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Editorial

Special Issue “Advanced Spectroscopy Techniques in Food
Analysis: Qualitative and Quantitative Chemometric Approaches”

Mourad Kharbach 1,2,* and Samuli Urpelainen 3,*

1 Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
2 Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
3 Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
* Correspondence: mourad.kharbach@helsinki.fi (M.K.); samuli.urpelainen@oulu.fi (S.U.)

The globalization of the food market has created a pressing need for food producers
to meet the ever-increasing demands of consumers while ensuring adherence to strin-
gent food safety and quality standards [1]. The comprehensive analysis of food quality
encompasses numerous aspects, such as chemical characterization, physical properties,
sensory evaluation, authentication, traceability, processing, storage, and microbiological
safety [2]. Traditional analytical techniques have long been employed in food analysis, but
they often involve destructive procedures that are labor-intensive, time-consuming, costly,
and environmentally burdensome [3].

In response to these challenges, the field of food analysis has witnessed remark-
able advancements through the utilization of advanced spectroscopic techniques. These
cutting-edge methods, including X-ray-based approaches, hyperspectral and multispec-
tral imaging, NMR, Raman, IR, mass, UV, visible, and fluorescence spectroscopy, offer
non-destructive, rapid, solvent-efficient, eco-friendly, and cost-effective alternatives to
conventional methods [4]. Leveraging these techniques in tandem with statistical analysis,
particularly through chemometric approaches, allows for the extraction and exploration
of vital information hidden within spectral fingerprints or image data. Furthermore, this
extracted information can be utilized to construct calibration models for qualitative and
quantitative analysis of various food samples. The integration of advanced spectroscopy
and chemometrics holds immense potential in the field of food science and technology,
bolstering consumer confidence and contributing to overall food quality assurance [3].

It is with great pleasure that we present this Special Issue, which focuses on recent
developments and applications of advanced spectroscopic techniques in food analysis,
quality evaluation, safety assessment, and practical industrial implementations, with a
specific emphasis on chemometric approaches. The collection of papers included in this
Issue offers a valuable insight into the diverse range of research and applications in this
field, shedding light on the potential of these techniques to revolutionize food analysis.

The accepted papers cover a broad spectrum of topics within the scope of this Special
Issue. The first paper presents a comprehensive review of the current applications of
advancing spectroscopy techniques in food analysis, focusing on the data handling aspect
with chemometric approaches [3]. This review offers an overview of the progress made in
the field and identifies avenues for further research and development.

Furthermore, one paper details an innovative application of laser-induced breakdown
spectroscopy coupled with variable selection algorithms and chemometrics for the detection
of heavy metals in Fritillaria thunbergia [5]. Another paper delves into the phenotypic
analysis of Fourier-transform infrared milk spectra in dairy goats, providing valuable
insights into the characterization and quality assessment of dairy products [6]. Additionally,
the utilization of spatial frequency domain imaging and machine learning for the rapid
and accurate detection of bruised tissue in pears is explored, highlighting the potential of
these techniques for quality control purposes [7].
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In another study, the discrimination of Brazilian stingless bee honey based on its iron-
based biogeographical origin is investigated, showcasing the applicability of discriminant
analysis in ensuring the authenticity and traceability of food products [8]. The quality
evaluation of fair-trade cocoa beans from different origins using portable near-infrared
spectroscopy (NIRS) is also examined, illustrating the potential of NIRS as a non-destructive
tool for rapid quality assessment in the cocoa industry [9].

Additionally, the effect of moisture content on the analysis of quality attributes of
red pepper powder is explored using a hyperspectral system, providing valuable insights
into the impact of moisture on food analysis outcomes [10]. Moreover, time-resolved laser-
induced breakdown spectroscopy is employed for the accurate qualitative and quantitative
analysis of brown rice flour adulteration, offering a promising approach to combat food
fraud and adulteration [11].

Furthermore, the classification of Prunus genus by botanical origin and harvest year
based on carbohydrates profiles is investigated, shedding light on the application of
spectroscopic techniques for the authentication of botanical products [12]. The chemi-
cal authentication and speciation of Salvia botanicals are explored using GC/Q-ToF and
chemometrics, providing crucial insights into the identification and characterization of
herbal products [13].

Lastly, the detection of pesticide residue levels in grapes is studied using hyperspectral
imaging and machine learning, illustrating the potential of these techniques for ensuring
food safety [14].

In conclusion, this Special Issue brings together a collection of research papers that
highlight the immense potential of advanced spectroscopic techniques in the field of food
analysis and quality evaluation. By presenting a range of innovative applications, these
studies demonstrate the power of these techniques to enhance food safety, authenticity,
and overall quality. We hope that the papers in this Special Issue provide valuable insights,
inspire further research, and encourage the adoption of advanced spectroscopic techniques
in the food industry.

Author Contributions: M.K. and S.U. contributed equally to this Editorial. All authors have read
and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Laser-Induced Breakdown Spectroscopy Coupled with Variable
Selection Algorithm and Chemometrics
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and Fei Liu 1,4,*
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Abstract: Environmental and health risks associated with heavy metal pollution are serious. Human
health can be adversely affected by the smallest amount of heavy metals. Modeling spectrum requires
the careful selection of variables. Hence, simple variables that have a low level of interference and a
high degree of precision are required for fast analysis and online detection. This study used laser-
induced breakdown spectroscopy coupled with variable selection and chemometrics to simultane-
ously analyze heavy metals (Cd, Cu and Pb) in Fritillaria thunbergii. A total of three machine learning
algorithms were utilized, including a gradient boosting machine (GBM), partial least squares regres-
sion (PLSR) and support vector regression (SVR). Three promising wavelength selection methods
were evaluated for comparison, namely, a competitive adaptive reweighted sampling method (CARS),
a random frog method (RF), and an uninformative variable elimination method (UVE). Compared
to full wavelengths, the selected wavelengths produced excellent results. Overall, RC2, RV2, RP2,
RSMEC, RSMEV and RSMEP for the selected variables are as follows: 0.9967, 0.8899, 0.9403, 1.9853
mg kg−1, 11.3934 mg kg−1, 8.5354 mg kg−1; 0.9933, 0.9316, 0.9665, 5.9332 mg kg−1, 18.3779 mg kg−1,
11.9356 mg kg−1; 0.9992, 0.9736, 0.9686, 1.6707 mg kg−1, 10.2323 mg kg−1, 10.1224 mg kg−1 were
obtained for Cd Cu and Pb, respectively. Experimental results showed that all three methods could
perform variable selection effectively, with GBM-UVE for Cd, SVR-RF for Pb, and GBM-CARS for
Cu providing the best results. The results of the study suggest that LIBS coupled with wavelength
selection can be used to detect heavy metals rapidly and accurately in Fritillaria by extracting only a
few variables that contain useful information and eliminating non-informative variables.

Keywords: laser-induced breakdown spectroscopy; Fritillaria thunbergii; heavy metals; chemometrics;
variable selection; machine learning

1. Introduction

The World Health Organization (WHO) reports that herbal medicines remain the
primary treatment for a number of diseases in developing countries [1]. The use of nu-
traceuticals and medicinal products derived from medicinal herbs is increasing even in
developed countries [1]. The consumption of healthy herbs is currently receiving consider-
able attention, and there is a focus on consuming products that are as natural as possible
and have as little contamination as possible. The demand for nutraceuticals and herbal
dietary supplements has increased significantly in recent years. Plants and other natural
materials are used to make these products. There is, therefore, a high probability of heavy
metal contamination [2]. The food chain may introduce heavy metals to humans through

Foods 2023, 12, 1125. https://doi.org/10.3390/foods12061125 https://www.mdpi.com/journal/foods
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the accumulation of heavy metals in the environment [3–6]. There are numerous anthro-
pogenic sources and activities that lead to heavy metal contamination of the environment,
such as mining, traffic, agriculture, and industrial processes. However, heavy metals are
naturally present in the Earth’s crust [6,7]. Risks associated with heavy metals can be
represented in a variety of ways [8]. They can be found in the air we breathe, the food we
eat, and the water we drink. They can also be found in soil and dust, which can be inhaled
or ingested. As a result, they can enter the body and cause health problems.

In traditional Chinese medicine (TCM), heavy metals such as arsenic (As), mercury
(Hg), lead (Pb), copper (Cu) and cadmium (Cd) are of particular concern [2]. Human
health is at risk from these pollutants. The intake of excessive amounts of heavy metals is
detrimental to the human body because it results in neurotoxicity, organic damage, and
diseases of the skin and blood [9,10].

Fritillaria thunbergii Miq is a perennial herbaceous plant that is native to the provinces
of Zhejiang, Jiangsu, and Anhui in China [11]. A dry bulb of Thunbergii fritillaria (Zhe-
beimu), a plant from the family of Thunbergii, is frequently used in Chinese medical clinical
practice for treating coughs caused by wind and phlegm heats, as well as bronchitis, inflam-
mation, hypertension, gastric ulcer, diarrhea, and bacterial infections [12]. Furthermore,
Zhebeimu is extensively used to treat leukemia that is resistant to drugs [13]. Heavy metals
have become one of the most serious safety concerns due to increasingly stringent TCM reg-
ulations [14–16]. Thus, accurate detection of heavy metal concentrations in TCM is crucial.
Among the methods commonly used for heavy metal detection are atomic absorption spec-
troscopy (AAS), atomic fluorescence spectroscopy (AFS), X-ray fluorescence spectroscopy
(XRFS), inductively coupled plasma optical emission spectroscopy (ICP-OES) [17,18], and
electrochemical methods, especially stripping and cyclic voltammetry, which are com-
monly used methods for detection. Voltammetry is a sensitive electrochemical method
that is widely used for heavy metal detection [19–21]. A traditional heavy metal detection
method involves sampling, pretreatment, and laboratory chemical analysis; all of which
are time-consuming, costly, and require extensive preparation [22,23].

Multi-elemental detection can be achieved through laser-induced breakdown spec-
troscopy (LIBS) [24]. LIBS uses pulsed laser ablation to create plasma on a sample and
then detects and analyzes the emission light emanating from the plasma. With LIBS, a
sample does not need to be prepared prior to analysis, thus allowing for rapid results [25],
minimum requirements for small samples [26], and cost-effective instrumentation [27].
LIBS is widely used in a wide variety of industries [28], including mining [29], plastics [30],
biomedicine [31,32], food [33], and the environment [34]. LIBS can provide information on
the composition of samples within a short period of time, as well as the element content
of samples. In comparison with other detection technologies, LIBS has many advantages,
such as the requirement for fewer samples, the lack of complex pretreatment, the ability
to measure multiple elements simultaneously, and the possibility of rapid implementa-
tion [35].

A number of studies have been conducted in recent years that focus on using LIBS to
detect heavy metal pollution. Wang et al. [36] applied LIBS to detect cadmium content in
rice. The LIBS analysis of rice stems demonstrated that it is an effective method for detect-
ing cadmium. Su et al. [37] simultaneously and quantitatively analyzed the heavy metals in
Sargassum fusiforme by using laser-induced breakdown spectroscopy. Liu et al. (2020) [38]
analyzed cosmetics for trace lead and cadmium through laser-induced breakdown spec-
troscopy and ultrasound-assisted extraction. Rehan et al. [39] analyzed henna paste, and
fresh leaves and soils were tested with LIBS to detect lead and nutrients. Wang et al. [40]
conducted an analysis of lead and copper in Ligusticum wallichii using LIBS. Lead (Pb)
levels in soil were quantitatively analyzed by Zhao et al. [41]. It was demonstrated that the
dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was an efficient spectroscopic
tool for improving the quantitative analysis of Pb heavy metal in soil. Zhu et al. [42]
performed an analysis of the content of arsenic in traditional Chinese medicine using laser-
induced breakdown spectroscopy (LIBS). Rehan et al. [43] used LIBS to assess the amount
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of toxic heavy metals (Pb, Cr, Ni) present in different brands of face foundation pow-
der. Zhu et al. [44] detected lead in rhododendron leaves using laser-induced breakdown
spectroscopy assisted by laser-induced fluorescence. Peng et al. [45] analyzed rice leaves
using collinear DP-LIBS to determine their chromium content. Yang et al. [46] determined
the content of lead and cadmium in rice using LIBS. These studies are indicative of the
increasing consolidation of LIBS associated with chemometrics methods for the analysis of
heavy metals.

However, despite the increase of fast and clean methods for TCM analysis [47], the
application of gradient-boosting machine learning algorithms has rarely been used for
heavy metal prediction in TCM. Thus, detecting heavy metals in different varieties of
Fritillaria based on LIBS technology combined with a gradient boosting machine is unique
and important for monitoring human exposure and establishing effective environmental
control strategies.

Considering the potential risks associated with heavy metals in traditional Chinese
medicine (TCM), the present work investigated the feasibility of LIBS combined with
chemometrics in measuring cadmium (Cd), copper (Cu) and lead (Pb) simultaneously in
twelve (12) different varieties of Fritillaria thunbergii. However, the specific objectives were
as follows: (a) to test the feasibility of the gradient boosting machine (GBM) as a method of
measuring heavy metals in different varieties of Fritillaria using both full and extracted
variables, (b) to verify the effectiveness of using three variable selection methods, namely,
competitive adaptive reweighed sampling (CARS), random frog (RF) and uninformative
variable elimination (UVE) by comparing model (GBM, SVR and PLSR) performances,
and (c) to establish a quantitative analysis model for heavy metals based on full and
extracted variables.

2. Materials and Methods

2.1. Sample Collection and Preparation

A total of twelve (12) different varieties of Fritillaria thunbergia were used in the
experiment. The varieties were provided by the Faculty of Biosystems Engineering and
Food Science (Zhejiang University, Hangzhou, China). Different copper (Cu), cadmium
(Cd) and lead (Pb) samples were prepared in the laboratory using Cu(NO3)2, Cd(NO3)2.
4H2O and Pb (NO3)2 [40,44,46,48], respectively. Fritillaria varieties were randomly divided
into eight groups to obtain samples with varying levels of Cu, Cd, and Pb. The first group
was designated as a control group, whereas the remaining seven groups were designated as
treatment groups. In order to accurately quantify Cu, Cd, and Pb concentrations in Fritillaria
samples, the solution was artificially contaminated for 48 h at 4 ◦C and rinsed three times
with super-pure water. This was done to simulate the effects of heavy metal pollution in the
environment and to determine the best course of action for mitigating the environmental
damage caused by these pollutants. Following drying at room temperature, all samples
were milled at high speeds using a high-speed pulverizer (FW100, TAISITE, Tianjin, China).
In order to produce pellets from these ground samples, they were compressed using a
tablet compressor (FY-24, SCJS, Tianjin, China), of 1.5 cm in diameter, at a pressure of 25 kN
for the duration of one minute. In total, 288 pellets were prepared.

2.2. Experimental Setup

A LIBS self-assembled schematic diagram is available in [49]; Figure 1 illustrates the
methods used in this experiment. Laser pulses were generated at 532 nm with a maximum
energy of 200 mJ and a pulse width of 8 ns using a Q-switched Nd: YAG pulse laser
(Vlite 200, Beamtech, Beijing, China). A planoconvex lens (f = 100 mm) finally focused
the laser onto the sample surface after passing through the optical system. The laser
ablation generated plasma which emitted electromagnetic waves that diffused outward.
In order to measure the waves, a light collector was used, and the waves were captured
by a spectrometer (SR-500i-A-R, Andor Technology, Belfast, UK) along with an intensified
charge-coupled device (ICCD) camera (DH334T-18F-03, Andor Technology, Belfast, UK).
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The laser Q-switch and ICCD camera were delayed using a delay generator (DG645,
Stanford Research Systems, Sunnyvale, CA, USA). Several parameters were optimized
before the experiment, including the laser energy of 60 mJ, the delay time of 1.5 μs, and
the gate width of 10μs. The Fritillaria pellets were automatically placed, and the laser
ablation path was controlled using a 4 × 4 array of craters designed using automatic x-y-z
translation. Laser pulses accumulated five times faster in each crater. For each sample,
an average of 80 spectra (4 × 4 × 5) were taken in order to reduce fluctuation between
the laser points. Approximately one minute was required to collect LIBS information for
one sample.

Figure 1. An illustration of the LIBS experimental setup.

2.3. Determination of Heavy-Metals Reference Value

Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine
the contents of three (3) heavy metals (Cu, Cd, and Pb) in Fritillaria thunbergii. Table 1
lists the statistics of heavy metal contents in different samples. A number of procedures
are involved in the ICP-MS analysis of the samples, including digestion of the sample,
filtration and purification of the digestion solution, and detection of the digestion solution
using ICP-MS (ELAN DRC-e, Perkin Elmer, USA). The pH value as well as all steps in the
ICP-MS analysis were carried out by experimental technicians at the Zhejiang College of
Biosystems Engineering and Food Science, Zhejiang University. This was a preliminary
attempt to detect multiple heavy metals (Cd, Cu and Pb) in Fritillaria thubergii using the
LIBS technique. The pH value was determined by measuring the electrical conductivity
of the sample solution with a pH meter. The ICP-MS analysis was performed using a
quadrupole-based ICP-MS system which allowed the technicians to accurately measure
the concentrations of elements in the sample solution. Similar steps are described by
Su et al. [37]. Unscrambler X, version 10.1 (CAMO Software AS, Oslo, Norway, 2011) was
used for the descriptive statistics (file imported in MATLAB format).
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Table 1. Heavy metals (Cu, Cd and Pb) contents of Fritillaria obtained by ICP-MS.

Heavy
Metal

Groups CK 1 2 3 4 5 6 7

Number 36 36 36 36 36 36 36 36

Cu

Min. 1.50 13.80 33.01 42.51 53.76 66.49 155.41 169.66
Max. 4.88 27.99 55.97 61.28 69.33 82.97 242.04 245.36
Mean 2.50 20.06 37.31 52.48 65.95 79.66 172.57 215.06
Range 3.37 14.18 22.95 18.76 15.57 16.47 86.63 75.69

Var. 1.20 13.14 36.71 37.67 16.87 20.33 517.21 773.97
Std 1.09 3.62 6.05 6.13 4.10 4.50 22.74 27.82

Cd

Min. 0.17 5.21 9.64 20.81 24.73 44.85 63.06 83.66
Max. 1.19 7.08 11.70 25.34 29.38 97.26 117.89 100.65
Mean 0.43 5.86 10.64 22.87 26.39 60.32 82.48 93.91
Range 1.02 1.87 2.05 4.52 4.65 52.41 54.82 16.98

Var. 0.07 0.21 0.31 2.34 1.72 394.02 175.37 35.38
Std. 0.28 0.46 0.56 1.53 1.31 19.85 13.24 5.94

Pb

Min. 0.13 4.12 21.28 43.13 58.61 63.14 102.16 143.12
Max. 0.76 7.33 23.90 102.03 71.15 90.51 112.26 219.07
Mean 0.29 6.06 22.75 51.58 65.62 85.00 112.26 199.24
Range 0.63 3.21 2.61 58.90 12.53 27.36 30.33 75.95

Var. 0.03 0.56 0.64 265.51 14.55 59.54 63.84 604.43
Std. 0.19 0.74 0.80 16.29 3.81 7.71 7.99 24.58

CK: Control group.

2.4. Data Analysis
2.4.1. Spectral Modeling

The gradient boosting technique (GB) is a machine-learning method used in regression
and classification problems. As a result, a prediction model is produced as an ensemble of
weak prediction models. Every step evaluates the model values at each training data point,
using the residuals of previous steps to minimize the loss function [50]. A GBM utilizes the
best practices to avoid overfitting the classification machine. A subsample of the training
data is randomly selected (without replacement) from the full dataset for each iteration
in order to fit the base learner for that iteration. Figure 2 illustrates the main processes
involved in gradient boosting through a simplified flow chart.

Figure 2. Gradient Boosting Machine Flow Chart.

In comparison to other machine learning methods, gradient boosting machines (GBMs)
have several advantages. GBM, in addition to its complex classification capability, allows
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soft classification, which entails calculating the probability of each sample being a member
of each class, rather than labeling every sample as part of a single category (hard classifica-
tion). It facilitates the assessment of the reliability of the statistical model (the potential for
overfitting) and the study of the chemical-physical properties of the model, thus fostering
the development of further qualitative and quantitative research studies.

In addition, it provides a natural measure of how significant each spectral feature is
for classifying data, something that is usually lost in the black-box nature of many machine
learning algorithms, which include artificial neural networks. The relative importance of
variables is computed in GBM. A refinement of the split criterion is computed at each split
in each tree (MSE for regression). Averaging the improvements made by each variable
over every tree that uses that variable follows. In the split criterion, the variables with the
greatest average decrease are listed as the most significant [50].When it comes to GBM
modeling, there are a variety of tuning parameters available. The following variables
were used in this study: (boosting_type = ‘gbdt’, num_leaves = 31, max_depth = −1,
learning_rate = 0.1, n_estimators = 100). In order to forecast discrete values, SVR is
an approach that uses supervised learning. By comparison, it aims to determine the
hyperplane with the most points, or the line of best fit [51,52]. PLS uses projections to build
linear regression models using variables and observables [53–55]. A significant amount of
collinearity can be analyzed by this algorithm, unlike previous algorithms.

2.4.2. Variable Selection Methods

Generally, LIBS data display high covariance due to the capability of the technique to
measure multiple emission lines associated with the same element or species. Moreover,
each peak is a result of a combination of many factors. It is therefore possible to reduce
the covariance and complexity of the model by selecting variables. Selection of more
explanatory variables improves the understanding of the multivariate system [56]. The
removal of noisy areas, such as the extremes of each spectrometer and variables without
analytical information, is also likely to increase the explained variance and enhance the
accuracy of the model [56]. To select the optimal variable, variables should be selected and
eliminated. In this study, three methods of variable selection were used to simplify the
calculation process and improve model performance (CARS, RF, and UVE).

In CARS, wavelengths are selected using a survival-of-the-fittest principle [57]. Firstly,
wavelengths with small regression coefficients are removed by using an exponentially
decreasing function (EDF). An EDF equation is then used to calculate the wavelength ratio.
The following steps are involved in each sampling run: (a) the Monte Carlo (MC) principle
is used to sample models; (b) EDF-based wavelength selection is performed; (c) adaptive
reweighted sampling is used for competitive wavelength selection and (d) cross-validation
evaluation of the subset is performed [57]. A subset of wavelengths with the lowest root
mean squared error of cross-validation (RMSECV) is retained as the effective wavelength,
and wavelengths with little or no effective information are eliminated [58].

The RF method is iterative in nature. There are primarily three steps in the random frog
algorithm: (1) A random selection of features is used to create an initialized feature subset.
(2) Iteration is performed until a candidate feature subset is selected. This is accepted with
a certain probability, then replaced, and this step is looped until the desired number of
iterations is achieved. (3) As a measure of feature importance, the selection probability of
each feature is calculated [59]. The total number of feature subsets can be determined after
multiple iterations. Its selection probability can be calculated as

Pj =
Nj

N
, j = 1, 2, . . . . . . n (1)

Nj denotes the frequency of the jth feature, j = 1, 2, . . . , n, selected from the features.
For each feature, Nj is the feature subsets after iteration, and N is the feature frequency.

Accordingly, the more optimal a feature, the more likely it is to be selected for inclusion
in these subsets of features. As a result, features can be selected according to feature impor-

10



Foods 2023, 12, 1125

tance. The UVE method uses regression coefficients from a PLS model to select variables.
This method is useful in eliminating non-informative variables, and the remaining variables
can be used to analyze and classify chemicals [60,61].

2.4.3. Model Evaluation and Calculation

In order to assess the performance of the calibration model, several evaluation in-
dices were calculated. The point-to-point fluctuations in the spectra were reduced by area
normalization [45]. The data were all normalized prior to modeling. The accuracy of the
model was assessed by determining the root mean square error of calibration (RMSEC), the
root mean square error of validation (RMSEV), the root mean square error of prediction
(RMSEP) and the coefficient of calibration (RC2), coefficient of validation (RV2) and coeffi-
cient of prediction (RP2) based on the predicted results. In summary, a good calibration
model should have a small RMSEC, and RMSEP, as well as large values for (RC2) and
(RP2) [37,48,62,63]. The calculations were performed using Python with Scikit-Learn and
the figures were generated using Origin 2022.

3. Results and Discussion

3.1. Spectra Analysis

In LIBS, atoms and ions are expelled from a generated plasma as a result of their
excited state [64]. Figure 3 illustrates the normalized spectra of 12 Fritillaria varieties.
In accordance with the National Institute of Standards and Technology, USA, Electronic
Database, characteristic lines for Cd, Cu, and Pb were identified. In this study, however,
the purpose is to quantitatively analyze the content of three heavy metals (Cd, Cu and Pb),
and because the LIBS spectra of the different varieties have similar curves, it is difficult to
observe the LIBS spectra simultaneously and quantitatively to analyze the heavy metal
content of Fritillaria simultaneously and quantitatively. Hence, the LIBS data must be
further analyzed using chemometric methods.

Figure 3. Normalized spectra of 12 Fritillaria varieties.

3.2. Heavy Metals Prediction Using Full and Selected Variables

We performed LIBS analyses in accordance with best practices [65]. The full spectrum
was divided into three parts: calibration (60%), validation (28%), and prediction (12%).
A summary of the GBM results for the full wavelength and the selected wavelength is
presented in Tables 1 and 2. The peaks in full LIBS data usually exhibit high covariance due
to the capability of measuring multiple emission lines of the same element or species and
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the fact that a number of x variables are required to generate a single peak. A useful range
of wavelengths should be selected from the entire range of wavelengths in order to simplify
the LIBS calibration models and improve prediction accuracy. As a result, three methods
of variable selection (CARS, RF, and UVE) were used to select the informative variables
from the whole wavelength range to simplify the calculation process and to improve the
performance of the model.

Table 2. Prediction results of the different models using full variables.

Models Variables RC2 RMSEC RV2 RMSEV RP2 RMSEP

Cd
SVR Full variables 0.9999 0.0995 0.8957 11.0874 0.8276 14.5054
PLSR Full variables 0.9923 3.0637 0.6791 19.4539 0.5499 23.4405
GBM Full variables 0.9984 1.3693 0.8924 11.2625 0.9139 10.2494

Cu
SVR Full variables 0.9999 0.0995 0.9606 13.9359 0.9280 17.5096
PLSR Full variables 0.9936 5.7691 0.6902 39.1138 0.5622 43.1827
GBM Full variables 0.9979 3.2885 0.9308 18.4815 0.9596 13.1156

Pb
SVR Full variables 0.9999 0.0996 0.9304 16.6308 0.8876 19.1794
PLSR Full variables 0.9938 4.9443 0.6925 34.9791 0.6272 34.9311
GBM Full variables 0.9998 0.8488 0.9673 11.3933 0.9635 10.9220

RC2: Coefficient of determination for calibration; RV2: Coefficient of determination for validation; RP2: Coefficient
of determination for prediction; RMSEC: Root mean square error for calibration; RMSEV: Root mean square error
for validation; RMSEP: Root mean square error for prediction.

3.2.1. Cd Content Prediction Using Full and Selected Variables

All three variable selection methods (CARS, RF and UVE) were computed with SVR,
PLSR and GBM to predict Cd (Table 2), and the best result was achieved with UVE-GBM.
The calibration RC2 achieved by the model was 0.9967, the RMSEC was 1.9853 mg kg−1,
the validation set RV2 achieved 0.8899, the RMSEV was 11.3934 mg kg−1, the prediction
RP2 achieved 0.9403 and the RMSEP was 8.5344 mg kg−1. Figure 4b displays the scatter
plots of the reference value and the prediction value for the Cd using the UVE-GBM.

Figure 4. (a) Scatter plots of the full variables and reference value (b) Scatter plots of GBM combined
with UVE feature selection method and reference value for the content of Cd.

RF-SVR and RF-PLSR also produced comparatively good results. For the RF-SVR
calibration set, RC2 = 0.9999, RMSEC = 0.1000 mg kg−1, the validation set RV2 achieved
0.9287, the RMSEV was 9.1671 mg kg−1 and the prediction set was RP2 = 0.9322, RM-
SEP = 9.0933 mg kg−1. For the RF-PLSR calibration set RC2 = 0.9825, RMSEC = 4.6313
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mg kg−1, the validation set RV2 achieved 0.9313, the RMSEV was 9.0014 mg kg−1 and the
prediction set was RP2 = 0.9182, RMSEP = 9.9903 mg kg−1. On the other hand, CARS-SVR,
UVE-SVR and CARS-GBM, RF-GBM produced lower prediction outcomes (Table 3). Mean-
while, for the full spectra, GBM was the best (Table 2); for the calibration set, RC2 was
0.9984, RMSEC = 1.3693 mg kg−1, the validation set RV2 achieved 0.8924, the RMSEV was
11.2625 mgkg−1, and the prediction set was RP2 = 0.9139, RMSEP = 10.2494 mg kg−1, as
shown in Figure 4a,b below. GBM combined with UVE offers superior predictions than full
wavelength GBM alone. GBM-UVE performs better with Cd because it is able to handle
the large number of variables and select the most important ones.

Table 3. Prediction results of the different models using three variable selection (CARS, RF and
UVE) methods.

Elements Methods N RC2 RMSEC RV2 RMSEV RP2 RMSEP

SVR

Cd
CARS 37 0.9707 5.9935 0.9235 9.4984 0.8139 15.0703

RF 151 0.9999 0.1000 0.9287 9.1671 0.9322 9.0933
UVE 192 0.9525 7.6277 0.9066 10.4929 0.9116 10.3842

Cu
CARS 66 0.9803 10.1823 0.9622 13.6476 0.9430 15.5721

RF 120 0.9860 8.5699 0.9640 13.3319 0.9658 12.0658
UVE 231 0.9715 12.2395 0.9412 17.0324 0.9648 12.2429

Pb
CARS 17 0.9869 7.1947 0.9710 10.7251 0.9341 14.6841

RF 124 0.9992 1.6707 0.9736 10.2323 0.9686 10.1224
UVE 93 0.9799 8.9112 0.9585 12.8355 0.9395 14.0633

PLSR

Cd
CARS 37 0.9315 9.1659 0.9098 10.3132 0.9060 10.7075

RF 151 0.9825 4.6313 0.9313 9.0014 0.9182 9.9903
UVE 192 0.9659 6.4658 0.8910 11.3386 0.9072 10.6405

Cu
CARS 66 0.9758 11.2746 0.9520 15.3841 0.9568 13.5625

RF 120 0.9769 11.0291 0.9385 17.4200 0.9457 15.1970
UVE 231 0.9856 8.7040 0.9411 17.0462 0.9575 13.4396

Pb
CARS 17 0.9683 11.2039 0.9718 10.5798 0.9599 11.4563

RF 124 0.9844 7.8436 0.9303 16.6519 0.9129 16.8794
UVE 93 0.9720 10.5175 0.9556 13.2832 0.9381 14.2331

GBM

Cd
CARS 37 0.9907 3.3649 0.9009 10.8113 0.9146 10.2061

RF 151 0.9982 1.4753 0.8474 13.4134 0.8909 11.5370
UVE 192 0.9967 1.9853 0.8899 11.3934 0.9403 8.5344

Cu
CARS 66 0.9933 5.9332 0.9316 18.3779 0.9665 11.9356

RF 120 0.9929 6.0952 0.9371 17.6235 0.9545 13.9099
UVE 231 0.9964 4.3168 0.9304 18.5337 0.9648 12.2323

Pb
CARS 17 0.9970 3.4434 0.9469 14.5335 0.9429 13.6631

RF 124 0.9982 2.6103 0.9329 16.3340 0.9136 16.8175
UVE 93 0.9992 1.7248 0.9562 13.1967 0.9609 11.3113

N: Number of features selected; RC2: Coefficient of determination for calibration; RV2: Coefficient of determination
for validation; RP2: Coefficient of determination for prediction; RMSEC: Root mean square error for calibration;
RMSEV: Root mean square error for validation; RMSEP: Root mean square error for prediction.

