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Abstract: The ever increasing demand for electricity and the rapid increase in the number of au-
tomatic electrical appliances have posed a critical energy management challenge for both utilities
and consumers. Substantial work has been reported on the Home Energy Management System
(HEMS) but to the best of our knowledge, there is no single review highlighting all recent and past
developments on Demand Side Management (DSM) and HEMS altogether. The purpose of each
study is to raise user comfort, load scheduling, energy minimization, or economic dispatch prob-
lem. Researchers have proposed different soft computing and optimization techniques to address
the challenge, but still it seems to be a pressing issue. This paper presents a comprehensive review
of research on DSM strategies to identify the challenging perspectives for future study. We have
described DSM strategies, their deployment and communication technologies. The application of soft
computing techniques such as Fuzzy Logic (FL), Artificial Neural Network (ANN), and Evolutionary
Computation (EC) is discussed to deal with energy consumption minimization and scheduling
problems. Different optimization-based DSM approaches are also reviewed. We have also reviewed
the practical aspects of DSM implementation for smart energy management.

Keywords: demand response; demand-side management; energy consumption optimization; energy
efficiency; load scheduling; smart grid; smart home

1. Introduction

The emerging era of the smart grid not only assists utilities in conserving energy,
reducing cost, increasing grid transparency, sustainability and efficiency, but also has capti-
vated consumer attention via Demand Side Management (DSM), which is an important
aspect of the smart grid. However, the exponentially increasing demand for electricity
at consumer premises is still a pressing issue for both utilities and consumers. According
to the forecast by the National Institution for Transforming India (NITI) Ayog, the electric-
ity demand in India for the residential sector is predicted to grow 6–13 times by the year
2047 [1]. Smart energy management refers to planning, monitoring, controlling, and op-
timizing energy through smart solutions or intelligent means whose ultimate objective
is to maximize productivity and comfort on the one hand, and to minimize the energy cost
and pollution on the other hand [2]. To achieve these objectives effectively, there is a need
for the electric grid to transition from the traditional centralized version to one that uses
smart technologies and is known as the smart grid [3]. A smart grid is an electricity net-
work based on digital technology that has the provision for full-duplex communication,
as well as bidirectional power flow between utilities and customers [4]. To ensure grid
sustainability, the residential customers, as a part of electricity demand, must have a bet-

Sustainability 2021, 13, 7170. https://doi.org/10.3390/su13137170 https://www.mdpi.com/journal/sustainability
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ter understanding and awareness of the evolving grid’s worth. In India, the domestic
sector accounts for 24.76% of the total electricity consumption in 2019 [5].

The smart home (utilizing home automation, or domotics), one of the key components
of a smart grid, is a dwelling that serves the residents with security, healthcare, comfort,
and remote control of the home appliances through smart technology [6,7]. Smart home
energy management plays an important role in Demand Side Management (DSM), one
of the aspects of the smart grid [8], which deals with controlling and optimizing the various
smart home appliances according to the user needs and preferences to reduce the elec-
tricity consumption and therefore the cost, enhancing energy efficiency, and maintaining
a clean and green environment [9]. Although various researchers have been working in
this field for years in achieving said objectives, still there is a need for state-of-the-art
technologies and developments to provide optimal solutions in maximizing user comfort
levels and assisted living as well as energy consumption and wastage reduction. Figure 1
shows the block diagram of the energy management framework.

Figure 1. Energy management framework.

The main contributions of this paper are as follows:

1. Description of various DSM strategies.
2. Conduct of a comprehensive review of previous and current research works on DSM

through soft computing and optimization techniques.
3. Proposal of new viewpoints and challenges for further research.

The rest of the paper is organized as follows: Section 2 describes DSM strategies.
Section 3 addresses the hardware and communication technology in DSM. Section 4
provides the application of soft computing techniques for DSM. Section 5 discusses
the optimization-based DSM approaches. Section 6 reviews DSM approaches and their
hardware implementation. Section 7 discusses the challenges for future research. The
paper is concluded in Section 8.

2. Demand Side Management

Demand Side Management is the planning, controlling, and execution that directly
or indirectly influences the user-side demand of the electric meter. The DSM program
reduces the energy costs of electricity, which in the long run will restrict the need for more
capacity building transmission and distribution networks [10].

The significant objectives of demand-side management [11] are as follows:

1. Reduction in generation margin;
2. Improvement of the economic viability of the grid and its operating efficiency;
3. Improvement of the economic viability of the distribution network;
4. Maintenance of demand-supply balance with renewable;
5. Increasing the efficiency of the overall energy supply system.

2
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Reducing the generation side peak demand is very expensive and according to a study
done in [12], at least 10% of supply cost provides only 1% hours per year. To deal with
such a challenge, DSM offers a cost-effective opportunity. DSM reduces the overall peak
load demand by modifying the energy consumption pattern of the consumer that en-
hances the grid stability, which in turn reduces the energy consumption cost and carbon
footprints [13,14]. Various DSM strategies (as shown in Figure 1) include—Energy Conser-
vation and Energy Efficiency, Energy Consumption Optimization and Scheduling, Demand
Response, Distributed Generation, and Energy Storage. Figure 2 illustrates the role of
DSM strategies [15]. These roles include peak shaving, valley filling, strategic conservation,
load shifting, and time-shifting. Peak shaving and valley filling are the direct load control
techniques. Strategic conservation involves direct consumer-side demand reduction. Load
shifting and time shifting shift the demand from peak hours to off-peak hours. Peak shav-
ing is carried out through energy efficiency, incentive-based DR, and distributed generation,
valley filling through price-based DR, strategic conservation through energy conservation
and energy optimization, load shifting, and time-shifting through scheduling and energy
storage, respectively.
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Figure 2. Role of DSM strategies.

2.1. Energy Conservation and Energy Efficiency

Energy conservation is at the heart of energy management that should be considered
as a moral, religious, and societal duty. Both energy conservation and energy efficiency
aim at saving energy and the environment, but with different methodologies. To clarify
the subsequent confusion among consumers, we compared the two with examples in Table 1,
which shows the basic differences between energy conservation and energy efficiency.
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Table 1. Comparison between energy conservation and energy efficiency.

Attributes Energy Conservation Energy Efficiency

Meaning Changing behavior or habits
for using less energy

Using the technology that uses
less energy

User-interaction Yes May or may not
Type of load Traditional loads Digital loads
User comfort Compromise Maximum

Examples

• Switching off lights or fans
when leaving the room

• Using natural day light
• Walking instead of driving

• Replacing incandescent
bulbs with LEDs

• Using Solar panels
• Using Electric vehicles

The government of India has adopted certain approaches to maintain the consumer
demand with the view to minimize carbon dioxide growth rate to protect citizens and
environment from its hazardous effects [16]. These approaches include:

• Greater use of renewable energy sources.
• Shifting towards super-critical technologies for conventional power plants.
• Energy efficient innovative measures under the overall realm of the Energy Conserva-

tion Act 2001.

The Ministry of Power has implemented many energy efficient programs through
the Bureau of Energy Efficiency (BEE) in the fields of household lighting, commercial
buildings, standards, and product marketing, and demand-side management.

2.1.1. Energy Conservation and Energy Efficiency Programs

Is bold necessary? If not, we’d like to change them to normal. The following high-
lighted parts are the same. You can convert them to normal. Bold is not necessary.

• Standards and Labeling programs—To provide consumers with a choice regarding
the energy-saving potential and thus the cost-saving potential of the related product
in the market. These programs aid the vision of energy surplus India with 24 * 7
power to all [1]. Please check if this should be multiplication sign. No this is not the
multiplication sign.

• Energy Conservation Buildings Code—To set minimum energy standards for large
commercial buildings having a connected load of 100 kW or contract demand of 120 KVA
and above. For the residential sector, Eco-Niwas Samhita is launched to set various
standards for limited heat gain and heat loss and for achieving natural ventilation and
daylighting. Figure 3 shows the Eco-Niwas Samhita Scheme in the Residential sector [1].

• Strengthening Institutional Capacity of States—To set up State Designated Agencies
for initiating the energy conservation activities at the state level.

• School Education Program—To promote energy efficiency in schools through the for-
mation of Energy Clubs. BEE is realizing the Students Capacity Building Programme
under the Energy Conservation awareness scheme for the XII five year plan.

• Human Resource Development—To implement energy-efficient technologies and
practices in various sectors, a sound policy is required for the creation, retention, and
up-gradation of skills of human resources.

• National Mission for Enhanced Energy Efficiency—One of the eight missions un-
der the National Action Plan on Climate Change (NAPCC) is the National Mission
for Enhanced Energy Efficiency (NMEEE). The goal of NMEEE is to improve energy
efficiency by establishing a favorable regulatory and policy regime for encouraging
innovative sustainability in energy efficiency.

4
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Figure 3. Eco-Niwas Samhita Scheme in the residential sector [1].

2.1.2. Energy Efficiency Projects in India

• Energy Efficiency in light Bulb: Domestic Efficient Lighting Program (DELP) scheme
(now renamed as Unnat Jeevan by Affordable LEDs and Appliances for All (UJALA))
is designed to monetize energy consumption reduction in the household sector and
to attract investments therein. Approximately 45,865 mn kWh of energy were saved per
year according to the Ministry of Power, and carbon emissions were reduced by 3, 71, 50,
810 tonnes. For the fiscal year 2019-20, nearly 40 crores of LED bulbs were distributed
under UJALA Yojana, resulting in cost savings of Rs 18,341 crores per year [17].

• Energy Efficiency in Street Lighting: The inefficient sodium and mercury vapor street
lights were replaced by efficient LED street lights in many cities with a payback period
of nearly two years. New technologies in LED-based street lights offer noise and
pollution sensors, with remote control facilities.

• Energy Efficiency in Water Pumping: Five States in the Agricultural sector and 8
States in the Municipal sector replaced the traditional pump with its energy-efficient
counterpart. The profound transition towards solar energy is making the water
pumping system even smarter and efficient than the previous technologies.

Table 2 shows the international collaboration with India in energy efficiency.

Table 2. International collaboration under energy efficiency programs [1].

S. No. International Collaboration Programmes

1 Indo-US
Development of ECBC, Energy Efficient HVAC

systems, Capacity Building for Institutional
Financing

2 Indo-UK Industrial Energy Efficiency, DSM Action Plans,
Carbon Budgeting Approach

3 Indo-Japan

Energy Conservation Guidelines and Manuals,
Waste Heat Recovery Projects, Joint Policy

Researchers, Capacity Building and Industrial
Energy Efficiency Programmes

4 Indo-German
Energy-Efficient Cooling, Energy Efficiency

Standards for Multistorey Buildings, Perform,
Achieve, and Trade (PAT) cycle

5 Indo-Switzerland
Smart GHAR Project, Energy Efficient Buildings

via Integrated Design Method, Training
Programmes

5
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2.2. Demand Response

Demand response (DR) is a process in which the utility may curb the load at customer
premises or remotely detach such customer appliances to avoid huge capital investments
in generation capacity. DR acts as a resource to deal with a high spike in fuel prices,
brownouts, blackouts, and other emergency conditions. DR engages customer participa-
tion through various incentives and penalties [10,18]. Scientists and researchers are now
showing interest in residential DR programs, which enable a customer to decrease their
electricity consumption and manage smart appliances [19–21]. The DR classification as
given by the US Department of Energy [22] is shown in Figure 4, and its functional strategy
is shown in Figure 5.

Figure 4. Demand response classification.

Figure 5. DR functional strategy.

Utility sends the DR request to the consumer via Advanced Metering Infrastructure
(AMI), which is an integration of smart meters, communication networks, measurement
terminals, data concentrators, and data management systems [23]. AMI replaces the conven-
tional meters with smart meters to promote two-way communication for remote monitoring
and control applications. Table 3 highlights the basic differences between the aforesaid DR
programs. Price-based DR programs are time-dependent programs that require price de-
sign and involve voluntary participation. On the other hand Incentive-based DR programs
are time-independent programs that require baseline estimation and involve voluntary,
mandatory, or market-based participation.

6
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Table 3. Difference between price-based and incentive-based DR programs.

Attributes Price-Based DR Incentive-Based DR

Price-variation Time-dependent Time-independent
Requirement Price-design Baseline estimation

Discounts
offered Time-varying Fixed or Time-varying

Consumer
participation Voluntary Voluntary, mandatory,

or market-based

Applicability
Mostly addressed to have

a propensity for less electricity use
during peak hours

Mostly addressed during overload
periods or emergencies

2.2.1. Price-Based DR Program

In a price-based DR program or indirect load control, consumers modify their energy
consumption patterns at peak demand times in response to different time-based pricing
schemes called tariffs. This in turn offers financial benefits to users. The various pricing
schemes include Time-Of-Use pricing (TOU), Critical Peak Pricing (CPP), and Real-Time
Pricing (RTP). TOU is a widely used tariff in which usage charges are divided into different
time slots for different seasons of the year or hours of the day [24]. Generally, prices are
higher during peak hours and lower during off-peak hours, so consumers may respond
through scheduling. CPP is quite similar to TOU, but here the prices change periodically
often during the summer when the system is overloaded. The participants are notified
of the new price a day ahead [25,26]. RTP or dynamic pricing is the one where the hourly
prices fluctuate and participants are notified about the time beforehand. RTP implemen-
tation requires real-time communication between utilities and customers and an energy
management controller for modifying the energy consumption pattern resulting in overall
price reduction [21].

2.2.2. Incentive-Based DR Program

In incentive-based DR programs, participants reduce their energy consumption dur-
ing overload periods, and they avail financial incentives in return. Incentive-based DR
programs include Direct Load Control (DLC), demand bidding, and interruptible programs.
In DLC, as the name signifies, the utility can directly switch on or off the customer’s air con-
ditioner or water heater based on the mutual contract [19,27,28]. Demand bidding is also
known as negawatt or buyback program, is a market-based program where customers bid
for the load they are willing to reduce [29]. Once the bid is accepted and customers commit
according to the requirement, and is paid for that. Interruptible programs allow customers
to shift their load to off-peak hours or shut down especially during emergencies. Enrolled
customers may get penalties if they fail to respond during the event [30].

2.3. Energy Optimization and Scheduling

Optimization refers to the selection of the best possible element from several alternatives
to achieve a target. Mathematically, it deals with finding the maxima or minima of a function
that is subjected to some constraints [31]. Energy consumption optimization is used to find
the optimal parameters needed for smart energy management [32]. Two important parameters
include current indoor parameters and user-desired parameters [33]. The difference between
the two produces the error, which is minimized using optimization to minimize energy con-
sumption. Traditional energy management that is based on load forecasting and machine
learning where the data is taken from traditional meters fails to predict hourly consump-
tion [34]. The issue is overcome either by replacing these meters with digital ones or by using
DR-based load forecasting [26]. Energy prediction is a prerequisite for energy consumption
optimization [35]. The user comfort level is a prime factor in considering the optimization
problem. Many researchers have proposed various optimization techniques for controlling
energy consumption without jeopardizing user comfort.

7
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As the conventional grid is transforming into a decentralized grid, load schedul-
ing is now replacing load shedding. Demand-side management involves scheduling of
home appliances by modifying their energy consumption pattern. Scheduling is a load
management technique wherein the smart home appliances are shifted from on-peak
hours to off-peak hours (during DR programs) [36], thereby shaving the peaks and filling
the valleys resulting in load factor improvement.

2.4. Distributed Generation

Distributed Generation or Decentralized Generation (DG) is an electricity source
directly connected to the distribution level or on the user-end side [37]. DG serves as
a backup plan to the demand side, which not only mitigates the transmission losses, but
also improves well-being, as no one wants the high transmission lines to pass over their
residence. DG technologies provide economic benefits for cogeneration, peak-shaving, and
standby power applications [38]. The DG technologies in smart homes include renewables
(solar and wind), gas turbines, microturbines, and fuel cells [39].

With the rapid sustainable development and the need for emission-free generation,
renewable energy penetration seems to the largest among the DG technologies. These are
some of the sources of cost-effective, clean, and green energy. In the solar energy domain,
photovoltaic technology is the most prevailing among smart homes. Another renewable
technology is wind power, which is also growing worldwide after solar. Wind power
is generated by wind turbines, which include a fan, generator, gearbox, tower, and safety
mechanisms [40]. Biomass is also used in smart homes, especially for cooking and heating.
Biomass technologies include combustion, gasification, and biogas [41,42]. According
to the annual report of the Ministry of New and Renewable Energy (MNRE), nearly 86 GW
of renewable power capacity has been set up by December 2019 in India, and the target
is to extend it further to 175 GW by the year 2022 [43].

Now, in the era of renewable energy sources coupled with information and communi-
cation technology, the devices are becoming smart. The LED light bulb, LED street light,
and energy-efficient water pump are enriched with smart technology and get power from
solar photovoltaic systems and are now called smart home lights, smart street lights, and
smart water pumps. In India, the present solar energy contribution includes 1,721,343 smart
home lights, 679,772 smart street lights, and 246,074 smart water pumps, respectively, [43].
PLease confirm the number format. I confirm.

2.5. Energy Storage

Energy storage is the ultimate solution to overcome the intermittency challenges
associated with renewable power [44]. Storing renewable power will abort the dependency
on the grid power supply. With intelligent energy management, customers are engaged
to buy and store electricity when it is available in plenty or when prices are low. With
smart metering, customers can reduce their consumption and therefore cost during peak
load hours (or high price periods). Energy storage technologies in the smart home include
batteries, ultracapacitors, and electric vehicles [45,46]. Commonly used batteries are
lead-acid, lithium-ion, zinc-bromine, zinc-iron, etc. [10]. Electric Vehicle (EV) or portable
energy storage replacing the conventional vehicles are one of the promising green energy
technologies that will turn the entire energy scenario shortly. EV technology comprises
a battery, hybrid, plug-in hybrid, and fuel cell. In India, Faster Adoption and Manufacturing
of Electric Vehicles (FAME-II) provides inputs on different aspects of electric mobility.
Renewable energy-based charging infrastructure is in progress [43].

3. Hardware and Communication Technology

Home Energy Management System (HEMS) uses smart sensors to collect information
and communicate with the smart appliances to perform the specific action. Various research
projects have been carried out in the framework of intelligent HEMS, leveraging smart
technologies to build HEMS hardware and control algorithms. In [47], authors presented

8
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a hardware demonstration for DR management comprising of home energy management
unit, load controllers, PC, communication module, and a smart meter. A hardware HEMS
is developed for controlling domestic loads in response to pricing signals in the department
of Electrical Power Systems of Politehnica University of Bucharest [48]. The system employed
a smart meter, bipolar fuses, relays, Raspberry PI, and wireless router. The work in [49]
proposed an intelligent HEMS for DR management. The hardware setup consists of wireless
modules, controllers, and smart plugs. The study in [50] provided the architecture and
practical implementation of an IoT and cloud computing-based HEMS on a project circuit
board. The hardware components used are the WeMos D1 Mini microcontroller with a built-
in Wi-Fi module, current and voltage sensors, power module, multiplexer, and relay.

To apply appropriate appliance scheduling and energy management measures, smart
HEMS needs communication technology. A smart home uses wireless sensor networks
to connect home appliances with HEMS. Most widely used communication technologies
include BACnet [51], Digital Addressable Lighting Interface (DALI) [52], Zigbee [53], Blue-
tooth [54], Wi-Fi [55], and Power Line Communication (PLC) [56]. BACnet was developed
by Ashrae for controlling HVAC systems. The authors in [57] introduced the building
automation and communication requirement using BACnet. The DALI protocol is used
to provide communication between the fuzzy controller and LED luminaires [58]. Zigbee,
Bluetooth, and Wi-Fi are wireless communication technologies. Zigbee is mostly preferred
for communication in smart homes due to its low power requirement, simplicity, reason-
able range, low cost, and support to a large number of network nodes [59]. An intelligent
HEMS is designed for demand response and load management via Zigbee based on IEEE
802.15.4 standard [60]. A Zigbee-based protection system is constructed for building safety
against fire [61]. An intelligent cloud home energy management system is proposed using
the Zigbee protocol to overcome the intermittency challenges associated with renewable
power [62]. HEMS based on Zigbee technology is developed that is capable of monitoring
energy usage with accuracy, and thus is well suited to energy conservation and plan-
ning [63]. The hardware demonstrations for DR management using the Zigbee protocol
are presented [47,64].

The use of Bluetooth is limited as it provides short-range communication (up to
10 m) and requires more power consumption than Zigbee. Researchers introduced a novel
Bluetooth-based HEMS capable of reducing the peak load demand and electricity cost
while maintaining user comfort [65]. Wi-Fi on the other hand provides a communication
range of more than 100 m with high speed, but it requires more power consumption and ad-
ditional components than Zigbee. The hardware demonstration of DSM for controlling air
conditioners through Wi-Fi technology and DR programs is discussed [66]. A Wi-Fi smart
plug is designed for monitoring and controlling smart home appliances. This inexpensive
solution enables a user to remotely switch on/off the devices [67]. PLC provides high secu-
rity at low cost, but it offers low speed and low data transmission quality. The study in [56]
described HEMS that used power line communication to provide real-time information
on energy consumption patterns.

4. Soft Computing Based DSM

Owing to the myriads of applications, soft computing techniques have been success-
fully applied to solve complex problems (imprecise or uncertain) of intelligent building
control [68]. Based on the type of soft computing techniques, the DSM can be classi-
fied as Fuzzy Logic (FL) based DSM, Artificial Neural Network (ANN) based DSM, and
Evolutionary Computation (EC) based DSM.

4.1. FL Based DSM

Fuzzy logic has been extensively used for controlling and monitoring home appliances
for many years due to its simplicity, adaptability, flexibility, and outstanding capability in
dealing with uncertainties and nonlinearities [69,70]. D. Kolokotsa et al. [71] designed fuzzy
PD, fuzzy PID, and adaptive fuzzy PD controllers. They proved that the adaptive controller
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gives optimum performance and results in effective energy saving (25–30% more than ON-
OFF controller) when user preferences are critical and suggested to use fuzzy PD for visual
control and adaptive fuzzy PD for thermal and air quality control. A genetic algorithm (GA)
tuned fuzzy controller is proposed in [72] for controlling the indoor building parameters
and energy consumption minimization. The study in [73] showed that the fuzzy P controller
yields an annual energy saving of 76% for electric lighting as compared to the fuzzy PD,
fuzzy PI, fuzzy PID, and adaptive fuzzy PD controllers. These three works focused on
providing thermal, visual, and air quality comfort via a smart card. An adaptive fuzzy
controller is developed for ensuring the thermal comfort of the Heating Ventilation and
Air-Conditioning (HVAC) system [74]. A fuzzy-based automatic roller blind [75] was
designed for luminance control on account of the availability of solar radiation. The aim
is to utilize the maximum daylight illumination effectively [75]. Improved adaptive fuzzy
controllers are developed for controlling the air handling unit of the HVAC system in real-
time where the GA is used for rule matrix and membership adjustment [76,77]. Authors
in [78] presented an intelligent coordinator control with five fuzzy controllers for thermal,
visual, and air quality control.

A scheduling problem for air conditioner temperature control based on day-ahead
pricing is modeled using FL, and the temperature forecasting is done through immune
clonal selection programming [79]. The concept of adaptive actively spheres integration
with FL [80] is proposed, where the system learns and adapts to the changing human be-
havior and artifacts. As the era of the smart grid is emerging, various technologies like
smart sensors, communication, and smart home appliance commitment are becoming
a topic of interest to many researchers. The work in [81] applied fuzzy logic for scheduling
smart home appliances based on the day-ahead pricing scheme and user comfort. Novel
agent-based energy optimization of the HVAC system for higher education building is pro-
posed [82]. Intelligent agents are used for prediction, control, sensing, and data processing.
The experimental results showed 3% energy saving while maintaining user thermal com-
fort [82]. Authors used the synergy of wireless sensor networks, fuzzy logic, and smart
grid incentives to design a smart thermostat for the HVAC system using a programmable
communicating thermostat [83]. Then an adaptive model is developed to adjust the user’s
changing preferences [84]. The results are compared with the existing thermostat and it
is observed that developed systems automatically respond to DR programs and resulted in
a significant reduction in load demand without user discomfort [83,84]. Researchers in [85]
proposed a fuzzy logic-based behavioral controller for HEMS.

A fuzzy logic-based smart LED lighting system is designed to provide visual com-
fort. The experimentation encompasses the DALI protocol for communication, daylight,
user movement, and preferences [58]. The HVAC system is controlled using FL concepts
and the performance is compared with the conventional on-off controller. The study
implemented the simulation using the Building Control Virtual Test Bed platform [86].
The thermal comfort provided by the fuzzy controller is found superior to the on-off
controller. A fuzzy logic-based smart HEMS for battery and load management was pro-
posed in [87], which used Wi-Fi communication technology and IoT based monitoring.
An additional humidity parameter is introduced in the fuzzy system and the rules are
generated automatically using the combinatorial method [88]. Additionally, the study also
utilized IoT-based sensors and a feedback loop. It is concluded that the proposed method
can reduce energy consumption by up to 50%. The study in [8] classified the appliances
based on their energy consumption pattern [89] and accordingly designed fuzzy controllers
to control the HVAC and the illumination system.

4.2. ANN Based DSM

ANN is a machine learning approach that is flooded with numerous applications
due to its simplicity, adaptability, real-time fast solution, and self-organization. An ANN-
based predictive and adaptive control logic is developed for providing thermal comfort.
The proposed logic used two predicted models and a hardware framework that resulted
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in accurate prediction and better thermal comfort than the conventional logic [90]. They also
considered the humidity factor. Then a discrete model predictive approach is developed
for an HVAC system. ANN is used for model prediction and branch and bound approach
for optimization [91]. Simulations showed an energy saving of 50%.

An ANN-based HEMS is proposed with the DR program to maintain the energy con-
sumption below the demand limit, and the system is trained using a Levenberg–Marquardt
and feed-forward network [92]. An hourly energy consumption predictor [93] is developed
using a multilayer perceptron. Recently, ANN was used for forecasting DR signals and energy
consumption patterns for maintaining an energy-efficient smart home [94–96]. A hybrid Light-
ning Search algorithm (LSA)-ANN-based HEMS was developed [97]. For optimal scheduling,
the LSA selects the appropriate neurons and learning rate. Deep Extreme Learning Machine
(DELM) based energy consumption predictors were proposed and subsequently compared
with other machine learning methods [98,99]. The DELM predictor outperformed the other
methods. A hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) controller [100] was pro-
posed to control the temperature and air quality concerning changing demands [101].

4.3. EC Based DSM

Evolutionary computation is well known for its highly optimized solutions, and there-
fore is widely used to solve complex nonlinear, nonconvex, and constrained optimization
problems. An efficient energy management reset scheme using evolutionary program-
ming was proposed [102] with 7% energy-saving potential. Authors used Binary Particle
Swarm Optimization (BPSO) for scheduling interruptible loads for cost and interruption
minimization [103]. They divided the swarms into subswarms for significant scheduling
improvement. A day-ahead load scheduling method capable of handling a variety of loads
was developed using a heuristic evolutionary algorithm [13].

The authors in [104] proposed an energy management system for micro-grids equipped
with wind-turbines. The economic dispatch problem is solved by Ant Colony Optimization
(ACO). The study in [105] used the dual pricing model RTP with Inclined Block Rate (IBR)
for efficient load scheduling. The optimization of the operational time of the appliances
is performed using GA [106]. GA was compared with ACO [107] and also with Particle
Swarm Optimization (PSO) [108,109] for maximizing user comfort. Multi-objective optimiza-
tion problems were solved using a non-dominated sorting GA [110,111] and PSO [112]. The
works in [113,114] used Artificial Bee Colony for appliance scheduling for energy manage-
ment considering renewables as well. The algorithm yields a cost reduction of about 47%.
Different heuristic algorithms GA, ACO, BPSO, Wind-Driven Optimization, Bacterial Forag-
ing Optimization, and Hybrid GA-PSO were compared, wherein the GA based controllers
outperformed the other methods [115–117]. They also considered TOU and IBR dual models.

A multi-agent control system [118] with hybrid multi-objective GA is developed
for energy-efficient buildings. The developed method resulted in 31.6% energy efficiency.
A real-time appliance scheduling is performed by Binary Backtracking Search Algorithm
for energy management [119]. For electricity cost and peak load reduction, HEMS com-
prising of GA, Cuckoo Search Algorithm, BPSO, and Crow Search Algorithm [120] were
designed with RTP and TOU pricing models, respectively, [121,122]. The studies also
considered energy storage and renewable energy options. An optimal energy sched-
uler for load reliability was investigated and the optimization problem was solved using
PSO [123]. A real-time electricity scheduler was developed for smart home energy manage-
ment, considering renewables and energy storage resources [124]. GA was used to solve
the multiobjective optimization problem. A day-ahead load forecasting was assumed
before scheduling, and a hybrid Harmony Search-PSO algorithm was used for optimal
scheduling via a human–machine interface, central controller, and different loads [125].

The study in [126] introduced and implemented the Lightlearn controller based on
reinforcement learning. Due to its adaptive nature, it learned the user’s behavior and
adapted to controlling actions accordingly. Recent research presented a bi-level deep
reinforcement learning approach for appliance scheduling. Besides, it incorporated charge
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and discharge schedules of energy storage and EV [127]. In [128], a load scheduling
problem was solved via the Dijkstra algorithm, and the simulation results are compared
with GA, Optimal Pattern Recognition Algorithm, and BPSO. The results showed a cost
reduction of about 51%. Renewable generation and storage systems were also considered.
Table 4 summarizes the soft computing based DSM.

Table 4. Soft computing based DSM.

References Method Objective Contribution

[71–73] FL thermal, visual, and air quality
comfort

Fuzzy P, Fuzzy PD, Fuzzy PID, Adaptive fuzzy PD
controller, and GA tuned Fuzzy controller

[74] FL thermal comfort An adaptive fuzzy controller
[75] FL visual comfort fuzzy-based automatic roller blind

[76,77] FL air quality comfort Improved adaptive fuzzy controllers in real-time

[78] FL thermal, visual, and air quality
comfort intelligent coordinator control with five fuzzy controllers

[79,81] FL thermal comfort A scheduling problem for air conditioner temperature
control based on day-ahead pricing is modeled

[83,84] FL thermal comfort

smart thermostat for the HVAC system using
a programmable communicating thermostat and
an adaptive model to adjust the user’s changing

preferences
[58] FL visual comfort A fuzzy logic-based smart LED lighting system

[86] FL thermal comfort Fuzzy based controller for HVAC system using
the Building Control Virtual Test Bed platform

[87] FL - A fuzzy logic-based smart HEMS for battery and load
management

[8] FL thermal, visual and air quality
comfort

fuzzy controllers to control the HVAC and illumination
system

[90] ANN thermal comfort ANN-based predictive and adaptive control logic
[91] ANN thermal and air quality comfort discrete model predictive approach is developed for an

HVAC system

[94–96] ANN thermal comfort forecasting DR signals and energy consumption patterns
for maintaining an energy-efficient smart home

[97] ANN visual comfort hybrid Lightning Search algorithm LSA-ANN-based
HEMS

[100,101] ANN thermal and air quality comfort hybrid Adaptive Neuro-Fuzzy Inference System
(ANFIS) controller

[103] EC load scheduling Binary Particle Swarm Optimization (BPSO) for scheduling
interruptible loads for cost and interruption minimization

[13] EC load scheduling A day-ahead scheduling method using a heuristic
evolutionary algorithm

[104] EC economoc dispatch problem an energy management system for micro-grids equipped
with wind-turbines using ACO

[105] EC load scheduling dual pricing model RTP with Inclined Block Rate (IBR)
[107–109] EC user comfort GA is compared with ACO and PSO

[113,114] EC load scheduling used Artificial Bee Colony for energy management
considering renewables as well

[115–117] EC energy cost reduction
Different heuristic algorithms GA, ACO, BPSO,
Wind-Driven Optimization, Bacterial Foraging

Optimization, and Hybrid GA-PSO are compared

[119] EC energy management A real-time appliance scheduling is performed by Binary
Backtracking Search Algorithm

[120–122] EC electricity cost and peak load
reduction

home energy management schemes comprising of GA,
Cuckoo Search Algorithm, BPSO, and Crow Search

Algorithm
[123] EC load scheduling An optimal energy scheduler for load reliability using PSO

[124] EC load scheduling A real-time electricity scheduler considering renewables
and energy storage resources

[125] EC load scheduling A hybrid Harmony Search-PSO algorithm
[126] EC visual comfort Lightlearn controller based on reinforcement learning
[127] EC load scheduling a bi-level deep reinforcement learning approach

[128] EC load scheduling Dijkstra algorithm compared with GA, Optimal Pattern
Recognition Algorithm, and BPSO
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5. Optimization Based DSM

Game Theory is one of the most powerful and widely used optimization techniques.
Autonomous Game-Theory-based DSM is presented in [129,130]. The players act as users
and their strategies as daily home appliances schedules [131]. There is only interaction among
participating users rather than utilities, and a single energy source is shared by the users.
Their ultimate objective was to minimize energy costs and Peak to Average Ratio (PAR).
Then, Game Theory was also used for load scheduling considering renewable sources [132],
EV [133], and for realizing user-aware DSM considering user preferences [134].

Researchers in [135] used two optimization methods for RTP-based DSM. Stochas-
tic optimization was used for price minimization and controlling associated financial
risks. On the other hand, robust optimization deals with the price uncertainty inter-
vals [136]. A mixed-integer programming optimization was used for smart home appliance
scheduling [137–139], with EV and energy storage in [140]. Reference [141] transformed
the Mixed-Integer Linear Programming (MILP) problem into a convex programming opti-
mization one for flexible and efficient performance. To deal with the uncertainties such as
price-elasticities of demand, [24] proposed a TOU tariff design using stochastic optimiza-
tion based on quadratically constrained quadratic programming and RTP design in [142].
Simulated Annealing was used for DSM [143], which uses white tariff, an extension of
TOU tariff. Researchers introduced a cost-efficient scheduling approach using fractional
programming while considering service fees and renewables [144].

To implement an incentive-based DR program [145] proposed a practical load schedul-
ing optimization algorithm for user satisfied energy management. A comparative study
among Linear programming, PSO, Extended PSO, adaptive dynamic programming, and
self-learning procedures was made for smart load scheduling while considering data uncer-
tainties [146]. In a study, a multiobjective mixed-integer non-linear programming optimiza-
tion was used for energy saving and maintaining thermal comfort [147]. The scheduling
problem was solved by interval number optimization in [148]. At first, the uncertain
parameters were transformed into interval numbers and then successively solved by
BPSO coupled with Integer linear programming. A metaheuristic optimization method
that is a hybrid bacterial foraging-GA is proposed to handle multiple constraints and
improve search efficiency [149]. Dynamic programming is used for real-time appliance
scheduling. A heuristic optimization based appliance scheduling and energy manage-
ment system was developed, which considered both renewable sources as well as user
preferences [150].

A recent study [151] used MILP with normalized weighted sum and compromise
programming for solving scheduling problems considering the TOU pricing scheme.
The work in [8] scheduled the appliances using the Bat algorithm [152], Flower polli-
nation, and hybrid Bat Flower pollination optimization techniques, respectively. A novel
appliance scheduling optimization for a flexible and comfortable environment contributed
to peak load reduction while considering socio-technical factors [153]. Table 5 summarizes
optimization-based DSM.
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Table 5. Optimization based DSM.

References Optimization Method Objective Contribution

[129,130] Game Theory
minimize energy costs

and Peak to Average Ratio
(PAR)

Autonomous Game-Theory-based DSM

[132–134] Game Theory load scheduling realizing user-aware DSM considering
user preferences and renewable sources

[135] Stochastic-Robust price minimization RTP-based DSM
[137–140] Mixed-integer

programming load scheduling smart home appliance scheduling
[143] Simulated Annealing energy optimization DSM using white tariff

[146] Linear programming load scheduling

A comparative study among Linear
programming, PSO, Extended PSO,

Adaptive dynamic programming, and
Self-learning procedures

[148] Interval number
optimization load scheduling BPSO coupled with Integer linear

programming

[150] Dynamic programming load scheduling

A heuristic optimization based energy
management system considering both

renewable sources as well as user
preferences

[151] MILP load scheduling

normalized weighted sum and
compromise programming for solving

scheduling problems considering
the TOU pricing scheme

[152]
Bat algorithm, Flower

pollination, and hybrid
Bat Flower pollination

load scheduling Energy management scheduler for smart
home

Table 6 shows the comparison between the soft computing DSM and optimization DSM.

Table 6. Comparison between the soft computing DSM and optimization DSM.

S. No. Soft Computing Based DSM Optimization-Based DSM

1. Set of computational techniques and algorithms
that are used to deal with complex problems [154].

Selection of the best possible element from several
alternatives to achieve a target [31]

2. Does not require a mathematical model Requires mathematical model
3. Approximate solutions Accurate solutions
4. Fast Time-consuming
5. May use heuristics or learning methods Require iterative methods
6. Simplicity, adaptability, and flexibility Robustness, stochastic, and optimality
7. Best suited for real-world problems It may be difficult to solve real-world problems

8.

Examples- Fuzzy logic [8], Artificial neural
network [101], Genetic algorithm [124], Particle swarm

optimization [125], Ant colony optimization [104],
Cuckoo search algorithm [120], etc.

Examples- Game theory [129], Mixed-integer linear
programming [151], Dynamic programming [150],

Simulated annealing [143], Interval number
optimization [148], Stochastic and Robust

optimization [135], etc.

6. Miscellaneous

In addition to the soft computing and optimization based DSM, there are some other
approaches, and this very section summarizes those works in the literature. Two of the ma-
jor features of a smart grid are the integration of renewable energies [155] and storage
resources and increased customer participation. For integration, [156] designed and tested
an embedded system in which a microcontroller switches between the various power
sources. The energy peaks are managed by the home gateway and utility server via the GSM
modem. A net energy saving of about 33% is achieved. Since these integrations may also
cause power supply uncertainty. To overcome the issue, [157] developed TOU-based DSM
schemes for both prosumers and consumers. The latter is achieved by presenting a schedul-
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ing algorithm that takes into account the customer preferences and RTP using Analytical
Hierarchy Process and Piecewise Cubic Hermite Interpolating Polynomial [158].

In DLC, it is quite difficult to decide which appliance to turn on or off while main-
taining user comfort [159]. Researchers proposed a naïve control method for controlling
an electric water heater without a temperature parameter. Instead, a time-varied weight
matrix and heating durations are used to generate a customer satisfaction prediction index,
which in turn selects the appropriate heater for DLC [160]. Asha Radhakrishnan and
M.P. Selvan proposed a DR based off-line scheduling algorithm considering renewable
sources [36]. The method comprises load classification, load prioritization, and application
of tariff plans.

The hardware implementation of DR programs and cloud computing methods consider-
ing customer’s preferences and load priority for energy management are presented [62,161].
A smart residential energy management system is designed for appliances and battery
scheduling [162]. Graph theory and the Fast greedy approach [163] were used for efficient
load scheduling implementation of thermostatic devices [164]. Then model predictive
controllers [165] were used for scheduling both thermostatic [166–169] as well as non-
thermostatic appliances [170]. An energy-saving smart LED lighting system is developed
using sensors and microcontrollers. The experimental results achieved 55% and 65% en-
ergy saving in continuous and discrete pattern environment [171]. The work in [172]
discussed DR management through practical implementation. The required algorithm
is designed based on user indices and engagement plans. The authors proposed an energy
management algorithm considering renewable power, battery state of charge level, grid
availability, and different tariffs [173]. From the simulation, it is shown that energy-saving
with the proposed algorithm with renewable energy is about 28% whereas it is 25% without
renewable energy.

Recently researchers developed a residential load simulator using MATLAB-Simulink
graphical user interface [174], which cannot only model the smart appliances, but also
the local generation resources for extracting the power profiles. In [47] and [64], authors
presented a hardware demonstration for DR management using the Zigbee protocol, con-
sidering load priority [175] and user preferences. The performance analysis of global
model based anticipated building energy management system was developed for energy
management [176]. A real-time rule-based DR controller with load shifting and curtailment
mechanisms was proposed in [177]. The study in [178] conducted a quality of experi-
ence perception analysis and based on user profile proposed a smart HEMS considering
the degree of annoyance and renewable energy resources. The hardware demonstra-
tion of DSM for controlling air conditioners through Wi-Fi technology and DR programs
was discussed [66]. The control methodology in [64] used the combination of fuzzy con-
troller, rolling optimization, and real-time control strategy for appliance scheduling in
a DR environment. For efficient utilization of energy storage systems [179] developed
a nonhomogenous hidden Markov model that formulates the energy storage management
problem and used piecewise linear approximation for further solving. Table 7 summarizes
the miscellaneous DSM approaches.
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Table 7. Miscellaneous DSM approaches.

References Contribution

[156] Integration of renewable energies through microcontroller based
embedded system

[157] TOU-based DSM schemes for both prosumers and consumers and
a scheduling algorithm that takes into account the customer preferences

[160] A naïve control method for controlling an electric water heater without
a temperature parameter

[36] DR based off-line scheduling algorithm considering renewable sources

[62,161] The hardware implementation of DR programs and cloud computing
methods considering customer’s preferences and load priority

[162] A smart residential energy management system for appliances and battery
scheduling

[163] Efficient load scheduling implementation of thermostatic devices using
Graph theory and the Fast greedy approach

[165–169] Model predictive controllers for scheduling thermostatic appliances
[172] DR management through practical implementation

[173] Energy management algorithm considering renewable power, battery state
of charge level, grid availability, and different tariffs

[174] Residential load simulator using MATLAB-Simulink graphical user
interface

[47,64] Hardware demonstration for DR management using Zigbee protocol

[177] Real-time rule-based DR controller with load shifting and curtailment
mechanisms

[66] Hardware demonstration of DSM for controlling air conditioners through
Wi-Fi technology and DR programs

[64] Appliance scheduling in a DR environment using the combination of fuzzy
controller, rolling optimization, and real-time control strategy

7. Discussion and Future Works

From a technical point of view, the most challenging proposals are as follows:

1. As the number of HVAC systems is increasing, heat dissipation from the condensing
coil is also increasing, thereby causing environmental issues indirectly affecting
human comfort. To overcome the challenge there is a need for the development of
a DSM scheme that can accommodate this heat which can either be used for space
heating or in kitchen applications.

2. The majority of the research focused on thermal, visual, and air quality comfort, but
did not consider humidity, social comfort, and assisted living in their experiments.

3. Design and real-time implementation of hybrid DR controllers considering both
technical and economic aspects of the grid to provide enough knowledge of the system
(experience) concerning decentralized control and to maintain the reliability of the grid
(to control the peaks at off-peak hours).

4. Integration of Fuzzy Logic with metaheuristic algorithms capable of energy prediction,
optimization, and scheduling in real-time could give the best results for energy
consumption minimization without affecting the degree of comfort.

5. The system should also include renewable energy resources, energy storage devices, and
an IoT based protocol to maintain the flexibility and security within the smart home.

8. Conclusions

This paper provides a review of the previous and ongoing research on DSM. DSM
strategies are described and a comparison is made between energy conservation and en-
ergy efficiency, price-based and incentive-based DR programs, energy optimization and
scheduling, and distributed generation and energy storage. We addressed soft comput-
ing techniques namely FL, ANN, EC, and different optimization techniques for energy
management and scheduling using renewables and storage devices and finally compared
them. From a sustainable point of view, DSM is economically viable, provides grid stability,
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improves the demand and supply-side efficiency, and is environmentally friendly. It is still
a developing and promising area of the smart grid. We hope that this review can help
new researchers and readers gain insights into various terminologies and methodologies
adopted in DSM implementation.
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Abstract: A paradigm shift in power engineering transforms conventional fossil fuel-based power
systems gradually into more sustainable and environmentally friendly systems due to more renew-
able energy source (RES) integration. However, the control structure of high-level RES integrated
system becomes complex, and the total system inertia is reduced due to the removal of conventional
synchronous generators. Thus, such a system poses serious frequency instabilities due to the high
rate of change of frequency (RoCoF). To handle this frequency instability issue, this work proposes an
optimized fractional-order proportional integral (FOPI) controller-based superconducting magnetic
energy storage (SMES) approach. The proposed FOPI-based SMES technique to support virtual
inertia is superior to and more robust than the conventional technique. The FOPI parameters are opti-
mized using the particle swarm optimization (PSO) technique. The SMES is modeled and integrated
into the optimally designed FOPI to support the virtual inertia of the system. Fluctuating RESs are
considered to show the effectiveness of the proposed approach. Extensive time-domain simulations
were carried out in MATLAB Simulink with different load and generation mismatch levels. Systems
with different inertia levels were simulated to guarantee the frequency stability of the system with
the proposed FOPI-based SMES control technique. Several performance indices, such as overshoot,
undershoot, and settling time, were considered in the analysis.

Keywords: virtual inertia control; renewable energy resources; solar and wind energy; superconducting
magnetic energy storage (SMES); fractional-order proportional integral (FOPI); frequency response

1. Introduction

Due to the continuous depletion of fossil fuels, increased government incentives,
technological advancements, and price drops, the utilization of renewable energy sources
(RESs) as distributed generators (DGs) has increased dramatically in recent years. In power
systems, several technical issues, such as low reserve generation, fault ride through capa-
bility, inertia, and high fault current, have arisen because of high-level RES integration [1].
Thus, the frequency stability issue of high-level RES-integrated systems is greatly affected.
Moreover, the two main sources of renewable energy, solar and wind, are highly unpre-
dictable. The intermittent and unpredictable RESs can be modeled with sophisticated
methods to lower the risk of instability in power systems [2]. A high share of RESs compli-
cates grid-balancing and market operations. Several dedicated devices can be installed in a
RES-integrated system to provide ancillary services such as power variations, congestion
reduction, grid balancing, and primary reserve [3,4]. The technical issues of RES integration
with a power system could also be handled with different cutting edge technologies such
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as modern control and optimization techniques, energy storage devices including batteries
and supercapacitors, and fault current limiting devices [5].

The overall inertia of a power system is decreased greatly as a result of the integration
of low-inertia wind and inertia-less PV systems [6]. Power electronic converter decoupling
between the wind generator and the power system is responsible for the low inertia. As a
result, such a low-inertia wind system cannot properly maintain the frequency stability of
the power system. Moreover, solar PV with no inertia is highly responsible for the frequency
deviation of the system. Therefore, high-level PV and wind penetration reduces the total
inertia and augments the rate of change of frequency (RoCoF), which are responsible
for the unexpected load-shedding controller activation even at small generation–load
mismatch [7]. In addition, reserve power reduction due to high-level PV/wind integration
causes frequency deviation [8]. In summary, inertia emulation controllers need to be
designed to improve the frequency stability of RES-integrated power systems.

In order to minimize the frequency excursion of a low-inertia system, several methods
have been presented in the literature, such as the auxiliary load frequency (LFC) control
technique, the inertia emulation technique, the deloading technique, the droop technique,
and the energy storage-based technique [9–12]. In [13], an auxiliary LFC technique was
presented to control the frequency of the Egyptian grid considering high-level PV and
wind integration employing the proportional-integral-derivative (PID) controller. However,
the LFC technique does not consider the detailed model of the Egyptian grid; instead, it
excludes tie line power flow, which needs further investigation. In general, conventional
PI and PID controllers, the parameters of which were fine-tuned experimentally or tuned
by Ziegler–Nichols methods, were employed in system frequency control [14,15]. How-
ever, the conventional tuning methods of PI/PID controllers may not provide satisfactory
performance. In [16], a virtual inertia support technique was presented for a low-inertia
microgrid with a particle swarm optimization (PSO)-based PI controller.

The superconducting magnetic energy storage (SMES) is considered a promising
device for the low-inertia issue of the microgrid system in [17]. The conventional deriva-
tive approach for the virtual inertia control loop was implemented. The detailed design
of feedback and proportion gains, however, were not discussed in this work. Another
energy storage, the battery, was presented in [18] for frequency support of the doubly fed
induction generator (DFIG)-based wind system. The battery was connected to the DC link
of DFIG and controlled with the droop technique in order to reduce frequency deviation
by scheduling active power exchange during system disturbances. In [19], a self-adaptive
virtual inertia fuzzy controller was adopted for a high-level renewable integrated system.
The proportional virtual gain was adapted by the fuzzy system, which uses the deviation
of real power and frequency as it inputs. In this scheme, however, the generalized en-
ergy storage system (ESS) was considered a simple first-order system. Since the specific
ESS was neither discussed nor modeled, the presented frequency support scheme needs
further improvement or investigation. The sharing of active power from different energy
storage devices were scheduled based on their abilities in [20] for frequency control of
renewable sources. In this capability-coordinated frequency control (CCFC) approach,
the total error signal was forwarded to the primary control loop of each unit based on
its capabilities. The LFC for mass-less inertia PV systems was presented in [21] with PI
controllers. The parameters were optimized with the hybrid optimization technique in the
case of different step load changes. In order to stabilize the low-inertia PV system, another
virtual inertia synthetization using a synchronverter was reported in [22] with the learning
technique. The optimized virtual inertia frequency control and protection schemes were
developed in [23,24] for a low-frequency interconnected power system. The combination
of SMES and thyristor-controlled phase shifters (TCPS) [25] was applied in a low-inertia
utility grid with the adaptive neuro-fuzzy system (ANFIS) controller. The detailed design
of SMES negative feedback and proportional gains, however, was not considered. The
main advantage of SMES is the quick charging/discharging ability to react to sudden
changes in system dynamics. Thus, the fast-response capability of SMES could be the most
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effective countermeasure against frequency deviations in a power system. The voltage
and frequency stability issues of a power system are addressed in some of the literature
with SMES [26–28]. Furthermore, the transient stability issues are also handled with the
application of SMES [29–31]. Based on a comprehensive literature survey on SMES device
applications in power systems, it is concluded that further study on virtual inertia control
topologies using SMES is imperative.

In recent years, several theoretical and applied studies have been conducted on
fractional-order controllers [32,33]. Better system performance is observed with fractional-
order controllers over conventional PI controllers because the fractional-order controller
involves additional real parameters [34]. However, in general, there is no hard and fast rule
for tuning the parameters of fractional-order controllers. The tuning of fractional-order
proportional integral (FOPI) controller parameters with the artificial bee colony (ABC) [35]
technique has been presented, which is complex in objective function evaluation and low
convergence speed. The parameter-tuning task of FOPI is formulated as an optimization
problem and solved with the seeker optimization algorithm (SOA) in [36]. The harmony
search (HS) algorithm is reported in [37] for FOPI parameter optimization to control
the power-switched reluctance motor. However, there are no conclusive studies on the
application of the virtual inertia technique using an SMES topology-based FOPI controller.

Based on several studies [17–19,25,38], it is identified that the detailed design of the
PSO-optimized SMES is missing the FOPI controller to support virtual inertia for RESs.
Thus, in this paper, we propose a PSO-optimized FOPI-SMES controller design approach
for a two-area power system. The proposed approach can support the virtual inertia of
the high-level renewable energy integrated system. The addition of this virtual inertia
makes the system stable over a wide range of load–generation mismatches. Since the
FOPI controller is superior to the conventional PI, the proposed technique performs better
when reducing system frequency deviation. However, the design of FOPI is challenging
compared to the conventional PI. Thus, this work introduces a detailed model of FOPI,
SMES, and a two-area power system to find the design parameters. The dynamic model
of the system presented along with SMES and FOPI is utilized to develop the frequency
deviation-based cost function for the PSO algorithm. To validate the proposed optimized
FOPI controller-based SMES, several case studies were considered and simulated for a
wide range of load profile variations. The robustness of the proposed virtual inertia
control scheme was tested under reduced system inertia. The proposed controller was
compared with the conventional controller, where the improvements in several indices,
such as total frequency deviation, overshoot, undershoot, and settling time, were observed.
Furthermore, the performance of the non-optimized FOPI was compared with the PSO-
optimized FOPI.

The manuscript is organized as follows. The dynamic model of the system including
RESs is given in Section 2. The SMES modeling and PSO-based FOPI-SMES design tech-
niques are discussed in Section 3. The simulation results are discussed in Section 4. Finally,
the conclusions of this study are given in Section 5.

2. High-Level PV/Wind-Integrated System Modeling

The fractional-order PI controller for superconducting magnetic energy storage (SMES)
is designed to virtually support inertia for a high-level solar PV- and wind-integrated two-
area power system. An interconnected power system with low inertia due to a high-level
integration of PV and wind energy sources, as shown in Figure 1, is considered in this
study. The areas are connected by a tie-line, and both of them consist of thermal generating
units, an industrial load, a residential load, solar PV, wind, and SMES. The measured
frequency and tie-line signals are accumulated in the control and monitoring center. Since
the system faces low inertia, it is expected to support the inertia via the control center,
which sends control signals to the controllable energy storage devices of both areas if
the communication network is available. However, in absence of a communication link,
local controllers such as decentralized control, primary control, and droop control can
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be employed. The net power (Pnet) in each area in Figure 1 can be calculated using the
power of (1) the thermal unit (PTH), (2) the solar array (PSA), (3) the wind farm (PWF),
(4) SMES (PSMES), (5) combined industrial and other loads (PL), and (6) the tie-line (Ptie12).
The expression for Pnet is given below.

Pnet = PTH + PSA + PWF − PL ± PSMES ± Ptie (1)

ConverterConverterConverter Converter Converter Converter

Tie Line

AREA-1 AREA-2

SMESWind 
Farm

Solar PV SMES
Wind 
Farm

Solar PV

Thermal Unit Thermal Unit
Industr ial and 
other Loads

Measurement, 
Monitoring, and Control 

Center

TieP

1f 1f

Control Signal 1 Control Signal 2

Industr ial and 
other Loads

Figure 1. Two-area low inertia interconnected power system.

In general, higher-order models for thermal generating units, wind systems, solar PV,
and converters, with nonlinearity are considered to precisely demonstrate the dynamic
behaviors of the interconnected system. For large power systems with power electronic
converters, however, simplified dynamic models are employed to study the frequency
stability. The interested readers can find more details on such dynamic modeling in [39–41].
The simplified dynamic model of the two-area system can be developed as shown in
Figure 2 for frequency stability analysis.

From the dynamic model, as shown in Figure 2, the frequency deviation for the kth
area can be written as follows.

Δ fk =
1

2Hks + Dk
(ΔPTH,k + ΔPSA,k + ΔPWF,k − ΔPL,k + ΔPtie,k) (2)

where,

ΔPTH,k =
1

1 + sTt,k
(ΔPg,k) (3)

ΔPg,k =
1

1 + sTg,k
(ΔPAEC,k − 1

Rk
Δ fk) (4)

ΔPWT,k =
1

1 + sTwind,k
(ΔPwind,k) (5)

ΔPSA,k =
1

1 + sTpv,k
(ΔPpv,k) (6)

where Hk is the inertia constant in area k, Dk is the damping constant in area k, ΔPTH,k
is the incremental power of the thermal unit in area k, ΔPSA,k is the incremental power
of solar farm in area k, PWF,k is the incremental power of wind farm in area k, Tt,k is the
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turbine time constant in area k, Tg,k is the governor time constant in area k, Twind,k is the
wind turbine time constant in area k, and Tpv,k is the solar system time constant in area k.

Two physical constraints, governor dead band (GDB) and generation rate constraint
(GRC), affect the dynamic performance of the power system. The thermal units consist of
rotating mass, which inherentlyhas mechanical inertia; thus, it puts a constraint/limit on
the output power change, which is known as GRC. The controller designed without GRC
may not perform well in practical applications. To handle this issue, GRC is considered
for the virtual inertia controller design in this work, as shown in Figure 2. Furthermore,
the governor cannot change its valve position within a specific range of speed variation.
Due to this dead-band, the tie-line power oscillation with a natural frequency of 0.5 Hz
is observed. The dead-band for governor is also taken into consideration in this study
to reflect the practical implementation case. The solar PV, wind, and different loads are
modeled as disturbances in the dynamic model. The interested readers are directed to the
literature [39] for more details on dynamic modeling of PV/wind integrated system.
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Figure 2. The dynamic model of low inertia system with the proposed controller.

3. SMES Model with FOPI Controller

SMES is a promising device for dynamic stability improvement of power systems.
The SMES has several components: thte power conversion system (PCS), consisting of
the inverter/rectifier, and the superconducting coil which is kept under extremely low
temperature [25]. The PCS also consists of three-phase transformers to allow for energy
exchange between the AC grid and the superconducting coil. The harmonic contents of the
signals are filtered by two cascaded six pulse bridges, as shown in Figure 3. The capability
of SMES to exchange huge power within a very short duration has drawn the attention of
researchers in the power system application.

In normal conditions, the SMES coil charges quickly to its pre-defined peak value. As
the coil temperature is maintained below the critical value, it conducts the current with
nearly zero loss. During contingencies, as the power demand is initiated by the power
system, the SMES discharges power through the PCS to the grid almost instantly. While the
governors of the generators support the power demand after contingencies, the SMES again
charges at its preset value. The inductor DC voltage is given by the equation below [25,42].

Ed = 2Vd0cosα − 2IDRD (7)
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where Vd0 is the maximum voltage of the bridge circuit, α is the triac firing angle, ID is
the superconducting coil current, and RD is the damping resistor. Thus, the DC voltage
appearing across the superconducting coil can be controlled with the variation of the triac
firing angle α. If α is above 90◦, the energy stored in the superconducting coil is released to
the grid. In contrast, the superconducting coil charges if α is below the 90◦. In this way, the
superconducting coil charges and discharges through the bidirectional converter system to
absorb or provide energy.

six pulse 
TRIAC 
bridge 

converter-1

six pulse 
TRIAC 
bridge 

converter-2

ID

Ed

DC Breaker

Bypass
 SCRs

Grid

Converter 
Transformer-1

Converter 
Transformer-2

Damping Resistor, RD

Figure 3. SMES basic configuration.

The detailed dynamic model of SMES for frequency stability studies along with the
FOPI controller are shown in Figure 4. During excessive system loading, the load surpasses
the generation, the ED becomes negative, while the current ID maintains the same direction.
The incremental change in ED is written as

ΔED =
KSMESΔE − KIDΔID

1 + sTDC
(8)

where KSMES is the SMES gain, ΔED is the output of the FOPI controller, KID is the negative
feedback gain, ΔID is the incremental change in superconducting coil current, and TDC is
the converter delay time. The incremental change in inductor current ID is written as

ΔID =
ΔED
sL

(9)

The active power of SMES can be derived as follows based on Equations (8) and (9).

ΔPSMES =
KSMES(1 + sTDC)sL

(1 + sTDC)[(1 + sTDC)sL + KID]
(ID + ID0) (10)
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Figure 4. The dynamic SMES model along with the FOPI controller.
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3.1. Controller Design

This study focuses on the optimal FOPI-SMES design based on the PSO algorithm to
augment the frequency stability of the two-area power system. The fractional-order calcu-
lus involves generalized differentiation and integration of non-integer order [33,34]. The
fractional-order controller is applied in several engineering fields such as automatic control
and power systems due to its superiority over conventional integer order controllers.

