of the JRC-CWG SACF according
to (9), which will lead to a lower PSLR than other JRC waveforms. Due to the limitation
of the computation accuracy of the used computer, the PSLR of the designed JRC-CWG is
approximately −150 dB and will not decrease anymore when M ≥ 4. Furthermore, it can
be seen in Figure 5 that the sidelobe performance of the designed JRC-CWG-BPSK is close
to that of the designed JRC-CWG-16-PSK with different M. That is to say, the modulation
approach has little influence on the sidelobe performance of the designed JRC-CWG.

From Figure 5, we can see that with a sufficiently large M, the sidelobe level of the
designed JRC-CWG can be sufficiently suppressed. However, in practice, a large M is
usually not recommended. With a large M, it will take a longer time to transmit one
JRC-CWG, and the coefficient δg in (2) may be changed. In practice, the M should make
sure that the coefficient δg does not change during the CPI.
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4.2. Performance of the DR-JRC-CWG

In this subsection, the performance of DR-JRC-CWG will be shown. The AF defined in
(18) and Delay-Doppler maps of the designed JRC-CWG-BPSK are shown in Figure 6(a1,a2).
Let w =

[
w̃0, w̃1, . . . , w̃Q

]T collect the weights in (26), and the AFs and Delay-Doppler maps
of the designed DR-JRC-CWG-BPSK and DR-JRC-CWG-16-PSK with different weights w

are shown in Figure 6(b1–d2). Furthermore, the AFs and Delay-Doppler maps of the LFM-
BPSK waveform and OPP-BPSK waveform are shown in Figure 6(e1–f2). The simulation
parameters used in Figure 6 are listed in Table 1.

(a1) (a2) (b1) (b2) 

(c1) (c2) (d1) (d2) 

(e1) (e2) (f1) (f2) 

Figure 6. AFs and Delay-Doppler maps of the JRC waveforms. (a1) AF of the JRC-CWG-BPSK;
(a2) Delay-Doppler map of the JRC-CWG-BPSK; (b1) AF of the DR-JRC-CWG-BPSK with w = w1;
(b2) Delay-Doppler map of the DR-JRC-CWG-BPSK with w = w1; (c1) AF of the DR-JRC-CWG-BPSK
with w = w2; (c2) Delay-Doppler map of the DR-JRC-CWG-BPSK with w = w2; (d1) AF of the
DR-JRC-CWG-16-PSK with w = w2; (d2) Delay-Doppler map of the DR-JRC-CWG-16-PSK with
w = w2; (e1) AF of the OPP-BPSK waveform; (e2) Delay-Doppler map of the OPP-BPSK waveform;
(f1) AF of the LFM-BPSK waveform; and (f2) Delay-Doppler map of the LFM-BPSK waveform.
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Table 1. Parameters used in Figure 6.

Figure JRC Waveform Q w Mc M Tp PRI N

Figure 6(a1,a2) JRC-CWG-BPSK 0 - 1 6 5 μs 20 μs 64
Figure 6(b1,b2) DR-JRC-CWG-BPSK 1 w1 = [0.95, 0.05]T 1 6 5 μs 20 μs 64
Figure 6(c1,c2) DR-JRC-CWG-BPSK 1 w2 = [0.9, 0.1]T 1 6 5 μs 20 μs 64
Figure 6(e1,e2) DR-JRC-CWG-16-PSK 1 w2 = [0.9, 0.1]T 1 6 5 μs 20 μs 64
Figure 6(e1,e2) OPP-BPSK - - - 6 5 μs 20 μs 64
Figure 6(f1,f2) LFM-BPSK - - - 6 5 μs 20 μs 64

From Figure 6, we can see that all the AFs have a ‘thumbtack’ shape. It can be seen
that there is a valley in the AFs of the designed JRC-CWG-BPSK, DR-JRC-CWG-BPSK, and
DR-JRC-CWG-16-PSK around fd = 0, while there is no valley in the AFs of the LFM-BPSK
waveform and the OPP-BPSK waveform. This means that the designed JRC-CWG-BPSK,
DR-JRC-CWG-BPSK, and DR-JRC-CWG-16-PSK have better PSLR performances around
fd = 0 than the other two JRC waveforms. Moreover, the valley indicates that the PSLRs
of the JRC-CWG-BPSK, DR-JRC-CWG-BPSK, and DR-JRC-CWG-16-PSK increase as fd
increases, which is consistent with the analysis of (17). Compared with Figure 6(a2), the
valley in Figure 6(b2,c2,d2) is much wider. The wider the valley is, the more slowly
the PSLR will increase with the increase in fd. Therefore, compared with the designed
JRC-CWG-BPSK, the devised DR-JRC-CWG-BPSK and DR-JRC-CWG-16-PSK have better
Doppler resilience. Furthermore, compared with Figure 6(b2), the valley in Figure 6(c2)
is wider, which indicates that the Doppler resilience of the designed DR-JRC-CWG-BPSK
will be improved when the weight w̃1 in w is increased. From Figure 6, we can see that
compared with the LFM-BPSK waveform, OPP-BPSK waveform, and the JRC-CWG, the
proposed DR-JRC-CWG has the best Doppler resilience. This indicates that the designed
DR-JRC-CWG is more suitable to be employed by automotive JRC systems than other JRC
waveforms when fd cannot be obtained or ignored.

In Figure 7, the relationship between the PSLR and Doppler frequency is shown. The
simulation parameters in Figure 7 are the same as those in Figure 6. In accordance with
the IEEE 802.11p standard, we assume that the carrier frequency of the JRC waveforms in
Figure 7 is 5.9 GHz [46], i.e., the wavelength λ is 0.051 m. In Figure 7, the horizontal line for
−35 dB is plotted. To make sure the PSLRs of the JRC waveforms are lower than −35 dB,
the maximum Doppler frequencies and the corresponding radial velocities of the target in
Figure 7 are listed in Table 2.

Figure 7. Relation curves between PSLR and Doppler frequency.
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Table 2. PSLRs of the JRC waveforms and the corresponding velocities.

JRC Waveform w PSLR (dB) fd (Hz) Velocity (m/s)

JRC-CWG-BPSK - −35 986.3 25.1
DR-JRC-CWG-BPSK w1 = [0.95, 0.05]T −35 2513.0 63.9
DR-JRC-CWG-BPSK w2 = [0.9, 0.1]T −35 2654.0 67.5

DR-JRC-CWG-16-PSK w2 = [0.9, 0.1]T −35 2631.4 66.9
OPP-BPSK - −35 NA NA
LFM-BPSK - −35 NA NA

In Table 2, the NA stands for not-applicable. It can be determined that if the PSLR
of the JRC waveform is required to be lower than −35 dB, the OPP-BPSK waveform and
the LFM-BPSK waveform will not be applicable. To make sure the PSLR is lower than
−35 dB, the radial velocity v between the JRC platform and the target should satisfy that
v < 25.1 m/s for JRC-CWG-BPSK, v < 63.9 m/s for DR-JRC-CWG-BPSK with w = w1,
v < 67.5 m/s for the DR-JRC-CWG-BPSK with w = w2, and v < 66.9 m/s for the DR-JRC-
CWG-16-PSK with w = w2, respectively. Hence, the designed DR-JRC-CWGs have better
Doppler resilience than the designed JRC-CWGs. Compared with the DR-JRC-CWG-BPSK
with w = w1, i.e., w̃1 = 0.05, and w = w2, i.e., w̃1 = 0.1, it can be observed that the Doppler
resilience of the designed DR-JRC-CWG-BPSK will be improved when the weight w̃1 in
w is increased. Moreover, the designed DR-JRC-CWG-BPSK with w = w2 has a similar
performance to the designed DR-JRC-CWG-16-PSK with w = w2. From Figure 7, we
can see that the designed DR-JRC-CWG has better Doppler resilience than the OPP-BPSK
waveform, the LFM-BPSK waveform, and the JRC-CWG. Moreover, the Doppler resilience
of the designed DR-JRC-CWG satisfies the demand of automotive JRC systems, while that
of other JRC waveforms does not.

In Figure 7, compared with the designed JRC-CWG-BPSK, the PSLR of the designed
DR-JRC-CWG-BPSK at fd = 0 is larger. Moreover, the larger the weight w̃1 in w is, the
larger the PSLR of the designed DR-JRC-CWG-BPSK at fd = 0 is. Specifically, the PSLR of
the designed JRC-CWG-BPSK at fd = 0 is−151.9 dB. For the designed DR-JRC-CWG-BPSK
with w = w1, and the DR-JRC-CWG-BPSK with w = w2, the PSLR at fd = 0 is −98.5 dB
and −71.2 dB, respectively. Note that in the multi-objective optimization problem (25),
the Doppler resilience and the sidelobe level of SACF of the DR-JRC-CWG are jointly
optimized, whereas in the optimization problem (9) only the sidelobe level of the SACF of
the JRC-CWG is optimized. Hence, the PSLR of the DR-JRC-CWG may be higher than that
of the JRC-CWG. Moreover, the larger the weight w̃1 in w is, the higher the PSLR will be.

From Figure 7, it can be seen that the DR-JRC-CWG has a worse sidelobe performance
than the JRC-CWG at fd = 0. In practice, the user can employ the DR-JRC-CWG at first to
estimate the velocity of the target. Then, the JRC-CWG can be employed, since the Doppler
shift can be compensated at the radar receiver by using the estimated velocity.

Generally, an ITS often suffers serious clutter. In this scenario, the estimated target out-
put signal-to-noise ratios (SNRs) of the JRC waveforms with different Doppler frequencies
are illustrated in Figure 8. The simulation parameters of the JRC waveforms in Figure 8
are the same as those in Figure 7. The SNR is estimated by using the SNR estimation
method in [47]. The input SNR of the JRC system is 0 dB in Figure 8. It can be seen that
as the Doppler frequency increases, the output SNR of all the JRC waveforms decreases.
However, the output SNR of the designed DR-JRC-CWG decreases slower than that of the
other JRC waveforms. Furthermore, the output SNRs of the designed JRC-CWG and the
DR-JRC-CWG are higher than those of the OPP-BPSK and the LFM-BPSK waveforms when
fd = 0. Hence, the DR-JRC-CWG has the best performance in terms of the output SNR.
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Figure 8. Output SNRs of the JRC waveforms at the radar receiver with different Doppler frequencies.

4.3. Communications Performance

In this subsection, the BER and communications rate are applied to evaluate the
communications performance of the JRC waveforms.

The variations in the BER with the bit energy-to-noise power spectral density ratios
(which is denoted as Eb/N0 in Figure 9) of the JRC waveforms with the BPSK and 16-PSK
modulation schemes are shown in Figure 9a,b, respectively. Moreover, the BERs of the
traditional BPSK waveform and the traditional 16-PSK waveform are also illustrated in
Figure 9. The OPP-16-PSK in Figure 9b denotes the OPP waveforms with 16-PSK modulation.
In Figure 9a, we can see that both the designed JRC-CWG-BPSK and DR-JRC-CWG-BPSK
have the same BER as the traditional BPSK waveforms. To make sure the BER is lower than
10−5, the Eb/N0 should be greater than 9.6 dB for the JRC-CWG-BPSK and DR-JRC-CWG-
BPSK, greater than 11.1 dB for the OPP-BPSK waveform, and greater than 12.4 dB for the
LFM-BPSK waveform. For the JRC waveforms with 16-PSK modulation in Figure 9b, the
designed JRC-CWG-16-PSK and DR-JRC-CWG-16-PSK have the same BER performance as
the traditional 16-PSK waveforms. To ensure that the BER is lower than 10−5, the Eb/N0
should be greater than 17.5 dB for the designed JRC-CWG-16PSK and DR-JRC-CWG-16PSK,
and greater than 23.4 dB for the OPP-16-PSK. Obviously, compared with the other two
JRC waveforms, the designed JRC-CWG and DR-JRC-CWG have the best communications
performances in terms of BER for the same modulation scheme.

  
(a) (b) 

Figure 9. (a) BERs of the JRC waveforms with BPSK modulation; (b) BERs of the JRC waveforms
with 16-PSK modulation.

The communications rates of the JRC-CWG and the DR-JRC-CWG are given in (7). It
can be seen from (7) that the communications rate of the JRC-CWG or the DR-JRC-CWG
will be increased when the number of WCIs in each JRC-CWG or DR-JRC-CWG Mc is
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increased. Let M be a fixed value of 16, the PRI T be 25 μs, and the length of each waveform
N be 64; the relationship between the communications rate and the PSLR of the designed
JRC-CWG-16-PSK and the DR-JRC-CWG-16-PSK is shown in Figure 10. According to (7),
the communications rate of the designed JRC-CWG-16-PSK and DR-JRC-CWG-16-PSK is
Rb = 0.64Mc Mbps. It can be seen that for the designed JRC-CWG-16-PSK and DR-JRC-
CWG-16-PSK, the PSLR increases as the communications rate or Mc increases. Specifically,
when the communications rate is 0.64 Mbps, i.e., Mc = 1, the PSLRs of the designed JRC-
CWG-16-PSK and the DR-JRC-CWG-16-PSK are −165.3 dB and −118.8 dB, respectively.
When the communications rate is increased to 9.6 Mbps, i.e., Mc = 15, the PSLRs of the
designed JRC-CWG-16-PSK and the DR-JRC-CWG-16-PSK are increased to −33.0 dB and
−30.7 dB, respectively. Since M = Mr + Mc, the number of WTOs Mr in each JRC-CWG or
DR-JRC-CWG will decrease when Mc increases with M being fixed. Since only the WTOs
are optimized to improve the sidelobe performance of the designed JRC waveforms in the
optimization problems (9) and (25), the degrees of freedom of the optimization problems
will decrease when Mr decreases, which will lead to a worse PSLR performance. It can be
observed that there is a trade-off between the communications rate and the PSLR of the
designed JRC-CWG-16-PSK and DR-JRC-CWG-16-PSK. In practice, when designing the
JRC-CWG or the DR-JRC-CWG, the trade-off curve in Figure 10 can be used to satisfy the
requirements of the PSLR and the communications rate.

Figure 10. PSLRs of the designed JRC-CWG-16-PSK and DR-JRC-CWG-16-PSK versus communica-
tions rates.

The maximum communications rates and the corresponding PSLRs of the JRC wave-
forms are listed in Table 3. The simulation parameters used in Table 3 are the same as those
in Figure 10. Although the OPP-16-PSK has a slightly higher communications rate than the
designed JRC-CWG-16-PSK and DR-JRC-CWG-16-PSK, it has much worse performance in
terms of PSLR and BER according to Figure 9b.

Table 3. Maximum communications rates and the corresponding PSLRs of the JRC waveforms.

JRC Waveform Communications Rate (Mbps) PSLR (dB)

DR-JRC-CWG-16-PSK 9.6 −30.72
JRC-CWG-16-PSK 9.6 −33.01

OPP-16-PSK 10.24 −17.33
LFM-BPSK 2.56 −19.27

5. Discussion

In this paper, the JRC-CWG and the DR-JRC-CWG design methods were proposed,
which have low sidelobe levels and good communications performances. The designed
JRC-CWG and the DR-JRC-CWG can be used for automotive JRC systems. However, the
proposed methods have to make a trade-off between the radar and communications perfor-
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mance. In our future work, we will try to avoid this compromise. Moreover, polarization is
an important characteristic that can be considered in waveform design to improve the per-
formance of JRC waveforms [38]. The multiple-input multiple-output (MIMO) technique is
not only used in radar but also in communications, and can also be employed in JRC-CWG
design in our future work.

6. Conclusions

In this paper, we designed a JRC waveform group based on CSSs called the JRC-CWG.
In order to achieve better radar performance, the JRC-CWG was optimized to obtain the
SACF with a low sidelobe level. However, it has poor Doppler resilience. To improve
the Doppler resilience of the JRC-CWG, the DR-JRC-CWG design method was proposed.
To devise the JRC-CWG and DR-JRC-CWG, the algorithm based on the framework of
the FR-CG algorithm and the FFT algorithm was employed, which can be implemented
using FFT to decrease the calculation complexity. Compared with the OPP waveform and
LFM-BPSK waveform, the designed JRC-CWG and DR-JRC-CWG have favorable radar
and communications performances.
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Abstract: The development of Intelligent Transportation Systems (ITS) puts forward higher require-
ments for millimeter-wave radar surveillance in the traffic environment, such as lower time delay,
higher sensitivity, and better multi-target detection capability. The Constant False Alarm Rate (CFAR)
detector plays a vital role in the adaptive target detection of the radar. Still, traditional CFAR detection
algorithms use a sliding window to find the target limit radar detection speed and efficiency. In
such cases, we propose and discuss a CFAR detection method, which transforms the Monte Carlo
simulation principle into randomly sampling instantaneous Range–Doppler Matrix (RDM) data, to
improve the detection ability of radar for moving targets such as pedestrians and vehicles in the
traffic environment. Compared with conventional methods, simulation and real experiments show
that the method breaks through the reference window limitation and has higher detection sensitivity,
higher detection accuracy, and lower detection delay. We hope to promote the detection application
of millimeter-wave radar in road traffic scenes.

Keywords: millimeter-wave radar traffic surveillance; constant false alarm algorithm; moving target
detection; Monte Carlo simulation; random sampling

1. Introduction

Using millimeter-wave radar as a monitoring system has recently raised increased
in various fields attributed to its high detection accuracy and weather resistance. In road
traffic applications, accurate acquisition of moving target information such as pedestrians
and vehicles on the road is one of traffic radar’s most basic and essential tasks. However,
with the development of intelligent transportation systems, the timely reflection of road
conditions and realization of traffic accident warnings become necessary, which puts higher
requirements on the low processing delay of radar systems. Therefore, we start from the
radar target detection method to reduce the system processing delay and improve the
system’s real-time while ensuring high monitoring performance.

Generally, a number of approaches have been proposed to improve radar performance
in traffic scenes, which can be mainly classified into two categories: (1) Around the signal
processing direction, reduce or eliminate the interference signal as much as possible to
ensure the purity of the target signal. (2) Design better detectors.

In the field of suppressing interference signals, cutting the interference-contaminated samples
out of the signal is the most direct interference suppression method. Still, it also suppresses
part of the valid signal of targets, resulting in less accurate reconstruction of the cutout
samples of useful signals. To alleviate this effect, an iterative matrix-pencil (MP) method-
based extrapolation for interference mitigation is proposed [1], but the accuracy of the
reconstructed signal will decrease with the increase of the proportion of the contaminated
samples. To improve signal reconstruction accuracy, an approach based on the sparse and
low-rank decomposition of the Hankel matrix is proposed [2], however, iteration and best
quality selection increase the complexity of the algorithm. For dealing with inter-radar
interference, some new methods are proposed, such as designing a new orthogonal noise
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waveform [3] or presenting an interference mitigation technique in the tunable Q-factor
wavelet transform (TQWT) domain [4]. In addition, some researchers have started from
range and Doppler cell migration calibration to reduce signal distortion [5].

Designing better detectors is another direction to improve the application ability of
radar. Compared with signal interference suppression, although the improvement of radar
detection performance is weak, the design of the detector is more straightforward. In par-
ticular, in most cases, it will not add additional links and computational complexity, which
is more suitable for low-cost radar systems with low-performance processors. So this paper
studies from the perspective of detector design. In the actual application of radar, the target
always appears before the complex and changeable noise background, which is subject
to changes in time and location, so the fixed threshold detection method cannot effec-
tively distinguish the target from the background noise [6]. Radar Constant False Alarm
Rate(CFAR) detection, which adaptively sets the detection threshold by evaluating current
clutter environments [7,8], is a crucial technology for separating targets and background.
Thus, an appropriate CFAR detection algorithm can improve radar detection performance
and provide accurate target information for radar data processing. It also emerged as a key
research aspect in radar detection.

The earliest proposed CFAR detection algorithm is the Cell Average CFAR (CA-
CFAR) [9], which is based on the average local noise power level to detect targets. Design
a reference window, take the window’s center unit as the candidate target, and use the
amplitude accumulation value of other units in the window as the estimated value of
background noise power. Whether the target exists is determined by judging the power
value of the candidate target and the estimated noise power value. The CA-CFAR has
poor detection performance under non-uniform noise and multi-target environments since
interference signals or other targets within the reference window lead to background noise
estimation error. Aiming at the problem of CA-CFAR detection performance degradation
under multi-target or non-uniform noise, the maximum selection detection (GO-CFAR) [10]
and the minimum selection detection (SO-CFAR) [11] are proposed. The GO-CFAR can
maintain good false alarm control performance in a clutter edge environment, but ”target
masking” in a multi-target environment will appear. The SO-CFAR has a good multi-target
resolution ability, but its false alarm control ability is weak. Ordered Statistical CFAR
(OS-CFAR) [12] is another typical CFAR detection method derived from the median filter
concept in digital image processing. It arranges the sample units in the reference window
according to the power value and selects one of the sample power values as the decision
threshold. Compared with the detection performance of CA-CFAR, OS-CFAR has strong
robustness to multi-target detection, but it has a high resulting CFAR loss. Some new
methods combining OS and CA are proposed. Take the trimmed-mean detector (TM-
CFAR) [13] algorithm as an example. The sample points in the reference window are
sorted by amplitude value like OS-CFAR. Then remove part of the sample points with the
largest and smallest amplitudes. Finally, the remaining sample points are averaged as the
estimated value of background noise.

Now, new CFAR detection algorithms have been proposed based on traditional meth-
ods for different application requirements. Some scholars are dedicated to studying the
multi-target detection capabilities of the detector. For example, the OSCA-CFAR algorithm
is proposed, which combines the CA-CFAR algorithm and the OS-CFAR algorithm, to im-
prove the multi-target detection capability of millimeter-wave radars, and gives algorithm
performance simulation under an ideal noise environment [14]. Some researchers focus
on improving the detection performance of the detector in a complex cluster environment.
A Comp-CFAR method is proposed according to the central limit theorem and the loga-
rithmic compression principle of the signal for targets detection in the clutter with long
smearing effect characteristics [15]. A CFAR detector based on zlog(z) is used to reduce the
false alarm rate in Weibull clutter [16]. Some other scholars have proposed a new method
combined with machine learning [17]. Train a feedforward artificial neural network (ANN)
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on the data set containing the input and output of the CFAR sliding window to improve the
efficiency of CFAR detection. However, this way increases the complexity of the algorithm.

Table 1 briefly summarizes the CFAR detection algorithms mentioned above. All
current CFAR algorithms achieve target detection by designing a reference window and
processing the data in the window. The design of the reference window can effectively
reduce the level of clutter interference, but there are two drawbacks. One is that sliding
the window reduces the efficiency of detecting objects. Especially in Linear Frequency
Modulated Continuous Wave (LFMCW) radar systems, the input to the CFAR detector is
a two-dimensional Range–Doppler Matrix (RDM). Although the principle of the CFAR
algorithm has not changed, the sliding of the reference window has changed from a one-
dimensional sliding search to a two-dimensional sliding search, which dramatically reduces
the real-time performance of radar target detection. The other drawback is that the window
limits the sample points for background noise estimation. Theoretically, the more sample
points are used, the more accurate the estimated noise power value and the higher the CFAR
detection accuracy. The design and sliding of the reference window limit the efficiency of
radar target detection.

Table 1. A brief summary of the characteristics of CFAR algorithms.

CFAR Algorithms Advantages Disadvantages Reference Window

CA-CFAR High detection SNR in
uniform noise

Low multi-target detection
capability, High detection

performance in non-uniform
noise

YES

GO-CFAR Good false alarm control in
clutter edge

Low multi-target detection
capability YES

SO-CFAR High multi-target detection
capability Low false alarm control ability YES

OS-CFAR Strong robustness to
multi-target detection High resulting CFAR loss YES

OSCA-CFAR
High robust in multi-target

situations, Low resulting
CFAR loss

Performance degradation in
non-pure noise situations YES

Comp-CFAR
Suppression of clutter
interference with long

smearing effect characteristics
High algorithm complexity YES

zlog(z)-CFAR Reduce the false alarm rate in
Weibull clutter High algorithm complexity YES

Machine learning High detection accuracy Low timeliness YES

Fortunately, compared with the complex background environment such as the sea
surface, the background noise in the traffic road is relatively simple. Especially when
radar monitors moving targets, the effect of background noise data on detection can be
eliminated using the de-zeroing Doppler method. Combining the non-ideal target motion
(vehicle turning, braking and lane changing), the irregularity of the target reflection area,
and the independence of the frame data, we consider that the moving target echoes in
the traffic road obey the ideal Swerling II model. Based on the above analysis, a reference
window designed for complex noise and interference reduction may not be necessary
for road traffic monitoring applications where the background noise is relatively clean.
Instead, the sliding window increases the algorithm’s time complexity and reduces the
efficiency of radar monitoring. To meet the requirement of low processing latency for
traffic monitoring radar systems, we propose a CFAR algorithm based on the Monte
Carlo to improve radar detection efficiency and sensitivity to moving targets in the traffic
environment. Compared with the traditional algorithm, the algorithm has higher detection
sensitivity and, more importantly, does not require the design and sliding of the reference
window, which dramatically reduces the algorithm time complexity and improves the
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detection speed and efficiency. The contributions of this paper are summarized as follows:
First, in the proposed CFAR detection algorithm, the entire RDM matrix area is randomly
sampled to obtain the sample points of the background noise power estimation at the
current moment. The principle is converting the Monte Carlo simulation principle, which
gets properties of unknown quantities by independently repeating experiments, into a
random sampling of the RDM matrix domain. This way breaks through the limitation of
the reference window and can increase a large number of sample points for background
noise estimation. Second, an interference point filtering method improves the accuracy of
background noise estimation. Sort and filter the sample points according to the amplitude
value of the sample points to remove possible target points or interference points. Then,
the background noise estimated power value is obtained by the mean method. Finally,
the target points in the RDM matrix are extracted by the background noise estimate.
In addition, the parameter setting method of the algorithm is given, i.e., according to the
current physical platform and application environment, algorithm parameter values are
obtained through repeated statistics. The configuration parameter process only needs to
be executed once when the radar system environment is unchanged. Compared with the
conventional method, simulations and practical experiments show that the method has
higher detection sensitivity, higher detection accuracy, and lower detection latency, which
improve radar detection efficiency in traffic surveillance.

The structure of this paper is organized as follows: The Section 2 introduces the char-
acteristics of traffic scenes, the principle of radar detection targets, and the characteristics
of radar background noise in traffic scenes. Then, in Section 3, we give the principle and
model of the new CFAR detection algorithm and give the process of obtaining relevant
parameters. In Section 4, we analyze the performance of the new CFAR detection algorithm
through simulation and real experiments. Finally, Section 5 summarizes the conclusions of
this paper.

2. Traffic Scene Overview, Radar CFAR Detection Principle, and Background
Noise Analysis

2.1. Traffic Scene Overview

Usually, traffic sensors are installed on both sides of the road or on a fixed bracket
extending to the center of the road (as shown in Figure 1), and they are required to have
the following essential functions:

• High detection sensitivity. All targets in the field of view can be completely detected,
including partial occlusion of the target;

• Low information delay capability. It can reflect road conditions in real-time, i.e., the
delay between data acquisition and road conditions output is required to be as short
as possible (ideally, the delay should not exceed 100 ms);

• Weather resistance. The sensor shall minimize the impact caused by night, fog,
and other weather.

Millimeter-wave radar is considered to have the potential to be used in urban traffic
monitoring since not affected by the environment, has high range resolution, and has
low application cost. The CFAR detector as a vital part of radar target extraction has
been extensively studied. By studying the traditional CFAR algorithm and analyzing
the characteristics of the traffic environment, we give a new CFAR detection algorithm to
improve the sensitivity of radar to target detection, multi-target detection ability, and reduce
delay. We hope it provides a unique reference for enhancing the adaptability of the radar in
urban traffic monitoring.
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Figure 1. Traffic road scene.

2.2. Conventional Adaptive CFAR Detection Based on RDM

The FMCW millimeter-wave radar system is composed of an antenna array, a mixer,
an Analog-to-Digital Converter (ADC), and digital signal processing [18]. The radar
receives and processes target electromagnetic echo signals to acquire target information.
The radar antenna receives the target echo information. It mixes echo information with
the current transmitted signal in the mixer. The intermediate frequency signal from the
mixer is converted into a digital signal by the ADC unit for signal processing. In the data
processing system, the chirps signal group is processed by the Fast Fourier Transform (FFT)
of the distance dimension and the velocity dimension in turn. Finally, a two-dimensional
RDM containing the target position and velocity information is obtained by a single pulse
linear detection [19]. The RDM data will be sent to the detection unit to achieve target
extraction, usually for the constant false alarm detector. The radar signal processing flow is
shown in Figure 2.

Figure 2. Radar signal processing.

The radar target detector performs a test procedure on each cell inside the RDM
to distinguish between the target signal and noise based on the threshold T, where the
threshold T is composed of the threshold factor α and the average noise power μ, i.e.,
T = α · μ. The average noise power measures the current radar noise floor, but it will
change due to temperature changes or other physical effects. Therefore, the fixed noise
power estimate value will cause the detector to produce false alarms. Let H0 means there is
no target in the signal, H1 means there is a target in the signal, and Y represents a detection
cell in the RDM. According to the Neyman-Pearson criterion, the false alarm probability
Pf a is:

Pf a = P(H1|H0) = P(Y > T) =
∫ +∞

T
f (y)dy, (1)
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where f (y) represents probability density function, when target radar cross-sectional
area is the Swerling II model, f (y) is the exponential distribution (square law detection),
or Rayleigh distribution (linear detection).

The average noise power needs to be adaptively estimated to maintain a constant false
alarm rate. So a CFAR detection technology based on variables in a two-dimensional RDM
to estimate the average noise power adaptively is proposed. Here we introduce several
typical CFAR algorithms.

Assume that the size of an RDM matrix is M× L, and a reference window with a size
of n× l is designed, as shown in Figure 3. The blue cell represents the detection cell (Xm,n),
where m represents the position index of the detection cell X in the RDM matrix, and n
represents the velocity index. The red area represents the reference window, and the CFAR
detection algorithm evaluates the local average noise power based on the variables in the
reference window.

Figure 3. RDM detection matrix.

In the two-dimensional CA-CFAR algorithm [20], the unknown local noise expectation
value is estimated based on the average of all variables’ power in the two-dimensional
reference window:

μCA =
1

n× l

n

∑
i=1

l

∑
j=1

Xi,j, (2)

where μCA represents the background noise estimate value of the CA-CFAR algorithm.
Then the adaptive detection threshold TCA = μCA · α can be obtained.

The two-dimensional OS-CFAR algorithm [21] also evaluates the local noise power
through the variables in the reference window. Unlike the CA-CFAR, the OS-CFAR al-
gorithm takes out all variables in the reference window and sorts them according to
their magnitude:

X1 ≤ X2 ≤ X3 ≤ · · · ≤ XK ≤ · · · ≤ XN×M, (3)

The Kth value is selected as the average noise power. Then the adaptive detection
threshold TOS = μOS · α = XK · α can be obtained.

The OSCA-CFAR [22] is a detection algorithm combining the CA-CFAR algorithm
with the OS-CFAR algorithm. Firstly, it uses the one-dimensional OS-CFAR to sort each N
Doppler unit according to the magnitude in the distance direction, as shown in Figure 4.
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Then, the Kth row is selected in the Doppler direction. Finally, a CA-CFAR procedure is
applied to obtain the average noise power:

μOSCA =
1
l

l

∑
j=1

Xj
K, (4)

where μOSCA represents the background noise estimate value of the OSCA-CFAR algorithm.
Then the adaptive detection threshold TOSCA = μOSCA · α can be obtained.

Figure 4. OSCA-CFAR detection.

The amplitude of the detection cell (Xm,n) is compared with the threshold T. If Xm,n > T,
the detection cell is considered the target. Otherwise, it is noise. Then, move the reference
window and perform the detection on the new cell. The reference window performs two-
dimensional sliding in the RDM matrix to realize the detection of all cells. In addition,
designing appropriate reference windows according to different scenarios can reduce
interference and improve detection accuracy. Some typical reference windows are shown
in Figure 5.

(a) (b)

Figure 5. Typical reference window model. (a) Cross window. (b) Rectangular window.

Theoretically, the more sample points used to estimate the background noise power,
the more accurate the background noise estimation will be. The design and application of
the reference window prevent the introduction of interference points which is beneficial
for complex environments. However, it limits the optional number of background noise
sample points and increases the retrieval process. When the target and the background
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environment are easily separated, or the background environment is relatively simple in
some scenes, applying the reference window is not necessary.

2.3. Radar Background Noise Analysis in Traffic Scenea

To analyze the background noise characteristics of traffic roads, we collect data through
a self-designed millimeter-wave radar system whose parameters are shown in Table 2.
The radar chip (CAL77S244) based Radio Frequency(RF) front-end with three transmitting
and four receiving antennas is used to transmit millimeter-wave and receive target echo
signals. Additionally, a four-channel high-speed ADC is used for data acquisition. Finally,
digital processing algorithms and extraction of target information are implemented on a
back-end baseband processing system based on FPGA and ARM architecture. The data
acquisition scene and radar system are shown in Figure 6.

(a) (b)

Figure 6. (a) Radar system. (b) Data collection scenario.

Table 2. Radar system parameters.

Item Parameters Item Parameters

Chirp number 256 Range FFT points 512
B 160 MHz Fs 20 MHz

Rmax 200 m Rresolution 0.732 m
Vmax 31.847 m/s Vresolution 0.249 m/s

Figure 7 illustrates background noise data collection and display. Figure 7a is a flow
chart of constant false alarm detection data acquisition. In this radar system, four receiving
channels receive the radar’s electromagnetic echoes in the background environment and
obtain the RDM matrix through incoherent accumulation. Figure 7b shows the distribution
of the power amplitude of the RDM under the condition with no moving targets. The power
amplitude value is abrupt and uneven in the zero-Doppler region (stationary objects region),
which is caused by a combination of factors such as the number of objects at different
distances and the size of the object’s reflection area. Preliminary observation shows that the
noise power is distributed evenly in the non-zero Doppler domain (moving targets region),
and there is no apparent abrupt change. In addition, the power of stationary objects does
not significantly extend to the area where the moving targets are located.
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(a)

(b)

Figure 7. (a) RDM data acquisition process. (b) Data collection scenario.

We use distance dimension and velocity dimension data variance, an effective method
to measure the degree of data dispersion, to evaluate the distribution of noise power
amplitudes in the moving target area in the RDM matrix. We count the variance of each
row (velocity dimension) or column (distance dimension) of the dataset in RDM as shown
in Figure 8 (average of multiple statistics). It is worth noting that before calculating the
variance, taking the average speed of pedestrians as a reference (0.5 m/s), we eliminated
the cells where the static object is located in the RDM matrix, i.e., cells with speed below
0.5 m/s. Both the variance of the velocity dimension and the variance of the distance
dimension are less than 0.018. We can think that the background noise power amplitude is
relatively uniform in the non-zero Doppler domain.
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(a) (b)

Figure 8. Background noise amplitude dispersion in RDM matrix (a) Noise amplitude variance in
range direction. (b) Noise amplitude variance in Doppler direction.

The power density distribution is given as another characteristic of background noise.
Previously, we assumed that the radar noise distribution satisfies the Rayleigh distribution:

y = f (x|σ) = x
σ2 e(

−x2

2σ2 ), (5)

where σ is the Rayleigh distribution parameter. The non-zero Doppler cells in RDM are
sampled and processed by MATLAB Distribution Fitter Toolbox, and then the distribu-
tion of data (purple) and the fitting curve of Rayleigh distribution (red) are shown in
Figure 9a. Figure 9b shows the matching degree between data probability distribution and
Rayleigh distribution, i.e., the closer the data is to a curve line, the more consistent it is with
Rayleigh distribution.

(a) (b)

Figure 9. Simulation and fitting experiment example of RDM matrix noise density function (a) Noise
distribution curve. (b) Matching degree of Rayleigh distribution.

Through the analysis, we can get the following two conclusions:

• In the static target region of the RDM matrix, the variation amplitude of noise power
fluctuates greatly. However, in the moving target area of the RDM matrix, the am-
plitude distribution of background noise power is uniform, the dispersion is small,
and there is no edge effect;

• In the moving target area in the RDM matrix, the noise amplitude of each unit is
independent of each other and meets the probability density distribution (Rayleigh
distribution) with similar parameters.
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In this scenario, we propose a Monte Carlo-based CFAR detection algorithm to im-
prove radar monitoring efficiency by processing the entire RDM area instead of local
reference window data and window sliding.

3. A CFAR Algorithm Based on Monte Carlo Sampling

3.1. Expectation Calculation Principle Based on Monte Carlo Sampling

Assuming that n samples are drawn from a population with a total number of N
elements without replacement, each sample has the same probability of being sampled each
time. This sampling method is called random sampling, and the sample drawn is called
random sample. When each sampling process is independent of the other, the process is
called Monte Carlo sampling. Monte Carlo sampling can be used to obtain the expectation
of random variables.

For example, we can use Monte Carlo sampling to find the expectation of function
f (x) [23]. Let X denote a random variable and the probability distribution p(x). To calculate
the expectation of f (x), we only need to continuously sample from p(x):

EN( f ) =
1
N

N

∑
i=1

f (Xi), (6)

where N represents the number of sample points, Xi represents the value of the ith sample
point. When the sample N is large enough, the mean A is equivalent to the expectation of
f (x), i.e., A = EN( f ). Further, we know that the Monte Carlo sampling principle obtains
the statistical characteristics of parameters through many random independent experiments
and uses the statistical value to replace the real result [24]. In addition, in probability theory
and statistics, the expectation is related to probability distribution parameters that reflect
the sample population amplitude characteristics. Therefore, obtaining unknown quantities
by Monte Carlo sampling provides a new idea for calculating the average noise power in
the RDM matrix.

Through the previous analysis, we approximately believe that the noise power of
each detection cell in the RDM dataset follows the same probability distribution (Rayleigh
distribution) with roughly the same parameters, which is also the premise of using the
Monte Carlo principle. However, unlike the Monte Carlo sampling principle, we transform
the independent random sampling in the time dimension into the random sampling on
the RDM dataset at the current moment. For each detection unit in the RDM matrix as a
random variable X, the unknown average noise power μ is considered the expected value
of the function f (x). The detection unit in the RDM matrix performs random sampling to
obtain the estimated value of the background noise power in the moving target area at the
current moment. We name this method MC-CFAR.

3.2. MC-CFAR Algorithm Model

A complete MC-CFAR processing model mainly includes background noise sample ex-
traction part, interference point removal part, average noise estimation part, and threshold
output part (as shown in Figure 10). Moreover, the processing flow of using the MC-CFAR
algorithm to detect moving targets is as follows:
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Figure 10. MC-CFAR processing model.

Step 1: Background noise sample point extraction. In the MC-CFAR algorithm, all
detection units in the RDM matrix are regarded as the total sample size. Additionally, each
detection cell is viewed as an individual sample to be sampled. Considering the RDM
matrix as a two-dimensional coordinate system, once the scale of the RDM matrix is
determined (SRDM = R× D), the coordinates of all detection units are also determined.
Any cell can be represented as Xr,d , where r represents the distance index, r = 1, 2, . . . R; d
represents the speed index, d = 1, 2, . . . D. Samples are drawn from the population without
repetition according to specific rules, and this process is systematic random sampling. Then,
M background noise sample points are obtained.

Step 2: Interference point removal. The sample points obtained in step 1 cannot be
directly used to evaluate the background noise power value because the target points or
abnormal points may be extracted, which will cause the background noise estimation error.
Similar to the data processing method in the TM-CFAR algorithm, the sample points are
first sorted according to the power amplitude:

X1 ≤ X2 ≤ · · · ≤ Xq ≤ · · · ≤ XM−k ≤ · · · ≤ XM, (7)

Then, k maximum points and q minimum points are removed, and it is considered
that the remaining M− k− q sample points only contain background noise power points.

Step 3: Noise average power estimation. Average the remaining M− q− k sample
points, and the average value will be used as the estimated value of the current background
average noise power in the RDM matrix.

μmc =
1

M− k− q

M−k−q

∑
i=k

Xi, (8)

Step 4: Threshold output. The threshold factor αmc is multiplied by the average noise
power estimate to get the decision threshold T:

T = αmc · μmc, (9)

Step 5: Target detection. Each detection cell in the RDM matrix is sequentially com-
pared with the threshold value T. If X > T, the target exists, otherwise, the target does
not exist.
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3.3. MC-CFAR Algorithm Parameter Settings
3.3.1. Random Sampling Strategy

The interference point removal link can eliminate the interference caused by abnormal
points or target points to a certain extent, but it cannot completely eliminate it. A good
sampling strategy can reduce the probability of the existence of interference points, reduce
the burden of interference point removal, and make the estimated value of background
noise more accurate.

Figure 11 shows three simple sampling strategies. When the radar monitors the slow-
moving road section (urban intersections), sampling points distribution can be consciously
expanded to the high-speed area (the left side of Figure 11). Similarly, when the radar
monitors the high-moving road section(highway) or variable-speed road section (Mixed
vehicles and pedestrians), the sampling strategy in the middle or the right side of Figure 11
can be selected, respectively.

Figure 11. Three simple sampling strategies.

3.3.2. Sampling Points Number M and Threshold Factor α

The number of sampling points M and the threshold factor αmc are two essential
parameters in the MC-CFAR algorithm, which need to be determined before the algorithm
is executed. In the MC-CFAR algorithm, the higher the number of sample points, the closer
the background noise estimate is to the actual value, and the size of the threshold factor also
affects the probability of the target being detected, both of which will affect the false alarm
probability (Pf a) of the detector. Thus we determine the values of M and αmc according to
different Pf a requirements.

Different from traditional CFAR algorithms, it isn’t easy to give a definite curve
formula between parameters and Pf a in the MC-CFAR algorithm. So, we use Monte Carlo
experiments to obtain approximate relationships, i.e., get the probability of false alarms
under different parameters through independently repeated experiments. Figure 12 shows
the relationship between the MC-CFAR algorithm parameters and Pf a. Moreover, the
following conditions have been used for the simulation: RDM size is 256 × 256 with
Rayleigh distribution noise; k = 1

32 M; Monte Carlo experiments number is 105 for each
group parameters.

In Figure 12, when the number of sample points is small, the number of sample
points is the main factor. Under the same threshold factor, the less the number of sample
points, the higher the false alarm rate of the algorithm. With the increase of sample points,
the false alarm rate decreases. When the number of sample points reaches a certain order of
magnitude, the impact of the rise of sample points on the false alarm rate becomes smaller,
and the threshold factor becomes the main factor. Then, determine MC-CFAR algorithm
parameters according to different constant false alarm probabilities.

Considering the difference between the simulation experiment and the actual appli-
cation, in actual application, before the radar detects the road vehicle, the Monte Carlo
experiment is performed on the road environment to obtain the best MC-CFAR algorithm
parameters under the radar platform. When the detection environment and platform
remain unchanged, this step only needs to be performed once.
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Figure 12. Relationship between threshold factor and false alarm rate in MC-CFAR.

4. Numerical Simulations and Real Experiments

This chapter presents the simulation test and actual experimental results of the algo-
rithm. Furthermore, a comparison with the conventional CFAR algorithm is carried out in
the same test environment.

4.1. Performance Simulation of MC-CFAR

According to the characteristics of the traffic scene and the requirements for the
monitoring system in the application of road vehicle monitoring, we choose the algorithm
detection sensitivity, algorithm multi-target detection ability, and algorithm time complexity
as the key research objects. The detection performance of the MC-CFAR algorithm is
evaluated by simulation and compared with the conventional algorithms (e.g., CA-CFAR,
OS-CFAR, OSCA-CFAR).

4.1.1. Algorithm Detection Sensitivity

The detection sensitivity of the radar constant false alarm algorithm reflects the radar’s
ability to detect weak signals. The higher the detection sensitivity, the stronger the radar’s
ability to detect weak signals. The relationship between the detection probability Pd of the
algorithm and the Signal-to-Noise Ratio (SNR) of the target echo is used to measure the
detection sensitivity of the constant false alarm detection algorithm.

We use the radar system to obtain a large amount of snapshot data of traffic scenes
(the radar system and traffic scene are shown in Figure 6), and these snapshot data do
not contain any moving targets. The background noise data of the moving target area
is obtained by summing, averaging, and de-zeroing Doppler, which will be used for
simulation. Randomly insert target points with different SNR into the background noise
data, and then evaluate the detection sensitivity of the algorithm by counting the number
of successful detections of the algorithm. For fairness, the Pf a of all algorithms is unified to
10−4. The number of repetitions for each SNR experiment is 108.