3.2.2. Cu Content Prediction Using Full and Selected Variables

For the prediction of Cu content, GBM combined with CARS achieved the best outcome
with the following calibration set: RC2 = 0.9933, RMSEC = 5.9332 mg kg−1, the validation
set RV2 achieved 0.9316, the RMSEV was 18.3779 mg kg−1, and the prediction set was
RP2 = 0.9665, RMSEP = 11.9356 mg kg−1. This was followed by RF-SVR: for the calibration
set RC2 = 0.9860, RMSEC = 8.5699 mg kg−1, the validation set RV2 achieved 0.9640, the
RMSEV was 13.3319 mg kg−1, and the prediction set was RP2 = 0.9658, RMSEP = 12.0658
mg kg−1; UVE-SVR: for the calibration set RC2 = 0.9715, RMSEC = 12.2395 mg kg−1, the
validation set RV2 achieved 0.9412, the RMSEV was 17.0324 mg kg−1, and the prediction
set was RP2 = 0.9648, RMSEP = 12.2429 mg kg−1 and UVE-GBM: for the calibration set
(RC2 = 0.9964, RMSEC = 4.3168 mg kg−1), the validation set RV2 achieved 0.9304, the
RMSEV was 18.5337 mg kg−1, and the prediction set was RP2 = 0.9648, RMSEP = 12.2323
mg kg−1. Figure 5 shows a scatter plot of the reference value and prediction value for Cu
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content using the CARS-GBM model. Although for the full spectra, GBM was the best
(Table 2), for the calibration set RC2 = 0.9979, RMSEC = 3.2885 mg kg−1, the validation
set RV2 achieved 0.9308, the RMSEV was 18.4815 mg kg−1, and the prediction set was
RP2 = 0.9596, RMSEP = 13.1156 mg kg−1. It can be seen in Figure 5a,b that the prediction
result from GBM combined with CARS is better than the result from the full wavelength.
GBM-CARS is better for Cu because it is able to capture interactions between variables.

Figure 5. (a) Scatter plots of the full variables and reference value (b) Scatter plots of GBM combined
with CARS feature selection method and reference value for the content of Cu.

3.2.3. Pb Content Prediction Using Full and Selected Variables

As shown in Table 3, RF combined with SVR produced the best result for the variable
selection methods for Pb content prediction with the following calibration set: RC2 = 0.9992,
RMSEC = 1.6707 mg kg−1; the validation set RV2 achieved 0.9736, the RMSEV was
10.2323 mg kg−1, and the prediction set was RP2 = 0.9686, RMSEP = 10.1224 mg kg−1. This
was followed by UVE-GBM: calibration set RC2 = 0.9992, RMSEC = 1.7248 mg kg−1, the
validation set RV2 achieved 0.9562, the RMSEV was 13.1967 mg kg−1, and the prediction set
was RP2 = 0.9609, RMSEP = 11.3113 mg kg−1 and CARS-PLSR: calibration set RC2 = 0.9683,
RMSEC = 11.2039 mg kg−1, the validation set RV2 achieved 0.9718, the RMSEV was 10.5798
mgkg−1, and the prediction set was RP2 = 0.9599, RMSEP = 11.4563 mg kg−1. Although for
the full spectra, GBM was also the best (Table 2), for the calibration set RC2 = 0.9998, RM-
SEC = 0.8488 mg kg−1, the validation set RV2 achieved 0.9673, the RMSEV was 11.3933 mg
kg−1, and the prediction set was RP2 = 0.9635, RMSEP = 10.9220 mg kg−1. It can be noticed
that the prediction result for SVR combined with RF, not GBM, as it is with Cd and Cu, as
shown in the Figure 6a,b, it is slightly better than that for the full wavelength. SVR-RF is
better for Pb because it is able to capture non-linear relationships between variables.
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Figure 6. (a) Scatter plots of the full variables and reference value (b) Scatter plots of SVR combined
with RF feature selection method and reference value for the content of Pb.

4. Discussion

Among the perennial herbaceous plants found mainly in the Zhejiang, Jiangsu, and
Anhui provinces of China, Fritillaria thunbergii Miq. [11] was selected as the research object
for collecting LIBS data and assessing its heavy metal contents (Cd, Cu, and Pb). The
presence of heavy metals in excess of the standard poses a significant health risk. Due to
increasing regulation of (TCM), heavy metals have become a priority pollutant in TCM
and a serious safety concern [14–16]. Thunbergii fritillaria bulbs (Zhebeimu) are most
commonly used in Chinese medical clinical practice to treat coughs caused by wind-heat
and phlegm-heat, bronchitis, inflammation, hypertension, gastric ulcers, diarrhea, and
bacterial infections [12].

In addition, Zhebeimu is widely used in the treatment of leukemia that is resistant to
drugs [13]. Despite the development of fast and clean methods for TCM analysis [47]. Using
LIBS to detect heavy metals in Fritillaria Thunbergii has still not been reported. Therefore,
the ability to detect heavy metals in different varieties of Fritillaria using LIBS technology
is a unique and vital process for establishing effective environmental control strategies and
monitoring human exposure to heavy metals. In light of the above considerations and the
advantages of the LIBS technique, in this study, a quantitative and simultaneous analysis
of the contents of three heavy metals in Fritillaria thunbergii was performed. LIBS data,
however, typically show a high degree of covariance due to the ability of LIBS to measure
multiple emission lines from the same species or element; besides, several variables are
responsible for creating each peak. Therefore, selecting variables may result in a reduction
in the covariance and complexity of the model. It is also helpful to select more explanatory
variables because this allows a better understanding of the multivariate system in terms
of its chemical characteristics [56]. As well as improving the model fit and increasing the
explained variance, removing noisy areas, such as extreme regions of the spectrometer and
x variables with no analytical information, can also help to remove noisy regions [56].

In multivariate analysis, the matrix effect and fluctuations in the LIBS spectrum can
be taken into account, in addition to the fluctuation in the LIBS spectrum from shot to
shot. Recent years have seen an extensive use of chemometric methods, such as partial
least squares (PLSR) and support vector machines (SVM) in the analysis of LIBS spectra for
multivariable analysis [66,67]. An analysis of three variable selection methods (CARS, RF,
and UVE) was conducted in order to simplify the calculation process and improve model
performance. PLSR, SVM, and GBM models were run on the full spectra and spectral
variables from CARS, RF, and UVE, respectively. A comparison of the performance of PLSR,
SVM and GBM models was made by determining the root mean square error of calibration
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and prediction (RMSEC and RMSEP), as well as the greatest correlation coefficient square
(R2) between calibration and prediction sets (RC2 and RP2). It has been found that the
combination of SVR and CARS yielded the smallest number of variables selected.

The combination of GBM with UVE yielded the greatest number of variables for Cd
and Cu, and for Pb, GBM with RF yielded a limited number of variables (Table 3). The
results of the different feature selection methods differ when compared when calibration,
validation, and prediction sets are analyzed. Different feature selection methods were best
for the different heavy metals. For Cd: GBM combined with UVE obtained the best perfor-
mance; for Cu: GBM combined with CARS obtained the best performance, whereas for Pb:
SVR combined with RF obtained the best performance. Several studies have demonstrated
that there is no single technique for selecting features that is universally optimal [68], and
multiple subsets of features are usually equally effective in predicting the data [69–71].
There is no doubt that full spectra contain essential information for elemental analysis but
inevitably contain irrelevant information and noise, which weaken the model’s capabil-
ity [63,72,73]. The data analysis step in LIBS, as in other fields of spectroscopic analysis, is
heavily constrained both by the high-dimensional input spaces and their inherent sparsity.
In addition to reducing the measurement and storage requirements for LIBS data, properly
selecting spectral features can facilitate the visualization and understanding of the data
and enable more timely and cost-effective classification methods to be developed. The
selection of feature variables needs to be applied to reduce computational complexity. As
described above, it is worth noting that the number of variables selected by different feature
selection methods varies widely (Table 3). For Cd, CARS showed the least variables (37),
followed by RF (151) and UVE (192) and for Cu, CARS also showed the least variables
(66), followed by RF (120), UVE (231) and finally for Pb, CARS showed the least variables
(17), followed by UVE (93), RF (124), as can be seen from Figure 7. All methods select the
informative region around 200–1000 nm, which is consistent with the Cd, Cu and Pb results
in previous literature [1,37,39,40,48,63,74,75], indicating that these variable intervals are the
informative variables.

Figure 7. (a) Distributions of selected wave number by CARS (b) Distributions of selected wave
number by RF (c) Distributions of selected wave number by UVE.

The different feature selection algorithms indicate some essential variables, so the
variables in those intervals must be supported to improve the model’s prediction ability,
indicating those regions are informative variable intervals. Table 3 summarizes the results
of CARS, RF, and UVE variable selection methods. Based on Figure 5, all selection methods
perform significantly better in the test set than when compared with the full spectrum. The
spectral matrix was then transformed by reducing the spectral information of the LIBS
measurements to the most relevant variables that contained the most relevant spectral
information of the respective heavy metals in Fritillaria. Multivariate analysis could address
laser-to-sample interaction, experimental parameter variance, and matrices, among other
factors [76].
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5. Conclusions

The study indicated that when using the wavelength selection method, only a limited
number of useful variables were extracted, and non-informative variables were elimi-
nated. Therefore, the study explored effective variables by variable selection methods. The
experimental results showed that all three methods applied could accomplish variable
selection effectively, among which GBM-UVE for Cd, SVR-RF for Pb, and GBM-CARS
for Cu produced the best results. Results of some recent heavy metal detection using
LIBS are presented in Table 4 for comparison with the current work. Table 4 provides
a comprehensive comparison of the results from the current work with those obtained
from recent LIBS studies. It allows for a direct comparison of the accuracy of the detection
methods. This study demonstrated the potential of LIBS coupled with variable selection
and chemometrics as a tool for the rapid detection of heavy metals in varieties of Fritillaria
thunbergii. It is essential to select variables that are associated with spectral information,
so that subsequent modeling analysis can be based on more concise and effective spectral
data. Additionally, the wavelengths selected could provide a theoretical foundation for the
development of new instruments.

Table 4. Results of some recent heavy metals (Pb, Cd and Cu) detection using LIBS of various samples
and current work.

Heavy-Metal Sample Spectral Line (nm) Reference

Cd Lettuce 214.44, 226.50, 228.80 [63]
Sargassum fusiforme 441.56, 643.85 [37]

Lipstick 467.9, 573.80 [23]

This work 214.44, 226.50, 441.56,
467.90, 573.80, 643.85

Cu Traditional Chinese
medicinal materials 324.79, 327.35 [74]

Glycyrrhiza 324.70 [75]
Ligusticum wallichii 324.46, 327.09 [40]
Sargassum fusiforme 324.75, 327.40 [37]

Rice 324.754, 327.396 [48]
This work 324.09, 324.79

Pb Paint samples 405.70 [77]
Henna paste 405.78 [39]

Ligusticum wallichii 405.80 [40]
Medicinal herbs 405.78, 404.00 [1]

This work 280.00, 404.00, 405.70
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Abstract: The infrared spectrum of bovine milk is used to predict many interesting traits, whereas
there have been few studies on goat milk in this regard. The objective of this study was to char-
acterize the major sources of variation in the absorbance of the infrared spectrum in caprine milk
samples. A total of 657 goats belonging to 6 breeds and reared on 20 farms under traditional and
modern dairy systems were milk-sampled once. Fourier-transform infrared (FTIR) spectra were
taken (2 replicates per sample, 1314 spectra), and each spectrum contained absorbance values at
1060 different wavenumbers (5000 to 930 × cm−1), which were treated as a response variable and
analyzed one at a time (i.e., 1060 runs). A mixed model, including the random effects of sample/goat,
breed, flock, parity, stage of lactation, and the residual, was used. The pattern and variability of the
FTIR spectrum of caprine milk was similar to those of bovine milk. The major sources of variation
in the entire spectrum were as follows: sample/goat (33% of the total variance); flock (21%); breed
(15%); lactation stage (11%); parity (9%); and the residual unexplained variation (10%). The entire
spectrum was segmented into five relatively homogeneous regions. Two of them exhibited very
large variations, especially the residual variation. These regions are known to be affected by the
absorbance of water, although they also exhibited wide variations in the other sources of variation.
The average repeatability of these two regions were 45% and 75%, whereas for the other three regions
it was about 99%. The FTIR spectrum of caprine milk could probably be used to predict several traits
and to authenticate the origin of goat milk.

Keywords: FTIR; mid-infrared; caprine milk; milk absorbance spectra; variance components; sources
of variation

1. Introduction

Fourier-transform infrared spectroscopy (FTIR) is a high-throughput method with
multiple applications that has revolutionized the livestock sector [1]. FTIR technology
measures the vibrations of the atoms in a molecule related to their bond strengths. When
the frequency of the IR radiation directed at the bond is equal to the frequency of the
bond’s vibration, the bond absorbs the radiation. The frequencies absorbed constitute the
molecule’s IR spectrum. Analyzing infrared spectra can tell us what molecules (hence, what
compounds) are present in a sample (of milk, cheese, meat, etc.) and at what concentrations.

According to Smith, 2011 [2], infrared spectroscopy is almost universal, in the sense
that the infrared spectra of solids, liquids, and gases can all be measured. A second
advantage concerns the richness of information obtained: the position of a spectral peak
reveals the structure of the molecules, the peak intensity reveals the concentration of
molecules, and the peak width is sensitive to the chemical matrix. Further key features
of FTIR are that it is relatively easy, fast, and sensitive, i.e., it is a non-destructive method
that requires only grams/milliliters of material to produce a good spectrum. The main
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disadvantage of FTIR with regard to milk samples is the presence of water, which has
intense peaks that can mask the spectra of the milk components.

In milk analyses, transmittance is defined as T = Im/Iw, where Im and Iw represent
the transmitted radiation of milk and water (reference or identity testing), respectively.
Usually, Im < Iw (and T < 1) due to the presence of other milk components that affect
the transmittance radiance, but it may also be that Im > Iw (and T > 1). Another related
metric is absorbance, defined as A = − loge T. Note that, by construction, the values of
T are centered at one, so when taking the base e logarithm, A is centered at zero. When
conducting quantitative analyses, absorbance is preferred because it is linearly proportional
to concentration, according to Beer’s law [2].

FTIR spectrometry can be used—with different levels of accuracy—for:

i. the prediction of milk components than can be easily distinguished from each other
due to the specific vibrational properties of their chemical bonds;

ii. the prediction of groups of milk components with similar chemical and vibrational
properties;

iii. the prediction of the chemical components or physical-technological characteristics of
milk that do not have specific vibrational properties;

iv. the prediction of the metabolic characteristics of animals affecting certain properties
of milk;

v. the authentication of the origin of milk.

Fourier-transform infrared spectroscopy is, of course, most commonly used to predict
milk components with specific vibrational properties with highly accurate results guaran-
teed. This is the case for the major chemical components of milk (fat, protein, and lactose),
the predictions of which are regulated by the International Organization for Standardization
(ISO) and certified by the International Committee of Animal Recording [3–5].

Although prediction of the total milk content of fat and protein is accurate, the quan-
tification of individual milk fatty acids [6–8] or individual protein fractions [9–11] is much
less accurate. In fact, the chemical and vibrational characteristics of the members of the
same chemical family are very similar, so discriminating one milk fatty acid from another
one is not simple, and the same is true when comparing a milk protein fraction with another
one. In this case, prediction is based not only on the chemical bonds of each compound, but
probably also on the relationships between the concentration of the compound in question
and other characteristics of the milk [12].

Predicting chemical compounds without specific vibrational characteristics, such
as minerals [13–15], and the physical-technological properties of milk [16–18] is based
substantially on covariance between the compound or trait in question and others related
in some way to it. Accuracy in such cases is never very high and depends on the closeness
of association and the specificity of the vibrational properties of the associated compounds.

The structure of the covariance matrix is also fundamental to predicting traits defining
the metabolism of animals using milk FTIR spectroscopy. Examples include the predic-
tion of blood metabolites [19,20], animal dismetabolism [21], nutritional efficiency [22,23],
animal energy balance [24,25], enteric methane emissions [26–28], fertility [29–31], etc.

Lastly, infrared spectra can be used to determine the fingerprint of milk for authentica-
tion purposes where adulteration is suspected [32–34], or to certify the area of origin [35],
or the farming system in which the milk was produced [36,37]. Some other secondary
method has been proposed for the rapid prediction of some substance or property of milk,
but none has the versatility of FTIR spectrometry in that, with just one sample and one
instrument, in a single passage, many components and characteristics of the milk, the dairy
animal, and the dairy system can be predicted. Moreover, provided that the spectra are
stored, new traits can be predicted a posteriori, simply using new calibration equations on
old spectra.

Many studies have been carried out on milk from bovine species, but there has been
very little research on the milk of other species, particularly goats [38–40].
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The characteristics of bovine FTIR milk spectra have been extensively studied with the
aim of understanding the properties of different fractions of the spectrum and of individual
wavelengths, and in order to identify the areas related to specific chemical bonds. In a
previous study on the FTIR spectrum of bovine milk, we clearly identified five major
spectral fractions in the range of near-infrared (NIR), or short-wave infrared (SWIR), to mid-
infrared (MIR, or MWIR) and long-infrared, or long-wave-infrared (LWIR) radiation [41].
Aside from phenotypic properties, bovine milk spectra have also been analyzed to identify
the possible genetic parameters of wavelength absorbance [42–44] and to obtain genomic
information [45,46].

Given that, unlike bovine milk, there is little knowledge of the FTIR spectrum of
goat milk, and that this knowledge is needed for the correct use of goat spectra to predict
and interpret chemical contents and metabolic properties, the aims of this research were
as follows: (1) to study the absorbance values and their phenotypic variances of each
wavenumber of the goat milk spectrum and to compare them with the characteristics
of bovine milk spectrum from the literature; (2) to estimate the major components of
phenotypic variance; and (3) to estimate the repeatability of 1060 wavenumbers in the FTIR
region from 5000 to 930 × cm−1 of goat milk samples.

2. Materials and Methods

2.1. Experimental Design

This study is part of a research project (the Good-Milk project), which mainly aims to
study the qualitative properties of goat milk compared to milk from other dairy species,
with particular emphasis on milk protein fractions and genetic variants. The work package
dedicated to the study and use of FTIR spectra to predict the qualitative traits of goat milk
focuses on sampling milk from many goats representing different farming systems, breeds,
parities, and lactation stages.

The 657 goats sampled for the present study were of 6 different breeds and were reared
on 20 farms in Sardinia (Italy). The farms were classified into 3 dairy systems (traditional,
intermediate, and modern) according to the feeding system, farm management, and condi-
tions in the facilities. Information on the farming systems, animals, and sampling procedure
are reported in a previous study [47]. Information on the qualitative and technological traits
of the milk samples is provided in other studies carried out on the same database [48–50].
The goats belonged to the following breeds: Saanen (41 goats); Camosciata delle Alpi (164);
Murciano-Granadina (143); Maltese (122); Sarda (44); and Sarda Primitiva (143). Parities on
the day of sampling ranged from 1 to 15, and days in milk (DIM) ranged from 10 to 224.

A 50 mL milk sample was collected from each goat and stored immediately at 4 ◦C.
Within 24 h of sampling, FTIR spectra (2 replicates per milk sample) were obtained with
a MilkoScan FT6000 milk analyzer (Foss A/S, Hillerød, Denmark). Absorbance values of
1060 spectral wavenumbers from 5000 to 930 × cm−1 were recorded. Parity was recoded
from a count variable to a factor with six levels (1–2, 3, 4, 5, 6, 7+), while DIM was recoded
from a count variable to a factor with five levels (1–60, 61–90, 91–120, 121–150, 151–240).

2.2. Statistical Model

A database of 1,392,840 absorbance values (657 samples/goats × 2 replicates ×
1060 wavenumbers) was compiled. Outlier spectra were checked on the basis of the
Mahalanobis distance. A linear mixed model was fitted to estimate the variance compo-
nents and repeatability of the milk absorbance at each individual FTIR wavenumber. The
model was as follows:

yijklm = μ + Gi + Bj + Fk + Pl + Dm + eijklm, (1)

where yijklm represents the 1314 absorbance values (A) recorded for a particular wavenum-
ber (657 samples/goats in duplicate), μ is the overall absorbance mean or intercept (fixed)
for a particular wavenumber, Gi ∼ iid N

(
0, σ2

G
)

is the random effect of the ith sample/goat,
Bj ∼ iid N

(
0, σ2

B
)

is the random effect of the jth breed, Fk ∼ iid N
(
0, σ2

F
)

is the random effect
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of the kth flock, Pl ∼ iid N
(
0, σ2

P
)

is the random effect of the lth parity, Dm ∼ iid N
(
0, σ2

D
)

is the random effect of the mth days in milk, and eijklm ∼ iid N
(
0, σ2

e
)

is the model residual.
Here, N(·, ·) stands for a normally distributed random variable, and ‘iid’ stands for one that
is independent and identically distributed. Strictly speaking, model (1) is a linear mixed
model where μ is the only fixed effect and the other components are treated as random. All
random components were assumed to be independent of each other. This model was fitted
1060 times (one per wavenumber) using the BGLR-R package [51] in the R programming
language [52].

From the 1060 individual mixed models as per Equation (1) fitted to each wavenumber
of the FTIR spectrum, the variance components of the random effects, i.e., σ̂2

G, σ̂2
B, σ̂2

F, σ̂2
P, σ̂2

D,
the residual term σ̂2

e , and the computed proportion of variance explained by each term
were estimated. Under additivity, the estimate of total (phenotypic) variance is calculated
as the sum of the variance components, σ̂2

Ph = σ̂2
G + σ̂2

B + σ̂2
F + σ̂2

P + σ̂2
D + σ̂2

e , and sample re-

peatability is expressed as Rsample =
σ̂2

G+σ̂2
B+σ̂2

F+σ̂2
P+σ̂2

D
σ̂2

Ph
. Sample repeatability was calculated

as the sum of the variances due to the random effects included in the model as a percentage
of the phenotypic variance (i.e., the sum of the variance of the random factors plus the
residual variance).

3. Results

3.1. Descriptive Statistics of the Goat Milk Spectra

Figure 1 depicts the mean phenotypic absorbance values and the 0.025 and 0.975 quan-
tiles of the milk samples for the entire FTIR spectrum (1060 individual wavelengths)
obtained from the milk of the 657 goats included in the study (1314 milk spectra). The two
regions with very high phenotypic variability in absorbance values in the goat milk dataset,
which are characterized by the wavelengths approximately between 3669 and 3052 and
between 1698 and 1586, are of note. These regions are known to be water zones in cow milk
samples and are indicated by peaks of water absorption that can mask the effects of other
milk components. Goat milk spectra are therefore similar to cow milk spectra, and we will
refer to these regions henceforth as the water zones or water regions.

Figure 1. Mean absorbance values (dark solid line) and the 0.025 and 0.975 quantiles (gray lines) of
the 1060 individual infrared wavelengths (5000 to 930 × cm−1), measured from 1314 spectra of milk
samples from 657 goats. Red dashed lines indicate regions with high variability.

3.2. Phenotypic Analysis of the FTIR Spectra

Figure 2 shows the sample/goat repeatability for the 1060 analyses carried out on the
entire goat milk spectrum, i.e., the infrared region between wavelengths 2.0μm (wavenum-
ber 5000 × cm−1) and 10.8μm (wavenumber 930 × cm−1), and the percentage variance
explained by each random effect included in model (1) (Goat = G, Flock = F, Herd = H,
Parity = P, and Days in milk = D) and the residual. As can be seen, the sample/goat repeata-
bility approaches one for almost the entire spectrum, with the exception of the two regions
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with very high variability (Figure 1), where it is significantly lower because the residual
variance often increases to values of 50% of phenotypic variance. In the other regions,
the sample/goat random effect explains an average of 39% of the phenotypic variance,
versus 9% in the aforementioned two regions. The random effect of flock explained, on
average, 23% in the group of regions with low variability, and 11.8% in the group with
high variability, while the random effect of breed explained, on average, 17% and 11%,
respectively, of phenotypic variability. There was little variation in the contributions of the
random effects of Parity (9%) and Days in Milk (11%) to the phenotypic variability in the
entire spectrum. Finally, the unexplained phenotypic variation (residual) was an average
of 1% in the low and 50% in the high variability regions of the spectrum.

Figure 2. Sample/goat repeatability and proportions of variances for Goat, Breed, Flock, Parity,
Days in Milk (DIM), and the residual term for the absorbance values of each of the 1060 wavenum-
bers analyzed.

4. Discussion

The discussion deals separately with the three specific aims of this study as follows:
the patterns and phenotypic variances in the absorbance values of the goat milk spectrum;
the estimation of the variance components of the major sources of variation of infrared
absorbance; and the repeatability of 1060 wavenumbers in the FTIR spectrum of goat
milk samples.

4.1. The Patterns and Phenotypic Variances in the Absorbance Values of the Goat Milk Spectrum

The infrared region analyzed in this study (wavelengths 2.0 to 10.8 μm, or wavenum-
bers 5000 to 930 × cm−1) is a section of the near-, mid-, and long-infrared regions of the
electromagnetic spectrum. The spectrometer used in this study is the one most commonly
used to predict the composition of milk samples [53] in many countries of the world, espe-
cially within milk recording systems for the genetic improvement of dairy populations. It
is widely used to analyze not just cow milk samples, but also buffalo [33], sheep [39,54,55],
and goat [34,39,56] milk samples with specific calibrations [3,56].

Given that milk spectra can be expressed in different ways (as transmittance or ab-
sorbance, as the entire spectrum or specific regions, etc.), it is worth noting that the aver-
age spectrum obtained here for goat milk is very similar to that frequently obtained for
cow milk.

In our previous study on the variability of FTIR spectra of bovine milk samples [41],
we analyzed milk in the same wavenumber interval using the same type of spectrometer,
but the spectra were expressed as transmittance, not absorbance, values. This explains why
the spectra are centered on zero in this study, whereas in the previous study they were
centered on a value of one, and why the pattern is reversed in the sign with respect to the
center. Other studies obtained very similar patterns with transmittance spectra [43]. The
absorbances and patterns reported for bovine milk in a subsequent study [57] were very
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similar to those observed here for caprine milk (Figure 1). Other studies on the absorbance
FTIR spectra of bovine milk have also reported a similar pattern to that of caprine milk
found here [58].

The phenotypic variation of absorbance, shown in Figure 1, was very different at
every wavenumber analyzed. The two spectral regions with a much greater variation in
absorbance than the rest of the spectrum were identified as the areas of absorbance of the
O-H chemical bond, and therefore highly influenced by the presence of water. A large
proportion of milk is constituted by water, so the transmittance (and consequently, the
absorbance) spectrum of milk is very similar to that of water [59]. The milk spectrum is,
as in the present study, frequently expressed as the ratio between the values measured in
milk and those measured in pure water, taken as a reference. Based on the average values
and standard deviations observed along the milk spectrum, and taking into account the
heritability coefficients estimated for every wavenumber measured, in our previous study
we proposed subdividing the spectrum of bovine milk into five sections [41]. Given the
close similarity observed here, we decided to use the same subdivisions for goat milk,
represented by the vertical dashed red lines in Figure 1 and the different background color
of the areas in Figure 2 (white or light blue). The first (SWIR-MWIR) of the two “water”
spectral regions is identified in the area of transition between the near- and mid-infrared
(NIR and MIR) radiations (wavelength 2.73 to 3.27 μm) and the second (MWIR2) region in
the central area of mid-infrared radiation (5.89 to 6.31 μm).

The two “water” spectral regions are often excluded when milk spectra are used
to predict milk traits with appropriate chemometric procedures, as they are considered
sources of “noise” and inexplicable variations [42]. However, the O-H bond is also present
in many other chemical compounds that are important for defining milk quality, while
other chemical bonds have been shown to correspond to the absorbance of electromagnetic
radiation in these sections, and, lastly, the absorbance of several wavelengths in these
sections has been found to be, in part, genetically controlled [43,46].

A better understanding and discussion of the role and importance of different spectral
regions of the goat milk spectrum could be had by quantifying the major sources of variation
in milk absorbance.

4.2. Variance Components of the Major Sources of Variation of Infrared Absorbance

In light of the results (see Figure 2), the phenotypic variability (σ̂2
Ph) of milk absorbance

at each wavenumber was divided into their major sources of variation, and the variability
due to individual sample/goat (σ̂2

G), breed of goat (σ̂2
B), flock (σ̂2

F), parity (σ̂2
P), stage of

lactation (σ̂2
D), and the residual variation (σ̂2

e ), and computed the sample/goat repeatability
was treated as random effects. Bear in mind that in this study, only one milk sample (with
two spectral replicates) per goat was taken, so the effects of individual goat and sample
are combined, whereas the residual variation expresses the differences between the two
spectral replicates obtained from each milk sample.

To facilitate discussion, these estimates were averaged according to the five spectral
regions proposed in our previous study; these are summarized in Table 1.

The first of these five regions is the near-infrared or short-wavelength region (SWIR,
2–2.72 μm), followed by the first “water” region (SWIR-MWIR, 2.73–3.27 μm), the mid-
infrared 1 region (MWIR-1, 3.28–5.88 μm), the second “water” region (MWIR-2, 5.89–6.31
μm), and lastly, the mid- to long-infrared (MWIR-LWIR, 6.32–10.76 μm) region. To facilitate
comparison with other studies, equivalences in standard ISO, wavenumber (cycles per
inverse centimeter, waves × cm−1 and frequencies (cycles per second, Hertz) are also listed
in Table 1.

It is worth noting that the average absorbance of the wavenumbers in the two “water”
regions is negative, whereas it is positive in the other three spectral regions. Moreover,
almost one third of the wavenumbers had an average absorbance of less than 1 standard
deviation from the overall mean. At the same time, in these two regions, 19% and 7% of the
wavelengths had an average absorbance greater than 1 standard deviation from the overall
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mean, and the average phenotypic variability was 6 to 22 times larger than in the other three
spectral regions (Table 1). Regarding the variance components, it is clear from the same
table that these large differences in phenotypic variability are reflected in the variability in
all the major sources of variation. It is therefore expected that, for each variance component,
the “water” regions will exhibit the largest proportion of wavenumbers characterized by
very high variance, while the other three regions will be characterized by very low variance.

Table 1. Characteristics of the five regions of the FTIR spectrum of goat milk.

