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Preface

Hazardous artificial contaminants are molecules of inorganic and organic nature

(pharmaceuticals, food sources, heavy metals, dyes, personal care products, detergents, flame

retardants, cosmetics, and pesticides) with potential toxicological effects on human health and the

environment (air, water, and soil) due to their ubiquity at trace levels.

These products could be bio-persistent during conventional treatment processes; accordingly,

the adoption of proper and innovative technologies is necessary for the removal of these hazardous,

persistent chemicals before their release into the environment.

The aim of this reprint, entitled “Innovative Materials and Processes for the Removal of

Biopersistent Pollutants”, was to collect studies devoted to the recent progress and new perspectives

in the treatment and removal of hazardous artificial contaminants in the air, soil, and water supply.

Andrea Petrella, Marco Race, and Danilo Spasiano

Editors
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1. Introduction

The aim of this Special Issue “Innovative Materials and Processes for Removal of
Biopersistent Pollutants” (https://www.mdpi.com/journal/processes/special_issues/bi
opersistent_removal; accessed on 12 January 2023) was to collect researches devoted to
the recent progress and new perspectives in the processes of treatment and removal of
hazardous artificial contaminants in air, soil, and water supply.

For this purpose, the Guest Editors share some comments. Fifteen papers were
submitted, ten of which were published, and the publication times reflected those of
the journal.

A range of different but complementary topics were addressed, from environmen-
tal regulation [1] to the development of applications that can be useful in supporting
decisions [2–4]. Furthermore, many studies analyzed how the modification of some materi-
als can be effective for the reduction in pollutant dispersions [5–9] and the application of
an innovative plant configuration [10].

As evidence of the high interest in the topics covered, to date, all the papers have
been cited in other works, reaching 18 citations [5], 6 citations [6,7], 5 citations [3,10],
4 citations [4], 2 citations [1,8,9], and 1 citation [2].

The Guest Editors want to thank all the authors for the appreciation received for this
Special Issue, and believe that these topics can be a starting point for future research. They
also thank the Editors in Chief for the opportunity to coordinate this SI.

2. Innovative Materials for Removal of Biopersistent Pollutants

In the paper by Lin et al. [8], a mesoporous activated carbon (AC) was prepared
from water caltrop husk at 750 ◦C for 90 min. This material could be used as an excellent
adsorbent for the removal of methylene blue from the liquid phase due to its fast adsorption
rate and maximal adsorption capacity (126.6 mg/g), and the process could be represented
by a pseudo-second-order model.

In the paper by Loffredo et al. [9], a solid by-product named digestate, obtained
through anaerobic digestion, was used as a biosorbent of organic and inorganic pollu-
tants in wastewater treatment and soil remediation. The characterization of this material,
the qualitative and quantitative aspects of the adsorption/desorption of pesticides and
xenoestrogens, and data modeling were examined.

In the paper by Huong at al. [7], Fe-Cu materials were synthesized using the chemical
plating method and tested for the removal of phenol from aqueous solution through
internal microelectrolysis. Various parameters such as pH, time, Fe-Cu material weight,
phenol concentration, and shaking speed were investigated. An evaluation of the optimal
process was carried out in real coking wastewater from a coal factory, and resulted in
treated wastewater with favorable water indicators.

Processes 2023, 11, 336. https://doi.org/10.3390/pr11020336 https://www.mdpi.com/journal/processes1
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In the study by Wang et al. [6], TiO2 nanoparticles were synthesized, characterized,
and combined with aged waste reactors to treat landfill leachate. The optimal process
conditions were determined, such as the effects of the ultraviolet irradiation time, amount
of the catalyst, and pH on the removal efficiency for COD and color in the leachate. The
photocatalytic/biological combined treatment of landfill leachate was shown, together with
excellent recyclability of the catalyst.

Zhang et al. [5] studied how to modify biochar to cover landfills and simultaneously
oxidize methane, in order to reduce emissions into the atmosphere. The biochar was
modified in order to increase its hydrophobicity and excellent results were achieved by
coupling the silane agent KH-570.

3. Processes for Removal of Biopersistent Pollutants

Through legislation, it is possible to incentivize the progress of green industrial tech-
nology. For this reason, Shi et al. [1], took China as a case study and evaluated the effects of
environmental regulation on human activities.

In the paper by Petrella et al. [10], an innovative unit was employed for the study of
the UV/TiO2 photo-catalytic degradation of biopersistent textile azo-dyes. The chemical,
physical, and hydraulic/hydrodynamic parameters of the system influenced the degrada-
tion kinetics. A comparison of the removal efficiencies between dyes such as methyl red
and methylene blue was carried out in consideration of the pH of the solution.

Innovative processes for the removal of heavy metals from aqueous solutions were
also analyzed in consideration of the sanitary risks and environmental hazards of these
toxic compounds [11,12]. In this context, parametric mathematical modelling techniques,
such as response surface methodology (RSM) and artificial neural networks (ANNs), have
been chosen as a tool for the optimization of operating conditions [13]. In the first paper
by Fertu et al. [3], experimental laboratory data on the biosorption of Pb(II), Cd(II), and
Zn(II) from aqueous media using soybean and soybean waste biomasses were exploited
through modeling and optimization. For this purpose, RSM was used as a model, followed
by optimization based on numerical methods. The solutions confirmed the efficiency of the
sorbents in the removal of heavy metals and the results were validated experimentally.

In the second paper by Fertu et al. [4], the results of the previous research based on
heavy metal retention in soybean and soybean waste biomasses were capitalized. The data
were processed by applying a methodology based on ANNs and evolutionary algorithms
(EAs), the latter represented by the differential evolution (DE) algorithm. A simultaneous
training and determination of the topology was performed, and the hSADE-NN hybrid
algorithm was applied to obtain optimal models for the heavy metal retention process.

Finally, a platform to support the drafting of strategic plans aimed at safeguarding
water resources was created by Liang et al. [2]. This tool can be used to prevent water
pollution and manage emergencies.

Acknowledgments: The guest editors would like to thank all the authors and the reviewers. Special
acknowledgments to all the staff of the Processes Editorial Office for their great support during the
preparation of this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.
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Research on the Construction and Application Mode of Digital
Plans for Sudden Water Pollution Events
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Abstract: Water pollution is an important aspect of a national water treatment. Sudden water safety
incidents are random and destructive, often bringing about huge losses of life and property. Due to
the uncertainty of sudden water pollution, it is difficult to respond in a timely and rapid manner.
Emergency personnel must deal with emergencies quickly and effectively to reduce the harm caused
by these emergencies. The randomness and uncertainty of sudden water pollution events make
emergency work more complicated; it is difficult for current emergency plans to play guiding roles
in complex responses. The decision-making and use of traditional water safety procedures largely
depend on the experiences of command personnel, as well as on the emergency plan, which often
has poor applicability. This can result in ineffective implementation of emergency actions and use
of resources stemming from the high subjectivity and low efficiency of emergency plans. In this
paper, we summarize previous research on digital planning and platform component technology
exploration in order to evaluate the use of sudden water safety emergency procedures. We first
analyze the main problems in the construction and use of emergency plans (e.g., the lack of experience
and adaptability). Secondly, based on the decision-making support platform, a digital emergency
plan database for water pollution emergencies was established by using component technology
and knowledge map technology. In doing so, the decision support platform could enable the rapid
construction of digital plans that improve application efficiency in an actual response scenario. Finally,
through the system example, this system model can be quickly matched from the plan database to the
emergency plan that meets the current scenario. It is a recommended model used to provide rapid
and effective assistance for emergency management and improve emergency efficiency.

Keywords: sudden water pollution events; digital emergency plan; emergency response; emergency
plan management; knowledge visualization; decision support system

1. Introduction

Due to natural disasters, manmade accidents, etc., sudden water pollution incidents
frequently occur. These pollutants enter a water body in a short period of time, causing
pollution and endangering the normal social order, economic activities, and aquatic ecosys-
tems. The occurrences of sudden water pollution incidents are beyond the scope of normal
human disposal; they are generally instantaneous occurrences, with complex performances,
destructive consequences, with an urgent need of disposal, and surrounded by uncertainty.
It is precisely because of these characteristics that sudden water pollution events are often
beyond the scope of human disposal; they seriously endanger the normal social order,
economic activities, and water ecological environment [1].

Emergency plans are pre-prepared action arrangements for possible emergencies. The
specific work of each emergency phase can be quickly identified in the disposal process
through the plan. An emergency plan is a principled plan for emergency response, which

Processes 2022, 10, 833. https://doi.org/10.3390/pr10050833 https://www.mdpi.com/journal/processes4
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plays an operational guiding role in emergency response and in the full disposal of events.
Although emergency plan systems have been formed, at present, in response to sudden
water pollution events, their guiding roles have not been effectively utilized. Until now,
even if emergency measures have (basically) been formed, their value in solving sudden
water pollution events has not yet been wielded. For one thing, a lack of concrete precau-
tionary measures, such as experience assistance, plays a pivotal role in successfully solving
a real emergency. There is a lack of (specific) directions on how to respond to sudden
water pollution incidents, and there are no specific expressions of incident classification,
division of responsibility, disposal operations, etc., regarding the occurrence of the incident.
Moreover, the application mode is not flexible enough. Most existing emergency response
plans are documents in written text, which can neither achieve cross-combinations between
available plans nor adapt to changes (regarding time and flexibility) in emergency pro-
cesses [2]. Therefore, based on modern information technology, one important way to
solve current emergencies is to make better use of precautionary measures and to support
emergency solutions.

Scientists in European countries have set up corresponding departments to respond
to sudden water pollution events. Robert Health proposed an emergency framework
for emergencies from a macro perspective, i.e., weakening them from different sources,
locations, scopes, etc., around the root causes of disasters, effectively reducing the negative
impact of sudden disasters [3]. Most scholars focus on micro-technical processing, such as
Deroux, who built a monitoring database for reservoir water quality based on the laws of
space–time evolution of organic compounds in surface water [4]. Shafiee Mohammadmehdi
analyzed the impact of sudden water pollution events on human water use and realized a
real-time simulation by establishing a dynamic transport model of pollutants [5]. Chinese
scholarly research on emergency management regarding sudden water pollution events
mostly focus on emergency early warning and risk decision-making; i.e., Yu Zhaohui
discussed techniques surrounding the early warning of sudden water pollution events [6].
Guo Yuan introduced methods to deal with sudden water pollution in reservoirs [7].

With the development of information technology, information research aimed at
emergencies is increasing. The German Emergency Planning Information System (deNIS)
was set up to support the jobs of victim managers [8]; the deNISII was set up to provide
information services for securing emergencies, to estimate current situations, to confront
problems of a disaster, to analyze securing resorts, etc. Integrated emergency management
(IEM) boasts such functions as estimating the optional risks of an accident, recognizing
the accident, making/evaluating precautionary measures, urgent deployment, etc. [9].
Ohio’s Oil and Gas Field Emergency Response System in America provides leaders and
operational staff facing emergencies with real-time contingent information; analyzing
functions and information could help support the deployment of emergencies in the oil and
gas field and in the formulation of solving an emergency [10]. The e-FEMA strategy from
the Federal Emergency Management Agency (FEMA) includes an information hierarchical
structure for emergencies [11]. Various resources in information systems could be updated,
promoting information sharing among the systems, providing a decision-making process
to handle emergencies with real-time urgent information and technological support.

Timperio G, from the perspective of operating precautionary measures and real-time
information collection for accidents, focused on vague and dispersive information and
uncertain dependent relations among urgent activities, setting up a dynamic and static
information model to handle urgent activities based on certain task frameworks [12]. Marco
Scaioni, considering the necessity to search for appropriate and available data information
in different geographical databases during accidents, exploited an application EPM to
handle and control emergencies based on GIS [13]. Mark Hoogendoorn put forward a
formalized framework based on the urgent analysis and construction of a precautionary
measure, applying formalized temporal trace language (TTL) to build a model and expand
upon previous research projects [14]. Gheorghe Tecuci put forward an emergent application,

5
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Disciple-VPT (virtual planning team), based on the American plan of responding to an
emergency, applied mainly to train and simulate maneuvers of precautionary measures [15].

Be analyzing the research, we found that domestic and overseas institutions have set
up (relatively fulfilling) emergency systems. However, the ability to collect information and
handle emergencies need to be explored [16–19]. Research studies on simulated maneuvers
that are suitable for sudden water pollution incidents are relatively insufficient. As time
progresses, technology continues to expand; however, we still do not have systematic
achievements or complete theories in the current research that could solve sudden water
pollution emergencies. Therefore, in an emergency that cannot be prevented, there is a
need to respond quickly to the emergency; that is, when emergencies occur, managers
should have ways to deal with them. Compared with previous studies, the applicability of
an existing emergency plan system is very poor, because the content of the plan and the
emergency do not correspond, which makes it difficult for managers to perform their work
according to the plan [20–24].

In current digitalized precautionary measures, back-stage database restock and front-
stage user check are mostly used, only achieving inquiries, glances, and modifications of tex-
tual precautionary measures; organic cooperation among the available multi-precautionary
measures cannot be complete without links among the content, law, system, and real case;
there is a lack of adaptability and low informatizing levels.

In order to reduce the influence from sudden disasters, to a large extent, digitalized
precautionary measures should be built, aimed at handling cases in suitable ways, such
as setting a ‘case base’ to provide complete assistance, analyzing current precautionary
measures and case characteristics to build a precautionary mode (to handle water pollution),
realizing the digitalized management and flexible applications by dividing and combining
each opinion about a precautionary measure, and using visible forms to deploy logical
arrangements, according to data, information, the model, and the method organized by
the procedure.

In view of the above problems in the response to sudden water pollution incidents, the
purpose of this paper was to create a system that could quickly push out emergency plans
for sudden water pollution events. In order to achieve the purpose of rapid response and
rapid matching, it must be done with the help of information technology. SOA and Java EE
architecture were used to build a visualization platform; the logical relationship between
businesses is expressed by knowledge map technology, and the business function is realized
by component technology. This information mode can enable managers to quickly form
effective response plans for different kinds of emergencies. Finally, regarding the system,
we provide an example of how to quickly match the plan and apply it. We believe this
approach can draw on many areas of emergency response to help emergency managers.

2. Materials and Methods

2.1. Data Collection

Data from the emergency plan were downloaded from the official websites of city
governments (Bureau of Emergency Management of Tianjin, Available online: http://yjgl.tj.
gov.cn/, accessed on 2 December 2013) and counties directly under the central government
(Ministry of Emergency Management of the People’s Republic of China, Available online:
https://www.mem.gov.cn/, accessed on 1 November 2018). The various levels of water
pollution event profiles are stored in a local database so that they can be invoked later in
component-based development.

2.2. Support Platform

SOA is a software architecture designed with service orientation at its core, enabling
the separation of business and technology, which communicates through interfaces be-
tween different services without involving the underlying programming interface and
communication patterns by building a service architecture that is coarse-grained, loosely
coupled, with location and a transparent transmission protocol. By combining the different
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services of the application with good interfaces and standards, the service components
scattered in the distributed environment are integrated into a new whole process, and
the user is provided with services in the form of components to solve the heterogeneous
problems faced in the distributed application system based on the components. Using SOA
and Java EE architectures, a comprehensive integrated support platform for knowledge
visualization has been developed [25]. Users can build a variety of theme application
services on the platform. The platform is the carrier, and the knowledge map is the tool
to describe the logical relationship. Business process relationships can be expressed by
drawing knowledge maps, and components can be customized to enable business func-
tions. The platform provides a business environment, which provides a strong support
and guarantee for the business environment regarding emergency management of sudden
water pollution events [26].

2.3. The Assembly of Precautionary Measures Base

In the process of solving an emergency, besides precautionary measures being used
in decision assistance, we usually depend on the solving experiences of decision makers
themselves. Therefore, analyzing real cases that took place before is an effective way for a
decision maker to improve his/her experience in solving a similar case. The combination of
precautionary measures and real cases could improve the operating efficiencies in solving
emergencies using these precautionary measures and reduce unreasonable behaviors that
lack overall viewpoints in solving emergencies.

A precautionary measure ‘base’ for an emergency should be built. Files on precau-
tionary measures, laws, regulations, and regulating systems to solve water pollution are
massive, because state-owned and local enterprises all have corresponding precautionary
measures for emergencies. According to different characteristics designed on the bases of
level and district divides, precautionary measures are classified and managed, providing
application with foundation. The classification tables of emergency response plans at
different levels are shown in Table 1.

Table 1. Part of the pre-plan hierarchical management table.

Code Grade
Administrative

Divisions
Type Plan

1 National National emergency plan National emergency plan for water
pollution emergencies

2 Municipal City emergency plan Emergency Plan for
Sudden Water Pollution Incidents in Beijing

3 Municipal City emergency plan Emergency Plan for
Water Pollution Incidents in Tianjin

4 District and
County District emergency plan Emergency Plan for

Sudden Water Pollution Incident in Changping District

5 Company / emergency plan Emergency Plan for
Water Pollution Incidents of Water Supply Company

6 Company / Regulations Guiyang Railway Investment Corporation’s emergency
handling system

A real case base should be built. Normal cases could be handled by following stages.
Firstly, when an accident occurs, an abnormal ‘inspecting’ alarm or public report will be
received. Previous management will be ‘applied’, according to the relative situation. The
professional team will have discussions while the operational staff and supplies are sent
to the emergency spot. The discussed managing project will be sent to the spot. After
the emergency is under control, remedial work will proceed, and the leadership and pro-
fessionals will have to make conclusions and estimations of the process of handling the
emergency. Analyzing previous water disaster cases and simulated maneuver cases, refer-
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ring to the process–managing mode, sequenced according to time, the normal procedure
of a case is usually divided into three stages—preparation before the case, management
during the case, and management after the case. Extracting the key points from each stage,
we can divide the main work of each stage in detail. According to the divided models,
information of a case is written into a standard precautionary model, and the case will be
a precautionary measure, from which we can search details to solve an emergency and
provide experience for a decision, as shown in Figure 1.

Figure 1. The framework of the actual case base.

2.4. Construction Method

Regarding the construction of traditional precautionary cases—there is more of an em-
phasis on showing the content, but not on the connection between precautionary measures
and real cases. In the precautionary measures, there is no targeted or specific case/detailed
solving method. Through contractually dismantling precautionary measures, the working
content of an emergency is extracted and filed in a precautionary database by building
a knowledge graph. In the application, suitable entries are inquired about and extracted
constantly according to real situations, and digital precautional measures are built quickly
to adapt to current emergencies on the basis of describing the procedure of precautionary
measures, as shown in Figure 2.
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Figure 2. Digital plan construction technical frame diagram.

(1) Structural dismantle. Horizontal dismantle means that, based on the chapter
and concrete content of precautionary measures, precautionary measures are dismantled
structurally according to different level. Working contents to handle an emergency, after
being analyzed and extracted stage-by-stage, are packaged and stored separately, as shown
in Figure 3.

Figure 3. Pre-plan structure classification table.
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Vertical dismantle means utilizing special keywords to separate these cases accord-
ing to the causes or handling methods. Moreover, those cases are packaged and stored
according to the causes and handling methods. The specific classification is shown in
Table 2.

Table 2. Keywords of emergency water events.

Classification Basis Factor 1 Factor 2 Factor 3

Cause of Accident

Pollution caused by traffic accidents Oil pollution Petroleum substances
Pollution caused by production accidents Heavy metal pollution zinc, etc.

Pollution caused by natural changes Aquatic Biological Pollution Algae
Pollution caused by wastewater

discharge Chemical pollution Mercury, etc.

Pollution caused by natural disasters Construction waste pollution stone
Pollution caused by manmade damage

Disposal Methods

Engineering measures Emergency Dispatch

Non-engineering measures
Adsorption interception

Catalytic oxidation
Biodegradation

All precautionary measures or cases, matched according to specific keywords inquired
through a fuzzy query function, were filtrated. Moreover, part modules of those precau-
tionary entries or handling methods suitable to the current real situation were extracted, so
that quick construction responding to previous precautionary measures and the project to
adapt change in the duration were achieved.

(2) Construction of precautionary measure modules. With the help of technologies,
such as module technology and Web Service, constructions, such as J2EE and SOA, and
procedures, such as business extraction and classification, module dismantling, exploitation,
registration and publishment, working content, case information, and handling methods
dismantled in precautionary measures, cases are exploited and filed into imputing and
outputting standard modules [27]. Building a business application module base could
support the management and the adaptable application of digital precautionary measures.
The planned component development process is as follows:

Step 1: build a new project on the file menu and name it. Compile new Java code that
a program needs in the “scr” file package in the project file.

Step 2: edit the interface accustomed by a user and the Jelly file corresponding to the
main Java program.

Step 3: according to the edited Jelly file, make sure the “LOVResponse” receptor will be
used in the Jelly file, including the methods of “getLOV()” and “getLOVSchema()”.

Step 4: make sure the “ActionCode()” corresponds to each main program in “ActionRe-
sponse” and complete the registration in the “ActionRegistray()” method.

Step 5: in the “ActionHelper()” method of “ActionResponse”, return to step 2 to make
the Jelly file.

Step 6: compile input “SCHEMA” and return the “ActionInputSchema()” method in
“ActionResponse”.

Step 7: compile the “execute()” method in “ActionResponse”, achieve the case detecting
and searching function and return with the “XML” form.

Step 8: output the result with the “SCHEMA” form.
Step 9: return the module name through the “ActionName()” method in “ActionRe-

sponse”. The flowchart is shown in Figure 4.
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Figure 4. Development process diagram.

After the component is developed, the encapsulation process is as follows.
After the module is exploited, Web Service technology will be needed to package the

module into standard form in accordance with Web Service. Then, the module should be
registered in UDDI and deployed to the server that is needed.

Step 1: set up the exploiting environment. Choose the Tomcat applicating server and
configurate corresponding environment variants. Set up Axis (based on Java language and
published in the web application form.)

Step 2: package module. With help from the exploiting application, package the
module and build a new file with “.aar” as the name suffix.

Step 3: upload the module. Uploading of the module is relatively easy. If the Tomcat
servicer is built in a local computer, open the starup.bat in the Tomcat file and enter
http://localhost:8080/axis2-1.1.1. Then, upload the packaged file after user log in.

Step 4: publish the server. The website address is http://localhost:8080/uddibrowser.
After one enters, logs in, and registers, fill in the entrance URL that a service needs, and
then publish it on the internet. All services could be inquired in uddibrowser. Part of the
code for the development process is shown in Figure 5.

11



Processes 2022, 10, 833

Figure 5. Part of the code for the development process.

2.5. Streamlined Description

The streamlined description combined with graphs can simulate people’s minds,
changing random and illogical information into highly organized graphs and expressing
them. That is what is called a streamlined description. Based on the thinking of service
combination, the assembling technology is applied to package modules and compile
business procedures. Based on the visible platform in a graphical way, the business
procedure is shown to improve the flexibility of business procedure. Moreover, the visible
effect, based on the research and achievement of knowledge graphs, can help us understand
the streamline deduction toward an emergency. The handling procedure of an emergency
could be recorded in the figure.

Regarding the framework and chapter content of such precautionary measures of
water pollution, in combination with the overall framework of the emergency handling
platform made by the nation to solve an emergency, the standard handling procedure of an
emergency should be built, including pre-emergency inspection guarantees, emergency dis-
cussions and cooperation, post-emergency management estimations, and other procedural
modules. The procedure framework is shown in Figure 6.

Regarding precautionary measures, a precautionary measure module that is exploited
should be filled with relative concrete content (of precautionary measures) with the help
from module technology, to achieve the digital precautionary measures, to handling pro-
cedures and business logic, as well as the exhibition of related information, models, and
methods. Based on the precautionary measures, business applications and the deduc-
tion of modularized precautionary measure procedures of each stage, direct visibility of
precautionary measures could be completed.

Data transfer and change between knowledge pictures are usually stored in XML form.
When used, the reflection relation between the information of the conception, link, and
source in a knowledge picture and the XML file should be built in advance; the data flowing
direction and module information should be described and the relationship between the
file information and knowledge picture should be analyzed, so that the user can achieve
flexible customization of system construction, modification, and business applications by
using the working procedure in the application system according to XML, modifying the
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module of the knowledge picture. The business module in a knowledge picture features
visible characteristics, which provides user with various business activity situations and
the data flowing exhibition project, achieving knowledge visibility and showing users
direct decision-making processes and outcome exhibitions. The knowledge picture could
effectively describe overt knowledge in normalized and systemized ways, as well as show
the description of covert knowledge and the procedure of transferring overt knowledge
into covert knowledge.

Figure 6. Modular standard disposal process.

3. Adaptive Application Models

Application is the criterion used for judging the value of a precautionary measure,
and dynamic adaptation and operability are important manifestations of the application
value of digital precautionary measure. Relying on the form of the process knowledge
diagram to show the overall process of disposal, and using node components, the usability
of the precautionary measure is realized; in response, by adding and deleting components
to the corresponding nodes on the framework diagram of the precautionary measure,
the rapid precautionary measure is realized. In the response, the precautionary measure
can be built quickly and adapted to the development of the situation by adding and
deleting components to the corresponding nodes on the precautionary measure framework.
The textual emergency precautionary measure is transformed into a practical emergency
response plan that meets the current situation and guides the response and emergency
management of water pollution incidents. The framework is shown in Figure 7.
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Figure 7. Modular standard disposal process.

3.1. Three Application Modes

(1) The system intelligently pushes; that is, the digital precautionary measure manage-
ment platform can intelligently generate precautionary measures to push to users according
to the current information, to realize the rapid application of the precautionary measure.
According to the current input information, the system matches the extracted keywords
with the phrases in the precautionary measure library and pushes the application after a
small-scale adaptation of the same instances that have occurred before.

The system intelligent push of precautionary measures mainly responds to events
that already have perfect disposal experiences. If an emergency event that has already
occurred recurs, the system pushes out existing emergency response experience. For this
type of emergency, the precautionary measure itself has the highest degree of “adaptabil-
ity” because the precautionary measure library contains the previous application of the
precautionary measure and disposal cases of the event.

(2) Human involvement in pushing. Due to the complexity of emergency response, in
most cases, the precautionary measure cannot directly fit the process of handling the situa-
tion. In order to deal with the poor “adaptability” of this kind of precautionary measure,
human participation is needed to modify the precautionary measure and push it to the
application. First, according to the keywords entered by the front-end, the system precau-
tionary measure library is matched. Then, according to the development and changes of the
situation, the corresponding node components are modified in the matched precautionary
measure modular disposition process to realize the rapid formation of the response plan.
Then, according to the feedback information after the plan is issued and executed, real-time
modification is carried out, and the response plan is provided continuously until the end of
the emergency.

(3) Imperfect intelligence precautionary measure push. There is a situation in the
emergency response; that is, “a new event that has not happened at all, without any similar
and available precautionary measure”. For this type of emergency, since it is impossible to
match the available precautionary measure, the system can push out the modular disposal
process framework of the digital precautionary measure, and according to the specific
situations of real events, use the components in the framework to quickly build and issue
the plan for execution. Since the system pushes out the precautionary measure process
framework, the content of the plan needs to be prepared by the decision maker according
to the actual situation, so this application mode is an imperfect intelligence ‘pushing’
precautionary measure.
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3.2. Precautionary Measure Matching Acquisition

The precautionary measure is obtained using case-based reasoning techniques. Case-
based reasoning (CBR) is a newly emerged method for problem solving and knowledge
inference in artificial intelligence. The basic process: when a new problem arises, the system
searches and retrieves the original instance database according to its relevant features to
find the candidate instance with the most similar features to the new problem, and then
reuses this candidate instance. If the solution of the candidate problem is not satisfactory,
it can be modified to fit the problem to be solved, and finally the modified example is
stored in the example base as a new example to be used as a new reference to solve the
problem when a similar problem is encountered in the future. The reasoning process of
CBR is as follows: (1) it retrieves the relevant examples similar to the new problem from the
example base according to the characteristics of the new problem; (2) it retrieves the relevant
examples from the retrieved, selecting the most similar examples or cases from the retrieved
examples or by combining multiple examples to form a solution to the new problem; (3) it
makes a revised solution to the new problem, verifying the obtained solution; (4) it stores
the solved new problem as a case in the example base for future use. By extracting the
characteristic keywords of the sudden water pollution event, the relevant process-oriented
precautionary measure can be retrieved from the precautionary measure library, and after
similarity selection, the precautionary measure with the highest applicability to the current
sudden event is obtained as the emergency management solution [28]. The flow chart is
shown in Figure 8.

Figure 8. CBR workflow.

3.3. Adaptive Modifications of Precautionary Measure

The precautionary measures acquired through matching are more or less modified
and newly created to achieve interconnection with emergencies due to differences in the
degree of adaptation. Modifying the emergency precaution measure to adapt to the current
emergency management requirements is valuable when implementing emergency solutions.

By adding and changing node components on the knowledge graph of the process-
oriented precautionary measure, adaptive changes of the precautionary measure with the
development of events are realized. Based on matching the precautionary measure, new
components are created or applicable components are searched for, quick responses, accord-
ing to specific events; applications are continuously issued, and then changes continue to
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be made according to the feedback information of implementation, which is continuously
applied, accumulated, and improved.

Each disposal over the event processes precautionary measures stored in the database.
With the continuous responses, the program knowledge map and components are con-
stantly enriched to expand the existing emergency solution database. When a similar
event occurs, the knowledge map of the scenario is acquired, modified, adapted to the real
situation, and stored while being used, so that it is continuously accumulated, adapted,
and developed. The open and growable precautionary measure and scheme involve the
process of knowledge inheritance, accumulation, and expansion, in which the combination
of multiple topics and the growth of the knowledge system, from a simple description
and seminar process, gradually approach the complexity of the problem, realizing the
human–machine combination and scientific decision-making.

The visual description is divided into three steps: first, the subject of the visual
description as well as the information to be described under the subject are made clear;
second, the appropriate description method according to the actual situation on the basis of
the subject and information are chosen; finally, the visual description knowledge diagram
is drawn on the comprehensive integration platform. The visual description process is
shown in Figure 9.

Figure 9. Visual description process.
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Through visual expression, we built a digital pre-planning system of the platform.
The visual part of the main interface is the processing process for emergency management,
and the function is implemented through custom components under each node. The main
system interface is shown in Figure 10.

Figure 10. The main interface of the system.

4. System Application

The digital precautionary measure is based on a water pollution event in the Luanjiang–
Tianjin river. The Luanjiang–Tianjin project is an urban water supply project that brings
the Luan River from Hebei province to Tianjin, across the river basin. With the Panjiakou
Reservoir as the water source, the project alleviated the water supply difficulties in Tianjin,
improved water quality, reduced the intensity of groundwater extraction, and stabilized
the ground subsidence in Tianjin city. The project starts from Panjiakou Reservoir and
Daheiting Reservoir, and enters the Yuqiao Reservoir in Jixian County, Tianjin, through the
main water transmission canal through Qianxi and Zunhua, with a total length of 234 km.
Due to the wide range of the scope involved, the pollution situation is often complex and
changeable, including reservoir aquaculture pollution, mineral sand pollution, domestic
pollution, agricultural pollution, etc.

The water quality of the main water source in the bridge reservoir is the national
surface water class IV; the total nitrogen seriously exceeds the standard. The total nitrogen
value of the bridge reservoir in 2013 was 5.01 to 4.44 mg/L, which was higher than the
national surface water class III; 1.0 mg/L standard. The total nitrogen and iron of the water
entering the reservoir exceed the standard and cannot meet the three standards of surface
water and drinking water requirements. Through the integration of data and historical
experience, the digital plan has established a response mechanism model of timely response
and flexible adaptation, and improved the supervision and emergency response capabil-
ities of water environmental protection management, from the aspects of organizational
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coordination and organizational action. Through the modular organizational platform,
the water management responsibilities among upstream and downstream, different levels,
and different departments, are coordinated, and the “written plan” is further effectively
transformed into a “disposal action”, the emergency disposal task is implemented, and the
quality of emergency management is improved. At the same time, in the event of a major
environmental pollution incident, it can also cause significant harm. The river, emergency
materials, text precautionary measures, other related objects, and water pollution emer-
gency processes involved in the area were analyzed, extracted, and designed, and then a
digital precautionary measure for the area was designed and implemented in accordance
with the digital approach of this paper.

In the emergency response, we extracted keywords based on the front-end event
information, and searched for similar precautionary measures in the precautionary measure
database, such as “water pollution”, “Tianjin”, and other event features and keywords. The
precautionary measures library automatically gives the required structured words. The
query results are shown in Figure 11.

Figure 11. Pre-plan query matching results.

According to the event situation, the word components of the precautionary measure
or the disposal components in the case are quickly added to the modular disposal process;
the required digital precautionary measure is quickly assembled and built by combining to
dynamically adapt to different events. Finally, the precautionary measure is transformed
into an applicable and reliable knowledge graph scheme by combining with emergency
resources. The result of the digital plan generation is shown in Figure 12.

As the situation progresses, the knowledge graph is continuously improved by adding
and deleting components until the emergency situation is over. Finally, the completed
knowledge map is uploaded into the example case library to reserve as experience for the
next emergency.
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(a) (b) 

(c) 

Figure 12. The result of the digital plan generation. (a) Emergency process knowledge drawing.
(b) Add components and modify. (c) Save and generate a new plan.

5. Discussion

The contingency plan for traditional water pollution incidents is based on specific
pollutants and events (Figure 2). This approach is often aimed at specific pollutants
and pollution situations, with clear directionality. Once the event changes, such as the
appearance of mixed pollutants that need to adjust the plan, it is difficult to continue to use
the original plan at this time [29–31]. In response to this phenomenon, it is necessary to
propose a solution based on the existing plan and quickly generate a new action plan.

The construction framework of the case library mentioned in this article is built on
the basis of the incident disposal process. The case database can be applied to the entire
process of event response; that is, clicking on the corresponding nodes of different links
on the system can display the corresponding event information and the current proposed
action plan (Figures 11 and 12).

Rapid response and adaptability are reflected in the concept of an “emergency plan
database”, where the knowledge graph can be edited, corresponding to changes in emer-
gency processes. Similarly, the functions of each node can be changed and customized,
corresponding to the creation of new components through programming. Each time a
knowledge graph is saved, a new course of action is generated and stored in the database
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(Figures 4, 5, 8 and 9). In this way, the more scenarios that accumulate in the database, the
higher the value of the scenarios that can be referred to in the future.

In this article, we sought to establish a digital plan library and propose a model for
the application of plans that are suitable for the whole process of emergency management.
The matching accuracy and rapid response of the system will be studied in future work.

6. Conclusions

Due to the rapid development of the economy, environmental pollution accidents are
not uncommon, particularly sudden water pollution incidents. There are many problems
in the current response process; because there is no systematic solution, blind responses
to these events often miss their opportunities. In view of the complexity of emergency
disposal work and the characteristics of the dynamic development of emergencies, based
on summarizing and integrating conventional handling methods for emergencies, we
conducted a visual emergency response plan for sudden water pollution incidents based
on the emergency management platform, and realized the application value of the scheme
in water pollution emergency response work through simulation of actual cases.

We explored and designed a digital emergency precautionary measure for water
pollution emergencies. First, it analyzes the problems related to the construction and
application of the traditional emergency precaution measure, and offers a process-oriented
construction method for the emergency precaution measure of water pollution emergencies
by splitting the principles of the preparation of the emergency precaution measure and
the event disposal process. Second, in this paper, SOA and Java EE architecture were
used to develop a pre-push system for sudden water pollution events, which could realize
three levels of digital planning push. For events that have occurred before, the system can
quickly push the existing disposal experience; for similar events, the system can use fuzzy
query, or the CBR model can be artificially modified to participate in the plan for events
that have not occurred; the system can push the plan template, the user, according to the
development of the current event, quickly, to form a new plan. This method can support
the rapid construction and dynamic changes of precautionary measures, and improve the
practicality of precautionary measures in practical applications.

In the next step, we will continue to improve the digital precautionary measure system
and further combine with GIS, simulation, the mock-up system, online evaluation, etc., to
realize artificial intelligence methods, such as pollution state reasoning and comprehensive
evaluation of disposal, to make decision support for the whole process of emergency re-
sponse.
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Abstract: Pollution of the environment with heavy metals requires finding solutions to eliminate
them from aqueous flows. The current trends aim at exploiting the advantages of the adsorption
operation, by using some low-cost sorbents from agricultural waste biomass, and with good retention
capacity of some heavy metal ions. In this context, it is important to provide tools that allow the
modeling and optimization of the process, in order to transpose the process to a higher operating
scale of the biosorption process. This paper capitalizes on the results of previous research on the
biosorption of heavy metal ions, namely Pb(II), Cd(II), and Zn(II) on soybean biomass and soybean
waste biomass resulting from biofuels extraction process. The data were processed by applying
a methodology based on Artificial Neural Networks (ANNs) and evolutionary algorithms (EAs)
capable of evolving ANN parameters. EAs are represented in this paper by the Differential Evolution
(DE) algorithm, and a simultaneous training and determination of the topology is performed. The
resulting hybrid algorithm, hSADE-NN was applied to obtain optimal models for the biosorption
process. The expected response of the system addresses biosorption capacity of the biosorbent
(q, mg/g), the biosorption efficiency (E, %), as functions of input parameters: pH, biosorbent dose
(DS, mg/g), the initial concentration of metal in the solution (c0, mg/L), contact time (tc, h), and
temperature (T, ◦C). Models were developed for the two output variables, for each metal ion, finding
a high degree of accuracy. Furthermore, the combinations of input parameters were found which can
lead to an optimal output in terms of biosorption capacity and biosorption efficiency.

Keywords: Artificial Neural Networks; biosorption; Differential Evolution; heavy metals; optimization;
soybean waste

1. Introduction

Pollution of the environment with heavy metals has been and remains a problem,
since they are toxic, non-biodegradable, persistent in the environment, and have the ability
to bioaccumulate in the food chain, disrupting it and posing risks to human health. Their
presence in the environment is the consequence of anthropogenic activities such as mining,
steel, metallurgy, the metal coating industry, pesticide industry, chemical fertilizers, animal
skin processing, etc. [1–4].

The presence of heavy metals in the environment generates a significant pressure on
it, because a large part of these pollutants (e.g., arsenic (As), chromium (CrVI), cadmium
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(Cd), mercury (Hg), lead (Pb), etc.) are very toxic and dangerous for any form of life, even
at low concentrations. Therefore, heavy metals can generate serious impacts and risks
in the environment, and, furthermore, for human health, because they do not degrade
and are able to accumulate in the food chain [5–7]. That is why the elimination of heavy
metals from the environment has long been the concern of many researchers, as well as
environmental managers, who developed technologies for the prevention and control of
heavy metal pollution. The technologies for the elimination of these pollutants are based
on physical, chemical/electrochemical, biological, single or combined processes, such as:
chemical precipitation, flotation, ozonation, (electro)coagulation, ion exchange, membrane
processes, etc. The related literature mentions and demonstrates the advantages, but also
the disadvantages of these technologies, mainly related to the fairly low efficiency of metal
removal, the presence of some waste (sludge), and relatively high operating costs [8–10].

Adsorption is one of the mass transfer operations often agreed upon by operators
interested in the removal of heavy metals from polluted aqueous effluents. It has been found
that adsorption can treat effluents with low concentrations of heavy metals (1–100 mg/L),
it is less expensive, and the adsorbent matrices can be easily regenerated. One of the most
effective adsorbent materials, often used as a reference in all adsorption studies, is activated
carbon, but it has the disadvantage of high production costs, since the carbonization process
involves high energy consumption and working at high temperatures. To overcome this
disadvantage, solutions were sought for the use of other categories of effective adsorbents,
but cheaper than activated carbon, the so-called low-cost sorbents.

Biomass waste from industry and agriculture is proving to be a viable alternative for
removing heavy metals from polluted effluents because they have functional groups on
their porous surface capable of retaining metals by predominantly ionic bonds, but also
hydrogen bonding and the coordination bond in metal ion complexation [11–13]. Some
studies have used agricultural waste (fruit kernels, wood waste, plant waste, shells or
shells from some vegetables or seeds) due to low procurement costs and their abundance,
even if they have a lower biosorption capacity than some synthetic adsorbents [14–16].
These wastes may contain major constituents such as cellulose, hemicellulose and lignin,
which provide the pollutant with adequate functional groups (aldehyde, carbonyl, hy-
droxyl, carboxyl, phenolic, ether) able to retain various metals. As a consequence of the
specific composition and structure, their use as biosorbents is advantageous for that they
can interact with pollutants from various aqueous effluents. Other advantages of these
categories of biosorbents lie in the fact that they have a wide bioavailability and involve
low costs [17–23]. For example, the sorption capacity of biosorbents prepared from seeds
(e.g., Litchi chinensis, Allium cepa, Artocarpus heterophyllus, Syzygium cumini, deoiled karanja
or soy seed cake) has been tested for the elimination of metals such as Ni(II), Cr(VI), Cd(II),
Zn(II), Cu(II), Pb(II) from the environment with good results [12,24–27].

The selection of high-performance biosorbents based on agro-industrial waste and
the choice of the conditions under which an efficient process can be ensured makes it
necessary to establish the interactions among the factors on which the biosorption process
would depend. One of the reliable tools that can be successfully applied for this purpose is
represented by Artificial Neural Networks (ANNs). Some research groups applied ANNs
successfully for modelling, simulation, optimization of biosorption processes applied for
the removal of heavy metals, dyes and other pollutants from aqueous effluents [28–33].

ANNs are a series of semi-parametric models inspired from the mammalian brain in
the manner in which knowledge is acquired (learning) and stored (synaptic weights) [34,35].
The history of ANN concept began in 1943 [36], whereas the first practical network, the
perceptron, was developed almost ten years after. A neural model is represented by a set of
inter-connected neurons, with definite organization and specific connections, which define
the ANN structure [37]. Feedforward multilayer perceptron (MLP) can be considered the
best-known type of ANN. In a MLP, the neurons are fully interconnected and arranged
in layers (at least two: input and output). They are very popular due to their ability to
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model almost any type of problem, the inner layer introducing non-linearity, as an internal
procedure, which lead to the ability to capture non-linear and non-stationary behavior [38].

Since their development, the practical applications in the area of ANNs increased,
this approach being efficiently applied to solve a multitude of problems. The main ad-
vantages of ANNs that make them suitable for difficult to solve problems, where the use
of phenomenological or conventional modes is impractical or cumbersome, consisting of:
the ability of modelling non-normal class distribution, being able to work with continu-
ous forms of data, no requirement for inner knowledge about the problem being solved,
robustness in the presence of noise, and a high degree of accuracy [39,40].

In the chemical and environmental engineering areas, the fact that ANNs do not
require the existence of phenomenological models is an advantage that allowed the con-
struction of good models for complex processes and the chemical and physical laws
governing the system are not fully known. Some examples of successful application of
ANNs in chemical and environmental engineering areas are: modelling of polymerization
process [41–43], food and fermentation technology [44], freeze drying modelling control,
monitoring and optimization [45,46], modelling the electrodeposition state of a polymer-
supported ultrafiltration–ultradeposition process for heavy metal recovery [47], and the
depollution processes of gaseous fluxes [48].

ANNs are applied more and more to experimental data processing, being able to
perform the extrapolation to untested data sets with a special preparation step and to
identify causal relationships after an efficient training process [49,50]. Moreover, the
simplicity of ANNs set-up and use is deceivable because the optimal parameters (topology
and internal parameters) are dependent on the properties of the problem being solved. A
too large network tends to overfit the training data, and thus leading to generalization
problems, whereas a small network has problems in learning the training data [51]. The
search for optimal topology is usually performed by a trial-and-error approach [38], but
this has a series of disadvantages such as high computational time, dependence on the
researcher knowledge, and inability to ensure optimal results.

To elude these difficulties, it is possible to apply evolutionary algorithms (EAs) that are
able to evolve ANN parameters. This is termed neuro-evolution and provides a successful
platform for simultaneous optimization of performance and architecture [52]. The use of
EAs combined with ANNs has the advantage that several of their features can be coded
and co-evolved, provided that more flexible performance criteria are considered compared
with the error function [53]. Three levels of evolution can be used: connection weights
(training), architecture (topology determination), and learning rules.

The EAs applied in this paper are represented by the Differential Evolution (DE)
algorithm [54], and a simultaneous training and determination of the topology is performed.
DE characterizes a population based on stochastic metaheuristics for global optimization on
continuous spaces, its main advantages being efficiency, flexibility and fundamentality [55].
Due to its low number of control parameters, simple structure and easiness of use, it was
successfully applied for solving a multitude of problems, this being one of the main reasons
for choosing it in detriment of other EAs. DE has been applied, for example, in chemical
engineering: to ensure an optimal temperature profile in the naphtha reforming process, so
as to improve the simultaneous elimination of hydrogen and aromatics [56]; appraisal of
GTL technology from maximum gasoline yield viewpoint of Fischer-Tropsch synthesis [57];
optimization of a thermally coupled dual membrane reactor to ensure concurrent dimethyl
ether synthesis and decalin dehydrogenation [58]; optimization of feed-batch fermentation
process [59], etc.

In this framework, we have considered a neural network-based approach to analyze,
model and compare the performance of soybean seed waste biomass as a biosorbent for
the elimination of heavy metal ions from water and wastewater, as well as to optimize
the process in view to generating the scientific basis for scaling-up. The inputs include:
pH, sorbent dose, initial concentration of metal ion in solution, contact time, temperature,
whereas biosorption efficiency of the metal ions by biosorbents, biosorption capacity of
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sorbents, and residual concentration of metal ions in solution at the final of biosorption are
considered as outputs.

The Differential Evolution algorithm, in variant h-SADE-NN, was applied to obtain
optimal models. This DE-based hybrid approach includes the opposition-based principle
for initialization, and local search algorithms, Backpropagation and Random Search, which
have the role of refining the search for the optimal solution. The obtained results prove the
efficiency and utility of this study conducted by simulation.

2. Materials and Methods

2.1. Experimental Context

The experimental protocol is described in detail in a previous paper [60], both in terms
of the preparation of biosorbent represented by SB and SWB, carrying out experiments and
examining the influence of process parameters such as: pH; sorbent dose, DS (g/L); initial
concentration of metal ion in solution, c0 (mg/L); contact time, tc (min); temperature, T (◦C),
on the biosorption capacity, q (mg/g), and biosorption efficiency E (%) a considering three
metal ions: Pb(II), Cd(II), Zn(II), respectively, in batch single ion system. The calculation
method of these quantities is presented by Bulgariu et al. [12].

The experimental studies aimed a comparison between the biosorption capacity and
the biosorption efficiency of the two biosorbents, besides examining the influence of the
mentioned parameters and finding correlations between them.

2.1.1. Biosorbents

The soybeans used to obtain the biosorbent needed for experimental studies were
washed with distilled water (5–6 times) to remove macroscopic impurities, dried in air at
room temperature (22 ± 0.5 ◦C) for 5 days and then ground. The ground soybeans were
then used to obtain the two biosorbents by (i) drying at 65 ◦C for 6 h and then grinding;
(ii) by extraction with n-hexane, for 30 h in a Soxhlet extractor, followed by washing with
distilled water and drying at 65 ◦C for 6 h, and then grinding. The materials obtained from
these preparation steps (soybean and soybean waste biomasses) were then mechanically
sieved so that the particle size was less than 1.5 mm, and stored in the desiccator to maintain
a constant humidity.