The time domain FOPI controller can be represented as

u(t) = Kp.e(t) +
λ∫

t

Ki.e(t) (11)

where e(t) is the error signal, Kp is the proportional gain, Ki is the integral gain, and λ is a
fractional order and real number that lies between 0 and 2. The Laplace transformation
gives the following transfer function for the FOPI controller.

C(s) = Kp +
Ki

sλ
, λ ∈ (0, 2) (12)

The conventional integer order PI and the FOPI can be understood using Figure 5 in
the λ axis. The integer order controller is represented by two points on the λ axis. However,
the FOPI controller can be represented by the infinite number of points between 0 and
2. Thus, it gives more degree of freedom and flexibility over the conventional integer
order controller.

0 1

P PI

0 1

P PI

2

(a) Integer-order PI (b) Fractional-order PI

Figure 5. PI controller (fractional order and integer order).

As presented in Figure 4, the SMES virtual inertia based on FOPI is developed in this
study to support the frequency of the low-inertia interconnected system. The feedback
and proportional gains of SMES along with the FOPI’s proportional gain, integral gain,
and fractional parameter are optimized with PSO. The following subsections describe the
objective function formulation and solution system with the PSO.

3.2. Description of Cost Function

The appropriate cost function is vital in the application of nature-inspired and heuris-
tic optimization techniques in power systems. In general, the cost function is defined
to minimize or maximize some variables. In this work, several FOPI gains, fractional
orders, SMES feedback gains, and proportional gains are designed based on tie-line power
fluctuation and area frequency deviation. For better comprehension of the optimization
process, the following cost function is considered.

Minimize: ISE =

T∫
0

(|Δ f1|2 + |Δ f2|2 + |ΔPtie|2)dt (13)

Decision Variables: Kp1, Ki1, λ1, Kp2, Ki2, λ2, K1, K2, KID1, KSMES1, KID2, KSMES2 (14)

Constraints: Kp12min ≤ Kp12 ≥ Kp12max, Ki12min ≤ Ki12 ≥ Ki12max, K1min ≤ K1 ≥ K1max,
K1min ≤ K1 ≥ K1max, KID12min ≤ KID12 ≥ KID2max, KSMES12min ≤ KSMES12 ≥ KSMES12max

(15)

where subscripts 1 and 2 are to denote area 1 and area 2 for the interconnected power system.
T is the simulation time, Δ f is the frequency deviation, ΔPtie is tie-line power deviation,
Kp is the FOPI proportional gain, Ki is the FOPI integral gain, KID is the SMES negative
feedback gain, and KSMES is the SMES proportional gain. Mainly, the upper and lower
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limits of Equation (15) are selected based on knowledge/experience of FOPI and SMES
applications in power system. The optimization algorithm is coded in a MATLAB script
(.m files) environment and linked with the MATLAB Simulink (.slx files) environment.

3.3. Solution Approach with PSO

This study proposes a FOPI-based SMES virtual inertia approach in which the min-
imization problem described by Equation (13) is solved by the PSO. PSO, a heuristic
optimization technique, was inspired by the sociological behavior of birds flocking [43].
In the PSO algorithm, several random particles that move in a search space to find the
best minimum or maximum value of the cost function based on the minimization or
maximization problem, respectively, are initially generated. The PSO shows outstanding
performance compared to the other algorithms, as follows [44–46]:

• Since the PSO uses a numerical valued cost function, it is suitable for any nonderivative
cost function optimization.

• The PSO facilitates more flexible and robust control frameworks as it uses probability
rules.

• It does not fall into premature convergence.
• It has great flexibility for use in online optimization.
• It requires less time compared to other algorithms.
• It provides accurate results with very simple operations.

In recent years, the PSO has been implemented successfully to solve several power
system problems such as that presented in [47,48]. The position and velocity vectors in a
multi-dimensional solution space for PSO algorithm are mainly described by two equations
as follows [49]:

vk
i = c

{
vk−1

i + c1r1(pk−1
i − xk−1

i ) + c2r2(pk−1
g − xk−1

i )
}

(16)

xk
i = xk−1

i + vk
i (17)

where vk
i and xk

i are the velocities of ith particle for the kth iteration in a multi-dimension
search space and the position of ith particle for the kth iteration in a multi-dimension search
space, respectively; pk−1

i and pk−1
g are the individual best and global best, respectively, for

the ith particle of the (k − 1)th iteration; r1 and r2 are the uniformly distributed random
numbers in [0 1]; and c1 and c2 are the learning factors used to obtain the best solution.
In addition, the c is the constriction factor that is calculated from the values of c1 and c2,
as follows:

c =
1∣∣∣∣2 − (c1 + c2)−

√
(c1 + c2)

2 − 4(c1 + c2)

∣∣∣∣
(18)

The maximum velocity and minimum velocity of each particle can be calculated
as follows:

vmax,min
i = ±(xmax

i − xmin
i )/N (19)

where vmax
i and vmin

i are the maximum and minimum velocities of the ith particle, respec-
tively; xmax

i and xmin
i are the maximum and minimum limits of the ith particle, respectively;

and N is a number that takes a value between 5–10. The PSO solution steps for solving the
optimization problem formulated in Section 3.2 is described below.

Step 1: Initialization of the limits of several variables and particle velocity, as described by
Equations (15) and (19), respectively.
Step 2: Selection of the PSO initial parameters including c1, c2, maximum iteration, popu-
lation size, etc.
Step 3: Generation of the initial population within the limits.
Step 4: Running the time domain simulation and determining the value of the objective
function described by Equation (13).
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Step 5: Storing the local best, the best of the current population, and the global best, the
best of the total population.
Step 6: Updating the velocity of all populations using Equation (16).
Step 7: Generating a new population based on the updated particle position calculated by
Equation (17).
Step 8: Stopping the optimization if the termination criteria are met. Otherwise, returning
to step 4.

The overall flowchart for the PSO algorithm to design FOPI and SMES parameters is
shown in Figure 6.

Start

Stopping Criteria

Initialization of limits of 
several variables 

Initialization of PSO 
parameter 

Generating initial 
random populations 

within the limits

Starting time domain 
simulation and 

calculating cost function

Storing local best and 
global best

Calculating and 
updating velocities for 

each population

Generating new 
population based on 

updated velocity

Stop

Yes

No

Figure 6. The PSO flowchart for optimizing control parameters.

4. Results and Discussion

The effectiveness and robustness of the proposed optimized FOPI controller in im-
proving the frequency stability are presented in this section. The dynamic model of the
system presented in Figure 2 is considered for analytical analysis. The system parameters
listed in Table 1 are used to conduct computer simulations and to facilitate analyses. The
total generation capacity of the two-area power is 55 MW. The rating of the energy storage
device is 6 MW. The proposed energy storage with only 10.9% of the total plant capacity is
capable of maintaining frequency stability in case of several load–generation mismatches.
The simulations were conducted in MATLAB Simulink considering several scenarios such
as light loading, medium loading, heavy loading, and reduced inertia. The system dynamic
model was built in Simulink and linked with the PSO optimization code to optimally
design the SMES and FOPI parameters. PSO algorithm convergence for the proposed
cost function is depicted in Figure 7. As shown in Figure 7, the optimization algorithm
converges at the iteration number 20 for several runs, and the corresponding optimized
parameters are listed in Table 2.

The system was tested under several step load variations in both areas of the system.
The frequency deviations in both areas were plotted for three cases such as (i) without any
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inertia controller, (ii) with a conventional SMES controller, and (iii) with the PSO optimized
FOPI-based SMES controller.

Table 1. System parameters for simulation.

Parameters
Value

Area-1 Area-2

Inertia (p.u. MW s) 0.079 0.11
Damping constant (p.u. MW/Hz) 0.016 0.017
Time constant of solar system (s) 1.2 1.2
Time constant of wind system (s) 1.4 1.4
Frequency bias factor (p.u. MW/Hz) 0.3585 0.3928
Valve gate maximum limit (p.u. MW) 0.5 0.5
Valve gate minimum limit (p.u. MW) −0.5 −0.5
Synchronizing coefficient (p.u. MW/Hz) 0.09 0.09
Area capacity ratio −0.055 −0.055
Generation rate constraint (GRC) 0.3 0.3
Thermal generator (MW) 12 15
Wind generator (MW) 8 8
PV generator (MW) 6 6
Energy storage power rating (MW) 3 3
Energy storage inductor (H) 2.65 2.65
Energy storage time constant (s) 0.05 0.05
Energy storage reference current (kA) 4.5 4.5
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Figure 7. The convergence of the cost function.

Table 2. PSO-optimized FOPI and SMES parameters.

Optimzed Parameters

Name Value Name Value

Kp1 6.8650 K1 0.1931
Ki1 117.60 K2 0.5000
λ1 0.9603 KID1 2.9782

Kp2 21.660 KSMES1 0.1300
Ki2 78.820 KID2 2.4879
λ2 0.6855 KSMES2 0.0410

4.1. Frequency Response Study for Step Load Change in Area 1

In this case, the studied system is simulated for default inertia (100%), as shown in
Table 1. The frequency deviations for both areas are depicted in Figure 8 for low, medium,
and high step load changes in area 1. The positive effect of the proposed controller is

34



Sustainability 2021, 13, 7622

visualized through the reduction in frequency deviations. As visualized in Figure 8a, a
step load change of 0.1 p.u. in area 1 causes a significant frequency deviation in area 1
without a virtual inertia controller. The frequency deviation is around 0.42 Hz without
any auxiliary controller. The conventional controller-based SMES improves the deviation
to about 0.035 Hz. However, the proposed PSO optimization-based FOPI controller for
SMES greatly improves the frequency deviation in area 1, which is around 0.005 Hz. It is
noteworthy that the settling time is slightly increased for conventional SMES controllers
while the frequency deviation is improved. However, the proposed optimized FOPI-based
SMES significantly improves all indices, such as settling time, maximum undershoot, and
maximum overshoot. Likewise, the frequency deviation in area 2 is very high, around
0.02 Hz, without any inertia controller, as depicted in Figure 8b. The conventional SMES
controller improves frequency deviation to some extent. However, the proposed optimized
FOPI-based SMES controller reduces the frequency deviation to almost zero. It is observed
that, for a large step load change (0.35 p.u.) in area 1, the system cannot maintain stable
operation. As visualized in Figure 8e,f, the frequency deviations in both areas continue to
increase, leading to instability in the system. The application of the conventional SMES
controller can maintain stable operation with some frequency deviation. On the other hand,
our proposed techniques stabilize the system with almost zero frequency deviations in
both areas. Thus, the system response for several load disturbances in area 1 using the
proposed controller is faster, has a very small steady-state error, and is better in terms of
overshoot and undershoot compared to other control strategies. The frequency deviations
for several scenarios in area 1 and area 2 are given in Table 3 to clearly show the positive
impact of the proposed FOPI-based SMES controller on system performance.

Table 3. Reduction in frequency deviations in area 1 and area 2 with the proposed controller.

Frequency Deviation

Δ f1 (Hz) Δ f2 (Hz)

Area
Step Load
Change in

p.u.

without
Inertia

Controller

Conventional
SMES

Controller

FOPI Based
SMES

without
Inertia

Controller

Conventional
SMES

Controller

FOPI Based
SMES

Area-1
0.1 0.420 0.035 0.005 0.020 0.004 4.0 ×10−5

0.2 0.850 0.080 0.010 0.040 0.008 3.2 ×10−5

0.35 unstable 0.120 0.040 unstable 0.030 2.1 ×10−5

Area-2
0.1 0.395 0.025 1.9 ×10−5 0.320 0.030 0.010
0.2 0.840 0.060 1.2 ×10−5 0.630 0.090 0.012
0.35 2.650 0.150 1.0 ×10−5 2.125 0.106 0.025

4.2. Frequency Response Study for Step Load Change in Area 2

The load disturbances, ranging from the low to high levels, are also applied in area
2 with the system default inertia. It is noticed that the system frequency oscillates over a
wide range without any inertia controller. In some cases, the oscillations are beyond the
acceptable limits; thus, it requires the system frequency protection relay to operate. As
depicted in Figure 9, the frequency deviation in area 1 is 0.395 Hz without any virtual inertia
controller for a step load change of 0.1 p.u. The conventional SMES controller reduces
the frequency deviation to 0.025 Hz, whereas the proposed optimized FOPI controller is
capable of maintaining almost zero frequency deviation. Similarly, the frequency deviation
in area 2 is 0.32 Hz without any auxiliary controller. The conventional SMES controller is
capable of reducing the frequency deviation by 90.6%. However, the proposed optimized
FOPI-based SMES controller reduces the frequency deviation by 96.87%. For the medium
and high step load changes in area 2, at 0.2 p.u. and 0.35 p.u., respectively, the frequencies of
both areas fall below the under-frequency relay operating setpoint of 59.5 Hz [50] without
any virtual inertia controller.
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Figure 8. Performance improvement with the proposed controller for load disturbances in area 1. (a) Area 1 frequency
response for a 0.1 p.u. step load change. (b) Area 2 frequency response for a 0.1 p.u. step load change. (c) Area 1 frequency
response for a 0.2 p.u. step load change. (d) Area 2 frequency response for a 0.2 p.u. step load change. (e) Area 1 frequency
response for a 0.35 p.u. step load change. (f) Area 2 frequency response for a 0.35 p.u. step load change.
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Figure 9. Performance improvement with the proposed controller for load disturbances in area 2. (a) Area 1 frequency
response for a 0.1 p.u. step load change. (b) Area 2 frequency response for a 0.1 p.u. step load change. (c) Area 1 frequency
response for a 0.2 p.u. step load change. (d) Area 2 frequency response for a 0.2 p.u. step load change. (e) Area 1 frequency
response for a 0.35 p.u. step load change. (f) Area 2 frequency response for a 0.35 p.u. step load change.
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However, the frequency deviation is well below the under-frequency relay operating
point with the conventional SMES controller, as depicted in Figure 9c–f. In these figures, it
is visualized that the proposed controller is capable of maintaining the frequency deviations
in both areas at almost zero. Thus, the system stability and reliability are guaranteed with
the proposed FOPI-based SMES controller. The overall frequency deviations for several
cases are listed in Table 3.

4.3. Controller Performance with Solar PV and Wind Power Fluctuations

The effectiveness of the proposed controller was also tested with fluctuating solar and
wind power in both areas. The intermittent solar and wind power disturbances considered
in this study are depicted in Figure 10a,b, respectively. The solar and wind powers have
mean values of 0.05 p.u. and 0.15 p.u., respectively. The solar power is integrated in area 1
at 50 s during the 150 s simulation time, which continues to inject fluctuating power during
the entire simulation period. On the other hand, the intermittent wind generating unit is
connected at 75 s, which is kept connected throughout the entire simulation period. As
shown in Figure 10c,d, the connection of varying solar and wind powers has a detrimental
effect on system frequency response without any auxiliary controller.
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Figure 10. The frequency response for wind generation addition at 50 s and solar generation addition at 75 s. (a) Solar
power disturbance. (b) Wind power disturbance. (c) Area 1 frequency response for intermittent solar and wind power.
(d) Area 2 frequency response for intermittent solar and wind power.
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The frequency of the system continues to vary during the entire simulation period and
does not settle to a steady-state value. The conventional SMES controller slightly improves
the system frequency response. On the other hand, the proposed controller performance
is superior, in terms of settling time, overshoot, and undershoot, to the conventional
SMES controller. The improvement of several performance indices is listed in Table 4 to
demonstrate the superiority of the proposed controller.

Table 4. Improvement of the performance indices for intermittent solar and wind power integration.

Performance Indices without Inertia Controller Conventional SMES Optimized FOPI Based SMES

Maximum Overshoot, Hz 0.39 0.05 0.0100
Maximum Undershoot, Hz 0.25 0.01 0.0001

Settling Time, Sec inf 50 2

4.4. Frequency Response Analysis for Multiple Load Changes

The effectiveness and robustness of the proposed control technique for virtual control
of low inertia systems were also tested with multiple load change scenarios. Several step
load changes were considered, as shown in Figure 11a, to investigate the system capability
to bring back the frequency deviation to zero before the next changes. Better performance
of the proposed FOPI-based SMES is visible from the system frequency response, as seen in
Figure 11b, following the first step load change of 0.1 p.u. at 25 s. The proposed controller
is faster at eliminating the frequency deviation before the beginning of the second step load
change of 0.15 p.u. at 50 s compared to conventional techniques. The frequency deviations
in area 1 are very high at all points of step changes without a virtual inertia controller.
Although the conventional SMES controller improves the frequency response slightly, a
notable improvement is achieved with the proposed technique. In this case, also, the
proposed method provides a much better performance in terms of overshoot, undershoot,
and settling time. The frequency response for area 2 as visualized in Figure 11c shows
better performance with the proposed control technique.

4.5. The Robust Performance of the Proposed Controller with the Reduced System Inertia

In this scenario, the robustness of the proposed controller is verified with the system
inertia variations. The inertia in both areas is reduced by 50%, and a step load change of 0.15
p.u. is applied in area −1 at 50 s. The frequency response for this load change is depicted
in Figure 12a,b. As depicted in Section 4.1, the system is capable of maintaining stable
operation with a step load change of 0.15 p.u. in the case of default inertia (100%). However,
Figure 12a,b show that the frequency deviations in both areas gradually increase, leading to
instability. The system without SMES requires the under-frequency relay to start operation
within 1 second of the load variation since the frequency deviation goes below 0.5 Hz, as
depicted in Figure 12a. Although the area 2 frequency takes a longer time to operate under
frequency relay, it is also unstable, as depicted by the increasing frequency oscillation
in Figure 12b. The conventional SMES controller reduces the frequency deviations and
stabilizes the system. However, the proposed control method augments the system stability
greatly by reducing frequency deviations to almost zero even with 50% system inertia. The
model presented in Figure 2 was also tested for very low inertia with a step load change of
0.1 p.u. in area 1. As shown in Figure 13, the controller is capable of stabilizing the model of
Figure 2 for these low inertia. Furthermore, the robustness of the proposed optimized FOPI
controller is compared with the non-optimized FOPI controller. The frequency deviation
for the system with 15% inertia is plotted in Figure 14 with the optimized FOPI and non-
optimized FOPI controller. Thus, the proposed controller is more robust compared to the
conventional technique. The main limitation of the proposed technique is that the SMES is
a costly solution. Further studies may be conducted on FOPI-based hybrid energy storage
devices such as SMES, battery, and supercapacitor for the frequency control of low inertia
PV/wind-integrated systems.
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Figure 11. (a) Multiple load variations in area 1. (b) Frequency response in area 1. (c) Frequency
response in area 2.
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Figure 12. System response for 50% inertia (a) Area 1 frequency response. (b) Area -2 fre-
quency response.
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Figure 13. The system response for very low inertia.

Figure 14. The frequency response comparison for the optimized and non-optimized FOPI controllers.

5. Conclusions

In this work, an optimized FOPI-based SMES virtual inertia controller is designed
for a highly renewable energy integrated system. The dynamic model of the system is
developed with FOPI to facilitate analysis and design of optimal parameters using PSO.
The system response was analyzed with the designed virtual inertia controller considering
highly fluctuating solar PV and wind energy. The system and the associated controllers
were simulated in MATLAB Simulink. Small, medium, and large load disturbances were
applied in the system to prove the effectiveness of the proposed energy storage-based
virtual inertia control strategy. The system with default inertia and reduced inertia were
tested under single and multiple load disturbances to guarantee the robustness of the
proposed controller. The simulated results show promising performance in reducing system
frequency deviations and in improving the frequency stability of the system. The proposed
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controller is superior to the conventional controller in reducing settling time, overshoot,
and undershoot, as evident from the analysis. Moreover, the simulation outcomes prove the
potential benefits of FOPI controller-based energy storage in high-level renewable energy
integration and endorse the green efforts to improve sustainability. Finally, a detailed
large-scale DFIG offshore wind farm model with FOPI-based hybrid energy storage virtual
inertia controller can be studied as future work.
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Abbreviations

The following abbreviations are used in this manuscript:

RESs Renewable energy sources
RoCoF Rate of change of frequency
FOPI Fractional-order proportional integral
SMES Superconducting magnetic energy storage
PV Photovoltaic
RE Renewable Energy
PI Proportional integral
PID Proportional integral derivative
DFIG Doubly fed induction generator
CCFC Capacity constrained frequency control
LFC Load frequency control
AEC Area control error
PSO Particle swarm optimization
GDB Governor dead band
ANFIS Adaptive neuro fuzzy system
TCPS Thyristor controlled phase shifter
ABC Ant bee colony
SOA Seeker optimization algorithm
HS Harmony search
WF Wind farm
GRC Generation rate constraint
PCS Power conversion system
SA Solar array
ISE Integral squared error
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Abstract: Due to the recent advancements in the manufacturing process of solar photovoltaics (PVs)
and electronic converters, solar PVs has emerged as a viable investment option for energy trading.
However, distribution system with large-scale integration of rooftop PVs, would be subjected to
voltage upper limit violations, unless properly controlled. Most of the traditional solutions introduced
to address this problem do not ensure fairness amongst the on-line energy sources. In addition,
other schemes assume the presence of communication linkages between these energy sources. This
paper proposes a control scheme to mitigate the over-voltages in the distribution system without
any communication between the distributed energy sources. The proposed approach is based on
artificial neural networks that can utilize two locally obtainable inputs, namely, the nodal voltage
and node voltage sensitivity and control the PV power. The controller is trained using extensive data
generated for various loading conditions to include daily load variations. The control scheme was
implemented and tested on a 12.47 kV feeder with 85 households connected on the 220 V distribution
system. The results demonstrate the fair control of all the rooftop solar PVs mounted on various
houses to ensure the system voltage are maintained within the allowed limits as defined by the ANSI
C84.1-2016 standard. Furthermore, to verify the robustness of the proposed PV controller, it is tested
during cloudy weather condition and the impact of integration of electric vehicles on the proposed
controller is also analyzed. The results prove the efficacy of the proposed controller.

Keywords: photovoltaic; autonomous control; electric vehicles

1. Introduction

Most of the governments around globe have set ambitious targets for reducing carbon
emissions. In order to achieve these targets, a significant amount of small and medium
scale renewable energy resources need to be integrated into the power grids. Hence, the
traditional power systems are observing an ongoing transition that focus on environmental
concerns such as smart grid initiatives, etc. Considering the renewables as an integral part
of the power grids, the concept of unidirectional flow of power is not applicable anymore.
Furthermore, the solar power being available in abundance and easy to harvest energy
from, is allowing prominent integration of photovoltaic (PV) generators in power systems
and enabling bi-directional power flow [1].

Among various renewable energy resources, the PV panels and wind turbines (WT)
are considered as most suitable options for distributed power generation. Both the PVs
and WTs tend to provide an economic and environment-friendly solution, besides being
readily available [2]. However, the performance of these resources is inconsistent and is
highly dependent on climatic factors such as location, time of the day, weather, etc. Thus, it
is highly likely that the power generated through these renewable resources will not follow
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power variations in load. Consequently, introducing an uncertainty in the power quality
and reliability of overall power system [3–6]. A net negative demand may result in the
power system, due to inclusion of large number of renewables which can lead to voltage,
thermal and other technical problems [7]. Hence, a controlling mechanism is required for
all the system elements along with respective participants, to ensure effective integration
of renewables in the power distribution systems [8].

Different machine-learning based controllers have been developed in the recent years,
which are different in scope and objectives [9–12]. Artificial neural networks (ANN) are
used by researchers to demonstrate faster and more accurate maximum power point
tracking for solar PVs [9]. In [10], a multi-layer feed-forward ANN is used to improve the
power quality in a power system with wide-spread EV chargers. Neural network-based
vector controller is designed in [11,12] for the integration of residential solar PV with a
utility grid. This intelligent control mechanism has several advantages over conventional
controllers. These controllers are capable of mapping non-linear relationships and provide
accurate solutions for multivariable problems. Hence, ANN is used to construct the
controller used in this research work.

Active control strategies can be classified into model-based [13,14] or model-free [15]
from the perspective of network operation modelling. In addition, control schemes can be
defined as stochastic [16] and robust [17] when the relating uncertainties from renewable
generation and communication networks are taken into account. An important system
aspect is observability when classifying the control strategies. In this regard, approaches
can be grouped into centralized, decentralized and fully autonomous [18].

A centralized control scheme requires an extensive observation platform to remotely
monitor the distribution system parameters [19], lacking by current weaker or older dis-
tribution systems. Additionally, to process this huge amount of data, higher processing
computing resources are needed in the central control unit. This centrally processed data is
used to calculate power of the PV units. Therefore, this strategy turns out to be suboptimal
for distribution systems which lack established communication links [20]. While the decen-
tralized control procedures rely on reduced communication linkages, they also apply less
computational resources as reduced data is transacted [20]. In spite of that, the need for
communication networks, make these strategies less desirable.

Contrary to the presented strategies, autonomous schemes rely on locally available
information. In addition, these local controllers avoid nearby communication dependence
and are fast and less expensive to deploy. Thus, these techniques are most suitable solutions
pre-widespread communication dependence. Autonomous techniques also have better
thermal management since the amount of power curtailment reduce system components
congestions [21]. However, there is a highly non-linear relationship between PV’s output
and the system voltages.

In centralized and decentralized strategies, the system voltages are maintained by reg-
ulating PV’s active and reactive power outputs. However, in the literature, few autonomous
control schemes are discussed. For voltage regulation reference [21] employs a voltage
sensitivity concept to control PVs active and reactive power outputs. Although the concept
of voltage sensitivity-based regulation is promising but the sensitivity calculation method
is not robust enough to adapt to the system changes. Since configuration changes occur
frequently in a typical distribution system. Moreover, the PVs fail to contribute equally for
voltage regulation since the farthest PVs participate unfairly. Embedded inverter features,
such as volt/var and volt/watt curves, can also be put in service to regulate the voltages
in the absence of communication infrastructure [22]. In [23], optimal volt-var curves are
found offline for rooftop PV inverters which are connected in the system taking count of
load and PV’s active power scenarios. However, this approach has a major shortcoming as
it cannot integrate system changes. Additionally, the present optimal volt/var curves may
become worst due to resulting changes in the system configuration.

Generally, the rooftop PVs are installed to maximize the monetary profits and there-
fore, most of the PVs are installed with controllers that drive them towards unity power
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factor [24]. However, smart inverters are required to operate within a range of selected
power factors to support voltage regulation, as per the IEEE 1547 Standard for distributed
energy resources (DERs) interconnection [25]. Thus, all PVs should contribute equally
when system support is needed, especially during over-voltage events. In this context,
similar contribution from the PVs available at disparage locations in the distribution system
is called ‘fairness’. An autonomous PV controller is designed that ensures fairness among
the PVs, but it is limited to a small-scale distribution system [26].

In this article, a machine learning-based autonomous PV controller framework is
presented. The training data are generated for changing loading conditions to include
daily, monthly and yearly load variations. Nodal voltage and its sensitivity to changes in
the load are input signals to the controller and the determined output is the applicable
demand. The proposed controller thresholds the active power output of the PVs to maintain
the voltages within the allowable range as given by ANSI C84.1-2016 standard [27]. A
noteworthy feature of the proposed controller is ensuring fairness among PVs installed
at various locations in the secondary distribution system. A PV-rich test distribution
system is employed to evaluate efficacy of the proposed controller. Moreover, response
of the controller is further tested under cloudy weather and it fairly controls all the PVs
irrespective of their locations. To further test the robustness of the PV controller, many
EVs are connected in the network. Results show that the implemented controller regulates
the system voltages effectively. Moreover, all the PVs fairly contribute when the system
requires support. The following are specific contributions of this article:

(1) A communication-free PV controller is proposed that determines the power cap for
each PV based on the local measurements, such as nodal voltage and nodal sensitivity.

(2) The proposed controller effectively regulates the system voltages as defined by ANSI
C84.1-2016 standard without the need for any communication infrastructure.

(3) The most attractive feature of the proposed controller is to fairly control the PV power
outputs irrespective of their nodal placements in distribution system.

2. Proposed Methodology

2.1. PV Voltage Control

The proposed controller adjusts the power injection of the solar PVs to keep the
system voltage within an acceptable range. These PV power plants are connected at
various locations in the distribution system, some are closer to and others farther away
from the distribution transformer. Each of these solar PVs must be restricted to generate
power not more than the upper generation limit termed as power generation cap (PGcap).

In order to circumvent the communication requirements between the distributed solar
power producers, it is important to estimate the PGcap using local measurements only.
Although voltage at the point of connection (POC) is an important basis for estimating PG-
cap, but it is not sufficient. Because voltages of the different nodes may behave differently
to the power injections. Some of the nodes may violate the upper voltage limits, especially
when PV generates more than the connected demand. In this case, downstream or farther
nodes in the system will have higher voltages as compared to the nodes at the upstream.
In fact, the downstream nodes which are farther from the feeding point are more sensitive
to load/generation changes as compared to the upstream nodes. Therefore, the nodal
sensitivity can be used along with the nodal voltages, to regulate the power generated
by PVs. Moreover, the local voltage sensitivity can also be estimated remotely [18,20]. In
addition, the method for its computation is described by Algorithm 1.

Algorithm 1 uses the local nodal voltage (VPV), electric load (Pload) and the power
generated by the solar PV (Pgen). These inputs are used to compute the local voltage
sensitivity (δPV) for each instant. However, in some instances when the change in Pgennet
at a particular node is less than the threshold β, the sensitivity value is not updated because
these events may result in the incorrect sensitivity calculations. In fact, the change in
load/generation at a particular node would have more impact on the voltage of that
node as compared to the other nodes. So, if the sensitivity is calculated for the node
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during the instances when the change in load/generation is low at that specific node,
the change in the voltage at that node may have the more influence of the significant
changes in load/generation at the nearby nodes. Hence, these instances may result in
wrong sensitivity calculations and are ignored. A tuning parameter β is used to filter out
these values. Note that β may vary from one distribution network to another.

Algorithm 1 Proposed voltage sensitivity calculation

Input: VPV,t, VPV,t−1, Pgen,t, Pgen,t−1, Pload,t, Pload,t−1, δPV,t−1
Output: δPV,t
Variables: Pgennet,t, Pgennet,t−1
1: Pgennet,t = Pgen,t − Pload,t
2: Pgennet,t−1 = Pgen,t−1 − Pload,t−1

3: if
(

Pgennet,t−Pgennet,t−1
Pgennet,t−1

)
≥ β then

4: δPV,t =
VPV,t−VPV,t−1

Pgennet,t−Pgennet,t−1

5: else

6: δPV,t = δPV,t−1
7: End if

The value of the voltage sensitivity coefficient at any node and the respective voltage
at the POC, gives a good description of the nodes position in the distribution system.
Therefore, a machine learning-based approach is designed to use these inputs to determine
the PGcap fairly for all the solar power plant. Once the objective and input to the machine
learning-based strategy is identified, the strategy is further grouped in offline training and
an online application module as given in Figure 1.

 

Figure 1. Flow chart brief overview.

2.2. Create Voltage Regulation Database

For any machine learning algorithm to achieve good performance in online applica-
tion, the training set needs to cover operation conditions in the field. In this application,
this means realistic ranges of system loads (Lsyst) and solar power generations needs to
be simulated.

To generate a required data set, load is set at all the system nodes and then the PGcap
is found by an iterative process as shown in Figure 2. At the start, all the PVs are selected
to generate at their maximum rated capacity. Then, the power flow analysis is performed
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using a simulator and subsequently power outputs of PVs are reduced to the level that all
the system over-voltages are eliminated. This procedure is repeated for various conditions
of electrical load in the system to simulate load variations ranging from hours to seasons.
Based on the power flow results of each loading condition, the PGcap that needs to be
applied at each node is determined so that the acceptable voltage profiles are obtained.

Figure 2. Flow chart for determining PGcap for different system loads.

Furthermore, the additional training data points are required to train the controller’s
response to high voltage and low voltage scenarios. The high voltages may appear in the
system when the power generated by the PVs is greater than the PGcap at any particular
instant. Likewise, low voltages may occur when the PV power output is less than the
PGcap. These events are very common for the distribution systems with variable renewable
energy sources and load excursions. To imitate these events, power generated by the PVs
is varied and the power-flow is simulated for all the high/low voltage scenarios. These
sub-optimal power generations are represented by (m × PGcap), where m is a multiplier
and it is varied between mmin and mmax, as shown in Figure 1. Training data points for low-
voltage and high-voltage scenarios are obtained when m is less than 100% and greater than
100%, respectively. The response of the controller in these sub-optimal power generation
conditions is explained in Section 2.3.

Voltages of the nodes in the distribution system change differently with the changes
in power generations. For instance, consider the LV distribution system shown in Figure 3.
Houses available at different levels are connected to the nearby LV transformer. Note that
the transformer bus is regulated at the voltage of 1.01 p.u., as mentioned in Figure 3. In
addition, note that the house at level 1 is less sensitive to the changes in load/generation
as compared to the house at level 4. The voltages and sensitivities of these houses for
different power generations (m × PGcap), are shown in Figure 4. Note that the Figure 4
is plotted at a specific loading condition. It can be seen that the slope of the curve for
level 4 house is steeper than the curve of the level 1 house. That means, the house at level 4
is more sensitive when compared to the level 1 house. Another important fact is that
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when the generation (Pgen) becomes equal to the load (Pload), the net power generation
(Pgennet) becomes zero and the voltages of the nodes become the same as the voltage at the
transformer bus (i.e., 1.01 p.u.). For a specific loading condition of this example system,
Pgennet becomes zero when m = 50% as shown in Figure 4. It is important to note that this
event can happen at different loading conditions for smaller/bigger distribution systems.
It can also be observed from the Figure 4 that for the positive Pgennet (i.e., to the right of
the marked circle) the nodes with higher sensitivities have higher voltages than the other
less sensitive nodes.

 
Figure 3. Example distribution system.

Figure 4. Voltage and sensitivities in extreme conditions.

2.3. Training Controller Response

A neural network is a non-linear statistical model that endeavors to recognize under-
lying relationships in a set of data. It can represent the complex behaviors of natural or
engineered processes. They can adapt to changing input; so, the network generates the best
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possible result without needing to redesign the output criteria. Hence, a fully connected
multi-layer perceptron (MLP) neural network is used to design the control formula for the
PV power output. This network is trained with the generated voltage regulation database
to calculate the parameters associated with MLP neural network. The concept of transfer
learning is employed for optimal training of the controller.

In this ML approach, the inputs are the nodal voltages (V) and their corresponding
sensitivities (δ) and the output is the desired PV power generation (Pd

out). Both the inputs V
and δ, were obtained during the voltage regulation database generation. By design, the
database included the input points which represent the over/under power generation
(m× PGcap) instances. Now, to secure the stability of the system in these extreme scenarios,
the desired outputs of the controller (Pd

out) must improve the voltages in steps. For instance,
if the voltages are high then the controller is expected to reduce the power generation.
Similarly, for lower voltages the power generation needs to be increased. The relationship
between Pd

out and m × PGcap is calculated using (1).

Pd
out = PGcap[1 + αr(1 − m)] (1)

where
0 ≤ αr ≤ 1

mmin < m < mmax

Pd
out is the desired power output, PGcap is the power generation cap, m is the multiplier

and αr is the gradient of the controller response. Note that when the multiplier is 1, the
Pd

out becomes equal to PGcap. However, when the multiplier is not equal to 1, then Pd
out is

adjusted accordingly to improve the system voltages.
As mentioned earlier, the output of PVs may vary since they are highly variable.

Moreover, the output of neural network-based controller may vary a bit from the desired
power output depending on the input data. Hence, the data points must be generated in
such a way that the desired controller response is achieved. Note that αr is the parameter
that defines the behaviour of the controller response. It is important to understand that
if the value of αr is close to 0, then the controller output would not change significantly
during the extreme voltage conditions. In other words, the controller response would be
highly conservative. On the other hand, if the value of αr is close to 1, then the controller
output would quickly respond to the changes in the load/generation but may oscillate
between the extreme voltage conditions. Therefore, the best controller response would
be achieved when the value of αr is between 0 and 1. In this work, the best controller
response is achieved when the αr is set to 0.37. However, it may vary depending on the
controller requirements.

Let us demonstrate the controller behaviour as described in (1). Figure 5 shows the
relationship between Pd

out/PGcap and m (as defined in Equation (1)), with αr = 0.37. For
example, if the multiplier m is 160% (i.e., point A in Figure 5), then the voltage reaches to
1.078 p.u. at the downstream bus (i.e., level 4 house) as shown in Figure 4. Since the voltage
violation is severe, the controller would reduce the power output to 78%. Correspondingly,
the controller will move to the point B (see Figure 5) and the voltage would become 1.028
p.u. (see Figure 4). At the subsequent instants, the controller will move to 108% (i.e.,
point C in Figure 5). Eventually, the controller response will reach to PGcap (point D) and
regulate the system voltages within the allowed limits. It is important to note that the
controller will mostly operate in the normal range, that means, the data points generated
for the low/high voltages will be only followed during these extreme events.
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Figure 5. Controller response in extreme conditions.

2.4. Neural Network Structure

In this control strategy only two inputs are used, namely, voltage and the nodal
sensitivity. Therefore, a small ANN structure is sufficient to be used for effective PV power
control. Figure 1 shows the general overview of the proposed control structure. The
purpose of the controller is to predict the PV power output depending on the inputs.

Note that the activation function of the output layer is linear, as provided in (2).
However, the sigmoid activation function, given in (3), is used in the input layer. The
associated weights and biases are represented by w and b, respectively. Moreover, N
represents the total number of neurons in the hidden layer.

Pout = ∑N
i=1 woutput

i × vi + boutput
i (2)

vi = tanh
(

winput
i,voltage × VPV + winput

i,sensitivity × δPV + binput
i

)
(3)

The network is obtained through training by using the Levenberg-Marquardt algo-
rithm. The training of neural network means adjusting the weights of layers and biases
to get the target values. During the training process, weights and biases are adjusted and
the target values are tracked continuously until the squared error between the actual and
the desired outputs is minimized. The performance function of ANN is the mean squared
error (MSE), as described in (4).

MSE(v) = ∑

Total
samples

j=1

(
Pout,j − Pd

out,j

)2
(4)

Neural networks have the ability to adapt to the distribution function and this makes
them more likely to find the non-linear relationships between the input measurements
and the output. Nevertheless, this ability to adapt may result in the neural network that
largely overfits the training data, producing the effect called ‘overfitting’ [28]. To avoid this,
a split of the data must be carried out between the training model and the test model (e.g.,
80%–20%), with the aim of obtaining low MSE on the test data. In this work, 80% of the
data is used to train the controller while the controller is tested on the rest of the 20% data.
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3. Test System

The distribution network used to test the effectiveness of the proposed PV controller is
shown in Figure 6 [20,29]. This is a balanced three-phase medium voltage (MV) system with
17 primary nodes. Where each node is connected to a low voltage (LV) radial distribution
system. The accumulated load and rated PV capacity at each of these LV systems is
300(60 × 5) kW and 560(140 × 4) kW, respectively. The system parameters of the primary
and secondary nodes are provided in Table 1.

Figure 6. Test primary distribution system.

Table 1. Primary and secondary distribution system parameters.

Parameter Value

Primary conductor ACSR 2
Max. current for primary conductors 180 A

Distribution service transformer 150 kVA
Secondary conductor 350 Al, 4/0

No. of customers per node 5
PV capacity per secondary bus 140 kW

System frequency 60 Hz

Primary nodes have a three-phase 12.47/0.22 kV secondary distribution transformer.
Each transformer feeds 20 houses at each phase through five laterals, as shown in Figure 7.
The PVs are installed on four buses in the secondary systems, which are labelled as SB 02,
SB 03, SB 04 and SB 05 (see Figure 7). Note that the secondary systems connected to the
highlighted primary nodes in Figure 6 have solar PVs installed.
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Figure 7. Secondary distribution network topology.

The communication-free PV controller is installed with each rooftop PV. The voltage
regulation database (explained in Section 2.2) is used to train the controller to their respec-
tive output values determined by Equation (1) as mentioned in Section 2.3. Since there
are only two inputs and one output, a small ANN with 5 hidden neurons is chosen. This
network is trained using “nntool” in MATLAB. The network is obtained through training
by using the Levenberg–Marquardt algorithm. In this control strategy, the controller is
trained in such a way that it can be installed at any location in the distribution system. The
relationship between inputs and the output is shown in Figure 8. It can be observed that
there are four different groups of data points. These groups correspond to the different
levels of houses in the secondary distribution system. The red plane shown in Figure 8
shows the response of the neural network controller.

Figure 8. Relationship between inputs and the output.

4. Results and Discussion

The purpose of the proposed controller is to modulate the power injected by the
rooftop solar PVs connected in the distribution system. These controllers are expected
to regulate the system voltages within an acceptable range, defined by the ANSI C84.1-
2016 standard. Additionally, fairness among the distributed PVs is also an important
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requisite for customer satisfaction. The machine learning-based PV controller presented
in this article is designed to work in the absence of any communication linkages between
the controllers. The trained network only uses the local voltage measurements and the
sensitivity estimations as inputs (see Algorithm 1).

The test distribution system under consideration has loads on all the (17 × 5) = 85 sec-
ondary buses. A typical load profile and the average load profile of these loads are depicted
in Figure 9 for illustrative purposes. It can be noticed that the load is highly variable, this is
due to the on/off actions of various household appliances. These high load variations in
each LV node of the system will make the voltage regulation problem more challenging
and, hence, test the controller’s effectiveness in the abnormal or extreme conditions.

Figure 9. A typical load profile.

The voltage regulation performances of different communication-free PV controllers
are compared and they are arranged in increasing order of their benefits. These control
schemes include, opportunistic maximum power point tracking controller, droop-based
and voltage-based on-off controllers and lastly the proposed PV controller. Note that,
considering space limitations, results are presented for some specific nodes. To present
node-specific results, two extreme nodes, i.e., Node-10 (upstream) and Node-7 (down-
stream), are selected since they can provide sufficient performance details.

4.1. Conventional System (i.e., without PVs)

In order to showcase the impact of increasing the solar power penetration in the
present electric power infrastructure, for comparison the test system without PVs is shown.
For this case, bus voltages of the secondary system connected to Node-7 and Node-10 are
shown in Figure 10.

It is clearly visible that there is not much of a difference between the voltage profiles
of the upstream and downstream MV nodes. The voltages of the downstream LV system
(Figure 10a) are only slightly lower than that of the upstream LV system (Figure 10b).
However, there is a significant voltage difference between the upstream and downstream
LV busses. Voltage of the upstream bus (i.e., SB 02) is close to 1 p.u. while the voltage at the
most downstream bus (i.e., SB 05) is much lower yet within the allowable voltage range
as defined by the ANSI C84.1-2016 standard. A bus connected closer to the MV/LV trans-
former (i.e., strong/upstream bus) is less sensitive to change in load than that connected
farther from the transformer (i.e., weak/downstream node). That is why, SB 05 has the
highest voltage variations. This elucidates the importance of voltage regulation for the
power sources connected to the LV busses.
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Figure 10. No PV system voltage profiles at (a) Node-7, (b) Node-10.

4.2. Base Case (i.e., PVs without Any Controller)

This case represents moderate levels of solar power integration with the system loads
shown in the previous sub-section. The solar power is injected into the power system
without any control. PV power profiles for a particular sunny day in the summer season is
considered which is shown in Figure 11. In a sunny day during the peak sunlight hours,
there is more energy being produced by the PVs than consumed by the loads. Hence, in this
section the impact of this high penetration of widespread PVs in the distribution system
is studied.

Figure 11. Real power available from the PV systems without controllers.

The base case voltage profiles are shown in Figure 12 with uncontrolled PV integration.
The buses that are farther away from the transformer (i.e., SB 04 and SB 05) have voltage
upper limit violations; however, buses that are closer to the transformer (i.e., SB 02 and
SB 03) have the voltages within the allowable limits. It is noteworthy to observe that the
voltage at the downstream bus is much higher as compared to the upstream bus. However,
it was much lower as compared to the upstream bus when no PVs were installed (see
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Figures 10 and 12). It is due to the fact that the downstream buses are often more sensitive
to changes in the load and/or power generation when compared to the upstream buses.

Figure 12. Base case voltage profile at (a) Node-7, (b) Node-10.

4.3. On-Off Controller

In this case, an on/off switch controller is tested. A reference voltage, vr = 1.045 p.u.
is selected. Based on the POC bus voltage, the controller decides to ramp down the power
generation if the voltage is higher than vr and ramp up the power generation if the voltage
is lower than vr. Ramp limits are selected to be 1 kW/10 s to avoid abrupt variations.

In Figures 13 and 14, the voltage profiles and power generation profiles of the sec-
ondary buses are shown. It is evident that the power is only curtailed for downstream
buses (i.e., SB 04 and SB 05), whereas the upstream buses are allowed to generate all the
available power. Moreover, due to the frequent switching the SB 05 bus has fluctuating
voltage problem, which may lead to other power system problems [30].

Figure 13. On-off case voltage profile at (a) Node-7, (b) Node-10.
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Figure 14. On-off case output power generated at (a) Node-7, (b) Node-10.

4.4. Droop-Based Controller

In this section, a prevalent control scheme based on droop characteristics is shown for
comparison. This scheme relies on the static droop P-V characteristics curve of each node
in the distribution system. This relationship between the voltage and the output power is
defined by the piecewise linear function as provided in (5). In [31], settings are done based
on the location and the system loads. However, due to system reconfigurations this scheme
would require communication, which is absent in present-time distribution systems.

A simpler form of the droop-based controller is tested with same droop constants, kd.
A critical system voltage, vcritical , is set to be 1.05, which is the maximum allowable voltage
defined by the ANSI C84.1-2016 standard. Considering a safety margin, the controller is
activated at 1.02 p.u. The droop constant, kd, is set at 21.

Pout(t) = PGavailable ×
{

kd(vcritical − vi(t)),
1,

vi(t) ≥ 1.03 p.u.
vi(t) < 1.03 p.u.

(5)

where:
kd =

140 kW
(1.05 − 1.02)(220V)

= 21.2 kW/V (6)

The system voltages are shown in Figure 15. It can be seen that all the voltages
are within the allowed limits. However, the buses located downstream inject less power
than the buses closer to the transformer as illustrated in Figure 16. The buses closer
to the transformer can export full PV power available while the downstream buses are
undesirably restricted due to their higher voltages. Thus, the PV generated revenues for
these customers are lower as compared to other customers.
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Figure 15. Droop-based controller voltage profile at (a) Node-7, (b) Node-10.

Figure 16. Droop-based controller power generated at (a) Node-7, (b) Node-10.4.5. Proposed voltage-
and-sensitivity-based controller.

The uncontrolled integration of PVs results in voltage-rise problems, as it is shown
in Section 4.2. While other communication-free controllers (Sections 4.3 and 4.4) are not
able to act fairly among all the PVs connected in the system. Additionally, these controllers
are not able to provide a stable voltage profile at the PVs point of connection. It is because
they only use voltage readings to control the power injected and there are no integral or
derivative control modules.

In order to mitigate the voltage-rise problem, a machine learning-based autonomous
PV controller is presented. The controller utilizes both, the nodal voltage and its sensitivity
to throttle the power output of the solar PV. Each solar PV in the distribution system is
controlled independently by these controllers. The resulting voltage profiles are provided
in Figure 17 when the proposed controllers are implemented. It can be clearly seen that
the controller is able to effectively regulate the system voltages with good system voltage
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stability. Throughout the day, the voltages are maintained within the permissible range,
except between 8:00 A.M. and 9:00 A.M., where some negligible over-voltages are recorded.
This is because of the time required by the controller to respond to the significant variations
in load/generation (as shown in Figure 5 and explained in Section 2.3).

Figure 17. Proposed controller voltage profile at (a) Node-7, (b) Node-10.

The most interesting feature of the proposed controller is fair power curtailment,
despite the fact that there is no communication among the PVs connected at various
locations in the distribution network. The power generated in the presence of the proposed
controller is shown in Figure 18. The proposed controller curtails similar amount of power
from all the PVs when the system support is required. The daily energy produced by the
proposed and the droop-based controllers are provided in Table 2. It can be observed that
the secondary downstream bus (i.e., SB 05) produces around 240 kWh less energy than
the upstream secondary bus (i.e., SB 02) when the droop-based controllers are utilized.
However, for the proposed controller similar amount of energy is being produced at all the
secondary buses in the system. These results indicate the efficacy of the proposed controller.

Figure 18. Proposed controller power generated at (a) Node-7, (b) Node-10.
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Table 2. Comparison of daily energy production (kWh).

Control Mode P * SB 02 SB 03 SB 04 SB 05

Droop-based
D 1090 1077 940 847

U 1086 1079 948 850

Proposed
D 937 936 932 933

U 935 938 935 931
* P represents the primary node, whereas D and U represent downstream node (i.e., Node-7) and upstream node
(i.e., Node-10), respectively.

5. Control Strategy Performance

In this section, performance of the proposed voltage and sensitivity-based control
strategy is further examined. Table 3 summarizes the fairness for all control modes and
effectiveness of these methods to avoid voltage limit violations. Total energy produced by
each primary node in a day are also included. As anticipated, the uncontrolled integration
of solar power results in the maximum energy production; however, the voltage violations
are extreme and persist for longer duration (i.e., for about 286 min). On the other hand,
the voltages are appreciably improved for on-off and droop-based controllers, but the
fairness issue was gravely compromised. It is evident that the downstream buses (SB 04
and SB 05) experience most of the energy curtailment; therefore, these control techniques
are not suitable for fair power integration. However, the proposed controller fairly curtails
the energy from each PV system. Moreover, it drastically improves the system voltages
as compared to the uncontrolled case. Note that the proposed controller curtails a little
higher amount of the generated power in comparison to the other controllers. However,
this slightly higher curtailment allows all the distributed PVs to participate fairly in the
voltage improvement process.

Table 3. Comparison of controller performances.

Control
Mode

P *

Energy
Produced
in a Day
(kWh)

% Energy Curtailed Fairness
Ad-

dressed?

Maximum
Voltage

(p.u.)

Duration
of Voltage
Violations
(Minutes)

Voltage
Accept-

able?
Total
(%)

SB 02 SB 03 SB 04 SB 05

Uncontrolled
D 4198 - - - - -

Yes
1.067 286.5

No
U 4198 - - - - - 1.069 286.5

On-Off
D 4082.5 2.75 0 0 0.31 2.44

No
1.052 0.333

Yes
U 4094.7 2.46 0 0 0.16 2.30 1.052 0.333

Droop-based
D 3954.1 5.81 0 0.14 2.03 3.64

No
1.046 0

Yes
U 3963.7 5.58 0 0.08 1.90 3.60 1.045 0

Proposed
D 3737.9 10.96 2.70 2.72 2.78 2.76

Yes
1.051 19.167

Yes
U 3739.2 10.93 2.72 2.69 2.73 2.79 1.052 19.167

* P represents the primary node, whereas D and U represent downstream node (i.e., Node-7) and upstream node (i.e., Node-10), respectively.
The bus will be reported as a high voltage violation if the voltage exceeds 1.05 p.u. % Energy curtailed is calculated using energy produced
in uncontrolled case.

In addition, the performance of the proposed control strategy is assessed with solar
resource variability. This can happen for many reasons, including the cloud covering the
solar PVs. The PV’s output generation is highly varied on a cloudy day compared to
a sunny day, as shown in Figure 11. The voltage and power generation profiles of the
secondary buses are shown in Figures 19 and 20, respectively, when the proposed controller
is tested during cloudy day. The results illustrate that the controller response to fluctuating
available solar power is quick. Despite that the change in output power is not restricted
(no ramp limit), power is always fairly curtailed to minimize the over voltage violations.
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Figure 19. Voltage profiles in a cloudy day at (a) Node-7, (b) Node-10.

Figure 20. Power generation profiles in a cloudy day at (a) Node-7, (b) Node-10.

To further assess the robustness of the proposed autonomous PV controller, it is
assumed that one of every two houses has an electric vehicle (EV). Nissan Leafs having
40 kWh battery pack model [32] are used to test the proposed controller when they are
connected to the secondary buses. The EVs are assumed to charge at the rate of 7 kW when
plugged in. That means, each EV takes 4 h to charge the battery from 30% to 100%. EVs
are expected to plug-in between 6:30 a.m. and 10:30 a.m. since the impact of EVs charging
on the PV control needs to be studied. The state of charge (SOC) for the EVs connected in
primary Node-10 are shown in Figure 21.
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Figure 21. State of charge of EVs connected at secondaries of Node-10.

When two EVs get connected to a bus at any given time, the load at that bus increases
by 14 kW. Consequently, the voltage at that bus changes which affects the PV power
generation. Figure 22 shows the PV power output when the proposed controller is being
used during these events. Note that the EVs only connected at SB 03 and SB 04 are charging
during the period from 9:00 a.m. until 9:30 a.m. During this time period, the power
generated at these buses is only 3 to 5 kW more than the power generated at other buses.
Similarly, from 12:30 p.m. until 1:25 p.m. the EVs only connected to SB 01 and SB 05 are
charging, while the others are already fully charged. During this time, the PV power output
for the buses with connected EVs is only a little more than the other buses. The voltage
profiles of the EVs charging points are shown in Figure 23. Note that the voltages of the
buses decrease when the EVs start charging, this happens because of the instantaneous
increase in the load.

Figure 22. Power output comparison, with EVs charging at different times.
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Figure 23. Voltage profiles at EV connection points.

Table 4 shows the overall PV energy produced in a day at the secondary buses of
Node-7 and Node-10 when the EVs are being charged. It can be seen that the daily energy
production has been increased when there is extra load connected in the system (see
Tables 3 and 4). In fact, the system voltages drop when more load is connected which
allows the PVs to generate relatively more power. These results indicate that the proposed
controller successfully balances the trade-off between high penetration of renewable energy
and fair power curtailment, so that the voltages remain within the allowable range as
defined by ANSI C84.1-2016 standard.

Table 4. Energy produced in a day with EV charging from 30% to 100% (kWh).

Scenarios P * SB 02 SB 03 SB 04 SB 05 Total

EVs not
charging

D 937 936 932 933 3738

U 935 938 935 931 3739

EVs charging
during day

D 953 962 955 957 3827

U 953 962 955 957 3827
* P represents the primary node, whereas D and U represent downstream node (i.e., Node-7) and upstream node
(i.e., Node-10), respectively.

6. Conclusions

This paper proposes a local voltage regulation control scheme for distributed solar
PVs connected in the secondary network of the distribution system. The proposed tech-
nique is aimed at fairly controlling the power injections of all the PVs without the need
of any communication infrastructure. The proposed machine-learning based controller
uses two local measurements as inputs, namely, the nodal voltage and its sensitivity, to
determine the PV power output. The performance of the proposed controller is validated
in a PV-rich MV/LV test distribution system. Even though the controllers in the system
work independently, they fairly controlled the power injections of all the PVs to keep the
network voltages in an acceptable range. The distinctiveness of the proposed technique is
highlighted by comparing a few other communication-free controllers as presented in the
previously published literature. In addition, the robustness of the controller is verified by
considering a cloudy day. In addition, the electric vehicles (EVs) are integrated into the
secondary distribution system to further confirm the efficacy of the proposed controller in
the future distribution systems.

The contributions of the proposed approach are evident since the machine learning-
based controller is relatively inexpensive yet easy to deploy solution, which only requires
the local voltage measurements at the point of connection. Additionally, this method
is computationally fast because of the minimal hardware requirement and there are no
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communication delays. The fast computational time ensures the suitability of the approach
for solving real-time voltage problems.
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Abstract: This paper investigates maximum power extraction from a wind-energy-conversion system
(WECS) with a permanent magnet synchronous generator (PMSG) operating in standalone mode.
This was achieved by designing a robust adaptive nonsingular fast terminal sliding mode control
(ANFTSMC) for the WECS-PMSG. The proposed scheme guaranteed optimal power generation and
suppressed the system uncertainties with a rapid convergence rate. Moreover, it is independent
of the upper bounds of the system uncertainties as an online adjustment algorithm was utilized to
estimate and compensate them. Finally, four case studies were carried out, which manifested the
remarkable performance of ANFTSMC in comparison to previous methods reported in the literature.

Keywords: adaptive control; maximum power point tracking; nonsingular fast terminal sliding
mode control; permanent magnet synchronous generator; wind-energy-conversion system

1. Introduction

Renewable energy resources (RERs) have certainly been viewed as a potential alter-
native energy source, as traditional fossil fuels are limited and the main contributors to
greenhouse gas (GHG) emissions. They not only provide cleaner energy, but have also
become cost-competitive in recent years. Amongst various sources of RE, wind energy
is one of the most desirable sources, which offers plenty of advantages including abun-
dance and broad distribution [1–4]. The capacity of global wind power installed exceeded
651 GW in 2019, with a 10% increase compared to 2018 [5]. Generally, the variable-speed
operation of wind turbine systems is based largely on double-fed induction generators
(DFIGs) [6], squirrel cage induction generators (SCIGs) [7], and permanent magnet syn-
chronous generators (PMSGs) [8]. During the past few years, the application of PMSGs has
significantly expanded due to their high-performance efficiency, low noise, high reliability,
and gear-less design. Besides, the efficiency of the PMSG has been increased by around 10%
due to its wide operating speed range and the absence of a direct-current (DC)-excitation
system [9–11].

An efficient optimal power extraction with a low cost of implementation, also known
as the maximum power point tracking (MPPT) control technique, is needed for operat-
ing performance improvement of the WECS [12,13]. Vector control incorporated with
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proportional-integral (PI) loops has been the most commonly used control method due to
its simplicity and ease of implementation [14]. Its control architecture is primarily based
on a linearized model at a particular operating point; therefore, the controllability of such
a method may drastically degrade or even contribute to system instability as the system
operating conditions can change frequently due to weather conditions and wind speeds.
To tackle this problem, a self-tuning PI controller was suggested in [15]. Metaheuristic
algorithms and machine-learning tools are very popular in power systems’ application for
optimizing the controller parameters [16–24]. For instance, metaheuristic algorithms such
as the bacterial foraging algorithm [17] and grey wolf optimization [19] were used to tune
the gains of the PI controller for PMSG applications. However, they are based on either
generations or iterations that delay the optimization process; therefore, they cannot be used
for online tuning controller parameters. In response, real-time tuning of the PI controller
parameters was proposed in [23] where a wavelet neural network was employed for gain
adjustment. The machine-learning-based approaches require adequate data, training, and
testing to achieve satisfactory performance, and the lack of sufficient data may sometimes
hinder their application.