Item 2 Entire Spectrum SWIR 1 SWIR-MWIR 1 MWIR-1 1 MWIR-2 1 MWIR-LWIR 1

ISO NIR-MIR NIR NIR-MIR MIR MIR MIR
Wavenumber, cm−1 5000–930 5000–3673 3669–3052 3048–1701 1698–1586 1582–930
Wavelength, μm 2.00–10.76 2.00–2.72 2.73–3.27 3.28–5.88 5.89–6.31 6.32–10.76
Frequency, THz 149.9–27.9 149.9–110.1 110.0–91.5 91.4–51.0 50.9–47.5 47.4–27.9
Waves tested, no. 1060 347 161 350 31 171
Absorbance: medium medium low medium low high

Average absorbance 0.0186 0.0109 −0.0109 0.0109 −0.0506 0.0910
Waves > 0.130 a, % 10 0 19 10 7 25
Waves <−0.093 b, % 7 2 31 1 31 1

Phenotypic variability: medium very low very high low high low
Mean of σ̂Ph 0.043 0.008 0.206 0.011 0.105 0.015
Waves σ̂Ph > 0.09 c, % 12 0 69 1 36 0
Waves σ̂Ph <0.02 d, % 74 99 0 86 4 77

Animal (Goat)
variability:

Mean of σ̂G 0.013 0.006 0.046 0.007 0.031 0.009
Proportion of σ̂2

Ph 0.33 0.45 0.07 0.35 0.22 0.36
Breed variability:

Mean of σ̂B 0.014 0.003 0.063 0.005 0.034 0.006
Proportion of σ̂2

Ph 0.15 0.12 0.10 0.21 0.13 0.18
Flock variability:

Mean of σ̂F 0.015 0.004 0.063 0.005 0.038 0.007
Proportion of σ̂2

Ph 0.21 0.24 0.10 0.22 0.20 0.25
Parity variability:

Mean of σ̂P 0.013 0.002 0.059 0.004 0.031 0.005
Proportion of σ̂2

Ph 0.09 0.09 0.08 0.10 0.09 0.10
Lactation stage
variability:

Mean of σ̂D 0.014 0.003 0.064 0.004 0.033 0.005
Proportion of σ̂2

Ph 0.11 0.10 0.10 0.12 0.10 0.11
Repeatability:

Mean Repeatibility 0.90 0.99 0.45 0.99 0.75 0.99

1: SWIR = short-wave infrared; MWIR = mid-wave infrared; LWIR = long-wave infrared; 2: σ̂2
Ph is the phenotypic

variance calculated as the sum of the variance components of the random effects included in model 1 (goat, breed,
flock, parity, lactation stage, and residual) [σ̂2

Ph = σ̂2
G + σ̂2

B + σ̂2
F + σ̂2

P + σ̂2
D + σ̂2

e ]; the mean of σ̂ i is the mean of
the standard deviation for the ith random effect of model 1 for the waves tested in the whole spectrum and in
each of the five regions; the proportion of σ̂2

Ph is the proportion of the phenotypic variance explained by the ith
random effect of the model 1 [σ̂2

i /σ̂2
Ph ]; repeatability is the proportion of the sum of the variances explained by

the random effects (without the residual one) on the σ̂2
Ph [ Rsample =

σ̂2
G+σ̂2

B+σ̂2
F+σ̂2

P+σ̂2
D

σ̂2
Ph

]; a: Proportion of waves

in the region (% of the total waves in the region) with a value higher than twice the average of the entire spectrum;
b: number of waves in the region (% of the total waves in the region) with a value higher than half the average of
the whole spectrum; c: number of waves in the region (% of the total waves in the region) with a value higher than
the average + 1 SD of the entire spectrum; d: number of waves in the region (% of the total waves in the region)
with a value lower than the average − 1 SD of the entire spectrum.

As the absorbance values measured at each wavenumber are centered and stan-
dardized before being used to predict milk traits, it is of interest to analyze the relative
importance of different sources of variation in the five spectral regions. The sample/goat
variance, expressed as an average of all the wavenumbers in the entire FTIR caprine milk
spectrum (Table 1), accounts for one third of the phenotypic variance, and is, on average,
greater in the three “non-water” regions and lower in the “water regions” (7% in the
SWIR-MWIR and 22% in the MWIR2). It is worth noting that there were smaller differences
in the effects of breed of goat among the five spectral regions, with average proportions
ranging from 10% to 21%, and the effects of flock were similar in importance and variability,
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with values ranging from 10% to 25%. The individual goat factors that change with time
(parity and stage of lactation) had a smaller, but significant, influence on infrared radiation
absorbance, and presented similar values in the five spectral regions (8% to 10% for the
effect of parity, 10% to 12% for stage of lactation).

No studies in the literature that analyze the major sources of variation in the ab-
sorbance of electromagnetic radiation at the level of individual wavenumbers or spectral
regions for milk was found, but there are some studies, described later, that quantified the
genetic and environmental components of the phenotype. As seen here, both components
are much greater in the regions with a very large phenotypic variability (“water” regions)
than in the rest of the spectrum [41]. In this case, too, it might be more informative to
analyze the relative proportions of the genetic and environmental variance components,
which are expressed as the heritability of absorbance. It is worth noting that our previous
studies, among others, found heritabilities, albeit variable, for several wavenumbers also in
the “water” regions [42,44]. Obviously, the genetic variance represents the major part of
the variation due to the breed and a part of that due to the individual animal. The herd–
year–season component has also been found to have a strong influence on the phenotypic
variance of absorbance in bovine milk [44], and to affect the prediction of milk traits from
FTIR caprine milk spectra [60]. Interactions between the cow’s genetics, parity, and stage of
lactation and spectral region have also been found [44].

We can conclude that the two “water” regions are affected by individual sample/goat,
breed, herd, parity, and stage of lactation, albeit to a lesser extent than the other regions,
and that they therefore probably contain valuable information that could be used in the
prediction of milk traits or the authentication of breed and feeding and production systems,
provided that it is combined with suitable chemometric methods.

It is worth noting that breed of cow had very little effect on the patterns and variability
in the FTIR spectra of bovine milk [61]; however, when calibration equations developed on
one breed for predicting milk traits were then applied to other breeds, validation accuracy
tended to be slightly lower than when the calibration equations were developed on multi-
breed training sets. Similar results were obtained in a study predicting milk coagulation
traits in four goat breeds [62]. As the spectra were not compared in either of the two
studies, it is unclear whether the different results with different breeds are due to inherent
differences in the predictors (FTIR spectra) or to the different values and characteristics of
the predicted traits.

4.3. Animal/Sample Repeatability of the Absorbance of 1060 Wavelengths of FTIR Goat
Milk Spectra

The variability not captured by the random effects included in the model is captured
by σ̂2

e . As can be seen from Figure 2, the relative contribution of the error term to the total
phenotypic variance of absorbance is close to zero for the SWIR, MWIR-1, and MWIR-LWIR
regions, while for the two “water” regions (SWIR-MWIR and MWIR2), it rose dramatically
to more than 50%. In fact, the average proportion of phenotypic variance not explained by
the random term is 10% over the entire spectrum, but in the SWIR, MWIR-1, and MWIR-
LWIR regions, it is 1.1%, 1.3%, and 1.4%, respectively, whereas in the “water” regions
(SWIR-MWIR and MWIR-2), it is 55% and 25%, respectively. Conversely, as defined in
this study, the repeatability of the absorbance measures is the complement of the residual
proportion of phenotypic variance and is almost 99% in the three “non-water” spectral
regions and about 45% and 75% in the two “water” regions. Given the different structures
of the sources of variation of the absorbance spectrum, when using the entire spectrum
(including the two “water” regions), it seems advisable to use the average of two–three
replicates per milk sample instead of a single spectrum, or to use chemometric procedures
that can select the most informative wavenumbers.

There are very few if any data in the literature regarding the repeatability of FTIR
absorbance measured at each wavenumber. In the case of bovine meat, we also found
large differences in repeatability along the NIR spectrum [63]: it was highly variable in the
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region of the electromagnetic spectrum corresponding to ultraviolet and visible light (0.35
to 0.74 μm), relatively high (about 80%) for wavenumbers in the IR-A region (NIR: 0.74
to 1.40 μm), and very low (10% to 30%) in the IR-B interval (SWIR: 1.40 to 1.85 μm). The
heritability of the individual wavelengths were, correspondingly, very different [64].

5. Conclusions

Our study on a representative goat population (different farming systems, breeds,
parities, and lactation stages) shows that the FTIR spectrum of caprine milk has many
similarities with that of bovine milk reported in the literature. The major sources of variation
were as follows: sample/goat (33% of the total); flock (21%); goat breed (15%); lactation
stage (11%); parity (9%); and the residual unexplained variation (10%). As in cattle species,
the spectrum is highly heterogeneous, and it was possible to distinguish five regions, two
of which (“water” regions) presented much larger variability than the others, not only
in terms of the residual variation, but also in terms of the effects of the major sources of
variation. The similarity with the bovine milk spectrum, as well as the high repeatability
(90% for the entire spectrum, 99% in the non-water regions), leads us to expect that caprine
milk spectra could also be a valuable tool for predicting many milk properties.
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Abstract: Recently, Spatial Frequency Domain Imaging (SFDI) has gradually become an alternative
method to extract tissue optical properties (OPs), as it provides a wide-field, no-contact acquisition.
SFDI extracts OPs by least-square fitting (LSF) based on the diffuse approximation equation, but there
are shortcomings in the speed and accuracy of extracting OPs. This study proposed a Long Short-term
Memory Regressor (LSTMR) solution to extract tissue OPs. This method allows for fast and accurate
extraction of tissue OPs. Firstly, the imaging system was developed, which is more compact and
portable than conventional SFDI systems. Next, numerical simulation was performed using the
Monte Carlo forward model to obtain the dataset, and then the mapping model was established using
the dataset. Finally, the model was applied to detect the bruised tissue of ‘crown’ pears. The results
show that the mean absolute errors of the absorption coefficient and the reduced scattering coefficient
are no more than 0.32% and 0.21%, and the bruised tissue of ‘crown’ pears can be highlighted by the
change of OPs. Compared with the LSF, the speed of extracting tissue OPs is improved by two orders
of magnitude, and the accuracy is greatly improved. The study contributes to the rapid and accurate
extraction of tissue OPs based on SFDI and has great potential in food safety assessment.

Keywords: spatial frequency domain imaging (SFDI); optical properties; absorption; reduced scattering;
long short-term memory (LSTM)

1. Introduction

The study of the propagation process of light in biological tissue has been a hot issue.
It has been found that tissue optical properties (OPs) show great potential in biomedical
detection [1,2], OPs’ detection of fruit [3,4] and OPs’ detection of milk [5]. The propagation
behavior of light in biological tissue consists mainly of absorption and scattering, which
are generally quantitatively described by the absorption coefficient (μa) and the reduced
scattering coefficient (μ′

s). The μa reflects the chemical composition of biological tissue,
whereas the μ′

s reflects the physical structural properties of the tissues [6]. Therefore,
obtaining μa and μ′

s of biological tissue is important for assessing the physicochemical
properties of biological tissue. There are various methods to obtain tissue OPs, such as the
temporally resolved [7], spatially resolved [8], and integrating sphere methods [9]. As a
new method to obtain tissue OPs, Spatial Frequency Domain Imaging (SFDI) is widely used
in burned tissue assessment [10], meat classification [11], and bruised fruit detection [12,13].
The SFDI technique is commonly used in the biomedical field, but it is rarely used in food
safety evaluation and agricultural product quality assessment.

There are two homogeneous forward models of mapping from OPs to diffuse re-
flectance in Spatial Frequency Domain Imaging. One model is an analytic approach based
on the diffusion approximation equation and another model is based on transport using
Monte Carlo (MC) simulations [14,15]. The main task of extracting tissue OPs by transport
models is to deal with an inverse process of mapping tissue OPs to spatial frequency
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diffuse reflectance. There are two ways to implement the inversion process, one is the
error minimization, and the other is the search method. For the first approach, the error
minimization problem (min ∑

(
Rd,model(fx) − Rd,sample(fx)

)
) is solved by inputting a guess

value of the optical properties into the model to obtain the diffuse reflectance (Rd,model)
closest to the actual value (Rd,sample). The second approach is a search problem, which first
generates a large amount of data using a forward model and then compares the diffuse
reflectance of the sample and dataset to find the optical properties values. Regardless
of which forward model is used, there are two common methods used for inversion so
far. One is the least-square fitting (LSF) method, and the other is the look-up table (LUT)
method [16,17]. Generally, to obtain accurate and stable results, diffuse reflectance at
multiple spatial frequencies is used [18,19]. However, whether using analytic approach
based on the diffusion approximation equation or MC simulations based on transport, the
LSF is computationally slow and unsuitable for fitting large numbers of pixels, which is an
inherent drawback of the fitting method. The LUT method generates a diffuse reflectance
dataset from a forward model and then builds a mapping table from diffuse reflectance to
OPs, and the inversion process usually uses interpolation to estimate the OPs. In theory, if
the interval of the LUT is small enough, extremely high inversion accuracy can be obtained.
However, with the decrease of LUT interval and the increase of frequency number, the
inversion time increases exponentially. The LUT therefore requires a compromise between
accuracy and speed. In conclusion, traditional inversion methods are not good to balance
accuracy and speed at the same time. Therefore, it is necessary to improve the speed and
accuracy of SFDI inversion to quantify the OPs of tissue quickly and accurately.

Machine learning is widely used in visual inspection [20], quality assessment of agri-
cultural products [21], and metal material research [22]. Since machine learning techniques
have great advantages in dealing with regression problems with large amounts of data,
they are used to replace the time-consuming model-based inversion process in diffuse
reflectance optics [23,24]. The mapping between OPs and diffuse reflectance is strongly
nonlinear in SFDI. Meanwhile, machine learning and regression techniques were found to
be highly advantageous in solving nonlinear problems; for example, an artificial neural net-
work (ANN) implementation for extraction of tissue OPs [25], and extraction of tissue OPs
based on random forest regressor (RFR) [26]. According to the literature [27,28], machine
learning-based extraction of OPs can be two orders of magnitude faster than conventional
methods, without degrading the accuracy of OPs, based on the SFDI technique. Although
these methods are based on machine learning, which greatly improves the prediction speed,
the prediction accuracy is still lacking.

The analysis of OPs allows for the assessment of physiological indicators such as
firmness and Soluble Solids Content (SSC) [6], which helps in the evaluation and classi-
fication of fruits. Fruits are prone to receive crushing and bruising during the picking,
transportation, and marketing process. Over time, the bruised tissues of pears will decay
and spread to the surrounding tissue, which eventually leads to a decrease in the economic
efficiency of pears. Furthermore, it is a good mean to detect the bruised tissue of fruits by
Ops. Therefore fast, accurate, and portable extraction of tissue OPs is of great importance
in agricultural production and food safety.

Researchers have been looking for fast and accurate inversion methods, aiming to
achieve real-time, accurate, and portable extraction of tissue OPs based on the SFDI tech-
nique. Common mapping models based on machine learning methods are used to extract
OPs, which greatly improve the prediction speed and prediction accuracy. However, accu-
racy is still lacking. In this study, a mapping method based on Long Short-term Memory
(LSTM) [29] was proposed to extract OPs, which is not only fast, but also improves accuracy.
This work lays a foundation for solving the problem of real-time, accurate, and portable
extraction of tissue OPs based on the SFDI technique. The purpose of this study was to look
for an alternative approach to extract OPs quickly and accurately from diffuse reflectance
images for bruised tissue detection in ‘crown’ pears. Therefore, the main objectives of this
research are as follows: (1) build a compact and portable system; (2) obtain data through
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Monte Carlo simulation; (3) establish a mapping model; and (4) detect the change of tissue
OPs after a ‘crown’ pear has been bruised.

2. Materials and Methods

2.1. Spatial Frequency Domain Imaging Instrumentation

The Spatial Frequency Domain Imaging system is shown in Figure 1a. The grayscale
illumination pattern is generated by a miniature projection module. In this study, we
used a digital projector (M1, Lenovo, Beijing, China), based on a digital micromirror-
based digital light processing (DLP) light engine (Texas Instruments, Dallas, TX, USA)
and an LED light source. A filter (λ = 525 nm, Δλ = 10 nm, Beijing Optical Century
Instrument co. LTD (BOCIC), Beijing, China) was used in front of the lens of the projector
to filter out light with a wavelength of 525 nm. The diffuse light reflected from the sample
surface was captured by an 8-bit CCD camera (MV-CA060-11GM, Hikvision, Hangzhou,
China). The generation of the illumination pattern, the projection, and the acquisition of
the diffuse reflectance image of the sample were implemented by two ARM boards (Jetson
Nano, Nvidia Corporation, Santa Clara, CA, USA). The synchronization of the sinusoidal
illumination pattern projection and the sample diffuse reflectance acquisition was ensured
by network communication. Compared to conventional systems, this study abandoned the
strategy of using a personal computer as the control core and used miniature components,
making the system more portable and compact.

Figure 1. (a) for SFDI instrumentation and (b) for data processing.

2.2. SFDI Processing

For the Spatial Frequency Domain Imaging technique, the sinusoidally modulated
light is projected onto the surface of the scattering medium first, and then the raw diffuse
reflectance image is captured with a camera. Sinusoidally modulated light at each fre-
quency needs to be projected three times with the phase 0π, 2π/3, and 4π/3. At least two
frequencies are required to map the optical properties (OPs) using the optical transport
model [30]. The data processing is shown in Figure 1b.

After obtaining the raw diffuse reflectance image, the modulation amplitude (M(f x))
needs to be obtained by three-phase demodulation, as in Equation (1).

M(fx) =

√
2

3
{(I 1(fx) − I2(fx))

2 +(I 2(fx) − I3(fx))
2 +(I 3(fx) − I1(fx))

2}1/2
(1)
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where Ii(f x) is the raw diffuse reflectance with different phases at the same frequency, and
M(f x) is the modulation amplitude. The correction is then performed using a reference
whiteboard with known diffuse reflectance, as in Equation (2),

Rd(fx)measured =
M(fx)measured
M(fx)reference

Rd(fx)reference (2)

where M(fx)measured is the modulated amplitude of the sample, M(fx)reference is the modu-
lated amplitude of the reference whiteboard, Rd(fx)measured is the diffuse reflectance of the
sample, and Rd(fx)reference is the diffuse reflectance of the reference whiteboard. According
to the diffuse approximation theory, the optical properties (μa, μ′

s) can be solved using
curve fitting based on the diffuse equation [30] after the diffuse reflectance is obtained. This
is shown in Equation (3),

Rd(fx) =
3Aμ′

s/μtr(
μ ′

eff/μtr+1
)(
μ ′

eff/μtr+3A
) (3)

where μtr= μa+μ′
s is the transport coefficient, μ′

eff =
√

3μaμtr+2πfx2 represents the
scalar attenuation coefficient in the spatial frequency domain, n is the refractive index
of sample, Reff= 0.63n + 0.668 + 0.71/n − 1.44/n2 is effective reflection coefficient, and
A = (1 − R eff)/2(1 + R eff) is a proportionality constant.

2.3. Monte Carlo Simulations

Unlike the diffuse approximation equation, Monte Carlo (MC) simulation is a stochas-
tic statistical method that simulates the transport of photons through tissue. After the
photons enter the tissue, they constantly interact, and some of the photons are absorbed
and disappear. Photons emitted from the upper surface of the tissue form diffuse light, and
photons emitted from the lower surface of the tissue form transmitted light. Given the opti-
cal properties (OPs) parameters, the purpose of MC simulations is to simulate the photons
transport process and then accurately calculate the corresponding diffuse reflectance. Many
researchers have implemented MC simulations programs for different purposes, some for
time-domain MC simulations [31], some for single-layer tissue MC simulations, and some
for multi-layer tissue MC simulations [32]. This study uses a GPU-accelerated simulations
program developed by Eric [33]. A large amount of mapping data (from OPs to diffuse
reflectance) was obtained through MC simulations, which was used to construct the Long
Short-term Memory Regressor model.

Given the value of the OPs, the diffuse reflectance Rd(r) can be obtained using the
MC simulations program. However, this spatially distributed diffuse reflectance Rd(r)
obtained by MC simulations is independent of the frequency of the structured light. The
diffuse reflectance Rd(fx) in the spatial frequency domain (SFD) can be derived by Fourier
transform [30]. As shown in Equation (4),

Rd(fx)= 2π
n

∑
i=1

riJ0(2πf xri)Rd(r i)Δri (4)

where Rd(fx) is diffuse reflectance in SFD, ri is the radial distance of the ith photon from
the incident point of the light source in the MC simulation, fx is the frequency of the
sinusoidally modulated light, Rd(r i) is the reflection weight of the photon at the point
ri, Δri is the distance between radially adjacent photons, and J0 is the zeroth-order Bessel
function of the first kind. The initialization parameters of MC simulations are shown in
Table 1.
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Table 1. Parameter settings for the Monte Carlo simulations.

Parameters Symbols 1 Value

Number of photons N 3,000,000
Resolution dz 2, dr 3 0.01 cm
Anisotropy g 0.7

The thickness of tissue d 5 cm
Refractive index air n0 1

Refractive index of tissue n1 1.34
1 The symbols corresponding to the parameters. 2 The thickness of each tissue layer in the Monte Carlo simulations.
3 The thickness of each tissue layer in the radial direction of the light source.

2.4. Long Short-Term Memory Regressor Method

The Long Short-term Memory (LSTM) network model has great potential to solve
problems where input sequences have context relations. Meanwhile, the LSTM network
model performs very well in solving complex nonlinear problems. Therefore, this study
decided to build a mapping model based on a LSTM network model for mapping tissue
optical properties (OPs) from diffuse reflectance.

The Long Short-term Memory Regressor (LSTMR) model takes the n-dimensional
diffuse reflectance vector and maps it to a 2-dimensional OPs vector. The input of the LSTM
network is generally an n-dimensional vector with dimensions from 1 to n representing
n moments. The LSTM has a memory cell that records the memory of each moment.
Furthermore, the operations at each moment include adding memory and deleting memory
to extract the relevant details of the context. The structure of the LSTMR model is shown in
Figure 2, where the n-dimensional vector is the diffuse reflectance at different frequencies.
The model of the network could be a deep neural network, and only one layer of the neural
network is shown in the figure. The basic structure of the model is shown in the upper of
Figure 2, and equations are shown in Equations (5)–(10),

Ft= σ(W f[Yt−1, Xt] + zf) (5)

It= σ(W i[Yt−1, Xt] + zi) (6)

C̃t= tan h(W c[Yt−1, Xt] + zc) (7)

Ot = σ(W o[Yt−1, Xt] + zo) (8)

Ct= Ft � Ct−1+It � C̃t (9)

Yt= tan h(F t � Ct−1+It � C̃t) � Ot (10)

where � is the pointwise multiplication operation, σ is the sigmoid function, W is the
weight matrix of the network layer, z is the bias term of the network layer, Ft is the forget
gate, =It is the input gate, C̃t is the current memory, Ot is the output gate, Ct is the memory
cell at moment t, ht is the output at moment t, and Xt is the input at moment t. LSTM
modifies the content of the memory cell through all the forget and input gates to extract
context-related information. The final output of the model can be written as Equation (11),[

μa,μ′
s
]
= ∑ wtYt (11)

where wt is the weight of the output corresponding to each component of the input vector,
and μa and μ′

s are the OPs.
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Figure 2. The Long Short-term Memory Regressor Model.

The Long Short-term Memory Regressor model was constructed based on the PyTorch
framework (PyTorch, version 1.10.0+cu113, Meta, Menlo Park, CA, USA), which is a
mainstream framework for building machine learning models. To obtain reliable and
stable models, five-fold cross-validation was used in the optimization of model parameters.
Theoretically, if there are enough nodes, an artificial neural network with one hidden layer
can fit any complex function. This study obtained the best results when the number of
nodes was 25 and the number of hidden layers was 5. Too small a batch size will lead to
model oscillation and difficult convergence. Setting the batch size to the training set size is
a good choice due to the small dataset, and choosing the Resilient Propagation optimizer,
which is preferred when the batch size is equal to the training set size, has proven to be
a smart choice. When the initial learning rate of the model was 0.0001, the model had
a good convergence effect, and the model converged quickly before 200 epochs. Finally,
the dropout algorithm was used to prevent overfitting, and the final model training took
30 min.

2.5. Model Testing
2.5.1. Simulations Experiments

The Long Short-term Memory Regressor (LSTMR) model was tested using a simulated
dataset, and the tested dataset never appeared in the training dataset. To accelerate the
inversion speed, the two-frequency inversion strategy is usually adopted. In this study,
there were six alternative frequencies (fx = 0.167, 0.180, 0.200, 0.220, 0.250, 0.300 mm−1).
Different mapping models were built with different high frequencies, and a five-fold cross-
validation was used in the model-building process. Different models were used to map the
optical properties (OPs), and then the mean absolute error of OPs was used as the basis for
the preference.

After determining the optimal frequency, the full set of training dataset was used to
train the Long Short-term Memory Regressor mapping model. To highlight the advantages
of the model, least-square fitting (LSF), artificial neural network (ANN), random forest
regressor (RFR), and recurrent neural networks (RNN) mapping methods were imple-
mented in the experiments, respectively. The strengths and weaknesses of the models were
evaluated by the normalized mean absolute error (NMAE), the determination coefficient
(R2), the root mean square error (RMSE), and the mean absolute error (MAE). Look-up
table inversion was not chosen because it required a tradeoff in time and accuracy.
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2.5.2. Phantoms Experiments

By using Indian ink (Royal Talens, Apeldoorn, The Netherlands) as an absorbing
agent and titanium dioxide (T104950-500 g, Aladdin Biochemical Technology Corporation.,
Shanghai, China) as a scattering agent, deionized-water-based optical phantoms were
prepared. Five gradients were set for absorption and reduced scattering, respectively. The
volume fraction of India ink is 0.006–0.014% with a 0.002% interval and the volume fraction
of TiO2 is 0.04–0.12% with a 0.02% interval. Twenty-five small liquid phantoms with various
optical properties (OPs) were fabricated. The absorption range of these phantoms was
from 0.0945 mm−1 to 0.1905 mm−1, and the scattering range was from 1.3689 mm−1 and
4.1063 mm−1. According to Lambert’s law, the standard value of the absorption coefficient
was derived using the collimated transmittance T, and the collimated transmittance T is
obtained by spectrometer acquisition (QE65pro, Ocean Insight Corporation, Orlando, FL,
USA), as shown in Equation (12),

μa =
− ln(T)

D
=

− ln(I/I0)

D
(12)

where D is the length of the optical path passed in the liquid during collimated transmission,
and I0 and I are the transmitted light intensity of water and the transmitted light intensity
of the absorber, respectively. The standard value of the reduced scattering coefficient can be
calculated by using the Mie program [34] given the parameters of TiO2, the refractive index
of water, and the wavelength of light. The parameters of TiO2 include diameter, volume
fraction, and refractive index.

The phantom experiments were performed using a two-frequency strategy (high
frequency is the optimal frequency 0.25 mm−1) and an inversion was performed using the
Long Short-term Memory Regressor (LSTMR), the least-square fitting (LSF), the artificial
neural network (ANN), the random forest regressor (RFR), recurrent neural network (RNN),
respectively. A 300 × 300-pixel area near the center pixel of each phantom was selected as
the target area and the OPs images were computed.

2.5.3. Pear Experiments

‘Crown’ pears were selected as experimental objects, and all crown pears came from
fruit supermarkets. The surface of these pears was not damaged, and they were very fresh.
The experiments were conducted in March at an ambient temperature of 20 degrees Celsius.
During the bruising treatment, the pendulum motion was simulated by using a small
iron ball to hit the pear around the equator, thus inducing the formation of bruised tissue.
During the experiments, the experimental subjects were consistent before and after bruising,
and the images of normal pears were collected first, and then the images of bruised pears
were collected after bruising treatment. All experimental procedures used the same system
to acquire images and the same program to extract optical properties.

3. Results

3.1. Simulation Experiment Results

To obtain the best high frequency, the mapping models with different high frequencies
were built based on the training dataset, and the most suitable high frequencies were deter-
mined in the range of 0.167–0.300 mm−1. Figure 3 illustrates the mean absolute error (MAE)
of the optical properties (OPs), where the horizontal axis is the mapping model for different
high frequencies. The results show that the model has the best accuracy when the frequency
is chosen to be 0.25 mm−1, and when the MAE of the absorption coefficient (μa) and the
reduced scattering coefficient (μ′

s) are 0.6240% and 0.5939%, respectively. The optimal
frequency of 0.25 mm−1 is very close to the commonly used optimal frequency of 0.2 mm−1,
which is consistent with the experimental results of Luo’s frequency preference [5].
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Figure 3. The Mean absolute errors of different models in predicting optical properties. The horizontal
coordinate is the mapping model for different high frequencies. The numbers marked in red are the
minimum mean absolute errors.

The prediction results of different models are shown in Table 2. The prediction
results of the Long Short-term Memory (LSTMR) are optimal in terms of normalized mean
absolute error (NMAE), MAE, root mean square error (RMSE), and determined coefficient
(R2). Except for the LSTMR model, the RFR model has the best prediction results. For
LSTMR, the MAE of the μa and the μ′

s are 0.32% and 0.21%, respectively. This is an order-
of-magnitude improvement compared to the prediction accuracy of the LSF. As shown in
Figure 4, there is an extremely high linearity between the predicted and target values of the
LSTMR, with the R2 approaching 1. As can be seen in Figure 4, the target and predicted
values almost exactly coincide and overlap in a straight line, both for the μa and the μ′

s.
This indicates that the model is an excellent fitting and that the model fits well as a function
of the diffuse reflectance and OPs. The experiments illustrate that LSTMR is an ideal model
for accurately mapping OPs.

Table 2. Predictive performance of different mapping models in simulation experiments.

OPs Metric LSTMR ANN RNN RFR LSF

μa

NMAE 0.0012 0.0069 0.0077 0.0049 0.0506
MAE 0.0032 0.0151 0.0181 0.0171 0.0597
RMSE 0.0002 0.0010 0.0012 0.0007 0.0207

R2 1.0000 0.9999 0.9999 0.9999 0.9999

μ′s

NMAE 0.0009 0.0046 0.0053 0.0036 0.0598
MAE 0.0021 0.0127 0.0139 0.0023 0.0770
RMSE 0.0060 0.0298 0.0350 0.0226 0.3323

R2 1.0000 0.9971 0.9966 0.9978 0.9996

3.2. Phantoms Experiments Results

To verify that the proposed Long Short-term Memory Regressor (LSTMR) mapping
model can be used to extract optical properties (OPs) accurately and quickly, 25 optical
phantoms with known OPs were produced. As shown in Table 3, LSTMR mapped OPs
at a speed of 253 ms for a 300 × 300-pixel image (CPU, Intel-I7-11800H). However, for
the least-square fitting (LSF) method, extracting the OPs of a 300 × 300-pixel image took
57,970 ms. The results show that the LSTMR inversion speed is improved by 2 to 3 orders
of magnitude compared to LSF. The speed of predicting tissue OPs based on machine
learning methods depends on the complexity of the model (number of nodes and number
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of network layers), so this study only implemented a speed comparison between LSTMR
and LSF.

Figure 4. Linearity between the measured and calculated values of the optical properties in the simu-
lation experiments, (a) is for the absorption coefficient and (b) is for the reduced scattering coefficient.

Table 3. The speed of mapping from diffuse reflectance to optical properties.

Methods Resolution/Pixel Speed ms/Pixel

LSF 300 × 300 0.6441
LSTMR 300 × 300 0.0028

The results of different inversion methods for the phantoms experiments are shown in
Figures 5 and 6, and the mean absolute error (MAE) of μa and μ′

s are 0.0211 and 0.0674
using the LSTMR method, respectively. Furthermore, the R2 of μa and μ′

s are 0.9916
and 1.0, respectively, which indicates that the predicted results of LSTMR have a good
linear relationship with the expected values. It confirms that LSTMR is an ideal choice for
inversion in Spatial Frequency Domain Imaging. Due to the inevitable experimental error,
the actual value of the phantom is different from the reference value, so the prediction
result of the phantom would be slightly worse than the simulation result. The relative error
of μ′

s is larger than that of μa because the scattering agent is easily precipitated and is more
influenced by whether the liquid surface is stationary or not, resulting in a larger error in
the prediction of μ′

s. Obviously, the mapping results of the LSTMR inversion model are
better than other models in the experiments.

Figure 5. Performance metrics for different models in the phantom experiment for absorption coefficient.

41



Foods 2023, 12, 238

Figure 6. Performance metrics for different models in the phantom experiment for reduced scatter-
ing coefficient.