Figure 13 shows the detection probability of different algorithms for different SNR
signals. In the overall trend of change, the algorithm detection probability has the same
changing trend: as the target SNR increases, the detection target probability increases. In the
low SNR part, the detection probability of the algorithm is generally low. Still, the detection
probability of MC-CFAR is the highest, and the detection probability of MC-CFAR rises
the fastest. Moreover, as the signal SNR increases, the gap between detection probabilities
keeps increasing. With the further improvement of SNR, the detection probability gap
between the algorithms approaches gradually. When the target SNR reaches a particular
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strength, the detection probability of all algorithms reaches 100%. The MC-CFAR algorithm
has the highest detection sensitivity through simulation analysis compared with other
detection algorithms, primarily due to the more accurate background noise estimation and
the ability to obtain more sample points. Under the same false alarm rate, MC-CFAR can
detect weak SNR targets.

Figure 13. The relationship between detection probability and SNR.

4.1.2. Multi-target Detection Performance

The masking effect means that the distance between the targets is so close that the
detection algorithm cannot detect all the targets simultaneously, making the radar detection
have a high false dismissal probability in a multi-target environment.

In the simulation experiment of the multi-target detection ability of the algorithm,
the SNR of each target should be as high as possible to eliminate the missed detection of
the algorithm caused by low SNR. In the clutter background with a length of 200, four
targets are added at 46, 48, 50, and 52 with two as the distance difference between targets;
Taking 20 as the distance between the targets, add targets at 90 and 110, respectively; finally,
add independent targets at 145. Under the same false alarm rate Pf a = 10−4, the decision
threshold of each algorithm at different positions can be obtained, as shown in the blue
waveform in Figure 14.

The purpose of detecting the independent point 145 is to eliminate the interference of
the target SNR on the algorithm multi-target detection performance judgment. When the
distance between targets keeps shrinking, the target masking effect of CA-CFAR gradually
manifests, and for targets at points 46, 48, 50, and 52, only points 46 and 52 can be detected.
However, the MC-CFAR, the OS-CFAR, and the OSCA-CFAR algorithms still accurately
detect four targets. In 1D distance dimension detection, the OSCA-CFAR algorithm is
the same as the OS-CFAR algorithm due to the absence of the Doppler dimension, which
does not affect the determination of multi-target detection capability. Through simulation
analysis, the MC-CFAR has good multi-target detection capabilities.
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Figure 14. Multi-target detection simulation of MC-CFAR algorithm.

4.1.3. Algorithm Time Complexity

The quality of an algorithm is often measured by two aspects Two aspects often mea-
sure the quality of an algorithm: on the one hand, each input of the algorithm can output
the correct result and stop; on the other hand, the efficiency of the algorithm is considered,
including the time complexity [25] and space complexity of the algorithm. Suppose the size
of the RDM domain is N × N; For the convenience of calculation, the number of sampling
points in the MC-CFAR algorithm is set to M = 1

L (N × N), where L is an integer greater
than 1. For the conventional CFAR algorithm, set the size of the sliding window to n× n,
where n is an integer greater than 1. The time complexity of the algorithm is shown in
formula (9).

O(CFAR) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(N2n2), CA
O(N2(n2 log2 n2)), OS
O(N2 log2 n + N2

n ), OSCA
O(N2

L log2
N2

L ) + O(N2

L ), MC

, (10)

To show the low time complexity of the MC-CFRA algorithm, we set L = 2 in the
simulation, i.e., extract half of the points of the RDM matrix. The selection of sampling
points in real-time applications is much smaller than this value (refer to Figure 11). The
reference window length (n) of the conventional CFAR algorithm takes a range of 12 to
18, here we let n = 16. The time complexity of each algorithm versus the size of the RDM
matrix as shown in Figure 15. The time complexity of the OS-CFAR algorithm increases
sharply with the increase of the area of the RDM detection matrix. When the number
of detection units is small, the time complexity difference among MC-CFAR, CA-CFRA,
and OSCA-CFAR algorithms is not apparent. However, with the increase of detection
matrix area, the low time complexity of the MC-CFAR algorithm becomes more and more
prominent. Compared with other algorithms, the MC-CFAR algorithm has the lowest time
complexity, which reduces the time delay of the radar in traffic surveillance.

In this chapter, the performance of the MC-CFAR algorithm is simulated and analyzed
from three aspects of algorithm sensitivity, multi-target detection performance, and algo-
rithm complexity. Additionally, compared with CA-CFAR, OS-CFAR, and OSCA-CFAR
algorithms, it can better meet the needs of radar applications in traffic scenarios.
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Figure 15. The relationship between the time complexity of the algorithm and the size of the
detection matrix.

4.2. Real Experiments

In this chapter, we port the algorithm to the radar system platform and show the
application effect of the algorithm in real traffic scenarios.

4.2.1. Define an Evaluation Method and Add a New Scenario

To better describe the algorithm’s performance and evaluate the advantages and
disadvantages between the algorithms, we have defined an evaluation method that is
easy to statistics and operates before testing. Figure 16 shows the detection process of
the CFAR detector. An RDM matrix containing two targets is sent to the CFAR detector.
The coordinates (x, y, z) of the two targets are (−1.4928, 48.3398, 6.9442) and (−2.7369,
40.4297, 16.5703) respectively, where x is the target speed, y is the target distance, and z
is the target power, as shown in Figure 16a. After passing through the CFAR detector (If
the detection cell is the target, it is marked as 1. Otherwise, it is marked as 0), as shown
in Figure 16b, the detection results are presented in two target area blocks, and there are
errors between the coordinates of some points and the real target points. For example,
the distance and speed of the detection points are (−1.4928, 48.3398) and (−2.2393, 39.5508),
respectively. The reason for this phenomenon is that in the actual radar detection process,
the energy of the target will expand to adjacent cells since the target is not an ideal pulse,
which makes the detection result of the constant false alarm detector appear blocky instead
of dotted.

Therefore, the 8-domain connectivity method is used for point aggregation to count
the number of targets detected by the detector. Moreover, at the same time, allow the actual
target coordinate value and the detection result coordinate value to have an error within 3σ,
where σ is the range resolution or the radar speed resolution. Given the above description,
when analyzing the detection results of each frame, this paper defines the data frame with
the target number of the detection result consistent with the real number and the coordinate
error within the range as a “good frame”. Additionally, in the experiment, the probability
of a “good frame” is used as an index to evaluate algorithm detection performance.

In addition, we add a new scenario (see Figure 17) for testing only pedestrian detection
because pedestrian trajectories are random and difficult to control. The results are used to
supplement and contrast the road vehicle detection experiments.
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(a) (b)

Figure 16. CFAR detection example. (a) RDM data. (b) CFAR result.

Figure 17. Additional experiments for pedestrian detection.

4.2.2. Algorithm Testing at an “Ideal Distance”

We first conduct multi-object detection experiments for each algorithm at ideal dis-
tances. Due to the difference between simulation and actual measurement, the algorithm de-
tection performance with the same configuration parameters will fluctuate due to changes
in radar system platforms or application scenarios. In order to have a fair comparison
of all the methods, we need to modify the configuration parameters of each algorithm to
achieve the best detection performance in the current scene and radar system. We choose
the median of the maximum distances the radar platform can detect as the “ideal distance”
to adjust the algorithm parameters. This scenario can minimize external factors, especially
the target SNR. The radar platform parameters are shown in Table 2, and the maximum
detection range of the radar system to pedestrians is 90–100 m, and the maximum detection
range of the radar platform to vehicles is 180–200 m. The median detection distance is
selected as the best detection distance of the radar platform for experiments. i.e., 40–50 m
is considered the “ideal detection environment” for pedestrian detection, and 90–100 m is
regarded as the “ideal distance” for vehicle detection.

Different algorithms are tested in the “ideal detection environment”, and the detection
performance of the algorithms is evaluated by “good frame” rate. Each algorithm is tested
on the radar platform, and the “good frame” rate of the algorithm under different parameter
configurations is shown in Figure 18. For CA-CFAR, OS-CFAR, and OSCA-CFAR, the de-
tection effect is mainly affected by the reference window and threshold factor. Different
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threshold factors and reference window sizes yield different “good frame” rates, and with
this parameter configuration, the higher the good frame rate, the better the radar detection
performance, as shown in Figure 18a–c. Figure 18d shows the relationship between the
MC-CFAR good frame rate and the number of sampling points, and the threshold factor.
For MC-CFAR, when the number of sampling points reaches a certain number, the detection
performance of the algorithm is mainly affected by the threshold factor.

(a) (b)

(c) (d)

Figure 18. The relationship between algorithm performance and different parameter configurations
at “ideal distance ”. (a) CA-CFAR test results. (b) OS-CFAR test results. (c) OSCA-CFAR test results.
(d) MC-CFAR test results.

After many experiments and statistics, the optimal parameter configuration and de-
tection effect of different algorithms on this radar platform can be obtained, as shown in
Table 3. The MC-CFAR has the best detection performance at “ideal distances” through ex-
periments.

Table 3. Radar system parameters.

Algorithm
Window

Length/Samples
Number

Threshold Factor
Good Frame Rate

(%)

CA-CFAR 10–14 5–6 30–33
OS-CFAR 10–16 8–10 30–33

OSCA-CFAR 10–14 7–9 28–31
MC-CFAR 384–896 6–8 40–43
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4.2.3. Algorithm Detection Probability at Different Distances

This section explores how the algorithm detects objects at different distances. For fair-
ness, we configure the optimal parameters for each detection algorithm, which are the
configuration parameters when the “good frame” rate is the highest in “ideal distance”
detection. The parameter selection is shown in Table 4.

Table 4. Parameter selection.

Algorithm
Window Length/Samples

Number
Threshold Factor

CA-CFAR 14 5
OS-CFAR 16 8

OSCA-CFAR 12 8
MC-CFAR 768 7

In the same environment, algorithm detection experiments are carried out at different
distances. The experimental results are shown in Figure 19.

(a) (b)

Figure 19. Algorithm testing at different distances. (a) Pedestrian detection results. (b) Vehicle
detection results.

Figure 19 shows the trend of the “good frame” rate of different algorithms at different
distances. Figure 19a shows the detection result of the algorithm on pedestrians. When
the target is close, the OS-CFAR algorithm has the best detection performance, and the
MC-CFAR detection algorithm has the worst effect. However, as the distance increases,
the detection performance of the MC-CFAR algorithm gradually exceeds other algorithms
and becomes the best. When the distance increases, the detection performance of all algo-
rithms begins to decline, but MC-CFAR still maintains the best detection effect. Figure 19b
shows the detection results of different algorithms on the vehicle at different distances.
Consistent with the former phenomenon: when the target is close to the radar, the detection
effect of MC-CFAR is poor. As the distance increases, the detection effect of MC-CFAR
gradually rises and becomes the best among the algorithms.

Through the analysis of close-range target data, we preliminarily give the reasons for
the decline in detection accuracy of the MC-CFAR algorithm. On the one hand, with the
decrease in the distance between the target and the radar, the power of the target echo
becomes stronger, which leads to a larger diffusion range of the sidelobe energy around.
On the other hand, when the target is in close range, the shape of the target can not be
ignored, that is, the target changes from point target to block target in the detector. Due to
the different reflected energy intensity in different areas, the probability of isolated clutter
points around the target will be increased. Compared with vehicles, pedestrians have
more irregular shapes and generate more clutter points. The power of these clutter points
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is higher than the background noise power and lower than the target main lobe energy,
they are easier to be detected by MC-CFAR with the highest detection sensitivity. So the
“good frame” rate of the MC-CFAR algorithm is reduced at a close distance, especially for
pedestrian detection.

The experimental results show that compared with other CFAR algorithms, the MC-
CFAR algorithm has higher detection sensitivity, especially for medium and long-range
targets. However, the accuracy of the MC-CFAR algorithm in the detection of close-range
targets is reduced, especially for the detection of irregular moving targets. Fortunately,
although the false alarm rate has increased, the target information is not lost. In addition, it
is worth noting that the MC-CFAR has the lowest algorithm complexity in the actual test
process, as shown in Table 5.

Table 5. Algorithm running clock cycles (time complexity).

Algorithm Clock Cycle

CA-CFAR 11,478,544
OS-CFAR 524,288

OSCA-CFAR 234,837
MC-CFAR 8448

In this chapter, the multi-target detection experiments of pedestrians and vehicles are
carried out on the CFAR detection algorithm through the real radar platform. Compared
with the traditional algorithm, the MC-CFAR algorithm has higher detection sensitivity
and accuracy and better adapts to the traffic environment.

5. Conclusions

In this work, a CFAR algorithm based on the Monte Carlo principle is proposed for
millimeter-wave radar moving targets detection in the road traffic environment. Numerical
simulations and real experiments are also provided and analyzed. The algorithm has the
following characteristics and advantages: (i) Random sampling of the entire RDM matrix
area instead of conventional reference window design and sliding is the most significant
feature of the MC-CFAR algorithm. (ii) In the road traffic environment, compared with the
conventional CFAR algorithm, MC-CFAR has higher detection sensitivity because it can
obtain more background noise sample points, which is attributed to the overall sampling
of RDM. (iii) In particular, the MC-CFAR algorithm greatly reduces the time complexity of
detection, which is of great help to improve the timeliness of radar traffic applications.

In future work, on the one hand, we study about algorithm performance improvement:
(1) further analyze the reasons for the degradation of the algorithm in close-range target
detection performance, reduce the false alarm rate of the algorithm close view detection,
and improve the algorithm full section detection performance. (2) optimize the sample point
extraction strategy and interference point suppression method to improve the algorithm
robustness. On the other hand, extending the application area of the algorithm: due to
the high sensitivity and low CFAR loss characteristics of the MC-CFAR algorithm, more
target details can be retained when applied to target-background separation, which makes
it possible to apply the algorithm to the field of radar imaging. We hope the work can
provide a new idea for radar CFAR research.
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Abbreviations

The following abbreviations are used in this manuscript:

ITS Intelligent Transportation Systems
CFAR Constant False Alarm Detection
RDM Range–Doppler Matrix
ADC Analog-to-Digital Converter
FFT the Fast Fourier Transform
RF Radio Frequency
SNR Signal-to-Noise Ratio
Pf a False Alarm Probability
Pf d Detection Probability
CA-CFAR Cell Average Constant False Alarm Detection
OS-CFAR Ordered Statistical Constant False Alarm Detection
OSCA-CFAR An algorithm to combine the CA-CFAR algorithm and the OS-CFAR algorithm
MC-CFAR The algorithm proposed in this paper
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Abstract: The target signal-to-noise ratio (SNR) can be notably improved by coherent-on-receive
synthesis (CoRS) in distributed coherent aperture radar (DCAR). A core challenge of CoRS is to
estimate the coherent parameters (CPs), including time, frequency, and phase, in order to cohere
the multi-radar within DCAR. Conventional methods usually rely on the target’s own information
to estimate the CPs, which is not available in highly dynamic environments. Additionally, the CPs
of different targets, especially the phase, are unequal in high-frequency systems. This means that
we cannot directly use the CPs of one target to compensate for others. To address these issues, an
adaptive CoRS method using the dominant scatterer is proposed for millimeter-wave (MMW) DCAR
in this paper. The basic idea is to correct the CPs of the dominant scatterer to compensate for other
targets. The novelty lies in the adaptive phase compensation based on the estimated CPs. This
phase compensation depends on a series of discrete phase values, which are derived from the limit
of synthesis loss within a given configuration. Hence, this method avoids the requirement of prior
information or massive searches for the possible locations of other targets. Moreover, the dominant
scatterer in this work is an unknown target with strong scattering points in radar detection scenarios,
and we focus on analyzing its selection criteria. To validate the proposed method, a prototype system
has been fabricated and evaluated through experiments. It is demonstrated that the multi-target can
realize CoRS effectively, thus enhancing the target SNR.

Keywords: coherent-on-receive synthesis; distributed coherent aperture radar; coherent parameters;
dominant scatterer

1. Introduction

Distributed coherent aperture radar (DCAR), which is composed of several inde-
pendent unit radars, has potential for radar detection, tracking, and recognition [1–3].
These unit radars can be placed in different positions and used together in a coherent and
cooperative way to enhance the target energy significantly.

A typical mode of DCAR is coherent-on-receive synthesis (CoRS) [4–6]. With this
mode, DCAR could promote the target signal-to-noise ratio (SNR) by M2 times, where M
is the number of unit radars. In CoRS, the multiple-unit radars rely on hardware for syn-
chronization and transmit orthogonal signals [7–9]. This hardware allows the target echoes
to be separated at each receiver. By analyzing these echoes, we can estimate the coherent
parameters (CPs) between different unit radars, including transmission time, frequency,
and phase [10,11]. The estimated CPs can then be used to carefully adjust the echoes so that
the echoes can be added together at the same time and phase. The synthesis performance
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of DCAR depends on high-accuracy CP estimations. Moreover, the demands for estimation
accuracy also increase with the radar carrier frequency and bandwidth. Therefore, the
majority of the research on CoRS is focused on the low-frequency system [12–14].

To align the time and phase between unit radars, hardware-based methods have
been investigated in the literature [15–18]. They utilize wired or wireless connections
to obtain high-precision synchronization. However, these methods commonly require
highly complex hardware. Additionally, even with almost ideal synchronization, real-
time monitoring and calibration are still required in practical applications because of
hardware instability.

Estimating the CPs based on observed target echoes is an effective way to solve the
above problems. Existing estimation methods can be roughly divided into two categories.
One is detecting the target’s own peak in returns for estimations [19,20], and the other is
utilizing a cooperative target with prior information, called the dominant scatterer [21,22].
However, these methods are quite limited in highly dynamic scenarios. The former will
fail when all scattering points of the target are undetectable, and the premise of the latter,
requiring prior information, is hardly valid in many applications. Furthermore, using
the estimated CPs of one target, the phases of other targets may still not be aligned in
multiple-unit radars. This is caused by the spatial phase between different targets, which
can be neglected in previous low-frequency systems. In high-frequency systems, such as
millimeter-wave (MMW), the spatial phase may vary significantly, so we cannot directly
use the estimated CPs of one target to compensate for the others.

In this paper, a novel CoRS method is proposed to solve the above issues for MMW
DCAR. The basic idea is to correct the CPs of the dominant scatterer to compensate for
other targets. Unlike the previous works that use a pre-positioned corner reflector or
active backscatter transponder as the dominant scatterer, the proposed method employs
an unknown target with strong scattering points to estimate the CPs in radar detection
scenarios. For the dominant scatterer, we focused on analyzing its selection criteria and
procedure. Furthermore, an adaptive phase compensation approach was explored to
correct the estimated CPs of the dominant scatterer. This approach can compensate for
the phases of different targets using a series of discrete phase values. Different from the
general approaches that compensate the phases by searching for the possible positions of
other targets point-by-point, the determination of discrete phase values in this approach
is derived by the limit of synthesis loss within a given MMW DCAR configuration. This
approach can simultaneously align the phase of targets located in a certain region based on
the phase relationship between multiple unit radars. Hence, it can significantly reduce the
number of phase compensations searches and remove the need for the spatial position of
other targets. Finally, a prototype system composed of three MMW radars with a common
trigger was fabricated, and the proposed concepts were confirmed via measurements with
this prototype system. The main contributions in this work can be summarized as follows:

1. We first introduce the coherent-on-receive synthesis into the millimeter-wave dis-
tributed coherent aperture radar. This method can be widely used in millimeter-wave
radar applications, such as autonomous driving and precision guidance;

2. An adaptive compensation approach is proposed to correct the estimated CPs of the
dominant scatterer. On the one hand, prior information about the dominant scatterer
is not required, and we can choose an unknown target with strong scattering points
to estimate the CPs in radar detection scenarios. On the other hand, there is also no
need for the spatial position of other targets as prior information;

3. The proposed MMW DCAR can be adaptively cohered based on observed target
echoes, thus reducing the hardware demands for high-accuracy synchronization.

The remainder of this paper is organized as follows. In Section 2, we introduce
the workflow and signal model of CoRS in DCAR. In Section 3, the proposed method is
described and derived in detail. Moreover, its constraints are also analyzed to present the
selection criteria of the dominant scatterer. In Section 4, the proposed method’s evaluation
via simulations is reported. Section 5 illustrates the real-data results with a prototype
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system to verify the feasibility of the proposed method. Finally, we conclude this paper
with a summary of the main outcomes in Section 6.

2. Background

2.1. Workflow of CoRS in DCAR

The distributed coherent aperture radar (DCAR) is composed of M unit radars. An M2

SNR gain could be obtained over a unit radar when coherence-on-receive synthesis (CoRS)
is realized, which makes it capable of attaining the equivalent performance compared with
a large aperture radar.

There are three steps, including system hardware synchronization, coherent parame-
ters estimation, and cohere-on-receive synthesis, in the operation procedure of CoRS, as
displayed in Figure 1. The workflow can be illustrated as follows:

1. The multiple-unit radars within DCAR rely on wired or wireless connections to ensure
that they can operate at the same time.

2. Due to the imperfect synchronization and the unequal range between different unit
radars and targets, there are multidimensional differences between any two radars,
called coherent parameters (CPs). To solve this problem, the multiple unit radars
transmit the orthogonal waveforms with the same time base, which allows the target
echoes to be separated at each receiver’s matched filter output. By detecting the target
peaks in different echoes, the CPs can be estimated.

3. The estimated CPs are used to adjust the echoes of multiple unit radars, and then
the adjusted echoes are added together with the same time and phase to obtain the
SNR gain.

 

Figure 1. The workflow diagram of CoRS in DCAR.

2.2. Signal Model

Multiple-unit radars transmit the orthogonal waveforms to guarantee that mixed
echoes can be separated at the receivers. The basis waveform in this work is the fast chirp
sequence [23–27], where a series of chirp signals is successively transmitted in one coherent
processing interval (CPI). With the basis waveform, various orthogonal techniques have
been reviewed in [28], such as time division, frequency division, and code division.

The frequency-division method limits the available bandwidth for each transmitter as
well as the range resolution [29,30]. Moreover, its intermediate frequency (IF) should have
a large bandwidth to hold the mixer output, resulting in high hardware costs. The code-
division method modulates different phase sequences on the transmission pulses [31–33].
Due to its imperfect orthogonality, this waveform will have relatively high sidelobes in the
spectrum. The high sidelobes may reduce the estimation accuracy of coherent parameters,
resulting in an overall loss of synthesis.
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Considering the above issues, we recommend using the time-division method. This
method is simple, but the unambiguous Doppler range will be reduced. To solve this
problem, staggered PRT or multiple PRT approaches can be used to estimate the ambi-
guity number [34,35]. These approaches have a good performance in resolving velocity
ambiguity, yet have a relatively low data rate. Additionally, the time-division method will
also receive interference signals from other radars in many applications, such as traffic
scenarios. Although the parameters of the signals may be different, they may produce
non-phase-referenced interference, which will limit the performance of CoRS. In this regard,
interference mitigation approaches [36–39] can be employed to solve this issue. Based on
these approaches, we can first estimate the interfering signal. Then, after removing the
estimated interference, the radar echoes can be restored with sparsity-based techniques.

Utilizing the time-division method, as shown in Figure 2, in a single chirp duration,
only one unit radar transmits a linear chirp of the form:

s(t) = exp
[

j2π

(
f0t +

1
2

kt2
)]

, (1)

with carrier frequency f0, frequency slope k = B/T, where B is the sweep bandwidth and
T represents pulse repetition time (PRT).

Figure 2. The fast chirp sequence waveform used in the MMW DCAR with time-division method.

Since the proposed MMW DCAR only relies on a common trigger for synchronization,
it leads to multidimensional synchronization errors between any two unit radars. Assuming
that the synchronization errors of the m-th radar, compared with the reference radar (the
first radar), include time synchronization error ΔTm, frequency synchronization error Δ fm,
and phase synchronization error Δϕm, the echo of the m-th transmitting radar and the n-th
receiving radar can be expressed as

smn(t)= exp
[

j2π

(
( f0 + Δ fmn)(t− τmn) +

1
2

k(t− τmn)
2
)
+ jΔϕmn

]
, (2)

with
τmn =

Rmn + vmnt
c

+ ΔTmn (3)

ΔTmn = ΔTm − ΔTn (4)

Δ fmn = Δ fm − Δ fn (5)

Δϕmn = Δϕm − Δϕn (6)

where Rmn and vmn represent the sum of the propagation distance and radial velocity of
the target, and c is the speed of light.

Further, the beat signal can be obtained with de-chirp processing as

sbeat,mn(t) = exp
[

j2π

(
( f0 + Δ fmn)τmn + kτmnt− 1

2
k(τmn)

2
)
+ jΔϕmn

]
. (7)
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Supposing t = ts+tp, where ts is the sampling time in PRT and tp= p × PRT denotes
the velocity dimension sampling time, the beat signal can be modified as

sbeat,mn
(
ts, tp

)
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩j2π

⎡⎢⎢⎢⎣
(

kRmn+ f0vmn+Δ fmnvmn−kvmnΔTmn+kvmnts
c + kΔTmn − Δ fmn

)
ts

+
(

f0vmn+Δ fmnvmn−kvmnΔTmn+kvmnts
c

)
tp

+
(
( f0+Δ fmn+kΔTmn)Rmn

c + ( f0 + Δ fmn)ΔTmn − kΔT2
mn

2

)
− k

2

(
Rmn+vmnts+vmntp

c

)2

⎤⎥⎥⎥⎦+ jΔϕmn

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (8)

Note that the quadratic phase terms within the beat signal have been neglected because
their contribution to the phase change is small, referring to [22]. Further, the beat signal
can be simplified as

sbeat,mn
(
ts, tp

)
= exp

[
j2π

(
Φsts + Φptp + ΦC

)] · exp[jΔϕmn], (9)

where
Φs = kΔTmn − Δ fmn +

kRmn + f0vmn

c
(10)

Φp =
f0vmn + Δ fmnvmn − kvmnΔTmn

c
(11)

ΦC =
f0Rmn + Δ fmnRmn − kRmnΔTmn

c
+ ( f0 + Δ fmn)ΔTmn. (12)

The classical signal model with the time-division method was derived. Usually, the
sampled data are stacked together in a cube according to the fast time and slow time. Hence,
the range and velocity of the targets are separately extracted with a two-dimensional fast
Fourier transform (2D-FFT) from this data cube, which can be expressed as

Smn( fr, fv) = F [
sbeat,mn

(
ts, tp

)]
= sinc( fr −Φs) · sinc

(
fv −Φp

) · exp[j2π(ΦC)] · exp[jΔϕmn],
(13)

where F [·] represents the 2D-FFT processing.
Clearly, the target can be focused on the range–Doppler spectrum; however, there is

an uncertain deviation caused by the synchronization errors. To estimate the deviations in
range or the Doppler spectrum, we can detect the target peak in different echoes. However,
the phase deviation, as in Equation (12), which is proportional to the radar carrier frequency,
is related to the target’s spatial position and the synchronization errors. Therefore, it may
vary significantly for different targets in high-frequency systems. This means that the
available region for estimating CPs of phases is quite limited. When we compensate the
phases using the CPs of one target, the phases of other targets cannot be aligned, leading to
a great CoRS loss.

3. Proposed Method

To solve the above problem, a novel coherent-on-receive synthesis method using the
dominant scatterer is proposed, and its processing flow is presented in Figure 3.

Figure 3. The processing flow of the proposed method using the dominant scatterer.
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First, the proposed method uses the dominant scatterer to estimate CPs, in which the
dominant scatterer is realized as an unknown strong target in radar detection scenarios.

Second, the echoes of multiple unit radars can be compensated with the estimated
CPs of the dominant scatterer. In this way, the range and velocity of different targets in
multiple unit radars can be aligned, but the phase requires further adjustment.

Third, an adaptive compensation approach was explored to align the phases of various
targets in multiple unit radars. The phases of different targets are compensated with discrete
phase values. Unlike the general approaches that compensate the phases by searching for
the possible positions of other targets point-by-point, the determination of discrete phase
values in this work is derived by the limit of synthesis loss within a given MMW DCAR
configuration. This approach can simultaneously align the phase of targets located in a
certain region based on the phase relationship between multiple unit radars. Hence, it can
significantly reduce the number of phase compensation searches, and there is no need for
the spatial position of other targets.

Furthermore, we derived the constraints of the proposed method and focused on
analyzing the selection criteria and procedure of the dominant scatterer. The theoretical
CoRS gain is also deduced to evaluate the performance of the proposed method in practice.

3.1. CP Estimation Using Dominant Scatterer

According to the focusing positions, we can estimate the CPs using the dominant
scatterer. In previous works, the dominant scatterer was realized as a pre-positioned corner
reflector or active backscatter transponder, which is hardly valid in high-dynamic scenarios.
Instead, the dominant scatterer in this work is defined as an unknown target with strong
scattering points in radar detection scenarios, such as vehicles, signs, etc.

The specific estimation method is similar to conventional methods. Assuming that
channel 1T1R is the reference channel, which consists of the first transmitting and receiving
radar, according to Equation (9), the beat signal in channel 1T1R without synchronization
errors can be derived and simplified as

sbeat,11
(
ts, tp

)
= exp

{
j2π

[(
f0v11

c
+

kR11

c

)
ts +

f0v11

c
tp +

f0R11

c

]}
. (14)

Correspondingly, the estimated CPs for time can be obtained as

ΔT̂mn = ΔTmn − Δ fmn

k
+

Rmn − R11

c
+

f0(vmn − v11)

ck
. (15)

Similarly, the estimated CPs for velocity can be calculated as

ΔV̂mn =
vmn − v11

2
+

Δ fmnvmn

2 f0
− kvmn

2 f0
ΔTmn. (16)

Moreover, the CPs for phase can also be estimated as

Δϕ̂mn = 2π

[
( f0 + Δ fmn)ΔTmn +

f0(Rmn − R11)

c
+

(Δ fmn − kΔTmn)Rmn

c

]
+ Δϕmn. (17)

3.2. Echoes Compensation and Analysis

Using the estimated CPs, as in Equations (15) to (17), the beat signal can be compensated as

s′beat,mn
(
ts, tp

)
= sbeat,mn

(
ts, tp

) · exp
(−j2πkΔT̂mn · ts

) · exp
(−j2πk f0ΔV̂mn · tp

) · exp(−jΔϕ̂mn). (18)

After compensation, the multidimensional parameters can be aligned with the refer-
ence channel. This means that the echoes can be added together to enhance the SNR of the
dominant scatterer. However, due to the spatial difference, the compensated signal of other
weak targets may have deviations. These deviations may lead to a great synthesis loss of
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weak targets. Therefore, we carefully derive the deviations and present an analysis thereof
in the following.

Assuming that the CPs of a weak target can be estimated, the ideal compensated signal
can be aligned to the reference channel and is expressed as

s′beat,mn
(
ts, tp

)∣∣
DS→WT = exp

[
j2π

((
f0 v11|WT

c
+

kR11|WT
c

)
ts +

f0 v11|WT
c

tp +
f0R11|WT

c

)]
, (19)

where R11|WT and v11|WT denote the range and velocity of the weak target in reference
channel.

Due to the lack of the estimated CPs of the weak target, we can only utilize the CPs
of the dominant scatterer to compensate for the beat signal. In this way, the compensated
signal can be derived as

s′beat,mn
(
ts, tp

)∣∣
DS→WT = sbeat,mn

(
ts, tp

)∣∣
WT · exp

(−j2πkΔT̂mn · ts
) · exp

(−j2πk f0ΔV̂mn · tp
) · exp(−jΔϕ̂mn)

= exp

⎧⎪⎪⎨⎪⎪⎩j2π

⎡⎢⎢⎣
(

k( Rmn |WT− Rmn |DS+ R11 |DS)
c +

f0( vmn |WT− vmn |DS+ v11 |DS)
c − k( vmn |WT− vmn |DS)ΔTmn

c

)
ts

+
(

f0( vmn |WT− vmn |DS+ v11 |DS)
c +

(Δ fmn−kΔTmn)( vmn |WT− vmn |DS)
c

)
tp

f0( Rmn |WT− Rmn |DS+ R11 |DS)
c +

(Δ fmn−kΔTmn)( Rmn |WT− Rmn |DS)
c

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

(20)

Comparing Equations (19) and (20), it is apparent that the results including range,
velocity, and phase are shifted. Specifically, the deviations can be calculated as

ΔRmn|DS→WT ≈ Rmn|WT − Rmn|DS + R11|DS − R11|WT
2

, (21)

ΔVmn|DS→WT ≈ vmn|WT − vmn|DS + v11|DS − v11|WT
2

, (22)

Δϕmn|DS→WT = 2π

(
f0(Rmn|WT − Rmn|DS + R11|DS − R11|WT)

c
+

(Δ fmn − kΔTmn)(Rmn|WT − Rmn|DS)

c

)
. (23)

Herein, the range and velocity deviations are simplified because the neglected terms
are much smaller than the reserved ones, which can be expressed as follows.

f0( vmn|WT − vmn|DS + v11|DS − v11|WT)

c
− k( vmn|WT − vmn|DS)ΔTmn

c
� k( Rmn|WT − Rmn|DS + R11|DS − R11|WT)

c
, (24)

k(vmn|WT − vmn|DS)ΔTmn

c
� f0(vmn|WT − vmn|DS + v11|DS − v11|WT)

c
. (25)

Obviously, the deviations in range and velocity are caused by the geometry of the
target relative to multiple unit radars. It is difficult to further compensate them due to
the lack of a weak target position. In this regard, we define the constraints for dominant
scatterer compensation so that these two deviations cannot exceed half a resolution cell
after compensation. The specific derivation and analysis are presented in Section 3.4.

The phase deviation, as in Equation (23), is composed of two terms. The former is
only determined by multi-target spatial positions, and the latter is a coupling term with
the spatial positions and the synchronization errors. Similarly, it is difficult to accurately
compensate for the phases due to the lack of weak target information. Moreover, the phase
deviation is proportional to the radar carrier frequency. It will vary significantly for different
targets in the MMW system, and hence is required to be adjusted for effective CoRS.

3.3. Adaptive Compensation for Phases

To align the phases of different targets in multi-channels, an adaptive compensation
method is proposed. Considering that the phase deviation is composed of two terms, we
performed two-step compensations to align the phases in multi-channels.

First, we utilized the information and CPs of the dominant scatterer to compensate
for the coupling term, which is composed of the spatial positions and the synchronization
errors. Thereafter, due to the lack of weak target information, we propose to compensate the
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phase adaptively with discrete phase values. The determination of discrete phase values is
derived from the limit of synthesis loss within a given MMW DCAR configuration. Hence,
this approach can simultaneously align the phase of targets located in a certain region
based on the phase relationship between multiple unit radars. It can significantly reduce
the compensation number and remove the need of the spatial position of weak targets.

3.3.1. Compensation for Coupling Term

To eliminate the coupling term of phase deviation, the signal of each channel can be
compensated with the CPs of the dominant scatterer and can be expressed as

Scorr( fr, fv) = F
[

s′beat,mn
(
ts, tp

)∣∣
DS→WT

] · exp
(
−j2π

(
k(Runit − Rmn|DS )ΔT̂mn

c

))
. (26)

where Runit = [R1, R2, · · · , Rmax] represents the cells in range spectrum.
After compensating for the coupling term, the phase deviation of the weak target can

be derived as

Δϕ′mn|DS→WT = Δϕmn|DS→WT − 2π
[

k( Rmn |WT− Rmn |DS)ΔT̂mn
c

]

= 2π

[ f0( Rmn |WT− Rmn |DS+ R11|DS− R11|WT)
c

+
k( Rmn |WT− Rmn |DS)

2

c2 +
f0( Rmn |WT− Rmn |DS)( vmn |WT− vmn |DS)

c2

]

≈ 2π
[

f0( Rmn |WT− Rmn |DS+ R11|DS− R11|WT)
c

]
.

(27)
Herein, it is apparent that the compensated phase deviation only relies on the multi-

target spatial positions.

3.3.2. Compensation for Spatial Phase

Although the compensated phase deviation is only related to the multi-target positions,
aligning the phases of weak targets is a challenging task. On the one hand, we cannot obtain
prior information on weak targets to compensate the phase directly. On the other hand,
compensating via searching for the possible positions of the weak targets leads to a large
number of compensations. To this end, we propose to compensate the phase adaptively
with discrete phase values, which are derived by the limit of synthesis loss within a given
MMW DCAR configuration.

First, in a given configuration, the relative relationships of the compensated phase
deviations of the weak targets within multi-channel are derived. Second, we define the
acceptable synthetic gain loss and construct an inequality equation from this loss. Finally,
the phase tolerance is deduced by solving the inequality equation. The phase tolerance is a
discrete phase value, which can be defined as the maximum acceptable phase difference
between any two channels. According to this tolerance, we can adjust the phases of multi-
channel adaptively with the relative relationship. The specific derivation of this approach
is described as follows.

The compensated phase deviation in channel mTnR in Equation (27) can be rewritten as

Δϕ′mn|DS→WT = 2π

(
f0
(

Rm|WT + Rn|WT − Rm|DS − Rn|DS + 2R1|DS − 2R1|WT
)

c

)
, (28)

where Ri|DS and Ri|WT represent the one-way propagation range from dominant scatterer
and weak target to i-th radar.
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In a given MMW DCAR configuration, the relative relationship of the compensated
phase deviations can be derived as⎧⎨⎩

Δϕ′1n|DS→WT = Δϕ′n1|DS→WT
Δϕ′mn|DS→WT = Δϕ′1m|DS→WT + Δϕ′1n|DS→WT
Δϕ′nn|DS→WT = 2× Δϕ′1n|DS→WT .

(29)

Thereafter, we analyzed and derived the signal power after CoRS. Herein, it is assumed
that multi-channel signals after compensation have the same amplitude and only the phase
deviations. For the MMW DCAR composed of N unit radars, the signal power of N2

channels after CoRS can be expressed as

PCoRS = [exp(jΔϕ′11|DS→WT ) + · · ·+ exp(jΔϕ′mn|DS→WT ) + · · ·+ exp(jΔϕ′NN |DS→WT )]
2

=

[
N
∑

m=1

N
∑

n=1
exp(jΔϕ′mn|DS→WT )

]2

=

∣∣∣∣[ N
∑

m=1
exp(jΔϕ′1m|DS→WT )

]
×

[
N
∑

n=1
exp(jΔϕ′1n|DS→WT )

]∣∣∣∣2
=

[
N
∑

m=1
exp(jΔϕ′1m|DS→WT )

]4

.

(30)

Correspondingly, the theoretical signal power after synthesis, in which each channel
is aligned to the reference channel, can be denoted as

POpt =

[
N

∑
m=1

N

∑
n=1

[
exp

(
jΔϕ′11|DS→WT

)]]2

= N4. (31)

Due to the phase deviations, there is a certain gain loss. We define the acceptable
synthetic gain loss as PGL, which can be expressed as

PCoRS ≥ POpt − PGL

⇔
[

N
∑

m=1
exp(jΔϕ′1m|DS→WT )

]4

≥
(

10−PGL/10
)
× N4

⇔
[

N
∑

m=1
exp(jΔϕ′1m|DS→WT )

]2

≥
(

10−PGL/20
)
× N2.

(32)

According to the Euler formula, it can be rewritten as[
N
∑

m=1
exp(jΔϕ′1m|DS→WT )

]2

≥
(

10−PGL/20
)
× N2

⇔
[(

N
∑

m=1
cos(Δϕ′1m|DS→WT )

)
+ j

(
N
∑

m=1
sin(Δϕ′1m|DS→WT )

)]2

≥
(

10−PGL/20
)
× N2

⇔ N +
N
∑

m=1

N
∑

n =m
cos(Δϕ′1m|DS→WT − Δϕ′1n|DS→WT ) ≥

(
10−PGL/20

)
× N2.

(33)

By solving the inequality equation, Equation (33), we can obtain a certain phase
tolerance. This tolerance is defined as the maximum acceptable phase difference between
any two channels and can be derived as

∀m, n,
(

N2 − N
)
cos(Δϕ′1m|DS→WT − Δϕ′1n|DS→WT ) ≥

(
10−PGL/20

)
× N2 − N

⇒ ∀m, n, |Δϕ′1m|DS→WT − Δϕ′1n|DS→WT | ≤ arccos
(
(10−PGL/20)×N−1

N−1

)
= ϕTole.

(34)

This phase tolerance is a discrete phase value, that is used to guide the compensation of
each channel. For an arbitrary channel, we can cyclically compensate a phase value to satisfy
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the derived tolerance. Within the phase region [−π, π], the number of compensations can
be denoted as

Numcorrect = �π/ϕTole�, (35)

and the value for each compensation can be expressed as

ϕcorrect =
2kϕπ

�π/ϕTole� , kϕ = 0, 1, · · · , �π/ϕTole� − 1. (36)

It should be noted that only the channels from 1T2R to 1TNR are required to be
compensated. Owing to the relationship, as in Equation (29), the remaining channels can be
compensated adaptively. Therefore, the total number of compensations for N unit radars
can be deduced as

NumAll = (Numcorrect)
N−1 = (�π/ϕTole�)N−1. (37)

Utilizing the proposed method, the phases of the weak target can be aligned in one
of the sets of compensations. This method can simultaneously align the phase of targets
located in a certain region based on the phase relationship between multiple unit radars.
Hence, it can significantly reduce the number of compensations, and there is no need for
the spatial position of other targets.

3.4. Selection of Dominant Scatterer

The dominant scatterer in this work is defined as an unknown target with strong
scattering points in radar detection scenarios, such as vehicles, signs, etc. Its selection
may directly affect the synthetic performance of other targets. Therefore, we focused on
analyzing the selection criteria and procedure of the dominant scatterer.

The constraints of the proposed method will vary with the positions of the dominant
scatterer, and the synthetic gain of weak targets also relies on the dominant scatterer’s SNR.
In this regard, we defined the constraints using the dominant scatterer and performed the
simulations on the influence of the dominant scatterer position and SNR. The selection
criteria and procedure can be obtained from the results.

3.4.1. Analysis of Constraints

In Section 3.2, we derived and analyzed the deviations in range and velocity after
compensation using the dominant scatterer. These two deviations may lead to the failure
of the proposed method. This means that the compensations using the dominant scatterer
are valid for a certain region, as depicted in Figure 4. Specifically, we defined the constraint
that the deviations could not exceed half of a resolution cell after compensation.

Figure 4. Conceptual diagram of constraints for the compensation using the dominant scatterer.

For the purpose of simplification, the MMW DCAR used in this work was considered
a rigid system. Namely, the relative motion states of multi-unit radars can be considered
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constant. On this basis, a typical scenario composed of the MMW DCAR and two targets is
displayed in Figure 5. The specific constraints in this scenario are derived as follows.

Figure 5. Geometric diagram of the DCAR and multi-target.

The compensated signals of the weak target should be focused on the same range cell
in each channel, which can be expressed as

ΔRmn

∣∣∣∣DS→WT =

∣∣∣∣ Rmn|WT − Rmn|DS + R11|DS − R11|WT
2

∣∣∣∣ ≤ Rres

2
, (38)

where Rres represents the range resolution. As shown in Figure 5, the coordinates of the
weak target are required to meet the first constraint, which can be further deduced as∣∣∣∣∣∣

√
(Rx2 − l1)

2 + R2
y2 +

√
(Rx2 − l2)

2 + R2
y2 − 2

√
R2

x2 + R2
y2

−
√
(Rx1 − l1)

2 + R2
y1 −

√
(Rx1 − l2)

2 + R2
y1 + 2

√
R2

x1 + R2
y1

∣∣∣∣∣∣ ≤ Rres. (39)

Similarly, the compensated signal must be focused on the same velocity cell, which
can be denoted as

ΔVmn|DS→WT =

∣∣∣∣ vmn|WT − vmn|DS + v11|DS − v11|WT
2

∣∣∣∣ ≤ Vres

2
, (40)

where Vres represents the velocity resolution. Then, we can derive the second constraint for
the weak target as∣∣∣∣∣∣∣∣∣∣

(
Ry2√

(Rx2−l1)
2+R2

y2

+
Ry2√

(Rx2−l2)
2+R2

y2

− 2Ry2√
R2

x2+R2
y2

)
v2

−
(

Ry1√
(Rx1−l1)

2+R2
y1

+
Ry1√

(Rx1−l2)
2+R2

y1

− 2Ry1√
R2

x1+R2
y1

)
v1

∣∣∣∣∣∣∣∣∣∣
≤ Vres. (41)

Furthermore, due to the shift of the range spectrum caused by the synchronization
errors, the proposed method requires that the multi-target in all channels must be within
the observation region after translation, which can be denoted as

∀m, n, 0 < R̂mn < Rmax, (42)

where Rmax is the maximum observation in the range spectrum. Hence, the third constraint
can be derived as

∀m, n,

⎧⎨⎩ R−
∣∣∣ cΔTmn

2 − cΔ fmn
2k

∣∣∣ > 0

R +
∣∣∣ cΔTmn

2 − cΔ fmn
2k

∣∣∣ < Rmax
⇔

∣∣∣∣ cΔTmn

2
− cΔ fmn

2k

∣∣∣∣ < R < Rmax −
∣∣∣∣ cΔTmn

2
− cΔ fmn

2k

∣∣∣∣. (43)
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In summary, the compensations for weak targets are valid for a certain region that
relies on the position and velocity of the dominant scatterer. We performed the simulations
on this in the next subsection to analyze the selection criteria for the dominant scatterer.