To deal with the challenges mentioned above, nonlinear control strategies have been
widely explored and investigated [25]. For instance, feedback linearization controllers
capable of globally linearizing the system nonlinearities were reported in [26,27] to attain
MPPT for PMSGs. Besides, the backstepping controls are also popular nonlinear control
methods that are based on step-by-step approaches. A backstepping control was presented
in [28] for maximum power extraction from the wind. However, both backstepping and
feedback linearization approaches required exact system parameters, and their perfor-
mance deteriorates in the presence of dynamic uncertainties [29]. In response, the sliding
mode control (SMC) methods offer promising solutions to handle the uncertainties [25].
The SMC methods have gained much attention in the control of WECSs because of their
robustness, low sensitivity to parameter changes, simplicity, and fast response [29]. A
wide range of SMC methods including the passivity-based SMC [30], fractional-order
SMC (FOSMC) [31], fuzzy-logic-based SMC (FOSMC) [32], second-order SMC [33], super-
twisting SMC (ST-SMC) [34], terminal SMC (TSMC) [35], second-order TSMC [36], and
super-twisting fractional-order terminal SMC (ST-FOTSMC) [37] have been used for maxi-
mum power extraction from the WECS-PMSG. The mentioned control schemes are mainly
based on the fact that the upper bounds of the uncertainties and the disturbances are
known. However, in practical applications, it may be difficult to determine the upper
bounds because of the complexity of the PMSG system. Therefore, several controllers
combined with adaptation schemes were proposed to solve the unknown upper bounds
of the disturbances. In [38], an adaptive SMC was utilized to capture the maximum wind
energy from the PMSG with perturbation. In [39], an adaptive STSMC was designed for
ocean current turbine-driven PMSG. In [40], a robust adaptive TSMC was developed to deal
with uncertainties in the PMSG system while capturing the maximum power. The adaptive
backstepping control scheme was proposed for a PMSG with unknown perturbation to
achieve MPPT in [41]. It is worth noting that most of the mentioned SMC strategies were
formulated with known upper bounds of the disturbances. In addition, the TSMC methods
in [34–36] cannot guarantee the avoidance of singularities. In [42], a piecewise function was
used to avoid singularities while extracting maximum energy from the WECS. However,
the piecewise function introduces other challenges, e.g., a sharp jump while controlling the
inputs beyond a certain boundary.

Considering the above-mentioned aspects, adaptive nonsingular fast terminal sliding
mode control (ANFTSMC) has gained popularity in recent years and has been used to
control quadrotors [43] and robotic manipulators [44]. The fundamental advantage of
deploying ANFTSMC is avoiding singularities, strong robustness against the system
disturbances and uncertainties, and fast convergence when the states of the system are
far from the equilibrium point. Therefore, the authors propose ANFTSMC for maximum
power extraction from the WECS-PMSG. To the best of our knowledge, this is the first time
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ANFTSMC has been proposed for WECS-PMSGs. The main contributions of this article are
as follows:

1. Utilization of a Lyapunov-based adaptation approach for the estimation of the un-
known upper bounds of the system uncertainties;

2. Elimination of any unwanted singularities in WECS-PMSGs while extracting the
maximum energy;

3. Accomplishment of faster convergence using the proposed strategy over other strate-
gies when the system states are far away from the origin;

4. Validation of the efficacy of ANFTSMC based on the obtained comparative results.

This article is structured as follows: Section 2 provides the mathematical modeling
of the WECS-PMSG. The proposed control scheme is presented in Section 3. Section 4
presents the simulation results and discussions. Section 5 provides the concluding remarks.

2. Modeling of the WECS-PMSG

The structure of the wind energy conversion system PMSG is illustrated in Figure 1. It
consists of three subsystems, namely the aerodynamic, PMSG, and shaft subsystems. The
wind energy harnessed by the turbine blades is converted into mechanical energy used for
the generation of electrical energy by the PMSG. The generator-side converter controls the
generated power, while the grid-side converter transmits the active power to the grid at
the constant DC-link voltage. This work aims to control the generator-side converter.

2.1. Aerodynamic Model

The aerodynamic equations for rotor power and torque are given by [30]:

PA =
1
2

ρπR2Cp(λ, β)V3
wind (1)

TA =
PA
ωr

=
1

2ωr
ρπR3CT(λ, β)V2

wind (2)

where ρ is the air density, R is the radius of the wind turbine, Vwind is the wind speed,
Cp(λ, β) and CT(λ, β) represent the power and torque coefficients, respectively, β is the
pitch angle, and λ is the tip-speed ratio. The tip-speed ratio is a function of the rotor speed,
which can be represented as:

λ =
Rωr

Vwind
(3)

The power coefficient is a function of both the pitch angle (β) and tip-speed ratio (λ),
as defined by the following expression:

Cp(λ, β) = 0.5176(
116
λj

− 0.4β − 5)e
−21
λj + 0.0068λ (4)

1
λj

=
1

λ + 0.08β
− 0.035

β3 + 1
(5)

Cpmax = Cp(λopt, β) (6)

The wind turbine can generate the maximum power provided that the power coef-
ficient Cp(λ, β) is maximum for any wind speed within the wide operation region of the
turbine. The power coefficient can be maximized by maintaining the optimal value of the
tip-speed ratio and fixed pitch angle. The relationship between Cp(λ, β) and λ at different
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fixed values of β is illustrated in Figure 2. Therefore, the optimal reference speed applied
to the WECS-PMSG is given by:

ωr_opt =
λopt

R
Vwind (7)

The maximum power extracted by the WECS-PMSG under the optimal rotor speed
thus can be represented as:

PAopt =
1
2

ρπR2Cpmax(λopt, β)
(R ωr_opt

λopt

)3
(8)

Figure 1. The structure of the PMSG wind turbine system.

Figure 2. Power coefficient and tip-speed ratio (Cp − λ) relationship at different pitch angles.

2.2. PMSG Model

The dynamic model of the PMSG and the torque in the d-q coordinate system are
formulated as [41]:

Uds = Rs Ids + Ld +
dIds
dt

− ωeLq Iqs (9)

Uqs = Rs Iqs + Lq +
dIqs

dt
+ ωeLd Ids + ωeΛ f (10)

Te =
3
2

p[(Ld − Lq)Ids Iqs + Λ f Iqs] (11)

where Ids and Iqs are the d and q axes’ stator currents, Uds and Uqs are the stator voltages, Ld
and Lq stand for inductance, Rs denotes the stator resistance, Λ f represents the rotor flux,
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ωe = pωr is the electrical speed, and Te indicates the electromagnetic torque. If Ld = Lq,
Equation (11) will evolve as:

Te =
3
2

pΛ f Iqs (12)

2.3. Shaft System Model

The dynamic model of the wind turbine shaft system is expressed as [30]:

dωr

dt
= J−1Ta − J−1Te − J−1bwr (13)

where b and J indicate the friction coefficient and the total mechanical inertia, respectively.

2.4. Overall Model

The overall model of the WECS-PMSG can be written as [30]:

ẋ1 = a1TA + a2x1 + a3x2 + Δ1 (14)

ẋ2 = a4x2 + a5x3x1 + a6x1 + g1Uqs + Δ2 (15)

ẋ3 = a7x3 + a8x1x2 + g2Uds + Δ3 (16)

where x1 = ωr, x2 = Iqs, x3 = Ids, a1 = J−1, a2 = − 3
2 pΛ f , a3 = −J−1b, a4 = − Rs

Lq
,

a5 = −p Ld
Lq

, a6 = −Λ f p, a7 = − Rs
Ld

, and a8 =
Lq
Ld

p.

3. Control of WECS-PMSG

The article aims to design a robust control algorithm that keeps operating the WECS-
PMSG within the point of maximum power extraction. The control variables are y1 = x1
and y2 = x2. By differentiating y1 twice and y2 once, the following equations are obtained:

ÿ1 = f1 + g1u1 + Δy1 (17)

ẏ2 = f2 + g2u2 + Δy2 (18)

where f1 = a1ṪA + a2 ẋ1 + a3[a4x2 + a5x3x1 + a6x1], g1 = a3b1, f2 = a7x3 + a8x1x2, g2 = b2,
Δy1 = Δ̇1 + a3Δ2, and Δy2 = Δ3

Assumption 1. The lumped disturbances are bounded, e.g.,

Δy1 ≤ M11

Δy2 ≤ M21

where M11 and M21 are the upper bounds of the disturbances and Δy1 and Δy2 are the net distur-
bances in the input–output dynamics of Equations (17) and (18).

3.1. Design of NFTSMC

In this section, NFTSMC is designed for y1 and y2 by assuming that the upper bounds
of the lumped disturbances are known exactly.

3.1.1. Design of the NFTSMC for the Rotor Speed

If the tracking error between y1 and ωr_opt is defined as:

⎧⎪⎨
⎪⎩

e1 = y1 − ωr_opt

ė1 = ẏ1 − ω̇r_opt

ë1 = ÿ1 − ω̈r_opt = f1 + g1u1 + Δy1 − ω̈r_opt

(19)
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The NFTSMC surface is defined as [43]:

S1 = e1 + C11|e1|μsign(e1) + C12|ė1|αsign(ė1) (20)

where C11 and C12 are positive constants, 1 < α < 2 and μ > β. The following equation is
derived from the time derivative of S1:

Ṡ1 = ė1 + C11μ|e1|μ−1 ė1 + C12α|ė1|α−1 ë1

= ė1 + C11μ|e1|μ−1 ė1 + C12α|ė1|α−1
[

f1 + g1u1 + Δy1 − ω̈r_opt

]
(21)

By recognizing that Ṡ1 = S1 = 0, the equivalent control input u1eq is derived as:

u1eq = g−1
1

[
− f1 − 1

C12α
|ė1|2−α(1 + μC11|e1|μ−1)sign(ė1)

]
(22)

If the system dynamics are known precisely, the equivalent control law u1 can make
the states remain on (20). In order to meet the sliding condition in the presence of the
lumped disturbance, the reaching law is given by the following equation:

u1r = g−1
1 [−M11sign(S1)− M12S1] (23)

where M11 and M12 are constants. Thus, the overall control law is established by the
following equation as:

u1 = u1eq + u1r

= g−1
1

[
− f1 − 1

C12α
|ė1|2−α(1 + μC11|e1|μ−1)sign(ė1)− M11sign(S1)− M12S1

]
(24)

Theorem 1. Considering the output dynamics of Equation (17), if it is controlled with Equation (24),
the state variables will converge to the surface of Equation (20).

Proof of Theorem 1. Consider the following Lyapunov function candidate:

V1 =
1
2

S2
1 (25)

Taking the time derivative of V1 and using Equations (21) and (24), the following
equation is evolved:

V̇1 = S1Ṡ1 = C12α|ė1|α−1[S1Δy1 − M11|S1| − M12S2
1
]

≤ C12α|ė1|α−1[(Δy1 − M11)|S1| − M12S2
1
]

(26)

The following equation is obtained by considering Assumption 1.

V̇1 ≤ −C12α|ė1|α−1M12S2
1 ≤ 0 (27)

From the definition of Lyapunov stability theory, the output y1 asymptotically con-
verges to the surface S1 = 0.
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3.1.2. Design of the NFTSMC for the D-Component of the Stator Current

Consider the following tracking error between y2 and Ids_re f :

{
e2 = y2 − Ids_re f

ė2 = ẏ2 − İds_re f = f2 + g2u2 + Δy2 − İds_re f
(28)

Since the relative degree of y2 is one, the following NFTSMC surface is introduced.

S2 = e2 + C2|ė2|αsign(ė2) (29)

where C2 is a positive constant. The time derivative of S2 yields:

Ṡ2 = ė2 + C2α|ė2|α−1 ë2

= ė2 + C2α|ė2|α−1[ ḟ2 + g2u̇2 + Δ̇y2 − Ïds_re f ] (30)

where ḟ2 = ∂ f2
∂x1

ẋ1 +
∂ f2
∂x2

ẋ2 +
∂ f2
∂x3

ẋ3. The equivalent control law is derived as:

u̇2eq = g−1
2

[
− ḟ2 − 1

C2α
|ė2|2−α + Ïds_re f

]
(31)

The reaching law is designed as u̇2r = −g−1
2 [M21sign(S2) + M22S2]. The control law

for Equation (18) is given by:

u2 = u2eq + u2r =
∫ t

0
(u̇2eq(τ) + u̇2r(τ))dτ

= g−1
2

∫ t

0

[
− ḟ2 − |ė2|2−α

C2α
+ Ïds_re f − M21sign(S2)− M22S2

]
dτ (32)

Theorem 2. Considering the output dynamics of Equation (18), if it is controlled with Equation (32),
the state variables will converge to the surface as shown in Equation (29).

Proof of Theorem 2. Consider the Lyapunov candidate as:

V2 =
1
2

S2
2 (33)

After differentiating V2 with respect to time and using Equations (30) and (32), the
following equation can be obtained:

V̇2 = S2Ṡ2 = C2|ė2|α−1
[
S2Δy2 − M21|S2| − M22S2

2

]
≤ C2α|ė2|α−1

[
(Δy2 − M21)|S2| − M22S2

2

]
(34)

Based on Assumption 1, Equation (34) becomes:

V̇2 ≤ −C2α|ė2|α−1M22S2
2 ≤ 0 (35)

3.2. Design of ANFTSMC

In practical applications, it is difficult to precisely obtain the upper bounds of the
system lumped disturbances. As such, we developed an adaptation scheme to estimate the
upper bounds and suppress the lumped disturbances, which can improve the robustness
of the control system.
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3.2.1. Design of the ANFTSMC for the Rotor Speed

The control law of Equation (24) is modified as:

u1 = g−1
1

[
− f1 − 1

C12α
|ė1|2−α(1 + μC11|e1|μ−1)sign(ė1)− M̂11sign(S1)− M̂12S1

]
(36)

where M̂11 and M̂12 are the estimates of M11 and M12, respectively. The following adaptive
rules update the gains: { ˙̂M11 = γ11|ė1|α−1|S1|

˙̂M12 = γ12|ė1|α−1S2
1

(37)

where γ11 and γ12 are positive constants.

Remark 1. The adaptation gains γ11 and γ12 are adjusted by trial and error and then kept constant
when the desired responses are achieved.

The main results of the adaptive scheme can be expressed in the following theorem:

Theorem 3. Considering that the upper bounds of the lumped disturbances of Equation (17) are
unknown, if the NFTSMC surface is chosen as Equation (20), the adaptive controller is designed as
Equation (36); then, the trajectory tracking error asymptotically converge to zero.

Proof of Theorem 3. The Lyapunov function of Equation (25) is modified as follows:

V1 =
1
2

S2
1 +

1
2γ11

M̃2
11 +

1
2γ12

M̃2
12 (38)

where M̃11 = M11 − M̂11, M̃12 = M12 − M̂12. CalculatingthetimederivativeofEquation (38)yields:

V̇1 = S1Ṡ1 − M̃11
˙̂M11 − M̃12

˙̂M12 (39)

Based on Equations (21) and (36), the following equation can be obtained:

V̇1 = C12α|ė1|α−1[S1Δy1 − M̂11|S1| − M̂12S2
1
]− M̃11

˙̂M11 − M̃12
˙̂M12

≤ C12α|ė1|α−1[(Δy1 − M11)|S1| − M12S2
1
]
+ M̃11

[
|ė1|α−1|S1| − ˙̂M11

]
+ M̃12

[
|ė1|α−1S2

1 − ˙̂M12

]
(40)

Using Equation (38) and Assumption (1), Equation (40) can be represented as:

V̇1 ≤ −C12α|ė1|α−1M12S2
1 ≤ 0 (41)

3.2.2. Design of the ANFTSMC for the D-Component of the Stator Current

The adaptive control input for the y2 dynamics is written as:

u2 = u2eq + u2r =
∫ t

0
(u̇2eq(τ) + u̇2r(τ))dτ

= g−1
2

∫ t

0

[
− ḟ2 − |ė2|2−α

C2α
+ Ïds_re f − M̂21sign(S2)− M̂22S2

]
dτ (42)
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where M̂21 and M̂22 are the estimates of M21 and M22, respectively. The following adaptive
laws update the gains: { ˙̂M21 = γ21|ė2|α−1|S2|

˙̂M22 = γ22|ė2|α−1S2
2

(43)

where γ21 and γ22 are positive constants.

Remark 2. The adaptation gains γ21 and γ22 are adjusted on a systematical trial and error basis;
then, they are kept constant when the desired responses are achieved.

The main results of the ANFTSMC for the y2 dynamics are summarized in the follow-
ing theorem:

Theorem 4. Suppose the information about the upper bounds of the lumped disturbances of
Equation (18) is unavailable if the NFTSMC surface is selected as Equation (29); the adaptive
controller is developed as (42), and the trajectory tracking error asymptotically converges to zero.

Proof of Theorem 4. Equation (33) can be modified as follows:

V2 =
1
2

S2
2 +

1
2γ21

M̃2
21 +

1
2γ22

M̃2
22 (44)

where M̃21 = M21 − M̂21, M̃22 = M22 − M̂22. Computingthe timederivativeofEquation (44)gives:

V̇2 = S2Ṡ2 − M̃21
˙̂M21 − M̃22

˙̂M22 (45)

The following relationship can be obtained after substituting Equations (30) and (42)
into Equation (45):

V̇2 = C2|ė2|α−1
[
S2Δy2 − M̂21|S2| − M̂22S2

2

]
− M̃21

˙̂M21 − M̃22
˙̂M22

≤ C2α|ė2|α−1
[
(Δy2 − M21)|S2| − M22S2

2

]
+ M̃21

[
|S1| −

˙̂M21

γ21

]
+ M̃22

[
S2

2 −
˙̂M22

γ22

]
(46)

Equation (46) can be modified using Equation (43) and Assumption (1) as:

V̇1 ≤ −C2α|ė2|α−1M22S2
2 ≤ 0 (47)

Remark 3. The chattering issue due to the discontinuous control component (sign(.) function) is
solved by replacing it with the tanh(.) function [45].

4. Simulation Results and Discussions

The simulation was performed in the MATLAB/SIMULINK 2020 Platform using a
PC with an Intel(R) Core(TM) i7-10510U CPU @ 2.3 GHz and 8 GB RAM. The parameters
of the WECS-PMSG were taken from [30]. The PMSG parametric variations of 40% were
also taken into consideration in the simulation. The parameters of the proposed controller
are given in Table 1. The initial conditions of the PMSG states and the adaptive laws were
set as 0.01. To highlight the effectiveness of ANFTSMC in achieving the MPPT of the
WECS-PMSG, a comparative study was executed with some existing control techniques
such as FLC [27], passivity-based SMC (PSMC) [30], and adaptive STSMC (ASTSMC) [39]
under four cases, e.g., the step change of the wind speed, the short-term random variation
of the wind speed, the long-term random variation of the wind speed, and the real wind
speed profile.
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4.1. Step Change of the Wind Speed

In this case, it was assumed that the wind speed profile is a sequence of four-step
changes, as shown in Figure 3. The performances of different controllers to achieve the
MPPT of the WECS-PMSG are presented in Figures 4–7. Figure 4 shows that ANFTSMC
was able to track the optimal rotor speed with greater accuracy than ASTSMC, PSMC,
and FLC. The evolution of the maximum power coefficient is shown in Figure 5. From
this figure, it can be seen that ANFTSMC was able to restore the power coefficient to
the required value at a faster rate than ASTSMC, PSMC, and FLC whenever the wind
speed in Figure 3 changed. The tracking responses of the optimal power under various
control methods are depicted in Figure 6. From this figure, it is clear that ANFTSMC was
able to follow the optimal power with greater accuracy than ASTSMC, PSMC, and FLC.
The estimated parameters of the rotor speed and the d-component of the stator current
controllers are presented in Figures 7 and 8, respectively. From these figures, it can be
observed that the FLC controller gave the worst control performances in the presence of
parametric uncertainties. Due to the robustness of PSMC, ASTSMC, and ANFTSMC, the
uncertainties in the WECS-PMSG were mitigated, and better control performances were
obtained. However, the WECS-PMSG under the proposed ANFTSMC attained the MPPT
in a shorter time than FLC, ASTSMC, and FLC. Therefore, the effectiveness of the proposed
ANFTSMC strategy under the step change of the wind speed was justified.

Table 1. Controller parameters.

Parameters Values

α, β 3/2, 3
C11, C12, C21, C22 1, 1, 1, 1
γ11, γ12, γ21, γ22 1, 0.04, 10, 15

Figure 3. Step change of wind speed profile for the first case study.
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Figure 4. Tracking performance of the rotor speed under different control approaches for the first
case study.

Figure 5. Power coefficient of the extracted power from the wind under different control approaches
for the first case study.

Figure 6. Extracted power from the wind under different control approaches for the first case study.
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Figure 7. Adaptive parameters of the rotor speed controller for the first case study.

Figure 8. Adaptive parameters of the d-component of the rotor current controller for the first
case study.

4.2. Random Variation of the Wind Speed

To further illustrate the effectiveness of the proposed ANFTSMC, a random wind
speed profile with a mean value of 11 m/s, as shown in Figure 9, was applied to the
WECS-PMSG. The control efforts of the four controllers are depicted in Figures 10–12. The
rotor speed and the optimal rotor speed are presented in Figure 10. It can be observed
from the figure that ANFTSMC showed the best optimal rotor speed tracking performance.
Figure 11 illustrates the maximum power coefficient signals of the four control methods.
Due to the random nature of the wind, the power coefficients under the control approaches
fluctuated near the required maximum power coefficient. However, under the action of
ANFTSMC, the power coefficient was closer to the required value than ASTSMC, PSMC,
and FLC. The optimal power harnessed from the random wind is shown in Figure 12.
It can be seen that ANFTSMC followed the fluctuating optimal wind power with more
accuracy than ASTSMC, PSMC, and FLC. These figures show that FLC did not satisfactorily
reach the MPPT of the WECS-PMSG as FLC requires an exact system modeling and is
sensitive to the model uncertainties. On the other hand, ANFTSMC, ASTSMC, and PSMC
were robust to the WECS-PMSG parametric uncertainties, and as such, they achieved the
MPPT. Nevertheless, ANFTSMC exhibited more effectiveness as its responses were much
closer to the MPPT under the random wind speed. Therefore, the efficacy of the proposed
ANFTSMC strategy under the random variation of the wind speed was also justified.
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Figure 9. Random wind speed profile for the second case study.

Figure 10. Tracking performance of the rotor speed under different control approaches for the second
case study.

Figure 11. Power coefficient of the extracted power from the wind under different control approaches
for the second case study.
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Figure 12. Extracted power from the wind under different control approaches for the second
case study.

4.3. Long-Term Random Variation of the Wind Speed

The random wind speed profile in Figure 9 was extended for 1 h (3600 s), as shown in
Figure 13, in order to highlight the performance of ANFTSMC over other strategies. From
Figure 14, it is clear that the rotor speed was varied between 3.45 rad/s and 1.27 rad/s
due to the random variation of the wind speed, and the ANFTSMC strategy tracked the
variation more precisely (closer to the peaks and troughs of the rotor speed) than other
strategies. The performance of the FLC strategy was the worst amongst the compared
strategies as the responses were far away from the peak and trough values of the rotor
speed. PMSC performed better than FLC, and ASTSMC performed better than PMSC.
The power coefficient was varied rapidly with the rapid variation of the wind speed, as
shown in Figure 15. The optimal power harnessed by the WECS-PMSG under the action
of four different control approaches over a period of 1 h is depicted in Figure 16. This
figure shows that ANFTSMC was able to follow the peaks and troughs of the optimal
power with greater accuracy than ASTSMC, PSMC, and FLC. Therefore, the efficacy of the
proposed ANFTSMC strategy under the long-term random variation of the wind speed
was also justified.

Figure 13. Random wind speed profile for the third case study.
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Figure 14. Tracking performance of the rotor speed under different control approaches for the third
case study.

Figure 15. Power coefficient of the extracted power from the wind under different control approaches
for the third case study.

Figure 16. Extracted power from the wind under different control approaches for the third case study.
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4.4. Historical Wind Speed Profile

The wind speed profile of Montreal on 31 March 2017 from 0:00 to 23:00 was applied
to the WECS-PMSG to examine the performance of the proposed ANFTSMC on a real
wind speed profile. Figure 17 depicts the 24 h wind speed profile of Montreal as collected
from [46]. It can be seen from Figure 18 that the rotor speed varied between 0.61 rad/s
and 2.87 rad/s due to the wind speed variation at the Montreal Weather Station. The
ANFTSMC strategy tracked the variation more precisely (closer to the peaks and troughs
of the rotor speed) than the other strategies. Similar to the previous cases, the responses
of the FLC strategy were far away from the peak and trough values of the rotor speed.
On the contrary, PMSC performed better than FLC, and ASTSMC performed better than
PMSC. Figure 19 depicts the power coefficient variation of the extracted power. Figure 20
illustrates the optimal power harnessed by the WECS-PMSG for the real wind speed profile
over a period of 24 h. It is observed from both Figures 19 and 20 that ANFTSMC maintained
its superiority over other strategies. Therefore, the efficacy of the proposed strategy under
the historical wind speed profile of Montreal was also justified.

Figure 17. Montreal 24 h wind speed profile on 31 March 2017 for the fourth case study.

Figure 18. Tracking performance of the rotor speed under different control approaches for the fourth
case study.
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Figure 19. Power coefficient of the extracted power from the wind under different control approaches
for the fourth case study.

Figure 20. Extracted power from the wind under different control approaches for the fourth
case study.

5. Conclusions

This paper presented an ANFTSMC strategy for the WECS-PSMG with model un-
certainties to capture the maximum power. The proposed approach ensured singularity
avoidance, robustness against unknown WECS-PSMG dynamic uncertainties, and a fast
convergence rate to achieve the MPPT. Four case studies (step change of the wind speed,
short-time random variation of the wind speed, long-term random variation of the wind
speed, and a real wind speed profile) were considered to evaluate the efficient operation of
the proposed strategy. In each case, the proposed method outperformed other techniques,
including FLC, PSMC, and ASTSMC. As extensions of this work, a laboratory-scale experi-
mental setup, very short-term wind forecasts, measurement uncertainty, and a system with
energy storage can be considered.
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Abstract: Water scarcity is a global challenge, especially in arid regions, including Middle Eastern
and North African countries. The distribution of water around the earth is not even. Trading water
in the form of an embedded commodity, known as the water footprint (WF), from water-abundant
regions to water-scarce regions, is a viable solution to water scarcity problems. Agricultural products
account for approximately 85% of the earth’s total WF, indicating that importing water-intense crops,
such as cereal crops, can partially solve the local water scarcity problem. This study investigated
water, energy, and food nexus dynamics for the trades of a few major crops, specifically considering
Saudi Arabia. It analyzed the trade of crops and its impact on WF, energy, and carbon dioxide
(CO2) emission savings. The findings revealed that importing major cereal crops to Saudi Arabia
could significantly reduce the local WF. The imports of wheat, maize, rice, and barley reduced
approximately 24 billion m3 per year of consumable WF (i.e., blue and green water footprint) in
the global scale. Similarly, the trade of major crops had a significant impact on energy and CO2

emission savings. The energy savings from the wheat, maize, and barley trades in Saudi Arabia was
estimated to be approximately 9 billion kWh. It also saved about 7 million tons per year of CO2

emissions. The trades of cereal crops in Saudi Arabia reduced water consumption, energy usage, and
CO2 emissions significantly.

Keywords: water footprint; agricultural product; energy footprint; carbon dioxide emission;
water-energy-food nexus

1. Introduction

Freshwater is one of the critical global resources. Its availability for consumption is
a global challenge [1,2], and this issue has been a concern for many years [3,4]. Day by day,
the increase in the freshwater demand has imposed an elevated pressure on groundwater
extraction. The exploitation of groundwater at a higher rate than the recharge may lead
to the depletion of non-renewable groundwater aquifers. Groundwater withdrawals are
expected to increase by half in developing countries and by one-fifth in developed countries
by 2025 compared to 2011 demands [5].

Freshwater resources are not evenly distributed around the earth. Middle Eastern
countries face higher water scarcity than many other countries due to the lack of renewable
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water sources [5]. Saudi Arabia is the largest country without any rivers or natural lakes [6].
The country depends on renewable and non-renewable groundwater, seasonal rainfall,
constructed dams, and freshwater trading (a partial solution for countries with water scarcity).

With the substantial increase in the global trade of goods and products, freshwater
trading in the form of goods, such as agricultural and industrial products, has attracted
attention within the water footprint (WF) concept as well as from water resources manage-
ment [7]. The import of WF in products could relieve water scarcity pressure in water-scarce
nations. The water requirements of products in arid regions are generally higher than the
humid regions. Therefore, importing water-intensive products is a strategy to deal with
water scarcity in arid regions [8]. The WF concept was introduced in 2003 by Hoekstra [8].
The amount of freshwater water used to produce a specific product is known as WF [7]. It is
considered a freshwater sustainability indicator, as it indicates the flow of water embedded
in products between regions and its consequences [9]. It is generally considered in the
consumption of three types of water: green, blue, and grey. The green WF is the amount of
rainwater consumed, which is stored as moisture in soil. The blue WF refers to ground and
surface water consumption, and the grey WF deals with the amount of freshwater needed
to assimilate the pollution caused by goods or products [7].

The consumptive water use means the surface or groundwater is no longer available
after consumption: it may evaporate or be incorporated into a product [10]. Among
the three types of WF, blue WF is the most valuable one. Its consumption has a higher
opportunity cost than the other two types of WF as it comes from precious sources, such
as groundwater and surface water resources [11]. On the other hand, the study of grey
WF emphasizes the pollution caused by a specific product [7]. Blue and green WFs are
considered consumptive WF, while grey WF is a polluted WF [11].

In terms of the trades, Saudi Arabia imported 164 different crops in 2012, totaling
16.5 million tons. Among these crops, barley (50%), wheat (14.3%), maize (11.7%), and
rice (7.4%) were the four top contributors to imports [12]. The total of these four crops
comprised around 83.4% of overall crop imports. Further, the WF import in Saudi Arabia
was reported to be much higher than the WF export. The WF export of the country was
only around 4% of the WF import [12].

Saudi Arabia encouraged self-sufficiency in wheat production in the 1970s by pur-
chasing one ton of wheat at a price of approximately SAR 3500 (USD 933), albeit with
a multitude of import prices in 1979 (SAR 967). The full self-sufficiency program’s target
was attained in the mid-1980s. By the early 1990s, the country became a wheat exporter to
30 countries [13]. Later on, the detrimental effects of groundwater depletion were realized.
It is worth noting that most of the water demands in the agricultural sector in the GCC
countries, including Saudi Arabia, were satisfied by non-renewable sources, which have
led the groundwater tables to drop significantly [14]. It is worth noting that Saudi Arabia
does not have any water body with a flowing surface. The seasonal rainwater is stored in
the dams, which often recharge the shallow aquifers. This water is seasonally available for
small-scale localized irrigation [15]. Considering the limited renewable water sources for
agriculture, the effects of using the renewable water sources in Saudi Arabia are likely to
be much lower in comparison to the non-renewable sources [15].

In 2007, Saudi Arabia imported 2% of total wheat consumption, while maize, rice, and
barley imports were 91%, 100%, and 100%, respectively [16]. The self-sufficiency program
on wheat was stopped in 2008 to reduce water-intensive wheat production that needed
almost 100 m3 of water to produce 1 ton of wheat [13]. Although the agricultural sector
made marginal contributions (4.4%) to the Gross Domestic Product (GDP) in the country,
this sector was the leading cause of groundwater depletion [16].

Due to the acceleration of global climate change, industrialized and emerging coun-
tries have agreed to reduce greenhouse gas (GHG) emissions [17]. This effort requires
a significant reduction in energy consumption. Water and energy sources are vital resources
for economic health and social development in countries including Saudi Arabia [18,19].
The inter-dependence between water and energy is known as the water-energy nexus [20].
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Both water and energy are valuable resources inter-woven into each other [21]. Energy is
required for water production and processing, and water is required for energy production
and processing [22–24]. A similar concept, the water, energy, and food (WEF) nexus, helps
understand the complicated interaction among the three critical resources.

The nexus study can help policymakers take decisions in the light of a better perspec-
tive on managing trade-offs and synergies in resources [25]. The WEF nexus is discussed in
the literature, by many authors about different geographic locations. Radmehr, Ghorbani,
and Ziaei [26] studied the WEF nexus in the Neishaboor basin in Iran using a nonlinear
programming approach. The authors concluded that economic development relied on
food production and energy used; however, overuse of energy and food production led
to environmental problems. The proposed solution was an efficient irrigation mechanism
to deal with water scarcity and environmental problems. Li et al. [27] studied the WEF
nexus for northwest China using multi-objective programming, intuitionistic fuzzy, and
nonlinear programming. The study considered the interaction and trade-offs between the
resources for system sustainability. The author proposed a water-energy-food model under
uncertainty for the coordinated management of WEF.

Consideration of the WEF nexus is required to avoid optimizing one sector at the cost
of damaging the other sectors [28]. However, many policies do not consider the complex
nexus among these sectors [16,29]. A noticeable example of isolated sector security is Saudi
Arabia’s self-sufficiency program. The program attained self-sufficiency in the 1990s and
started to export wheat later on. However, the country realized that the self-sufficiency
program cost invaluable groundwater depletion. Therefore, the country banned wheat
production for two years (2016 and 2017) to avoid groundwater depletion [13].

Despite the national interest, no study presented the findings of the current practices in
terms of the WEF nexus in Saudi Arabia. This study investigated the trades of major cereal
crops in Saudi Arabia and their impact on water footprint, energy, and carbon dioxide (CO2)
emission savings. The water and energy savings as well as the reduction of CO2 emissions
associated with the trades of major cereal crops were estimated. The scopes of improving
the performance from these trades were highlighted. It is worth noting that grey WF
requires wastewater treatment and transport. Grey WF savings is likely to be much lower
than blue WF savings because of its insignificant contribution to the agricultural sector in
Saudi Arabia [30]. As such, grey water footprint savings is not included in this study.

2. Materials and Methods

2.1. Data

This sub-section summarizes the data used for this study including (i) crop production
and imports; (ii) types and quantities of water used in the agriculture sector; and (iii) energy
requirements for water extraction. The data used in this study were obtained for nine years
(i.e., 2011 to 2019) from different sources (Table 1). The crop exports of Saudi Arabia
were negligible compared to imports (exports are 4.2% of imports) and production [12].
The irrigation system energy requirements depend on the type of irrigation. In Saudi
Arabia, the irrigation system consists of groundwater pumping (i.e., blue WF) and treated
wastewater (i.e., grey WF) [31]. Irrigation by treated wastewater comprised approximately
3% of total irrigation water [32]. The energy required for groundwater pumping depends
on the aquifer’s depth, water transition length, and type. In Saudi Arabia, the energy
requirements for groundwater pumping and wastewater treatment were reported to be
0.764 Kwh/m3 and 0.4 Kwh/m3, respectively [33]. The global average energy requirement
for groundwater pumping has been estimated to be 0.0285 kWh/m3 [16].
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Table 1. Data description.

Number Data Description/Value Source

1 Wheat, barley, rice, maize Import and production data [34]

2 WF WF data [35]

3 Groundwater pumping energy
requirement 0.764 Kwh/m3 [33]

4 Wastewater treatment energy
requirement 0.4 Kwh/m3 [33]

5
Shipment Energy Intensity (SEI) for
crop transportation (for an average

ship speed of 20 knots)
0.015 Kwh/ton-km International Maritime

Organization (IMO) [36]

6 Emission intensity of energy
production 0.73 Kg-CO2/Kwh [37]

2.2. Method

The analysis starts from crop trades and WF savings from trading (Figure 1). The
WF of imports is based on a hypothetical WF estimation. It indicates the quantity of WF
consumed if these crops were produced inside Saudi Arabia. On the other hand, the actual
WF of imports will be calculated based on the WF of crops in the regions where these
crops were cultivated. In this study, long-term global averages of the WF from recent years
were used [35]. If the water requirement of crops in exporting countries is less than in
importing countries, water trade can improve water efficiency [38]. This notion leads to the
water-saving concept. The water-saving by water trade between two countries is estimated
by multiplying the volume of the traded crops by the difference between WF per unit of
the crops of the importing and exporting countries [11].

Figure 1. Methodology to estimate water and emission footprint savings through crop trading.

The energy savings associated with the WF were investigated. The green WF does
not require any energy for applying in the crop field. The blue WF requires pumping
from groundwater aquifers and transporting water to an irrigation area, and the grey WF
requires wastewater treatment and transport. The grey WF savings are likely to be much
lower than the blue WF savings because of its insignificant contribution to the agricultural
sector to date. As such, grey water energy footprint savings is not considered in this study.
The details of the methods are summarized below:
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Step 1: WF savings
The total hypothetical WF of crops is calculated as follows:

HWFn = ∑m
i WFLi × Wi (1)

where HWFn is the total hypothetical WF of all types (n = 1, 2, 3; 1. Blue, 2. Green, and
3. Grey) in million m3 (Mm3) for m types of crops; WFLi is the hypothetical WF of crop i in
the local area (i.e., Saudi Arabia) in (m3/ton), and Wi is the gross weight of imported crop i
in million ton (MT). The total actual WF of crops for global average is calculated as follows:

AWFn = ∑m
i WFGi × Wi (2)

where AWFn is the total actual WF of all types in Mm3, WFGi is the global average of WF
(m3/ton), and Wi is the gross weight of imported crop i in MT. The total WF savings from
crop trade is calculated as follows:

WFSn = ∑m
i (WFLi − WFGi)Wi (3)

where WFSn is the total WF savings of WF type n (Mm3) by WF trade.
Step 2: Energy footprint savings
The energy requirements for water extraction in the case of local production is calcu-

lated as follows:
ECn = ∑l

j WFn × Pj × EIj (4)

where ECn is the energy consumption (in kWh) for water extraction and processing for
WF type (n). The WF is shown as WFn, and the energy intensity for irrigation is shown as
EIj, where j indicates the type of irrigation water collected from underground aquifers and
wastewater treatment plants. The percentage of irrigation by groundwater or wastewater
is shown as Pj (j = groundwater or wastewater). EIj indicates energy intensity (kWh/m3)
for irrigation type j. The total energy requirement for water extraction and processing is
calculated as follows.

EE = ∑n
i WFSn × ECn (5)

where EE is the total energy consumption for three WFSn in kWh.
The energy requirement for transportation of imported crops from outside Saudi

Arabia is calculated as follows:

ET = SEI × D × W (6)

where SEI is shipment energy intensity (Kwh/ton-km), D is distance (km), and W is the
weight (ton) of the crops. The distance (D) is approximated as the average distance from
four major grain exporters (i.e., Germany, Canada, Poland, and Lithuania) to Saudi Arabia.
The total energy savings (Kwh) from crop trades can be calculated as follows:

ES = EE − ET (7)

Step 3: Emission footprint savings
The emission savings through energy savings can be estimated as:

EFS = EFI × ES (8)

where EFS is the emission footprint savings in Kg-CO2, EFI is emission footprint intensity
(Kg-CO2/Kwh).

3. Results and Discussion

The production and import of four major cereal crops in the recent years are presented
in Figure 2. The wheat production was the highest in 2011 but gradually decreased until
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2015. By 2015, Saudi Arabia banned wheat production for two years (2016 and 2017). Wheat
production started again in 2018 on a limited scale to support the small-scale growers. On
the other hand, wheat imports fluctuated between 2 to 4 million tons (MT)/year (Figure 2).
Maize imports have been gradually increasing since 2011. However, the production is
relatively constant and much lower than the imports. Barley and rice are mostly imported,
and the local production of these crops is negligible.
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Figure 2. Major crop production and import for Saudi Arabia (source of data: International Grains
Council, [34]).

The WF of four main crops in Saudi Arabia and global averages are provided in
Figure 3. The local WF of rice is not available. The WF of crops in Saudi Arabia has a higher
value for the blue WF and a lower value for the green WF due to lower annual rainfall. The
hypothetical blue WFs of three major crops (i.e., wheat, maize, and barley) were higher
than the green and grey WFs. Thus, importing these major crops can save groundwater
extractions from aquifers.
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Figure 3. WF of Saudi Arabia and global average of WF (Hoekstra and Mekonnen 2010).

The total hypothetical WF for four major crops is calculated (Table 2). The wheat
WF was highest in 2011 and experienced a continuous decrease until 2015. The wheat
WF of production was very low during 2016 and 2017. The hypothetical WF of imported
and produced major crops is calculated for between 2011 and 2020 (Table 2). The wheat
import hypothetical WFs primarily rely on the blue type. The green and grey WFs comprise
a relatively small portion of the total WF. The local WF rates are not available for rice,
and the global averages are adopted, so the green WF is the dominant type in this case.
The barley and maize import WFs are also mostly the blue WF. However, the maize does
not have a grey WF. Analysis of a hypothetical WF indicated that they mostly consumed
groundwater if the imported products were produced locally. Among the four major crops,
only wheat and maize are produced locally to a considerable extent. The local production
of wheat WFs varied significantly over the years. The WFs of wheat approached to zero
during 2016 and 2017. On the other hand, the WFs of maize were stable over the years.

The green and blue WFs are consumable as these are not available after use. The
consumable WFs for production and imports were calculated. The total consumable WF
was lower in 2012 (19,852 Mm3) and 2018 (23,080 Mm3) compared to the years before and
after these years, respectively (Figure 4). There was a significant rise in total consumable
WF in 2015 (27,387 Mm3), attributed to the increased import of barley. The total consumable
WF of the selected crops was dominated by imports (Figure 4).
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Table 2. Hypothetical WFs for imports and production, in a million m3 (Mm3).

Import

Crop Type of WF 2011 2012 2013 2014 2015 2016 2017 2018 2019

Wheat
(Durum)

Green 691.3 500.6 834.3 882.0 739.0 929.7 858.2 739.0 882.0

Blue 3170.3 2295.7 3826.2 4044.8 3388.9 4263.5 3935.5 3388.9 4044.8

Grey 535.9 388.1 646.8 683.8 572.9 720.8 665.3 572.9 683.8

Rice

Green 1983.6 2148.9 2314.2 2644.8 2148.9 1983.6 2148.9 2314.2 2314.2

Blue 590.1 639.3 688.4 786.8 639.3 590.1 639.3 688.4 688.4

Grey 322.9 349.9 376.8 430.6 349.9 322.9 349.9 376.8 376.8

Barley

Green 1664.8 1587.4 1742.3 1587.4 2168.2 1568.1 1529.3 1277.7 1297.0

Blue 6878.7 6558.8 7198.6 6558.8 8958.3 6478.8 6318.8 5279.0 5359.0

Grey 1951.6 1860.8 2042.3 1860.8 2541.6 1838.1 1792.7 1497.7 1520.4

Maize
(corn)
starch

Green 952.3 1052.5 1253.0 1553.7 1804.3 1704.1 2004.8 1904.6 2255.4

Blue 3299.2 3646.5 4341.1 5382.9 6251.1 5903.9 6945.7 6598.4 7813.9

Grey 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Production

Wheat
(Durum)

Green 286.1 214.5 166.9 166.9 190.7 0.0 0.0 119.2 166.9

Blue 1311.8 983.9 765.2 765.2 874.6 0.0 0.0 546.6 765.2

Grey 221.8 166.3 129.4 129.4 147.8 0.0 0.0 92.4 129.4

Maize
(corn)
starch

Green 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1

Blue 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6 173.6

Grey 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 

Figure 4. Trends of the consumable WFs of four major grains over the years.

Although green and blue WFs are precious and consumable, their values are not the
same considering WF sustainability. The green WF is renewable (rainwater). The blue
WF comes from scarce sources (non-renewable underground aquifers or surface water
stored in the dams or shallow aquifers), and some of these are barely renewable. Therefore,
extensive use of the blue WF may be a threat to sustainability. Crop production in Saudi
Arabia requires a significantly higher blue WF than global averages due to the scarcity of
rainfall and higher rates of evapotranspiration. The increased dependency on local crop
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production will require an additional blue WF. Therefore, Saudi Arabia can import crops
without exerting additional pressure on non-renewable water resources.

This study estimated water savings from wheat, barley, and maize considering global
perspectives. By importing crops, Saudi Arabia is saving the blue WF locally; however,
the production of the imported crops will cost the WF in the exporting countries. The WF
savings by crop imports in Saudi Arabia is presented in Figure 5.
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Figure 5. Saudi Arabia WF savings from the import of three major crops.

Overall, there is limited yearly WF savings in the greywater footprint compared to the
blue and green WFs (Figure 5). Further, the barley grey WF savings is positive, whereas it is
negative for wheat and maize. The reason for the barley grey WF being positive, unlike
the wheat grey WF savings and maize grey WF savings, is that the grey WF of barley is
lower than the global averages (Figure 3). This means when barley is produced locally
it pollutes less water compared to global averages, unlike wheat and maize. However,
there is a significant blue WF savings due to the import of the three main crops, and there
is a loss of the green WF due to crop imports as the green WF is wasted. Therefore, the
imports of cereal crops save the blue WF locally at the cost of the green WF in the global
perspective (Figure 5). The energy and emission footprint savings due to the trading of
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crops are shown in Figure 6. These savings have resulted due to the replacement of the
blue WF by the green WF. According to Figure 6, the energy savings due to the barley
trade was highest among the three crops from 2011 up to 2015, whereas after that the maize
trade resulted in the highest savings. Energy savings due to the wheat trade was the least
among the three crops that ranged between 1–1.9 billion Kwh/year. The WF savings leads
to energy and emission footprint savings. The emission intensity of 0.73 Kg-CO2/kWh for
Saudi Arabia was used to estimate carbon dioxide (CO2) footprint savings from energy
reduction [37]. The yearly CO2 footprint reduction due to crop imports was in the range of
5.80–8.66 MT during 2011–2019 (Figure 6), which is around 1.5% of Saudi Arabia’s total
yearly emissions [39]. Similar to the energy savings, the emissions savings due to barley
have been decreasing since 2015 while the opposite is true for maize. These fluctuations
can be attributed to the import of amount of imports of these crops (Table 2). The emission
footprint savings from wheat has a relatively stable trend between 2011 and 2019.
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Figure 6. Energy and emissions footprint savings due to crop trade in Saudi Arabia.

The Kingdom has been increasing energy and emission savings during the last few
years. However, water conservation and self-sufficiency have a trade-off. Typically, the
country imports different crop items from more than 70 countries [12]. Due to the diversified
supply chain, it is expected that the Kingdom’s food security may not suffer significantly
due to uncertainty in crop imports. However, it can only be verified through more detailed
analysis focusing on location of importing countries, type, price, and quantity of crop,
and mode of transportation. Recently, the Kingdom has been investigating diversified
ways to meet water demand in a sustainable manner including artificial cloud seeding [40].
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Therefore, the results of this study should be assessed with due consideration of other
available opportunities in the Kingdom to reduce WF, energy, and emission savings.

WF trading has been growing among countries including Saudi Arabia. Water-
intensive crop imports have reduced stress on the scarce groundwater resources of Saudi
Arabia. Therefore, the country may continue WF trading for achieving water sustainability,
by trading barley, wheat, maize, and rice. However, a nation’s extensive exports of water-
intense products will lead to water depletion and cause unsustainable solutions on a global
scale. Based on the results of this study, the local crop trades have been benefitting Saudi
Arabia without compromising global sustainability. On the other hand, being a water-scarce
country with significant energy reservoirs, Saudi Arabia faces the risk of embodied water in
energy export, water consumed by energy extraction, and transformation called embodied
water on energy resources. As a result, it faces water scarcity and water embodied in energy
lost due to energy export [41]. The crop-trading-related policies have a significant positive
impact on the WEF nexus.

4. Conclusions

Proper management of essential resources such as water, energy, and food requires
interaction among these resources. Policymakers can take advantage through incorporating
the nexus in these resources to optimize the trade-off and synergies among the resources
and protect environmental quality. In this study, water, energy, and food nexus dynamics
for few major crop trading were investigated for Saudi Arabia. This study quantified the
effects of crop trades on the savings of three types of WFs. Additionally, the WF savings
that would lead to energy and emission savings was investigated. The recent trades
of four major crops significantly improved WF savings, leading to energy and emission
footprint savings.

In recent years, the trade of crops has saved 1100 to 16,000 Mm3/year of blue WF
at the cost of probable green WF in the exporting countries. The savings will reduce
pressure on local groundwater resources. Further, the effects of crop trades on energy
consumption footprint and emission footprint savings were estimated. The energy savings
from trading three major crops (wheat, maize, and barley) in Saudi Arabia was around
9 billion kWh. This energy savings leads to emission savings of about 7 million tons of CO2
yearly. However, these results should be evaluated with appropriate consideration of other
available opportunities in the Kingdom to reduce WF, energy, and GHG emissions.

This study used the global averages to estimate WF indicators related to crop im-
ports. Nevertheless, water productivity differs among countries due to different rates of
rainfall and temperature. In the future, country-specific WF information can be used to
accurately identify the global impact of Saudi Arabia’s crop trades. Additionally, this study
considered the impact of trading the major crops. The other crops should be included in
future for exploring the impact of their trades on the WF, as well as energy savings and
GHG reduction.

Author Contributions: Conceptualization, M.T.K. and S.M.R.; methodology, M.T.K.; software, M.T.K.
and S.M.R.; validation, S.C., F.S.M.A.-I., S.P.T. and H.M.B.; formal analysis, M.T.K.; investigation,
S.M.R.; resources, M.T.K. and S.M.R.; data curation, S.M.R. and M.T.K.; writing—original draft
preparation, M.T.K.; writing—review and editing, S.M.R., M.S. and S.C.; visualization, M.T.K., S.M.R.
and S.P.T.; supervision, S.M.R. and S.C.; project administration, F.S.M.A.-I. and S.M.R. All authors
have read and agreed to the published version of the manuscript.

Funding: No funding was received for this paper.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data for this paper were received from publicly available sources
and the sources were mentioned in the paper.

99



Sustainability 2022, 14, 3494

Acknowledgments: The authors gratefully acknowledge the support of King Fahd University of
Petroleum and Minerals in conducting this research.

Conflicts of Interest: The authors declare that the research was conducted without any commercial
or financial relationships that could be construed as potential conflicts of interest.

References

1. Hoff, H. Global water resources and their management. Curr. Opin. Environ. Sustain. 2009, 1, 141–147. [CrossRef]
2. Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [CrossRef]
3. Postel, S.L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948. [CrossRef]
4. United Nations. The United Nations World Water Development Report 2015: Water for a Sustainable World—UNESCO Digital Library;

United Nations Educational, Scientific and Cultural: Paris, France, 2015.
5. Water Futures. Water Futures Report. Available online: http://www.sabmiller.com/docs/default-source/investor-documents/

reports/2011/sustainability/water-futures-report-2011.pdf?sfvrsn=4 (accessed on 3 June 2021).
6. Bob, M.; Rahman, N.A.; Elamin, A.; Taher, S. Rising Groundwater Levels Problem in Urban Areas: A Case Study from the Central

Area of Madinah City, Saudi Arabia. Arab. J. Sci. Eng. 2016, 41, 1461–1472. [CrossRef]
7. Brown, A.; Matlock, M.D.; Vörösmarty, C.J.; Douglas, E.M.; Green, P.A.; Revenga, C.; Ashraf, B.; Aghakouchak, A.; Alizadeh, A.;

Mousavi, B.; et al. Water Footprint Manual; Water Footprint Network: Enschede, The Netherlands, 2009.
8. Hoekstra, A.Y. Virtual Water Trade. In Proceedings of the Internacional Expert Meeting on Virtual Water Trade, Delft,

The Netherlands, 12–13 December 2002.
9. Daniels, P.L.; Lenzen, M.; Kenway, S. The ins and outs of water use—A review of multi-region input–output analysis and water

footprints for regional sustainability analysis and policy. Econ. Syst. Res. 2011, 23, 353–370. [CrossRef]
10. Perry, C. Efficient irrigation; inefficient communication; flawed recommendations. Irrig. Drain. 2007, 56, 367–378. [CrossRef]
11. Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of production and consumption. Ecol. Econ. 2011,

70, 749–758. [CrossRef]
12. Chowdhury, S.; Kabir, F.; Chowdhury, I.R.; Papadopoulou, M.P. Importing and Exporting Agricultural Crop Products:

An Assessment of Virtual Water Flow (VWF) in Saudi Arabia. Arab. J. Sci. Eng. 2019, 44, 4911–4920. [CrossRef]
13. Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region�.

Environ. Sci. Policy 2014, 39, 35–48. [CrossRef]
14. Al-Saidi, M.; Saliba, S. Water, Energy and Food Supply Security in the Gulf Cooperation Council (GCC) Countries—A Risk

Perspective. Water 2019, 11, 455. [CrossRef]
15. Chowdhury, S.; Ouda, O.K.M.; Papadopoulou, M.P. Virtual water content for meat and egg production through livestock farming

in Saudi Arabia. Appl. Water Sci. 2017, 7, 4691–4703. [CrossRef]
16. Kotilaine, J.T. GCC Agriculture. Economic Research. Available online: https://www.farmlandgrab.org/wp-content/uploads/

2010/05/20100301163254eGCC-Agriculture-Sector-March-2010.pdf (accessed on 3 June 2021).
17. Ji, L.; Huang, G.H.; Niu, D.X.; Cai, Y.P.; Yin, J.G. A Stochastic Optimization Model for Carbon-Emission Reduction Investment

and Sustainable Energy Planning under Cost-Risk Control. J. Environ. Inform. 2020, 36, 107–118. [CrossRef]
18. Sharifzadeh, M.; Hien, R.K.T.; Shah, N. China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas

(GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage.
Appl. Energy 2019, 235, 31–42. [CrossRef]

19. Lee, M.; Keller, A.A.; Chiang, P.-C.; Den, W.; Wang, H.; Hou, C.-H.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water
systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy
2017, 205, 589–601. [CrossRef]

20. Lv, J.; Li, Y.; Huang, G.; Suo, C.; Mei, H. Quantifying the impact of water availability on China's energy system under uncertainties:
A perceptive of energy-water nexus. Renew. Sustain. Energy Rev. 2020, 134, 110321. [CrossRef]

21. Li, X.; Liu, J.; Zheng, C.; Han, G.; Hoff, H. Energy for water utilization in China and policy implications for integrated planning.
Int. J. Water Resour. Dev. 2016, 32, 477–494. [CrossRef]

22. Liao, X.; Hall, J.W.; Eyre, N. Water use in China’s thermoelectric power sector. Glob. Environ. Chang. 2016, 41, 142–152. [CrossRef]
23. Liao, X.; Hall, J.W. Drivers of water use in China’s electric power sector from 2000 to 2015. Environ. Res. Lett. 2018, 13, 094010.

[CrossRef]
24. Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use

efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [CrossRef]
25. Karnib, A. Bridging Science and Policy in Water-Energy-Food Nexus: Using the Q-Nexus Model for Informing Policy Making.

Water Resour. Manag. 2018, 32, 4895–4909. [CrossRef]
26. Radmehr, R.; Ghorbani, M.; Ziaei, A.N. Quantifying and managing the water-energy-food nexus in dry regions food insecurity:

New methods and evidence. Agric. Water Manag. 2020, 245, 106588. [CrossRef]
27. Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.; Li, T. An optimal modelling approach for managing agricultural water-Tenergy-

food nexus under uncertainty. Sci. Total Environ. 2019, 651, 1416–1434. [CrossRef] [PubMed]

100



Sustainability 2022, 14, 3494

28. Zhou, Y.; Li, H.; Wang, K.; Bi, J. China’s energy-water nexus: Spillover effects of energy and water policy. Glob. Environ. Chang.
2016, 40, 92–100. [CrossRef]

29. Zhai, M.; Huang, G.; Liu, L.; Zheng, B.; Guan, Y. Inter-regional carbon flows embodied in electricity transmission: Network
simulation for energy-carbon nexus. Renew. Sustain. Energy Rev. 2020, 118, 109511. [CrossRef]

30. Al-Zahrani, M.; Musa, A.; Chowdhury, S. Multi-objective optimization model for water resource management: A case study for
Riyadh, Saudi Arabia. Environ. Dev. Sustain. 2015, 18, 777–798. [CrossRef]

31. MOEP (Ministry of Economy and Planning). Ninth Development Plan, 1431–1435 H (2010–2014); Ministry of Economy and
Planning: Riyadh, Saudi Arabia, 2010.

32. FAO. Saudi Arabia Country Profile; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2008.
33. Christopher, N.; García Téllez, B. Energy for Water in Agriculture: A Partial Factor Productivity Analysis; King Abdullah Petroleum

Studies and Research Center (KAPSARC): Riyadh, Saudi Arabia; p. 2016.
34. Urueña, R. International Grains Council. In Handbook of Transnational Economic Governance Regimes; Brill Nijhoff: Leiden,

The Netherlands, 2010; pp. 695–703.
35. Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst.

Sci. 2011, 15, 1577–1600. [CrossRef]
36. Von Knorring, H.J.; Karisson, R. Air Pollution and Energy Efficiency; International Maritime Organization (IMO): London, UK, 2016.
37. Climate Action Tracker (CAT). Saudi Arabia. PEI Power Engineering International (Vol. 13), 2016. Available online:

https://climateactiontracker.org/countries/saudi-arabia/sources/ (accessed on 16 January 2021).
38. Oki, T.; Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 2004, 49, 203–209. [CrossRef]
39. Worldometer. Saudi Arabia CO2 Emissions—Worldometer. Available online: https://www.worldometers.info/co2-emissions/

saudi-arabia-co2-emissions/ (accessed on 16 January 2021).
40. Alam, T.; Khan, M.A.; Gharaibeh, N.K.; Gharaibeh, M.K. Big Data for Smart Cities: A Case Study of NEOM City, Saudi Arabia.

In Smart Cities: A Data Analytics Perspective; Springer: Cham, The Netherlands, 2021; pp. 215–230. [CrossRef]
41. Zhang, J.C.; Zhong, R.; Zhao, P.; Zhang, H.W.; Wang, Y.; Mao, G.Z. International energy trade impacts on water resource crises:

An embodied water flows perspective. Environ. Res. Lett. 2016, 11, 074023. [CrossRef]

101





Citation: Elkhidir, L.; Khan, K.;

Al-Muhaini, M.; Khalid, M.

Enhancing Transient Response and

Voltage Stability of Renewable

Integrated Microgrids. Sustainability

2022, 14, 3710. https://doi.org/

10.3390/su14073710

Academic Editor: Pablo García

Triviño

Received: 27 January 2022

Accepted: 9 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Enhancing Transient Response and Voltage Stability of
Renewable Integrated Microgrids

Luay Elkhidir 1, Khalid Khan 1, Mohammad Al-Muhaini 1,2 and Muhammad Khalid 1,2,3,∗

1 Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM),
Dhahran 31261, Saudi Arabia; g201707630@kfupm.edu.sa (L.E.); g201604320@kfupm.edu.sa (K.K.);
muhaini@kfupm.edu.sa (M.A.-M.)