3.3. Pear Experiment Results

The results of the bruised tissue detection experiment for pears are shown in Figures 7 and 8.
Pears will form bruised tissue at an early stage after being slightly crushed. In this study, it
was demonstrated that bruised tissue forms on the surface of the pear after a slight impact.
The absorption coefficient of the tissue increases during the formation of bruised tissue.
The opposite is true for the reduced scattering coefficient, which is consistent with the
experimental results of Sun [25] and Luo [35]. Moreover, both absorption and reduced
scattering images could highlight the areas of bruised tissue. Therefore, using the Spatial
Frequency Domain Imaging technique, early bruised detection of fruits can be performed.
Furthermore, it can effectively control the bruised of fruits during transportation, thus
controlling the cost of the fruit industry. The optical properties (OPs) of apple tissues can
be used for nondestructive quality or ripeness prediction of apples [4], and the Long Short-
term Memory method proposed in this study can obtain prediction results more accurately
and quickly. Therefore, the rapid acquisition of OPs in tissues is of particular importance.
This further illustrates the need to improve the speed and accuracy of extracting the OPs of
tissues. It also lays the foundation for the real-time, portable acquisition of tissue OPs.

Figure 7. Changes in the absorption coefficient of bruised tissue of ‘crown’ pears.

Figure 8. Changes in the reduced scattering coefficient of bruised tissue of ‘crown’ pears. The red
box indicates changes in tissue optical properties in the bruised area of the pear.
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4. Discussion

Absorption and scattering have different sensitivities to frequency. Absorption is
mainly sensitive to low frequency, whereas scattering is mainly sensitive to high frequency.
The non-zero frequency should not be too large or too small for the two-frequency inversion.
The simulations experimental results showed that fx = 0.25 mm−1 was the most suitable
frequency under these experimental conditions, which was also closer to the non-zero
frequency used in the existing literature [5]. The simulations experimental results show that
the mapping accuracy of the Long Short-term Memory Regressor (LSTMR) model could
be substantially improved, and the mean absolute error (MAE) of μa and μ′

s could reach
0.32% and 0.21%, respectively. The mapping accuracy of LSTMR is much better than that
of the traditional LSF method, and it also performs better than the other machine learning
methods in the experiments. Compared with the LSF method, the phantoms experiment
not only shows that LSTMR has an advantage in mapping accuracy, but also has a huge
performance advantage in inversion speed.

Jäger et al. [23] combined spatial resolution technology with multiple artificial neural
network to extract optical properties (OPs). According to their reports, the normalized
mean absolute errors (NMAEs) of μa and μ′

s are 6.1% and 2.9%, respectively. The MAE of
the deep neural network mapping model proposed by Stier [1] for μ′

s is 6.8%. Song [28]
developed an OPs mapping model based on the deep neural network, and according to their
study, the mean and standard deviation of the percentage errors of μa and μ′

s were 0.0 ± 1.4
and 0.0 ± 0.28%, respectively. Sun proposed an artificial neural network method [25] for the
inversion of OPs based on multi-frequency inversion, where the NMAEs of μa and μ′

s are
0.18% and 0.027%, respectively. Sun used seven frequencies for inversion, whereas we used
only two frequencies to achieve comparable accuracy. Panigrahi [26] demonstrated that the
random forest regressor (RFR) method was a highly accurate and fast inversion method,
and the MAE of OPs could be reduced to 0.556% and 0.126%, respectively. Comparing the
MAE, it could be found that the μa of LSTMR was more accurate, whereas the μ′

s of RFR
was more accurate. The μ′

s of LSTMR is slightly less accurate than RFR due to the large
gradient (the interval of μ′

s is 0.126 mm−1) of the μ′
s of the dataset.

The phantom experimental results showed that the LSTMR not only has better inver-
sion accuracy than other methods, but also had a dramatic improvement in inversion speed,
with a speed improvement of 2 to 3 orders of magnitude compared to the LSF. The LSF
method requires continuous iterations for optimization until the error is within an accept-
able range, which consumes a lot of time during the iterations, and which is evident as the
number of frequency increases. The look-up table uses a search strategy in which the time
taken for the search process increases exponentially as the number of frequencies increases.
However, using multiple spatial frequencies for inversion can improve the robustness of
the model [18]. The machine learning method can solve the slow speed problem in the
process of multi-frequency inversion, and the mapping accuracy can be improved at the
same time. As can be seen from Table 3, LSTMR is more than 100 times faster than LSF.
This is also consistent with the results of Zhao’s study [27] and Song’s study [28].

5. Conclusions

The proposed Long Short-term Memory Regressor (LSTMR) method is an ideal map-
ping model to replace the inversion method based on the optical transport model. It can
quickly extract optical properties (OPs), but without loss of estimation accuracy. This
study not only compared the LSTMR method to the traditional LSF method, but also
to other machine learning methods that appeared in journals, and it turns out that the
LSTMR method is indeed a good choice. The experimental results show that the accuracy
of LSTMR inversion is comparable to or even better than that of the previous literature.
Furthermore, the speed of LSTMR is improved by 2~3 orders of magnitude compared with
LSF. These pear experiments proved that LSTMR can accurately distinguish bruised tissue,
which provides a feasible solution for the quality assessment of pears. All experiments are
based on our developed miniaturized Spatial Frequency Domain Imaging system. This
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study laid the hardware foundation and method foundation for real-time and portable OPs
acquisition of pears, and further applied it to pear quality evaluation.
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Abstract: Stingless bee honey (SBH) is gaining attention due to its nutritional, sensorial, and medicinal
characteristics. This study focuses on the combination of physicochemical properties, antioxidant
capacity, mineral profile, and mass spectrometry-based fingerprints, using a chemometric approach
to differentiate SBH (n = 18) from three different Brazilian biogeographical zones (Caatinga, Cerrado,
and Atlantic Forest). The physicochemical properties of SBH varied, resulting in a wide range of
water activity, moisture, total soluble solids, pH, and total and free acidity. The Caatinga honey
showed the highest and the lowest contents of phenolics and flavonoids, respectively. The antioxidant
free-radical scavenging assays demonstrated that the Brazilian SBH has a high antioxidant potential.
The mineral profile of honey samples from the Atlantic Forest revealed higher contents of Ca and
Fe while the Cerrado and Caatinga honey showed the highest P contents. Partial Least-Squares
Discriminant Analysis (PLS-DA) analysis separated the samples into three groups based on the
biogeographical zones of harvest. The main separation factors between groups were the m/z 326 ion
and the Fe content. Univariate analysis confirmed that Fe content is important for SBH discrimination.
The present results indicate that the origin of SBH can be determined on the basis of mineral profile,
especially Fe content.

Keywords: meliponine honey; physicochemical properties; biomes; antioxidant potential; mineral
profile; mass spectrometry analysis; chemometrics

1. Introduction

Brazil is a country of continental dimensions (about 8.5 million km2), with marked
climatic variations over its territory. Climate zones such as tropical, semi-arid, and tem-
perate areas occur from the north to the south of the country. These climatic differences,
allied to the various soil types, lead to major ecological variations with the consequent
formation of distinct biomes or biogeographical zones. Brazilian biogeographical zones
can be mainly divided into six distinct areas: the Amazon Rainforest; Pantanal (wetlands),
Cerrado (Brazilian savannah), Caatinga (semi-arid scrub forest), Pampas (grasslands), and
the Atlantic Forest [1]. Unsurprisingly, 70% of the world’s cataloged animal and plant
species can be found in this country [2].

Brazilian native meliponines (Apidae, subfamily Meliponinae), or simply stingless
bees, are insects of great economic and socioenvironmental importance. These bees play
an important role as pollinators of wild botanical individuals, including endemic species,
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as well as several crops such as passion fruit, Brazilian nut, watermelon, guava, tomato,
and açaí [3]. In addition, stingless bees (SB) can produce a distinguished honey with
unique compositional and sensory characteristics. Stingless bee honey (SBH) is a high
sugar-containing solution often showing higher moisture and free acidity compared to Apis
mellifera honey [4]. Notably, the physicochemical characteristic of honey is influenced by its
complex chemical composition, which may vary according to environmental factors, bee
species, botanical resources, storage conditions, and processing methods [5].

Substances bearing phenolic groups are identified as the main factors responsible for
the antioxidant capacity of honey. Phenolic substances commonly reported in SBH include
phenolic acids (gallic acid, caffeic acid, coumaric acid, ellagic acid, hydroxycinnamic acid)
and flavonoids (taxifolin, naringenin, luteolin, quercetin, catechin, apigenin) [6,7]. Other
components that may contribute to the antioxidant property of honey are amino acids,
proteins, enzymes, carotenoids, and organic acids [8]. Here, we combined physicochemical
properties, antioxidant capacity, mineral profile, and mass spectrometry-based fingerprints
using a chemometric approach to provide new insights into the influence of biogeographical
zones on the compositional singularities of SBH. In addition, the identification of the main
factors responsible for honey discrimination would permit the use of these analytes for the
investigation of honey origin.

2. Materials and Methods

2.1. Chemicals

High-Performance Liquid Chromatography (HPLC) grade chloroform, methanol and
formic acid were obtained from Tedia Brazil® (RJ, Brazil). Folin-Ciocalteu, ABTS (2,2′-
azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), TPTZ (2,4,6-tripyridyl-s-Triazine) and
nitric acid were obtained from Sigma-Aldrich (St. Louis, MO, USA). Acetic acid, chloride
acid, ferric chloride heptahydrate, iron (II) sulfate heptahydrate, and aluminum chloride
hexahydrate were obtained from Dinâmica® (Sao Paulo, Brazil).

2.2. Honey Samples

SBH samples (n = 18) were provided by the Rio de Janeiro Stingless Beekeepers Asso-
ciation (AME-Rio, Rio de Janeiro, Brazil). The samples were originally collected in different
Brazilian biogeographical zones between 2017 and 2018 and stored at low temperature
(4 ◦C) in the dark until the time for the analytical procedures. Table 1 summarizes the SB
species and honey origin.

Table 1. Details of stingless bee species providing samples.

Biogeographical Zones Bee Species Popular Name Year (Season) Sample Identifier

Atlantic Forest

Melipona mondury Uruçu Amarela 2017 (autumn) MM1
Melipona mondury Uruçu Amarela 2017 (autumn) MM2
Melipona mondury Uruçu Amarela 2017 (autumn) MM3
Melipona mondury Uruçu Amarela 2018 (summer) MM4

Melipona quadrifasciata Mandaçaia 2018 (spring) MQ1

Caatinga

Melipona subnitida Jandaíra 2018 (autumn) MS1
Melipona subnitida Jandaira 2018 (winter) MS2
Melipona scutellaris Uruçu Nordestina 2018 (winter) MSC1
Melipona scutellaris Uruçu Nordestina 2018 (summer) MSC2
Melipona scutellaris Uruçu Nordestina 2018 (summer) MSC3
Melipona mondury Uruçu Amarela 2018 (summer) MM5 (6)

Scaptotrigona aff. postica Tubi 2018 (winter) SCA1

Cerrado

Melipona fasciculata Tiúba 2018 (winter) MF1
Melipona fasciculata Tiúba 2018 (winter) MF2
Melipona fasciculata Tiúba 2018 (winter) MF3
Melipona fasciculata Tiúba 2018 (spring) MF4
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Table 1. Cont.

Biogeographical Zones Bee Species Popular Name Year (Season) Sample Identifier

Scaptotrigona polysticta Benjoi 2018 (winter) SCP1
Melipona mondury Uruçu Amarela 2018 (summer) MM6 (5)

2.3. Physicochemical Analysis

The physicochemical properties of SBH, including water activity (Aw), moisture,
total soluble solids (TSS), pH, total and free acidity, and hydroxymethylfurfural (HMF),
were determined as described by the Association of Official Analytical Chemists [9]. The
color features of SBH were determined spectrophotometrically. Initially, the absorbance
(Abs) of honey sample solutions (0.5 g honey in 1 mL distilled water) was measured at
635 nm [10]. The results were converted to the Pfund scale (mm) using the equation below.
Brown pigment formation was determined by measuring the absorbance (420 nm) of honey
samples previously diluted to 4◦ Brix with distilled water [11].

Pfund = −38.70 + 371.39 × Abs (1)

2.4. Total Phenolic (TPC) and Total Flavonoid (TFC) Contents

TPC was determined spectrophotometrically by the Folin-Ciocalteu method [12].
First, 1 g of honey was diluted to 10 mL with distilled water and then filtered through
a Whatman® (Maidstone, UK) Grade 1 qualitative filter paper (11 μm). Next, 0.1 mL of
this solution was added to 0.5 mL of Folin-Ciocalteau reagent (10% w/v). After 5 min in
the dark, 0.4 mL of a 7.5% sodium bicarbonate solution was added and the mixture was
kept in the dark at room temperature for 2 h. The absorbance of the reaction mixture was
measured at 760 nm (SpectraMax M5, Molecular Devices, Sunnyvale, CA, USA). Gallic acid
was used to produce a calibration curve (7–200 μg/mL), and TPC was expressed as mg
gallic acid equivalent per 100 g fresh honey weight (mg GAE/100 g FW).

TFC was determined by a spectrophotometric assay based on flavonoid-aluminum
complex formation [10]. Initially, a honey solution was prepared by mixing 0.25 mL of
the sample with 1.25 mL of distilled water and 75 μL of 5% NaNO2. Then, 0.15 mL of
a 10% AlCl3 solution was added and the mixture was allowed to stand for 5 min. After
adding 0.5 mL of a 1 M NaOH solution, the final volume was adjusted to 2.5 mL with
distilled water. The absorbance of the sample was measured at 510 nm (SpectraMax M5,
Molecular Devices, Sunnyvale, CA, USA). Quercetin calibration curves were prepared
(50–550 μg/mL) and TFC was expressed as mg quercetin equivalent per 100 g fresh honey
weight (mg QE/100 g FW).

2.5. Antioxidant Capacity Assays

The radical scavenging capacity of SBH samples was determined by the ABTS method [5].
After the ABTS•+ generation step, 2.7 mL aliquots of the radical solution were transferred
to test tubes containing samples previously diluted in ethanol (100–500 μg/mL, final
concentrations). After 10 min, sample absorbances were measured at 734 nm (SpectraMax
M5, Molecular Devices, Sunnyvale, CA, USA). The ABTS•+ scavenging capacity percentage
was determined as described below.

ABTS•+ scavenging capacity (%) = (Abscnt − As) ×100/Acnt (2)

where Abscnt = absorbance obtained from the ABTS•+ solution; As = absorbance obtained
from samples in the presence of the ABTS•+ solution.

The ferric reducing antioxidant power (FRAP) of honey samples was determined as
reported by Benzie & Strain (1996) with some modifications [13]. Initially, the FRAP reagent
(2 mL of 10 mM TPTZ solution in 6 N HCl, 2 mL of 20 mM FeCl3 solution, and 20 mL of
300 mM acetate buffer, pH 3.6) was warmed to 37 ◦C prior to analysis. A 20 μL aliquot
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of honey solution (100 mg.mL−1) was added to 180 μL of freshly prepared FRAP reagent,
the reaction mixture was incubated at 37 ◦C for 4 min and absorbance was then measured
at 595 nm. A calibration curve was prepared with a ferrous sulfate solution (50–800 μM).
FRAP values were expressed as micromoles of ferrous equivalent per 100 g fresh honey
weight (μmol Fe2+/100 g FW).

2.6. Mineral Profile Analysis

The mineral and trace contents of stingless bee honey were determined by Total
Reflection X-ray Fluorescence (TXRF). Sample preparation was based on acid digestion (65%
HNO3) and heat [14]. Blank samples were also prepared to assess possible contamination.
Eight replicates were prepared for each sample. Standard solutions (CertiPUR Reference
Material, Merck®, Rahway, NJ, USA) with different concentrations of well-known elements
were prepared and Ga (5.0μg/g, final concentration) was added as an internal standard.
To check the accuracy of the procedure used for quantitative analysis, standard reference
material (Bovine liver, NIST®, SRM 1577, Gaithersburg, MD, USA) was analyzed, and the
calculated data were compared to certified values. An X-ray fluorescence system operating
under total reflection conditions was used for sample excitation. For characteristic X-ray
detection, a portable automated total reflection X-ray fluorescence system using a low-
power X-ray tube and a compact Si-PIN detector was employed [15]. The quantitative
analysis of X-ray spectra was performed using the QXAS software 1.2 (International Atomic
Energy Agency – IAEA, Seibersdorf, Austria). The mineral content of honey samples was
expressed as μg/g fresh weight (FW).

2.7. Mass Spectrometry Analysis

Honey samples were prepared from liquid-liquid partitions using ultra-purified water
and chloroform (1:1). The chloroform portion was dried and solubilized in methanol at
a concentration of 20 mg/mL. Next, 1 μL of each sample was analyzed with an LCQ Fleet
mass spectrometer (MS) with an electrospray source (ESI), operated in positive ionization
mode. Samples were analyzed by automated direct injection in 0.1 mL.min−1 flow for
5 min. High purity nitrogen (N2) was used as sheath gas (35 arbitrary units) and auxiliary
gas (10 arbitrary units). High purity helium (He) was used as collision gas. The MS
parameters were as follows: source voltage 5 kV, source current 100 μA, source temperature
450 ◦C, capillary voltage 7 V, tube lens voltage 65 V, and capillary temperature 400 ◦C. MS
spectra were acquired with a range of m/z 50–1000.

2.8. Statistical Analyses

Assays were performed in triplicate, and the results were expressed as mean values
with standard deviations (SD). The Shapiro-Wilks test was used to determine the normality
of physicochemical, antioxidant, and mineral data (p > 0.05). Next, analysis of variance
(one-way ANOVA) followed by Tukey’s multiple comparison post hoc test was performed
using XLSTAT® software (version 2014, Addinsoft, Paris, France). Mass spectrometry data
from each sample were analyzed in XCalibur® 2.2 (ThermoScientific, Waltham, MA, USA),
where the one thousand most intense peaks were exported in centroid mode. Variables
present in less than 7 samples were discarded to avoid biases. The matrix data consisted
of 277 variables that corresponded to mass peak intensities; 13 were physicochemical
parameters and 12 were mineral concentrations. Multivariate (PLS-DA) and univariate
(One-Way ANOVA and Tukey HSD post hoc test) analyses were carried out using the
MetaboAnalyst 5.0 webserver. The Shapiro-Wilks test was used to determine the normality
of data. Finally, correlations were established using Pearson’s correlation coefficient (r). The
correlations were determined using XLSTAT®. A p-value < 0.05 was considered significant.
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3. Results and Discussion

3.1. Physicochemical Characterization of SBH

The physicochemical properties of SBH from different biogeographical zones of Brazil
are summarized in Table 2. We observed that most samples differed significantly (p < 0.05)
from one another, even those belonging to the same species and collected in the same region.
The variation in the physicochemical properties of SBH has been frequently reported [16],
demonstrating that quality standards may be extremely hard to establish.

Water content is considered to be one of the most important features of honey since
it affects several properties such as viscosity, specific weight, maturity, flavor, crystalliza-
tion [17], and microbial growth [18]. Here, SBH displayed Aw values ranging from 0.65 to
0.75. There was a significant difference (p < 0.05) between honey samples from the Atlantic
Forest and Cerrado zones and between those from the Caatinga and Cerrado zones. Ávila
et al., (2019), reported Aw values ranging from 0.77 to 0.91 in thirty-two honey samples of
two south Brazilian SB species (Scaptotrigona spp. and Melipona spp.) [19]. In addition, the
Aw values of SBH collected in several cities in the state of Santa Catarina (SC, south Brazil)
ranged from 0.67 to 0.78 [20]. The Tetragonisca angustula honey collected in the municipality
of Piracicaba (SP, Southeast Brazil) displayed Aw values ranging from 0.59 to 0.82 [21]. In
the present study, all honey samples showed high water activity (greater than 0.6), which
means that stingless bee honey is susceptible to microbial fermentation. Indeed, osmophilic
yeasts can grow at Aw values above 0.6 [22].

SBH is more fluid and displays higher moisture content than A. mellifera honey [8].
Here, the moisture content of SBH ranged from 19.47% to 36.31% (w/w). There was
a significant difference (p < 0.05) in moisture content between the samples from the Atlantic
Forest and the Cerrado zones and between the samples from the Caatinga and Cerrado
zones. The honey samples MF2 (Cerrado) and MM2 (Atlantic Forest) showed the lowest
and highest moisture contents, respectively. The MF2 result may be due to the influence of
the climate condition of the Cerrado. During the dry season, relative air humidity can reach
low levels (about 9–11%) similar to those of desert regions. Even during the rainy season,
high temperatures and a decrease in air relative humidity may eventually occur [23]. SBH
produced in different regions of the semi-arid northeastern region of Brazil (Caatinga zone)
displayed moisture content values ranging from 23.17% to 28.9% (w/w) [24–26]. Biluca
et al., (2016), reported that SBH from the Atlantic Forest zone showed high moisture content
(23.1% to 43.5%, w/w) [27]. The climate of this region is classified as tropical humid [28],
which could explain the moisture levels of SBH collected in this biogeographical zone.
Similarly, SBH collected in different Ecuadorian regions showed moisture contents ranging
from 22% to 30% [29]. The mean annual humidity in Ecuador can range from 65% to
85% [30]. Taken together, these findings suggest that relative air humidity can influence the
moisture content of SBH.

Among the SBH samples investigated in the present study, MM2 and MF2 displayed
TSS values of 61.33 and 75.75◦ Brix, the lowest and the highest values, respectively. In addi-
tion, there was a significant difference between samples obtained from the Atlantic Forest
and Cerrado zones and those obtained from the Caatinga and Cerrado zones. Previous
studies conducted by Brazilian [25,31] and Malaysian [32] research groups demonstrated
TSS values similar to those determined here. TSS is closely related to the moisture and
sugar content of honey, representing an important indicator of adulteration. In addition,
honey produced by stingless bees exhibits lower TSS values than honey produced by
A. mellifera [33].
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Low pH and high acidity values contribute to honey stability and shelf life due to
their impact on microbial growth. In addition, these parameters have a strong impact on
honey taste diversity. In the present study, all SBH samples showed an acidic character
typical of honey, with pH values ranging from 3.06 to 4.78, and free and total acidity values
ranging from 17.26 to 130.79 mEq/kg and 71.04 to 299.42 mEq/kg, respectively (Table 2). In
addition, we observed that most samples differed significantly (p < 0.05) from one another
in their free and total acidity content. However, the range of variation was similar to those
previously reported for Brazilian SBH [5,19,27]. SBH produced in other countries also
has a higher acidic character. Thai SBH exhibited total acidity values ranging from 440 to
592 mEq/kg [8]. Moreover, high free acidity values were reported for SBH collected in the
Ecuadorian Amazon (mean value of 318 mEq/kg) [33].

Brown pigments and HMF are generated by honey heating or prolonged storage
(Maillard reaction) which may lead to important color changes [34]. The present SBH
samples showed low brown pigment and HMF content ranging from 0.05 to 0.12 and “not
detected” to 12.64 mg.kg−1, respectively (Table 2). The low amounts of HMF in SBH are
expected and have been attributed to the high moisture and acidity content of this honey
in addition to the predominance of fructose. These properties contribute to the inhibition
of HMF formation in honey [33]. Color evaluation with the Pfund scale showed that the
SBH samples ranged from ≤ 8.00 mm (water white) to 46.72 mm (extra light amber). The
predominance of water-like colors in SBH samples collected in distinct biogeographical
zones draws attention. Darker honey samples (amber-like colors) were reported by Sant’ana
et al. (2020) [31] and de Sousa et al. (2016) [26] for SBH collected in the Brazilian semiarid
region. Honey color is influenced by several factors, including climate conditions, botanical
origin, harvest time, and degree of honey maturation [32].

3.2. Phenolic Content and Antioxidant Capacity of SBH

Table 3 shows that TPC and TFC ranged from 16.3 to 62.33 mg GAE/100 g and 5.39 to
27.22 mg QE/100 g, respectively. The SCA1 and MS2 samples, both collected in the Caatinga
zone, had the highest and the lowest TPC and TFC values, respectively. The antioxidant
capacity of SBH was evaluated by FRAP and ABTS•+ scavenging assays. As shown in
Table 3, SBH displayed FRAP values ranging from 79.53 to 215.07 μmol Fe+2/100 g. In
the ABTS assay, SBH samples displayed values ranging from 37.84% to 54.95%. Recently,
Carina Biluca et al., (2021), reported TPC values of 14 honey samples of six different
Brazilian SB ranging from 11.01 to 38.92 mg GAE/100 g [35]. In a previous report, the same
research group demonstrated the antioxidant capacity of Brazilian T. angustula honey with
a FRAP value of 734.5 μmol Fe+2/100 g [36]. Few studies have demonstrated the radical
scavenging ability of SBH using ABTS•+. Majid et al., (2020), showed that methanol and
aqueous extracts of Malaysian SBH displayed ABTS•+ scavenging values ranging from
18.77% to 65.02% and 15.61 to 65.77%, respectively [37]. These values are similar to those
obtained in the present study.
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Table 3. Contents of phenolic compounds, total flavonoids, and antioxidant activity of stingless bee
honey of different species from different biogeographical zones of Brazil. TPC and TFC results are
expressed as mean concentration (mg/100 g FW) ± standard deviation. The FRAP result is expressed
as the mean value of μmol Fe2+ ± standard deviation of fresh honey samples. The ABTS result is
expressed as the mean percentage of free radical scavenging power ± standard deviation of fresh
honey samples.

Biogeographical
Zone

Samples
TPC (mg

GAE/100 g FW)
TFC (mg

QE/100 g FW)

Antioxidant Activity

FRAP (μmol
Fe2+/100 g FW)

ABTS (%)

Atlantic Forest

MM1 47.11 ± 1.39 a,b,c 16.70 ± 0.32 b 110.85 ± 4,42 b,c 38.22 ± 1.47 b,c

MM2 44.46 ± 1.16 a,b,c,d 15.02 ± 0.18 b,c 114.49 ± 9.38 b,c 40.08 ± 2.07 b,c

MM3 35.69 ± 2.45 b,c,d,e 13.53 ± 0.04 c,d 84.87 ± 8.53 c 51.61 ± 8.24 a,b

MM4 46.74 ± 5.75 a,b,c 9.93 ± 0.38 f,g 212.16 ± 8.84 a 39.82 ± 1.70 b,c

MQ1 29.80 ± 4.50 c,d,e,f 9.04 ± 0.38 f,g,h,i - -

MS1 32.99 ± 9.44 b,c,d,e,f 6.99 ± 0.63 j,k 108.95 ± 1.18 b,c 39.82 ± 2.20 b,c

MS2 16.30 ± 4.26 f 5.39 ± 1.07 k - -
MSC1 25.26 ± 1.66 d,e,f 8.89 ± 1.22 f,g,h,i - 39.20 ± 3.42 b,c

MSC2 22.24 ± 18.18 e,f 10.55 ± 0.21 e,f 118.71 ± 23.28 b,c 48.74 ± 6.30 a,b,c

MSC3 39.29 ± 7.23 b,c,d,e 8.33 ± 0.21 g,h,i,j 215.07 ± 7.27 a 54.95 ± 11.88 a

MM5(6) 36.03 ± 6.17 b,c,d,e 7.91 ± 0.04 h,i,j 143.96 ± 15.80 b 43.71 ± 4.79 a,b,c

SCA1 62.33 ± 4.33 a 27.22 ± 3.04 a - -

Cerrado

MF1 39.86 ± 6.88 b,c,d,e 9.26 ± 0.07 f,g,h 88.70 ± 0.19 c 44.20 ± 5.49 a,b,c

MF2 37.98 ± 6.00 b,c,d,e 7.66 ± 0.10 h,i,j 84.53 ± 2.55 c 37.84 ± 3.24 c

MF3 50.95 ± 4.59 a,b 7.39 ± 0.07 i,j 79.53 ± 2.55 c 40.08 ± 3.21 b,c

MF4 26.68 ± 2.19 d,e,f 6.67 ± 0.60 j,k 88.56 ± 5.91 c 38.22 ± 1.30 b,c

SCP1 34.30 ± 11.23 b,c,d,e,f 12.13 ± 0.07 d,e 140.03 ± 3.34 b 45.09 ± 6.68 a,b,c

MM6 (5) 36.41 ± 9.89 b,c,d,e 7.91 ± 0.18 h,i,j - -

- = not analyzed. Values are expressed as mean ± standard deviation. A–k = different superscript letters in the
same column denote significant differences (ANOVA and Tukey test, p < 0.05). TPC = total phenolic content;
TFC = total flavonoid content.

3.3. Correlation Analysis of Physicochemical Properties and Antioxidant Activity

As expected, strong positive correlations were obtained between some physicochemi-
cal parameters such as moisture content and water activity (r = 0.934), and between free
and total acidity (r = 0.810) (Table S1). A positive and significant linear correlation was
observed between color intensity and TPC (r = 0.654) and between color and TFC (r = 0.866)
content of SBH. Moniruzzaman et al., (2013), reported that the color intensity of honey
was a consistent parameter that specified the existence of pigments with antioxidant activ-
ity, including carotenoids and flavonoids [38]. In the present study, the TPC of Brazilian
SBH from different biogeographical zones was positively correlated with TFC (r = 0.705).
No significant correlations were found between antioxidant activity and TPC and TFC
in SHB samples collected in different biogeographical zones of Brazil (Table S1). These
results indicate that the antioxidant activity is not solely dependent on the phenolic and
flavonoid content, with other antioxidant compounds present in honey also possibly being
involved [32]. The antioxidant capacity of honey could be the result of the combined
activity of a narrow range of compounds, including phenolic compounds, peptides, organic
acids, and possibly other minor components.

3.4. Mineral Profile of SBH

In the present study, we used the TXRF technique to investigate the mineral compo-
sition of SBH. The method was validated in terms of TXRF measurements, quantitative
analysis, and accuracy (Table S2). TXRF analysis showed a good equivalence of the concen-
tration values of the elements present in the certified sample. The relative errors ranged
from 1% to 14%, attesting to the accuracy of the technique.
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The results of total concentration of mineral elements in samples of SBH from different
biomes are listed in Table 4. Statistically significant differences were found for most minerals
investigated. The order of average mineral concentration was K > Ca > Fe > Cu > P > Cl
> Mn > Zn > Ni > Cr > Sr in the SBH samples from the Atlantic Forest; K > P > Ca > Cl >
Cu > Fe > Mn > Sr > Zn > Cr > Ni in the Caatinga samples, and K > Ca > P > Cu > Zn >
Fe > Mn > Sr > Ni > Cu in the Cerrado samples. The mineral profile analysis of honey is
important because of the presence of metallic species which can have a nutritional or toxic
effect depending on the metal present and/or the amount ingested [39]. The difference in
the concentrations of metals in honey can also be attributed to biological, chemical, and
physical factors and the existence of industrial contamination, thus providing important
information about the region where the honey is produced [40].

Table 4. Mineral profile of SBH from different Brazilian biogeographical zones. The results are
expressed as mean concentration (μg/g FW) ± standard deviation. Minimum and maximum concen-
trations are shown in parenthesis.