The characterization of the two materials obtained (soybean biomass and soybean
waste) was performed using the following methods of analysis: X-ray dispersion spectrom-
etry (EDX) (with EDAX-TSL 32 spectrometer); IR spectrometry (with Fourier transform
Bio-Rad spectrometer); scanning electron microscopy (SEM) (with SIT 3000 N HITACHI
microscope with 15 UV). With the help of these methods of analysis, it was possible to
identify the functional groups on the surface of the two biosorbents (soybean and soybean
waste biomasses) and the existing non-uniformities that represent the binding centers of
the metal ions existing in the aqueous solution. Details on the results of these analyzes are
provided by Fertu et al. [60].

2.1.2. Metal Solutions

Aqueous solutions of the studied metal ions, Pb(II), Cd(II) and Zn(II) considered as
polluting species in this study, of exact known concentration, were used for the experi-
mental studies. These solutions were freshly prepared for each experiment by diluting a
given volume of the corresponding stock solution with distilled water [60]. The aqueous
solutions of the metal ions were analyzed using an appropriate spectrophotometric analysis
method to ensure the selectivity and accuracy of the determinations (Digital Spectropho-
tometer S 104 D, glass cuvettes thickness = 1 cm). The concentration of metal ions in
the analyzed solutions was calculated from the regression equation of the corresponding
calibration curve.
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2.1.3. Experimental Conditions

Biosorption experiments were performed in batch system to determine the effect of
the initial pH of the aqueous solution, biosorbent dose, initial concentration of metal ions,
contacting time, working temperature on the process performance (biosorption capacity,
biosorption efficiency) of the two biosorbents used in this study. Establishing the exper-
imental conditions and parameter variation ranges was carried out experimentally for
each type of metal ion separately, both for biosorption on soybean biomass and soybean
waste, using several sets of experiments that followed the influence of the most impor-
tant experimental parameters. Therefore, there were used various adsorbent dosages
ranging between 4–40 g/L, a pH range between 1 and 6.5, different initial concentration
of metals (11.66–416.45 mg Pb(II)/L; 9.22–230.54 mg Cd(II)/L; 13.08–209.25 mg Zn(II)/L,
respectively), contact time between 0.1–3 h, working temperature of 5; 25; 50 ◦C.

The experimental data obtained were collected and used to model and optimize
the biosorption process of heavy metal ions Pb(II), Cd(II), Zn(II) based on Artificial
Neural Networks.

2.2. Modelling
2.2.1. DE Application

A methodology based on ANNs and DE was applied in order to model and optimize
the considered biosorption process. The ANN represented the model, whereas DE was
the optimizer used to determine the optimal characteristics of the neural network that
lead to an acceptable difference between predictions and the experimental data. DE is a
population-based metaheuristic inspired by the Darwinian principle of evolution.

DE, similar to all algorithms of its kind, starts with a pool of solutions (that in this
work are represented by coded neural networks). The individuals evolve by mutation,
crossover, and selection until a stop criterion is reached. The population’s initialization is
correlated the problem’s upper and lower bounds.

The mutation operator is performed after initialization. Depending on the strategy,
a base vector and one or more sets of difference vectors are selected. Choosing mutation
vectors is usually a random process that ensures that all vectors are statistically threaded
equally [61]. The only constraint in this step is the uniqueness of the used vectors, each
representing a specific generation vector solution. In the initial DE algorithm proposed by
Price et al., the mutation vector is determined by adding to a base vector a single, scaled,
differential term [61].

The next step of the method consists of applying the crossover operator, a trial popula-
tion being obtained by combining the current population with the mutant one. Because the
trial population may contain data from mutation vectors outside the accepted value range,
a control value method is required. Boundary constraints are enforced by resetting schemes
and penalizing methods. If the trial vector does not meet all constraints, a resetting scheme
is used to change the parameters. Penalty methods include techniques such as the Brick
Wall Penalty, Adaptive Penalty, and Random Re-initialization [61].

After recombination, the best individuals from the current and trial populations are
selected for a new generation. The algorithm is repeated until the current generation’s
index equals the number of generations initialized at the start. This is a stop condition,
and, depending on the problem, the evolutionary algorithms can use improvement-based,
movement-based, or distributed-based termination criteria [61,62].

To identify the various combinations of steps, a notation DE/base/num/cross is
used. ‘base’ represents the method of selecting the base vector, ‘num’ is the number
of differential terms, and ‘cross’ is the crossover mechanism [63]. Examples of strate-
gies include DE/rand/1/exp, DE/best/1/exp, DE/rand-to-best/1/exp, DE/best/2/exp,
DE/rand/2/exp [64,65].
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2.2.2. hSADE-NN

Finding the optimal topology and internal parameters of neural networks is still
difficult, especially when there are many parameters, many possible combinations, multiple
training algorithms, or no consistent rules [66]. To overcome these issues, we used a neuro-
evolutionary approach that involves a hybrid auto-adaptive Differential Evolution with
neural networks (hSADE-NN), which is based on simultaneous optimization of topology
and training [46,67–69]. In this new context, optimization requires a large search space and
a large number of parameters, affecting DE performance. Despite its attractive features
and power, the DE algorithm can be inefficient due to slow convergence and low accuracy,
especially in noisy environments or when the solution space is difficult to explore [70]. In
order to reduce or eliminate these disadvantages, DE was combined with other optimization
algorithms [71–73]. This hybridization can be performed at [55]: (i) an individual level;
(ii) at the population level; (iii) an external level; (iv) at the meta-level.

This paper used a hybridized DE with two algorithms: Random Search and Backpropa-
gation (BK). This choice increases the optimizer’s performance and the likelihood of finding
the optimal ANN through individual hybridization. This process, which uses one of the
two algorithms selected on the basis of randomly generated numbers, can only improve the
best solution obtained for each generation. Therefore, the core DE is also modified: (1) by
introducing opposition-based learning (OBL) as a way to improve initialization [74,75];
(2) by a simple self-adaptive principle (the control parameters are included and developed
in the algorithm, applying the same mathematical equation as for the individuals they
contain); and (3) by reorganizing individuals who participate in the mutation phase based
on fitness [45,46,69,73,74]. The simplified schema of the hSADE-NN algorithm is presented
in Figure 1.

To encode the ANN models, the present study uses a direct mapping between geno-
type, i.e., network representation, and phenotype, i.e., current neural network. As this
requires a large number of parameters some limitations were considered: (1) the number
of hidden layers was limited to two, given that a two-layer ANN can model almost any
process with sufficient precision; (2) the maximum number of neurons allowed in the first
and second hidden layers of 40 and 20, respectively, was taken into account.

Network performance was determined using the Fitness function (Equation (1)) which
is based on the mean square error of traning (MSEtraining), where err_correction is a constant
value (equal to 10−10) used to eliminate the unlikely event when MSEtraining is equal to 0.

Fitness =
1

MSEtraining + err_correction
(1)
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Figure 1. Scheme of the hSADE-NN algorithm: Ibest represents the best individual in the population
and Nbest is the neural network corresponding to the Ibest (from [48], with Springer Nature permission,
License 5250080341971 of 15 February 2022).

3. Results and Discussions

3.1. Factors Affecting the Biosorption Process

The experimental results acquired from the study addressing the use of soybean
biomass and soybean waste biomass to eliminate Pb(II), Cd(II) and Zn(II) ions from aque-
ous solutions by biosorption were largely discussed and analyzed in a previous paper [60].
It was found that both SB and SWB contain in their structure large amounts of organogenic
elements (C, O, P, S), but also a series of ions of alkali and alkaline earth metals (K, Mg,
Al) which, due to their high mobility they can easily participate in metal ion exchange
processes. Moreover, both biosorbents have in their structure numerous and varied func-
tional groups (such as hydroxyl, carbonyl, carboxyl, phosphate, etc.), which may have
an important role in the retention processes of the studied metal ions. Additionally, the
morphological non-uniformity of the surfaces of the two materials recommends the use of
soybean biomass and soybean waste as biosorbents in the processes of decontamination of
environmental components.

The biosorption capacity (q, mg/g) of the two materials depends significantly on the
initial pH value of the solution, although the variation is not uniform. The highest values
of the biosorption parameters are obtained at a pH of the initial solution of 3.39 where more
than 50% of Pb(II), 60% of Cd(II) and 45% of Zn(II), respectively, can be removed from
the aqueous solution using these two biosorbents. This behavior is largely determined by
the high buffering capacity of the biosorbents, as the pH values measured in the solutions
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obtained after the completion of the biosorption process are considerably higher than the
initial ones. The significant increase in the pH of the final solution (by 2–3 units of pH)
causes, in turn, a change in the speciation of metal ions in the aqueous solution, which also
influences the efficiency of the biosorption process.

The biosorption efficiency (E, %) of Pb(II), Cd(II) and Zn(II) ions, respectively, in
aqueous solutions on SB and SWB also depends on the amount of biosorbent used. The
values of the dependent variables q and E calculated for each case showed that a minimum
dose of biosorbent of 5 g/L is sufficient for the quantitative retention of the considered
metal ions. Additionally, the close values of the biosorption parameters obtained for SB
and SWB showed that SWB has about the same efficiency of the biosorption processes as
SB, although from an economic point of view their cost is much lower.

The biosorption capacities of SB and SWB increase with the initial concentration of
metal ions in the aqueous solution in the studied concentration range. The experimental
results showed that the biosorption of Pb(II), Cd(II) and Zn(II) ions by biosorption on
SB and SWB, respectively, takes place predominantly through electrostatic interactions.
This makes the retention rates moderate for all the cases studied. Therefore, in order to
efficiently remove them using the two biosorbents, it is necessary either to perform several
successive biosorption steps or to improve the biosorption capacity of the two biosorbents.

As the contact time between phases increases, so does the biosorption capacity for both
biosorbents. The close values of the biosorption efficiency obtained for the three metal ions
for both SB and SWB are another argument in favor of the hypothesis that the biosorption
process is performed by non-selective electrostatic interactions, which makes the speed of
these processes not depend on the nature of the metal ion in the aqueous solution. Thus,
the time required to reach equilibrium was found of 60 min for Pb(II) and Zn(II) ions, and
30 min for Cd(II) ions, respectively, for both biosorbents.

Temperature has a rather small influence on the biosorption capacity, for both biosor-
bents and for all metal ions studied. Increasing the temperature at 45 ◦C causes a rather
small increase in the biosorption capacity of the two biosorbents, which was especially
visible at high values of the initial concentration of metal ions. Although this variation
suggests the endothermic nature of biosorption processes, the retention of Pb(II), Cd(II) and
Zn(II) ions on SB and SWB can be successfully achieved at ambient temperature, and these
conditions are advantageous both from an economic point of view and from the efficiency
of the biosorption process.

From this concise analysis of the biosorption process carried out in an experimental
program aiming at removing Pb(II), Cd(II), Zn(II) ions from aqueous solutions using
soybean biomass and soybean waste biomass as biosorbents and described in detail in
a previous paper [60], it results that both the biosorption capacity (q, mg/g) and the
biosorption efficiency (E, %) are in a complex dependence on a series of process parameters
such as pH; sorbent dose (DS, g/L); initial concentration of metal ion in solution (c0, mg/L);
contact time (tc, h); temperature (T, ◦C). This is why it is very important to examine
this process by means of models that can correlate well the dependent and independent
variables, and can predict the biosorption capacity and efficiency of Pb(II), Cd(II), Zn(II)
ions from aqueous system using SB and SWB, considering the complexity of the process
and the interactions between the variables. In this context, a neural network approach
was adopted.

3.2. Prediction of Biosorption Capacity and Efficiency Using ANN

As discussed above, the modeling procedure consisted of a hybrid approach that
combines an evolutionary algorithm (Differential Evolution—DE) with ANNs. The role of
DE is to simultaneously achieve a topological and structural optimization of ANN, whereas
ANN acts as a model for the process. Once the optimal ANN model is determined, the
same DE-based hybrid approach is applied, which also includes the opposition-based
principle for initialization and, further backpropagation and Random Search algorithms for
local search, to optimize the process. The aim was to identify the parameters—pH, sorbent
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dose, DS (g/L), initial concentration of metal ion in solution, c0 (mg/L), contact time, tc
(h) and temperature, T (◦C)—which would lead to an optimal output signal in terms of
biosorption capacity, q (mg/g) and biosorption efficiency, E (%).

We applied a modified DE version hybridized with two local search algorithms,
Random Search and BK, in order to improve the optimization performance and increase the
probability of determining an optimal ANN. This hybridization is carried out individually,
in a highly selective approach, so that only the best solution found in each generation is
improved, using one of the two algorithms chosen based on randomly generated numbers.
When applying the BK algorithm for local search, it was noticed that sometimes BK is not
able to improve the local network, without clear reasons, although it is applied several
times. However, this problem rarely occurred, which is why we did not change the
algorithm, but added a second algorithm to improve local search through Random Search.
The software used to determine the considered models was implemented in C#, .Net 4.0,
Visual Studio. The implementation is freely and openly available at https://elenadragoi.
ro/CV/Documents/AITB-%20ANN_DE.7z (accessed on 10 February 2022).

3.3. ANN-Based Modeling

Before starting the modeling procedure, all the experimental data collected went
through a set of data processing techniques (normalization, randomization and group
selection). The purpose of this procedure was to make sure that the determined models
generated the smallest possible errors. Standardization is one of the most common tools
used to achieve good results in automatic recognition systems [76]. There are different
types of standardization procedures, each with specific applications. In this paper, the goal
is to constrain the input feature and reschedule it in that range. This procedure is specific
to the min-max normalization type, in which a linear interpolation formula is applied
(Equation (2)):

vnorm = mint + (maxt − mint)
v − minv

maxv − minv
(2)

where vnorm is the normalized value, maxt is the maximum value of the target (in this case 1),
mint is the minimum value of the target (in this case +1), minv is the minimum value of the
entire interval in which v is gathered, and maxt is the maximum value of the entire interval
in which v is gathered.

Another data processing technique applied to our experimental data is data split-
ting. The sampling methodology used can have a significant impact on the quality of
the determined neural models [77]. In this case, the available data is split into training
and testing sets, the training data being used to determine the ANN parameters, and the
testing data are used to evaluate the model performance. For training, 75% of the available
experimental data are taken into account, the rest being used for testing. To ensure that
training and testing are not performed for a specific region, the experimental data is first
arranged randomly. Next, a set of 50 simulations was performed in order to determine the
best model (Table 1).

The approach involving the application of the hSADE-NN algorithm had a series of
fixed settings related to the maximum allowed topology and the maximum number of
iterations for which the models evolve on the DE principle. The purpose of these limitations,
which are established on the basis of experience and guidance in the literature is to ensure a
compromise between performance and resources consumed. Consequently, the maximum
number of generations is 1000, and the maximum allowed topology is 7:20:10:2, where
7 indicates the number of inputs, 20 the number of neurons in the first hidden layer, 10 the
number of neurons in the second hidden layer and 2 number of outputs (q, mg/g; E, %).
Depending on the situation, the topology varies, including the number of inputs and
outputs. Therefore, in this work, various combinations were performed (Table 1), where SB
and SWB indicate the types of biosorbent (soybean biomass, SB or soybean waste biomass,
SWB) and Me refers to metal ion.
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Table 1. Cases considered for the hSADE-NN approach.

Case Biosorbent Input Parameters Output Parameters

C1 SB 6 (Me, DS, pH, c0, tc, T) 2 (q, mg/g and E, %)
C2 1 (q, mg/g)
C3 1 (E, %)

C4 SWB 6 (Me, DS, pH, c0, tc, T) 2 (q, mg/g and E, %)
C5 1 (q, mg/g)
C6 1 (E, %)

C7 SB and SWB 7 (tB, Me, DS, pH, c0, tc, T) 2 (q, mg/g and E, %)
C8 1 (q, mg/g)
C9 1 (E, %)

Table 2 shows the fitness based on the mean square error in the training phase
(MSEtraining), and the topology indicates the general arrangement of the neurons in the
layers of the model. For the best model (7:06:02) resulted in the case that combines all
the groups and parameters into a single ANN, C7, the average absolute relative error
(AARE) computed in the testing case is 46.28% for q; and 15.06% for E. As the AARE for q is
unnceptable high, indicating that the identified ANN was not able to efficiently capture the
dynamic of the system in all the possible variants, then individual models were considered
in various situations in order to identify the best suitable ANN. The correlations obtained
for the best models for all the considered cases are presented in Table 3.

Table 2. Modeling results with the hSADE-NN for all the cases considered.

Case Metric Fitness MSE Training MSE Testing Topology

C1 Best 184.5910 0.0054 0.0054 6:05:02
Worst 66.0597 0.0151 0.0149 6:04:02

Average 125.8947 0.0088 0.0114 -

C2 Best 1525.2047 0.0007 0.0017 6:11:01
Worst 279.7430 0.0036 0.0041 6:16:01

Average 592.4199 0.0024 0.0043 -

C3 Best 244.7126 0.0041 0.0057 6:11:01
Worst 69.2762 0.0144 0.0138 6:11:01

Average 111.5186 0.0104 0.0132 -

C4 Best 263.1930 0.0038 0.0067 6:07:02
Worst 114.3745 0.0087 0.0144 6:11:02

Average 188.8675 0.0056 0.0132 -

C5 Best 1929.4896 0.0005 0.0009 6:11:01
Worst 251.5095 0.0040 0.0074 6:09:01

Average 622.6071 0.0024 0.0026 -

C6 Best 268.7301 0.0037 0.0064 6:06:01
Worst 111.0732 0.0090 0.0295 6:18:01

Average 156.7920 0.0070 0.0227 -

C7 Best 190.1452 0.0053 0.0052 7:06:02
Worst 87.3187 0.0115 0.0129 7:04:02

Average 123.2298 0.0084 0.0092 -

C8 Best 706.0747 0.0014 0.0014 7:06:01
Worst 251.4068 0.0040 0.0030 7:08:01

Average 481.1945 0.0023 0.0023 -

C9 Best 171.8786 0.0058 0.0048 7:05:01
Worst 85.8678 0.0116 0.0157 7:05:01

Average 124.9972 0.0083 0.0098 -
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Table 3. Correlation for the best models obtained in each case.

Case q Training E Training q Testing E Testing

C1 0.9496 0.8955 0.9317 0.8363
C2 0.9902 - 0.9660 -
C3 - 0.9443 - 0.9217
C4 0.9600 0.9170 0.9534 0.7534
C5 0.9927 - 0.9511 -
C6 - 0.9348 - 0.9117
C7 0.9580 0.8695 0.9169 0.8280
C8 0.9784 - 0.9581 -
C9 - 0.8960 - 0.8948

As it can be observed from Table 3, in all cases considering both q and E outputs (C1,
C4 and C7), the correlations are lower compared with the other cases where individual
models were determined for each output. This indicates that, due to the complexity of
the interactions between the parameters, individual models are better suited. A similar
situation was found by Fertu et al. who modelled experimental data applying response
surface methodology [60]. Regarding the concerns for each of the different datasets, the
differences between the predictions for the testing phase are presented in Figure 2 for q and
Figure 3 for E.

The data from Figures 2 and 3 indicate that, whereas in the case of the SB dataset
(for both q and E) the combined models (C8 and respectively C9) are capable of closely
following the process dynamic, the differences for some particular examples for the SWB
dataset are large, indicating that, for the considered process, the best strategy to model
the available system is to use individual datasets and outputs (C2, C3, C5 and C6). The
mathematical relations that represent each model and their implementation in C# can
be downloaded from https://elenadragoi.ro/CV/Documents/Soybean_biosoprtion.cs
(accessed on 10 February 2022).

Figure 2. Comparison between experimental data and predictions for sorption capacity (q, mg/g) for
datasets: (a) soybean biomass; (b) soybean waste biomass.
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Figure 3. Comparison between experimental and predictions for the E (%) for the dataset (a) soybean
biomass; (b) soybean waste.

3.4. Analysis of the Influence of Process Parameters on Biosorption Capacity and
Biosorption Efficiency

After the cases that best fit the available experimental data were identified, a series
of predictions were performed in order to observe the influence of different inputs on the
considered outputs. These predictions were used to generate contour plots for the two
datasets considered (biosorption of metal ions on SB and SWB, respectively). These plots
were determined by varying two parameters at a time and setting the remaining ones to
a fixed value represented by the middle of the experimental interval. Thus, when fixed,
the parameters had the following values: DS (g/L) = 22.5; pH = 3.75; c0 (mg/L) = 117.17;
tc (h) = 12; T (◦C) = 27.5.

For example, Figure 4 indicates the simultaneous influence of DS and pH on biosorp-
tion dependent variables (q, E) on both SB and SWB, whereas Figure 5 shows the simul-
taneous influence of t and c0, respectively, for Pb(II) biosorption. It can be observed that
the highest values for q (mg/g) are obtained at low DS and a pH around 6 for SB and at a
pH between 3.5–6 for SWB. On the other hand, a similar trend is observed for E (%), for
both biosorbents, where the highest efficiency is obtained at higher pH and higher DS.
Concerning the t and c0 influence, Figure 5 shows a distinct behaviour between the SB
and SWB.

Figure 6 indicates the simultaneous influence of contact time (tc, h) and temperature
(T, ◦C) on biosorption dependent variables (q, E) using SB and SWB as biosorbents, whereas
Figure 7 shows the simultaneous influence of temperature (T, ◦C) and pH, respectively, for
Cd(II) biosorption process. As it can be observed, a higher tc does not necessarily ensure
a high biosorption capacity, q. When following the influence of T, it can be observed that
there are different behaviours in relation with tc and pH. For example, analyzing E (%) for
the soybean waste, the results point out that higher efficiency is obtained at lower T and
longer tc, and at higher T and lower pH. This indicates that, in the multi-dimensional space
represented by all the considered parameters, the dependence function is non-linear and
has a multi-modal characteristic.

34



Processes 2022, 10, 603

Figure 4. Contour plots for Pb(II) biosorption on SB (a1,a2) and SWB (b1,b2), at different values
of pH and DS (g/L) when the other parameters are kept constant at the middle of the interval of
variation: (a1) q (mg/g) on SB; (a2) E (%) on SB; (b1) q (mg/g) on SWB; (b2) E (%) on SWB.

35



Processes 2022, 10, 603

Figure 5. Contour plots for Pb(II) biosorption on SB (a1,a2) and SWB (b1,b2), at different values
of contact time (t, h) and initial concentration of metal ion in solution (c0, mg/L) when the other
parameters are kept constant at the middle of the interval of variation: (a1) q (mg/g) on SB; (a2) E (%)
on SB; (b1) q (mg/g) on SWB; (b2) E (%) on SWB.
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Figure 6. Contour plots for Cd(II) biosorption on SB (a1,a2) and SWB (b1,b2), at different values of
temperature (T, ◦C) and pH when the other parameters are kept constant at the middle of the interval
of variation: (a1) q (mg/g) on SB; (a2) E (%) on SB; (b1) q (mg/g) on SWB; (b2) E (%) on SWB.
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Figure 7. Contour plots for Cd(II) biosorption on SB (a1,a2) and SWB (b1,b2), at different values
of temperature (T, ◦C) and contact time (tc, h) when the other parameters are kept constant at the
middle of the interval of variation: (a1) q (mg/g) on SB; (a2) E (%) on SB; (b1) q (mg/g) on SWB;
(b2) E (%) on SWB.

Figure 8 shows the simultaneous influence of contact time, tc and temperature T on
biosorption capacity and biosorption efficiency of Zn(II). Figure 9 displays the influence of
temperature, T and biosorbent dosage, DS on Zn(II) biosorption, whereas in the case of SB,
the highest q values can be obtained for a wide range of temperatures in combination with
contact time, only higher T in combination with lower DS indicate a peak. On the other
hand, lower T values lead to higher efficiency, E (%).
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Figure 8. Contour plots for Zn(II) biosorption on SB (a1,a2) and SWB (b1,b2), at different values
of temperature (T, ◦C) and contact time (tc, h) when the other parameters are kept constant at the
middle of the interval of variation: (a1) q (mg/g) on SB; (a2) E (%) on SB; (b1) q (mg/g) on SWB;
(b2) E (%) on SWB.
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Figure 9. Contour plots for Zn(II) biosorption on SB (a1,a2) and SWB (b1,b2), at different values of
temperature (T, ◦C) and biosorbent dosage (DS, g/L) with the other parameters kept constant at
the middle of the interval of variation: (a1) q (mg/g) on SB; (a2) E (%) on SB; (b1) q (mg/g) on SWB;
(b2) E (%) on SWB.

3.5. Optimization

Once the best neural models for the two dependent variables, q and E, have been
determined, the next step is to identify the combinations of input parameters (metal ion,
biosorbent, pH, initial metal concentration, dosage, contact time, and temperature) which
can lead to an optimal output in terms of process efficiency: maximum of q and maximum
of E. In order to perform this task, a series of 50 simulations were performed for each
variable (q, E) and for each dataset.

From the contour plots it was observed that, overall, the conditions that lead to a
higher E (%) result in average or lower values for q. Thus, optimization becomes the process
of identifying parameters for which the combination (q, E) is highest, without necessarily
containing the maximum for either E or q.
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Table 4 shows some series of optimal solutions resulted. As it can be observed, for all
metals, various combinations of parameters that lead to a high efficiency were identified,
indicating the capability of the selected models to efficiently capture the dynamic of the
systems, without the need to individually model each metal.

Table 4. Results of the optimization with the generated optimal neural networks, for which the
solutions were verified experimentally.

Biosorbent Metal DS (g/L) pH c0 (mg/L) tc (h) T (◦C) q (mg/g) E (%)

SB

Pb(II)

38.55 4.30 263.85 11.49 34.95 19.58 99.60

34.56 3.41 257.74 13.80 33.67 18.83 98.80

33.08 4.24 280.39 8.70 34.00 20.18 98.70

40.90 4.83 304.88 9.02 34.90 19.38 98.00

32.89 4.55 259.75 10.78 34.91 22.57 97.38

Cd(II)

28.54 2.99 165.64 7.73 34.99 17.89 89.28

29.60 2.97 170.27 8.32 34.91 17.75 89.23

34.96 2.92 208.69 6.78 34.96 15.49 89.15

27.42 3.14 170.42 7.19 34.97 18.15 89.07

30.59 2.75 175.85 8.16 33.82 16.96 88.89

Zn(II)

41.97 6.49 199.26 20.66 34.98 9.56 70.74

41.05 6.50 202.70 19.31 34.70 9.69 70.42

41.76 6.49 169.76 15.89 34.80 9.59 70.33

39.39 6.48 192.77 18.43 33.75 9.88 69.40

40.31 6.39 152.34 17.68 34.17 9.73 69.26

SWB

Pb(II)

34.22 1.11 34.83 2.82 24.12 8.41 99.91

31.12 2.81 12.47 8.26 19.96 6.09 99.67

40.60 1.23 201.41 23.71 28.21 5.10 99.61

41.63 3.07 140.88 2.38 34.88 10.20 96.36

40.50 3.24 145.40 3.32 34.36 11.13 95.18

Cd(II)

41.67 1.04 12.80 13.38 16.86 11.21 89.75

41.50 1.02 15.02 13.68 15.09 11.23 89.62

41.94 1.00 10.02 10.05 16.83 12.35 89.54

41.66 1.02 9.24 9.03 27.42 11.84 89.28

41.97 1.05 17.33 8.37 24.36 11.53 88.93

Zn(II)

41.90 1.00 10.86 14.76 15.35 12.51 71.39

41.72 1.00 9.59 8.44 17.74 13.46 70.40

41.55 1.11 12.77 10.12 16.73 12.47 70.35

41.86 1.09 16.22 6.58 19.81 12.98 69.73

42.00 1.00 9.04 0.11 34.96 16.31 69.69

An analysis of the data in Table 4 shows that there are differences between the
biosorption capacity and the biosorption efficiency of the three metals, regardless of
the combination of process parameters. The two biosorbents, SB and SWB have dif-
ferent preferences for the three metal ions, since the highest values of E are obtained
for Pb(II), followed by Cd(II) and, finally, for Zn(II). This situation was explained by
Fertu et al. [60], being placed, first of all, on electronegativity differences of the three
ions. Pb(II) with the electronegativity of 1.87, can take part easily in ion exchange than
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Cd(II) (1.69) and Zn(II) (1.65). In the same context, an important role in preferential
biosorption is played by the hydrated radii of these metal ions, which have different sizes
(Pb(II) = 4.01 Å < Cd(II) = 4.26 Å < Zn(II) = 4.30 Å), as well as in hydration energies which
are different for the there metallic ions ((Pb(II) = −1481 kJ/mol, Cd (II) = −1807 kJ/mol,
Zn(II) = −2046 kJ/mol)) [60,78–80].

The two biosorbents offer similar results in terms of biosorption efficiency, the E
(%) values being over 95% for Pb(II), over 88% for Cd(II) and over 65% for Zn(II). It
turns out that both SB and SWB can remove Pb(II) from aqueous solutions in a single
biosorption cycle, under the optimal experimental conditions in Table 4, whereas for Cd(II),
but especially for Zn(II), depending on the requirements for effluent quality, two cycles of
biosorption may be required, with biosorbent regeneration.

These results show that modeling and optimization of Pb(II), Cd(II), Zn(II) biosorption
using soybean-based low-cost biosorbents by applying Artificial Neural Networks (ANNs)
and Evolutionary Algorithms (EAs) capable of evolving ANN parameters, it is possible to
predict biosorption capacity and biosorption efficiency with high accuracy to ensure the
quality of effluents resulting from wastewater treatment, according to specific required
regulations. Implementation on an industrial scale can improve cost dynamics and facilitate
process monitoring and control.

4. Conclusions

In this paper, we have applied modeling and optimization algorithms specific to
Artificial Neural Networks to find the interactions among the parameters which affect
the biosorption capacity, q (mg/g) and biosorption efficiency, E (%) of heavy metal ions
Pb(II), Cd(II), Zn(II), during their elimination from aqueous solutions by biosorption,
using soybean biomass and soybean waste biomass as biosorbents. In this context, evo-
lutionary algorithms (EA) were selected at three levels of evolution: training weights,
determining the topology (network architecture) and learning, applying the technique
represented by Differential Evolution (DE), when simultaneously training and determining
the network topology.

To solve the proposed modeling and optimization problem, the modifications made
for DE resulted in a new hybrid self-adaptive Differential Evolution with neural network
(hSADE-NN) algorithm, by combining a modified DE version with two algorithms such
as Random Search and BK. The resulting hybrid algorithm, hSADE-NN, was applied to
model the biosorption process, limiting the number of hidden layers to two, by 40 and
20 neurons, respectively.

The experimental data collected for the three metal ions and randomly arranged went
through a set of data processing techniques (normalization, randomization and group
selection) to generate a model with the smallest possible error. Various configurations for
the process modelling were considered. The results showed that the best configurations
focus on different models for biosorption capacity (q), biosorption efficiency (E) and for
the two datasets (soybean biomass and soybean waste biomass), cases C2, C3, C5, C6.
Biosorption capacity and biosorption efficiency (q, E) were determined as function of metal
ion type, pH, biosorbent dose (DS), initial concentration of metal in solution (c0), contact
time (tc) and temperature (T). For the best models, the correlations in the testing phase
are higher than 0.91, indicating that a single model combining all metal ions is suitable to
capture the entire process dynamic. This capability was also indicated through the analysis
of the surface plots generated using a series of predictions.

In order to optimize and scale up the biosorption process using soy-based biosorbents,
the ANNs models were used to determine the conditions that lead to a maximum q, E,
taking into account the specificity of each metal ion. The resulting optimization data
showed that the soybean waste biomass is an effective biosorbent for heavy metal ions,
enduring a very good removal efficiency, so it can be unreservedly recommended as a
biosorbent, in an efficient, low-cost and sustainable way to capitalize on this waste.
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Abstract: This paper exploits, through modeling and optimization, the experimental laboratory data
on the biosorption of heavy metal ions Pb(II), Cd(II), and Zn(II) from aqueous media using soybean
and soybean waste biomasses. The biosorption modeling was performed using the Response Surface
Methodology, followed by optimization based on numerical methods. The aim of the modeling
was to establish the most probable mathematical relationship between the dependent variables (the
biosorption efficiency of the biosorbents when adsorbing metal ions, R(%), and the biosorption
capacity of sorbents, q(mg/g)) and the process parameters (pH; sorbent dose, DS (g/L); initial metal
ion concentration in solution, c0 (mg/L); contact time, tc (min); temperature, T (◦C)), validated
by methodologies specific to the multiple regression analysis. Afterward, sets of solutions were
obtained through optimization that correlate various values of the process parameters to maximize
the objective function. These solutions also confirmed the performance of soybean waste biomass
in the removal of heavy metal ions from polluted aqueous effluents. The results were validated
experimentally.

Keywords: ANOVA; heavy metals; second-degree function; soybean biomass; waste

1. Introduction

Environmental quality has deteriorated, mainly as a consequence of the diversification
of anthropogenic activities, population growth, unplanned urbanization, rapid industrial-
ization, and the irrational exploitation of resources. That is why, in recent decades, efforts
to improve some innovative and ground-breaking processes have been intensified so as to
make it possible to eliminate the pollutants from the environment with increased efficien-
cies. These processes should be capable of removing pollutants from the environment and,
at the same time, protect human health by combining the two major challenges, resource
consumption and pollution, by harnessing natural resources and, in particular, waste,
and by using waste to improve the quality of the environment by decontaminating its
components [1–3].

In parallel with environmental pollution, our current patterns of resource use, produc-
tion, consumption, and prevention of waste generation and pollution are unsustainable.
The Earth has finite resources, and the extensive use of these resources increases the pressure
on the natural environment, resulting in global warming, pollution, and the degradation
of ecosystems and biodiversity. Natural resources are fundamental to any economy and
for ensuring human prosperity. They provide raw materials, energy, food, water, and
soil, as well as environmental and social services. Therefore, humanity is faced with two
challenges: ensuring the sustainable consumption of natural resources and preventing the
pollution of the environment [4–6].
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The increased awareness of the link between generating environmental impacts (with
short-, medium-, and long-term consequences) and current environmental strategies has
led the scientific community to focus on developing sound, economically viable, and
environmentally friendly processes. This requires stepping up efforts to integrate pollution
prevention and control and the application of the principles of the circular economy. One
of the appropriate ways to achieve these requirements for ensuring sustainability involves
the use of waste in the depollution of some environmental components [7–9].

The harmful effects of organic and inorganic pollutants on ecosystems and on hu-
man health are well known, which is why sustained efforts are being made to develop
treating methods to prevent or limit pollution. Heavy metal pollution is one of the most
important environmental problems today [10–13]. Various fields of activity, such as mining
and steel, the metallurgical industry, the metal surface finishing industry, energy and fuel
production, the fertilizer and pesticide industry, galvanizing, electrolysis, electro-osmosis,
leather processing, the photographic industry, the electrical equipment industry and elec-
tronics, metal surface treatment, aerospace industry, etc., produce and discharge into the
environment various industrial wastes and effluents containing heavy metals. Thus, metals,
although usually regarded as resources, also become important pollutants of the environ-
ment, endangering the health of humans and the ecosystem [14,15]. The intensification
of the use of metals and their various chemical compounds in industrial processes has
the consequence of generating large amounts of effluents containing high levels of toxic
metals. The presence of heavy metals in these effluents can induce major environmental
impacts and risks, mainly due to the toxicity of most heavy metals and their persistence in
the environment [16,17]. Environmental and management specialists and decision makers
are faced with a constant challenge associated with the research and development of ad-
vanced but inexpensive technologies for the removal of heavy metals from industrial and
municipal effluents.

The range of conventional methods for removing heavy metals from aqueous solu-
tions may include techniques such as [18–23]: chemical precipitation, oxidation or chemical
reduction, ion exchange, filtering, membrane techniques, etc. The literature considers that
processes based on these techniques are usually expensive and inefficient, especially for
solutions containing ions with concentrations between 1 and 100 mg/L [24–26]. Another
major disadvantage of conventional techniques for removing metals from industrial efflu-
ents is associated with the production of toxic chemical sludge, the treatment and storage
of which involves a number of additional costs and major environmental impacts.

Adsorption is considered to be a feasible alternative for drinking and industrial water
treatment and wastewater treatment because it is usually a suitable operation that is
easy to apply, and the design of adsorption systems is relatively simple, although the
costs are relatively high [27–30]. The properties of adsorbates and adsorbents (solids)
are relatively specific and depend on the components in their structure. The interaction
between the solid surface and the adsorbed molecules can be of physical (physisorption)
or chemical (chemisorption) in nature. Activated carbon is currently considered to be the
most commonly used and most effective adsorbent for the removal of various pollutants
from water, such as dyes and heavy metals, although there are some issues related to the
regenerative capacity of the adsorbent or its elimination at the end of its life, based on
different disposal strategies other than storage [31–33]. In addition to activated carbon,
a wide variety of approved adsorbents to date have been examined for both low-cost
(low-cost sorbents) and their ability to remove various types of pollutants from liquid
effluents. The general trend is to replace activated carbon—which is the so-called state of
the art—with natural materials or waste/by-products from various fields of activity, such as
agriculture and industry. Based on literature studies, low-cost sorbents from natural sources
have been classified into the following groups [34–37]: (i) agricultural and household waste,
(ii) waste and by-products, (iii) sludges, (iv) marine materials, (v) soils and ore tailings, and
(vi) new low-cost adsorbents.
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Biosorption is a particular alternative in the group of sorption processes that is based
on the ability of certain categories of biomass (active–viable, or non-viable) to bind/retain
and concentrate heavy metals or organic pollutants, even from dilute solutions. Biomass
capitalizes on this property, acting as a chemical or as an ion exchanger of biological
(vegetable) origin. This technique does not necessarily have to replace existing treatment
processes, but it can be a complementary alternative. Some studies have shown that using
biosorption as a technique to remove pollutants from contaminated environments (aqueous
effluents) can reduce capital costs by about 20%, operating costs by 36%, and total costs
by about 28% compared to conventional systems [38,39]. The first work in the field of
biosorption was published in 1951 [40]. Since then, substantial efforts have been made to
discover cost-effective materials that can be applied as biosorbents to treat wastewater and
other aqueous solutions contaminated with pollutants.

Many researchers have found that by using this new method, in which different
categories of biomass can be used as biosorbents, toxic pollutants can be selectively re-
moved from aqueous solutions at desired residual concentration levels [18,39,41–44]. As a
broader spectrum of properties suitable for biosorbent requirements has been discovered
for biomass, the concept of biosorption has become increasingly attractive in various fields.
Bulgariu et al. have reported on the use of soybean waste biomass resulting from oil
extraction and modified during alkaline treatment as a biosorbent for the removal of Pb(II),
Cd(II), and Zn(II) ions from aqueous media, with very promising results [45].

The biosorption studies in the literature analyze, for the most part, the elimination
efficiency of some heavy metals, such as cadmium (Cd), chromium (Cr), mercury (Hg),
nickel (Ni), lead (Pb), and zinc (Zn), since they may pose significant risks to public health
and the environment. Of these metals, we have selected three, lead, cadmium, and zinc, for
biosorption studies, both due to their toxicity and to highlight differences in the biosorption
capacity of soybean biomass and soybean waste biomass, and particularly due to their
different electronegativity. Thus, Pb(II), which has the highest electronegativity (1.87), can
participate more easily in ion exchange interactions than Cd(II) (1.69) and Zn(II) (1.65).
Moreover, the hydrated radii of these metal ions have different sizes (Pb(II) = 4.01 Å < Cd(II)
= 4.26 Å < Zn(II) = 4.30 Å), while their hydration energies also have different values (Pb(II) =
−1481 kJ/mol, Cd(II) = −1807 kJ/mol, Zn(II) = −2046 kJ/mol), and these lead to differences
in the sorption abilities of these metal ions [46–48]. This context offers the opportunity for a
comparative study of biosorbents’ retention capacities and efficiencies, and their preferences
for these metals. Additionally, these differences make possible a worthy comparison of the
biosorption capacity and the biosorption efficiency of some biosorbents.

Although several publications have studied biosorption for the removal of heavy met-
als in batch systems, fewer studies have focused on modeling and optimizing this process
for scaling-up purposes [49–52]. The biosorption capacity of copper by dried Chlorella
pyrenoidosa was modelled by Rezende Moreira et al. using Response Surface Methodology
(RSM) built based on a Box–Behnken design and artificial neural networks (ANN) [53]. A
parallel sigmoidal (PS) model was applied by Blagojev et al. to describe the biosorption
process and confirm its applicability to different types of biomass and various types of
heavy metal ion [54]. Selva Filho et al. developed a two-parameter model based on a central
composite rotatable design to find the optimal oil–water separation efficiency, involving
floating macrophytes of the species Eichhornia crassipes in constructed wetlands [55]. The
Box–Behnken experimental design model was applied by Jaafari and Yaghmaeian to plan
biosorption experiments with heavy metals adsorbing onto the freshwater algae Chlorella
coloniales to determine the effects of independent parameters, such as metal concentration,
time of reaction, and algae dose, as well as to optimize these variable [56].

In this paper, the empirical mathematical modeling of the biosorption process of Pb(II),
Cd(II), and Zn(II) ions from aqueous media on soybean and soybean waste biomasses
was performed using Response Surface Methodology, followed the optimization using
numerical methods. The aim of the modeling was to establish the most probable mathe-
matical relationship between the dependent variables, including the biosorption efficiency
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of the biosorbent when adsorbing the metal ion, R(%), and the biosorption capacity of the
sorbent, q(mg/g), and the process parameters (i.e., the independent variables: pH; sorbent
dose, DS (g/L); initial metal ion concentration in solution, c0 (mg/L); contact time, tc (min);
temperature, T (◦C)), validated by using a methodology specific to multiple regression
analysis. Subsequently, through optimization, sets of solutions were obtained that cor-
relate various values of the process parameters to maximize the objective function and
demonstrate the performance of waste biomass in biosorption process. The results were
validated experimentally.

2. Materials and Methods

2.1. Experimental Context

This paper discusses the removal of heavy metals, namely, Pb(II), Cd(II), and Zn(II)
ions, from simulated wastewater samples through biosorption, using soybean and soybean
waste biomasses as biosorbents [45]. The experimental studies aimed to describe the
biosorptive potential of these biosorbents for the removal of Pb(II), Cd(II), and Zn(II) ions
from aqueous solutions, assessed based on the most relevant biosorption parameters: the
biosorption capacity of the sorbent, q(mg/g), and the biosorption efficiency, R(%).

2.2. Preparation and Characterization of Biosorbents

The soybeans used to obtain the biosorbent needed for experimental studies were
selected from a local farm in Iasi, Romania. After harvesting, the soybeans (1 kg) were
washed with distilled water (5–6 times) to remove macroscopic impurities, dried in air
at room temperature (22 ± 0.5 ◦C) for 5 days, and then ground. The material obtained
from these operations was prepared further in the following modes: (1) dried at 65 ◦C for
6 h, then mechanically sieved so that the particle size was less than 1.5 mm, and stored
in the desiccator to maintain a constant humidity, thus resulting in a soybean biosorbent;
(2) through extraction with n-hexane for 30 h in a Soxhlet extractor, followed by washing
with distilled water and drying at 65 ◦C for 6 h and then grinding, thus resulting in a
soybean waste biosorbent.

In order to highlight the structural and morphological features, which are in direct
correlation with the biosorptive properties, it was necessary to characterize the materials
used as biosorbent in this study. The characterization was performed using the following
methods of analysis by applying standard procedures for samples preparation:

• X-ray dispersive spectrometry (EDX)—with an EDAX-TSL 32 spectrometer—which
allows the determination of the elemental composition of the analyzed material. The
samples were prepared and analyzed according to the protocol described in [57].

• IR spectrometry—with a Bio-Rad Spectrometer with Fourier transform—which re-
vealed the main types of functional groups that were found on the surface of each
biosorbent used. For sample preparation, a small quantity of finely powdered solid
sample was mixed with 100 times its weight of KBr and compressed into a thin trans-
parent tablet using a hydraulic press. These tablets are transparent to IR radiation, and
they were used for analysis.

• Scanning Electronic Microscopy (SEM) (performed using an S-3000 N HITACHI mi-
croscope with 15 UV). Microscopic images were recorded in low vacuum conditions,
with several orders of magnitude, and their analysis allows the appreciation of the
roughness of the material surface adsorbent. The samples were prepared and analyzed
following the procedure described in [58,59].

2.3. Preparation and Analysis of the Studied Metal Ions

The aqueous solutions of the selected metal ions considered as the polluting species in
this study were freshly prepared with exactly known concentrations for each experiment
by diluting a given volume of the corresponding stock solution with distilled water. The
solutions used in experiments were analyzed using an appropriate spectrophotometric
analysis method to ensure the selectivity and accuracy of the determinations (Digital
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Spectrophotometer S 104 D, glass cuvettes thickness = 1 cm) according to the specific
analysis method (Table 1).

Table 1. Analytical characteristics of the spectrophotometric methods used to determine the concen-
tration of metal ions.

Parameter Pb(II) Cd(II) Zn(II)

Color reagent 4-(2-piridilazo)-resorcinol Xilonolorange Xilonolorange
pH 10.0 6.0 6.0

Buffer solution Ammoniacal HMTA + HNO3 Acetat
λmax, nm 530 575 570

εmax, L/mol cm 1.95 × 104 2.15 × 104 2.64 × 104

Reference sample witness test witness test witness test
Calibration sensitivity, mg/L 0.1694 0.1718 0.2563

Detection limit, ppm 0.1985 0.1325 0.1554
Linearity range used, mg/L 0.75–2.93 0.93–3.73 0.65–2.62

RSD% 0.44% 0.23% 0.28%

HMTA—hexamethylenetetramine.

The concentration of metal ions in the analyzed solutions was calculated from the
regression equation of the corresponding calibration curve.

2.4. Experimental Methodology Used for Batch Biosorption Studies

Although the use of batch techniques for biosorption studies is sometimes considered
in the literature to be an empirical method that does not accurately present the existing con-
ditions in the treatment of industrial effluents, it is important, especially, in the evaluation
of the biosorptive potential of a material for certain polluting species in aqueous solutions.

On a laboratory scale, the use of batch systems for the study of biosorption processes
involved contacting a given volume of aqueous solution containing the polluting species
(25 mL solution containing Pb(II), Cd(II), or Zn(II) ions of the given concentration) with an
exactly weighed amount of biosorbent (soybean biomass or soybean waste). The mixture is
stirred intermittently for a certain period of time (which is well established), after which the
two phases are separated by filtration (using a quantitative filter paper with large pores),
followed by the analysis of the two phases (filtrate—aqueous solution, and solid phase—
biosorbent loaded with metals) using the specific methods of analysis discussed above.

2.5. Establishing the Experimental Conditions and Parameter Variation Ranges

Sets of preliminary tests facilitated the selection of a variation range of independent
parameters for further working, considering also information from the literature. The best
experimental conditions were established for each type of metal ion separately, both for
biosorption on soybean biomass and soybean waste, using several sets of experiments that
followed the influence of the most important experimental parameters, such as the pH of
the initial solution, the dose of biosorbent (DS), the initial concentration of metal ion (c0),
the contact time (tc), and the temperature (T), on the efficiency of the biosorption process.
The evaluation of the influence of each experimental parameter was performed keeping
constant the values of the other parameters considered in the experimental program.