2 Center for Renewable Energy and Power Systems, KFUPM, Dhahran 31261, Saudi Arabia
3 K.A. CARE Energy Research & Innovation Center, Dhahran 31261, Saudi Arabia
* Correspondence: mkhalid@kfupm.edu.sa

Abstract: Integration of renewable generation coupled with an energy storage system (ESS) in a
power system increases the complexity of networks’ stability analysis and control. Therefore, an
accurate stability assessment of power networks is expected to become a big challenge in the future.
In this work, an effective approach to prevent power outage by controlling the source voltage of the
power network is formulated to mitigate the effects of grid faults. Small signal stability studies are
conducted on a renewable integrated IEEE 9 bus system as a case study with optimized size and
allocation of ESS for reducing output power variability of renewables. An assessment is performed
to study the effects of load-sharing devices on parallel generators under 6-cycle three-phase fault
disturbances. The damping of the power network is increased at nominal and light loading conditions
with 6-cycle three-phase fault disturbances through coordinated power system stabilizer (PSS) and
static VAR compensator (SVC) at bus 9. The developed framework is extensively analyzed in steady-
state conditions using a load flow program. Based on the results obtained, the proposed coordinated
PSS-SVC device proves to possess comparatively better performance in terms of enhancing most of
the system response rate under various load conditions with overall improved stability.

Keywords: grid fault restoration; renewable microgrid; power system stabilizer; voltage stability

1. Introduction

Today, power system grids are more complicated and expansive, as electricity plays
an important role in almost all aspects of humankind. Therefore, it is pertinent to mitigate
the blackout probability and its period to increase the level of security and welfare. Small
signal stability is defined as “the ability of a power system to maintain synchronism under
small disturbance”. The impact of power quality appears in dynamic system and electric
power industry which can be significantly expensive [1]. Power quality is usually defined
as the ability of the power system networks to transfer a stable, uninterruptible, and
clean power supply with a pure noise-free sinusoidal waveform. Power system plants are
frequently exposed and sustain disturbances as they are non-linear dynamic systems. These
disturbances may lead to partial or blackout, which can produce severe consequences [2].

Nowadays, parallel standby power systems are used instead of single large generator
units. These backup power systems play an increasingly significant role in ensuring an
uninterrupted supply of power. Parallel operation of generator sets (parallel power systems)
provides many benefits such as reliability, expandability, flexibility, ease of maintenance,
and quality performance. Generally, the load shedding technique is investigated under
these operations [3,4]. Decades ago, the series capacitive compensation technique was used
for reactive power control and damping out the oscillations to improve the transmitted
power [5,6]. Then the use of automatic controls like power system stabilizers (PSSs) in large
power systems grids became essential to maintain stability. The power system stabilizer is
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used to provide supplementary feedback stabilizing control signals to the excitation system
for mitigating the electro-mechanical oscillations [7].

The concept of microgrid formulation facilitates exclusive control over selected inten-
sive problems associated with renewable integration [8–10]. Typically, a microgrid includes
control theory to sustain a distributed generator, energy storage system, and local loads.
The microgrid can be operated in an islanded as well as grid-connected mode [11]. This
allows the formation of a deregulated power network that is pertinent considering the
complexities of renewable integration. Hence, microgrid helps to increase renewable pene-
tration in the energy sector with enhanced control over the grid elements maintaining the
reliability and security of the supplied power [12–14]. Accordingly, further development
in power electronics has led to the large-scale incorporation of flexible AC transmission
system (FACTS) devices in electrical power plants [15]. This technique is one type of
variable series compensation which is very effective for enhancing stability as well as con-
trolling power flow in the transmission lines. The occurrence of electrical disturbances like
faults and lightning are damped out by incorporation of static VAR compensator (SVC) in
combination with PSS and automatic voltage regulators (AVR) in large power systems [16].

A variety of energy sources with different characteristics decreases the techno-economic
significance of renewable energy sources (RES) primarily due to their time-varying energy
capacity [17]. For instance, solar PV energy is available during the day, so at night other
alternatives or energy storage support are pertinent. Similarly, wind energy systems also
impose similar challenges and limitations usually attributed to their unpredictable vari-
ability. Such time-varying complexity of RESs makes the integration of energy storage
systems (ESS) and dispatchable energy sources pertinent, especially for autonomous RES
applications (Figure 1) for various applications, such as appropriate energy mix, ensuring
reliability, and reducing operational costs of sustainable energy system [18–20].

Figure 1. Standalone hybrid energy systems.

The benefits of ESSs are substantial and have long been recognized to be essential
towards a coordinated and successful operation of utility grids. Power storage systems
mostly include batteries, flywheels, pumped hydro-power storage, supercapacitors, and
compressed air energy storage [21]. ESS improves RES integration flexibility through peak-
shifting, mitigation of forecasting errors, providing frequency and voltage support among
other operational services [22]. Furthermore, expensive grid improvements or outages
due to unforeseen demand or any trip-off of any sources connected to the national grid
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network can be obviated [23–25]. Accordingly, the meager inertia, voltage, and frequency
support introduced due to RES integration can be further facilitated through hybridized
ESS [26–28]. In particular, the deteriorating power quality at the distribution level can
be obviated through dedicated energy management algorithms to optimally integrate
RESs in accordance with the requirements of the energy market, grid standards, and
contingencies [29–31].

In this study, a coordinated PSS-SVC is developed to enhance the stability of RES
integrated power networks with load sharing device that increases the damping by adding
more power system stabilizer value to the system. The main objective of this paper is
to enhance the transient stability of renewable integrated power networks. A modified
IEEE 9 bus system is considered with solar and wind energy integration incorporated with
an appropriate energy storage system that aims to mitigate renewable variability under
nominal and light loading conditions. Moreover, a comparative study is also presented
between the base case wherein the modified IEEE 9 bus system is incorporated with
individual PSS and SVC.

The remainder of the paper is organized as follows. Section 2 presents the related work
associated with PSS tuning using different algorithms. Section 3 formulates the equations
for stability and load shedding investigation and presents the modeling of the modified
IEEE 9 bus under study. Section 4 discusses the results obtained and presents numerous
stability studies based on light and nominal loading conditions, and with system fault
conditions, followed by the conclusion in Section 5.

2. Related Work

Tuning PSS parameters and input signal play an important role in small signal stability
investigations of microgrids. The main function of PSS is to produce a torque in phase
with the rotor speed deviation and compensate the generator terminal voltage by inserting
additional signal [32]. Artificial intelligence (AI) techniques over the last years have
been frequently used for PSS tuning. Artificial neural network (ANN) and their types
are employed as they can robustly perform based on incomplete data tasks for complex
problems while dealing with non-linear problems by easily learning from the historical
data. Several network structures have been contemplated for PSS design that includes feed-
forward neural networks, recurrent neural network [33], and pole shifting method [34–36].

In the last few years, optimization algorithms have also been developed and proposed
to solve PSS designing problems. Tabu search and genetic algorithm (GA) methods are
mentioned in [37] for designing PSS. They prove to be more advantageous as the resul-
tant solutions generated are not trapped at the local optimum. Another technique like
simulated annealing (SA) is illustrated in [36], for tuning the parameters of PSS. In similar
terms, numerous evolutionary and heuristic algorithms have been proposed for parameter
tuning of PSS, such as bacteria foraging (BF) process [38] and particle swarm optimiza-
tion technique (PSO) [39]. A new optimization algorithm that mimics a whale’s hunting
behavior known as whale optimization algorithm (WOA) is illustrated in [40] in tuning
PSS to shift the eigenvalues to a predefined stable zone. Most of the recent power system
stability researches investigate new approaches to enhance transient stability effectively
and efficiently [41].

However, there are certain limitations to these algorithms. The ANN technique
consumes a long training time to choose the number of layers and neurons in each layer
and exhaustive training is required [39]. The Pole shifting method imposes a memory
storage problem and the computational algorithms are highly complex. The SA method
may produce inaccurate results due to being trapped at the local optimum. The GA
method may require a long-running time depending on the complexity of the system. The
BF algorithm suffers from a delay in reaching the global solution because the algorithm
depends on random search directions. PSO has some limitations like partial optimism that
effects the speed and direction regulation. Moreover, the algorithm suffers from a weak
ability to search locally and that may inadvertently lead to trapping in local minimum
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solutions. Although PSS and SVC techniques are mature and prominent, it is also vital to
assess their implementation with renewable integration particularly coupled with energy
storage systems. An effective operation of PSS and SVC with renewable and energy storage
systems can play a significant role in appropriately outlining the potential stability of the
system that can be achieved by the system operators. This paper presents quantifiable
applicability of the PSS and SVC considering the system dynamics with the integration
of renewable energy sources and energy storage systems that is not considered in the
literature.

3. Problem Formulation and Proposed Framework

3.1. State Space Representation of the Power System Model

In control engineering, a state-space representation is a mathematical model of a
physical system as a set of variables of input, output, and state connected by differential
equations of the first order. “State space" refers to space whose axes are the state variables.
The state of the system can be represented as a vector within that space [42]. A set of n
first-order, nonlinear ordinary differential equations defined in (1) can describe the behavior
of a dynamic power system.

ẋ1 = f1(x1, x2 . . . , xn; u1, u2, . . . , ur; t) i = 1, 2, . . . , n (1)

where, n is the order of the system and r is the number of inputs. This can be written in the
following form by using vector-matrix notation as described in (2):

ẋ = f (x, u, t) (2)

The state equations of a power system with m number of power system stabilizers
and n number of machines can be represented as:

ẋ = Ax + Bu (3)

y = Cx + Du (4)

A =

⎡
⎢⎢⎣

δ f1
δx1

. . . δ f1
δxn

...
. . .

δ fn
δx1

. . . δ fn
δxn

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

δ f1
δu1

. . . δ f1
δur

...
. . .

δ fn
δu1

. . . δ fn
δur

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣

δg1
δx1

. . . δg1
δxn

...
. . .

δgm
δx1

. . . δgm
δxn

⎤
⎥⎥⎦ D =

⎡
⎢⎢⎣

δg1
δu1

. . . δg1
δur

...
. . .

δgm
δu1

. . . δgm
δur

⎤
⎥⎥⎦

(5)

where, A is the state matrix of size n ∗ n, B is the input matrix of size n ∗ r, C is the
output matrix of size m ∗ n and D represents the feedforward matrix of size m ∗ r (5). The
column vector u is the reference vector to the device. Furthermore, when the state variables
derivatives are not explicit time functions, the system is said to be autonomous. In this
case, (6) can be simplified to:

ẋ = f (x, u) (6)

Similarly, the output variables (4) that can be observed in the system can be expressed
in terms of the state variables and the input variables as:

y = g(x, u) (7)
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Therefore, the complex non-linear power systems and, hence, a set of non-linear
differential equations can be defined:

x =
[
δ, ω, E

′
q, Ef d, Vf

]
(8)

where, δ is the rotor angle of the generator, ω is the synchronous speed of the generator, E
′
q

is the, Ef d represents the internal voltage of the generator, and Vf is the excitation voltage
of the generator.

3.2. PSS Controller Structure

The PSS structure is represented in Figure 2. It consists of a gain constant, a washout
filter to serve as a high pass filter, a dynamic compensator to compensate for the phase
lag between the electric torque, and the excitation and limiter to prevent the excitation
system from entering the saturation mode. The transfer function of the PSS is therefore
expressed as:

ΔUi = ki
STw

1 + STw

[
1 + ST1i
1 + ST2i

][
1 + ST3i
1 + ST4i

]
Δωi (9)

Figure 2. Structure of power system stabilizer.

3.3. Operation of IEEE 9 Bus System under Study

An IEEE 9 bus system is considered for this study. It consists of three generators and
three loads as depicted in Figure 3. The tests are performed considering a time horizon of
24 h pertaining to its processed data [43]. Table 1 outlines the different loading conditions
assessed for the analytical comparative study.

Figure 3. IEEE 9 Bus system without renewable generation.

Further, the load shedding is developed considering two renewable energy sources in
the test system (wind turbines and PV cells) under AC power flow taking cost-minimizing
as an objective function is illustrated in (10). Correspondingly, the ESS is incorporated in
the network to mitigate the RES variability.

107



Sustainability 2022, 14, 3710

OF = ∑
i,t

ag

(
Pg

i,t

)2
+ bg

(
Pg

i,t

)
+ Cg+∑

i,t
VOLL

(
PLS

i,t

)
+ VWC

(
PWC

i,t

)
(10)

where, ag, bg, and cg are the fuel cost coefficients of the thermal generation units VOLL is
the value of the loss of load ($/MWh), Pg

i,t is the active power generated by the thermal
unit, VMC is the renewable energy sources, PLS

i,t is the active load shedding at time t from
bus i, and PWC

i,t denotes the curtailed power from the renewables at time t from bus i.

− Pmax
ij ≤ Pij(t) ≤ Pmax

ij (11)

Pmin
g ≤ Pg(t) ≤ Pmax

g (12)

Pg(t)− Pg(t − 1) ≤ RUg (13)

− Pg(t − 1)− Pg(t) ≤ RDg (14)

SOCi(t) = SOCi,(t − 1) + (Pc
i (t)ηc − Pd

i /ηd)Δt (15)

Pc
i,min ≤ Pc

i (t) ≤ Pc
i,max (16)

Pd
i,min ≤ Pd

i (t) ≤ Pd
i,max (17)

SOCi,min ≤ SOCi,t ≤ SOCi,max (18)

The developed framework is optimized using GAMS to obtain an optimal size and
allocation of ESS as presented in Table 2 for mitigating the impact of RES variability, and
correspondingly the turn ratios of the distribution transformer are reduced to decrease
the output voltage of the transformer. The optimization includes power balance equality
constraints [44], transmission line constraint (11), generation constraint (12), the genera-
tion ramp up (13), and ramp down constraints (14). Furthermore, the constraints of the
energy storage system include the charge/discharge characteristics, charge efficiency (ηc),
discharge efficiency (ηd), and charge/discharge capability that is limited by their maximum
power (15)–(18) [45]. The importance of the load shedding study is to avoid blackout points
associated with large cost payment as shown in Figure 4 [46]. Therefore, an assessment is
made after each optimization step to see the change in load and determine the value of the
voltage corresponding to which the system experiences a brownout.

Table 1. Load conditions for the IEEE 9 bus microgrid (p.u.).

Nominal Loading Light Loading

Generator P Q P Q

G1 1.7164 0.6205 0.9649 0.223
G2 1.630 0.0665 1.00 −0.1933
G3 0.85 −0.1086 0.45 −0.2668

Load P Q P Q

A 1.25 0.5 0.7 0.35
B 0.9 0.3 0.5 0.3
C 1.0 0.35 0.6 0.2
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Table 2. Output of GAMS code of optimal size and allocation of ESS for IEEE 9 bus microgrid.

Bus
Optimal Size Total Size

MW MWh MW MWh

5 6.4 12.8 48.3 174.7
6 41.8 161.9 48.3 1744

Figure 4. Input and output variables of AC power load flow.

3.4. Stabilization Paralleling and Load Sharing between Generators

If two or more generators are connected to a transmission line, assuming the frequency
is constant, the models of the generators can be lumped into an equivalent that is powered
by the sum of the individual mechanical torque output [47]. The block diagram represen-
tation of two parallel-connected generators in synchronous mode (Figure 5) depicts that
separate feedback is required for every corresponding loop (here, ω1 and ω2).

Figure 5. Block diagram of two generators connected in parallel in synchronous mode.

Accordingly, the average power of the two system generator sets with load sharing
can be represented as an equivalent wattmeter as shown in Figure 6. Therefore, line-to-
line voltage, line currents, and battery supply are considered as the inputs to the load
sharing unit.

The load-sharing unit output is a DC voltage corresponding to the actual load. All
parallel load-sharing units are connected via the parallel cable. To obtain the block diagram
of the load sharing circuit, each power measuring circuit is modeled as a voltage source
“battery” as shown in Figure 7. Hence, based on the circuit analysis, using Kirchoff’s
voltage law, on Figure 7, the voltage source representing the power measuring circuit has
a value of the corresponding generator’s electrical power (load) multiplied by a factor (k)
expressed as:

V1 = K1PL1 , V2 = K1PL1 (19)
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Figure 6. Equivalent load sharing unit.

Figure 7. Equivalent load sharing circuit configuration.

The current going through the circuit is:

Iij,t =
bVi,t

2
∠(δi,t +

π

2
) +

Vi,t∠δi,t − Vj,t∠δj,t

Zij∠Θij
(20)

where, b denotes the line susceptance, Vi,j is the voltage between the bus, δi,j represents
the voltage angle, Zi,j is the line impedance, Θi,j is the phase angle difference between
the current and voltage. The output of each difference amplifier (i.e., the voltage across
each resistor) (21) and (22). Consequently, based on these formulations the simplified block
diagram is developed as depicted in Figure 5. The resultant phase lag system for stabilizing
paralleling and load sharing generators are developed and incorporated into the test system
under study, that is systematically analyzed to observe the operational performance of
the overall system framework and optimization. The apparent power (23) of the system
is based on the current flow (I∗ij,t) which is the complex conjugate of the current phasor
flow between the modules. Accordingly, the active and reactive power flow of between
the connecting modules is determined; wherein, θi,j is the angle between the active and
reactive power the buses.

VR1 = I ∗ R1 =
(K1PL2 − K2PL2)R1

R1 + R2
(21)

VR2 = −I ∗ R2 =
−1

R1 + R2
(K1PL2 − K2PL2)R2 (22)

Sij,t = (Vi,t∠δi,t)I∗ij,t (23)
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Pij,t =
V2

i.t
Zij

cos(θij)−
Vi,tVj,t

Zij
cos(δi,t − δj,t + θij) (24)

Qij,t =
V2

i.t
Zij

sin(θij)−
Vi,tVj,t

Zij
sin(δi,t − δj,t + θij)− bVi,t

2
(25)

4. Results and Discussion

The proposed optimization framework is tested on a modified IEEE 9 bus system
(Figure 8). The average inputs values of renewable generation are 92 MW of PV array
power at bus 6 and 69 MW of wind power located at bus 5. Furthermore, considering a
constant impedance z corresponding to the varying frequency; S = V2/Z and S = P + jQ.
Therefore, the load power is square of the system voltage at constant impedance. Based on
this formulation the generator voltage is reduced by 1% in each step, by controlling the
power across the load until the generation voltage ratio induces a system brownout and
hence marks its critical voltage level. Based on the results obtained (Table 3), it was observed
in the lower voltage bound that a system collapse is experienced when the reduction of
voltage reached 2% of the nominal voltage of the corresponding bus (brownout voltage).

Figure 8. Circuit representation of the modified IEEE 9 bus microgrid under study.

Table 3. Characteristics of load power (MW and MVar) for each voltage ratio.

Voltage Ratio
(kV)

Load A Load B Load C

MW MVar MW MVar MW MVar

1 120.874 48.35 87.446 29.149 94.511 33.079
0.99 120.356 48.143 87.072 29.024 92.083 32.929
0.98 119.843 47.937 86.702 28.901 93.658 32.78
0.97 119.333 47.733 86.334 28.778 93.235 32.632
0.96 118.826 47.531 85.969 28.656 92.814 32.485
0.95 118.323 47.329 85.606 28.535 92.396 32.339
0.94 117.824 47.130 85.247 28.416 91.98 32.193
0.93 117.328 46.931 84.89 28.297 91.566 32.048
0.92 116.862 46.745 84.554 28.185 90.975 31.767
0.91 116.372 46.549 84.218 28.067 90.764 31.767
0.90 115.884 46.354 83.851 27.95 90.353 31.624
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4.1. Small Signal Stability Analysis

The small signal stability analysis was performed on the integrative combinations
of PSS and SVC to the microgrid. The step-wise procedure consists of data acquiring,
calculation of matrix A, along with its eigenvalues (λ) and participation factor, and applying
the PSS/SVC to the system and reassessing the damping of the system. The formal solution
of the state equations are obtained by solving for Δx(s) and evaluating Δy(s) (26) and (27).
The Laplace transforms of Δx and Δy are seen to have two components, one dependent
on the initial conditions and the other on the inputs. These are the Laplace transforms
of the free and zero-state components of the state and output vector. The poles of Δx(s)
and Δy(s)re the roots of the equation and the values of s that satisfy the condition (28)
are known as the eigenvalues of the matrix A, whereas (28) denotes the characteristic
equation of matrix A. The eigenvalues (29) are given by the scalar parameters for which
there exists a non-trivial solution (i.e., ψ = 0). The eigenvalues are written in the form
depicted in (30) and its determinant of provides the non-trivial solution. Finally, The n
solutions of λ = λ1, λ2, ...., λn are the eigenvalues of A.

Δx(s) = (sI − A)−1[Δx(0) + BΔu(s)] (26)

Δy(s) = C
adj(sI − A)

det(sI − A)
[Δx(0) + BΔu(s)] + DΔu(s) (27)

det(sI − A) = 0 (28)

Aψ = λψ (29)

(A − λI)ψ = 0 (30)

λ = σ ± jω (31)

ξ =
σ√

σ2 + ω2
(32)

The eigenvalues appear as real or complex conjugate pairs. A real value symbolizes
non-oscillatory mode, whereas positive and negative real eigenvalues denote aperiodic
monotonic instability and decaying mode, respectively with a greater value symbolizing
a faster decay rate. Similarly, every complex conjugate pair represents an oscillatory
mode (31). The real (σ) and imaginary (ω) values of the complex conjugate denote the
damping and imaginary component, respectively. A damped oscillation is represented with
a negative real value of the complex conjugate, while oscillation with increasing magnitude
is denoted by the positive real part [48]. Therefore, the frequency of the oscillation is
formulated by, f = ω

2π . The damping ratio (ξ) is useful in determining the rate at which the
amplitude of the oscillation decays (32).

Table 4 displays the nine-bus system frequency and oscillation profiles. The damping
ratio for mode 1 and mode 2 are characterized by weak damping, whereas mode 3 and mode
4 are characterized by strong damping. The resultant participation factors are summarized
in Table 5. Furthermore, Table 6 displays the participation factor, considering generators
having participation factors greater than 4% for weakly damped modes. Pertaining to
the synchronous Governing for G1 speed control system as shown in Table 7, the two
unstable eigenvalues of the generators (bolded), are recovered based on the pole placement
technique and a stable eigenvalues (with negative real parts) are achieved for the generation
control system.

Furthermore, unstable eigenvalues are observed during the synchronous mode opera-
tion G2 (Table 8), the results depict that the two interacting control systems are struggling
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in maintaining their desired speeds. Note that since the saturation effect was not included
in the analysis, the values of the mechanical torques will grow without limit. The G2
operation is unstable (bolded poles have positive real parts). This result showed that the
two interacting control systems are struggling in maintaining their desired speeds. Note
that since the saturation effect was not included in the analysis, the values of the mechanical
torques will grow without limit.

Table 4. IEEE 9 bus microgrid oscillation profile without the PSS.

Mode Eigenvalue Frequency (Hz) Damping (%)

1 −0.2945 ± 11.7009i 1.86 2.5159
2 −0.2208 ± 7.7531i 1.23 2.8463
3 −1.0023 ± 1.9023i 0.3 46.6145
4 −1.0775 ± 0.9651i 0.15 74.4886

Table 5. IEEE 9 bus microgrid participation factors for all the modes.

Mode 1 Mode 2 Mode 3 Mode 4

E
′
q1 0.0052 0.0052 0.0263 0.0263 0.4088 0.4088 0.1910 0.1910

E
′
q2 0.0206 0.0206 0.0048 0.0048 0.1535 0.1535 0.4998 0.4998

Ef d1 0.0004 0.0004 0.0056 0.0056 0.4003 0.4003 0.1865 0.1865
Ef d2 0.0044 0.0044 0.0016 0.0016 0.1507 0.1507 0.4924 0.4924
ω1 0.0770 0.0770 0.4201 0.4201 0.0096 0.0096 0.002 0.0023
ω2 0.4199 0.4199 0.0749 0.0749 0.0047 0.0047 0.0066 0.0066
δ1 0.0770 0.0770 0.4201 0.4201 0.0096 0.0096 0.0023 0.0023
δ2 0.4199 0.4199 0.0749 0.0749 0.0047 0.0047 0.0066 0.0066

Table 6. Participation factors for weakly damped modes.

Mode 1 Mode 2

ω1 0.0770 0.0770 0.4201 0.4201
δ1 0.0770 0.0770 0.4201 0.4201
ω2 0.4199 0.4199 0.0749 0.0749
δ2 0.4199 0.4199 0.0749 0.0749

Table 7. Eigenvalues for G1 speed control system.

Initial Eigenvalues Eigenvalues after Pole Placement

−111.78 −119.07
−99.26 −90.71
−26.01 −25.19
0.021 + 0.69i −1.01 + 2.98i
0.02 − 0.69i −1.02 − 2.98i
−0.14 −0.15

The saturation represents the high and low limits of the fuel valve of the diesel engine.
If the saturation is modeled, the valve of the second (decreasing) engine will be fully closed,
and the valve opening of the first generator set will settle to a value to produce a mechanical
power that matches all the electrical load in the network. This also impacts the operation of
G2 under paralleling and load sharing operation as the eigenvalues tend to be unstable.
Therefore, based on the developed phase-lag system, stable eigenvalues are generated to
reduce the sensitivity of the system under load sharing operation.

For mode 1, the participation factors of the speed and rotor angle of G2 have the
largest magnitudes indicating that these states (which are mechanical) have the greatest
participation in this mode. For mode 2, the participation factors of the speed and rotor angle
of G1 have the largest magnitude. At this point, the mode shape is not known. The mode
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shape can be quickly determined from the right eigenvector components corresponding to
state variables involved in the mode. Correspondingly, Table 9 shows the right eigenvector
components for the weakly damped modes.

Table 8. Stability of G2 generation using phase-lag system.

Unstable Synchronous Mode Unstable Synchronous
and Load Sharing Mode

Stability with Phase-Lag
System

−98.58 −100.09 + 415.54i −129.92
112.39 −100.09 − 415.54i −75.59
−111.12 −129.92 −20.41
−100 −75.59 −113.20
−25.97 −20.41 −97.67
−0.03 + 0.98i −5.55 + 4.81i −5.55 + 4.81i
−0.03 − 0.98i 5.55 − 4.81i −5.55 − 4.81i
−26.04 −32.99 −25.896
−0.14 ×10−8 −0.146 −2.5 × 10−14

3.28 + 2.15i −9.81 × 10−15 −0.15
3.28 − 2.15i −0.15 −1.09 + 0.22i
- - 1.09 − 0.22i

In the case of mode 1, the sign of the real part of the right eigenvector component
indicates that G1 swings against G2 yielding an inter-area oscillatory mode. For mode 2,
the sign of the real part of right eigenvector components indicates that G1 and G2 swing
coherently, yielding another inter-area oscillatory mode. Consequently, PSS is applied to
G1 as it has the largest participation in mode 2 as indicated in Table 5. The resultant new
system values after PSS insertion are shown in Table 10.

Table 9. Right eigenvector components associated with mode 1 and 2.

Mode Machine Affected/Right Eigenvector

1 G1/0.0002 − 0.0069i G2/−0.0006 − 0.0257i
2 G1/0.0004 − 0.0155i G2/0.0005 − 0.0106i

Table 10. IEEE 9 bus microgrid oscillation profile with integrated PSS in the microgrid.

Mode Eigenvalues Frequency (Hz) Damping (%)

1 −5.0135 ± 17.8121i 2.83 27.0938
2 −0.4108 ± 8.1018i 1.28 5.0638
3 −0.9165 ± 1.9103i 0.3 43.2572
4 −1.0356 ± 1.0097i 0.16 71.6001
5 −52.8288 0 100
6 −9.0226 0 100
7 −0.2016 0 100

Therefore, the PSS adds some stability to the system by enhancing the poor damping
modes observed in Table 4, i.e., for mode 1 from 2.51 to 27.09. Similarly, for mode 2 from
2.84 to 5.06. PSS added new modes to the system having no bad effect on the stability
of the system. For comparison purposes, the system eigenvalues with and without the
proposed PSS-SVC based controllers when applied individually and through coordinated
design for two loading conditions (nominal and light) are determined in Table 11 and
Table 12 respectively. The corresponding damping torque coefficient (Kd) versus the loading
variations are shown in Figure 9. It can be observed that the damping characteristics of
PSS outperforms SVC in terms at light loading conditions, whereas the coordinated PSS-
SVC design facilitates better overall damping characteristics across the loading conditions
highlighting comparatively better system stability. Conclusively, the microgrid damping
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is observably improved with effective coordination design with maximum estimated
Kd = 0.35 (1/s) compared to 0.05 (1/s) for individual PSS (Figure 9). We observe that the
microgrid plant does not help stabilize with individual SVC.

Table 11. System eigenvalues for nominal loading.

No Control PSS SVC PSS &SVC

0.5255 ± 6.5919i −4.88 ± 7.36i −4.714 ± 6i −7.61 ± 31.2i
−0.0795 0.550 0.6176 0.2369
10.694 ± 5.661i −4.77 ± 7.5i −4.72 ± 6.2i −21.3625
5.6612i 7.51i −20.223 −1.5361
- −101.03 −2.5441 −1.4023
- −0.400 −0.7052 −1.0797
- −0.2 −0.2 −1.0065
- - - −0.5401
- - - −0.3733
- - - −0.2002
- - - −0.2000

Table 12. System eigenvalues for light loading.

No Control PSS SVC PSS &SVC

0.0382 ± 0.3601i −1.03 ± 6.58i −0.66 ± 6.287i −2.6 ± 2.8i
−0.006 0.15 0.1047 0.6801
−10.207 ± 6.385i −8.96 + −7.08i −9.37 ± 6.554i −6.91 ± 16.7i
- 7.08i 6.5542i −0.69 + −0.08i
- −100.35 −20.08 −21.2253
- −0.4 −1.3933 −0.2001
- −0.2 −0.7989 −0.5226
- - −0.2 −0.3746
- - - −0.2
- - - -

Figure 9. Kd with PSS-SVC based stabilizer.

4.2. Nonlinear Time-Domain Assessment for Coordinated PSS and SVC Design under System
Fault Condition

To show the optimality and robustness of this coordinated design, the rotor angle
(δ), speed deviation (ω), electrical power (Pe), and machine terminal voltage responses
(Vt) are observed through an operational assessment carried out at the nominal and light
loading condition specified in Table 1 under a 6-cycle three-phase fault induced in the
system. As other generator parameters (Δω, P, Vt) are completely dependent on δ, the rotor
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angle of G1 connected (slack/swing bus) is used as an objective function under different
loading conditions. The simulation results obtained (Figures 10–17) clearly indicate that the
proposed coordinated PSS-SVC design outperforms both the individual designs in terms of
swing stability, overshoot (in most cases), and settling time.

The 6-cycle fault disturbance was cleared based on the rotor angle response with
nominal loading as depicted in Figure 10. The coordinated PSS-SVC design has a smaller
settling time which is 4.1 s compared to 5.5 s for individual PSS for reaching a steady state
operation. Furthermore, PSS-SVC observably has a better overshoot at almost 1.69 rad
as compared to 1.83 rad for individual PSS in dynamic state characteristics. In case of
individual SVC, the rotor angle response did not help toward system stabilization and,
hence, the 6-cycle fault disturbance was not cleared. In case of light loading conditions,
the rotor response was not able to stabilize the system for the individual SVC scenario
(Figure 11). On the other hand, the PSS-SVC comparatively experienced a shorter settling
time of almost 4 s, in comparison to the 5.3 s setting time experienced with individual
PSS design. The overshoot for PSS-SVC incurred at 1.6 rad, in comparison to 1.73 rad for
individual PSS in the dynamic state characteristics.
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Figure 10. Rotor angle response for 6-cycle fault with nominal loading.
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Figure 11. Rotor angle response for 6-cycle fault with light loading.

The speed response of the PSS-SVC is able to achieve system stability for nominal
as well as light loading conditions. In case of the nominal loading condition (Figure 12),
the settling time is observed at 3.6 s and 4.8 s respectively for PSS-SVC and individual
PSS designs. The overshoot values observed for both these dynamic design systems are
at 1.0 p.u. Accordingly, the settling time observed with PSS-SVC pertaining to speed
response in the light loading condition at 3.4 s with overshoot at 1.0 p.u. (Figure 13). On
the other hand, with similar overshoot value in case of individual PSS design, the observed
settling time to clear the 6-cycle fault disturbance is 5 s. In case of the speed response of
the individual SVC design scenario, the fault is not cleared and the system does not attain
stability in both the loading scenarios.
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Figure 12. Speed response for 6-cycle fault with nominal loading.
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Figure 13. Speed response for 6-cycle fault with light loading.

In case of electrical power response, the individual SVC integrative support system
response is unable to stabilize the system for both the nominal and light loading scenarios of
the IEEE 9 bus system under 6-cycle fault disturbance. A better performance with the PSS-
SVC electrical power response system is observed for setting time intervals that are at 4.1 s
and 4 s for the nominal and the light loading conditions respectively (Figures 14 and 15).
In comparison, the electrical power response of the individual PSS design respectively
observes a settling time of 4.2 s and 4.8 s for both the loading scenarios respectively.
However, the individual PSS outperforms in case of overshoot with the PSS-SVC incurring
a 1.34 p.u. and 1.39 p.u. in comparison to the individual PSS with 1.28 p.u and 1.31 p.u.
overshoot value respectively for the normal and light load system configurations.
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Figure 14. Electrical power response for 6-cycle fault with nominal loading.
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Figure 15. Electrical power response for 6-cycle fault with light loading.

Based on the results obtained pertaining to the terminal voltage as depicted in
Figures 16 and 17, the individual PSS and PSS-SVC support response have an overshoot
value of 1.22 and 1.04 p.u. during nominal loading, respectively. Accordingly, the terminal
voltage response for both PSS-SVC and individual PSS are achieved at similar time interval
of 4.2 s. Similarly, in case of light loading conditions of the IEEE 9 bus system, the PSS-SVC
voltage response incurred an overshoot value of 1.07 p.u. as compared to the individual
PSS terminal voltage response that reaches an overshoot of 1.21 p.u. with both having
a settling time of 4.8 s. Furthermore, the individual SVC is observed to have the worst
performance and is unable to clear the 6-cycle fault disturbance in both scenarios of the
loading conditions.

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

T
er

m
in

al
 v

ol
ta

ge
 (

p.
u.

)

PSS-SVC
PSS
SVC

Figure 16. Terminal voltage response for 6-cycle fault with nominal loading.
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Figure 17. Terminal voltage response for 6-cycle fault with light loading.

Based on the calculated eigenvalues, the coordinated PSS-SVC is postulated to fa-
cilitate a better stability of the system with enhanced system responses. Furthermore,
these designs are tested and validated on a renewable integrated IEEE 9 bus system with
6-cycle fault condition. During the fault occurrence, rotor angle, speed, electric power, and
terminal voltage responses are evaluated for coordinated PSS-SVC, SVC, and PSS. While
the coordinated PSS-SVC is observed to have comparatively overall better performance,
PSS is observed to facilitate moderately better performance for speed response due to lower
overshoot value and similar performance pertaining to the settling time of PSS-SVC for the
terminal voltage response of the system.

5. Conclusions

This paper presents a coordinated PSS-SVC that was formulated to enhance the
stability of hybrid energy system consisting of renewables and energy storage systems. The
robustness of the proposed coordinated PSS-SVC design is verified under the most severe
disturbance, wherein they facilitate appropriate damping characteristics to the network.
The turn ratio of the distribution transformer was reduced to decrease the output voltage
of the transformer. The voltage of the three generators was reduced by 1% in each step
until blackout was reached and the brownout voltage was determined. The objective is to
assess and compare the small signal stability of the IEEE 9 bus system, before and after the
insertion of coordinated PSS-SVC design. The simulation results confirm the conclusion
drawn for damping torque coefficient analysis that solves the problem of low effectiveness
of the individual designs at light loading level. Furthermore, the systems were modeled
and analyzed using the state-space method and these systems are two generators connected
to a common load, each generator set with synchronous governing, and two generators are
connected to a common load, with speed droop (using load sharing module). Therefore,
based on an extensive comparative analysis performed with individual SVC and individual
PSS, the proposed method improved the network quality in terms of eigenvalues, poles,
and voltage profile.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial neural network
AVR Automatic voltage regulator
BF Bacteria foraging
ESS Energy storage system
FACTS Flexible AC transmission system
GA Genetic alogrithm
PSO Particle swarm optimization
PSS Power system stabilizer
RES Renewable energy sources
SA Simulated annealing
SVC Static VAR compensator
WOA Whale optimization algorithm
δ Rotor angle
Δω Deviation from the synchronous speed
Vt Terminal voltage of generator
x State variable vector
u, y Input and output vector
g Nonlinear function vector connected to u, y
A State matrix
B Input matrix
C Output matrix
D Feedforward matrix
ag,bg,cg Fuel cost coefficients of thermal unit g
OF Total operating costs ($)
Pg
(i,t) Active power generated by thermal unit g connected to bus i at time t (MW)
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VOLL Value of loss of load ($/MW h)
PLS
(i,t) Active Load shedding in bus i at time t (MW)

VWC Value of loss of wind ($/MW h)
PWC
(i,t) Curtailed power of wind turbine connected to bus i at time t (MW)

ΔUi Transfer function of the PSS at bus i
Tw Washout time constant
T((1,2,3,4)i) Compensation time constants
Kd Damping torque coefficient
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Abstract: Recently, hybrid wind/PV microgrids have gained great attention all over the world. It has
the merits of being environmentally friendly, reliable, sustainable, and efficient compared to its coun-
terparts. Though there has been great development in this issue, the control and energy management
of these systems still face challenges. The source of those challenges is the intermittent nature of both
wind and PV energy. On the other hand, a new intelligent control technique called Brain Emotional
Learning-Based Intelligent Controller (BELBIC) has garnered more interest. This paper proposes the
control and energy management of hybrid wind/PV microgrids using a BELBIC controller. To design
the system, simple power and energy analyses were proposed. The proposed microgrid was modeled
and simulated using MATLAB. The responses of the energy system were tested under two different
types of disturbances, namely step and ramp disturbances. These disturbances are applied to the
wind speed, the irradiation level of the PV, and the load power. The results indicate that the AC
load voltage and frequency are steady with negligible transients against the previous disturbance. In
addition, the performance is better than that of the classical PI controller. Also, energy management
acts perfectly to compensate for the intermittence and disturbances of the wind and PV energies.
On the other hand, the system robustness against model parameters uncertainties in the microgrid
parameters are studied.

Keywords: BELBIC; photovoltaic; wind energy; maximum power point tracking

1. Introduction

The beginning of this century was accompanied by worldwide industrial develop-
ment and a growing population. These issues increased the world’s electricity demand.
However, the traditional sources of electricity are not sufficient and have many environ-
mental problems [1]. Hence, renewable electricity resources (wind, solar, tidal, etc.) have
gained great consideration. Renewable electricity resources have many environmental
benefits. Nevertheless, it has a common disadvantage, namely intermittency [2]. Energy
intermittency may not be a big problem when the system is connected to a large utility grid.
However, isolated systems and small microgrids will suffer from this problem. One way to
solve the intermittency problem is the integration of two or more renewable resources by
introducing hybrid energy systems [3]. A common microgrid of such a type is the wind/PV
microgrid [4].

Though the wind and PV energy resources are not steady, they may integrate to reduce
the intermittency problem. Solar energy is available during the daytime. The availability of
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wind energy is not restricted to a certain time of the day. However, in some circumstances,
the wind energy at night is greater than during day. Therefore, there is some form of
integration between the two energy resources. Hence, for standalone applications, hybrid
wind/PV systems are considered reliable and feasible alternatives to battery-coupled solar
and wind-diesel systems [5].

Several research papers have been proposed for hybrid wind/PV systems [6–12].
Ref. [6] proposed a wind/PV system utilizing MPPT and fuzzy algorithms. The system’s
goal is to reduce storage requirements while also regulating load power. However, the
controller was complex and expensive. Ref. [7] suggested a hybrid wind/PV system
supplying an unbalanced load. The system has no storage, a simple controller, and extensive
field tests. In ref. [8], a new hybrid wind/PV energy system was investigated for agricultural
systems. Three different management algorithms were tested on the proposed power
system. The results show that system efficiency was best in making the battery charging
process have a priority over the system loads. A PWM rectifier is proposed by [9] to replace
the boost converter of the conventional wind/PV energy system. Also, a composite sliding
mode controller for load inverter was implemented for rural electrification applications.
An implementation of a wind/PV microgrid operated in dual AC and DC modes was
introduced by [10,11]. The control system adapted to the power exchange between AC and
DC microgrids. The microgrid supplies dynamic and domestic loads. Ref. [12] has proposed
a wind/PV microgrid with a distributed DC bus. The control system has implemented the
MPPT of the PV array and the wind turbine. Step changes in the nonlinear load are applied
to test the system performance.

Regarding wind/PV control systems, many control algorithms have been introduced
in the literature [13–15]. Nevertheless, the intelligent control of nonlinear systems has
gained great attention in the past decade [16]. Hence, widespread controllers of such types
have been investigated, such as neural networks, and fuzzy and neuro-fuzzy controllers [17].
They have many merits, such as parameter linearization, good learning capabilities, built-in
universal approximation, and model-free operation [18,19]. Therefore, it has too many
applications in robust control, nonlinear control, adaptive control, robotics, and decision
making [20–23].

A new controller called the brain emotional learning-based intelligent controller
(BELBIC) was recently proposed [24,25]. The idea of this controller was derived from
the computational model of the limbic system in the human brain [26]. It has various
applications in space vehicles, electric power systems, and automotive systems [27–29]. The
main advantages of the BELBIC controller are its good robustness, simplicity, effectiveness,
and flexibility in selecting the emotional cues and sensory inputs for a certain application.

There are some recently published works in the proposed subject. Ref. [30] provides an
intelligent energy management controller. It utilized a hybrid of fuzzy logic and fractional-
order PID techniques. The proposed controller ensured continuous output power for both
DC and AC loads. However, the harmonics of the load voltage and current are thought
to be high. Also, the proposed microgrid has not been tested against ramp disturbances.
Ref. [31] introduced a DC microgrid supplied by a hybrid wind-PV battery system. It used
the classical PID controller and utilized the SEPIC converter. However, the system has
a fair time response, and the load voltage has a steady-state error. Ref. [32] proposed a
hybrid wind/PV energy system with an optimal MPPT controller. The controller provided
energy management and tracked the peak power. Though the system was simple, its
optimality was not ensured. As compared to the previous work, the proposed microgrid
introduces a recently developed BELBIC controller to improve the energy management
and time response of the wind/PV standalone microgrid under different disturbances in
the insolation and wind speed as well as the load power. The disturbance types include
the step and ramp form. Also, the load power quality is measured and compared to
the standard values. It is thought that this is the first time the BELBIC controller was
applied to the wind/PV standalone microgrid. The novelty items of this work include the
energy analysis of the wind/PV microgrid, design of the system controllers (especially the
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BELBIC controller), and simulation of the system response under step/ramp disturbances
in the system load, wind speed, and solar radiation. The microgrid stability against model
parameters uncertainties and variations in the microgrid parameters are also studied.

In this paper, a new simple analysis and design of a hybrid wind/PV energy system
are proposed. A new simple analysis is investigated, generating closed-form design
relations that are derived for the design purpose. The controller of the proposed system
was designed based on the BELBIC control algorithm. The analysis and the design are
verified by modeling and simulations. The introduced system contains a wind turbine, a
PMSG, a rectifier, a PV array, two boost converters, a two-quadrant DC/DC converter, and
an Energy Storage System (ESS). The introduced system and controllers were simulated
using the MATLAB/Simulink platform. The research aims are:

1. Investigating simple energy and power analysis of the system. Hence, power and
energy closed-form relations are derived. Also, equations for the size of the ESS
are generated.

2. Designing the wind/PV microgrid for the BELBIC controller and other controllers.
3. Simulating and implementing the proposed system in the MATLAB platform. Then,

the system performance is tested under step and ramp changes in the system load,
wind speed, and solar radiation. Moreover, the system stability against model param-
eter uncertainties and variations in the microgrid parameters are discussed.

The paper structure is as follows: Section 2 explains the introduced system structure.
Section 3 gives the analysis of the introduced wind/PV microgrid. Section 4 presents the
power system design. The design of the controllers and BELBIC are presented in Section 5.
Section 6 discusses the simulation results. The conclusions are presented in Section 7.

2. Explanation of the Proposed Microgrid

The proposed wind/PV standalone microgrid is presented in Figure 1. It has two
renewable energy sources: wind and solar PV. Solar energy is available during the daytime.
The availability of wind energy is not restricted to a certain time of the day. However,
in some circumstances, the wind energy at night is greater than during day. Therefore,
there is some form of integration between the two energy resources. Nevertheless, they
do not generate steady energy due to the variations in the environmental state and solar
irradiation. These issues give the wind and solar energies their intermittence nature.
Hence, the utilization of the two resources increases the reliability and sustainability of the
microgrid. Moreover, the size of the ESS system will be reduced.

The wind system includes the wind turbine coupled mechanically to a 3-ϕ Perma-
nent Magnet Synchronous Generator (PMSG). The PMSG output is rectified through an
uncontrolled rectifier, generating an unregulated DC voltage. This voltage is supplied to a
boost converter. The function of the boost converter is to force the wind turbine towards
the MPPT conditions. The output of the boost converter is attached to the DC bus of
the microgrid.

The solar energy system consists of a PV array formed of three parallel stings. Each
string includes modules. The PV output is supplied to another boost converter. Also, the
boost converter is used to implement the MPPT conditions of the PV.

Due to the intermittent nature of the generated energy, ESS is usually utilized to
compensate for the energy intermittency problem. The ESS consists of a group of lead-acid
batteries connected in series and parallel to construct the required energy. These batteries
are connected to the DC bus via a bidirectional converter. Generally, that converter is a
DC/DC converter. Its function is to regulate the charge/discharge process of the ESS. Also,
that converter represents the main adjustment actuator for the DC bus voltage and the
microgrid energy balance.
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Figure 1. The proposed standalone Wind/PV microgrid.

3. Power Analysis of the Proposed Wind/PV Microgrid

The design of the system relies mainly on the power and energy relations of the system.
Hence, deriving these relations will aid the design procedure. In this regard, it is assumed
that the initial state of energy of the ESS (Ei), the load power of the microgrid (PL), the
swept area of the blades (A), the air density (ρ), and the average wind speed (v) are given.
The first step is the derivation of the average wind and solar power.

3.1. Average Wind Power

To get the annual average wind power (Pw) over a certain site:

Pw =
∫ ∞

0
p(v). f (v)dv (1)

where (p(v)) is the wind power at the wind speed (v), and (f (v)) is the probability density
function. Rayleigh is a common probability density function utilized for implementing the
actual wind speed statistics; it is defined as [33]:

f (v) =
πv
2v

e[−0.25π(v/v)2] (2)

The wind power as a function of the wind speed is given by:

p(v) = 0.5ρAv3 (3)

Substituting (2) and (3) in (1), and completing the integration, the formula becomes:

Pw =
3
π

ρAv3 (4)
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The average wind speed can be determined by gathering site data for a long time. If
the value of (v) is determined, the average wind power is also determined.

3.2. Average Solar Power

Assume that the instantaneous PV power (ppv(t)) of the array, as shown in Figure 2a,
is given by:

ppv(t) = Pm

(
1 − t2/36

)
(5)

where (Pm) is the maximum PV power and (t) is the time in hours. The solar energy is
provided to start at 6:00 AM and has a duration of 12 h.

Figure 2. (a) The daily PV array power and (b) the system power flow diagram.

The average PV power may be calculated as:

Ppv =
1
24

6∫
−6

Pm

(
1 − t2/36

)
dt =

1
3

Pm (6)

The daily peak power (Pm) is determined from the statistics of the solar insolation at
the specified site of the microgrid and averaged over the year.

The microgrid power flow diagram, presented in Figure 2b, generates the following
instantaneous equation:

ppv(t) + pw(t) = pL(t) + pb(t) (7)

where (pb(t)) is the instantaneous ESS power. Take the daily average of Equation (7), which
leads to:

Ppv + Pw = PL + Ei/24 (8)

As the average power of the ESS is supposed to be constant at (Ei/24).

3.3. Energy Analysis of the ESS

In this section, the instantaneous stored energy (Eb) can be determined by:
∫

dEb =
∫

pb(t)dt (9)

From (7), the instantaneous stored power is:

pb(t) =
{

Pm
(
1 − t2/36

)
+ pw(t)− pL(t)− 6 ≤ t ≤ 6

pw(t)− pL(t) 6 ≤ t ≤ 18
(10)

Assuming that the wind and the load power are constants at their average values:

pw(t)− pL(t) ∼= Pw − PL (11)
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Substituting (6), (8), and (10) into (9) and manipulating the integration:

Eb(t) =

{
1
3 Pm

(
6 + 2t − t3

36

)
+ Ei

(
1.25 + t

24
)− 6 ≤ t ≤ 6

(Ei − 8Pm)t 1
24 + 6Pm + 0.25Ei 6 ≤ t ≤ 18

(12)

Using traditional calculus, the maximum value of the stored energy takes place at:

tmax =

√
24 + 1.5

Ei
Pm

(13)

Hence, the maximum stored energy is given by:

Eb|max = Eb(tmax) (14)

The rated energy storage can be determined using (14). From this analysis, if the
required load power PL is given, then Equations (6), (8), and (14) can help to determine the
power rating of the system components. Based on the previous analysis, the PV power
and the ESS size can be determined. Assume that the load power demand and the wind
turbine power are given. Assume a suitable value for (Ei). Usually, the SOC of the ESS is
from 20% to 95% [34]. Hence, from (6), (8), and (14), the PV power and the ESS energy will
be determined.

4. The Control System Design

The proposed system controllers, shown in Figure 3, are the wind-PV MPPT, the ESS
and DC link voltage controller, and the load inverter controller. The functions of the MPPT
controllers are to extract the peak power from the wind turbine and PV array. They generate
the required duty cycle signal to the boost converter, which in turn loads the wind turbine
and the PV array with the MPPT load conditions. However, the ESS and DC link voltage
controller regulate the DC link voltage and the charge/discharge process of the ESS. The
third controller is used to regulate the load inverter voltage and frequency. The control
design of them will be discussed in the following subsections.

Figure 3. (a) The load inverter controller and (b) the storage and DC-link voltage controller.
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4.1. The Wind and PV Array MPPT Controllers

These controllers are important for better utilization of wind and PV energy. In the last
few years, many MPPT approaches for wind/PV hybrid systems have been introduced [35].
A common and frequently utilized approach is called “Perturb and Observe” (P&O). It
has the merits of simple implementation and a straightforward algorithm. Two boost
converters are used for this issue, one for the wind and another for the PV array. The
output of each MPPT controller is the value of the duty cycle switch of the boost converter.
The P&O algorithms for the two energy sources are identical. A flowchart for the P&O
algorithm is presented in [34].

4.2. Load Inverter Controller

The objective of this controller is to supply the load with AC power at a regulated
voltage and frequency. The control loop is shown in Figure 3a. The load 3-ϕ voltages are
measured and transferred to the d-q frame with the help of Phase Locked Loop (PLL).
The transferred d-q voltages are compared to their reference values. Then the resulting
error is fed to a simple PI controller. Hence, the PI controller gains are tuned using the
Ziegler–Nichols algorithm.

4.3. Storage and DC-Link Voltage Controller

Mainly, this controller aims to regulate the DC-link voltage that can be achieved by
controlling the charging of the ESS. It includes two nested loops, as shown in Figure 3b.
The outer loop adapts the DC-link voltage with the help of the BELBIC controller. However,
the inner loop controls the ESS charging current with the help of another BELBIC controller.
The output of the outer loop is the reference charging current of the inner loop. When the
ESS is fully charged, the controller ends the charging process and the MPPT controllers stop.

5. The BELBIC Controller Design

The BELBIC controller emulates the process applied by the brain to process emotions.
Its computational network includes the orbitofrontal cortex, amygdala, thalamus, and
sensory input cortex [29]. The schematic diagram of the BELBIC controller is shown in
Figure 4. The sensory input signals are handled and partially processed by the thalamus
section. The output of the thalamus is the input of the sensory cortex. It helps in subclassing
and favoritism of the thalamus output. The function of the orbitofrontal cortex is to prevent
unstable performances from the amygdala. The amygdala section helps in following up
the stimulus motion. Subtracting the amygdala and orbitofrontal cortex output signals
produces the BELBIC controller output. Each sensory cortex output (S) has one node (A) in
the amygdala. Another node is set to the thalamus output. Except for the thalamic node,
each stimulus has one node (O). The outputs of the amygdala and orbitofrontal cortex are
subtracted to form a common output node (MO).

Hence, the net output node MO is given by:

MO = ∑k Ak − ∑k Ok (15)

The orbitofrontal part does not ban the thalamic signal. On the other hand, the
other amygdala inputs are banned. Emotional learning, within the amygdala and the
orbitofrontal cortex, is defined as:[

ΔGAki
ΔGOk

]
=

[
αSkimax(0, REW − ∑ki Aki)

βSkRo

]
(16)

where

Ro =

{
max(0, ∑k Ak − REW)− ∑k Ok ∀REW �= 0

max(0, ∑k Ak − ∑k Ok) ∀REW = 0
(17)
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The two learning rules of (16) are similar. The node values are represented by:
[

Ak
Ok

]
=

[
GAk Sk
GOk Sk

]
(18)

Figure 4. Scheme of the BELBIC structure.

The BELBIC controller operates in two ways. The first way is to learn the amygdaloid,
then let it predict and respond to a certain REW. The second way is to direct the orbitofrontal
to track diversions between REW and the system’s predictions. Then it learned to ban the
output corresponding to the diversions.

The REW signal is implemented based on the cost function used:

REW = J
(
e, yp, Sk

)
(19)

Also, the sensory inputs are functions of the system outputs:

Sk = f
(
yp, u, r, e

)
(20)

where (u) is the controller output, (r) is the reference input, (yp) is the plant output, and
(e) is an error signal.

The amygdala and the orbitofrontal have the continuous updating weights given by:

[ dGAk
dt

dGOk
dt

]
=

[
αSk(REW − Ak)

βSk(Ak − REW − Ok)

]
(21)

6. The Simulation Results

The introduced hybrid wind/PV microgrid is simulated by the MATLAB/Simulink
platform. The introduced parameters of the microgrid are presented in Table 1.

The proposed wind/PV microgrid is simulated using the MATLAB/Simulink platform.
The simulation results of the proposed microgrid with the BILBIC controller, according to
step changes in the solar insolation, the wind speed, and load power, are shown in Figure 5.
Figure 5a shows the solar insolation level variations. It has 100% insolation during the first
second and drops to zero during the remaining time. The wind speed of the wind turbine
is presented in Figure 5b. It has step changes at the times 0.3 s, 0.6 s, and 1 s, respectively.
The wind turbine response is shown in Figure 5c, where the torque is directly proportional
to the wind speed. Figure 5d shows the state of charge of the ESS. The ESS is continuously
charging during the first second, then discharges. As the PV and wind power are available
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and sufficient until 1 s, the SOC increases. However, after (1 s) the energy is not sufficient to
supply the load. Hence, the ESS discharges to compensate for the energy drop. The PMSG
speed is presented in Figure 5e. It is proportional to the wind or the turbine speed, except
for some transients related to the turbine inertia. Figure 5f shows the ESS charging and
discharging currents. For the period from 0 to 0.3 s, the charging current is 35 A, which
is relatively high, as the PV energy is full and the wind energy corresponds to a 12 m/s
wind speed. For the period (0.3 to 0.6 s), the charging current is 25 A, moderate as the
PV energy is full and the wind energy drops. For the period (0.6 s to 0.8 s), the charging
current is 50 A high as the PV energy is full and the wind energy is full, corresponding to a
14 m/s wind speed. For the period (0.8 to 1 s), the charging current drops as the load is
increased. For the period from 0.8 to 1 s, both wind and PV energy are inhibited. Hence,
the ESS will compensate for them during this period. The load voltage and current are
shown in Figure 5g,h. They are sinusoidal with a stable frequency, and the voltage has a
constant amplitude despite all the disturbances.

Table 1. Proposed Microgrid Parameters.

Item Parameter Value

Wind turbine
Rated power 10 KW

Rated wind speed 12 m/s
wind speed range 3.5–25 m/s

PV
SC current 21.2 A
OC voltage 257.1 V
Max. power 5.4 kW

Load
Voltage 110 V

Frequency 50 Hz

Figure 5. Simulation results of the proposed microgrid with the BILBIC controller (a) wind speed,
(b) PV irradiation level, (c) wind turbine torque, (d) ESS battery SOC, (e) PMSG speed, (f) ESS battery
current, (g) load voltage, and (h) load current.

Figure 6 compares the DC bus voltage responses for the BELBIC and PI controllers
for the same microgrid. It tracks well with the reference voltage (300 V) for both con-
trollers. However, the response of the BELBIC is excellent. It has no overshoot and smaller
settling times.
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Figure 6. The DC link voltage response of the classical PI and BELBIC controllers.

To ensure robust stability against model parameter uncertainties, variations in the
microgrid parameters are altered. Where the temperature of the PV is increased by 10%,
the PV series resistance is increased by 10%, and the boost inductor of the wind MPPT
is decreased by 10%. Figure 7 shows the proposed microgrid response with the BILBIC
controller according to the previous step variations and under parameters uncertainties.
It is indicated in the figure that the proposed controller can stabilize the load voltage and
frequency with high accuracy, despite the modeling errors.

Figure 7. Simulation results of the proposed microgrid with the BILBIC controller under parameters
uncertainty (a) wind speed, (b) PV irradiation level, (c) wind turbine torque, (d) ESS battery SOC,
(e) PMSG speed, (f) ESS battery current, (g) load voltage, and (h) load current.

Figure 8 shows the spectrum analysis of the load current with the BELBIC and PI
controllers. The load current THD in the case of the BELBIC controller is 2.22%. However,
it is 3.68% in the case of the PI controller. The load current THD of both cases is lower than
the standards specified in [36]. Hence, the load current quality is better in the case of the
BELBIC controller than the PI controller.
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Figure 8. Spectrum analysis of the load current with the (a) BELBIC controller and (b) PI controller.