Mineral Atlantic Forest Caatinga Cerrado

P
3.54 ± 0.56 49.20 ± 29.81 20.19 ± 14.36

(3.01–4.06) a (4.60–100.19) b (2.59–40.75) b

Cl
1.71 ± 1.69 4.20 ±1.46

nd(0.69–0.16) a (2.54–6.41) a

K
411.58 ± 107.74 234.22 ± 109.23 127.03 ± 44.57

(249.01–679.50) a (79.73–419.23) a (67.35–177.99) b

Ca
91.65 ± 48.98 39.18 ± 15.72 31.84 ± 6.20

(44.28–165.00) a (21–47–57.28) b (24.45–39.75) b

Cr
0.27 ± 0.22 0.26 ± 0.13 0.19 ± 0.01

(0.04–0.55) a (0.15–0.48) a (0.18–0.19) a

Mn
1.24 ± 0.91 0.90 ± 0.48 0.56 ± 0.16

(0.47–2.66) a (0.37–1.75) a (0.36–0.77) a

Fe
8.71 ± 4.41 1.32 ± 0.47 0.84 ± 0.10

(1.68–12.92) a (0.96–2.32) b (0.73–0.97) c

Ni
0.61 ± 0.45 0.22 ± 0.08 0.21 ± 0.01

(0.01–0.99) a (0.13–0.30) a (0.20–0.21) a

Cu
3.76 ± 3.80 3.86 ± 1.73 2.31 ± 0.67

(0.34–9.82) a (1.70–6.72) a (1.66–3.33) a

Zn
0.87 ± 0.38 0.36 ± 0.22 0.88 ± 0.29

(0.44–1.36) a (0.10–0.73) b (0.49–1.23) a

Rb
1.22 ± 0.41 0.54 ± 0.36 0.52 ± 0.01

(0.85–1.59) a (0.20–1.08) a,b (0.51–0.52) b

Sr
0.10 ± 0.02 0.38 ± 0.26 0.26 ± 0.08

(0.08–0.11) a (0.15–0.81) b (0.19–0.33) b

Nd = not detected. Different superscript letters on the same line indicate significant differences (ANOVA and
Tukey test, p < 0.05).

Quantitatively, K (67.35–679.50 μg/g) > Ca (21.47–165 μg/g) > P (2.59–100.19 μg/g)
were the main minerals found in honey from stingless bees in the biomes studied. This is
consistent with the findings reported by Biluca et al., (2016), which demonstrated that K
(27.3 to 448 mg/100 g) and Ca (1.12 to 35.2 mg/100 g) were the most abundant minerals in
samples of SBH [27]. These results also corroborate those described by Pucholobek et al.,
(2022), who also observed that Ca (4.3 to 363.8 μg/g) is one of the most abundant minerals
in the honey of stingless bees from Brazil [39]. These same authors observed a strong
correlation between the concentration of minerals in honey and the type of soil in the
study region. Plants accumulate metallic elements and this accumulation is influenced
by the mineral character of the soil. In the present study, the Atlantic Forest honey had
a higher content of Ca and Fe than the honey from the Cerrado and Caatinga, especially
considering Fe. On the other hand, the Cerrado and Caatinga honey had the highest P
content. The biogeographical regions where the samples were collected have soil types
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with compositional characteristics that might influence the amounts of these metals in
honey. Indeed, these characteristics may explain the differences between regions for the
elements P, K, Ca, Fe, Zn, Rb, and Se. It is noteworthy that the Fe content detected was
about eight times higher in honey samples from the Atlantic Forest region than in samples
from the other regions. This result was not observed for any of the other minerals, which
showed differences of much smaller orders of magnitude. The Atlantic Forest has a variety
of soil types, but with a predominance of soil rich in iron oxide (Latosol/Nitosol), which
may influence the amounts of this metal in honey [39].

3.5. Discriminant Analysis of SBH

The fingerprinting of SBH is shown as Supplementary Materials (Figures S1–S3). Ion
masses within the m/z range of 50–1000, physicochemical features, and mineral content
were analyzed statistically to discriminate honey samples using the producing stingless
bee species or the biogeographical origin. Minor ions responsible for group separation are
shown in Figures S1–S3.

Different species of stingless bees may have specific preferences for botanical indi-
viduals when exploiting food sources [41]. Thus, we initially evaluated the influence of
stingless bee species on the chemical and physicochemical features of honey. Figure S4
shows that bee species has little impact on sample discrimination. Nonetheless, when
samples were categorized by their biogeographical origin, better separation of the groups
was achieved. PLS-DA analysis (Figure 1a) shows little overlap between the Cerrado
and Caatinga ellipsoids, while the Atlantic Forest group did not overlap with any other
group. These results demonstrate that the chemical and physicochemical features of SBH
are mainly influenced by their respective biogeographical origin.

(a) (b) 

Figure 1. Discriminant analysis of SBH based on Brazilian biogeographical zones. (a) PLS-DA score
plots; and (b) VIP score of physicochemical parameters, mineral profile, antioxidant capacity, and
mass fingerprint analysis of SBH.

The main separation factors between groups were the m/z 326, 315, 514, 394, 523, 261,
330, 530, 477 ions, and Fe content. Each of these factors showed VIP scores > 2, which
confirmed their weight for group separation (Figure 1b). The m/z 326, 315, 394, 291, and
330 ions had a high weight in the Caatinga group and a low weight in the Atlantic Forest
group. On the other hand, iron content had a high weight in the Atlantic Forest group and
a low weight in the Cerrado group, while the m/z 514, 530, and 477 ions had a high weight
in the Atlantic Forest group and a low weight in the Caatinga group. Univariate statistical
analysis of iron content confirmed its influence on group separation, with a significant
difference (p < 0.05) between samples from the Cerrado and Atlantic Forest, and between
samples from the Caatinga and Atlantic Forest. These results suggest that iron content
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could be used to indicate the biogeographical origin of the sample. Interestingly, the iron
content of 88 SBH was positively correlated with the soil types of areas where the honey
samples were collected. High amounts of iron were detected in samples collected from
areas of typical Atlantic Forest flora, where iron-rich soil is predominant [39]. Here, we
did not observe a significant difference in iron content between samples from the Cerrado
and Caatinga. The Cerrado soil is acidic, poor in nutrients, and with a low capacity to
retain water [42], characteristics that are very close to those of crystalline and sedimentary
caatingas (two subgroups of the Caatinga zone) [43].

The other variables identified as VIP in multivariate analysis did not show signifi-
cant differences in univariate analyses. This can be explained by the difference between
univariate and multivariate methods. A variable-by-variable (univariate) analysis, such
as ANOVA with post hoc tests, uses few criteria to determine significant differences be-
tween samples, requiring these criteria to be extremely strong to determine separations into
groups. An analysis model that uses variable information and correlations with other vari-
ables (multivariate), such as the PLS-DA, allows the identification of many more criteria to
determine significant differences between samples and determine separations into groups.

4. Conclusions

This study demonstrated that Brazilian SBH has diverse physicochemical properties,
antioxidant capacity, and chemical and mineral profiles. Despite the phenolic and flavonoid
contents, no correlation was observed between them and the antioxidant capacity, suggest-
ing that other compounds contribute to the antioxidant properties of SBH. The mineral
profile displayed high amounts of K, Ca, and P in all samples. PLS-DA analysis revealed
that the composition of SBH is influenced by the biogeographical zone of collection. In
addition, Fe content was identified as the main factor responsible for SBH separation into
the biogeographical zone groups. Taken together, the present results highlight the mineral
content, especially the amounts of Fe, as an important factor for SBH discrimination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12010180/s1, Table S1: Correlation matrix between physic-
ochemical and antioxidant activity of samples of stingless bee honey from different geographical
regions of Brazil; Table S2: Results of the standard reference material 1577b; Figure S1: Mass spectra
of stingless bee honey collected in the Atlantic Forest biogeographical zone; Figure S2: Mass spectra
of stingless bee honey collected in the Caatinga biogeographical zone; Figure S3: Mass spectra of
stingless bee honey collected in the Cerrado biogeographical zone; Figure S4: Discriminant analysis
of SBH based on bee species.
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Abstract: Determining cocoa bean quality is crucial for many players in the international supply
chain. However, actual methods rely on a cut test protocol, which is limited by its subjective nature, or
on time-consuming, expensive and destructive wet-chemistry laboratory procedures. In this context,
the application of near infrared (NIR) spectroscopy, particularly with the recent developments of
portable NIR spectrometers, may represent a valuable solution for providing a cocoa beans’ quality
profile, in a rapid, non-destructive, and reliable way. Monitored parameters in this work were dry
matter (DM), ash, shell, fat, protein, total polyphenols, fermentation index (FI), titratable acidity (TA)
and pH. Different chemometric analyses were performed on the spectral data and calibration models
were developed using modified partial least squares regression. Prediction equations were validated
using a fivefold cross-validation and a comparison between the different prediction performances
for the portable and benchtop NIR spectrometers was provided. The NIRS benchtop instrument
provided better performance of quantification considering the whole than the portable device,
showing excellent prediction capability in protein and DM quantification. On the other hand, the
NIRS portable device, although showing lower but valuable performance of prediction, can represent
an appealing alternative to benchtop instruments for food business operators, being applicable in
the field.

Keywords: Theobroma cacao L.; dry matter; chemometrics; fermentation index; protein content

1. Introduction

With an ancient history starting in the Preclassic period (1200–400 B.C.) with con-
sumption among the Olmec and other pre-Colombian populations of the Americas [1],
cocoa is now a ubiquitous food. Cocoa appears today in many different forms, mainly
in chocolate, with consumption averaging around 8 kg per person per annum in many
European countries [2]. The top four countries, which account for nearly 65% of the total
world chocolate production, are the USA, Germany, Switzerland, and Belgium, which in
terms of retail sales reach respectively USD 20, USD 10, USD 14, and USD 12 billion per
year [3]. The consumption of cocoa and cocoa-based products is of great interest both for
the highly appreciated sensorial profile and for the possible beneficial health effects which
are being studied in current times [4,5].

Cocoa beans represent the essential raw material for chocolate, and they are ob-
tained from the Theobroma cacao L. tree, which is almost exclusively cultivated in tropi-
cal/developing countries, where it represents a source of export earnings both at the level
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of families, communities, and nations [6]. Africa covers more than 75% of the world’s total
cocoa beans production and Côte d’Ivoire is the largest cocoa bean exporter in the world,
with more than USD four billion exported in 2020, followed by Ghana and Ecuador.

Once the cacao pods have been harvested, they must undergo post-harvest operations
on farms and plantations before becoming the so-called cocoa beans, which are then traded
in the international market and processed into final industrial products. The post-harvest
processing comprise pod opening and removal of beans from the pod, bean-pulp mass
fermentation and bean drying. In this sequence, the fermentation constitutes an essential
critical step for the development of desired flavor attributes of the commercial cocoa beans.
In the further processing, cocoa beans are roasted, cracked and ground to give a powdery
mass from which fat is expressed [7] and the release of fat ultimately leads to a liquid-like
ingredient, namely cocoa liquor. Additionally, many processes are implemented in the
chocolate industry that originate several products with different forms and functionalities.

Fermentation and drying constitute key farm(er)-based unit operations with strong
influences in the final quality of cocoa beans and subsequent products [8].

Since 2010, approximately 4 million tons of cocoa beans have been produced annually
around the world [9], and the three biggest importers are the Netherlands, Germany,
and USA, with product worth 2,375,923, 1,209,366 and 1,026,931 USD imported in 2020,
respectively (Sources: ITC calculations based on UN COMTRADE and ITC statistics).

The socio-economic importance and international interest towards cocoa beans are
intelligible as an estimated five million farming households depend on cacao as a cash crop,
and 70 per cent of cocoa is produced by smallholders living on less than USD 2 per day
and relying on cocoa for 60 to 90 per cent of their income [9].

Cocoa beans are divided worldwide between “fine or flavor” (mainly Criollo and
Trinitario) and “bulk” (mainly Forastero) varieties, with a common belief that fine and
flavor cacao varieties receive significant price premiums in international markets. However,
recent studies show how post-harvest processing has a central role in causing heterogeneity
in cocoa prices, independently of the variety grown [10]. This is because although the
primary factors influencing the quality attributes of cocoa beans are the cocoa tree cultivar
and genotype, it is well-established that the agronomic and environmental conditions
together with the harvest and post-harvest steps are crucial elements in the determination
of the final quality of commercial cocoa beans [11–15].

Partially fermented or unfermented beans are prone to bitterness and astringency with
poor chocolate flavor and aroma [2]. Moreover, an appropriate drying process will reduce
the beans’ water content of 55% to around 7% [16], preventing fermentation from contin-
uing uncontrolled, slowing the development of molds that could give rise to unwanted,
unpleasant flavors and equilibrating the beans acidity that would otherwise be excessive in
the final products [17,18].

Although fermentation is considered as the “core stage” of the cocoa transformation
process from seeds to chocolate, it is currently performed mostly by small third-world
producers in an empirical way, with little or no technification, without control in processing
conditions, originating cocoa batches of low and heterogeneous quality [13].

Chocolate and chocolate-based products sell in a very competitive market, where
quality is crucial, and value is enormous. It should be clear that if the quality of cocoa beans
is poor, final products will suffer this deficiency as well, and the whole industry sector will
be affected [19].

Most of the existing commercial standards for cocoa beans base their quality require-
ments on the results of the cut test, or on sensory estimation by trained panels (Aculey
et al., 2010). The cut test consists of cutting cocoa beans lengthwise, observing the number
of defective beans. The ISO 1114 states that both halves of each bean shall be visually
examined, and the result for each kind of defect shall be expressed as a percentage of the
300 beans examined. The ISO also defines nine categories of defects: those related to poor
fermentation (slaty and violet/purple beans) and those being indicators of high FFA levels,
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poor flavor and/or other contaminants (bean clusters, broken beans, smoky beans, moldy
beans, germinated beans, flat beans, insect-damaged/infested beans) [20].

On the one hand, the cut test is limited by its subjective nature and does not represent
a sufficiently reliable methodology for a comprehensive description of the main quality
contributors [21]. On the other hand, laboratory methodologies are often demanding in
terms of time and cost effectiveness, which can be critical factors, and they are mainly based
on destructive determinations. Moreover, in cocoa producing countries the availability of
laboratory infrastructures is poor [22].

In this context, the application of near infrared (NIR) spectroscopy, particularly with
the recent developments of portable NIR spectrometers, may represent a valuable solution
for providing a cocoa beans’ quality profile, in a rapid, non-destructive, and reliable way.
This analytical technique could be useful to both cocoa bean producers, mostly in the
developing countries, and processors, mostly in the developed countries, alike.

Many researchers have already investigated quality parameters of cocoa beans through
NIR spectroscopy quantifying, for instance, fat, sugars, proteins, moisture, pH and titrat-
able acidity, polyphenols, and other volatile and non-volatile compounds [23]. Even the
assessment of the authenticity of cocoa powder has been studied by identifying the country
of origin of raw materials, varietal purity, or the presence of adulterants [24].

It must be noted, however, that most of the studies that successfully predicted cocoa
beans’ quality parameters through NIR spectroscopy mainly analyzed samples which had
been purposely subjected to different degrees of fermentation, e.g., analyzing the beans
at different days during the fermentation process. Doing so, the samples are not in the
status in which importers/exporters normally trade them in the international market, fully
fermented and dried, therefore this might not be a representative “working condition” for
these actors in the cocoa supply chain. Moreover, only cocoa bean samples coming from
one or few countries are most often utilized in the previous studies, hence limiting the
variability that can be included in the NIR prediction model. Finally, most of the studies
present in literature utilize benchtop NIR instruments, which have some notable practical
disadvantages if compared with the more recent portable NIR spectrometers, which are
recently being considered in the literature [25,26].

On this basis, our study aimed to predict some quality parameters of commercial
cocoa bean samples using portable NIR spectrometers, also in comparison with a benchtop
spectrometer, on both whole and ground samples. Cocoa beans were provided by an
Italian fair-trade importer and all the samples have been produced to meet internationally
accepted merchantable quality standards: well-fermented and dry. The ultimate purpose
of the study was, therefore, to evaluate the possibility of using portable NIR spectrometers
in commercial contexts, while also assessing the practicability of using NIR spectroscopy
on whole fermented coca beans to rapidly predict main quality parameters.

2. Materials and Methods

2.1. Samples

Fifty-six samples from commercially available cocoa beans have been provided by
Altromercato Impresa Sociale Soc. Coop. (Via 9. Crispi, Bolzano, Italy), a major importer
of fair-trade products in Italy in 2021. Thirty-three of them came from Africa while the
remaining twenty-three came from South America. All the samples have been produced
to meet internationally accepted merchantable quality standards i.e., well-fermented and
dry, free from smoky beans and abnormal or foreign odors, free from evidence of adul-
teration, reasonably free from living insects, virtually free from broken beans, pieces of
shell, and foreign matter. African countries included Togo, Uganda, Madagascar, and Sierra
Leone, while American beans came from Honduras, Ecuador, Perú, Dominican Republic,
Nicaragua, and Venezuela (Supplementary Table S1). Although it was not possible to
obtain accurate information on the beans’ variety for each sample, documents reported
that only Trinitario and Forastero varieties were utilized.
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The beans were shipped in 25-ton containers which roughly corresponds to 360 bags
(70 kg of cocoa beans/bag). Around 4 kg of cocoa beans from each container were sampled
as representative for the 33% of the total bags’ number. Of these, 200 g of cocoa beans were
randomly taken for analysis and stored at −20 ◦C in plastic bags until assay in a LGPv 8420
MediLine refrigerator (Liebherr, Kirchdorf an der Iller, Germany).

2.2. Beans Peeling and Grinding

Three random aliquots of 20 g of dry and nitrogen frozen cocoa beans from each
sample were de-husked by hand. The peels and nibs were carefully collected and weighted
to determine average shell percentage on a 4 digits balance (Adventurer model ARRV70,
OHAUS, Parsippany, NJ, USA). About 100 g of nibs (de-husked cocoa beans) were ground
in a multi-purpose grinder for 45 s (3 intervals of 15 s with 10 s pause), then sifted on a
0.5 mm sieve. Before grinding, the beans were frozen with liquid nitrogen to make them
brittle and avoid becoming a mash. The obtained cocoa powder for each sample was stored
at −20 ◦C in the dark prior to the following analyses.

2.3. Spectral Data Acquisition

Spectral data acquisition was performed both on whole cocoa beans and on de-husked
cocoa bean powder. About 100 g of randomly chosen whole cocoa beans from each sample
were scanned with a portable instrument (PoliSPEC-NIR, ITPhotonics, Breganze, Italy) and
with the benchtop instrument (FOSS DS−2500 scanning monochromator FossNIR-System,
Hillerød, Denmark). Both NIR data acquisitions were performed in reflectance mode, with
the following parameters:

− FOSS DS-2500: scanning monochromator covering a range of 850–2500 nm at 0.5 nm
intervals. Scans were performed using a slurry cup with quartz window of about a
12.6 cm2 area.

− PoliSPEC-NIR: covering a range of 900–1680 nm at 2 nm intervals. Spectral data
measurements were performed through a round scanning window (3.2 cm2) placed
in direct contact with the sample surface. Each spectrum was obtained by averaging
3 data acquisitions.

2.4. Chemical Analyses

Unless otherwise specified, analyses were performed according to official methods of
analysis (AOAC, 2016). All chemical analyses were performed in triplicate on peeled and
ground cocoa beans.

2.4.1. Dry Matter

Dry matter is measured as subtraction of the moisture content measured using a
gravimetric method based on AOAC method 931.04 [21]. Hereto, approximately 2 g of
powder sample were dried at 101–103 ◦C to constant weight in a forced-air electric oven
(UF55 Plus, Memmert, Schwabach, Germany). After the drying process was completed,
the samples were immediately closed with glass lids to avoid exposure and stored in
desiccators for one hour to equilibrate samples towards ambient temperature [27]. The
moisture content was expressed as average percentage (%) based on loss in weight of three
independent samples.

2.4.2. Ash

For the measurement of ashes, the sample was charred on a plate and placed in a
muffle furnace (Gefran Model 1200; Gefran Spa, Brescia, Italy) at 550 ◦C (AOAC 972.15A).
Ash content was expressed as weight percentage (%).

2.4.3. Fat Content

The fat content was measured by extraction with petroleum ether [21] in a TE-188
Soxhlet lipid extractor (model SOXTEC 255 Tecator-Foss Analytical, Hillerød, Denmark)

64



Foods 2023, 12, 4

with the following parameters: 60 min boiling, 50 min washing, 15 min drying. Fat content
was expressed as weight percentage (%).

2.4.4. Total Protein Content

Protein determination was carried out by the Kjeldahl method, as described in AOAC
2016 (method 970.22) (model Kjeltec 2300-Foss Analytical). The protein content was calcu-
lated from the concentration of total nitrogen by applying a conversion factor of 6.25.

2.4.5. Total Phenolic Content

The total phenolic content was determined according to the colorimetric method of
Folin–Ciocalteu [28]. Samples were defatted using the Soxhlet method (AOAC 963.15).
Defatted powder (0.05 g) was added to 10 mL of a methanol-water (70:30 v/v) mixture
at room temperature and stirred for 45 min. After centrifugation, 0.1 mL of solution was
mixed with 3 mL of distilled water and 0.5 mL Folin–Ciocalteu reagent. The mixture was
stored for 3 min after which 1 mL of aqueous Na2CO3 (200 g L−1) was added. The mixture
was allowed to stand for 20 min at 40 ◦C and the total polyphenols were determined by
spectrophotometry at 765 nm (spectrophotometer model Cary 60 UV-Vis Agilent Technolo-
gies Stevens Creek Blvd. Santa Clara, CA, USA). The standard curve was prepared using 0,
50, 100, 150, 200 and 250 mg L−1 solutions of gallic acid in methanol. Total phenol values
were expressed in terms of gallic acid equivalents (mg g−1 of dry fat-free mass) [29]. The
analyses were performed in triplicate.

2.4.6. Fermentation Index

Fermentation index (FI) corresponds to the color change within the bean cotyledons
during fermentation. This change is due to the decreasing anthocyanin content as beans
progress through fermentation [30]. A 50 mg sample of previously prepared cocoa powder
was weighed and mixed with 5 mL MeOH:HCl (97:3 v/v). Samples were extracted at 4 ◦C
for 16–18 h, centrifuged for 5 min at 3500× g, and the clear supernatant was collected.
Absorbance of the supernatant was read at wavelengths 460 nm and 530 nm using UV-VIS
spectrophotometer (model Cary 60 UV-Vis Agilent Technologies Stevens Creek Blvd. Santa
Clara, CA, USA). All the measurements were performed in triplicate.

The FI was obtained by calculating the ratio of the absorbance at 460 nm and 530 nm
(FI = A460/A530). Values greater than 1 are considered as well-fermented, while less than
1 as under-fermented beans [31,32]. However, it must be noted that this accounts for the
Forastero variety and with some precautions for the Trinitario variety (which can contain
both purple and white beans). Criollo beans do not contain anthocyanin pigments, therefore
FI cannot be used to describe the fermentation level for this variety. In our study, both
Trinitario and Forastero beans were used, but white beans were always absent.

2.4.7. pH and Titratable Acidity

Cocoa powder (5 g) was mixed with 100 mL hot water (100 ◦C), stirred, and allowed
to stand for 30 min. After 30 min, when the suspension was cooled up to 25 ◦C, it was
centrifuged for 10 min at 5000 rpm and vacuum filtered through Whatman No. 4 paper filter
according to AOAC 2006 methods 970.21 (pH) and 942.15 (potentiometric titration) [21],
AOAC Section 42.104 (16th Ed. 1995) [21,32–35].

The pH of the filtered solution was measured with a pH-meter model PC 80 + DHS
(XS Instruments, Carpi, Italy) and then 25 mL aliquots of the same solution were titrated to
pH 8.1 with 0.05 M NaOH. All data were measured in triplicate. Titratable acidity results
are expressed as mMol NaOH/100 g powder [34] or % acetic acid [21].

It is important to note that this procedure was not for quantifying the actual pH of
the cocoa bean itself, but rather to measure the acidity derived from bean acids diffusing
into water; it is useful for comparison between the pH of solutions produced by different
beans [30].
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2.5. Wavelenght Selection and Chemometric Analyses

Spectral chemometric analyses were performed using firstly the wavelength selection
and secondly the full spectra collected. Wavelengths selection was carried out through the
interval partial least-square (iPLS) [36] and through the principal component regression
(PCR) [37] by using R software version 3.2.5 (R Core Team, Auckland, New Zealand, 2016)
and WinISI software (Infrasoft International, Port Matilda, PA, USA), respectively. In
particular, the iPLS was carried out applying the forward mode, in which the full spectrum
was subdivided in 30 intervals that are successively included in the analysis: the first step
calculated 30 models (one for each interval) that were tested using the cross-validation; the
interval which provides the lowest model root-mean-square error of cross-validation were
selected as most informative. The selected intervals were calculated per each parameter
investigated and used for the following modelling. The PCR is based on the identification
of the principal factors variance among spectral absorbance data through the principal
component analysis [38]. Wavelengths selection was performed on the spectra acquired
with FOSS DS-2500 on cocoa powder.

The second approach considered the use of the full spectrum and mathematical
treatment as reported by several authors [39–41] in foods for chemical prediction purpose.
This procedure takes advantage of the mathematical treatment as multiplicative correction
(MSC) of the dispersion used to correct the problems of dispersed light in reflectance
spectroscopy or the spectra normalization using standard normal variation (SNV) and first
or second derivatives often used to remove the deviation and slope of the baseline in the
spectrum [42]. This approach was applied to spectra acquired with both instruments, on
both whole and ground cocoa beans.

The calibration models were performed using the Modified PLS (MPLS) regression
on wavelength selected and on full spectra, whereas PCR was applied on full spectra
(WinISI software, Infrasoft International, Port Matilda, PA, USA). Prediction equations
were validated using a 5-fold cross-validation. Samples with a predicted value that differed
more than 2.5 SD from the reference value (T-statistics) were considered outliers and re-
moved from the dataset. Several combinations of scatter corrections (NONE, no correction;
SNV_DT, standard normal variate and detrending; MSC, multiplicative scatter correction)
and derivative mathematical treatments (0,0,1,1; 1,4,4,1; 2,5,5,1; where the first digit is the
number of the derivative, the second is the gap over which the derivative is calculated,
the third is the number of data points in the first smoothing and the fourth is the number
of data points in the second smoothing) were tested. The performances of the prediction
models were evaluated based on the number of the standard error of calibration (SEC),
cross-validation (SECV), the coefficient of determination of cross-validation (R2cv) and the
ratio performance to deviation of cross-validation (RPDcv) calculated as the ratio between
SD and SECV [43]. Predictions were considered excellent when R2 was greater than 0.91,
good when R2 ranged from 0.82 to 0.90, approximate when R2 was between 0.66 and 0.81,
and poor when R2 was less than 0.66 [44]. Prediction models with RPD greater than 2.5
were considered adequate for analytical purposes [45], whereas prediction models with
RPD smaller than 1.5 were considered unsatisfactory [44].

3. Results and Discussion

3.1. Chemical Properties

Shell content was on average 13.25% (Table 1), with minimum and maximum values
(11.13% and 18.34%, respectively) in line with those reported in the literature (12–20%) [46,47].
Although the shell provides protection to the nib from mold and insects infestations, the
shell content should be as low as possible (10–14%) because it has very little commercial
value for the cocoa processor: it is removed during cocoa bean processing and it mainly
constitutes a waste material [48].
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Table 1. Descriptive statistics of cocoa beans: SD = standard deviation; CV = coefficient of variation;
TPC = total phenolic component; TA = titratable acidity; FI = fermentation index; DM = dry matter.

Minimum Maximum Mean SD CV (%)

Shell (%) 11.13 18.34 13.25 1.54 11.59
Fat (%) 36.96 48.39 44.72 1.94 4.35

Protein (%) 8.32 15.43 13.85 1.13 8.14
TPC (mg/g dry defatted powder) 32.58 98.04 56.42 13.32 23.60

pH 4.84 6.47 5.58 0.36 6.50
TA (mMol NaOH/100 g powder) 8.20 26.81 17.19 4.22 24.52

FI (A460/A530) 0.57 2.24 1.29 0.49 38.43
DM (%) 93.30 95.76 94.51 0.59 0.62
Ash (%) 2.34 3.66 2.99 0.30 10.10

Dry matter was on average 94.51%, with a minimum of 93.30%. These values corre-
spond to an average moisture content of 5.49% and maximum of 6.70%, which are mainly
below the optimal commercial levels of 6.5–8.0% as reported in CAOBISCO/ECA/FCC [19]
but are in line with data found in the literature [49]. Moisture is a parameter that depends
on storage conditions: since storage conditions of the studied samples varied, this may
have affected the final moisture levels.

The average ash content of 2.99% found in our samples was in line with data re-
ported in the literature [48,50]. With regards to fat content, which is the most abundant
macronutrient in cocoa beans, only one sample presented a value below 40 g/100 g (i.e.,
36.96 g/100 g), while the average fat content was 44.72 g/100 g. These data are in line
with other studies [21,50]. African cocoa beans have generally higher fat content than
American beans [16], but this was not observable in our set of samples. However, according
to literature, the fat content can vary greatly from values of about 40 g/100 g to values
of 57–58 g/100 g depending on different factors such as: genotype, plant age, growing
practices, fermentation, drying processes and environmental conditions [51,52].

FI is one of the most used parameters for determining the degree of fermentation of
cocoa beans as an indirect measure of the anthocyanin content [29,35]. In our case study,
22 out of 56 samples had a FI slightly below 1, with a minimum value of 0.57, which would
indicate a low fermentation degree. The maximum value was 2.24 and the average was
1.29. The coefficient of variation for this parameter was particularly high (38.43%). Since
the FI is an indirect measurement of anthocyanin content, the high dispersion of data
might be due to factors other than solely the fermentation degree. It has been reported that
different hybrids or genotypes have different pigments and that phenolic compounds are
quantitatively affected by cocoa growth conditions (microclimate and position of pods on
the tree) [29].

The TPC in the dried fat-free mass of our samples exhibited a wide variation, ranging
from 32.58 to 98.04 mg/g dry defatted powder. In fermented beans, TPC should be
approximately 5% in the dried fat-free mass, and values above 10% are considered a sign
of a bad fermentation [53]. The average value of TPC in our samples was 56.42 mg/g dry
defatted powder (equals to 5.6%) that would indicate well-fermented beans. Moreover, few
samples showed values close to 10%. Overall, the values are in line with those reported in
Anyidoho, et al. [54] and Djikeng, et al. [55].

In dried cocoa beans, a high degree of acidity is usually associated with a pH of 5.0 or
less [19]. Some studies report that beans of higher pH (5.5–5.8) are considered unfermented,
with a low fermentation index, and result in chocolates with high astringency [32], while
beans of lower pH (4.75–5.19) are considered as well-fermented. Other studies report that
pH of 5–6 is considered good for flavor development, and cocoa beans with pH below
4.5 are not accepted by cocoa bean processers because they show low levels of flavor
precursors, and high acidic-derived products [35]. The pH can still be considered as a
good indicator of fermentation as higher pH correlates to a lower fermentation degree [16]
and an “international acceptable range” of 5.00–5.55 for dried cocoa beans [56] can be
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considered as a valid reference. In our case study, cocoa beans had an average pH of 5.58
with a minimum of 4.84. This describes a situation of well fermented samples.

The titratable acidity value is often associated with the beans’ pH. The present results
confirm an overall good fermentation of the samples with an average titratable acidity of
17.19 mmol NaOH/100 g powder, in line with data reported in the literature [57,58].

Overall, this set of samples included many variation factors (e.g., genetic variety, crop,
fermentation and drying conditions, transport, and storage) giving rise to high coefficients
of variation in most of the studied parameters [59].

3.2. Spectral Characteristics of Cocoa Samples

Figure 1 is representative for average NIR spectra of cocoa beans samples obtained by
FOSS DS 2500. The spectra show high similarity with spectra found in the
literature [21,27,50,51]. Since cocoa beans contain about 50% of fat (Table 1), absorption
spectra are dominated by signals derived from C=O and CH2 groups [49]. The absorptions
around 1930 nm are caused by the second overtone vibration of ester C=O and O–H asym-
metric stretching [49,60]. Caporaso, et al. [61] reported that wavelength of 1919 nm has
been attributed to the C=O stretching second overtone in the carbonyl groups (–CO2H or
CONH) but this absorption band is very close to 1923 nm, which is assigned to the O–H
group of water and therefore it might be influenced by this group.