2.5.1. pH

To determine the suitable pH value of the initial solution for the biosorption of Pb(II),
Cd(II), and Zn(II) ions on the two types of soy-based biosorbents, two sets of experiments
were performed (for each biosorbent), in which the pH of the aqueous solution (25 mL)
containing metal ions varied between 1.0 and 6.5, while the values of the other experimental
parameters were kept constant (Table 2). This pH range was chosen so that the studied metal
ions could exist in solution predominantly in the form of free ions, and their precipitation
in the form of hydroxides could be excluded. The required pH values were adjusted using

51



Processes 2022, 10, 523

solutions of different concentrations of HNO3 (to avoid the introduction into the solution
of another anion that could influence the biosorption process).

Table 2. Values of working parameters used in the experimental study on the influence of the initial
pH of aqueous solution on the biosorption process.

Me(II) pH Range Biosorbent Dose DS, g/L
Initial Concentration of Metal Ion

c0Me(II), mg/L
Contact Time,

tc, h
Temperature, T ◦C

Pb(II) 1.0–6.5 5.0 83.29 24 23.0
Cd(II) 1.0–6.5 5.0 46.11 24 24.5
Zn(II) 1.0–6.5 5.0 52.31 24 22.5

pH values were measured exactly with the help of a pH/ion-meter MM + 873,
equipped with a combined glass electrode. The pH value for which the biosorption
efficiency is at its maximum was considered suitable for the biosorption of metal ions
considered for the two types of soy-based biosorbents and was kept constant in all
other experiments.

2.5.2. Dose of Biosorbent

The experimental study on the influence of this parameter on biosorption was per-
formed as follows: a volume of 25 mL aqueous solution of a metal ion of an exactly known
concentration was brought into contact with the biosorbent (soybean biomass and soybean
waste biomass) at a particular pH, contact time, and constant temperature (Table 3). After
the required time had elapsed, the two phases were separated and analyzed. The optimal
amount of biosorbent was established for each case (metal ion and type of biosorbent)
based on the value of the quantitative parameters of the biosorption process, with the best
value being considered the one for which the efficiency of the process is maximum.

Table 3. Values of working parameters used in the experimental study of the influence of biosorbent
dose on the biosorption process.

Me(II) pH Range Biosorbent Dose DS, g/L
Initial Concentration of Metal Ion

c0Me(II), mg/L
Contact Time,

tc, h
Temperature, T ◦C

Pb(II) 3.40 4.0–40.0 83.29 24 22.0
Cd(II) 3.40 4.0–40.0 46.11 24 22.5
Zn(II) 3.40 4.0–40.0 52.31 24 21.0

2.5.3. Initial Concentration of Metal Ions

The influence of this parameter was studied by varying the concentration of each metal
ion in a range of at least two orders of magnitude (Table 4), and keeping constant the values
of the other parameters corresponding to the suitable values. Metal ion concentrations
were obtained by accurately measuring volumes of the metal ion stock solution, which
were then diluted to a 25 mL volumetric flask.

Table 4. Values of working parameters used in the experimental study of the influence of the initial
concentration of the metal ions on the biosorption process.

Me(II) pH Range
Biosorbent Dose,

DS, g/L
Initial Concentration of Metal Ion

c0Me(II), mg/L
Contact Time,

tc, h
Temperature, T ◦C

Pb(II) 3.40 5.0 11.66–416.45 24 23.0
Cd(II) 3.40 5.0 9.22–230.54 24 24.0
Zn(II) 3.40 5.0 13.08–209.25 24 22.0

The results of these experiments allowed, on the one hand, the evaluation of the
maximum amount of metal ion that can be retained in the most suitable experimental
conditions on each type of biosorbent and, on the other hand, the concentration range for
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which the two biosorbents studied can be considered to be effective in removing Pb(II),
Cd(II), and Zn(II) ions from aqueous solutions.

2.5.4. Contact Time

For these experimental studies, exactly weighed amounts of biosorbent (corresponding
to the suitable values) were contacted with 25 mL of aqueous solution containing a metal
ion (the concentration being chosen from the studied concentration range), at the most
suitable pH value of the initial solution and at a constant temperature (Table 5). After
well-defined periods of time (between 5 and 180 min), with intermittent stirring, the two
phases were separated by filtration and the concentration of the metal ions in the solution
was determined. This way, it was possible to establish the minimum contact time of the
two phases necessary to achieve the balance of the biosorption process for each type of
biosorbent and metal ion studied.

Table 5. The values of the working parameters used in the experimental study of the influence of the
contact time on the biosorption process.

Me(II) pH Range
Biosorbent Dose,

DS, g/L
Initial Concentration of Metal Ion

c0Me(II), mg/L
Contact Time,

tc, h
Temperature, T ◦C

Pb(II) 3.40 5.0 83.29 5–180 24.0
Cd(II) 3.40 5.0 46.11 5–180 26.0
Zn(II) 3.40 5.0 52.31 5–180 24.5

2.5.5. Temperature

The study of temperature influence on the biosorption efficiency for Pb(II), Cd(II), and
Zn(II) ion retention of the selected biosorbents encompassed the analysis of their perfor-
mance, which was assessed in three sets of experiments at three different temperatures
for each biosorbent and metal ion for every possible combination, when the pH of the
initial solutions and the dose of biosorbent were kept constant at the most suitable values,
determined during the previous experiments, while the concentration of metal ions varied
for the entire concentration range studied (Table 6).

Table 6. The values of the working parameters used in the experimental study of the influence of
temperature on the biosorption process.

Me(II) pH Range
Biosorbent Dose,

DS, g/L
Initial Concentration of Metal Ion

c0Me(II), mg/L
Contact Time,

tc, h
Temperature, T ◦C

Pb(II) 3.40 5.0 11.66–416.45 3 5; 25; 50
Cd(II) 3.40 5.0 9.22–230.54 3 5; 25; 50
Zn(II) 3.40 5.0 13.08–209.25 3 5; 25; 50

In this case, the phase separation was performed after 3 h, a period of time consid-
ered to be sufficient to reach equilibrium, and the solutions obtained after filtration were
analyzed in order to determine the concentration of metal ions.

The experimental results from each set of experiments were used to quantitatively
evaluate the biosorptive performance of the studied biosorbents, using the following
quantitative indicators [45]:

• Biosorption capacity, q(mg/g), which represents the amount of metal ion retained per
unit mass of biosorbent under given experimental conditions, and which is calculated
using Equation (1).

q =
(c0 − c) V

m
(1)

• Biosorption efficiency, R(%), which represents the percentage of metal ion retained in
the biosorption process, and which is given by Equation (2).
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R =
(c0 − c)

c0
× 100 (2)

where: c0 and c—the initial and equilibrium concentration of the studied metal ion (mg/L),
respectively; m—the mass of the biosorbent (g); V—the volume of aqueous solution used
in the biosorption studies (mL).

3. Application of Response Surface Methodology for Modeling and Optimization of
the Biosorption Process Using Natural Soy-Based Biosorbents

3.1. Preliminary Assessment of Variation Intervals for Independent Variables

The set of preliminary experiments facilitated the evaluation of the suitability of
soybean biomass and soybean waste as biosorbents for the selected heavy metal ions (Pb(II),
Cd(II), and Zn(II)) and the process efficiency, and also helped to determine the variation
intervals of the process parameters. In this context, the following process parameters were
chosen as independent variables for modeling: pH, sorbent dose (DS, g/L), metal ion
concentration (c0, mg/L), contact time (tc, min), and temperature (T, ◦C). The variation
intervals are shown in Table 7 [60].

Table 7. Independent variables of the biosorption process and variation intervals.

x1 x2 x3 x4 x5

pH
(A)

DS (g/L)
(B)

c0 Pb(II) (mg/L)
(C)

c0 Cd(II) (mg/L)
(C)

c0 Zn(II) (mg/L)
(C)

tc (min)
(D)

T (◦C)
(E)

min max min max min max min max min max min max min max

1 6.5 5 40 11.66 416.45 9.22 230.54 13.08 209.25 5 180 5 50

3.2. Experiments Design

The experimental program aimed to identify the conditions in which the best response
of the analyzed system is obtained. The design of the experiments in an appropriate manner
was used to optimize the processes based on the analysis of the individual and interactive
effects of the independent variables, simultaneously, on the entire designed experimental
space. From among the most relevant multivariate statistical analysis techniques, Response
Surface Methodology (RSM) has been frequently applied as a technique for programming
experiments. As mentioned above, RSM is a combination of mathematical and statistical
techniques that describe the relationship between a series of independent variables and
one or more responses of the investigated experimental system. In this sense, the answer is
examined on the whole space of the independent variables, where the answer has the best
value [61]. The behavior of the system is usually described by a second-degree polynomial
function (Equation (3)).

yi = A0 +
n

∑
i=1

Aixi +
n

∑
i=1

Aiix2
i +

n

∑
i �= 1
j = 1

Aijxixj + ε (3)

where yi is the predicted system response, xi and xj are independent variables, A0 is the
constant coefficient (free term), Ai, Aii, and Aij are linear, square (second order) interaction
coefficients, n is the number of independent variables, and ε is a random error.

The concordance of the model was evaluated using the correlation coefficient (R2). The
Fisher (F) test and the probability value (Prob > F) were applied to evaluate the significance
of the model terms. In this paper, RSM was applied for modeling the biosorption efficiency
(R, %) of heavy metal ions Pb(II), Cd(II), and Zn(II) from aqueous solutions using soybean
biomass and soybean waste biomass from the industrial process of extracting soybean
oil (for biodiesel). Additionally, we modelled the biosorption capacity of the studied
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biosorbents (q, mg/g). In the second part, the optimization of the biosorption efficiency
(R, %) as well as the biosorption capacity (q, mg/g), was performed. The five independent
variables (Table 7) were studied at five levels, designated as −α, −1, 0, 1, α. The matrix of
the experimental program was the one corresponding to a full rotatable central composite
design 25, with 45 experiments, of which 3 were in the central point (Table 8). Experimental
data processing was performed in the Design-Expert software environment.

Table 8. Experimental matrix of the full rotatable central composite design 25 (coded values) (inde-
pendent variables are presented in Table 7).

Experiment
Coded Independent Variables

A B C D E

1 −1 −1 −1 −1 −1
2 1 −1 −1 −1 −1
3 −1 1 −1 −1 −1
4 1 1 −1 −1 −1
5 −1 −1 1 −1 −1
6 1 −1 1 −1 −1
7 −1 1 1 −1 −1
8 1 1 1 −1 −1
9 −1 −1 −1 1 −1

10 1 −1 −1 1 −1
11 −1 1 −1 1 −1
12 1 1 −1 1 −1
13 −1 −1 1 1 −1
14 1 −1 1 1 −1
15 −1 1 1 1 −1
16 1 1 1 1 −1
17 −1 −1 −1 −1 1
18 1 −1 −1 −1 1
19 −1 1 −1 −1 1
20 1 1 −1 −1 1
21 −1 −1 1 −1 1
22 1 −1 1 −1 1
23 −1 1 1 −1 1
24 1 1 1 −1 1
25 −1 −1 −1 1 1
26 1 −1 −1 1 1
27 −1 1 −1 1 1
28 1 1 −1 1 1
29 −1 −1 1 1 1
30 1 −1 1 1 1
31 −1 1 1 1 1
32 1 1 1 1 1
33 −2.38 0 0 0 0
34 2.38 0 0 0 0
35 0 −2.38 0 0 0
36 0 2.38 0 0 0
37 0 0 −2.38 0 0
38 0 0 2.38 0 0
39 0 0 0 −2.38 0
40 0 0 0 2.38 0
41 0 0 0 0 −2.38
42 0 0 0 0 2.38
43 0 0 0 0 0
44 0 0 0 0 0
45 0 0 0 0 0
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4. Results and Discussions

The removal of metal ions from aqueous solutions via biosorption takes place with
maximum efficiency only under certain well-specified experimental conditions, regardless
of the nature of the metal ion or biosorbent used. Consequently, in the evaluation of the
biosorption performance of a material for certain metal ions, the first step is to establish the
optimal experimental conditions with which to achieve the biosorption process.

The fulfillment of this desideratum involves the study of the influence of the main
experimental parameters (such as the initial pH of the solution containing metal ions, the
biosorbent dose, the initial concentration of metal ions in aqueous solution, the contact
time, and the temperature) on the biosorption capacity of the material used as a biosor-
bent for each metal ion separately. The paramount conditions for the development of
the studied process are obtained experimentally and correspond to those values of the
parameters for which the retention of metal ions from aqueous solutions takes place with
the highest efficiency.

4.1. Characterization of Biosorbents

The results of the EDX analysis (Figure 1) showed that both soybean and soybean
waste biomasses contain large amounts of organogenic elements (C, O, P, and S) in their
structure, and also a series of ions of alkaline and alkaline earth metals (K, Mg, and Al)
which, due to their high mobility, can easily participate in ion exchange processes. On
the other hand, the comparison of the values obtained from the EDX analysis shows that,
unlike soybean biomass, in the case of soybean waste, the C, P and S content is significantly
lower, while the values of oxygen percentages and mobile ions (K and Al) are higher.
These differences allow us to say that, following the n-hexane extraction step, there are still
many functional groups in the composition of soybean waste, even if some of the organic
compounds (most likely lipids and fatty acid salts) have been removed.

( ) (b) 

Figure 1. EDX spectra recorded for soybean biomass (a) and soybean waste biomass (b).

The nature of the functional groups on the surface of these biosorbents and the
differences that appear in the structure of the soybean biomass after the extraction stage
were highlighted with the help of IR spectrometry. A detailed analysis of the IR spectra
recorded on the dry matter (Figure 2) showed that, in the soybean biomass spectrum
(spectrum 1), the most important absorption bands correspond to the functional groups
of proteins and polysaccharides in the cell walls. Thus, the absorption band at 3407 cm−1

(which corresponds to the stretching vibration of the O–H bond from aliphatic alcohols and
water molecules), the bands at 1652 and 1543 cm−1 (attributed to the stretching vibration of
the C=O bond of carbonyl compounds), the bands of 1244 and 1053 cm−1 (corresponding to
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the symmetrical and asymmetric tensile vibration of the P=O bond in the phosphate groups),
and the bands between 1200 and 690 cm−1 (which can be attributed to the vibrations of
the C–OH bonds and C–O–C in polysaccharides) [45] indicate the presence of functional
groups, such as hydroxyl, carbonyl, carboxyl, phosphate groups, etc., which may play an
important role in the retention processes of the studied metal ions.

Figure 2. IR spectra recorded for soybean biomass (1) and soybean waste (2).

After the extraction stage, in the IR spectrum of soybean waste (Figure 2, spectrum 2),
most of the absorption bands are slightly shifted towards higher wave numbers (2–3 cm−1),
while the absorption bands at 2858 cm−1, 1741 cm−1, 1402 cm−1 and 1244 cm−1, which
are characteristic of lipids, have disappeared or decreased in intensity (without changing
too much the position of the maximum absorption). These differences show that, at the
extraction stage, only this type of component (lipids) was removed from the soybean
biomass composition, while most proteins and polysaccharides remained in the soybean
biomass composition, and their functional groups will be binding centers for metal ions in
the aqueous solution.

The SEM images (Figure 3) show that, from a morphological point of view, both
soybean biomass and soybean waste have a rough and irregular surface, which presents
numerous non-uniformities. However, it can be seen that, after the extraction stage, the
surface of the soybean biomass (Figure 3b) becomes more porous and has more “breaks”,
and this is probably determined by the rupture of the cell walls that takes place during
extraction time. This increase in the roughness of the biosorbent surface after the solvent
extraction step can greatly influence the efficiency of the biosorption process in the case of
soybean waste, as it causes an increase in its specific surface area.

57



Processes 2022, 10, 523

(a) (b) 

Figure 3. SEM images recorded for soybean biomass (a) and soybean waste (b).

All this experimental evidence, namely, (i) the presence of mobile ions in the composition
of the two soy-based biosorbents, (ii) the presence of a large number of various functional
groups on the surface of soybean biomass and soybean waste, but also (iii) the morphological
non-uniformity of the surface, recommends the use of soybean biomass and soybean waste
as biosorbents in the processes of the decontamination of environmental components.

4.2. Influence of Process Parameters on Biosorption Efficiency
4.2.1. Initial pH of the Solution Containing Heavy Metal Ions

One of the most important experimental parameters that can significantly influence
the biosorptive characteristics of a given material is the initial pH of the aqueous solution,
since it affects both the form of speciation and the solubility of the metal ions present in the
solution, as well as, especially, the degree of dissociation of the functional groups on the
surface of the biosorbent.

The considered pH range (Table 2) was selected because: (i) it covers the acidic and
slightly acidic to neutral range, which results in a significant variation in the degree of
dissociation of the functional groups on the surface of the two biosorbents; (ii) the speciation
change of the studied metal ions (Pb(II), Cd(II), and Zn(II)) is avoided, because in this
interval they are present predominantly in the form of free divalent ions. The variation of
the biosorption capacity of soybean biomass and soybean waste as a function of the initial
pH of the aqueous solution, for each metal ion separately, is shown in Figure 4.

Figure 4. Variation of the biosorption capacity of the two biosorbents (soybean biomass and soybean
waste biomass) with the initial pH of the solution in the case of the retention of (a) Pb(II), (b) Cd(II),
and (c) Zn(II) ions.
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As can be seen from Figure 4, the biosorption capacity of the two materials depends
significantly on the value of the initial pH of the solution, although the variation is not
uniform. Thus, the biosorption capacity of soybean biomass and soybean waste biomass
intensifies considerably with the increasing initial pH of the solution in the pH range
between 1.09 and 3.39 and then decreases for all studied metal ions. The highest values
of the biosorption parameters are obtained at a pH of the initial solution of 3.39, where
more than 50% of Pb(II), 60% of Cd(II), and 45% of Zn(II) can be removed from the aqueous
solution using these two biosorbents. It should also be noted that when using soybean
waste, the efficiency of the biosorption process increases only in the case of Pb(II) ions (from
50% to 60%), while Cd(II) (from 61% to 60%) and Zn(II) ions (from 45% to 46%) remain
approximately constant compared to the use of soybean biomass as a biosorbent.

Other research found that the initial pH of a metal ion solution influences significantly
the binding sites on biosorbent surfaces and metal ion behavior [62–64]. These remarks
are also related to those reported by other authors for the biosorption of some heavy
metals on algae [65–67]. Studies on the important role pH plays in the biosorption process
highlighted the mechanisms responsible for biosorption in relation with pH value, namely,
complexation, oxidation reduction, and separation by hydrolysis, considering that the pH
determines the charge of the biosorbent surface, the degree of ionization, etc. [45,68–72].
Choloco-Gonzales et al. found that the biosorption capacity of Pb(II), Cd(II), and Zn(II)
on agave bagasse reaches a maximum at around pH 5.5, beyond the point of zero charge
(pHPZC) [73]. Salem et al. studied the biosorption of Pb(II), Cd(II), and Zn(II) on loquat
bark (Eriobotrya japonica) and observed the maximum adsorption around pH 4.0 [74]. The
researchers found that the surface area of the biosorbent they used was negatively charged
as the pH increased from 2 to 4, whereby the functional groups became deprotonated and
became available for Pb(II), Zn(II), and Cd(II) ions. Lezcano et al. used different categories
of biomass as biosorbents identified from eutrophic ecosystems and tree leaves [75]. For
initial pH values between 3 and 5, the biomass behaved like a proton acceptor and the
biosorption capacity reached maximum values, but at initial pH values higher than 6, the
biomass behaved like a proton donor.

Unlike most of the biosorbents used to remove metal ions from aqueous solutions,
where the maximum biosorption capacity is obtained in the weak acid to neutral range
(pH = 4.0–6.0), in the case of soybean biomass and soybean waste, this maximum is ob-
tained at much lower pH values (pH = 3.39). This is probably due to the high buffering
capacity of the two biosorbents and offers the possibility to use these biosorbents in acidic
wastewater treatment processes (such as those from the metal coating industry). Based
on these observations, it can be said that the biosorption of the selected ions on soybean
biomass and soybean waste biomass takes place with the highest efficiency at a pH of
3.39, and this value was considered to be the most suitable and was used in all other
experimental studies.

4.2.2. Dose of Biosorbent

The experimental results on the influence of biosorbent dose on the biosorption
capacity of soybean biomass and soybean waste biomass for Pb(II), Cd(II), and Zn(II)
ions, tested using different amounts of biosorbent (Table 3), are shown in Figure 5. The
increase in the amount of biosorbent in the studied range (4.0–40.0 g/L) caused a slightly
significant increase in the percentages of removal of metal ions from 44% to 90% in the case
of Pb(II), from 57% to 73% in the case of Cd(II), and from 40% to 56% in the case of Zn(II),
which does not differ significantly according to the nature of the biosorbent. At the same
time, the biosorption capacity decreases significantly with the increase in the amount of
biomass added, from 10.62 to 1.81 for Pb(II), from 6.56 to 0.83 for Cd(II), and from 5.76 to
0.67 for Zn(II), values that are insignificantly influenced by the type of biosorbent (soybean
biomass or soybean waste).
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Figure 5. Influence of biosorbent dose on the biosorption efficiency of (a) Pb(II), (b) Cd(II), and
(c) Zn(II) ions on soybean biomass and soybean waste (pH = 3.39; c0 = 46.11 mg/L; contact time =
24 h; temperature = 22 ◦C).

Comparing the biosorption capacity (q, mg/g) and the biosorption efficiency (R, %), it
was established that a dose of biosorbent of 5 g/L can be considered to be the best for the
retention of Pb(II), Cd(II), and Zn(II) ions in aqueous solutions for both soybean biomass
and soybean waste, and this value was used in subsequent experimental studies.

4.2.3. Initial Concentration of Metal Ions

The dependence of the biosorption capacity of the two biosorbents on the initial con-
centration of Pb(II), Cd(II), and Zn(II) ions was studied in concentration ranges described
in Table 4, at the selected values of solution pH (3.39) and biosorbent dose (5 g/L). The
experimental results obtained in this case for each metal ion are shown in Figure 6. From
these graphical representations, it can be seen that, as the concentration of metal ions in-
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creases in the studied concentration range, the biosorption capacity q values increase, while
the values of the biosorption efficiency R decrease. This variation in opposite direction of q
and R is valid for all studied metal ions and for both biosorbents, although the limits of
variation of the two parameters depend on the nature of the metal ion and the biosorbent
used in the biosorption process.

Figure 6. Influence of the initial concentration of metal ions on the biosorption capacity and biosorp-
tion efficiency of (a) Pb(II), (b) Cd(II), and (c) Zn(II) ions on soybean biomass and soybean waste
(pH = 3.39; biosorbent dose = 5.0 g/L; contact time = 24 h; temperature = 22 ◦C).

When the concentration of metal ions in the aqueous solution is high, most of the
functional groups on the biosorbent surface are already occupied and, therefore, their
transition to free (unreacted) functional groups, which are found in the inner planes or
even inside the particles of the biosorbent, is hampered by diffusion resistances.

Amer et al. attributed the increase in biosorption efficiency as the metal ion concen-
tration increases to the more intense interaction between metal ions and sequestration
sites [76]. They used different initial metal concentrations (Cu (II), Ni(II), Zn(II), and Pb(II)
ions) of 5, 20, 40, 60, 80, and 100 mg/L, with Sophora japonica pods powder as the biosorbent.
Kamar et al. analyzed the effect of initial metal ion concentration on the biosorption of
Pb(II), Cu(II), and Cd(II) onto cabbage leaves powder, and found that absorption efficiency
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decreased slightly with increasing initial concentrations from 10 to 50 mg/L, and a rapid
decrease in the initial concentrations ranging from 50 to 100 mg/L [77]. They attributed
this behavior to the decrease in the number of available sorption sites on the surface area
of the sorbent as the initial concentration of metal ions in the solution increased. Similar
behaviors were reported in other works, as well [78,79].

The retention of Pb(II), Cd(II), and Zn(II) ions by biosorption on soybean biomass
and soybean waste biomass, respectively, can be predominantly caused by electrostatic
interactions. Similar assumptions were made by [80,81]. The efficiency of the biosorption
process is moderate, because the electrostatic interactions responsible for the retention of
metal ions are non-selective, and the metal ions will interact with the functional groups that
have the highest availability. After occupying these available groups on the surface, spatial
obstructions are generated, which limit the penetration of other ions from the solution into
the free functional groups. Consequently, the biosorption efficiency has moderate values
following the series Cd(II) > Pb(II) > Zn(II) for both biosorbents. However, the biosorption
efficiency values for all studied metal ions are higher in the case of soybean waste than in the
case of soybean biomass up to 6%, which shows that the breaking of cell walls in soybean
biomass during the oil extraction process is important for biosorption intensification.
Following the solvent extraction step, an increase in the availability of surface functional
groups to interact with metal ions in the aqueous solution can be assumed.

4.2.4. Contact Time

The contact time between the two phases necessary to reach the equilibrium state is
another important parameter of the biosorption process, especially when the implemen-
tation of such a process, e.g., for the treatment of industrial wastewater, is pursued. Too
long a contact time increases the costs of the biosorption process, while too low a value
of this parameter leads to a drastic decrease in the efficiency of the process as such. The
influence that the contact time between the two phases (solid phase—biosorbent, and
liquid phase—aqueous solution containing the studied metal ions) has on the efficiency
of the biosorption under the considered experimental conditions is shown in Figure 7. As
the contact time between phases increases, so does the biosorption capacity (q) for both
biosorbents. This increase is more evident in the initial stage, in the first 30 min, when more
than 66% of the total amount of Pb(II), 60% of the total amount of Cd(II), and 57% of the
total amount of Zn(II) are retained on soybean biomass, and 67% of the total amount of
Pb(II), 61% of the total amount of Cd(II), and 64% of the total amount of Zn(II) are retained
on soybean waste biomass.

Figure 7. Influence of contact time on sorption capacity of Pb(II), Cd(II), and Zn(II) ions in aqueous
solutions by soybean biomass and soybean waste (pH = 3.39; DS = 5 g/L; c0 = 83.29 mg Pb(II)/L;
46.11 mg Cd(II)/L; 52.31 mg Zn(II)/L; temperature T = 24 ◦C).

Such a variation is most likely determined by the number and availability of active
centers able to interact with metal ions in the solution. Thus, when the number of active
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centers is high (the first moments of the biosorption process) and more geometrically
and spatially available (the case of soybean waste compared to soybean biomass), the
interaction between functional groups at the surface and metal ions in aqueous solution is
easier to achieve and the biosorption rate is high. On the other hand, the close values of the
biosorption efficiency obtained for the three metal ions studied, both in the case of soybean
biomass and soybean waste (with differences of up to 7%) is another argument in favor
of the hypothesis that the biosorption process is achieved via non-selective electrostatic
interactions, and that the process rates do not depend on the nature of the metal ion in the
aqueous solution. After the initial stage, the biosorption rate decreases significantly near
the steady state, which is obtained practically after 60 min in the case of Pb(II) and Zn(II)
ions and after 30 min in the case of Cd(II) ions for both types of biosorbents. Based on
these experimental observations, it can be concluded that a contact time of 3 h is sufficient
to reach equilibrium in the case of biosorption of the three metal ions, both on soybean
biomass as well as on soybean waste biomass.

4.2.5. Temperature

The influence of temperature on the biosorption capacity of soybean biomass and
soybean waste for Pb(II), Cd(II), and Zn(II) ions was studied, as mentioned before, at three
different temperature values, ranging from 5 to 50 ◦C for different concentrations of each
metal ion separately, considering a contact time of 3 h (Table 6). The experimental results of
these studies are presented in Figure 8 and show that temperature has a relatively small
influence on the biosorption capacity, both in the case of soybean biomass and in the case
of soybean waste, for all metal ions studied. Increasing the temperature at 45 ◦C causes
an increase in the biosorption capacity of the two biosorbents, but only with a few units,
and this is visible especially at high values of the initial concentration of metal ions in the
aqueous solution. Depending on the nature of the metal ion, it can be seen that the major
variation in biosorption capacity resulted in the case of Pb(II), followed by Cd(II), and then
Zn(II). This hierarchy is observed for both soybean biomass and soybean waste, although it
should be noted that in the case of soybean waste, the variation in biosorption capacity is
higher than in the case of soybean biomass for all studied metal ions.

The increase in the biosorption capacity of soybean biomass and soybean waste
with increasing temperatures is suggestive of the endothermic nature of the biosorption
processes of Pb(II), Cd(II), and Zn(II) ions on the two biosorbents. However, the relatively
small variation of q values at relatively large temperatures (45 ◦C) shows that performing the
biosorption process at high temperatures is not necessarily an advantage. The biosorption
efficiency of the studied ions on soybean biomass and soybean waste can be successfully
achieved at ambient temperatures, and these conditions are advantageous considering both
the costs and the efficiency of the biosorption process.
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Figure 8. Influence of temperature on the biosorption capacity of soybean biomass (a) and soybean
waste (b) for the retention of the metal ions (pH = 3.39; 5 g biosorbent/L; 3 h).

4.3. Modeling and Optimization of Biosorption Process by Response Surface Methodology
4.3.1. Model Development and Validation

Equations of the model generated in Design-Expert software environment after the
interpretation of the experimental data for the biosorption of Pb(II), Cd(II), and Zn(II) ions
by soybean biomass and soybean biomass waste following the variables and experimental
matrix showed in Tables 7 and 8 are presented in Table S1 (Equations (1)–(12) (a, b)). It
is found that these Equations are second-degree polynomial functions, which contain
significant terms, the rest being eliminated in the process of verifying the concordance of
the model and the significance of the coefficients because, following the statistical analysis
for a 95% confidence interval, some of the coefficients were considered to be insignificant.

Equations (4)–(15) (a, b) (Table S1) show the extent to which the individual independent
variables or the interactions between them affect the biosorption efficiency (R, %) and the
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biosorption capacity (q, mg/g). Negative coefficient values indicate that individual factors
and/or interactions between them negatively affect dependent variables (R, q), while
positive coefficients suggest that dependent variables are positively influenced (increase)
under the action of those independent variables. The compatibility of the developed models,
of a polynomial type (second order—quadratic), is justified in Table S2 (after adequacy
testing, which consists of comparing the set of performances obtained with the help of the
model with the performances collected experimentally).

Based on this information, the suitability of the selection of the recommended poly-
nomial (quadratic) model for all six experimental cases (three metal ions and two tested
biosorbents) was confirmed. Additionally, the independent variables were selected to find
the best set of predictors in each case and, therefore, the simplest form of the mathematical
model that was in good agreement with the experimental data. This selection was made in
order to reduce random errors in estimating the dependent variables and to ensure the ac-
curacy of the degrees of freedom. In selecting the variables of the model, the compliance of
their hierarchy was taken into account (lower order terms were possibly excluded from the
model) after the higher order ones (for the same variable). The elimination of insignificant
predictors was performed using the “backward” procedure because this is recommended in
models with collinear variables as the most robust compared to the “forward” or “stepwise”
techniques, with only those factors that have a significant influence of the response variable
being retained in the model. By applying the “backward” procedure to a critical threshold
αcrit = 0.05, modeling was started with all the predictors (independent variables) in the
model; the predictors for which the highest values of Prob > αcrit have been eliminated; the
model was then reconsidered and the iteration continued until the Prob < αcrit values.

4.3.2. ANOVA Analysis

ANOVA analysis was performed for the biosorption efficiency R and the biosorption
capacity q of the metal ions Pb(II), Cd(II), and Zn(II) models (Tables S3 and S4). Significance
tests for second-order polynomial models—with RSM reduced according to the results of
the ANOVA analysis for R and q—are presented in Table 9. In the case of Pb(II) biosorption
on soybean biomass, the model is characterized by the value F = 53.11, which indicates that
the model is significant (Equations (1) a, b, Table S1), and there is only a 0.01% probability
that the system answer may be affected by accidental errors. “Prob > F” values less than
0.05 indicate that the terms of the model are significant. In this case, A, B, C, D, A2, and
B2 are significant terms. The value 76.25 for “lack of correlation” for F implies that it is
significant, meaning that there is a chance of only 1.3% that the answer will be affected by
random errors. In the case of Pb(II) biosorption on soybean waste biomass, the F value
of 68.37 implies that the model is significant and that there is a probability of only 0.01%
that the system response may be affected by random errors. As with the soybean biomass
biosorbent, “Prob > F” values less than 0.05 indicate that the model terms (A, B, C, D, A2,
and B2) are significant. Similar situations were found in the case of the models for Cd(II)
and Zn(II) biosorption on soybean biomass and soybean waste biomass, respectively.

The ANOVA confirms the adequacy of the developed models because Prob > F is
less than 0.05. The developed models have small standard deviations and values of the
coefficient of determination R2 generally over 0.9. The high values of R2

adj show that the
total variations of R(%) and q(mg/g) can be described by the selected model type. The value
of the signal-to-chance ratio (adequate accuracy) is greater than 4, which indicates that
the measurement results are not random, but are consistent with the actual values. The
values of R2

pred are in good agreement with R2
adj (which appreciates the correctness of the

model by the fact that it is well selected and not due to the large number of variables).
R2

pred indicates the extent to which the regression model predicts the response for new
observations (measurements). This statistical measure supports the assessment of the
model in the sense that it is consistent with experimental data.
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Table 9. Significance tests for RSM models developed for R(%) and q(mg/g) during biosorption of
metal ions Pb(II), Cd(II), and Zn(II) on soybean biomass and soybean waste biomass.

Measure Value Measure Value

Soybean biomass, Pb(II), R(%)

Standard deviation 4.36 R2 0.8935
Mean 56.67 R2

adj 0.8766
C.V. 7.70 R2

pred 0.8181
PRESS 1235.51 Accuracy 35.286

Soybean waste biomass, Pb(II), R(%)

Standard deviation 3.79 R2 0.9152
Mean 56.37 R2

adj 0.9018
C.V. 6.72 R2

pred 0.8611
PRESS 893.27 Accuracy 36.682

Soybean biomass, Cd(II), R(%)

Standard deviation 3.82 R2 0.9236
Mean 65.68 R2

adj 0.9092
C.V. 5.81 R2

pred 0.8873
PRESS 794.87 Accuracy 38.598

Soybean waste biomass, Cd(II), R(%)

Standard deviation 3.76 R2 0.9147
Mean 65.63 R2

adj 0.8897
C.V. 5.73 R2

pred 0.7760
PRESS 1265.08 Accuracy 32.177

Soybean biomass, Zn(II), R(%)

Standard deviation 3.68 R2 0.8934
Mean 50.04 R2

adj 0.8698
C.V. 7.35 R2

pred 0.7975
PRESS 925.45 Accuracy 28.876

Soybean waste biomass, Zn(II), R(%)

Standard deviation 3.55 R2 0.9179
Mean 50.84 R2

adj 0.9024
C.V. 6.97 R2

pred 0.8201
PRESS 1019.70 Accuracy 39.604

Soybean biomass, Pb(II), q(mg/g)

Standard deviation 1.58 R2 0.9268
Mean 13.80 R2

adj 0.9105
C.V. 11.45 R2

pred 0.8705
PRESS 159.00 Accuracy 28.458

Soybean waste biomass, Pb(II), q(mg/g)

Standard deviation 1.53 R2 0.9503
Mean 16.77 R2

adj 0.9393
C.V. 9.12 R2

pred 0.9115
PRESS 150.02 Accuracy 34.585

Soybean biomass, Cd(II), q(mg/g)

Standard deviation 0.87 R2 0.9838
Mean 11.62 R2

adj 0.9784
C.V. 7.45 R2

pred 0.9658
PRESS 52.29 Accuracy 51.854
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Table 9. Cont.

Measure Value Measure Value

Soybean waste biomass, Cd(II), q(mg/g)

Standard deviation 1.06 R2 0.9857
Mean 12.68 R2

adj 0.9803
C.V. 8.35 R2

pred 0.9677
PRESS 80.87 Accuracy 46.917

Soybean biomass, Zn(II), q(mg/g)

Standard deviation 0.71 R2 0.9413
Mean 6.42 R2

adj 0.9193
C.V. 11.09 R2

pred 0.8056
PRESS 53.76 Accuracy 24.146

Soybean waste biomass, Zn(II), q(mg/g)

Standard deviation 0.88 R2 0.9576
Mean 8.74 R2

adj 0.9398
C.V. 10.07 R2

pred 0.8555
PRESS 81.77 Accuracy 27.449

C.V., Cross-validation; PRESS, Predicted Residual Error Sum of Squares.

Details on the diagnosis of the statistical properties of the developed models were
obtained from the analysis of some graphical representations (not presented here). The
so-called adjustment errors and residuals are estimates of errors. Small residues expressed
the goodness of fit of the experimental data. The graphical representation of the probability
as a function of the error scattering estimate (σ2) has shown that it is approximately linear,
demonstrating the normal distribution hypothesis for the chosen 95% confidence interval.
The residue limit is a maximum of ±3σ. From the diagrams residual values vs. calculated
values for all the analyzed experimental situations, there is no deviation from normality or
from the hypothesis that the errors have a relatively constant dispersion. Since the residues
are in the range (−3, 3) it means that there are no aberrant observations associated with the
developed models. The diagrams’ residual values—independent variables—have revealed
that there are no aberrant observations regarding each independent variable that can be
induced in the experimental program and the elaborated models, respectively. Extreme
observations, which do not fall within the general trend of the outliers are absent, as
all observations fall within the range of a maximum of three standard deviations from
the average.

To identify the points that significantly influence the regression, the Cook distance
was analyzed (as defined in the specialized works) and which is a measure of the influence
of the ith observation on the predicted values. This distance is another variable for which
the aberrant values are determined according to the rule of the three standard deviations. It
was found that for all the elaborated models, this condition is fulfilled. The identification of
possible aberrant values was also performed by analyzing the standardized residual values,
to identify possible extreme values in the y-space without changing the position of the
regression curve to the extreme value—the so-called leverage points. The extreme points
y associated with the mean values x do not change the regression curve, with the values
being located in the range of 0–1, usually below the value of the standard deviation. In this
context, it is found that there is a good concordance between the experimental values of the
variables R and q and those estimated using the RSM model (Figures 9 and 10).

67



Processes 2022, 10, 523

Figure 9. Graphical representation of the concordance between experimental and calculated (pre-
dicted) values using the mathematical models developed for biosorption efficiency (R, %) of Pb(II),
Cd(II), and Zn(II) on soybean biomass and soybean waste biomass: (a) Pb(II) on soybean biomass;
(b) Pb(II) on soybean waste biomass; (c) Cd(II) on soybean biomass; (d) Cd(II) on soybean waste
biomass; (e) Zn(II) on soybean biomass; (f) Zn(II) on soybean waste biomass.
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Figure 10. Graphical representation of the concordance between the experimental values and those
calculated (predicted) with the mathematical models developed for the biosorption capacity (q, mg/g)
of soybean biomass and soybean waste biomass when adsorbing metal ions (a) Pb(II) on soybean
biomass; (b) Pb(II) on soybean waste biomass; (c) Cd(II) on soybean biomass; (d) Cd(II) on soybean
waste biomass; (e) Zn(II) on soybean biomass; (f) Zn(II) on soybean waste biomass.

To verify the collinearity/multicollinearity of the independent variables (possibly the
overestimation of the correlation or determination coefficient as well as the dispersion of
the estimated coefficients), the tolerance of the variables xi was tested by the relation (4)
and the variance inflation factor, denoted by VIF (relation 5), which shows the extent to
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which the variance of the model coefficients may increase due to the lack of orthogonality
(multicollinearity) of the independent variables.

σi = 1 − R2
i (4)

VIFi =
1
σi

(5)

The standard error of the coefficient of a model increases proportionally to the square
root of VIF. If a coefficient of a parameter is orthogonal to the other terms of the model, the
VIF value is unitary. We found that, in most of the cases studied, VIF = 1. In no case is VIF
greater than or equal to 10 (which would indicate the existence of multicollinearity, which
occurs when a group of independent variables are strongly correlated with each other, and
the rest no longer provide significant information, with an overestimation of the coefficient
of determination R2) [81,82].

4.3.3. Sensitivity Analysis

A comparison of the effects of all the factors influencing the independent variables
can be seen in Figures 11 and 12. The answer is represented graphically by changing the
value of one factor on the chosen range of variation (generating a disturbance) and keeping
the other factors constant. The slope or curvature associated with a factor suggests that the
response is sensitive to that factor. A relatively flat line suggests that this factor does not
significantly influence the response. In this way, the sensitivity analysis of the elaborated
mathematical models was performed.

It can be seen that in the case of Pb(II) biosorption on soybean biomass, the change in
pH and initial metal concentration significantly influences the system response (R,%). The
same finding is true for Pb(II) biosorption on soybean waste biomass, but the sensitivity
of the response is higher with the variation of these two parameters. In the case of Cd(II)
biosorption on soybean biomass, the pH and concentration of the metal in the initial solu-
tion, and also the sorbent dose and the contact time, significantly influence the biosorption
efficiency. Temperature has little influence. In the case of Cd(II) biosorption on soybean
waste biomass, the pH, sorbent dose, and contact time significantly influence the system
response, especially to values of these factors to the left of the reference point. Temperature
also plays an important role in the biosorption efficiency of Cd(II) soybean waste biomass.

When Zn(II) is retained on soybean biomass, it is significantly influenced by pH
(upwards, especially in the area to the left of the reference point) and metal ion concentration
in the initial solution (downwards). The sensitivity of the R(%) response to the variation in
sorbent dose, contact time, and temperature around the reference point is relatively small.
However, in the case of Zn(II) biosorption on soybean biomass waste, the sensitivity of
the system to changes in pH and the initial concentration of the metal ions are significant.
The influence of temperature is not significant. The biosorption capacity q is sensitive to
variations in pH, sorbent dose, and initial concentration of Pb(II) during biosorption on
soybean biomass, but the sensitivity is higher in the case of biosorption capacity values
of Pb(II) on soybean waste biomass. The biosorption capacity of soybean biomass for
Cd(II) is sensitive to changes in ion concentration in the initial solution and sorbent dose.
The pH, contact time, and temperature have a less significant influence on the system
response (q, mg/g). In the case of the analysis of the sensitivity of biosorption capacity
of soybean waste biomass for Cd(II), it can be seen that the sorbent dose and the initial
ion concentration in the solution significantly influence q, especially in the right field of
the reference point. Additionally, q is relatively sensitive to changes in pH, contact time,
and temperature.
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Figure 11. Perturbation diagrams resulting from the sensitivity analysis for the mathematical models
developed for biosorption efficiency of heavy metal ion on soybean biomass and soybean waste
biomass (the meaning of the notations (a–f) is the same as those from Figure 9).
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Figure 12. Perturbation diagrams resulting from the sensitivity analysis for the mathematical models
developed for biosorption capacity of soybean biomass and soybean waste biomass (the meaning of
the notations (a–f) is the same as those from Figure 9).

In the case of Zn(II) biosorption on soybean biomass, the biosorption capacity q is
strongly sensitive to variations in sorbent dose and ion concentration in the solution,
relatively sensitive to changes in pH and contact time, and a little sensitive to temperature
variation. In the case of Zn(II) biosorption on soybean waste biomass, the biosorption
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capacity is significantly influenced by the sorbent dose and the ion concentration in the
solution followed by pH and contact time, as in the case of soybean biomass. Temperature
has a significantly higher effect on q than in the case of soybean biomass.

4.3.4. Analysis of Response Surfaces and Optimization of the Biosorption Process

Both the contour curves (not shown) and the response surfaces presented in Figures 13
and 14 demonstrate that there is a close correlation between process parameters (pH, DS,
c0, tc, and T) and system responses (biosorption efficiency of Pb(II), Cd(II), and Zn(II)
(R, %) and the biosorption capacity of the biosorbents (q, mg/g)). In order to analyze the
best applicable variants of the biosorption process in a sustainable way, it is necessary to
optimize the process by finding the most favorable combination of process parameters that
maximizes the system response, followed by the experimental validation of the solution or
group of solutions.

In this context, the following optimization alternatives can be considered: maximizing
the response; minimizing the response; achieving a certain imposed target in the experimen-
tal field; establishing sets of values of independent variables to obtain a certain value of the
system response (which may minimize costs and environmental impacts) or a certain amount
of desirability. To analyze the objective or performance functions in relation to the optimal
operating variants of the biosorption system, we considered the variation of the process
parameters (independent variables) and the influence thereof on the previously established
experimental field, provided that the biosorption efficiency (R, %) and biosorption capacity
(q, mg/g) are maximized. The optimization procedure was applied to obtain the maximum
for each of the purpose functions associated with Equations (1–12, a, b) (Table S1).

From the graphical representation in three-dimensional coordinates (response surfaces,
Figures 13 and 14), it can be seen that the optimal values of the parameters to be optimized
are either in the experimental field or on its borders, or they may differ from the global
optimum of the target function [82,83]. In the context of this paper, optimization means
establishing the best decision (solution), called the optimal decision (optimal solution), by
maximizing the objective function (desirability). To determine the optimal (most favorable)
solution for system operation from the individual point of view of the two dependent
variables (R, q), the minimum and maximum levels of each independent variable were
established and a weight was associated to adjust the shape of the objective (desirability)
function. This function is zero outside the system limits and one when the optimization
goal is reached.

For each answer yi(x), the desirability function di(yi) assigns numbers between 0 and 1
to the possible values of yi: when di(yi) = 0, this represents a completely undesirable value
of yi; when di(yi) = 1, this represents an ideal (desirable) response value. The individual
desirable values are then combined using the geometric mean, which gives the general
desirability D (Equation (6)):

D = (d1(y1) d2(y2) . . . dk(yk))
1/k (6)

where k is the number of possible answers.
Our purpose was to maximize these objective functions, beginning with a starting

point to search for the maximum, going step by step through the experimental field on a
suitable slope until the maximum value was reached. There may be several variants of
favorable solutions, since the response surface does not have a constant curvature, but this
varies depending on the starting point and the slope traveled step by step. This variant of
identifying a set of favorable solutions was chosen to maximize the chances of finding the
“best local maximum” [84,85]. Therefore, we applied a multi-response method to optimize
the combinations of the five independent variables (pH, DS, c0, tc, and T). In each case, the
optimization was started from 10 starting points chosen in the experimental field, resulting
in 10 solutions for each experimental variant (three heavy metals and two biosorbents),
presented in Tables 10 and 11.
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Figure 13. Response surfaces for mathematical models developed for biosorption efficiency of metal
ions (R, %) (the meaning of the notations (a–f) is the same as those from Figure 9).
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Figure 14. Response surfaces for mathematical models developed for biosorption capacity of metal
ions (q, mg/g) (the meaning of the notations (a–f) is the same as those from Figure 9).
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Table 10. Solutions for the operation in favorable conditions for reaching the maximum value of the
biosorption efficiency (R, %) on soybean biomass and soybean waste biomass.