The simulation results of the proposed microgrid with the BILBIC controller according
to ramp variations in the solar insolation and the wind speed are shown in Figure 9. Also,
step load changes at 0.8 s, 1.25 s, and 1.63 s are presented. The wind speed of the wind
turbine has the ramp changes indicated in Figure 9a. Figure 9b shows the solar insolation
level ramp variations. It has a ramp increase of the insolation during the first 0.3 s, however,
the wind speed has a constant value (12 m/s) during this time. The ESS charging current is
increasing during this period, shown in Figure 9c, as the wind energy increases. During
the period (0.3 s < t < 0.8 s), the PV energy decays, and the wind energy increases. As the
energy rate of change is different, there is a drop in the generated power and the charging
current. During the period 0.8 s < t < 1.25 s, the PV energy is at 100% insolation, the wind
energy is very low, and load power is increased by 50%. The charging current drops during
this period. During the remaining period, the solar energy decreases and the wind energy
increases. However, the net generation is not sufficient to supply the load. Hence, the ESS
discharges to compensate for the energy drop and the charging current is negative.

Figure 9d shows the state of charge of the ESS. The ESS is tracking the charging current.
It is the integration of the charging current. Hence, when the charging current is positive,
the SOC increases and vice versa. Also, the load voltage and current, shown in Figure 9e,f,
have sinusoidal waveforms with stable frequency during all the disturbances.

Table 2 shows a comparative analysis of the extracted results with that of ref. [30]. It
can be noticed that the proposed system has the best performance over the others. The
disturbance function used in [30] was a simple one-step change in the wind speed. However,
complex multi-step disturbances in the wind speed and solar insolation are applied to the
proposed system. Also, the parameter uncertainties were not studied in [30].

135



Sustainability 2022, 14, 4775

Figure 9. Simulation results of the proposed microgrid with BILBIC controller under ramp variations
of the wind speed and solar insolation (a) wind speed, (b) PV irradiation level, (c) ESS battery current,
(d) ESS battery SOC, (e) load voltage, and (f) load current.

Table 2. Comparative analysis of the extracted results with that of ref. [30].

Controller Proposed BELBIC Fuzzy PID [30] PI

Disturbance complexity Complex simple Complex
Parameters uncertainty OK NA NA

DC link
Voltage response

Overshoot 0% 7% 9%
Error 0% 5% 0%

Load current THD 2.22% NA 3.68%

7. Conclusions

A hybrid wind/PV microgrid operating in standalone mode is proposed. The energy
management and control of the microgrid are based on the recent BELBIC control technique.
The microgrid includes a wind turbine, a PV array, two boost converters, an ESS system, a
bidirectional DC/DC converter, and a DC/AC load inverter. The MPPT conditions for both
the PV and the wind turbine are achieved using the P&O algorithm. A new simple analysis
and design of the microgrid energy system are introduced. Also, closed-form equations
for the system energies and ESS size are derived. The proposed wind/PV microgrid
is simulated using MATLAB. The simulation results indicate that the system responses
with the BELBIC controller are better than those of the conventional PI controller. The
system is tested with varying wind speeds, solar insolation levels, and load power. At all
disturbances, the load voltage is sinusoidal at constant amplitude and frequency with a
perfect response. The load current THD in the case of the BELBIC controller has a maximum
value of 2.22%. However, it is 3.68% in the case of the PI controller. The load current THD
of both cases is lower than the standards. The DC link voltage response with the proposed
controller has better performance than that of the PI controller. In addition, the energy
management of the microgrid and the charging/discharging processes of the ESS proved to
have perfect performance for energy compensation for all disturbances. On the other hand,
the wind and PV MPPT points are precisely tracked by their controllers. To ensure robust
stability against model parameters uncertainties, the temperature of the PV is increased by
10%, the PV series resistance is increased by 10%, and the boost inductor of the wind MPPT
is decreased by 10%. The proposed microgrid response with the BILBIC controller can
stabilize the load voltage and frequency with high accuracy despite the modeling errors.
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Abstract: Wind and solar energy systems are among the most promising renewable energy tech-
nologies for electric power generations. Hybrid renewable energy systems (HRES) enable the
incorporation of more than one renewable technology, allowing increased reliability and efficiency.
Nevertheless, the introduction of variable generation sources in concurrence with the existing system
load demand necessitates maintaining the power balance between the components of the HRES.
Additionally, the efficiency of the hybrid power supply system is drastically affected by the number of
converters interfacing its components. Therefore, to improve the performance of the HRES, this paper
proposes a robust sliding mode control strategy for both standalone and grid-connected operation.
The control strategy achieves maximum power point tracking for both the renewable energy sources
and stabilizes the DC-bus and load voltages irrespective of the disturbances, change in load demand,
variations of irradiance level, temperature, and wind speed ensuring an efficient energy management.
Furthermore, the solar PV system is directly linked to the DC-bus obviating the need for redundant
interfacing boost converters with decreased costs and reduced system losses. Lyapunov candidate
function is used to prove the asymptotic stability and the convergence of the entire system. The
robustness of the proposed control strategy is tested and validated under various conditions of HRES,
demonstrating its efficacy and performance under various conditions of the HRES.

Keywords: energy storage system; hybrid microgrid; nonlinear control; power management; solar
PV generation; wind power generation

1. Introduction

The need of renewable energy sources (RESs) in energy sector has progressively
increased due to the global concern over environmental preservation and ever-increasing
electric power demand. Therefore, RES technologies such as solar photovoltaics (PV), wind,
hydro, geothermal, etc., are progressively utilized in electric power generation as they
prove to be a more efficient and cheaper solution than conventional fuel-based generators,
especially solar and wind energy sources, in terms of Levelized cost of energy [1,2]. Solar
and wind energy sources are among the prominent RES technologies [3], attributable
to their low cost, availability, modularity, and technological maturity [4]. In addition,
recent advancements in power electronics technology enable a more flexible as well as
desirable operational control and integration of RES to the power grid with reduced
cost [5]. Nevertheless, large-scale RES integration is significantly limited due to their
intermittent nature and geographical dependency, that is, they are highly dependent on
ambient conditions such as wind speed, temperature, and degree of irradiance [6]. Such
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dependencies have a severely detrimental impact on the reliability and power quality of
the system [7–9].

Realization of hybrid renewable energy system (HRES) includes incorporation of
two or more power generation technologies [10]. Such HRES mitigates the intermittency
of individual RESs enhancing the overall operational efficiency [11], and optimizing the
capital investments through appropriate utilization of the available natural resources [12].
Wind and solar based HRESs have the dynamic capability to support the utility grid due to
the availability of moment of inertia in the wind generation system [13], and the reliability
of the power supply is increased due to the availability of multiple energy sources [14].
Besides, the complementary relationship between PV and wind energy sources ensures a
high probability of continuous power supply, i.e., the output from the PV panel is high and
the wind turbine power generation is low during the day. Accordingly, the PV production
is negligible, whereas the wind turbine output increases at night [15].

The PV-wind HRES system deals with the intermittency of both energy sources. Con-
currently, maximum power point tracking (MPPT) is vital for harnessing peak energy [16].
Energy storage systems (ESSs) store/supply the excess/deficient power generated by the
RESs [17]. This enables a degree of controllability over the intermittency introduced by
the variable RES and the loads. Seemingly, ESSs are proved to facilitate a multi-faced
solution in RES-based power systems in the form of bulk energy services, transmission
infrastructure services, customer energy management services, ancillary services, and off-
grid operations [18–20]. However, HRESs that are designed to operate in both standalone
and grid-connected modes needs to be meticulously operated to enable harnessing of
maximum power from the RESs while maintaining acceptable power quality standards in
terms of mitigating the impact of system uncertainties and maintaining acceptable voltage
levels across the grid [21–23].

This paper presents a non-linear, multi-input–multi-output (MIMO) robust sliding
mode control (SMC) for HRES consisting of wind/solar/battery. The control design
facilitates a unified single controller for a safe, reliable and seamless operation for both
standalone and grid-connected microgrid operation. A cost-efficient methodology is also
achieved by connecting the PV array directly to the DC-bus without the interfacing DC-DC
boost converter [24]. This approach facilities insights on the integration of hybrid renewable
energy sources into the grid for power system designers and operators to not only minimize
the cost of installation, but also to improve the efficiency of the PV output power in terms
of practical applications. Besides, the proposed approach does not require an islanding
detection system [25,26]. Thus, the drawbacks of islanding detection such as deviation in
current and voltage due to mismatch in frequency, phase, and amplitude [27–29], during the
switching between the islanded and grid modes are avoided. The outline and contribution
of this paper is summarized as follows:

1. The development of a unified non-linear sliding mode MIMO controller ensuring a
compliant, efficient, reliable, with low complexity, and safe operation of the compo-
nents of the HRES both in standalone and grid-connected modes of the microgrid.

2. Ensuring a continuous power supply through the DC-DC buck/boost integrated
ESS that allows power into and out of the battery with controlled charging and
discharging operation.

3. Obviation of redundant converter incorporation with the integration of wind/PV hy-
brid RES using a back-to-back (B2B) converter topology and direct interconnection of
solar PV to the DC-bus, hence facilitating higher efficiency and reducing power losses.

4. Formulation of autonomous MPPT operation for the solar and wind energy sources
that is operable on the rotor side converter (RSC) and grid side converter (GSC)
configuration of the B2B converter.

5. Investigation and evaluation of the proposed control architecture to perform following
function: (i) stabilize the DC-bus and load voltages under the fluctuations of the
generated RES power; (ii) achieving MPPT operation from solar and wind energy
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sources; and (iii) maintaining the power balance of the HRES during both on-grid and
off-grid operations.

The remainder of the paper is organized as follows: Section 2 presents the literature
review. The mathematical models of the HRES components are derived in Section 3.
The proposed power management architecture and MIMO sliding mode control scheme
are presented in Sections 4 and 5, respectively. The simulation results are discussed in
Section 6, followed by the conclusion in Section 7.

2. Related Works

The integration of HRES imposes numerous technical challenges on the utility grid
such as voltage regulation, management of active and reactive power flow, and introduction
of harmonics due to the integration of power electronic devices [30]. The variability of
renewable energy requires innovative solutions that lead to the incorporation of auxil-
iary support systems such as energy storage systems. The power generated by the solar
and wind energy sources are sporadically higher/lower to the load demand, and cur-
tailment/injection of power is required inevitably to maintain the power balance of the
grid [31]. Accordingly, a coordinated control framework is pertinent not only to mitigate
the impact of but to assure a unified operation between RES, grid, and auxiliary systems
while maintaining the power quality of the grid [32].

A novel and cost-effective technique based on fuzzy-PI methodology for energy
management in HRES is presented in [24]. The wind energy conversion system (WECS) is
integrated using a RSC and GSC architecture, and the PV is incorporated into the DC-bus
via a DC-DC converter. The rotor and stator currents are regulated through the proposed
fuzzy logic control (FLC). The corresponding PI gains are auto-tuned by the FLC, and
the DC-DC link is controlled to maintain the active power flow during normal operating
conditions and regulate the DC-bus during grid fault conditions. Therefore, the efficacy of
the proposed framework is validated to achieve minimized rotor over-currents, enhance
converter performance, protect wind/PV HRES during voltage disturbance, and minimize
torque and rotor variations.

Furthermore, a vector control method is presented in [33], for wind-PV grid-connected
B2B converters. This study proposes a separate MPPT algorithm for PV and WECS through
the RSC and GSC, respectively. The control vector approach utilizes the GSC to regulate
the DC-bus voltage under different operational modes. An adaptive least mean mixed
norm control technique [34], is proposed to reduce the impact of the stochastic components
in the HRES. The proposed control enables exclusive MPPT operation for PV/wind and
regulates the RSC and GSC to reduce the impact of the varying solar irradiance, wind
speed, and loads. The DC-bus voltage is regulated using a PI controller. This study presents
an experimental validation that improves the power quality by reducing the disturbances
and harmonic content. Nonetheless, the above studies did not utilize and collaborate their
control theories considering ESSs.

A dynamic modeling and operational control strategy for wind/solar RES is presented
in [35]. A multi-input current-source-interface DC-DC converter topology is proposed for
a sustainable power network that mitigates the impact of parametric variations of solar
irradiance and wind speed. The MPP for the wind and solar are achieved through variable
speed control and incremental conductance control methods, respectively. The ESS is
locally utilized as an energy buffer to reduce the effect of RES intermittency and support the
islanded microgrid operations in extreme grid conditions of blackouts and natural disasters.
The research in [36] developed an optimal fuel consumption technique for HRES that
consists of solar/wind/battery/diesel generation systems. The control framework proposes
a modified P&O MPPT technique for PV and ESS control that is incorporated through the
DC-DC converter. The RSC is designed to extract maximum power from the WECS using
field-oriented vector control [37]. The GSC is designed to perform load compensation,
reactive power compensation, harmonics compensation, and optimal utilization and control
of the diesel generators.

141



Sustainability 2022, 14, 5673

An MPPT algorithm is developed based on a sensorless approach for HRES consisting
of a doubly-fed induction motor (DFIG) and solar PV [38]. This proposition posits the
utilization of B2B converters to interconnect the standalone HRES. The system architecture
and control logic presented in the study obviates the need for additional sensing devices
ensuring an enhanced operation of PV-DFIG hybrid system with minimal errors that is
almost equal to zero. The P&O method is widely used for MPPT due to its simplicity
and ease of implementation [39–41]. Furthermore, the P&O technique can be sensorless
that additionally reduces the complexity and error, but requires intensive expertise of the
system parameters [42].

In [43], a robust fractional-order SMC is proposed for a variable speed wind turbine
to attain MPPT. A non-linear control approach is used to develop the SMC algorithm.
In comparison to the conventional SMC control algorithm, the authors postulated an
improved performance through the suppression of external disturbances and reduction
of overshoot. Similarly, an adaptive integral derivative SMC control theory is proposed
for MPPT operation for PV system [44]. The authors combined the traditional perturb
and observe (P&O) MPPT method with an SMC framework. The presented MPPT control
theory is demonstrated to successfully obviate the overshoot during abrupt fluctuation
of solar irradiance and reduce steady-state variations. Moreover, the controller gains are
adjusted using an adaptive mechanism to ensure appropriate operation under numerous
different irradiation levels.

In recent years, few results considering energy systems for grid-connected/on-grid
and standalone/off-grid operations have been published. A review of optimization tech-
niques for power generating systems operating standalone and grid-connected is presented
in [45]. The on-grid and off-grid operation of permanent magnet synchronous generator
(PMSG) driven wind turbine system is presented in [46]. The study posits a centralized
control strategy for RGC-GSC of the WECS and the bidirectional DC-DC converter of ESS.
Accordingly, a PI-fuzzy based power management scheme for wind/solar/battery HRES is
presented in [47]. The control unit operated based on supervisory control theory ensures
an enhanced efficiency performance both in off-grid and on-grid operations.

3. Mathematical Modeling

The hybrid renewable microgrid system consists of a PMSG wind turbine, solar PV,
battery energy storage system, and load. The microgrid is connected to the utility grid
through switch S1 that is placed between the load and the utility network as shown in
Figure 1. When the switch S1 between the load and the utility grid is opened, the system
is operating in standalone mode and is supplying to the load only. When the switch is
closed, the system is in grid-connected mode. The PMSG wind turbine is integrated into
the microgrid through the RSC of the B2B converter. The solar PV is directly connected
to the DC-bus. A diode is connected in series with the PV array to avert destruction as a
result of the reverse flow of current. Similarly, the battery energy storage system is tied to
the system at the DC bus and controlled through a DC-DC buck–boost converter.
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Figure 1. PV/wind/battery hybrid renewable energy system.

3.1. Wind Turbine Model

The mechanical power (Pw) captured by the wind turbine from the wind is given
by [48]:

Pw =
1
2

ρπR2Cp(λ, β)V3
w (1)

Cp(λ, β) = 0.5176(
116
λi

− 0.4β − 5)e
−21
λi + 0.0068λ (2)

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(3)

λ =
Rωr

Vw
(4)

dωr

dt
= J−1P[Tm − Te] (5)

where, Vw is the wind speed, Cp is the power coefficient, ρ is the air density, R is the radius
of the wind turbine, ωr is the angular speed of the wind turbine, the tip-speed ratio is
represented by λ, β is the pitch angle, J is the inertia of the mechanical shaft, Te and Tm are
the electrical and mechanical torque, respectively.

3.2. PMSG Model

The AC signals from the wind generation system are converted to DC using the RSC.
The model of the PMSG is formulated in the d-q reference frame considering the dynamics
of the RSC as follows [49]:

Vds = Ld
dIds
dt

− ωrLq Iqs + Rs Ids (6)

Vqs = Lq
dIqs

dt
+ ωrLd Ids + ωrΛr + Rs Iqs (7)

Te =
3P
2
[(Ld − Lq)Ids Iqs + Λr Iqs] (8)

where, Vds is the d-axis stator voltage, Λr is the rotor flux, Rs is the stator resistance, Vqs is
the q-axis stator voltage, Ld is the d-axis self-inducatnce, Ids is the q-axis stator current, Iqs
is the q-axis stator current, Lq is the q-axis self inductance, and Rs is the stator resistance.
For nonsalient PMSG, Ld = Lq.

3.3. Modeling of Solar PV Module

The series and parallel connected PV cells formulate the solar PV module that utilizes
the solar radiation to generate the DC voltage. In this respect, the equivalent circuit of the

143



Sustainability 2022, 14, 5673

PV cell comprises of a series resistor, parallel resistor, diode, and current source. The current
output of the solar PV is expressed as [33,50]:

Ipv = Np

(
Iph − Is

[
exp

(
qVD

Ns AKBT

)
− 1

]
− VD

Rsh

)
(9)

VD =
Vpv + Ipv

Ns
Np

Rse

Ns
(10)

Iph = [Isc + ψi(T − Tr)]
S

1000
(11)

Is = Irs

(
T
Tr

)3
exp

(
qEg

AKBT

[
1
Tr

− 1
T

])
(12)

where, Iph is the photo-generated current, Ipv is the PV output current, the leakage or
reverse saturated current of the diode is denoted by Is, Irs is the saturated current at
the operating temperature of the PV module, Ns and Np are the number of series and
parallel connected PV cells, q is the electron charge, VD is the diode voltage, A is the p-n
junction factor, Eg is the band gap energy of the semiconductor material used in the cell,
KB represents the Boltzmann constant, Isc is short circuit current of the PV module, T is
the ambient temperature, ψi is the temperature coefficient, S is the solar irradiance level,
Tr is the operating temperature of the PV module, Rse and Rsh are the equivalent series
resistance and shunt resistance of the PV cell, respectively.

Remark 1. A number of PV modules are used to obtain a considerable power. The desired reference
voltage of the DC-bus (V∗

dc), is obtained from the MPP voltage (Vmax
pv ) of the PV system. When the

irradiance is not available, the Vmax
pv is replaced by the nominal value of the DC-bus voltage.

3.4. DC-DC Converter and Battery Modelling

In this study, a Lithium-ion (li-ion) battery is considered as the ESS component in
the hybrid renewable microgrid. The ESS is incorporated into the DC-bus of the HRES
via a buck/boost converter, as depicted in Figure 2. The converter allows bi-directional
operation of the ESS, i.e., during ESS charging it operates as a buck converter and as a
boost converter during ESS discharging (13). The converter operates as a buck converter
during charging and as boost converter during discharging of the battery. Mathematically,
the converter dynamics during the charging mode of the battery is formulated as [51]:

Bmode =

{
0, if Ib < 0 (buck)
1, if Ib > 0 (boost)

(13)

Lb
dIb
dt

= Vb − IbRb − (1 − D1)Vdc (14)

Cdc
dVdc

dt
= (1 − D1)Ib − Igdc (15)

where, Lb is the battery inductance, Ib is the battery current, Vb is the battery voltage, Rb is
the internal resistance, D1 is the generated control signal during the charging mode of the
battery, Vdc is the DC-bus voltage, Cdc is the capacitance of the DC-bus, and Igdc is the DC
current of the GSC converter. Similarly, converter dynamics during the discharging (boost)
mode of the battery is expressed as:

Lb
dIb
dt

= Vb − IbRb − D2Vdc (16)

Cdc
dVdc

dt
= D2 Ib − Igdc (17)
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where, D2 is the generated control signal during the discharging mode of the battery.
Accordingly, standardization can be made to reduce the complexity of the battery model
to achieve general formulation using a virtual control (18). Hence, the overall generalized
model of the of the battery model (14)–(17) is achieved, that is expressed as:

D12 = [Bmode(1 − D1) + (1 − Bmode)D2] (18)

Lb
dIb
dt

= Vb − IbRb − D12Vdc (19)

Cdc
dVdc

dt
= D12 Ib − Igdc (20)

d(SoC)
dt

= − ηb
Qb

Ib (21)

Figure 2. Buck/boost converter associated with ESS.

The state-of-charge (SoC) of the battery (21) is derived using the battery capacity (Qb)
and the battery efficiency (ηb) [52]. The SoC of the battery is constrained by the lower
(SoCmin) and upper (SoCmax) limit of the battery capacity, as follows:

SoCmin < SoC < SoCmax (22)

Remark 2. The solution of (21) is SoC(t) = SoC(0)− ηb
∫

Ibdt
Qb

, where SoC(0) is the initial charge
of the battery. When the battery is charging, Ib is negative, and the SoC(t) is increasing. On the
other hand, when the battery is discharging, Ib is positive, and SoC(t) is decreasing.

3.5. GSC Modeling

The GSC is utilized to convert the DC signals to three-phase AC signals. Accordingly,
GSC facilitates the power flow between the ESS and grid enabling the controllability over
the load voltage, that is formulated in the d-q reference frame as [53]:

Vdi = Udl − L f ωg Iqi + L f
dIdi
dt

(23)

Vqi = Uql + L f ωg Idi + L f
dIqi

dt
(24)

where, Vdi and Vqi denotes the d-axis and q-axis output voltage of the GSC, respectively, L f
and ωg are the line filter inductance and grid electrical angular speed, respectively, Udl and
Uql are the d-axis and q-axis load voltages, respectively, Idi and Uqi are the d-axis and q-axis
GSC ouput currents.
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3.6. Grid Side Modeling

The grid circuit consists of L f , line inductance (Lg), RL load, switch (S1), and the
grid voltage. The leakage inductance of the transformer is included in Lg to simplify the
circuit. In order to obtain the expression of the load voltage in terms of the grid voltage,
the grid-side circuit is converted to the Thevenin’s equivalent [46].

If the load impedance (Zl) and the grid voltage (Ug) are given by Zl = Rl + jωgLl and
Ug = Udg + jUqg, respectively, then the Thevenin’s impedance (Zth) and voltage (Eth) are,
respectively, expressed as:

Zth =
jωgLg(Rl + jωgLl)

Rl + jωg(Lg + Ll)
(25)

Eth =
(Udg + jUqg)(Rl + jωgLl)

Rl + jωg(Lg + Ll)
(26)

where, Udg and Uqg are the d-axis and q-axis grid voltages Rl is the load resistance, and Ll
is the load inductance. The Rl and Ll are calculated from the power supplied to the load
as follows:

Rl =
3
2

U2
ll Pl

P2
l + Q2

l
; Ll =

3
2ωg

U2
llQl

P2
l + Q2

l
; (27)

where, Ull is the line-to-line root-mean-square voltage. The active power (Pl) and the
reactive power (Ql) of the load are computed using its relationship with the d-axis load
voltage (Udl) and current (Idl) as well as the q-axis load voltage (Uql) and current(Iql), as:

Pl =
3
2
(Udl Idl + Uql Iql); Ql =

3
2
(Uql Idl − Udl Iql) (28)

The following equations are the d-q-axis representation of the grid side load volt-
ages [46].

Udl = Rth Idi − ωgLth Iqi + Ethd (29)

Uql = Rth Iqi + ωgLth Idi + Ethq (30)

where, Rth represents the Thevenin’s resistance, Lth is the Thevenin’s inductance, Ethd and
Ethq are the Thevenin’s voltage in the d-axis and q-axis, respectively.

Remark 3. When the hybrid microgrid is in standalone mode, Eth = 0 and Zth = ZL. A robust
control law is essential to stabilized the load voltage when the hybrid microgrid is switching between
the standalone mode and the grid-connected mode.

3.7. Overall Model of the Hybrid Microgrid

To design a controller that can operate in both standalone and grid-connected modes,
the dynamic equations of the components of the hybrid microgrid are expressed in
state-space form. The system to be controlled is described by (5)–(7), (19)–(21), (23)
and (24). It is an eight-order nonlinear MIMO system that has six control inputs and
six controlled outputs. The state variables’ vector, the inputs’ vector, and the controlled
outputs’ vector are, respectively, defined as x = [ωr, Iqs, Ids, Idi, Iqi, Ib, Vdc, SoC]T ,
V = [Vqs, Vds, Vdi, Vqi, D12, Igdc]

T , and y = h(x) = [ωr, Ids, Udl , Uql , Ib, Vdc]
T . The dy-

namic equations of the hybrid microgrid system can be transformed to state-space model
as follows [54]:

ẋ = f (x) + g(x)V (31)

y = h(x)
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where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J−1P[Tm − Te]
[ωrLq Iqs − Rs Ids]/Ld

[−ωrLd Ids − ωrΛr − Rs Iqs]/Lq
Udl/L f − ωg Iqi
Uql/L f + ωg Idi

Vb/Lb
D12 Ib/Cdc

ηb/Qb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1

Ld
0 0 0 0 0

0 1
Lq

0 0 0 0

0 0 1
L f

0 0 0

0 0 0 1
L f

0 0

0 0 0 0 −Vdc
Lb

0
0 0 0 0 0 − 1

Cdc
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The input–output dynamics of the system is obtained by differentiating each output
element of y with respect to time until at least one control input emerges. It is worth noting
that ωr has been differentiated twice before the input appears, while each of the remaining
controlled outputs has been differentiated once. The input–output dynamics is thus:

⎡
⎢⎢⎢⎢⎢⎢⎣

ω̈r
İds
U̇dl
U̇ql
İb

V̇dc

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

F1
F2
F3
F4
F5
F6

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3P2Λr
2JLq

0 0 0 0 0

0 1
Ld

0 0 0 0

0 0 Rth
L f

−ωg Lth
L f

0 0

0 0 ωg Lth
L f

Rth
L f

0 0

0 0 0 0 −Vdc
Lb

0
0 0 0 0 0 − 1

Cdc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Vqs
Vds
Vdi
Vqi
D12
Igdc

⎤
⎥⎥⎥⎥⎥⎥⎦

= F(x) + G(x)V (32)

where,

F1 = −3P2Λr

2J
[ωrLq Iqs − Rs Ids]/Ld (33)

F2 = [−ωrLd Ids − ωrΛr − Rs Iqs]/Lq (34)

F3 = Rth(ωg Iqi − Udl
L f

)− ωgLth(−ωg Idi −
Uql

L f
) + Ėthd (35)

F4 = Rth(−ωg Idi −
Uql

L f
)− ωgLth(ωg Iqi − Udl

L f
) + Ėthq (36)

F5 =
D12Vb

Lb
(37)

F6 =
Ib

Cdc
(38)

The number of differentiation of each output is the relative degree of the output with
respect to its input. Therefore, the total relative degree of (32) is 8.
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3.8. MPPT Derivation
3.8.1. Wind Turbine MPPT

A P & O scheme is employed for the MPPT operation of the wind turbine. The maxi-
mum power point of the wind turbine (Ppw) can be computed as follows [55]:

dPw

dωr
= 0.5ρV3

w
dCp(λ, β)

dωr
= 0 (39)

By setting β = 0, Cp becomes a function of λ only. Therefore, dCp(λ,0)
dωr

is obtained as:

dCp

dωr
=

dCp

dλi
× dλi

dωr
(40)

Equation (39) can be rewritten as:

dCp

dωr
= 0.5ρV3

w

(
1260
λ3

i
− 114.39

λ2
i

)
e
−21
λi × VwR

(Vw − 0.035Rωr)2 (41)

From (41), the condition for maximum power is (Vw − 0.035Rωr) �= 0, then the
optimal value of the power coefficient (Cmax

p ) and optimum tip speed ratio (λopt) are 0.48
and 8.1, respectively.

3.8.2. PV MPPT

A P & O scheme is employed for the MPPT operation of the PV module. The output
power from the PV module (Ppv) is expressed as:

Ppv = IpvVpv (42)

At MPP, we have [44]:

dPpv

dVpv
= Ipv + Vpv

dIpv

dVpv
= 0 (43)

Maximum power is extracted from the PV using the formulated MPP, that determines
the corresponding DC-link voltage of the PVs. Similarly, the current enhanced centralized
power converters enable direct integration of PVs ensuring power quality standard of
operation [33].

4. Power Management

To prevent power shortage and damage of the microgrid components due to excess
power, an energy management system is designed to coordinate the power flow between
the grid power (Pb), Ppv, Pw, battery power (Pb), and the active load demand (Pl). The power
balance equation for the hybrid microgrid is written as:

Grid connected : Pb + Pw + Ppv = Pl + Pg (44)

Stand alone : Pb + Pw + Ppv = Pl (45)

It is worth noting that

Pg =

{
P−

g < 0 when receiving power
P+

g < 0 when sending power
(46)

The net power in the system (Pnet) can be computed as:

Pnet = Pl + Pg − (Pw + Ppv) (47)
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The charging and discharging modes of the battery depend on Pnet. When Pnet < 0,
the excess power generated is transferred to the battery (charging mode) provided that
SoC < SoCmax. When Pnet > 0, the power shortage is compensated by discharging battery
power to the load provided that SoC > SoCmin, otherwise load shedding is needed to
maintain power balance.

5. Control Design

In this section, the nonlinear MIMO robust control of the hybrid microgrid system is
designed. The presented control scheme works satisfactorily even under changing solar
irradiation and varying wind speed. The control objectives are outlined as follows:

1. Harnessing the maximum power from the wind by optimally regulating the rotor
speed, ωr, to track the wind speed variations.

2. Achieving a unity power factor operation at the PMSG stator terminals by control-
ling Ids.

3. MPPT operation of the PV module by controlling Vpv.
4. Meet the load voltage requirement by controlling the Udl and Uql .
5. Ensuring a smooth power management between the renewable energy sources, stor-

age system, load and grid by controlling Ib.
6. Regulating the DC-bus voltage by controlling Vdc.

Calculation of the Reference Signals

The reference variables for ωr, Ids, Udl , Uql , Ib, and Vdc are set as ω∗
r , I∗ds, U∗

dl , U∗
ql , I∗b ,

and V∗
dc, respectively. The reference values are calculated as follows [55]:

1. The ω∗
r is computed as follows:

ω∗
r =

λoptVw

R
(48)

2. The I∗ds can be generated as follows: The stator’s power factor angle (Θs) must remain
zero in order to obtain unity power factor. The PMSG’s stator current angle (ΘI) and
voltage phase angle (ΘV) are expressed by the following equations [56]:

ΘI = tan−1
(

Iqs

Ids

)
(49)

ΘV = tan−1
(

Vqs

Vds

)
= tan−1 ωrΛr − ωrLd Ids

ωrLq Iqs
(50)

Subsequently, I∗ds is computed such that the following condition is satisfied.

Θs = ΘV − ΘI = 0 (51)

The value of I∗ds is thus:

I∗ds =
Λr −

√
Λ2

r − 4LdLq I2
qs

2Ld
(52)

3. U∗
dl is selected to be equal to the grid voltage (U∗

dl = |Ug|) so that the grid can easily
synchronize with the microgrid at the point of common coupling.

4. U∗
ql is selected such that the reactive power is very close to zero. It is calculated

as follows:
Assuming the GSC is ideal, then the active power along the two sides of the GSC
are equal.

IgdcVdc = Pl + P−
g

= U∗
dl Idl + U∗

ql Iql + P−
g (53)
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Remark 4. Note that P−
g is the power received by the grid from the GSC as explained in (46)

and Igdc is the control input of Vdc.

From (53), U∗
ql can be derived as follows:

U∗
ql =

IgdcVdc − U∗
dl Idl − P−

g

Iql
(54)

5. I∗b is calculated by dividing Pnet in (47) with Vb as follows:

I∗b =
Pnet

Vb
(55)

6. V∗
dc is set as the MPPT voltage of the PV module (V∗

dc = Vmax
pv ). However, when the

solar irradiance is low, V∗
dc is set as the nominal voltage of the DC-bus. The nominal

value of the DC-bus voltage is calculated as [57]:

V∗
dc ≥

1.6
√

2Ull√
3mi

(56)

where mi is the modulation index.

The tracking errors are given as follows:

e1 = ωr − ω∗
r (57)

e2 = Ids − I∗ds (58)

e3 = Udl − U∗
dl (59)

e4 = Uql − U∗
ql (60)

e5 = Ib − I∗b (61)

e6 = Vdc − V∗
dc (62)

The sliding mode surfaces are defined as:{
ζ1 = ė1 + k1

∫
e1dt + γe1

ζi = ei + ki
∫

eidt, i = 2, 3, 4, 5, 6
(63)

where ki, αi (i = 1, 2, . . . , 6), and γ are positive constants. The time derivative of (63) yields:{
ζ̇1 = ë1 + k1e1dt + γė1

ζ̇i = ėi + kieidt, i = 2, 3, 4, 5, 6
(64)

Define the vector ζ = [ζ1, ζ2, ζ3, ζ4, ζ5, ζ6]
T . Then, (64) can be evaluated as follows:

ζ̇ = F + GV +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ω̈∗
r + k1e1 + γė1
− İ∗ds + k2e2
−U̇∗

dl + k3e3
−U̇∗

ql + k4e4

− İ∗b + k5e5
−V̇∗

dc + k6e6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(65)

The output variables will converge toward their respective sliding mode surfaces and
provide the desired steady-state performance by staying on the surfaces provided that
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ζi = ζ̇i = 0 (i = 1, 2, . . . , 6). The equivalent control input vector (Veqv) can be obtained by
canceling the terms on the right-hand side of (65).

Veqv = −G−1F − G−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ω̈∗
r + k1e1 + γė1
− İ∗ds + k2e2
−U̇∗

dl + k3e3
−U̇∗

ql + k4e4

− İ∗b + k5e5
−V̇∗

dc + k6e6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(66)

Since det(G(x)) �= 0, (66) is well defined. In order to compensate the external distur-
bances and parametric uncertainties, a switching control input vector is given by:

Vsw = −G−1α Sign(α) (67)

where α = diag(α1, α2, α3, α4, α5, α6) is a positive definite diagonal matrix, and Sign(ζ) =[
sign(ζ1), sign(ζ2), sign(ζ3), sign(ζ4), sign(ζ5), sign(ζ6)

]T
.

The robust control input vector is given by:

V = Veqv + Vsw

= Veqv − G−1α Sign(α) (68)

Figure 3 illustrates the RSC control for MPPT performance of the wind turbine and
wind power transfer with unity power factor. The GSC control scheme has a cascaded
control structure as shown in Figure 4. It consists of an outer DC-bus voltage controller
and an inner loop Uql controller to provide the pulse width modulation signals to the GSC.
Additionally, Udl is controlled through the GSC. Figure 5 depicts the control scheme for
the ESS buck/boost converter. The controller adjusts the duty cycle of the buck/boost
converter for charging/discharging operation of the ESS to balance the power.

Figure 3. Control diagram of the RSC.
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Figure 4. Control diagram of the GSC.

Figure 5. Control diagram of the buck/boost converter.

The state trajectories of the hybrid microgrid system achieves asymptotic convergence
based on the sliding mode surfaces (63) and the robust control inputs (68).

Proof. Consider the following candidate Lyapunov function:

L =
1
2

ζTζ (69)

The time derivative of L yields:

L̇ = ζT ζ̇ (70)

By substituting (65) and (68) into (70), the following equation is obtained.

L̇ = −ζTαSign(ζ) (71)
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Taking the norm of (71) gives:

L̇ ≤ −‖α‖.‖ζ‖ (72)

Therefore, the closed-loop system is asymptotically stable.

6. Simulation Results

The hybrid microgrid system was developed on Matlab/Simulink environment using
a time-domain simulation model. The harmonic effects of the converter have not been
considered in this study. The system comprises of a number of PV module arranged in
series and parallel to obtain a considerable output power of 1.2 MW, a nonsalient pole
variable speed PMSG with rated power of 2.45 MW is deployed as the generator, and a
li-ion battery is employed as the ESS. A discharging constraint of 10% < SoC and charging
constraint of SoC < 90% is employed to restrict ESS degradation [58,59]. The parameters
of the renewable generators and ESS are given in Tables 1 and 2, respectively.

Table 1. Parameters of the renewable generation system [44,60].

Wind Turbine Generator Solar PV Generator (KC200GH-2p)

Parameter Symbol Value Parameter Symbol Value

Air denisty
(kg/m3)

ρ 1.25 Ambient Temperature (◦C) T 25

Radius of wind
turbine (m) R 28.2

Maximum power
at MPP (W) PMPP

max 200

Maximum Voltage
at MPP (V) VMPP

max 26.3

d-axis stator
current (mH) Lds 9.8

P-N junction
factor A 1.8

Temperature coefficient
(mA/◦C) ψi 4.79

q-axis stator
current (mH) Lqs 9.8 Equivalent shunt

resistor (Ω) Rsh 313.33

Rotor flux
(Wb) Λr 28 Equivalent series

resistor (Ω) Rse 0.193

Inertia of Mechanical
Shaft (kg·m2)

J 4000

Short circuit
current (A) Isc 8.21

Maximum current
at MPP (A) IMPP

max 7.61

Number of
pole pairs P 8 Number of

parallel modules Ns 68

Optimum tip
speed ratio λopt 8.1 Number of

series modules Np 95

Power coefficient Cmax
p 0.48 Open-circuit

voltage (V) Voc 32.9

The performance of the proposed controller is evaluated based on external and inter-
nal disturbances experienced in the HRES. The variations in renewable power and load
demand are considered as the external disturbances and the internal disturbances includes
a parametric uncertainty of ±40% that is introduced into the nominal parameters of the
HRES components namely, on J, Λr, Rb, Cdc, and L f . The controller gains are chosen as
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K1 = K2 = 10, K3 = 8, K4 = 20, K5 = 12 and K6 = 50, α1 = 2, α2 = 3, α3 = α4 = 5,
and α6 = 15.

Table 2. Grid and energy storage parameters.

Battery Energy Storage System Grid Parameter

Parameter Symbol Value Parameter Symbol Value

Battery efficiency ηb 0.9 Filter inductance
(mH) L f 16.9

Battery
capacity (AH) Qb 100 Line inductance

(mH) Lg 1.69

Battery power
(MW) Pb 1 Load demand

(MW) Pl 2

Battery voltage
(V) Vb 500 Line-to-line

voltage (V) Ull 4000

Upper SoC
limit (%) SoCmax 90 DC-bus

capacitance (μF)
Cdc 1670

Lower SoC
limit (%) SoCmin 10

Two case studies have been investigated. In case 1, a random wind speed profile,
a constant solar irradiation level and load variation are considered. In case 2, step changing
wind speed profile, varying solar irradiation, and load variation are considered.

6.1. Case 1: Random Wind and Fixed Solar with Varying Load

The wind speed comprises of a random profile (Figure 6), 1000 W/m2 solar irradiance
is fixed (Figure 7). Figure 8 depicts the optimal tracking performance of the rotor speed. It
can be seen that the proposed controller closely tracks the optimal rotor speed calculated
by the MPPT so that maximum power is produced by the PMSG. The response of the
d-axis stator current for unity power factor operation is depicted in Figure 9. The DC-bus
is receiving contribution from the solar PV, the wind power generator, and the ESS. The
response of the DC-bus voltage together with the reference value which is the same as the
MPPT voltage of the solar PV is shown in Figure 10. The controller can keep the DC-bus
voltage stable and very close to the reference value despite the variation of the wind power,
the ESS power, and the load demand.

As shown in Figure 11, an increment in the load demand at t = 10 s is experienced
that rises from 2 MW to 2.8 MW, and further decreases to 1.9 MW at t = 20 s. The grid is
receiving and sending power at 0 s < t ≤ 9 s and 30 s < t ≤ 40 s, respectively, and the hybrid
microgrid is off-grid at 9 s < t ≤ 30 s. In order to maintain the power flow, the battery is
charging to store the excess power at 0 < t ≤ 10 s and 20 s < t ≤ 30 s. Similarly, the battery
is discharging to the load at 10 s < t ≤ 20 s and 30 s < t ≤ 40 s. Figure 12 indicates that the
battery is charging/discharging according to the desired level to balance the power in the
microgrid within the acceptable SoC limit. An increment in load voltage is experienced at
t = 9 s due to off-grid operation of the HRES during power receiving mode and at t = 20 s
due decrease in load demand. Similarly, the load voltage decreases at t = 10 s due to the
increase in the load demand and at t = 30 s due to connection of the grid to the HRES
during the power transferring mode (Figures 13 and 14).
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Figure 6. Case 1: Random wind speed profile.

Figure 7. Case 1: Constant solar irradiation.

Figure 8. Case 1: Rotor speed.
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Figure 9. Case 1: d-axis stator current.

Figure 10. Case 1: DC-bus voltage.

It can be observed that the controller can restore the load voltage to the desired
level regardless of the load demand variations and at the transition intervals of the HRES
between the standalone and grid-connected modes. Moreover, the controller keeps Uql
close to zero to minimize the reactive power. The transition of the system from islanded to
grid-connected mode and vice-versa are smooth due to the robustness and accuracy of the
proposed controller.
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Figure 11. Case 1: Power flow.

Figure 12. Case 1: The battery current (above) and the SoC (below).
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Figure 13. Case 1: d-axis load voltage.

Figure 14. Case 1: q-axis load voltages.

6.2. Case 2: Step Change in Wind and Solar with Varying Load

In this case, a step changing wind speed profile and solar irradiance level are consid-
ered. As depicted in Figure 15, the wind speed rises from 7.7 m/s to 9.2 m/s, 11 m/s and
finally decreases to 10.1 m/s at t = 8, 15 and 22 s, respectively. The solar irradiance level
decreases from 1000 W/m2 to 965 W/m2, 933 W/m2 and finally increases to 1000 W/m2

at t = 10 s, 15 s and 20 s, respectively (Figure 16). The rotor speed follows the desired
speed under varying wind conditions (Figure 17), which indicates that the PMSG is ro-
tating at the optimal speed computed by the MPPT algorithm ensuring maximum power
generation under variable wind speed. The d-axis stator current tracks the desired current
accurately as depicted in Figure 18, that allows wind power transfer with a unity power
factor. Furthermore, results obtained using PI controller is also presented in this section.
The comparative analysis highlights the performance between the proposed controller and
benchmark PI control technique [33] based on the calculated optimal values of ωr, Ids, Vdc,
Ib, Udl , and Uql .
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Figure 15. Case 2: Random wind speed profile.

Figure 16. Case 2: Varying solar irradiation.

Figure 17. Case 2: Rotor speed.
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Figure 18. Case 2: d-axis stator current.

The irradiance level falls to 965 W/m2 and 933 W/m2 at 10 s < t ≤ 20 s. During this
interval, the PV MPPT voltage also falls, and thus the reference DC-bus voltage is set as the
nominal value instead of the PV MPPT voltage to maintain a constant DC-bus voltage. It
can be observed that the proposed controller keeps the DC-bus voltage stable and constant
value under varying PV power, wind power, and load demand as depicted in Figure 19.
The load demand profile is similar to case 1 as shown in Figure 20. The utility grid is
receiving power at 0 < t ≤ 9 s and sending power at 9 s < t ≤ 20 s and 30 s < t ≤ 40 s.
The HRES is off-grid at 20 s < t ≤ 30 s. When 0 s < t ≤ 9 s and 20 s < t ≤ 30 s, the surplus
power is transferred to the battery. When 9 s < t ≤ 20 s, the battery is unable to cover the
power deficit as the maximum power it can safely deliver is 1 MW. As a result, 0.9 MW of
the load demand is shedded for protecting the battery and maintain the power balance of
the HRES.

Figure 21 describes that the ESS is charging/discharging in accordance with the
demand to balance the microgrid. Accordingly, the power flow is balanced and no power is
transferred into or out of the battery and its SoC remains constant (60%) at 30 s < t ≤ 40 s.
The load voltage is kept at a constant level by the proposed controller as depicted in
Figures 22 and 23. In addition, Uql converges to zero, thereby minimizing the reactive
power. It can be observed that the effects of varying load demand, grid transition from
power receiving mode to power transferring mode, and grid transition from islanded mode
to grid-connected mode and vice versa are mitigated by the proposed controller.

The performance of the benchmark PI controller proves to have an acceptable perfor-
mance under external disturbances. The performance of the PI controller in this condition
is compared with that of the proposed robust sliding mode controller. The analytical results
are depicted in Figures 17–23. It can be observed that the responses of the proposed con-
troller in following the reference signals are quite satisfactory as they reach them in 0.90 s,
0.63 s, 1.02 s, 0.04 s, 0.88 s, and 0.63 s for ωr, Ids, Vdc, Ib, Udl , and Uql , respectively. However,
the responses under PI controller have comparatively higher overshoots, undershoots,
and longer settling time highlighting the effectiveness of the proposed controller.
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Figure 19. Case 2: DC-bus voltage.

Figure 20. Case 2: Power flow.
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Figure 21. Case 2: Battery current.

Figure 22. Case 2: d-axis load voltage.
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Figure 23. Case 2: q-axis load voltage.

7. Conclusions

This paper presented an integrated control and power management of a hybrid
renewable energy system (HRES) under different external generation/load disturbances
and internal parameter uncertainties for both standalone and grid-connected operational
modes. The HRES consists of solar PV, wind energy source, and battery. The proposed
robust sliding mode control successfully achieves maximum power point tracking (MPPT)
for both the solar PV and wind energy sources while regulating the load voltages and
maintaining the DC-bus voltage at 1.5 kV. The stability and convergence of the closed-
loop system have been guaranteed using the Lyapunov candidate function. Furthermore,
a comparative analysis is presented with a conventional PI-based controller. The results
obtained highlight a significantly improved robustness and better power management
in terms of overshoot and settling time with enhanced tracking capability towards the
calculated optimal operation of the HRES. Furthermore, as the control theory has low
complexity it can be extended to include different types of renewable energy sources and
the power quality of the HRES can be further enhanced by including the hybrid energy
storage systems as auxiliary support.
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Abbreviations

The following abbreviations are used in this manuscript:

A P-N junction factor
Bmode Operational mode of the bi-directional converter of battery
B2B Back-to-back
β Pitch angle
Cdc DC-bus capacitance
Cp Power coefficient
D1 Duty cycle of the battery converter during charge mode
D2 Duty cycle of the battery converter during discharge mode
DFIG Doubly-fed induction generator
ESS Energy storage system
Eg Band gap energy of the semiconductor material
Eth Thevenin’s voltage
ηb Efficiency of the battery
FLC Fuzzy logic control
GSC Grid-side converter
HRES Hybrid renewable energy system
Ib Battery current
Idi GSC d-axis output AC current
Idl d-axis load current
Ids d-axis stator current
Ig Grid current
Igdc GSC DC current
Ipv PV output current
Iqi GSC q-axis output AC current
Iql q-axis load current
Iqs q-axis stator current
Isc PV short circuit current
J Inertia of the mechanical shaft
KB Boltzman’s constant
Lb Battery inductance
Ld d-axis self-inductance
L f Grid-side filter inductance
Ll Load inductance
Lg Line inductance
Li-ion Lithium-ion
λ Tip speed ratio
Il Load current
Lq q-axis self-inductance
Lth Thevenin’s inductance
Λr Rotor flux
MIMO Multi-input-multi-output
MPPT Maximum power point tracking
Np Number of parallel connected modules
Ns Number of series connected modules
ωg Electrical angular speed
ωr Angular speed of wind turbine
Pb Battery power
Pg Grid power
P−

g Power received by the grid
P+

g Power transferred by the grid
Pl Load demand active power
Pnet Net power
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Ppv Solar power
Pw Wind power
P&O Perturb and Observe
PMSG Permanent magnet synchronous generator
PV Photo-voltaic
ψi Temperature coefficient
q Electron charge
Qb Battery capacity
Ql Load demand reactive power
R Radius of wind turbine
RES Renewable energy source
RSC Rotor-side converter
Rb Battery internal resistance
Rl Load resistance
Rs Stator resistance
Rse Equivalent series resistors
Rsh Equivalent shunt resistors
Rth Thevenin’s resistance
ρ Density of air
S Solar irradiance level
SMC Sliding mode control
SoC State-of-charge of battery
SoCmax Upper limit of SoC
SoCmin Lower limit of SoC
T Ambient temperature
Te Electrical torque
Tm Mechanical torque
Tr Operating temperature of the PV module
ΘI Stator current angle
Θs Stator power factor angle
ΘV Stator voltage angle
Udl d-axis load voltage
Ug Grid voltage
Ull Line-to-line RMS voltage
Uql q-axis load voltage
Vb Battery voltage
VD Diode voltage in the PV circuit
Vdc DC-bus voltage
Vds d-axis stator voltage
Vpv PV output voltage
Vqi GSC q-axis output voltage
Vqs q-axis stator voltage
Vw Wind speed
WECS Wind energy conversion system
Zl Load impedance
Zth Thevenin’s impedance
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Abstract: The reduction of greenhouse gas emissions and strengthening the security of electric energy
have gained enormous momentum recently. Integrating intermittent renewable energy sources (RESs)
such as PV and wind into the existing grid has increased significantly in the last decade. However,
this integration hampers the reliable and stable operation of the grid by posing many operational
and control challenges. Generation uncertainty, voltage and angular stability, power quality issues,
reactive power support and fault ride-through capability are some of the various challenges. The
power generated from RESs fluctuates due to unpredictable weather conditions such as wind speed
and sunshine. Energy storage systems (ESSs) play a vital role in mitigating the fluctuation by storing
the excess generated power and then making it accessible on demand. This paper presents a review of
energy storage systems covering several aspects including their main applications for grid integration,
the type of storage technology and the power converters used to operate some of the energy storage
technologies. This comprehensive review of energy storage systems will guide power utilities; the
researchers select the best and the most recent energy storage device based on their effectiveness and
economic feasibility.

Keywords: renewable energy sources; power fluctuation; energy storage systems; selection criteria

1. Introduction

Power generation using renewable energy sources has minimized the use of hydrocar-
bons for power generation and transportations. Power generated from renewable energy
sources can be integrated to the grid in grid connected mode or can act as an independent
power island (island mode) [1–3]. Renewable energy supplies 14.8% of the total industrial
energy demand mainly for low temperature industries. Nevertheless, for heavy industries
such as iron and steel, cement and chemicals, renewable energy accounts for just less than
1% of the combined energy demand. Currently, an energy mix of electricity, solar, wind,
and nuclear is being used to supply the loads in various countries of the world and the
other forms of energy contributed just less than 1% of the total energy demand [4,5].

The intermittent nature of renewable resources hinders the performance of the grid by
introducing issues with system stability, reliability, and power quality. The variability and
uncertainty of power output are the two fundamental issues that hinder the bulk integration
of renewable energy sources with the existing grid. Introducing energy storage systems
(ESSs) to the grid can address the variability issue by decoupling the power generation from
demand. In addition, the ESSs improve the power quality of the grid by providing ancillary
services [6–8]. The demand for energy storage will continue to grow as the penetration of
renewable energy into the electric grid increases year by year.

ESSs are enabling technologies for well-established and new applications such as
power peak shaving, electric vehicles, the integration of renewable energies, etc. [9]. ESSs
make the grid more reliable by acting as a power source or providing different functions
such as spinning reserve, load leveling, power quality improvement and power fluctuation
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minimization from renewable energy sources. Large ESSs are routinely used alongside
renewable generation such as wind to stabilize the power output. The authors of [10–12]
presented a comprehensive review of different energy storage systems that are used for
grid integration of large-scale renewable energy sources. There is a big opportunity to
transition to a carbon-free energy future by integrating ESS with renewable power. ESSs
with high ratings and a long duration will play a great role in reducing the environmental
impact of the conventional power source.

According to estimates, the worldwide revenue from energy storage for renewables
integration will exceed $23 billion by 2026 and the requirements for storing energy will
become triple the present values by 2030 [13]. Solar energy has reached grid parity in
several locations around the globe and no longer requires policy incentives to incentivize
deployment in many markets. However, energy storage mechanisms also face many chal-
lenges as well [14] as there being no one storage type that has the complete characteristics
required by the modern grid. Limitations such as storage capacity, response time, efficiency,
cost and implementation requirements are to name a few. Some ESSs such as batteries also
have an environmental effect by releasing toxic gas [15].

This review paper provides a comprehensive review of electrical energy storage
technologies used to integrate renewable energy sources to the grid. Recent advances
and maturity level of the ESSs is also addressed. ESSs are compared based on efficiency,
response time and storing capacity and will help researchers and power utilities identify
the best storage technology for their system. The rest of the paper is organized as follows.
Section 2 presents the global renewable installation while Section 3 describes the necessity
of storing electrical energy. Section 4 presents Energy storage systems while Section 5
presents discussion and recommendation and Section 6 concludes the paper.

2. Global Renewable Installation

The total global installed renewable generation capacity at the end of 2020 reached
2799 GW. Hydropower takes the lion share of the global total with an installed capacity of
1211 GW. Wind and solar come second and third with a total installed capacity of 733 GW
and 714 GW, respectively. Other renewables installed include bioenergy with an installed
capacity of 127 GW, geothermal 14 GW and marine energy 0.5 GW [16].

There was a 10.3% increase in renewable generation capacity in 2020 with installed
capacity of 261 GW. Solar energy leads the installed capacity with an increase of 127 GW
(+22%) followed by wind with 111 GW (+18%). Hydropower capacity increased by 20 GW
(+2%) and bioenergy by 2 GW (+2%). Geothermal energy increased by 164 MW. Along
with the renewed growth of hydropower, this exceptional growth in wind and solar led to
the highest annual increase in renewable generating capacity ever seen. Figure 1 depicts
the share of the renewable generation capacity. Figure 2 shows the total wind installed
capacity for the years 2010–2020. Wind power accounted for a substantial share of electricity
generation in several countries in 2020. Global capital expenditures committed to offshore
wind power in 2020 surpassed investments in offshore oil and gas. Figure 3 represents the
total PV installed capacity for the years 2010–2020 and solar PV had another record-breaking
year in 2020. Favorable economics have boosted interest in distributed rooftop systems.
Competition and price pressures continued to motivate investment to improve efficiencies.

The energy consumption of different countries is variable and depends on economic
development, lifestyle, and weather. The top ten highest consuming countries in descend-
ing order are China, USA, India, Russia, Japan, Canada, Germany, South Korea, and
Brazil [17]. The per capita consumption of electricity is also highly variable in different
countries. Table 1 presents region based renewable generation capacity.
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Figure 1. Energy source based renewable generation capacity.

    

 

743 GW 

Figure 2. Wind Power Global Capacity and Annual Additions, 2010–2020. Source: [16].

 

 

760 GW 

Figure 3. Solar PV Global Capacity and Annual Additions, 2010–2020 [16].
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Table 1. Renewable generation capacity by region [17].

Region Capacity Global Share Change Growth

Asia 1286 GW 46% +167.6 GW +15%
Eurasia 116 GW 4% +6.2 GW +6%
Europe 609 GW 22% +34.3 GW +6%

North America 422 GW 15% +32.1 GW +8.2%
South America 233 GW 8% +9.2 GW +4.1%

Central America and the Caribbean 16 GW 1% +0.3 GW +2.1%
Middle East 24 GW 1% +1.2 GW +5.2%

Africa 54 GW 2% +2.6 GW +5%
Oceania 44 GW 2% +6.9 GW +18.5

Asia’s installed capacity reached 1.29 TW in 2020 by increasing its capacity by 167.6 GW.
Asia only accounts for 46% of the global total. A huge part of this increase occurred in
China. Capacity in Europe and North America expanded by 34 GW (+6.0%) and 32 GW
(+8.2%) respectively, with a notably large expansion in the USA. Africa continued to expand
steadily with an increase of 2.6 GW (+5.0%), slightly more than in 2019. Although its share
of global capacity is small, Oceania remained the fastest growing region (+18.4%).

3. Energy Storage Necessity

The demand for energy fluctuates from peak to off-peak due to individual needs and
climatic effects. Storing the excess power during off-peak hours might be an urgent need as
generation may surpass the total demand. The power mismatch challenge between genera-
tion and demand becomes more relevant because of the intermittency of the RES [18–21].
The conventional grid reliability is affected by the large scale integration of renewable
energy sources. It is generally agreed that more than 20% penetration from intermittent
renewables can greatly destabilize the grid system. Large scale ESSs can alleviate many of
the inherent inefficiencies and deficiencies of the conventional grid and facilitate the full
scale integration of renewable energy sources [22–27]. Generally, ESSs can balance supply
and demand, reduce power fluctuations, decrease environmental pollution, and increase
grid reliability and efficiency.

Recent studies have shown that energy storage facilities, when properly scheduled,
are capable of assuring firm power (up to 90% on average of their nameplate capacity)
during peak loading conditions. By charging during valleys of net demand and discharging
during peak hours, ESSs can make a profit from the differences in energy prices while at the
same time enhancing the overall load factor, thereby reducing the need for expensive peak
generators, and preventing renewable energy from being spilled. This should be supported
by enhanced forecasting and control techniques, and be fully coordinated with demand-
side flexibility. Additional markets that could enhance the business case for storage might
also emerge in the near future; for example, providing advanced grid functions such as
synthetic/virtual inertia/frequency regulation to support system stability.

Small-scale ESS are finding their place in households or small businesses. There might
be two main reasons. On the one hand, they can store self-generated energy, typically from
PV systems, for later consumption. On the other hand, if connection tariffs are in place, they
might be used in order to decrease the network connection sizing, to support consumption
at peak times by storing network energy at valley times, regardless of a self-generation
system being installed or not. The economics of both applications are dependent on the
tariff structure. Electric vehicles (EVs), including transitional technologies such as plug-in
hybrids, are expected to play a relevant role.

Large scale energy storage with a capacity of 100 MW is being installed frequently
around the world from 2020. According to statistics from the CNESA, the total energy
storage installed capacity globally reached 191.1 GW by the end of 2020; an increase of
3.4 % from the previous year [28]. The largest share (around 90%) of the energy storage
capacity is covered by pumped hydro with 172.5 GW. The second largest energy storage
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installed is electrochemical energy storage with an installed capacity of 14.1 GW. Battery
energy storage tops the electrochemical storage technologies with an installed capacity of
13.1 GW (Lithium-ion type). In 2020, the scale of electrochemical energy storage projects
newly put into operation in the world reached 4.73 GW, and the scale of planned and under
construction projects exceed 36 GW; most of them are applied in wind and solar power
generation projects. Figure 4 presents the global energy storage installed capacity for the
years 2000–2020. Figure 5 shows the electrochemical energy storage types whereas Figure 6
presents the installed electrochemical energy storage capacity for the years 2000–2020.
Figure 7 depicts the regional electrochemical energy storage installed capacity for 2020.