3.4.2. Selection Criteria

We performed the simulations to determine the influence of the dominant scatterer
position and SNR. The selection criteria and procedure can be obtained from the results.

The comparison tests are composed of four scenarios in which the dominant scatterer
is located in different positions, as given in Table 1. Moreover, the parameters of the MMW
DCAR configuration and the weak target traversal region are presented in Table 2.

Table 1. Parameters of the dominant scatterer position.

Parameters Test 1 Test 2 Test 3 Test 4

Cross range 0 m −10 m 0 m 0 m
Radial range 60 m 60 m 150 m 60 m

Velocity 20 m/s 20 m/s 20 m/s −5 m/s

Table 2. Parameters of the MMW DCAR configuration and weak target.

Parameter Value

MMW DCAR

Carrier frequency 77 GHz
Range resolution 0.5 m

Velocity resolution 0.3 m/s
Number of radars 3

Radar spacing 0.3 m/0.2 m

Weak Target

Traversal region in cross range [−15 m 15 m]
Traversal region in radial range [10 m 210 m]

Traversal region in velocity [−10 m/s 10 m/s]
Traversal interval in cross range 0.15 m
Traversal interval in radial range 1 m

Traversal interval in velocity 0.2 m/s

According to Equations (21) and (22), the deviations in range and velocity are calcu-
lated and depicted in Figures 6–9. The effective regions, satisfying the constraint that the
deviations cannot exceed half of a resolution cell after compensation, are also presented.
The part marked in red corresponds to the effective region, which covers the majority of
radar detection scenarios. This means that the proposed method can be effectively adapted
to many applications.

  
(a) (b) (c) 

Figure 6. The simulation results of Test 1. (a,b) display the range and velocity deviations.
(c) represents radar detection scenario, including effective region (red) and ineffective region (gray).
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(a) (b) (c) 

Figure 7. The simulation results of Test 2. (a,b) display the range and velocity deviations.
(c) represents radar detection scenario, including effective region (red) and ineffective region (gray).

  
(a) (b) (c) 

Figure 8. The simulation results of Test 3. (a,b) display the range and velocity deviations.
(c) represents radar detection scenario, including effective region (red) and ineffective region (gray).

  
(a) (b) (c) 

Figure 9. The simulation results of Test 4. (a,b) display the range and velocity deviations.
(c) represents radar detection scenario, including effective region (red) and ineffective region (gray).

As shown in Figures 6–9, it is apparent that the radial range and velocity of the
dominant scatterer have a negligible impact on the effective region. On the contrary, the
deviations will increase with the cross range, and the corresponding effective region will
reduce significantly, as shown in Table 3. Therefore, the first criterion is that the dominant
scatterer should be close to the normal direction of MMW DCAR, i.e., its azimuth should
be relatively small.

Table 3. The proportion satisfying the constraints.

Test 1 Test 2 Test 3 Test 4

Proportion 93.58% 89.84% 93.57% 93.58%
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The dominant scatterer in this work is a non-cooperative target, which may have
multiple scattering points at a short range [40]. The CP estimations require scattering point
matching; the multiple scattering points can lead to mismatching and a negative estimation.
Thus, we recommend choosing a target with a medium- or long-range as the dominant
scatterer, which is the second selection criterion.

Furthermore, the dominant scatterer’s SNR determines the accuracy of the CP esti-
mations, which potentially has an essential impact on the synthetic performance of weak
targets. In this regard, we performed the simulations on the synthetic gain loss of the weak
target with respect to the dominant scatterer’s SNR. The dominant scatterer SNR was set
from 10 dB to 25 dB with a 1 dB interval, and 1000 Monte Carlo simulations were performed
for each SNR.

The simulation results are displayed in Figure 10. As the dominant scatterer’s SNR
increases, the synthetic performance of the weak target is enhanced. In particular, the
synthetic performance tends to be stable with an SNR higher than 13 dB. Hence, the third
criterion is to choose one of the targets with a higher SNR as the dominant scatterer. For a
scenario containing multiple high SNR targets, these targets can all be used as the dominant
scatterer, and can then be further refined using the above two criteria.

Figure 10. The synthetic SNR gain loss of the weak target versus the dominant scatterer’s SNR.

In summary, the dominant scatterer in the paper can be defined as a medium- or
long-range target that is close to the radar’s normal direction. Moreover, its SNR should
be as higher than 13 dB as possible. According to these selection criteria, the selection
procedure of the dominant scatterer in practice is illustrated in Figure 11.

 

Target Returns

Range-Doppler Spectrum

The Group of Scattering 
Points after Detection

Th

Select the Scattering Point
with Minimum Azimuth

Dominant Scatterer

Select the Scattering Point
with Maximum Range

Select the Scattering Point
with Maximum SNR

2D FFT

Detection

None or Only One

Two or More

Two or More

None or Only One

Figure 11. The selection procedure of the dominant scatterer, where Th is set to 13 dB in this paper.
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3.5. Derivation of Theoretical Synthetic SNR

SNRs in multiple unit radars may be different due to the influence of noise. Hence, to
evaluate the proposed method, the theoretical synthetic SNR is required to be derived as
follows.

Assuming that the signal amplitude and noise power in channel mTnR are Kmn and
Pmn, the target SNR can be expressed as

SNRmn = K2
mn/Pmn. (44)

Thereafter, the theoretical signal amplitude after CoRS is the sum of the signal ampli-
tude in each channel, which is expressed as

Asig =
N

∑
m=1

N

∑
n=1

Kmn (45)

Similarly, the accumulated noise power after CoRS can be denoted as

PNoise =
N

∑
m=1

N

∑
n=1

Pmn. (46)

Therefore, the theoretical SNR can be obtained as

SNRtheory = A2
sig/PNoise =

(
N

∑
m=1

N

∑
n=1

Kmn

)2

/
N

∑
m=1

N

∑
n=1

Pmn . (47)

Let γmn= Pmn/P11, which indicates the noise power ratio of the channel mTnR to the
reference channel. Thereby, we can rewrite Equation (47) as

SNRTheory = 1
N
∑

m=1

N
∑

n=1
γmn

× 1
Pmn
×

(
N
∑

m=1

N
∑

n=1
Kmn

)2

= 1
N
∑

m=1

N
∑

n=1
γmn

×
(

N
∑

m=1

N
∑

n=1

√
γmn ×

√
SNRmn

)2

.
(48)

4. Simulations

We assessed the proposed method via simulations and present an analysis thereof. A
typical scenario composed of one dominant scatterer and two weak targets was set up. The
synthetic performance of all targets in continuous CPIs is presented, and the specific results
are discussed within a single CPI. Moreover, the proposed method is also compared with
the noncoherent integration method in terms of detection improvement.

4.1. CoRS for Multiple Targets

The simulation scenario is composed of three targets, the parameters of which are
given in Table 4. The used MMW DCAR consists of three unit radars. It is important to
note that the acceptable synthetic gain loss is defined as 3 dB in simulation. Therefore, the
phase tolerance can be calculated as 27.9◦ according to Equation (34). Additionally, the
compensation number for each channel and the MMW DCAR can be deduced as 7 times
and 49 times, respectively.

4.1.1. Synthetic Results in Continuous CPIs

Utilizing the proposed method, the synthetic results of different targets in continuous
CPIs are illustrated in Figure 12. Herein, the theoretical SNR, as in Equation (48), was used
as a guideline for evaluation.
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Since the multidimensional parameters of the dominant scatterer can be aligned with
its own estimated CPs, the synthetic results in Figure 12a are consistent whether adaptive
phase compensation is employed or not. However, due to the phase deviation, the synthetic
performance of weak targets will decline significantly when using the dominant scatterer
compensation only, as illustrated in Figure 12b,c. Instead, the synthetic results of weak
targets can be effectively improved with the proposed method. Particularly, the maximum
gain loss of these targets is 1.9 dB, which satisfies the definition.

Table 4. Parameters of multiple targets.

Target Classification Parameters Value

Dominant Scatterer

Cross range −3 m
Radial range 45 m

Radial velocity −9 m/s
SNR 15 dB

First Weak Target

Cross range 0 m
Radial range 30 m

Radial velocity 3 m/s
SNR 4 dB

Second Weak Target

Cross range 3 m
Radial range 55 m

Radial velocity −2 m/s
SNR 3 dB

  
(a) (b) (c) 

Figure 12. Multi-target coherent-on-receive synthesis results in consecutive CPIs. (a) Results of the
dominant scatterer. (b) Results of the first weak target. (c) Results of the second weak target.

4.1.2. Synthetic Results within a Single CPI

To demonstrate the synthetic performance, the simulation results of the 10th CPI
are presented in Figures 13–15. Due to the synchronization errors, these targets focused
on different range cells in multi-channel, as illustrated in Figure 13. The echoes can be
calibrated with the estimated CPs of the dominant scatterer. Figure 14 shows that the
deviations caused by the synchronization errors were eliminated, and thereby the multi-
target was aligned in the range spectrum. From Figure 15a, the dominant scatterer can be
synthesized effectively, while the weak targets suffer a great loss due to the phase deviation.
Utilizing the proposed method, the weak targets can achieve CoRS with adaptive phase
compensation, as shown in Figure 15b,c.

To specifically verify the effectiveness of the proposed method, Table 5 gives the
numerical comparison results. Since the signal discreteness in FFT processing causes a
fence effect, the targets’ SNRs have a slight variation after compensation using estimated
CPs. It is verified that the targets’ SNRs in multi-channels do not change significantly, and
thus their impact can be neglected in the actual processing.
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Figure 13. The range spectra of the original beat signal in multi-channel. (a–i) are the channels 1T1R
to 3T3R, respectively.
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Figure 14. The range spectra after dominant scatterer compensation.
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Figure 15. Multi-target CoRS results via the proposed method. (a) Results of the dominant scatterer.
(b) Results of the first weak target. (c) Results of the second weak target.

Table 5. The numerical comparison results (dB) of simulations.

Parameters
Channels

1T1R 1T2R 1T3R 2T1R 2T2R 2T3R 3T1R 3T2R 3T3R

Original
signal

Noise power 30.2 29.1 30.0 29.9 30.0 30.0 30.1 29.1 29.9
Dominant scatterer SNR 16.4 16.2 15.1 16.3 14.3 15.7 15.2 16.1 14.9

First weak target SNR 2.9 5.3 4.1 4.0 3.7 3.8 3.2 5.7 4.2
Second weak target SNR 2.4 3.0 1.8 4.3 3.5 2.7 2.2 4.8 2.0

Compensated
signal

Noise power 30.2 29.4 30.0 29.5 30.0 29.6 29.8 29.1 29.9
Dominant scatterer SNR 16.4 15.9 15.1 16.7 14.3 16.1 15.5 16.1 14.9

First weak target SNR 2.9 5.0 4.1 4.4 3.7 4.2 3.5 5.7 4.2
Second weak target SNR 2.4 2.7 1.8 4.7 3.5 3.1 2.5 4.8 2.0

Theoretical
SNR

Dominant scatterer 25.1
First weak target 13.6

Second weak target 12.5

Proposed
method

Dominant scatterer 24.9 (Gain loss: 0.2 dB)
First weak target 11.7 (Gain loss: 1.9 dB)

Second weak target 10.8 (Gain loss: 1.7 dB)

For the dominant scatterer, its synthetic SNR is 24.9 dB, with a gain loss of 0.2 dB
compared to the theoretical result. Additionally, with the proposed method, the SNR
gain losses of two weak targets are 1.9 dB and 1.7 dB, respectively. In summary, it is
demonstrated that these targets can match the defined acceptable synthetic gain loss well.
Namely, multi-target can be effectively synthesized, thus improving the target SNR and
enhancing the radar detection performance significantly.

4.2. Detection Performance Comparison

The feasibility of the proposed method was further evaluated with the constant
false alarm detection (CFAR) algorithm [41–43]. We compared it with the noncoherent
integration method based on the square law detector [44,45]. Herein, the dominant scatterer
with SNR = 20 dB was fixed, and a weak target was randomly generated in the radar
detection region that satisfies the constraints, with the weak target’s SNR in a single
channel set from 0 dB to 20 dB. We performed the Monte Carlo simulations 1000 times via
different methods, which are demonstrated in Figure 16.

Compared with using a single channel, using two types of synthesis methods can
improve the detection performance. However, the noncoherent integration method suffers
a great loss in the case of a low SNR. As the SNR increases, this method can enhance target
detection, with a maximum gain of approximately 3.5 dB. On the contrary, the proposed
method is stable at both high and low SNR conditions. With an equivalent detection
probability, the proposed method improves by approximately 9 dB.
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Figure 16. Detection performance utilizing CFAR algorithm with 1000 Monte Carlo simulations.

5. Experiments

The proposed CoRS method using the dominant scatterer was verified by measure-
ments in a typical urban environment. The prototype system was fabricated, and the
hardware components of the MMW DCAR are presented.

The prototype system in this work is composed of three radars with an operating
frequency range of 76.0 GHz to 81.0 GHz. It employs a wired trigger, which is generated
by a separate signal source and provides a trigger pulse to the radars with cables of equal
length. An overview of the basic parameters of these radars is given in Table 6.

Table 6. Parameters of the test radars.

Parameter Value

Center frequency 77.0 GHz
Bandwidth 200 MHz

Chirp duration 40 μs
Pulse repetition time 48 μs

IF bandwidth 12.5 MHz
Clock frequency 80 MHz

In the prototype system, a certain timing difference between the high levels of the
trigger pulse at the radars is unavoidable because of the imperfect electrical length of the
lines. Since each radar is independent, there may be an uncertain timing difference when
their internal clocks detect the trigger pulse. The combined timing difference is the main
factor that contributes to the arbitrary initial time delay. Furthermore, these independent
unit radars are also subject to random deviations in carrier frequency and phase.

The prototype system, which contains three MMW radars and a wired trigger, is
displayed in Figure 17. The test scenario consisted of a vehicle as the dominant scatterer
and a pedestrian as the weak target.

With the time-division method, the multi-channel signals can be separated at each
receiver. The range–Doppler spectra are presented in Figure 18. Clearly, due to the system
synchronization errors, the focus positions are offset, which can be calibrated with the
dominant scatterer.
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Figure 17. The prototype system and the test scenario consisting of a vehicle and a pedestrian.

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

Figure 18. The range–Doppler spectra of multi-channel with real data. (a–i) are the channels 1T1R to
3T3R, respectively.

In the real-data experiment, the vehicle had two strong scattering points. We chose the
stronger scattering point as the dominant scatterer of the proposed method. The optimal syn-
thetic results for the vehicle and the pedestrian are demonstrated in Figure 19a,b, respectively.
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(a) (b) 

Figure 19. The optimal CoRS results in multiple-phase compensation groups. (a) Results of the
vehicle. (b) Results of the pedestrian.

The numerical comparison results from the real-data experiment are given in Table 7.
The theoretical SNR of the stronger scattering point after synthesis is calculated at 33.2 dB,
while the actual SNR can be improved to 32.0 dB. For weak scattering points, the CoRS can
be realized by using the estimated CPs only. Its theoretical and actual SNR after synthesis
are 27.2 dB and 26.2 dB, respectively. The pedestrian is also synthesized with the proposed
method, and its theoretical and actual SNR after synthesis can be calculated as 23.8 dB and
21.6 dB. Additionally, it should be noted that several stationary targets including signs
and streetlights can also be effectively synthesized, as shown in Figure 19. To sum up, the
proposed method satisfies the defined acceptable synthetic gain loss (3 dB) for each target,
which can enhance the target SNR effectively.

Table 7. The numerical comparison results (dB) with real data.

Parameters
Channels

1T1R 1T2R 1T3R 2T1R 2T2R 2T3R 3T1R 3T2R 3T3R

Original
signal

Noise power 89.2 88.6 87.8 89.8 89.4 88.5 88.8 89.0 87.9
Vehicle Point 1 SNR 21.3 22.3 23.9 23.8 24.3 23.5 24.4 23.5 25.4
Vehicle Point 2 SNR 16.1 13.3 15.6 19.8 19.3 16.5 12.8 20.4 20.8

Pedestrian SNR 14.4 12.6 12.5 16.5 16.6 14.1 11.6 13.8 14.8

Theoretical
SNR

Vehicle Point 1 33.2
Vehicle Point 2 27.2

Pedestrian 23.8

Proposed
method

Vehicle Point 1 32.0 (Gain loss: 1.2 dB)
Vehicle Point 2 26.2 (Gain loss: 1.0 dB)

Pedestrian 21.6 (Gain loss: 2.2 dB)

Furthermore, the power near the zero frequency in the Doppler spectrum is higher than
that at other frequencies. This is caused by the ground clutter and some stationary targets
(e.g., trees, curbs, etc.) in the urban environment. As illustrated in Figures 18a and 19a, the
signal power in this part is 97.9 dB and 109.1 dB, with 11.2 dB of gain. It is well known
that the ideal synthetic gain for targets is approximately 19.0 dB, while the gain for noise
is 9.5 dB. Consequently, the gain of clutter is intermediate between the noise and the
target, which may have a negative impact on the improvement of the proposed method for
stationary targets.
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6. Conclusions

This paper describes a millimeter-wave distributed coherent aperture radar that can
be used to improve the target SNR by coherent-on-receive synthesis. The synchronization
errors are calibrated with the estimated coherent parameters of the dominant scatterer,
which can be defined as an unknown strong target in radar detection scenarios. We focused
on the selection criteria of the dominant scatterer by analyzing the constraints of the
proposed method. Furthermore, an adaptive compensation approach was further explored
to expand the available region for the estimated CPs of the dominant scatterer. This
approach can compensate for the phases of different targets within multiple-unit radars
using discrete phase values. The determination of discrete phase values is derived from the
limit of synthesis loss within a given MMW DCAR configuration. Hence, this approach
avoids massive searches for possible locations of other targets and the requirement of
prior information.

The presented theory and the corresponding method were evaluated via extensive
simulations and experiments. The constraints and limitations of the system were verified
to meet the application requirements. Utilizing the proposed method, multi-target can
achieve the desired synthetic results in sequential CPIs. Compared with the noncoherent
integration method, the proposed method is stable at both high and low SNR conditions,
yet with a higher SNR gain. Furthermore, a prototype system was fabricated and used
to verify the proposed method. The experiment results match well with the simulations,
showing the efficacy of the proposed method.
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Abstract: In view of the decline of filtering accuracy caused by measured outliers in target tracking
application, a novel reweighted robust particle filter is proposed to acquire accurate state estimates
in an automotive radar system. To infer the importance of each entry in the multidimensional
contaminated measurement vector, we employ a weight vector, which follows a Gamma distribution,
to model the measured noise and carry out accurate state estimates. Additionally, the particle filter
method is employed to perform approximate posterior inference of state estimates in the nonlinear
model. The Cramer–Rao lower bound is provided for the performance evaluation of the proposed
method. Both simulation and experimental results demonstrate the superiorities of the proposed
algorithm over other robust solutions.

Keywords: outlier-robust; particle filter; tracking; automotive radar

1. Introduction

In the field of autonomous driving, automotive radars have become the core sensors
due to their all-time and all-weather environmental perception capabilities. Effective target
tracking is essential for the autonomous driving systems to formulate correct and timely
driving strategies. By clustering the point cloud data of Millimeter Waveform (MMW) radar,
the target can be detected and located in the automotive application scenario. However,
the occurrence of measurement abnormalities in real-world applications is a common
phenomenon that may arise due to reasons such as unexpected disturbances, temporary
sensor failures, and calibration errors [1]. A typical example is to track a walking pedestrian
on the road through an MMW radar sensor in action. The occlusion of roadside obstacles,
such as parked cars, walls, and so on, can corrupt the range measurement, and glint, speckle,
and phase noise can contaminate radar data [2–4]. The input of most tracking algorithms is
the result of target detection. If the target is suddenly lost or temporarily occluded, the target
trajectory will be interrupted [5]. Moreover, the clutter cannot be completely filtered out of
radar measurements can lead to false detections and causes measurement abnormalities
[6]. In addition, the non-line-of-sight (NLOS) multipath propagation of the transmitted
electromagnetic wave is also one of a source of measurement abnormalities [7]. The
Kalman filter (KF) offers an optimal estimation method for the linear dynamic model with a
Gaussian state and measurement noise [8]. However, owing to the complex electromagnetic
propagation and changeable environment, the measurement noise is a typical non-Gaussian
in the MMW radar sensor and would result in measurement abnormalities, also named
outliers. The presence of these outliers may degrade the performance of standard KF, thus
yielding poor estimates of the state of interest [9].

A number of efforts have been devoted to addressing the issue. Outliers rejection meth-
ods are used in robust state estimation and object tracking [10]. A robust filter approach in
[11] has been developed by viewing measurements as clearly distinguished outliers from
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normal values using Projection Statistics (PS). In [12–14], classical recursive approaches
are converted into batch-mode regression form and iteratively reweighted least squares
algorithms are used to estimate the states. A measurement-weighting-based whitening
procedure is designed to distinguish outliers from normal measurements to improve the
state estimation accuracy [15]. Another class of approaches is based on the heavy-tailed
noise model, such as Student’s t distributions and Laplace distributions [16–19]. A scalar
weight, which follows a Gamma distribution, is introduced for each observed sample such
that the variance matrices of measurement noise can be reassessed in the state estimation
[20,21]. Filtering and smoothing algorithms, which are much more robust yet only slightly
more involved than the standard inference algorithm, are derived by assigning Wishart
distribution to the noise covariance matrix [22]. By choosing the inverse Wishart priors, the
measurement noise covariance matrices can be inferred based on the variational Bayes (VB)
approach [23].

In this paper, a reweighted robust particle filter is proposed to acquire more accurate
state estimation with robustness to outliers in the nonlinear model. Motivated by the
aforementioned methods in [20,21], we generalize models to the more comprehensive case
of multidimensional outlier measurements. Specifically, a weight vector, which follows
conditional independent Gamma distribution, is employed to reassess the contribution
of each entry in the multidimensional outlier measurement. The proposed method can
be regarded as a reweighted robust filter. The particle filter (PF) method is utilized to
perform the approximate posterior inference of state estimates. The Cramer–Rao bound
of the proposed method is also provided for performance analysis. Both simulations and
experiments demonstrate the effectiveness of the proposed method.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices).
(·)T denotes the transpose of a matrix or vector. diag(x) represents a diagonal matrix that
uses the elements of x as its diagonal elements. p(·) denotes the probability density function
(pdf). x ∼ N (a, b) denotes that random variable x follows a Gaussian distribution with
mean a and variance b. x ∈ RN denotes a real-value vector x with the dimension of N and
x ∈ RN×M denotes a real-value matrix x with the dimension of N ×M.

2. Proposed Model

2.1. Problem Formulation

A typical nonlinear discrete-time state-space model can be expressed as

θk = f (θk−1) + uk

zk = h(θk) + nk
(1)

where θk ∈ RN and zk ∈ RM represent the state vector and measurement vector at
time step k, f (·) and h(·) denote nonlinear state and measurement functions, respectively,
uk ∈ RN and nk ∈ RM are the zero-mean Gaussian white process noises satisfying
uk ∼ N (0, Q) and nk ∼ N (0, R), and Q and R are the process noise covariance matrix
and measurement noise covariance matrix, respectively. The model in Equation (1) is just
regarded to be a typical nonlinear system model, and the system state can be estimated by
a nonlinear Kalman filter [24].

In real automotive radar applications, typical representative scenarios are often en-
countered in which the target of interest may be obscured by other interferences or clutters,
and the acquired measurement vector, such as range, velocity, and azimuth, in the automo-
tive radar system would fall outside a valid range and become outliers, since the acquired
measurement samples at this time directly come from interferences. The weighted robust
Kalman filter method has been developed by introducing a scalar wk into the measurement
noise covariance matrix R for the improved estimates of the updated θk [21]. However,
the main limitation of this work is that even if it allows the treatment of multidimensional
measurement, a scalar weight is considered for the entire observation vector, thus equally
treating all the entries regardless of which entry is corrupted. On the one hand, the entries
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in the measurement vector represent diverse physical quantities respectively in the real
radar system and have diverse signal-to-noise ratios. On the other hand, the variance of
each entry is often influenced by the automotive radar system, such as the wider band-
width radar system, resulting in a smaller range variance and smaller number of receiver
channels, leading to a poorer azimuth measurement. Therefore, introducing a scaler in the
measurement vector may be not an optimal way to treat them equally.

2.2. Generative Model

To address this issue, we introduce a novel Bayesian algorithm that treats the weights
associated with each entry in the measurement vector data probabilistically. In particular,
we introduce a weight vector wk to learn the dynamical noise covariance matrix, and
a reweighted robust particle filter method is proposed to acquire improved state-space
estimates in a nonlinear model in the presence of contaminated measurements. We modify
the measurement noise equation as follows by introducing a weight vector wk,

nk ∼ N
(

0, W−1
k R

)
, (2)

where Wk ∈ RM×M is a diagonal matrix with the weight vector wk = [wk,1, · · · , wk,M]T ∈
RM on its diagonal at time step k, and W−1

k is the inverse of the matrix Wk. The Gamma
prior distribution is introduced for the elements of wk to ensure that they remain positive
and is written by

zk|θk, Wk ∼ N
(

h(θk), W−1
k R

)
θk|θk−1 ∼ N ( f (θk−1), Q)

wk,m ∼ Gamma(wk,m|vm/2, vm/2),

(3)

where m = 1, · · · , M, vm is the mth hyperparameter in the vector v for the Gamma distri-
bution. According to Equation (3), the modified model has the capability of dynamically
learning the measurement noise covariance and adjusting the weights of each entry in the
measurement vector for improved estimates of the state vector with effectively alleviating
outliers.

2.3. Reweighted Robust Particle Filter

In this subsection, we develop a reweighted robust particle filter using statistical infer-
ence over the aforementioned model. The particle filter, utilizing the Monte Carlo method, is
selected to provide approximate posterior estimation in the nonlinear model [25]. The state
estimation generally focuses on the expectation calculation of posterior distribution,

E[g(θ)|z1:k] =
∫

g(θ)p(θ|z1:k)dθ (4)

where g(θ) is the function of the variable θ, and p(θ|z1:k) represents the posterior probability
density function for θ given the measurement vector data z1:k. However, the posterior
distribution p(θ|z1:k) is often difficult to analytically acquire due to the manipulation of the
multiple integration. The importance sampling (IS) is often used to perform the posterior
distribution by introducing a nominal distribution π(θ|z1:k) that often utilizes a Gaussian
distribution,
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E[g(θ)|z1:k ] =
∫

g(θ)
p(θ|z1:k)

π(θ|z1:k)
π(θ|z1:k)dθ

=
∫

g(θ)
p(z1:k|θ)p(θ)

p(z1:k)π(θ|z1:k)
π(θ|z1:k)dθ

=

∫
g(θ) p(z1:k |θ)p(θ)

π(θ|z1:k)
π(θ|z1:k)dθ∫ p(z1:k |θ)p(θ)

π(θ|z1:k)
π(θ|z1:k)dθ

.

(5)

The particle weight ω(θ) is defined as

ω(θ) =
p(z1:k|θ)p(θ)

π(θ|z1:k)
. (6)

The Equation (5) can be rewritten by introducing the ω(θ):

E[g(θ)|z1:k ] =

∫
g(θ)ω(θ)π(θ|z1:k)dθ∫

ω(θ)π(θ|z1:k)dθ

≈

S
∑

s=1
g
(

θ(s)
)

ω(θ(s))

S
∑

s=1
ω(θ(s))

(7)

where s = 1, . . . , S, and S is the total number of sampling particles. According to the
Markov properties of the model, the particle weights ω

(s)
k can be deduced in the recursion

form

ω
(s)
k ∝

p
(

zk|θ(s)k

)
p
(

θ
(s)
k |θ

(s)
k−1

)
π
(

θ
(s)
k |θ

(s)
0:k−1, z1:k

) ω
(s)
k−1. (8)

Generally, π(θk|θ0:k−1, z1:k) = p(θk|θk−1) is often used in the importance sampling,
and thus the recursion in Equation (8) can be reduced into

ω
(s)
k ∝ p

(
zk|θ(s)k

)
ω
(s)
k−1. (9)

According to Equation (9), it is obvious that the problem eventually converts to
computation of p(zk|θk), which can be achieved from the marginal likelihood utilizing
Bayesian inference. Considering the fact that Wk is independent of θk, we have

p(zk|θk)

=
∫

p(zk|θk, Wk)p(Wk|θk)dWk

=
M

∏
m=1

∫
p(zk,m|θk, wk,m)p(wk,m)dwk,m

=
M

∏
m=1

∫ ∞

0
N

(
zk,m | μk,m,

rm,m

wk,m

)
Gam

(
wk,m | vm

2
,

vm

2

)
dwk,m

=
M

∏
m=1

Γ
(

vm
2 + 1

2

)
Γ
( vm

2
) (

λm

πvm

) 1
2
[

1 +
λm(zk,m − μk,m)

2

vm

]− vm
2 − 1

2

.

(10)

where μk,m is the mth element of the vector h(θk); λm = r−1
m,m is the mth element on the

diagonal of matrix R−1. The entire reweighted robust particle filter (RR-PF) method is
summarized as Algorithm 1.
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Algorithm 1 Reweighted Robust Particle Filter

Input: {θ
(s)
k−1 : s = 1, . . . , S}

Output: 〈θk〉, {θ
(s)
k : s = 1, . . . , S}

1: Draw new samples: θ̃
(s)
k ∼ p

(
θk|θ(s)k−1

)
, s = 1, . . . , S

2: Calculate particles weights: ω̃
(s)
k in Equations (9) and (10)

3: Perform resampling with θ̃
(s)
k and ω̃

(s)
k to acquire θ

(s)
k in Equation (7)

4: Estimate system state 〈θk〉 = ∑S
s=1 θ

(s)
k /S

5: return 〈θk〉, {θ
(s)
k : s = 1, . . . , S}

2.4. Algorithm Analysis

In this subsection, detailed analysis is provided to illustrate the reason why the
proposed method is more robust to the outlier compared with the conventional heavy-
tail multivariate Student’s t-distributed (CMSt) [26,27]. For comparison, we provide the
probability density function (pdf) of the CMSt as

p(zk|θk) ∝
Γ
(

v
2 + M

2

)
Γ
( v

2
) [

1 +
(zk − μ)TR−1(zk − μ)

v

]−M
2 − v

2

. (11)

We take 2D pdfs with M = 2 as an example to illustrate the roles of the robustness to
outliers. In this example, zk = [xk, yk]

T , μ = [0, 0]T , R−1 = diag([1, 1]), and v = [v, v]T =
[0.5, 0.5]T are shown in Figure 1. It is observed that both pdfs exhibit heavy-tailed properties,
which indicates their robustness to outliers. The differences lie in that there exist quite
prominent ridges along the x-axis and y-axis in the proposed pdf, which makes the model
more adapted to the changes in the independent variable in the direction perpendicular to
the ridges than CMSt.

(a) (b)

Figure 1. Pdfs of the proposed model and CMSt in the 2D example. (a) Pdf plot of the proposed
model. (b) Pdf plot of the CMSt.

In order to intuitively show the role of the proposed pdf in the particle filter, we
illustrate the evolution of particle weights. In the particle filter, at (k− 1)th time step, the
particles are acquired with an identical weight to estimate 〈θk−1〉 based on the resampling
technique, shown in Figure 2a. It is observed that these particle balls have the same sizes,
and thus have identical weights, although the particle unreliability is different, as shown
in the middle surface in Figure 2a. It is also found that the blue particle ball with a small
value in the color bar denotes that this particle is highly reliable, however, the yellow ball
with a large value suggests an unreliable particle. At the kth time step, when the new
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measurement vector data zk are provided, particle weights in the kth time step will evolve
according to Equation (9). The evolved result of particle weights in Equation (10) is shown
on the top surface, and the result in Equation (11) is provided in the bottom surface.

(a) (b)

Figure 2. The evolution of particle weights. (a) 3D plots of evolution of particle weights. (b) slice plots
of evolution of particle weights. (Particle weights are denoted by the sizes of their corresponding
particle balls, and the particle unreliability is depicted and illustrated by the colors.)

To clearly illustrate the roles of the pdfs in Equation (10) compared with that in
Equation (11), we provide slice plots of the pdfs the along y-axis. It is observed that the
plot of the sharper pdf in the proposed method would encourage the contributions from
the reliable particle, and it would weaken the particle weight concerning these unreliable
particles, shown in the top plot in Figure 2b. It is found that the blue particle ball has
a higher weight due to its high reliability in the current time step, whereas the yellow
one has a lower weight in the proposed model compared with those in the bottom pdf
of the CMSt. In conclusion, the proposed method encourages the contributions from the
particle weights of reliable particles and weakens the contributions from the unreliable
particles by discriminatively treating the observed vector data. This could be the reason
why the proposed method is more robust to outliers and acquires improved state estimates
compared with the CMSt method.

2.5. Cramer–Rao Bound for the Model

To further explore the performance bound of the proposed method, CRLB analysis
is provided in this section. We first define a latent parameter set concerning the random
parameter set p(Θ); the mean-square error matrix is generally served as a measure of error
and is given by

Σε = MSE(Θ̂) � E
[(

Θ̂−Θ
)(

Θ̂−Θ
)T

]
, (12)

where Θ are the latent variable parameter collection, Θ̂ denote estimates of the correspond-
ing variables, and E(x) denotes the expectation operator for the variable x.

The Bayesian Information Matrix (BIM), which is commonly employed in time-
invariant statistical models, is often used for CRLB analysis and can be written by

J = −E
{
�Θ[�Θ ln p(Θ, Z)]T

}
� E

{
[�Θ ln p(Θ, Z)][�Θ ln p(Θ, Z)]T

}
, (13)

where p(Θ, Z) is the joint probability distribution, and�Θ denotes the first-order partial
derivative operator concerning the variable vector Θ, which can be expressed by
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�Θ =

[
∂

∂Θ1
,

∂

∂Θ2
, . . .

]T
(14)

According to the Bayesian CRLB analysis, we have

Σε � J−1. (15)

The inequality suggests that the matrix on the left is non-negative.
According to posterior Cramer–Rao bounds analysis, we have the recursive sequence

Jk of posterior information submatrices for estimating the state vector θk at the kth time
step [28]

Jk = D22
k −D21

k

(
Jk−1 + D11

k

)−1
D12

k , (16)

where
D11

k = E
[
−�θk−1 �T

θk−1
ln p(θk|θk−1)

]
, (17)

D12
k = E

[
−�θk−1 �T

θk
ln p(θk|θk−1)

]
, (18)

D21
k = E

[
−�θk �T

θk−1
ln p(θk|θk−1)

]
= (D12

k )T . (19)

D22
k can be decomposed into

D22
k = D22,a

k + D22,b
k , (20)

where
D22,a

k = E
[
−�θk �T

θk
ln p(θk|θk−1)

]
, (21)

D22,b
k = E

[
−�θk �T

θk
ln p(zk|θk)

]
, (22)

The initial information submatrix can be obtained from the prior probability distribu-
tion p(θ0)

J0 = E
[
−�θ0 �T

θ0
ln p(θ0)

]
, (23)

where p(θ0) denotes the initial prior distribution of the variable vector θ0.
Using the nonlinear discrete-time state-space model in Equations (1) and (10), we have

− lnp(θk|θk−1) =
1
2

{
[θk − f (θk−1)]

TQ−1[θk − f (θk−1)]
}
+ const, (24)

− ln p(zk|θk) =
M

∑
m=1

(
vm

2
+

1
2

)
ln

{
1 +

λm[zk,m − h(θk)m]
2

vm

}
+ const. (25)

Then,

D11
k = Eθk−1

{[
�θk−1 f T(θk−1)

]
Q−1

[
�θk−1 f T(θk−1)

]T
}

, (26)

D12
k = −Eθk−1

{[
�θk−1 f T(θk−1)

]}
Q−1, (27)

D21
k =

[
D12

k

]T
, (28)

D22
k = Q−1 + Eθk

[
�θk �T

θk
ln p(zk|θk)

]
. (29)

It is observed that it is difficult to carry out these integrals, the sequential Monte Carlo
method is used to perform the approximations, and we define the variables Λ11, Λ12, and
Λ22 as
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Λ11(θk−1) =
[
�θk−1 f T(θk−1)

]
Q−1

[
�θk−1 f T(θk−1)

]T
, (30)

Λ12(θk−1) = −�θk−1 f T(θk−1), (31)

Λ22(θk) = �θk �T
θk

ln p(zk|θk). (32)

Therefore, we can rewrite Equations (26)–(29) as follows:

D11
k =

∫
Λ11(θk−1)p(θk−1)dθk−1

=
∫

p(zk−1)

{∫
Λ11(θk−1)p(θk−1|zk−1)dθk−1

}
dzk−1,

(33)

D12
k =

∫
Λ12(θk−1)p(θk−1)dθk−1

=
∫

p(zk−1)

{∫
Λ12(θk−1)p(θk−1|zk−1)dθk−1

}
dzk−1,

(34)

D22
k = Q−1 +

∫
Λ22(θk)p(θk)dθk

= Q−1 +
∫

p(zk)

{∫
Λ22(θk)p(θk|zk)dθk

}
dzk.

(35)

These integrals can be approximated by the mean of samples after having a series of
samples corresponding to the density. We perform T Monte Carlo samples with the time
steps of K for the calculation of the expectation instead of the integral operator over zk and
obtain the measurement sample matrix Z1:T,1:K. zt,k−1 denotes the tth measurement sample
at the (k− 1)th time step. Consequently, Equations (33)–(35) can be calculated by

D11
k ≈ 1

T

T

∑
t=1

{∫
Λ11(θk−1)p(θk−1|zt,k−1)dθk−1

}
(36)

D12
k ≈ 1

T

T

∑
t=1

{∫
Λ12(θk−1)p(θk−1|zt,k−1)dθk−1

}
(37)

D22
k ≈ Q−1 +

1
T

T

∑
t=1

{∫
Λ22(θk, zk)p(θk|zt,k)dθk

}
(38)

We further perform Monte Carlo samples over the variable θk instead of an integral
operator over θk at the tth sample, and formulas inside the braces in Equations (36)–(38)
can be expressed as

D11
t,k ≈

1
L

L

∑
l=1

Λ11(θ
(l)
t,k−1) (39)

D12
t,k =

(
D21

t,k

)T ∼= 1
L

L

∑
l=1

Λ12(θ
(l)
t,k−1) (40)

D22
t,k ≈

1
L

L

∑
l=1

Λ22(θ
(l)
t,k , zt,k) (41)

where θ
(l)
t,k−1 and θ

(l)
t,k are, respectively, samples drawn from the posterior distributions

of p(θt,k−1|zt,k−1) and p(θt,k|zt,k), and L is the number of samples. According to the
approximate inference method, the Markov Chain Monte Carlo (MCMC) method is utilized
to estimate θt,k with the state transition probability p(θk|θk−1) in Equation (24) and the
likelihood function p(zk|θk) in Equation (25). The following Equations (33)–(35) and (39)–
(41), can be rewritten by
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D11
k ≈ 1

T

T

∑
t=1

{
1
L

L

∑
l=1

Λ11(θ
(l)
t,k−1)

}
(42)

D12
k ≈

(
D21

k

)T ∼= 1
T

T

∑
t=1

{
1
L

L

∑
l=1

Λ12(θ
(l)
t,k−1)

}
(43)

D22
k ≈ Q−1 +

1
T

T

∑
t=1

{
1
L

L

∑
l=1

Λ22(θ
(l)
t,k , zt,k)

}
(44)

When the number of samples L is large enough, the estimated results would converge
to true values. Finally, we arrive at the resulting Monte-Carlo-based posterior Cramer–Rao
bound (MC-PCRB).

3. Simulations and Experiments

In this simulation, we take target tracking in the automotive radar system as an
example. The state process model with the constant velocity, which is a typically linear
equation, can be expressed by

θk = f (θk−1) + uk = Aθk−1 + uk (45)

where θk = [xk, yk, ẋk, ẏk], containing the two-dimensional location (xk, yk) and the corre-
sponding velocities (ẋk, ẏk) of the vehicle. The state transition matrix A can be written
by

A =

⎡⎢⎢⎣
1 0 ΔT 0
0 1 0 ΔT
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (46)

where ΔT denotes the sampling interval of the radar. The nonlinear measurement model in
the automotive radar system can be denoted by,

⎡⎣Rk
φk
Vk

⎤⎦ = h

⎛⎜⎜⎝
⎡⎢⎢⎣

xk
yk
ẋk
ẏk

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎡⎢⎢⎢⎣
√

x2
k + y2

k

arctan
(

xk
yk

)
xk ẋk+ykẏk√

x2
k+y2

k

⎤⎥⎥⎥⎦. (47)

where Rk denotes the measured range of the target at the time step k, φk represents the
measured spatial information, and Vk is its measured radial velocity.

3.1. Performance Testing on Simulated Data

In this simulation, a spiral trajectory is considered, and the spiral trajectory can be
generated by a radius reduction circular motion. Assume that the radar continuously
acquires the observed measurement vector, and the measurements containing outliers are
generated according to the mixture model

zk|θk, ck,m ∼
{

U(zk|am, bm), if ck,m = 0
N (zk|h(θk), R), if ck,m = 1

(48)

where ck,m = 0 indicates a normal measurement from the mth dimension at the kth time
step clutter and U(·) is a uniform distribution, while ck,m = 1 indicates the measurement
vector is a normal one, and noises follow Gaussian distribution with the measurement
noise covariance matrix R = diag([4, 0.01, 1]). The processed noise covariance matrix
is assumed to be Q = diag([0.1, 0.1, 0.01, 0.01]). Multidimensional outliers caused by
interferences or clutters are assumed to be drawn from the uniform distribution with the
following parameters: [a1, b1] = [10, 90] in the range entry in the measurement vector,
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[a2, b2] = [−π/2, π/2] in the azimuth entry, and [a3, b3] = [−10, 10] in the velocity entry.
The probability of outliers is assumed to be constant over time, that is, ck,m is a Bernoulli
random variable with the probability of p(ck,m = 0) = 0.2. In the particle filter method, the
number of particles S is 500, and hyperparameters v are set to be [10, 10, 10]T . The total step
number K is 1000 with the sampling interval ΔT of 0.01 s. All the results are implemented
on the PC with CPU (Intel Core i7-10700K) using Matlab R2020a.

For the performance evaluation of estimated target location, the root of mean square
error (RMSE) and normalized mean square error (NMSE) are defined as performance
indexes

RMSEk =

√(〈xk〉 − xTRUE
k

)2
+

(〈yk〉 − yTRUE
k

)2 (49)

NMSE =
1
K

K

∑
k=1

RMSEk√(
xTRUE

k
)2

+
(
yTRUE

k
)2

(50)

where 〈θk〉 = [〈xk〉, 〈yk〉, 〈ẋk〉, 〈ẏk〉]T denotes the estimated state vector at the step time
k. The performance comparisons of tracking results with the conventional particle filter
(PF) and other robust solutions, including the weighted robust PF (WR-PF) and the outlier
robust extended KF (OR-EKF), are provided in Figure 3. It is observed that the estimated
trajectory is the closest to the truth one compared with the WR-PF and OR-EKF methods,
and thus the proposed method has the smallest NMSE. Note that the results in the PF
method are not provided due to quite a sensitivity to outliers, yielding significantly poor
performances.

X(m)

Y
(m

)

TRUE
PF
WR-PF
RR-PF
OR-EKF

(a)

Time/(s)

N
M

S
E

WR-PF
RR-PF
OR-EKF

(b)

Figure 3. Performance comparisons on simulated data. (a) Estimated target locations. (b) Estimated
RMSE.

The performances versus outlier ratios with p(ck,m = 0) are also examined. The outlier
ratio varies from 0% to 50%, and all other parameters are kept in this simulation. It is
reasonable that the NMSEs generally decreases with decreases in the outlier ratios. It is
observed that the proposed method has the lowest NMSE across all ratios compared with
other methods, as shown in Figure 4.
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Figure 4. Estimated NMSE versus outlier ratios.

In addition, we also introduce average Mahalanobis distance as the performance index
to evaluate the performance of the entire estimated state-space vector and defined it as

DM =
1
K

K

∑
k=1

√(〈θk〉 − θTRUE
k

)
Q−1

(〈θk〉 − θTRUE
k

)
(51)

where θk = [xk, yk, ẋk, ẏk] is the true state vector containing the two-dimensional location
(xk, yk) and the corresponding velocities (ẋk, ẏk) of the vehicle. 〈θk〉 denotes the estimated
vector of θk, and Q is the process noise covariance matrix provided in the simulations.

The performance results versus outlier ratios are also examined in Figure 5, the pro-
posed method has the lowest Mahalanobis distance across all ratios, and thus has better
performance than those in the WR-PF and OR-EKF methods. Note that the results in the PF
method are not provided due to quite a sensitivity to outliers, yielding significantly poor
performances.
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Figure 5. Estimated Mahalanobis distance versus outlier ratios.