Soybean Biomass, Pb(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 2.59 4.91 1 1 3

Solutions

No. x1 x2 x3 x4 x5 * R(%) Probability

1 4.02 29.86 129.03 129.29 32.79 78.13 0.829
2 4.03 29.84 129.00 129.29 36.48 78.13 0.829
3 4.05 29.84 128.96 129.29 25.55 78.13 0.829
4 4.06 29.86 128.98 129.29 18.04 78.13 0.829
5 4.01 29.86 128.96 129.06 29.65 78.11 0.828
6 4.01 29.86 128.96 128.98 34.73 78.10 0.828
7 4.07 29.33 128.96 129.27 18.26 78.02 0.827
8 4.10 28.43 128.96 129.29 18.04 77.79 0.824
9 4.06 29.86 128.96 124.90 18.41 77.61 0.821

10 4.21 25.42 128.96 129.29 28.96 76.63 0.808

* has no effect on optimization results

Soybean waste biomass, Pb(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 128.97 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 22.8 83.9 1 1 3

Solutions

No. x1 x2 x3 x4 x5 * R(%) Probability

1 4.23 29.86 128.96 129.29 34.37 77.40 0.894
2 4.24 29.86 128.96 129.27 32.98 77.40 0.894
3 4.23 29.86 129.02 129.29 27.99 77.39 0.894
4 4.23 29.82 128.96 129.29 32.86 77.39 0.894
5 4.44 29.32 128.96 129.29 21.86 77.03 0.888
6 4.17 29.84 128.96 124.02 36.96 76.77 0.883
7 3.94 28.58 128.96 128.46 36.96 76.49 0.879
8 4.51 29.86 128.96 124.07 18.04 76.45 0.878
9 4.56 28.68 128.96 124.52 18.04 75.96 0.87
10 4.44 28.59 128.97 122.14 36.74 75.93 0.87

* has no effect on optimization results
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Table 10. Cont.

Soybean biomass, Cd(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 73.35 166.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 25.6 92.8 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 4.06 29.86 73.35 129.28 18.25 89.62 0.953
2 4.02 29.86 73.35 128.89 18.11 89.60 0.952
3 3.83 29.25 73.35 129.29 18.04 89.04 0.944
4 4.22 28.08 73.35 129.29 18.04 88.47 0.936
5 4.62 28.81 73.35 129.29 18.13 87.4 0.919
6 4.25 29.85 73.39 129.29 30.11 86.85 0.911
7 3.20 29.86 73.35 129.29 18.15 85.99 0.899
8 4.27 24.14 73.35 129.29 18.32 85.98 0.898
9 4.76 29.86 73.35 115.78 18.12 85.68 0.894

10 3.84 29.80 73.35 66.33 18.04 82.57 0.848

Soybean biomass waste, Cd(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x2 experimental 15.14 29.86 1 1 3
x3 experimental 76.095 167.53 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 32.6 87.2 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 3.93 29.86 76.09 128.04 18.06 85.03 0.960
2 4.03 28.73 76.09 126.19 18.04 84.89 0.958
-3 3.94 28.50 78.89 125.74 18.04 84.29 0.947
4 4.24 26.63 78.30 121.66 18.04 83.45 0.931
5 4.03 27.94 76.09 129.29 36.96 82.64 0.916
6 3.96 28.94 77.41 129.29 36.96 82.53 0.914
7 4.14 29.27 76.09 129.29 36.95 82.53 0.914
8 3.08 28.14 76.09 129.28 18.24 81.73 0.899
9 3.76 27.06 76.09 62.49 18.04 79.55 0.859

10 3.87 23.43 76.09 74.48 18.04 79.51 0.859
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Table 10. Cont.

Soybean biomass, Zn(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 69.93 152.41 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 23.7 79.4 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 4.18 29.86 70.60 129.22 18.04 69.39 0.82
2 3.71 29.75 69.93 129.29 18.04 69.3 0.819
3 3.83 29.86 69.98 122.99 18.04 68.98 0.813
4 3.92 29.79 69.93 121.40 18.04 68.93 0.812
5 3.92 29.86 69.93 129.29 21.43 68.9 0.812
6 3.52 29.51 69.93 129.29 18.04 68.71 0.808
7 4.26 26.23 69.93 129.28 18.04 68.5 0.804
8 3.81 29.86 70.63 104.65 18.04 67.27 0.782
9 4.02 29.86 69.93 129.29 35.61 65.97 0.759

10 3.97 29.86 69.93 102.36 36.20 63.54 0.715

Soybean waste biomass, Zn(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 69.93 152.4 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 21.9 82.8 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 4.18 27.30 69.93 118.59 33.02 69.97 0.789
2 4.19 27.31 69.93 118.51 34.70 69.97 0.789
3 4.18 27.28 69.93 118.68 36.72 69.97 0.789
4 4.19 27.25 69.93 118.28 22.52 69.97 0.789
5 4.19 27.28 69.93 118.97 28.27 69.97 0.789
6 4.19 27.24 69.93 118.93 21.21 69.97 0.789
7 4.18 27.24 69.93 119.12 21.51 69.97 0.789
8 4.19 27.31 69.93 117.73 22.54 69.96 0.789
9 4.17 27.51 69.93 118.70 21.78 69.96 0.789

10 4.00 29.85 72.76 101.50 18.04 68.65 0.768
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Table 11. Solutions for the operation in favorable conditions for reaching the maximum value of the
biosorption capacity (q, mg/g) on soybean biomass and soybean waste biomass.

Soybean Biomass, Pb(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 2.9 27.8 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.50 15.14 297.55 129.23 36.96 25.04 0.889
2 4.90 15.33 299.15 129.29 36.96 24.96 0.886
3 4.85 15.14 293.04 129.29 36.96 24.76 0.878
4 4.16 15.14 299.15 129.29 30.92 24.31 0.86
5 4.91 15.14 299.15 111.25 35.56 24.13 0.853
6 4.91 15.14 299.12 115.73 27.83 23.47 0.826
7 4.79 15.14 299.15 129.26 19.03 23.13 0.812
8 4.78 15.14 299.15 119.95 18.20 22.64 0.793
9 3.00 16.62 299.14 129.29 36.68 22.22 0.776

10 4.61 22.13 299.15 86.15 18.06 17.99 0.606

Soybean waste biomass, Pb(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 2.8 29.4 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.29 15.16 299.15 73.55 36.96 28.36 0.961
2 3.91 15.14 299.15 58.68 36.96 28.27 0.958
3 4.26 15.16 298.54 86.18 36.96 28.2 0.955
4 3.81 15.14 299.15 57.03 36.96 28.16 0.954
5 4.55 15.14 299.15 129.29 27.23 27.5 0.929
6 3.83 17.37 299.15 56.66 36.94 26.94 0.907
7 4.67 15.14 287.63 129.29 32.83 26.91 0.906
8 4.91 18.64 299.15 89.55 36.96 25.86 0.867
9 4.91 19.75 299.15 61.52 36.96 25.5 0.854
10 3.38 23.18 299.15 55.71 36.96 22.82 0.753
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Table 11. Cont.

Soybean biomass, Cd(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 73.35 166.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.02 36.96 1 1 3
q maximum 0.8 25.2 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.44 15.14 166.41 129.29 36.96 24.08 0.954
2 4.04 15.14 166.41 129.29 36.95 23.86 0.945
3 4.83 15.90 166.40 129.29 36.96 23.75 0.94
4 4.02 16.55 166.41 129.29 36.96 23.32 0.923
5 4.22 15.14 166.41 87.18 36.96 22.67 0.896
6 4.73 19.73 166.41 55.71 36.96 22.12 0.874
7 4.91 20.87 166.39 55.79 36.96 21.59 0.852
8 2.94 15.89 166.41 55.71 36.96 21.49 0.848
9 4.82 26.92 166.41 55.71 36.96 19.29 0.758

10 4.85 27.03 166.41 129.29 36.74 19.29 0.758

Soybean waste biomass, Cd(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 73.35 166.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 1.1 29.5 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.19 19.18 166.03 55.71 36.94 28.18 0.959
2 3.83 19.74 166.41 129.26 36.96 28.17 0.953
3 3.80 16.76 166.41 55.71 36.96 28.09 0.95
4 3.92 17.97 166.41 121.58 36.96 28.03 0.948
5 3.65 16.45 166.21 55.71 36.96 27.86 0.942
6 4.08 18.51 166.41 104.52 36.96 27.76 0.939
7 3.46 16.98 166.29 129.29 36.96 27.65 0.935
8 3.03 15.30 166.41 55.71 36.96 26.33 0.889
9 2.91 21.76 166.38 129.29 36.96 25.93 0.874

10 2.70 15.52 166.41 55.71 36.96 25.17 0.847
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Table 11. Cont.

Soybean biomass, Zn(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 69.92 152.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 1.1 10.5 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 3.87 16.76 150.20 115.39 23.68 10.97 1
2 3.14 15.75 147.19 124.67 34.68 10.72 1
3 4.41 16.43 150.60 102.61 26.94 10.8 1
4 4.17 15.44 141.70 90.41 22.14 10.62 1
5 3.94 15.79 146.89 91.32 34.57 10.81 1
6 4.60 16.16 151.60 117.36 21.50 10.8 1
7 3.53 19.65 147.86 121.46 18.98 10.5 1
8 4.20 17.77 152.09 117.92 18.32 10.87 1
9 3.19 15.29 140.39 94.78 36.42 10.62 1

10 3.71 16.71 148.00 123.95 19.30 10.9 1

Soybean waste biomass, Zn(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 experimental 15.14 29.86 1 1 3
x3 experimental 69.93 152.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 1.9 15.9 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 3.83 15.46 143.90 98.83 36.78 15.98 1
2 3.96 15.16 152.07 93.99 34.73 15.93 1
3 4.41 15.38 146.40 62.19 36.24 15.98 1
4 3.89 15.68 147.73 61.19 35.16 15.96 1
5 4.42 15.21 147.40 64.41 36.71 16.21 1
6 3.88 15.80 139.80 70.79 36.80 16.04 1
7 3.63 16.06 145.80 84.59 36.82 16.11 1
8 3.56 15.23 147.60 59.05 35.35 16.11 1
9 3.67 15.14 152.40 55.73 31.56 15.25 0.954

10 3.49 15.14 152.40 81.88 24.65 13.77 0.848

The best values for biosorption efficiency (R, %) are obtained for Cd(II), both for
the biosorption on soybean biomass and waste biomass (85–89%), while the initial con-
centration of the metal ions is 73–76 mg/L. The Pb(II) ion is absorbed with a maximum
biosorption efficiency of 77–78%, both on soybean biomass and soybean waste biomass,
starting from an initial concentration of Pb(II) in a solution of 128–129 mg/L. Zn(II) ions
are absorbed with the lowest efficiency (R~69%), the initial concentration of the metal ions
in the solution being around 70 mg/L. Therefore, it is found that soybean waste biomass
can ensure a maximum biosorption efficiency equivalent to that demonstrated in the case
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of soybean biomass. In all cases the working pH values are in the range of 3–4.5 and the
contact time is 120–130 min, while temperature influences to a relatively small extent the
optimum for R(%).

Regarding the best values for the biosorption capacity of metal ions (q, mg/g), it is
found that the maximum value of q for soybean waste biomass is higher than that obtained
for soybean biomass (with 12% for Pb(II); 16% for Cd(II); about 45% for Zn(II)). The initial
concentration of the metal ions in the solution for which a maximum q is obtained is 72% of
the maximum limit of the experimental range in the case of Pb(II) (c0 = 416.45 mg Pb(II)/L);
72% for Cd(II) (c0 = 230.54 mg Cd(II)/L); 70% for Zn(II) (c0 = 209.25 mg Zn(II)/L). The dose
of sorbent is about 15–20 g/L (lower than the maximum value of R of ~30 mg/L).

The optimization goal is reached with a probability higher than 0.89.
The optimal solutions that consider some economic constraints (for example: the

minimum amount of sorbent and the maximum initial concentration of the metal ions in
the solution, which ensures maximum biosorption efficiency (R) and maximum biosorption
capacity (q)) while maintaining the other parameters in the experimental field are presented
in Tables 12 and 13.

Table 12. Solutions for the operation in favorable conditions for reaching the maximum value of the
biosorption efficiency (R, %) of soybean biomass and soybean waste biomass considering a series of
constraints (minimum dose of sorbent and maximum concentration of metal ion in solution).

Soybean Biomass, Pb(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 18.7 90.4 1 1 3

Solutions

No. x1 x2 x3 x4 x5 * R(%) Probability

1 4.03 15.14 299.15 129.29 19.77 57.78 0.817
2 4.01 15.14 299.12 129.26 19.25 57.78 0.817
3 4.09 15.14 299.15 129.29 21.81 57.76 0.817
4 4.03 15.16 299.11 129.29 33.56 57.80 0.817
5 4.13 15.14 299.15 129.29 28.56 57.72 0.816
6 3.67 15.14 295.31 129.29 21.68 57.39 0.808
7 3.99 15.14 299.15 110.01 21.73 55.51 0.8
8 4.83 15.14 299.06 129.29 36.42 54.46 0.793
9 4.11 15.27 298.58 81.83 18.04 52.31 0.774

10 3.56 15.14 299.15 55.72 27.69 48.00 0.742

* has no effect on optimization results
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Table 12. Cont.

Soybean waste biomass, Pb(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 22.8 83.9 1 1 3

Solutions

No. x1 x2 x3 x4 x5 * R(%) Probability

1 4.18 15.14 299.15 129.29 29.25 57.21 0.826
2 4.22 15.14 299.07 129.29 29.55 57.21 0.826
3 4.22 15.14 299.03 129.29 19.57 57.21 0.826
4 4.28 15.14 297.40 128.42 36.96 57.21 0.823
5 3.94 15.14 299.15 127.44 18.04 56.62 0.821
6 4.59 15.14 299.15 128.16 24.74 56.49 0.82
7 3.81 15.14 299.13 129.29 30.40 56.43 0.819
8 3.74 15.14 299.15 129.29 27.29 56.15 0.817
9 4.12 15.14 299.08 101.16 18.04 53.89 0.798

10 4.42 17.45 299.15 129.29 22.97 59.18 0.795

* has no effect on optimization results

Soybean biomass, Cd(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 73.35 166.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 25.6 92.8 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 4.03 15.14 166.31 129.29 34.12 66.49 0.847
2 4.42 15.14 166.41 129.29 33.83 65.78 0.842
3 4.03 15.14 166.41 129.05 27.52 65.5 0.841
4 3.95 15.14 166.40 129.29 20.91 64.53 0.834
5 4.17 15.14 166.41 127.01 21.74 64.39 0.833
6 4.09 15.14 166.24 129.29 18.04 64.19 0.831
7 4.10 16.04 166.41 129.24 18.04 64.69 0.817
8 4.33 15.14 166.41 99.57 23.57 61.36 0.81
9 3.86 15.14 164.99 106.79 18.04 61.8 0.81

10 2.59 15.15 165.27 79.44 21.71 48.82 0.699

83



Processes 2022, 10, 523

Table 12. Cont.

Soybean waste biomass, Cd(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 76.09 167.52 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 32.6 87.2 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 4.00 15.18 167.52 129.29 36.96 67.08 0.857
2 3.78 15.14 167.51 129.17 36.96 66.93 0.857
3 4.08 15.61 167.53 128.57 36.96 67.44 0.852
4 4.03 15.14 167.52 96.14 36.96 64.36 0.835
5 3.70 15.14 167.53 90.66 36.96 63.71 0.829
6 4.01 15.14 167.53 122.99 26.14 63.16 0.824
7 3.80 15.29 167.53 129.29 18.04 63.45 0.824
8 4.12 15.14 167.52 72.07 36.77 62.25 0.819
9 4.00 15.14 167.53 63.65 36.96 61.79 0.812

10 3.83 15.14 167.53 73.06 19.15 58.75 0.782

Soybean biomass, Zn(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 69.93 152.4 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 23.7 79.4 1 1 3

Solutions

No. x1 x2 x3 x4 x5 R(%) Probability

1 4.05 15.72 152.40 129.29 35.07 49.76 0.766
2 4.05 15.14 152.40 129.29 26.53 48.69 0.765
3 4.00 15.16 152.40 129.27 25.06 48.59 0.764
4 4.01 15.60 152.40 129.26 29.28 49.27 0.763
5 4.38 15.14 152.40 117.63 36.96 47.96 0.756
6 3.72 15.18 152.40 98.05 18.04 45.11 0.726
7 3.81 15.14 152.40 75.24 35.81 44.65 0.722
8 4.33 15.17 152.40 68.19 36.70 43.87 0.712
9 3.80 15.14 152.39 62.25 36.96 43.62 0.71
10 4.00 15.28 152.40 71.49 18.17 43.22 0.703
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Table 12. Cont.

Soybean biomass, Zn(II), R(%)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 69.93 152.4 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
R maximum 21.9 82.8 1 1 3

Solutions

No. x1 x2 x3 x4 x5 * R(%) Probability

1 4.19 15.14 152.40 118.38 18.67 51 0.782
2 4.19 15.14 152.40 118.35 34.03 51 0.782
3 4.18 15.14 152.40 118.86 36.56 51 0.782
4 4.19 15.15 152.40 118.71 25.27 51 0.782
5 4.19 15.15 152.40 117.83 36.89 51 0.782
6 4.19 15.14 152.28 117.96 24.99 51.02 0.782
7 4.22 15.14 152.40 129.14 29.26 50.84 0.78
8 4.25 15.14 152.40 107.70 19.35 50.82 0.78
9 4.21 15.53 152.40 115.01 32.83 51.45 0.779
10 3.52 15.17 152.40 122.77 36.96 48.98 0.763

* has no effect on optimization results

Table 13. Solutions for the operation in favorable conditions for reaching the maximum value of the
biosorption capacity (q, mg/g) of soybean biomass and soybean waste biomass considering a series of
constraints (minimum dose of sorbent and maximum concentration of the metal ions in solution).

Soybean Biomass, Pb(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 2.9 27.8 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.03 15.14 299.15 110.38 36.96 24.07 0.947
2 4.90 15.14 299.13 106.96 36.56 24.06 0.947
3 4.33 15.14 299.10 95.85 36.96 23.65 0.941
4 3.32 15.14 299.15 118.21 36.96 23.35 0.937
5 3.39 15.14 299.15 128.56 30.42 23.21 0.934
6 4.91 15.14 299.15 95.92 33.00 23.19 0.934
7 4.71 15.19 299.15 129.29 18.09 23.02 0.93
8 3.75 15.15 299.10 76.92 36.96 22.31 0.92
9 3.19 15.14 299.15 121.70 18.04 21.12 0.901
10 4.67 15.14 299.10 75.91 18.54 20.81 0.896
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Table 13. Cont.

Soybean waste biomass, Pb(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 128.96 299.15 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 2.8 29.4 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.38 15.14 299.15 67.04 36.96 28.44 0.988
2 4.24 15.14 299.15 94.63 36.94 28.15 0.984
3 4.16 15.14 299.15 121.50 35.20 27.78 0.979
4 4.57 15.14 299.15 64.80 32.50 27.67 0.978
5 4.33 15.14 299.15 118.99 31.69 27.65 0.978
6 3.64 15.14 299.15 108.99 36.96 27.39 0.974
7 3.81 15.14 299.15 116.03 18.04 26.52 0.962
8 4.03 15.14 299.15 82.37 22.77 26.34 0.96
9 3.85 15.14 299.13 62.19 24.89 26.1 0.957
10 2.87 15.14 299.15 55.71 36.04 25.61 0.95

Soybean biomass, Cd(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 73.35 166.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 0.8 25.2 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.37 15.14 166.39 128.73 36.96 24.024 0.984
2 4.91 15.14 166.41 128.82 35.56 23.17 0.971
3 3.54 15.14 166.41 128.11 36.96 23.16 0.972
4 4.49 15.14 166.41 78.10 36.96 22.9 0.968
5 3.83 15.14 166.41 55.71 26.16 18.29 0.895
6 3.84 15.14 166.41 129.29 21.53 16.97 0.872
7 4.19 15.14 166.24 55.71 18.99 16.44 0.862
8 2.59 17.87 165.80 56.24 36.96 19.63 0.855
9 3.36 15.14 166.13 129.22 18.04 15.35 0.841

10 2.67 21.87 166.41 55.71 18.14 10.88 0.608
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Table 13. Cont.

Soybean waste biomass, Cd(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 73.35 166.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 1.1 29.5 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 4.29 15.14 166.41 129.29 36.95 27.78 0.979
2 4.04 15.14 166.41 74.01 36.96 27.43 0.975
3 4.24 15.14 166.41 89.03 36.96 27.23 0.973
4 3.82 15.14 166.41 87.43 36.96 27.21 0.972
5 4.73 15.14 166.41 129.29 36.95 27.15 0.972
6 3.53 15.14 166.41 67.79 36.96 27.13 0.972
7 3.89 15.49 166.41 120.96 36.96 27.68 0.97
8 4.70 15.14 165.22 55.73 36.96 26.99 0.966
9 4.13 15.14 165.36 129.29 35.45 26.6 0.961

10 4.91 15.14 166.41 70.72 32.11 23.46 0.923

Soybean biomass, Zn(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.86 1 1 3
x3 maximum 69.93 152.4 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 1.1 10.5 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability

1 3.66 15.14 152.40 88.17 29.02 10.97 0.999
2 3.04 15.14 152.40 96.51 25.09 10.84 0.999
3 3.78 15.14 152.40 86.51 32.88 10.93 0.999
4 4.35 15.14 152.40 74.83 33.35 10.55 0.999
5 4.13 15.14 152.40 69.14 30.73 10.5 0.999
6 3.43 15.14 152.40 71.43 31.49 10.55 0.999
7 3.90 15.14 152.40 67.72 31.00 10.5 0.999
8 4.73 15.14 152.40 125.03 18.82 10.76 0.999
9 4.00 15.14 152.40 114.03 20.21 11.18 0.999

10 2.72 15.21 152.38 55.71 18.87 9.63 0.966
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Table 13. Cont.

Soybean waste biomass, Zn(II), q(mg/g)

Constraints

Variabile
Variation

range
Lower limit Upper limit

Minimum
weight

Maximum
weight

Importance

x1 experimental 2.59 4.91 1 1 3
x2 minimum 15.14 29.85 1 1 3
x3 maximum 69.93 152.41 1 1 3
x4 experimental 55.71 129.29 1 1 3
x5 experimental 18.04 36.96 1 1 3
q maximum 1.9 15.9 1 1 3

Solutions

No. x1 x2 x3 x4 x5 q(mg/g) Probability
1 3.73 15.14 152.40 87.21 36.40 16.55 0.999
2 4.16 15.14 152.40 87.47 34.66 15.91 0.999
3 3.97 15.14 152.40 101.60 35.39 15.99 0.999
4 3.40 15.14 152.40 85.39 36.19 16.37 0.999
5 3.60 15.14 152.40 128.91 36.96 15.66 0.994
6 3.53 15.14 152.06 55.71 30.48 14.89 0.974
7 4.15 15.81 152.27 129.07 36.96 15.34 0.971
8 3.84 15.14 152.40 55.71 26.20 13.96 0.951
9 4.30 15.14 152.40 105.00 24.33 13.47 0.938

10 4.36 15.14 152.36 55.72 23.63 13.14 0.929

Comparing the data in Tables 10 and 12, the following aspects can be seen when
constraints are imposed:

• The optimization of the Pb(II) biosorption process using soybean biomass as the
biosorbent when considering two constraints, the minimum dose of biosorbent and
the maximum Pb(II) concentration in the initial solution (the other parameters taking
appropriate values in the experimental field), will result in a 49% decrease in the
sorbent dose, a 120% increase in the initial concentration of the metal ions in the
solution, and a 40% decrease in the operating temperature. However, the maximum
separation efficiency will decrease by about 26%.

• The optimization of the Pb(II) biosorption process using soybean waste biomass as a
biomass, considering the two constraints presented above, will result in a decrease in
the required amount of sorbent and an increase in the initial concentration of the ion
in the solution, as in the case of Pb(II) biosorption on soybean biomass. The maximum
separation efficiency will also decrease by 26%.

Therefore, soybean biomass and soybean waste biomass can ensure the same biosorp-
tion efficiency of Pb(II) under the same operating conditions.

• The optimization of the Cd(II) biosorption process on soybean biomass when con-
sidering two constraints, the minimum dose of biosorbent and the maximum Cd(II)
concentration in the initial solution (the other parameters taking appropriate values
in the experimental field), results in a decrease in the required amount of sorbent by
49%, increase the initial ion concentration by almost 119%, and also the operating tem-
perature by almost 89%. Under these conditions, the maximum biosorption efficiency
decreases by almost 26%.

• A similar situation is obtained in the case of Cd(II) biosorption on soybean waste
biomass, in which case, for the two constraints imposed on those in Table 10, the
efficiency of Cd(II) biosorption decreases by almost 22%.

• The optimization of the Zn(II) biosorption process on soybean biomass, when imposing
the constraints of minimum sorbent dose and maximum Zn(II) concentration in the
initial solution (similar to the previous situations), results in reducing the sorbent dose
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by almost 47%, an increase in the initial concentration of the metal ions in solution by
about 116%, and also an increase in the operating temperature by almost 40%, as well
as the reduction of the maximum value of the biosorption efficiency by almost 28%.

• The optimization of the Zn(II) biosorption process on soybean waste biomass under
the abovementioned constraints results in a reduction of the biosorbent dose by almost
44%, an increase in the initial concentration of Zn(II) in the initial solution by 118%,
and a decrease in the operating temperature by nearly 43%.

If the biosorption process is to be scaled-up, a cost–benefit analysis of the two opti-
mization alternatives is required. Additionally, under these operating conditions with the
constraints imposed, the values imposed by the regulations in force regarding the con-
centrations of heavy metal ions in the treated effluents can be reached, because the saved
sorbent can be used in an additional biosorption cycle, ensuring an increased biosorption
efficiency to comply with the regulations on the quality of liquid effluents in economic
operating conditions.

Imposing these constraints in the process of optimizing the biosorption capacity q
(minimization of the sorbent dose and maximization of the initial concentration of metal
ions in solution) results in the same optimal values of parameters and the maximum
biosorption capacity as in the case of optimization without the two constraints (see Table 13
vs. Table 11). The maximum values of R and q under the operating conditions presented
in Tables 10–13 were verified experimentally (for the highest probability of achieving the
purpose of the objective function—solution 1) (Tables 14 and 15).

The experimental data presented in Tables 14 and 15, which confirmed the solutions
obtained from the optimization process, demonstrate a very important matter, i.e., that soy
waste biomass can ensure a biosorption efficiency of the three metal ions similar to that
obtained when using soybean biomass as a biosorbent, with great potential for scaling-up.
All this information shows that both soybean biomass and soybean waste biomass can
be used effectively as biosorbents to remove heavy metal ions from aqueous effluents
under certain operating conditions, making it possible to exploit industrial soybean waste
biomass, which cannot be used in animal feed due to the content of the extraction solvent.

Table 14. (a,b) Experimental values of R(%) and q(mg/g) for validation of optimal solutions
(Tables 10 and 11).

(a)

No.
x1 (pH) x2 (DS) x3 (c0) x4 (tc) x5 (T) Rexp

(%)
Rcalc
(%)calc exp calc exp calc exp calc exp calc exp

Soybean biomass, Pb(II), R(%)

1 4.02 4.00 29.86 30.00 129.03 124.93 129.29 129.00 32.79 30.00 73.17 78.13

Soybean waste biomass, Pb(II) R(%)

2 4.23 4.20 29.86 30.00 128.96 124.93 129.29 129.00 34.37 30.00 78.12 77.40

Soybean biomass, Cd(II), R(%)

3 4.06 4.00 29.86 30.00 73.35 74.96 129.28 129.00 18.25 20.00 72.31 89.62

Soybean waste biomass, Cd(II), R(%)

4 3.93 4.00 29.86 30.00 76.89 74.96 128.04 128.00 18.06 20.00 72.67 85.03

Soybean biomass, Zn(II), R(%)

5 4.18 4.20 29.86 30.00 70.60 72.32 129.22 129.00 18.04 20.00 58.79 69.39

Soybean waste biomass, Zn(II), R(%)

6 4.18 4.20 27.3 30.00 69.93 72.32 118.59 119.00 33.02 30.00 59.03 69.97
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Table 14. Cont.

(b)

No.
x1 (pH) x2 (DS) x3 (c0) x4 (tc) x5 (T) qexp

(mg/g)
qcalc

(mg/g)calc exp calc exp calc exp calc exp calc exp

Soybean biomass, Pb(II), q(mg/g)

7 4.50 4.50 15.14 15.00 297.55 291.51 129.23 129.00 36.96 30.00 19.86 25.04

Soybean waste biomass, Pb(II), q(mg/g)

8 4.29 4.30 15.16 15.00 299.15 291.51 73.55 74.00 36.96 30.00 20.12 28.36

Soybean biomass, Cd(II), q(mg/g)

9 4.44 4.50 15.14 15.00 166.41 165.08 129.29 129.00 36.96 30.00 15.91 24.08

Soybean waste biomass, Cd(II), q(mg/g)

10 4.19 4.20 19.18 19.00 166.03 165.08 55.71 56.00 36.94 30.00 15.93 28.18

Soybean biomass, Zn(II), q(mg/g)

11 3.87 4.00 16.76 17.00 150.2 146.17 115.39 115.00 23.68 20.00 9.08 10.97

Soybean waste biomass, Zn(II), q(mg/g)

12 3.83 4.00 15.46 15.50 143.90 146.17 98.83 99.00 36.78 30.00 10.25 15.98

Table 15. Experimental values of R(%) during the validation of the optimal solutions in Table 12.

No.
x1 (pH) x2 (DS) x3 (c0) x4 (tc) x5 (T) Rexp

(%)
Rcalc
(%)calc exp calc exp calc exp calc exp calc exp

Soybean biomass, Pb(II), R(%)

1 4.03 4.00 15.14 15.00 299.15 291.51 129.29 129.00 19.77 20.00 62.07 57.78

Soybean waste biomass, Pb(II), R(%)

2 4.18 4.20 15.14 15.00 299.15 291.51 129.29 129.00 29.25 30.00 65.18 57.21

Soybean biomass, Cd(II), R(%)

3 4.03 4.00 15.14 15.00 166.31 165.08 129.29 129.00 34.12 30.00 59.91 66.49

Soybean waste biomass, Cd(II), R(%)

4 4.00 4.00 15.18 15.00 167.52 165.08 129.29 129.00 36.96 30.00 63.17 67.08

Soybean biomass, Zn(II), R(%)

5 4.05 4.00 15.72 16.00 152.40 146.17 129.29 129.00 35.07 30.00 42.46 49.76

Soybean waste biomass, Zn(II), R(%)

6 4.19 4.20 15.14 15.00 152.40 146.17 118.38 119.00 18.67 20.00 53.07 51.00

5. Conclusions

The sustainable use of natural materials and their waste for the removal of heavy
metal ions from aqueous effluents via biosorption requires the knowledge of the most
favorable combinations of independent variables that determine the performance of the
biosorption process to maximize the biosorption efficiency and biosorption capacity of
biosorbents used. To this end, in this paper, the empirical mathematical modeling of the
biosorption process of Pb(II), Cd(II), and Zn(II) ions on soybean-based biosorbents was
performed by applying the Response Surface Methodology, followed by the optimization of
the biosorption process, as prerequisites for scale-up. Two categories of natural biosorbents
were used: soybean biomass and soybean waste biomass resulting from oil the extraction
process of soy seeds.

The purpose of the modeling was to find the most probable mathematical relationships
between the dependent variables (biosorption efficiency, R(%), and biosorption capacity,
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q(mg/g), and the residual concentration of metal ion in the solution) and process parameters
(pH; sorbent dose, DS (g/L); initial concentration of metal ion in the solution, c0 (mg/L);
contact time, tc (min); temperature, T (◦C)) in order to find sets of solutions to maximize
biosorption efficiency and biosorption capacity by applying specific optimization tech-
niques. The models were validated using methods specific to multiple regression analysis
and the results of the optimization process were validated experimentally.

An ANOVA confirmed the adequacy of the developed models ((Prob > F) < 0.05). The
standard deviations are small and the values of the coefficient of determination (R2) are
usually over 0.9. The high values of R2

adj show that the total variations of R and q can be
described by the elaborated models. Additionally, the values R2

pred are in good agreement
with R2

adj, which demonstrates the correctness of the models in that they are well selected
(and not as a consequence of the large number of variables). The sensitivity analysis of
the models shows that the change in pH and the initial concentration of the metal in the
solution significantly influences the biosorption process.

All this information showed that both soybean biomass and soybean waste biomass
can be used effectively as biosorbents to remove heavy metal ions from aqueous effluents
under certain operating conditions. Finally, a comparison was performed between the
performances of the two biosorbents in terms of biosorption efficiency and biosorption ca-
pacity, which demonstrated, based on confirmed experimental data and through modeling
and optimization, that soybean biomass waste performs similarly to soybean biomass.

Response Surface Methodology (RSM) was used as a mathematical and statistical
tool to evaluate the effects of some factors on the performance of the process, namely,
biosorption capacity and biosorption efficiency, and has proven to be a powerful tool for
measuring optimal regional responses by analyzing a sequence of designed experiments.
RSM was particularly useful because it reduced the number of tests required to find the
optimal conditions, which were then validated experimentally.

The experimental program fulfilled in this paper demonstrates that biomass waste
from the biofuel production industry can be used as a very efficient, low-cost biosorbent
with which to remove heavy metals from water effluents in a sustainable way. The waste
biomass can be exploited in environmental cleaning processes in accordance with the
principles of the circular economy. These results require further research by conducting a
cost–benefit analysis of optimized alternatives in order to scale-up the biosorption process
to a larger scale.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10030523/s1, Table S1. Equations of mathematical model for
metal ion biosorption efficiency R(%) (a) and biosorption capacity q(mg/g) in coded (a) and real (b)
coordinates. Table S2. Results of tests for model adequacy. Table S3. ANOVA for the polynomial
(quadratic) model for R(%) in case of Pb(II) retention on soybean biomass and soybean waste biomass,
respectively. Table S4. ANOVA for the polynomial (quadratic) model for q(mg/g) in case of Pb(II)
retention on soybean biomass and soybean waste biomass, respectively.
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23. Dąbrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial
wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [CrossRef] [PubMed]

24. Rajivgandhi, G.; Gnanamangai, B.M.; Ramachandran, G.; Chackaravarthy, G.; Chelliah, C.K.; Maruthupandy, M.; Alharbi, N.S.;
Kadaikunnan, S.; Li, W.-J. Effective removal of heavy metals in industrial wastewater with novel bioactive catalyst enabling
hybrid approach. Environ. Res. 2021, 204, 112337. [CrossRef] [PubMed]

25. Bilal, M.; Ihsanullah, I.; Younas, M.; Shah, M.U.H. Recent advances in applications of low-cost adsorbents for the removal of
heavy metals from water: A critical review. Sep. Purif. Technol. 2021, 278, 119510. [CrossRef]

26. Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals
removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [CrossRef]

27. Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water
treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [CrossRef]

92



Processes 2022, 10, 523

28. Tudorache, D.I.F.; Gavrilescu, M. Application of natural zeolites as sorbents in the clean-up of aqueous streams. Environ. Eng.
Manag. J. 2012, 11, 867–878.

29. Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. Biomass-derived biosorbents for metal ions sequestration:
Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [CrossRef]

30. Zhou, Z.; Sun, Y.; Wang, Y.; Yu, F.; Ma, J. Adsorption behavior of Cu(II) and Cr(VI) on aged microplastics in antibiotics-heavy
metals coexisting system. Chemosphere 2021, 291, 132794. [CrossRef]

31. Apostol, L.C.; Gavrilescu, M. Application of natural materials as sorbents for persistent organic pollutants. Environ. Eng. Manag.
J. 2009, 8, 243–252. [CrossRef]

32. Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated
carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2020, 264, 128455. [CrossRef]
[PubMed]

33. Cao, F.; Lian, C.; Yu, J.; Yang, H.; Lin, S. Study on the adsorption performance and competitive mechanism for heavy metal
contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresour.
Technol. 2019, 276, 211–218. [CrossRef]

34. Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012,
113, 170–183. [CrossRef] [PubMed]

35. De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater
treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [CrossRef]

36. Esfandiar, N.; Suri, R.; McKenzie, E.R. Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost
sorbents; Effects of co-contaminants, humic acid, salinity and pH. J. Hazard. Mater. 2021, 423, 126938. [CrossRef] [PubMed]

37. Godage, N.H.; Gionfriddo, E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal. Chim.
Acta 2020, 1125, 187–200. [CrossRef] [PubMed]

38. Ata, A.; Nalcaci, O.O.; Ovez, B. Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Res. 2012,
1, 194–204. [CrossRef]

39. Demirbas, A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008, 157, 220–229. [CrossRef]
[PubMed]

40. Ullrich, A.H.; Smith, M.W. The biosorption process of sewage and waste treatment. Sew. Ind. Wastes 1951, 23, 1248–1253.
41. Kratochvil, D.; Volesky, B. Advances in the biosorption of heavy metals. Trends Biotechnol. 1998, 16, 291–300. [CrossRef]
42. Lesmana, S.O.; Febriana, N.; Soetaredjo, V.; Sunarso, J.; Ismadji, S. Studies on potential applications of biomass for the separation

of heavy metals from water and wastewater. Biochem. Eng. J. 2009, 44, 19–41. [CrossRef]
43. Demey, H.; Melkior, T.; Chatroux, A.; Attar, K.; Thiery, S.; Miller, H.; Grateau, M.; Sastre, A.M.; Marchand, M. Evaluation of

torrefied poplar-biomass as a low-cost sorbent for lead and terbium removal from aqueous solutions and energy co-generation.
Chem. Eng. J. 2018, 361, 839–852. [CrossRef]

44. Guérin, T.; Ghinet, A.; Hossart, M.; Waterlot, C. Wheat and ryegrass biomass ashes as effective sorbents for metallic and organic
pollutants from contaminated water in lab-engineered cartridge filtration system. Bioresour. Technol. 2020, 318, 124044. [CrossRef]
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Abstract: Biochar-amended soil cover (BSC) in landfills can improve the oxidation of methane.
However, adding biochar can cause a larger amount of rainwater to enter the soil cover and landfill
because it increases the permeability of the soil cover, which increases leachate production. Improving
the hydrophobicity and waterproof ability of BSC is expected to reduce rainwater that goes into
landfills. Silane coupling agent KH-570 is used to modify biochar to improve its hydrophobicity and
waterproof ability after being added to the soil cover. The waterproofness of hydrophobic biochar-
amended soil cover (HBSC) was studied by conducting a precipitation simulation test. Results
showed that the optimum hydrophobicity of the surface-modified biochar was obtained when the
mass fraction of KH-570 was 7%, the biochar dosage was 7 g, and the modification temperature was
60 ◦C. In these conditions, the contact angle was 143.99◦ and the moisture absorption rate was 0.10%.
The analysis results of thermogravimetric, X-ray diffractometer and scanning electron microscopy
before and after the biochar modification showed that KH-570 formed a hydrophobic organic coating
layer on the biochar surface, indicating that the surface hydrophobic modification of biochar was
successfully carried out by silane coupling agent. The waterproof ability of HBSC was significantly
better than that of BSC in the simulated precipitation test.

Keywords: silane coupling agents; biochar; hydrophobic modification; landfill cover

1. Introduction

Landfill soil cover has been used to oxidize methane to reduce methane emission [1,2].
The CH4 emission reduction of landfill depends on the choice of soil cover material. In
contrast to traditional soil cover, the biocover in landfill have been extensively studied to
increase the aerobic oxidation of methane [3]. Many kinds of biocover materials include
compost [4–6], mineralized refuse [7], and solidified sludge [8]. However, CH4 oxidation
capacity of traditional landfill soil cover material was generally insufficient [9,10]. Biomass-
based carbon materials have attracted attention due to their economical, sustainable, and
environmentally friendly features [11]. Biochar can be considered as a suitable and alternate
material as a final cover system for landfills because its high specific surface area and
high porosity can improve the permeability of the biocover and promote the growth and
reproduction of methanotrophs [1,12–14]. Prior studies noted that average CH4 removal
efficiencies were up to 85.2% for biochar-amended soil cover (BSC) [6].

However, a number of hydrophilic groups, such as carboxyl and hydroxyl groups,
are on the surface of biochar (C > 60%) [15]. As the content of biochar added to the soil
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cover increases, so does the permeability coefficient of the cover. Studies have shown
that the permeability coefficient of the soil with 10% biochar added has been more than
10−7 cm/s [16]. The increase of permeability coefficient leads to the increase of rainwater
into the methane oxide layer and landfill. Water content has been found to be an important
environmental factor that controls methane oxidation and adsorption capacity of landfill
cover soil [17,18]. The increase of rainwater entering the methane oxide layer decreases
methane oxidation and adsorption efficiency [19]. In addition, the increase of rainwater
entering the landfill leads to the increase of leachate production, thereby increasing the
cost of leachate treatment. Therefore, a problem to be solved is how to reduce rainwater
entering the soil cover after adding biochar.

KH-570 is an environmentally friendly hydrophobic modifier that has been studied
and applied in environmental pollution control [20]. For example, Chen [21] used four
kinds of silane coupling agents to modify the interfaces of composites and found that
KH-570 modified composite possessed the best mechanical properties and water resis-
tance. Therefore, in this study, silane coupling agent KH-570 was selected as the modifier
to conduct an experiment on hydrophobic modification of biochar, thereby improving
its hydrophobicity and reducing rainwater that enters the soil cover and landfill. The
hydrophobic properties of biochar were tested under various concentrations of modifier,
dosages, and modification temperatures to determine the optimal hydrophobic modifi-
cation conditions. A simulated landfill cover precipitation experiment was conducted to
study the waterproof ability of modified biochar. The hydrophobic modification of biochar
was conducted to develop materials to improve the hydrophobic permeability of the landfill
cover layer, providing technical support for methane emission reduction in landfills.

2. Experimental

2.1. Materials

Biochar was purchased from Desheng Carbon Industry Co. Ltd., silane coupling agent
KH-570 from Sinopharm Chemical Reagent Co. Ltd., ethanol absolute (analytically pure)
from Cologne Chemicals Co. Ltd., and acetic acid (analytically pure) from Sinopharm
Chemical Reagent Co. Ltd. (all manufacturers are based in China).

2.2. Preparation of Biochar

The biochar used was produced by pyrolysis of discarded rice straw in a completely
anoxic environment through pyrolysis at 500 ◦C [15]. Total pore volume of adsorption was
0.07 cm3/g. The biochar used in the test was alkaline, with high C content (64.2%) and low
P (0.16%) and K (0.33%) contents. The main component of rice straw was cellulose, and its
main structures were sieve tube and conduit, which mainly account for the large specific
surface area of rice straw biochar [15].

2.3. Surface Modification of Biochar with KH-570

First, biochar was added to alcohol-water solution to hydrolyze it sufficiently. The
volume proportion of ethanol absolute and water was 1:1, and 0.1 mol/L acetic acid was
used to adjust pH to 4. Then, the mixture was stirred in a water bath at 30 ◦C–70 ◦C for
30 min. Second, the prepared silane coupling agent KH-570 was added into the above
solution and stirred for 2 h. Third, the reaction products were filtered and washed with
ethanol absolute several times. Finally, the surface hydrophobic modified biochar was
obtained by drying in an electric blast drying oven at 50 ◦C for 6 h.

2.4. Hydrophobic Modification Mechanism of KH-570

Silane coupling agent KH-570 represents a type of important difunctional group
modifiers that can react with adsorbed water on organic molecules and inorganic surfaces
to form a strong bond [22]. Figure 1 shows the surface hydrophobic modification reaction
mechanism of KH-570. This silane coupling agent undergoes hydrolysis, dehydration, and
condensation to form oligomers. The dehydration of oligomers and hydroxyl groups on
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the surface of the biochar formed partial covalent bonds, which coated the biochar surface
with coupling agent and increased the hydrophobicity [15].

Figure 1. Hydrophobic modification mechanism of KH-570.

2.5. Characterization Analysis

The changes of functional groups of biochar before and after modification were char-
acterized by Fourier transform infrared spectroscopy (FTIR) (IS10, Thermo Fisher Scientific,
Madison, WI, USA). The morphology and structure of biochar before and after modification
were characterized by scanning electron microscopy (SEM) (JSM-7900F Plus, Nidec Cor-
poration, Kyoto, Japan). The thermogravimetric (TGA) curves of biochar before and after
modification were measured by synchronous thermal analyzer to characterize its thermal
stability (SDT-Q600, Waters, Milford, MA, USA, USA). The phase of biochar before and
after modification was analyzed by X’Pert3 Power multifunctional X-ray diffractometer
(XRD) (PANalytical B.V., Alemlo, The Netherlands). Surface contact angle was an important
parameter for evaluating hydrophobicity or hydrophilicity. JC2000D1 contact angle tester
(Shanghai Zhongchen Digital Technology Equipment Co. Ltd., Shanghai, China) was used
to determine the wettability of biochar before and after modification. The contact angle
was less than or equal to 90◦ for hydrophilicity and greater than 90◦ for hydrophobic-
ity [23]. Hygroscopicity refers to the ability of a solid material to absorb water from air.
The lower the moisture content, the better its hydrophobicity [23,24]. Then, 4 g of dried to
constant weight original biochar and modified biochar were evenly spread on glass sheets
and placed at room temperature for 24 h. Their mass changes were measured and their
moisture absorption rates were calculated. The moisture absorption rates can be calculated
as follows:

moisture absorption rates = [(m2 − m1) / m1] × 100% (1)

where m1 is the drying mass, g; and m2 is the mass after 24 h of hygroscopicity, g.

2.6. Waterproofing Experiment

In this study, a simple model was designed to simulate the actual landfill soil cover
(Figure 2) to compare the waterproof performance of biochar before and after modification.
Biochar-amended soil and hydrophobic biochar-amended soil, in which the volume propor-
tion of biochar or modified biochar and soil was 1:5 [16], were, respectively, added into the
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model. The material was repeatedly compacted, with one side flush with the water guide
plate. The slope of the top was adjusted to 7% according to the Technical Specification for
Sealing of Sanitary Landfill Sites of Domestic Waste (China, 2017). The initial water content
of the cover material was adjusted to approximately 22%. Then, 2.5 L water was evenly
sprayed by simulated precipitation at the top of the compacted slope, and the water flowed
out of the water guide plate into the collection container. The volume of outflow water
was measured.

Figure 2. Schematic and physical map of a simple landfill soil cover model.

3. Results and Discussion

3.1. Effect of Mass Fraction of KH-570 on Surface Hydrophobic Properties of Modified Biochar

Under the biochar dosage of 5 g and modification temperature of 70 ◦C, the effects
of various mass fractions of KH-570 on the surface hydrophobicity of biochar were in-
vestigated. As shown in Figure 3, the contact angle of biochar was 7.04◦ and the water
absorption rate was 0.22% without the addition of KH-570. With the increase of the mass
fraction of KH-570, the contact angle of the modified biochar increased initially, and then
showed a trend of fluctuation and decline. The reason was that when the mass fraction
of KH-570 continued increasing (<7%), the hydrophobic performance improved as more
hydrophilic groups on the biochar surface were replaced by hydrophobic groups. However,
when the mass fraction of KH-570 exceeded 7%, the siloxane anion generated by the hydrol-
ysis of KH-570 formed a bridge, leading to the flocculation of the powder, thereby affecting
the hydrophobic modification effect of the biochar [25]. The contact angle of modified
biochar reached 131.99◦ and the water absorption rate was 0.04% when the mass fraction of
KH-570 was 7%. Therefore, the optimal mass fraction of KH-570 was 7% when the biochar
dosage was 5 g and the modification temperature was 70 ◦C.