Figure 1. NIR spectra (mean) of whole (gray) and ground (black) cocoa beans acquired with benchtop
spectrometer (FOSS DS 2500) and NIR spectra (mean) of whole (yellow) and ground (green) cocoa
beans acquired with portable NIR spectrometer (PoliSPEC-NIR).

The combination vibrations of CH2 stretch and CH2 deformation appear around
2320 nm. Moreover, the absorption at 1744 nm has been previously assigned to C–H stretch
first overtone (CH2) of lipids, and the CH2 group also absorbs at 1725 nm, due to the
C–H stretch first overtone [61]. Similar wavelength values (i.e., 1750 nm and 1730 nm),
associated with first overtones of symmetric and anti-symmetric C–H stretch vibration
(CH2-groups), are reported by Krahmer et al. [49].

Fat content is also related to the absorption bands visible around 1200 nm, as reported
by Hayati et al. [27]. The authors also argued that the bands in the wavelength regions of
1460–1490 nm and 1920–1980 nm are most likely related to moisture content (O–H bonds).
However, absorbances around 1450 nm have been attributed to carbonyl groups (e.g.,
ketones and aldehydes) as well as O–H polymeric groups, which can be due to complex
carbohydrates, and the region between 1400 nm and 1440 nm has also been attributed to
aliphatic alcohols and phenols [61].

Absorbance around 1490 nm has been attributed in the literature to several pos-
sible chemical bond vibrations, including N–H stretch first overtone and O–H stretch
first overtone, thus indicating amides or compounds such as cellulose [61]. Accordingly,
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Krahmer et al. [49] reported that first overtones of intermolecular H-bridges and stretch
vibrations of amidic NH-groups can be observed in the region of 1400 to 1500 nm and the
corresponding combination of two amides can be found around 2130 nm.

Barbin et al. [50] associated the broad peaks around 1190, 1460 and 1950 nm with O–H,
C–H, N–H stretch first and second overtones and combination bands that can be attributed
to water absorption and protein changes.

Peaks around 1215 nm are visible and are associated with –CH=CH second over-
tone [23] and even C–H stretching second overtone (–CH3 or –CH2) of carbohydrates is
associated with this wavelength [61].

The absorbance at 2057 nm indicates an N–H stretch/amide 1st combination band,
which has been attributed to protein, while the peaks at 2145 and 2313 nm have been
tentatively attributed to C–H deformation and C–H deformation and C–H bend second
overtones respectively, both indicating lipids [61].

3.3. Calibration Models for Cocoa Beans Quality

Variable selection is generally applied in the multivariate analysis to extract the most
informative region, removing redundant information. However, among the approaches
tested in this study, a lower prediction was observed for the PCR than the MPLS approach
as observed in the study of Xie et al. [37]. In detail, in the present study, the PCR showed
poor performance of prediction for all traits investigated (see Supplementary Table S2).

Comparing the performance of prediction using the MPLS between full and iPLS
selected spectra, it was observed that among the eight parameters, the best prediction
was achieved using the full spectra for seven of them (see Supplementary Table S3). The
iPLS wavelength selection had a better performance in the fat prediction (R2cv of 0.86 and
RPD of 2.88) that did not differ substantially from the prediction obtained using the whole
spectrum (900–1680 nm; R2cv = 0.83 and RPD = 2.43).

The results of prediction performance for the benchtop (NIR FOSS DS 2500) and the
portable (PoliSPEC-NIR) spectrometers are presented in Tables 2 and 3, which describe
data obtained from whole cocoa beans and peeled-ground cocoa beans, respectively.

Table 2. Fitting statistics of prediction models for whole cocoa traits developed using cross-validation
results for benchtop (NIR FOSS DS 2500) and portable (PoliSPEC-NIR) NIR-spectrometers.

FOSS DS 2500

Math Treatment Constituent N Mean SD SEcal R2cal SEcv R2cv RPD

NONE 1441 Fat 52 2.48 0.26 0.13 0.77 0.15 0.69 1.78
NONE 2551 Protein 51 0.77 0.09 0.04 0.81 0.06 0.66 1.71

SNV_DET 2551 TPC 54 3.04 0.66 0.61 0.15 0.67 0.03 0.98
NONE 0011 pH 54 5.60 0.36 0.21 0.65 0.24 0.58 1.52
MSC 0011 TA 53 16.81 3.99 2.73 0.53 2.98 0.46 1.34
MSC 2551 FI 55 0.07 0.03 0.02 0.25 0.03 0.07 1.03

NONE 1441 DM 55 94.49 0.57 0.26 0.80 0.31 0.72 1.86
MSC 2551 Ash 54 0.16 0.03 0.01 0.87 0.02 0.51 1.43

PoliSPEC-NIR

Math Treatment Constituent N Mean SD SEcal R2cal SEcv R2cv RPD

MSC 1441 Fat 54 2.45 0.27 0.18 0.57 0.21 0.38 1.28
SNV_DET 0011 Protein 50 0.78 0.10 0.04 0.83 0.07 0.56 1.49

MSC 2551 TPC 48 3.04 0.60 0.22 0.87 0.40 0.56 1.51
MSC 0011 pH 50 5.56 0.37 0.18 0.76 0.20 0.70 1.83
MSC 1441 TA 55 17.26 4.22 2.77 0.57 3.03 0.48 1.39

NONE 0011 FI 55 0.07 0.03 0.02 0.66 0.02 0.58 1.55
MSC 0011 DM 49 94.50 0.54 0.26 0.77 0.32 0.66 1.72

SNV_DET 0011 Ash 53 0.16 0.03 0.02 0.66 0.02 0.45 1.36

NONE = no correction; SNV_DET = SNV and detrend; MSC = multiplicative scatter correction; SD = standard
deviation of reference data selected; SEcal = standard error in calibration; R2cal = coefficient of determination of
calibration; SEcv = standard error in cross-validation; R2cv = coefficient of determination of cross-validation. TPC
= total phenolic compound; TA = titratable acidity; FI = fermentation index; DM = dry matter.
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Table 3. Fitting statistics of prediction models for ground cocoa traits developed using cross-
validation results for benchtop (NIR FOSS DS 2500) and portable (PoliSpec NIR) NIR-spectrometers.

FOSS DS 2500

Math Treatment Constituent N Mean SD SEcal R2cal SEcv R2cv RPD

NONE 1441 Fat 56 2.45 0.27 0.11 0.84 0.13 0.76 2.11
SNV_DET 0011 Protein 54 0.77 0.11 0.02 0.95 0.03 0.91 3.40
NONE 2551 TPC 55 3.04 0.65 0.51 0.40 0.59 0.16 1.10
MSC 0011 pH 50 5.57 0.37 0.08 0.95 0.13 0.88 2.96

NONE 1441 TA 52 16.69 3.86 0.80 0.96 1.43 0.86 2.70
NONE 1441 FI 55 1.29 0.50 0.27 0.70 0.38 0.42 1.31
MSC 0011 DM 56 94.51 0.59 0.15 0.94 0.18 0.90 3.20
MSC 0011 Ash 50 0.16 0.03 0.01 0.90 0.01 0.89 2.98

PoliSPEC-NIR

Math Treatment Constituent N Mean SD SEcal R2cal SEcv R2cv RPD

NONE 2551 Fat 52 2.45 0.27 0.09 0.88 0.12 0.82 2.34
NONE 0011 Protein 53 0.77 0.11 0.04 0.84 0.05 0.79 2.17
MSC 0011 TPC 55 3.04 0.65 0.50 0.42 0.57 0.23 1.14

NONE 1441 pH 53 5.56 0.36 0.11 0.90 0.18 0.74 1.98
NONE 0011 TA 51 17.23 4.07 1.14 0.92 1.76 0.81 2.32
NONE 0011 FI 56 1.29 0.49 0.41 0.33 0.42 0.26 1.17
NONE 0011 DM 54 94.54 0.59 0.25 0.81 0.27 0.79 2.17
NONE 1441 Ash 54 0.16 0.03 0.01 0.89 0.01 0.76 2.08

NONE = no correction; SNV_DET = SNV and detrend; MSC = multiplicative scatter correction; SD = standard
deviation of reference data selected; SEcal = standard error in calibration; R2cal = coefficient of determination
of calibration; SEcv = standard error in cross-validation; R2cv = coefficient of determination of cross-validation.
TPC = total phenolic compound; TA = titratable acidity; FI = fermentation index; DM = dry matter.

Generally, most of the cocoa studies were performed on ground cocoa to reduce the
effects of the physical sample properties on spectra collection [24]. Indeed, for both NIRS
devices, the best performances of prediction were observed on ground sample, probably
due to the enhanced homogeneity of the samples characterized by a similarity in the
particles size and in a more compacted powder that affects the scattering of light.

In this study, spectra corrections by mathematical treatments to remove irrelevant
data such as noise and background information were evaluated. In particular, SNV and
MSC were used as pre-processed methods to remove the influence of solid particle size
and the surface scattering; moreover, the methods above are mainly recognized as the best
mathematical treatment in the equation models developed for whole cocoa. The SNV_DT
and MSC treatments improved the prediction accuracy for some quality parameters of both
whole and ground cocoa bean samples, while for other parameters raw spectra gave the best
results. This was in line with Barbin et al. [50] who found no considerable improvement of
the predictive ability when comparing different pre-processing methods with the original
raw data. Indeed, Barbin et al. [50] stated that since the complexity of the models was
similar to that obtained with the original data, it is feasible to use the raw spectra to build
prediction models for both whole beans and ground cocoa samples.

Moreover, to evaluate the performance of technologies on the market, the whole spec-
trum was considered to perform the prediction equations, although some researchers sug-
gest that selection of spectral intervals could lead to higher prediction performances [35,62].
All the predictions performed against whole bean sample can be considered as approximate
to poor [44] with the highest capability achieved for DM (R2cv = 0.72; RPDcv = 1.86) for
the benchtop and for pH (R2cv = 0.70; RPDcv = 1.83) with portable device (Table 2). In
general, the minor prediction capability in whole cocoa beans compared to the ground
sample has been confirmed also in the study of Hernández-Hernández et al. [63], in which
the poor performance of chemical predictions was attributed to the shell that reflects the
incident light hindering the interaction with internal constituents. Although predictions on
whole cocoa beans were not adequate for quantitative purposes, they could represent a fast
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approach for food business operators to sort cocoa beans towards a specific transformation
according to high or low value. Moreover, at germplasm banks and breeding programs,
a rapid whole cocoa analysis reduces the time required for the shell removing (usually
carried out by hand in the laboratory), suggesting NIRS devices are capable to identify
functional genotypes to improve qualitative aspects in cocoa products [63].

Excellent performance was obtained in ground cocoa for protein content (R2cv = 0.91;
RPDcv = 3.40) and very good prediction was achieved for DM (R2cv = 0.90; RPDcv = 3.20),
ash (R2cv = 0.89; RPDcv = 2.98), pH (R2cv = 0.88; RPDcv = 2.96) and TA (R2cv = 0.86;
RPDcv = 2.70) using the NIR FOSS DS 2500 spectrometer (850–2500 nm) (Table 3). The
PoliSPEC-NIR spectrometer (900–1680 nm) had the best predicting performances for fat
content (R2cv = 0.82; RPDcv = 2.34) in ground samples; whereas, for the other traits, the
portable device showed lower performances compared to the benchtop (Table 3).

To deeper investigate if the divergences between the devices might depend on the
different spectral range used, a further prediction equation was performed for the benchtop
using the same spectral range (900–1680 nm, every 2 nm) of the portable tool. In the
comparison with the performance obtained considering the whole spectrum, a greater
performance of predictions was observed for ash (R2cv = 0.90; RPDcv = 3.20), protein
(R2cv = 0.93; RPDcv = 3.84), DM (R2cv = 0.94; RPDcv = 4.16), and lipids (R2cv = 0.83;
RPDcv = 2.43). However, although the TPC remained unpredictable, an increment was
observed in the new prediction equation (R2cv = 0.46; RPDcv = 1.37). Although a good
predictive capability was maintained, lower performance prediction was observed for TA
(R2cv = 0.85; RPDcv = 2.60) and pH (R2cv = 0.82; RPDcv = 2.34).

Thus, to comprehend the origin of the performance divergences between devices, the
component loadings were developed for each tool to assess and compare the interactions
between wavelengths and functional groups (Figure 2). The loading plots permit to
better understand which wavelengths are more informative for a specific trait variability,
showing the range which is mostly considered to develop the model. A strong similarity
between portable and benchtop devices were overall observed for chemical parameters
directly quantified.

In particular, although the same ranges and performance of prediction (R2cv = 0.83)
were obtained in both devices for lipid loading plot, the highest loadings were observed in
the spectral region between the 1212 and 1232 nm and 1368 and 1398 nm for portable and
benchtop, respectively.

Such association between those range and lipid variability has been confirmed by [64]
in cereal food products. Similar patterns for the protein loading plot were observed between
the two devices; however, the high loadings observed between 1200 to 1400 nm were related
to C–H second overtone and N–H stretching first overtone of protein, respectively [65,66].
Moreover, a high loading was observed around 1100 nm exclusively for the benchtop
device; this is probably due to the higher sensitivity of the device that is reflected in the
best performance of prediction (R2cv = 0.93) the range 1100–1400 nm being considered as
an essential spectral region for the protein quantification analysis [67].

A comparable loading plot was also observed for pH in which the highest trait vari-
ability was explained by the 910 [68] and 1398 nm for both devices. Divergences in
titratable acidity loading patterns were found; however, the most informative wavelengths
(930–950; 1106; 1390–1400 nm) are related to the second combination region of the car-
boxylic acids [69]. The loading plot of DM showed notable peaks between 1200–1224 and
1373–1394 nm, mainly related to the water [69].
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Figure 2. Loadings for the first principal component of fat, protein, pH, titratable acidity (TA), total
phenolic compound (TPC), fermentation index (FI), dry matter (DM), and ash for NIR spectra of the
ground cocoa samples for DS 2500 (blue line) and PoliSPEC NIR (green line).
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Ash being an inorganic matter cannot be directly detected by NIRS; its amount is
indirectly measured by the association with organic bonds, thus the loadings plot and the
highest variability observed for ash is 1200 nm and 1376 nm for the benchtop, and 1396 nm
for the portable device account for other organic components. Otherwise, loadings plots
observed for TPC and FI were not strictly related to a specific spectrum range, probably due
to the lower variability collected with the samples considered. In general, the performance
divergences between the two NIRS devices could be explained by the difference in the
detector equipment; in detail, the semiconductors included in portable (PoliSPEC-NIR) and
benchtop (NIR FOSS DS 2500) devices are Indium gallium arsenide (InGaAs) and silicon
lead sulfide, respectively, which affect the spectral response and the prediction capability
Lin, et al. [70].

In our study, the accuracy of prediction for both FI and TPC was not satisfactory
for any of the instruments and for both whole and ground cocoa bean samples. The
influence of variable fermentation degrees of cocoa samples can be crucial in the prediction
of FI and TPC, which are strictly related to the fermentation level of cocoa beans. Sunoj,
Igathinathane and Visvanathan [32] showed how factors such as pod storage duration
(before the fermentation process), and fermentation time, had a significant effect on the
fermentation index, which was seen to increase together with the increment of these
two parameters. The authors argued that these parameters are indirectly affected by the
samples’ chemical composition, thus the accuracy of prediction models are generally lower
than those reported for major components. The reason might fall on the fact that our
samples included only commercial cocoa beans which were supposed to be well-fermented,
although with some natural variations, thus reducing the variability for the TPC and FI.
Moreover, there could have been a negative influence of lipid absorbances in the models
for TPC: fat has been indicated as a disturbance factor as beans with higher relative fat
content have lower non-fat solids, where polyphenols are concentrated [61].

Although the FI was not correctly predicted by the constructed models, the estimations
in ground samples of parameters related to correct fermentation such as pH and TA were
approximative and good with the portable and benchtop devices, respectively, in line with
previous results [25,49]. This method could provide a rapid and low-cost multiparametric
analysis for cocoa evaluation. Portable instruments are usually less expensive than benchtop
solutions (about a fifth) [71], and the cost of analyses are mainly related to the development
and upgrade of calibration curves. Moreover, compared to wet analyses, through the
application of spectrometric methods the cost of the analytical determination is drastically
reduced as the number of examined samples increases.

The presented prediction models might be the basis for an overall cocoa bean quality
evaluation based on NIR spectra. However, despite the presented parameters being good
indicators of cocoa bean quality, a grading classification of cocoa beans’ was beyond the
scope of the present work, as it would require the investigation of other indicators, also
related to the sensorial profile of the beans, as reported in previous studies on cocoa quality
indexes (CQI) [72,73].

4. Conclusions

The results of this paper demonstrated that NIRS portable and benchtop devices
coupled with chemometrics methods could be adopted for the chemical evaluation of
commercial cocoa beans. The performances of predictions are affected by the presence
of shell and the sample particle sizes of cocoa beans. The current study has successfully
demonstrated that NIR, as a nondestructive analytical method, can be considered as rapid
and reliable option to traditional methods to quantify lipids, protein, pH, titratable acidity,
dry matter and ash in cocoa ground beans.

The NIRS benchtop instrument provided better performance of quantification consid-
ering the whole (800–2500 nm) and the reduced spectrum (900–1680 nm) than the portable
device. Variable selection through iPLS or PCR did not improve prediction models com-
pared to full spectra analyses. Benchtop instrument showed excellent prediction capability
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in DM (R2cv = 0.94), protein (R2cv = 0.93) and ash (R2cv = 0.90), whereas lipids (R2cv = 0.83),
TA (R2cv = 0.86) and pH (R2cv = 0.88) were well predicted on ground beans considering
wavelengths between 900–1680 nm. Those results indicate that models developed for
benchtop devices are applicable for cocoa quality control as an excellent option to substitute
conventional methods.

On the other hand, the NIRS portable device showed lower but valuable performance
of prediction than benchtop spectrometer. The prediction obtained for handheld device
represents an appealing strategy for food business operators to apply in the field to control
and check the product in every phase of trade and transportation, and also to segregate
whole cocoa beans targeted to a specific transformation in different supply chains.

Based on these results, further studies including a wider variability of fermentation
phases, cocoa bean varieties and origins as well as additional production steps of the cocoa
supply chain could be investigated to support the fair-trade cocoa sector.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Table S1: Cocoa origin of different commercial lot analysed in this study
Table S2: Fitting statistics of prediction models for ground cocoa traits developed using full spectra
and principal component regression (PCR) and cross-validation results for benchtop (NIR FOSS
DS 2500); Table S3. Fitting statistics of prediction models for ground cocoa traits developed using
selected wavelengths through the interval PLS (iPLS) and cross-validation results for benchtop (NIR
FOSS DS 2500).
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Abstract: The variety of characteristics of red pepper makes it difficult to analyze at the production
field through hyperspectral imaging. The importance of pretreatment to adjust the moisture content
(MC) in the process of predicting the quality attributes of red pepper powder through hyperspectral
imaging was investigated. Hyperspectral images of four types of red pepper powder with different
pungency levels and MC were acquired in the visible near-infrared (VIS-NIR) and short-wave infrared
(SWIR) regions. Principal component analysis revealed that the powders were grouped according to
their pungency level, color value, and MC (VIS-NIR, Principal Component 1 = 95%; SWIR, Principal
Component 1 = 91%). The loading plot indicated that 580–610, 675–760, 870–975, 1020–1130, and
1430–1520 nm are the key wavelengths affected by the presence of O-H and C-H bonds present in red
pigments, capsaicinoids, and water molecules. The R2 of the partial least squares model for predicting
capsaicinoid and free sugar in samples with a data MC difference of 0–2% was 0.9 or higher, and
a difference of more than 2% in MC had a negative effect on prediction accuracy. The color value
prediction accuracy was barely affected by the difference in MC. It was demonstrated that adjusting
the MC is essential for capsaicinoid and free sugar analysis of red pepper.

Keywords: red pepper powder; hyperspectral imaging; multivariate analysis; moisture adjustment

1. Introduction

Red pepper (Capsicum annuum L.) is a single crop belonging to the Solanaceae family.
It has a spicy taste and red color [1] and it is often dried and processed into a powder
and used as a spice for food additives [2]. Preference for the quality of red pepper is
ultimately determined by the taste components (mixed with spicy, sweet, and other flavor
components) contained in red pepper powder. Homologs of capsaicinoids, which are
components of hot pepper, include capsaicin, dihydrocapsaicin, nordihydrocapsaicin, and
glucose and fructose, which are reducing sugars, and are particularly closely related to the
overall preference of red pepper powder. In particular, sweet flavor is negatively correlated
with capsaicin content and stinging pain [3].

It is cultivated in different varieties and even in the same variety, and the capsaicinoid
and sugar contents differ depending on the cultivation conditions, such as sunlight, pre-
cipitation, soil characteristics, or the difference in harvest time [4]. The survey report of
the Consumers Federation of Korea (2013) noted that 80% of consumers responded that
a label on the taste of red pepper powder is necessary, which affects product purchases.
Therefore, real-time quality monitoring is required to label objective information on prod-
ucts [5]. High-performance liquid chromatography (HPLC) and gas chromatography/mass
spectrometry (GC/MS) have been used to measure the content of capsaicinoid in red pep-
per [6–9]. However, these methods have some disadvantages as they are time-consuming,
destructive, and lack capable real time detection systems. Among alternative methods,
hyperspectral imaging (HSI) technology, which combines spectroscopy and cameras, can
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simultaneously provide spectral and spatial information regarding the external and internal
qualities of agricultural products and are advantageous as they are fast, non-destructive,
and cost-effective [10,11]. To enhance the applicability of HSI, chemometric methods such
as principal component analysis (PCA) and partial least squares (PLS) regression are widely
used for spectral analysis of foods with complex characteristics, because they offer better
flexibility in conditions such as multicollinearity and when the number of variables exceeds
the number of samples [12].

Previously, various spectroscopic trials and chemometrics were performed to analyze
quality characteristics including capsaicinoids, free sugars, and moisture content of red
pepper and red pepper powder [13–15]. Because the water content and particle distribution
of the powder affect the light penetration depth and reflective ability, which influence
spectroscopic signals such as any physical interference and chemical signals [16–18], it
has been conjectured that ensuring uniformity can improve the measurement accuracy of
components such as capsaicinoid in red pepper powder [19]. Compared with sieving to
make the particle size of red pepper powder uniform, it is practically difficult to apply the
manufacturing process to ensure that the water content is the same in the field. Therefore,
by confirming the prediction accuracy according to the range of the difference in moisture
content between samples, no previous study has shown the need for moisture control in
the spectroscopic analysis of red pepper powder or established the moisture distribution
conditions for sample preparation.

In this study, the moisture content of red pepper powder with different levels of spici-
ness produced in Gochang-gun, Shintaein-eup, Gwanchon-myeon, and Jeongeup-si was
adjusted to 7, 8, 9, 10, 11, and 12%, respectively. By extracting Vis-NIR (400–1000 nm) and
SWIR (900–1700 nm) image spectrum information and performing multivariate analysis,
the capsaicinoid content, free sugar content, and color prediction accuracy of red pepper
powder were determined according to the range of moisture content difference (7–8%,
7–9%, 7–10%, 7–11%, and 7–12%). It was hypothesized that this process would be able to
prove the extent of which the moisture content difference has a high reliability for each
quality prediction model. This study provides a basis for application in the field of red
pepper powder production by overcoming the limitations of hyperspectral image analysis,
which is strongly influenced by the bonding of water molecules. It can be a useful reference
for determining the range of moisture content in samples in hyperspectral analysis studies
of various agricultural foods, as well as red pepper powder.

2. Materials and Methods

2.1. Sample Preparation

Red peppers produced in Gochang-gun (GC), Sintaein-eup (ST), Kwanchon-myeon
(KC), and Jeongeup-si (JU) regions, Jeollabuk-do, Korea, in 2021 were purchased as samples.
Red peppers were ground after hot air drying (50–60 ◦C), and the particle size of the red
pepper powder was uniformly prepared with a particle size of 425–850 μm using a standard
sieve. Samples were prepared based on the particle size of red pepper powder for seasoning,
which is most commonly used in Korea, according to Korean Industrial standards (KS). To
ensure that the moisture content of each sample was 7%, 8%, 9%, 10%, 11%, and 12%, the
following process was performed. KS presents less than 13% as the appropriate moisture
content of red pepper powder, and the average moisture content of red pepper powder
sold on the market is 7–12%.

First, the moisture contents of the GC, ST, KC, and JU powder samples were measured
using the atmospheric pressure drying method in a drying oven. The samples were dried
at 100 ◦C for 4 h, and the moisture content was calculated using the weight differences
before and after drying. The moisture contents of the GC, ST, KC, and JU were 11.12%,
11.36%, 10.12%, and 11.09%, respectively. To adjust the initial moisture content to 12%,
it was necessary to seal the samples in plastic bags and humidify by spraying additional
10.75 mL, 7.81 mL, 22.57 mL, and 11.08 mL of water on 950 g of GC, ST, KC, and JU samples.
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75 g of the red pepper powder whose moisture content was adjusted to 12% was
dried in a dry oven set at 55 ◦C, and the weight of the red pepper powder was measured
every 15 min. A graph was prepared as shown in Figure 1. The moisture content was
calculated as the change between the initial weight and the weight after drying, and red
pepper powder samples with moisture contents of 7%, 8%, 9%, 10%, 11%, and 12% were
prepared. According to the production area and moisture content of the samples, Gochang
samples were GC7, GC8, GC9, GC10, GC11, and GC12, Shintaein samples were ST7, ST8,
ST9, ST10, ST11, ST12. Kwanchon samples were KC7, KC8, KC9, KC10, KC11, and KC12
and Jeongeup samples were named JU7, JU8, JU9, JU10, JU11, and JU12.

Figure 1. Weight change of red pepper powder according to drying time and calculated
moisture content.

2.2. Determination of Quality Indicators

To analyze the capsaicinoid and free sugar content of the samples, pretreatment was
required to make the particle size uniform. The samples were finely ground using a food
mixer (SNSG-1002SS, Hanil Electric, Seoul, Korea), filtered through a 30 mesh sieve (pore
size, 0.6 mm), and then used for analysis.

2.2.1. Moisture Content Measurement and American Spice Trade Association (ASTA) Color

The moisture content of the red pepper powder was measured by drying for 6 h in a
vacuum oven dryer (OV-11, Jeio Tech, Daejeon, Republic of Korea) set at 70 ◦C, according
to ASTA analytical method 2.1. The ASTA color value measurement method was based
on AOAC official method 971.26, and acetone was filled in 0.1 g of the sample, shaken for
1 min, and left in the dark for 16 h to prepare a test solution. The absorbance of the test
solution was measured at 460 nm using a UV spectrophotometer (Thermo Fisher Scientific,
Vantaa, Finland), and the results were substituted into the equation below to calculate the
ASTA color value.

ASTA value =
A × 16.4

W
(1)

A: absorbance at 460 nm; W: sample weight (g).

2.2.2. Capsaicinoid

Capsaicin and dihydrocapsaicin contents were analyzed by referring to the methods
of Ku et al. [20] and Namgung et al. [21]. The extraction method for capsaicinoid analysis
was as follows: Methanol (10 mL) and a boiling chip were added to 2 g of the sample and
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heated on a dry heating block (MaXtable H10, Daehan, Incheon, Korea) set at 90 ◦C for 1 h,
and then cooled to room temperature. The extract was filtered with Whatman No. 1 and
then filtered again with a 0.2 μm syringe filter. Capsaicinoid content was analyzed using
an HPLC system (Agilent 1260 infinity II, Agilent Technology, Santa Clara, CA, USA). An
XTerraTMRP18 (5 μm, 4.6 × 150 mm id., Waters, Milford, MA, USA) column was used,
and the mobile phase (A: acetic acid, B: acetonitrile) was applied in a gradient method
(A: B = 60:40, 38:62, and 20:80) at a rate of 1 mL/min. The column temperature was set at
35 ◦C and the injection volume was 10 μL. A variable-wavelength detector was used, and
the absorbance was measured at 280 nm. Capsaicin and dihydrocapsaicin were used as
standards to prepare calibration curves.

2.2.3. Free Sugar

The free sugar content of the red pepper powder was analyzed by high-performance
liquid chromatography (HPLC, Agilent 1260 infinity II, Agilent Technology, CA, USA).
40 mL of 80% ethanol was added to 2 g of the sample, extracted for 1 min with a vortex
mixer, filtered through a 0.2 μm membrane filter, and 20 μL was injected into the 1260 II
Infinity HPLC-Refractive Index (RI) detector for analysis. Fructose, glucose, and sucrose
(Sigma-Aldrich, St. Louis, MO, USA) dissolved in 80% ethanol were used as the standards.
For the mobile phase, a solvent mixture of acetonitrile and water at a ratio of 75:25 (v/v)
was separated in the isocratic mode at a flow rate of 1 mL/min. The column temperature
was set to 30 ◦C, and the temperature of the RI detector was set to 35 ◦C. All analysis
processes were performed by referring to the methods of Ku et al. [2].

2.2.4. Statistics Analysis

All experimental measurements of 24 samples were performed three times, and the
results are presented as means and standard deviations (n = 72, mean ± SD). The results
were analyzed by ANOVA and Duncan’s multiple range test (p < 0.05) using the SPSS
software package (version 20, IBM SPSS Statistics, Inc., Chicago, IL, USA).

2.3. Hyperspectral Image Analysis
2.3.1. Hyperspectral Image Acquisition and Data Extraction

Hyperspectral images in the VIS-NIR region (400–1000 nm) were acquired using the
line scan method (pushbroom) using a SPECIM FX10 spectrometer (Spectral Imaging Ltd.,
Oulu, Finland) equipped with three halogen light sources. It was operated by obtaining the
reflection intensity from the sample, and image data with a spectral resolution of 1.3 nm
were acquired for a total of 448 bands. A white plate made of polytetrafluoroethylene and
the sample were scanned together, and the acquired image was normalized using the IDL
Virtual Machine Application program (8.8.0, L3Harris Geospatial, Boulder, CO, USA).

HSI data of the red pepper powders were acquired using an ImSpector N17E (Specim,
Spectral Imaging Ltd., Oulu, Finland) in the short-wave infrared (SWIR) region, 900–1700 nm.
The light source consisted of two halogen lamps (1400 nm long-pass filter). The system
consisted of an NIR camera with an indium gallium arsenide (InGaAs) sensor operated
in reflectance mode with line-by-line scanning (pushbroom) to obtain intensity images
at 5 nm intervals through a 30 μm slit (256 images per scene). A white plate was used
as the reference material and was scanned before each sample was scanned. The sam-
ples were scanned line-by-line along the Y-axis and moved along the X-axis to obtain a
three-dimensional (3D) hypercube containing both spatial and spectral information.

The powder (3.5 g) was placed in a transparent Petri dish (5 cm diameter) and spread
flat to cover the bottom of the Petri dish. To reduce the diffuse reflection that may have been
caused by the particle surface, the surface of the sample was compressed with a presser
to make it as level as possible. Fifty hyperspectral images were acquired per sample for a
total of 1200 images. All the hyperspectral imaging systems were operated using Microsoft
Windows. To obtain the necessary information from the acquired images, image spectrum
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data for the inner area of the Petri dish were obtained using the region of interest function
of the ENVI (version 5.4, Exelis Visual Information Solutions, Boulder, CO, USA) program.