In the following simulations, diverse types of outliers in the multidimensional mea-
surements are considered to examine the performances of the proposed method. First,
we consider only range outliers in the multidimensional measurements, that is to say, the
azimuth and velocity entries are abnormal values with p(ck,2) = p(ck,3) = 0. It is found that
both PF-based methods have better performances than that in the KF-based method, shown
in Figure 6. The main reason may be the nonlinear approximation in the measurement
function in the EKF method. These two PF-based outlier-robust methods can effectively
address the range outlier issue and acquire comparable NMSEs, even though the NMSEs in
the WR-PF method are a little bit smaller than those in the proposed method in the target
location estimation, shown in Figure 6a. The possible reason could be that the entry of
range is much larger than the other two entries in the multidimensional measurements,
and thus the scalar weight in the WR-PF method is learned and estimated to accurately
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model the measurement noise variances, particularly in the noise variance of the range
entry in the multidimensional measurements, such that the lower NMSEs in the target
locations can be obtained. However, to evaluate the performance of the entire estimated
state-space vector in the filtering methods, the proposed method has the lowest average
Mahalanobis distance across outlier ratios, shown in Figure 6b. Therefore, it suggests that
the proposed method has better estimation performances in the entire state-space vector
estimation by treating the weights associated with each entry in the measurement vector
data probabilistically.
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Figure 6. Estimated errors versus only range outliers in multidimensional measurements. (a) NMSE
comparisons. (b) Mahalanobis distance comparisons.

Then, we consider only azimuth outliers in the multidimensional measurements, and
the other two entries are normal values. The proposed method has the lowest estimated
NMSE in both average Mahalanobis distance and NMSE compared with those in the OR-
EKF and WR-PF methods, shown in Figure 7. Finally, Figure 8 shows the performance
comparisons between the proposed method and the other two robust solutions in the only
velocity outliers case, and it is observed that the proposed method has clear performance
improvements and has the lowest NMSE and average Mahalanobis distance across normal
measurement ratios.
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Figure 7. Estimated errors versus only azimuth outliers in multidimensional measurements.
(a) NMSE comparisons. (b) Mahalanobis distance comparisons.
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Figure 8. Estimated errors versus only radial velocity outliers in multidimensional measurements.
(a) NMSE comparisons. (b) Mahalanobis distance comparisons.

Table 1 shows the average executive comparisons of these robust solutions. It is
observed that the executive time of the proposed method is comparable to these PF-based
methods, whereas the proposed method has the best performance among them. It is
reasonable that the OR-EKF method has the smallest executive time among all these
methods owing to its analytical formulation, whereas it generally has slightly poorer
performance than the PF-based robust solutions such as the WR-PF and RR-PF methods.

Table 1. Executive time comparisons.

Method PF OR-EKF WR-PF RR-PF

Average executive time 0.0269 s 0.0096 s 0.0317 s 0.0367 s

3.2. Cramer–Rao Bound Analysis of the Proposed Algorithm

To further illustrate the estimation performance of the algorithm, we provide the
Cramer–Rao Bound for the nonlinear system to serve as the reference for the estimation
error. We present the universal MC-PCRB method above for discrete-time state-space
models to solve the iterative Cramer–Rao bound at each step in Equation (16). Figure 9
shows the comparison results among these methods. The outlier ratios are assigned to be
p(ck,1) = p(ck,2) = p(ck,3) = 0.2. It is observed that the RMSEs in the outlier robust methods
generally decrease with the increases in the time step, except in the conventional PF method.
The proposed method is generally close to the PCRLB, and thus has the lowest RMSE. The
proposed method has higher RMSEs than the WR-PF method in the early stage because of
more parameters to learn. In theory, the proposed method would approach the PCRLB, as
long as the number of particles approaches infinity while tracking under a stable state.
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Figure 9. Bounds comparisons of estimated errors.
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3.3. Experimental Results Based on Real Data

In this subsection, real data collected by the automotive millimeter wave (MMW) radar
with linear modulated continuous waveform (LFMCW) are used to verify the algorithm’s
effectiveness. In the automotive radar application, pedestrian tracking based on the MMW
radar is often an issue of great importance. Therefore, we consider pedestrian tracking
in these experiments. A 77 GHz millimeter wave radar, whose parameters are shown in
Table 2, is used to carry out experiments. An LFMCW waveform with a bandwidth of 4 GHz
is used for the high range resolution of 0.0375 m, and the sampling rate of 6.25 MHz is used
to acquire raw data. Two-dimensional (2D) Fourier Transform (FT) is firstly implemented
on the raw data, and thus the constant false alarm ratio (CFAR) technique is used to acquire
the estimates of the range and velocity of the walking pedestrian. Finally, the digital
beamforming technique is utilized to obtain the azimuth of the pedestrian. To this end, the
measurement vector is acquired for further target tracking. During the data collection of
the pedestrian, several artificial blocks are place along the tracking path, and then some
outlier measurements occur in the acquired measurement vector.

Table 2. Parameters for the LFMCW Radar System.

Parameters Definition Values

fc Carrier frequency 77 GHz
B Bandwidth 4 GHz
Fs Sampling rate 6.25 MHz
T Pulse duration 50 μs

FFTr Range FFT points 128

In the first experiment trial, the pedestrian walked from the location (1.5, 2.5) to the
location (−1.5, 2.1) along a straight line. There is an artificial blocker from the location
(−0.3, 1.5) to the location (0.3, 1.5). The sketch map is shown in Figure 10. The measurement
vector data have some outliers from the 30th to the 37th time step because of crossing the
blocker. The acquired measurement vector data are given in Figure 11. It is observed that
the measurement vectors involve several obvious outliers at several time steps due to the
artificial occlusion or clutters reflected from the complex environment. The tracking results
and the corresponding RMSEs are, respectively, shown in Figure 12a,b. It demonstrates
that the estimated trajectory in the proposed method is much closer to the true one, and
thus it has the lowest RMSE compared with other methods. It is found that there exist a
few fluctuations in the interval from the 20th time step and the 35th time step; a possible
reason may result from the measurement precision issue of pedestrian walking trajectory
in the real experiment, and the true trajectory of the walking pedestrian may be around the
preassigned straight line, with some inevitable fluctuations when the pedestrian walked
along the straight line in the natural walking state. Although a few fluctuations appear, the
RMSEs of the proposed method reach a pretty small level, and they are almost the lowest
across time steps compared with other robust solutions.

X(m)

Y
(m

)

mmwave radar
pedestrian start
pedestrian stop
pedestrian move trajectory
blocker

Figure 10. Experiment environment sketch map.
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Figure 11. Raw data plots in three-dimensional entries in the measurement vector.
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Figure 12. Performance comparisons of tracking results in the real data. (a) Tracking results based on
real data. (b) RMSE comparisons.

In the second experiment trial, the slightly complex trajectory, which involves curvi-
linear motion, turning around, and sharp turning, is considered to verify the effectiveness
of the proposed method. The acquired measurement vector data are provided in Figure 13,
and it is observed that the measurement vectors have obvious outliers at a few time steps
due to the clutters reflected from the complex electromagnetic environment. The track-
ing results and the corresponding RMSEs are, respectively, shown in Figure 14a,b. They
demonstrate that the estimated trajectory in the proposed method is much closer to the
true one and almost has the lowest RMSE compared with other robust methods.
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Figure 14. Performance comparisons of tracking results in the real data. (a) Tracking results based on
real data. (b) RMSE comparisons.

4. Conclusions

In this paper, we consider the nonlinear filtering problem in the presence of contam-
inated measurements. A novel reweighted robust particle filter method was proposed
for accurate target tracking in the automotive radar system. We generalized nonlinear
filtering to the more comprehensive case of multidimensional outlier measurements and
enhanced state vector estimates by probabilistically learning a weight vector for each entry
in the multidimension measurement vector. The particle filter technique was adopted to
make an approximate posterior in this nonlinear system. We also illustrated the reason that
the proposed method is more robust to outliers. Finally, the Cramer–Rao lower bound of
the proposed method was also provided. Both simulations and experiments verified the
superiority of the proposed method over other robust solutions.
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Abstract: With the development of human–computer interaction(s) (HCI), hand gestures are playing
increasingly important roles in our daily lives. With hand gesture recognition (HGR), users can play
virtual games together, control the smart equipment, etc. As a result, this paper presents a multi-hand
gesture recognition system using automotive frequency modulated continuous wave (FMCW) radar.
Specifically, we first constructed the range-Doppler map (RDM) and range-angle map (RAM), and
then suppressed the spectral leakage, and dynamic and static interferences. Since the received echo
signals with multi-hand gestures are mixed together, we propose a spatiotemporal path selection
algorithm to separate the mixed multi-hand gestures. A dual 3D convolutional neural network-based
feature fusion network is proposed for feature extraction and classification. We developed the FMCW
radar-based platform to evaluate the performance of the proposed multi-hand gesture recognition
method; the experimental results show that the proposed method can achieve an average recognition
accuracy of 93.12% when eight gestures with two hands are performed simultaneously.

Keywords: frequency modulated continuous wave radar; gesture recognition; multi-hand;
deep learning

1. Introduction

With the development of wireless sensing [1], human–computer interaction (HCI) [2]
has widely been applied in daily life. The hand gesture recognition (HGR) technique, an
important ‘way’ of HCI, is used in smart homes, robot control, virtual games, etc. For
example, with HGR, users can control smart devices and play interactive virtual games.
More importantly, with the development of intelligent vehicles, the application of gesture
recognition in intelligent-assisted driving is particularly important. The driver can control
various functions inside the car through gestures, such as adjusting the in car entertainment
system or switching on or off the air conditioner, to help drivers concentrate and improve
the driving safety. As a result, HGR is receiving a lot of attention; this paper focuses
on HGR.

According to the acquisition method of hand gesture data, HGR can be divided into
three types: (i) wearable sensor-based HGR [3], (ii) vision-based HGR [4], and radar-based
HGR [5,6]. Based on the wearable sensors, the wearable-based HGR in [3] can acquire the
motion information of hand gestures and achieve recognition accuracy as high as 99.3%.
Since this method involves wearing sensors, wearable sensors usually bring uncomfortable
and inconvenient experiences to users. On the other hand, vision-based HGR [4] applies
cameras to capture RGB or depth images of hand gestures, in combination with image
processing or computer vision for gesture recognition. Although the recognition accuracy is
relatively high, vision-based HGR is usually invalid in case of poor lighting conditions and
non-line-of-sight. Radar-based HGR applies the radar sensor to collect the hand gesture
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motion in a device-free manner. It has a non-contact advantage, is not affect by light, and
has attracted much attention in both academic and the industry [7,8].

In general, radar-based HGR mainly contains two stages: (i) signal preprocessing and
(ii) gesture feature extraction and classification. In the first stage, the raw radar signal is
collected and processed to obtain the motion parameters (such as range or Doppler) of
hand gestures. In References [7,8], the authors used two-dimensional fast Fourier transform
(2D-FFT) to estimate the range and Doppler map (RDM) of hand gestures. To improve
the quality of RDM, Wang et al. in [9] adopted the gradient threshold to filter out the
step peak in RDM, and then used the wavelet transform to further enhance RDM. To
reduce the interferences, the authors in [10] adopted the neighbor threshold detection
method instead of the constant false alarm rate (CFAR) [11] to filter out the interference
targets and detect the hand gesture targets. After suppressing the interference signal by
the first-order recursive filter, the authors in [12] used the lognormal CFAR to detect the
hand gestures. Although there were some works focusing on interference suppression and
hand gesture detection, they only considered the range and Doppler information of hand
gestures. In fact, the angle information of hand gestures provided an additional dimension
to describe the hand gesture motion. As a result, the motion parameters (range, Doppler,
and angle) in combination with interference suppression should be fully utilized to explore
the performance of HGR. In the stage of feature extraction and classification of HGR, a deep
learning method, such as the convolutional neural network (CNN) [13,14] was proven to be
an effective mean for HGR. The deep convolutional neural network (DCNN) was applied to
extract the gesture features of micro-Doppler and achieve gesture recognition with 14 types
of hand gestures [15]. However, the time features of the hand gesture motion were ignored,
restricting the recognition accuracy of HGR. In References [16,17], 3D convolutional neural
networks (3D-CNN) were presented to extract the motion features of continuous gestures.
However, this 3D-CNN only focused on the local time features of hand gestures, and
ignored the global time features of hand gestures. Zhang et al. [18] applied the long short
term memory (LSTM) network [19] to learn the global time features. In [12], Yang et
al. proposed a reused LSTM network to extract the trajectory features of the range, angle,
and Doppler of hand gestures.

The aforementioned researchers conducted a lot of work and promoted the develop-
ment of HGR. However, all of them focused on HGR with a single hand gesture. In many
applications, such as virtual games and collaborative control, multi-hand gestures should
be recognized simultaneously. When there are multiple dynamic hand gestures in front of
the radar, the echo signals of multiple gestures mix together, and the multi-hand gesture
recognition becomes more difficulty. Peng et al. [20] explored the multi-hand gesture
recognition using the different ranges that corresponded to different hand gestures. Unfor-
tunately, this method is not applicable when the multi-hand gestures have the same range.
By using the range and angle information of multi-hand gestures with the beamforming
technique, Wang et al. [21] extracted each gesture signal successively and then carried out
a 2D-FFT operation to obtain the Doppler spectrum of each hand gesture. Although range
and angle parameters are used for multi-hand gesture recognition, the Doppler information
is missing. More importantly, when the multi-hand gestures have the same range and
different hand gestures have similar Doppler characteristics, the recognition accuracies
of the above two multi-hand gesture recognition methods are pessimistic. Therefore, this
paper applies the automotive frequency modulated continuous wave (FMCW) radar, and
tries to design a multi-hand gesture recognition system by making full use of the three-
dimensional parameters of range, Doppler, and angle, and designing a novel deep learning
network. The main contributions of this paper are summarized as follows.

Firstly, we applied 3D-FFT on the fast-time domain, slow-time domain, and antenna
domain to estimate the range, Doppler, and angle parameters. Specifically, the 2D-FFT was
applied to construct the RDM, and the angle FFT was applied on the results of range FFT
among multiple antennas to construct the range-angle map (RAM). We applied the Hanning
window to suppress the spectral leakage, two-dimensional CA-CFAR (2D-CA-CFAR) to
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suppress the dynamic interference, and the average power of several continuous frames in
feature maps to suppress the static interference in RDMs and RAMs of multi-hand gestures.

Secondly, we propose a spatiotemporal path selection algorithm to separate the multi-
hand gestures in RDMs and RAMs. We designed a dual 3D-CNN-based feature fusion
network (D-3D-CNN-FN) for feature extraction and classification of the separated hand
gestures. Specifically, the dual 3D-CNN network was presented to extract the features of
RDMs and RAMs, and the extracted features from multiple frames were then fused and
input into LSTM. The output feature sequence is classified by softmax.

Finally, we designed a platform and used eight types of multi-hand gestures to validate
the effectiveness of the proposed multi-hand gesture recognition system; the experimental
results verify the superiority of the proposed method.

The rest of this paper is organized as follows. Section 2, introduces signal processing
of FMCW radar. Section 3 details the proposed multi-hand gesture recognition system,
including interference suppression, multi-hand gestures separation, and hand gesture
recognition. Experiments are carried out in Section 4 and followed by a conclusion in
Section 5.

2. Radar Signal Processing

In this section, we analyze the working principle of the automotive FMCW radar and
construct the RDM and RAM maps of multi-hand gesture parameters in details.

2.1. IF Signal of FMCW Radar

The FMCW radar generates a linear frequency modulation continuous signal through a
waveform generator and transmits it by the transmitters. The transmitted signal is reflected
by multi-hand gestures, and is then received by the receiving antennas. The intermediate
frequency (IF) signal is obtained (shown in Figure 1) by mixing the transmitted and received
signals, filtering out the high frequency part.

Figure 1. IF signal extraction.

The transmitted signals of the FMCW radar is

stx(t) = Atx cos(2π( f0t + St2/2 + φ0(t))), (1)
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where Atx is the amplitude, f0 is the initial frequency, and S = B/Tc is the slope of
transmitted signal. B is the bandwidth of the radar, Tc is the sweep period, and φ0(t) is the
initial phase of the transmitted signal.

The received signal reflected by the k-th target (hand) can be expressed as

srx(t, k) = Arx cos(2π( f0(t− τk) + ζ(t− τk)
2/2 + φ0(t− τk))), (2)

where Arx and τk = 2Rk/c, respectively, represent the amplitude and flight time of the
received echo signal, Rk is the range from the k-th target (hand) to the radar, and φ0(t− τk)
is the phase of the received signal.

The received signal and the transmitted signal are sent to the mixer and passed through
a low power filter (LPF) to obtain an IF signal. The IF signal is expressed as

sIF(t) =
K

∑
k=1

Ak cos(2π(Stτk + f0τk)) + N(t), (3)

where K is the number of hand gesture targets, Ak is the amplitude of the IF signal of the
hand gesture target, and N(t) is the white Gaussian noise.

2.2. Theory of Parameters Estimation

To achieve multi-hand gesture recognition, in this paper, the range, Doppler, and angle
parameters of the FMCW radar are applied. In this subsection, we analyze the estimation
theories of these three parameters.

2.2.1. Range Estimation

If we obtain the delayed time of the echo signal, the range between the radar and hand
gesture target is calculated, i.e., Rk = τkc/2. In fact, the delayed time cannot be obtained
directly. Fortunately, according to the principle of the IF signal extraction in Figure 1, we
find that the delayed time determines the frequency of the IF signal, and the relationship is
as follows.

f IF = S · τk =
B
Tc
· τk. (4)

Therefore, the delayed time is expressed as

τk =
Tc

B
fIF. (5)

Then, the range can be computed

R( f IF) =
cTc

2B
fIF. (6)

Since the radar configuration parameters are predefined, the bandwidth B and the
sweep period Tc are fixed. Then, different hand gesture targets in front of the radar result
in different IF frequencies, and different ranges can be obtained. According to [22], the
range resolution of the FMCW radar is dres = c

2B . The maximum detection range of the
FMCW radar

Rmax = dresTc fs. (7)

The range resolution is determined by the bandwidth, and the maximum detection
range is affected by bandwidth, sweep period, as well as the sampling frequency. There-
fore, to maintain the requirement with different ranges, these three parameters should be
carefully designed.
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2.2.2. Doppler Estimation

To measure the Doppler of a moving hand gesture target, at least two chirps are required.
Specifically, the phase difference of two continuous chirp signals is first calculated [23]

Δφ = φ2 − φ1 =
4πυTc

λ
. (8)

where φ1 and φ2 are the phases of the two chirp signals, λ is the wavelength, and υ is the
Doppler of the moving target; it is expressed as υ = λ

4πυTc
.

The Doppler resolution is υres =
λ

2MnTc
, where Mn is the chirp number in a frame. The

maximum detected Doppler is υmax = λ
4Tc

. The Doppler resolution is decided by the chirp
number and sweep period, and the maximum detection Doppler is only determined by the
sweep period.

2.2.3. Angle Estimation

Since the FMCW radar has multiple transmitting and receiving antennas, we can
estimate the angle of the hand gesture target using the phase differences of multiple
receiving antennas. The multiple receiving antennas cause path differences of the echo
signal from the same target, resulting in the phase difference. The phase difference between
two adjacent receiving antennas is

Δϕ = 2πΔd/λ, (9)

where Δd = l sin θ is the path difference, l is the range between the two continuous receiving
antennas, and θ is the arrival angle of the signal.

Then, the arrival angle can be expressed as

θ = sin−1(
λΔϕ

2πl
). (10)

Then, we can estimate the arrival angle by searching the spectral peak.

2.3. 3D-FFT-Based RDM and RAM Construction

Based on the range, Doppler, and angle estimation analysis, this subsection gives the
RDM and RAM construction process in detail. Assume that M frames are transmitted, and
each frame contains N chirps and the number sampling points of each chirp is Nadc. Since
the three parameters can be estimated by 3D-FFT [24], we performed 3D-FFT to construct
the RDM and RAM. The process of 3D-FFT for range, Doppler, and angle estimation is
shown in Figure 2.

Figure 2. 3D-FFT process.

To obtain the three parameters, FFT was firstly carried out on the sampling points of
each chirp (such an operation is called range-FFT) to obtain the range of the multi-hand
gestures. Based on the results of the first FFT, the FFT was further carried out over N chirps

139



Remote Sens. 2022, 14, 2374

of a frame to obtain the Doppler frequency (called Doppler-FFT). By performing the 2D-FFT
on different frames, we obtained the RDMs of a complete multi-hand gesture. RDMs can
be obtained using a single transmitting and a single receiving antenna. With multiple
transmitting and receiving antennas, the results of 2D-FFT (RDM) from different antennas
were summed, resulting in less clutter and a higher SNR [25]. On the other hand, with
multiple transmitting and receiving antennas, we can estimate the angle of the multi-hand
gestures-based on the results of RDM. Generally, the third FFT is carried out on the results
of RDM over different antennas. Then, we searched the spectral peak on the results of the
third FFT to obtain the range-angle maps of multi-hand gestures.

3. Proposed Multi-Hand Gesture Recognition System

In this section, the proposed multi-hand gesture recognition system is presented,
shown in Figure 3. Since there are a lot of interferences in the parameter maps (i.e.,
RDM and RAM), to achieve a satisfactory recognition accuracy, we have to suppress the
interferences. The multi-hand gesture is then separated by the proposed spatiotemporal
path selection algorithm. Finally, the separated hand gestures are trained and tested by the
designed deep learning network.

Figure 3. Proposed multi-hand gesture recognition flowchart.

3.1. Interference Suppression

There are many interferences in the IF signal. To suppress the interference from the
interfering radars, the authors in [26] designed novel orthogonal noise waveforms; the key
idea is that the signal in the current transmission pulse is orthogonal to the next transmission
signal. In [27], the authors proposed a tunable Q-factor wavelet transform to suppress
the mutual interference between automotive FMCW radars. In [28], Wang utilized a one-
dimensional CFAR to detect interferences and the detection map was dilated to generate
a mask for interference suppression. In case of radar self-motion, the authors in [29]
investigated a range alignment processing approach for breathing estimation considering
the radar self-motion and target motion. This work can be applied in the field of assistive
devices for the disabled. In [30], Haggag et al. introduced a reliable and robust probabilistic
method to estimate the radar self-motion. Different from the above cases, in our considered
scenario, the interfering radar was not considered and the interferences in the IF signal
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mainly came from the static and moving objectives in the test environment. In this paper,
the interferences mainly came from the thermal noise inside the radar system, moving
targets (such as torso and arms), and static targets (wall or static objects), etc. These
interferences in RDMs and RAMs have significant impacts on the separation of multi-hand
gestures and the recognition accuracy of hand gestures. Towards this end, we suppressed
the interferences in RDMs and RAMs from the following three aspects.

3.1.1. Spectral Leakage Cancellation

The spectral leakage mainly comes from the system noise and the aperiodicity of
signal truncation of the ADC sampling. The system noise causes ghost targets near the
radar, while aperiodicity of signal truncation spectrum tailing in the whole frequency band,
resulting in pseudo peaks around the target. Therefore, we added the Hanning window [31]
to the ‘three-dimensional’ of the data cube. Specifically, the Hanning window was added
to the sampling points of each chirp, the same sampling points of multiple chirps and the
sampling points from different antennas. The results in the next section show that such an
operation reduces the spectral leakage.

3.1.2. Dynamic Interference Suppression

Moving targets, such as the arms and torso, cause dynamic interferences in RDMs and
RAMs. Therefore, we applied the 2D-CA-CFAR algorithm [32] to suppress these dynamic
interferences in RDMs and RAMs. The 2D-CA-CFAR algorithm computes the average
interference power in the referenced window in RDM (or RAM), and obtains an adaptive
power threshold. The power in RDM (or RAM), higher than the threshold, is marked as
hand gesture, otherwise it is marked as interference. Finally, we moved the referenced
window along the range and Doppler domain (or range and angle domain) in turn to
suppress the dynamic interference of RDM and extract the multi-hand target.

3.1.3. Static Interference Suppression

Although the 2D-CA-CFAR algorithm suppresses the dynamic interferences from
the torso or arms, there still exists static interferences caused by the wall or static objects.
Obviously, the Doppler of the static target in RDM is zero, and the range and angle of
static targets in RAM keep stable. Therefore, we computed the average power of RDMs (or
RAMs) over several continuous frames and subtracted the average power from RDMs (or
RAMs) obtained after dynamic interference suppression. In the experiments, the averaged
power was computed using five continuous frames. The authors in [33] proposed a range
and Doppler cell migration correction (RDCMC) algorithm to solve the range and Doppler
cell migration problem. In the future, we will apply this algorithm in combination with
our interference suppression scheme on RDM and RAM to obtain better feature maps of
multi-hand gestures.

3.2. Spatiotemporal Path Selection Algorithm

The parameter maps of multi-hand gestures were obtained after map construction and
interference suppression. Since one frame constructs one RDM and one RAM, we collected
M frames to ensure that the RDMs and RAMs contained complete multi-hand gestures.
Due to the different range, the Doppler, and angle of the multi-hand gesture, different hand
gesture targets show different highlights in RDM and RAM. The same hand gesture needs
to be matched in RDM and RAM over different frames. However, since the range, Doppler,
and angle of the multi-hand gesture are changing, the strengths of the same hand gestures
in RDM and RAM on different frames are different. As a result, we cannot simply apply
the strength to match the same hand gesture over different frames. Thus, based on the
continuous variation characteristics in space and time, we propose a spatiotemporal path
selection algorithm to separate the multi-hand gesture.

To show the separation procedure, we took RDM as an example (RAM follows the
same procedure). Firstly, we found the hand gesture target that had the maximum am-
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plitude in the first frame of RDM. We denoted by Y1(r1, d1) the maximum amplitude of
the first hand gesture, and (r1, d1) the corresponding coordinate. Then, we calculated the
cost function from (r1, d1) in the first frame to all the points in the second frame. The cost
function is defined as

c1
ij = −|Y1(r1, d1)| − |Y2(r2

ij, d2
ij)|+ ω1

ij, (11)

where Y2(r2
ij, d2

ij) is the amplitude of the hand gestures in the second frame, i = 1, · · · , Nadc

and j = 1, · · · , N, r2
ij and d2

ij are, respectively, the coordinates of the range and Doppler

at the second frame, ωij is the weight function between (r1, d1) and (r2
ij, d2

ij) . The weight
function is defined as

ω1
ij = α1

i ‖r1 − r2
ij‖2 + α1

j ‖d1 − d2
ij‖2, (12)

where α1
i and α1

j are the weight factors of the range and Doppler domain, respectively, and
‖ · ‖2 is the Euclidean norm.

We found the minimum value of the cost function by searching all of the computed
cost values. Following the search procedure, we can obtain the coordinates of the first
hand gesture target in all the M RDMs. Since the hand gesture target occupied several
consecutive coordinates, we used a rectangular window to select the hand gesture target
based on the obtained coordinates. To extract the rest of the hand gesture targets, we
subtracted the obtained hand gesture targets from RDMs until all the hand gestures were
separated. The detailed separation process is concluded in Algorithm 1.

Algorithm 1 Spatiotemporal path selection algorithm for multi-hand gesture separation.

1: Compute the hand gesture number in each RDM, denoted by Nn.
2: for Nn > 1 do
3: Initialize the frame f = 1.
4: for f < M do
5: Compute the maximum amplitude Yf (r f , d f ) and the corresponding coordinate
at the f -th frame (r f , d f ), and record the cost function C.
6: for each coordinate (r f+1

ij , d f+1
ij ) in RDM at f + 1-th frame do

7: Record the amplitude Yf+1(r
f+1
ij , d f+1

ij ).

8: Compute the weight ω
f
ij = α

f
i ‖r f − r f+1

ij ‖2 + α
f
j ‖d f − d f+1

ij ‖2

9: Compute the cost function c f
ij = −|Yf (r f , d f )| − |Yf+1(r

f+1
ij , d f+1

ij )|+ ω
f
ij , and

add c f
ij into C.

10: end for
11: Compute the corresponding coordinate (r f+1, d f+1) = argmin

r f+1
ij ,d f+1

ij
c f

ij of

Yf (r f , d f ) at the f + 1-th frame.
12: Construct a window centered on (r f+1, d f+1) , and obtain the RDM of the Nn-th
hand gesture at the f + 1-th frame.
13: Update f = f + 1.
14: end for
15: Subtract the RDM of the Nn-th hand gesture target from the RDM of multi-hand
gesture, and update Nn = Nn − 1.
16: end for

The input of Algorithm 1 is the M RDMs of multi-hand gestures and the output is
the separated M RDMs of the Nn single hand gestures. The hand gesture target in the first
RDM was selected randomly, and the selected hand gesture was then subtracted. Then,
by applying Algorithm 1, we obtained the M RDMs of each hand gesture. Similarly, the
RAMs of each hand gesture can be obtained.
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3.3. D-3D-CNN-FN for HGR

After the multi-hand gestures were separated by the proposed spatiotemporal path
selection algorithm, we input the separated hand gesture dataset of RDMs and RAMs
into the designed deep learning network for HGR. A total of 32 frames contained a single
complete multi-hand gesture motion. To realize real-time applications, we had to segment
the continuous data flow into a single complete gesture motion by finding the start and
end times of the continuous multi-hand gesture motion. Since the motion features of each
hand gesture are described by multiple continuous RDMs and RAMs, the features and
continuity of each hand gesture should be carefully considered. Therefore, we propose a
dual 3D-CNN-based feature fusion network for HGR, shown in Figure 3. The dual 3D-CNN
is applied to extract the features of RDMs and RAMs, and the LSTM network is further
applied to extract the continuous features of the gesture motion. The detailed procedure is
described as follows.

3.3.1. 3D-CNN-Based Feature Extraction

Since each hand gesture has M RDMs and M RAMs, we applied two 3D-CNNs to
respectively extract the feature of RDMs and RAMs. Then, the extracted feature sequences
of range-Doppler and range-angle were fused. The detailed architecture of the dual 3D-
CNN is shown in Figure 4.

Figure 4. Architecture of dual 3D-CNN.

The sizes of RDM and RAM were 64 × 64 and 64 × 128, respectively, and the sizes
were determined by the sampling points of each chirp and the chirp number in each frame.
To extract the features of 32 RDMs, the designed network contained five 3D convolution
and pooling layers, and one full connection layer. We carried out one 3D convolution and
one maximum pooling operation in each layer of the first three 3D convolution and pooling
layers. In the fourth and fifth layers, we carried out two 3D convolutions and one maximum
pooling operation. To reduce the network parameters and improve the generalization
ability of the network, all the convolution operations adopted a 3 × 3 × 3 convolution
kernel, followed by the linear activation function of ReLu to reduce the interdependence
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between parameters and alleviate the overfitting phenomenon of the network. To fulfill
the characteristics of RAMs, the 3D-CNN for feature extraction of RAMs contained six
3D convolution and pooling layers; each layer applied maximum pooling. Since the size
of RAM is 64 × 128, we used 1 × 1 × 2 and 1 × 2 × 2 in the first two pooling layers to
maintain the size of RDM. To extract subtle local features of hand gestures, we carried out
two 3D convolution operations in the final 3D convolution layer.

3.3.2. LSTM-Based Time Sequential Feature Extraction

The dual 3D-CNN extracts the dynamic hand gesture features of RDMs and RAMs
over M frames, and obtains range-Doppler and range–angle features with two 1 × 1024
feature sequences. To obtain the time sequential features of the complete dynamic hand
gesture, the LSTM network was applied. Since the two time sequential features were fused
sequentially to obtain the feature sequence with 2 × 1024, the step of the applied LSTM
network is 2. Then, the feature with size 2 × 1 is sent to each LSTM, and the time sequential
feature with 1 × 1024 is the output. The LSTM for the time sequential feature extraction is
shown in Figure 5. In Figure 5, ft the forgetting gate, it is the input gate, ct is the storage
unit, and ht is the hidden layer state. At each time step, it, ft, ct, ot, and ht are expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

it = σ(Wmi · TFt + Whi · ht−1 + Wcict−1 + bi)

ft = σ
(

Wm f · TFt + Wh f · ht−1 + Wc f ct−1 + b f

)
c̃t = σ ft

⊙
+it

⊙
tanh(Wmc · TFt + Whc · ht−1 + bc)

ct = ft · c̃t−1 + it · c̃t
ot = tanh(Wmo · TFt + Who · ht−1 + Wcoct−1 + bo)
ht =õt · tanh(ct)

, (13)

where σ(·) is the sigmoid function, tanh(·) is the tanh function, σ(x) = 1
1+e−x , Wmi, Whi,

Wci, Wm f , Wh f , Wc f , Wmc, Whc, Whc, Wmo, Who, and Wco are the weights in the LSTM unit,
and b f , bi, and bc are the corresponding biases.

Figure 5. LSTM network-based time series feature extraction.

3.3.3. Gesture Classification

The output of the LSTM network is the time sequential feature of the hand gesture
with 1 × 1024. To classify the hand gesture using the time sequential features, we first
normalized the sequences and input them into the full connection layer. The feature
sequences were then input into the following normalized exponential function

so f tmaxvi =
exp(wT

i vi)

∑k
j=1 exp(wT

j vj)
, (14)

where i is the i-th hand gesture, vi is the i-th element of the feature sequence, wi is the
weight corresponding to vi, and k is the types of hand gestures.
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4. Experiments and Analysis

4.1. Experimental Setup

In this paper, we designed and built a multi-hand gesture recognition platform using
the automotive FMCW radar and data collection card provided by Texas Instruments (TI).
The FMCW radar sensor is AWR1642 [34], and the data collection card is DCA1000 [35],
shown in Figure 6. The collected data were processed by a personal computer (PC); the
recognition results were displayed with the graphical user interface (GUI). The radar had
two transmitting and four receiving antennas; the start frequency was 77 GHz and the
bandwidth was 4 GHz. We collected 32 frames to acquire the complete multi-hand gestures;
the detailed radar parameters are configured in Table 1. In the experiment, the Intel-6700K
processor and NVIDIA-GTX1080 graphics card were used.

Figure 6. The adopted radar sensor and data collection card.

Table 1. Radar configuration parameters.

Parameters Values Parameters Values

fc 77 GHz Ks 105.202 MHz/μs
B 3.997 GHz λ 3.9 mm
Nadc 64 Nc 128
rres 0.0446 m Tc 38 μs
rmax 2.8531 m vres 0.4006 m/s
Fs 2 MHz vmax 25.6366 m/s

We designed eight types of multi-hand gestures with two-hands (the method presented
in this paper is also feasible to the case of multiple hands (more than two); we will leave the
test for future work. Since the FMCW radar can distinguish the two hands from the range
and angle, the presented method can be applied to recognize the gestures of the driver
and passenger in the front row of the car), shown in Figure 7a. The arrows indicate the
movement directions of the hand gestures. Although there were eight types of multi-hand
gestures, each hand performed four types of hand gestures. After multi-hand gesture
separation, there were eight hand gestures in total, namely left hand slides to left (LSL),
left hand slides to right (LSR), left hand slides to up (LSU), left hand slides to down (LSD),
and right hand slides to left (RSL), right hand slides to right (RSR), right hand slides to up
(RSU), right hand slides to down (RSD), shown in Figure 7a. Since the left hand and right
hand perform similar actions, these similar features increased the recognition difficulty.
To improve the robustness of the design deep learning network, we collected multi-hand
gestures of three men and two women, and each person collected 100 multi-hand gesture
data. As a result, each multi-hand gesture had 500 data; there were 4000 data for the eight
types of multi-hand gestures in total.
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(a) Multi-hand gestures (b) Separated hand gestures

Figure 7. Hand gesture types.

4.2. Results and Analysis
4.2.1. Effect of Interference Suppression

To show the effect of interference suppression, we used the RDM of the multi-hand
gesture G1 in Figure 7 at the 10-th frame, and the results are shown in Figure 8a–d. It can be
seen from Figure 8 that the spectral leakage in the original RDM was suppressed. Moreover,
the dynamic interferences (caused by the torso and arms as well as micro-motion in the
environment) in Figure 8b labeled by black boxes were suppressed. The static interferences
caused by the wall or static objects were also suppressed in Figure 8d.

(a) (b)

(c) (d)

Figure 8. Effect of interference suppression for RDM. (a) Original. (b) With the added Hanning
Window. (c) Dynamic interference suppression. (d) Static interference suppression.

We also used the RAM of the same hand gesture, as in Figure 8a–d to show the effect of
interference suppression, shown in Figure 9a,b. We can see from Figure 9a that the two hand
gesture targets are located at −30◦ and 40◦. Due to the spectral leakage and interferences,
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there were interference targets in the original RAM, marked by black and white boxes.
Figure 9b shows that the two hand gesture targets are clearly after interference suppression.

(a) (b)

Figure 9. Effect of interference suppression for RAM. (a) Original. (b) After interference suppression.

4.2.2. Impact of Training Dataset Size

In this HGR experiment, we first analyzed the influence of the ratios of the training
to the testing dataset of 2:8, 5:5, 7:3 and 8:2 on the results, shown in Figure 10. It can
be seen that when the ratio is 2:8, the generalization ability and recognition result of the
D-3D-CNN-FN network is very poor, which is mainly because of the poor fitting ability of
the small training dataset. By increasing the ratio, there are more experimental samples
in the training set, which makes the recognition accuracy of the proposed network higher.
When the ratio is 7:3, the D-3D-CNN-FN network has the best performance, and a ratio of
7:3 in the following experiments.

Figure 10. Accuracy under different dataset ratios.

4.2.3. Impact of Learning Rate

Since the learning rate adjusts the weight during network training using the loss
function, Figure 11 compares the recognition performance of the network under different
learning rates. It can be seen that with a large learning rate, such as 0.001 and 0.005, the
D-3D-CNN-FN network fails to converge or falls into a local optimum. If the weight is too
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small ( such as 0.00001), the D-3D-CNN-FN network will converge very slowly. As a result,
we set the learning rate to 0.00008 in the following experiments.

Figure 11. Accuracy under different learning rates.

4.2.4. Recognition Accuracy Comparison

To verify the effectiveness of the D-3D-CNN-FN, we took 3D-CNN [17] with RDMs
or RAMs and dual 3D-CNN with RDMs and RAMs for comparison. The comparison
methods are marked by 3D-CNN+RDM, 3D-CNN+RAM and D-3D-CNN+RDM and RAM,
respectively. The dual 3D-CNN (D-3D-CNN) applied two 3D-CNN networks to extract
features of RDMs and RAMs, directly followed by the softmax classifier. The ratio of the
training dataset to the test data set was 7:3, the initial learning rate was set to 0.0008, and
the iteration number used for training was 10,000.

The training accuracy comparison on the test dataset is shown in Figure 12. Since the
proposed D-3D-CNN-FN applied dual 3D-CNN for local feature extraction of both RDMs
and RAMs and used LSTM for global time feature extraction, the proposed D-3D-CNN-FN
has higher recognition accuracy than D-3D-CNN. Moreover, 3D-CNN with RDMs or RAMs
have poor recognition accuracy mainly because of the limited motion parameters.

Figure 12. Training process comparison of each network.
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The recognition accuracies of each type of gesture are summarized in Table 2. We used
‘Ave’. to represent the average recognition accuracy in Table 2. Compared to 3D-CNN with
only RDM or RAM, D-3D-CNN uses two network branches to respectively learn the local
features of RDM and RAM, and then fuses the features and input into a full connection
layer for classification. As a result, the average recognition accuracy (86.95%) of dual
3D-CNN is improved by 4.2 compared to the single branch 3D-CNN. With fused feature
input into the LSTM for global feature extraction, the average recognition accuracy of the
proposed D-3D-CNN-FN is about 6.2 higher than that of the D-3D-CNN network.

Table 2. Recognition accuracy comparison (%).

Parameter 3D-CNN 3D-CNN D-3D-CNN D-3D-CNN-FN

Dataset RDM RAM RDM+RAM RDM+RAM

LSL 73.33 86.67 89.67 94.33
LSR 71.67 83.33 87.67 96.67
LSU 69.00 81.67 86.33 90.67
LSD 74.67 82.00 83.00 91.33
RSL 72.33 79.67 90.00 95.00
RSR 75.00 83.33 86.67 93.33
RSU 70.00 86.67 84.33 91.67
RSD 71.33 86.67 88.00 92.00
Ave. 72.16 82.79 86.95 93.12

5. Conclusions

In this paper, we proposed a multi-hand gesture recognition method using an automo-
tive FMCW radar sensor. The 3D-FFT was applied to construct the maps of RDM and RAM.
Then, the interference was suppressed and the multi-hand gestures were separated by the
proposed spatiotemporal path selection algorithm. The dual 3D-CNNs were proposed to
extract the features of RDM and RAM, and the fused features were input into the LSTM
network. The performance of the presented system was validated on the self-built dataset.
The results showed that the averaged recognition accuracy of the proposed method was
93.12%, which was improved by 6.2 compared with the state-of-the-art. In the future, we
will design an efficient and robust interference suppression scheme, as well as a deep
learning network with the consideration of radar self-motion. Moreover, we will carry
out real-time tests with more hands and more multi-hand gesture types. The multi-hand
gesture recognition system applies the radar to recognize the multi-hand gestures in a
device-free manner. It has potential application in intelligent driving, industry 4.0, HVAC
systems, etc.
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Abstract: This paper presents a target tracking algorithm based on 4D millimeter-wave radar point
cloud information for autonomous driving applications, which addresses the limitations of traditional
2 + 1D radar systems by using higher resolution target point cloud information that enables more
accurate motion state estimation and target contour information. The proposed algorithm includes
several steps, starting with the estimation of the ego vehicle’s velocity information using the radial
velocity information of the millimeter-wave radar point cloud. Different clustering suggestions are
then obtained using a density-based clustering method, and correlation regions of the targets are
obtained based on these clustering suggestions. The binary Bayesian filtering method is then used to
determine whether the targets are dynamic or static targets based on their distribution characteristics.
For dynamic targets, Kalman filtering is used to estimate and update the state of the target using
trajectory and velocity information, while for static targets, the rolling ball method is used to estimate
and update the shape contour boundary of the target. Unassociated measurements are estimated
for the contour and initialized for the trajectory, and unassociated trajectory targets are selectively
retained and deleted. The effectiveness of the proposed method is verified using real data. Overall,
the proposed target tracking algorithm based on 4D millimeter-wave radar point cloud information
has the potential to improve the accuracy and reliability of target tracking in autonomous driving
applications, providing more comprehensive motion state and target contour information for better
decision making.
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1. Introduction

For autonomous driving systems, accurately sensing the surrounding environment is
crucial. Among the various vehicle sensing sensors, millimeter-wave radar is capable of
obtaining position and speed information of targets, and can operate in complex weather
conditions such as rain, fog, and bright sunlight exposure [1].

Conventional 2 + 1D (x, y, v) millimeter-wave radar is effective in measuring the radial
distance, radial velocity, and horizontal angular information of a target. However, when
compared to cameras and LIDAR, which are the other major sensors used in autonomous
driving, traditional millimeter-wave radar has a lower angular resolution and cannot
provide height angle information of the target. In autonomous driving scenarios, where
vehicle or pedestrian targets are common, the small number of points and low angular
resolution of individual targets in the scene can result in large errors in size and location
estimation. To address this issue, high-resolution 4D (x, y, z, v) millimeter-wave radar
has been developed, which can provide height angle information of targets with higher
angular resolution. This enables more accurate edge information of targets and more
precise estimation of a target’s size and position.
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Radar target tracking plays a critical role in millimeter-wave radar sensing. By provid-
ing a continuous position and velocity profile of a target, radar target tracking offers higher
accuracy and reliability compared to a single measurement from the radar. Furthermore, it
can effectively eliminate false detections.

Most conventional millimeter-wave radar tracking methods focus on point targets,
which provide target ID, position, and velocity information. However, 4D millimeter-wave
radar can measure multiple scattering centers per target, making direct application of
point cloud tracking methods unsuitable. In addition, contour information, such as target
size and orientation, is critical in autonomous driving environments. Therefore, accurate
estimation of target ID, position, size, direction, and velocity information is necessary for
4D millimeter-wave radar target tracking. Despite considerable research on point target
tracking using millimeter-wave radar, there is limited research on 4D millimeter-wave
radar-based target tracking methods. Dynamic target tracking using 4D millimeter-wave
radar presents several challenges, including variation in target size and multiple individual
target measurement points. Furthermore, 4D millimeter-wave radar can measure static
targets in the scene, while conventional millimeter-wave radar usually filters out static
targets due to the absence of altitude angle information, which can result in false positives.
Therefore, 4D millimeter-wave radar target tracking can also estimate the contour shape
information of static targets. This paper focuses on developing tracking methods for
multiple dynamic and static targets throughout a scene using 4D millimeter-wave radar.