3.2. Effect of Biochar Addition on Surface Hydrophobic Properties

The effect of the additional amount of biochar on the surface hydrophobic performance
was studied at 70 ◦C modification temperature and 7% mass fraction of KH-570. As shown
in Figure 4, the contact angle reached a maximum value of 141.99◦, and the moisture
absorption rate correspondingly had a minimum value of 0.08% when the biochar dosage
was 7 g, indicating that the hydrophilic groups on the surface of biochar were basically
replaced by the hydrophobic groups of KH-570, forming a hydrophobic organic cover on the
surface of biochar in the form of chemical bonding, which resulted in the transformation of
biochar from hydrophilic surface to hydrophobic surface [25]. However, when the biochar
dosage increased from 7 g to 13 g, the contact angle decreased from 141.99◦ to 125.49◦, and
the moisture absorption rate increased from 0.08% to 0.10%, indicating that the hydrophilic
group on the surface of biochar could not be completely replaced, and the hydrophobic
effect worsened. Therefore, the optimal dosage of biochar was 7 g when the mass fraction
of KH-570 was 7% and the modification temperature was 70 ◦C.
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Figure 3. (a) Contact angles and moisture absorption rates of biochar modified by KH-570, and
(b) contact angle of modified biochar when KH-570 mass fraction was 7%.

Figure 4. (a) Contact angles and moisture absorption rates of modified biochar with different dosage,
and (b) contact angle of modified biochar when the dosage of biochar was 7 g.

3.3. Effect of Reaction Temperature on Surface Hydrophobicity of Modified Biochar

The effect of the reaction temperature on the surface hydrophobicity of biochar was
studied when the mass fraction of KH-570 was 7% and the biochar dosage was 7 g. The test
results of the contact angle and moisture absorption rates under 30, 40, 50, 60, and 70 ◦C are
shown in Figure 5. The hygroscopicity decreased greatly when the reaction temperature
reached 50 ◦C, and modified biochar changed from hydrophilic surface to hydrophobic
surface. The maximum contact angle of modified biochar was 143.99◦, and the minimum
moisture absorption rate was 0.10% until the reaction temperature reached 60 ◦C. When
the reaction temperature was increased, the contact angle decreased and the moisture
absorption rate increased. This result may be due to the fracture and release of a large
amount of hydrophilic oxygen-containing functional groups in biomass [24]. Therefore, the
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optimal modification temperature was 60 ◦C when the mass fraction of KH-570 was 7%
and the biochar dosage was 7 g.

Figure 5. (a) Contact angles and moisture absorption rate of modified biochar at different reaction
temperatures, and (b) contact angle of modified biochar when temperature was 60◦C.

In summary, the hydrophobic modified biochar was prepared under the following
conditions: 7% mass fraction of KH-570, 7 g biochar dosage, and 60 ◦C modification
temperature. In these conditions, the contact angle was 143.99◦ and the moisture absorption
rate was 0.10%. Compared with the original biochar, the contact angle of the modified
biochar increased by 136.95◦ and the moisture absorption rate decreased by 0.12%.

3.4. FT-IR and TGA Analysis

The surface functional groups of the original and modified biochar were detected
using FT-IR spectroscopy [26]. As shown in Figure 6a, the spectra of the biochar before
and after modification were basically consistent, indicating that the biochar was the same
substance before and after modification, but the microstructure changed. Some proper
functional groups on the surface of biochar were effectively identified such that the intensity
of the wide adsorption band around 3400 cm−1 could be attributed to O-H stretching of
acid or to alcohol structures, that around 2368–2381 cm−1 could indicate the presence
of carbon dioxide (O=C=O), and around 1590–1850 cm−1 may indicate C=C stretching
from alkenes, around 1360 cm−1 may indicate the presence of C-O, C=O and probably
C-H bending modes. The stretching vibration absorption peak around 1050 cm−1 of the
modified hydrophobic biochar was significantly stronger and wider than that of the original
biochar, indicating that the modified biochar was grafted with the modifier and generated
a large amount of C-O-Si and Si-O [20,26–31]. Hydrophobic groups in KH-570 effectively
bound to the surface of the biochar, forming a hydrophobic organic coating [20].

The thermal stabilities of the biochar before and after powder modification in an
atmosphere of N2 were measured using TGA [9]. As shown in Figure 6b, the first weight
loss occurred at 100 ◦C, which was attributed to the removal of adsorbed water [32]. Before
200 ◦C, the weight loss rate of original biochar was 5.21%. However, the weight loss rate
of the modified biochar was 2.11%, which was significantly reduced, indicating that the
surface hydrophobicity of the modified biochar was enhanced and the moisture absorption
rate decreased. The second weight loss occurred at 400–600 ◦C due to the combustion of
free carbon and ash in biochar. The decreasing trend of the modified biochar mass was
smoother than that of the original biochar, indicating that the silane coupling agent coated
on the surface of biochar delayed the combustion of carbon and ash. The results showed
that the modified biochar exhibited better thermal stability than the original biochar.
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Figure 6. (a) Fourier transform infrared spectroscopy spectra and (b) thermogravimetric curves of
biochar before and after modification.

3.5. XRD Analysis

The effects of silane coupling agent modification on the biochar were explored by
characterizing them through XRD analysis. As shown in Figure 7, biochar before and after
modification basically coincided, indicating that the surface hydrophobicity modification of
the biochar by KH-570 had no significant effect on the phase composition of the biochar [21].
The XRD pattern of the biochar before and after modification was dominated by crystalline
structures with a signal centered around 27◦ corresponding to the (002) reflection as the
most predominant [33]. High peak density was observed in the modified biochar, indicating
that higher crystalline structures were formed [34]. The impurity characteristic peak of
modified biochar decreased compared with that of original biochar, indicating that the
modifier KH-570 had been coated on the surface of biochar.

Figure 7. X-ray diffractometer images of biochar before and after modification.
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3.6. SEM Analysis

Figure 8 shows the surface morphology of biochar before and after modification. As
shown in Figure 8a, rice biochar was tubular porous with a honeycomb-like structure and a
rough surface [34]. Figure 8b shows that the porous structure of the modified biochar does
not change due to modification, and the surface of the modified biochar has an obvious
covering layer [20], which was consistent with the previous characterization results.

Figure 8. (a) Scanning electron microscope images of biochar and (b) modified biochar.

3.7. Waterproof Performance

The measured infiltration water of the biochar-amended soil was 200 mL, and that
in the hydrophobic biochar-amended soil was 20 mL, which was significantly less than
that in the biochar-amended soil. This result indicates that the waterproofing ability of
the hydrophobic biochar-amended soil was significantly better than that of the biochar-
amended soil.

4. Conclusions

In this study, the biochar was modified by silane coupling agent KH-570 to improve its
hydrophobicity. The optimum conditions for preparation of surface hydrophobic biochar
were as follows: mass fraction of KH-570 was 7%, biochar dosage was 7 g, and modification
temperature was 60 ◦C. The contact angle and hygroscopicity tests confirmed that the
hydrophobicity of the surface-modified biochar was greatly increased compared with that
of the original biochar. The contact angle of the modified biochar was 143.99◦, which was
136.95◦ higher than that of the original biochar. The moisture absorption rate was 0.10%,
which was 0.12% lower than that of the original biochar. The analysis results of TGA, XRD,
and SEM before and after the biochar modification showed that the hydrophobic organic
coating was formed on the surface of the modified biochar, resulting in the biochar turning
from hydrophilic to hydrophobic surface. The simulated precipitation test indicated that
the waterproof ability of the HBSC was significantly better than that of BSC.
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Abstract: Anaerobic digestion of biomass has increasing implementation for bioenergy production.
The solid by-product of this technology, i.e., the digestate, has relevant potential in agricultural and
environmental applications. This study explored the capacity of a digestate from mixed feedstock to
remove from water four endocrine-disrupting chemicals, namely the pesticides metribuzin (MET)
and boscalid (BOS) and the xenoestrogens bisphenol A (BPA) and 4-tert-octylphenol (OP). The
surface micromorphology and functional groups of the digestate were investigated using scanning
electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively. Results
of sorption kinetics showed that all compounds reached the steady state in a few hours according to
a pseudo-first-order model in the cases of MET and OP, a pseudo-second-order model for BOS and
both models in the case of BPA. Data of adsorption isotherms were fitted to the Henry, Freundlich,
Langmuir and Temkin equations. The adsorption of MET preferentially followed the non-linear
Freundlich model, whereas the adsorption of the other compounds was properly described by both
the linear and Freundlich models. The organic carbon partition coefficients, KOC, were 170, 1066, 256
and 2180 L kg−1 for MET, BOS, BPA and OP, respectively. The desorption of BOS, BPA and OP was
slow and incomplete, indicating a phenomenon of hysteresis. In conclusion, the digestate showed a
remarkable efficiency in the removal of the compounds, especially those with high hydrophobicity,
thus behaving as a promising biosorbent for environmental remediation.

Keywords: digestate; endocrine-disrupting chemical; metribuzin; boscalid; bisphenol A; octylphenol;
xenoestrogen; sorption kinetics; sorption isotherm; desorption

1. Introduction

The current practice of processing waste biomass to produce bioenergy is increasingly
adopted all over the world, representing a virtuous alternative to the consumption of
fossil fuels. This approach can effectively cope with more than one emergency, such as the
ever-increasing global demand for energy, the need to dispose of the huge mass of solid
and liquid organic wastes from agro-zootechnical, industrial and urban activities and the
need to implement a circular economy.

Several traditional and innovative conversion technologies, such as pyrolysis, micro-
gasification, hydrothermal carbonization and anaerobic digestion (AD), have been devel-
oped by scientists and specialists to obtain combustible biogas and biofuels from organic
wastes or dedicated crops [1]. These processes can also be combined to improve bioenergy
production and usable remains [2,3]. The resulting by-products from these technologies
are carbon-rich materials suitable for agricultural and environmental applications [4]. In
agricultural practice, these materials can be used to improve soil fertility, as they are able
to compensate for the widespread progressive decline of soil organic matter and also act as
modulators of the bioavailability of phytonutrients and contaminants [5]. In environmental
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remediation strategies, these by-products can be exploited as biosorbents of various types
of pollutants [4].

The AD process is a biological conversion of plant and animal wastes operated by
various bacterial and archaeal populations [6]. Starting from different organic feedstocks,
AD produces biogas and a concentrated semi-solid organic/inorganic mixture that, after a
separation phase, gives a solid digestate (DIG) and a separate clarified liquid also called
liquid digestate [3]. The chemical and physical properties of the DIG depend on the type
of biomass used and the production parameters adopted and significantly influence the
best utilization of the DIG [7]. During the AD process, the easily degradable organic
compounds are readily converted into biogas, while the remaining more recalcitrant
lignocellulosic components have remarkable retention properties towards inorganic and
organic compounds. Some properties of DIG, such as surface reactive functional groups,
a microstructure with some porosity and a large surface area, make this material a good
biosorbent for organic compounds. Recently, DIG has been used successfully in mixtures
with other carbon-rich substrates to prepare biofilters and biobeds [8].

Practices of conventional agriculture, such as the use of agrochemicals and the ap-
plication to the soil of wastewater and sewage sludge not thoroughly decontaminated,
have contributed to the release into the environment of anthropogenic organic pollutants
(AOPs). AOPs include different classes of compounds, such as synthetic biocides, dyes,
pharmaceuticals, personal care products, surfactants, wood preservatives and industrial
products and by-products [9]. Many AOPs are biopersistent pollutants, and several of
them have been recognized as endocrine-disrupting chemicals (EDCs) [10,11]. Even at very
low levels, EDCs are capable of altering the normal hormonal functionality of humans and
animals, especially aquatic animals, causing a variety of health effects, such as dysfunctions
and pathologies of the reproductive apparatus and the cardiovascular system [12,13].

Among the AOPs with EDC activity, there are many plant protection products used
intensively around the world to control crop diseases and ensure food production. Inap-
propriate and repeated use of these compounds can exceed the self-depollution capacity of
the soil and accumulate in plants, soil and natural waters, with high risk for humans and
ecosystems [14]. Metribuzin (4-amino-6-tert-butyl-3-(methylsulfanyl)-1,2,4-triazin-5(4H)-
on) (MET) is a triazinone herbicide widely used to control broadleaf weeds in various
crops. Due to its high water solubility, MET is considered to be one of the pesticides with
the greatest potential for moving to surface and groundwater [15]. Another largely used
pesticide is boscalid (2-chloro-N-(4′-chlorobiphenyl-2-yl)-nicotinamide) (BOS), which is a
broad-spectrum carboxamide fungicide applied to protect fruit and horticultural plants.
BOS is persistent in soil and especially in aquatic systems [16]. Recently, the European
Commission has included both MET and BOS in the list of suspected EDCs [10].

Well-known EDCs are the xenoestrogens bisphenol A (2,2-Bis(4-hydroxyphenyl)
propane) (BPA) and 4-tert-octylphenol (OP). BPA is widely used for the industrial produc-
tion of polycarbonate and epoxy resins, flame retardants, food and beverage packaging,
bottle caps and water supply systems [17]. The OP molecule is generated by the microbial
degradation of octylphenol polyethoxylates which are non-ionic surfactants used in the
production of paints, detergents and pesticides [18]. OP is largely present in the effluents
of sewage sludge treatment plants and is biopersistent in the environment due to recalci-
trance [18]. All these compounds can be detected in soil and natural waters where they
pose serious environmental problems and health risks [19,20].

New sustainable strategies for removing EDCs from environmental matrices have
recently been explored, including adsorption techniques using low-cost carbon-rich ad-
sorbents obtained from processed biowaste, such as DIG. The sorption process consists of
the accumulation of an adsorbate at the interface between the adsorbent phase and the
solution phase. It is favourably regarded by researchers and operators for its easy-to-make
features, low energy consumption and considerable efficiency.

In soil, the organic components, in particular the humic fraction, play a prominent role
in the retention of pollutants. The low level of organic matter in some soils can therefore
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seriously compromise the self-depollution capacity of the soil and, consequently, the quality
and fertility of the soil. Furthermore, the adsorption/desorption process controls the entire
dynamic of contaminants in the soil–plant system, including movement and persistence.
Therefore, the addition to the soil of organic amendments, such as DIG, can replace, at least
in part, the native organic matter, with multiple benefits for the environment. The sorption
of pollutants on DIG can prevent the leaching of these compounds, especially the more
polar ones and control their bioavailability for plants and microorganisms. This is extremely
important in the case of biopersistent molecules [21]. The removal of contaminants from
water and wastewater is also very important. However, the use of expensive synthetic
adsorbents, such as commercial activated carbon, and sophisticated technologies have
become environmentally and economically unsustainable. Therefore, recent research has
focused on the possible exploitation of biosorbents from biomass recycling and by-products
of bioenergy production [4,22].

The interaction between pesticides and/or EDCs and carbon-rich materials has been
extensively studied [8,23,24]. However, most studies concern the adsorption of individual
AOPs on biosorbents such as compost and biochar [25–28], while little information exists
on the use of DIG to remove AOPs [8]. Furthermore, few studies have evaluated the
removal of AOPs from multi-contaminated matrices [29]. In real environmental systems,
such as soil, contaminants with different properties and hydrophobicity coexist and interact
simultaneously with solid and dissolved components, especially organic ones. The same
happens in wastewater which is usually contaminated with many types of inorganic and
organic compounds. Considering all this, the objective of this study was to investigate the
quantitative aspects of the adsorption/desorption process of four EDCs with contrasting
physicochemical properties, namely MET, BOS, BPA and OP, on a DIG sample obtained
from a mixed plant and animal biomass.

2. Materials and Methods

2.1. Chemicals and Digestate

Metribuzin (MET) at a purity of ≥98.0%, boscalid (BOS) at 99.0% purity, bisphenol A
(BPA) at 99.0% purity and 4-tert-octylphenol (OP) at 99.5% purity were purchased from
Sigma-Aldrich S.r.l., Milano, Italy. Structural formula and some chemical properties of the
compounds are reported in Table 1. All other chemicals of extra pure grade were obtained
from commercial sources and used without further purification. Aqueous mixtures of
MET, BOS, BPA and OP were prepared by diluting appropriate aliquots of individual
methanol (HPLC grade) solutions of the compounds at a concentration of 2000 mg L−1

with double-distilled water. At the maximum concentration of the compounds used in the
experiments (2 mg L−1), the percentage of methanol in the final mixture was 0.4%.

The digestate (DIG) sample was obtained through anaerobic digestion from a mixture
of oat silage, manure, slurry, cereal by-products, and two-phase olive pomace. The DIG
sample was provided by F.lli Caione Azienda Agricola La Quercia Soc. Coop., Foggia,
Italy. Before use, the DIG was air-dried and then characterized according to conventional
methods. Some characteristics of air-dried DIG are reported in Table 2.

2.2. Scanning Electron Microscopy Analysis

Scanning electron microscopy (SEM) analysis of the DIG was performed to evaluate
the surface micromorphology. The sample was fixed with an adhesive carbon tape, metal-
lized with graphite, and analyzed with a high-resolution field emission scanning electron
microscope VP FE-SEM ΣIGMA 300 (ZEISS, Oberkochen, Germany) equipped with an
energy dispersive X-ray (EDX) elemental analyzer. The SEM micrographs of the DIG were
captured at both 2500× and 13,000× magnifications using a 5 kV acceleration potential.
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Table 1. Some properties of the compounds.

Compound
Chemical
Structure

Molecular
Weight (g/mol)

Water Solubility
(mg L−1)

Log Kow

Metribuzin 214.29 1200 1.70

Boscalid 343.21 4.6 2.96

Bisphenol A 228.29 300 3.32

4-tert-
octylphenol 206.32 3.1 5.50

Data from PubChem [30].

Table 2. Some properties of the air-dried digestate.

Parameter Value

pH a 8.73 ± 0.08 b

EC (dS m−1) a 1.36 ± 0.04
Dry matter (%) 87.41 ± 0.63

Volatile solids (% d.m.) 87.15 ± 0.47
Total organic carbon (% d.m.) 50.55 ± 0.27

Ash (% d.m) 12.85 ± 0.54
a DIG/H2O, 1:10 w/v. b All values are the mean ± SD (n = 3).

2.3. Fourier-Transform Infrared Analysis

Fourier-transform infrared (FTIR) analyses were performed to investigate the surface
functional groups of the DIG sample before and after the 24-h interaction with an aqueous
solution of the four compounds at the individual concentration of 2 mg L−1. A mixture of
2 mg of dried DIG (before and after interaction) and 400 mg of dried KBr (FTIR grade) was
homogenized using an agate mortar and pestle. A pellet was obtained from the mixture by
pressing under vacuum at a pressure of 6000 kg cm−1 for 10 min. Fourier-transform infrared
(FTIR) spectra were recorded using a Thermo Nicolet iS50 FTIR spectrophotometer in the
range 4000–400 cm−1 with a resolution of 2 cm−1 and 16 scans min−1 for each acquisition.

2.4. Preliminary Adsorption Experiments

Preliminary adsorption experiments were conducted in batch mode to evaluate the
efficiency of different solution/DIG ratios in removing the compounds. For the purpose,
aliquots of 40, 50, 100 and 200 mg of DIG were made to interact with a volume of 20 mL
of a mixture of MET, BOS, BPA and OP at the individual concentration of 2 mg L−1, thus
obtaining solution/substrate ratios equal to 500, 400, 200 and 100. All samples were
mechanically shaken at 350× g for 24 h at a temperature of 20 ± 1 ◦C to reach sorption
equilibrium. Previous experiments showed that, for each compound, no further adsorption
occurred after 24 h. Successively, the suspensions were centrifuged at 10,000× g for 10 min.
A volume of 18 mL of supernatant solution was collected from each sample and the
equilibrium concentration of each compound was measured by high performance liquid
chromatography (HPLC) as described in Section 2.6. All experiments were triplicated. The
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amount of compound sorbed on the DIG unit after 24 h, qt (mg kg−1), was calculated from
the equation:

qt = (C0 − Ct) V/m (1)

where C0 (mg L−1) is the initial concentration of the compound in solution, Ct (mg L−1)
is the concentration of the compound at time t (24 h in these experiments), V (L) is the
volume of the solution and m (kg) is the mass of the substrate.

The experimental sorption data for each compound (triplicated values) were statisti-
cally analyzed using one-way analysis of variance (ANOVA) followed by the Duncan’s
new multiple range test at P ≤ 0.01.

2.5. Adsorption and Desorption Experiments

Sorption kinetics were performed to evaluate the adsorption rates of MET, BOS, BPA
and OP onto the DIG sample and to establish the time required to reach equilibrium.
Based on the results obtained from the preliminary trials, in the subsequent experiments, a
solution/substrate ratio of 500 was adopted, that is the ratio that allowed the maximum
adsorption efficiency of the DIG. Hence, volumes of 10 mL of an aqueous mixture of the
four compounds at individual concentration of 2 mg L−1 and pH of 8.09 were added to
20 mg of DIG in glass centrifuge tubes. The suspensions were then stirred for 0.25, 0.5, 1, 4,
8, 16 and 24 h in the dark at 20 ± 1 ◦C. After each time, the suspensions were centrifuged
at 10,000× g for 10 min and the supernatants were analyzed by HPLC to determine the
residual concentration of each compound in solution (see Section 2.6). All experiments
were triplicated. The amount of compound sorbed on the substrate unit at each time t,
qt (mg kg−1) was calculated from Equation (1). To determine the sorption equilibrium
time, the Student’s t-test was used to compare, two-by-two, the quantities of compound
adsorbed at any time (P ≤ 0.05). The equilibrium time was established when there was
no significant difference between the values at two successive times. Then, ANOVA and
the Duncan’s new multiple range test (P ≤ 0.01) were performed to evaluate significant
differences among the adsorbed quantities at equilibrium.

Adsorption isotherms of the four compounds onto the DIG were performed using
the batch equilibration method. Aliquots of 20 mg of DIG were added with 10 mL of
aqueous mixtures of MET, BOS, BPA and OP at individual concentrations of 0.2, 0.4, 0.5,
1 and 2 mg L−1 in glass centrifuge tubes. Based on the adsorption kinetics results, the
suspensions were stirred for 24 h at 20 ± 1 ◦C in the dark to reach equilibrium. Then, the
suspensions were centrifuged at 10,000× g for 10 min and the equilibrium concentration
of each compound in the supernatants was measured by HPLC (see Section 2.6). All
experiments were triplicated.

Desorption experiments were started immediately after adsorption using the DIG
sample added with the maximum initial concentration of each compound (2 mg L−1). For
all four desorption cycles, an aliquot of 8 mL of equilibrium supernatant solution was
replaced with the same volume of distilled water. The sample was stirred again for 24 h at
20 ± 1 ◦C and centrifuged in the conditions reported above. Then, the supernatant solution
was collected, and the compounds were analyzed using the HPLC procedure described in
the next section.

2.6. Chromatographic Analysis

The concentration of each compound in solution was measured using an HPLC
apparatus equipped with a Spectra SystemTM pump (Thermo Electron Corporation, San
Jose, CA, USA), a Rheodyne® 7125 injector with a 20 μL loop and a SupelcosilTM LC-18
chromatographic column (250 mm × 4.6 mm × 5 μm). The mobile phase was a mixture
of water (A) and acetonitrile (B) flowing at 0.8 mL min−1. The gradient elution adopted
was: 0–4 min, 50% B; 4–8 min, from 50 to 70% B; 8–15 min, from 70 to 90% B. Retention
times of MET, BOS, BPA and OP were 4.0, 6.2, 9.2 and 13.6 min, respectively. MET and BOS
were detected using a Spectra System UV6000LP™ diode array detector at wavelengths of
294 nm and 207 nm, respectively. BPA and OP were quantified by a Spectra System FL3000
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fluorescence detector operating at wavelengths of 240-nm excitation and 310-nm emission.
All compounds were quantified using the external standard method.

2.7. Sorption and Desorption Models

Two theoretical models were used to interpret the sorption kinetics data, determine
the kinetic constants and investigate the sorption mechanisms of the compounds onto the
DIG. The pseudo-first-order model of Lagergren [31] is based on sorbent capacity. The
non-linear form of the pseudo-first-order kinetic model is given by the equation [32]:

qt = qe (1 − exp−k1t) (2)

where qe and qt are the amount of the compound adsorbed per mass unit of adsorbent
(mg kg−1) at equilibrium and at time t, respectively, and k1 (h−1) is the rate constant of the
pseudo-first-order kinetics. The non-linearized form of the pseudo-second-order kinetic
model, based on equilibrium sorption, is expressed as [33]:

qt =
q2

ek2t
1 + k2qet

(3)

In this equation, qt and qe have already been described for the previous model and
k2 (kg mg−1 h−1) is the second-order adsorption rate constant. Then, using the solver
add-in component of Microsoft Excel, a trial-and-error procedure was adopted to estimate
the pseudo-first-order and pseudo-second-order kinetic parameters with the non-linear
regression method [33]. To quantify the fit of the two equations to the experimental data,
the widely used error function coefficient of correlation, r, was adopted:

r =

√√√√ ∑(qtm − qt)
2

∑(qtm − qt)
2 + ∑(qtm − qt)

2 (4)

where qtm is the amount of solute adsorbed per mass unit of sorbent (mg kg−1) at time t
according to the kinetic model considered, qt is the experimental amount of solute adsorbed
per mass unit of sorbent (mg kg−1) and qt is the mean of qt (mg kg−1).

The adsorption isotherms data for each compound were interpreted with four sorp-
tion models, the two-parameter non-linear empirical equations of Freundlich, Langmuir
and Temkin and the linear Henry equation. The Freundlich isotherm model assumes a
multilayer adsorption of the sorbate on the substrate and is described by the equation:

qe = KF Ce
1/n (5)

where qe (mg kg−1) is the amount of compound adsorbed per unit of substrate, Ce (mg L−1)
is the equilibrium concentration of the sorbate in solution, 1/n indicates the degree of
nonlinearity between the concentration of the compound in solution and that adsorbed, the
reciprocal n expresses the sorption intensity and KF (better indicated as KF-ads and KF-des
for adsorption and desorption, respectively) is the measure of the sorption capacity of the
adsorbent. The Langmuir model is based on a monolayer adsorption and is expressed by:

qe = (KLCeb)/(1 + KLCe) (6)

where qe and Ce are defined as in Equation (5), b (mg kg−1) is the maximum adsorption
capacity of the adsorbent, i.e., the amount of compound forming a monolayer on the adsor-
bent and KL (L mg−1) is the Langmuir constant that expresses the energy of adsorption,
that is the affinity between the adsorbent and the sorbate. The Temkin isotherm predicts a
logarithmic reduction of adsorptive site and energy and is expressed by:

qe = Bln(ATCe) (7)
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where qe and Ce have the same meaning as the previous Equations (5) and (6), AT is the
Temkin isotherm equilibrium binding constant (L mg−1) and B (J mol−1) is a parameter
expressing the enthalpy of the adsorption. In this equation, B = RT/bT, where bT is a
constant related to the heat of adsorption, T is the absolute temperature (K) and R is the
universal gas constant (8.314 J mol−1 K−1). The adsorption parameters KF and 1/n of the
Freundlich equation (Equation (5)), b and KL of the Langmuir equation (Equation (6)) and
B and AT of the Temkin equation (Equation (7)) were estimated through the non-linear
regression method using the solver add-in component of Microsoft Excel and a trial-and-
error procedure which minimized the sum of squared residuals (SSR) between observed
and simulated concentrations [8]. The fit of the three equations to the experimental data
was quantified using the error function coefficient of correlation, r, as described for the
calculation of the kinetic parameters (Equation (4)).

Finally, the Henry linear equation:

qe = Kd Ce (8)

assumes a constant proportion between the concentration of the sorbate in solution and
the concentration of the sorbate on the adsorbent over the concentration range studied.
Equation (7) allowed the calculation of the distribution coefficient, Kd (L kg−1), from the
slope. The amount of adsorbed compound per unit of organic C (OC) of substrate, i.e., the
organic-carbon-partition coefficient KOC, was also calculated according to: KOC = (Kd ×
100)/(%OC)) [23].

Using the same calculation procedure adopted to obtain the sorption parameters, the
desorption data, i.e., the quantity of each compound remained adsorbed at each desorption
step and the corresponding equilibrium concentration, were fitted in the Freundlich equa-
tion to calculate the parameters KF-des and 1/ndes and in the Henry equation to calculate
Kd-des and KOC-des. Finally, the hysteresis coefficient, H, for the adsorption–desorption
isotherm was calculated from the ratio H = (1/ndes)/(1/nads) [34]. In general, a H value < 1
is indicative of a hysteretic condition, i.e., difficulty for the sorbate to be desorbed from
the substrate.

3. Results and Discussion

3.1. SEM Analysis

The SEM technique identifies the micromorphological aspects of the material surface
with information on the distribution and allocation of the pores. The surface features of the
DIG sample were evaluated using SEM coupled with an EDX elemental analyzer. Images
obtained at 2500× and 13,000× magnifications are shown in Figure 1. The surface of the
DIG sample appeared rough and presented numerous irregularly shaped ridges, sharp
edges, microparticles, channels and cavities of mostly less than 10 μm (Figure 1). The pores,
which generally originate from cell walls and vascular tissues, were not so evident. Porosity
and a large surface area are extremely important properties when the material is used as an
adsorbent for decontamination purposes. The EDX spectrum obtained for the DIG sample
evidenced the presence on the surface of various elements typical of plant-based materials
(Figure 1).

3.2. FTIR Analysis

The surface functional groups of the DIG and their modification after adsorption of the
four compounds were investigated using Fourier-transform infrared (FTIR) spectroscopy
(Figure 2). The main features of the FTIR spectrum of the DIG were the following: (a) a
strong band centered at 3410 cm−1, typical of O–H and N–H stretching, also hydrogen
bonded; (b) two twin peaks of medium intensity at 2925 and 2853 cm−1 attributable
to aliphatic C–H stretching; (c) a medium-strong peak at 1638 cm−1 with a shoulder at
1598 cm−1 that can be ascribed to various vibrations, including aromatic C=C stretching,
C=O stretching of amide groups (amide I band) and ketonic C=O and COO- symmetric
stretching; (d) a weak peak at 1510 cm−1 feasibly due to aromatic C=C stretching and N–H
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deformation and C=N stretching of amide groups (amide II band); (e) two weak peaks
at 1456 and 1423 cm−1 possibly due to aliphatic C–H deformation; (f) an intense peak at
1385 cm−1 that can be attributed to various vibrations, including O–H deformation and
C–O stretching of phenolic groups, C–H deformation of CH2 and CH3 groups and COO-

asymmetric stretching; (g) a weak peak with a shoulder at 1230 cm−1 possibly due to C–O
stretching, O–H deformation of COOH and C–O stretching of aryl ethers and phenols; (h) a
shoulder at 1153 cm−1 attributable to aliphatic C–OH stretching; (i) a medium-strong band
at 1040 cm−1 with a shoulder at 1107 cm−1 typical of C–O stretching of polysaccharide-like
substances and Si–O silicate impurities in the digestate (Figure 2) [23].

Figure 1. Scanning electron microscopy (SEM) images and energy-dispersive X-ray (EDX) spectrum
of the digestate sample at magnifications of 2500 (top) and 13,000 (bottom) times. Images were taken
with secondary electrons.

The FTIR spectrum of the DIG after interaction with the four molecules appeared not
to be informative as it showed no evident modifications in the bands/peaks wavenumbers
and relative intensity compared to that of the original DIG, except for the strong peak at
1385 cm−1 possibly due to the presence of phenolic O–H and C–O in the four molecules.
However, this result is not surprising given the low concentrations of the molecules used
in the interaction and the richness and strong intensity of the bands/peaks of the DIG.

113



Processes 2021, 9, 2018

Figure 2. FTIR spectra of the DIG before (a) and after (b) adsorption of the compounds.

3.3. Preliminary Adsorption Experiments

The amounts of each compound adsorbed on DIG at equilibrium are reported in
Figure 3 and Table 3. The different solution/adsorbent ratios adopted are quite common
and comparable with those used in similar studies [8,27]. By increasing the solution/DIG
ratio from 100 to 500, the adsorbed quantity of BOS, BPA and OP increased significantly
with each subsequent ratio tested, whereas that of MET only increased to the solution/DIG
ratio of 500 when the adsorption doubled, compared to that measured at the ratios of 100
and 200 (Table 3). It is reasonable to assume that, at low adsorbent dosage, more sorption
sites were available, including the innermost and less accessible ones, for the molecules,
especially the more hydrophobic BOS and OP, and, at high adsorbent dosage, fewer sites
were available. In addition, in the case of MET, a relevant increase of the solution/DIG ratio
favored the sorption extent, probably due to the reduced competition from water molecules.
At the highest ratio (500), the percentages of MET, BPA, BOS and OP adsorbed on the
DIG after 24-h interaction were approximately 11, 45, 24 and 66% of the initial compound
added (40 μg), respectively. Recently, Yao et al. [35], investigating the capacity of a DIG to
remove various dyes from a wastewater, reported an increase in the adsorption capacity
as the solution/DIG ratio increased. The authors commented that this could be due to
the large number of sites not occupied by the dye when the DIG was at a high dosage,
thus reducing the adsorption capacity of the latter [35]. Considering the physicochemical
properties of the four molecules, as expected, the affinity for the DIG (MET < BPA < BOS
< OP) was inversely related to their solubility in water. In fact, it is well known that an
organic solute is more adsorbable by a substrate the weaker its interaction with the solvent
is. A negative correlation was already demonstrated between the sorption efficiency of
carbon-rich materials and the water solubility of some EDCs and pesticides [24]. Based on
these results, the highest ratio was chosen for the subsequent sorption experiments.
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Figure 3. Adsorption of metribuzin (MET), boscalid (BOS), bisphenol A (BPA) and 4-tert-octylphenol
(OP) from water on the digestate at equilibrium concentration using different solution/adsorbent ratios.

Table 3. Amount of compound adsorbed (mg kg−1) as a function of the solution/digestate ra-
tio adopted.

Compound 100 200 400 500

MET 53.11 ± 2.65 B 51.56 ± 11.88 B 69.83 ± 8.42 B 107.78 ± 16.42 A

BOS 165.99 ± 2.23 D 278.19 ± 4.19 C 412.97 ± 8.72 B 448.74 ± 24.12 A

BPA 128.88 ± 2.48 D 184.99 ± 1.25 C 203.08 ± 24.04 B 238.20 ± 25.04 A

OP 200.00 ± 0.12 D 301.11 ± 3.65 C 563.65 ± 8.15 B 664.51 ± 36.52 A
Note: data were analyzed by ANOVA and means were separated by the Duncan’s new multiple range test at
P ≤ 0.01 (n = 3).

Although, as expected, the extent of DIG sorption in this study was somehow lower
than that of biochar for MET [26,27,36], BOS [8], BPA [37] and OP [24], it can be considered
remarkable and suggests a valuable use of this material as biosorbent. To the best of
our knowledge, the literature does not report information on the removal of the four
molecules studied by the DIG alone. The only comparable study found in the literature
is that of Mukherjee et al. [8], who used soil/DIG biomixtures to remove some pesticides,
including BOS.

3.4. Adsorption Kinetics

The study of adsorption kinetics allows the evaluation of the retention rate of the
solute on the substrate in a certain period and provides useful information on the type of
interaction. Based on the kinetics curves of adsorption obtained, it was evident that each
molecule reached the steady state in a relatively short time. The Student’s t-test applied to
the quantities of compound adsorbed by the DIG at each time stated that the equilibrium
times were 4 h for MET, BPA and OP and 8 h for BOS (Figure 4). The longer equilibrium
time shown by BOS, compared to the other three molecules, might be due to its larger size.
Then, subsequent adsorption isotherms of all compounds were performed using a contact
time of 16 h between the substrate and the solution. The shapes of the kinetics curves
indicate that the adsorption was a multi-step process, comprising a first rapid adsorption
of the compounds on the most available external sites of the material followed by a slower
sorption on the innermost active sites. Upon reaching the equilibrium condition, the
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maximum sorption concentration of 106.20 ± 4.77, 591.61 ± 11.89, 208.87 ± 11.49 and
712.80 ± 2.47 mg kg−1 were measured for MET, BOS, BPA and OP, respectively (Figure 4
and Table 4). Statistical treatment of these data (ANOVA and Duncan’s test) showed a high
significant difference (P ≤ 0.01) among the amounts of compounds adsorbed at equilibrium
(Table 4). The two less water-soluble BOS and OP showed the greatest affinity for the DIG
sample, their concentration on the material being about 6 and 7 times higher, respectively,
than that of MET. The lower adsorption of MET on organic substrates, compared to other
pesticides and ECDs, is generally responsible for the high mobility of MET in soil and
sediments and the consequent dangerous release into natural waters [15].

Figure 4. Adsorption kinetics data and plots of predicted pseudo-first-order kinetics of metribuzin
(MET), bisphenol A (BPA) and 4-tert-octylphenol (OP) and predicted pseudo-second-order kinetics
of boscalid (BOS) onto the digestate. Standard error is reported as vertical bar on each point (n = 3).

Table 4. Kinetic pseudo-first-order and pseudo-second-order parameters obtained through the non-linear method for the
adsorption of the compounds onto the digestate.

Compound
Pseudo-First-Order Pseudo-Second-Order

qe,experimental

(mg kg−1)
r SSR

qe,1
(mg kg−1)

k1

(h−1)
r SSR

qe,2
(mg kg−1)

k2

(kg mg−1 h−1)

MET 106.20 D 0.985 339 107.17 0.372 0.965 793 124.78 0.003
BOS 591.61 C 0.958 16,199 561.81 1.217 0.983 5525 601.64 0.003
BPA 208.87 B 0.991 485 207.53 1.125 0.990 472 221.21 0.007
OP 712.80 A 0.996 513 706.35 3.801 0.971 3450 728.61 0.010

Note: experimental data at equilibrium were analyzed by ANOVA and the means were separated by the Duncan’s new multiple range test
at P ≤ 0.01 (n = 3).

To investigate the adsorption mechanisms of the compounds onto the DIG, the kinetic
data were analyzed using the non-linearized forms of the pseudo-first-order (Equation (2))
and pseudo-second-order (Equation (3)) models. Both models are widely applied in the
study of AOPs’ adsorption on organic and mineral substrates [32,38,39]. Table 4 shows
the values of the kinetics parameters of the molecules according to the two models along
with the correlation coefficients, r, and the sum of squared residuals, SSR. High r values
and low SSR values indicate the adequacy of the model to the experimental data. Based on
the r values, MET and OP preferentially followed the pseudo-first-order model and BOS
followed the pseudo-second-order model, whereas BPA fitted both models well (Table 4).
This was confirmed by the SSR values. Figure 4 shows the sorption kinetics data and
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plots of the predicted pseudo-first-order kinetics of MET, BPA and OP and the predicted
pseudo-second-order kinetics of BOS.

The pseudo-first-order kinetics suggest a prevailing role of the adsorbent capacity [32].
The pseudo-second-order kinetics is based on sorption equilibrium capacity and assumes
that the rate-limiting step is a chemisorption process involving valency forces through the
sharing or exchange of electrons between the adsorbent and the sorbate [38,39]. The ligno-
cellulosic fraction of the DIG may have interacted with the different molecules through
various mechanisms, such as weak physisorption through van der Waals forces and hy-
drogen bonding and chemisorption through strong ionic or covalent bonds. As far as we
know, there are no other studies on the sorption kinetics of the molecules examined here
onto DIG. A recent work reported that the adsorption of MET on different chars was better
described by the pseudo-second-order model [27]. This suggests an important role of the
sorbent properties on the type of interaction prevailing between a solute and the substrate.
Essandoh et al. [36], studying the adsorption of MET on biochar, concluded that the adsorp-
tion mechanism of MET could be explained mainly by hydrogen bonds and Coulombic
forces and a minor contribution of van der Waals, dipole–dipole and π–π interactions.

Although, in these experiments, no significant relationship was calculated between
the amounts of the molecules adsorbed at equilibrium and the corresponding log Kow or
water solubility, it was evident that the greatest removals by the DIG were obtained with
the most hydrophobic OP and BOS.

3.5. Adsorption and Desorption Isotherms

The adsorption isotherm describes quantitatively the interaction between an adsor-
bent and a sorbate at a fixed temperature. It allows the evaluation of the adsorption
parameters, such as the adsorption constant and the maximum adsorption, and provides
indications on the allocation of the sorbate on sorbent sites. Different sorption models
were adopted to fit the experimental adsorption and desorption data of the four com-
pounds, such as the Freundlich, Langmuir, Temkin and Henry equations. Modeling of
isotherm data is useful for predicting the adsorption mechanism. The Freundlich model
can account for reversible adsorption on a heterogeneous substrate surface and is not
limited to monolayer adsorption. Differently, the Langmuir equation is a good fit when the
sorbent surface is homogeneous, the molecular interaction among the adsorbed species
is negligible and the adsorption occurs as a monolayer on the adsorbent. The Temkin
isotherm predicts a logarithmic reduction of available sites and sorptive energy and is best
applied at intermediate concentrations.

The experimental sorption data obtained, along with the plots of the predicted Fre-
undlich, Langmuir, Temkin and Henry equations, are shown in Figure 5. The sorption
parameters calculated by fitting the equilibrium data in all four models and the desorption
parameters calculated by fitting the experimental data in the Henry and Freundlich models
are given in Tables 5 and 6, respectively. In addition to the values of the correlation coeffi-
cients (r), these tables show the values of the sum of squared residuals (SSR) that are an
indicator of the matching of experimental data with the theoretical model (Tables 5 and 6).
Higher r values and lower SSR values indicate a better fit of the experimental data in
the model.

Based on the calculated r values over the whole concentration range tested, the
sorption of MET was better described by the Freundlich model, whereas the sorption of the
other three compounds better matched the Henry equation (Table 5). However, considering
the SSR values, it was evident that, for all four compounds, the Freundlich model was
the best fit because it reduced errors (lowest SSR), even if the differences among the SSR
values of the four models were not always relevant (Table 5). Hence, the adsorption of each
compound occurred through the multilayer formation on the heterogeneous surface of the
DIG. Moreover, based on the exponent of the Freundlich equation, 1/n ads, and according
to Giles et al. [40], the isotherm of MET was L-shaped (1/n < 1), those of BPA and OP were
C-type (1/n~1) and that of BOS was S-shaped (1/n > 1) (Table 5). A non-linear L-shaped
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Freundlich isotherm indicates that the compound has a high affinity for the sorbent in the
initial stage of adsorption, while successively it decreases as adsorption sites are filled,
and the process never reaches saturation. The L-shaped isotherm is typical of a solute
of low hydrophobicity, such as MET (log Kow = 1.70), onto heterogeneous substrates. A
C-type isotherm indicates a constant partitioning of the sorbate between the solution and
the sorbent, without reaching saturation in the concentration range adopted. Finally, S-type
isotherms are usually observed at low concentrations and indicate an increasing adsorption
rate as the concentration of the sorbate in solution increases. The S-type isotherm is typical
of adsorbents having high affinity for the solvent, e.g., water competes with the solute
for adsorption sites [40]. The Freundlich exponent (1/n) is related to the strength and
feasibility of the adsorption. The reciprocal n is the heterogeneity factor. Based on 1/n
value, the process can be considered mainly physical when 1/n < 1, chemical when 1/n > 1
and linear if 1/n is equal to 1 [41]. Thus, the low 1/n value obtained for MET suggests
that the adsorption on the DIG was predominantly physical (Table 5). Differently, the high
1/n value for BOS suggests a chemisorption process. The 1/n values of the two phenolic
molecules, BPA and OP, were not very different from the unit (Table 5). These findings
agree with the results obtained in the kinetic study. Based on the structure and functional
groups of the molecules used in the mixture (very weak organic acids or bases) in this study,
no interactions between/among them can be expected. AOPs may interact with organic
matter (OM) in several ways which affect both the retention capacity of the adsorbent and
the rate of desorption. In general, AOPs can be adsorbed to OM through specific physical
and chemical binding mechanisms and forces with varying degrees and strengths, which
include ionic, hydrogen and covalent bonding, charge-transfer or electron donor-acceptor
mechanisms, dipole–dipole and van der Waals forces, ligand exchange and cation and
water bridging [42]. The capacity of DIG to retain organic compounds is essentially due to
the numerous hydrophobic and hydrophilic surface sites and chemically reactive functional
groups, such as carboxylic and phenolic OH, alcoholic OH, ketonic C=O, amine groups
and so on, where the molecules can be linked with bonds of different type and strength.
For example, DIG sites containing O and N- can form hydrogen bonds with molecules
containing suitable complementary groups. This can happen for MET that, at the pH of
this study, is almost all unprotonated. The adsorption of MET onto different biosorbents
has been mainly ascribed to H bonds and Coulombic forces and, to a lesser extent, to van
der Waals and dipole–dipole interactions [36]. It is likely that the non-polar BOS molecule
interacted with DIG through hydrophobic interaction [8]. Phenolic groups of BPA and OP
can interact through electron donor-acceptor mechanisms or charge-transfer, by binding
with complementary groups of DIG. However, adsorption of low-polar AOPs can also
occur through non-specific hydrophobic or partitioning processes between water and the
OM phase, in particular on hydrophobic active sites of OM, such as aliphatic side chains
and aromatic structures [42]. OP has been proven to bind to organic materials through
covalent and H bonds [24]. The presence of strong and weak binding of various phenolic
EDCs to organic matter has been reported [42]. Finally, the mechanisms and the extent of
adsorption certainly depend on the solution/adsorbent ratio, the physical and chemical
properties of both the solute and the adsorbent and the condition of the medium, such as
pH and ionic strength.
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Figure 5. Adsorption (experimental points and solid lines representing plots of Henry, Freundlich, Langmuir and Temkin
models) and desorption (experimental points and dashed lines representing plot of Freundlich model) isotherms of the
compounds on the digestate. Standard error is reported as vertical bar on each point (n = 3).

As far as we know, there are no studies concerning the adsorption of the four com-
pounds used here on the DIG, and therefore it is not possible to compare our results with
those of the literature. The adsorption of MET on various plant-based chars was well
interpreted by L-shaped Freundlich isotherms [27]. In a recent work, BOS adsorption on
different sediments followed a Freundlich model [43], and the same model was the best fit
for OP on an aquifer material [44] and various carbon-rich substrates [24].

The Henry isotherm (Equation (8)) allowed the calculation of the distribution co-
efficient Kd that is a reliable parameter to express the sorption efficiency of a substrate.
The adsorption parameters (Kd ads, KF ads and 1/n ads) and the coefficient KOC ads for the
four compounds are referred to in Table 5. The adsorption constants Kd ads, KF ads and
KOC ads followed the same order: MET < BPA < BOS < OP (Table 5). The KF ads value
of the more hydrophobic OP was approximately 11 times higher than that of the more
water-soluble MET (Table 5). The values of the normalized organic carbon, KOC ads, of the
four compounds varied widely from 170 for the least hydrophobic MET to 2180 for the most
hydrophobic OP, which are comparable to the values found in the literature [8,27,36,43,44].
The interpretation of the adsorption data with Langmuir’s equation allowed the calculation
of the maximum adsorption, b. On the basis of the b values, the adsorption trend was
the following: BOS > OP > BPA > MET. The Temkin model is applied for an intermediate
concentration range and takes into account the interaction between the sorbate and the
adsorbent. It assumes that the heat of adsorption of the sorbate decreases linearly with
the surface coverage. From the Temkin plot, the parameters estimated were AT, B and bT
(Table 5). When the Temkin equation was used to fit the experiment data, a good match was
obtained only for MET with r = 0.962, though this value was lower than in the Freundlich
model (Table 5). The plot of the Temkin model for MET is depicted in Figure 5. Much lower
r values were obtained for the other compounds, indicating that the Temkin model was not
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appropriate for BPA, OP and, especially, BOS. The parameter B gives an indication of the
heat of adsorption; for each molecule, especially the most hydrophobic ones, it was quite
high, suggesting an exothermic sorption process of the molecules on the DIG [41].