 

Figure 4. Global energy storage market by total installed capacity (2000–2020).

 

Figure 5. Electrochemical energy storage types.
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Figure 6. Global electrochemical energy storage market size by cumulative installed capacity
(2000–2020) [28].

 

Figure 7. Regional distribution by new installed electrochemical energy storage capacity in
2020 (MW%).

4. Energy Storage Systems

Electrical energy in an AC system cannot be stored electrically. However, energy can be
stored by converting the AC electricity and storing it electromagnetically, electrochemically,
kinetically, or as potential energy. Each energy storage technology usually includes a
power conversion unit to convert the energy from one form to another. Energy storage
systems (ESSs) make the power system more reliable and efficient by providing a wide
array of solutions including spinning reserves, frequency control, load leveling and shifting,
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voltage regulation and VAR support, power quality improvement and relief of overloaded
transmission lines. The use of artificial intelligence to optimally integrate energy storage
systems and renewable energy sources is presented in [29]. The authors of [30] presented
a review of machine learning tools for the integration of energy storage systems with
renewable sources.

Depending on the method of operation, there are a variety of ESSs such as flywheels,
pumped hydro, batteries, supercapacitors, super magnetic energy storage, and compressed
air energy storage. Thus, choosing a storage device that can perform the required function
efficiently is a preliminary step, as the majority of storage devices are expensive.

Long-term storage may favor chemical fuels as the cost of renewable power generation
is decreasing and the curtailment of excess generated power provides an opportunity
to convert the renewable power to fuel or chemicals when combining hydrogen with
sequestrated or recycled carbon dioxide. Pumped hydro is well established, efficient as
well as versatile, and has been around for nearly one hundred years; however, its expansion
is limited by geographical, as well as environmental, constraints. Many of the suitable
locations for hydro dams are within protected areas, where constructing a dam wall will
have an important impact on the eco-system. Underground pumped hydro seems to
be a promising alternative in flat regions, but it is still at the design or prototype stage.
Compressed air energy storage (CAES) combined with natural gas for incineration in
gas turbines appears on all candidate lists, yet only a handful of industrial facilities exist
worldwide. Research efforts that are currently underway on the much more efficient
adiabatic CAES systems that store the heat generated during compression, to re-inject
it during expansion still raise concerns about the technical and economic feasibility of
such facilities. Electrochemical batteries are perhaps the most versatile technology (given
their outstanding ramping and start-up/shut-down capabilities), but their costs need to be
significantly reduced and their life cycle extended. Fast-response AC/DC power converters
with sophisticated control strategies are used to integrate ESSs to the electric network.
Figure 8 shows the different classification of energy storage systems used in power systems.

Figure 8. Classification of different energy storage systems.

The amount of energy they can store versus the response speed varies depending on
the energy storage selected. A correlation between these two attributes does exist. For
instance, supercapacitors are able to store up to about 1 kWh to release in about 1 s, whereas
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pumping stations can store 10 GWh or more on daily or weekly cycles. Some technologies,
such as hydrogen electro-synthesis, would be able to store even greater amounts of energy
for even longer periods. Some technologies, such as pumped storage, are quite mature
whereas other ones, such as CAES, are still in the research and development (R&D) phase.
A review of energy storage systems used in renewable energy resources is presented
in [31–33]. Figure 9 shows the technological maturity of the different technologies.

Figure 9. Technology Maturity level of different ESS.

Technological progress is the root to achieving a better energy storage system. In 2020,
there were advances in battery technology because of the breakthrough of the cost inflection
point of lithium-iron phosphate batteries. In addition, there has been good progress in
the development of non-lithium storage systems such as liquid flow batteries, CAES, and
sodium ion batteries. CAES is a potential competent of PHS with the advancement of
speed reduction technology. Hydrogen storage systems are developing more rapidly and
more advanced hydrogen systems will be available in the market. A review of hydrogen
energy storage and the impact it will have on the future of renewable source integration is
described in [34]. The authors of [35] presented a techno-economic assessment of hydrogen
energy storage systems for renewable grid integration. They performed a mixed-integer
linear programming formulation to identify key factors that affect cost-effectiveness. To
reduce the fluctuation caused by renewable sources, the authors of [36] proposed a nuclear
based energy storage system using data-driven stochastic emulators. The role of thermal
energy storage integrated with concentrated solar power (CSP) is presented in [37]. The
authors concluded that the combination of CSP with thermal energy storage has small role
in adding flexibility to the grid. A fuel cell energy storage system integrated with renewable
energy sources for reactive scheduling and control is discussed in [38]. A review of artificial
intelligence and numerical models for a fuel cell energy storage system integrated with
hybrid renewable energy systems are presented in [39]. The authors of [40] studied the
economic analysis and optimization of different energy storage systems integrated with
renewable energy sources in the island mode. They optimized and compared nine different
off-grid renewable energy sources and studied the impact of self-discharge on the energy
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cost. A review of modeling variable renewable energy and storage in the long-term electric
sector is discussed in [41]. A critical overview of energy storage systems, specifically
thermal and electrochemical energy storage and their synergies with the development of
renewable energy source technologies, is discussed in [42]. A review of hybrid electrochem-
ical energy storage systems for electrified vehicle and smart grid applications is presented
in [43]. An effective method for sizing electrical energy storage systems for standalone and
grid-connected hybrid systems using energy balance is presented in [44,45]. Some of the
energy storage systems used in power systems are explained in detail below.

4.1. Battery Energy Storage Systems (BESS)

Batteries store energy electrochemically and are made of several modules connected
in parallel or series to achieve the desired rating. Power electronics converters are required
to convert the DC stored energy in batteries to connect it to the AC grid. Batteries have
several advantages including high energy density, high efficiency, high life span, and
cycling capability [46,47]. Batteries can be designed for bulk energy storage or for rapid
charge/discharge [48,49]. The disadvantage of batteries is that they cannot operate at high
power levels for a long time due to chemical kinetics. Improving the energy and power den-
sity and charging characteristics are active research areas. The other disadvantage of battery
energy storage systems is that batteries release toxic gas during battery charge/discharge.
The disposal of hazardous materials presents some battery disposal problems [50,51].

Battery energy storage systems are playing a great role in integrating solar photo-
voltaic power generation to the grid and in reducing the fluctuations. Systems equipped
with battery energy storage can deliver both active and reactive power and improve the
system voltage and frequency. Beyond these applications focusing on system stability,
energy storage control systems can also be integrated with energy markets to make the
solar resource more economical [52]. A review of battery energy storage systems with its
historical overview and analysis for renewable integration is discussed in [53]. Among the
different battery storage systems, the most mature battery technology at this moment is
the lead–acid battery [54,55]. A sustainability analysis of a battery energy storage system
integrated with a hybrid renewable energy source in the island mode is presented in [56].
Recent advances in non-Vanadium redox chemistries for flow batteries for grid-scale energy
storage are discussed in [57]. A case study of a microbrewery under demand response
for optimal energy management of a grid-connected photovoltaic system with battery
storage is discussed in [58]. A thorough assessment of battery energy storage systems,
describing the features and capabilities of each type of battery storage technology including
the benefits and drawbacks of each innovation is presented in [59]. A battery energy storage
system for the supervisory energy management of a hybrid renewable energy source based
on a combined fuzzy logic controller and high order sliding mode methods is discussed
in [60]. A case study of the environmental benefit and emissions reductions thresholds of
flow battery energy storage systems is presented in [61].

4.2. Flywheel Energy Storage (FES)

Flywheel energy storage stores energy as rotational energy and works by accelerating a
cylindrical rotor called a flywheel at high speed. The energy is stored as kinetic energy with
the rotating rotor and the storage capacity depends on the mass, shape and the maximum
available angular velocity of the rotor. Mechanical inertia is the basis of this storage method
and the energy is stored in the rotational mass as kinetic energy. The discharge process
begins when an electric generator is connected to the flywheel. Conversely, when a torque
is applied to the flywheel, the system is charged. The storage time can be prolonged by
keeping the friction as minimum as possible by placing the flywheel in a vacuum [62].
Generally, depending on the speed of operation, FES are divided into two groups. The first
group has a maximum speed of 10,000 rpm while the second group has a rotational speed
of up to 36,000 rpm [63,64]. FES has a round-trip efficiency of 70–80% with equal discharge
and recharge time. FES has approximately 100,000 full charge/discharge cycles and has a
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power density that is almost ten times greater than that of batteries. Currently, one of the
most encountered flywheel applications is the microgrid [65]. The market value of FES is
growing fast due to increasing industrial development and population growth causing an
increase in power demand [66]. Figure 10 presents the operation principle of a flywheel
energy storage system.

 
Figure 10. Flywheel Energy storage system.

4.3. Compressed Air Energy Storage (CAES)

The basic working principle of CAES is to drive compressors using motors to compress
air and store it in suitable storage vessels. An expander is used to expand the compressed air
and release the stored energy. The expander drives a generator to convert the stored energy
to produce electricity [67]. A burning natural gas can be used to boost the output power but
this will release CO2 emissions and affect the environment [68]. More advanced CAES can
store heat during air compression and release it during the expansion phase. CAES are cost
effective and promising for bulk grid services as they have a high power rating and storage
capacity, a long life time and low self-discharge. However, the start-up time is usually
high [69,70]. The economic and reliability impacts of grid-scale storage in a high penetration
renewable energy system are presented in [71]. The authors concluded that energy storage
systems, specifically CAES, will support the grid inertia if it is synchronously connected
for a long duration.

CAES can be used together with renewable energy sources to compress the air using
the power generated from renewable energy sources during off-peak hours. During peak-
hours the air can be released and converted back to electrical power to make sure that
there is no curtailment in the renewable source. Storing fresh air in salt caverns is a proven,
reliable and safe method of ensuring that excess energy is not wasted [72–75]. The authors
of [76] compared CAES and battery energy storage systems based on a levelized cost of
storage. They concluded that the adoption of CAES systems can lead to a better economic
performance with respect to battery technologies. The use of combined heat and CAES for
wind power peak shaving is presented in [77]. There are only two commissioned CAES
worldwide. The first one was commissioned in 1978 in Huntorf, Germany and is 290 MW.
The second one is located in Alabama, USA, is 360 MW, and was commissioned in 1991.

4.4. Pumped Hydro Storage (PHS)

PHS is the most mature energy storage technology and has the highest installed
generation and storage capacity in the world. It is a type of hydroelectric energy storage
which has two water reservoirs (upper and lower) at different elevations that can generate
power as water moves down from one to the other (discharge), passing through a turbine.

The lower reservoir is usually a river or lake while the upper reservoir can be an
artificial lake [78,79]. The stored water is released during peak demand to hit a turbine
and convert it to electrical power similar to a conventional hydropower station. During
off peak demand, the upper reservoir is recharged using low cost power or a power
generated from renewable energy sources. Similar to CAES, PHS is used for large scale
renewable integration and helps the grid in many respects, such as reactive power support,
frequency control, and synchronous or virtual inertia and black-start capabilities. The
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operating cost per energy unit has been reported as the cheapest in the PHS. However, the
construction of reservoirs and other infrastructures needs very high investment [80,81].
A review of low-head pumped hydro storage and its application for renewable source
integration is presented in [82]. A case study on the potential of a pumped hydropower
storage (PHS) system and its contribution to hybrid renewable energy power fluctuation
minimization is presented in [83]. The authors used an optimization technique to decrease
the PHS sites required for renewable energy source grid integration. The use of PHS with
renewable energy sources to fully supply the Barbados grid with a renewable source is
discussed in [84]. The authors used open source modelling and concluded that an 80%
share of renewable energy sources is cost optimal; however, 100% of renewable systems
face flexibility. A comparison between PHS and a fuel cell on a hybrid renewable energy
system based on diesel/PV is discussed in [85]. The authors concluded that the use of
PHS is more cost effective than fuel cells. A case study to techno-economically compare
battery and micro PHS for renewable energy sources is presented in [86]. It was concluded
that the use of a hybrid PV-wind-battery storage system is the best option in terms of
economic benefits and reliability. Figure 11 depicts the basic operation of a pumped hydro
storage system.

Figure 11. Working principle of Pump storage system.

4.5. Superconducting Magnetic Energy Storage (SMES)

SMES were proposed as an energy storage system because of their high response and
efficiency (charge–discharge efficiency over 95%) [87]. The basic configuration of SMES
consists of a refrigeration system, superconducting coils and a power conditioning unit.
The energy is stored in the superconducting coil at a very low temperature. Figure 12
presents the operation of the superconducting energy storage system. The stored power
in the coil can be absorbed or released depending on demand requirements. SMES have
applications in load leveling, damping control and the load frequency control of power
systems [88–92]. Generally, due to the high costs implied by the superconductive wire and
refrigeration, SMES systems are used for military applications or energy storage over short
periods of time [93].
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Figure 12. Superconducting Energy storage system.

4.6. Supercapacitor Energy Storage Systems (SCESS)

Among the different energy storage systems, SCESS have been a significant attraction
for researchers due to their extraordinary characteristics such as fast charging–discharging,
greater power density, lower maintenance cost and environmental-friendliness. Attributed
to their outstanding performances, supercapacitors have found applications in diversified
areas, e.g., uninterruptible power supplies (UPS), power electronics, renewables integration,
and hybrid energy storage. However, the energy density is less than expected [94,95]. The
most important advantage of supercapacitors as compared to rechargeable batteries is that
supercapacitors in general possess a relatively low internal resistance and can store and
deliver energy at a higher power rating.

SCESS help the grid ride through the fault, regulate the voltage and control the
frequency and improve the power quality issues [96,97]. They have a high cycle life of
around 12 years [98]. Currently, supercapacitors are used together with the batteries
especially in smart grid applications due to their shorter discharge time. Figure 13 shows
the operation principle of a supercapacitor.

Figure 13. Supercapacitor energy storage system structure.

The use of supercapacitors to minimize the fluctuation of the power generated from
PV and wind sources is reported in [99]. The authors connected the supercapacitor with a
bi-directional buck-boost converter at the DC link to exchange power with the grid and
renewable energy sources. Supercapacitors are also used to ride through a fault. During
fault events, the power generated from the renewable energy sources will be stored in
the supercapacitor and will be later used when the fault is cleared. Figures 14 and 15
show the topology of supercapacitors used in a PV source. The application of a battery
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supercapacitors hybrid energy storage system for microgrids is presented in [100]. An
optimal design and energy management of an island mode fully renewable based microgrid
integrated with battery and supercapacitors is described in [101].
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Figure 14. Supercapacitors connected to PV source to minimize the power fluctuation.
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Figure 15. Supercapacitor connected with a bidirectional buck boost converter.

5. Discussion and Recommendation

Except for a few notable exceptions, such as pumped hydro, energy storage technolo-
gies are still in their infancy, and significant improvements and cost reductions are expected
within a decade as they follow their anticipated learning curve. The life span and cycle life
comparison of different energy storage systems is presented in Figure 16. A comparison of
different energy storage systems in terms of power density, energy density, response time
and efficiency is tabulated in Table 2.
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Figure 16. Comparison of different energy storage systems. (a) Life span; (b) Cycle life.

Table 2. Comparison of different energy storage systems.

Technology Power Energy Density Backup
Time

Response
Time

Efficiency
(%)

Pumped hydro 100 MW–2 GW 400 MWh–20 GWh hours 12 min 70–80
CAES 110–290 MW 1.16–3 GWh hours 12 min 99
BESS 100 W–100 MW 1 kWh–200 MWh hours seconds 60–80

Flywheels 5 kW–90 MW 5–200 kWh minutes 12 min 80–95
SMES 170 kW–100 MW 110 Wh–27 kWh seconds milliseconds 95

Supercapacitors <1 MW 1 Wh–1 kWh seconds milliseconds >95

6. Conclusions

A comprehensive review of various electrical energy storage systems (ESSs) is pre-
sented in this paper. There are various ESSs available commercially but the requirement of
DERs integration to the grid will not be met by a single energy storage system. The rapid
growth of power generation from renewable energy sources makes the deployment of large
scale and cost effective energy storage systems a necessity for the reliability of the power
system. Since renewable energy sources are of different types, a broad range of storage
systems are needed to accommodate the specific needs of each source. For the future, it is
extremely difficult to predict which type of energy storage system will dominate the market
but currently electrochemical energy storage systems dominate the market share. Among
electrochemical energy storage systems, Li-ion batteries are considered a more competitive
option for grid-scale energy storage applications as they have high energy density, light
weight and high efficiency. For short-term power fluctuation minimization from renewable
energy sources such as PV and wind, SCESS and SMES are the preferred options as they
have high power density and a very short response time. PHS and CAES storage systems
have future potential as they store energy for longer periods and generally have a larger
power rating. However, PHS and CAES are limited by topographic constraints.
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Abstract: A large-scale renewable-based sustainable power system requires multifaced techno-
economic optimization and energy penetration. Due to the volatile and non-periodic nature of
renewable energy, the uncertainty of renewables combined with load uncertainties significantly
impacts the operational efficiency of renewable integration. The complexities in balancing demand,
generation, and maintaining system reliability have introduced new challenges in the current dis-
tribution system. Most of the associated challenges can be effectively reduced by using a battery
energy storage system (BESS) and the right techniques for handling uncertainties. In this paper, a
distributionally robust optimization (DRO) technique with a linear decision rule is formulated for the
unit commitment (UC) framework for optimal scheduling of a distribution network that consists of a
wind farm, solar PV, a distributed generator (DG), and BESS. To cut the energy cost per unit, BESS
plays an important role by storing energy at an off-peak time for on-peak-time use with relatively
lower prices. For the all-time minimum overall systems cost, the distribution system requires an
optimal size of the BESS to be connected to provide optimal scheduling of DGs. Three case studies
are formulated using an IEEE 14 bus system (converted from MW to kW to match the BESS size
available in the market) and solved with the proposed distributionally robust optimization technique
to achieve the maximum operating point with an optimal capacity of BESS, i.e., wind, solar and
hybrid. Each case study has its own optimal 30-min interval schedule for DGs along with the optimal
capacity of BESS. The cost comparison with and without BESS and its impact on the start-up and
shut down of DGs is reported with all the dynamic economic dispatch results, including the battery’s
state-of-charge profile. The proposed technique can handle the uncertainties in renewables and
allows economical energy dispatch and optimal BESS sizing with comparatively lower computational
processing and complexities.

Keywords: unit commitment; battery energy storage systems; wind-farm uncertainty; distributionally
robust optimization; solar pv uncertainty; distributed generators

1. Introduction

1.1. Motivation

Due to depletion of fossil fuels decade after decade with the rise in energy demand,
renewable energy sources are a better alternative for the energy demands of the emerging
population of the earth. In addition, the climate of the earth is severely impacted due to
carbon emissions coming out of the energy generation plants using these types of fuels.
To cut the usage of fossil fuels, renewable energy sources play a major role, i.e., solar
photo-voltaic (PV) and wind power. These sources are the most abundantly available
energy sources around the world [1,2]. Due to the volatile and non-periodic nature of
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renewable energy, the complexities in balancing load with generation and maintaining
system reliability have introduced new challenges in the current distribution system [3].
These uncertainties cost money in terms of making the whole system capable of dealing with
unwanted circumstances, i.e., optimum economic dispatch and sensible unit commitment,
while considering other sources of energy to minimize the total system cost.

1.2. Literature Review

Unit commitment determines when a particular unit should be started so that, at a
given time when the power is needed, it can be provided because each unit needs time
to startup and shutdown. These startups and shutdowns have an economic impact in
terms of fuel, manpower, apparatus, and other related costs [4,5]. On the other hand, the
economic dispatch of the generating units determine how much power each unit produces
at a certain time to cope with the load and overcome losses due to the transmission network.
Ultimately, to minimize the cost of the generating units, scheduling of the generating units
is performed based on the load profile data, whether it is one day ahead or one hour [6]. The
problem of economic dispatch and UC becomes more complex when there is an intermittent
and uncertain renewable energy source, i.e., solar PV.

For better approximations and more reliable results, more historical data is needed to
access the true distribution of the data, i.e., the normal distribution, mean, variance, stan-
dard deviation, and probabilities of specific events that behave periodically [7]. Similarly,
high penetration of renewable sources means more and more historical data is needed
to deal with the uncertain profile of those renewable sources [8–10]. Handling this data
distribution is performed in [11] using a method proposed to adjust the parameter of
the distribution in distributionally robust optimization. Unit commitment and energy
management/economic dispatch in [12,13] use distributionally robust optimization with
chance constrained. A method proposed in this system uses mean and variance for the
distribution set to handle uncertainty in renewable energy sources for the micro-grid and
performs the energy dispatch by not considering unit commitment as constrained to reduce
the start-up/shut-down cost.

The uncertainty of wind and solar power needs to be modeled to use for the current
power generation system [13,14]. There are many models proposed to deal with the
uncertainty of wind power generation so that the UC of all the generating units becomes
possible. From the numerous uncertainty models proposed for UC over the last decade,
stochastic programming [15,16] is being extensively explored to improve the scheduling
of UC decisions under wind farm uncertainty [17,18]. The method proposed in [19] uses
an alternative scenario selection method to check consistency with the moments of a wind
time series and to explicitly specify the modelers that are believed to significantly influence
the performance of the unit commitment schedule. Nevertheless, stochastic programming
performs a lot of computations pertaining to various scenarios to outline and formulate
the expected results. This leads to undesirable computational time and space as well as
requiring a bigger processing unit. To address a large number of scenarios for a given
problem, some advanced scenario selection algorithms [18] and decomposition techniques
have been developed, i.e., at the first stage, mixed-integer programming provides the
results and modeling approaches for deterministic UC, i.e., priority listing, Lagrangian
relaxation, and dynamic programming; later on, stochastic programming changes the
conventional way of solving such UC problems [20,21]. Then, combined stochastic UC
and robust UC formulations are introduced for unit commitment decisions to overcome
problem solving time required due to the larger set of scenarios in stochastic optimization
and the conservativeness of the robust optimization; the weights of the events for the robust
and stochastic parts in the objective function are adjusted by the system operator to obtain
optimal and time-saving results [22]. However, a feasible and effective realization requires
an optimal compromise between the degree of accuracy and computational time.

Besides the aforementioned methods above, a comprehensive formulation of security-
constrained unit commitment with compressed air energy storage and wind generation
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is developed in [23]. Simultaneous optimization of energy and ancillary services with
storage is proposed and justified with case studies and results. With the help of case
studies, the impact of compressed air energy storage on both economical and technical
aspects is reported. Pumped hydro energy storage is also an option for storing the energy
in a dynamic economic dispatch problem where unit commitment is a major part of
reducing the cost of power produced by thermal generators. This type of energy storage is
being used in [24], where deterministic unit commitment and interval unit commitment
formulations are modeled that co-optimize the UC and pumped hydro energy storage
decisions considering hydraulic limits constraining the pumped hydro energy storage. The
study is performed on the system for day-ahead decisions and the results are reported.
It employs the stochastic unit commitment model to solve the small-scale (available)
wind power.

The optimal sizing of BESS in a system that includes renewable resources is discussed
in many papers due to the uncertainties of the renewable resources that could be overcome
with the integration of the BESS. Reference [25] suggested a method to find the optimal size
of BESS integrated with wind turbines and considered wind and load uncertainties. Two
parts of the operational strategy are proposed in [26] for distribution companies. Those
two parts are day-ahead and real-time, where, in day-ahead, the load, wind, solar, and
prices should be forecasted and in real-time, the gap between the forecasted and real value
is considered. The objective here is to locate BESS in the network to minimize the cost
and the loss by developing a highly nonlinear model for the network and BESS. Stochastic
planning formulation for BESS in a micro-grid using Monte Carlo simulations (MCS) is
proposed in [27]. Although uncertainties in wind generation are considered, the network
constraints are neglected. Reference [28] used a similar Stochastic approach but with a
Radial IEEE distribution system nonlinear model to simulate the line and voltage limits.
A deterministic approach to optimize the battery sizing and location in the distribution
network is proposed in [29]. The effects of uncertainty in wind power resources using
the point estimate method (PEM) are enlisted in [30], where the naturally inspired PSO is
combined with the tabu search (TS) to solve the problem. For the optimum size and location
of the storage system, the stochastic mixed integer linear programming (MILP) technique
is used in the distribution system to minimize the costs of investment and operation [31].
In [32], two levels of the profit-maximizing strategy were introduced, including planning
and control. For optimal BESS planning and control in the primary control market, a
framework has been developed to achieve the goal. This developed framework provides
the balance between the capital cost and the operating cost considering the energy capacity
factor. BESS degradation was considered here as a weighting factor that depends on the
BESS lifetime.

The charging and discharging rate (C), or the rate at which the power is provided
by the battery at any instant, is directly related to battery size. For the better operation
of energy storage, an optimum value of the charging and discharging rates of the battery
play a major role [33,34]. By using a smaller battery size but larger power requirement, the
battery will discharge more quickly than its rated power discharge, which will not only
reduce the battery life but also damage the battery cell by increasing the temperature of the
battery due to higher power losses inside the battery [35,36]. With a small storage capacity
and lesser charging and discharging rates, the battery will not be fully charged/discharged
as compared to the bigger storage size for the same power requirement.

For a high penetration of renewable energy sources, more historical data will be
required for distribution to be more contracted and to achieve true distribution (i.e., normal
distribution) for any uncertain parameter, which makes the optimization model more
complex in terms of solving techniques, i.e., the quantization of the normal distribution
curve for each event generated by the CPLEX compiler [8]. To deal with the distribution,
ref. [11] proposed a method to address economic dispatch and energy management, using
distributionally robust optimization with chance constrained, which uses only mean and
variance for the distribution set to forecast wind for the micro-grid, and performs the
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energy dispatch, but unit commitment constraints are not considered for units scheduling.
In [12], UC is performed with DRO using chance constrained for wind-farm uncertainty,
but the impact of BESS on unit scheduling is not studied. According to the model solved
through chance constrained, the total cost of the system increases with a higher confidence
bound due to an uncertainty error. Due to rapid change in the total system cost using DRO
and chance constrained, this model creates the research gap for improvements in terms
of handling the distribution curve. In addition, the chance-constrained transformation
increases the optimization complexity if the distribution is precisely modeled over a set
of linear values for random numbers [37]. In addition, with higher uncertainties, chance
constraint becomes more computationally complex for random numbers [38]. An ambiguity
set method was developed in [39] which was based on historical data. In fact, more
historical data gives more ambiguous sets and, consequently, a less conservative solution.
The case study conducted in this paper shows that the more information and maximum
confidence bound in uncertainty an error is, the lower will be the system total cost. A
model discussed in [40] describes the estimated and real energy consumption by an energy
storage system. The proposed model estimates the energy consumption by electric vehicles
with traffic flow theory and mechanics of locomotion. The author focuses on the percentage
usage of ESS in terms of estimated and actual usage of ESS by using floating cara data
(FCD) with available data provided by information and communications technology (ICT)
devices.

As discussed above, the impact of ESS on UC with uncertainties of RES is not discussed
with the help of distributionally robust optimization. Some topics in the literature are
near to the topic discussed in this research work. A robust optimization approach for
designing an off-grid solar-powered charging station is proposed to provide electric vehicles
(EVs) with electricity and hydrogen vehicles (HV) with hydrogen using deterministic
mixed-integer linear programming (MILP) and robust optimization in [41]. Therein, a
robust optimization approach was employed to design the charging station based on the
different levels of system robustness against the uncertainties. This stochastic approach
provides worst-case solutions for the uncertainties, i.e., either the smallest or the largest
outcome for the uncertainty to minimize or maximize the objective function. Due to worst-
case outcomes, this model gives a robust solution. The sizing and siting of the RES for
the local distribution system having solar PV uncertainty are designed using DRO and
cone relaxation techniques. By using the cone relaxation technique, the DRO becomes
mixed-integer second-order cone programming (MISOCP) [42]. The second-order cone
programming (SOCP) makes the system more complex, and the solution time also increases
as compared to the linear decision rule where nonlinear functions (equations) are linearized
by finding their respective linear coefficients for their cumulative linear function (equation).

1.3. Contribution

In this paper, a method is developed to demonstrate the impact of BESS on the DG
schedule and total cost of the system under hybrid uncertainty using a distributionally
robust optimization approach. In the proposed model using distributionally robust opti-
mization with a linear decision rule, the ambiguity set gives the freedom to not only control
the distribution but also the computational burden by providing the dual gap between the
random variables and the auxiliary variables [43]. A linear decision rule has an advantage
over the chanced constrained as this method provides the vicinity to the solver to adopt the
complexity of choosing the value from the random distribution by using the duality gap
given by the solver. These gaps are the stages for the linear piece-wise function over the
quadratic function of the probability distribution which grows moderately with the stages
that are involved by the solver in terms of the dual gap. In light of the above literature and
propositions, BESS is not being considered with UC for solar PV and wind-farm uncer-
tainty using distributionally robust optimization. However, BESS, as shown in Figure 1,
not only reduces the startup cost of DGs under given conditions but also mitigates the
problem/challenges associated with the randomness of the wind farm and solar PV by
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providing power to the system with high ramp up as well as acting as a storage tank [44–46].
The behavior of the BESS as a storage tank also provides the energy at peak load time
by storing the energy at off-peak load time. In this way, at an off-peak time, the surplus
energy produced by the generators having the least cost is stored to BESS to be used at
peak load time, which reduces the running cost of the generators by generating power with
a significant figure.

Figure 1. The schematic diagram of the proposed system having distributed generator, solar PV,
wind-farm, and battery energy storage system.

The significance of this model includes its flexibility in adding more DGs, solar PVs,
wind farms, and ESSs. The contribution of this paper includes:

1. Optimal battery energy storage system sizing with the unit commitment of DG’s/thermal
units on an IEEE 14 bus system, considering day-ahead solar PV and wind-farm
uncertainties by using a distributionally robust optimization technique with a linear
decision rule and distribution of the uncertain solar PV and wind output data.

2. Cost comparison with different sizes of battery energy storage system on the unit
commitment of DG’s/thermal units. Where the day-ahead 30-min duration of unit
commitments with battery energy storage systems are discussed.

The inclusion of BESS has an important impact on the system, as it reduces the system
startup cost as well as adhering to the uncertain behavior of solar PV energy.

191



Sustainability 2022, 14, 11002

1.4. Paper Organization

The remainder of the paper is organized as follows: Section 2 describes the problem at
hand. Mathematical modeling of UC and ambiguity matrix construction with DRO using
hybrid generation is discussed in Section 3. Four case studies are conducted in Section 4:
1—sample distributionally robust optimization, 2—an IEEE 14 bus system with optimal
BESS (30-min of solar PV data), 3—an optimal BESS for an IEEE 14 bus system (30-min
wind data), 4—the optimal BESS for hybrid RESs under given loads. The results obtained
through these case studies illustrate the significance of the model proposed. Finally, the
conclusion followed by future work, and acknowledgments, are listed in Section 5.

2. Problem Description

Unit commitment provides the necessary scheduling data required for optimal oper-
ation between generation and demand because each unit needs time to startup and shut
down. These startups and shutdowns cost money in terms of fuel and some other costs
related to manpower and apparatus. Therefore, to minimize that cost, scheduling of the
generating units is performed based on the load profile data, whether it is one day ahead or
one hour. The problem of economic dispatch and UC becomes more complex when there
is an intermittent and uncertain renewable energy source, i.e., solar PV and wind farms.
The uncertainty of solar PV and wind farms needs to be modeled for use in the current
power generation system. There are many models proposed to deal with the uncertainty
of solar PV and wind-farm generation so that the UC of all the generating units becomes
possible. The complexity of the problem may be reduced if an energy storage system were
to be introduced to overcome the sudden changes so, that the load duration curve and
the uncertain output of solar PV and wind farm will become smooth and output power
requirements from all the thermal generators will be met at all times at the minimum cost.

3. Problem Methodology

3.1. Mathematical Formulation of Unit Commitment

The unit commitment model listed below provides here and now solution while con-
sidering the deterministic wind power output in (1). Likewise, UC model with deterministic
solar PV is listed in (2).

Ξ(x, o) = min ∑
t∈τ

{
∑
k∈κ

(ck,t + zk,t) + Psur ∑
b∈β

pcur
b,t

}
(1)

Ξ(x, ψ) = min ∑
t∈τ

{
∑
k∈κ

(ck,t + zk,t) + Psur ∑
b∈β

pcur
b,t

}
(2)

The deterministic mathematical model for the UC with hybrid RES is described in (3). This
model is derived linearly from the above two models for wind farms and solar PV in (1)
and (2), respectively.

Ξ(x, o, ψ) = min ∑
t∈τ

{
∑
k∈κ

(ck,t + zk,t) + Psur ∑
b∈β

pcur
b,t

}
(3)

s.t.
zk,t ≥ Cs

k(xk,t − xk,(t−1)) ∀k ∈ κ, t ∈ τ (4)

ck,t ≥ ak pt
k,t + bkxk,t k ∈ κ, t ∈ τ (5)

∑
k∈κ

pt
k,t + ∑

l∈Λ
ps

l,t + ∑
j∈J

pw
j,t + ∑

b∈β

pd
b,t = ∑

b∈β

Db,t + ∑
b∈β

pc
b,t + ∑

b∈β

pcur
b,t ∀t ∈ τ (6)

∑
b∈B

LCFg,b

(
∑
k∈κ

pt
k,t + ∑

l∈Λ
ps

l,t + ∑
j∈J

pw
j,t + pcur

b,t − Db,t

)
≤ LCg ∀g ∈ L, ∀t ∈ τ (7)
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− ∑
b∈B

LCFg,b

(
∑
k∈κ

pt
k,t + ∑

l∈Λ
ps

l,t + ∑
l∈J

pw
j,t + pcur

b,t − Db,t

)
≤ LCg ∀g ∈ L, ∀t ∈ τ (8)

Pkxk,t ≤ pt
k,t ≤ Pkxk,t ∀k ∈ κ, ∀t ∈ τ (9)

0 ≤ ps
l,t ≤ sl,t + ψl,t ∀l ∈ Λ, ∀t ∈ τ (10)

0 ≤ pw
j,t ≤ wj,t + oj,t ∀l ∈ J , ∀t ∈ τ (11)

pt
k(t−1) − pt

k,t ≤ RDk · xk,t + Pk(1 − xk,t) ∀k ∈ κ, ∀t ∈ τ (12)

pt
k,t − pt

k,(t−1) ≤ RUk · xk,(t−1) + Pk

(
1 − xk,(t−1)

)
∀k ∈ κ, ∀t ∈ τ (13)

In the above formulation, the objective function in (3) includes startup cost zk,t, gener-
ation cost ck,t and power loss pcur

k,t . Startup cost and generation cost is calculated through
(4) and (5), respectively. In (4), Cs

k is the fixed startup cost for unit k, xk,t is the binary
variable for generator status at time t, xk(t−1) is the binary variable for generator status at
time t − 1 and xk,t − xk(t−1) gives the binary difference “1” if a particular DG was turned off
at time t − 1 and it is turned on at time t and “0”, if a particular DG was turned on at time
t− 1 and it is still turned on at time t. In (5), ak is the generator kth first-order cost parameter,
and bk is the generator kth second-order cost parameter. The Equation (6) represents the
power balance between the generation and demand, as pt

k,t is the power generated by the
kth DG unit at time t, ps

l,t is the power generated by the lth solar PV unit at time t, pw
j,t is

the power generated by the jth wind-farm unit at time t, pd
b,t is battery discharge by the

battery storage connected to bth bus at time t, pc
b,t is battery charge (acting as a load) by

the battery storage connected to bth bus at time t and Db,t is the load demand at bth bus
in time t, pcur

b,t is the power surplus/loss at bus b in time t, if it is negative then there is
power surplus at bus b in time t and if positive then it is load shedding at bus b in time t.
The dc power flow model confines the power transmission below the line capacity LCg
in inequalities (7) and (8) [47]. The maximum and minimum capacity of the DG units is
defined in (9). In (10), solar PV generation is less than the maximum capacity of the solar
PV unit l at time t and (11) defines that the wind-farm generation is less than the maximum
capacity of the wind-farm unit j at time t. The ramp-up RUk and ramp-down RDk limits of
DG units are enforced in (12) and (13).

3.2. Power Flow Model through Transmission Lines

The distributionally robust optimization with the linear decision rule model used in
this paper solves the UC problem by using mixed integer linear programming (MILP). The
DRO with linear decision rule is a two-stage optimization model, where unit commitments
are determined at the first stage with the help of MILP and economic dispatch and cost
calculations in the second stage with the standard normal distribution of the random
variables used in the model to obtain the expectation of the random variable presenting
the uncertainty of wind and solar. The second stage of the optimization makes the system
nonlinear, but DRO solves the model with MILP by using the linear decision rule. The
linear decision rule transforms the nonlinear model to its equivalent linear model. Similar
is the case for power flow through the transmission lines by using Newton–Raphson and
Gauss–Seidel; the DRO model solves the equivalent linear model of the nonlinear equations
related to voltages, phase angles, and impedances in a network containing nodes/buses.
Instead of finding the linear model for these methods, dc power flow is also one of the
linear models being used to give an estimation of power flow and overcome the challenge
being faced by the DRO method. The Q-power flow and Q-losses are not considered at this
stage to make the problem simple, but the AC power flow can also be conducted using the
distflow method at a later stage to examine the exact Q-power flow and Q-losses and their
impacts on ESS.
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The power flows through the transmission lines in the proposed model are modeled
using the DC power flow method as listed in (14), the net active power injection Pb at
bus b is the difference between power generation and the power demand at that bus, i.e.,
Pb = PGb − PDb.

Pb =
N

∑
b′=1

Bbb′(θb − θb′) (14)

where Bbb′ is the reciprocal of the reactance between bus b and bus b′, and θb and θb′ are the
voltage angles of bus b and bus b′, respectively. The active power flow PLbb′ between buses
b and b′ can be calculated from (15). These line flows are confined in the form of (7) and (8),
as discussed earlier.

PLbb′ =
1

XLbb′
(θb − θb′) (15)

where XLbb′ is the reactance of line between bus b and b′.

3.3. Battery-Energy-Storage-System Modeling

The objective function for the battery energy storage system modeled is described in (16),
where the cost and charge cycles of BESS are minimized so that the overall cost of the system
is minimized, as discussed in the here and now objective functions in (1), (2) and (3)

CT
B(o, ψ) = min ∑

b∈β

{
∑
t∈τ

C f ix pd
b,t + C f ixSOCmax

b + BT
count,b

}
(16)

s.t.
SOCb,t = SOCb,t−1 + (pc

b,tηc − pd
b,t/ηd)Δt ∀b ∈ β, ∀t ∈ τ (17)

pc,min
b,t ≤ pc

b,t ≤ pc,max
b,t ∀b ∈ β, ∀t ∈ τ (18)

pd,min
b,t ≤ pd

b,t ≤ pd,max
b,t ∀b ∈ β, ∀t ∈ τ (19)

SOCmin
b,t ≤ SOCb,t ≤ SOCmax

b,t ∀b ∈ β, ∀t ∈ τ (20)

SOCmax
b,t ≥ 0 ∀b ∈ β, ∀t ∈ τ (21)

The state of charge of the battery is also linked to its efficiency of charging ηc and dis-
charging ηd in (17). Maximum/minimum charging and discharging of the battery are
constrained in (18) and (19), respectively. In (20) battery’s state of charge is also restricted
with minimum and maximum limits. Most importantly, the constraint for battery sizing
is listed in (21), where the maximum size of BESS with the minimum objective cost is
determined through (23).

To minimize the BESS charge and discharge cycles for optimum battery life, an algo-
rithm is listed in Algorithm 1 to count for charge (Bc

count,b) and discharge (Bd
count,b) cycles at

bus b for a complete time period during which the optimization and UC is performed.

BT
count,b ≥ max(Bc

count,b, Bd
count,b) ∀b ∈ β (22)

BCb = max(SOCmax
b,t ) ∀b ∈ β, ∀t ∈ τ (23)

The total charge/discharge cycles count (BT
count,b) is calculated using (22). This constraint in

the objective function forces the battery to optimally charge and discharge, which helps the
battery to have a longer life. Long-lifespan BESS has the least O&M cost with respect to
those having a shorter lifespan.

194



Sustainability 2022, 14, 11002

Algorithm 1 Battery charge/discharge cycle counter

t ← 1
Bc

count,b ← 0
Bd

count,b ← 0
if Pd(t − 1) > 0 & Pc(t) > 0 & SOC(t) ≤ 20% then

Bd
count,b ← Bd

count,b + 1
end if
if Pc(t − 1) > 0 & Pd(t) > 0 & SOC(t) ≥ 80% then

Bc
count,b ← Bc

count,b + 1
end if

3.4. Distributionally Robust Optimization Model

The models demonstrated in (3) and (16) are used to formulate the solar PV uncertainty
based on (25) and wind-farm uncertainty based on (24) that have an average value (sl,t)
of the solar PV output and average value (wj,t) of the wind-farm output produced with
difference between expected and actual power (ψ̃l,t) and (õj,t), respectively.

w̃j,t = wj,t + õl,t ∀j ∈ J , ∀t ∈ τ (24)

s̃l,t = sl,t + ψ̃l,t ∀l ∈ Λ, ∀t ∈ τ (25)

Both models share the same steps to derive the model for distributionally robust optimiza-
tion. Therefore, in this paper, a distributionally robust optimization model with solar-PV
uncertainty is derived to obtain the ambiguity matrix. Based on past data, the mean solar-
PV output for the upcoming year can be determined. The difference between expected
and actual power (ψ̃l,t) is acting as an uncertain variable in the proposed model. The
ambiguity set for uncertain variables in distributionally robust optimization is constructed
using the information based on past data, i.e., mean, standard deviation, variance, and
confidence bound. In the proposed two-stage problem, UC problem in (26)–(28) gives the
here-and-now solution but the model (26)–(28) is intractable in its current form.

min sup
M∈I

EM{Ξ(x, õ, ψ̃)} (26)

s.t.
x ∈ ζ (27)

x ∈ {0, 1}|κ|×|τ| (28)

where κ is the set of all generators. The set ζ in (27) represents the feasibility region of x
defined by minimum up/down time constraints. The objective function minimizes the
expectation of function Ξ(x, ψ̃) under a distribution M, which is the worst-case distribu-
tion over an ambiguity set I. The function Ξ(x, ψ̃) indicates the economic dispatch cost
associated with UC decision x, under solar PV output outcome ψ, which can be calculated
by solving the second-stage problem. Simple deterministic UC problem considering mean
solar-PV output (sl,t) can be modeled in a matrix form as in (29) and (30).

min Ξ(x) (29)

s.t.
Ax ≤ b (30)

However, considering uncertainty in the output as having the difference between
actual and mean value of the solar-PV output (ψ̃) under worst-case distribution, the
expected cost Ξ(x) can be formulated using (31).

Ξ(x) = sup
M∈I

EM{Ξ(x, õ, ψ̃)} (31)
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where
Ξ(x, õ, ψ) = min qTy (32)

s.t.
Ax + by ≤ h(õ, ψ) (33)

The facilitating vector h(õ, ψ) is defined as

h(õ, ψ) = h0 + ∑
e∈S

ho
r or + ∑

r,e∈S
hψ

e ψe (34)

The second-stage recourse decisions are represented by a vector (y) in (32). All the con-
straints for second stage problems are presented by (33), where the recourse decisions
represented by (y) are directly related to the first stage decisions (x). All the constants
in (33), i.e., h0, ho

r and hψ
e , define the function at right side of the constraint in (33) and these

constants are directly affected by the uncertain variables or and ψe.

3.4.1. Modeling Ambiguity Parameters for Solar-PV Uncertainty

To facilitate above model an ambiguity set construction is needed as in (35).

Iψ =

⎧⎪⎪⎨
⎪⎪⎩M ∈ Pψ(R

|S|) :

ψ̃ ∈ R|S|
EM{ψ̃} = 0

M{ψ̃ ∈ V} = 1
EM{vi(ψ̃)} ≤ Γi ∀i ∈ I

⎫⎪⎪⎬
⎪⎪⎭ (35)

where Pψ(R|S|) denotes the set of all probability distributions on R|S|. The expected value
of the random variable ψ̃ is 0, which enforces the mean error signal to be “0” and sum
of the probability for all outcomes for ψ̃ is 1. Function vi in (35) incorporates distribution
information into the ambiguity model. The uncertainty set in (36) specifies the lower bound
V−

l,t and the upper bound V+
l,t of each random variable ψl,t.

V =
{

ψ ∈ R
S : V−

l,t ≤ ψl,t ≤ V+
l,t ∀l ∈ Λ, ∀t ∈ τ

}
(36)

To obtain the expectation of each function vi under ambiguous distributions easily, the
ambiguity set in (35) needs to be further extended in (37). Here, an auxiliary variable is
introduced to make the ambiguity set in (37) less conservative.

Hψ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Oψ ∈ Pψ(R

|S| ×R
|I|) :

(ψ̃, α̃) ∈ R|S| ×R|I|
EOψ

{ψ̃} = 0
Oψ

{
(ψ̃, α̃) ∈ V̄} = 1

EOψ
{α̃i} ≤ γi ∀i ∈ I

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(37)

The ambiguity set in (37) needs to be extended further to incorporate joint distribution
information for the auxiliary variable as well as the influence of the uncertain variable. The
joint distribution for the auxiliary and uncertain variables is presented in (38).

V̄ =

⎧⎪⎨
⎪⎩(ψ, α) ∈ R

|S| ×R
|I| :

ψ ∈ V
vi(ψ) ≤ αi ∀i ∈ I
αi ≤ max

ψ∈V
vi(ψ) ∀i ∈ I

⎫⎪⎬
⎪⎭ (38)

In expression (38), the function vi is restricted by the auxiliary variable ai so that the
ambiguity parameter I having all possible outcomes in (35) holds if set H is valid in (37).
To solve the objective function with given constraints, the above ambiguity set needs to be
linearized with a linear decision rule, as depicted in (39) having auxiliary random variables.

yn(ψ, α) = y0
n + ∑

e∈S
yψ

ieψe + ∑
r∈S

yα
irαr ∀i ∈ I (39)
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The Equations (31) and (33) are re-arranged in the form of Equations (40) and (41) so that
the linear decision rule can be applied.

Ξ(x) = sup
M∈I

EM{Ξ(x, ψ̃)} = sup
M∈I

EM

{
qTy(ψ̃)

}
(40)

where y is the recourse decision which depends on ψ̃ and is expressed as

y(ψ) ∈ arg min
{

qTy : Tx + Wy ≤ h(ψ)
}

∀ψ ∈ V (41)

By applying the principle of linear decision rule on Equations (40) and (41), the
proposed model can be converted to (42)–(43).

Ξ̄(x) = min sup
O∈H

EO

{
qTy(ψ, α)

}
(42)

s.t.
Tx + Wy(ψ, α) ≤ h(ψ) ∀(ψ, α) ∈ V̄ (43)

These results are taken from [47]. Now, the model discussed in (2) and (3) with the
uncertainty model of solar PV can be solved by using an ambiguity set for the distribution
of RES’s data for uncertain variables, i.e., characteristics of the distribution with the help
of (42)–(43), which makes the model tractable.

3.4.2. Modeling Ambiguity Parameters for Wind Uncertainty

The ambiguity-parameters modeling for wind uncertainty follows the same steps as
discussed in the previous section. The ambiguity matrix for wind is derived from the same
method as the ambiguity matrix for solar but with different variables and parameters. The
ambiguity set and extended ambiguity set for wind farms are listed in (44) and (48).

Io =

⎧⎪⎪⎨
⎪⎪⎩M ∈ Po(R

|S|) :

õ ∈ R|S|
EM{õ} = 0

M{õ ∈ V} = 1
EM{vi(õ)} ≤ Γi ∀i ∈ I

⎫⎪⎪⎬
⎪⎪⎭ (44)

where Po(R|S|) denotes the set of all probability distributions on R|S|. The expected value
of the random variable õ is 0, which enforces the mean error signal to be “0” and sum
of the probability for all outcomes for õ is 1. Function vi in (44) incorporates distribution
information into the ambiguity model. To obtain the expectation of each function vi under
ambiguous distributions easily, the ambiguity set in (44) needs to be further extended in (45).
Here, an auxiliary variable is introduced to make the ambiguity set in (45) less conservative.

Ho =

⎧⎪⎪⎨
⎪⎪⎩Oo ∈ Po(R

|S| ×R
|I|) :

(õ, s̃) ∈ R|S| ×R|I|
EOo{õ} = 0
Oo
{
(õ, s̃) ∈ V̄} = 1

EOo{s̃i} ≤ γi ∀i ∈ I

⎫⎪⎪⎬
⎪⎪⎭ (45)

The model discussed in (1) and (3) with the uncertainty model of wind farms is solved
by using an ambiguity set (45) for the distribution of RES’s data for uncertain variables, i.e.,
characteristics of the distribution.

4. Results and Discussions

Case studies were performed in this paper with the help of the ambiguity sets devel-
oped in the previous section and the objective functions discussed above are now tractable
models due to the linear decision rule implemented in (42)–(43).
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4.1. Example Case Study for DRO Illustration with One DG for an Instance

In this section, a sample case study was conducted with a distributed generator and
a solar PV for an instance. This sample case study elaborates the recourse action for all
solar PV outcomes in an instance to achieve the worst-case expected cost objective. Here,
demand is D = 280 kW, mean solar PV output is ψ̄ = 40 kW, and penalty cost for load loss
is Psur = 150 USD/kW. To simplify the problem and to elaborate on the initial method for
solving with BESS, one can take SOCmax = 0 kWh, which means there is no storage in this
example, and eventually power charge or discharge for BESS pc/pd = 0 kW. The generation
cost coefficients a and b are 1.7 × 10−7 USD/kW and 16.57 × 10−3 USD/kW, respectively,
where the startup cost for the generator is USD 890. The upper and lower limit for the
generator is P = 240 kW and P = 20 kW, respectively. The ambiguity matrix for the solar
PV uncertainty is listed in (46). The duality gap for this example is 0.01.

H =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
O ∈ P0(R

2) :

EO{ψ̃} = 0

O

⎧⎨
⎩

−10 ≤ ψ̃ ≤ 10
max{ψ̃, 0} ≤ α
α ≤ 10

⎫⎬
⎭ = 1

EO{α} ≤ 5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(46)

In the ambiguity matrix construction in Equation (46), in line one, the mean value of error
in solar PV output is 0; in lines, two to four, the upper and lower bound of the confidence for
the mean value of the solar PV output is from −10 to 10 which means if the mean solar PV
output at a particular instance is 40 kW, then the uncertainty in the output power ranges from
30 to 50 kW; in line five, the expected positive error should be less than 5 kW. The worst-case
expected cost for the sample case is found to be USD 753.9106 using CPLEX 12.9.0.

4.2. Optimum Battery Sizing and Its Impact on Unit Commitment in an IEEE 14 Bus System

After promising results obtained from the above sample case study using the DRO
technique, the following case studies include solar PV, wind farm, and a BESS using an IEEE
14 bus system having four generators each connected to bus 1 to 4, respectively, [48] for a
24 h time period with a 30-min interval. These case studies elaborate the recourse action
for all solar-PV and wind-power outcomes in a day to achieve the minimum expected
cost objective. Data for battery storage is shown in Table 1; similarly, each distributed
generator is shown in Table 2. The load profile for this case study is shown in Table 3.
Solar-PV-output power data for a 200 kW solar PV is taken from [49] where the ambiguity
matrix for the solar-PV uncertainty is listed in (47). The wind-power output data for a
700 kW wind farm is taken from [50], where the ambiguity matrix for the wind uncertainty
is listed in (48). To make this case study realistic in terms of BESS, wind farm, and solar PV,
all the generator’s data is converted from MW to kW, and their respective prices are also
converted from USD/MW to USD/kW. The mean output power of the solar PV for 30-min
intervals provided by the source, as shown in Figure 2, is a bit tailored and converted from
MW to kW to show the UC schedule. Similar is the case with wind power, as shown in
Figure 3. Load flow limits are considered as per IEEE 14 bus system data in kW having a
load capacity factor LCFgb for each transmission line in all the case studies conducted here.
In all the below case studies, the duality gap of 0.001 and the penalty cost for load loss of
Psur = 125 USD/kW were used.

Table 1. The data for battery energy storage system (BESS) integrated with unit commitments and
dynamic economic dispatch [49].

Parameter SOC0 SOCmax Pd
max Pd

min Pc
max

Value 200 kWh 1 MWh 0.25C 0 0.25C

O&M cost
Parameter Pc

min ηc ηd Cvar C f ix

Value 0 95% 90% USD 0.31/kWh USD 10/kW-year
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Hψ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Oψ ∈ Pψ(R

2) :

EOψ
{ψ̃} = 0

Oψ

⎧⎨
⎩

−5% ≤ ψ̃ ≤ 5%
max{ψ̃, 0} ≤ a
a ≤ 5%

⎫⎬
⎭ = 1

EOψ
{a} ≤ 5%

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(47)

Ho =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
Oo ∈ Po(R

2) :

EO{õ} = 0

Oo

⎧⎨
⎩

−5% ≤ õ ≤ 5%
max{õ, 0} ≤ s
s ≤ 5%

⎫⎬
⎭ = 1

EOo{s} ≤ 5%

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(48)

Table 2. Thermal unit’s data for dynamic economic dispatch and unit commitments [51].

ag bg cg Pmin
g Pmax

g RU0
g RD0

g
(USD/kW) (USD/kW) (USD/kW) (kW) (kW) (kW) (kW)

1.2 × 10−7 14.80 × 10−3 89 28 200 40 40
1.7 × 10−7 16.57 × 10−3 83 20 290 30 30
1.9 × 10−7 16.21 × 10−3 70 20 260 50 50
1.5 × 10−7 15.55 × 10−3 100 30 190 30 30

The 30-min solar-PV output data from solar plates and wind-power output data from
wind farms are shown in Figures 2 and 3, respectively. In ambiguity matrix (47) for solar
PV, the upper and the lower confidence bound is ±5% of the mean value of the solar-PV
output and the expected value of error is 0. The expected positive error should be less than
5% of the mean value of the solar-PV output at a particular instance. Likewise, in ambiguity
matrix (48) for wind power, the upper and the lower confidence bound is ±5% of the mean
value of the wind power output and the expected value of error is 0. The expected positive
error should be less than 5% of the mean value of the wind power output.

Table 3. Load/demand profile used with IEEE 14 bus system having 30-min interval.

Time Load Time Load Time Load Time Load
(hr) (kW) (hr) (kW) (h) (kW) (h) (kW)

0:00 525.30 6:00 525.30 12:00 665.38 18:00 756.02
0:30 530.45 6:30 526.59 12:30 675.68 18:30 759.63
1:00 535.60 7:00 527.88 13:00 685.98 19:00 763.23
1:30 540.75 7:30 529.16 13:30 696.28 19:30 766.84
2:00 545.90 8:00 530.45 14:00 706.58 20:00 770.44
2:30 542.30 8:30 537.92 14:30 720.74 20:30 773.53
3:00 538.69 9:00 545.39 15:00 734.91 21:00 776.62
3:30 535.09 9:30 552.85 15:30 749.07 21:30 779.71
4:00 531.48 10:00 560.32 16:00 763.23 22:00 782.80
4:30 529.94 10:30 586.59 16:30 761.43 22:30 729.76
5:00 528.39 11:00 612.85 17:00 759.63 23:00 676.71
5:30 526.85 11:30 639.12 17:30 757.82 23:30 623.67
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Figure 2. Expected solar-PV output and its upper/lower bounds.
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Figure 3. Expected wind output and its upper/lower bounds.

4.2.1. Solar-PV Uncertainty with 30-Minute Interval Unit Commitments

The “Here and Now” decisions of the unit scheduled for a 24-hour time period without
BESS are shown in Figure 4; on the top of the figure, a colored square shows the status
of a particular generator at a certain time instance as “turned on” while no square shows
the status of a particular generator at a certain hour as “turned off”. The “Wait and See”
decisions in terms of economic dispatch for each generator are also shown in Figure 4 on
the bottom, where all “turned on” generators are providing power with optimal dispatch
and their individual contribution is shown to meet the load demand in the distributed
generation system.

The UC schedule in Figure 4 shows that the generator P4
gen becomes active from 4:30

to 11:00 p.m. in a 24-hour time period. The load demand from 4:30 to 11:00 p.m. can also be
achieved by using generator P2

gen power at an off-peak time using energy storage from 5:00
a.m. to 12:00 p.m. Utilizing power from other active generators at peak time, the generator
P4

gen is avoided, which reduces the start-up cost as shown in Figure 5. By turning on/off
the generator more than once a day, the total system’s cost also increases. The frequency
of turning on/off the generators is multiplied by the generator’s start-up and shut-down
cost, which increases the total system cost. The BESS can reduce more costs if a generator is
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turned on more than twice, because BESS can provide power at that time when the power
is needed and store energy at off-peak times when there is a surplus to save costs from both
sides. Therefore, the BESS also saves energy from being lost and provides the necessary
backup when it is needed.
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Figure 4. Unit commitment schedule with power contribution from each distributed generator after
incorporating solar-PV output power to the system with 30-min duration without using BESS and
LCFgb = 1.0 for each bus.
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Figure 5. The power contribution and the status of each distributed generator after incorporating
solar-PV output power to the system with optimal capacity of BESS and LCFgb = 1.0 for each bus.

The total system cost observed without using BESS is USD 11,112.1 and the total system
cost observed using optimal BESS of 1520 kWh having 0.25C of charge and discharge rating
is USD 9334.1. The cost with optimal BESS has a significant improvement (+16%). Battery
profile is also shown in Figure 6, where the BESS mostly stores the energy when it is
available through the solar PV and generator P2

gen. Later on, this energy is given to the
system to relax not only generator P4

gen but generator P1
gen, as shown in Figure 5.
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Figure 6. Charging and discharging power and hourly energy stored in the battery having BESS
capacity optimized to 1520 kWh.

The empirical cumulative distribution function with the size of BESS is shown in
Figure 7, where the reader has the freedom to choose the battery size based on the compro-
mise with the total system’s cost. The cost effectiveness observed with the optimal use of
BESS is +16%, as listed above, so the cost effectiveness will be multiplied with normalized
battery usage to obtain the significance of BESS over the current IEEE 14 bus system.
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Figure 7. Empirical cumulative distribution graph considering solar PV having optimal BESS capacity
of 1520 kWh.