The most commonly used multi-target tracking methods for millimeter-wave radar
based on point targets include nearest neighbor data association (NN) [2,3], global nearest
neighbor association (GNN) [4,5], multiple hypothesis tracking (MHT) [6,7], joint prob-
abilistic data association (JPDA) [8,9], and the random finite set method (RFS) [10–12].
The nearest neighbor association algorithm selects the observation point that falls within
the association gate and is closest to the tracking target as the association point. The
global nearest neighbor algorithm minimizes the total distance or association cost. The
joint probabilistic data association algorithm combines data association probabilities. The
multi-hypothesis tracking algorithm calculates the probability and likelihood for each track.
The RFS approach models objects and measurements as random finite sets.

In high-resolution millimeter-wave radar or 4D millimeter-wave automotive radar,
a road target often spans multiple sensor resolution units, which poses challenges for
tracking. In the extended target tracking problem for millimeter-wave radar, the position
of the target measurement point on the object is represented as a probability distribution
that changes with the sensor measurement angle, and the measurement point may appear
or disappear. Therefore, tracking extended targets using millimeter-wave radar presents a
significant challenge.

One approach to address the extended target tracking problem is to include a cluster-
ing process that reduces multiple measurements to a single measurement, which can then
be tracked using a point target tracking method. In extended target tracking, clustering
can be used to partition the point cloud. In automotive millimeter-wave radar target
tracking, the size and shape of the clustering clusters vary due to the different size and
reflection properties of the targets. Therefore, density-based spatial clustering of appli-
cations with noise (DBSCAN) [13] is commonly used to cluster radar points. However,
density-based clustering methods rely on fixed parameter values and may perform poorly
with targets of different densities. As a result, several methods that allow for different
clustering parameters have been proposed, such as ordering points to identify the cluster-
ing structure (OPTICS) [14], hierarchical DBSCAN (HSBSCAN) [15], and tracking-assisted
multi-hypothesis clustering [16].

Other approaches to extended target tracking involve designing object measurement
models. Some examples include the elliptic random matrix model [17], the random hy-
persurface model [18], and the Gaussian process model [19]. In millimeter-wave radar
vehicle target tracking, various vehicle target models have been proposed, such as a direct
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scattering model [20], a variational radar model [21], a B-spline chained ellipses model [22],
and the data-region association model [23].

Although several methods exist for extended target tracking using millimeter-wave
radar, many of them rely on simulation data for extended target tracking theory. In
practical scenarios, challenges such as varied point cloud probability distributions of
different extended targets, and diverse position relationships when different targets are
associated require further investigation on certain tracking algorithms. Moreover, some
algorithms focus on tracking vehicle targets, and thus it is essential to explore ways to
adapt tracking algorithms to different types of targets with varying sizes. Additionally,
there have been limited studies on 4D millimeter-wave radar target tracking, and, therefore,
the effectiveness of such methods on 4D millimeter-wave radar needs to be explored. This
paper presents an effective 4D millimeter-wave radar target tracking method with the
following contributions.

1. This paper proposes a 4D millimeter-wave radar point cloud-based multi-target
tracking algorithm for estimating the ID, position, velocity, and shape information of
targets in continuous time.

2. The proposed target tracking solution includes point cloud velocity compensation,
clustering, dynamic and static attribute update, dynamic target 3D border generation,
static target contour update, and target trajectory management processes.

3. To address the issue of the varying size and shape of dynamic and static targets, a
binary Bayesian filtering method [24] is utilized to extract static and dynamic targets
during the tracking process.

4. Kalman filtering is used for dynamic targets such as vehicles, pedestrians, bicycles,
and other targets, combined with the target’s track information and radial velocity
information to estimate the target’s 3D border information.

5. For static targets such as road edges, green belts, buildings, and other non-regular
shaped targets, the rolling ball method is employed to estimate and update the shape
contour boundaries of the targets.

The structure of this paper is organized as follows. Section 2 describes the tracking
problem. Section 3 presents the proposed solution to the tracking problem, which includes
compensating for target velocity, clustering point clouds, determining target associations,
identifying dynamic and static targets, updating contour shape states, and creating, retain-
ing, and deleting trajectories. Section 4 presents the experimental setup and results. Finally,
Section 5 summarizes the research.

2. Materials and Methods

The objective of this paper is to derive state estimates for both dynamic and static
targets within the field of view of 4D millimeter-wave radar, using the point cloud mea-
surement volume of the radar. This includes obtaining 3D edge information of dynamic
targets and contour shape information of static targets.

2.1. Measurement Modeling

4D millimeter-wave radar point cloud measurement includes information on the
position along the x, y, and z-axes as well as the radial velocity vr and intensity I. The radial
velocity information is obtained through direct measurement as the target point’s relative
radial velocity. Each measurement point can be expressed as:

zj = [ xj yj zj vr
j Ij ] (1)

where zj represents the measurement, j represents the j-th point, and vr
j represents the

relative radial velocity of the j-th point.
As shown in Figure 1, 4D millimeter-wave radar point clouds are utilized to measure

targets at three distinct time steps, revealing that the detected target points are dynamic and
can vary over time, possibly appearing or disappearing at different locations. This poses a
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significant challenge in accurately estimating the target’s location and shape. To account
for sensor noise and the inherent uncertainty in the measurement model, a probabilistic
model is often employed to describe the measurement process.

  
(a) (b) (c) 

 

 

 

 

 

(d) (e) (f) 

Figure 1. Measurements of the same target at adjacent moments. (a) 3D view of the target point cloud
at moment t − 2. (b) 3D view of the target point cloud at moment t − 1. (c) 3D view of the target
point cloud at moment t. (d) Top view of the target point cloud at moment t − 2. (e) Top view of the
target point cloud at moment t − 1. (f) Top view of the target point cloud at moment t.

For multiple measurements of the expansion target, this can be expressed as:

Z =
{

zj
}n

j=1
(2)

where Z is the set of measurement quantities, zj is a single measurement quantity, j is the
number of measurements, and n is the total number of measurements.

The probability distribution of the measurements obtained from the target state can be
expressed as:

p(Zk|Xk) (3)

where Zk is the measurement at moment k for a target with target state Xk.

2.2. Target State Modeling

The aim of this paper is to estimate the states of both dynamic and static targets in the
4D millimeter-wave radar field of view using point cloud measurements. For the dynamic
targets, their states can be described as follows:

• Position state: The target’s position in three-dimensional space (x y z).
• Motion state: Since the target’s position in the z-axis direction remains relatively stable

in autonomous driving scenarios, the motion state can be simplified to the target’s
velocity in the x-axis and y-axis directions on the vehicle motion plane (vx vy).

• Profile shape state: This describes the shape and size of the target. For a 3D dynamic
target in a road environment, it can be modeled as a 3D cube ( l w h θ) since its shape
and size states do not change substantially. Its extended state contains the size and
rotation direction of the target.
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Therefore, the state estimation of a 3D dynamic target in a road environment at time
k can be represented as Xk, which consists of the position state (x y z), the motion state
(vx vy), and the profile shape state ( l w h θ).

Xd
k = [xk yk zk vxk vyk lk wk hk θk] (4)

The states of the static targets in this paper can be described as follows:

• Position state: The position of the target in the z-axis direction in space (z position).
• Motion state: For static targets, the absolute velocity is zero, and the relative velocity

can be estimated as the negative of the velocity of the ego vehicle’s motion (vxk vyk).
• The profile shape state of the target: For a 3D static target in a road environment, it

can be modeled as a target surrounded by an edge box, which is represented as a set
of n 2D enclosing points and their heights (h

{
xj yj

}n
j=1).

The state estimation of a 3D static target in a road environment can be expressed as:

Xs
d = [{xj yj}n

j=1 vxk vyk hk zk] (5)

2.3. Method

The proposed solution in this paper is illustrated in Figures 2 and 3:

Figure 2. 4D millimeter-wave radar point cloud tracking framework.

 

Figure 3. Module of calculation of target measurement.

In Figures 2 and 3, time is represented by t, the detection value is represented by D,
the trajectory is represented by T, the dynamic target is represented by d, and the static
target is represented by s.

The 4D radar data is input to generate point cloud data of the scene. The point cloud is
preprocessed to compensate for the velocity information and convert relative radial velocity
to absolute radial velocity. The static scene from the previous frame is matched with the
current frame to aid in associating static and dynamic targets. A clustering module is used
to classify the points into different target proposals. Data association is performed using
an optimal matching algorithm. For the clustered targets that are successfully associated,
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their dynamic and static attributes are updated using a binary Bayesian filtering algorithm.
For dynamic targets, the target state is updated using a Kalman filtering method to obtain
the 3D bounding box of the target. For static targets, the bounding box state is updated
using the rolling ball method. For unassociated clustered targets, trajectory initialization
is performed, historical trajectories that are not associated are retained or deleted, and
trajectories in overlapping regions are merged.

2.3.1. Point Cloud Preprocessing

Before feeding the millimeter-wave radar point cloud into the tracking framework,
several preprocessing steps are performed. Firstly, the relative radial velocity information
of the point cloud is compensated for absolute radial velocity, allowing for the extraction
of dynamic and static targets in the scene and the updating of their states based on radial
velocity information. Additionally, due to the motion of the radar, the world coordinate
systems of the front and back point clouds are different, and multi-frame point clouds are
matched to facilitate the association of dynamic and static targets. Further details on these
steps can be found in previous work [25].

After obtaining the ego vehicle’s speed vs, the compensation amount, v̂r
c, for the radial

velocity of the target can be calculated. Then, the absolute velocity of each target point, vr
a,

can be calculated as follows:
vr

a = vr
d − v̂r

c (6)

The radar point cloud conversion relationship can be expressed as:

H = [R, t] (7)

Yn
n−1 = Hn−1Pn−1 (8)

Yn
n−1 is the point set after the point cloud of the (n− 1)-th frame is registered to the

point cloud of the n-th frame. Pn−1 is the information of the n-th point.

2.3.2. Clustering and Data Association

• Radar Point Cloud Clustering

After preprocessing the point cloud data, the large number of points are grouped
into different targets using clustering techniques based on their position and velocity
characteristics. One commonly used clustering algorithm for radar point clouds is density-
based spatial clustering of applications with noise (DBSCAN) [13], which can automatically
detect clustering structures of arbitrary shapes without requiring any prior knowledge.
DBSCAN determines clusters by calculating the density around sample points, grouping
points with higher density together to form a cluster, and determining the boundary
between different clusters by the change in density. The DBSCAN algorithm takes spatial
coordinates (x, y, z) and radial distance (vr

a) of the data points as input. Specifically, the
DBSCAN algorithm can be executed in the following steps:

• Calculation of the number of data points N(p) in the neighborhood of a data point p:

N(p) = {q ∈ Z : dist(p, q) ≤ ε} (9)

Here, Z is the dataset, dist(p, q) is the Euclidean distance between the data points p
and q, and ε is the radius of the neighborhood.

• Determination of whether a data point p is a core point: If N(p) ≥ MinPts, then p is a
core point.

• Expanding the cluster: Starting from any unvisited core point, find all data points
that are density-reachable from the core point, and mark them as belonging to the
same cluster.

158



Remote Sens. 2023, 15, 2923

• Determination of whether a data point is density-reachable: A data point p is density-
reachable from a data point q if there exists a core point c such that both c and p are in
the neighborhood of q and the distance between c and p is less than ε.

• Marking noise points: Any unassigned data points are marked as noise points.

By executing the above steps, the DBSCAN algorithm can complete the clustering
process and assign the data points to different clusters and noise points.

After clustering the k targets, the features of the j-th target are represented as:

f j =
{

xj yj zj vr
j I j

}
(10)

where ( xj yj zj vr
j I j ) are calculated as the averages of the point cloud features

within each target. The features of all clustering targets can be expressed as:

F =
{

f j
}n

j=1 (11)

• Data Association

For the j-th trajectory, its features are denoted as:

gj =
{

x̃j ỹj z̃j ṽj Ĩj

}
(12)

The features of all trajectories can be expressed as:

G =
{

gj
}n

j=1 (13)

The purpose of data correlation is to select which measurements are used to update the
state estimate of the real target and to determine which measurements come from the target
and which come from clutter. In this paper, it is necessary to correlate all clustered targets
F and all trajectories G. One of the most widely used algorithms for target association is
the Hungarian algorithm, which is a classical graph theoretic algorithm that can be used to
maximize the matching of bipartite graphs. It can be used in a variety of target association
algorithms for radar or images, and in target tracking it can be used to match point clouds
in target clusters at different time steps to achieve target association. Assuming that there
are radar historical trajectories and clustered targets, where the clustered targets contain
m targets and the radar trajectories contain n targets, a cost matrix can be defined where
Cost(i, j) denotes the cost between the i-th point in the trajectory and the j-th point in
the clustered targets. Depending on the needs of the target tracking, the cost function
can be calculated from factors such as target clustering centroids, average velocity, and
intensity characteristics. The Hungarian algorithm finds the optimal matching solution
with the minimum cost by converting the bipartite graph into a directed complete graph
with weights and by finding the augmented paths in the graph.

The substitution matrix is calculated using the cost function, which is a combination
of the position cost and the velocity/intensity cost. The cost function is defined as:

Cost(i, j) = α1 × PositionCost(i, j) + α2 ×VelocityIntensityCost(i, j)) (14)

where α1 is the weight of the position cost and α2 is the weight of the velocity/intensity
cost. The position cost can be calculated based on the distance between the target centroid
and the trajectory prediction at the current time step, while the velocity/intensity cost can
be calculated based on the difference in velocity and intensity between the target and the
trajectory prediction.

Once the cost function has been calculated, the Hungarian algorithm can be used to
find the optimal matching solution with the minimum cost. The resulting substitution
matrix C is a binary matrix, where C(i, j) = 1 if target i is matched to the trajectory j, and
C(i, j) = 0 otherwise.
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2.3.3. Target Status Update

• Target Dynamic Static Property Update

By integrating the absolute velocity information of a target with a binary Bayesian
filter, its static and dynamic attributes can be updated. To estimate the target’s dynamic
probability at a given moment, the ratio of points with a speed greater than a given value
to the total number of points in the target’s point cloud is calculated. Bayes’ theorem is
used in the binary Bayesian filter to update the state of the target, which can be either static
or dynamic, represented by a binary value of 0 or 1, respectively, at time t.

Applying Bayes’ theorem:

p(x|z1:t) =
p(zt|x, z1:t−1)p(x|z1:t−1)

p(zt|z1:t−1)
=

p(zt|x)p(x|z1:t−1)

p(zt|z1:t−1)
(15)

The Bayes’ rule is applied to the measurement mode p(zt|x):

p(zt|x) = p(x|zt)p(zt)

p(x)
(16)

Then,

p(x|z1:t) =
p(x|zt)p(zt)p(x|z1:t−1)

p(x)p(zt|z1:t−1)
(17)

For the opposite event ¬x,

p(¬x|z1:t) =
p(¬x|zt)p(zt)p(¬x|z1:t−1)

p(¬x)p(zt|z1:t−1)
(18)

Then,

p(x|z1:t)

p(¬x|z1:t)
=

p(x|zt)p(x|z1:t−1)p(¬x)
p(¬x|zt)p(¬x|z1:t−1)p(x)

=
p(x|zt)

1− p(x|zt)

p(x|z1:t−1)

1− p(x|z1:t−1)

1− p(x)
p(x)

(19)

The log odds belief at time t is:

lt(x) = log
p(x|zt)

1− p(x|zt)
− log

p(x)
1− p(x)

+ lt−1(x) (20)

And,

l0(x) = log
p(x)

1− p(x)
(21)

Then,

lt(x) = lt−1(x) + log
p(x|zt)

1− p(x|zt)
− l0 (22)

In dynamic and static attribute updates, p(x|zt) is calculated as the ratio of the number
of points with a velocity greater than a given value vd to the total number of points in the
target point cloud.

• Dynamic Target State Update

The state estimation of a 3D dynamic target in a road environment at time k can be
represented as Xd

k by Equation (4), which consists of the position state (x y z), the motion
state (vx vy), and the profile shape state (l w h θ).

To update the state of a target, it is necessary to perform additional calculations on the
existing clustered targets to obtain measurements of its current state. These calculations
may involve analyzing the shape and center position of the target, as well as estimating its
velocity. Once these calculations are completed, the status of the target can be updated based
on the latest information available, allowing for more accurate tracking and prediction of
the target’s movement.
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When computing measurements of clustered targets for dynamic targets, it is necessary
to obtain the rectangular box enclosing the target. The height of the rectangular box can
be calculated from the maximum and minimum height of the point cloud, while the other
parameters of the rectangular box can be obtained from the enclosing rectangular box in
the x and y planes.

However, calculating the rotation angle of the rectangular box is the most challenging
part of target shape estimation, especially in imaging millimeter-wave radar, where the
number of point clouds is limited and the contours of the point clouds are not well-defined.
To address this issue, this paper proposes a method for calculating the rotation angle based
on the combination of point cloud position and velocity information and trajectory angle.
This approach provides a more accurate and robust estimate of the rotation angle, leading
to improved target tracking and prediction.

The rectangular box of the point cloud is fitted using the L shape fitting method [26].
When working with points on a 2D plane, the least squares method is a common approach
to finding the best-fitting rectangle for these points.

minimize
P,θ,c1,c2

∑
i∈P

(xi cos θ + yi sin θ − c1)
2 + ∑

i∈Q
(−xi sin θ + yi cos θ − c2)

2

subject to P ∪Q = {1, 2, . . . , m} c1, c2 ∈ R 0
◦ ≤ θ ≤ 90

◦ (23)

The above optimization problem can be approximated by using a search-based al-
gorithm to find the best-fitting rectangle. The basic idea is to iterate through all possible
directions of the rectangle. At each iteration, a rectangle is found that points in that direc-
tion and contains all scanned points. The distances from all points to the four edges of
the rectangle are then obtained, based on which the points can be divided into two sets,
p and q, and the corresponding squared errors are calculated as the objective function in
the above equation. After iterating through all directions and obtaining all corresponding
squared errors, the squared errors can be plotted as a function of the angle variation trend.
Algorithm 1 is as follows.

Algorithm 1

• Input: data points X = (x, y)
• Output: criterion Qp

1. For θ = 0 to π/2− δ step δ do
2. ê1 = (cos θ, sin θ)
3. ê2 = (− sin θ, cos θ)

4. C1 = X · êT
1

5. C2 = X · êT
2

6. q = CalculatecriterionX(C1, C2)
7. Qp(θ) = q
8. end for

The algorithm for defining the calculate criterion, CalculatecriterionX(C1, C2), using
the minimum rectangular area method as described in this paper, is as follows:

cmax
1 = max{C1}, cmin

1 = min{C1} (24)

cmax
2 = max{C1}, cmin

1 = min{C2} (25)

α = −(cmax
1 − cmin

1 )(cmax
2 − cmin

2 ) (26)
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After calculating to obtain Qp(θ), the probability Pp(θ) is calculated as:

Pp(θ) =
max(Q(θ))−Qp(θ) + min(Qp(θ))

∑
θ

Qp(θ)
(27)

For a target on a two-dimensional plane, if the velocities of the point clouds on the
target are assumed to be approximately equal, the orientation of the velocities can be
estimated. Since millimeter-wave radar has different radial velocities at different points,
this estimated velocity orientation can be used as an approximation for the rotation angle
of the estimated rectangle for the calculation of the rotation angle, as follows.

The radial velocity measured by millimeter-wave radar can be expressed as

vr
d = vd,x

x
R
+ vd,y

y
R

(28)

vr
d = vd,x(

x
R
+ tan θ

y
R
) (29)

Similar can be achieved by using a search-based algorithm to find the right angle,
where the criterion is calculated as the variance. Algorithm 2 is as follows.

Algorithm 2

• Input: X = ( x
Rvr

d
, y

Rvr
d
)

• Output: criterion Qv

1. For θ = 0 to 2 ∗ π − δ step δ do
2. ê = (1, tan θ)

3. C = X · êT

4. q = variance{C}
5. Qv(θ) = q
6. end for

After calculating to obtain Qv(θ), the probability Pv(θ) is calculated as:

Pv(θ) =
max(Qv(θ))−Qv(θ) + min(Qv(θ))

∑
θ

Qv(θ)
(30)

Calculating the historical trajectory angle as θl and the probability as a Gaussian
distribution with center at θl and variance at δl :

Pt(θ) = N(θ, σ2) + Pt (31)

Ph(θ) =
Pt(θ)

∑
θ

Pt(θ)
(32)

Angular probabilities estimated from the point cloud position and velocity information
and trajectory angles are fused using a weighted average.

P(θ) = α1Pp(θ) + α2Pv(θ) + α1Ph(θ) (33)

The theta value that maximizes P(θ) is chosen as the measured value, and the rectan-
gular boundary {aix + biy = ci|i = 1, 2, 3, 4} is calculated as:

C∗1 = X · (cos θ∗, sin θ∗)T , C∗2 = X · (− sin θ∗, cos θ∗)T (34)
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a1 = cos θ∗, b1 = sin θ∗, c1 = min{C∗1} (35)

a2 = − sin θ∗, b2 = cos θ∗, c2 = min{C∗2} (36)

a3 = cos θ∗, b3 = sin θ∗, c3 = max{C∗1} (37)

a4 = − sin θ∗, b4 = cos θ∗, c4 = max{C∗2} (38)

From the process described above, the following parameters of the clustered target
can be calculated: the centroid coordinates in three-dimensional space (x, y, z), the length,
width, and height of the rectangular box enclosing the target, and the rotation angle (θ) of
the rectangular box.

The velocity information of the target can be calculated by Equation (32).
Then, the measurement can be expressed as:

Zt,k = [xk yk zk vxk vyk lk wk hk θk] (39)

The state transfer model of the target motion can be modeled as:

Xt = FXt−1 + ξt (40)

where ξt is the system white Gaussian noise with covariance η(ξ; 0, R).
The sensor’s observation model is described as:

zt = Hxt−1 + ζt (41)

where ζt is the measurement white Gaussian noise with covariance η(ζ; 0, Q).
Based on Equations (40) and (41), since the state and measurement equations of the

target can be expressed in linear forms, the state can be updated by the Kalman filter.

• Static Target State Update

The state estimation of a 3D static target in a road environment can be expressed as
Equation (5)

When calculating measurements for clustered target detection in static scenarios,
obtaining the enclosing box of the target is necessary. The height of the enclosing box can
be determined by computing the maximum and minimum heights of the point cloud, while
the other parameters of the enclosing box can be obtained from the enclosing concave hull
in the x and y planes.

The specific steps of the algorithm are as follows:

1. For any point p and rolling ball radius a, search for all points within a distance of 2a
from p in the point cloud, denoted as the set Q.

2. Select any point p1(x, y) from Q and calculate the coordinates of the center of the
circle passing through p and p1 with a radius of alpha. There are two possible center
coordinates, denoted as p2 and p3.

3. Remove p1 from the set Q and calculate the distances between the remaining points
and the points p2 and p3. If all distances are greater than a, the point p is considered a
boundary point.

4. If all distances are not greater than a, iterate over all points in Q as the new p and
repeat steps (2) and (3). If a point is found that satisfies the conditions in steps (2)
and (3), it is considered a boundary point and the algorithm moves on to the next
point. If no such point is found among the neighbors of p, then p is considered a
non-boundary point.
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Through Formula (7) of the radar point cloud velocity compensation part, vxk and vyk
of the static target can be calculated, and the vehicle speed can be updated through the
Kalman filter.

2.3.4. Track Management

In multi-object tracking, the number of targets is typically unknown and can vary as
targets and clutter appear and disappear from the scene. Therefore, effective management
of target trajectories is essential. For associated detections and trajectories, their states are
preserved and updated over time. In cases where detections cannot be associated with
any existing trajectory, new trajectories are generated and released as visible trajectories if
their lifespan exceeds a predefined threshold Tr. For unassociated trajectories, their states
are also preserved and updated. However, if their unassociated time exceeds a second
threshold Tu, the trajectories are deleted to avoid unnecessary computational load.

3. Results

3.1. Experiment Setup

To verify the proposed algorithm, data from a 4D radar in road conditions were
acquired using a data acquisition platform. The platform includes a 4D radar, LIDAR,
and camera sensors, as shown in Figure 4. The 4D radar is installed in the middle of the
front ventilation grille, and the LIDAR collects 360◦ of environmental information. The
camera and 4D radar capture information within the field of view. The true value frame
of the tracking target was labeled using the LIDAR and camera sensors. The performance
parameters of the 4D radar sensor are shown in Table 1. The TJ4DRadSet [27] dataset
was collected and is used for the algorithm analysis. As shown in Figure 4, the collection
platforms of the dataset are displayed.

Figure 4. Data acquisition platform, including 4D radar, lidar, and camera sensor.

Table 1. Performance parameters of millimeter-wave radar in experimental data acquisition.

Sensors
Resolution FOV

Range Azimuth Elevation Range Azimuth Elevation

4D radar 0.86 m <1◦ <1◦ 400 m 113◦ 45◦

3.2. Results and Evaluation

In order to investigate the impact of velocity errors on the angle estimation under
different distances and angles, the graphs shown in Figures 5–10 were plotted.
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Figure 5. The relationship between velocity estimation and angle under a distance of 5 m and an
object rotation angle of 10 degrees, considering different radial velocity measurement errors.

Figure 6. The relationship between velocity estimation and angle under a distance of 20 m and an
object rotation angle of 10 degrees, considering different radial velocity measurement errors.
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Figure 7. The relationship between velocity estimation and angle under a distance of 5 m and an
object rotation angle of 40 degrees, considering different radial velocity measurement errors.

Figure 8. The relationship between velocity estimation and angle under a distance of 20 m and an
object rotation angle of 40 degrees, considering different radial velocity measurement errors.
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Figure 9. The relationship between velocity estimation and angle under a distance of 20 m and an
object rotation angle of 70 degrees, considering different radial velocity measurement errors.

Figure 10. The relationship between velocity estimation and angle under a distance of 40 m and an
object rotation angle of 70 degrees, considering different radial velocity measurement errors.
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From Figures 5–10, it can be observed that when the radial velocity error is small, the
estimation of the rotation angle can be made using velocity measurements from multiple
points, and a shorter distance is more favorable for estimating the rotation angle based on
the velocity.

Due to the limited number of millimeter-wave radar points, the rotation angle estima-
tion of the dynamic target is fused by different methods. As shown in Figures 11 and 12,
the rotation angle of the dynamic target can be better estimated.

Figure 11. Method for estimating dynamic targets at different angles, and the relationship between
probability and angle changes.

Figure 12. Rectangle formed by the estimated rotation angle and the true rotation angle.

Figures 13–15 show the state estimation of dynamic targets and static targets in a 4D
millimeter-wave radar scenario. Different estimated dynamic targets, static targets, and
true bounding boxes of dynamic targets have been labeled.
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Figure 13. Results of 4D millimeter-wave radar point cloud and target tracking for a single vehicle,
where the green box represents a dynamic target, the red box represents a static target, and the blue
box represents the true box of a dynamic target.

Figure 14. Results of 4D millimeter-wave radar point cloud and target tracking for a single vehicle,
including an incorrect dynamic detection, where the green box represents a dynamic target, the red
box represents a static target, and the blue box represents the true box of a dynamic target.
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Figure 15. Results of 4D millimeter-wave radar point cloud and target tracking for multiple objects,
where the green box represents a dynamic target, the red box represents a static target, and the blue
box represents the true box of a dynamic target.

Figure 16 shows the effects of different performance parameters in the target track-
ing scene.

Figure 16. Performance curves of different indicators for dynamic targets in a tracking scenario.
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4. Discussion

The proposed 4D radar object tracking method based on radar point clouds can
effectively estimate the position and state information of radar targets. This provides more
accurate information for perception and planning in autonomous driving. By utilizing
radar point clouds, the method improves the tracking and prediction of surrounding objects,
enabling autonomous vehicles to make informed decisions in real time. Precise localization
and tracking of radar targets enhance situational awareness, allowing autonomous vehicles
to navigate complex environments with greater reliability and safety. Overall, this method
significantly enhances the perception and planning capabilities of autonomous driving
systems, contributing to the development of safer and more efficient autonomous vehicles.

5. Conclusions

In summary, this paper presents a 4D radar-based target tracking algorithm framework
that utilizes 4D millimeter-wave radar point cloud information for autonomous driving
awareness applications. The algorithm overcomes the limitations of conventional 2 + 1D
radar systems and utilizes higher resolution target point cloud information to achieve more
accurate motion state estimation and target profile information. The proposed algorithm
includes several steps, such as ego vehicle speed estimation, density-based clustering, and
binary Bayesian filtering to identify dynamic and static targets, as well as state updates
of dynamic and static targets. Experiments are conducted using measurements from
4D millimeter-wave radar in a real-world in-vehicle environment, and the algorithm’s
performance is validated by actual measurement data. The algorithm can improve the
accuracy and reliability of target tracking in autonomous driving applications. This method
focuses on the tracking framework for 4D radar. However, further research is needed to
investigate the details of certain aspects such as motion models, filters, and ego-vehicle
pose estimation.
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Abstract: Existing instance segmentation models mostly pay less attention to the targeted characteris-
tics of ships in synthetic aperture radar (SAR) images, which hinders further accuracy improvements,
leading to poor segmentation performance in more complex SAR image scenes. To solve this problem,
we propose a hybrid task cascade plus (HTC+) for better SAR ship instance segmentation. Aiming
at the specific SAR ship task, seven techniques are proposed to ensure the excellent performance
of HTC+ in more complex SAR image scenes, i.e., a multi-resolution feature extraction network
(MRFEN), an enhanced feature pyramid net-work (EFPN), a semantic-guided anchor adaptive learn-
ing network (SGAALN), a context ROI extractor (CROIE), an enhanced mask interaction network
(EMIN), a post-processing technique (PPT), and a hard sample mining training strategy (HSMTS).
Results show that each of them offers an observable accuracy gain, and the instance segmentation
performance in more complex SAR image scenes becomes better. On two public datasets SSDD and
HRSID, HTC+ surpasses the other nine competitive models. It achieves 6.7% higher box AP and 5.0%
higher mask AP than HTC on SSDD. These are 4.9% and 3.9% on HRSID.

Keywords: synthetic aperture radar; ship instance segmentation; HTC+; deep learning; convolutional
neural network

1. Introduction

Ship surveillance has received widespread attention [1–4]. Synthetic aperture radar
(SAR) is an active microwave sensor [5–7]. It works regardless of weather and light con-
ditions, and is more suitable for ship monitoring than optical sensors [8]. Traditional
methods [9,10] rely overly on hand-picked features, reducing model flexibility and migra-
tion. Now, more efforts are devoted to deep learning-based methods [11].

Most scholars use boxes to detect ships in the SAR community [12], but the instance
segmentation at both box- and pixel-level has received less attention [13]. Moreover, Xu
et al. [14] studied the dynamic detection of offshore wind turbines by spatial machine
learning in SAR images, but offshore facilities and ships have different radar scattering
characteristics. Some works [15–22] have studied SAR ship instance segmentation, but
they mostly used models for generic objects directly, without considering the targeted
characteristics of SAR ship objects, hindering further accuracy improvements and leading
to poor segmentation performance in more complex SAR image scenes [23].

Thus, we propose HTC+ to explore better SAR ship instance segmentation. HTC
is selected because it may be the best model [24]. For SAR ship mission, we enhance
HTC using seven techniques for incremental performance to form HTC+. It is similar to
the update from YOLOv3 [25] to YOLOv4 [26]. (1) A multi-resolution feature extraction
network (MRFEN) is used to boost multi-scale feature description. (2) An enhanced feature
pyramid network (EFPN) is designed to enhance better small ship search ability. (3) A
semantic-guided anchor adaptive learning network (SGAALN) is proposed to optimize an-
chors. (4) A context ROI extractor (CROIE) is designed to boost background discrimination.
(5) An enhanced mask interaction network (EMIN) is designed to boost multi-stage mask
feature fusion. (6) A post-processing technique (PPT) using NMS [27] and Soft-NMS [28]
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is used to reduce missed detections of densely moored ships. (7) A hard sample mining
training strategy (HSMTS) [29] is used to deal with complex scenes and cases. Experiments
are performed on two public datasets SSDD [13] and HRSID [15]. Results show that seven
novelties contribute to improving accuracy; HTC+ offers the best accuracy over the other
nine competitive models. The instance segmentation performance in more complex SAR
image scenes becomes better. HTC+ offers 6.7% box AP and 5.0% mask AP increments on
the vanilla HTC on SSDD; they are 4.9% and 3.9% on HRSID.

The contributions of our work are summarized as follows:

1. The vanilla HTC is designed for generic objects, with limited performance for SAR
ships. Thus, we improve it to form its updated version HTC+ to achieve better SAR
ship instance segmentation performance.

2. Aimed at the specific SAR ship task, we propose seven techniques (MRFEN, EFPN,
SGAALN, CROIE, EMIN, PPT and HSMTS) to enable the excellent performance of
HTC+. Here, the motivation and implementation of each technique are both related
to the mission characteristics of SAR ships.

3. HTC+ offers a huge increase in accuracy building on HTC, which also surpasses the
other nine competitive models.

The rest of this paper is arranged as follows. Section 2 reviews some related works.
Section 3 introduces the methodology. Experiments are described in Section 4. Results
are shown in Section 5. Ablation studies are made in Section 6. More discussions are
introduced in Section 7. Finally, a summary of this paper is made in Section 8.

2. Related Works

In this section, we will review some commonly-used generic instance segmentation
models in the computer vision community in Section 2.1. Afterwards, some existing SAR
ship instance segmentation models will be introduced in Section 2.2.

2.1. Instance Segmentation

Mask R-CNN [30] is the most classic instance segmentation model, which designed a
mask prediction branch on the basis of Faster R-CNN [31]. To measure mask quality, Mask
Scoring R-CNN [32] added a scoring network to provide confidences of mask prediction.
Cascade Mask R-CNN [33] designed a multi-stage detection and mask head with increasing
intersection over union (IOU) thresholds to improve hypotheses quality and ease overfitting.
PANet [34] added a bottom-top path aggregation to boost FPN’s representation. To make
full use of multi-scale features, Rossi et al. [35] proposed a novel region of interest (ROI)
extraction layer (GROIE) for instance segmentation. YOLACT [36] is a real-time one-stage
instance segmentation model, but its accuracy is poorer than two-stage ones. Furthermore,
HTC [24] combined Cascade R-CNN and Mask R-CNN to leverage relationships between
detection and segmentation, offering the state-of-the-art performance [37,38]. Therefore,
we select it as our experimental baseline.

2.2. SAR Ship Instance Segmentation

Recently, many scholars in the SAR community have started to study SAR ship instance
segmentation. Since the first public dataset called HRSID was released by Wei et al. [15]
in 2020, various methods have emerged. Su et al. [16] proposed a high-quality network
named HQ-ISNet for remote sensing object instance segmentation. They measured the
model performance on SAR images; the results indicated the effectiveness of the proposed
model. Yet, their model was just a mechanical borrowing from the computer vision commu-
nity, without thought of appropriateness, hampering further performance improvements.
Zhao et al. [17] proposed SA R-CNN which added attention mechanisms to boost accuracy,
but the performance among complex scenes was still limited. Gao et al. [18] proposed an
anchor-free model called CenterMask and a centroid-distance based loss to enhance benefits
of ship feature learning, but such anchor-free models still cannot handle complex scenes
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and cases [29]. HTC was applied to SAR ship instance segmentation by Zhang et al. [19],
but such direct use led to limited accuracy for SAR ships.

In 2022, Fan et al. [20] designed an efficient instance segmentation paradigm (EISP)
for interpreting SAR and optical images, which adopted transformers to extract features.
Yet, this paradigm did not consider the targeted characteristics of SAR ships, with limited
performance. Zhang et al. [21] designed a full-level context squeeze-and-excitation ROI
extractor for SAR ship instance segmentation, but their method only considered extracting
the optimized feature subset, and ignored improvements in other parts of the network,
leading to limited ship segmentation performance in more complex SAR image scenes.
Ke et al. [22] proposed a global context boundary-aware network to improve the positioning
performance of the bounding box so as to achieve better segmentation effects, but they did
not consider differences between segmentation tasks and detection tasks. Zhang et al. [23]
improved Mask R-CNN further by using context information, and squeeze-and-excitation
mechanism, but their network did not have adequate mask information interaction, leading
to poor segmentation performance in more complex scenes.

In short, the above existing methods mostly used models for generic objects in the
computer vision community directly. In other words, they did not consider the targeted
characteristics of SAR ship objects, which hinders further accuracy improvements. Thus,
we will research useful techniques in this paper to boost instance segmentation especially
for SAR ships.

3. Methodology

Aiming at the specific SAR ship task, we explore ways to enhance each component’s
performance on the basis of the vanilla HTC [24] to achieve the progressive improvements
to the overall performance, resulting in the evolution from HTC to HTC+. Our research
thinking is similar to the evolution from YOLOv3 [25] to YOLOv4 [26] where YOLOv4
proposed five key techniques and adopted some useful tricks to enhance YOLOv3 further.

Figure 1 depicts HTC+ architecture. MRFEN is a backbone network to extract multi-
resolution ship features. EFPN is to improve multi-scale feature representation. SGAALN
is to learn anchor location and shape used in the region proposal network (RPN) [31] that
is responsible for producing proposals. Classifier (CLS) is used to identify foreground and
background. Regressor (REG) predicts proposal positions. CROIE is to map proposals from
RPN into MRFEN’s feature maps to extract feature subsets [21] for the box-mask prediction
head. EMIN predicts box and mask. PPT post-processes outputs. HSMTS works only in
training selected hard samples to handle complex scenes and cases.

Figure 1. HTC+ architecture. (1) MRFEN denotes the multi-resolution feature extraction network;
(2) EFPN denotes the enhanced feature pyramid network; (3) GAALN denotes the semantic-guided
anchor adaptive learning network; (4) CROIE denotes the context regions of interest extractor;
(5) EMIN denotes the enhanced mask interaction network; (6) PPT denotes the post-processing
technique; (7) HSMTS denotes the hard sample mining training strategy. Seven novelties are marked
by red numbers 1–7. The first five belong to the network architecture’s improvements. The remaining
two constitute extra tricks to boost performance further. Moreover, here, RPN denotes the region
proposal network, CLS denotes classification, and REG denotes regression.
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Moreover, for ease of reading, we summarize the following materials in Table 1. Next,
we will introduce the seven components for incremental accuracy in detail in the following
sub-sections Sections 3.1–3.7.

Table 1. Materials arrangement of the methodology.

Section ID Sub-Section ID

Section 3.1. Multi-Resolution Feature
Extraction Network (MRFEN)

Section 3.1.1. Multi-Resolution Feature
Extraction (MRFF)

Section 3.1.2. Multi-Scale Attention-Based Feature
Fusion (MSAFF)

Section 3.1.3. Atrous Spatial Pyramid Pooling (ASPP)

Section 3.2. Enhanced Feature Pyramid
Network (EFPN)

Section 3.2.1. Content-Aware ReAssembly of Features
(CARAFE)

Section 3.2.2. Feature Balance (FB)
Section 3.2.3. Feature Refinement (FR)

Section 3.2.4. Feature Enhancement (FE)

Section 3.3. Semantic-Guided Anchor
Adaptive Learning Network (SGAALN)

Section 3.3.1. Anchor Location Prediction (ALP)
Section 3.3.2. Anchor Shape Prediction (ASP)

Section 3.3.3. Feature Adaption (FA)

Section 3.4. Context Regions of Interest
Extractor (CROIE)

Section 3.4.1. Concatenation
Section 3.4.2. Channel Shuffle

Section 3.4.3. Dimension Reduction Squeeze-and
Excitation (DRSE)

Section 3.5. Enhanced Mask Interaction
Network (EMIN)

Section 3.5.1. Global Feature Self-Attention (GFSA)
Section 3.5.2. Adaptive Mask Feature Fusion (AMFF)

Section 3.6. Post-Processing
Technique (PPT) –

Section 3.7. Hard Sample Mining
Training Strategy (HSMTS) –

3.1. Multi-Resolution Feature Extraction Network (MRFEN)

Existing approach. The raw HTC adopted the high-to-low resolution paradigm as
the network deepens to extract features, as shown in Figure 2a, e.g., ResNet [39] and
ResNeXt [40], i.e., the network depth is inversely proportional to the resolution. Still, this
paradigm is not well-suited to SAR ship tasks, considering the two aspects below.

On the one hand, four stages in Figure 2a extract multi-scale features equally, i.e., the
same number of conv blocks [e.g., 4 in Figure 2a]. Yet, the ship size distribution of existing
datasets is uneven as in Figure 3a,b, i.e., small ships are far more than large ones. The main
reason for this phenomenon is that SAR is a “bird-eye” remote sensing earth observation
tool that is different from “person-eye” natural scene cameras. Thus, one should treat
them differently. Otherwise, a huge performance imbalance between small ships and large
ships will occur. We think that one should arrange heavy networks for small ship detection
because they are more difficult to detect for fewer feature pixels; for contrast, one should
use light networks for large ship detection because they are easier to detect due to their
clearer features.
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Figure 2. Different backbone networks for feature extraction. (a) Existing approach: the backbone
network of HTC. (b) Proposed approach: the backbone network of HTC+ (MRFEN).

Figure 3. Multi-scale SAR ships. (a) Ship size uneven distribution in SSDD. (b) Ship size uneven
distribution in HRSID. (c) Small ships. (d) Large ships.

On the other hand, the network backend in Figure 2a is lacking in rich high-resolution
representations, i.e., the spatial position information is lost to some degree. This is not
conducive to handling position-sensitive vision problems [37], e.g., SAR ship instance
segmentation. Thus, one should maintain high-resolution position representations totally
across the whole conv process. Moreover, we think that the strong coupling between the
depth and resolution directions potentially limits feature description capacity. Signs [41,42]
have indicated that decoupling them would help to improve the performance of pixel-
sensitive tasks.
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Proposed approach. Given the above, we designed MRFEN to extract more precise
position representations and richer semantic representations. Moreover, although the multi-
resolution approach offers limited accuracy gains for small ships, it can improve the instance
segmentation performance of very large ships when the high-resolution mode is used.
Figure 2b shows its architecture. MRFEN has three design concepts, i.e., (1) multi-resolution
feature extraction (MRFF) in Section 3.1.1, (2) multi-scale attention-based feature fusion
(MSAFF) in Section 3.1.2, and (3) atrous spatial pyramid pooling (ASPP) in Section 3.1.3.

3.1.1. Multi-Resolution Feature Extraction (MRFF)

We retain high-resolution representations across the entire system, including, the
uppermost resolution-1 branch. This can boost instance segmentation of small ships due to
more position information and heavier network parameters. The resolution-2 branch starts
from the stage-2; the resolution-3 branch starts from the stage-3; the resolution-3 branch
starts from the stage-4. This leverages lighter networks for larger ships so as to adapt to their
easier detection. Consequently, the network depth and resolution are decoupled smoothly,
which can enable networks to optimize their parameters among a larger search space so as
to further enhance fitting or learning capacity. Briefly, the above can be described by

N11 → N21 → N31 → N41
↘ N22 → N32 → N42

↘ N33 → N43
↘ N44

(1)

where Nsr denotes the sub-network of the s-th stage and the r-th resolution,→ denotes the
conv process, and↘ denotes the down-sampling process. Different from image pyramid
in [43], the low-resolution in MRFEN comes from the previous high-resolution down-
sampling, rather than the down-sampling on the input image. This is because feature maps
from the front-end high-resolution sub-network are more representative.

3.1.2. Multi-Scale Attention-Based Feature Fusion (MSAFF)

There are no direct interactions between different resolution branches after the network
depth and resolution are decoupled. This hampers network information flow, possibly
increasing the risk of overfitting of their separate local optimization. Moreover, training
within their own closed cyberspace may also slow down the training convergence speed,
declining performance. Therefore, it is essential to perform multi-scale feature fusion. (In
this paper, the resolution and the scale share the same meaning.) Integrating features with
different scales, the down-sampling and up-sampling were widely adopted [37,44,45]. Still,
different from these authors, we suggest to first use an attention module for a feature
refinement, and then execute the down-sampling and up-sampling. This can enable more
valuable features to be transmitted to another branch so as to avoid possible negative
interferences. Taking N42 in Equation (1) as an example, we get its feature maps F42 by

F42 = F32 + DownSamp2×( fattention(F31)) + UpSamp2×( fattention(F33)) (2)

where Fsr denotes the feature maps of Nsr, DownSampn× denotes the n times down-
sampling, UpSampn× denotes the n times up-sampling, and fattention denotes the refinement
operation using an attention module. We implement fattention by a convolutional block
attention module (CBAM) [46] with channel attention and space channel attention. One
can also use other advanced attention modules [47] for better performance. In this work,
we select CBAM, because it is the most famous and has been used by many scholars in the
SAR community [17].