Unfortunately, there is no information in the literature on the extent and modeling of
adsorption of these molecules on DIG, and this does not make a comparison possible. In a
recent study, Gaullier et al. [43] reported KF ads values for BOS on sediments ranging from
2.8 to 13.5 mg kg−1. The KOC ads value calculated in this study for MET on DIG (170 L kg−1)
was almost twice and 73%, respectively, of those found averagely for the adsorption of
MET on vermicompost (93 L kg−1) and hydrochar (232 L kg−1) [27]. The KOC ads value of
BOS calculated here (1066 L kg−1) was much higher than that reported for the adsorption
of BOS on a biomixture of 30% of DIG and soil [8]. Ying et al. [44] studied the adsorption
of various EDCs on a sediment and reported KF ads values of 3.89 and 90.9 L kg−1 for BPA
and OP, respectively.

Table 5. Adsorption parameters of the compounds on the digestate.

Compound

Henry Model Freundlich Model Langmuir Model Temkin Model

r SSR
Kd

(L kg−1)

KOC

(L kg−1)
r SSR

KF ads

(L kg−1)
1/n ads r SSR

b
(mg kg−1)

KL

(L mg−1)
r SSR

AT

(L kg−1)

B
(J mol−1)

bT

MET 0.930 4588 86.19 170.50 0.983 147 99.88 0.40 0.954 445 145 2.587 0.962 322 29.46 30.12 80.87

BOS 0.980 15,049 538.73 1065.74 0.968 11872 593.88 1.32 0.948 15,130 126,113 0.004 0.815 51,869 14.57 153.57 15.86

BPA 0.997 354 129.20 255.59 0.996 205 126.31 1.11 0.992 361 47,424 0.003 0.925 3459 5.44 83.15 29.30

OP 0.980 26,465 1102.09 2180.20 0.951 26,322 1067.82 0.96 0.953 26,528 117,129 0.009 0.903 46,769 20.54 229.41 10.62

Table 6. Desorption parameters of the compounds from the digestate.

Compound

Henry Model Freundlich Model

H
r SSR

Kd des

(L kg−1)
KOC des

(L kg−1)
r SSR

KF des

(L kg−1)
1/n des

MET 0.947 2369 78.80 155.88 0.982 287 96.35 0.47 1.175

BOS 0.673 651,881 769.65 1522.55 0.874 1287 531.02 0.04 0.030

BPA 0.904 14,170 151.70 300.10 0.994 170 175.59 0.39 0.351

OP 0.753 889,423 1709.20 3381.21 0.963 507 749.07 0.08 0.083

The experimental desorption data and the Freundlich plots for the four compounds
are shown in Figure 5, while the desorption coefficients of Henry (Kd des and KOC des)
and Freundlich (KF des and 1/n des) are given in Table 6. When desorption data were
fitted to both Henry and Freundlich equations, based on both r and SSR indicators, the
Freundlich model was the best fit for all compounds (Table 6). In all cases, the desorption
isotherm was L-type (1/n des < 1). After four desorption steps, approximately 86, 17, 74
and 16% of the initially retained MET, BOS, BPA and OP were desorbed from the DIG,
respectively. The values of KF des for BOS and OP were lower than the corresponding
values of KF ads, suggesting a partial reversibility of the process. Comparing the values
of 1/n des and 1/n ads, we found that for MET alone the desorption rate was slightly
higher than the adsorption rate (1/n des > 1/n ads), whereas the desorption of all the other
compounds occurred very slowly and was incomplete (Table 6). This behavior is clearly
shown in Figure 5. In other words, the DIG demonstrated a good capacity to retain MET,
but also an easy release (negative hysteresis, H > 1) as soon as the liquid phase was diluted.
This was easily predictable considering the physicochemical properties of MET, such as
the low log Kow and high water solubility. Differently, the other three molecules were
difficult to desorb from the DIG, denoting a strong sequestration and a significant positive
hysteresis (H < 1) (Table 6). The formation of covalent bonds could be the reason for the
low desorption rate and the hysteresis phenomenon observed for these molecules. These
results suggest that the type of interaction between MET and the DIG was weaker than
that formed between the other three compounds and the DIG. We can assume that the
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more hydrophobic molecules were retained through high-energy bonds which hindered
their reversibility. The marked retention of BOS, BPA and OP by the DIG and the low
desorption, especially for BOS and OP, are reasonably due to their chemical structures and
hydrophobic character. In particular, the large size and the low water solubility of BOS
can explain the very low release observed. The desorption of BOS from a 30% DIG/soil
mixture was almost negligible after three desorption steps [8]. Studying the adsorption
of BOS on sediments, Gaullier et al. [43] reported a scarce reversibility of this compound
and explained this behavior with the formation of irreversible bonds between BOS and the
organic fraction of the sediment.

Possible relationships between the sorption/desorption constants (KF ads, Kd ads, KF des
and Kd des) and the corresponding physicochemical properties of the compounds, including
water solubility and log Kow, were assessed through linear regressions. No significant cor-
relations were obtained between each constant and water solubility, whereas all constants
were sufficiently correlated with log Kow (Figure 6). This confirmed the crucial role of
hydrophobicity in the interaction of AOPs with organic materials.

Figure 6. Plots of the correlations between the values of the adsorption and desorption constants,
KF ads, Kd ads, KF des and Kd des, of the four compounds and the corresponding log Kow.

4. Conclusions

Digestate (DIG), a by-product of the anaerobic biological conversion of waste biomass,
is produced in increasing quantities and is a promising material for both agricultural and
environmental applications. This study evaluated for the first time the capacity of DIG to
remove from water four pollutants with endocrine-disrupting activity, namely two pesti-
cides and two xenoestrogens. The DIG used showed a remarkable efficiency in adsorbing
all compounds, especially the more hydrophobic OP and BOS. The sorption kinetic data
of MET and OP preferentially fitted a pseudo-first-order kinetic equation and those of
BOS followed a pseudo-second-order kinetic equation, whereas those of BPA fitted both
models well. The extent of adsorption of the compounds on the DIG followed the order:
OP > BOS > BPA > MET. The adsorption of BOS, BPA and OP were adequately described
by both the Henry and Freundlich isotherms, whereas the adsorption of MET was better
interpreted by the Freundlich model. The desorption rates of BOS, BPA and OP were lower
than the adsorption rates, indicating strong retention of the compounds on the DIG and the
occurrence of hysteretic conditions. Conversely, MET was easily and completely released
from the DIG, denoting a slight negative hysteresis. The sorption/desorption constants
KF and Kd were sufficiently correlated with the hydrophobicity of the molecules. The
overall results of this study evidenced the good potential of this material as a biosorbent of
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organic pollutants. Therefore, the incorporation of DIG into the soil can yield more than one
benefit, such as reducing the bioavailability of pollutants for plants and microorganisms,
counteracting the leaching of these compounds into groundwater and preventing their
entry into the food chain.
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Abstract: Industrial green technology progress is an effective way to realize high-quality economic
development in China. The different competitive incentives of local governments make a difference in
the intensity of environmental regulation between regions. The intensity of environmental regulation
is different in different areas of the same industry, leading to the inter-regional transfer of pollution
enterprises. The regional distribution of industries is different, which determines the different indus-
tries’ needs to coordinate different regions. Only when various industries realize the coordination
of regional governance can they jointly promote the progress of industrial green technology. Based
on data from 33 industrial sectors in China from 2001 to 2015 and considering the institutional
evolution of governance synergy, this study comprehensively investigated the influence mechanism
of local government environmental regulation on the industrial green technology progress using the
mediating effect model. We found that environmental regulation promoted industrial technological
progress through governance synergy and a low degree of inter-regional regulation coordination
hindered the industries’ green technology progress. With the change in inter-regional governance
synergy levels, we further discovered that the impact of environmental regulation on industrial green
technology progress changed substantially. At a low level of governance synergy, environmental
regulation inhibited industrial green technology progress. At a high level of governance synergy,
environmental regulation promoted industrial green technology progress. While strengthening
environmental regulation, we should promote inter-regional cooperation at the industry level. Only
by collectively enforcing pollution regulations in industrial level can industrial green technology
progress be promoted.

Keywords: environmental regulation; governance synergy; industrial green technology progress;
mediating effect

1. Introduction

The extensive development mode with high energy consumption and high emissions
in the early Chinese industrial movement created huge economic dividends. However, it
also brought severe challenges to environmental governance. In the 19th National Congress
of the Communist Party of China (CPC), the party proposed to promote green development
and solve environmental problems to realize high-quality economic development. In the
long run, whether the existing environmental regulation policy can help to realize the
development of the environment and economy depends on whether it can promote the
progress of green technology.

The relationship between environmental regulation and green technology progress
has been the focus of academic debate for a long time. In China, the research on the
relationship has not yet reached a unanimous conclusion. The reason for this lies in the
fact that all of this research ignored the governance synergy of local government in the
specific national conditions of China. The central government promulgates environmental
protection policy to promote green technology based on the regulation of the industrial
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sector. However, local governments execute this policy at their discretion. Under the
administrative decentralization system in China, the different competition incentives of
local governments cause the different intensities of inter-regional environmental regula-
tions. The intensity of environmental regulation is different in different areas of the same
industry, it easily leads to polluting enterprises avoiding the high cost of local innovation
by moving the enterprises to the lax supervision areas. While the regional distribution
of different industries is different, it determines that different industries need different
areas of co-governance. If local governments do their own thing to manage environmental
pollution, not much progress will be made in green technology in the entire industrial
sector. Because of the great differences in the industrial structure between each region,
there will be great differences in the key areas where each industry needs to be jointly
governed if the environmental regulation is carried out at the level of industry. The relevant
environmental policies of governance synergy focus on the problem of air pollution and the
key cooperation areas of implementing regulations at the industry level are also based on
the inherent economic circle of air pollution prevention and control. Without governance
synergy, the effect of the environmental policy that is promulgated by the central govern-
ment will be greatly undermined at the stage of implementation by local governments. It is
important to construct industry-level governance synergy to effectively promote industrial
green technology and solve China’s environmental problems. However, there is a lack of
theoretical and empirical research on the mechanism of how environmental regulation
affects green technology progress through governance synergy.

The main contributions of this study are as follows: (1) It constructed the mechanism
of how environmental regulation promotes industrial green technology progress through
governance synergy at the industry level. This study is different from the previous research
on air pollution in urban agglomerations or inter-regional joint prevention. There are
regional differences in the distribution of industries, and each industry needs different
provinces for co-governance. It is significant whether the co-operation of different local
governments in a specific industry can realize the industrial green technology progress.
This is highly complementary to existing research. (2) A new measurement of governance
synergy is constructed. By using the two-digit industries in a province of industrial gross
output value panel data to calculate the weights, two-digit industries in a province of
environmental regulation intensity were calculated, and then the inter-regional governance
synergy degree of each industry was measured. Different from the previous studies using
virtual variable measurement, this study constructed a continuous variable that reflected
the collaborative governance level of different regions within a specific industry. (3) Based
on the heterogeneity of governance synergy, it was found that the impact of environmental
regulation on industrial green technology progress will change substantially at the different
levels of governance synergy.

The rest of this paper is arranged as follows: the second part is the literature review,
the third part provides the theoretical mechanism and hypothesis, the fourth part provides
the research design, the fifth part shows the empirical results and discussions, and the final
part provides the summary and policy enlightenment.

2. Review of the Literature

The existing studies were mainly undertaken from the following two perspectives:
one was against the Porter hypothesis, arguing that environmental regulation aggravates
the production burden of enterprises. It holds that environmental regulation fails to stimu-
late green technology innovation of enterprises and hinders industrial green technology
progress [1–3]. Greenstone et al. [4] found that stringent air pollution regulations reduced
the green total factor productivity of polluting firms in regulated areas based on data of
the U.S. manufacturing plant survey. To avoid the restriction of environmental policies or
reduce environmental costs, polluting enterprises transfer production due to regional differ-
ences in environmental standards or regulations, leading to the pollution shelter effect [5,6].
Yuan and Xiang [7] employed panel data on Chinese 28 manufacturing industries from
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2003 to 2014 to examine the effects of environmental regulation on industrial innovation
and green development. They found that the impacts of environmental regulations on
green total factor productivity were insignificant over both the short and long term. Some
scholars hold that the validity of the Porter hypothesis depends not only on the intensity of
environmental regulation but also on the type of environmental regulation [8,9]. The other
perspective involved supporting the Porter hypothesis, i.e., strict and appropriate environ-
mental regulation will encourage enterprises to engage in green technology innovation
activities and reduce the cost of environmental governance by improving the technological
level [10–12]. Acemoglu et al. [13] divided the production sector into clean and non-clean
sectors, analyzed the impact of environmental policy incentives on technological innova-
tion, and deduced the endogenous process of technological progress by constructing the
model of technological progress direction. Ulucak [14] found that environment-related
technologies positively contribute to green growth. The strictness of the environmental reg-
ulations positively impacts the green innovation of the companies [15]. Some scholars hold
that there is a U-shaped threshold effect between environmental regulation and industrial
green technology progress [16,17].

Appropriate environmental policies stimulate technological innovation, but the translo-
cation of polluting industries will worsen the environmental quality of the destination,
resulting in bottom-up competition between local governments. Wu et al. [18] constructed
a spatial Durbin dynamic threshold panel model with provincial-level data to study the
nonlinear relationship between environmental regulation and local decentralization. The
results showed that there was a significant U-shaped relationship between environmental
regulation and green total factor productivity, and a high level of local decentralization
inhibited the green technology progress. From the perspective of local decentralization,
different competition incentives of local governments lead to different intensities of en-
vironmental regulation in different areas. As environmental regulation becomes tighter
in one place, polluting enterprises may relocate to nearby regions where environmental
regulation is weak [19]. The non-synchronous stimulation of environmental policy among
regions will weaken the effect of environmental regulation. It is difficult for environmental
policy to stimulate the innovation of industrial green technology.

If local environmental regulation has an impact on green technology progress in
neighboring regions [20], will environmental regulation promote green technology progress
through inter-regional industrial governance collaboration? Only a few relevant studies
have been done on the relationship between governance synergy and environmental
pollution. Li et al. [21] constructed a comprehensive index of environmental regulation
and the degree of environmental co-governance at the enterprise level. The analysis
of the influencing mechanism shows that environmental co-governance can reduce the
probability of enterprise migration, inhibit the transfer of pollution to nearby areas, and
improve the efficiency of environmental governance. Based on the theory of collective
action, Hu et al. [22] put forward the optimal regional control scheme for the governance
synergy of air pollution in China and considered that the establishment of inter-regional
joint organizations will effectively promote the degree of governance synergy.

There are abundant studies on the influence of environmental regulation on green
technology progress. The research on the relationship between governance synergy and
environmental pollution has been paid more attention to. However, few studies have
combined environmental regulation, governance synergy, and industrial green technology
progress for empirical analysis. This study was based on the practical evidence that there
were different intensities of environmental regulations in different areas, as well as the
unique national conditions of China. It examined how environmental regulation promotes
industrial green technology progress through inter-regional governance synergy. Further-
more, if the level of governance synergy is different, how does environmental regulation
affect industrial green technology progress? These questions are related to which level of
governance synergy is necessary to ensure that environmental policies have a positive effect
on green technology progress. The study constructed a governance synergy index, consid-
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ered how environmental regulation affects industrial green technology progress through
governance synergy with the mediating effect model, and investigated the heterogeneity
characteristics of the governance synergy degree.

3. System Evolution and Theory Analysis

As early as 1996, the Water Pollution Control Act of China incorporated the water pol-
lution prevention and control planning system for key river basins into the legal framework
for the first time, which was essentially the embryonic form of regional joint prevention
and control. In May 2015, the State Council issued the Action Plan on Water Pollution
Prevention and Control. It suggested that ten key industries, including papermaking and
coking, should be cleansed. Furthermore, it proposed the establishment of a governance
synergy mechanism for regional water pollution prevention in the Beijing–Tianjin–Hebei
region, the Yangtze River Delta, and the Pearl River Delta. In 2017, the Water Pollution
Prevention and Control Act was amended with new regulations in the form of a law to
ensure the governance synergy mechanism for water pollution prevention in major rivers
and lakes. Compared with the water pollution prevention cooperation mechanism, the
establishment of the air pollution prevention cooperation mechanism was relatively late.

In 1998, the Ministry of Environmental Protection proposed the Two Control Area
Divisions Program for acid rain and SO2. In May 2010, the Ministry of Environmental
Protection and nine other departments issued the Guiding Opinions on Promoting Joint
Prevention of Air Pollution to Improve Regional Air Quality. It put forward a solution
to the problem of regional air pollution with the idea of joint prevention for the first
time and strengthened the promotion of cleaner production technology in key industries,
such as thermal power, iron, and steel. In September 2013, the State Council issued
the Action Plan on Air Pollution Prevention, which proposed the establishment of a
regional cooperation mechanism of air pollution prevention in the Beijing–Tianjin–Hebei
and Yangtze River delta regions, especially for the waste gas pollution in key industries.
The following year, the Working Plan on strengthening air pollution prevention in the
energy sector was formulated. It proposed that the local governments of ten provinces and
cities, including Beijing, Shanghai, and Guangzhou, were responsible for implementing
the tasks of controlling the total amount of energy and coal consumption. A long-term
mechanism for joint prevention from the central government to the local authorities should
be established. At the same time, the Ministry of Environmental Protection formulated the
measures of air pollution prevention in key industries, such as power, steel, cement, and
flat glass, for the Yangtze River Delta Economic Zone, the Beijing–Tianjin–Hebei region,
and the surrounding areas. In 2015, the air pollution prevention law was amended again to
set up new content for the Joint Prevention of Air Pollution in Key Regions, which ensured
the joint prevention mechanism of air pollution in key regions from the national legal
level. In 2018, the State Council issued the three-year action plan for winning the battle
to defend the Blue Sky, which identified 28 cities in the Beijing–Tianjin–Hebei region and
its surrounding areas as key areas and reorganized the coordination group into a leading
group on air pollution prevention.

No matter the key river basins of water pollution prevention or the three economic
circles of air pollution prevention, there is a lack of institutional planning and regulatory
rules that consider the coordinated actions of different local governments and governments
from industry. This is the defect of the current policy system of governance synergy. At
present, the coordination areas of industrial pollution prevention depend on the existing air
prevention areas. If such prevention is not implemented in the inter-regional coordination
action within specific industrial sectors, environmental regulation will not upgrade the
level of green technology of the overall industry, and the environmental policy pollution
effect will be greatly compromised. The establishment of the pollution prevention system
from the central government to the local governments shows that governance synergy is
imminent. Based on the above analysis, hypothesis 1 was proposed.
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Hypothesis 1. Environmental regulation promotes industrial green technology progress through
governance synergy to some extent.

The improvement of governance synergy will help enterprises to improve their in-
novation level and achieve the policy objectives [23]. The higher the level of governance
synergy, the smaller the differences in environmental regulation intensity between different
provinces in the industry, and the smaller the space for pollution enterprises to reduce
the regulation cost via inter-regional transfer. When sustainable economic development
is faced with tight environmental regulation constraints, the high level of governance
coordination becomes an important way to solve the dilemma of maintaining growth and
promoting carbon emissions reduction. However, the current governance synergy lacks
intrinsic motivation. There are three reasons why it is difficult for local governments to
manage environmental problems in coordination: The first reason is the fiscal incentive.
Fiscal decentralization causes local governments to pursue economic development at the
expense of environmental governance, resulting in a bottom-up competition effect. In
contrast, to compete for the essential resources that favor a high-quality environment, local
governments are competing with each other in spending on pollution prevention and
forming top-down competition. The second reason is the promotion incentives for officials.
Distortions in local government efforts are inevitable because green technology progress
indicators are not easy to quantify. Driven by their political achievements, officials may
ignore the long-term effects of rapid economic growth, especially those related to envi-
ronmental pollution, which are not easily assessed, resulting in a bottom-up competition
effect. In contrast, to implement the Scientific Outlook on Development, the competition
for local government environmental regulation has subsided. Officials have even pursued
an achievement project that involves beautifying the environment during their term of
office, resulting in a top-down competition effect. The third reason is catching up with
and surpassing strategic incentives. Decentralization reform causes local governments
to continue to give priority to the development of heavy industries to catch up with the
advanced provinces. This lowers the standard of environmental regulation and leads to
a bottom-up competition effect. After the reform and opening-up, the rapid economic
growth of China expanded the regional differences in development. The differences in the
competitive incentives of local governments are likely to lead to differences in behavior
and intensity of environmental regulation.

However, the intervention of environmental regulation just makes up the deficiency
of this intrinsic incentive and aggravates the regulation cost burden of incomplete imple-
mentation by local governments. It ensures that local governments effectively implement
environmental protection policies that are related to governance synergy. In 2005, the
State Council issued the Decision on Implementing the Scientific Outlook on Develop-
ment and Strengthening Environmental Protection. It incorporated the performance of
environmental protection into the assessment system as the basis of local official selection
for the first time. In July 2015, the Environmental Protection Supervision Plan (Trial) was
released. In 2016, the State Environmental Protection Supervision Office was set up and
the reform on vertical environmental management system was piloted. In June 2020, the
State Council General Office issued a reform plan on the division of financial powers and
expenditure responsibilities between the central and local governments in the field of
ecological environment. It established a fiscal relationship between the central and local
governments with clear powers and responsibilities, coordinated financial resources, and
balanced regional development. Therefore, a reasonable standard of environmental regu-
lation is helpful for the construction of a regional joint prevention and control system, as
well as driving the inter-regional governance coordination and industrial green technology
progress to a high level. However, for those regions whose economic development is
heavily dependent on a single industry, especially pollution-intensive manufacturing, the
tightening of environmental regulation standards will make it difficult to raise the level of
governance synergy in the short term. Moreover, it will magnify the costs of regulation
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such that the level of low-carbon technology in the region may decrease as the intensity
of environmental regulation increases. In this case, it is inefficient to promote industrial
green technology progress through environmental regulation. Therefore, according to the
mechanism of governance synergy, the impact of environmental regulation on the progress
of industrial green technology will change with the inter-regional governance synergy
level in a specific industry. Moreover, the higher the level of inter-regional governance
synergy, the more obvious the industrial green technology progress effect of environmental
regulation will be, and vice versa. Based on the above analysis, we proposed hypothesis 2.

Hypothesis 2. The impact of environmental regulation on the industrial green technology progress
will change substantially with the change in the inter-regional governance synergy level. At a low
level of governance synergy, environmental regulation is not good for industrial green technology
progress, while at a high level of governance synergy, environmental regulation promotes industrial
green technology progress.

4. Research Design

4.1. Setting the Empirical Model

In this study, the mediating effect model was used to examine how environmental
regulation affects industrial green technology progress through governance synergy. The
mediating effect test is divided into three steps. First, the explanatory variable X has
a significant effect on the explained variable Y. If the coefficient of X is significant, the
mediating effect is examined. Second, the explanatory variable X has a significant effect
on the mediating variable M. Third, M is added to the regression equation of the first step.
While the coefficients of M and X are significant, M is considered a partial mediating effect.
In this study, the explanatory variable X was environmental regulation, the explained
variable Y was industrial green technology progress, and the mediating variable M was
governance synergy, as shown in Figure 1. Based on the above analysis, the panel regression
model was constructed as follows:

Yit = θ0 + θ1ERit + η1Cit + εit1 (1)

CGit = γ0 + γ1ERit + η2Cit + εit2 (2)

Yit = β0 + β1ERit + β2CGit + η3Cit + εit3 (3)

where i indicates the industry number, i = 1, 2, ..., 33. t indicates the year, t = 2001, 2002, ...,
2015. Yit represents industrial green technological progress. ERit represents environmental
regulation. Cit represents the control variable, which incorporates the output rate of new
products (innovit), the level of capital management (mngtit), and the level of urban wages
(wageit), the level of industry innovation (patit). εit represents the random perturbation
term. The θ, γ, β, and η coefficients are values to be determined.

Figure 1. The mediating effect mechanism of environmental regulation, governance synergy, and
industrial green technology progress.
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The benchmark of the empirical model equation was the linear model equation
of environmental regulation affecting industrial green technology progress. If θ1 was
significantly positive, then environmental regulation had a significant positive effect on the
progress of industrial green technology. If γ1 was significantly negative, then environmental
regulation had a significant negative effect on governance synergy. The third step can
be continued. Based on the benchmark model, the mediating variable CGit was added.
If β2 was negative and significant and β1 was significant and had decreased, then the
environmental regulation had a partial mediating effect on industrial green technology
progress through governance synergy.

4.2. Variable Calculation and Description

(1) Governance Synergy (M)
There are two main methods to measure the degree of governance synergy, including

the existence of virtual variables of governance synergy, and the total number of policy
joint publications multiplied by the policy intensity. Due to the lack of quantitative research
on governance synergy degree, this study needed to create a measure of governance
synergy from indicators of environmental regulations intensity. Different from the previous
discrete variable measurement of air pollution prevention coordination, the indicator used
continuous variables that represent the level of governance synergy of environmental
regulation among different local governments in a given industry.

Before measuring the degree of governance synergy, it was necessary to reconstruct
the intensity of environmental regulation in different provinces and industries. Industrial
structure is an important factor that affects the environmental regulation of local govern-
ment. Environmental policy is regulated on the basis of industries. Under certain local
environmental regulations, due to the different industrial structures in different regions,
the intensities of environmental regulations for industries are different in different areas.
This results in different effects of environmental regulation. To analyze the intensity of
environmental regulation corresponding to the industrial structure in different regions
of China, this study reconstructed the environmental regulation intensity of two-digit
industries in a province panel data, where ERNI describes the intensity of environmental
regulation of industry I in province N, as follows:

ERNI = ERN × WNI

where n is the province, n = 1, 2, 3, ..., 30; I is the industry, I = 1, 2, 3, ..., 33.
WNI represents the proportion of industry I in province N and the adjustment coef-

ficient of the two-digit industries in a province; it was measured using the proportion of
industry gross output value ONI of industry I in province N to the total industrial output
value of the province ON. It reflected the proportion of an industry in a specific province
and was used to calculate the intensity of environmental regulation in that province. The
adjustment factor was calculated as follows:

WNI = ONI/ON

From the relation WNI =
OIN
ON

= ERIN
ERN

, we can see the rationality of the definition of
environmental regulation.

ERN represents the intensity of environmental regulation in each province, which
was consistent with the measurement method of environmental regulation intensity in
industries. It was measured using the proportion of the operating cost of the administrative
facilities in each province to the total industrial output value, indicating the intensity of
environmental regulation in province N. Given the lack of data on the operating cost of
industrial solid waste treatment facilities in the provinces, the operating cost of treatment
facilities included the operating cost of wastewater and waste gas treatment facilities.

If the technology level of a specific industry is constant in a given period, the propor-
tion of each industry is different for a given province; therefore, the intensity of environ-
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mental regulation is different for different industries. Taking into account the relevance of
data availability and environmental regulation while avoiding the estimation bias caused
by the under-representation of indicators, this study adjusted the intensity and weight
of environmental regulation in different provinces to reflect the different industries in
the province corresponding to the intensity of environmental regulation differences. For
example, if the ratio of the industrial output value of industry I in province N is very
low, then the corresponding environmental regulation intensity of this industry ERNI is
relatively small. ERNI is determined by the environmental regulation intensity of province
N and the weight WNI. If the proportion of industrial sectors in two provinces is equal
and the intensity of environmental regulation is different, then the environmental regu-
lation of the province with stronger environmental regulation is higher than that of the
province with weaker environmental regulation. If the environmental regulation of the two
provinces is equal and the proportion of industrial sectors is different, then the provinces
with higher weights have higher environmental regulation ERNI in this industry. If the
weight is zero, then the province does not have industrial sector I, and the ERNI is 0,
that is, province N does not need to implement environmental regulation on industry I.
If ERNI > ERMI (N �= M), then Δ = ERNI − ERMI > 0, indicating that different local
governments have different intensities of environmental regulation in the industry. Other
things being equal, enterprises in province N have the motive to move into province M to
avoid the high environmental regulation cost in province N.

Finally, measuring the provinces of governance synergy (GS) within the industry. The
calculation was as follows:

GSI =
1

ln[SD + 2]

SD =

√
30
∑
N

(
ERNI − ERNI

)2 represents the standard deviation of the environmental

regulation intensity of all provinces in a certain industry, reflecting the degree of regional
governance coordination. This measurement shows that the bigger the index is, the higher
the governance coordination degree is, as well as the normal distribution of the data. The
larger the GSI, the higher the degree of governance synergy, and vice versa. The governance
synergy degree of the 15 provinces with a large proportion of each industry (GS2) was
tested as a substitution variable.

(2) Dependent Variables: Industrial Green Technology Progress (Y)
The measurement methods of industrial green technology progress are mainly divided

into the Solow residual value method and the non-parametric DEA method. The former
is measured using Solow residuals and the latter by decomposing technological progress
from productivity.

Based on the input and output data of industries from 2000 to 2016, the non-parametric
DEA method was used to measure the industrial green technology progress [24,25], and
the green total factor productivity was calculated and decomposed into an ML index [26].
The ML index reflects the growth rate of industrial green technological progress. It assumes
that the industrial green technological progress in 2001 was 1, then the ML index was
multiplied by the industrial green technology progress from 2001 to 2015, reflecting the
dynamic change. Given the availability of data, the research object of this study was the
industrial enterprises above the scale. Given the lack of the statistical data of industry before
2001 in the Chinese Industrial Economy Statistical Yearbook and Chinese Environmental
Statistical Yearbook, this study selected the input–output data of 33 industrial sectors from
2001 to 2015. The input index includes three items, namely labor input, capital input, and
energy input. The expected output index is the total industrial output value of industry.
Although the selection of the non-expected output index is controversial and has not
been unified, considering the various emission of industrial pollutants, two indexes were
selected as the non-expected output indexes, namely, the industrial CO2 and SO2 emissions.

The relevant indicators and data processing for inputs, expected outputs, and non-
expected outputs are described below:
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(1) Labor input: Labor hours provide a better measure than labor force when measuring
labor input, but it is hard to obtain. We chose the average number of all employees in
industrial enterprises above scale in sector to replace the number of labor hours. The
relevant data was from the China Industrial Economic Statistical Yearbook.

(2) Capital investment: The total fixed assets of industrial enterprises above scale in
sector were selected as the approximate estimation of the capital stock, and the fixed
assets investment price index was converted into the constant price in 2001.

(3) Energy input: This study considered not only the capital input and labor input but
also the energy input. Energy consumption is the main source of undesired output.
The total energy consumption data of industrial enterprises above scale in sector were
converted into 10,000 tons of standard coal according to the conversion coefficient of
standard coal, where the conversion coefficient came from the appendix of the China
Energy Statistics Yearbook.

(4) Gross industrial output value: By using the ex-factory price index provided by the
China Industrial Economic Statistics yearbook, the total industrial output value of
each industry was adjusted to the constant price in 2001.

(5) Industrial CO2 emissions: According to the calculation method of carbon emissions
in the guidelines of national greenhouse gas inventories, which was compiled by the
Intergovernmental Panel on Climate Change (IPCC), CO2 emissions were estimated
according to the amount of fuel burned and the emission factors.

(6) Industrial SO2 emissions: Considering that the large amount of industrial SO2 emis-
sions in industrial production is also one of the main sources of air pollution, we
chose industrial SO2 emissions as an undesired output index.

(3) Core independent variable: environmental regulation (X)
Scholars mainly measure environmental regulation from four perspectives, namely, the

proportion of the total investment of industrial pollution governance in the industrial added
value [27], the proportion of operating expenses of pollution facilities in the industrial
output value [28], the comprehensive index of pollution emissions [29], and the number of
environmental regulation policies or regulatory bodies inspecting polluting enterprises [30].

Considering the availability of industrial panel data, the proportion of the operating
cost of each industry’s pollution prevention in the industrial output value (ER) was chosen
as the proxy variable of environmental regulation intensity. Due to the fact that the data
of the governance operation costs of industrial solid waste in the annual report of China
environmental statistics were not collected, the total operating costs of pollution treatment
included the operating costs of wastewater and waste gas prevention.

(4) Control variables: The output rate of new product (innovit), expressed as the
proportion of new product sales to industry sales; the level of capital management (mngtit),
expressed as the proportion of main business income to total assets; the level of urban
wages (wageit), expressed as the average wages of employees in urban units in logarithms;
the level of industry innovation (patit), expressed as the logarithm of the number of patent
applications in industries.

4.3. Descriptive Statistics

The descriptive statistics of the variables are given in Table 1. The correlation coeffi-
cients of the variables are given in Table 2. According to the test results, the correlation
coefficients between the variables were not large, which indicated that the variables had
good independence and no serious multicollinearity problems were present.

4.4. Data Sources

Given the lack of environmental data of 33 industrial sectors in China in other years,
this study used panel data of 33 industries in China from 2001 to 2015. The sample size
was 495. The sample data came from the China Industrial Economic Statistical Yearbook,
the China Environmental Statistical Yearbook, and the China Energy Statistical Yearbook.
To eliminate the influence of the price factor, all the price-related data were in the form of a
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ratio. Due to the differences in the classification of manufacturing sectors in the 2002 and
2011 editions, we made the necessary divisions and combinations of data according to the
principle of maximizing the use of data. Thus, 33 manufacturing subsectors were formed.

Table 1. Descriptive statistics.

Variable Mean Std.Dev. Min Max

Y 1.116 0.704 0 5.316
ER 0.233 0.293 0.005 1.782
CG 0.614 0.768 0 3.595

innov 11.681 10.418 0.004 62.941
mngt 1.22 0.466 0.352 3.11
wage 9.923 0.558 6.763 11.46
pat 7.336 2.03 1.099 11.547

Table 2. Matrix of correlations.

Variables (1) Y (2) ER (3) CG (4) Innov (5) Mngt (6) Wage (7) Pat

(1) Y 1.000
(2) ER −0.295 1.000
(3) CG −0.245 0.286 1.000

(4) innov 0.221 −0.334 −0.127 1.000
(5) mngt 0.181 −0.414 −0.308 0.137 1.000
(6) wage 0.513 −0.092 0.063 0.132 0.121 1.000
(7) pat 0.461 −0.300 −0.046 0.460 0.282 0.548 1.000

The industry classification standards for industrial sectors referred to the China
Industrial Economic Statistics Yearbook. Five subsectors were excluded because of missing
data for some years. That is, the handicraft and other manufacturing industries, the waste
resource and waste material recovery and processing industries, other mining industries,
the gas production and supply industry, and the water production and supply industry.
The missing data of other industry years were made up using the interpolation method. To
keep the statistics consistent, the plastics industry and the rubber industry were merged
into the plastic and rubber industry, the automobile manufacturing industry and the
railway, ship, aerospace, and other transportation equipment manufacturing industries
were merged into the transportation equipment manufacturing industry. After the above
adjustments, 33 industrial sectors were formed.

5. Empirical Results and Discussion

5.1. Regression Analysis of the Mediating Effect Model

To avoid the problem of endogeneity among the variables, the lag phase of environ-
mental regulation was used as an explanatory variable to estimate the dynamic model.
First, we considered the baseline relationship between environmental regulation and in-
dustrial green technology progress and used industry-level fixed effects for the regression
analysis. The estimated results are shown in Table 3. Model 1 was a regression model of
the effect of the control variables on the industrial green technology progress. Model 2
added environmental regulation as an explanatory variable on the basis of model 1. The
results showed that the coefficient of environmental regulation intensity was significantly
positive, at least at the level of 5%, which indicated that environmental regulation promoted
the industrial green technology progress. In model 3, the coefficient of environmental
regulation intensity was significantly negative, at least at the level of 5%, which indicated
that environmental regulation was becoming tighter and required higher inter-regional
governance synergy. Therefore, if the assumption of environmental regulation influencing
the green technology progress through governance synergy is established, we will observe
that environmental regulation is more obvious under higher governance synergy.
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Table 3. Model estimation and results.

(1) (2) (3) (4) (5) (GSH) (6) (GSL)

Variables Y Y GS Y Y Y

ER 0.300 ** 0.0517 ** 0.238 * 0.513 *** 0.171
(0.130) (0.0249) (0.127) (0.150) (0.239)

GS 1.195 ***
(0.247)

innov 0.00715 * 0.00796 ** −0.000266 0.00827 ** −0.00214 0.0270 ***
(0.00393) (0.00384) (0.000737) (0.00375) (0.00392) (0.00751)

mngt 0.677 *** 0.545 *** −0.129 *** 0.699 *** 0.298 ** 0.814 ***
(0.122) (0.127) (0.0243) (0.128) (0.140) (0.254)

wage 0.244 *** 0.368 *** 0.0205 0.343 *** 0.570 *** 0.269 *
(0.0695) (0.104) (0.0199) (0.101) (0.148) (0.155)

pat 0.121 *** 0.0744 ** −0.00358 0.0787 ** 0.0518 0.0931
(0.0290) (0.0347) (0.00666) (0.0338) (0.0414) (0.0614)

Constant −3.100 *** −3.876 *** 0.995 *** −5.065 *** −5.243 *** −3.577 ***
(0.542) (0.820) (0.157) (0.836) (1.167) (1.239)

Observations 495 462 462 462 249 213
R-squared 0.486 0.401 0.124 0.432 0.519 0.360

Number of ids 33 33 33 33 22 23

Note: *, **, and *** indicate the significance levels of 10, 5, and 1%, respectively.

Based on model 2, model 4 added the governance synergy as a mediating variable, im-
proving the explanatory power of the model (ΔR2 = 0.031). The coefficient of environmental
regulation was still positive but decreased. The coefficient of governance synergy was
significantly negative at the level of 5%. This indicated that there was a partial mediating
effect. Environmental regulation had a direct impact on the industrial green technology
progress; meanwhile, it promoted industrial green technology progress through the medi-
ating effect of governance synergy. This showed that the decrease in governance synergy
weakened the influence of environmental regulation on the industrial green technology
progress, which validated hypothesis 1.

To reduce their environmental governance costs, enterprises have two choices: one
is to promote green technological progress through local technological innovation, while
the other is to migrate to the other regions with lower environmental regulation intensity.
For polluting enterprises, local innovation and inter-regional transfer have a substitution
effect on reducing the cost of environmental treatment. On the one hand, to maintain
and improve the original market advantage, enterprises will try technological innovation,
eliminate backward production capacity for pollution prevention, and promote industrial
green technology progress. The enterprises hope to eliminate pollution emissions and
promote industrial green technology progress. On the other hand, the goal of an enterprise
is its profit maximization. They lack environmental awareness because the pressure of
environmental regulation will reduce its short-term profits. Even if the local government
takes public welfare as its goal, the enterprises may evade the environmental regulation
policy in disguise and migrate to the areas where the environmental regulation is weak.
As mentioned above, it is not enough to simply rely on local strict and appropriate en-
vironmental regulations that encourage enterprises to innovate and promote industrial
green technology progress. If environmental regulations in other areas are less stringent,
enterprises will migrate to those other areas. The new site provides a refuge for polluters.
If there is a small difference in the intensity of environmental regulation between the
local governments, the degree of coordination governance is high. When environmental
regulation is strengthened in one area, it also means that the intensity of environmental
regulation is strengthened in neighboring areas. It is difficult for enterprises to reduce
the regulation cost via migration, even if they bear the high cost of technology research
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and development. Environmental policy can encourage enterprises to carry out green
technology innovation locally and promote industrial green technology progress. If the
intensity of environmental regulation varies greatly between local governments, then the
degree of governance coordination is low. When environmental regulation is strengthened
in one area, and environmental regulations in the neighboring areas do not change, the
neighboring areas will become the receiving site of pollution industries. The enterprises
are likely to shift their strategic investment to a neighboring area because of the high
local regulatory costs, which will make the industrial green technology development of
the neighboring area lag behind. Then industrial green technology progress will not be
improved as a whole.

5.2. Analysis of the Heterogeneity of Governance Synergy

Considering the differences in environmental regulation levels between different
regions, this study investigated whether there was heterogeneity in the governance synergy.
Defining a scope greater than this governance synergy as a high-level governance synergy,
the reverse was defined as low-level governance synergy. Each industry was divided into
two sub-samples according to the mean of the governance synergy degree, that is, high-
level governance synergy (GSH) and low-level governance synergy (GSL). “High-level
governance synergy” meant that the governance synergy of all provinces in the industry
was high and there was little difference in the intensity of environmental regulations
between regions. “Low-level governance synergy” meant that the governance synergy of
all provinces in the industry was low and the intensity of environmental regulation varied
greatly between regions. After that, a sample-by-sample verification was performed, where
the estimated results are shown in models 5 and 6 in Table 3.

On the basis of model 4, models 5 and 6 divided governance synergy into two cases,
namely, low-level governance synergy and high-level governance synergy. The results
showed that there was a significant difference in the impact of environmental regulation of
green technology progress through different governance synergy levels. The result showed
that the coefficient of environmental regulation in model 5 was significantly positive at the
level of 1%, which indicated that the intensity of environmental regulation promoted the
industrial green technology progress under the high-level governance synergy. This may
have been due to the fact that there was little variation in the intensity of environmental
regulation in the provinces where environmental policies were implemented. Polluters
in the industry could hardly reduce regulatory costs by moving to other areas, which
helped to encourage industrial firms to innovate green technologies locally to promote
the industrial green technology progress as a whole. For a specific industry, if the gover-
nance synergy level of all the provinces was high, environmental regulation is beneficial
for promoting industrial green technology progress. In model 6, the coefficient of envi-
ronmental regulation was not significant, which indicated that with the increase in the
intensity of environmental regulation, industrial green technology progress was restrained
under the low-level governance synergy. The possible explanation for this was that the
level of governance coordination was generally low and the intensity of environmental
regulation varied greatly between the provinces in a given industry. This easily led to the
opportunistic behavior of polluting enterprises avoiding local innovation by relocating,
which was detrimental to the industrial green technology progress. For specific industries,
environmental regulation could not promote industrial green technology progress if the
coordination level of all provinces was low. Environmental regulation impacted the indus-
trial green technology progress via the restriction of the governance synergy degree, which
validated hypothesis 2. The specific impact mechanisms are detailed above and will not be
repeated here.
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5.3. Robustness Test

To verify the robustness of the above results, a robustness test was performed on
the replacement governance synergy metric (GS2), as shown in Table 4. After replacing
the governance synergy variable, the estimation results of the two proxy variables were
basically the same. This did not change the conclusion that environmental regulation
promotes industrial green technology progress through governance synergy. Based on
the degree of governance synergy, this study divided industries into those with high-level
governance synergy (GSH2) and low-level governance synergy (GSL2). This verified that
the impact of environmental regulation on the progress of industrial green technology
changed substantially with the change in the inter-regional governance synergy level. This
showed that the conclusion of this study has strong robustness and authenticity.

Table 4. Robustness test.

(1) (2) (3) (GSH) (4) (GSL)

Variables GS Y Y Y

ER 0.0573 ** 0.260 ** 0.645 *** −0.0653
(0.0289) (0.129) (0.143) (0.248)

GS 0.697 ***
(0.216)

innov −0.00198 ** 0.00934 ** −0.00222 0.0375 ***
(0.000856) (0.00382) (0.00361) (0.00852)

mngt −0.116 *** 0.625 *** 0.279 ** 1.048 ***
(0.0282) (0.128) (0.131) (0.276)

wage 0.132 *** 0.276 *** 0.371 *** 0.215
(0.0232) (0.107) (0.140) (0.162)

pat 0.0103 0.0672 * 0.121 *** 0.0634
(0.00773) (0.0344) (0.0405) (0.0640)

Constant −0.0702 −3.827 *** −3.797 *** −3.082 **
(0.183) (0.811) (1.105) (1.285)

Observations 462 462 290 172
R-squared 0.246 0.415 0.498 0.378

Number of ids 33 33 27 22
Note: *, **, and *** indicate the significance levels of 10, 5, and 1%, respectively.

6. Conclusions and Policy Recommendations

Environmental pollution is a worldwide problem. Governance synergy is the key to
realizing environmental protection and industry development in China. The relationship
between environmental regulation, governance synergy, and industrial green technology
progress is important for the design of environmental policy and green economy develop-
ment. Although the central government has been improving the environmental laws and
regulations, the strategic behavior of regional mobility of polluting enterprises makes the
effect of environmental governance unsatisfactory. This is due to the lack of mechanism
design and regulations at the industry level. This study presented the institutional evolu-
tion of environmental governance synergy, constructed a new measure of environmental
governance synergy, and used the mediating effect model to investigate the transmission
mechanism of environmental regulation on industrial green technology progress through
governance synergy. The main conclusions are as follows:

(1) There was a mediating effect in the environmental regulation promoting the industrial
green technology progress through inter-regional governance synergy. Inter-regional
low-level governance synergy hindered the industrial green technology progress. This
was because of the lack of a synergetic governance mechanism, which caused some
enterprises to migrate to other regions rather than innovate locally. This weakened
the effect of environmental policies on encouraging enterprises to engage in green
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technology innovation and is not good for the long-term development of industrial
green technology.

(2) The impact of environmental regulation on the industrial green technology progress
changed substantially with the level of inter-regional governance synergy. At low
levels of governance synergy, environmental regulation restrained industrial green
technology progress; at high levels of governance synergy, environmental regulation
promoted industrial green technology progress.

Based on the above findings, two policy recommendations are made:

(1) The top-level design of governance synergy should be strengthened. Improving the
joint prevention system is significant for industrial green technology progress as a
whole. The supervision and adaptive incentives to local governments should be
strengthened to prevent the enterprises’ migration.

(2) The joint governance capacity of different regions in various industries should be
improved. The central government should strengthen punishments for violations of
regulations and avoid softening the environmental regulation system.

In conclusion, while strengthening environmental regulation, enterprises should be
encouraged to innovate based on industrial governance synergy. Environmental regulation
promotes the industrial green technology progress only if governance cooperation in the
industry is formed.
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Abstract: This study explored the performance of TiO2 nanoparticles in combination with aged waste
reactors to treat landfill leachate. The optimum conditions for synthesis of TiO2 were determined
by a series of characterizations and removal rates of methyl orange. The effect of the ultraviolet
irradiation time, amount of the catalyst, and pH on the removal efficiency for the chemical oxygen
demand (COD) and color in the leachate was explored to determine the optimal process conditions,
which were 500 min, 4 g/L and 8.88, respectively. The removal rates for COD and chroma under
three optimal conditions were obtained by the single factor control method: 89% and 70%; 95.56%
and 70%; and 85% and 87.5%, respectively. Under optimal process conditions, the overall average
removal rates for ammonium nitrogen (NH4

+–N) and COD in the leachate for the combination of
TiO2 nanoparticles and an aged waste reactor were 98.8% and 32.5%, respectively, and the nitrate
(NO3

−–N) and nitrite nitrogen (NO2–N) concentrations were maintained at 7–9 and 0.01–0.017 mg/L,
respectively. TiO2 nanoparticles before and after the photocatalytic reaction were characterized by
emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier
transform infrared spectrometry. In addition, TiO2 nanoparticles have excellent recyclability, showing
the potential of the photocatalytic/biological combined treatment of landfill leachate. This simulation
of photocatalysis-landfilling could be a baseline study for the implementation of technology at the
pilot scale.