2.3.2. Chemometrics

Chemometrics is a method of high-level interpretation of one-dimensional data ob-
tained through chemical analysis using computers, mathematics, and statistics and was
used in this study to link quality-related factors and measurement technology. Multivariate
statistical analysis consists of unsupervised learning, which finds data patterns or rela-
tionships between data when the characteristics of the data are unknown, and supervised
learning, which predicts results by finding the optimal model by learning through an
algorithm set with input and output values [22].

In this study, principal component analysis (PCA), a representative unsupervised
learning method, was performed to visualize the overall clustering tendency according to
the sourness and moisture content of the red pepper powder samples. Two-dimensional and
three-dimensional PCA score plots were derived from the spectral data in the 400–1000 nm
and 900–1700 nm regions. As the number of principal components increases, overfitting
occurs, and the reliability of the predictive model decreases [23], so the maximum principal
component was set to 7. Principal component analysis was performed using Unscrambler
statistics program (version 10.5, CAMO, Trondheim, Norway).

To predict capsaicinoid content, partial least squares regression (PLSR) analysis, a
supervised learning method, was attempted. The PLS statistical method combines the
functions of principal component analysis and multiple regression analysis and aims to
predict the independent variable by expressing the relationship between the predictor
variable X (spectral data) and the independent variable Y (measured capsaicinoid content)
in a linear model [24]. The predicted value of Y was calculated using the following equation:

Y = βX + b (2)

β: vector of regression coefficient; b: model offset.
The PLS model showed more stable characteristics than the principal component

model, considering only the independent variables. Of the total spectral data, 70% were
used to develop the calibration model, and the remaining 30% were used for testing to
verify the developed model. To evaluate the performance of all developed PLS models,
the coefficient of determination (Rc

2) in the calibration model, coefficient of determina-
tion (Rv

2) in the cross-validation model, root mean square error of calibration (RMSEC),
cross-validation model, and root mean square error of validation (RMSEV) value were con-
sidered. Table 1 shows the PLS model names developed in this study and the data samples
(spectral and physicochemical data) inserted into each model. The entire model developed
using samples with uniform moisture content was named Model A, and the entire model
developed with samples having different moisture contents was named Model B.

Table 1. Developed partial least square model.

Model Name N Inserted Data

Model A

A7 200 GC7, ST7, KC7, JU7

A8 200 GC8, ST8, KC8, JU8

A9 200 GC9, ST9, KC9, JU9

A10 200 GC10, ST10, KC10, JU10

A11 200 GC11, ST11, KC11, JU11

A12 200 GC12, ST12, KC12, JU12
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Table 1. Cont.

Model Name N Inserted Data

Model B

B7-8 400 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8

B7-9 600 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9

B7-10 800 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9, GC10, ST10, KC10, JU10

B7-11 1000 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9, GC10, ST10, KC10,
JU10, GC11, ST11, KC11, JU11

B7-12 1200 GC7, ST7, KC7, JU7, GC8, ST8, KC8, JU8, GC9, ST9, KC9, JU9, GC10, ST10, KC10,
JU10, GC11, ST11, KC11, JU11, GC12, ST12, KC12, JU12

3. Results and Discussion

3.1. Quality Indicators Analysis and Correlation between Physicochemical Properties

Table 2 shows the analysis results of physicochemical characteristics of red pepper
powder. The moisture content showed an error of 0.42–8.00% compared to the intended
moisture content, but it was confirmed that the sample was prepared with an increase in
moisture content with an R2 of 0.99 or more. The capsaicinoid content of the red pepper
powders is listed in Table 1, indicating that the capsaicin content of all samples was higher
than the dihydrocapsaicin content. The pungent substances in red pepper are capsaicin
homologs, and the main components of capsaicinoids are capsaicin, dihydrocapsaicin,
and nodihydrocapsaicin, each at approximately 70%, 21–40%, and 2–12% composition,
respectively [25]. For total capsaicinoid content, GC ranged from 156.80–165.57 mg/kg, ST
ranged from 252.14–269.10 mg/kg, KC ranged from 510.44–544.65 mg/kg, and JU ranged
from 676.04–731.92 mg/kg. According to the Korean Industrial Standard, GC and ST are
classified as ‘Slight Hot’ and KC and JU as ‘Medium Hot’. There was a slight difference
in the capsaicin, dihydrocapsaicin, and total capsaicinoid content depending on the water
content, but no significant differences were observed.

Park et al. [26] and Choi et al. [3] stated that fructose and glucose account for 70% of
the total sugars in red pepper, and the sweetness of red pepper is in the order of fructose,
glucose, and sucrose. All red pepper powders were composed of free sugars in the order of
fructose > glucose > sucrose content, and the free sugar content was not affected by the
water or capsaicinoid content of red pepper powder.

The American Spice Trade Association (ASTA) color values were calculated as 83.90–86.92 for
JU, 75.95–79.14 for GC, 62.93–65.75, ST, and 57.72–59.65 for KC. JU, GC, ST, and KC were dark
red. The ASTA color, which is a criterion for the color of red pepper powder [2] and the pigment
content of red pepper powder are known to fluctuate depending on the variety, cultivation area,
and drying method, such as sun drying and hot air drying [27–29]. Therefore, it is difficult to
determine the degree of spiciness and sweetness by observing the appearance of red pepper
powder with the naked eye without analysis.

The pungency components, including capsaicin, dihydrocapsaicin, and capsaicinoid,
showed a low correlation with moisture content, ASTA value, and free sugars (fructose,
glucose, sucrose, and total free sugar) indicating that there was no significant effect on
pungency level. Therefore, when predicting the pungency level of red pepper powder
using spectral information, it is proven that pungency components can show independent
spectral characteristics without mutual influence between physicochemical characteristics.
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3.2. Spectral Characteristics

Figure 2 shows the hyperspectral mean spectra obtained from the GC, KC, ST, and JU
red pepper powders with different pungency levels and moisture contents. Red pepper
powder is composed of 50–60% carbohydrates, 10–15% crude protein, 10% crude fat, and
5% ash [30]. Therefore, as a result of observing the spectra, the shapes of all spectra were
similar, except for the difference in the overall reflection intensity depending on the sample.
In the observation of the characteristics of the average reflectance spectrum in the VIS-
NIR region without any chemometrics analysis (Figure 2A), the reflectance intensity was
relatively low in the sample with high moisture content, whereas differences in reflectance
by pungency level, ASTA color, and free sugar were not observed.

Red pepper powder absorbs light at approximately 1130, 1200, 1425–1440, and 1515 nm
in the SWIR band (Figure 2B), which is similar to the results reported by Mo et al. [4].
Each peak represents the 2nd overtone region of the CH bond (1200 nm), 1st overtone
combination of CH and OH bonds (1425 nm) and 1st overtone of the NH bond (1520 nm),
respectively [31–34].

In the band of approximately 1410–1540 nm, which is common in GC, ST, KC, and JU,
the reflectance intensity was low in samples with high moisture content, and it seems that
the absorption phenomenon was strengthened by a large number of OH bonds. However,
since it is difficult to quantify the sweetness and spiciness of red pepper only by observ-
ing the average spectrum, additional chemometrics analysis is required. Therefore, by
attempting multivariate analysis of hyperspectral data, there is a possibility of evaluating
the quality of red pepper powder and expressing it numerically.

 

 
(A) Mean spectra of red pepper powders in VIS-NIR band (400–900 nm) 
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(B) Mean spectra of red pepper powders in SWIR band (900–1700 nm) 
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Figure 2. Mean spectra of red pepper powders in the Vis-NIR (A) and SWIR (B) wavelength ranges
according to pungency levels and moisture contents.

3.3. Chemometrics
3.3.1. Principal Component Analysis

The original reflectance spectral data matrix was reduced to a system of coordinate
axes, where samples were located according to principal component analysis (PCA) scores
instead of intensities in the wavelength space [35]. Therefore, samples with similar spectral
properties tend to project to the same location in principal component space. A clear
differentiation according to capsaicinoid content and moisture content is indicated in
the PCA score plots shown in Figure 3, which are expressed in two dimensions and
three dimensions by the principal component factors based on the hyperspectral spectra.
In the score plot, GC is shown in blue, ST in green, KC in yellow, and JU in orange; the
higher the moisture content, the darker the color. PC−1, PC−2, and PC−3 contributed
95%, 3%, and 1% of the hyperspectral image data of red pepper powder obtained in the
VIS-NIR region, respectively (Figure 3A,B). As indicated by the dotted circle, it is clearly
classified according to the production area of red pepper powder, which may mean that
it is classified according to the degree of spiciness or ASTA color; therefore, additional
interpretation is needed through the loading plot result. In addition, the distribution of
darker markers closer to the upper left corner of the score plot indicates that PCA analysis
using hyperspectral data in the VIS−NIR region can visually show the difference in the
moisture content of red pepper powder.

PCA results of the SWIR region showed that the first principal component (PC1) and
the second principal component (PC2) accounted for 91% and 6% of the spectral variance,
respectively. Because the first two principal components can explain 97% of the data, this
data reveals the high feasibility of discrimination among red pepper powders. In the
two-dimensional plot, it was sequentially distributed according to the moisture content,
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which can be the basis for the hyperspectral spectrum to represent the relative moisture
content distribution of red pepper powder. In the three-dimensional plot, separate grouping
was performed according to the sample and moisture content. Therefore, PCA analysis
using hyperspectral data in the SWIR region can be a method that can effectively show
the difference in the distribution of moisture content and other quality characteristics of
red pepper powder. This plot only demonstrates the qualitative differences between the
examined samples without referring to their quantitative attributes [35].

(A) PCA score plot in the VIS−NIR 

 
 

(B) PCA score plot in SWIR band 

 

Figure 3. PCA score plot of hyperspectral spectra in the VIS−NIR (A) and SWIR band (B).

3.3.2. Loading Plot

The first two PCs accounted for 97% or more of the spectral variation in the tested
samples; therefore, these five PCs can be used as alternatives to the variables for the
classification of red pepper powder (Figure 4). In this study, to identify the key wavelengths
that are highly correlated with each PC for VIS−NIR and SWIR systems, the PC loadings
were plotted against their spectral ranges, and all characteristic wavelengths were marked.
PC loading can be used to identify wavelengths highly correlated with each PC [36]. In
addition, the PCA results of the spectral data of all tested red pepper powder spectra
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loadings are the regression coefficients for each wavelength in each principal component,
indicating which wavelength has a dominant effect on identification.

(A) Loading plot of hyperspectral spectra in VIS–NIR 

(B) Loading plot of hyperspectral spectra in SWIR 

Figure 4. Loading plot of PC1 and PC2 derived from PCA of hyperspectral spectra in VIS–NIR (A)
and SWIR band (B).

As a result of observing the PCA loading plot of VIS-NIR data (Figure 4A), PC1
explained 95% of the total variance in the samples. Key wavelengths (675–760 nm) were
shown from this component, and key peaks were observed in the 580–610 nm, 675 nm, and
870–970 nm bands from PC2. Among the key wavelengths (580–610, 675–760, 870–975 nm)
shown by PCA loadings, a peak observed in the red region (675 nm) might also be related to
the presence of carotenoids [37]. The high absorbance observed at 625–740 nm is associated
with red absorbing pigments, mainly chlorophyll absorption [38,39]. Absorption at 750 and
974 nm is due to water absorption bands related to O–H stretching second overtones [40,41].
Owing to the obvious difference in ASTA color value and moisture content between the
samples in Table 1, VIS–NIR spectroscopic images can be used to compare the moisture
content and color of red pepper powder.

As a result of observing the PCA loading plot of the SWIR data, PC–1 showed a promi-
nent peak only at 1460 nm, and PC-2 showed peaks at 1020–1130 nm and 1430–1520 nm
(Figure 4B). Capsaicin and dihydrocapsaicin are alkaloids with molecular formulas of
C18H27NO3 and C18H29NO3, respectively, and the capsaicin molecule can be divided into
three regions: aromatic rings, amide bonds, and hydrophobic side chains [42]. The chemical
bonds that are read include O–H str. 1st overtone was detected in the wavelength range
of 1395–1452 nm and this chemical bond in the form of the C–H stretch 1st overtone is
due to the presence of aromatic and alkene functional groups, which are also known to
be constituents of capsaicin [34]. The 2nd overtone occurred because of the presence of a
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hydroxyl group (-OH) derived from several sources of antioxidants in red chili, such as
capsanthin and capsaicin.

Therefore, it is foreseen that wavelengths at water absorption bands and capsaicinoid
absorption bands are important for discrimination of pungency level and moisture content
within each red pepper powder.

3.3.3. Prediction of Quality Attribute in Red Pepper Powder

The prediction results of capsaicinoid, free sugar, and ASTA color by PLS modeling in
VIS-NIR and SWIR are shown in Figures 5 and 6. The average Rp

2 of Model A in VIS-NIR
for capsaicinoid was 0.98, and the average R2 value decreased to approximately 0.92 in
B7-10, B7-11 and B7-12 models, respectively: A decrease in Rp

2 of approximately 5.9%
occurred. The SWIR Rp

2 values of the B7-10, B7-11, and B7-12 prediction models for the
capsaicinoid were 0.85–0.87, a decrease of approximately 8.7% from the average Rp

2 value
of A7–A12. Referring to Figure 4A, the loading peaks at 590 nm and 670 nm, which can
explain the red color, were about 0.04 higher than those at 750 nm and 970 nm related
to moisture. On the other hands, there is a peak that stands out more than other bands
at 1450 nm where the vibration of OH bond in water molecules is revealed in Figure 4B.
Therefore, the SWIR spectra were more sensitive to the moisture content of the sample
compared to VIS-NIR spectra, which hindered the prediction of capsaicinoid content by
difference of water contents.

The modeling results for free sugars are as follows. In Figure 5, the prediction Model A
with uniform moisture content had an Rp

2 value of 0.96 or more. However, Rp
2 decreased

in the order of B7-8 (0.94), B7-9 (0.90), B7-10 (0.90), B7-11 (0.85), and B7-12 (0.80) models.
In Figure 6, it can be observed that the average Rp

2 of Model A is 0.951, whereas that of
Model B is 0.839, a decrease of about 12%. As shown in Figure 5, the fact that the Rp

2 value
did not decrease sequentially can be interpreted as a slight error according to the resolution
of the SWIR system itself and the number of measurement bands. As a result, it means that
the adjustment of the water content of the sample has a significant effect on the accuracy of
the PLS model in predicting the free sugar content in both the VIS-NIR and SWIR regions.

The training, and prediction model of the ASTA color value in VIS-NIR maintained an
Rc

2, Rcv
2 and Rp

2 of 0.97 or more regardless of the moisture content distribution. In the
SWIR region, it was observed that the R2 values of the B7-11 and B7-12 models slightly
decreased below 0.95 in the ASTA prediction model, but the prediction accuracy was still
high. Although capsanthin, zeaxanthin, cryptoxanthin, and betacarotene are responsible
for the red color in red pepper powders [43], the use of VIS-NIR region, which was based on
the external color values of red peppers was better for developing the prediction model of
ASTA color value than the use of SWIR region, which was based on the chemical structure
of red peppers by water molecules (OH bond). Therefore, the hyperspectral imaging system
is more useful and convenient for estimating ASTA values because there is less need to
adjust the moisture content of the sample.

(A) Prediction accuracy of capsaicinoid of red pepper powders using VIS-NIR 
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(B) Prediction accuracy of free sugar of red pepper powders using VIS-NIR 

 
(C) Prediction accuracy of ASTA color of red pepper powders using VIS-NIR 
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Figure 5. Prediction accuracy of capsaicinoid (A), free sugar (B) and ASTA color (C) of red pepper
powders using VIS-NIR wavelength range in accordance with moisture content. RMSEC, root mean
square error of calibration; RMSECV, root mean square error of cross-validation.

(A) Prediction accuracy of capsaicinoid of red pepper powders using SWIR 

 
(B) Prediction accuracy of free sugar of red pepper powders using SWIR 
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(C) Prediction accuracy of ASTA color of red pepper powders using SWIR 
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Figure 6. Prediction accuracy of capsaicinoid (A), free sugar (B) and ASTA color (C) of red pepper
powders using SWIR wavelength range in accordance with moisture content. RMSEC, root mean
square error of calibration; RMSECV, root mean square error of cross-validation.

4. Conclusions

The present study predicted the capsaicinoid and free sugar content through hyper-
spectral imaging and PLS analysis of red pepper powder with different moisture contents
and different pungency levels. There is an explicit tendency for the RMSE value to increase
as the difference in moisture content of the modeling sample increases for all predicted
quality attributes. Finally, a difference of more than 2% in MC had a negative effect on
prediction accuracy for capsaicinoid and free sugar. Therefore, this study demonstrated
that it is essential to adjust the moisture content difference of red pepper powder samples
to be used for modeling within 2% using a hyperspectral imaging system. It is expected
that this will be used as a basis for the development of automated systems for the rapid
grading of pungency levels and sweetness.
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Abstract: To solve the adulteration problem of brown rice flour in the commodity market, a novel,
accurate, and stable detection method based on time-resolved laser-induced breakdown spectroscopy
(TR-LIBS) is proposed. Qualitative and quantitative analysis was used to detect five adulterants
and seven different adulterant ratios in brown rice flour. Being able to excavate more information
from plasma by obtaining time-resolved spectra, TR-LIBS has a stronger performance, which has
been further verified by experiments. For the qualitative analysis of adulterants, the traditional
machine learning models based on TR-LIBS, linear discriminant analysis (LDA), naïve Bayes (NB)
and support vector machine (SVM) have significantly better classification accuracy than those based
on traditional LIBS, increasing by 3–11%. The deep learning classification model based on TR-LIBS
also achieved the same results, with an accuracy increase of more than 8%. For the quantitative
analysis of the adulteration ratio, compared with traditional LIBS, the quantitative model based
on TR-LIBS reduces the limit of detection (LOD) of five adulterants from about 8–51% to 4–19%,
which effectively improves the quantitative detection performance. Moreover, t-SNE visualization
proved that there were more obvious boundaries between different types of samples based on TR-
LIBS. These results demonstrate the great prospect of TR-LIBS in the identification of brown rice
flour adulteration.

Keywords: laser-induced breakdown spectroscopy; brown rice flour adulteration; time-resolved
spectra; machine learning; deep learning

1. Introduction

Food adulteration refers to artificially and purposefully adding diverting ingredi-
ents to food, such as for preservation, color enhancement, improvement of appearance,
texture and masking, to achieve the purpose of improving economic benefits [1]. Rice,
the staple food for more than 3.5 billion people, can be processed to produce brown and
white rice [2,3]. Compared with white rice, brown rice is rich in starch, protein, fat, vi-
tamins, minerals, and functional health care ingredients, and also contains dietary fiber,
oryzanol, glutathione, γ-aminobutyric acid, rice bran polysaccharide. It can provide more
comprehensive nutrition, which is very suitable for people with obesity, gastrointestinal
dysfunction, anemia, constipation and diabetes [4,5]. Therefore, the sales of brown rice are
on a continuous rise worldwide [6]. However, many unscrupulous suppliers adulterate
brown rice in pursuit of more profits, which may lead to decreased nutritional value, hu-
man health problems, and even death in serious cases [7]. Therefore, rice flour adulteration
detection is an important way to ensure food safety.

Foods 2022, 11, 3398. https://doi.org/10.3390/foods11213398 https://www.mdpi.com/journal/foods
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Plenty of studies have provided various approaches for adulteration identification
of rice products, including a DNA-based method combined with High Resolution Melt-
ing (HRM) [8], inductively coupled plasma mass spectrometry (ICP-MS) and isotope
ratio mass spectrometry (IRMS) [9–12]. Similarly, several studies have shown that gas
chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrom-
etry (LC-MS) are useful as certification methods for organic rice to detect adulterated
components in high-quality rice [13–17]. However, they require sample digestion, which
means a long detection period, high requirements for the operation environment, and envi-
ronmental pollution caused by the use of chemical reagents [18]. In addition, recent studies
have shown that spectrum-based detection methods are also applicable to food safety
monitoring. For instance, Attaviroj et al. proposed the application of Fourier-transform
near-infrared spectroscopy (FT-NIR) to identify moist brown rice varieties [19]. Li et al.
proposed terahertz (THz) spectroscopy combined with support vector machine (SVM) to
identify adulterated rice [20]. Hyperspectral imaging technology (HSI) can also identify
both spatial and chemical information of wheat flour products [21]. Nevertheless, the above
spectral detection methods also have some disadvantages. The liquid composition in the
sample affects the analytical performance of the NIR and THz spectra. In addition, NIR
requires a large number of representative known chemical values for modeling. HSI data is
large and redundant, and processing is very complex. Therefore, a simple, rapid, and in
situ method for distinguishing brown rice from adulterated samples is urgently needed to
ensure food safety in the grain market.

Laser-induced breakdown spectroscopy (LIBS) has become a well-established and
powerful optical emission spectroscopy analysis technology after more than 60 years
of development. It has been praised as the “future super star” in analytical chemistry
with the advantages of multi-element analysis, fast response, remote detection and no or
simple preparation [22]. In recent years, LIBS has been gradually applied to the field of
food detection, including monitoring calcium content in comminuted poultry meat [23],
adulteration detection of milk powder [24,25], and classification of red wine based on its
protected designation of origin (PDO) [26]. However, few LIBS works were reported on the
quality detection of brown rice products. Ribeiro et al. analyzed the composition of rice
varieties by LIBS combined with Fourier-transform infrared spectroscopy (FTIR) [27]. Yang
et al. proved that LIBS combined with chemometrics can distinguish the geographical origin
of different rice [28]. Pérez-Rodríguez et al. carried out significant research on brown rice
detection. They used spark discharge-LIBS (SD-LIBS) combined with the k-nearest neighbor
(KNN) to distinguish the PDO certification of brown rice [7]. These representative works
on LIBS detection of rice demonstrate the potential for rapid identification of adulterated
products without chemical digestion. However, the LIBS spectra are unstable due to the
influence of sample morphology, laser energy and other factors, and this fluctuation leads
to a decrease in the accuracy of qualitative analysis. In addition, detection methods similar
to SD-LIBS will lead to increased operational complexity. The above factors seriously
restrict the further development of LIBS in the field of rice flour adulteration identification.
Therefore, the detection of different adulterants in rice products by LIBS needs to be
further improved.

In this work, a new simplified time-resolved LIBS (TR-LIBS) was developed for accu-
rate qualitative and quantitative analysis of brown rice flour adulteration based on [25].
TR-LIBS technology does not require sample digestion. Compared to NIR and HSI technolo-
gies, it has a lower data dimension and does not require a large number of representative
chemical values for modeling. Moreover, TR-LIBS can effectively mine the key information
such as intensity and its evolution over delay time by obtaining time-resolved spectra, so
as to enhance the accuracy and robustness of the analytical models. To verify the effective-
ness of TR-LIBS, we compared it with traditional LIBS from the perspective of qualitative
and quantitative analysis of adulteration. The results proved that TR-LIBS is an accurate,
reliable, and stable analytical method.
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2. Materials and Method

2.1. Materials and Sample Preparation

In the commodity market, products with low nutritional value are often mixed with
products with high nutritional value. As a kind of food with high nutritional value, brown
rice flour is always mixed with some low-priced food to obtain additional economic benefits,
such as sorghum flour, talc powder and corn flour. Samples used in this work include
sorghum flour (SF), talc powder (TP), corn flour (CF), buckwheat flour (BF), gypsum
powder (GP), and brown rice flour (BRF), all of which were purchased from the market in
China. ICP-MS was used as a reference method to determine the elemental composition of
these six kinds of samples, and the results in Table 1 show that TP and GP are significantly
different from SF, CF, BF, and BRF, while SF, CF, BF, and BRF are similar. Appropriate
amounts of SF, TP, CF, BF and GP were mixed into BRF to achieve the target concentration:
1%, 3%, 5%, 8%, 10%, 15%, 20% and 25% (w/w). Five grams of mixed powder was pelleted
by electric tablets press applying a pressure of 30 tons for 1 min. The thickness and diameter
of the pellets were about 3 mm and 40 mm, respectively. To eliminate individual differences
in samples, two repeated samples were made for each concentration gradient. A total of
82 pressed pellets were prepared for LIBS measurement without further treatment.

Table 1. The elemental concentration of six kinds of samples were measured by ICP-MS.

Samples
Elemental Concentration (mg/kg)

Ca Cu Fe K Mn Na P Zn

SF 93.88 2.14 28.04 2332.01 12.68 14.61 2600.04 17.00

TP 16,387.98 1.08 3655.71 207.02 102.65 118.67 171.52 4.21

CF 34.15 0.59 8.95 1127.84 0.63 9.48 773.68 6.70

BF 131.17 3.14 21.14 2965.93 8.78 11.61 3138.66 16.78

GP 249,581.83 0.70 47.09 62.84 0.31 49.86 4.01 7.50

BRF 97.07 2.19 10.66 1376.19 35.31 14.51 1702.35 16.23

2.2. LIBS Setup and Measurement

The traditional LIBS device was used in this work. A laser pulse from a Q-switched
Nd: YAG laser (Nimma-400, wavelength: 532 nm; pulse duration: 8 ns; flattened Gaussian
beam, Beamtech Optronics Co., Ltd., Beijing, China) is focused on the sample, which
is placed on a three-dimensional electric displacement platform (DZY110TA-3Z, Beijing
Jiangyun Juli Technology Co., Ltd., Beijing, China), after passing through a quartz lens to
generate plasma. The movement of the x-y-z platform is controlled by the laser rangefinder
( CDX-85A, Aotaisi Industrial Automation Control Equipment Co., Ltd., Guangdong,
China). The plasma emission is detected by the spectrometer (Mechelle 5000, resolution:
λ⁄Δλ = 5000; spectral range: 200–950 nm; Andor Technology Ltd., Belfast, United Kingdom)
via a light collector and UV-enhanced fiber optic with a 50 μm core. The whole system is
controlled by using a self-designed LIBS digital delay generator (LDG 3.0, Wuhan N&D
Laser Engineering Co., Ltd., Wuhan, China). LIBS detection system device schematic is
shown in Figure 1.

In this work, the optimal experimental parameters were as follows, the laser energy
was set as 40 mJ and the repetition frequency was 1 Hz. The gate width and exposure time
of the spectrometer were fixed to 2 μs and 0.101 s, respectively. The gate delay was set
from 1 μs to 4.5 μs, with 0.5 μs as a step to obtain the time-resolved spectra. All samples
were measured in the atmosphere. The LIBS spectra (gate delay: 1 μs; gate width: 2 μs)
of 25% adulteration were shown in Figure 2a. In addition, time-resolved spectra of BRF
and its adulterated samples are also shown in Figure 2. For each pellet, 15 groups of
time-resolved spectra (120 LIBS spectra without accumulation and average) were obtained.
Different adulterations (1%, 3%, 5%, 8%, 10%, 15% and 25%) of the same mixture were

97



Foods 2022, 11, 3398

regarded as the same class, and all samples were divided into six classes including BRF +
SF (class 1), BRF + TP (class 2), BRF + CF (class 3), BRF + BF (class 4), BRF + GP (class 5)
and BRF (class 6). A total of 1230 groups of time-resolved spectra were used for subsequent
qualitative and quantitative analysis.

Figure 1. LIBS rice flour detection system device schematic.

Figure 2. (a) LIBS spectra and (b–g) time-resolved spectra of BRF with 25% GP, BRF with 25% TP,
BRF with 25% SF, BRF with 25% BF, BRF with 25% CF and BRF, where the lines with different colors
in (b–g) represent the spectra with different time delay.
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2.3. Data Analysis

Traditional LIBS analysis only focuses on the spectra radiated by plasma at a certain
gate delay and gate width, which results in only the element intensity information under
this state being obtained, while a large amount of useful information of plasma is lost. To
solve this problem, a novel time-resolved laser-induced breakdown spectroscopy (TR-LIBS)
is proposed in this work. After obtaining LIBS spectra under multiple delay times, this
method extracted features and spliced them, and finally inputted them into the analysis
models. Next, the process of TR-LIBS is described in detail. As can be seen from Figure 2,
the spectra of these samples are sparse, and most wavelengths are redundant. Therefore,
spectral feature selection or dimensionality reduction is needed. In this work, 64 lines were
selected, mainly including lines of nitrogen (N), oxygen (O), hydrogen (H), carbon (C),
calcium (Ca), sodium (Na), potassium (K), magnesium (Mg) and other elements according
to ICP-MS results and National Institute of Standards and Technology (NIST) atomic
spectral database. After feature selection, eight time-resolved spectra were spliced to form a
512-length one-dimensional sequence, which was used as the input of the analysis models.

To verify the effectiveness of TR-LIBS in improving qualitative model analysis per-
formance, LIBS and TR-LIBS were compared based on the traditional machine learning
model and deep learning model. For traditional machine learning models, three commonly
used models, linear discriminant analysis (LDA), Naive Bayes (NB), and support vector
machines (SVM) were selected. LDA is a supervised machine learning algorithm. It can
find the optimal representation of data in low dimensions by maximizing the inter-class
divergence matrix and minimizing the intra-class divergence matrix, and can effectively
extract classification features. The NB algorithm is a method based on Bayes theorem and
independence hypothesis of characteristic condition, which needs fewer parameters and is
not easy to disturb outliers. The SVM algorithm is based on statistical learning theory and
can maximize the interval between data while minimizing the empirical error. It is also
a classical supervised classification algorithm. It uses a kernel function to transform the
linear inseparable problem of low dimensional space into the linear separable problem of
high dimensional space and then realizes the accurate classification of data. These methods
are also the most common and effective analytical methods in spectral analysis [29,30]. For
the deep learning model, a one-dimensional convolutional neural network (1D-CNN) was
constructed. The core idea of CNN is the sparse connection, weight sharing and pooling
sampling. Through convolution operation, the original signal features can be enhanced
and the noise can be reduced. The pooling operation uses the principle of local correlation
of the image to downsample the image, which can reduce the amount of data processing
while retaining useful information. CNN also achieves excellent performance in LIBS
analysis [31].

In addition, to verify the effectiveness of TR-LIBS in improving quantitative analysis
performance, a partial least squares regression (PLSR) model [32] was established on
seven different adulteration ratios of five adulterants. PLSR is a linear multivariate data
analysis method based on factor analysis, which extracts components from the independent
variables that have both higher generalization of information on the independent variable
system and better interpretation of the dependent variable and determines the number
of principal factors, and then builds a regression model of the principal factors and the
dependent variable.

2.4. Evaluation Indexes

The qualitative and quantitative performance of the traditional LIBS and our proposed
TR-LIBS method were compared in detail through several evaluation indexes. Qualitative
analysis is mainly evaluated by accuracy and confusion matrix. Different from qualitative
analysis, the performance evaluation indexes for quantitative analysis mainly include the
determination coefficient (R2), the root-mean-square error (RMSE), and the average relative
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error (ARE) [33]. This work also calculated the limit of detection (LOD) of five adulterants
under PLSR [34]. Their expressions are as follows:
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100
n

n

∑
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δi (1)
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2
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where n is the number of samples, δi is either 1 when a spectrum is classified correctly or
0 otherwise, yi is the certified concentration of the ith sample, y is the average value of yi
over n sample, ŷi is the predicted concentration of the ith sample, spu is the slope of the
Pseudounivariate line, h0min is the minimum projected leverage for a blank sample, varpu is
the variance of the regression residuals.

3. Results of Qualitative and Quantitative Analysis

In this work, the validity of TR-LIBS was verified by spectral analysis of BRF and its
adulterated samples. To solve data problems such as imbalance, the Synthetic Minority
Over-sampling Technique (SMOTE) [35] approach was utilized. Before modeling, the
spectra were randomly divided into the training set and test set according to the ratio of
7:3. The training set was used to train the models and optimize the hyperparameters of the
models. The test set was used to validate the optimized models. To eliminate the influence
of the randomness of sample division, 20 random segmentation operations were performed,
and the average accuracy of models was obtained by averaging the 20 test results. The
qualitative and quantitative analysis results of LIBS and TR-LIBS in brown rice flour and
adulterants were introduced below.