The network architecture of CBAM is shown in the orange dashed box in Figure 2b.
Let its input be F ∈ RH×W×C where H and W are the height and width of feature maps
and C is the channel number. Then the channel attention is responsible for generating a
channel-dimension weight matrix WCA ∈ R1×1×C to measure the important levels of C
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channels; the space attention is responsible for generating a space-dimension weight matrix
WSA ∈ RH×W×1 to measure the important levels of space-elements across the entire H×W
space. They range from 0 to 1 by a sigmoid activation. The result of the channel attention is
denoted by FCA = F·WCA. The result of the space attention is denoted by FSA = FCA·WSA.
See [46] for CBAM’s details.

3.1.3. Atrous Spatial Pyramid Pooling (ASPP)

Although the multi-scale attention-based feature fusion offers some other resolution
responses from other branches, these kinds of responses are still limited among the total
responses. Thence, we adopt the atrous spatial pyramid pooling (ASPP) [48] to deal with
this problem. Its network architecture is depicted in the purple dashed box in Figure 2b.
ASPP utilizes atrous convs [49,50] with different dilated rates to achieve multi-resolution
feature responses in the single-resolution branch. It is described by

FASPP = f1×1

([
f 2
3×3(F), f 3

3×3(F), f 4
3×3(F), f 5

3×3(F)
])

(3)

where F denotes the input, FASPP denotes the output, f r
3×3 denotes a 3× 3 conv with a

dilated rate of r, and f1×1 denotes a 1× 1 conv for channel reduction, i.e., from four atrous
convs concatenation 4C to the raw C of F. In this way, different dilated rates will enable
different resolution responses, as well yielding different scope contexts. We set four dilated
rates for the accuracy-speed trade-off. More might offer better performance but must
sacrifice speed. Different from [48], four dilated rates are set to 2, 3, 4 and 5 because of
the small size of the low-solution branch (L/32× L/32). Especially, ASPP can also allow
our MRFEN to enlarge receptive fields so as to receive more ship surrounding context
information. This is conducive to alleviating background interferences, e.g., blur edges,
sidelobes, ship wakes, speckle noise (SAR imaging mechanisms), tower crane [8], and
inshore facilities, as in Figure 4.

Figure 4. SAR ships and ships’ surrounding contexts. Boxes with different colors and sizes denotes
the atrous convs with different dilated rates.

Finally, the outputs of ASPP with different resolution levels will constitute the inputs
of FPN (C2, C3, C4 and C5). It is also different from the previous network in Figure 2a that
makes the last layers of all stages constitute the inputs of FPN. Figure 2b performs better
than Figure 2a because the former offers richer high-resolution position representation and
richer low-resolution semantic representation at the same time among each stage.

3.2. Enhanced Feature Pyramid Network (EFPN)

Existing approach. The vanilla HTC followed the standard FPN paradigm [51] to
ensure multi-scale performance as shown in Figure 5a. In Figure 5, C2, C3, C4 and C5 are
the inputs of FPN which are from the backbone network as shown in Figure 2. However,
this standard FPN offers limited performance for SAR ship instance segmentation from the
following three aspects.
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Figure 5. Feature pyramid networks. (a) Existing approach: FPN of HTC. (b) Proposed approach:
EFPN of HTC+. (c) CARAFE implementation. (d) GCB implementation.

Firstly, on account of the huge resolution difference, e.g., 1 m resolution for TerraSAR-X
and 20 m resolution for Sentinel-1, ships in SAR images present a huge scale difference as
shown in Figure 6a,b. This situation is called the cross-scale effect [52], e.g., the extremely
small ships in Figure 6c vs. the extremely large ships in Figure 6d. The standard FPN was
designed for the natural object detection, e.g., COCO [53] and PASCAL [54] datasets. These
datasets are with a relatively small scale difference. Thus, the raw FPN has some challenges
to handle such cross-scale problems due to its limited FPN levels. From the clustering
results of K-means, the raw four levels P2, P3, P4 and P5 are inferior to six levels in terms
of the network multi-scale feature learning ability. The mean IOU of the former is 0.5913,
lower than that of the latter 0.6490. Thus, we use more levels to deal with this special SAR
ship cross-scale instance segmentation.

Secondly, small ships always constitute the majority among existing datasets for the
characteristics of the “bird-eye” view of SAR. The raw bottom-level P2 is with limited
searching ability for small ships in Figure 6c, because small ships are diluted after multiple
down-sampling operations (from L to L/4) due to their faint spatial features. As a result, a
large number of small ships will be missed, reducing HTC’s overall performance. Thus,
we suggest to generate a lower level P1 to handle this problem, because lower levels offer
richer spatial position information, which is beneficial for small ship instance segmentation.

Thirdly, although the original top-level P5 may detect the extremely large ships in
Figure 6d successfully by using a rectangle bounding box, it is still with limited pixel-
segmentation performance. Different parts of the ship hull have different materials, re-
sulting in differential radar electromagnetic scatterings. This makes the pixel brightness
distribution of the ship in a SAR image extremely uneven. This will bring huge difficulties
to classifiers for their effective pixel-level discrimination. Therefore, we suggest to generate
a higher level P6 to handle this problem, because high levels can offer more semantic infor-
mation by shrinking large ships to reach the purpose of removing the ship hull’s internal
“black” pixels; then in the mask recovery process, the nearest neighbor interpolation can fill
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those internal “black” pixels using correct predicted ship “white” pixels, so as to achieve
better segmentation performance, as shown in Figure 6d.

Figure 6. (a) Cluster results of four levels of HTC. (b) Cluster results of six levels of HTC+. Here,
K-means is used for more intuitive presentation. (c) An SAR image with extremely small ships.
(d) An SAR image with extremely large ships. Here, (c,d) have a huge scale difference due to different
resolutions, i.e., cross-scale.

Proposed approach. Given the above, we propose an enhanced feature pyramid
network (EFPN) to enhance multi-scale instance segmentation. Figure 5b shows its ar-
chitecture. EFPN has four design concepts, i.e., (1) content-aware reassembly of features
(CARAFE) in Section 3.2.1, (2) feature balance (FB) in Section 3.2.2, (3) feature refinement
(FR) in Section 3.2.3, and (4) feature enhancement (FE) in Section 3.2.4.

3.2.1. Content-Aware ReAssembly of Features (CARAFE)

We draw lessons from the advanced Content-Aware ReAssembly of Features (CARAFE) [55]
to generate an extra higher top-level P6 and an extra lower bottom-level P1. Note that the
raw CARAFE did not offer a down-sampling operation; here, we expand it by adding
an extra hyper-parameter k. k = 2 denotes the up-sampling. k = 1/2 denotes the down-
sampling. (i) Generate P1. Wang et al. [55] have confirmed that CARAFE was superior to
the nearest neighbor and the bilinear interpolation which both focus on the subpixel neigh-
borhoods, failing to capture the richer semantic information required by dense prediction
tasks, and it was also superior to the adaptive deconv [56] which uses a fixed kernel for
all samples, resulting in limited receptive fields. CARAFE can enable instance-specific

181



Remote Sens. 2022, 14, 2395

content-aware handling, offering a large field of view, which can generate adaptive ker-
nels on-the-fly. It can also aggregate global contextual information, enabling preferable
performance for object detection [55]. Thence, it is adopted to generate P1. (ii) Generate
P6. Shelhamer et al. [57] pointed out that the simple max-pooling would increase the risk
of feature loss. Thus, to leverage CARAFE’s advantage, we extend it for more effective
feature down-sampling. The above is described by

P1 = CARAFE×2(P2)

P6 = CARAFE×
1
2 (P5)

(4)

Here, CARAFE×k denotes the k times down/up-sampling using CARAFE. It needs to be
noted that one can follow the above operation to generate more levels, e.g., P0, P7, but the
trade-off between speed and accuracy should be carefully considered.

Figure 5c shows the implementation of CARAFE. It contains a kernel prediction
process and a feature reassembly one. (i) The former is to predict an adaptive k times
down/up-sampling kernel Kl′ corresponding to the l′ location of feature maps from the
original l location. The kernel size is n× n which means n× n neighbors of the location l.
Here, n is set to 5 empirically, the same as the raw report [55]. In other words, CARAFE
considers the surrounding 5 pixels for down/up-sampling interpolation (5 × 5 = 25 pixels).
Moreover, the contribution weights of these 25 pixels are obtained by the adaptive learning.
During the kernel prediction process, a 1× 1 conv is to compress channel to refine salient
features, where the compression ratio d is set to 4, i.e., the raw 256 channels are compressed
to 64 ones. This can not only reduce the calculation burden, but also ensure the benefits
of predicted kernels [58]. One 3× 3 conv is to encode contents whose channel number is
n2 × k2 where k denotes the down/up-sampling ratio (i.e., from H ×W to kH × kW). The
dimension transformation is completed using a pixel shuffle operation. Each reassembly
kernel is normalized by a softmax function spatially so as to reflect the weight of each sub-
content. Finally, the learned kernel Kl′ will serve as the kernel for the subsequent feature
reassembly process. (ii) The latter is a simple n× n conv, but its conv kernel parameters are
determined by Kl′ . In the above way, the resulting down/up-sampling feature maps have
the ability of content perception, yielding the better feature representation. More details
can be found in [55].

3.2.2. Feature Balance (FB)

Cross-scale ships predicted in different FPN levels have a huge feature imbalance [59]
especially with the increase of levels. This imbalance also potentially leads to unstable
training coming from the huge number gap between small ships and large ships. Thence,
we follow the practice from [59] to balance ship features with huge differences, i.e.,

FFB = 1
6{UpSamp8×( fattention(P6)) + UpSamp4×( fattention(P5)) + UpSamp2×( fattention(P4))

+P3 + DownSamp2×( fattention(P2)) + DownSamp4×( fattention(P1))}
(5)

Here, to fully leverage the advantage of the attention in Equation (2), before up/down-
sampling, each level is also processed by CBAM to further increase representation power.
Moreover, we rescale all levels into the P3 level empirically, because it is located at the
middle of the pyramid, provided with both richer position information and semantic
information. It can consider both lower levels P1, P2 and higher levels P4, P5, P6. P4 is
also a middle level of the pyramid; still it is not used as the rescaled level, because we
hold the view that the network should better contain more space position features for
better small ship instance segmentation. Once all levels are rescaled to the same level, an
average operation is performed for their balanced feature fusion. In this way, the resulting
condensed multi-scale features contain balanced semantic features and position features
from various resolutions. Finally, large ship features and small ones can complement
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each other to facilitate the information flow, alleviating feature imbalance and promoting
network smooth training.

3.2.3. Feature Refinement (FR)

To recover a more robust FPN, we also adopt a global context block (GCB) [60] to refine
the condensed multi-scale features FFB further. Such practice is in fact motivated by Libra
R-CNN [59]. However, their used non-local block [61] only can capture spatial dependence,
but the channel dependence is neglected. Therefore, we adopt the more advanced GCB to
reach this aim, achieving global feature self-attention and meeting channel squeeze-and-
excitation (SE) [62] simultaneously. Figure 5d shows its architecture. GCB contains a context
modeling module and a transform module. (i) The former first uses 1× 1 conv Wk and a
softmax activation to generate the attention weights A; then, conducts a global attention
pooling to achieve the global context features, i.e., from C × H ×W to C × 1 × 1. It is
equivalent to the global average pooling in SE [62], but the average operation is replaced
with the adaptive operation here. (ii) The latter is similar to SE, but before the rectified
linear unit (ReLU) activation, the output of the 1× 1 squeeze conv Wv1 is first normalized
to ensure better generalization, equivalent to the regularization of batch normalization
(BN) [63]. Here, to refine more salient features of six FPN levels, the squeeze ratio r is
set to 6. The last 1× 1 conv Wv2 is used to transform bottlenecks to capture channel-wise
dependencies. Finally, an element-wise matrix addition is used for feature fusion. More
details can be found in [60].

3.2.4. Feature Enhancement (FE)

To reduce the risk of feature loss from the boundary levels P1 and P6 due to their
relatively large up/down-sampling ratios, we also add extra two skip connections for their
feature enhancement while recovering them, i.e.,

B1 = P1 + UpSamp4×( fattention(FFB))

B6 = P6 + DownSamp8×( fattention(FFB))
(6)

where Bj denotes the i-th level of the recovered FPN. Here, we obtain the other remaining
levels using the reverse operation of Equation (5). Finally, the recovered FPN Bi will be
able to predict cross-scale SAR ships in a more elegant and stable paradigm.

3.3. Semantic-Guided Anchor Adaptive Learning Network (SGAALN)

Existing approach. The raw HTC used the classic anchor generation scheme [31] as
in Figure 7a. This scheme uniformly arranges dense anchors with fixed shapes to every
location among an image. However, it is not suitable for SAR ship instance segmentation.

Figure 7. Different anchor generation schemes. (a) Existing approach: dense and shape-fixed anchors
of HTC. (b) Proposed approach: Sparse and shape-adaptive anchors of HTC+. Blue boxes denote
anchor boxes.
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On the one hand, ships in SAR images exhibit a sparse distribution due to the charac-
teristic of SAR “bird-eye” remote sensing view, e.g., there are only 2.12 ships on average
among one image in the SSDD dataset. The uniform and dense anchor allocation to ev-
erywhere in a SAR image will potentially increase false alarms; additionally, numerous
anchors are redundant, causing a heavier computational burden. Thus, one should better
first adaptively predict possible positions where ships are more likely to occur; then ar-
range anchors on these possible positions to handle the above problem. On the other hand,
the raw anchors with fixed shapes (width, height and aspect ratio) are not conducive to
multi-scale prediction, with slower training speed. The hand-crafted preset anchors with
fixed shapes are not in line with real ships with changeable shapes, reducing multi-scale
performance. Although one can draw support from the K-means clustering on the specific
dataset for better initial anchors [25], it is troublesome when this practice is applied to more
datasets. Moreover, the initial anchors are still with fixed shapes, not resolving substantive
issues. Thus, we should adaptively predict anchor shapes to handle the above problem.

Proposed approach. Given the above, we establish a semantic-guided anchor adaptive
learning network (SGAALN) to achieve the adaptive anchor location prediction and the
adaptive anchor shape prediction. The execution visual effect of SGAALN is shown in
Figure 7b. Here, we leverage high-level semantic features to reach this aim, because they
enable higher anchor quality than low-level ones [29]. SGAAL has three design concepts,
i.e., (1) anchor location prediction (ALP) in Section 3.3.1, (2) anchor shape prediction (ASP)
in Section 3.3.2, and (3) feature adaption (FA) in Section 3.3.3.

3.3.1. Anchor Location Prediction (ALP)

We use a 1× 1 conv WL whose channel number is set to 1 for the adaptive anchor
location prediction, as shown in Figure 8a. This conv works on the inputted semantic
features denoted by Q. The resulting feature maps are with a H×W × 1 dimension. H×W
is the whole 2D space. This feature map is then activated by a sigmoid function to achieve
the probability of ship occurrence Pship ∈ [0, 1] at the (x, y) position cross the whole H×W
2D space. When Pship is bigger than the preset threshold εt, this (x, y) position will generate
anchors; otherwise, this position will be removed where no anchors are generated. Here, εt
is set to 0.01 empirically according to the experimental results in Section 6.3.

Figure 8. SGAALN architecture. (a) Anchor location prediction. (b) Anchor shape prediction.
(c) Feature adaption.
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3.3.2. Anchor Shape Prediction (ASP)

We arrange another one 1 × 1 conv WS whose channel number is set to 2 for the
adaptive anchor shape prediction, as shown in Figure 8b. This conv works on the input
semantic features denoted by Q as well. The resulting feature maps are with a H ×W × 2
dimension. This is because we need to estimate two parameters, i.e., the anchor width w
and height h. Note that the anchor shape prediction works on all positions of the whole
H ×W 2D space in consideration of an easy network implementation. Finally, according to
the previously obtained anchor prediction locations, the redundant shape predictions are
filtered. As a result, the adaptive anchor parameter (x, y, w, h) is achieved which will be
inputted to RPN for classification and regression.

3.3.3. Feature Adaption (FA)

Due to the cross-scale effect of SAR ships, the adaptively predicted anchors will also
exhibit a huge shape difference. Yet, this will bring about a huge encoded content difference
on the inputted semantic features when they are pooled for the subsequent box and mask
prediction. Thus, large anchors should encode content in a large region, while small anchors
should have a small region, accordingly. However, the raw semantic features Q do not
meet this point because it is designed for fixed-shape anchors. Coincidentally, the existing
deformable convs [64] can offer an effective solution for this issue, where the previously
learned anchor shape (w, h) exactly corresponds to deformable conv kernel’s bias (i.e., the
offset field). Thence, we use a deformable convs WD to process the inputted semantic
features Q for such feature adaption, i.e.,

q′i = WD(qi, wi, hi) (7)

where wi and hi are the i-th position anchors’ width and height i ∈ RH×W , qi ∈ Q, and
q′i ∈ Q′. Q′ denotes the output of feature adaption. The optimized anchors enable better
proposals to extract ROI feature subsets using ROIAlign.

3.4. Context Regions of Interest Extractor (CROIE)

Existing approach. The raw HTC followed the standard two-stage ROI extractor
(ROIE) of Mask R-CNN [30] to extract feature subsets of ROIs for the subsequent mask
prediction, as shown in Figure 9a. That is, the bounding box prediction is first conducted,
and then, the mask prediction is performed in the resulting h × w box. However, this
practice is still with limited SAR ship mask prediction performance. On the one hand, the
mask prediction relies heavily on the box prediction. If the offered boxes are not accurate,
the mask prediction must become poor. From Figure 9a, the features for mask prediction
exist in the corresponding box with limited receptive fields, reducing the global field of
vision. This will decline segmentation performance improvements. One the other hand, as
in Figure 4, due to the special SAR imaging mechanism, SAR ships have many complex
surroundings outside the compact box, e.g., blur edges, sidelobes, ship wakes, speckle
noise, tower crane, and inshore facilities. They will bring some non-negligible effects for
mask prediction. Thus, the compact box makes it impossible for mask prediction to observe
more ship backgrounds, e.g., ship-like pixel noise and ship wakes. Although the box can
eliminate the cross-sidelobe deviating from the ship center too far, a few sidelobe and noise
pixels in the box can make it difficult to ensure segmentation learning benefits. Thus, it is
necessary to expand the receptive field to explicitly find out the clear boundary between
ship and its context surrounding.
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Figure 9. Different ROI extractors (ROIEs). (a) Existing approach: ROIE of HTC. (b) Proposed
approach: CROIE of HTC+.

Proposed approach. Given the above, we design a context ROI extractor (CROIE)
to add multi-scope contexts to the box for better mask prediction, as shown in Figure 9b.
We arrange two different scope contexts denoted by ROI-C1 with a size of c1w× c1h and
ROI-C2 with a size of c2w× c2h. Here, c1 and c2 (c2 > c1 > 1) are two amplification factors
which are set to 1.5 and 2.0, respectively, according to experiments in Section 6.4. This idea
is motivated by Kang et al. [65]; however, differently, we consider multi-scope contexts.
Moreover, we do not use more context ROIs, e.g., ROI-C3, considering the trade-off of
speed and accuracy. Figure 10 shows CROIE’s implementation. CROIE has three design
concepts, i.e., (1) concatenation in Section 3.4.1, (2) channel shuffle in Section 3.4.2, and
(3) dimension reduction squeeze-and excitation (DRSE) in Section 3.4.3.

Figure 10. Implementation of CROIE.

3.4.1. Concatenation

We concatenate three feature subsets after ROIAlign. We find that the feature concate-
nation performs better than the feature adding, because the former achieves feature reuse
for better deep supervision. Then, we use a 3× 3 group conv to refine them for subsequent
operations where the group division factor g is set to 3. The above is described by

FCAT = f3×3,3([ROIAlign(ROI), ROIAlign(ROI−C1), ROIAlign(ROI−C2)]) (8)

where f3×3,3 denotes the 3× 3 group conv whose group division factor is 3, and FCAT
denotes the output of concatenation.
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3.4.2. Channel Shuffle

To reduce the effect of feature collaboration consistency in the single ROI, we also
shuffle the resulting features FCAT along the channel dimension to enable more powerful
representation. The result is denoted by FCS.

3.4.3. Dimension Reduction Squeeze-and-Excitation (DRSE)

To balance allocation contributions of different ROIs with different context scopes,
we also design a dimension reduction squeeze-and-excitation (DRSE) block, an extended
version of SE [62] (the raw SE did not achieve dimension reduction), to model channel
correlation. It can suppress useless channels and highlight valuable ones meanwhile
reducing channel dimension, which reduces the risk of the training oscillation due to
excessive irrelevant backgrounds. Consequently, moderate contexts can be offered for
mask prediction. Figure 11 shows DRSE’s implementation. In the collateral branch, the
global average pooling is used to achieve the global spatial information; a 1 × 1 conv
with a sigmoid activation is used to squeeze channels to focus on important ones. The
squeeze ratio p is set to 3 (256× 3 → 256). In the main branch, the input channel’s number
is reduced directly using a 1× 1 conv with a ReLU activation. The broadcast element-
wise multiplication is used for compressed channel weighting. DRSE will model channel
correlation of the input feature maps in a reduced dimension space. Then, it leverages
the learned weights from the reduced dimension space to pay attention to the important
features of the main branch. In this way, the potential information loss from the crude
dimension reduction is avoided. The above is described by

FDRSE = ReLU(conv1×1(FCS))� σ(conv1×1(GAP(FCS))) (9)

where FCS denotes the input, i.e., the output of channel shuffle, FDRSE denotes the output, σ
denotes the sigmoid function, and � denotes the broadcast element-wise multiplication.

C 1 1

C/ p 1 1

C H W

C/ p H W
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Figure 11. Implementation of DRSE.

3.5. Enhanced Mask Interaction Network (EMIN)

Existing approach. The raw HTC designed the mask interaction network (MIN) as
shown in Figure 12a to establish a connection between different stages. Mask features of
previous stage Mi−1 are refined by a 1× 1 conv for next stage Mi. A simple addition is
used for feature fusion, i.e., conv1×1(Mi−1(F)) + F where F is feature maps of backbone
networks. We observe that a 1× 1 conv offers limited feature refinement effects; a direct
feature addition also offers limited fusion benefits.
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Figure 12. Mask interaction network (MIN) (a) Existing approach: MIN of HTC. (b) Proposed
approach: EMIN of HTC+.

Proposed approach. Thus, we design an enhanced mask interaction network (EMIN)
whose architecture is shown in Figure 12b. EMIN has two design concepts, i.e., (1) global
feature self-attention (GFSA) in Section 3.5.1, and (2) adaptive mask feature fusion (AMFF)
in Section 3.5.2.

3.5.1. Global Feature Self-Attention (GFSA)

We design a global feature self-attention block (GFSA) to replace the raw 1× 1 conv,
inspired by the advanced non-local neural networks [61]. GFSA can capture long-range
dependencies of each mask pixel in the whole space, to enable a global receptive field,
which is conducive to the efficient flow of information and context modeling. Figure 13a
shows its implementation. In Figure 13a, features at the i-position are denoted by φ using
a 1× 1 conv Wφ. Features at the j-position are denoted by θ using a 1× 1 conv Wθ . f
is obtained from adaptive learning between φ and θ where the normalization process is
equivalent to a softmax calculation function. The representation of the input at the j-position
g is learned using another one 1× 1 conv Wg. The response at the i-position yi is obtained
by a matrix multiplication. Note that we embed all features into C/4 channel space to
reduce computational burdens. To apply response to the input readily, we use another one
1 × 1 conv Wz to transform dimension for the adding operation (

⊕
). Finally, we achieve

the global feature self-attention output FGFSA that will be transmitted to the next stage.

Figure 13. (a) Implementation of the global feature self-attention (GFSA). (b) Implementation of the
adaptive mask feature fusion.

3.5.2. Adaptive Mask Feature Fusion (AMFF)

We arrange an adaptive mask feature fusion (AMFF) scheme for reasonably allocating
contributions, instead of the direct feature adding. AMFF is depicted in Figure 13b. Firstly,
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the previous mask feature FGFSA and the backbone network feature F are flattened into 1D
column vectors respectively, i.e., from H ×W × C to HWC× 1.

Then, they are concatenated directly to be inputted into a fully-connected (FC-1) layer.
Finally, the terminal 2-element FC-2 layer with a softmax activation is used to achieve two
adaptive weight parameters α and β. Here, due to the use of the softmax activation, α plus
β equals 1. The above is described by

W = so f tmax{FC2(FC1([ f latten(FGFSA), f latten(F)]))} (10)

where W = [α, β]T denotes the weight vector. Finally, the mask interaction is imple-
mented by

Mi(F) = α·FGFSA + β·F (11)

where FGFSA = GFSA(Mi−1(F)). In summary, Equation (11) will be used to replace the
original expression Mi(F)=conv1×1(Mi−1(F)) + F in Figure 12a to form the final Figure 12b.

3.6. Post-Processing Technique (PPT)

Existing approach. The raw HTC offers NMS [27] and Soft-NMS [28] to remove
duplicate detections, but the two both did not consider the prior knowledge of ships, that is,
in most cases, only those ships with similar aspect ratios just dock together side by side, as
shown in Figure 14. Not considering this prior knowledge will cause that the boxes which
should be retained are removed when NMS is used; the boxes which should be deleted
are retained when Soft-NMS is used. We think that when the ship aspect ratios are similar,
one should better use Soft-NMS to avoid missed detections; however, when the ship aspect
ratios have a huge difference, one should better use NMS to delete redundant boxes.

Figure 14. Densely moored ships. There are some hull overlaps between ships. In most cases, only
ships with similar aspect ratios dock together. Green boxes denote the ground truths.

Proposed approach. Thus, we propose a post-process technique (PPT) guided by the
prior of ship aspect ratios to adaptively select NMS and Soft-NMS. Algorithm 1 shows the
implementation of PPT. We set a similarity threshold of ship aspect ratios εr to judge two
cases, i.e., (i) a huge aspect ratio difference |ri − rm| > εr where rm denotes the aspect ratio
with the highest score sm and ri denotes the remaining boxes needed to traverse; (ii) a small
aspect ratio difference |ri − rm| ≤ εr. Here, εr is set to 0.20 empirically, (see Section 6.5).
For the former, NMS is executed to remove boxes safely (i.e., B ← B − bi , S ← S − si ).
For the latter, Soft-NMS is executed to retain boxes (i.e., B ← B , S ← S ) but the current

box is given with a penalty score si ← si exp
(

IOU(M,bi)
2

σ

)
for the densely moored ship

detections in Figure 14.
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Algorithm 1: PPT guided by the prior of ship aspect ratios.

Input: B = {b1, b2, · · · , bN}, R = {r1, r2, · · · , rN}, S = {s1, s2, · · · , sN}, Nt, εr
B denotes the list of initial detection boxes. R denotes the list of initial detection aspect ratios. S
denotes the list of initial detection scores. Nt denotes the IOU threshold. εr denotes the similarity
threshold of aspect ratios.

Begin

1: D ← {}
2: while B = ∅ do

3: m ← argmax S
4: M← bm
5: P ← rm
6: D ← D ∪M ; B ← B −M ; R ← R−P
7: for (bi, ri) in zip (B,R) do

8: if IOU(M, bi) ≥ Nt then

9: Case 1: |ri − rm| > εr
10: B ← B − bi ; R ← R− ri ; S ← S − si # NMS
11: Case 2: |ri − rm| ≤ εr
12: B ← B ; R ← R ; S ← S
13: si ← sie

IOU(M,bi )
2

σ , ∀bi /∈ D # Soft-NMS
Existing approach: consider one of Case 1 and Case 2. Proposed approach: consider both
Case 1 and Case 2.

14: end

15: end

16: return D, S
end

Output: D, S

3.7. Hard Sample Mining Training Strategy (HSMTS)

Existing approach. The raw HTC did not offer useful training strategies to boost
learning benefits as shown in Figure 15a, so we propose a hard sample mining training
strategy (HSMTS) to supplement this blank for better accuracy. HSMTS is inspired by the
extreme imbalance between positive and negative samples in SAR images, i.e., ships exhibit
a sparse distribution in the whole SAR image, but backgrounds occupy more pixels. This
causes the number of negative samples being much larger than the number of positive
samples, so one should select more typical ones among a large number of negative samples
to train the network so as to ensure the background discrimination ability of models.
Otherwise, the network will fall into the over fitting of a large number of simple negative
samples with low values. More typical negative samples should be those which are difficult
to distinguish (close to positive). Only by emphasizing learning on them can the network
improve its discrimination ability; repeated and mechanical learning on simple samples
is worthless.

Proposed approach. HSMTS is in fact motivated by [66], but we add the extra supervi-
sion of the mask prediction loss. Figure 15b shows its implementation. From Figure 15b, we
monitor the terminal training loss of EMIN where Loss = LossCLS + LossREG + LossMASK.
Here, LossCLS denotes the box classification loss. LossREG denotes the box regression loss.
LossMASK denotes the mask prediction loss. The total training loss is first ranked. In
training, the K negative samples with top K losses are collected to a hard negative sample
pool. When the number of samples in the pool reaches a batch size, these hard negative
samples are mapped into the feature maps of the backbone network via CROIE to extract
feature subsets again for the next box and mask prediction. The above process repeated
until the end of the training does not destroy the end-to-end training. The total number of
the required samples is 512. The positive negative ratio is 1:3, in line with the raw report,
so the number of positive samples is 128; as a result, K is equal to 384.
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Figure 15. Different training strategies. (a) Existing approach: There are no hard negative sample
mining mechanism of HTC. (b) Proposed approach: Hard sample mining training strategy (HSMTS)
of HTC+.

4. Experiments

4.1. Dataset

SSDD [13] offers 1160 image samples with 512× 512 size from RadarSat-2, TerraSAR-X
and Sentinel-1. The training-test ratio is 4:1 [13]. There are 2551 ships in SSDD. The smallest
ship is 28 pixel2 and the largest one is 62,878 pixel2 (pixel2 denotes the product of width
pixel and height one). SAR ships in SSDD are provided with various resolutions from 1m
to 10m, and HH, HV, VV, and VH polarizations. In SSDD, images with suffix 1 and 9 (232
samples) are selected as the test set, and the others as the training set (928 samples).

HRSID [15] offers 5604 image samples with 800 × 800 average size from TerraSAR-X
and Sentinel-1. The training set has 3643 samples and the rest serves as the test set, same
as [15]. There are 16,965 ships in HRSID. SAR ships in HRSID are provided with resolutions
from 0.1 m to 3 m, and HH, HV, and VV polarizations. The smallest one is 3 pixel2, and the
largest one is 522,400 pixel2. HRSID is divided into a training and test set by the ratio of
13:7, same as [15].

4.2. Training Details

The backbone sub-network MRFEN of HTC+ and other backbone networks for per-
formance comparison are pretrained on ImageNet [67]. Following Faster R-CNN [31],
we first train the backbone network, the EFPN sub-network, and the region generation
sub-network SGAAL jointly. Then, we fix them to train the CROIE sub-network and the
EMIN sub-network. Moreover, the same as for HTC, we end-to-end to train and test
HTC+. We train all networks (HTC+ and the other 9 models) by 12 epochs on the SAR ship
datasets using SGD [68]. The learning rate is set to 0.008 that will be reduced 10 times at
8- and 11-epoch. The batch size is set to 4. Other training details are consistent with HTC.
Experiments were run on a personal computer with RTX 3090 GPU, i9-9900 CPU, and 32G
memory based on mmdet [69] and Pytorch. In the test, the trained weights are loaded to
evaluate performance.

4.3. Evaluation Criteria

Similar to COCO [53], AP is the mean of different IOU thresholds with 0.50:0.05:0.95.
AP50 is the accuracy with a 0.50 IOU threshold. AP75 is that with a 0.75 IOU threshold.
APS is that of small ships (<322 pixels). APM is that of medium ships (>322 pixels and
<962 pixels). APL is that of large ships (>962 pixels). In this paper, AP serves as the core
index for accuracy comparison.

5. Results

To reveal the state-of-the-art performance of our HTC+, nine competitive models are
reproduced for comparison of accuracy. The comparative experiments are conducted on
SSDD and HRSID datasets.
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5.1. Quantitative Results

Tables 2 and 3 show the quantitative comparison results on SSDD and HRSID. HTC
is the experimental baseline reproduced basically in line with the raw report. Its box and
mask AP are comparable to reports [17,18].

From Tables 2 and 3, the following conclusions can be drawn:

1. Compared with HTC, HTC+ offers 6.7% box AP and 5.0% mask AP increments on
SSDD; they are 4.9% and 3.9% on HRSID. Seven novelties enable such excellent ac-
curacy. Accuracy increments of different novelties are different, but the resulting
accuracy always presents an upward trend, showing the effectiveness of each nov-
elty. APL has some fluctuations because the proportion of large ships in datasets is
relatively small as in Figure 3a. Sensitivity analysis of different novelties on the total
performance will be introduced in Section 6. Certainly, the speed indeed becomes
lower and lower as expected. The trade-off between accuracy and speed is an eternal
topic which will be further considered in the future.

2. Compared with the second-class model, HTC+ offers 6.7% box AP and 4.7% mask AP
increments on SSDD; they are 4.8% and 3.7% on HRSID. This shows the state-of-the-
art performance of HTC+. The increment of the box AP is lower than that of the mask
AP, which is in line with common sense, because the pixel-level mask segmentation is
more challenging.

3. Compared with the other methods, HTC+ offers the modest operation speed (i.e.,
3.36 FPS on SSDD and 2.18 FPS on HRSID) due to its heavier network. This disad-
vantage needs to be resolved in the future. Moreover, although YOLACT [36] indeed
offers the optimal speed, its accuracy is too poor to meet applications.
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Table 4 shows the computational complexity calculations of different methods. Here,
we adopt the floating point of operations (FLOPs) to measure calculations whose unit is
the giga multiply add calculations (GMACs) [70]. From Table 4, the calculation amount
of GCBANet is more than other models, so the future model computational complexity
optimization is needed.

Table 4. Computational complexity calculations of different methods. Here, we adopt the floating
point of operations (FLOPs) to measure calculations whose unit is the giga multiply add calculations
(GMACs) [70].

Method Backbone FLOPs (GMACs)

Mask R-CNN [30] ResNet-101 121.32
Mask Scoring R-CNN [32] ResNet-101 121.32
Cascade Mask R-CNN [33] ResNet-101 226.31

PANet [34] ResNet-101 127.66
YOLACT [36] ResNet-101 67.14

GRoIE [35] ResNet-101 581.28
HQ-ISNet [16] HRNetV2-W18 201.84
HQ-ISNet [16] HRNetV2-W32 226.90
HQ-ISNet [16] HRNetV2-W40 247.49
SA R-CNN [17] ResNet-50-GCB 101.87
GCBANet [22] ResNet-101 947.96

HTC [24] ResNet-101 228.90
HTC+ (Ours) ResNet-101 1289.45

5.2. Qualitative Results

Figures 16 and 17 show the qualitative results on SSDD and HRSID. Due to limited
pages, we only show the comparison results with HTC. From Figures 16 and 17, HTC+ can
detect more real ships than HTC (e.g., the #5 sample in Figure 16). It can suppress false
alarms (e.g., the #2 sample in Figure 16). It also offers better positioning performance (e.g.,
the #1 sample in Figure 16) and higher confidence scores (e.g., the #6 sample in Figure 16).
These reveal the state-of-the-art performance of HTC+.

Figure 16. Qualitative results on SSDD. (a) The vanilla HTC. (b) Our HTC+. Green boxes denote the
ground truths. Orange boxes denote the false alarms (i.e., false positives, FP). Red circles denote the
missed detections (i.e., false negatives, FN).

195



Remote Sens. 2022, 14, 2395

Figure 17. Qualitative results on HRSID. (a) The vanilla HTC. (b) Our HTC+. Green boxes denote the
ground truths. Orange boxes denote the false alarms (i.e., false positives, FP). Red circles denote the
missed detections (i.e., false negatives, FN).

6. Ablation Study

In this section, we will conduct ablation studies for sensitivity analysis of each tech-
nique. All the following experiments are conducted on SSDD. These ablation studies can
also confirm the effectiveness of each technique. For rigorous comparison, we install and
remove the particular technique while freezing the other six.

6.1. Ablation Study on MRFEN
6.1.1. Effectiveness of MRFEN

Table 5 shows the quantitative results with and without MRFEN. MRFEN offers a
better accuracy than the common plain structure, because it expands the range of net-
work spatial search to achieve multi-resolution analysis, enabling better multi-scale ship
feature representation.

Table 5. Quantitative results on with and without MRFEN.

MRFEN Box AP (%) Mask AP (%) FPS

× 1 70.9 63.7 6.52√ 2 72.3 64.3 3.36
1 ResNet-101 in Figure 2a. 2 Our MRFEN in Figure 2b.

6.1.2. Component Analysis in MRFEN

Table 6 shows the results of component analysis in MRFEN. All components are
conducive to improving accuracy, showing their effectiveness. Three components enhance
the multi-scale feature description of the network, enabling better performance. MRFE
reduces the speed greatly because it makes the network heavier. Although MRFE offers
an only 0.2% box AP gain, its mask AP gain is more significant than others, so it is still
effective. One can also find that after the feature fusion is established, the box AP is further
improved by 0.4%. Therefore, it is essential to exchange information in multi-resolution
parallel branches. Moreover, CBAM can improve accuracy further because it can focus on
more important features.
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Table 6. Quantitative results of component analysis in MRFEN.

MRFE 1 FF in
MSAFF 2

CBAM in
MSAFF 3 ASPP 4 Box AP (%) Mask AP (%) FPS

– – – 70.9 63.7 6.52√
71.1 64.0 3.84√ √
71.5 64.1 3.72√ √ √
71.7 64.2 3.53√ √ √ √
72.3 64.3 3.36

1 MRFE denotes the multi-resolution feature extraction. Feature fusion and CBAM are deleted. 2 FF denotes the
feature fusion in the multi-scale attention-based feature fusion (MSAFF). 3 CBAM denotes the convolutional block
attention module in the MSAFF. 4 ASPP denotes the atrous spatial pyramid pooling.

6.1.3. Compared with Other Backbones

We compare performance of other backbones in Table 7. MRFEN offers the optimum
accuracy. HRNetV2-W40 [16] offers a comparable 72.2% box AP, but its mask AP is lower
than MRFEN (63.5% < 64.3%). Furthermore, in our MRFEN, MRFE+MSAFF can be regarded
as an improved version of HRNet [41], because CBAM is added during feature fusion. We
also study the advantage of HRNet compared with other backbones under the condition
that ASPP is used. The results are shown in Table 8. From Table 8, HRNet achieves the
best box AP and mask AP, thus the multi-resolution parallel structure is better than the
plain structure.

Table 7. Quantitative results of different backbones. ASPP is not used in other backbones.

Backbone Box AP (%) Mask AP (%) FPS

ResNet-101 [39] 70.9 63.7 6.52
ResNeXt-101-32x4d [40] 71.0 63.5 5.15
ResNeXt-101-32x8d [40] 71.3 63.8 4.93
ResNeXt-101-64x4d [40] 71.2 64.1 3.85

HRNetV2-W18 [16] 71.0 63.2 3.85
HRNetV2-W32 [16] 70.6 64.0 3.76
HRNetV2-W40 [16] 72.2 63.5 3.40

Res2Net-101 [38] 71.9 64.0 4.62
MRFEN (Ours) 72.3 64.3 3.36

Table 8. Quantitative results on with and without MRFEN. ASPP is used in other backbones.

Backbone 1 Box AP (%) Mask AP (%) FPS

MRFEN

ResNet-101 [39] 71.1 63.7 6.50
ResNeXt-101-32x4d [40] 71.3 63.6 5.10
ResNeXt-101-32x8d [40] 71.6 64.0 4.86
ResNeXt-101-64x4d [40] 71.9 64.1 3.81

Res2Net-101 [38] 72.0 64.1 4.58
HRNet (Ours) 2 72.3 64.3 3.36

1 The backbone (MRFE+MSAFF) inside MRFEN is replaced. 2 In MRFEN, MRFE+MSAFF can be regarded as an
improved version of HRNet because CBAM is added during feature fusion.

6.2. Ablation Study on EFPN
6.2.1. Effectiveness of EFPN

Table 9 shows the results with or without EFPN. EFPN offers a ~3% box AP gain; a
~2% mask AP gain. The speed is sacrificed, but it offers better multi-scale performance,
considering large and small ships simultaneously.
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Table 9. Quantitative results on with and without EFPN.

EFPN Box AP (%) Mask AP (%) FPS

× 1 69.4 62.2 6.89√ 2 72.3 64.3 3.36
1 FPN in Figure 5a. 2 Our EFPN in Figure 5b.

6.2.2. Component Analysis in EFPN

Table 10 shows the results of component analysis in EFPN. Each component is con-
ducive to improving accuracy more or less, showing their effectiveness. CARAFE reduces
the speed more obviously, because it adds FPN levels with increased calculation costs.

Table 10. Quantitative Results of Component Analysis in EFPN.

CARAFE 1 FB 2 FR 3 FE 4 Box AP (%) Mask AP (%) FPS

– – – – 69.4 62.2 6.89√
70.1 63.4 3.96√ √
70.7 64.0 3.53√ √ √
71.5 64.2 3.40√ √ √ √
72.3 64.3 3.36

1 CARAFE denotes the content-aware reassembly of features. 2 FB denotes the feature balance. 3 FR denotes the
feature refinement. 4 FE denotes the feature enhancement.

6.2.3. Compared with Other FPNs

We compare performance of other FPNs in Table 11. MFPN offers the best accuracy
except for the mask AP of Quad-FPN [58]. Still, MFPN is better than Quad-FPN, because
its box AP is higher (72.3% > 71.8%).

Table 11. Quantitative results of different FPNs.

Type Box AP (%) Mask AP (%) FPS

FPN [51] 69.4 62.2 6.89
B-FPN [59] 69.8 62.9 5.45

CARAFE-FPN [55] 71.3 63.5 5.62
Quad-FPN [58] 71.8 64.3 3.48
MFPN (Ours) 72.3 64.3 3.36

6.3. Ablation Study on SGAALN
6.3.1. Effectiveness of SGAALN

Table 12 shows the results with and without SGAALN. SGAALN boosts the box AP and
the mask AP by ~1%. It can generate more optimized location- and shape-adaptive anchors to
better match SAR ships. This can ease background interferences for better performance.

Table 12. Quantitative results on with and without SGAALN.

SGAALN Box AP (%) Mask AP (%) FPS

× 1 71.2 63.5 3.63√ 2 72.3 64.3 3.36
1 Fixed anchors and aspect ratios used in the vanilla HTC. 2 Our SGAALN in Figure 8.

6.3.2. Component Analysis in SGAALN

Table 13 shows the results of component analysis in SGAALN. ALP boosts accuracy in
any case, but ASP must be equipped with FA to give full play to its advantages, because FA
aligns the raw feature maps to width-height of anchors to eliminate feature differences.
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Table 13. Quantitative results of component analysis in SGAALN.

ALP 1 ASP 2 FA 3 Box AP (%) Mask AP (%) FPS

– – – 71.2 63.5 3.63√
72.0 64.0 3.58√ √
71.9 64.0 3.54√ √ √
72.3 64.3 3.36

1 ALP denotes the anchor location prediction. 2 ASP denotes the anchor shape prediction. 3 FA denotes the
feature adaption.

6.3.3. Different Probability Thresholds

We adjust probability thresholds to determine their optimal value in Table 14. One
finds that when εt = 0.10, the accuracy reaches the peak, so it is selected, as also suggested
by [29], because it can remove many false positives meanwhile maintaining an unaffected
recall rate.

Table 14. Quantitative results of component analysis in SGAALN.

εt Box AP (%) Mask AP (%) FPS

0.00 71.5 63.9 3.35
0.05 71.8 64.0 3.36
0.10 72.3 64.3 3.36
0.15 72.0 64.1 3.34
0.20 70.8 63.7 3.26

6.4. Ablation Study on CROIE
6.4.1. Effectiveness of CROIE

Table 15 shows the results with/without CROIE. CROIE improves the accuracy by
~0.5%, because it offers more context information to the network, conducive to enhancing
the background discrimination ability.

Table 15. Quantitative results on with and without CROIE.

CROIE Box AP (%) Mask AP (%) FPS

× 1 71.2 63.5 3.63√ 2 72.3 64.3 3.36
1 ROI is used as shown in Figure 9a. 2 ROI, ROI-C1 and ROI-C2 are used as shown in Figure 9b.

6.4.2. Different Range Contexts

We survey the influences of different range contexts on performance as shown in
Table 16. We observe that moderate contexts are beneficial, but excessive ones will lead to
negative effects. When using CROIE, a special parameter adjustment is required to be in
line with actual applications. For the best accuracy, we set the two amplification factors c1
and c2 to 1.5 and 2.0 respectively.