Keywords: TiO2 nanoparticles; photocatalysis; landfill leachate; aged waste reactors

1. Introduction

Leachates produced in landfills contain various organic and inorganic compounds,
such as refractory organic material, dissolved solid particles, ammonia nitrogen (NH3–N),
and heavy metals, which seriously threaten the environment and local ecosystems [1–3].
Often, combined anaerobic–aerobic biological processes can be utilized to degrade the
biodegradable organic pollutants of leachates [4–6]. However, over time, the reduction
of the biological oxygen demand/chemical oxygen demand (BOD5/COD) ratio < 0.3 and
microorganisms involved in nitrification–denitrification processes are readily hampered
by high concentrations of ammonium nitrogen, making it difficult to be treated by the
conventional biological and physicochemical processes [7–10]. Moreover, additional carbon
sources are needed to aid the nitrification–denitrification process [11]. Hence, a novel
method has been presented to transform landfills into bioreactors via leachate recirculation,
which is expected to accelerate the stabilization of landfills and reduce the organic strength
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of leachates [12]. However, recirculated leachates also lead to the accumulation of higher
levels of NH4

+–N and refractory organics compared with traditional landfills because of
the increasing ammonification rate and the lack of carbon sources [13].

Recently, the application of semiconductor-based photocatalysis in the treatment of
landfill leachates has attracted attention [14–16]. The technology could effectively miner-
alize a wide range of organic pollutants into low-toxicity organic small molecules, CO2,
and H2O without the use of expensive oxidant [17]. Among photocatalysis, TiO2 has been
extensively studied due to its super strong photo-oxidizing ability, easy accessibility and
environmental friendliness, and it has been considered to be a green catalyst material with
broad development prospects in the field of water treatment [18,19]. TiO2 absorbs UV
light (<380 nm), and electrons are promoted from the valence band (VB) to the conduc-
tion band (CB) to generate electron–hole pairs (e−/h+). Positive holes typically oxidize
organic compounds, inducing their oxidative degradation. In addition, electrons mainly
reduce molecular oxygen to superoxide radical anions, thereby leading to a number of
reactive oxygen species (OH•, O2

−•, and HO2•). Some titanium dioxide-based materials
are used to treat refractory pollutants, such as prepared B–TiO2-graphene oxide ternary
nanocomposite in the degradation of bisphenol A with a mineralization rate of 47.66% [20],
iron-doped TiO2 photodegradation for rhodamine B at about 90% [21], and TiO2-based
catalysts obtained by different preparation methods; the simultaneous oxidation of or-
ganic matter and the reduction in ammonia were observed during the solar photocatalytic
treatment of greywater [22].

Within this context, aiming to increase the effectiveness of the treatment of land-
fills, researchers have investigated the application of combination techniques, integrat-
ing biological processes with advanced oxidation processes [23]. Cai et al. [24] applied
cetyltrimethylammonium bromide bentonite–titanium dioxide photocatalytic technology
to the pretreatment of aging leachate, which maintained the removal of COD and NH3–N
at 82% and 37% in 60.02 min, respectively. Pellenz et al. [25] used a boron-doped diamond-
based photo-electro-Fenton system integrated with biological oxidation to treat landfill
leachate, which reduced its toxic potential. Researchers have attempted to implement
anaerobic bioreactor technology for effective MSW treatment through leachate decontami-
nation [26]. Simulations of landfilling in anaerobic bioreactors function as anaerobic sludge
digesters and facilitate accelerated and economic waste stabilization [27]. The study of
integrating biological processes with advanced oxidation processes in simple lab scale
reactors is an important stage to enable real-scale integrated applications in the treatment
of landfill leachate, which could solve the bottleneck caused by the high toxicity and insuf-
ficient carbon source of landfill leachate treatments. Thus, the main objectives of this study
were two-fold. First, we intended to explore the best conditions for the synthesis of TiO2 at
different hydrothermal temperatures and the different ratio of titanium to urea based on
the efficiency of methyl orange and learn about optimal reaction conditions under different
irradiation times, amounts of TiO2, and initial pH regarding COD and color treatment
efficiency in diluted leachate. At this stage, the TiO2 particles were characterized by energy
dispersive spectrum (EDS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR).
The second goal was to investigate the possibility of using synthetic TiO2-guided photo-
catalysis in combination with an aged waste reactor to treat landfill leachates under the best
process conditions by examining the removal rates or concentration of NH4

+–N, nitrate
(NO3

−–N), nitrite nitrogen (NO2
−–N), and COD. Currently, there is relatively little pub-

lished information on dealing with aging leachates by aged waste reactors combined with
photocatalytic technology. This study expects to provide some suggestions for accelerating
the process of waste stabilization.

2. Materials and Methods

2.1. Sampling

Landfill leachate was obtained from the Chongkou landfill in Guangxi, China. The gen-
eral characteristics of the raw leachate studied were as follows: COD, 7647 mg/L; pH, 8.88;
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NH4
+–N, 26.73 mg/L. The original water was diluted 30 times prior to treatment given the

high contaminant load in the original landfill leachate.
Leachate samples were analyzed by the standard for pollution control on the landfill

site of the MSW [28]. COD was determined in accordance with the dichromate titra-
tion method. NH4

+–N, NO3
−–N, NO2

−–N, and chromaticity were measured with an
ultraviolet-visible spectrophotometer (UV-6100A, Yuanxi Instrument Co., Ltd., Shang-
hai, China). The pH was measured using the glass electrode method (Yidian Scientific
Instrument Co., Ltd., Shanghai, China) and adjusted by adding HCl or NaOH.

2.2. TiO2 Nanoparticle Synthesis

The TiO2 nanoparticles were prepared by the green and mild solvothermal method [17,29].
First, 12.6 g of Ti(SO4)2 and 3.15, 6.3 and 12.6 g of urea were dissolved in 40 mL of ultrapure
water, the solution was stirred at room temperature for 20 min, and the mixture was
transferred into a Teflon-lined stainless autoclave of 100 mL capacity, sealed, and heated
at different temperatures (100 ◦C, 120 ◦C, 150 ◦C and 180 ◦C) for 12 h. After the system
cooled down to room temperature, the products were washed with deionized water three
times and separated by centrifugation until the system was neutral. Finally, the products
were dried in air at 80 ◦C for 12 h. Among them, the weight ratio of Ti(SO4)2 and urea was
controlled at about 1:1,1:2 and 1:4.

2.3. Characterization of TiO2 Nanoparticles

Four methods of characterization were used to describe the characteristics of the
synthesized TiO2 nanoparticles. To determine the structural characteristics and crystalline
phases of the nanoparticles, the X-ray diffraction (XRD) method was used. The diffrac-
tion angle range of 2θ = 10◦–80◦ was measured by a PANalytical X’Pert3 Powder X-ray
diffractometer (the Netherlands). Field emission scanning electron microscopy (FESEM)
analysis was used to visualize the morphology of the nanoparticles. This analysis was
accomplished with the Electron JSM-7900F FESEM in Japan. Qualitative and quantitative
analyses of the sample elements were conducted by energy dispersive spectrum (EDS)
analysis and by using the electron JSM-7900F FESEM in Japan at an accelerating voltage of
15 kV. The molecular structure changes of different samples were analyzed by Fourier trans-
form infrared spectrometry (FTIR), using a device produced in the U.S.A. by PerkinElmer,
at a scan range of 4000–400 cm−1.

2.4. Photocatalytic Experiments

The visible photocatalytic activities of the obtained samples were investigated by
the photodegradation of methyl orange in an aqueous solution. An amount of 20 mg of
the sample was dispersed into 50 mL of the methyl orange solution (10 mg/L)/diluted
leachate in a Pyrex glass reactor. A 300 W xenon lamp (Naai Precision Instrument Co., Ltd.,
Shanghai, China) with a UV light source (Figure 1) was used. The solution was allowed to
reach an adsorption–desorption equilibrium among the photocatalyst and methyl orange
by magnetic stirring in the dark for 30 min before irradiation with UV light. At certain
time intervals, the 2 mL suspension was sampled and filtered through the 0.45 m filter
membrane to remove the particles. The concentration of methyl orange was determined
by a UV-visible spectrophotometer (UV-6100A, Yuanxi, Shanghai, China) according to its
absorbance wavelength at 464 nm.

2.5. Cooperative Degradation Experiments

This study was conducted as a follow-up to a previous study, and the same materials
were used, including anaerobic reactors formed by domestic waste (numbered C and E)
and aged waste reactors (numbered D and F) (Figure 2) [13,30]. These materials were
suitable for the microbial domestication of the test stage. The leachate produced by C
and E was treated with D and F to form a recharge solution, which circulated back to
the corresponding anaerobic landfill device. Groups CD (Figure 2a) and EF (Figure 2b)
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microbially acclimatized for 14 days. The frequency obtained was 1 time/d when the
leachate diluted 30 times was used as the inlet water. From day 15 to day 33, the operation
mode of the CD group remained unchanged. However, in groups E and F, the effluent of
reactor F was treated by the photocatalytic reactor and then recharged to reactor E. In this
study, only the changes in the D and F effluent indexes were investigated.

Figure 1. Schematic of the experimental setup.

Figure 2. Schematic of bioreactor landfill (a), combined bioreactor landfill (b).

The photocatalytic reaction phase is as follows: 2 g of the TiO2 was dispersed into
500 mL (25 ◦C) of the effluent of reactor F with photocatalytic treatment for 8 h under
simulated sunlight (500 W).

3. Results and Discussion

3.1. Characterization of Photocatalysts

With methyl orange as the target pollutant, the best preparation conditions for TiO2
were obtained by evaluating its degradation efficiency (Figure 3). The removal ratio is
calculated by the following equations [31]:

removal ratio = (C0 − C)/C0 × 100% (1)
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Figure 3. Effect of photocatalysts prepared at different temperature (a) and the different ratio of titanium to urea (b) on
degradation rate of methyl orange concentration.

The surface morphology and surface area were very effective parameters in the
photocatalytic activity of TiO2 [32]. The SEM images revealed that nano-TiO2 had a smooth
surface, and EDS analysis illustrated the content of Ti and O elements, showing that the
prepared sample had high purity (Figure 4a,b). The XRD spectrum was used to analyze
the crystal structure, as shown in Figure 4c,d. From data analysis, the body-centered
tetragonal crystal structure of anatase was identified based on significant diffraction peaks:
20.2◦, 37.8◦, 47.9◦, 53.9◦, 55◦, and 62.6◦ corresponding to (101), (004), (200), (105), (211),
and (204) planes, respectively (JCPDS 86–1157). As previously reported in the literature,
the diffraction peak of the anatase crystal form became stronger as the half-peak width
narrowed, and the sample showed a good crystal form at 150 ◦C. The result of the XRD
patterns of products with different ratios of titanium sulfate to urea show that all the
samples exhibit high crystallinity, especially when the ratio is 1:2 (Figure 4d). Meanwhile,
the particle size of sample was calculated by the Scherrer formula [33]:

D = (KλB cos θ) (2)

where D is the average crystal size of the sample, λ is the X-ray wavelength (1.54056 Å),
B is the full width at half maximum of the diffraction peak (radian), K is a coefficient (0.89),
and θ is the diffraction angle at the peak maximum. The particle size of TiO2 at 100 ◦C,
120 ◦C, 150 ◦C, and 180 ◦C was 5.3, 9.7, 11.8, and 16.4 nm, respectively, and the particle
size of TiO2 at titanium sulfate–urea ratios of 1:1, 1:2, and 1:4 was 11.8, 13.1, and 9.5 nm,
respectively. Considering the crystallinity of the synthesized sample and degradation
rate for methyl orange, the optimal particle size of titanium dioxide was 11.8 nm in this
experiment.

The FTIR spectrum analysis chart of TiO2 prepared under controlled conditions is
shown in Figure 4e,f. The characteristic peak at 150 ◦C was the strongest, and the crystal
structure was the most complete, which was consistent with the XRD analysis. The peak
at 460 cm−1 of TiO2 was assigned as the Ti–O stretching vibration and Ti–O–Ti bridging
stretching vibration [34]. The two signals at 1640 cm−1 and 3420 cm−1 can be ascribed to the
−OH bending vibration of the water on the surface of TiO2 (Figure 4e) [35]. The adsorbed
water and hydroxyl groups on the surface of the catalyst would interact with the electron-
holes generated by the excitation to produce hydroxyl radicals with strong oxidizability
(Figure 4e) [36]. Therefore, the best synthesis conditions are a temperature of 150 ◦C and a
titanium sulfate–urea ratio of 1:1.
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Figure 4. SEM images (a) and EDS elemental mapping analysis (b), XRD patterns (c,d), FTIR patterns (e,f) during TiO2

nanoparticles.

3.2. Optimization of Photocatalytic Processes

The results of photocatalytic degradation of the landfill leachate by adjusting the
irradiation time are shown in Figure 5a. During the dark reaction carried out for 30 min,
the removal rates by TiO2 adsorption of COD and color was 93.94% and 60%, respectively.
The maximum COD and color removal rates were 89% and 70% under UV light, respec-
tively. The reason for the increased COD value may be that the photocatalytic reaction
oxidizes the complex macromolecular organics into small molecular organics after the light
is turned on. Hassan et al. [37] pointed out that an increase in COD concentration at the
end of photocatalysis is due to a decrease in catalytic efficiency caused by the deposition of
pollutants on the catalyst with time. Sama Azadi et al. [38] also confirmed this conclusion.
It is speculated that the reason for a COD removal rate that is higher than the chromaticity
removal rate is due to low phenolic substances in the reaction process, as color reduction
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simply reflects the oxidative opening benzene ring in the phenolic substances to other
straight chain compounds [39]. The result is consistent with the removal rate of COD and
color treated by AC/TiO2 for the last 30 min [40]. The reason why the COD decrease was
faster than the color removal needs more research. For this batch of the experiment, equal
amounts of 200 mg TiO2 were added into a series of test beakers containing 50 mL of the
landfill leachate.

Figure 5. Effects of irradiation time (a), TiO2 dosage (b,c) and initial pH (d,e) on COD concentration, removal and
color removal.
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As shown in Figure 5b,c, when the dosage of TiO2 was 200 mg (4 g/L), the COD and
decolorization removal rate were 94.28% and 70.00%, respectively. The highest photocat-
alytic efficiency did not appear at the dosage of 400 mg (8 g/L). The study confirmed that
with the increase in the amount of TiO2, the irradiated area and the photocatalytic rate
increased [41]. At a TiO2 dosage of 4 g/L, Jia [42] removed 37.4% COD and 55.5% color,
but the degradation ratio decreased, except COD, when the dosage was increased to 16 g/L.
Miao et al. [43] noted that when the catalyst dosage reached the saturation level, the light
absorption coefficient decreased. Therefore, the optimal dosage TiO2 was 200 mg (4 g/L)
in this study. For this batch of experiment, the duration of experiments performed was
750 min.

The results of photocatalytic degradation of the leachate at different initial pH values
(2, 5, 7, 9, and 11) are shown in Figure 5d,e. During the reaction process, different pH
values slightly affected the COD removal rate of approximately 85%. The color removal
rate was evident under acidic conditions. When the pH value was 2, the color removal
increased up to 87.5%. Jia et al. [44] studied the degradation of the landfill leachate by the
photocatalytic treatment process and proposed that the optimal pH value was 4. Some re-
searchers suggested that HCO3

−/CO3
2− anions brought about significant inhibitory effect

on photocatalytic oxidation of refractory organics present in the leachate [45]. However,
Xu et al. [46] noted that upon decreasing the leachate pH from 5.4 to 3.9, the amount and
size of aggregated TiO2 particles increased. Anpo and Kamat suggested that the highest
pollutant adsorption and maximum photocatalytic removal efficiency were observed at
a pH close to pHzpc [47]. Azadi et al. [38] indicated that the pHzpc values of C and C–W
co-doped TiO2 C-doped nanoparticles were 6.27 and 6.7, respectively, and the highest COD
removal rate was in the range of pH value 6–7. The COD removal efficiency increased with
leachate pH as reported in the literature [8]. Therefore, the pH value near pHzpc had the
best photocatalytic efficiency. In addition, the reason for the highest color removal rate
at pH = 2 may be the conversion of colored substances to colorless substances during the
photocatalytic reaction under strong acidity [48]. The original pH of the leachate in this
test was alkaline (8.88), and the pH of the leachate was unadjusted from the engineering
point of view. For this batch of the experiment, equal amounts of 200 mg TiO2 were added
into a series of test beakers containing 50 mL of the landfill leachate, and the duration of
the experiments performed was 750 min.

In addition, combined with the maximum removal rates of COD and color under the
three conditions, the optimal reaction time in this study was 500 min.

3.3. Treatment of Leachate by Aging Reactor Combined with Photocatalysis

The indicators of each reactor after acclimation are shown in Table 1.

Table 1. The indicators of each reactor after acclimation.

NH4
+–N (mg/L) NO3–N (mg/L) NO2–N (mg/L) COD (mg/L)

C 5.457 18.209 0.079 245.302
D 1.049 18.226 0.017 185.955
E 18.404 8.5228 0.281 146.390
F 1.049 18.276 0.281 126.607

As shown in Figure 6a, from day 15 to 33, the concentrations of NH4
+–N in reactors

D and F were 0.083–2.523 and 0.083–1.17 mg/L, respectively. The average removal rate
was 80.3% for reactor D and 98.8% of reactor F. The NH4

+–N concentration in the effluent
of the photocatalytic reaction was high, which was probably due to the photocatalytic
reaction converting the nitrogen-containing organic matter into nitrogen-containing inor-
ganic matter in the leachate. This finding shows that the leachate contains a large amount
of heterocyclic nitrogen and amino compounds that readily hampered the nitrification–
denitrification processes [9,49].
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Figure 6. NH4
+–N concentration and removal (a), NO3

−–N concentration (b) NO2
−–N concentration (c), COD concentration

and removal (d) of leachates.

Figure 6b illustrates that the concentration of NO3-N in the effluent of reactor D
and the NO3–N concentration of the effluents of reactor F was 7–9 mg/L. Boonnorat
et al. found that the leachate produced by a landfill for a long time contained low car-
bon/nitrogen (C/N) ratios [50]. The photocatalytic reaction of TiO2 with a circulating
leachate transformed the refractory organic matter into biodegradable organic matter,
which was looped through the anaerobic landfill reactor E to accelerate the degradation
of domestic waste and then recycled at the reactor F to provide a carbon source for den-
itrifying bacteria. Therefore, the concentration of NO3

−–N in reactor F was lower than
that in reactor D [51,52]. Figure 6c shows that NO2

−–N concentrations of reactors D and
F were 0.01–0.032 and 0.01–0.017 mg/L, respectively. However, the NO2

−–N concentra-
tion of the photocatalytic effluent F’ increased, which confirms the conclusion that the
nitrogen-containing organic matter shown in Figure 6a was degraded into NH4

+–N [53]
The N-compound conversion equation is as follows:

TiO2 + hv → e− + h+ (3)

h+ + H2O → OH• + H+ (4)

e−+ O2 → O2
−• (5)

O2
−• + e−+ 2H+ → H2O2 (6)

H2O2 + e− → OH• + OH− (7)

DON + OH•+ O2
−• + H2O → NH4

+ + OH− (8)

NH4
+ + 2 O2

−• + 2H2O → NO2
− +2·HO2 + 3H2 (9)

2NO2
− + 2O2 → 2 NO3

− (10)

2NO2
− + 2 OH• → NO3

− + H2O (11)
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where OH• and O2
−• are active species produced in the photocatalytic process.

As shown in Figure 6d, at days 15 to 20, the COD concentration difference between
the effluent of aged waste reactors D and F was not evident, and the microorganisms
were still in a certain adaptation stage. From day 21 to the end of the process, the average
COD removal rate (32.5%) of reactor F was also higher than that of reactor D (21.20%).
At the end of the research, the COD concentrations of the effluent from reactor D and
F were 125.49 and 83.14 mg/L, respectively; thus, reactor D satisfied the standard for
pollution control on the landfill site of the MSW [28]. A possible explanation is that in the
presence of organic compounds, the generated hydroxyl radicals interact with the aromatic
and heterocyclic compounds present in the leachate, which favor the formation of small
aliphatic chains of carboxylic acids resulting in compounds that are easily assimilated
by microorganisms [54]. This result indicates that the photocatalytic reaction degrades
the refractory organics into biodegradable organic matter, which can be degraded by the
microorganisms in an aged waste reactor [55,56]. Accordingly, the photocatalytic reaction
increases the biodegradable organic matter in the circulating leachate, which is more easily
degraded by microorganisms in reactor F. With the combined process, it was possible to
treat an effluent with a high organic load, meeting the restrictive standards of release in the
recipient water bodies [57].

3.4. Photocatalyst Stability

The experiment of removing COD and color was repeated three times to evaluate the
recycling and stability of the nanophotocatalyst. After each cycle, the catalyst was collected
and washed by simple centrifugation, washed with deionized water, and dried at 120 ◦C.
As shown in Figure 7, after three cycles, the COD removal rate was 90.00% and the color
change rate was 63.33%. These findings indicate that after recovery, the nanophotocatalyst
can maintain activity and continue to provide electrons during the photocatalytic reaction
to promote substrate degradation. Therefore, it had good industrial application prospects.

Figure 7. TiO2 recycling treatment effect.

XRD characterization, FTIR spectroscopy, SEM observation, and EDS analysis were
carried out to study the structure, morphology, and chemical composition of the recov-
ered TiO2 nanoparticles. As shown in Figure 8a, after the reaction, the TiO2 crystal form,
crystal plane, and diffraction peak intensity did not significantly change. According to
Scherrer’s formula, the grain diameter after the reaction increased to 14.1 nm, but as the
grain size increased, the specific surface area and the photocatalytic activity gradually
decreased, consistent with the photocatalyst stability test results (Figure 8b). The FTIR
diagram shows that, after the photocatalytic reaction, the characteristic peaks at 3420, 1640,
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1400, and 1060 cm−1 increased. This finding indicates that the surface of TiO2 adsorbed
organic matter containing hydroxyl groups and SO4

2−. In addition, the absorption peaks
of CH and CO appeared at 2974 cm−1and 2900 cm−1, respectively, which was caused by
the organic matter in the leachate that adsorbed on the surface of the TiO2 particles. How-
ever, the characteristic peak intensity of crystalline TiO2 molecules with a wavelength of
460 cm−1 decreased. The reason may be that organic matter occupied the active site of TiO2,
thereby weakening the stretching of Ti–O and Ti–O–Ti vibration (Figure 8c). Accordingly,
TiO2 nanoparticles have the potential to maintain high photocatalytic efficiency during
stability tests.

°

Figure 8. SEM images (a), XRD patterns (b) and FTIR patterns (c) of TiO2 nanoparticles before and after photocatalysis.

4. Conclusions

The effects of TiO2 nanoparticles and aged waste reactor combined treatment of NH4
+–

N, NO3
−–N, NO2

−–N, and COD in landfill leachate were discussed. SEM, FTIR, and XRD
were used to determine the optimal hydrothermal reaction temperature of the synthesized
nanoparticles at 150 ◦C, and the ratio of titanium to urea was 1:1. Then, considering the
removal rate for COD and chromaticity as the index, the optimal photocatalytic reaction
time was 500 min, the best dosage of TiO2 nanoparticles was 4 g/L, and the original leachate
had pH = 8.88. The removal rates of COD and chroma under three conditions were obtained
by the single-factor control method: 89% and 70%; 95.56% and 70%; and 85% and 87.5%,
respectively. Under the best process conditions, after the combined treatment with TiO2
nanoparticles and an aged waste reactor for landfill leachate, the overall average removal
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rates of NH4
+–N and COD were 98.8% and 32.5%, respectively. The concentration of NO3

−–
N and NO2

−–N were maintained at 7–9 and 0.01–0.017 mg/L, respectively. The combined
device degraded the refractory biodegradable organic matter into biodegradable organic
matter, and the recharge to the anaerobic bioreactor landfill can continue to accelerate the
degradation of domestic garbage. This simulation of photocatalysis-landfilling could be
a baseline study for the implementation of technology at the pilot scale to accelerate the
process of waste stabilization.
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Abstract: Fe-Cu materials were synthesized using the chemical plating method from Fe powder
and CuSO4 5% solution and then characterized for surface morphology, composition and structure
by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray
diffraction (XRD), respectively. The as-synthesized Fe-Cu material was used for removal of phenol
from aqueous solution by internal microelectrolysis. The internal electrolysis-induced phenol de-
composition was then studied with respect to various parameters such as pH, time, Fe-Cu material
weight, phenol concentration and shaking speed. The optimal phenol decomposition (92.7%) was
achieved under the conditions of (1) a pH value of phenol solution of 3, (2) 12 h of shaking at the
speed of 200 rpm, (3) Fe-Cu material weight of 10 g/L, (4) initial phenol concentration of 100.98 mg/L
and (5) at room temperature (25 ± 0.5 ◦C). The degradation of phenol using Fe-Cu materials obeyed
the second-order apparent kinetics equation with a reaction rate constant of k of 0.009 h−1L mg−1.
The optimal process was then tested against real coking wastewater samples, resulting in treated
wastewater with favorable water indicators. Current findings justify the use of Fe-Cu materials in
practical internal electrolysis processes.

Keywords: internal microelectrolysis; Fe-Cu material; phenol; wastewater treatment; coking wastew-
ater

1. Introduction

In recent years, the process of industrialization and modernization in Vietnam has
taken place rapidly, promoting socio-economic development of the country and accom-
panying problems of environmental pollution. Phenol is a hazardous pollutant and is
listed as one of 129 pollutants that need to be pre-treated, according to US Environmental
Protection guidelines. Phenol is often generated in the waste streams of industries such as
petrochemicals, oil refining, plastics, steel, textile, paper and pulp, pesticides, pharmaceu-
ticals, synthetic resins, and coking plants [1–3]. Phenol is a less biodegradable chemical
that can cause cancer, gene mutation and teratogen. Phenol contaminates water sources,
causing tremendous harm to humans and organisms; thus, eradication of phenol pollution
in wastewater is being studied in many countries, including Vietnam. In order to treat
phenols, physicochemical methods, such as adsorption, flocculation and sedimentation
have been used as a traditional treatment. However, they are found to be not very effective.

Processes 2021, 9, 720. https://doi.org/10.3390/pr9040720 https://www.mdpi.com/journal/processes154



Processes 2021, 9, 720

Internal electrolysis (IE) has been proposed as a remedy for this issue. Usually, based
on the electron material used, there are four types of IE, including Fe-Cu, Fe-C, Al-Cu
and Al-C. Among them, the Fe-C and Fe-Cu systems are widely used in actual projects.
The principle of IE involves two materials with different electrode potentials that generate
microelectrode pairs when being in contact. For Fe-C, the Fe-Cu iron system acts as an
anode and copper or carbon acts as a cathode, similar to the micro-battery pair in metal
corrosion. With a micro-battery with a voltage of about 1.2 V, a small power circuit of μA
appears, which acts as a redox agent in the decomposition reaction of adsorbed organic
compounds on the electrode surface. Due to this principle, Fe-C and Fe-Cu electrolytic
processes are also known as internal microelectrolysis. Therefore, it is possible to dissolve
iron without the use of an external current by placing micro-battery pairs as composites
of Fe-C and Fe-Cu, providing an advantage in internal microelectrolysis technology in
wastewater pretreatment applications [1–26]. The reactions that occur during internal
microelectrolysis are as follows [27].

The reaction at the anode (Fe):

Fe → Fe2+ + 2e E0(Fe2+/Fe) = −0.44 V (1)

The reaction at the cathode (Cu):

2H+ + 2e → 2[H] = H2 E0(H+/H2) = 0.00 V (2)

Fe and Cu: H2O → HO* + H+ + e (3)

Organic substances that exist in the solution, such as RX (organochlorine compound)
and RNO2 (aromatic ring nitro compound) then receive electrons from the anode surface
(metal Fe) and are reduced by the chlorine and amine reaction. The resulting pollutants
would become non-toxic or less toxic products, hence being more easily biodegradable.

The internal microelectrolysis process holds two main advantages. First, it could be
applied to treat various types of industrial wastewater, including polyester-containing
effluent [15], dyes [11,13,16], discharge from coal gasification [12], plant protection prod-
ucts [3,25], nitrate contamination [19], mixed industry (textile, dyeing, paper, plating,
mechanic) [6–9], high organic matter [4,17,18], oil contamination [14], TNT and RDX con-
tamination [10]. Second, internal microelectrolysis exhibits high treatment efficiency, fast
response time and low operating costs. Fan and Ma [4] used a Fe-Cu electrode system to
treat mixed industrial wastewater in Taopu, Shanghai at the capacity of 60,000 m3/day,
achieving a COD removal efficiency of 40%. Yin et al. [12] used this method to connect an
external current to treat 4-chlorophenol, reaching a removal efficiency that was higher than
90% after 36 min. Yang et al. [5] also reported that internal electrolysis could be used to
treat polyester wastewater, achieving the COD removal efficiency of 58%. The COD of the
wastewater decreased from 3353.2 mg/L to 1391.6 mg/L and its BOD5/COD ratio also in-
creased from 0.27 to 0.42 after treatment. Zhu [17] combined internal microelectrolysis and
a bio-membrane to treat mixed industry wastewater, reducing the COD from 150,000 mg/L
to 500 mg/L.

Recent trends in enhancing the decomposition of organic pollutants have shifted to the
use of bimetallic internal microelectrolytic materials prepared by the deposition of second
transition metals on the iron surface. Previous studies showed that transition metals such
as Ni, Cu and Co can enhance the catalytic activity of FeO [28]. Two types of catalytic
mechanisms of bimetallic internal electrolytic materials have been proposed: (a) indirect
reduction by atomic hydrogen ([H] abs) absorbed on the material’s surface in bimetallic and
transition metal additives form that facilitates the generation of surface-linked hydrogen
atoms ([H] abs), and (b) direct reduction on the catalytic active site by receiving electrons
during FeO oxidation and surface additives (i.e., transition of metals) to increase FeO
oxidation through the formation of a multitude of micro-battery pairs [29,30].

In many studies, Fe-Cu and Fe-C materials are usually made from scrap, iron granules,
copper and carbon powder with different sizes or prepared by second transition metal

155



Processes 2021, 9, 720

deposition on the surface of Fe, thus offering modest degradation efficiency against pollu-
tants [5,28–31]. However, it has been suggested that the use of chemical plating of Cu on
the Fe surface might result in materials with significantly improved degradation capacities
for internal microelectrolysis [22]. For example, Xu et al. (2008) fabricated Fe-Cu material
using the chemical plating method and used it in treatment of nitrobenzene (100 mg/L) in
aqueous solution [31]. The obtained material showed a removal efficiency of approximately
95% at optimal conditions, suggesting a better reactivity of the chemically galvanized Fe-
Cu for internal electrolysis. Bo et al. (2014) used a micro-sized Fe-Cu internal electrolyte
material prepared by chemical plating to pretreat p-nitrophenol in aqueous solution [22].
The material was prepared with the content of Cu on the surface varying from 30% to 95%.
Remarkably, the results pointed out that the Fe-Cu ratio played a key role in degradation
of p-nitrophenol.

In this work, we continued this research pathway by fabricating Fe-Cu materials
using the chemical plating method and investigated the effect of some factors such as pH,
treatment time, mass of Fe-Cu system, shaking rate, and the concentration to efficiency ratio
of phenol degradation of Fe-Cu materials in aqueous medium. In addition, the internal
electrolysis reaction was applied to treat real coking wastewater from a coal factory in
Vietnam.

2. Materials and Methods

2.1. Fabrication of Cu-Fe Material

Fe powder with sizes smaller than 50 μm and 99.9% purity (PA, China) was immersed
in 30% NaOH solution for 10 min to remove grease and clean the surface. The surface was
activated by treating in HCl 7.4% wt for 3 min. The diluted HCl solution was prepared with
an HCl solution concentration of 37% wt. The material was then washed several times with
water, followed by drying at 105 ◦C for 2 h, allowed to cool and stored in a sealed glass jar.
Fe-Cu samples were made using the chemical plating method in 5% CuSO4 solution (wt%).
To be specific, a total of 100 g of Fe powder was added into 1 L of 5 wt% CuSO4 solution
for a period of 2 min. The mixture was then washed several times with water and dried
at 105 ◦C for 3 h under N2 gas. The material was then stored in a desiccator for further
research.

2.2. Characterization of Structure, Composition, Physical Properties, Surface Characteristics of
Fe-Cu Materials

The surface characteristics and components of the Fe-Cu material after fabrication
were determined by scanning electron microscopy (SEM) and energy-dispersive X-ray
spectroscopy (EDS) (on an SEM-EDS machine, JSM 6610 LA—JEOL, Tokyo, Japan), re-
spectively. Measurements were made at the Institute of Materials Chemistry, Institute of
Military Science and Technology, Vietnam. The structure of the material was determined by
the method of X-ray diffraction (XRD) (on a Bruker D5000, Siemens, München, Germany).
The measurement was conducted at the department of Chemistry—Hanoi University of
Natural Sciences.

2.3. Study on Decomposition of Phenol

Factors affecting degradation of phenol were investigated, including pH, time, dosage
of Fe-Cu materials, shaking rate and initial concentration of phenol. The experiments were
carried out at room temperatures (25 ± 0.5 ◦C). Parameters for the experiments are shown
in Table 1.

156



Processes 2021, 9, 720

Table 1. Parameters for single factor investigations.

Investigation pH Time (h) Fe-Cu Dosage (g)
Shaking Speed

(rpm)

Initial Phenol
Concentration

(mg/L)

Effect of pH 2, 3, 4, 5, 6, 7 and 8 12 1 200 100

Effect of time 3 2, 4, 6, 8, 12, 20 and
24 1 200 100

Effect of material
dosage 3 12 0.25, 0.5, 0.75, 1.0,

1.25 and 1.5 200 100

Effect of shaking
speed 3 12 1 100, 120, 150, 180

and 200 100

Effect of initial
phenol

concentration
3 12 1 200 50, 100, 150, 200,

250 and 300

All experiments were conducted three times to check the repeatability. The result
of each experiment is the average result of the three times, with P values less than 0.05
indicating a significant difference between the means.

The phenol degradation efficiency was calculated by the formula:

H% =
(C0 − Ccb)

C0
× 100% (4)

In which: C0 is the concentration of the phenol solution before decomposition (mg/L),
Ccb is the concentration of the phenol solution after decomposition (mg/L) and H is the
degradation efficiency (%).

The initial and post-treatment phenolic concentrations were determined on the HPLC
Waters Acquity Arc instrument at the University of Education, Thai Nguyen University,
Thai Nguyen Province, Vietnam. The instrument was equipped with chromatographic
column C18 Inertsil ODS (5 μm, 250 × 3 mm, GL Sciences Inc., Tokyo, Japan). The optimal
conditions for the determination of phenol content are as follows: wavelength of 272 nm,
ratio of phosphate buffer solution mixture (pH = 4) to acetonitrile solution (pH = 3) of 30:70
(v/v), flow rate of 1.0 mL/ min, column temperature of 30 ◦C. TSS, BOD5, COD, total N,
total P and NH+

4 -N indicators were determined at the Thai Nguyen Center for Natural
Resources and Environment Monitoring.

3. Results and Discussion

3.1. Survey Results on Surface Characteristics and Physical Properties of Fe-Cu Materials

From the analysis results of the SEM-EDS images of the materials and synthetic
materials shown in Figures 1–4, it was found that the surface composition of the synthetic
materials was different from the original materials. The Fe powder particles were arranged
overlapping each other in blocks, whereas the Fe and Cu powder particles in Fe-Cu material
were distributed relatively evenly on the surface with sizes of less than 50 μm. This shows
that there was an even distribution of Cu plating alternating Fe powder particles to form Fe-
Cu micro-cell pairs. The results of analyzing the EDS spectrum of Fe and Fe-Cu materials
shown in Figures 3 and 4 and Tables 2 and 3 show specifically the presence of the elements
and their content in each sample.
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Figure 1. SEM image of Fe material.

Figure 2. SEM image of Fe-Cu material.

Figure 3. The EDS spectrum of material Fe.

Figure 4. EDS spectrum of Fe-Cu material.
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Table 2. Results of analyzing Fe sample elements.

Elements % Mass % Atom

O 8.95 25.55

Fe 91.05 74.45

Total 100.00 100.00

Table 3. Results of analyzing Fe-Cu sample elements.

Elements % Mass % Atom

O 12.11 24.97

Fe 18.59 21.83

Cu 69.30 53.20

Total 100.00 100.00

Analysis of the EDS of the Fe-Cu samples has shown Cu appearance, which proves
successful copper plating. The reaction in the process of dissolving and chemically plating
copper follows the processes below:

Fe � Fe2+ + 2e

Fe2+ � Fe3 + + e (There may be a part of Fe2+ oxidized to Fe3+)

Cu2+ + 2e � Cu

On the other hand, the analysis of the structure of the synthesized Fe and Fe-Cu
materials shown in Figure 5 shows that the components of the two spectra were distinctly
different. The Fe accounted for 18.59% of the mass according to EDX. On the XRD pattern,
the peaks assigned to Fe were quite weak, which suggests that Fe may be converted into
other compounds such as Fe•Cu2O. However, this is not always the case because Fe might
be present in the Fe-Cu materials in amorphous forms, which does not show up in XRD
results. Therefore, further studies are needed to confirm the exact material composition.

Figure 5. XRD spectrums of Fe and Fe-Cu materials.

This proves that the Fe-Cu bimetal material has been successfully fabricated and that
Cu has coated the Fe surface to form Fe-Cu micro-battery pairs.

3.2. Decomposition of Phenol
3.2.1. Effect of pH

According to Equations (1) and (2), the pH value has a great influence on the reaction
rate and the redox ability to create [H]. When the pH is lower, the amount of H+ provided for
the reaction becomes adequate or excessive, therefore accelerating the internal electrolysis
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or the corrosion of the electrode system. A lower initial pH value is associated with a
higher concentration of [H]. Furthermore, in the presence of O2, the cathode reduction of
the internal electrolytic reaction can also occur in the following reaction:

O2 + 4H+ + 4e → 2O* + 4[H] → 2H2O; E0 (O2/H2O) = 1.23 V (5)

Thus, more H+ would produce more [H] and O*, enhancing the ability to redox and
reduce phenol and leading to a better phenol treatment efficiency. The initial pH value also
affects the rate of corrosion reactions of Fe/Cu materials to form Fe2+, Fe3+, Fe (OH)2 and
Fe(OH)3. In a more acidic environment than Fe2+, Fe3+ is easy to form, yet it is difficult to
precipitate Fe(OH)2 and Fe(OH)3. Conversely, when the pH is high and in the presence
of dissolved oxygen, Fe(OH)2 and Fe(OH)3 concentration could be increased gradually in
response to reaction time. Iron hydroxides are also factors that indirectly remove the phenol
part as well as the intermediate compounds of the treatment by adsorption, flocculation
and precipitation.

The results shown in Figure 6 show that when the pH value increases from 4 to 9, the
phenol decomposition efficiency decreases. This can be explained by three main phenol
decomposition processes, including decomposition due to the impact of internal electrolyte
materials, adsorption and coagulation with iron hydroxide. As the concentration of Fe (II)
and Fe (III) ions exceeds 10−5 mol/L in the material, precipitates of Fe(OH)2 and Fe(OH)3
will appear at pH values higher than 3, which is favorable for the flocculation of Fe (II)
and Fe (III). At high pH (pH > 3), the phenol decomposition process was hindered, and
coagulation was accelerated. As a result, phenol decomposition efficiency was decreased.
Therefore, a pH value of 3 gave the maximum phenol decomposition efficiency and was
selected for further studies.
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Figure 6. Effect of pH on the phenol removal performance of Fe-Cu material.

3.2.2. Effect of Time

Variations of phenol removal with respect to reaction time are illustrated in Figure 7.
The results show that when increasing the time from the 2 to 12 h, the phenol decomposition
efficiency increased rapidly to a maximum value of 92.39%. Thereafter, over a period from
12 to 24 h, decomposition efficiency decreased slowly and then became almost stable.
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Figure 7. The effect of time on the phenol removal performance of Fe-Cu material.

The current result is in line with that of a previous study [19], which used Fe-Cu to
treat polyester wastewater. This can be explained as follows: when the time increases from
2 to 12 h, the ongoing occurrence of the interior microelectrolysis reactions accumulates
ferrous and ferric hydroxides, thus promoting phenol degradation efficiency. However,
increasing the time from 12 to 24 h also leads to increased precipitation of hydroxides on
the Fe-Cu surface and impedes the electron transmission between Fe-Cu and wastewater,
thereby neutralizing the Fe-Cu surface and terminating the internal electrolysis, so the
phenol degradation efficiency is reduced [20]. Therefore, we chose 12 h as the optimal time
for phenol decomposition of Fe-Cu materials.

3.2.3. Effect of Dosage of Material

Removal efficiencies achieved at different dosages are shown in Figure 8. As the
dosage of Fe-Cu material increased from 0.25 to 1.0 g, the phenol decomposition efficiency
increased gradually. Increasing the dosage from 1.0 to 6.0 g seemed to impair the phenol
degradation efficiency. In general, increasing the dosage of Fe-Cu resulted in a higher
generation of microscopic galvanic cells, possibly leading to improved phenol removal
efficiency. However, excessive amount of Fe-Cu in the solution might cause particle
agglomeration, thus reducing the contacting area among Fe-Cu and wastewater. Moreover,
the excess iron would react with H+ present in the solution, leading to weakened reaction
from Fe-Cu [21]. The Fe-Cu utilization efficiency would decrease remarkably if its dosage
were too high. Therefore, the material weight of 1.0 g or 10 g/L was selected as the optimal
material weight to decompose the phenol of Fe-Cu material.
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Figure 8. The effect of material dosage on phenol removal performance of Fe-Cu material.

3.2.4. Effect of Shaking Speed

The effect of shaking speed on phenol decomposition efficiency is shown as in Figure 9.
As the speed was accelerated, the phenol decomposition efficiency also improved. This
can be explained as follows. The shaking speed increases the dissolved oxygen content
into the solution and enhances the ability to diffuse pollutants to the surface in contact
with the Fe-Cu electrode, as well as the rapid dispersion of the products treated at the
electrode in the solution. However, in acidic environments with low pH, the dissolved
oxygen content is lower than in alkaline media. The effect of dissolved oxygen content on
phenol degradation efficiency can be explained by the following reasons:

(1) When the shaking rate increases, the dissolved oxygen concentration in the electrolyte
solution will also increase, in turn accelerating the subsequent cathode process when
the pH changes to a neutral medium. This contributes to the corrosion rate as well as
the rate of reaction with electrolytic internal materials [22].

(2) Oxygen could combine with H+ to forms H2O2 hyperoxides, which then react with
newly generated Fe2+ ions to form Fe(OH)2 and Fe(OH)3 ions. These are good phenol
flocculation agents and intermediate products of phenol degradation.

(3) One previous study [22] suggested that the increased shaking speed caused the
decomposition of substance molecules and dispersion of the intermediate decom-
position products in the solution. At that time, the possibility of contact between
the decomposed substances and the intermediate products with the surface of the
Fe-Cu electrode system are increased, causing oxidation in the solution, improving
electrochemical reduction on the cathode surface, and improving processing speed
and efficiency.

When shaking speed increased from 100 to 150 rpm, the phenol decomposition speed
increased rapidly from 180 to 200 rpm. This could be the reason why at this time the
dissolved oxygen concentration in the solution was almost saturated. Therefore, we chose
the shaking speed of 200 rpm to proceed to subsequent experiments.
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Figure 9. The effect of shaking speed on the phenol removal efficiency of Fe-Cu material.

3.2.5. Effect of Initial Phenol Concentration

Phenol removal efficiencies at different initial phenol concentrations are shown as
in Figure 10. The results from Figure 10 show that the phenol decomposition efficiency
increased proportionally when the concentration increased from 53.38 to 100.98 mg/L.
Afterwards, in the concentration range from 146.69 to 250.76 mg/L, the phenol decom-
position performance decreased. At a phenol concentration value of 100.98 mg/L, the
degradation efficiency reached the maximum value of 92.7%, which indicates almost
complete phenol decomposition. There was a sharp decrease in performance at higher
concentrations of phenols (higher than 100.98 mg/L), possibly due to higher required
amount of internal electrolytic material. At low phenol concentrations, a low concentration
gradient would obstruct the mass transportation. Simultaneously, the short lifetime of
HO* is also a contributing factor to reduce the number of reactions with phenol. At higher
phenol concentrations, it is more likely for phenol and HO* to mutually react, which results
in improved phenol removal efficiency. However, at very high phenol concentrations
(146.69 mg/L), the phenol removal efficiency decreased to 72.71% due to limited formation
of HO* in the interior micro-electrolysis system Therefore, there should be further studies
and surveys to handle phenol at high concentrations.
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Figure 10. The effect of initial phenol concentration on the phenol removal capability of Fe-Cu
material.
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3.2.6. Decomposition Analysis Phenol Concentrations by HPLC

Figure 11 illustrates HPLC results of different phenol solutions (initial concentration
of 100.98 mg/L) treated with different masses of Fe-Cu internal electrolysis material. It
was indicated that phenol was completely decomposed when being treated with Fe-Cu
material with the weight of 10 g/L, under 12 h of shaking at 200 rpm and at a pH value
of 3.

Figure 11. Chromatographic lines of a phenol solution sample depend on the amount of Fe-Cu
material. Red curve: chromatogram of an untreated phenol sample (100.98 mg/L). Blue curve:
chromatogram of a phenol sample treated with the following conditions: initial phenol concentration
of 100.98 mg/L, Fe-Cu material weight of 5 g/L, shaking time of 12 h, shaking speed of 200 rpm, at
pH = 3. Black curve: chromatogram of a phenol sample treated with the following conditions: initial
phenol concentration of 100.98 mg/L, Fe-Cu material weight of 10 g/L, shaking time of 12 h, shaking
speed of 200 rpm, at pH = 3.

3.2.7. Degradation Kinetics of Phenol Using Fe-Cu Material

The classical kinetics is that of the first-order and second-order chemical reaction
kinetics. The equations are shown as follows:

First-order kinetic model: lnCt = −k1·t + A1 (6)

Second-order kinetic model: 1/Ct = k2·t + A2 (7)

Third-order kinetic model: 1/Ct
2 = 2k3·t + A3 (8)

where: k1 and k2 are the first-order and second-order reaction rate constants, respectively;
A1, A2 and A3 are constants. C0 is the initial concentration of the phenol solution before
decomposition (mg/L), which is 100 mg/L.