The whole system took 139.04 s to solve the problem with optimum objective value
for 24 h operation of all scheduled distributed generators.
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4.2.2. Wind-Farm Uncertainty with 30-Minute Interval Unit Commitments

The UC schedule without BESS in Figure 8 shows that, from 3:30 a.m. to 10:00 a.m.,
the generator P2

gen and P3
gen are active but P2

gen is providing a small amount of power as
compared to P3

gen due to the reason of being active during that period to avoid shut-down
and startup costs, as after that period of time the system needs P2

gen badly. The start-up
cost for generator P2

gen is higher than P3
gen, but the running cost of generator P2

gen is lower
than that of generator P3

gen. Now comes the role of BESS, as shown in Figure 9, when the
optimal size of the battery having a capacity of 558.13 kWh is placed inside the system. The
generator P2

gen is producing power at its peak by providing the power to the system with
a relatively low running cost per unit and the rest of the power is being provided by the
BESS to meet the load for the time duration specified above.
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Figure 8. Unit commitment schedule with power contribution from each distributed generator after
incorporating wind power to the system with 30-min duration without using BESS and LCFgb = 1.0
for each bus.
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Figure 9. The power contribution and the status of each distributed generator after incorporating
wind power to the system with optimal capacity of BESS and LCFgb = 1.0 for each bus.

The total system cost observed without using BESS is USD 7499.8 and the total system
cost observed using optimal BESS of 558.13 kWh having 0.35C of charge and discharge
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rating is USD 6336.3. The cost with optimal BESS has significant improvement (+15.51%).
The battery profile is also shown in Figure 10, where the BESS initially stores the energy
from 1:30 a.m. to 2:30 a.m. and then delivers this power to the system to turn off generator
P3

gen for the above mentioned time. Later on, BESS stores energy to be used at the end of the
day to turn off generator P3

gen again for reducing the cost incurred due to the generator’s
P3

gen higher running cost.
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Figure 10. Charging and discharging power and hourly energy stored in the battery having battery
capacity optimized to 558.13 kWh.

The empirical cumulative distribution function with the size of BESS is shown in
Figure 11, where the reader has the freedom to choose the battery size based on the compro-
mise with the total system’s cost. The cost effectiveness observed with optimal use of BESS
is +14.56%, as listed above, so the cost effectiveness will be multiplied with normalized
battery usage to obtain the significance of BESS over the current IEEE 14 bus system.
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Figure 11. Empirical cumulative distribution graph considering wind farms having optimal BESS
capacity of 558.13 kWh.
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4.2.3. Hybrid Uncertainty with 30-Minute Interval Unit Commitments

The unit commitment schedule without BESS in Figure 12 shows that, from 0:00 a.m.
to 5:00 a.m., the generator P2

gen and P3
gen are active but P2

gen is providing a small amount of
power as compared to P3

gen and then is turned off from 5:30 a.m. to 12:00 p.m. due to the
reason of being active during that period of time to avoid shut down and startup costs, as
after that period of time the system needs P2

gen badly. The start-up cost for generator P2
gen

is higher than P3
gen but the running cost of generator P2

gen is lower than that of generator
P3

gen. Now comes the role of BESS as shown in Figure 13, when the optimal size of the
battery having a capacity of 712.99 kWh is placed inside the system. The generator P2

gen is
providing the power to the system with a relatively low running cost per unit and the rest of
the power is being provided by the BESS to meet the load for the time duration of 5:30 a.m.
to 12:00 p.m. The most important thing can be observed by looking to Figures 12 and 13,
the total system cost for a day without using BESS is USD 6404.1 while the system cost
with BESS has reduced to USD 5874.9, which is 8.26% less than the total system cost
without BESS.
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Figure 12. Unit commitment schedule with power contribution from each distributed generator after
incorporating hybrid power to the system with 30-min duration without using BESS and LCFgb = 1.0
for each bus.
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Figure 13. The power contribution and the status of each distributed generator after incorporating
hybrid power to the system with optimal capacity of BESS and LCFgb = 1.0 for each bus.
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Total system costs also increase by turning on/off the generator more than once a day.
The frequency of turning on/off the generators is multiplied by the generator’s start-up
and shut-down cost, which increases the total system cost. The BESS can reduce more costs
if a generator is being turned on more than twice because BESS can provide power at that
time when the power is needed and store energy at off-peak times when there is a surplus
to save cost from both sides. Therefore, the BESS also saves energy from being lost and
provides the necessary backup when it is needed.

There is a total of three cycles of charging and discharging being utilized for 24 h in
the current IEEE 14 bus system. The battery behavior and its contribution to the system
can be seen in Figure 14, where the battery’s charge and discharge cycles and the state
charge in the battery at any time for a 24-hour time period are shown. With a 0.35C of
charging/discharging rate, the total cost of the system including BESS is changing with the
storage size of BESS. Initially, without the battery energy storage system, the total system
cost is USD 6404.14. The total system cost is at its peak, and this cost gradually decreases to
USD 5874.9 and then increases due to the battery cost. The increasing behavior is due to
the size of BESS as the size of BESS increases, but the battery utilization remains ineffective
after a certain limit.
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Figure 14. Charging and discharging power and hourly energy stored in the battery.

The BESS available in the market normally have a continuous charging and discharging
rate ranging from (0.1C to 0.4C or 10% to 40% of C) of the battery energy storage system, as
according to the General Electric with their energy storage unit “RSU-4000” [52]. This is due
to several reasons, i.e., battery temperature, battery life, and its continuous charging and
discharging capabilities. Due to high charging and discharging rates, the inner temperature
of the battery increases, which needs to be cooled enough to make the optimum temperature
for the battery, otherwise it may burn the battery or at least create power losses and reduce
the battery life. For high charging and discharging rate batteries, cooling systems are
needed which cost money. In addition, due to high temperature, power losses inside the
battery increase, due to which the battery will become unable to supply the rated power
for which it is designed. Therefore, the optimum range of the charging and discharging
rate (C) for heavy-duty BESS in the industries is (0.25C to 0.35C).

The BESS power and capacity optimization can be observed in Figure 15, where the
mesh plot shows the system objective cost for battery capacity and power (C-rate). In
Figure 16, the empirical cumulative distribution function with the size of BESS is shown,
which gives an overall perspective on selecting the battery size based on the compromise
with the total system’s cost. The cost-effectiveness observed with the optimal use of BESS is
8.26%, as listed above, so the cost effectiveness will be multiplied with normalized battery
usage to obtain the significance of BESS over the current IEEE 14 bus system.
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Figure 15. Total system cost vs battery capacity with charging/discharging rates ranging from 0.05C
to 1C.
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Figure 16. Empirical cumulative distribution graph considering hybrid system having optimal BESS
capacity of 712.99 kWh.

Figure 17 shows the whole picture of the economic dispatch by distributed generators,
wind farm, solar PV, and battery energy storage systems. The system is balanced, which
means the load demand is fulfilled by the power supplied through sources discussed in
this paper.
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Figure 17. Total system’s demand vs generation (including distributed generation, wind-farm, solar
PV, and optimal capacity of BESS).

4.3. Comparison with Similar Studies

The IEEE RTS 24 bus system is investigated here with DRO as well as the stochastic
through scenario approach in current research work. The results obtained through the
DRO technique are compared with the stochastic approach presented in [53] with the IEEE
24-Bus system. The system used in [53] is an IEEE 24-Bus system with a time span divided
into 24 1-hour time slots having two wind farms connected at buses 10 and 17, and three
ESS installed on buses 10, 17, and 20. The system has ten thermal units for scheduling to
obtain the overall minimum generating cost while undermining the line limits. The cost for
energy not served used in that case study is 200 USD/MWh. The data for thermal units,
ESS, hourly load, and mean wind power are provided in [53].

Total system cost objective comparison between distributionally robust optimizations
and stochastic optimization with penetration level 100% over various forecasting accuracy
variances for an IEEE RTS 24-Bus is presented in Table 4. The total system’s cost obtained
through the scenario approach is less than the deterministic cost against 100% penetration
of RES and a variance of 0.1. This cost is the worst-case solution and, hence, conservative
for the IEEE 24-Bus system. However, the total cost of the system with the same parameters
obtained with DRO is slightly higher as compared to stochastic, which means the proposed
method in the current research has a less conservative solution while handling uncertainties
with more than one uncertain parameter. In addition, the value of the stochastic solution
(VSS) with stochastic optimization in Table 4 has higher variations as compared to the VSS
with DRO, which shows the robustness as well as the accuracy of the method.

Table 4. Total system cost objective comparison between distributionally robust optimizations and
stochastic optimization with forecasting accuracy variance 0.1 over various penetration level (IEEE
RTS 24-Bus).

Wind Forecast Stochastic Optimization Distributionally Robust Optimization

Accuracy Total Cost (USD) VSS Total Cost (USD) VSS

Percent Deterministic Stochastic USD % Deterministic DRO USD %

100 1,482,836 1,404,468 78,367 5.285 1,482,836 1,411,223 71,613 4.829

80 1,543,488 1,506,339 37,148 2.407 1,543,488 1,512,588 30,899 2.002

60 1,643,850 1,618,083 25,766 1.567 1,643,850 1,627,354 16,496 1.003

40 1,753,050 1,740,145 12,905 0.736 1,753,050 1,747,797 5252 0.300

20 1,884,530 1,880,827 3702 0.196 1,884,530 1,881,773 2756 0.146
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Similarly, total system cost objective comparison between distributionally robust optimiza-
tions and stochastic optimization with penetration level 100% over various forecasting accuracy
variances for an IEEE RTS 24-Bus is presented in Table 5. With different wind-forecast-accuracy
variances, both models are tested to claim the same behavior of using the DRO model as dis-
cussed above. The results obtained through DRO with various wind-forecast-accuracy variances
with 100% RES penetration also prove that the DRO model gives a less conservative and more
robust solution as compared to stochastic optimization through scenarios.

Table 5. Total system cost objective comparison between distributionally robust optimizations and
stochastic optimization with penetration level 100% over various forecasting-accuracies variances
(IEEE RTS 24-Bus).

Wind Forecast Stochastic Optimization Distributionally Robust Optimization

Accuracy Total Cost (USD) VSS Total Cost (USD) VSS

Variance Deterministic Stochastic USD % Deterministic DRO USD %

0.1 1,482,836 1,404,468 78,367 5.285 1,482,836 1,411,223 71,613 4.829

0.075 1,465,605 1,403,389 62,216 4.245 1,465,605 1,408,875 56,730 3.871

0.05 1,447,095 1,399,777 47,318 3.27 1,447,095 1,419,318 27,777 1.919

0.025 1,427,307 1,396,437 30,869 2.163 1,427,307 1,410,691 16,616 1.164

Therefore, from the above three cases, it is concluded that BESS has a major impact on
unit scheduling. It reduces the startup cost of the generators and extra power generated due
to the ramp up and ram down limits is stored to BESS in order to minimize the generation
cost for peak times. Similarly, the cold cost of all the generators participating even in a single
hour of that particular day is saved. All of the above case studies were solved with Xprog
V1.0, a MATLAB-based platform by using IBM ILOG CPLEX Optimization Studio V12.6.3;
the system requirements were a 64-bit Windows 11-based operating system with 16GB RAM.

5. Conclusions

Optimal sizing of a battery energy storage system using the ambiguity-based para-
metric model of distributionally robust optimization with a linear decision rule for grid-
connected distributed generators along with uncertain wind farm and solar PV was devel-
oped to achieve the optimal scheduling of the distributed generation with optimal battery
energy storage system capacity and power rating. The uncertainty of wind farms and solar
PV is modeled through DRO by developing their respective ambiguity sets with mean,
minimum, and maximum output for each time step (30-min) and each RES. The DRO
model employed in this research provides less conservative solutions under uncertainty
as compared to other models, i.e., the robust optimization model and adopted robust
optimization model. Accordingly, the effect of BESS on unit commitment is examined
with three different case studies conducted with solar-PV, wind-farm, and hybrid uncer-
tainties on distributed generators over a 24-hour time period. These case studies show
that the schedule of UC observably changes with BESS placement in the system. Further,
the optimal capacity of BESS also reduces the maximum operating point of distributed
generators by providing power to the system at peak times and storing energy in BESS at
off-peak times. The optimal size of BESS is established, which is inclusive of the practical
startup and shut down of distributed generators. This study also discussed the effect
of the economical aspect of BESS size on unit scheduling, although with an increment
in BESS capacity reducing the start-up cost, nevertheless, the initial investment of BESS
economically limits this function; this trade-off defines the efficacy of scheduling-based
optimization algorithms. The case studies discussed in this paper have the beauty of not
having a complex system to make it more complex for the reader to understand the model
proposed here; for future work, these case studies can be extended to multiple energy
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storage systems to evaluate the cost-effectiveness.
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Nomenclature

Sets and Indices for UC Model

τ/t Time interval set
ζ Feasible time constraints for minimum up/down time
κ/k DG unit set
β/b Buses in the system
Λ/l Solar PV units
L/g Transmission line
J /j Wind-farm units

Constants for UC Model

Pk Upper limit of generator k
Pk Lower limit of generator k
RDk RD limit of generator k
RUk RU limit of generator k
pd,min

b,t Minimum power that storage can provide while discharging at bus b at time t
pd,max

b,t Maximum power that storage can provide while discharging at bus b at time t
pc,min

b,t Maximum power that storage needs while charging at bus b at time t
pc,max

b,t Maximum power that storage needs while charging at bus b at time t
Db,t Load demand at bus b during time t
ak Generator k cost parameter
bk Generator k cost parameter
Cs

k Fixed start up cost for unit k
SOCmin

b,t Minimum state of charge at time t and bus b
SOCmax

b,t Maximum state of charge at time t and bus b
Δt Time step of storage for time t
ηc Efficiency of charging the battery
ηd Efficiency of discharging the battery
LCg Line capacity of line g
LCFg,b Load capacity factor of line g connected to bus b
Psur Penalty surcharge for load loss
C Charging and discharging rates of the battery
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Decision Variables for UC Model

ck,t Unit k generation cost at time t
Bc

count,b Battery’s charge cycle count at bus b
BT

count,b Total charge and discharge cycle count for battery at bus b
pw

j,t Wind-farm unit j generation at time t
pcur

b,t Power surplus/generation loss at bus b on time step t
pt

k,t DG unit k generation at time t
ps

l,t solar PV unit l generation at time t
xk,t Binary variable for generator status i.e.,UC
zk,t Unit k start up cost at time t
pd

b,t Power that battery can provide (as a source) at bus b in time t
pc

b,t Power that battery(as a load) needs at bus b in time t
SOCb,t State of the charge at time t and bus b
Bd

count,b Battery’s discharge cycle count at bus b

Parameter Set for Uncertainty Model

ψ̃l,t Random variable for solar PV uncertainty error for unit l at time t
V+

l,t Maximum error in solar PV uncertainty for unit l at time t
V−

l,t Minimum error in solar PV uncertainty for unit l at time t
V Set of all uncertainties for random variables under linear constraints
V Extended set of uncertainties for random variables defined under linear constraints
Oψ Distribution for occurrence of random variables ψ̃ and α̃ together
s̃ Auxiliary random variable for wind
õj,t Random variable for wind-farm uncertainty error for unit j at time t
EM Expectation within distribution M

I Ambiguity matrix with given distribution of random variable õ
H Extended form of ambiguity set I
I/i Index for distribution of random variable
J Events describing the distribution of each random variable vl,t
M Random variablesψ̃ distribution
Oo Distribution for occurrence of random variables õ and s̃ together
S/e, r Set of random variables
α̃ Auxiliary random variable for solar PV

Others

Ξ(x) Expected worst-case distribution recourse cost
Ξ(x, o, ψ) UC cost based on decision of x under economic dispatch,with wind-farm o and solar PV ψ

CT
B (o, ψ) The running cost of the battery under economic dispatch, considering the

recourse action
of wind-farm o solar PV ψ uncertainty

Abbreviations

The following abbreviations are used in this manuscript:

UC Unit commitment
DRO Distributionally robust optimization
DG Distribution generation
RES Renewable energy sources
RO Robust optimization
BESS Battery energy storage system
ESS Energy storage system
PV Photo voltaic
MILP Mixed integer linear programming
SOCP Second-order cone programing
C Charge and discharge rate
VSS Value of stochastic solution
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Abstract: Considering the controllability and high responsiveness of an energy storage system (ESS)
to changes in frequency, the inertial response (IR) and primary frequency response (PFR) enable
its application in frequency regulation (FR) when system contingency occurs. This paper presents
a coordinated control of an ESS with a generator for analyzing and stabilizing a power plant by
controlling the grid frequency deviation, ESS output power response, equipment active power, and
state of charge (SoC) limitation of the ESS in a power plant. The conventional generator and FR-ESS
controllers were investigated and compared. To obtain the optimal frequency and power response,
an ESS-based adaptive droop control method was proposed. The proposed control strategy was
developed and implemented considering the changes and limitations of the dynamic characteristics of
the system, FR requirements, and an ESS using the PSCAD/EMTDC software. The simulation results
showed that the proposed method was more effective than the conventional droop-control-based
FR-ESS, and the effectiveness of this method was validated.

Keywords: energy storage system; droop control; frequency regulation; inertia constant; state of
charge; PSCAD/EMTDC

1. Introduction

Currently, ESSs, which are required to achieve stability and grid safety owing to
the high penetration of renewable energy resources, have received wide attention from
researchers [1]. The integration of ESSs and power reserve synchronization is an effective
solution for overcoming renewable energy source (RES) intermittency and fluctuating
effects. This is supported by the IEC T120 work program objectives, which identify ESSs as a
solution that can efficiently deliver sustainable, economic, and secure electricity supplies [2].

The importance of frequency regulation (FR) in power systems cannot be overempha-
sized. FR can be achieved via three distinct control stages: primary (inertial response),
secondary (governor response), and tertiary (automatic generation control (AGC) [3]. An
imbalance in the supply and generation at the power-grid level causes frequency deviation.
An increase in the utility grid frequency can be caused by excessive power generation,
which in turn increases the speeds of rotating machines, whereas a lack of supply leads to a
frequency decrease. When there is a significant deviation from statutory limits, generation
plants and loads are disconnected from the network, which can lead to blackouts [4]. There-
fore, to maintain the desired frequency (either 60 or 50 Hz) by the grid, the total generation
should be equal to the system loads and electrical losses [5]. Although low-frequency
fluctuations can be handled by generator participation in secondary frequency control, the
capability of these generators for high-frequency load fluctuations may not be adequate
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owing to the requirements of these fluctuations [6]. Therefore, ESS application for FR has a
faster (quick) response, is less expensive, has a lower capacity in power plants, and offers a
precise control capability over many conventional generators [7,8]. The flexibility and rapid
control of the charge and discharge capabilities of ESSs to regulate the system frequency
not only improves the FR performance, but also reduces the reserve of traditional units [9].
However, the use of only ESS for FR would require large storage capacity and energy,
which is economically expensive [6,10]. The use of ESSs in traditional power plants initially
designated for FR can therefore increase the overall efficiency of the power system [11].

Traditionally, grid operators engage with the governor-free operation of thermal
power systems or generators for FR in large-scale operations. However, such generators
are subjected to stress through the mechanical regulation of valve openings to compensate
for FR [3]. For instance, in Korea, FR is performed using a governor-free control method
with turbine governors responding within 10 s by providing power for 30 s, and the AGC
responds within 30 s by providing power for 30 min. However, power plants using these
approaches operate below their rated capacity to provide FR services until they are needed,
making them inefficient [11,12]. Studies have been conducted concerning improving the
frequency response characteristics in power systems, but little has been done to cater to the
power response and SoC management of the ESS. In [13], ESS de-loading or curtailment of
generation units, load-demand side management, and utilization of kinetic energy reserves
have been highlighted as methods in which virtual inertia implementation can provide
frequency regulation in relation to the inertial response. Reference [14] proposed a droop
control strategy as a frequency regulation method for a microgrid using an ESS to regulate
the ESS output power. Furthermore, ESS participation in primary frequency regulation uses
both virtual droop control and virtual inertial control, which could increase the frequency
nadir and effectively reduce the rate of change of frequency (RoCoF) [15]. Reference [9]
proposed a control strategy in which virtual inertial and virtual negative inertia control
methods were implemented to prevent frequency deterioration and accelerate frequency
recovery, respectively, for ESS participation in primary frequency control (PFC). Another
previous study [16] proposed droop control for battery energy storage system (BESS)
participation in system-grid FR by adjusting the BESS output according to the fixed sagging
coefficient. In a different study [17], a BESS based on virtual droop control was implemented
to provide grid-frequency stability. However, these control strategies do not consider the
limitations of the system characteristic dynamics and frequency variation requirements.
A previous study demonstrated the advantage of using an ESS to replace the governor
in a synchronous generator from the perspective of the SoC management scheme and
FR performance. However, this study did not compare the proposed method with a
conventional FR-ESS system [18].

In this study, to ensure the effect of contingency events on frequency regulation while
also considering the importance of ESS-SoC management, an adaptive droop control strat-
egy of the ESS instead of the governor is proposed. Considering the inertia value of the
participating generators as the control quantity, an adaptive droop controller for the FR-ESS
was designed using an algorithm to allocate the ESS output. Adjustment of the droop
constant of the ESS improves the output power injected based on the frequency deviation
rate for the ESS such that it may participate in primary frequency regulation. Therefore, the
ESS reserves can be optimally utilized to improve the RoCoF and increase the frequency
nadir, thereby improving the frequency stability of the power network. In addition, the
mutual influence between the conventional generator controller and FR-ESS controller was
investigated to evaluate the grid frequency response dynamics. To investigate the technical
impact of this system on the overall system network, the complete test system was compre-
hensively modeled using electromagnetic transient analysis software (PSCAD/EMTDC).
PSCAD/EMTDC is a widely used power system transient analysis tool that has intuitive
simulation and modeling tools that are greatly enhanced by its state-of-the-art graphical
user interface [19]. The effectiveness of the proposed control strategy was verified by
simulation under the condition of a generator and load tripping disturbance.
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2. Power System Architecture

2.1. Test System Model

The power system network shown in Figure 1 is considered to validate the effective-
ness of the proposed method in accessing the frequency regulation response, generator
output power, power grid output, and output active power of the ESS, and SoC limitations.
The electrical architecture of the tested power system consists of two generators: Gen 1
(trip generator) and Gen 2 (with and without governor operation) with rated capacities
of 100 and 612 MVA, respectively, and a utility grid connected to the main transformer
(610.4 MVA) via a 345 kV AC bus. The ESS was installed on the 6.9 kV AC bus via an
interconnection transformer (63 MVA) at the point of common coupling (PCC) with a rated
capacity of 25 MW/6.25 MWh. At the PCC, the ESS terminal voltages synchronized with
the system voltage can be measured appropriately. Generally, an ESS comprises a power
conversion system (PCS) for DC-to-AC output conversion and a storage medium. The total
load capacity of 1650 MW/315 MVAR, which consists of load A (1500 MW/300 MVAR)
and load B (150 MW/15 MVAR), was connected to the 22 kV bus. Load B is the trip load.
In this study, the generator was modeled as a synchronous machine in PSCAD, where
the governor, exciter (ST4B), power system stabilizer (PSS2B), and turbine models were
included for a more realistic simulation. Figure 1 shows the three-bus network, single-line
model used for the simulation of the test results. The system parameters used for the design
and simulation process are listed in Table 1.

Figure 1. Single-line diagram of the power system.
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Table 1. System Parameters.

System Parameters

Parameters Value Unit

Generator rated power (PGen,rat) 612 MVA
Power conversion system (PCS) rating 25 MW

Inverter DC power rating 25 kW
Total system load 1650/315 MW/MVAR
System frequency 60 Hz
Offset frequency 59.8–60.2 Hz

ESS size/capacity
(

PESS,cap

)
6.25 MWh

ESS rating (PESS,rat) 25 MW
State of Charge initial (SoCo) 50 %

System sampling time 50 microsec
Droop rate (Rdroop) 4.62 %
Inertia constant (H) 3 s

2.2. ESS Modeling and Control Scheme

The ESS modeled in this study, which is an inverter-based reserve (IBR) system as
described in Section 2, was designed such that it can inject and/or supply or absorb a
certain amount of energy over a given period. The ESS structure shown in Figure 2 consists
of a DC source composed of battery banks, DC link capacitors, a three-phase pulse-width
modulation (PWM) inverter, inductors, and capacitor (LC) filters. The three-phase inverter
is controlled using an active power/reactive power (P/Q) controller.

Figure 2. Energy storage system structure [15,20].

2.2.1. Voltage Source Inverter Model

The most commonly used inverter type is the VSI, where the AC power provided
on the output side functions as a voltage source. The input DC source voltage is usually
an independent source, such as a battery, which is referred to as a DC-link inverter. This
structure is the most widely used because it naturally behaves as a voltage source and
is employed in many industrial applications. Compared with single-phase VSIs used in
low-range power applications, three-phase VSIs are implemented in medium- to high-
power applications.

VSIs are required in island or autonomous operation to keep the voltage stable. In
microgrid applications, VSIs have been found to be interesting because they do not require
any external reference to remain synchronized. The model is convenient as it provides per-
formances such as ride-through capability and power quality enhancement to distributed
power generation systems. VSIs can change behavior from voltage to current sources when
they operate in grid-connected mode. This source inverter is often connected to energy
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storage devices to regulate both frequency and voltage in low-inertia grids. Therefore,
in this study, the use of VSI drives is more efficient than current source inverters (CSI);
VSI drives are distinctive for their use of insulated gate bipolar transistors (IGBTs) with
fast switching times that create a PWM voltage output with regulated frequency and volt-
age. By contrast, CSIs use gate turn-off thyristors (GTOs) or symmetrical gate commuted
thyristors (SGCTs) that generate PWM output with regulated frequency output current
with high harmonics, which necessitates filters on both input and output sides. VSIs are
implemented in this study because the active and reactive power can be controlled inde-
pendently, thereby reducing the need for reactive-power compensation. They contribute
to the stabilization of the AC network at PCC. Hence, they have the capability of better
sustaining the PCC voltage.

The voltage source inverter (VSI) in this study uses the classic active power (P) and
reactive power (Q) control method, also referred to as P/Q control, which was developed
based on IGBT semiconductor switches, as shown in Figure 2. Figure 2 shows a schematic
of a three-phase VSI interacting with energy storage and an AC system. It is connected
to the AC system through line filters composed of parallel inductors and capacitors. In
this inverter, three-phase reference voltages are generated using the sinusoidal pulse-width
modulation (PWM) technique, as depicted in Figure 3.

Figure 3. Active and reactive power (PQ) control scheme.

2.2.2. P/Q Control Scheme

The ESS control strategy proposed in this study is the P/Q control scheme designed
in the PSCAD/EMTDC simulation program. This system, which is depicted in Figure 3,
consisted of two cascaded control loops (outer slow power control and inner fast current
control). The energy management system of the ESS provided both the ESS active power
reference (Pessre f ) and reactive power (Qre f ), which were dependent on the ESS state and
load balance in the outer control loop. By contrast, the inner control loop independently
controlled the direct-axis (Idre f ) and quadrature-axis (Iqre f ) current references. To imple-
ment these control loops, proportional and integral (PI) controllers were used. The P
controller regulated ESS output power in accordance with the power reference generated
from frequency controller (ΔPessre f ). The ESS AC side output power (Pessm) measured
was fed into the P controller to calculate the error (Perr) , which the PI controller used in
generating the reference for d-axis current

(
Idre f

)
regulation. This controller output was

regulated within the minimum (Idmin) and maximum (Idmax) d-axis current value through
tuning of the PI gain parameters; this minimized frequency drop or rise and settling time.
This PI controller gain parameters (Kp and Ki) values presented in the paper were ob-
tained via the tuning rule of Ziegler and Nichols based on a measured step response to
compensate single input, single output (SISO) process with time delay that satisfied both
robustness and performance requirements by eliminating steady state error and reducing
the overshoot with oscillations to obtain an improved transient response. The measured
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voltages (Vdre f ) and (Vqre f ) at each terminal of the control scheme were transformed from
the DQ0 rotating frame to ABC using the Park transformation. The three-phase voltage
reference signal of the PWM was determined. The reactive power reference (Qre f ) was set
by considering the droop rate. The outputs P and Q of the inverter were adjusted using
the droop coefficients [21]. The proportional and integral controller gains are presented in
Table 2.

Table 2. PI Controllers’ Gain.

PI Gain Values

PI Controller Kp Ki

PIA1 7.93651 0.0008521
PIA2 8.52314 0.0006523
PIB1 4.1746 0.000254
PIB2 1.8574 0.000234

3. Proposed Control Strategy Implementation

In this section, the proposed ESS control strategy and its structure are discussed.
The control implementation is based on the regulation of the active power of the ESS
and generator without the governor based on the frequency deviation rate. The power-
frequency control of the ESS in relation to the system inertia for improving the stability of
the power system is discussed.

3.1. System Frequency Dynamics

The nominal frequency of the Republic of Korea is 60 Hz, with a deadband of 0.2 Hz.
Therefore, a frequency variation within the 59.8 to 60.2 Hz range shows that the system
is in steady state. Frequencies outside of this range are regarded as abnormal owing to
a contingency event [22]. In this study, the deadband of the system frequency was set
to 60 ± 0.2 Hz. The change in the power system frequency can be defined by the swing
equation as follows [3]:

ΔPd
Ssyst

=
2Hsyst

f0
× d f

dt
(1)

where (ΔPd = Pgen − Pld) represents the power deficit, which is the difference between the
generation unit active power (Pgen) and load demand power (Pld), Ssyst is the rated capacity
of the system, Hsyst is the inertia constant of the system, f0 is the nominal frequency, and
d f
dt is the RoCoF.

The frequency nadir and RoCoF are emphasized in [15] as important elements to
consider for system stability. Therefore, in this study, two essential elements related to
the frequency response were examined: the RoCoF and inertia constant (H). The inertia
constant of the synchronous generator (SG) is expressed in Equation (2) [3]:

Hsyst =
∑n

i=1 Hi × Si

Ssyst
(2)

where the inertia constant of the individual generator and nominal rating of the generator
are Hi and Si, respectively. A block diagram of the FR-ESS control strategy used in this
study is shown in Figure 4. The three-phase ESS’s current (IL.abc) and voltage (Vc.abc) at
the PCC are measured by the measurement block. The d-axis and q-axis of the currents
(IL.dq) and voltages (Vc.dq) are provided by the calculation block using the phase angle
(θ) derived from the phase-locked loop (PLL). The IL.dq and Vc.dq are the inputs to the
current and power controllers while the output of these controllers are Vinv.dq∗ and ILdq∗.
The inverter voltages (Vinv.abc) generated are sent to the PWM block as shown in Figure 4.
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Figure 4. Block diagram of the ESS control in the PQ mode.

3.2. Generator Modeling Dynamics

In conventional power system networks, the role of the SG is to convert mechanical
energy into electrical energy, which is coupled to the prime movers (steam turbines, as used
in this study) that drive the rotor. The generator’s rotor with a rotating mass contributes
not only to the generator’s active power output, but also adds an inertia property to the
grid frequency via the supply of its stored kinetic energy when a contingency occurs. The
dynamics of the SG rotor can be expressed as in Equations (3) and (4), where Equation (4)
is similar to the swing equation described in Equation (1) [23].

τm − τe = Jα (3)

τm − τe = J
dωm

dt
(4)

Here, τm is the mechanical torque exerted by the steam turbine; τe is the electrical
torque exerted by the system load; J is the moment of inertia; α is the angular acceleration
or retardation; and ωm is the synchronous angular velocity.

To represent Equation (4) in real power terms rather than in torques using the relation-
ship P = τω, it can be expressed as:

Pm − Pe = Jωm
dωm

dt
(5)

where Pm and Pe are the mechanical power input and electrical power output, respectively.
The inertia present in the SG also contributes to the effect of the RoCoF. The higher the

inertia, the slower the RoCoF, and vice versa. Therefore, the mismatch between the active
power and RoCoF of the grid network can be expressed as:

Pm − Pe = Kd
d f
dt

(6)

where Kd is the inertia coefficient.
An imbalance in the power network causes the rotor to speed up or down to offset

the power mismatch, which is a characteristic of all SGs. This response, termed the inertial
response (IR) if adopted only for FR, will support the system for a few seconds; thus, the
stored kinetic energy will be consumed, resulting in system collapse. Therefore, a droop
or PFC scheme mainly provided by SG governors was employed to adjust the generator
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output power in response to the grid frequency variation. In this study, the damping
term was considered while modeling the SG, which was provided by the quadrature axis
damper windings set at a value of two to resolve the spikes in voltage as a result of sudden
disturbances. Therefore, with the incorporation of the damping term, the swing equation
of the SG is:

τm − τe = J
dωm

dt
+ Dω (7)

where D is the damping coefficient of the generator.

3.3. Proposed Adaptive Control Method

Figure 5b,c depict the simplified and detailed proposed method of the FR-ESS with a
generator, respectively. In the configuration shown in Figure 5b, the generator operated
without a governor and the ESS was activated, whereas in Figure 5a, the governor regulated
the angular speed (Δω) of the SG. The governor adjusted the mechanical power (Pm) with
respect to the angular velocity variation of the generator rotor. As shown in the detailed
representation in Figure 5c, the ESS was interfaced with the proposed adaptive control
scheme, which functioned as PFC. During a contingency event, the generator output power
changed and the ESS proposed in this study compensated for a power deficit by providing
active power through the PCC to contribute to the FR. The main goal of the proposed
adaptive control scheme is to enhance frequency regulation by reducing the RoCoF and
frequency deviation.

Figure 5. FR with/without the ESS and governor: (a) conventional and (b) proposed sys-
tem. (c) Proposed adaptive control of ESS operation with a synchronous generator for FR and
SoC calculation.
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In the proposed configuration method, droop control of the FR-ESS, characterized
as a power converter, was used by the generator without the governor owing to its fast
action. The system frequency deviation Δ f served as the input in the ESS control block,
in which the ESS executed the droop control by adaptively adjusting the electrical power
(Pe). The droop control block ( 1

RESS
) generated an output signal Pdroop. In other words, the

adaptive droop control of the ESS was the product of the inverse droop rate and frequency
deviation, which determined the amount of supporting power from the ESS, which was
defined as in Equations (8) and (9) for both PFC and IR regulation, respectively, following
the grid-frequency variation in Equation (10). In the conventional control scheme, the ESS
droop rate was set to 5% (i.e., the control coefficient was 20), whereas that of the proposed
control was 1% and the corresponding inertia constant value was 4 s.

Using this method, both the IR and PFC were provided to the power system through
inertia constant adjustment and power-frequency droop rate adjustment, respectively.

Pdroop =
1

RESS
·Δ f (8)

PRoco f =
d
dt

fgrid· HESS (9)

Δ f = fgrid − fre f (10)

Here, Pdroop is the change in the power output based on the droop characteristics,
RESS is the ESS droop rate value, Δ f expressed in (pu) is the frequency deviation from
the contingency event, fgrid is the grid frequency, fre f is the reference frequency, PRoco f is
the power required to regulate the RoCoF for the inertial response, and HESS is the inertia
constant value of the ESS for the RoCoF.

Therefore, the power of the ESS based on the droop rate (ΔPESS,FR) for frequency
regulation is the summation of the power regulation of RoCoF (PRoco f ) and the power
output based on the droop characteristics (Pdroop), which can be defined as in Equation (11).
The total output of the ESS (PESS) can then be derived as in Equation (12) for FR. This differs
from the conventional droop method and enables the ESS to manage its energy optimally.

Pdroop + PRoco f = ΔPESS,FR (11)

ΔPESS,FR + PESS,re f = PESS (12)

Here, ΔPESS,FR is the ESS power based on the droop rate for FR, PESS,re f is the ESS
reference power, and PESS is the total ESS output power.

For the power system network to be stable after a disturbance occurs, the total power
generation should match the load demand. Therefore, the amount of power flow to the grid
Pgrid can be calculated from Equation (13), which should match the load demand (Pload).

PESS + PGen − Pload = Pgrid (13)

Here, PGen is the SG active power output, PESS is the ESS active power output, Pload is
the total load demand, and Pgrid is the grid power.

Traditionally, the SoC is calculated by integrating the current (unit of current) [24,25];
however, it does not define the relationship between the battery power and SoC. In this
study, we implemented the energy concept identified in [26] by integrating the power to
calculate the SoC of the ESS in Equations (14) and (15) assuming that the battery’s internal
voltage was kept constant (i.e., power was proportional to current). As illustrated, the ESS
power and SoC dynamics were employed to establish a relationship between the change in
grid frequency and the SoC limit.

SoC(t) = SoCo +
1

KE

∫ t

t0

PESS(t)dt (14)
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KE = E∗h (15)

Here, SoC is the ESS-SoC [%], SoCo is the initial SoC value [%], KE is the ESS energy
[MWs], PESS is the ESS power [MW], E is the ESS size [MWh], and h is the constant used to
convert hours to seconds.

The SoC limitation scheme has been developed for FR-ESS applications, which involve
a reference value that the ESS is continually attempting to adapt to with a set nominal
frequency (60 Hz). This reference value, termed the initial SoC (SoCo), was 50% in this study,
indicating the highest potential energy of charging and discharging [18]. The absorption or
supply of ESS power (PESS) results in a change in the SoC. Similarly, when the ESS stops
operating (i.e., it does not inject or absorb power), the SoC must remain constant.

3.4. ESS Control Algorithm

Figure 6 shows the control scheme for the FR-ESS based on the proposed methodology
described in Section 3. The FR-ESS control algorithm in this study performed charging
and discharging operations to reduce frequency variations by providing and/or absorbing
power, which depended on the droop control signal it received. This was designed such that
the proposed adaptive droop control scheme required a limit on the ESS capacity to prevent
the excessive charging and overcharging of power. Therefore, the upper limit PESS, max
and lower limit PESS, min were set appropriately. The control operation was based on the
frequency deviation of the power system, which was initiated to implement droop control
by adjusting the droop rate while ensuring that the ESS capacity limit was monitored
when a contingency operation occurred. The ESS was activated depending on the grid-
frequency deviation outside of the deadband in two modes of operation (charging and
discharging). Therefore, the ESS operated in discharge mode when its active power output
was greater than zero, providing power to the system, and vice versa. In idle mode, the
active power was kept constant at zero. To avoid oscillation problems that may occur
between the operation modes, a small deadband of 20% (the actual size of deadband can
be adjusted based on the system requirements) was introduced for ESS control switching
following Equations (16) and (17) for the charging and discharging modes, respectively.
This deadband represented the offset frequencies flow and fhigh, which were 59.8 and
60.2 Hz, respectively. Therefore, a frequency variation within this range was regarded as
a steady-state system. When the frequency was within the deadband, the ESS operated
without charging or discharging to maintain the frequency. If the system frequency dropped
below flow, the ESS provided power to PESS, max. Otherwise, the ESS absorbed the power to
charge up to PESS, min. The charging and discharging amounts of the power output can be
calculated using the droop rate, as shown in Equation (18). The frequency deviation Δ f can
have both positive and negative values that define the ESS power injection and absorption,
respectively, as expressed in Equation (10).

PESS, min ≤ PESS < 0 ; and fgrid > fhigh (16)

0 < PESS ≤ PESS, max; and fgrid < flow (17)

ΔPESS =
−Δ f ∗ PESS,rat

RESS ∗ fo
(18)

Here, PESS, min (−25 MW) and PESS, max (+25 MW) are the ESS power output charging
and discharging limits, respectively; Δ f is the frequency deviation [Hz]; ΔPESS is the ESS
output power variation [MW]; PESS,rat is the ESS rating [MW]; fo is the nominal frequency
[Hz]; RESS is the droop rate of the ESS.
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Figure 6. Flow chart of the control algorithm of the proposed method for FR.

In this study, the SoC limitation of the ESS was designed to operate based on the
frequency deviation variation rate as well as the power output of the ESS. In most studies,
an SoC reference value required to regulate the SoC of the ESS is set as a constant. This
fixed value must be adjusted to avoid frequent charging and discharging of the ESS because
it is not the same as the target value [27]. Therefore, in this study, the operation of the ESS
was subject to the SoC range constraint to limit its output power according to the SoC and
prevent the aforementioned issue when it participates in FR. The normal SoC operation
range during the emergency case was (50, 80) for SoClow and SoChigh, respectively. When
the SoC exceeded the upper limit, the control scheme activated the discharging of the ESS,
thereby reducing the SoC to prevent overcharging and vice versa when the SoC exceeded
the lower limit. The operational constraints are defined in Equations (19) and (20) for
normal operation and during an emergency, respectively. For the case considered in this
study, a low SoC limit was investigated to compare the proposed method of ESS in PFC
with the conventional method considering the rate of frequency deviation. The control
mechanism involved using the droop control of the ESS to regulate the frequency variation.
The control strategy can be summarized in Equation (21), which defines the charging,
discharging, and idling powers (wherein both the charging and discharging powers are
zero) of the ESS.

SoC = SoCo (19)

SoClow ≤ SoC ≤ SoChigh (20)

ΔPESS =

⎧⎨
⎩

Pdisch o f ESS; SoC < SoCo
P0 o f ESS; SoC = Constant

Pch o f ESS; SoClimit < SoC < SoCo

(21)
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4. Simulation Analysis and Results

To verify the effectiveness of the proposed control scheme using the test system shown
in Figure 1, a case study was conducted during a contingency event by tripping both
generator G1 and load B to compare three different control techniques via simulation. The
case study conducted using PSCAD/EMTDC is described as follows.

Case 1: Generator G2 (with governor) while the ESS is deactivated.
Case 2: Generator G2 (without a governor) with the ESS and conventional droop control.
Case 3: Generator G2 (without a governor) with the ESS and adaptive droop control.
The simulations were carried out for a duration of 50 s and generator G1 was tripped

at 5 s to cause a mismatch of the power imbalance, thereby causing the system frequency to
deviate. Similarly, load B was tripped at 25 s, causing the system frequency to rise above
the nominal value. This frequency deviation also has a significant effect on the grid active
power, participating generators, and ESS in frequency regulation. Therefore, we investi-
gated the effect of only the governor without an ESS (Case 1), the power compensation of
the ESS using the conventional droop method (Case 2), and the proposed method (Case 3)
to verify its advantages.

4.1. Frequency Variation

In the Korean power system, the minimum frequency deviation is 59.70 Hz after
a disturbance occurs. Figure 7 shows a comparison of the grid frequency between the
governor and generator, ESS compensation with a conventional (fixed) droop, and the
proposed (adaptive droop) control scheme. As depicted in Figure 7, it can be deduced
that the grid frequency is at a normal value (60 Hz) before the contingency events occur.
When the tripping of the generator occurs at 5 s, the grid frequency curves of the three FR
control techniques decreased rapidly. It can be seen that the minimum frequency deviations
(nadir) for Cases 1 and 2 are the same (59.64 Hz); however, the frequency nadir for Case
3 is 59.71 Hz. Similarly, when the load was tripped at 25 s, the frequency response of the
system increased. However, the maximum frequency increase was lower with the proposed
method (60.15 Hz) than in Cases 1 and 2 (60.21 Hz). This shows that the proposed method
can decrease the RoCoF with an improved frequency nadir compared with both Cases 1 and
2. Therefore, FR using the proposed method is improved compared with the other control
methods. A rapid change in the rotating speed of the synchronous generator, which can
result from a loss in a large generating unit, can lead to an unacceptable frequency decrease
or sudden disconnect in load, which may in turn result in grid frequency instability. The
existing or conventional generators supply or absorb their stored kinetic energy to adapt to
frequency deviations in the inertia response (IR) stage [28]. However, the responses of the
conventional methods were slow compared to that of the proposed method.

4.2. Active Power Output

Figures 8 and 9 show the results of the grid and generator active power responses
compared to the three control methods (generator with a governor and ESS with the
conventional proposed methods), respectively. It can be observed that the grid active
power in Figure 8 exhibits slightly better oscillation damping with the proposed control
compared to the conventional method, which exhibits higher oscillations in the transient
stage (5 to 10 s). In the steady-state region (0 to 5 s and 35 to 50 s), the active power supplied
to the grid is the same for all control strategies.
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Figure 7. Comparison of the grid frequencies using only a governor, ESS with conventional control,
and ESS with the proposed method.

Figure 8. Comparison of the system’s active power for the different control methods.

Figure 9. Comparison of the generator’s active power for the different control methods.
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The generator’s active power in Case 1 was increased during the generator tripping
event (5 to 25 s) from the steady state value of 474 MW at 0 s to 477.7 MW at 20 s to
compensate for the frequency drop, as shown in Figure 9. However, for Cases 2 and 3,
the active power output (PGen) was the same as the steady-state value (474 MW at 20 s).
This shows the effect of the governor in Case 1 for FR compared to FR-ESS in Cases 2 and
3. Although the power fluctuated during the tripping events of both the generator and
load, a new steady state was reached when the frequency stabilized. The variation in the
output power of the generators in Case 1 occurred because the power compensation was
limited to only the kinetic energy released by the SG through the governor with respect
to the droop setting. Similarly, the amount of ESS power injected into the system with
fixed droop control (Case 2) and adaptive droop control (Case 3) was limited by the droop
rate constant.

4.3. ESS Active Power

According to the ESS power output shown in Figure 10, the operation of the ESS in
terms of the injection and absorption of power to and from the grid can be observed when
the grid frequency deviates. During the generator tripping event, the frequency drops,
causing the ESS participating in FR to inject power into the system. However, the amount
of power is dependent on the ESS droop-rate constant. Using the proposed method, more
power can be injected into the system to minimize the frequency nadir. Likewise, when
the frequency increases owing to load tripping, the ESS with the proposed method has
the capability to absorb more power than the conventional method. Therefore, the ESS
discharges its power by injecting a proportion defined by the droop rate value in Equation
(8) such that a reasonable amount of active power provides compensation for stabilizing
the system. In addition, this system charges in a similar manner. When there is no change
in the grid frequency (no disturbance), the ESS remains in idle mode with a power equal to
zero, as depicted in Figure 10. Using the proposed method, where the ESS uses a control
scheme with a lower droop-rate value compared with the conventional control method,
it can provide more power to the system during the transient period while ensuring that
the maximum rated power is not exceeded. Therefore, the ESS can change its active power
with respect to droop control to assist with FR.

Figure 10. Comparison of both methods for ESS active power.

4.4. SoC Response

The control algorithm flow chart in Figure 6 shows the ESS active power limit and
the SoC limit relation. When the power injected by ESS reached maximum, and the SoC
was close to high limit, the ESS stopped to inject power and the SoC remained constant.
Similarly, when the power absorbed by the ESS reached minimum, and the SoC was close
to its lowest limit, the ESS stopped to absorb power and the SoC remains constant. When
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the ESS active power was within limit, the SoC of the ESS could increase and decrease
rapidly with the proposed control to support FR. The SoC response of the ESS active power
during charging, discharging, and idling is presented in Figure 11. It can be seen from
this figure that at the steady state that occurred before the contingency event (0 to 5 s), the
ESS-SoC was at the initial SoC (50%). However, when the generator was tripped, causing
the frequency to drop, the ESS discharged owing to the power injection into the grid to
provide FR (5 to 25 s). It could be observed that, at the duration when frequency drops
rapidly below nominal value (5 to 10 s), the SoC curves in Case 3 was steeper than in
Case 2. This effect in SoC difference corresponds to the amount of power injected by the
ESS to improve the frequency nadir of the power system. At 10 s < t < 25 s, when the
grid frequency was recovering to a new steady state, the SoC response in Case 2 declined
not so rapidly as compared to that of Case 3. This signifies that a small amount of ESS
active power is still injected into the grid as shown in Figure 10. At t = 25 s, when load trip
occurred, the SoC curves for both the conventional and proposed method reached their
low limit values of 49.84% and 49.22%, respectively. Similarly, as the frequency increased
above the nominal value owing to load tripping, the ESS absorbed power, thereby charging
(25 to 32 s). At this point, the SoC could be seen to have increased more rapidly in Case 3
than in Case 2. At the point when the frequency became stable and neared the nominal
value (38 to 50 s), the ESS-SoC new limit was reached as a result of the ESS neither injecting
nor absorbing power. From Figure 11, it can be deduced that the rate of SoC decrease
was higher with the proposed method as compared to the conventional method, and the
opposite is observed considering the increasing SoC rate. This shows that the proposed
method can inject and absorb power to and from the grid rapidly to support FR through its
fast charging and discharging rate without exceeding the limit.

Figure 11. Comparison of SoC operations for the conventional and proposed methods.

5. Conclusions

In this study, we proposed an adaptive control strategy to coordinate a generator with
an ESS in FR. The proposed method operated using an ESS to provide FR by employing
both droop control and inertia constant adjustment to improve the frequency deviation,
RoCoF, and frequency nadir of the system. An ESS control algorithm was developed to
assist in managing the dynamic nature of the power system for an efficient power supply
to the grid to protect the system from severe frequency deviation, thereby increasing
system stability. We compared case studies involving only governor control, an ESS with
the conventional fixed droop method, and an ESS with the proposed adaptive droop
control scheme when the power system network was subjected to contingency events. To
verify the performance of the proposed method, a dynamic simulation was performed to
investigate the mutual influence between the conventional generator controller and the
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FR-ESS controller with respect to grid frequency regulation and SoC limitation. It was
observed that FR using an ESS can be more effective in contingency events (such as the
non-functionality of transmission lines, generator trips, load trips, and three-phase faults)
compared to the conventional generator. From the simulation results, we observed that,
compared to the ESS with a fixed droop control scheme, the proposed FR-ESS controller
provided the best results in regulating the frequency response by lowering the RoCoF and
improving the minimum frequency deviation (higher frequency nadir) during the generator
tripping event. Similarly, the frequency response amplitude was improved during the load
tripping event using the proposed method. The SoC limitation was also investigated to
compare the conventional and proposed methods. The result from the SoC of ESS shows
that the proposed method has a faster action as compared to the conventional method in
terms of charge and discharge rate without violating the SoC operating limits. The results
indicated that inverter-based reserves such as ESSs respond faster to frequency deviations
compared to the governor of a generating unit operating only with a conventional droop
control scheme.

Considering the results presented in this study, system operators may use the proposed
method to observe the effects of RoCoF based on the ESS power by changing the parameter
settings according to the power plant conditions.

From the perspective of a transmission network, ESS has great potential to provide
various grid stability supports. This study only focused on active power (P) and frequency
control through the proposed generator with FR-ESS. In this kind of control system, the
generator’s reactive power and voltage are not considered. However, for future studies
where the reactive power (Q) and voltage regulation is to be explored for performance
evaluation, a harmonized optimal control method in terms of Q and voltage (V) will be
required. Therefore, future studies of this kind of control for both P and Q for frequency
and voltage regulation, respectively, is anticipated.
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Abstract: The efficiency of renewable energy sources like PV and fuel cells is improving with
advancements in technology. However, maximum power point (MPP) tracking remains the most
important factor for a PV-based fuel cell power system to perform at its best. The MPP of a PV
system mainly depends on irradiance and temperature, while the MPP of a fuel cell depends upon
factors such as the temperature of a cell, membrane water content, and oxygen and hydrogen partial
pressure. With a change in any of these factors, the output is changed, which is highly undesirable in
real-life applications. Thus, an efficient tracking method is required to achieve MPP. In this research,
an optimal salp swarm algorithm tuned fractional order PID technique is proposed, which tracks
the MPP in both steady and dynamic environments. To put that technique to the test, a system was
designed comprised of a grid-connected proton exchange membrane fuel cell together with PV system
and a DC-DC boost converter along with the resistive load. The output from the controller was further
tuned and PWM was generated which was fed to the switch of the converter. MATLAB/SIMULINK
was used to simulate this model to study the results. The response of the system under different
steady and dynamic conditions was compared with those of the conventionally used techniques to
validate the competency of the proposed approach in terms of fast response with minimum oscillation.

Keywords: renewable energy sources; fuel cell; photovoltaic; maximum power point; fractional
order PID

1. Introduction

Conventional energy sources are being depleted at an alarming speed and becoming
scarce; thus, the usage of unconventional energy sources is growing. Coal, petroleum,
natural gas, and nuclear power are all major conventional sources. Because of their contin-
ued use, these resources have been exhausted to a great extent. Additionally, the usage of
these sources contributes significantly to pollution, which contributes to global warming.
Owing to these issues, scientists are forced to employ renewable energy sources (RES).
Non-conventional/RES are sources of energy that are reproduced by natural processes
regularly and do not deplete [1]. These sources do not damage our environment, are mostly
cost-effective, and often do not require a huge investment, hence widely being accepted as
more reliable. Moreover, these sources are called renewable because they are renewed or
reproduced at an equal or greater rate with respect to the rate of their use.

Among all RES, solar PV, which utilizes the photovoltaic effect to produce electric-
ity, is being widely used worldwide. Sunlight is absorbed using semiconductor materi-
als—mostly silicon—and converted into electrical energy. The foremost drawback of solar
energy is that a large area is required to install solar PV systems [2,3]. The fuel cell is, in fact,
a device (electro-chemical) that uses a chemical reaction to produce electrical energy [4].
A fuel cell utilizes the energy of hydrogen (chemical energy) or other fuels to generate
electricity in a clean and effective manner. When hydrogen is utilized as a fuel, the only
things created are heat, electricity, and water. The prominent and unusual aspect of fuel
cells is that they can be used for an extensive range of applications [5,6].
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Fuel cells and batteries differ significantly from each other, as fuel cells do not require
recharging since they do not run out of fuel. The fuel cell will keep producing heat
and power until the fuel supply stops. A fuel cell is constructed using two electrodes
sandwiched around an electrolyte. In a fuel cell, the anode is the negative (−) electrode
while the cathode is the positive (+) electrode. Hydrogen is widely used as fuel in fuel
cells and is provided to the anode [7], while the oxygen (from the air) is supplied to the
cathode. A catalyst is needed to initiate the redox reaction. Platinum is used as a catalyst
and, in some cases, enzymes are used. The catalyst converts hydrogen into electrons and
protons (hydrogen ions). Here, electrons take an exterior circuit path and can be utilized to
power a load, while protons cross through the electrolyte to combine with oxygen to form
water [8].

Several classifications of fuel cells are currently under research, each using different
fuels with different electrochemical reactions and construction. Each has a different catalyst
requiring different operating conditions like temperature and has its own applications and
drawbacks. Polymer Electrolyte Membrane Fuel Cells (PEMFC), also identified as proton
exchange membrane fuel cells, provide a higher power density than other traditional fuel
cells while being lighter in weight and smaller in size [9,10].

One vital aspect of the PV based fuel cell is tracking its maximum power point (MPP).
For reliable and efficient use, it is important to use a PV based fuel cell at MPP, which
depends on several factors, including irradiance, temperature, water content in membrane,
and hydrogen and oxygen partial pressures. The Perturb and Observe (P&O) algorithm is
the most popular to track MPP, owing to its simplicity. However, it may cause fluctuations
across MPP due to excessive switching. To reduce these fluctuations, the step size can be
reduced; but this will cause the tracking time to increase. The incremental conductance
method is proposed in [11,12], which gives better results than the P&O, but still causes an
overshoot. Sliding mode controller (SMC) is studied in [13], using a fuel cell stack with a
boost converter, and performance is compared with incremental conductance and P&O.
However, while it yields a significantly lower overshoot, the calculations are extensive and
the design of the filter is difficult.

The Water cycle algorithm (WCA) is an effective algorithm to track MPP and it is
inspired by the naturally occurring water cycle. The drawback of WCA is that it can trap in
local optima [14]. The incremental conductance method has been implemented for MPP
tracking, but its implementation is complex as it requires multiple sensors [15]. The author
in [16] suggested a smart drive algorithm using a boost converter to track the MPP of the
fuel cell, but the efficiency of the method turned out to be less than other metaheuristic
techniques. Particle swarm optimization (PSO) is another technique used for MPP tracking,
which is based on the natural process. Ref [17] discussed the PSO technique using a fuel
cell stack with a boost converter. PSO is a metaheuristic approach, but the drawback is that
it can also be stuck in local optima. Extremum seeking control is an efficient method but
converges slowly [18].

A fuel cell model with a cuke converter is discussed in [19] and the firefly algorithm
(FFA) is proposed to reach MPP. FFA is a metaheuristic technique, but it has a drawback,
namely, in that it may be stuck in local optima. Backstepping techniques proposed in [20],
show good efficiency, but the implementation requires great effort as it is very complex.
Fuzzy logic control (FLC) is another important technique used to track MPP and is being
used widely. FLC has been implemented using both Boost and Buck converters. The
accuracy of FLC is low and one cannot be sure that the MPP calculated by the controller
is accurate [21,22]. Convergence time for FLC, if used independently, can be very large.
Another technique proposed in [23] is an artificial neural network (ANN); however, this
technique requires an excessive amount of data.

A Jaya controller with cuke converter is implemented in [24] to improve MPP. The
presented technique is metaheuristic but requires excessive computational time. The
grey wolf optimization (GWO) method is also introduced in [25] to track MPP. GWO
technique is motivated by the leadership hunting and hierarchy methodology of grey wolf
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packs. GWO is a metaheuristic technique, but its convergence rate is slow and it can be
stuck in local optima. Another nature-inspired optimization technique is the salp swarm
optimization (SSO) algorithm which is discussed in [26]. Despite being metaheuristic,
it requires excessive computational time for processing. Anti-windup PID controllers
are being used commonly in industries, due to their simplicity and fewer computational
requirements [27]. However, PID is sensitive to excessive variations and can lead a system
to instability. Moreover, it cannot be used for non-linear systems [28].

Higher-order sliding mode controllers tuned with a twisting algorithm (HOSM-TA)
are implemented in [29]. They show high robustness against disturbances and uncertainties.
The drawback of this technique is that it is very complex and there is no guarantee that
the solution is accurate. Furthermore, it cannot be used for 1st order systems. Chattering
is a phenomenon that decreases the efficiency of SMC and also causes heat loss in the
system. To overcome this, a Quasi-continuous (QC) algorithm is proposed in [30]. This
proposed technique shows considerable improvement against chattering and is also ro-
bust. Nonetheless, one of the major drawbacks is that it is complex in design with no
guarantee of accuracy, and cannot be used for 1st order systems. Higher-order prescribed
convergence law technique (PCL) is used to track MPP using a DC-DC boost converter,
which is a robust technique and has a finite convergence time, but it is also complex with
low accuracy [31]. Another MPP tracking technique is model predictive control (MPC),
which offers multiple variable control and predicts upcoming disturbances and upcoming
control actions. It is better than many other techniques in terms of energy savings and has
enhanced transient response, but it requires specific background knowledge of the method
to be implemented [32,33]. Tuning of PID with SSO technique shows good results with
reasonable execution time and good accelerated convergence, and requires few parameters
to be tuned [34]. However, it can suffer from premature convergence.

The integral fast terminal sliding mode control (IFTSMC) technique has advantages,
e.g., robustness against uncertainties and disturbances, ability to reduce chattering, and
high speed of convergence [35]. The golden section search technique is another technique
for MPP. Although this technique is faster than many heuristic methods, the implemen-
tation of the same can be costly; furthermore, it requires knowledge of fuel cell plant
specifications [36]. The forensic-based investigation algorithm (FBI) has been used for pro-
portional integral derivative, which requires multiple sensors and, hence, can be costly [37].
The equilibrium optimizer algorithm is adopted to optimize FLC for MPPT. The algorithm
itself is complex and also FLC lacks in accuracy [38,39].