Table 16. Quantitative results of different range contexts.

c1 c2 Box AP (%) Mask AP (%) FPS

1.5 2.0 72.3 64.3 3.36
1.5 2.5 72.0 64.1 3.20
2.0 2.5 71.5 63.7 3.19
2.5 3.0 70.7 62.5 2.96
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6.5. Ablation Study on EMIN
6.5.1. Effectiveness of EMIN

Table 17 shows the results with and without EMIN. EMIN offers better accuracy
than the raw MIN. It transmits more important mask features to the next stage. It further
balances the contributions between the backbone network’s features and the previous
stage’s features. Consequently, the efficiency of information flow is improved, bringing
better learning benefits.

Table 17. Quantitative results with and without EMIN.

EMIN Box AP (%) Mask AP (%) FPS

× 1 71.7 63.9 3.87√ 2 72.3 64.3 3.36
1 The raw MIN in Figure 12a. 2 Our EMIN in Figure 12b.

6.5.2. Component Analysis in EMIN

Table 18 shows the results of component analysis in EMIN. Each component offers an
observable accuracy gain, showing their effectiveness. They do not impose great impacts
on speed, so they are cost-effective.

Table 18. Quantitative results of component analysis in EMIN.

GFSA 1 AMFF 2 Box AP (%) Mask AP (%) FPS

– – 71.7 63.9 3.87√
72.1 64.1 3.58√ √
72.3 64.3 3.36

1 GFSA denotes the global feature self-attention. 2 AMFF denotes the adaptive mask feature fusion.

6.6. Ablation Study on PPT
6.6.1. Effectiveness of PPT

Table 19 shows the results with or without PPT. PPT has a slightly better accuracy
than NMS and Soft-NMS with little sacrifice of speed. It considers the ship aspect ratio
prior to determine whether to suppress boxes, with the advantages of NMS and Soft-NMS,
enabling better performance.

Table 19. Quantitative results on with and without PPT.

PPT NMS Soft-NMS Box AP (%) Mask AP (%) FPS
√

71.5 63.7 3.40√
72.0 64.1 3.38√ √ √
72.3 64.3 3.36

6.6.2. Different Similarity Thresholds of Aspect Ratios

We survey the influences of different similarity thresholds of aspect ratios on the
performance as in Table 20. Due to SAR imaging error and annotation deviation, it is
impossible to be sure that ships moored in parallel have absolutely-equal aspect ratios.
Therefore, setting this threshold reasonably is needed. In our work, we set εr to 0.20 because
it offers the best accuracy.
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Table 20. Quantitative results of different similarity thresholds of aspect ratios.

εr Box AP (%) Mask AP (%) FPS

0.10 71.8 63.9 3.34
0.15 72.1 63.9 3.36
0.20 72.3 64.3 3.36
0.25 72.2 64.1 3.36
0.30 72.0 64.0 3.35

6.7. Ablation Study on HSMTS
6.7.1. Effectiveness of HSMTS

Table 21 shows the results with and without HEMTS. HEMTS further improves the
accuracy; the network boosts learning benefits by focusing on difficult samples to boost
foreground-background recognition ability. HEMTS is only used in training, so the speed
is not affected.

Table 21. Quantitative results on with and without HSMTS.

HSMTS Mask Loss Box AP (%) Mask AP (%) FPS

× 1 71.6 63.7 3.36√ 2 72.0 63.9 3.36√ 3 √ 3 72.3 64.3 3.36
1 The raw random sampling. 2 OMEM. Here, the mask prediction loss is not monitored. 3 Our HSMTS in Figure 15.
Here, the mask prediction loss is monitored.

6.7.2. Compared with OHEM

In Table 21, HEMTS (the second row) performs better than OHEM (the third row)
because HEMTS adds the extra supervision of the mask prediction loss. This is conducive
to mining more representative difficult negative samples.

7. Discussions

7.1. Multi-Scale Training and Test

We also discuss the multi-scale training and test on SSDD in Table 22. The single-scale
input is [512 × 512]; the multi-scale input is [416 × 416, 512 × 512, 608 × 608] inspired
by YOLOv3 [25]. Multi-scale training and test can further improve the accuracy but the
speed becomes lower for all models. Our single-scale HTC+ surpasses all other multi-scale
models. This advantage comes from the multi-resolution feature extraction. Our multi-
scale HTC+ enables the better performance from 72.3% to 72.9% box AP and from 64.3% to
65.1% mask AP. It is always far superior to all other competition models, which shows its
better performance.

7.2. Extension to Mask R-CNN

To confirm the universal effectiveness of the proposed techniques on other instance
segmentation models, we extend them to the mainstream Mask R-CNN [30]. Here, EMIN is
not applicable, because Mask R-CNN does not have mask information interaction branches,
whose mask head is not cascaded. The results are shown in Table 23. From Table 23, six
novelties all offer continuous accuracy growth, from the initial 62.0% to the final 70.8% box
AP, i.e., a huge 8.8% incremental improvement, and from the initial 57.8% to the final 62.5%
mask AP, i.e., a huge 4.7% incremental improvement. The above reveals the universal
validity of our proposed techniques.
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Table 22. Quantitative results of multi-scale training and test on SSDD. The suboptimal method is
marked by underline “—”.

Method Backbone Box AP (%) Mask AP (%) FPS

Mask R-CNN-Multi ResNet-101 64.1 60.6 7.48
Mask Scoring
R-CNN-Multi ResNet-101 65.8 60.4 7.25

Cascade Mask
R-CNN-Multi ResNet-101 65.4 60.0 5.80

HTC-Multi ResNet-101 66.8 60.7 5.52
PANet-Multi ResNet-101 65.4 60.4 7.48

YOLACT-Multi ResNet-101 55.2 51.4 10.78
GRoIE-Multi ResNet-101 63.5 60.4 4.64

HQ-ISNet-Multi HRNetV2-W18 65.6 59.4 4.07
HQ-ISNet-Multi HRNetV2-W32 66.0 59.5 3.87
HQ-ISNet-Multi HRNetV2-W40 63.8 59.5 3.57
SA R-CNN-Multi ResNet-50-GCB 64.1 60.3 8.00

HTC+-Single 1 MRFEN 72.3 64.3 3.36
HTC+-Multi 2 MRFEN 72.9 65.1 2.02

1 Single denotes the input size [512 × 512]. 2 Multi denotes the input size [416 × 416, 512 × 512, 608 × 608]
inspired by YOLOv3 [25].

Table 23. Quantitative results of extension to Mask R-CNN on SSDD.

MRFEN EFPN SGAALN CROIE PPT HSMTS Box AP (%) Mask AP (%) FPS

Mask R-CNN
[30] *

– – – – – – 62.0 57.8 11.05√
63.6 59.0 9.34√ √
65.2 60.6 8.02√ √ √
65.9 61.0 7.85√ √ √ √
68.5 61.2 3.96√ √ √ √ √
69.6 62.0 3.55√ √ √ √ √ √
70.8 62.5 3.55

* Mask R-CNN does not have mask information interaction branches, because its mask head is not cascaded. Thus,
EMIN is not applicable to Mask R-CNN.

7.3. Extension to Faster R-CNN

We also extend the proposed techniques (except EMIN only used in segmentation
models) to the pure detection model. We take the mainstream two-stage model Faster
R-CNN [31] as an example. The results are shown in Table 24. From Table 24, six novelties
all offer continuous accuracy growth, from the initial 62.1% to the final 69.1% box AP, i.e., a
huge 7% incremental improvement, which shows their universal validity. Certainly, these
benefits are achieved at a certain sacrifice of speed, which will be considered in the future.

Table 24. Quantitative results of extension to Faster R-CNN on SSDD.

MRFEN EFPN SGAALN CROIE PPT HSMTS Box AP (%) FPS

Faster
R-CNN

[31] *

– – – – – – 62.1 13.65√
64.5 10.56√ √
66.8 8.74√ √ √
67.2 8.38√ √ √ √
68.0 7.69√ √ √ √ √
68.5 6.72√ √ √ √ √ √
69.1 6.72

* EMIN is only used in segmentation models, but Faster R-CNN is a detection model. Therefore, EMIN cannot be
applied to Faster R-CNN.
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8. Conclusions

We propose HTC+ to boost SAR ship instance segmentation. Seven techniques (MR-
FEN, EFPN, SGAALN, CROIE, EMIN, PPT, and HSMTS) are used ensure the state-of-the-art
accuracy of HTC+. HTC+ is elaborately designed for SAR ship tasks in consideration of
the targeted SAR characteristics. HTC+ is superior to the vanilla HTC by 6.7% box AP and
5.0% mask AP and by 4.9% and 3.9% on HRSID. It outperforms the other nine advanced
models. Moreover, we also extend the proposed techniques to Faster R-CNN to confirm
their effectiveness for pure detection tasks; results reveal that they can offer continuous
accuracy growth.

In the future, the speed optimization [71,72] will be considered; other tricks [73] will
also be considered for better accuracy.
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Abstract: For automobile radar systems, the antenna array requires a low sidelobe level (SLL) to
reduce interference. A low-SLL and low-cost planar antenna array are proposed in this article for
millimeter-wave automotive radar applications. The proposed array consists of six linear series-fed
patch arrays, a series distribution network using a grounded co-planar waveguide (GCPW), and a
bed of nails. First, a hybrid HFSS-MATLAB optimization platform is set up to easily obtain good
impedance matching and low SLL of the linear series-fed patch array. Then, a six-way GCPW power
divider is designed to combine the optimized linear sub-array to achieve a planar array. However,
since CCPW is a semi-open structure, like a microstrip line, the parasitic radiation generated by
the GCPW feeding network will lead to the deterioration of the SLL. To solve this problem, a bed
of nails—as an artificial magnetic conductor (AMC)—is designed and placed above the feeding
networking to create an electromagnetic stopband in the working band. Its working mechanism
has been explained in detail. The feeding network cannot effectively radiate electromagnetic waves
into free space. Thus, the parasitic radiation can be suppressed. A low-SLL planar array prototype
working at 79 GHz is designed, manufactured, and measured. The measured results confirm that the
proposed low-SLL planar array has a −10 dB impedance bandwidth of 3 GHz from 77 to 80 GHz
and a maximum peak gain of 21 dBi. The measured SLL is −24 dB and −23 dB in the E-plane and
H-plane at 79 GHz, respectively. The proposed low SLL array can be used for adaptive cruise control
(ACC) system applications.

Keywords: 79-GHz automotive radar; low sidelobe level (SLL); series-fed array; AMC

1. Introduction

The rise of driverless vehicles has raised higher demands and challenges for millimeter-
wave (mmW) automotive radars [1–6]. At present, automotive radars have moved the
working frequency to 76–81 GHz. According to the detection distance, an automotive
radar can be classified into three main categories: long-range radar (LRR), medium-range
radar (MRR), and short-range radar (SRR) [7]. The frequency band from 77 to 81 GHz is
mainly used for MMR and SSR. Compared to 24 GH automotive radars, the 77/79 GHz
automotive radars have a higher resolution and smaller volume. This will extend promising
applications for intelligent transportation, such as adaptive cruise control (ACC), blind-spot
detection (BSD), cross-traffic alerts (CTA), etc. Antennas, as a key component in automotive
radar systems, have also been one of the subjects of research. To compensate for high path
loss in the mmW band and to increase the detection range, the radar antennas usually need
to be designed as high-gain antenna arrays. Furthermore, regardless of the application
scenario, a low sidelobe level (SLL) is desirable to reduce the interference from clutter.
Hence, for automotive radar systems, antenna arrays with low SLL, high gain, and low
cost are the preferred choice.
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Over the past decade, a lot of efforts have been devoted to designing antennas for
automotive radars [8–26]. Some linear arrays are investigated in [8–20]. In consideration of
the cost and compactness, the series-fed array is a good way to implement a linear array,
such as a series-fed patch array [8–11], grid antenna array [12–16], comb-line array [17],
etc. The SLL of the array is an important index in automotive radar systems, which reflects
its anti-interference ability. The reported grid arrays and comb-line array have relatively
high SLL due to the difficulty in suppressing sidelobe. Comparatively, the series-fed
patch antenna array can more easily achieve a low SLL through a tapered patch width.
In [8], a series-fed microstrip patch array of unequal interelement spacing and non-uniform
amplitude is designed in the microwave band and achieves an SLL of −25 dB by using
the differential evolution algorithm (DEA). Yet, the mutual coupling between elements is
neglected for the simplicity of calculation, which is not desirable for a 79-GHz band with
serious coupling. In [10], the series-fed linear and planar binomial patch arrays are designed
by tapering the width of the radiation element. Both linear and planar binomial arrays
provide an SLL of less than −28 dB. The reported low series-fed patch arrays [8,10,11] are
designed in the microwave band. It is more difficult to design a low SLL series-fed patch
array in the W-band due to the smaller wavelength. In [9], by adopting the design method
of controlling the radiated-to-available power ratio (RAPA), three types of patch antennas
are introduced to design a low SLL series-fed linear array. The SLLs below −17 dB are
constructed over the operating band. A drawback of the reported methods for designing
a low SLL is that they only consider the SLL, while they cannot optimize both S11 and
SLL simultaneously.

To meet the detection of medium and long distances, high-gain planar arrays are
required as transmitting antennas. Several different types of planar arrays have been
designed for automotive radar applications [21–26]. Traditional microstrip-based feeding
networks suffer from an increasing loss with the frequency increase in the mmW band.
In particular, it will produce undesirable radiation (parasitic radiation), which has a bad
effect on the radiation pattern and radar system. Given this concern, other transmission
line technologies with closed structures, such as substrate-integrated wave and ridge
waveguides, have been used to design a planar array. In [21], a planar array with a flat-
shoulder shaped radiation pattern is achieved by adopting linear series-fed patch arrays and
an SIW feeding network with a phase shift. The downside is that the SIW feeding network
usually suffers from a large size due to the cut-off frequency. A high-gain slotted waveguide
array with low SLL is proposed in [25] for vehicular applications in the 71–81 GHz band.
A full-corporate single-ridge waveguide network with a Taylor amplitude distribution is
used to design a low-SLL planar array. The SLLs below −19 dB and −24 dB are achieved
in the E- and H-planes, respectively. Nevertheless, the full metal structure is very bulky
and difficult to integrate with the front-end circuit. Several 77 GHz automotive radar
systems are exhibited in [1,4,5]. It can be found that although the microstrip structure has
some inherent shortcomings, the microstrip-based planar arrays are still the mainstream
choice for automotive radar systems due to the compact structure, low cost, and ease
of integration. Thus, it is very promising to design a simple and low-cost packaging to
suppress the parasitic radiation from microstrip-based feeding networks. This will greatly
improve the performance and reliability of automotive radar systems.

In this work, a compact and low-cost microstrip antenna planar array with low SLL is
designed for LRR and MRR applications. The major contributions of this letter are shown
as follows:

1. The reported methods for achieving the low SLL of a series-fed array cannot take
into account the reflection coefficient. In this work, we built a Matlab-HFSS joint
optimizing platform to easily optimize the SLL and S11 of the series-fed patch array.

2. Aimed at the problem of parasitic radiation from a microstrip-based feeding network,
we propose an efficient method of loading an artificial magnetic conductor (AMC)
to solve this problem. A bed-of-nails structure is used as an AMC and is arranged
above the feeding network to suppress the unwanted radiation, which enables the
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radiation performance of the linear array to be unaffected. The proposed method
has the advantage of a simple design and low cost. Meanwhile, there is no perfect
electrical contact between the AMC structure and feeding network, which greatly
facilitates assembly and enhances its practicality.

3. A prototype of the designed low-SLL microstrip antenna planar array is fabricated
and measured for verification. The SLLs of−24 dB and−23 dB in the E- and H-planes
at 79 GHz are realized, respectively. The measured results verify the correctness of
the design.

2. Planar Array Design

2.1. The Design of a Low-SLL, Series-Fed Patch Antenna Sub-Array

Based on antenna array theory, the linear array can achieve a low SLL by tuning the
amplitude and phase of each element. For a series-fed patch antenna array, the amplitude
and phase are related to the patch width and element spacing, respectively. Therefore, its
low SLL can be achieved by tapering the patch width and unequal element spacing. Figure 1
shows the geometry of the proposed low SLL series-fed microstrip patch antenna linear
array. It will act as the sub-array of the proposed low-SLL planar array. The sub-array is
designed on a single-layer Rogers RO3003 substrate (εr = 3, tan δ = 0.0013) with a thickness
of hs = 0.127 mm, and it consists of 10 patch elements, an impedance transformer, and a
feeding line with 50 ohms. The 10 patch elements with the same length lp are arranged
symmetrically, and they are connected by a narrow microstrip line with width wt. The
impedance transformer is utilized to achieve good impedance matching between the array
and 50-Ω feeding line. As mentioned above, the sub-array is set to the unequal element
spacing and tapered width to achieve low SLL. Since the patch elements of the series-fed
sub-array have progressive phases, the element spacing between the adjacent patches needs
to be kept at around one λg to maintain the radiation pattern in the broadside direction.
(Here, λg is the guided wavelength in the substrate at 79 GHz). According to (1), the λg is
2.19 mm. The final sizes of the sub-array are given in Table 1:

λg =
c

f
√

εr
(1)

where c and εr are the speed of light and relative permittivity, respectively. For a series-fed
patch antenna array, it is very laborious to achieve low SLL directly by parameter optimiza-
tion or Taylor synthesis. To easily optimize SLL and S11, we construct a HFSS-MATLAB
joint optimizing platform. Previously, a preliminary result has been reported in [27], but
it does not have a detailed illustration and experimental results. Hence, the details of
HFSS-Matlab joint optimization will be discussed here. The flowchart of the optimization
method combining HFSS with Matlab is shown in Figure 2. First, a genetic algorithm
(GA) is selected as the optimization algorithm because it has outstanding stochastic search
capacity based on the mechanism of evolutionary biology. The GA starts with an initial
set of random solutions, a population. Each individual in the population is coded as a
chromosome, representing a solution of the target problem. Next, based on the MATLAB
platform, HFSS-Matlab-API (HMA) is created as the interface between MATLAB and HFSS.
The HMA provides a series of functions of HFSS operation commands. By using HMA,
antenna models can be automatically created and simulated in HFSS. Thus, the precise
results of each individual can be obtained. Then, the evaluation function is used to analyze
and deal with these results provided by HFSS. Finally, according to the data from the
evaluation function, good individuals will be selected by GA to enter the next iteration.
The whole process will continue until the optimal result can be obtained.
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Figure 1. The geometry of the low SLL, linear series-fed patches sub-array.

Table 1. The dimensions of the optimized series-fed patch antenna array. (Unit: mm).

w1 w2 w3 w4 w5 wm wf d1

0.32 0.72 1.08 1.3 1.41 0.44 0.3 2.19

d2 d3 d4 d5 lp l0 lm wt

2.19 2.23 2.22 2.23 1.06 1.49 1.15 0.12

 
Figure 2. The framework of HFSS-MATLAB joint optimizing platform.

Here, our goal is to achieve an SLL of −25 dB at 79 GHz and a working bandwidth
covering 78 to 80 GHz. Accordingly, the objective function can be expressed as:

e1 =

{
25−|ES| |ES| < 25
0 |ES| ≥ 25

e2 =

{
30 |S11| > −10 dB f orm 78 to 80 GHz
2−ω the others

CS = e1 + e2

(2)

where ES is the SLL at 79 GH in the E-plane. The ω represents the value of the bandwidth
(|S11| ≤ −10 dB) in the specified frequency range of 78 to 80 GHz. The width of the
patches (w1–w5), the element spacing (d1–d5), and the size of the impedance transformer
(wm, lm) will be selected for optimization. Considering the actual patch size at 79 GHz,
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proper constraints may be added to the main function to make the whole optimizing
process more efficient. For the main function, the patch width wi and spacing di are
set at a range of [0.3 mm, 1.5 mm] and [0.95λg, 1.05λg], respectively. In this design, the
configuration of GA is summarized as population = 20, crossover probability = 0.7, and
mutation probability = 0.1.

By using hybrid HFSS-MATLAB optimization, a low-SLL, series-fed patch sub-array
that satisfies our goals has been realized. The optimized dimensions are given in Table 1.
The simulated reflection coefficient and gain are depicted in Figure 3a. The series-fed
patch sub-array achieves good impedance matching in the range of 78 to 80 GHz and has
stable gains at the working frequency band. Figure 3b–d show the simulated normalized
radiation patterns at 78, 79, and 80 GHz. The series-fed patch sub-array exhibits good
radiation characteristics in the operating band. It can be seen that the simulated SLL is
−21 dB, −25 dB, and −24 dB at 78, 79, and 80 GHz in the E-plane, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 3. Simulated results of the series−fed patch array. (a) Reflection coefficient and gain.
(b) Pattern at 78 GHz. (c) Pattern at 79 GHz. (d) Pattern at 80 GHz.

2.2. The Design of the Feeding Network

To implement a planar array, a full-corporate feeding network needs to be designed.
We chose a series feeding way because it has a more compact structure compared to the
parallel feeding way. Figure 4 shows the geometry of the designed series feeding network.
The GCPW is used instead of the microstrip line, given the fact that its ground vias can
effectively suppress surface waves. The designed feeding network consists of T-junction
equal power dividers and an impedance transformer. As shown in Figure 5, three types
of structures are used to design the series feeding network. To decrease the low SLL in
the H-plane, unequal power distribution needs to be employed in the feeding network.
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Here, through a cascading equal power divider, the power ratio of 0.25:0.5:1:1:0.5:0.25
can be achieved, which is enough to ensure the SLL below −20 dB at 79 GHz. Similar
to a series-fed sub-array, the series feeding network also has a progressive phase. Given
this, the output ports should be spaced about one λg to remain in-phase. To achieve a
good impedance matching of the feeding network, the key is to calculate the characteristic
impedance (Zt1 and Zt2) of the impedance transformer. Structure 1 is based on a quarter
wavelength impedance transformer for impedance matching. According to transmission
line theory, the Zin can be derived as:

l = λ/4
θt = βl = π/2

Zin = Zt1
Z2+jZt1 tan(θt)
Zt1+jZ2 tan(θt)

= Zt1
2

Z2

(3)

where Z2, Zt1, and θt denote the characteristic impedance and electrical length of the
transmission line, respectively. To achieve a perfect matching, i.e., the reflection coefficient
Γ = 0, Zin = Z1 will be satisfied. Thus, the Zt1 can be obtained:

Zt1 =
√

Z1Z2 (4)

Figure 4. The geometry of the designed series feeding network. (The impedance of the input and
outputs are 50 Ω. The p denotes power.).

Figure 5. Three types of structures required to design the series feeding network and their corre-
sponding equivalent circuit models.

Structure 2 is a typical T-junction equal power divider. It can be regarded as a parallel
circuit. Thus, the relationship of the characteristic impedances can be expressed as:

1
Z3

=
1

Z4
+

1
Z4

(5)
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Structure 3 can be considered as the combination of structure 1 and structure 2. Ac-
cording to (3)–(5), the characteristic impedance Zt2 can be derived as:

Z6 = Z5/2
Zt2 =

√
Z5Z6 = Z5√

2
(6)

In this design, according to (3)–(6), the initial design of the series feeding network can
be completed by setting a characteristic impedance Z6 of structure 3. Then, the feeding
network is further optimized in HFSS to obtain the desired results. Figure 4 gives the final
design dimensions. Figure 6 presents the simulated results of the designed feeding network.
It achieves a good impedance matching with |S11| < −15 dB covering 76 to 85 GHz. From
Figure 6b, good agreement of the output phases can be observed from 77 to 81 GHz.

(a) (b) 

Figure 6. The simulated results of the feeding network. (a) S−parameters. (b) Output phases.

2.3. The Design and Analysis of AMC Structure

As mentioned in the introduction, the microstrip-based feeding network inevitably
generates undesirable radiation due to its semi-open structure. In this sub-section, the
principle and design process of using AMC to suppress the undesirable radiation will be
elaborated upon. A new type of high-impedance electromagnetic (EM) surface is developed
in [28]. The typical geometry is mushroom-like structures arranged in a two-dimensional
lattice. In this design, we use a bed of nails formed by pins distributed in a two-dimensional
lattice to achieve a high-impedance EM surface. Figure 7a shows the geometry of the bed
of nails. Since the size and periodicity of the unit cell are much smaller than the operating
wavelength, a simplified lumped circuit model can be used to describe the EM properties
of the bed of nails. Figure 7b shows the equivalent lumped circuit model. It can be seen as a
parallel resonant circuit, consisting of capacitance and inductance. The surface impedance
can be expressed as:

Z =
jωL

1−ω2LC
(7)

The impedance is infinite near the resonant frequency ω0. In the frequency range
where the surface impedance is very high, the tangential magnetic field is small and the
image currents are in-phase [28]. Based on these properties, the high-impedance surface
can be regarded as a kind of AMC:

ω0 =
1√
LC

(8)
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(a) (b) 

Figure 7. The high surface impedance can be formed by square metal pins in two−dimensional, a
bed of nails. (a) The geometry of the bed of nails. (b) Equivalent lumped circuit model.

Based on the theory of soft and hard surfaces [29], and some related research [30–32],
a new metamaterial-based ridge gap waveguide technology is proposed in [33]. Figure 8
plotted the evolution process of the ridge gap waveguide. A TEM wave cannot propagate
between a perfect electric conductor (PEC) and perfect magnetic conductor (PMC) due to
the limitation of boundary conditions. When the distance between the PEC and PMC is
smaller than a quarter wavelength, no waves can propagate in the gap (i.e., all modes are
below cut-off [34]). This is similar to the cut-off characteristic of a rectangular waveguide.
Thus, a frequency stopband can be created. As we all know, the PMC does not exist in
nature. The bed of nails with a high surface impedance (regarded as AMC) is used to
constitute an approximate PMC surface. If a metal ridge or metal strip is embedded in the
PMC, the EM wave is bound to follow the ridge, and the electric fields are located between
the top of the ridge and PEC, like a microstrip line located over a metal ground. As a result,
in a frequency stopband, a local quasi-TEM mode electromagnetic wave can propagate
between the ridge and PEC, while wave propagation at the sides of the ridge is prohibited.

 
Figure 8. The evolution process of the ridge gap waveguide.

Inspired by the concept of a gap waveguide (GW), we utilize the stopband features
on both sides of the metal ridge to shield the parasitic radiation from a microstrip-based
feeding network. To do this, a unit cell of GW needs to be designed. The EM stopband
can be observed by the dispersion curves of the modes. Figure 9 shows the dispersion
diagram of the unit cell. The dispersion curve is calculated by the Eigenmode solver of
the CST studio. A stopband from 65 to 152 GHz is obtained by tuning the dimensions
of the pin and the gap. To further understand the characteristics of the unit cell, the
effect of several parameters on the stopband was studied. The influence of the pin height
on the stopband is given in Figure 10a. As the high d increases, the stopband moves
towards the lower frequency band. The effect of gap g is then studied. As shown in
Figure 10b, the working frequency band of mode 1 moves towards a higher frequency with
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the increase of g, while mode 2 exhibits the opposite variation. Accordingly, the stopband
bandwidth is significantly reduced as g increases. Figure 10c shows the effect of different
intervals between pins on the stopband. The interval p has a significant effect on mode
2. As p increases, the stopband moves slightly towards the lower band and the stopband
bandwidth decreases. Figure 10d shows the influence of the pin width a on the stopband.
It can be found that the stopband is only slightly affected.

 
Figure 9. The geometry of the unit cell and its dispersion diagram (g = 0.2 mm, d = 0.7 mm, a = 0.4 mm,
p = 1.1 mm).

  
(a) (b) 

  
(c) (d) 

Figure 10. The effect of the unit cell dimensions on the stopband. (a) high d. (b) gap g. (c) interval p.
(d) pin width a.
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2.4. The Design and Analysis of the Proposed Low-SLL Planar Array

Figure 11 shows the overall configuration of the proposed low-SLL planar array. The
planar array consists of the optimized series-fed sub-array and a 1-to-6 series feeding
network. Due to the semi-open structure of GCPW, the parasitic radiation from the feeding
networking will deteriorate the SLL of the radiation pattern. It is necessary to suppress
parasitic radiation to keep a good radiation performance of the planar array. A bed of
nails as an AMC is designed and placed above the feeding networking. As illustrated
by the above theory, a stopband will be created in the gap between the bed of nails and
the top ground of the feeding network, while the quasi-TEM wave can still propagate
between the signal line of GCPW and the ground on bottom. This is similar to an inverted
microstrip gap waveguide (IMGP) structure [35]. Meanwhile, the parallel plate modes
do not appear due to the EM stopband, which enables the array to maintain its original
performance. The feeding network will not be able to radiate EM waves into outer space.
Therefore, the parasitic radiation of the feeding network can be suppressed in the operating
frequency band.

 
(a) 

 
(b) 

Figure 11. The configuration of the proposed low-SLL planar array. (a) 3-D view. (b) Side view.

To further understand this design, the magnitude of the electric field with and without
the bed of nails in the plane above the feeding network was plotted in Figure 12. When
there is no bed of nails, the electric field above the feeding network is more cluttered and
has many speckles with strong energy. Although the radiated energy is much weaker than
the main beam of the array, it is comparable to the energy of the sidelobes. It is foreseeable
that they will interfere with the radiation performance of the array, especially the sidelobes.
It can be seen from Figure 12b that when the bed of nails is loaded, the strong electric field
only appears above the signal line, while the amplitude of the electric field in other regions
is almost zero due to the existence of the electromagnetic stopband. Thus, the feeding
network will not produce any EM leakage. In addition, any parallel plate modes that
interfere with the array performance do not exist in the gap. Figure 13 shows the simulated
radiation patterns of the proposed low-SLL array with and without the bed of nails at
79 GHz. The array without a bed of nails has an SLL of −20 and −21 dB in the E-plane
and H-plane, respectively. By loading a bed of nails as an AMC, the SLLs of the array
are reduced by 5 dB and 2 dB in the E-plane and H-plane, respectively. This verifies the
correctness of the design. Figure 14 shows the comparison of the radiation pattern between
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the proposed SLL array and the array with the common package of a metal box. It can be
found that the radiation pattern of the array with the metal-shielded box has a relatively
high SLL (−20 dB) at a negative E-plane angle due to the influence of the high-order cavity
resonance mode and metallic sidewall.

(a) (b) 

Figure 12. The full-wave extracted magnitude of the electric field in a plane above the GCPW feeding
network. (a) Without the bed of nails. (b) With the bed of nails.

  
(a) (b) 

Figure 13. The radiation pattern with and without the bed of nails. (a) E−plane. (b) H−plane.

(a) (b) 

Figure 14. The radiation pattern of the proposed array and the radiation pattern of the planar array
with the common package of a metal box. (a) E−plane. (b) H−plane.

217



Remote Sens. 2022, 14, 3597

3. Results and Discussion

To measure the designed planar array, a microstrip line to WR-10 waveguide transition
is designed and achieves good performance in the frequency band of interest. Then, a
prototype of the proposed SLL patch array was fabricated. Figure 15 shows the photograph
of a fabricated array prototype. Agilent Vector Network analyzer N5245A and WR-10
mm-wave extenders are employed to measure the reflection coefficient. The measured
and simulated reflection coefficients are plotted in Figure 16a. The measured result shows
that the frequency range of |S11| < −10 dB is 77 to 80.2 GHz. There is a slight discrepancy
between the measured and simulated reflection coefficients. The reason can be attributed
to manufacturing and assembly tolerances of the transition structure. Given the existence
of a quarter-wavelength back-short, small manufacturing errors in the transition will result
in a discernible difference in terms of the reflection coefficient.

   

Figure 15. A fabricated prototype of the proposed low-SLL planar array.

  
(a) (b) 

Figure 16. Experimental and simulated data. (a) |S11| (b) Gain and radiation efficiency.

Moreover, the gains and radiation patterns are measured in an anechoic chamber with
a far-field test system. Figure 16b shows the measured and simulated gain in the operating
band. The measured peak gains are 20.5 dBi at 78 GHz, 21 dBi at 79 GHz, and 20.76 dBi at
80 GHz, respectively. The measured gains are, on average, 1.5 dB lower than the simulated
ones. One reason for this comes from the uncertain dielectric loss tangent. This is because
the nominal loss tangent of RO3003 is 0.0013 at 10 GHz, but the design experience shows
that the loss tangent of the substrate increases with the operating frequency. Therefore,
the actual dielectric loss is higher than the nominal value. Another reason may come
from the insertion loss of the microstrip line to the waveguide transition. Usually, the
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experimental insertion loss of the transition is higher than the simulated insertion loss due
to the material loss (including dielectric loss, conductor loss, and connection loss). Since
the directivity cannot be measured in our far-field chamber, only the simulated radiation
efficiency is given in Figure 16b. It can be seen that the radiation efficiency is higher than
70% at 79 GHz. Figure 17 shows the simulated and measured radiation in the E-plane
and H-plane at 78 GHz, 79 GHz, and 80 GHz, which indicates a good agreement between
these two results. The measured SLLs of the E-plane are −20 dB, −24 dB, and −22 dB at
78, 79, and 80 GHz, respectively. The measured SLLs of the H-plane are −21 dB, −23 dB,
−22 dB at 78, 79, and 80 GHz, respectively. All of these values are slightly higher than
the simulated ones, which are mainly caused by the multipath reflection from the metallic
bracket in the anechoic chamber.

 
(a) 

 
(b) 

 
(c) 

Figure 17. The simulated radiation patterns of the proposed low SLL planar array at (a) 78 GHz,
(b) 79 GHz, and (c) 80 GHz.
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4. Conclusions

A low-SLL planar array based on linear series-fed patch sub-arrays has been presented
in this work. The technical contributions of this work are twofold. On the one hand, a
hybrid HFSS-Matlab optimization method is constructed to easily optimize a series-fed
sub-array in terms of impedance matching and SLL. The complete design framework of the
HFSS-Matlab joint optimizing platform is given. Owing to the accurate results provided by
HFSS, the series-fed patch sub-array achieves an SLL of −25 dB in the E-plane at 79 GHz
and obtains a good impedance matching from 78 to 80 GHz. Combining a 1-to-6 GCPW
distribution network and the optimized series-fed patch array, a high-gain planar array is
designed. On the other hand, we propose a simple and effective method for loading the
AMC to suppress unwanted radiation from the microstrip-based feeding network. A bed
of nails is designed and acts as an AMC. It has the advantages of being low cost and easily
fabricated. There is no perfect electrical contact between the AMC structure and feeding
network, which greatly facilitates assembly and enhances its practicality. Meanwhile, owing
to the EM stopband between the bed of nails and metal ground, the parallel plate modes
that might exist in the package of a common metal box do not appear. For verification,
the proposed low-SLL planar array is designed, fabricated, and measured. The measured
results show that the array has good impedance matching in the designed band from 78 to
80 GHz and a stable radiation performance. Meanwhile, the measured SLLs at 79 GHz
are −24 dB and −23 dB in the E-plane and H-plane, which is in good agreement with
the simulated results. With the metrics of low cost, low SLL, stable radiation, and ease
of integration, the proposed low-SLL planar array is promising for 79-GHz automobile
radar applications.

Author Contributions: Conceptualization, Q.T. and K.F.; data curation, Q.T.; formal analysis, Q.T.;
methodology, Q.T.; software, Q.T.; validation, K.F., W.Y. and G.L.; investigation, Q.T.; resources, K.F.
and G.L.; writing—original draft preparation, Q.T.; writing—review and editing, K.F., W.Y. and G.L.;
visualization, Q.T.; supervision, K.F. and G.L.; project administration, K.F.; funding acquisition, K.F.
and G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 61801156, and Grant 62125105.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank W. Sun for their assistance in the measurement.

Conflicts of Interest: The authors declare that they have no conflict of interest in the publication of
this manuscript.

References

1. Ku, B.H.; Schmalenberg, P.; Inac, O.; Gurbuz, O.D.; Lee, J.S.; Shiozaki, K.J.; Rebeiz, G.M. A 77–81-GHz 16-Element Phased-Array
Receiver With ±50◦ Beam Scanning for Advance Automotive Radars. IEEE Trans. Microw. Theory Tech. 2014, 62, 2823–2832.
[CrossRef]

2. Ahmad, W.A.; Kucharski, M.; Ergintav, A.; Ng, H.J.; Kissinger, D.A. Planar Differential Wide Fan-Beam Antenna Array Architec-
ture: Modular high-gain array for 79-GHz multiple-input, multiple-output radar applications. IEEE Antennas Propag. Mag. 2021,
63, 21–23. [CrossRef]

3. Engels, F.; Heidenreich, P.; Zoubir, A.M.; Jondral, F.K.; Wintermantel, M. Advances in Automotive Radar: A framework on
computationally efficient high-resolution frequency estimation. IEEE Signal Process. Mag. 2017, 34, 36–46. [CrossRef]

4. Menzel, M.; Moebius, A. Antenna Concepts for Millimeter-Wave Automotive Radar Sensors. Proc. IEEE 2012, 100, 2372–2379.
[CrossRef]

5. Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar
Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory Tech. 2012, 60, 845–860. [CrossRef]

6. Harter, M.; Hildebrandt, J.; Ziroff, A.; Zwick, T. Self-Calibration of a 3-D-Digital Beamforming Radar System for Automotive
Applications with Installation Behind Automotive Covers. IEEE Trans. Microw. Theory Tech. 2016, 64, 2994–3000. [CrossRef]

7. Pimentel, J.R. Data heterogeneity, characterization, and integration in the context of autonomous vehicles. In Proceedings of the
IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017;
pp. 4571–4576.

220



Remote Sens. 2022, 14, 3597

8. Yin, J.; Wu, Q.; Yu, C.; Wang, H.; Hong, W. Low-Sidelobe-Level Series-Fed Microstrip Antenna Array of Unequal Interelement
Spacing. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1695–1698. [CrossRef]

9. Kang, Y.; Noh, E.; Kim, K. Design of Traveling-Wave Series-Fed Microstrip Array with a Low Sidelobe Level. IEEE Antennas Wirel.
Propag. Lett. 2020, 19, 1395–1399. [CrossRef]

10. Chopra, R.; Kumar, G. Series-Fed Binomial Microstrip Arrays for Extremely Low Sidelobe Level. IEEE Trans. Antennas Propag.
2019, 67, 4275–4279. [CrossRef]

11. Khalili, H.; Mohammadpour-Aghdam, K.; Alamdar, S.; Mohammad-Taheri, M. Low-Cost Series-Fed Microstrip Antenna Arrays
with Extremely Low Sidelobe Levels. IEEE Trans. Antennas Propag. 2018, 66, 4606–4612. [CrossRef]

12. Arnieri, A.; Greco, F.; Boccia, L.; Amendola, G. A Reduced Size Planar Grid Array Antenna for Automotive Radar Sensors. IEEE
Antennas Wirel. Propag. Lett. 2018, 17, 2389–2393. [CrossRef]

13. Alsath, M.G.N.; Lawrance, L.; Kanagasabai, M. Bandwidth-Enhanced Grid Array Antenna for UWB Automotive Radar Sensors.
IEEE Trans. Antennas Propag. 2015, 63, 5215–5219. [CrossRef]

14. Khan, O.; Meyer, J.; Baur, K.; Waldschmidt, C. Hybrid Thin Film Antenna for Automotive Radar at 79 GHz. IEEE Trans. Antennas
Propag. 2017, 65, 5076–5085. [CrossRef]

15. Zhang, L.; Zhang, W.; Zhang, Y.P. Microstrip Grid and Comb Array Antennas. IEEE Trans. Antennas Propag. 2011, 59, 4077–4084.
[CrossRef]

16. Mosalanejad, M.; Ocket, I.; Soens, C.; Vandenbosch, G.A.E. Multilayer Compact Grid Antenna Array for 79 GHz Automotive
Radar Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1677–1681. [CrossRef]

17. Mosalanejad, M.; Ocket, I.; Soens, C.; Vandenbosch, G.A.E. Wideband Compact Comb-Line Antenna Array for 79 GHz Automotive
Radar Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1580–1583. [CrossRef]

18. Yoo, S.; Milyakh, Y.; Kim, H.; Hong, C.; Choo, H. Patch Array Antenna Using a Dual Coupled Feeding Structure for 79 GHz
Automotive Radar Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 676–679. [CrossRef]

19. Yu, C.A.; Jin, H.Y.; Cao, Y.; Su, G.R.; Che, W.Q.; Chin, K.S. 24 GHz Horizontally Polarized Automotive Antenna Arrays With Wide
Fan Beam and High Gain. IEEE Trans. Antennas Propag. 2019, 67, 892–904. [CrossRef]

20. Yang, X.Y.; Liu, X.F. Design of a Wide-Beam Microstrip Array Antenna for Automotive Radar Application. IEEE Access 2021, 9,
142340–142347. [CrossRef]

21. Xu, J.; Hong, W.; Zhang, H.; Wang, G.L.; Yu, Y.R.; Jiang, Z.H. An Array Antenna for Both Long- and Medium-Range 77 GHz
Automotive Radar Applications. IEEE Trans. Antennas Propag. 2017, 65, 7207–7216. [CrossRef]

22. Xu, J.F.; Chen, Z.N.; Qing, X.M. CPW Center-Fed Single-Layer SIW Slot Antenna Array for Automotive Radars. IEEE Trans.
Antennas Propag. 2014, 62, 4528–4536. [CrossRef]

23. Shin, D.H.; Kim, K.B.; Kim, J.G.; Park, S.O. Design of Null-Filling Antenna for Automotive Radar Using the Genetic Algorithm.
IEEE Antennas Wirel. Propag. Lett. 2014, 13, 738–741. [CrossRef]

24. Chen, R.S.; Zhu, L.; Wong, S.W.; Yu, X.Z.; Li, Y.; Zhang, L.; He, Y.J. Low-Sidelobe Cavity-Backed Slot Antenna Array With
Simplified Feeding Structure for Vehicular Communications. IEEE Trans. Veh. Technol. 2021, 70, 3652–3660. [CrossRef]

25. Qin, L.T.; Lu, Y.L.; You, Q.C.; Wang, Y.; Huang, J.F.; Gardner, P. Millimeter-Wave Slotted Waveguide Array With Unequal
Beamwidths and Low Sidelobe Levels for Vehicle Radars and Communications. IEEE Trans. Veh. Technol. 2018, 70, 10574–10582.
[CrossRef]

26. Yu, Y.R.; Hong, W.; Zhang, H.; Xu, J.; Jiang, Z.H. Optimization and Implementation of SIW Slot Array for Both Medium- and
Long-Range 77 GHz Automotive Radar Application. IEEE Trans. Antennas Propag. 2018, 66, 3769–3774. [CrossRef]

27. Tan, Q.Q.; Chen, K.; Fan, K.K.; Luo, G.Q. A Low-sidelobe Series-fed Microstrip Patch Antenna Array for 77 GHz Automotive
Radar Applications. In Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC),
Fuzhou, China, 3–16 December 2020; pp. 1–3.

28. Sievenpiper, D.; Zhang, L.J.; Broas, R.F.J.; Alexopolous, N.G.; Yablonovitch, E. High-impedance electromagnetic surfaces with a
forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [CrossRef]

29. Kildal, P.S. Artificially soft and hard surfaces in electromagnetics. IEEE Trans. Antennas Propag. 1990, 38, 1537–1544. [CrossRef]
30. Valero-Nogueira, A.; Alfonso, E.; Herranz, J.I.; Baquero, M. Planar slot-array antenna fed by an oversized quasi-TEM waveguide.

Microw. Opt. Technol. Lett. 2007, 49, 1875–1877. [CrossRef]
31. Alfonso, E.; Kildal, P.S.; Valero, A.; Herranz, J.H. Study of local quasi-TEM wave in oversize waveguide with one hard wall for

killing higher order global modes. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium,
San Diego, CA, USA, 5–11 July 2008; pp. 1–4.

32. Padilla de la Torre, P.; Fernández, J.M.; Sierra-Castañer, M. Characterization of artificial magnetic conductor strips for parallel
plate planar antennas. Microw. Opt. Technol. Lett. 2008, 50, 498–504. [CrossRef]

33. Kildal, P.S.; Alfonso, E.; Valero-Nogueira, A.; Raji-Iglesias, E. Local metamaterial-based waveguides in gaps between parallel
metal plates. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 84–87. [CrossRef]

34. Alfonso, E.; Kildal, P.S.P.; Valero-Nogueira, A.; Herranz, J.I. Numerical analysis of a metamaterial-based ridge gap waveguide with
a bed of nails as parallel-plate mode killer. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation,
Berlin, Germany, 23–27 March 2009; pp. 23–27.