Based on the investigations on the efficiency of phenol degradation over time, we
surveyed the kinetics of phenol degradation according to the first-, second-, and third-order
kinetic equations, as shown in Figures 12–14.

The results show that the degradation of phenol by internal microelectrolysis material
of Fe-Cu seemed to follow the second-order apparent kinetics due to a higher linear
regression coefficient (R2 = 0.9507) than those of other kinetics. The calculated reaction rate
constant of k of the second-order model was 0.009 h−1Lmg−1.
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Figure 12. Model of the first-order apparent kinetics.

Figure 13. Model of the second-order apparent kinetics.

Figure 14. Model of the third-order apparent kinetics.

3.2.8. Real Sample Analysis

In this study, the optimal experimental parameters, including a Fe-Cu mass of 10 g/L,
a shaking time of 12 h, a pH of and a shaking rate of 200 rpm, were adopted for pre-
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treating real wastewater samples collected from a coal factory (Thai Nguyen Iron and
Steel Joint Stock Company, Thai Nguyen Province, Vietnam). The results are shown in
Figures 15 and 16 and Table 4.

Figure 15. Chromatograms of wastewater samples containing phenols before treatment using Fe-Cu internal microelectroly-
sis material.

Figure 16. Chromatograms of wastewater samples containing phenols after treatment using Fe-Cu internal microelectrolysis
material.

Table 4. Parameters of coking wastewater before and after treatment using Fe-Cu materials.

Parameters Unit Method of Analysis
Result (mg/L) Efficiency

H (%)Before After

DO mg/L TCVN 7325:2004 0.6 2.8 -

TSS mg/L SMEWW 2540 D:2012 124 63.4 48.87

BOD5(20 ◦C) mg/L TCVN 6001-1:2008 1215 540.6 55.50

COD mgO2/L SMEWW 5220C:2012 2379 1189 50.02

Phenol mg/L TCVN 6216:1996 173.70 50.86 70.07

CN− mg/L SMEWW4500 CN−B:2012 0.05 <0.01 -

Total N mg/L TCVN 6638:2000 876 644 26.48

NH+
4 -N mg/L TCVN 6179-1:1996 473 165.2 65.07

Total P mg/L TCVN 6202:2008 15.6 9.3 40.38

The mechanism of phenol degradation in the interior micro-electrolysis has been
presented previously [25], and it involved the conversion of decomposed phenol into a less
toxic intermediate compound. To be specific, during the micro-electrolysis process, radicals
and oxidants are produced and oxidize organic compounds. This causes the destruction
of structures of benzene ring and chemical bonds on its side chain, transforming toxic
compounds into biodegradable intermediates [20]. Simultaneously, microelectron currents
in the galvanic cell reaction also cause electron transfer, which promotes the growth and
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biodegradation capacity of microorganisms and stimulates active metabolic enzymes [32].
Furthermore, the justification of interior microelectrolysis technology for biological treat-
ment is corroborated by its high degradation efficiency of refractory compounds and the
ability to improve wastewater biodegradability [33].

The results in Table 3 show that the highest treatment efficiency was observed in the
phenol parameter (70.07%), followed by the NH4

+-N, BOD5 and COD. The remaining
parameters exhibited lower removal efficiencies (<50%). Thus, further biological treatment
methods are recommended in order to achieve steel industry wastewater standards [34].

4. Conclusions

A sample of Fe-Cu material for internal electrolysis was synthesized from Fe powder
material by using the chemical plating method. The Cu content at the material surface
reached 69.30% (by weight). The surface, structure and composition of the as-synthesized
materials were characterized by scanning electron microscopy (SEM), energy-dispersive
X-ray spectroscopy (EDS) and X-ray diffraction diagram (XRD), respectively.

The internal electrolysis-induced phenol decomposition was then studied with respect
to various parameters, including pH, time, Fe-Cu material weight, phenol concentration
and shaking speed. The optimal phenol decomposition (92.7%) was achieved at the pH
value of 3, the shaking time of 12 h, the shaking speed of 200 rpm, the weight of Fe-Cu
material of 10 g/L, the initial phenol concentration of 100.98 mg/L and at room temperature
(25 ± 0.5 ◦C). The degradation of phenol using Fe-Cu materials obeyed the second-order
apparent kinetics equation with a reaction rate constant of k of 0.009 L × mg−1h−1. Further
evaluation using real coking wastewater resulted in treated effluents with favorable water
indicators, suggesting the suitability of Fe-Cu materials in practical processes to treat
coking wastewater before biological treatment. Further studies should contemplate the
evaluation of material stability through cyclic reactions.
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Abstract: In this work, a mesoporous activated carbon (AC) was prepared from a unique lignocellu-
losic biomass (water caltrop husk) in triplicate using a single-step physical activation process at lower
temperature (i.e., 750 ◦C) and longer holding time (i.e., 90 min). Based on the pore properties and
adsorption properties for removal of methylene blue (MB) as organic pollutant, the results proved
that the resulting AC possesses a mesoporous feature with the Brunauer–Emmett–Teller (BET) surface
area of 810.5 m2/g and mesopore volume of about 0.13 cm3/g. Due to its fast adsorption rate and
maximal adsorption capacity fitted (126.6 mg/g), the mesoporous carbon material could be used as
an excellent adsorbent for liquid-phase removal of MB. In addition, the pseudo-second-order model
is well suited for describing the adsorption system between the cationic adsorbate and the resulting
AC with oxygen surface groups.

Keywords: water caltrop husk; CO2 activation; mesoporous activated carbon; methylene blue;
adsorptive removal; kinetic modeling

1. Introduction

Organic chemicals (e.g., dyes, pesticides) released from anthropogenic activities have
caused serious environmental issues because these pollutants have deteriorated the en-
vironmental quality in water, groundwater and soil phases. Furthermore, exposure to
them will increase the health risks in both the food chain and drinking water. Therefore,
many advanced treatment methods for the removal of organic pollutants from aqueous
solutions have been developed in recent years [1]. Among these processes, activated carbon
(AC) adsorption may be the most used method for the rapid removal of environmental
pollutants from their existing phase (gas or liquid). An adsorption results in the removal of
adsorbate molecules from the solution by diffusing them into porous adsorbent due to the
concentration difference between the liquid and solid phases. Eventually, the concentration
of the adsorbate remained in the solution will be in a dynamic equilibrium with that on the
solid phase. In general, this recuperative process has significant features, including easy
operation, low energy consumption, simple design, and high efficiency [2,3]. However, it
should be noted that the adsorption process may be an expensive method due to the rela-
tively high costs involved in commercial AC and its disposal, particularly when exhausted
and not regenerated by steam for hydrolyzable adsorbates [4]. In this regard, there are
many review papers focusing on the preparation of biomass-based AC and its applications
for the removal of toxic pollutants from water in recent years [5–11]. The motivations for
reusing agricultural residues as AC precursors also include sustainable waste management
and climate change mitigation. On one hand, AC is usually a microporous carbonaceous
material with high adsorption capacity [12], which is related to its specific surface area,
pore volume, pore size distribution, and internal porosity [13]. However, the microporous
feature in the AC materials could limit or restrict the transport diffusion of large molecule
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adsorbates into the micropores with pore widths (or diameters) less than 2.0 nm [14], thus
reducing the adsorption capacity and retarding the adsorption rate for reaching adsorption
equilibrium [15,16]. To mitigate from the so-called wall effect, many studies have focused
on the production of biomass-based AC materials with a pore width (or diameter) distribu-
tion in the range of 2–50 nm for the removal of large dyes from aqueous phases [17–27]. It
should be noted that these mesoporous AC materials were mostly produced by chemical
activation processes.

Water caltrop (Trapa natans) is an aquatic floating plant commonly found in tropical
and sub-tropical Asian countries. The pulp within the water caltrop fruit is a popular
food because of its richness in starch. However, its outer layer (husk, shell, peel, or
pericarps) is stripped off, thus generating water caltrop husk (WCH). This agricultural
residue is often discarded in farmlands, or sometimes reused as an organic fertilizer.
Due to its lignocellulosic compositions, there are some studies on the reuse of WCH as
a biosorbent for dye removal [28–30], and a precursor for producing carbon materials
in recent years [31–35]. For example, Kumar et al. [34] investigated the preparation of
H3PO4-activated carbon from WCH and its removal performance of hexavalent chromium,
showing a maximum adsorption capacity of 87.31 mg/g according to the Thomas model.

The adsorbate methylene blue (MB) is a cationic dye, commonly adopted as a probe
molecule for determining the specific surface area or adsorption capacity of various materi-
als quickly, including AC, charcoal, graphite, and clay [12,36–38]. It is also used as a chemi-
cal indicator, industrial dye, drug (e.g., treatment of malaria), and biological strain [39,40].
However, MB is also a toxic dye, which can result in harmful effects on humans (e.g.,
diarrhea, vomiting, and cyanosis) and environmental problems [23]. In this regard, the
removal of MB as organic pollutant from aqueous solution or effluent is important for
environmental protection and human health. Santoso et al. [11] reviewed research on the
removal of MB using carbon-based adsorbents (focusing on activated carbon and biochar),
and also discussed their structural properties influencing MB adsorption performance.

In a previous study [41], the pore and chemical properties of mesoporous AC produced
from coconut shell using a single-step CO2 activation process were studied, showing that
a significant increase in the pore properties of resulting AC was found between 700 and
750 ◦C. As mentioned above, there is a scarcity of research that has investigated the
production of mesoporous AC from WCH using physical activation by gasification gas
CO2. Therefore, this work aims to produce mesoporous AC from WCH by CO2 activation at
lower temperatures (i.e., 750 ◦C) and longer holding time (i.e., 90 min), and also characterize
its pore properties and chemical compositions on the surface. Subsequently, the resulting
AC was used to evaluate its removal performance of MB from the aqueous solution under
various adsorption conditions.

2. Materials and Methods

2.1. Materials

The starting material (i.e., WCH) for producing mesoporous AC was obtained from a
local farmers’ association at Guantian District. The sun-dried WCH was first milled and
then sieved to obtain particle sizes in the range of 0.420–0.841 mm. The pretreatment of
WCH and its thermochemical properties (including proximate analysis, elemental analysis,
calorific value, and thermogravimetric analysis) have been described in the previous
study [42]. The dried WCH sample with average particle size of 0.63 mm (i.e., passed
through mesh No. 20 and retained on mesh No. 40) was used in the physical activation
experiments. In this work, the adsorbate MB, which was purchased from Merck Co., was
modeled as a toxic pollutant for determining the adsorption capacity of the resulting AC in
aqueous solution.

2.2. Physical Activation Experiments

The procedures for the preparation of AC from biomass precursor have been described
in the previous study [41]. A vertical electric heating tube reactor (length 80 cm, inner
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diameter 10 cm) with a mesh-made sample holder was used to perform the carbonization-
activation experiments. In order to produce mesoporous AC, the single-step physical
activation experiments were performed in triplicate as follows: the temperature of WCH
precursor (about 5 g) was increased to 500 ◦C at a heating rate of about 10 ◦C/min under
the flow of 500 cm3/min (N2). The prepared charcoal was subsequently activated by a
gasification gas (CO2) of 50 cm3/min under the desired conditions (i.e., activation tem-
perature of 750 ◦C for holding 90 min). The yield of resulting AC (WCH-AC) was found
to be about 10%. Before determining the pore properties of resulting AC (WCH-AC), the
product sample was dried at about 105 ◦C overnight.

2.3. Characterization of Resulting Activated Carbon

The determinations of pore properties for the resulting AC (WCH-AC) were measured
at −196 ◦C by using the ASAP-2020 porosimetry system (Micromeritics Co., Norcross,
GA, USA). Using the N2 adsorption–desorption isotherms obtained, the pore properties,
including specific surface area, pore volume, pore size distribution, and average pore
size (or width), can be calculated by the corresponding methods or models [13]. For
example, the Brunauer-Emmett-Teller (BET) method was used to obtain the so-called BET
surface area, which was determined in the relative pressure (P/P0) range of 0.05–0.30. The
micropore surface area and micropore volume were estimated from the t-method [13].
Accordingly, the mesopore volume was obtained from total pore volume minus micropore
volume. In addition, the modified Kelvin equation using the Harrett–Joyner–Halenda
method served as the basis for the analysis of pore size distribution [13]. Based on the
helium displacement method, the true densities of resulting AC were determined by the
AccuPyc-1340 pycnometer (Micromeritics Co., Norcross, GA, USA). The calculations of
other pore properties like particle density and average pore width are referred to in the
previous study [43]. The textural microstructures and elemental compositions of resulting
AC on the surface were observed by the S-3000N scanning electron microscopy – energy
dispersive X-ray spectroscopy (SEM-EDS) (Hitachi Co., Tokyo, Japan). Prior to the SEM-
EDS analysis, the sample was plated by the E1010 ion sputter (Hitachi Co., Tokyo, Japan)
to form a thin film with conductive gold.

2.4. Experiments of Adsorption Performance

The adsorption experiments for the MB removal from the water solution were similar
to the previous study [41]. In this work, the data on the adsorption capacity of MB
in the solution (2 L) were determined at the fixed conditions of 25 ◦C and 200 rpm. The
determining process parameters included initial concentrations (i.e., 5, 10, 15, and 20 mg/L),
WCH-AC adsorbent dosages (i.e., 0.1, 0.3, and 0.5 g/2 L) and initial pH values (i.e., 3.0, 7.0,
and 11.0). For each adsorption experiment, an aliquot solution (about 15 cm3) was drawn
out at specified intervals (i.e., 1, 5, 10, 20, 30, 40, 50, and 60 min). The U-3900 UV/Visible
spectrophotometer (Hitachi Co., Tokyo, Japan) was used to analyze the residual MB
concentration (i.e., Ct), which was measured at the wavelength of 664 nm.

3. Results and Discussion

3.1. Pore Properties of Resulting Activated Carbon

As listed in Table 1, the pore properties of resulting AC (WCH-AC), including surface
area, pore volume, average pore diameter, densities, and porosity were determined in the
present study. By comparison, the BET surface area (i.e., 810.5 m2/g) of WCH-AC was
slightly larger than that of commercial AC (i.e., 660 m2/g) [42]. In addition, this surface
area was comparable to other studies on WCH-AC. In the work by Hsu et al. [33], the
authors activated the microporous WCH biochar with ZnO and KOH at 900 ◦C, showing a
BET surface area in the range of 1175–1537 m2/g. In the study by Kumar et al. [34], the
BET surface area and t-plot micropore volume of WCH-AC by H3PO4-activation were
782.89 m2/g and 0.134 cm3/g, respectively. Based on the data in Table 1, the ratio of
micropore surface area to BET surface area was close to 0.76, which is also consistent with
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the ratio of micropore volume to total pore volume (i.e., 0.71). Therefore, the mesopore
volume with pore diameter ranging from 2.0 nm to 50.0 nm could be estimated by sub-
tracting the micropore volume from the total pore volume. Although the resulting AC
(WCH-AC) is mainly a microporous carbon material, it still featured a mesoporosity of at
least 20% or more. Figure 1 depicts its N2 adsorption and desorption isotherms at −196 ◦C.
From the very high potential for adsorption, the type I isotherms appeared in WCH-AC
due to its microporous structure (i.e., pore diameter < 2 nm) [44], which is indicative of
micropore filling at P/P0 less than 0.05. With increases in P/P0, the so-called hysteresis
loop takes place in the WCH-AC, exhibiting adsorbate (i.e., nitrogen molecule) filling by
capillary condensation in mesoporous solids (adsorption isotherm), but differing from
that of mesopore emptying (desorption isotherm). It can be seen that the data were in
accordance with mesopore volume and average pore diameter (0.130 cm3/g and 2.17 nm,
respectively, as listed in Table 1). More consistently, the pore size distribution of WCH-AC
had two peaks as shown in Figure 2. One appeared as a narrow curve with the pores with
less than 2 nm (micropores), but another was observed at ca. 4 nm (mesopores). Herein,
the average pore size of WCH-AC was estimated by its BET surface area and total pore
volume assuming cylindrical geometry in all pores [45].

Table 1. Pore properties of resulting activated carbon (WCH-AC).

Property Value a

Single point surface area (m2/g) b 790.8 ± 42.5
BET surface area (m2/g) c 810.5 ± 2 5.7

Langmuir surface area (m2/g) 1198.5 ± 38.6
Micropore surface area (m2/g) d 618.9 ± 16.6

External surface area (m2/g) e 191.6 ± 19.6
Total pore volume (cm3/g) f 0.441 ± 0.024
Micropore volume (cm3/g) d 0.311 ± 0.013

Pore diameter (Å) g 21.7 ± 0.8
True density (g/cm3) h 1.787

Particle density (g/cm3) i 0.999
Porosity (-) j 0.441

a Average ± standard deviation (n = 3). b Measured at 0.30 of relative pressure (P/P0). c Measured in the relative
pressure (P/P0) range of 0.05-0.30. d Determined by the t-plot method. e Equal to BET surface area minus
micropore surface area. f Measured at 0.995 of P/P0. g Estimated from the total pore volume and BET surface
area. h Determined by the helium-displacement measurement. i Obtained from the values of total pore volume
and true density [45]. j Obtained from the values of particle density and true density [45].
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Figure 1. N2 adsorption–desorption isotherms of resulting activated carbon (WCH-AC).
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Figure 2. Pore size distribution of resulting activated carbon (WCH-AC).

3.2. SEM-EDS Observations of Resulting Activated Carbon

For confirming the porous microstructures of resulting AC (WCH-AC), the SEM was
used to observe its morphological texture with two different magnifications (i.e., 1000 and
3000). As shown in Figure 3, many small pores appeared on the surface of the resulting AC.
In addition, the AC also exhibited a rigid frame on the hard surface due to the physical
activation of lignocellulosic constituents at a lower temperature (i.e., 750 ◦C) and longer
holding time (i.e., 90 min). Therefore, the porous structure observed by the SEM was highly
related to the pore properties, as listed in Table 1. Furthermore, the elemental distributions
on the surface of resulting AC were also analyzed by the EDS while observing by the SEM.
As illustrated in Figure 4, the main elements, including carbon (85.63 wt%) and oxygen
(9.54 wt%), were present in the WCH-AC. It should be noted that the high content of oxygen
in the resulting AC was indicative of its richness in functional groups containing oxygen
(e.g., carbonyl and hydroxyl) on the surface. The presence of oxygen and other organic
elements in surface groups had a profound effect on the adsorption properties of the AC,
which is in connection with its slightly polar nature (i.e., hydrophilicity) [12]. Furthermore,
some inorganic elements, including potassium (3.69 wt%), sodium (0.39 wt%), and chlorine
(0.74 wt%), were found in the resulting AC. They were formed from metal oxides (e.g., K2O
and Na2O) and metal chlorides (e.g., KCl and NaCl).

(a) (b) 

Figure 3. SEM images ((a) Left: ×1000; (b) Right: ×3000) of resulting AC (WCH-AC).
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Figure 4. EDS spectra of resulting AC (WCH-AC) and its relative compositions of elements detected.

3.3. Adsorption Performances of Resulting Activated Carbon

Figures 5 and 6 show the variations on residual MB concentration at the specific
adsorption conditions under various WCH-AC adsorbent dosages and initial MB concen-
trations, respectively. It can be seen that the dimensionless residual MB concentration
(Ct/C0) indicated a fast decrease during the limited adsorption time. This indicates a
strong interaction between the MB adsorbate and the WCH-AC adsorbent. As mentioned
above, the resulting AC should be negatively-polar on its surface. Therefore, a pseudo-
second-order model was used to fit the adsorption system with a linear form [46]:

t/qt = 1/(k × qe
2) + (1/qe) × t (1)

where qt is the amount of MB adsorbed at time t (mg/g), qe is the amount of MB adsorbed
at equilibrium (mg/g), and k is the rate constant of this model (g/(mg.min)). Therefore,
the adsorption time (t1/2) necessary to adsorb half of the adsorption amount of MB at
equilibrium (qe/2) by the WCH-AC adsorbent was obtained as follows:

t1/2 = 1/(k × qe) (2)

Table 2. Pseudo-second-order model parameters for MB adsorption onto WCH-AC at various
WCH-AC dosages. a

Adsorbent Dosage
(g/2 L)

k
(g/(mg.min))

qe
(mg/g)

Correlation
Coefficient

t1/2

(min)
h

(mg/(g.min))

0.1 0.0012 126.58 0.986 6.58 19.23
0.3 0.0147 68.03 1.000 1.00 68.03
0.5 0.1442 40.16 1.000 0.17 232.57

a Process conditions: initial MB concentration = 10 mg/L, initial pH = 7.0.
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Figure 5. Variations of dimensionless concentration (Ct/C0) vs. time under various WCH-AC
dosages (initial MB concentration = 10 mg/L, initial pH = 7.0); symbols: experimental data, full lines:
obtained from the pseudo-second-order model parameters (Table 2).

Table 3. Pseudo-second-order model parameters for MB adsorption onto WCH-AC at various initial
MB concentrations. a

Initial MB
Concentration
(mg/L or ppm)

k
(g/(mg.min))

qe
(mg/g)

Correlation
Coefficient

t1/2

(min)
h

(mg/(g.min))

5 0.1625 33.44 1.000 0.18 181.71
10 0.0147 68.03 1.000 1.00 68.03
15 0.0024 104.17 0.998 4.00 26.04
20 0.0016 125.00 0.994 5.00 25.00

a Process conditions: WCH-AC dosage = 0.3 g/2L, initial pH = 7.0.
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Figure 6. Variations of dimensionless concentration (Ct/C0) vs. time under various initial MB
concentrations (WCH-AC dosage = 0.3 g/2 L, initial pH = 7.0); symbols: experimental data, full lines:
obtained from the pseudo-second-order model parameters (Table 3).

In addition, the initial adsorption rate (h) was obtained by the equation [47,48]:

h = k × qe
2 (3)

By using the model fitting, the values of the adsorption parameters for the AC-MB
system were summarized in Table 2, Table 3, and Table 4, which correspond to the processes’
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parameters of adsorbent dosage, initial MB concentration, and pH, respectively. With high
correlation coefficients (>0.98), the adsorption of MB into WCH-AC followed this kinetic
model well. Regarding the discussion on the relationships between the values of the fitted
model parameters (i.e., qe, k, and h) and process parameters (i.e., adsorbent dosage and C0),
this has been elucidated in previous studies [43]. The data in Table 4 indicates an important
significance. At the acidic solution, the surface of resulting AC was protonized by excessive
protons. As a consequence, the cationic dye (i.e., MB) was repelled more from the positively
charged surface because of the repulsive force [49]. In contrast, the surface of resulting AC
was prone to lose the protons at a higher basicity, thus resulting in the negatively charged
surface for adsorbing the adsorbate MB preferably due to the electrostatic attraction.

Table 4. Pseudo-second-order model parameters for MB adsorption onto WCH-AC at three different
pH values. a

Initial pH
k

(g/(mg.min))
qe

(mg/g)
Correlation
Coefficient

t1/2

(min)
h

(mg/(g.min))

3 0.0101 68.97 1.000 1.44 48.04
7 0.0147 68.03 1.000 1.00 68.03

11 0.0207 69.93 1.000 0.69 101.23
a Process conditions: WCH-AC dosage = 0.3 g/2L, initial concentration = 10 mg/L.

4. Conclusions

In this study, the pore properties and adsorption performances of the mesoporous AC
from water caltrop husk prepared at lower temperature (i.e., 750 ◦C) and longer holding
time (i.e., 90 min) are summarized as follows:

• The resulting AC possessed a mesoporous feature with the BET specific surface area
of 810.5 m2/g and mesopore volume of 0.13 cm3/g, which are superior to commercial
AC products.

• Due to its fast adsorption rate and maximal adsorption capacity fitted by the model
(126.6 mg/g), the mesoporous carbon material could be used as an excellent adsorbent
for liquid-phase removal of MB.

• The pseudo-second-order model is well suited for describing the adsorption system,
which includes the cationic adsorbate and the resulting AC with hydrophilicity of
oxygen surface groups.
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Abstract: The photo-catalytic degradation of a textile azo-dye as Methyl Orange was studied in
an innovative unit constituted by a channel over which a layer of titanium dioxide (TiO2) catalyst
in anatase form was deposited and activated by UVB irradiation. The degradation kinetics were
followed after variation of the chemical, physical, and hydraulic/hydrodynamic parameters of the
system. For this purpose, the influence of the TiO2 dosage (g/cm3), dye concentration (mg/L), pH
of the solution, flow-rate (L/s), hydraulic load (cm), and irradiation power (W) were evaluated on
the degradation rates. It was observed that the maximum dosage of TiO2 was 0.79 g/cm3 while for
higher dosage a reduction of homogeneity of the cement conglomerate occurred. The Langmuir–
Hinshelwood (LH) kinetic model was followed up to a dye concentration around 1 mg/L. It was
observed that with the increase of the flow rate, an increase of the degradation kinetics was obtained,
while the further increase of the flow-rate associated with the modification of the hydraulic load
determined a decrease of the kinetic rates. The results also evidenced an increase of the kinetic rates
with the increase of the UVB intensity. A final comparison with other dyes such as Methyl Red and
Methylene Blue was carried out in consideration of the pH of the solution, which sensibly affected
the removal efficiencies.

Keywords: photo-catalysis; TiO2; azo dye; kinetic study; hydraulic and hydrodynamic parameters

1. Introduction

Emerging contaminants in water and wastewater are chemical compounds produced
by industrial practices and anthropogenic activities [1–6] that must be removed due to their
potential toxicological effects on human health and the environment [7–13].

For this purpose, Advanced Oxidation Processes (AOPs) are efficient methods to
remove from water and wastewater contaminants of organic nature that are not degradable
by biological processes [14–16]. Specifically, these treatments result effective for the removal
of micro-pollutants as pesticides, personal care products, pharmaceuticals, flame retardants,
antifoulants, stabilizers, and plasticizers, which have harmful effects on the reproductive
system [8,17–20].

AOPs are processes involving the production of very reactive radical species able to
degrade a wide range of biopersistent organic substrates [21–23]. Among these, photo-
catalysis is an efficient treatment carried out with a catalyst that generates radicals when
irradiated with light of a suitable wavelength [24–28]. TiO2 has been extensively studied
as a catalyst due to its wide band gap (3.2 eV), strong oxidizing power, high resistance to
chemicals, nontoxic nature, and low cost [24,29].

Processes 2021, 9, 205. https://doi.org/10.3390/pr9020205 https://www.mdpi.com/journal/processes180
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The TiO2 photocatalysis can be applied in the removal of xenobiotic azo dyes from
the textile industry such as Methylene Blue, Methyl Red, and Methyl Orange, which
tend to bioaccumulate in the environment and have allergenic, carcinogenic, mutagenic,
and teratogenic properties. Methylene Blue is used in dye manufacturing industries,
plastics, cosmetics, and printing [30,31]. It is a toxic compound since it can cause eye
burns, vomiting, jaundice, and diarrhea [32,33]. Methyl Red is used in textile dyeing
and paper printing and it is hazardous in case of skin contact (irritant), inhalation, and
ingestion [34,35]. Methyl Orange is widely used in dyeing, printing textiles, and paper
industries. Methyl Orange is the common name of a water-soluble aromatic synthetic
compound (C14H14N3NaO3S) containing an azo group (–N=N–). This molecule is a toxic
compound and can cause hypersensitivity, allergies and may be fatal if inhaled [31,36].
The main environmental damage caused by the textile industry is the release of untreated
effluents into the water bodies, corresponding to ~80% of the total emissions [37].

The aim of this paper was to study the UVB photo-catalytic degradation of Methyl Or-
ange in water and wastewater by the use of an innovative unit [38–40]. The photocatalytic
system was a recirculating plant formed of two tanks connected by a channel over which
anatase TiO2 was deposited and UVB irradiated. The influence of the TiO2 dosage (g/cm3),
dye concentration c0 (mg/L), pH of the solution, flow-rate Q (L/s), hydraulic load hw (cm),
and irradiation power (W) were evaluated on the degradation kinetics of this hazardous
dye. Moreover, the removal efficiencies of Methyl Orange were compared with those of
other textile dyes such as Methyl Red and Methylene Blue in order to have more detailed
information about the treatment of these harmful compounds through this unit.

2. Experimental Section

Anatase titanium dioxide (TiO2) was provided by Adriatica Legnami s.r.l., Italy, and
was characterized by 0.15 μm average grain size and 3.85 g/cm3 specific gravity. Methyl
Orange (MO), pure chemical from Sigma Aldrich, was used to prepare the synthetic
solutions in tap water (pH = 7.5) and distilled water (pH = 6). Moreover, Methyl Red (MR)
and Methylene Blue (MB), pure chemicals from Sigma Aldrich, were also used to prepare
tap and distilled water solutions in order to make a comparison.

The determination of the residual dye concentrations was obtained by a UV–Vis
spectrophotometer Mod. UVIKON 942 from Kontron Instruments, Augsburg, Germany.

The unit which was used for the experimental tests is depicted in Figure 1. Specifically,
Figure 1A,B report the overview and the top view schemes of the system, respectively.
Figure 1C represents the real overview of the laboratory scale pilot plant. It was char-
acterized by a channel (c) (15 cm width, 185 cm length) over which layers of cement
mortars (0.5 mm thickness) with different TiO2 concentrations (0.16 g/cm3, 0.39 g/cm3,
0.55 g/cm3, 0.79 g/cm3) were deposited. The dye influent solution was kept under UVB
irradiation in contact with the catalyst. For this purpose, three low-pressure UVB lamps
(40 W each, λem = 312 nm), Vilber-Lourmat (Collégien, France), were used. The system
was characterized by an upper reservoir with manifolds (a) which allowed for the change
of the treated volume solution associated with the modification of the hydraulic load (hw)
with consequent variation of the flow-rates (Q). The introduction of layers of different
thicknesses (1.5, 1.0 and 0.5 mm; 11 × 70 cm) into an opening of this tank allowed for the
modification of the flow-rate (Q), keeping constant the hydraulic load (hw). The system
was also characterized by a bottom reservoir (b) with similar capacity to the former and
equipped with a piezometric tube. A pump (d) (Mod. CPm 130, Pedrollo, Milan, Italy;
0.37 kW, 230 V, 50 Hz) was used for the recirculation of the influent solution through the
unit. Table 1 represents a summary of the tests carried out in the present investigation.
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Figure 1. (A) Overview scheme and (B) top view scheme of the laboratory scale pilot plant. (C) Picture
of the unit. (a) Upper reservoir, (b) bottom reservoir, (c) channel, (d) pump, (e) UVB lamp.
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Table 1. Summary of the tests carried out in the present investigation. c0 = initial dye concentration, Vsol = volume of the
influent solution, Q = flow-rate, hw = hydraulic load, lw = irradiated liquid width in the channel, lc = irradiated liquid length
in the channel, ld = irradiated liquid depth in the channel, Virr = irradiated volume (lw × lc × ld) of the liquid in the channel,
Irt = irradiated retention time (Virr/Q), irradiation power (W), pH.

Test No.
c0

(mg/L)
TiO2

(g/cm3)
Vsol
(L)

Q
(L/s)

hw
(cm)

lw
(cm)

lc
(cm)

ld
(cm)

Virr
(L)

Irt
(s)

Light Power
(W)

pH

1 0.7 0.16 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

2 0.7 0.39 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

3 0.7 0.55 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

4 0.7 0.79 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

5 0.7 0.85 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

6 0.7 0.95 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

7 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.066 13.5 14 140 0.65 1.27 17.9 yes 120 7.5

8 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.147 13.5 15 140 0.79 1.66 10.5 yes 120 7.5

9 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.210 13.5 15 140 0.85 1.78 7.9 yes 120 7.5

10 0.3, 0.7,
1.2, 2.5, 5 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 120 7.5

11 0.7 0.79 72.5 0.355 18 15 140 1.08 2.30 5.8 yes 120 7.5

12 0.7 0.79 90 0.408 22.5 15 140 1.12 2.35 5.2 yes 120 7.5

13 0.7 0.79 105 0.441 27 15 140 1.16 2.45 4.9 yes 120 7.5

14 0.7 0 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 120 7.5

15 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 no no 7.5

16 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 40 7.5

17 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 80 7.5

18 0.7 0.79 60 0.305 13.5 15 140 1.05 2.20 6.7 yes 120 6.0

3. Results and Discussion

The first set of photocatalytic experiments was carried out at different TiO2 dosage,
tests no. 1–6 (Figure 2), constant flow-rate (Q = 0.066 L/h), the hydraulic load (hw = 13.5 cm),
and the influent substrate concentration (c0 = 0.7 mg/L) as reported in Table 1. The
processes described in this paper, at low initial dye concentration, may be approximated
by the “pseudo-first-order” equation,

ln(c/c0) = −k × θ × t (1)

i.e., the Langmuir–Hinshelwood (LH) kinetic model. In this equation, c0 (mg/L) is the
starting concentration of the substrate and c (mg/L) is the concentration of the dye at
specific time intervals, while k is the apparent rate constant (min−1) and θ represents the
number of the surface active sites present on the catalyst surface [41–43]. The trend reported
in the inset of Figure 2 is in agreement with this model, accordingly after linear correlation
the apparent rate constant is represented by the slope. Figure 2 shows that the degradation
rate increased with the increase of the catalyst concentration due to the growing number of
the active sites necessary for the photocatalytic oxidation. Theoretically, an improvement of
the results could be obtained with a further increase of oxide concentration but a reduction
of homogeneity was observed which was detrimental for the process since leaching of the
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catalyst from the cement conglomerate occurred. In this respect, the maximum dosage of
TiO2 was 0.79 g/cm3.

Figure 2. Influence of the TiO2 dosage on the degradation rate (Methyl Orange (MO) = 0.7 mg/L;
Q = 0.066 L/s, hw = 13.5 cm, tests no. 1–6). In the inset: c/c0 vs. t and ln(c/c0) vs. t correlations relative
to test no. 4 (MO = 0.7 mg/L; TiO2 = 0.79 g/cm3; Q = 0.066 L/s, hw = 13.5 cm).

The second set of experiments (Table 1, test no. 7) was carried out at different substrate
concentration (0.3–5.0 mg/L range, Figure 3), constant flow-rate (0.066 L/h), the hydraulic
load (hw = 13.5 cm), and with 0.79 g/cm3 catalyst dosage because, as formerly reported, it is
the titania concentration corresponding to the highest degradation rate. It can be observed
that the best performance was obtained with a substrate concentration corresponding to
0.7 mg/L (Figure 3A), while lower values were obtained with the [MO] increase. Basically,
the Langmuir–Hinshelwood (LH) kinetic model was not followed at higher concentrations
due to the absorption of the UV radiation operated by the dye molecules which limited the
photocatalytic process thus becoming bare photolysis.

In fact, the photocatalysis of the adsorbed substrate is based on two simultaneous
reactions, oxidation from photogenerated holes (h+) and reduction from photogenerated
electrons (e−) after excitation of titania with UVB light. Specifically, the oxidation of the
adsorbed water by the holes generates hydroxyl radicals –OH while the reduction of the
oxygen by the electrons generates superoxide radicals –O2

−, both reacting with the organic
molecule [44,45].

The increased concentration of the dye solution in the 1.2–5 mg/L range decreased
the interaction of light with the catalyst surface; accordingly, the combined effect of UV
radiation and titania started to be less effective.

Figure 3B shows the temporal evolution of the MO UV−vis absorption spectrum for a
5 mg/L influent solution. The spectrum shows a maximum corresponding to the π→π*
transitions of the dimethylamino electron donors at 470 nm and a 270 nm peak associated
to π→π* transitions of the aromatic rings. A UV−vis quenching and blue-shift of the
MO absorption peak during the kinetic experiments was observed, which confirmed the
degradation of the substrate associated with the removal of the N-methyl groups [46].

The third set of experiments (Table 1, tests no. 7, 8, 9, 10) was carried out at different
flow rates (0.066 L/s, 0.147 L/s, 0.210 L/s, 0.305 L/s) with a substrate concentration in
the range of 0.3–5.0 mg/L, constant catalyst dosage 0.79 g/cm3. The variation of the flow
rate, constant hydraulic load (hw = 13.5 cm) was obtained by the introduction of layers of
different thicknesses (1.5, 1.0, and 0.5 mm; 11 × 70 cm) into an opening of this tank. It was
observed that with the increase of the flow rate, an increase of the degradation kinetics was
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obtained. This result can be ascribed to an increasingly higher dissolution of the dissolved
oxygen into the water solution, which affected the kinetic rates because of the increase of
the photogenerated radicals reacting with the substrate. Moreover, a faster re-circulation
of the solution and an increase of the irradiated volume (Virr, Table 1) can also explain
these trends. Furthermore, in this case, it can be observed that the best performance was
obtained with a substrate concentration corresponding to 0.7 mg/L, while lower values
were obtained with a further increase up to 5 mg/L. Figure 4B shows the kinetic trend and
the temporal evolution of the MO UV–vis absorption spectrum for a 0.7 mg/L influent
solution characterized by quenching and blue-shift of the maximum absorption peak.

Figure 3. (A) Influence of the dye concentration c0 on the degradation rate (TiO2 = 0.79 g/cm3;
Q = 0.066 L/s, hw = 13.5 cm, test no. 7. (B) MO UV–Vis absorption spectrum decay during the
photo-degradation. MO = 5 mg/L; TiO2= 0.79 g/cm3; Q = 0.066 L/s, hw = 13.5 cm.

The fourth set of experiments (Table 1, tests no. 10, 11, 12, 13) was carried out at
different hydraulic loads (hw) corresponding to different solution volumes Vsol (60 L, 72.5 L,
90 L and 105 L) and flow-rates Q (0.305 L/s, 0.355 L/s, 0.408 L/s, 0.441 L/s), constant
substrate concentration (c0 = 0.7 mg/L), and the catalyst dosage (0.79 g/cm3). These results
were combined with the former results regarding the variation of the flow rates at the same
hydraulic load (0.066 L/s, 0.147 L/s, 0.210 L/s, 0.305 L/s) and reported in Figure 4C. On
the contrary of what expected, the further increase of the flow rates associated with the
modification of the hydraulic load determined a decrease of the kinetics because of the
increasingly large volume (Vsol) of the dye solution to treat (60 L for 0.305 L/s, 72.5 L for
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0.355 L/s, 90 L for 0.408 L/s, 105 L for 0.441 L/s) and of the ever shorter catalysts/substrate
contact times (Irt) (6.7 s for 0.305 L/s, 5.8 s for 0.355 L/s, 5.2 s for 0.408 L/s, 5.2 s for
0.441 L/s, Table 1).

Figure 4. (A) Influence of the flow rate at different dye concentrations (TiO2 = 0.79 g/cm3, hw = 13.5 cm, tests no. 7, 8, 9, 10).
(B) kinetic curve relative to the experiment carried out with MO = 0.7 mg/L; TiO2 = 0.79 g/cm3, Q = 0.305 L/h, hw = 13.5 cm
and in the inset the relative UV–vis absorption spectrum decay. (C) kinetics obtained at different hydraulic parameters
(flow rate Q, hydraulic load hw, MO = 0.7 mg/L; TiO2 = 0.79 g/cm3, tests no. 7–13).

From the kinetic study carried out at variable hydraulic and hydrodynamic conditions,
it was observed that the best results were detected at Q = 0.305 L/s and hW = 13.5 cm
hydraulic load (corresponding to the maximum of the curve, Figure 4C) with a dye concen-
tration and TiO2 dosage, respectively, ranging 0.7 mg/L and 0.79 g/cm3.

Figure 5 reports how the combined effect of UVB light and catalyst (test no. 10) affects
the degradation of the substrate and influences the kinetic rates (fifth set of tests). For this
purpose, the photolytic and the bare adsorption tests (tests no. 14 and 15) resulted very
slow, thus showing limited effects on the dye removal.

The synergistic combination of irradiation and catalyst can be influenced by the inten-
sity of UVB light. It was studied and represented in Figure 6 reporting the measurements
carried out at Q = 0.305 L/s, hW = 13.5 cm, c0 = 0.7 mg/L, and TiO2 = 0.79 g/cm3. In the
present case, the tests were performed with 40 W, 80 W, and 120 W (tests no. 10, 16, and
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17) and the results demonstrated the increase of the kinetic rates with the increase of the
UVB intensity, although it was observed that passing from 40 W to 120 W the apparent rate
constant only doubled.

Figure 5. Kinetic trends for the UV/TiO2 photo-catalysis (test no. 10), UVB photolysis (test no. 14),
adsorption (only TiO2, test no. 15), MO = 0.7 mg/L; TiO2 = 0.79 g/cm3; Q = 0.305 L/s; hw = 13.5. In
the inset: lnc/c0 vs. t correlations.

Figure 6. Kinetic trends for the UV/TiO2 photo-catalysis at different UVB intensity (tests no. 10, 16,
17), MO = 0.7 mg/L; TiO2 = 0.79 g/cm3; Q = 0.305 L/s; hw = 13.5. In the inset: lnc/c0 vs. t correlations.

Similar results were also observed in the case of other dye substrates as Methyl
Red while in the case of Methylene Blue, the kinetic rates dramatically increased from
40 W to 120 W, all the other chemical and hydraulic/hydrodynamic parameters were
constant (Table 2).

Basically, the pH of the solution and the pH at zero point charge of TiO2 (pHZPC)
can influence these results because the surface state of the catalyst and the charge of the
substrate functional groups are affected by pH variations [47].
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Specifically, the TiO2 surface is negative (Ti-O−) at pH higher than the catalyst pHzpc
(6.8), while the TiO2 surface is positive (Ti-OH2

+) at pH lower than the catalyst pHzpc [41,47].
In the present case, the solutions were prepared in tap water with a pH around 7.5.

The non-polar Methyl Red is not affected by these operative conditions, while Methy-
lene Blue is a cationic dye at all pH [41,47,48]. Methyl Orange is instead characterized by a
negative charge; accordingly, the lowest kinetics of MO can be ascribed to the Coulombic
repulsion between the negative sulfonate groups of the dye and the negative charged
surface of TiO2 [41,47]. Methyl Red is sorbed by secondary Van der Waals bonds between
the hydroxyl and amino functional groups of this substrate and the catalyst, while the
best performances with Methylene Blue can be explained by the adsorption of the positive
charged dye onto the negative charged catalyst surface (Table 2) [48]. The better interaction
between the MB functionalities and the TiO2 surface can also explain the large increase of
the kinetic rate with the increase of the UVB intensity as regard to the other dyes.

Table 2. (A) Apparent rate constants for the UV/TiO2 photo-catalysis at different UVB intensity
(tests no. 10, 16, 17) for Methyl Orange, Methyl Red, and Methylene Blue, [dye] = 0.7 mg/L;
TiO2 = 0.79 g/cm3; tap water (pH = 7.5); Q = 0.305 L/s; hw = 13.5.

Dye Molecular Structure
Power

(W)
k

(min−1) × 10−4

Methyl Orange
40 2 ± 0.2
80 2.9 ± 0.3
120 4 ± 0.1

Methyl
Red

40 2.6 ± 0.1
80 3.7 ± 0.1
120 5.7 ± 0.3

Methylene Blue
40 8.8 ± 0.4
80 19 ± 0.5
120 35 ± 0.5

It can be also observed that if the measurements were carried out in distilled water
(pH = 6), with all the other chemical, physical, and hydraulic/hydrodynamic parameters
constant, the kinetics resulted different (tests no. 18). Under these conditions, the inter-
actions of the Methyl Orange functional groups with the catalyst surface were improved
with an increase of the value of the apparent rate constant in the range of 40%, quite similar
to that obtained with Methyl Red which, as reported before, is not affected by the pH. The
kinetic rate of the Methylene Blue showed a decrease in the range of the 20% associated
with a decrease of the interactions between the positive charged dye and the more positive
catalyst surface (Table 3, Figure 7).

Table 3. (A) Apparent rate constants for the UV/TiO2 photo-catalysis at 120 W (tests no. 18) for
Methyl Orange, Methyl Red, and Methylene Blue, [dye] = 0.7 mg/L; TiO2 = 0.79 g/cm3; distilled
water (pH = 6); Q = 0.305 L/s; hw = 13.5.

Dye Molecular Structure
Power

(W)
k

(min−1) × 10−4

Methyl Orange 120 5.6 ± 0.3

Methyl
Red 120 5.2 ± 0.3

Methylene Blue 120 29 ± 0.5
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Figure 7. Apparent rate constants in tap water (pH = 7.5) and distilled water (pH = 6) at 120 W
(tests no. 10 and 18) for Methyl Orange (MO), Methyl Red (MR), and Methylene Blue (MB),
[dye] = 0.7 mg/L; TiO2 = 0.79 g/cm3; Q = 0.305 L/s; hw = 13.5.

4. Conclusions

A laboratory-scale unit was employed to study the UVB photo-catalytic degradation of
Methyl Orange by anatase TiO2 embedded in a cement matrix and deposited onto a channel
of a recirculating system. The influence of the TiO2 dosage (g/cm3), dye concentration
(mg/L), flow-rate (L/s), hydraulic load (cm) and irradiation power (W), and pH of the
solution were evaluated on the degradation rates.

The degradation rate increased with the increase of the catalyst concentration due to
the growing number of the active sites necessary for the photocatalytic oxidation. The max-
imum dosage of TiO2 was 0.79 g/cm3 and with a further increase of oxide concentration,
a reduction of homogeneity was observed, which was detrimental for the process since
leaching of the catalyst from the cement conglomerate occurred.

The best performance was obtained with a substrate concentration corresponding to
0.7 mg/L, while lower values were obtained with a further increase up to 5 mg/L. The
Langmuir–Hinshelwood (LH) kinetic model was followed up to ~1 mg/L concentration;
at higher concentrations, a bare photolysis process occurred.

It was observed that with the increase of the flow rate an increase of the degradation
kinetics was obtained due to the increasingly higher dissolution of the oxygen into the water
solution, the faster re-circulation of the solution, and the increase of the irradiated volume.

The further increase of the flow rates associated with the modification of the hydraulic
load determined a decrease of the kinetic rates because of the increasingly large volume of
the dye solution to treat and of the ever shorter catalysts/substrate contact times.

The photolytic and the bare adsorption tests showed very slow rates thus demonstrat-
ing the effective synergistic action of the UVB light/catalyst system on the dye removal.

An increase of the kinetic rates with the increase of the UVB intensity was observed,
although the values only doubled from 40 W to 120 W.

A comparison with other dyes was carried out. Similar results were observed in the
case of Methyl Red, while in the case of Methylene Blue, the kinetic rates dramatically
increased from 40 W to 120 W.

The pH of the solution influenced these results because the charge of the catalyst
surface and the charge of the substrate functional groups were affected by pH variations.
For this reason, different results were observed with the different dyes at the pH of tap
water and at the pH of distilled water.

As a final remark, the kinetic trends reported in this paper are not easily comparable
with literature results due to the different operative conditions of the systems. In particular,
in this paper, the measurements were carried out in a re-circulating unit where TiO2 was
immobilized onto a channel. Moreover, in this case, the TiO2/dye molar ratio was 2 or
3 orders of magnitude lower and the catalyst particle size on the order of micron (lower
specific surface area) was deposited and not suspended.
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The operations were also carried out with low-pressure UVB lamps and no thermal
activation of the film or additions of other oxidants as O2, H2O2, S2O8

−2 were carried out
to improve sorption/degradation of Methyl Orange.
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