Table 1 lists the key characteristics and provides a comparison of the various ap-
proaches previously employed.

Table 1. Summary of Fuel Cell-based MPPT Techniques.

Sr. # Reference #
Algorithm/
Approach

Converter Type Nature/Remarks/Notes

1 [5] IC Boost Multi-sensors are required

2 [6] PSO Boost Easily trapped in
local optimum

3 [7,8] ANFIS Boost ANN requires
excessive data

4 [9] P&O High step ratio
Oscillations/fluctuations

near MPP with large
tracking time

5 [10] MPC Boost Requires plant model and
specific knowledge

6 [11,12] P&O/InC Buck
Oscillations/fluctuations
near MPP multi-sensors

needed
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Table 1. Cont.

Sr. # Reference #
Algorithm/
Approach

Converter Type Nature/Remarks/Notes

7 [13] SMC Boost The design of the filter
circuit is cumbersome

8 [14] WCA Boost It may become stuck in
local optima

9 [15] INR Boost Multiple sensors
are needed

10 [16] Smart drive
algorithm Boost Low accuracy

11 [17] PSO Boost Easily stuck in
local optima

12 [18] Extremum
seeking control - Slow convergence rate

13 [19] Firefly algorithm Cuke Easily trapped in
local optimum

14 [20] Backstepping Boost Complex/Excessive effort
in implementation

15 [21] Fuzzy logic Boost Lacks precision

16 [22,23] ANN Boost ANN requires
excessive data

17 [24] Jaya Cuke Requires Excessive
computational time

18 [25] GWO Boost Sluggish convergence and
stuck in local optimum

19 [26] SSA Boost Excessive computational
time required

20 [27] AW-PID Buck-Boost

Inefficient and sensitive
toward large load
changings and not

suitable for Nonlinear
systems

21 [28] FPID Four switch
Buck-Boost Complex to implement

22 [29] TA Boost Complex and accurate
results not guaranteed

23 [30] PCL Boost High complexity and
low accuracy

24 [31] QC Boost
Cannot be used for 1st
order systems, complex

and less accurate

25 [32] MPC Two-level
inverter

Requires plant model and
specific knowledge

26 [33] MPC Boost Requires plant model and
specific knowledge

27 [34] SSA-PID Boost Can become stuck in the
local maximum

236



Sustainability 2023, 15, 3980

Table 1. Cont.

Sr. # Reference #
Algorithm/
Approach

Converter Type Nature/Remarks/Notes

28 [35] IFTSMC Boost

Knowledge of system
boundary uncertainty is

required, also
convergence issues when

states are not near
equilibrium.

29 [36] GSS Boost

Implementation cost high
and knowledge of plant
specification of the fuel

cell required

30 [37] FBI-PID Boost Multiple sensors required,
hence costly

31 [38] EO-FLC Boost Fuzzy logic may lack
in accuracy

Novelty and Contribution

The literature review reveals specific areas that need further improvement; thus, the
proposed technique has focused its utility on these areas. This main contribution of the
proposed work is as follows:

1. This work presented an optimum salp swarm algorithm tuned fractional order PID
controller for MPPT to modify input and output during transient operating conditions
to attain an ideal duty ratio.

2. Compared to other traditional MPPT algorithms utilized in the literature, it offers high-
power tracking capability, quick convergence speed, fewer controlling parameters,
and ease of implementation.

3. The PV-based fuel cell grid connected technology offers a guarantee for steady and
practical operation under varying load situations.

The paper is organized as follows. Section 2 provides the design and modeling of
the PV and Fuel Cell. The proposed control strategy is described in Section 3. Section 4 is
designated for the attained results and discussions. Section 5 is dedicated to the conclusion.

2. System Modeling

The system under study is designed to comprise a grid-connected proton exchange
membrane fuel cell (PEM) together with PV system, a DC-DC boost converter along with
resistive load, and a robust power point tracking controller. The output from the controller
is further tuned and PWM is generated, which is fed to the switch of the converter. Figure 1
presents an overview of the model under study.
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Figure 1. Fuel cell and PV to Grid stages.

2.1. Fuel Cell System Modelling

Fuel cells, first conceived by Sir William Grove in 1839, are now a viable source
of energy. Fuel cells may be thought of as generators in their most basic form. Unlike
traditional generators, which utilize internal combustion engines to turn an alternator, fuel
cells create electricity by directly creating electrons with no moving components. As a
result, they are quite effective and dependable. They are also almost silent, producing only
water vapor in addition to energy and heat. As a result, they are suitable for indoor usage.

The voltage-current characteristics of fuel cells are intricate and nonlinear. A polariza-
tion curve illustrates the non-linear connection between a fuel cell’s current density and
voltage. The fuel cell output voltage is controlled by current density, which is affected by
operational parameters. A PEMFC, a boost DC/DC converter, as well as a resistive load
make up the system. The controlling variable within that system is the duty cycle of the
boost converter; which is the driving variable for achieving MPPT, where C and L stand for
the capacitance and inductance of the boost converter, respectively.

The fuel cell output is given by Equation (1)

Vcell = ENernst − Vact − Vohm − Vconc (1)

where ENernst is reversible thermos-dynamic potential which is defined by Nernst Equation (2)

ENernst = 1.229 − 8.5 × 10−4(T − 298.15) + 4.308 × 10−5T (ln
(

PH2 + 0.5 ln(Po2)
)

(2)

where T indicates the absolute temperature in kelvins, PH2 is hydrogen partial pressure
(atmospheric) and Po2 is the oxygen partial pressure. Activation voltage drop is given by
Tafel Equation (3)

Vact = ζ1 + ζ2T + ζ3T ln(Co2) + ζ4T ln(IFC) (3)

Here i = 1, . . . , 4 are parametric coefficients for every cell model, and Co2 denotes the
dissolved-oxygen concentration in the interface of the cathode catalyst, as mentioned in
Equation (4)

Co2 =
Po2

(5.08 × 106)× exp
(
− 498

T

) (4)

The overall ohmic voltage drop is calculated as Equation (5)

Vohm = IFCRM (5)
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where RM is the resistance (ohmic) and is made up of the electrode resistances as well as the
resistances of the polymer membrane and electrodes. Here, RM is provided by Equation (6)

RM =
rm tm

A
(6)

where, tm is the membrane thickness, which is in centimeters, A is the activation area
in micro centimeters, and rm is the membrane resistivity Ωcm to proton conductivity.
Membrane humidity and temperature have a significant impact on membrane resistivity,
which can be computed as Equation (7)

rm =

181.6
[

1 + 0.03
(

IFC
A

)
+ 0.0062

(
T

303

)2( IFC
A

)2.5
]

[
λm − 0.634 − 3

(
IFC
A

)]
× exp

(
4.18

(
T − 303

T
)) (7)

where, water content is represented by λm of the membrane and is an input of the PEMFC
model. In addition, it is a function of the average water activity am as represented in
Equation (8)

λm =

{
0.043 + 17.81am − 39.85a2

m + 36a3
m 0 < am < 1

14 + 1.4(am − 1) 1 < am ≤ 3

}
(8)

The relationship between the average water activity and the anode and cathode water
vapor partial pressures, (Pv,an , Pv,ca respectively) is given by Equation (9)

am =
1
2
(aan + aca) =

1
2

[
Pv,an + Pv,ca

Psat

]
(9)

The saturation pressure of water Psat can be calculated with the subsequent empirical
expression as mentioned in Equation (10)

lpg10Psat = −2.1794 + 0.02953T − 9.1813 × 10−5T2 + 1.4454 × 10−7T3 (10)

The values (real-time) of λm can vary from 0 to 14. The concentration voltage drop is
expressed as Equation (11)

Vconc = −RT
nF

ln
(

1 − iFC
iL A

)
(11)

where, iL is the limiting current and it is the maximum rate at which the reactant may be
given to an electrode.

Fuel cells are linked together in a series to produce the desired voltage. Thus, the NFC
series cells per string have nonlinear V − I characteristics, as mentioned in Equation (12)

VFC = NFCVcell (12)

2.2. PV System Modelling

The PV system is one of the most extensively used RES. The current source is parallel
to the diode and precisely converts solar energy into electrical energy by accelerating the
flow of holes and electrons inside the photovoltaic cell. It is required to create the PV source
to unavoidably operate on its MPPT in order to get maximum power, since it is a non-linear
current source [40].

A PV array needs to go through a number of processes to connect with a thermal
power supply. As demonstrated in Figure 2, the design of a PV system includes a number
of components, including a converter, an inverter, modeling, and a computation of the
average power that is actually sent to the grid.
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Figure 2. Grid Connected PV Farm Prototype.

AC voltage of PV can be calculated, by using Equation (13).

q =
vdc
vac

(13)

Here q is the gain between AC-DC voltage. The boost converter transfer function (TF)
can be projected using Equations (14) and (15)

m1 =
v2

v1
=

i1
i2

(14)

g1(s) =
1

m1
(15)

where 1
m1

is the boost converter gain. The inverter TF is mentioned in Equation (16)

g2(s) =
Iac(s)
I2(s)

=
s2

s2 + ω2 (16)

Here, ω = 2π f = 2π(50) = 314.12rad/s. For instantaneous power, the TF is men-
tioned in Equation (17), where vm

im is the impedance.

P(s) =
vmim

2s
+

vmim

2
s

s2 + (2ω)2 (17)

The instantaneous power gain is given in Equation (18)

g3(s) =
p(s)

Iac(s)
= vm

⎛
⎝
(
s2 + ω2)(s2 + (2ω)2

)
s2(s2 + (4ω)2)

⎞
⎠ (18)

The average power is mentioned in Equation (19)

pavg(s) =
vmim

2s
(19)

The average power gain is shown in Equation (20)

g4(s) =
pavg(s)

p(s)
(20)

3. Proposed Robust Controller

The proposed robust controller is a combination of the Salp Swarm Algorithm tuned
Fractional order PID controller to achieve the MPPT of the hybrid PV based fuel cell system,
as shown in Figure 3.
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3.1. Salp Swarm Algorithm

The method is inspired by transparent body salp vertebrates, which are famous for
generating spiral chains when they travel to find food [41]. The leader and followers are
the two basic divisions of the salp swarm. The leader’s role is to direct the group as they
look for food, and they update their position using Equation (21)

Ki
j =

{
Mi + C1

((
ubj − lbj

)
C2 + lbj

)
C3 ≥ 0

Mi − C1
((

ubj − lbj
)
C2 + lbj

)
C3 < 0

}
(21)

Here, lbj and ubj stands for the lower and upper limits of the jth dimension, while
M stands for the target food and K is the 2D salp position. The variables C2 and C3 are
uniform coefficients. The C1, which is shown in Equation (22), is utilized to balance the
exploitation of food in search space.

C1 = 2e−( 4t
tmax )

2

(22)

where t and tmax denotes the current and maximum iterations, respectively. Equation (23)
is used to update the position of the follower salp.

Ki
j =

1
2

at2 + v0t i ≥ 2 (23)

The flow chart of the complete Salp Swarm Algorithm is depicted in Figure 4.
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Figure 4. Flowchart of Salp Swarm Algorithm.
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3.2. Fractional Order PID Controller

The use of fractional calculus was developed/increased when Podlubny proposed
the PIλDμ controller in 1999. This generality of the typical PID controller included a
fractional integration of order λ and a fractional derivation of order μ, and it has since
led numerous scholars to a new area of study called the modification of the fractional-
order controller PIλDμ. Fractional order controllers are described using fractional calculus,
where the calculus of proportional α—derivative is well-defined by the basic operator αDα

t ,
as mentioned in Equation (24).

αDα
t =

⎧⎪⎪⎨
⎪⎪⎩

dα

dtα α > 0
1 α = 0

t∫
α
(dτ)−α α < 0

⎫⎪⎪⎬
⎪⎪⎭ (24)

Upper and lower bounds are determined by α and t, while α ∈ R and α operator
can be substituted in the frequency domain as F(s) = 1

Sα . The output equation of the
fractional-order controller in the time domain is given by Equation (25)

u = kpe(t) + kiD−λ
t e(t) + kdDμ

t e(t) (25)

where, kd is the differentiating constant, whereas ki is the integration constant, and kp is
the proportional constant, μ is the fractional order of the differentiating action and λ is the
fractional order of the integrating action.

In contrast to standard PID controllers, fractional-order controllers include two extra
parameters that represent the order of integrating and derivative values, respectively. Based
on the modification of these two factors, one can discover a wide range of fractional order
controller choices.

As can be seen in Figure 5, the fractional order PI D controller expands the traditional
PID controller from a point to a plane. The design of PID control may benefit greatly from
this expansion’s increased flexibility. Clearly, by selecting [λ,μ] = [1, 1], a traditional PID
corrector can be regained; and by selecting [λ,μ] = [1, 0] and [λ,μ] = [0, 1], one can get
traditional PI and PD controllers, respectively.

Figure 5. Types of Controllers According to Coefficients.

The FOPID executes much better than the traditional PID, since it uses discretized
values. Moreover, as the stability region of the FOPID is wider than that of the PID
controller, it is evident from Figure 6 that it enables more flexibility to the controller.
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Figure 6. Stability Region of Controllers (a) FOPID (b) PID.

4. Results and Discussion

The hybrid system constituted of grid tied PEMFC and PV is simulated on MAT-
LAB/Simulink for dynamic operation. The proposed FOPID controller is tested under
different load conditions. Results are then compared with the conventional PI controller
which substantiates the efficiency of the proposed (FOPID) controller.

Figure 7 depicts the change in irradiance, applied as input to PV to test the response
of the controller, while Figure 8 shows the consumption of oxygen and hydrogen in the
fuel cell. After the initial disturbance, the fuel consumption attains a constant value.

Figure 7. Abrupt Irradiance Change.
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Figure 8. Oxygen and Hydrogen Consumption.

Figures 9 and 10 indicate the fuel cell output voltage and output current, respectively.

Figure 9. Fuel Cell Output Voltage.

Figure 10. Fuel Cell Output Current.
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The purpose of this research was to propose and test a robust control system that is
effective under varying circumstances. The same was put to the test. Figure 11 shows the
output current of the hybrid system using the conventional PI controller. Nevertheless,
Figure 12 depicts the output current of the hybrid system using the proposed FOPID
controller and a comparison is displayed with the conventional PI controller in Figure 13.

Figure 11. Output Current−Using Conventional PI.

Figure 12. Output Current−Using Proposed Controller.
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Figure 13. Output Current−Controller Comparison.

Figure 14 reveals the output power, for both controllers, and it is noticeable that the
proposed FOPID controller shows significantly fewer oscillations and less settling time as
compared to the conventional PI controller. DC output voltage (Vdc) is shown in Figure 15,
which clearly indicates the superior performance of the projected controller and is more
optimum against the uncertainties in the system.

Figure 14. Output Power−Controller Comparison.
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Figure 15. DC Output Voltage−Controller Comparaison.

5. Conclusions

This research work has presented a robust control strategy using optimum salp swarm
algorithm tuned fractional order PID controller for the tracking of MPP of grid tied PEMFC
along with PV. The proposed controller tracks the MPP whenever uncertainty of fluctuation
occurs. Conventional P&O is used to control the duty cycle of the DC-DC converter,
while FOPID controls the output of the DC-AC inverter. The overall capability of the
suggested controller is significantly improved over the typical/conventional PI controller;
and it offers high-power tracking capability, quick convergence speed, fewer controlling
parameters, and ease of implementation. In the given test bench for abrupt irradiance
change, the settling time is observed just 0.058 s with minimum overshoot, as compared to
the conventional PI controller. Moreover, the overall suggested regulating technique adapts
to the unforeseen power system scenario fairly successfully, with minimal oscillation.
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Leonowicz, Z.; et al. Decreasing the Battery Recharge Time if Using a Fuzzy Based Power Management Loop for an Isolated
Micro-Grid Farm. Sustainability 2022, 14, 2870. [CrossRef]

39. Rezk, H.; Aly, M.; Fathy, A. A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell
system through optimized fuzzy logic MPPT. Energy 2021, 234, 121267. [CrossRef]

40. Xie, M.; Gulzar, M.M.; Tehreem, H.; Xie, M.; Javed, M.Y.; Rizvi, S.T.H. Automatic Voltage Regulation of Grid Connected
Photovoltaic System Using Lyapunov Based Sliding Mode Controller: A Finite-Time Approach. Int. J. Control Autom. Syst. 2020,
18, 1550–1560. [CrossRef]

41. Iqbal, M.; Gulzar, M.M. Master-slave design for frequency regulation in hybrid power system under complex environment. IET
Renew. Power Gener. 2022, 16, 3041–3057. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

250



Citation: Samrot, A.V.; Rajalakshmi,

D.; Sathiyasree, M.; Saigeetha, S.;

Kasipandian, K.; Valli, N.; Jayshree,

N.; Prakash, P.; Shobana, N. A

Review on Biohydrogen Sources,

Production Routes, and Its

Application as a Fuel Cell.

Sustainability 2023, 15, 12641.

https://doi.org/10.3390/

su151612641

Academic Editor: Muhammad

Khalid

Received: 24 December 2022

Revised: 27 February 2023

Accepted: 7 March 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

A Review on Biohydrogen Sources, Production Routes, and Its
Application as a Fuel Cell

Antony V. Samrot 1,*, Deenadhayalan Rajalakshmi 2, Mahendran Sathiyasree 2, Subramanian Saigeetha 3,

Kasirajan Kasipandian 4, Nachiyar Valli 2, Nellore Jayshree 2, Pandurangan Prakash 2 and Nagarajan Shobana 2

1 School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2,
Bandar Saujana Putra, Jenjarom 42610, Malaysia

2 Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and
Technology, Chennai 600119, Tamil Nadu, India

3 Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology,
Vellore 632014, Tamil Nadu, India

4 Faculty of Engineering, Built Environment and IT, MAHSA University, Jalan SP2, Bandar Saujana Putra,
Jenjarom 42610, Malaysia

* Correspondence: antonysamrot@gmail.com

Abstract: More than 80% of the energy from fossil fuels is utilized in homes and industries. Increased
use of fossil fuels not only depletes them but also contributes to global warming. By 2050, the usage
of fossil fuels will be approximately lower than 80% than it is today. There is no yearly variation in
the amount of CO2 in the atmosphere due to soil and land plants. Therefore, an alternative source
of energy is required to overcome these problems. Biohydrogen is considered to be a renewable
source of energy, which is useful for electricity generation rather than relying on harmful fossil fuels.
Hydrogen can be produced from a variety of sources and technologies and has numerous applications
including electricity generation, being a clean energy carrier, and as an alternative fuel. In this review,
a detailed elaboration about different kinds of sources involved in biohydrogen production, various
biohydrogen production routes, and their applications in electricity generation is provided.

Keywords: biohydrogen; gasification; feedstocks; biohydrogen production; dark fermentation

1. Introduction

Over the past decade, the growth of industries has been increasing enormously, which
has resulted in the requirement for alternate energy sources. At the beginning of human
history, wood biomass was used for heating, cooking, and shelter, which made it an ideal
energy source for man. However, fossil fuels were exploited to meet the energy demands
due to the growth of the human population [1]. Depletion and the inability to replenish the
energy sources due to increasing industries resulted in the usage of fossil fuels. Increased
usage of fossil fuels not only depletes them but also causes significant global warming by
emitting harmful greenhouse gases [2]. In recent years, emissions of carbon dioxide and
other harmful gases by human activities have been rising more recently than in previous
years. Pollution due to fossil fuels can be controlled by the transition from fossil fuels to
alternative renewable resources [3]. Sustainable development requires energy as a main
component, which must be available constantly at an affordable range for a long period.
The conversion of wastes into useful forms is the best way for sustainable development, for
example, biohydrogen, biogas, and biofuel, which release less greenhouse gas than fossil
fuels [4]. Electricity plays a major role in everyday life, of which 32.9% is produced from
fossil fuels supplying approximately 213 Terawatt per hour (TWh) worldwide [5]. In India,
the most contributing source of fossil fuel is coal, which contributes approximately 69.5%
to power generation [6]. The balance between the preservation of the environment and
economic growth is considered “sustainability” [7].

Sustainability 2023, 15, 12641. https://doi.org/10.3390/su151612641 https://www.mdpi.com/journal/sustainability
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The demand for hydrogen is increasing rapidly nowadays as hydrogen is considered a
clean source of energy and a valuable gas. It is used as a feedstock in many industries [8,9].
The ionic form of hydrogen is present abundantly in the universe. It is odorless, colorless,
tasteless, and non-toxic [10]. Hydrogen draws prominent attention as a future fuel because
of its versatility and efficiency. It can be used as the best and most efficient fuel for
transportation as the combustion of this fuel produces only water vapor and eliminates
the release of hydrocarbons, carbon monoxide, carbon dioxide, and other micro particles
that cause environmental pollution [11]. Hydrogen is used in the hydrogenation of coal,
oil, petroleum, and shale oil and is also used in the production of ammonia. Hydrogen can
be produced by oil and natural gas using the steam reforming process and other methods
such as coal gasification and water electrolysis. However, these processes are considered
non-renewable and do not draw much attention. Therefore, the eco-friendly production
of bio hydrogen gas using renewable sources such as agricultural waste, inorganic waste,
and microorganisms is highly encouraged [12]. The production of hydrogen becomes more
interesting when produced from renewable sources because it can be operated at ambient
pressure and temperature with a lower amount of energy consumption. Energy production
from hydrogen is 122 kJ/g, which is 2.75 times greater than hydrocarbon fuels so it acts as
a potential energy carrier [10]. Obtaining hydrogen from biomass is rather challenging as
the amount of hydrogen present in biomass is nearly 6% versus 25% for methane, and the
lower energy content is due to the 40% of oxygen present in biomass [13].

2. Definition

The term biohydrogen in Greek refers to Bio- or life, hydro- or water, and gen- or
genes, which indicates non-degradable organic fuel obtained from biological sources
such as plants, microorganisms, animals, etc. [13]. Hydrogen produced biologically is
termed “Biohydrogen”. It draws much attention because it is a clean, non-degradable, non-
condensable fuel with higher efficiency, high energy density, and a lack of pollution [14].
Biohydrogen is a natural or transient byproduct of several microbial-mediated biochemical
reactions. It can be produced either by a biological process or the thermochemical treatment
of biomass [2]. Biohydrogen has the ability to be converted into usable power at a higher
efficiency. However, the lower yields, storage, and rate of production remain barriers to
biohydrogen production [15].

3. Feedstocks of Biohydrogen Production

The sources selected for the production of hydrogen gas should be low cost and
biodegradable and must have a high level of carbohydrate content with the presence
of simple sugars such as glucose, lactose, and sucrose, which can be used as reliable
biodegradable substrates for biohydrogen production [8]. The production of biohydrogen
via bio photolysis of water using cyanobacteria, microalgae, and photosynthetic anoxygenic
bacteria is most suitable as it utilizes major natural resources such as sunlight, water,
etc. [16]. These microorganisms either supply electrons as an alternate source for the
sake of survival in minimal optimum conditions or the need to prevent the reduction of
the electron transport chain and act as a security valve. In addition to these biochemical
reactions, hydrogen gas can also be produced during nitrogen fixation by the nitrogenases
enzyme, which is a major mechanism in the heterocyst forming blue-green algae [17].

3.1. Agricultural Waste

Over the last decade, many research works have been carried out focusing on the find-
ings of alternate sources of green, clean, and renewable energy. However, the production
of biofuels from food sources such as corn and sugar has served as an alternate source
but has indirectly increased food prices, which has resulted in a global food crisis. Hence,
nowadays, the production of biofuels from agricultural wastes has gained much attention
from researchers [18]. The production of hydrogen gas from agricultural waste, which
consists of lignocellulose material, contributes to the global energy conversion process.
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Agricultural waste is rich in hemicellulose and cellulose after conversion into mono or
disaccharides and can be used in dark fermentation, photo fermentation, and bio photolysis
(direct and indirect) [19].

3.1.1. Lignocellulose Waste

Lignocellulose waste is considered a macromolecule consisting of lignin, cellulose,
and hemicellulose. Lignin is a highly insoluble, irregular polymer that bonds with hemi-
cellulose with a covalent bond, and in the cell wall, cellulose is enwrapped in a complex
containing lignin and cellulose. This complex nature causes the barriers to transform into
lignocellulosic waste. Waste such as residues of plants, agricultural waste, and the logging
of wood is considered to be lignocellulosic waste and they are degraded slowly as they
are difficult to degrade [20]. Around 180 million tons per year of lignocellulose materials
are produced as byproducts or in the form of agricultural residues, which can be used
as an inexpensive source for the production of biofuels [21,22]. These materials, due to
their low fiber porosity, heterogeneity, and crystallinity are not readily fermentable, and
pre-treatment is required for the process of forming fermentable sugars [23]. Nowadays, re-
searchers are focused on the next-generation organic matter, which includes lignocellulose,
rather than using first-generation products, as lignocellulose is a rich source of fermentable
sugars and can be used for the production of biohydrogen. Some of the steps to be followed
when lignocellulose materials are used for biohydrogen production are as follows:

• Lignocellulose materials consist of a hetero polymeric substance, and in order to break
the complex, the raw materials must be pre-treated.

• A large number of monomeric sugars was obtained by hydrolysis of cellulose and
hemicellulose.

• The obtained monomers liberated from the fractions were converted into the respec-
tive biofuel by the utilization of a microorganism using techniques involved in the
bioprocess [24].

High yields of biohydrogen are obtained by following the aforementioned steps [25].
The production of biohydrogen from lignocellulose waste has attracted the attention of
many researchers due to its efficiency. Several researchers proved the efficiency and positive
response of biohydrogen production by utilizing various lignocellulosic substrates and also
identified the sources responsible for the inhibition [26]. The production of biohydrogen
from lignocellulosic biomass after the pre-treatment, hydrolysis, and utilization of different
microbial cultures via the process of dark fermentation has improved the yield and rates
of biohydrogen production [27]. The production of biohydrogen from various substrates
of lignocellulose via the process of dark fermentation is considered to be effective. The
next most effective process used for the production of biohydrogen after dark fermentation
is photo fermentation [28]. Taguchi et al. [29] isolated Clostridium sp. strain no. 2 from
termites and produced biohydrogen with 18.6 mmol/g of the substrate using xylan from
oat spelts. Taguchi et al. [30] used the same Clostridium sp. for the hydrolysis of cellulose
and observed that the bacterium consumed 0.92 mmol of glucose per h and produced
4.1 mmol of hydrogen per h. The increase in the concentration of cellulose (12.5 g/L
to 50 g/L) decreased the yield (2.18 mmol/g of cellulose to 0.42 mmol/g of cellulose).
At high temperatures, high conversion of cellulose into hydrogen took place (43 mL of
hydrogen/g of cellulose at 37 ◦C to 69 mL of hydrogen/g of cellulose at 55 ◦C; 567 mL of
hydrogen was produced from 1 g of cellulose) [31]. The production of biohydrogen from
lignocellulosic biomass is described in Figure 1. Some of the lignocellulose biomass used
and its composition, types of monomers present, and the amount of hydrogen produced is
tabulated below (Table 1).
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Figure 1. Biohydrogen production from lignocellulosic wastes.

Table 1. Lignocellulose biomass, its composition, and hydrogen production.

LCB
Monomer
Composition

Composition of LCB Hydrogen Production Reference

Beer less Not mentioned Not mentioned 68.6 mL of biohydrogen per
gram of total volatile solids [32]

Corn stover
1.5 g/L-Xylose
10 g/L-glucose
0.2 g/L-Arabinose

37.6%-cellulose
21.5%-hemicellulose
19.1%-Lignin

12.9 mmol/L in an hour [33]

Grass Not mentioned Not mentioned 4.9 mol hydrogen gas per gram
of total solid [34]

Soy bean straw 3.6% of TRS
39.6%-cellulose
14.6%-hemicellulose
23.4%-lignin

60.2 mL of hydrogen per gram
of dry straw [35]

Wheat bran Not mentioned 8.27%-cellulose
33.7%-hemicellulose

128.2 mL of hydrogen per
gram of total volatile solid [36]

LCB—Lignocellulose Biomass.

3.1.2. Livestock Waste

After the depletion of fossil fuels, solid wastes have become a promising factor for the
production of renewable sources [37]. The terrestrial surface is occupied by livestock, and
it plays a major role as a significant global asset. Livestock is considered to be an important
provider of nutrition for growing crops in a small area. In recent days, in developing
countries, livestock is considered to be the fastest-growing agricultural subsector [38].
Livestock serves as an important factor in increasing food security and contributing to
rural and agricultural development [39]. Nowadays, the waste generated by livestock from
cattle, swine buildings, and poultry is a major source of contamination of underground
water systems due to its odor, gases, and dust. Due to the contamination caused by these
wastes, many researchers proposed the idea of generating useful products from these
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wastes. These livestock wastes include fodder, manure, and slaughterhouse and poultry
farm wastes. The improper maintenance of these wastes is harmful to both human health
and the environment. From these polluting substances, a renewable non-polluting energy
source is produced, named biohydrogen [37,40]. However, the production of biohydrogen
is inhibited due to the presence of ammoniacal nitrogen (NH3-N) in chicken manure and the
presence of high sulphate content in swine manure. In order to produce biohydrogen, the
high sulphate content can be treated with a rich carbohydrate source such as lignocellulose
materials, which provide the perfect C/N ratio and enhance the buffering capacity and
provide nutritional manure [37]. Livestock waste can be used as a substrate along with the
carbohydrate source for the efficient production of biohydrogen [41].

Lateef et al. [42] produced biohydrogen with cow manure as a source along with
waste milk as a co-substrate. After adding the organic load, which is obtained from the
co-digestion of cow manure, the production of biohydrogen increased. Tenca et al. [43]
produced biohydrogen with a yield of 126 ± 22 mL H2/g VS-added when swine manure was
used, along with fruit and vegetable waste. Marone et al. [44] produced biohydrogen with a
maximum yield of 117 mL H2/g VS-added through the co-fermentation of buffalo slurry with
cheese whey and crude glycerol using a mixed microbial culture. Bari et al. [45] produced
biohydrogen from organic waste by fermentation process and had various industrial
applications like steel making, ammonia production, Glass making etc. Fan et al. [32]
produced biohydrogen with a yield of 68.6 mL H2/g TVS when beer-less wastes were
converted into biohydrogen via cow dung compost. The hydrogen yield and hydrogen
production rate were higher (30.00 mL/g VS-added and 1.00 L/L/d, respectively) when the
biohydrogen was produced via the co-digestion of cattle manure and food wastes with an
optimal mixing ratio of 47 to 51%, a hydraulic retention time of 2 days, and a substrate
concentration of 76 to 86 g/L [46]. The production of biohydrogen using the co-digestion
of cattle manure with specified risk materials has been reported by Gilroyed et al. [47]. The
maximum hydrogen production rate and hydrogen yield was 109.55 mL H2/L per day and
0.84 mol H2/mol of total sugar consumed, respectively, when elephant dung was used as
the inoculum for sugarcane bagasse hydrolysate [48]. The maximum hydrogen production
rate and hydrogen yield were 215.4 (±62.1) mL H2/L/d 152.2 and (±43.9) mL H2/g
VS-added, respectively, achieved at an organic loading rate of 2.1 g VS/L/d of cheese whey
via the dark fermentation method using buffalo manure as a buffering agent [49]. The co-
digestion of cassava wastewater along with buffalo dung for biohydrogen production gave
a maximum hydrogen production rate and hydrogen yield of 839 mL H2/L/d and 16.90 mL
H2/g COD-added, respectively [50]. Perera et al. [51] produced a maximum hydrogen yield of
2.9–5.3 M hydrogen/M sucrose when sucrose along with dairy cattle manure was used for
production. Biohydrogen was produced when the liquid swine manure was co-fermented
with molassesm of which the hydrogen production rate and hydrogen yield of 31.9 L/d
and 1.52 L/g sugar, respectively, was obtained [52]. Zhu et al. [53] produced biohydrogen
with swine manure co-fermented with glucose as a substrate. Biohydrogen production
from livestock waste is illustrated and tabulated in Figure 2 and Table 2, respectively.
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Figure 2. Biohydrogen production from livestock wastes.

Table 2. Livestock waste as a source for hydrogen production.

Livestock Wastes Hydrogen Yield Reference

Swine manure with glucose 5 L H2/L d [54]

Dairy manure with mixed cultures 31.5 mL/g-TVS [40]

Pig slurry with inoculum (Mesophilic
methanogenic sludge) 3.65 (mL H2/g VS-added) [55]

Bovine manure 58.48 mL of H2/g of manure; [53]

Cow dung compost 68.6 Ml of H2/g TVS [45]

Swine manure 126 ± 22 mL of H2/g VS-added [43]

3.2. Industrial Waste

The growth of the world relies mostly on industrialization. Pollution is caused by
these industries by utilizing more water and the excessive production of effluents [56].
Industrial wastes are substances that cause severe environmental pollution as they are non-
biodegradable. The application of these industrial wastes in road construction has attracted
many researchers in recent days [57]. The waste materials generated from these industries
are renewable biomass and can be used for the production of biohydrogen. Industrial
wastewater and biodiesel industry wastes are some examples of industrial wastes that
can be used for biohydrogen production. Many reports on biohydrogen production from
electrolysis and other chemical processes have been reported, but the biological conversion
of wastes into hydrogen can be the best alternative method and also the most cost-efficient
method [58]. Many starch- and cellulose-based materials are present in the waste products
from the food and agricultural industries. These waste products are rich in carbohydrate

256



Sustainability 2023, 15, 12641

content. It is easier to process the starch waste content by hydrolyzing it into maltose
or glucose via enzymatic or acid hydrolysis followed by conversion into carbohydrates
and then into hydrogen gas, but cellulose-containing wastes are difficult to process as
they require the pre-treatment of wastes, and hydrolyses, followed by conversion into
carbohydrates and then into biohydrogen production [8,23,59].

Biohydrogen was produced using the waste from food industries by Alexandropoulou
et al. [60] using the continuous-type reactor under different pH and hydraulic retention
times. The obtained hydrogen yield was 96.27 ± 3.36 and 101.75 ± 213.7 L H2/kg FIW
for 12 and 6 h, respectively. Moreno-Andrade et al. [61] produced hydrogen using dif-
ferent industrial wastes as feedstocks. The feedstocks used were tequila vinasses, sugar
vinasses, wastewater from the plastic industry, aircraft wastewater, and physio-chemically
treated wastewater from the plastic industry. The tequila vinasses produced the maximum
amount of hydrogen followed by wastewater from the plastic industry, aircraft wastewater,
physio-chemically treated wastewater from the plastic industry, and sugar vinasses, and
it was observed that the hydrogen production in aircraft wastewater increased when an
anaerobic sequencing batch reactor was used. Moreno-Dávila et al. [62] produced hydrogen
with 60.75 mmol/h∗g volatile solids when pre-treated wastes of paper industries were
used as the source. The process followed for biohydrogen production was simultaneous
saccharification and fermentation. Oceguera-Contreras et al. [63] produced biohydrogen
with a yield of 1246.36, 1571.81, and 232.72 mL H2/L from the bagasse, molasses, and
vinasses agro-industry wastes when vermihumus-associated microorganisms as inoculum
were used as a source and found that these microbes not only produce biohydrogen but
also help in the degradation of lignocellulosic waste material.

Lopez-Hidalgo et al. [64] produced hydrogen from agro-industrial wastes such as
cheese whey and wheat straw hydrolysate. The authors reported that both the wheat straw
hydrolysate and cheese whey produced hydrogen efficiently as both an individual substrate
and even when mixed together. Lucas et al. [65] produced biohydrogen using cassava
wastewater, dairy wastewater, and citrus processing wastewater as sources and the produc-
tion of hydrogen was found to be 31.41, 28.95, and 37.25 mL/g. Gomez-Romero et al. [66]
utilized fruit and vegetable wastes and crude cheese whey for the production of biohydro-
gen. The yield of produced hydrogen was 813.3 mL H2 g COD−1 and was determined at
17.5 h (Hydraulic Retention Time) with an organic loading rate of 80.02 g COD L−1 d−1.
The usage of agro-industrial wastes such as starch wastes produces biohydrogen efficiently
and is a cheaper process. A variety of raw materials from agro-industries can be used for
the production of biohydrogen [67]. Biohydrogen production from industrial wastes is
illustrated and tabulated in Figure 3 and Table 3, respectively.
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Figure 3. Biohydrogen production from industrial wastes.

Table 3. Production of biohydrogen from industrial wastes.

Industrial Waste Hydrogen Production Rate Reference

Molasses 700 mL H2/L/D [68]
Paper and pulp industry 2.03 mol H2/mol sugar [69]

Palm oil mill effluent 0.41 mmol H2/g COD [70]
Textile designing wastewater 1.52 mol/mol hexose [71]

Palm oil mill effluent 0.66 mol H2/mol total monomeric sugar [72]
Textile wastewater 1.37 mol H2/mol hexose [73]

Rice mill wastewater 1.97 mol H2/mol of sugar [74]

3.3. Municipal Wastes—Waste Sludge

The management and generation of waste products are becoming a global challenge
and causing environmental problems. The management and recycling of waste are the
best way to avoid pollution. Waste sludge causes much environmental pollution and
also affects human health in many ways. Waste sludges are used for the generation of
many renewable resources in order to maintain the quality of the environment, reduce
many risk factors, produce sustainable energy, and serve as a reliable source of energy
production [75,76]. Biohydrogen was produced via the co-digestion of food waste and
sewage sludge, and the maximum hydrogen production rate was observed to be 111:2 mL
H2/g VSS/h [77]. Cai et al. [78] produced biohydrogen from sewage sludge and reported
that the hydrogen yield of alkali pre-treated sludge was higher than dry sludge. The
yield increased from 9.1 mL of H2/g of dry solids (DS) to 16.6 mL of H2/g of DS when
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alkali-pre-treated sludge was used. Yin and Wang [79] produced hydrogen using waste
sludge and reported that the irradiation and gamma irradiation combined with the alkali
pretreatment was able to produce biohydrogen by dissolving the waste-activated sludge.
The co-fermentation of sewage sludge and fallen leaves produced biohydrogen. The mixing
ratio of 20:80 of fallen leaves and sewage sludge produced biohydrogen with a yield of
37.8 mL/g VS-added [80]. Natural sludge was used as an inoculum to produce biohydrogen
using corn stalks via anaerobic fermentation, and the maximum hydrogen yield was
observed to be 126.22 mL g−1-CS [81]. A Continuous Mixed Immobilized Sludge Reactor
(CMISR) using activated carbon as a support carrier was used for hydrogen production via
dark fermentation from enzymatically hydrolyzed food waste. The maximum hydrogen
production rate of 353.9 mL/h/L was obtained under the conditions of a packing ratio
of 15% and an organic loading rate of 40 kg/m3/d [82]. Yang and Wang [83] reported
that the combined sodium citrate and ultrasonic pretreatment disrupted the sludge floc
structure and promoted biohydrogen fermentation performance. Yang and Wang [84]
produced biohydrogen from waste-activated sludge in which the sludge consisted of a
complex structure due to the presence of an extracellular polymeric substance, which had
to be pre-treated. The maximum hydrogen yield of 38.8 mL/g VS-added was obtained after
the combined pre-treatment of sodium citrate pre-treatment and ultrasonic pre-treatment.

Yang and Wang [84] produced biohydrogen from waste-activated sludge with the ad-
dition of a cationic binding agent (sodium citrate) to disintegrate the extracellular polymeric
substance present in the sludge. The addition of the binding agent improved biohydrogen
production from 3.7 to 18.8 mL/g VS-added when 0.3 g of sodium citrate/of SS was added.
Biohydrogen was produced via the dark fermentation method by using waste-activated
sludge from fructose processing manufacturing and the maximum hydrogen yield ob-
tained was 7.8 mmol [85]. Biohydrogen production from municipal wastes is illustrated
and tabulated in Figure 3 and Table 4, respectively.

Table 4. Production of biohydrogen from municipal wastes.

Municipal Wastes Substrate
Hydrogen Production

Rate (L/L/d)

Hydrogen Yield (mol
H2/mol Glucose,

Hexose Equivalent)
Reference

Anaerobic digested sludge Sucrose Nd 3.06 [86]
Suspended & granular

anaerobic sludge Ground wheat Nd 25.7 [87]

Anaerobic digested sludge Glucose 120.4 mL H2/h 1.9 [88]
Cassava stillage Nd Nd 53.8 (mL H2/g VS) [89]

Cattle wastewater Nd Nd 319 mL H2/g COD
consumed. [90]

Wastewater sludge Nd Nd 2.1 mmol-H2/g-COD [91]
Distillery wastewater Nd Nd 3.35 (mol/mol glucose) [92]

3.4. Microbial Routes

The production of biohydrogen on a large scale came into thought after the rapid
depletion of fossil fuels. It has been known for more than 70 years that algae can make
bio-hydrogen under illumination. The evolution of hydrogen was induced in the cells when
pre-incubation in the dark was performed on the cells. Hydrogen production is due to the
hydrogenase enzyme expressed during the period of incubation [93]. The fermentative
hydrogen production depends on the type of inoculum used, the reactor type, and its
temperature settings. Many types of inoculums are used for hydrogen production and
must be pure cultures of hydrogen-producing bacteria, mixed cultures of anaerobic bacteria
obtained from compost piles, and anaerobic sludges [94–96]. The metabolic shifts in pure
cultures are easily visible, and the utilization of pure cultures enables us to understand
the conditions that promote a high hydrogen production rate and yield [97]. Biohydrogen
production from municipal wastes is tabulated in Table 5.
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Table 5. Production of biohydrogen from microbial routes wastes.

Culture Substrate Type
Hydrogen

Production Rate
(L/L/d)

Hydrogen Yield (mol
H2/mol Glucose,

Hexose Equivalent)
Reference

3-Clostridium DMHC-10 Glucose 2.14 3.35 [92]

5-Clostridium beijerinckii L9 Glucose 1.9 2.81 [98]

Clostridium butyricum and
Enterobacter aerogenes HO-39 Sweet potato starch residue 0.977 2.7 [99]

14-Escherichia coli S3 Glucose 0.33 1.45 [100]

Clostridium butyricum Glucose 0.41 2.09 [100]

Escherichia coli Glucose 0.33 1.45 [100]

Clostridium butyricum and
Escherichia coli Glucose 0.52 1.65 [99]

Clostridium tyrobutyricum
FYa102

Glucose (0.36 g/L, 1.4 g/L
peptone and ammonium

chloride respectively, were
added with the substrate)

1.6 1.47 [98]

Caldicellulosiruptor
saccharolyticus Carrot pulp hydrolysate 7 2.8 [59]

Clostridium thermocellum and
Clostridium

thermosaccharolyticum
Corn stalk waste 0.34 ND [101]

Klebsiella pneumoniae DSM2026 Glycerol 12.2 0.53 [102]

Clostridium butyricum
TISTR 1032 Sugarcane juice 3 1.33 [103]

Clostridium acetobutylicum X9 Microcrystalline cellulose 21.33 0.59 [104]

Clostridium acetobutylicum
ATCC 824 Cassava wastewater 1.32 2.41 [105]

Enterobacter cloacae IIT-BT08 Glucose Not mentioned 2.2 [106]

Caldicellulosiruptor
saccharolyticus DSM 8903 Hydrolyzed potato steam peels Not mentioned 3.4 [107]

Thermotoga neapolitana
DSM 4349 Hydrolyzed potato steam peels Not mentioned 3.3 [107]

4. Biohydrogen Production

4.1. Bio Photolysis

Light-dependent production of hydrogen from water is a biological process that
converts sunlight into chemical energy [108]. The enzymes are responsible for catalyzing
chemical reactions such as nitrogenase, Ni-Fe- hydrogenase, and Fe- hydrogenase. The bio
photolysis process makes use of the Fe- hydrogenase enzyme [109].

2H2O
Light energy−→ 2H2 + O2 (1)

The various routes of biohydrogen production are illustrated in Figure 4.
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Figure 4. Routes of hydrogen production.

4.1.1. Direct Bio Photolysis

There are many advantages of direct bio photolysis of hydrogen production. This reac-
tion can be observed in laboratory conditions and is self-limited by the oxygen that builds
up in the cellular environment and takes place during the initial transition to conventional
photosynthesis. Photosystem I and Photosystem II are involved in photosynthesis, where
photosystem I reduces carbon dioxide and photosystem II splits H2O and produces oxy-
gen [110]. The photosynthetic apparatus absorbs sunlight directly and uses photoenergy for
the splitting of water, and the resulting low-potential reductant reduces the hydrogenase
enzyme system. Thus, photo energy could convert the readily available substrate and H2O
into O and H molecules [109].

Photoautotrophic organisms do produce hydrogen from water using the hydrogenase
enzyme under anaerobic conditions in the presence of light energy. Cyanobacteria and
green algae produce hydrogen via direct bio-photolysis through chlorophyll and other
pigments that have the ability to absorb photons at a wavelength of less than 680 nm [111].
Green algae can produce hydrogen when exposed to light or uptake hydrogen via the CO2-
fixation process when exposed to darkness in anaerobic conditions. The unicellular green
algae Chlamydomonas reinhardtii has gained a great deal of attention in recent decades for its
direct bio-photolysis production of hydrogen molecules. Cyanobacteria are prokaryotes
that can perform oxygenic photosynthetic reactions [112,113].

When plants are used as a source for biohydrogen production, only CO2 reduction
takes place as plants cannot undergo the process of producing hydrogen as it does not have
the hydrogenase enzyme, but green macroalgae and cyanobacteria can produce hydrogen
as they do have the hydrogenase enzyme [114]. Synechocystis sp. PCC 6803 was used for
the production of hydrogen by direct bio photolysis, and 0.037 mmol H2/mg Chl/h of
hydrogen was produced in the dark within 120 h [115–117].

4.1.2. Indirect Bio Photolysis

Cyanobacteria and microalgae are employed to produce hydrogen from water, where
photosynthesis occurs and solar energy is transformed into electrical energy [118]. In
indirect bio photolysis, the hydrogen and oxygen evolution takes place at separate stages
linked to carbon dioxide fixation, where CO2 is used for the production of the cellular
substance, and these are used for the production of hydrogen. Primarily cyanobacteria are
used during indirect bio photolysis as it has the property of using carbon dioxide in the air
as a carbon source and the energy source is provided by solar energy [108].

An alternate process for direct photolysis is indirect bio photolysis, where carbon
dioxide acts as an electron carrier between photosynthesis and hydrogen production. The
reason for the wide usage of nitrogen-fixing cyanobacteria in this process for hydrogen
production is that it can produce hydrogen using the nitrogenase enzyme present in it,
even in the absence of nitrogen, which is also possible under laboratory conditions [118].
The most commonly used cyanobacteria in indirect bio photolysis are Oscillatoria sp.,
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Gloeocapsa sp., Anabaena sp., and Calothrix sp. [119]. Generally, four steps are involved in
the production of biohydrogen via indirect bio photolysis [110]:

i. Photosynthesis for the production of biomass.
ii. The concentration of biomass.
iii. Dark fermentation in aerobic conditions, which produces 4 mol hydrogen/mol glucose

along with 2 mol of acetates.
iv. The production of hydrogen.

Indirect bio photolysis is a two-step process that starts with photosynthesis and sugar
reduction, followed by the induction of light. The maximum efficiency for the conversion
of light is 16.3%. Better conversion of light takes place at the lowest illumination, and at
the highest illumination, the efficiency is less [118]. To date, reports regarding indirect
bio photolysis are fewer, and more studies must be conducted in order to obtain a better
understanding of this process.

4.2. Dark Fermentation

The production of biohydrogen via dark fermentation involves the use of anaerobic
or facultative anaerobic bacteria in anaerobic conditions. Even for the estimation of fer-
mentative hydrogen production, various substances can be used such as carbohydrates,
proteins, sugar molecules, and lipids. Glucose biotransformation toward acetate is widely
preferred [1]. The bacteria are responsible for producing biohydrogen from organic waste
during dark fermentation. The substrate primarily used is lignocellulose biomass, but other
raw materials such as municipal waste and wastewater from industries are also able to be
used as a substrate for the production of biohydrogen. Compared with photo fermenta-
tion, dark fermentation is considered to be the most promising method for biohydrogen
production [120].

Anaerobic bacteria are responsible for using the organic substance as the source of
electrons and the energy required for converting it into hydrogen. The reactions taking
place during dark fermentation occur as a rapid process as there are no requirements for
solar radiation. Large quantities of biomass are treated using a large fermenter [121]. Under
anaerobic conditions, protons can act as electron acceptors to accept the electrons generated
and bacteria reduce the protons in hydrogen by using hydrogenase, which maintains the
electrical neutrality for the uninterrupted and continuous supply of ATP [122]. This hydro-
genase enzyme can be divided into many types depending on the metal-binding capacity,
and microbial hydrogen metabolism greatly depends on the hydrogenase enzyme [123].
Dark fermentation can take place using both mixed and pure cultures, but there is an
advantage of using a pure culture over a mixed culture as the metabolic changes can be
monitored easily [124].

C6H12O6 + 2H2O → 2CH3COOH + 2CO2 + 4H2 (2)

C6H12O6 + 2H2O → 2H2 + CH3CH2CH2COOH + 2CO2 (3)

From Equations (2) and (3), it is evident that 4 mol H2/mol glucose can be produced if
acetic acid is the volatile fatty acid (VFA) product. Moreover, 2 mol H2/mol glucose can
be produced if butyric acid is the Volatile Fatty Acid (VFA) product [125]. The advantages
of this method include that it can produce hydrogen even for a day without light, various
carbon sources can be used as the substrate, there is no oxygen limitation problem as it is
an anaerobic reaction, and the byproducts produced during dark fermentation are valuable
byproducts such as acetic acid, lactic acid, etc. [126]. Dark fermentation for the production
of biohydrogen is illustrated in Figure 3.

4.3. Photofermentation

Photosynthetic and Non-Sulfur (PNS) bacteria have the ability to convert the volatile
fatty acid into carbon dioxide and hydrogen under anoxygenic conditions [127]. PNS
bacteria is a non-taxonomic group that is capable of growing as photoautotrophs, photo-
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heterotrophs, and chemoheterotrophs, depending on the availability of carbon, oxygen,
and light sources [128]. The optimum growth conditions for PNS bacteria are pH 7 and
temperatures ranging between 30 and 35 ◦C [8]. This method is considered to be an effective
process for producing hydrogen without the generation of oxygen. Organic components
are decomposed under the presence of light by anaerobic or photosynthetic bacteria via
the nitrogenase-catalyzed reaction [129]. Rhodobacter capsulatus, Rhodobacter sphaeroides,
Rhodopseudomonas palustris, and Rhodovulum sulfidophilum are some of the PNS bacteria
responsible for photo fermentation. Photo fermentation can be performed in both batch
and continuous systems by supplying an artificial light source or illumination. Various
physical parameters such as the temperature, pH, medium composition, and intensity of
light affect the productivity of hydrogen by bacteria [130].

PNS bacteria have the ability to reduce H+ ions to hydrogen in the gaseous phase
by extracting power from the oxidation of certain compounds such as fatty acids of low
molecular weight and light energy [131]. For the PNS organism to grow and produce
hydrogen, photo heterotrophy is generally preferred. This photo fermentation is carried
out via the catalytic action of two enzymes involving hydrogenase and nitrogenase via
the Tricarboxylic Acid (TCA) cycle [112,132]. The production of hydrogen gas by PNS
bacteria is possible as a result of one of the important enzymes: Nitrogenase. It is highly
sensitive to oxygen as it is an iron sulfur molybdenum enzyme. The main source for photo
fermentation is light, which is most required for developing a photobioreactor with a
greater illumination facility for industrial purposes [133].

The production of hydrogen under dark fermentation is usually lower compared to
photo fermentation, but a 14 h light and 10 h dark cycle can improve the rate of hydrogen
production [8].

4.4. Gasification

After biological conversion, gasification became the most widely studied field. More
studies on gasification have been performed by China and the United States of America,
while the UK, Italy, Malaysia, Canada, and Japan have also contributed many findings
in the field of producing hydrogen using gasification. At high temperatures and high
pressures, organic feedstock undergoes partial oxidation, which is termed gasification.
During this process, several byproducts can also be produced such as tar, biochar, light
hydrocarbon, etc. [134]. Gasification is not a biological process but it is still used for the
conversion of organic wastes into biohydrogen. The optimization of operating parameters
helps in improving hydrogen production [135].

2C + O2 → 2CO2C + O2 → 2CO (4)

C + O2 → CO2C + O2 → CO2 (5)

C + H2O → CO + H2C + H2O → CO + H2 (6)

C + CO2 → 2COC + CO2 → 2CO (7)

C + 2H2 → CH4C + 2H2 → CH4 (8)

CO + H2O → CO2 + H2CO + H2O → CO2 + H2 (9)

CH4 + H2O → CO + 3H2 (10)

Biomass is considered to be a very good source for gasification because of its low
sulfur content, and if the moisture content is less than 35% for any kind of biomass,
then it can be converted into fuel gas [136]. Gasification is considered to be a biological
process that converts biomass into carbon monoxide, carbon dioxide, hydrogen, and
methane with controlled amounts of steam and oxygen used at high temperatures [137].
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Biomass gasification usually takes place between 700 and 1200 ◦C using oxygen, air, and
other gasifying agents. Steam employment during gasification enhances the production
of hydrogen and produces high-heating-value gas with no N2. Some of the major steps
involved in steam gasification are pyrolysis, the homogenous reaction by volatiles produced
during pyrolysis, and heterogenous char gasification [138]. For the production of hydrogen,
a good-quality gas from the gasifier should consist of a low tar content and a high hydrogen
content, but the gas quality can be affected by various parameters such as the pressure,
temperature, equivalence ratio, gasifier design, and characteristics of biomass [139]. The
advantages and disadvantages of the above-mentioned techniques are summarized in
Table 6.

Table 6. Advantages and disadvantages of various biohydrogen production techniques.

S. No. Techniques Advantages Disadvantages References

1 Biological
conversion

Bio photolysis

Ability to produce
hydrogen from water in
mild conditions, such as

those involving moderate
temperatures and

pressures; anaerobic
conditions can be

maintained more easily

High energy costs;
high oxygen
sensitivity of

hydrogenase; low light
conversion efficiency;
Need lighting; Need

for ATP

[140–142]

Photo fermentation

Utilizes light as a source of
energy instead of sugar;
PNS bacteria are capable
of producing hydrogen in
a variety of light energies

poor solar energy
conversion efficiency;

requires anaerobic
photobioreactors with
a lot of solar exposure

[142–144]

Dark fermentation
Light independent

method; bioremediation;
No oxygen limitation

Thermodynamically
unfavorable due to

limited production of
hydrogen;

accumulation of
oxygen causing
inhabitation of
biohydrogen

[144]

2 Thermochemical
conversion Gasification Higher conversion can

be achieved

Gas conditioning and
tar removal are to be

performed
[145]

4.5. Applications of Biohydrogen in Fuel Cells

Fuel cells convert chemical energy for the production of electricity. It is considered
an electrochemical conversion device. Hydrogen and microbial fuel cells, when coupled
together, produce electricity without the emission of water and other toxic elements as
byproducts. H2 is produced effectively in MFC and can also be used in the generation of
electricity and aids in the purification of wastewater [146]. Hydrogen produced by the
biohydrogen separation system is used as fuel in fuel cells. The Proton Exchange Membrane
Fuel Cell (PEMFC) has received much attention due to its portable nature and ability to
work in low-temperature conditions [147]. Wei et al. [148] produced biohydrogen through
anaerobic fermentation by using the starch in wastewater as a source, and it was transferred
immediately to PMEFC for the effective generation of electricity.

Biohydrogen was produced from dairy wastewater and was transferred to PMEFC for
electricity generation. Contaminants such as carbon monoxide, carbon dioxide, ammonia,
and hydrogen sulfide present/produced in the fuel cells affect the performance of the
fuel cells as CO2 poisons the surface of the catalyst by damaging the electrochemically
active surface area and blocks the hydrogen from reaching the active platinum sites [149].
Biohydrogen is produced by a C. sorokiniana strain under sulphur-deprived conditions.
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This produced hydrogen is transferred into PEMFC and converted into electricity, and
when 27.09 mL of hydrogen was injected, 8.9 mA of current was generated [150]. Hydrogen
was produced photobiologically by Chlamydomonas reinhardtii and was integrated with
PEMFC for electricity generation, and 1.81 mA cm−2 of current density was produced
for approximately 50 h and 0.23 mA cm−2 for approximately 80 h [151]. Hydrogen was
produced using the marine microalgae Tetraselmis subcordiformis and was coupled with an
alkaline fuel cell for the production of electricity [152].

The heat-treated microbial population (HTMP) and the Acid-Treated Microbial Popu-
lation (ATMP) produced higher H2 yields at 35 ◦C, where HTMP was Clostridium sp. and
ATMP was a mixed microbial population. With a flux of 0.9 L/h hydrogen, a PEMFC was
operated successfully [153]. Using a single-chambered MFC and pre-fermented wastewater,
biohydrogen was produced and simultaneously biohydrogen production was linked to elec-
tricity generation. MFC was used to treat wastewater and for bioenergy production [154].

5. Discussion

From a green perspective, biohydrogen adheres to the green chemistry concept be-
cause the wastes produced by food, vegetables, and manure are not released into the
environment but are instead treated and used to generate hydrogen gas. MFCs offer a
cutting-edge, versatile alternative method of producing hydrogen. Over the past few
decades, a number of technological developments have improved the yield of the product.
However, this technology is still far from being able to serve as a profitable real-world
application [155]. The idea of a hydrogen economy is gaining popularity, and technologists
are working to obtain methods of producing H2 with a zero-emission plan. More studies
on the sustainability of this process must be carried out to understand its efficiency.

6. Conclusions

The use of biohydrogen is an alternative source of energy, as it is a renewable source
of energy. It can be produced by various sources such as agricultural waste, industrial
waste, municipal waste, and microbial routes. Dark fermentation is considered the most
effective method for producing biohydrogen with a higher yield and purity, even though it
is not currently feasible for large-scale implementation. It is a very reliable source of energy
for electricity generation around the world, but it has its own limitations. The greatest
challenge is to ensure that the process is sustainable, considering the low level of substrate
conversion, production rate, and yield. Cost-wise and yield-wise, current biohydrogen
technologies are not yet competitive with conventional H2 production methods. It is
essential to conduct extensive research in order to reduce costs and maximize H2 yield with
the current production technologies. As a result, future research should focus on increasing
the sustainability and measuring the economic feasibility of biohydrogen production in
order to enable its scalability.
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