35. Liu, J.L.; Yang, J.; Zaman, A.U. Analytical Solutions to Characteristic Impedance and Losses of Inverted Microstrip Gap Waveguide
Based on Variational Method. IEEE Trans. Antennas Propag. 2018, 66, 7049–7057. [CrossRef]

221





Citation: Mao, Z.; Liu, S.; Qin, S.;

Haung, Y. Cramér-Rao Bound of Joint

DOA-Range Estimation for Coprime

Frequency Diverse Arrays. Remote

Sens. 2022, 14, 583. https://doi.org/

10.3390/rs14030583

Academic Editors: Zhihuo Xu,

Jianping Wang and Yongwei Zhang

Received: 8 December 2021

Accepted: 25 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Cramér-Rao Bound of Joint DOA-Range Estimation for
Coprime Frequency Diverse Arrays

Zihuan Mao 1,2, Shengheng Liu 1,2,*, Si Qin 3 and Yongming Huang 1,2

1 School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
mzh@seu.edu.cn (Z.M.); huangym@seu.edu.cn (Y.H.)

2 Purple Mountain Laboratories, Nanjing 211111, China
3 Microsoft Research Asia, Beijing 100080, China; si.qin@microsoft.com
* Correspondence: s.liu@seu.edu.cn

Abstract: Frequency diverse array (FDA) produces a beampattern with controllable direction and
range by slightly shifting the carrier frequencies across the elements, which is attractive in many
applications. By further incorporating coprime array structure and coprime frequency offsets, im-
proved degrees-of-freedom and spatial/range resolutions have been achieved. For such a relatively
new array configuration, theoretical performance analyses are essential to explore the potentials and
to facilitate practical implementation. In this work, we consider coprime-FDA-based joint/separate
angle-range estimation of far-field targets that exhibit two different types of Swerling fluctuation
behavior, which are respectively modelled as deterministic and stochastic sources. Analytical ex-
pressions of the Cramér–Rao bounds (CRB) and numerical simulations for both cases are provided.
The results reveal that the relationship between CRB and coprime FDA parameters is not simply
monotonic. As shown in the numerical simulations, the CRB of coprime FDA outperforms that of
uniform FDA-MIMO for more than 60% under commonly-adopted coprime patterns. The presented
results can be used as a guideline for optimal design of coprime FDA.

Keywords: Cramér–Rao bound (CRB); direction of arrival (DOA); parameter estimation; coprime
array; frequency diverse array (FDA)

1. Introduction

The concept of frequency diverse array (FDA) was first proposed by Antonik et al.
in 2006 [1,2]. In the pioneer work, a small and progressive frequency offset upon the
carrier frequency is applied across the radiating elements. The use of element-to-element
frequency offset generates a time-range-angle-dependent beampattern. Such a pattern
is highly attractive for numerous applications including radar target localization [3–5],
synthetic aperture radar (SAR) imaging [6,7], and wireless communications [8], since it
enhances the flexibility of beam scanning and offers the potential to resist interference in a
specific spatial region [9]. Nevertheless, the FDA beampattern generally exhibits periodicity
in angle, range, and time [10,11]. Additionally, a standard FDA, i.e., a uniform linear FDA
employing linearly increasing frequency offsets, yields coupling angle and range responses
in the far-field beampattern. These unfavorable characteristics conspire to a spatiotemporal
periodic S-shaped energy distribution in the angle-range plane, which further leads to
ambiguity in target localization.

Owing to the fact that the FDA beampattern distribution can be controlled by tuning
the frequency offsets, various solutions, such as time-dependent [12], logarithmic [13,14],
and random [15] offsets, have been suggested to achieve a spatial-focusing and also
preferably a time-invariant beampattern. Some sophisticated selection mechanisms have
also been designed, which includes a transmit subarray strategy [16], adaptive selection
scheme [17], and a multi-carrier transmission scheme [18,19], to name but a few. Addition-
ally, by imposing certain evaluation metrics and penalty functions, the problem of frequency
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offset selection can be recast as an optimization problem [19]; different algorithms [20–22]
have been employed to determine the optimal frequency offset.

The FDA angle-range estimation can also be decoupled from an array structure per-
spective. For example, many efforts have been made to incorporate the multiple-input
multiple-output (MIMO) concept into FDA [4,23,24] to form a range-dependent-only beam-
pattern. For MIMO enjoys the merits of increased degrees-of-freedom (DoF) and spatial
diversity gain [25], it has attracted considerable interests. On the other hand, several types
of sparse arrays have emerged to provide an enlarged array aperture and to overcome
the DoF limitation for a given number of physical sensors. Among these sparse arrays,
nested and co-prime configurations are compelling because they are more flexible and
permit systematical design guided by explicit close-form expression [26,27]. But the latter
is usually preferred, primarily due to the reduced mutual coupling [28,29]. FDA-MIMO
radars exploit the DoF in the angle-range domain to jointly estimate the direction and
range parameters of the targets [23]. In order to further achieve an improved DoF and
spatial/range resolutions, a coprime FDA is proposed [30]. On the one hand, by incorpo-
rating the idea of coprime sampling to circumvent the limitation of physical sampling and
using the virtual difference coarray concept, coprime FDA shows prominent advantages
in terms of DOA-range resolution, localization accuracy, and the number of resolvable
targets. Under the space-frequency difference equivalence of a coprime FDA, the unqiue
non-negative lags of coarray produce extensive DoFs compared to the physical array [31].
On the other hand, the robustness of the coprime configuration in spatially filtering the
interference [32] shows huge potential of adaptive beamforming using coprime FDA.

Objective performance analysis and optimal subarray design strategy are of paramount
importance for arrays in practice, and they are often interconnected. In general, the Cramér–
Rao bound (CRB) serves as a statistical benchmark to evaluate the degree of suboptimality
that a certain unbiased parameter estimator exhibits. CRB also provides insights into the
optimization of the array structure (cf., e.g., [20,33–35]). In the field of array signal process-
ing, conventional research with respect to CRB mostly focuses on DOA estimation [36–38].
Motivated by the potentials of coprime FDAs and given the fact that their CRBs with respect
to joint DOA-range estimation and the dependence between joint and separate estimations
remain as yet uninvestigated, the technical contributions of this work are threefold, which
are summarized as follows.

• In an attempt to capture the amplitude fluctuation of a target signal return due to the
temporal variations of radar cross-section (RCS), Swerling models were established.
Swerling 0 model [39,40] is associated with non-fluctuating RCS, and the radar return
of such a target type shows deterministic characteristics. For complex targets that have
many small surfaces and joints with different orientations, a Swerling I target-type
model [41] is used, and the corresponding receive signal is subject to a stochastic
model. In this work, we investigate far-field target detection, and both deterministic
and stochastic signal models are considered.

• CRB identifies the potential performance of a signal model with the variance lower
bound of unbiased estimation. For DOA-range estimation, the prior information of the
radar target makes an impact on the CRB result. In this work, this issue is described as
separate parameter estimation, i.e., CRB of DOA (range) estimation while range (DOA)
is known. The relation between CRB of separate parameter estimation and CRB of
joint estimation is studied via Fisher information with respect to angle and range.

• Analytical form expressions are derived for the input signal-to-noise ratio (SNR)
and CRBs of DOA and range. Accordingly, numerical simulations are presented to
compare CRBs for deterministic and stochastic source cases, and separate parameter
estimation and joint estimation models. According to the analyses of CRB results,
an intuitive method for coprime FDA design is proposed based on CRB minimization.

This paper is organized as follows. In Section 2, the configuration of coprime FDA
and the transmit-receive steering vectors in deterministic case and stochastic cases are
formulated. Based on the steering vectors, the array signal model is given. In Section 3,
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the explicit analytical form CRBs of joint estimation and separate estimation in deterministic
signal cases are derived in terms of Gaussian distribution probability density function (PDF).
When it comes to the stochastic signal case, the CRB is derived on the basis of the matrix
form solution [42] in Section 4. Moreover, Section 5 presents some numerical simulations of
CRBs in deterministic and stochastic source cases for different uniform FDA structures and
coprime FDA structures. The comparisons of CRBs in different scenarios, i.e., two kinds of
statistical characteristics and joint/separate estimation are analyzed. Ultimately, we make
our conclusion in Section 6.

Notations: Lower (upper)-case bold characters are used to denote vectors (matrices).
Vectors are by default in column orientation. (·)T and (·)H respectively represent the
transpose and Hermitian operators of a matrix. tr(·) returns the trace of a matrix. Symbol
� stands for the Hardmard-product. E[·] returns the expected value of a discrete random
variable. ∇ is the Nabla symbol. � returns the real part of a complex value. Operators (·)⊥
represents the ortho-complement of a projector matrix.

2. Signal Model

In this work we consider a coprime FDA that consists of two collocated uniform linear
subarrays. The transmit and receive subarrays respectively have N and M elements, where
N and M are coprime integers. The array configuration of the coprime FDA is illustrated
in Figure 1.

Figure 1. Configuration of the coprime FDA under investigation.

We assume that the unit inter-element spacing d is λ/2, where λ denotes the wave-
length. For a coprime FDA, a frequency increment as a multiple of Δ f is applied across
the array element. As such, the carrier frequency of the nth transmit element can be
expressed as

fn = f0 + (n− 1) ·M · Δ f , n = 1, 2, · · · , N, (1)

where f0 represents the FDA carrier frequency.
In array signal processing, the modelling of signal sources commonly falls into two

categories [43], i.e., the deterministic and stochastic models. The former model category is
adopted to describe the Swerling 0 type radar targets [39,40] and also in wireless communi-
cations [44]. The latter is related to Swerling I type targets and generic interferences [45]
in radar applications as well as acoustic signals [46], where the signals are assumed to
be driven by a Gaussian random process. In the following, we investigate radar detec-
tion performance for Swerling 0 and I targets, where the receive signals are respectively
represented by deterministic and stochastic models.

2.1. Deterministic Signal Model

We first establish a deterministic signal model in this subsection. As stated above, we
assume that a priori knowledge on the scattered waveform from the target is accessible
to the radar operators. Consider a far-field Swerling 0 target at position (θ, r), where
r ∈ [0, c/2Δ f ] denotes the range from the far-field target to the first element and θ ∈
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[−π/2, π/2] denotes the angle between arrival direction and array normal. Then, in the
transmit stage, the phase of the signal radiated from the first element is

ϕ1 =
2π f1

c
r. (2)

Likewise, we can express the phase of the signal transmitted from the second ele-
ment as

ϕ2 =
2π f2

c
(r−Md sin θ) =

2π( f0 + MΔ f )
c

(r−Md sin θ). (3)

The phase difference between the first and the second elements caused by the path
length difference is

Δϕ2 = ϕ2 − ϕ1 =
2π

c
(− f0Md · sin θ + MΔ f · r−M2Δ f d · sin θ). (4)

Similarly, the phase of the signal transmitted from the nth transmit element is

ϕn =
2π fn

c
(r− (n− 1)Md sin θ) =

2π( f0 + M(n− 1)Δ f )
c

(r− (n− 1)Md sin θ). (5)

The phase difference Δϕn between the first and the nth transmit element is

Δϕn = ϕn − ϕ1 =
2π

c

[
− f0(n− 1)Md · sin θ + (n− 1)MΔ f · r−M2(n− 1)2Δ f d · sin θ

]
. (6)

By taking the first transmit element as the reference, the transmit steering vector
at(θ, r) is given by

at(θ, r) = [ at1(θ, r), at2(θ, r), · · · , atN(θ, r) ]T, (7)

where atn(θ, r) = ejΔϕn , n = 1, · · · , N, and j =
√−1.

In the receive stage, the receive steering vector corresponding to the carrier frequency
fn = f0 + (n− 1)MΔ f can be derived as

arn(θ, r) = exp
(

j2π·(n−1)MΔ f ·r
c

)
·[

1, exp
(−j 2π

c ( f0 + (n− 1)MΔ f )Nd sin θ
)
, · · · ,

exp
(−j 2π

c ( f0 + (n− 1)MΔ f )(M− 1)Nd sin θ
) ]T.

(8)

The first term denotes the phase shift caused by carrier frequency fn, and the vector in
the steering vector corresponds to the sparse receive array. To concentrate on the impact
of coprime FDA structure, we consider an ideal case without mutual coupling and other
hardware impairments in this work. Therefore, the overall transmit-receive steering vector
a(θ, r) ∈ CMN×1 which captures the phase difference generated in the transmit-receive
stages can be written as

a(θ, r) =
[

at1(θ, r) · aT
r1, · · · , atN(θ, r) · aT

rN

]T
. (9)

More concretely, the entry in a(θ, r) that corresponds to the nth transmit element and
the mth receive element is

an,m(θ, r) = exp
(
− j

2π

c
(

f0M
(
n− 1

)
d sin θ − 2Δ f M

(
n− 1

)
r + Δ f M2(n− 1

)2d sin θ
))

· exp
(
− j

2π

c
(

f0 + M(n− 1)Δ f
)(

m− 1
)

Nd sin θ

)
. (10)
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Overall, the output of matched filter corresponding to the nth transmit element and
the mth receive element can be expressed as

yn,m(k) = an,m(θ, r)sdet(k) + nn,m(k), k = 1, · · · , K, (11)

where sdet(k), k = 1, · · · , K denotes a signal with non-zero mean and zero variance [45]. Fur-
thermore, nn,m(k) is the additive white Gaussian noise. Stacking yn,m(k) for all n =1, · · · , N
and m = 1, · · · , M yields an MN × 1 vector and we have the deterministic receive sig-
nal vector

ydet(k) = a(θ, r)sdet(k) + n(k), k = 1, · · · , K. (12)

2.2. Stochastic Signal Model

In this subsection we discuss the stochastic signal model that is used in Swerling I type
target detection. Concretely, the statistics are governed by a chi-squared probability density
function with two DoFs, and the echoed signal is modelled as a complex Gaussian process
with zero mean and known variance. Suppose that we have a target at (ψ, l). By following
a similar derivation to (12), we obtain the stochastic receive signal vector below:

ysto(k) = a(ψ, l)ssto(k) + n(k), k = 1, · · · , K, (13)

where ssto(k), k = 1, · · · , K denotes a stochastic signal driven by a complex Gaussian
process N (0, δ2

s ). We so far have established two different signal models for coprime FDA,
which serve as the foundation for the following analyses of CRBs for joint DOA-range
estimation in the following sections.

3. CRB of Deterministic Signal for Coprime FDA

3.1. Deterministic Signal Model and CRB Derivation

The deterministic CRB is the lower bound of the square error for target parameter
estimation, which precisely defines the performance boundary of a specific array system,
and is commonly used as the benchmark for the evaluation of estimation algorithms [43].
In this section, we derive the CRB of deterministic signal model.

Recall that the far-field target is located at (θ, r). The matched filter at output of the
receive antenna array can be expressed as (12). The covariance matrix of the zero-mean
complex Gaussian white noise vector n(k) is

Rn = E

[
n(k)nH(k)

]
= σ2

nIMN , (14)

where σ2
n is the noise power, and IMN denotes the MN ×MN identity matrix.

For simplicity of derivation, the subscript of ydet(k) is omitted and the estimation
parameters (θ, r) are denoted as α. We first consider the single-snapshot case, in which the
observed vector follows a Gaussian distribution, i.e., y ∼ N (my(α), σ2

nIMN), where my(α)
represents the mean value of the observed vector y. As such, the PDF of y is

Py|α(y) =
1

det(πRn)
· exp {−(y−my(α))R

−1
n (y−my(α))

H}, (15)

where det(·) denotes the matrix determinant. Then, the log-likelihood function of y is
expressed as

Ly(α) � ln Py|α(y) = − ln det(πRn)− {(y−my(α))R
−1
n (y−my(α))

H}. (16)
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The CRB gives the lower bound of the variance of unbiased estimation for parameter
set α, which is denoted as â. That is to say, the covariance matrix C(α) � E[(α̂− α)(α̂− α)T]
satisfies the following inequality:

C(α) � CCR(α) � J−1, (17)

where J is the Fisher information matrix (FIM) giving by

J = −E
[
∇α∇α

TLy(α)
]
, (18)

and ∇α =
[

∂
∂θ

∂
∂r

]T
. Furthermore, for deterministic signals,

Ji,j =
∂2

∂αi∂αj
[Ly(α)] = 2 · �

{
∂mH

y (α)

∂αi
· R−1

n · ∂my(α)

∂αj

}
, (19)

where Ji,j represents the element of the ith row and the jth column, αi represents the ith
parameter in α. The detailed proof of (19) can be found in Appendix A. Therefore, the CRBs
for parameter estimation are obtained as follows

CRB(α) =

⎡⎣CRB(θ)

CRB(r)

⎤⎦ = diag(J−1 � I), (20)

where diag(·) returns the diagonal elements of the matrix as a vector.

3.2. CRB of Joint DOA-Range Estimation

As mentioned above, the steering vector of coprime FDA is a function of both range
and angle which leads to the capacity of joint DOA-range estimation. For the situation
where the DOA and the range of the far-field target are both unknown and need to be
estimated jointly, the corresponding FIM is expressed as

J =

⎡⎣Jθθ Jθr

Jrθ Jrr

⎤⎦. (21)

Based on the deterministic signal model established in Section 2.1, we first derive
the analytical expression of Fisher information with respect to θ. Formula (19) is first
rewritten as

J1,1 =
∂2

∂θ2 [Ly(α)] = 2 · ∂mH
y (α)

∂θ
· R−1

n · ∂my(α)

∂θ
= 2 · A2

y

σ2
n
· ∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂θ
, (22)

where A2
y = |my(α)|2 represents the power of the deterministic signal. For each element

an,m(θ, r) in the steering vector a(θ, r), we readily obtain

∂an,m(θ, r)
∂θ

= an,m(θ, r)·(−jη)·
{

f0 ·[M(n−1)+N(m−1)]

+Δ f · [M2(n− 1)2 + MN(m− 1)(n− 1)]
}

,
(23)

where η = 2πd cos θ/c. Substituting (23) into (22) and considering the property Δ f 2 � f 2
0 ,

we have the following approximation
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∂aH(θ, r)
∂θ

· ∂a(θ, r)
∂θ

= η2 f 2
0

M−1

∑
m=0

N−1

∑
n=0

(Mn + Nm)2

+ η2Δ f 2
M−1

∑
m=0

N−1

∑
n=0

(M2n2 + MNmn)2 + 2η2Δ f f0

M−1

∑
m=0

N−1

∑
n=0

(M3n3 + 2M2Nmn2 + MN2m2n)

≈η2 f 2
0

(
M3

N−1

∑
n=0

n2 + N3
M−1

∑
m=0

m2 + 2MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)

+ 2η2Δ f f0

(
M4

N−1

∑
n=0

n3 + 2M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2 + MN2
M−1

∑
m=0

m2
N−1

∑
n=0

n
)

. (24)

Accordingly, the Fisher information with respect to θ for the coprime FDA can be
expressed as (25),

Jθθ = J1,1

= 2 · SNR · 4π2d2cos2θ

c2 ·
{

f 2
0 ·

(
M3

N−1

∑
n=0

n2 + N3
M−1

∑
m=0

m2 + 2MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)

+ 2 · Δ f f0 ·
(

M4
N−1

∑
n=0

n3 + 2M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2 + MN2
M−1

∑
m=0

m2
N−1

∑
n=0

n
)}

= 2 · SNR · 4π2d2 cos2 θ f0

c2 ·
{

f0 ·
(
7M3 − 6M2 + M

)
N3 +

(− 6M3 + 3M2)N2 + M3N
6

+ Δ f ·
(
9M4 − 7M3 + M2)N4 +

(− 14M4 + 9M3 −M2)N3 +
(
5M4 − 2M3)N2

6

}
. (25)

We next consider the Fisher information with respect to r. Similar to the derivation of
(22), we obtain the Fisher information with respect to r as follows:

J2,2 =
∂2

∂r2 [Ly(α)] = 2 · A2
y

σ2
n
· ∂aH(θ, r)

∂r
· ∂a(θ, r)

∂r
. (26)

We also get

∂an,m(θ, r)
∂r

= an,m(θ, r) · j2πΔ f
c

· (n− 1)2M, (27)

and
∂aH(θ, r)

∂r
· ∂a(θ, r)

∂r
=

(
2πΔ f

c

)2
· 4M3 ·

N−1

∑
n=0

n2. (28)

Thus, the Fisher information with respect to r is expressed as

Jrr = J2,2 = 2SNR · 4π2Δ f 2

c2 · 4M3 ·
N−1

∑
n=0

n2

= 2 · SNR · 4π2Δ f 2

c2 ·
(

8M3N3 − 12M3N2 + 4M3N
6

)
. (29)

Thus far, Jθθ and Jrr have been derived. In addition, we know that Jθr = Jrθ and
we have

J1,2 = 2 · �
{

∂mH
y (α)

∂θ
· R−1

n · ∂my(α)

∂r

}
= 2 · A2

y

σ2
n
· �

{
∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂r

}
. (30)
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We further obtain

∂aH(θ, r)
∂θ

· ∂a(θ, r)
∂r

=
8π2d cos θΔ f

c2 ·{
f0
(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)
+ Δ f

(
M4

N−1

∑
n−0

n3 + M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2)}. (31)

Hence, Fisher information with respect to θ and r is computed as (32),

Jθr = J1,2 = 2 · SNR · 8π2d cos θΔ f
c2 ·{

f0

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n

)
+ Δ f

(
M4

N−1

∑
n−0

n3 + M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2

)}

= 2 · SNR · 8π2d cos θΔ f
c2 ·

{
f0 ·

(
7M3 − 3M2)N3 +

(− 9M3 + 3M2)N2 + 2M3N
12

+ Δ f ·
(
5M4 − 2M3)N4 +

(− 9M4 + 3M3)N3 +
(
4M4 −M3)N2

12

}
. (32)

Substituting (25), (29) and (32) into (20) yields the analytical expression of the CRB for
the joint DOA-range estimation, given as

CRBθ =
[
J−1]

1,1 =
1

Jθθ − Jθr Jrθ
Jrr

, (33)

CRBr =
[
J−1]

2,2 =
1

Jrr − Jθr Jrθ
Jθθ

, (34)

where
[ · ]i,j denotes the element of the ith row and the jth column. For the K-snapshot

case, the Fisher information are scaled up by a factor of K on the basis of (25), (29) and (32).
As a result, the CRBs are scaled down by a factor of K on the basis of (33) and (34).

According to above results, we notice that all Fisher information increase with the
coprime FDA parameters, i.e., coprime integers M, N and the carrier increment Δ f . Clearly,
the Fisher information Jθθ of an FDA is generally greater than or equal to that of a phased
array and, in particular, the equality holds when Δ f = 0. Nevertheless, this does not lead
to the conclusion that CRBθ decreases with the increase of Δ f . The reason is that the CRB of
joint DOA-range estimation is also influenced by the fisher information Jθr, which increases
with Δ f . As a result, the mutual dependence of the DOA and the range estimations are
stronger in the joint estimation case. As will be shown in the numerical results of Section 5,
the relationship between CRBθ and Δ f is nonmonotonic.

3.3. CRB of Separate Estimation

If either parameter of α = (θ, r) is known, the problem of joint parameter estimation
degrades to a separate parameter estimation problem. In this subsection, we assume a
certain one of the target parameters is known from a previous detection [47,48]. Based
on the Fisher information with respect to θ and r established in Section 2.2, we derive the
analytical expression of CRB of DOA (range) estimation with coprime FDA parameters
while the range (DOA) is known. The CRBs of separate estimation, which are denoted as
SCRB, are given by

SCRBθ =
1

Jθθ
and SCRBr =

1
Jrr

. (35)

We readily observe from (35) that, SCRBθ decreases with the increase of the coprime
FDA parameters, but the impact of Δ f to SCRBθ is very limited, for coprime FDA is narrow-
band in nature. This result agrees with our common sense that the performance of DOA
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estimation is fundamentally determined by the array aperture. Likewise, SCRBr decreases
with the increase of the coprime FDA parameters.

4. CRB of Stochastic Signal for Coprime FDA

4.1. Stochastic Signal Model and CRB Derivation

In the following, we examine the stochastic signal case and derive the CRB for param-
eter estimation in coprime FDA. For notational convenience, we also simplify ssto(k) and
the estimation parameters (ψ, l) as s(k) and ξ, respectively. The mean and variance of the
observed vectors ysto(k) are respectively assumed to be

my(ξ) = 0, (36)

Ry(ξ) = aσ2
s aH + σ2

nIMN . (37)

The log-likelihood function of y is expressed as

Ly(ξ) � ln Py|ξ(y) = − ln det(πRy)− yR−1
y yH, (38)

where det(·) represents the matrix determinant. Similar to the deterministic signal case,
according to the matrix form solution [42], the FIM of stochastic signal can be written as

J = −E
[
∇ξ∇ξ

TLy(ξ)
]
=

2
σ2

n
�{(σs

2aR−1
y aσs

2) · (∇ξaHP⊥a ∇ξa)}, (39)

where ∇ξ =
[

∂
∂ψ

∂
∂l

]T
and P⊥a = I− a(aHa)-1aH. In order to facilitate the numerical

computing, the former factor in (39) is expressed as

σs
2aHR−1

y aσs
2 = [I− aHaΣ(aHaΣ + I)−1]aHaΣ =

MN · SNR
1 + MN · SNR

· σ2
s , (40)

where Σ = σ2
s /σ2

n = SNR. The readers are referred to the proof given in Appendix B for
more details. The latter factor in (39) can be reformulated as

∇ξaHPa
⊥∇ξa = ∇ξaH[I− a(aHa)

−1
aH]∇ξa = ∇ξaH · ∇ξa− 1

MN
· ∇ξaH · aaH · ∇ξa. (41)

Hence, the FIM of stochastic signal can be derived as

J = 2 · MN · SNR2

1 + MN · SNR
·
(
∇ξaH · ∇ξa− 1

MN
· ∇ξaH · aaH · ∇ξa

)
. (42)

4.2. CRB of Joint DOA-Range Estimation

Similar to the analysis of the deterministic signals, in deriving the analytical form CRB
of joint DOA-range estimation, the corresponding joint FIM is expressed as

J =

⎡⎣Jψψ Jψl

Jlψ Jll

⎤⎦. (43)

According to Formula (42), the Fisher information with respect to ψ is

J1,1 =2 · MN · SNR2

1 + MN · SNR
·
(

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂ψ

− 1
MN

· ∂aH(ψ, l)
∂ψ

· aaH · ∂a(ψ, l)
∂ψ

)
. (44)
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For arbitrary element an,m(ψ, l) in the steering vector a(ψ, l), which corresponds to the
nth transmit element and the mth receive element, we have

∂an,m(ψ, l)
∂ψ

=
∂an,m(θ, r)

∂θ

∣∣
θ=ψ,r=l . (45)

Since Δ f 2 � f 2
0 , we further have

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂ψ

=
∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂θ
|θ=ψ,r=l , (46)

and

∂aH(ψ, l)
∂ψ

· aaH · ∂a(ψ, l)
∂ψ

=

∣∣∣∣∣∣∣∣∂aH(ψ, l)
∂ψ

· a
∣∣∣∣∣∣∣∣2

= ϑ2

{
f0

(
M2

N−1

∑
n=0

n + N2
M−1

∑
m=0

m

)
+Δ f

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n

)}2

, (47)

where ϑ = 2πd cos ψ/c. Substituting (47) into (44), the Fisher information with respect to ψ
is derived as (48),

Jψψ = 2 · MN · SNR2

1 + MN · SNR
· 4π2d2 cos2 ψ f0

c2 ·
{

f0 ·
(

M3
N−1

∑
n=0

n2 + N3
M−1

∑
m=0

M2 + 2MN
M−1

∑
m=0

M
N−1

∑
n=0

N
)

+ 2 · Δ f ·
(

M4
N−1

∑
n=0

n3 + 2M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2 + MN2
M−1

∑
m=0

m2
N−1

∑
n=0

n
)
− f0

MN
·
(

M2
N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)2

− 2 · Δ f
MN

·
(

M2
N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)}

= 2 · MN · SNR2

1 + MN · SNR
· 4π2d2 cos2 ψ f0

c2 ·
{

f0 ·
(
2M3 −M

)
N3 −M3N

12

+ Δ f ·
(
4M4 −M3 −M2)N4 +

(− 3M4 + M2)N3 +
(− 3M4 + M3)N2 + 2M4N

12

}
. (48)

In the same way, the Fisher information with respect to l is

J2,2 = 2 · MN · SNR2

1 + MN · SNR
·
(

∂aH(ψ, l)
∂l

· ∂a(ψ, l)
∂l

− 1
MN

· ∂aH(ψ, l)
∂l

· aaH · ∂a(ψ, l)
∂l

)
. (49)

For arbitrary element an,m(ψ, l), we can get

∂an,m(ψ, l)
∂l

=
∂an,m(θ, r)

∂r
∣∣
θ=ψ,r=l . (50)

Likewise, the first term in between the parentheses in (49) can be reformulated as

∂aH(ψ, l)
∂l

· ∂a(ψ, l)
∂l

=
∂aH(θ, r)

∂r
· ∂a(θ, r)

∂r
|θ=ψ,r=l , (51)

and the latter term can be derived as

∂aH(ψ, l)
∂l

· aaH · ∂a(ψ, l)
∂l

=

∣∣∣∣∣∣∣∣∂aH(ψ, l)
∂l

· a
∣∣∣∣∣∣∣∣2 =

4π2Δ f 2

c2

{
2M2

N−1

∑
n=0

n
}2

. (52)
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Then, the Fisher information with respect to l is expressed as

Jll = 2 · MN · SNR2

1 + MN · SNR
· 4π2Δ f 2

c2 · 4M3 ·
{ N−1

∑
n=0

n2 − 1
N

( N−1

∑
n=0

n
)2}

= 2 · MN · SNR2

1 + MN · SNR
· 4π2Δ f 2

c2 · M3N3 −M3N
3

. (53)

In the scenarios where the DOA and the range of the stochastic signal source are both
unknown and need to be estimated jointly, the Fisher information with respect to ψ and l is
expressed as

Jψl = J1,2 = 2 · MN · SNR2

1 + MN · SNR
·
(

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂l

− 1
MN

· ∂aH(ψ, l)
∂ψ

·aaH · ∂a(ψ, l)
∂l

)
. (54)

The two terms in between the parentheses in (54) are respectively further developed as

∂aH(ψ, l)
∂ψ

· ∂a(ψ, l)
∂l

=
∂aH(θ, r)

∂θ
· ∂a(θ, r)

∂r
|θ=ψ,r=l , (55)

and

∂aH(ψ, l)
∂ψ

· aaH · ∂a(ψ, l)
∂l

=
8π2d cos ψΔ f

c2 ·
{

f0

(
M2

N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)

+ Δ f
(

M3
N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)}

·M2
N−1

∑
n=0

n. (56)

As such, the Fisher information with respect to ψ and l is derived as (57),

Jψl = 2 · MN · SNR2

1 + MN · SNR
· 8π2d cos θΔ f

c2 ·{
f0 ·

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)
+ Δ f ·

(
M4

N−1

∑
n=0

n3 + M2N
M−1

∑
m=0

m
N−1

∑
n=0

n2
)

− 1
MN

[
f0 ·

(
M2

N−1

∑
n=0

n + N2
M−1

∑
m=0

m
)
− Δ f ·

(
M3

N−1

∑
n=0

n2 + MN
M−1

∑
m=0

m
N−1

∑
n=0

n
)]
·
(

M2
N−1

∑
n=0

n
)}

= 2 · MN · SNR2

1 + MN · SNR
· 8π2d cos θΔ f

c2 ·
{

f0 · M3N3 −M3N
12

+ Δ f ·
(
3M4 −M3)N4 − 5M4N3 + M3N2 + 2M4N

24

}
. (57)

Substituting (48), (53) and (57) into (43) yields the analytical expression of the CRB for
the joint DOA-range estimation in stochastic signal case, i.e.,

CRBψ =
[
J−1]

1,1 =
1

Jψψ − Jψl Jlψ
Jll

, (58)

CRBl =
[
J−1]

2,2 =
1

Jll − Jψl Jlψ
Jψψ

. (59)

Note that, the K-snapshot PDF Py1,y2,··· ,yK |α(y) is the product of K single-snapshot
PDFs and the result resembles the aforementioned situation of the deterministic signal.
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4.3. CRB of Separate Estimation

Similar to the deduction in the deterministic signal case, the analytical expression of
CRB of DOA (range) estimation while range (DOA) is known can be expressed as

SCRBψ =
1

Jψψ
and SCRBl =

1
Jll

. (60)

We can see from (58), (59) and (60) that, the dependence of CRBψ (SCRBψ) and the
coprime FDA parameters M, N, and Δ f is quite similar to that in the deterministic signal
case. On the other hand, CRBl (SCRBl) decreases with the increase of the coprime FDA
parameters. The detailed analyses will be provided in Section 5.

5. Numerical Simulations and Analyses

In this section, numerical simulations are presented to exemplify the CRBs in different
scenarios. We assume that the coprime FDA under investigation operates at the X-band
with a carrier frequency of f0 = 10 GHz. Both deterministic and stochastic signal cases
are investigated in the simulations. The location of the deterministic and stochastic signal
sources are set as α = ξ, and the azimuth angle is 30◦ while the range is 2.8 km. To observe
and analyze the CRB of coprime FDA, the following commonly-used coprime designs are
simulated as examples: (a) M = 5, N = 3, Δ f = 15 kHz; (b) M = 7, N = 3, Δ f = 15 kHz;
(c) M = 5, N = 4, Δ f = 15 kHz; (d) M = 5, N = 3, Δ f = 30 kHz; (e) M = 7, N = 3, Δ f =
30 kHz; (f) M = 5, N = 4, Δ f = 30 kHz. Note that the CRB results can be easily extended
to other parameter settings using the closed-form solutions. We also include the CRBs of
uniform FDA-MIMO [49] with the same number of array sensors in the numerical analyses
to demonstrate the benefits of coprime configuration. The markers on the curves are used
to distinguish between the CRBs of coprime and uniform FDAs.

Figure 2 shows the results of deterministic CRBθ and stochastic CRBψ for joint esti-
mation versus SNR. The zoomed-in view in Figure 2a,b indicates that the impact of the
frequency increment values on the CRBs of DOA estimation is trivial. Figure 3 presents the
curves of the deterministic CRBr and stochastic CRBl versus SNR. We can see from Figure 3
that, in both deterministic and stochastic cases, the CRBs of range estimation decrease with
the increase of the coprime FDA parameters M, N, and Δ f . Furthermore, in contrast to
the DOA estimation, the range estimation performance is significantly influenced by the
unit frequency increment Δ f . As for the comparison between the coprime FDA and the
uniform FDA-MIMO, we infer from the numerical results that the CRB of coprime FDA
is more than 60% which is lower than that of uniform FDA-MIMO owing to the coprime
configuration. The CRB performance for the detection of signals with different statistical
characteristics is evaluated in Figure 4. Three groups of array design are simulated for
deterministic and stochastic signal models. The simulation results suggest that the deter-
ministic CRB outperforms the stochastic one, which tallies with the common knowledge in
array signal processing.

In the following, we investigate the variation of angle CRB with the increase of
frequency increment Δ f . A variable ∂CRB is used to quantify the magnitude of the CRB
variation, which is defined as

∂CRB � CRBB −CRB0

CRB0
, (61)

where CRB0 and CRBB denote the CRB of DOA when bandwidth is 0 and B, respectively.
We let B and κ = B/ f0 respectively denote the overall and relative bandwidth of the
coprime FDA. To ensure that the narrow-band assumption of coprime FDA is met, we
assume that κ is confined to ≤0.1. As depicted in Figure 5a, CRBs of DOA estimation in
stochastic signal case decline with the increase of Δ f . The curves in Figure 5a also implies
a non-monotonic dependence of the deterministic CRBθ on the bandwidth. From (32)
we notice that Jθr increases with the increase of Δ f . Hence, the dependence between
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parameters in the joint estimation cases is stronger. As a result, deterministic CRBθ first
decreases and then increases when the bandwidth reaches a certain level. Nevertheless,
in the case of joint estimation of stochastic signals as shown in Figure 5b, this phenomenon
is inconspicuous.

0 2 4 6 8 10 12 14 16 18 20
SNR [dB]

10-2

10-1

100

101

C
R

B
 [

de
g]

 M=5 N=3  f=15 kHz
 M=5 N=4  f=15 kHz
 M=7 N=3  f=15 kHz
 M=5 N=3  f=30 kHz
 M=5 N=4  f=30 kHz
 M=7 N=3  f=30 kHz5 5.00002

1.13954

1.13955

9.99996 10

0.568665

0.56867

0.568675

16.99999 17.00002

0.166499

0.1665

4.99998 5 5.00002

0.379844

0.379846

0.379848

9.99996 10

0.142164

0.142166

16.99997 17
0.0554986

0.0554992

0.0554998

uniform FDA

coprime FDA

(a)

0 2 4 6 8 10 12 14 16 18 20
SNR [dB]

10-2

10-1

100

101

C
R

B
 [

de
g]

 M=5 N=3  f=15 kHz
 M=5 N=4  f=15 kHz
 M=7 N=3  f=15 kHz
 M=5 N=3  f=30 kHz
 M=5 N=4  f=30 kHz
 M=7 N=3  f=30 kHz

4.9999 5.0001
1.54486

1.54496

8.9998 9.0002
0.838

0.8381

16.9999 17

0.229612

0.22962

3.9999 4 4.0001

0.57931

0.57935

7.9999 8.0001

0.23525

0.23526

14.999915.0001
0.096374

0.096384

uniform FDA

coprime FDA

(b)

Figure 2. CRB of DOA in joint DOA-range estimation. (a) Deterministic signal case. (b) Stochastic
signal case.

(a) (b)

Figure 3. CRB of range in joint DOA-range estimation. (a) Deterministic signal case. (b) Stochastic
signal case.

(a) (b)

Figure 4. Comparison between two types of CRB. (a) CRB of DOA estimation in deterministic case
and stochastic case. (b) CRB of range estimation in deterministic case and stochastic case.
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(a) (b)

Figure 5. Influence of Δ f on the DOA estimation performance. (a) ∂CRBθ
and ∂CRBψ

versus κ.
(b) ∂SCRBθ

and ∂SCRBψ
versus κ.

We compare the CRBs of separate and joint estimations under both deterministic
and stochastic signal models, which are respectively given in Figures 6 and 7. In addi-
tion, we examine the root mean square errors (RMSEs) of the classical spatial spectrum
estimation algorithms including the two-dimensional MUltiple SIgnal Classification (2-
D MUSIC) [50] and two-dimensional minimum variance distortionless response (2-D
MVDR) [51], and compare them with the CRBs. We observe from Figure 8 that both the
RMSEs of 2-D MUSIC and 2-D MVDR can approach the CRB gradually as SNR increases.

(a) (b)

Figure 6. CRBs of joint/separate DOA-range estimations in deterministic signal case. (a) CRB of
DOA estimation. (b) CRB of range estimation.

(a) (b)

Figure 7. CRBs of joint/separate DOA-range estimations in stochastic signal case. (a) CRB of DOA
estimation. (b) CRB of range estimation.
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Figure 8. RMSEs of 2-D MUSIC and 2-D MVDR algorithm. The coprime FDA parameters are set as
M = 5, N = 3 and Δ f = 15 kHz. The number of snapshots is set as 100 and the result is obtained
through 500 Monte Carlo trials. (a) RMSE of DOA estimation. (b) RMSE of range estimation.

In addition to the analyses of the numerical results, from the analytical form expres-
sions given in (33)–(35) and (58)–(60), we arrive at the following remarks.

• Deterministic CRBr (SCRBr) and stochastic CRBl (SCRBl) are independent of the
range, meaning that the range of signal source has no influence on the CRB of range
estimation from the premise that the path loss is not considered.

• Since a coprime FDA is narrow-band in nature, the frequency-increment-induced
phase difference with respect to angle is much smaller than the array-spacing-induced
one. As such, deterministic CRBθ and stochastic CRBψ are weakly dependent on the
frequency increment Δ f (see Figure 2). This is, however, not the case for determin-
istic CRBr (SCRBr) and stochastic CRBl (SCRBl). Furthermore, the range estimation
performance improves with the increase of the frequency increment (see Figure 3).

• Connecting to frequency increment Δ f has limited impact on the DOA estimation,
and the dependence is not consistent in deterministic and stochastic CRBs for DOA
estimation (see Figure 5). Connecting this phenomenon to the previous remark,
the impact of Δ f on CRB for DOA estimation defies generalisations.

• For a sufficient number of sensors, deterministic CRBθ , stochastic CRBψ, deterministic
CRBr and stochastic CRBl of coprime FDA are O(1/M3N3).

• The CRB of joint estimation is slightly worse than the SCRB. This implies that the
prior knowledge on the range/DOA of target is conducive to improve measurement
accuracy for deterministic and stochastic signal case (see Figures 6 and 7).

Furthermore, we observe from Figure 2 that the CRBs of both DOA and range estima-
tions decrease with the increase of coprime integers M, N, which leads to the expansion of
array aperture and bandwidth. This result tallies with our common sense. Accordingly,
we can use the largest M, N possible to design a theoretically best-performance coprime
FDA. Nevertheless, in reality, array designs are often subject to resource constraints such
as the total number of antenna elements and/or bandwidth. Therefore, a rational design
with limited resources is important in practice. From the analytical CRB results given in
the above sections, we notice that a larger total number of antenna elements M + N is not
equivalent to superior CRB. The above conclusion is drawn in Figure 3a. More concretely,
the CRB of range estimation for the coprime FDA choosing M = 5, N = 4, Δ f = 15 kHz,
which uses a smaller number of elements, performs better than the coprime FDA choosing
M = 7, N = 3, Δ f = 15 kHz. Based on this conclusion, we propose to use the CRB of
coprime FDA to choose the optimal solution of coprime integers M and N to assist the
array design.
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Consider a practical scenario where the total number of antennas is L and the upper
limit of bandwidth is B̃. By further denoting the coprime integers set as Sc, we formulate
the coprime FDA array design as the following optimization problem:

min
M,N

CRBθ + γ ·CRBr,

s.t. M + N ≤ L, (M− 1)N · Δ f ≤ B̃,

{M, N} ∈ Sc, (62)

where γ represents the trade-off coefficient that controls the compromise between the CRB
of DOA (range) estimation. This problem can be readily solved via exhaustive search.
In doing so, we are able to design a theoretically optimal coprime FDA configuration with
constrained physical resources.

6. Conclusions

In this work, the analytical expressions of the CRBs in deterministic/stochastic signal
cases for joint DOA-range estimation using coprime FDA are derived. Extensive numer-
ical simulations are also provided and analyzed. We are able to arrive at the following
conclusions from the simulation results: (i) The CRB of DOA estimation is weakly related
with the frequency increment; (ii) The difference between the deterministic and stochastic
CRBs is distinct; (iii) The relation between frequency increment and the CRB of DOA for
joint estimation is nonmonotonic in the deterministic signal case; (iv) The CRB of joint
DOA-range estimation is slightly worse than the separate parameter estimation in both the
deterministic and stochastic signal cases; and (v) The CRB of coprime FDA outperforms
that of uniform FDA-MIMO for more than 60% under commonly-adopted coprime patterns.
The difference between the CRBs of joint and separate DOA-range estimation methods
is analyzed and we also propose an intuitive method for coprime FDA design based on
CRB minimization.
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Appendix A

The log-likelihood function Ly(α) can be written as
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− Ji,j =
∂2

∂αi∂αj
[Ly(α)] = tr

(
−R−1

y (α)
∂Ry(α)

∂αj
R−1

y (α)
∂Ry(α)

∂αi
+ R−1

y (α)
∂2Ry(α)

αiαj
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y (α)
(
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∂αj
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∂Ry(α)
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(
y−my(α)

)
+

∂mH
y (α)

∂αi
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y (α)
∂my(α)

∂αj

}
. (A1)

where tr(·) returns the trace of the matrix. We notice that the first three terms in between
the curly brackets are zero, and (60) can be simplified as

Ji,j = −tr
{[
− R−1

y (α)
∂Ry(α)

∂αj
R−1

y (α)
∂Ry(α)

∂αi

+ R−1
y (α)
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αiαj

]
+

[
R−1
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∂Ry(α)

∂αj
R−1

y (α)
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}
. (A2)

In the deterministic signal case, we have ∂Ry(α)
∂αi

=
∂Ry(α)

∂αj
= 0. As a result, (19)

is obtained.

Appendix B

For the stochastic signal case, according to the theorem of Woodbury matrix identity

R−1
y = 1

σ2
n
[I− σ2

s
σ2

n
a( σ2

s
σ2

n
aHa + I)−1aH] and denoting σ2

s /σ2
n (SNR) as Σ, we have

aHR−1
y aσ2

s =aH[I− aΣ(aHaΣ + I)−1aH]aΣ

=aHaΣ− aHaΣ(aaHΣ + I)−1aHaΣ

=[I− aHaΣ(aHaΣ + I)−1]aHaΣ

=[(aHaΣ + I)(aHaΣ + I)−1 − aHaΣ(aHaΣ + I)−1]aHaΣ

=(aHaΣ + I)−1aHaΣ =
MN · SNR

1 + MN · SNR
. (A3)

Thus, Formula (40) is obtained.
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