3.1. Qualitative Analysis of Adulterants
3.1.1. The Results of Traditional Machine Learning Models

To make the results universal, three traditional machine learning classification models,
LDA, NB, and SVM, are used for analysis. First, these six types of samples are classified
based on traditional LIBS. Traditional LIBS only uses a single spectrum of each sample for
classification. In this work, LIBS spectra are obtained at eight delay times, such as 1 μs,
1.5 μs, 2 μs, 2.5 μs, 3 μs, 3.5 μs, 4 μs, and 4.5 μs. Therefore, after feature selection, eight
classification models are established based on the spectra obtained under different delay
times, and the results are shown in Figure 3a,b. It can be seen that the performance of
classification models established under different delay times is obviously diverse. The
training set accuracy of LDA classification models is established under different delay
times from 62.12% to 80.66%, and the test set accuracy from 62.82% to 80.95%. The training
set accuracy of NB classification models is 72.92–80.42%, and the test set accuracy is
73.01–80.20%. The training set accuracy of SVM classification models is 83.40–91.29%, and
the test set accuracy is 85.98–92.48%. It can be seen from the results that the accuracy
of the classification models increases first and then decreases with the increase in delay
time. This is due to the continuum emission of the initial plasma being very strong, where
the atomic and ion spectral lines are submerged. With the evolution of the plasma, the
continuum emission intensity decreases, the intensity of atomic and ionic spectral lines
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increases, and the effective information of plasma can be fully mined. However, with
further evolution, the plasma gradually annihilates, and the intensity of atomic and ionic
spectral lines decreases or even disappears. The classification performance of SVM is
significantly higher than LDA and NB. Among them, the SVM model established under the
delay time of 1.5 μs has the optimal performance. The training set accuracy of this model
is 91.29%, and the accuracy of the test set is 92.48%. The training set confusion matrix is
shown in Figure 2c. The misclassification rate between class 1, 3, and 4 is very high. It can
be seen from the ICP-MS results that the very similar type and concentration of elements
among SF, CF, and BF are the reasons for this phenomenon.

Furthermore, TR-LIBS is utilized to classify these six kinds of samples. After feature
selection, spectral features under different delay times are spliced and finally input into
LDA, NB, and SVM classification models. The results of classification models based on
TR-LIBS are shown in Figure 3a,b. The training set accuracy of the LDA classification
model is 89.63%, and the test set accuracy is 90.59%. The training set accuracy of the
NB classification model is 91.11%, and the test set accuracy is 91.27%. The training set
accuracy of the SVM classification model is 94.34%, and the test set accuracy is 95.40%. The
optimal classification model based on TR-LIBS is still SVM. The accuracy of classification
models based on TR-LIBS is obviously better than those based on traditional LIBS, which
is increased by about 3–11%. As can be seen from the confusion matrix of the test set in
Figure 3d, the misclassifications among the six classes were significantly reduced, especially
between classes 1, 3, and 4. These results preliminarily demonstrate the effectiveness of
TR-LIBS in improving qualitative analysis performance.

Figure 3. (a) Training set and (b) test set results of LDA, NB and SVM models based on LIBS spectra
and time-resolved spectra, and the test set confusion matrix of SVM models based on (c) LIBS spectra
under 1.5 μs and (d) time-resolved spectra.

3.1.2. The Results of Deep Learning Models

Furthermore, the convolutional neural network in the deep learning model is used
to compare the performance of traditional LIBS and TR-LIBS. As shown in Figure 4a, an
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18-layer one-dimensional convolutional neural network (1D CNN) is built after structure
and parameter optimization in this work. Three convolution layers, three average pooling
layers, and three Relu activation layers are used. The size of the convolution layer is 1 × 3,
and the size of the average pooling layer is 1 × 5. The number of convolution kernel is set
as 8, 8, and 8, respectively. To prevent over-fitting, the batch normalization layer is placed
before the activation layer. A flatten layer and two full connection layers are used to map
the feature space computed by the front layer to the sample marker space. The number of
neurons in the full connection layer is set to 20 and 6, respectively. The activation function
of the output layer is Softmax. The hyperparameters of the 1D CNN model are Epoch of 60,
Batchsize of 128, and Learning Rate of 0.0005.

This constructed 1D CNN is used to identify these six types of samples based on
traditional LIBS. Similarly, 1D CNN classification models are established based on the
spectra obtained under different delay times, and the results are shown in Figure 4b,c. The
accuracy of the training set ranges from 69.82% to 81.37%, and that of the test set ranges
from 65.30% to 77.37%. The evolution of 1D CNN classification model accuracy with delay
time is consistent with that of the traditional machine learning model. However, the delay
time corresponding to the optimal model is different. The 1D CNN model at 2.5 μs has the
best performance. The accuracy of the training set and the test set is 81.37%, and 77.37%,
respectively. Compared with traditional machine learning models, 1D CNN model has
poor performance, which may be caused by the small amount of data. Convolutional
Neural Network is a deep model with numerous parameters, requiring more data for
parameter optimization and learning. The test set confusion matrix is shown in Figure 4d,
and the misclassification between classes 1, 3, and 4 is very obvious.

Furthermore, a 1D CNN classification model is trained based on TR-LIBS, and the
results are shown in Figure 4b–e. The accuracy of the training set and test set of this 1D
CNN classification model is 90.71% and 85.66%, respectively. It can be seen that compared
with traditional LIBS, the performance of 1D CNN model is significantly improved, and
the test set accuracy is increased by more than 8%. Finally, we compare the classification
accuracy of the traditional LIBS and TR-LIBS combined with machine learning models and
deep learning models on the training and prediction set, respectively, in Table 2. The above
experimental results fully verify the effectiveness of TR-LIBS in improving qualitative
analysis performance from two aspects of traditional machine learning models and deep
learning models.

Table 2. Classification accuracy of traditional LIBS and TR-LIBS combined with machine learning
models and deep learning models on the training and prediction set.

Method Delay
Accuracy of the Training Set (%) Accuracy of the Prediction Set (%)

LDA NB SVM 1D-CNN LDA NB SVM 1D-CNN

Traditional
LIBS

1 μs 80.53 80.42 90.19 69.82 80.78 80.20 91.81 65.30
1.5 μs 80.66 80.05 91.29 77.88 80.95 79.86 92.48 74.57
2 μs 76.34 77.77 88.98 80.69 76.06 77.78 90.39 76.79

2.5 μs 72.34 75.69 87.27 81.37 72.49 75.37 89.22 77.37
3 μs 69.15 73.41 84.14 79.82 69.43 73.54 86.69 75.06

3.5 μs 68.43 73.39 84.95 79.40 68.42 73.69 87.59 73.66
4 μs 64.35 72.96 83.97 79.42 65.04 73.01 86.38 73.27

4.5 μs 62.12 72.92 83.40 79.32 62.82 73.76 85.98 73.87
TR-LIBS — 89.63 91.11 94.34 90.71 90.59 91.27 95.40 85.66
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Figure 4. (a) Structural diagram of 1D CNN model, (b) training set and (c) test set results of 1D CNN
models based on LIBS spectra and time-resolved spectra, and the test set confusion matrix of 1D
CNN models based on (d) LIBS spectra under 2.5 μs and (e) time-resolved spectra.

3.2. Quantitative Analysis of the Adulteration Ratio

Based on the above qualitative analysis of adulterants, seven adulterant ratios (1, 3, 5,
8, 10, 15, and 25%) of five adulterants are further quantitatively analyzed in this section.
The adulteration is composed of different elements. Therefore, the quantitative analysis of
the ratio is a multivariate regression process. In this work, the PLSR model is used to fit the
ratio of adulteration.

Data preprocessing for quantitative analysis for LIBS and TR-LIBS is the same pro-
cess as the qualitative analysis, but the supervision label changes from the adulteration
category to the adulteration ratio. Based on the above evaluation metrics, the quantitative
performance of traditional LIBS and TR-LIBS on the training set and prediction set of five
adulterations is compared in detail in Table 3. For the LIBS method, this section selects
the best results under eight different delays. The data show that the quantitative results
of TP are the best. The LOD of the PLSR model based on LIBS is 7.930%, and the determi-
nation coefficient of prediction (R2

P), root-mean-square error of prediction (RMSEP) and
average relative error of prediction (AREP) are 0.963, 1.563% and 27.578%, respectively. The
corresponding results of the PLSR model based on TR-LIBS are 4.175%, 0.977, 1.312% and
24.509%, respectively. However, the quantitative results of CF are relatively poor, the LOD
of the PLSR model based on LIBS is 51.148%, and the R2

P, RMSEP along with AREP are
0.308, 5.945% and 127.231%, respectively. The corresponding results of the PLSR model
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based on TR-LIBS are 18.680%, 0.701, 4.011% and 61.823%, respectively. The quantitative
results of the PLSR model based on TR-LIBS and LIBS are consistent with the ICP-MS
element detection results. The results of ICP-MS show that the content of Ca in TP and GP
is higher, which is significantly different from that of BRF, while the element levels of SF,
CF and BF are less different from those of BRF. In addition, the quantitative results also
show that, compared with LIBS, the model based on TR-LIBS has improved all evaluation
indexes on the training set and the prediction set, and the model performance is better.

To further analyze the quantitative performance of TR-LIBS and LIBS, the quantitative
performance of PLSR on the two methods is compared by linear fitting with the adulteration
TP as the representative in this section. The results are shown in Figure 5. The above
experimental results prove the effectiveness of TR-LIBS in quantitative analysis.

Figure 5. Linear fitting results of the PLSR model based on (a) LIBS and (b) TR-LIBS in the training
set and prediction set of adulterant TP.

Table 3. Comparison of quantitative analysis results of five adulterants in BRF by LIBS and TR-LIBS.
The subscript value is the corresponding optimal delay.

Adulteration
Samples Method LOD (%)

Training Set Prediction Set

R2
T RMSET (%) ARET (%) R2

P RMSEP (%) AREP (%)

sorghum flour (SF) LIBS(4.5) 20.357 0.662 4.340 58.528 0.606 5.017 69.303
TR-LIBS 12.665 0.832 3.137 56.326 0.782 3.507 70.675

talc powder (TP) LIBS(2.0) 7.930 0.904 2.282 28.870 0.963 1.563 27.578
TR-LIBS 4.175 0.971 1.217 15.312 0.977 1.312 24.509

corn flour (CF) LIBS(1.5) 51.148 0.414 5.992 124.777 0.308 5.945 127.231
TR-LIBS 18.680 0.721 4.095 88.590 0.701 4.011 61.823

buckwheat flour (BF) LIBS(1.5) 19.138 0.722 4.103 74.164 0.536 4.945 87.205
TR-LIBS 11.184 0.861 2.886 46.862 0.822 3.027 44.806

gypsum powder (GP) LIBS(1.5) 8.419 0.885 2.556 37.408 0.895 2.547 32.365
TR-LIBS 4.492 0.968 1.311 19.374 0.974 1.321 21.409

4. Discussion

This section will discuss in detail the main reasons why TR-LIBS is better than tra-
ditional LIBS. Firstly, in addition to the spectral intensity information of elements, the
evolution of spectral intensity is one of the important information in plasma. TR-LIBS can
effectively mine this information by acquiring time-resolved spectra. Secondly, TR-LIBS
can effectively reduce the influence of plasma fluctuations caused by external disturbances
by acquiring multiple spectra, thus having stronger robustness. In summary, TR-LIBS
improves qualitative and quantitative analysis performance by excavating more informa-
tion from plasmas. To make the explanation more convincing, the t-distributed stochastic
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neighbor embedding (t-SNE) algorithm is utilized for the visual analysis of traditional LIBS
and TR-LIBS data. The visualization results are shown in Figure 6. It can be seen that for the
traditional LIBS, there is a serious overlap between the spectra of different samples and no
obvious class boundaries. For TR-LIBS, the spectra of the same sample are more aggregated,
and the spectra of different samples are more dispersed with obvious boundaries.

The LIBS spectral levels of the same element in different matrices are different. There-
fore, the matrix effect has always been considered as one of the problems in the qualitative
and quantitative analysis of LIBS [36]. However, in TR-LIBS, the matrix can be regarded
as effective information as a potential feature for qualitative and quantitative analysis.
Since the time-resolved spectra of the same element in different matrices have different
trends. In addition, compared with the LIBS spectrum collected under the traditional single
time series, the time-resolved LIBS collected under one time series has stronger resistance
to fluctuation. These factors are of great significance to the qualitative and quantitative
analysis of substances. The above principle analysis once again proves the effectiveness of
TR-LIBS in improving the performance of the qualitative and quantitative analysis, which
is of positive significance for promoting the development of LIBS in other fields such as
environmental pollution detection.

According to the results of qualitative and quantitative analysis, this study also shows
some limitations. The element level of the adulterated material is too close to that of the
original blank sample, which will have a negative impact on the qualitative and quantitative
performance of the model. This issue is also one of the directions that LIBS needs to further
research in the field of food safety control in the future.

Figure 6. Results of t-SNE visualization based on spectra under (a) 1, (b) 1.5, (c) 2, (d) 2.5, (e) 3, (f) 3.5,
(g) 4 and (h) 4.5 μs and (i) time-resolved spectra.

105



Foods 2022, 11, 3398

5. Conclusions

To realize the high precision identification of brown rice flour adulteration, this work
proposes a novel method named TR-LIBS. TR-LIBS can excavate more effective information
from plasma by obtaining time-resolved spectra, to improve the performance of the quali-
tative and quantitative analysis. This study fully verifies the effectiveness of the method
from two aspects of adulterant classification and adulterant proportion quantification. For
the qualitative classification of adulterants, the results of three traditional machine learning
models (LDA, NB and SVM) are compared. The results show that the accuracy of the
machine learning models based on TR-LIBS is significantly better than that of the machine
learning models based on traditional LIBS, which is improved by about 3–11%. Moreover,
for the qualitative classification of deep learning models, the test set accuracy of 1D CNN
based on TR-LIBS is improved from 77.37% to 85.66% compared with traditional LIBS, an
increase of more than 8%. For the quantitative analysis of the proportion of adulteration,
the results of PLSR models based on traditional LIBS and TR-LIBS are compared. The
results show that all the performance evaluation indexes of the model based on TR-LIBS are
significantly better than those based on traditional LIBS. The LOD based on LIBS was about
8% to 51%, while the LOD of the five adulterants based on TR-LIBS was reduced from
about 4% to 19%. This indicates that TR-LIBS significantly improves detection performance.
Finally, visual analysis of spectra based on the t-SNE algorithm shows that there are obvious
boundaries between different types of samples in TR-LIBS, while traditional LIBS does not.
These results demonstrate that TR-LIBS is a reliable and stable high-precision qualitative
and quantitative analysis method, which is of great significance for promoting the further
application of LIBS in various fields.
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Abstract: The 1H-NMR carbohydrates profiling was used to discriminate fruits from Rosaceae family
in terms of botanical origin and harvest year. The classification was possible by application of
multivariate data analysis, such as principal component analysis (PCA), linear discriminant analysis
(LDA) and Pearson analysis. Prior, a heat map was created based on 1H-NMR signals which offered
an overview of the content of individual carbohydrates in plum, apricot, cherry and sour cherry,
highlighting the similarities. Although, the PCA results were almost satisfactory, based only on
carbohydrates signals, the LDA reached 94.39% and 100% classification of fruits according to their
botanical origin and growing season, respectively. Additionally, a potential association with the
relevant climatic data was explored by applying the Pearson analysis. These findings are intended
to create an efficient NMR-based solution capable of differentiating fruit juices based on their basic
sugar profile.

Keywords: 1H-NMR; carbohydrates; fruits; PCA; LDA

1. Introduction

Nowadays, people pay particular attention to a balanced and controlled diet. Thus,
there is a high demand for fresh fruits and derived juices which are considered, along
with vegetables, the healthiest foods. People have also begun to recognize their beneficial
contribution to health by protecting the human body against different type of illnesses
through their vitamins which usually result in an immunity increase [1]. Unfortunately,
this high demand for quality fruit juices has also attracted some frauds as shown in several
studies on this topic [2–5]. Traceability, establishing chemical profile, appropriate physical
attributes, adequate textural properties, controlled toxins and microbial contamination, as
well as processing and storing method all represent characteristics of high quality, particu-
larly for agricultural products. For example, a common fraudulent act is represented by
the adulteration of juices by addition of other types of cheaper juices obtained from less
expensive or more common fruits in the respective area [6]. Among others, dilution with
water, sugar syrup and colorants, production method (conventional, organic, traditional
techniques) as well as non-declared processing technologies (freezing, irradiation) can be
mentioned [7]. Fruit juices have a high added value, and they are also more vulnerable
to being subjected to different adulteration techniques because of their acknowledged
attributes. Accordingly, authorities must be able to determine the compliance of a suspect
product based on the product description, identify fraudulent processing practices, prevent
adulteration, and control any other practices that may deceive the consumer. As is well
known, it is not only consumers who benefit from food authenticity assessment but also
the food industry parties which rely on the ability to ensure their commodities’ label con-
formity and brand protection. In order to verify the authenticity of food items and guide
and assist law enforcement, official bodies are periodically requesting an updated list of an-
alytical procedures. In this scope, many analytical techniques such as molecular techniques
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(DNA-based approaches) [8], isotopic approaches [9], ultraviolet-visible spectrophotometry
(UV-VIS), high performance liquid chromatography (HPLC), gas chromatography (GC),
inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectroscopy
(AAS), and infrared spectroscopy (IR) are used to control and to detect the food products’
adulteration [2,6]. A single analyte or approach may rarely be associated with overall
quality compliance because of the fruit juice matrices’ complexity. As a result, their quality
is derived from a unique combination of characteristics. To acquire the defined quality
markers and control the critical production parameters, it is often essential to use multi-
variate data analysis. It is easier to discriminate between fruit samples and establish their
authenticity when multivariate analysis is used in conjunction with different spectroscopic
or chromatographic based methods. Data fusion may offer more precise information about
a sample and better interpretation than a single approach, but usually the use of several
techniques is not economically profitable, doesn’t respect green chemistry principles, and
is time consuming. In this respect, nuclear magnetic resonance (NMR) is a non-destructive
technique providing high analytical precision, enabling simultaneously compounds identifi-
cation, exposing complex frauds, and, in conjunction with chemometric analysis, revealing
possible markers of fruits authenticity based on their composition profile [10]. Moreover,
through NMR, spectra fruits can be classified according to their varietal and geographical
origin [11–14], this being possible by application of some dedicated instruments, such
as unsupervised machine learning techniques (principal component analysis—PCA) and
pattern-recognition tools (discriminant analysis—DA).

The 1H-NMR spectra in combination with PCA and DA have been applied to evaluate
changes in the composition and metabolic profile of juices during thermal concentration
process [15] for the correlation of different varieties of fruits [16,17] to reveal the juices’
adulteration [18], and to evaluate the plant growth regulator in strawberries [19]. Also,
the metabolomic analysis of 1H NMR results obtained from fruit juices investigation
give an overview about the relationships between the major metabolites and the sensory
characteristics of the fruits. Among these metabolites, the carbohydrate content is the most
relevant for the maturity level of fruits and for the consumer perception, and its domain
is represented by three predominant components: glucose, fructose and sucrose [20,21].
Generally, the glucose and fructose are presented in lower quantities than sucrose and
their relation affects the taste of the fruits [22]. Thus, the sweetness of the fruits is directly
influenced by the fructose quantity which is 2.3 and 1.7 times sweeter than glucose and
sucrose, respectively [20]. Beside this, fructose is highly appreciated for its therapeutic
effect on the gastrointestinal tract [22,23]. Also, sucrose is appreciated as sweetener, energy
source, and antioxidant [22], but its excessive consumption is closely related to the risk of
caries, obesity, and diabetes [24].

In this study, the NMR method coupled with multivariate statistical analysis was used
to obtain information about the variation of carbohydrate content in different fruits (plum,
cherry, sour cherry, and apricot) from the Rosaceae family, Prunus genus, harvested in three
different years. Furthermore, discrimination models based on DA were developed for
samples classification. Another approach was the evaluation of different climatic conditions’
(temperature and precipitation) influence over the three investigated years on the fructose,
sucrose, glucose, and total carbohydrates content. These data will represent a contribution
to regional horticultural varieties’ characterization as well as provide useful information
for industries which use fruit-derived nutrients in food production.

2. Materials and Methods

2.1. Chemicals

All analytical standards and reactants used for samples preparation and data interpre-
tation were purchased from Sigma-Aldrich (St. Louis, MO, USA) and are hereafter listed:
HCl (5N), NaOH (5N), D2O, and TMSP.
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2.2. Sample Collection and Pre-Treatment

The fruits analyzed in this study were chosen from the Rosaceae family, Prunus genus,
namely plum, cherry, sour cherry, and apricot. In particular, 76 samples were analyzed from
Romania. The fruits were provided by Vâlcea Fruit Growing Research and Development
Station, Romania, harvested in a state of consumption maturity, and the collected fruit
samples were cooled and transported to the laboratory, assuring the maintenance of the
cold chain. Then, the fruits (approximately 5 kg per variety) were washed with water, kept
frozen, and stored at −20 ◦C in a freezer until sample preparation.

The juice was obtained by squeezing the whole fruit using a juicer (Moulinex, Jinan,
China), and then approximately 100 g of sample was centrifuged with 10,000 rotations/min
(Hettich ROTINA 420, Tuttlingen, Germany) for 10 min and filtered through a filter with
45 μm porosity, leading to about 20 mL being obtained. Further, the samples were pH
adjusted to 2.65 by using 5 N HCl and 5 N NaOH. For NMR analysis, 700 μL of each sample
was combined with 70 μL of deuterium oxide (D2O), 99.9% D containing, and 0.05 wt. % of
3-(trimethylsilyl) propionic-2,2,3, 3-d 4 acid sodium salt as an internal standard (TMSP).
The mixtures were transferred to 5 mm NMR tubes.

2.3. NMR Analysis and Data Processing

All 1H-NMR spectra were recorded at 300 K temperature on a 400 MHz Bruker Avance
spectrometer (Bruker France SAS, Wissembourg, France), operating at 9.4 T, equipped with
a 5 mm BBO probe and ATM (Automatic Tuning Matching). In addition, the instrument
was fitted with an autosampler from Bruker controlled by Icon NMR software which allows
a loading of 60 samples. To complete the temperature equilibration, a time delay of 5 min
between sample injection and preacquisition calibrations was set. The suppression of H2O
signals was assured through Bruker standard pulses sequence, noesygppr-1d, by applying
continuous waves during the relaxation delay (10 s) with a mixing time of 10 ms. Each
spectrum is the result of 8 scans and 32768 (33 k) data points. The spectral width was
adjusted to 6402 Hz with an acquisition time of 2.559 s per scan. Spectra were Fourier
transformed, manually phased, baseline corrected, and referenced to TMSP signal at 0 ppm
using TopSpin 3.2 software (Bruker Biospin, Rheinstetten, Germany). Principal component
analysis (PCA) and discriminant analysis (DA) were performed with LSTAT Addinsoft
2014.5.03 software version (Addinsoft, New York, NY, USA) in order to evaluate some
potential variables and their influence on fruit juices’ discrimination. Also, to reveal the
possible relationships between sugars and climatic conditions, the Pearson correlations
coefficient at p ≤ 0.05 was used.

3. Results and Discussion

3.1. Fruits 1H-NMR Spectra and Assignment of the Interest Peaks

In order to investigate the potential classification of fruit juices according to their
botanical origin (apricot, cherry, sour cherry, and plum) and harvest year (2015, 2016, and
2017) their metabolic profile was obtained by using the 1H-NMR spectroscopy. A typical
400 MHz 1H 1D-NOESY NMR spectrum for a juice sample is shown in Figure 1.

Generally, the fruit juices’ spectra are dominated by α-glucose, β-glucose, sucrose,
and fructose signals, having the highest concentration among all the other metabolites.
These belong to the carbohydrates region of the spectrum, which is placed in the middle-
frequency region of the spectrum between 3.0 and 6.0 ppm, and it is followed by, in terms of
signal intensities, amino acids, aliphatic region (from 0.5 and 3.0 ppm), and phenolic region
(from 6.0 to 8.5 ppm) [16,17,25–29]. When the 5.40 to 4.10 ppm region was investigated, a
pair of duplets were observed at 5.22 and 4.63 ppm that correspond to α and β glucose
hydrogen in position 1. In the same range was identified one more pair of duplets at 5.39
and 4.20 ppm, which were assigned to hydrogen in position 1 from glucose and position
2 from fructose found in the composition of a sucrose molecule. Among the investigated
spectra, sucrose signals were also detected at 5.40, from 4.19 to 4.21 ppm, 3.75 to 3.85 ppm,
3.67 and 3.54 ppm, while glucose signals were observed at 5.23, 5.22, 3.76, 3.71, 3.51, 3.505,
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3.43, and 3.41 ppm, and from 4.64 to 3.21 ppm. Fructose signals were in the range of
3.57 to 3.60, 4.10 to 3.99 ppm, and 3.68 to 3.77 ppm, while the peaks were found at 3.60
and 4.10 ppm. The identification of carbohydrates signals was possible by consulting the
literature [15,18,25–29]. Thus, the relevant 1H-NMR peaks obtained for the carbohydrates
region are reported in Table 1, and, for fruit juices’ classification, each signal was taken into
account, this region summing a total of 38 signals. These signals were different for all the
studied fruit juices. For example, sucrose showed higher intensities in plum and apricot
juices, while α-glucose, β-glucose, and fructose signals were more intense in the case of
cherry and sour cherry juices.

 
Figure 1. General 1H-NMR spectra of apricot fruit juice—carbohydrates region.

Table 1. Chemical shift (δ) and assignment of metabolite resonances in the 1H-NMR spectra of plum,
cherry, sour cherry, and apricot juices.

Metabolites

δ (ppm), Multiplicity (j, Hz) and Assignment

Plum Cherry Apricot Sour Cherry
Prunus domestica Prunus avium Prunus armeniaca Prunus cerasus

(n = 27) (n = 22) (n = 15) (n = 12)

β-d-glucose
3.23 (dd, CH), 3.23 (dd, CH), 3.23 (dd, CH), 3.23 (dd, CH),
3.40 (dd, CH), 3.40 (dd, CH), 3.40 (dd, CH), 3.40 (dd, CH),

4.63 (d, H1) 4.63 (d, H1) 4.63 (d, H1) 4.63 (d, H1)

methanol 3.36 (s, CH3) 3.36 (s, CH3) 3.36 (s, CH3) 3.36 (s, CH3)

α-d-glucose
3.43 (dd, CH), 3.43 (dd, CH), 3.43 (dd, CH), 3.43 (dd, CH),
3.50 (dd, CH), 3.50 (dd, CH), 3.50 (dd, CH), 3.50 (dd, CH),
5.22 (d, CH) 5.22 (d, CH) 5.22 (d, CH) 5.22 (d, CH)

fructose
3.60 (d, CH2) 3.60 (d, CH2) 3.60 (d, CH2) 3.60 (d, CH2)

3.99 (H5), 3.99 (H5), 3.99 (H5), 3.99 (H5),
4.10 (d, H3, H4) 4.10 (d, H3, H4) 4.10 (d, H3, H4) 4.10 (d, H3, H4)

sucrose 4.20 (d, H3), 4.20 (d, H3),
5.39 (d, H1) 5.39 (d, H1)

3.2. Fruits Variety-Based Classification

In order to investigate the similarities between carbohydrates’ metabolites in different
fruit varieties, a heat map was generated (Figure 2). The heat map was built on the signals
of sucrose, fructose, α-glucose, and β-glucose. As it can be seen from Figure 2, plums and
sour cherries have the same content of sucrose, while cherry and sour cherry, as in the
case of plum and apricot, have the same content of fructose. Moreover, similar contents
of α-glucose and β-glucose in cherry and apricot compositions can be observed. The
lower level of sucrose than α-glucose and β-glucose in cherry juices was also indicated
in other study [28], this sugar being produced only in leaves by photosynthesis and
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translocated from different parts of the tree through phloem [20]. Therefore, the sucrose
content is directly proportional with the photosynthetic rate. Beside this, the changes in
fruit metabolism and the dilution caused by the fruit volume increase have significant effect
on the whole carbohydrates content [20].

Figure 2. Heat map built on 1H-NMR carbohydrates signals (F1–F8, fructose signals; M, methanol
signal; S1–S10, sucrose signals; SF1 and SF2, sucrose-fructose signals; αG1–αG8, alpha glucose signals;
and βG1–βG9 represent the beta glucose signals).

As previously stated, the NMR profiles reveal the existence of the same compounds
but in different quantities. In order to determine the existence of latent variables linking
different compounds, principal component analysis was performed to the intensity of
38 1H resonances (Table 1 and Figure 3). PCA analysis provided additional information
regarding the separation of fruit juices, in term of botanical origin, as well as variable
reduction, and assessment of clustering in PCA score. The four total principal components
extracted, whose eigenvalues exceeded 1, explained 84.86% of the total variance. From this
cumulative percentage the first two principal components accounted for 78.61% (72.81%
for PC1 and 5.80% for PC2) indicating that it can be applied to obtain sample clusters in
two-dimensional space. Thus, Figure 3 revealed a slight separation between the fruits with
different botanical origin. The clearest separation is between apricots and the other fruit
juices. The main differentiation was performed among the first principal component. Sour
cherry and cherry juices samples have negative values for PC1, while apricot samples have
positive values for PC1. A visible trend of separation is observed between cherries and
sour cherries among PC2, the last being positively correlated with PC2. The plum samples
are scattered, without a clear separation tendency.

For a closer examination regarding the relationships between the fruit variety and
certain metabolites, the high dimensional data was projected to a lower dimensional
subspace by means of the calculated principal components. (Figure 3b). Thus, it can be
observed that the apricot juice is defined by a high content of sucrose, and cherry and
sour cherry juices present a higher content of fructose, α-glucose, and β-glucose, while
plums are characterized by a moderate content of sugars. Sugar accumulation in fruit is a
dynamic quantitative trait that is usually influenced by environmental factors and is based
on a variety of related physiological and biochemical processes. It is also determined by a
number of enzymes that are correlated with the natural ecosystem and agricultural practices.
Sucrose is generally accepted as the predominant sugar present in apricot fruit followed
by glucose and fructose [30,31]. The mechanisms that influence the sugar profile of fruits
have not been thoroughly studied. In apricots from several apricot-growing regions around
the world, the proportions of the four carbohydrates varied substantially (sucrose: 18 to
82%; glucose: 5 to 28%; fructose: 2 to 17%). Individual sugar levels may vary significantly
as a consequence of both genetic variability and environmental factors. According to
Zhang [32], the patterns of each carbohydrate in apricots are genetically controlled, the
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accumulation being correlated to the sucrose-metabolizing enzyme activity [32]. Another
important aspect regarding apricot sucrose content is related to the harvest maturity.
Generally, the growth pattern of stone fruits is presented as a double-sigmoidal curve
with three distinct growth phases: stage I characterized by a rapid growth period, stage II
presented as a period of reduced growth, and stage III characterized by an even more rapid
growth [33]. Overall, in a study conducted by Xi [34] regarding apricot fruit development
and ripening, it was discovered that all sugars present an amplified accumulation pattern
during the whole growth phase, with glucose and sucrose being the predominant identified
carbohydrates. During the first stage, glucose was the most abundant sugar, but, as the
process advanced, sucrose concentration increased exponentially. At the end of stage III,
the sucrose concentration surpassed the total amount of glucose [34]. The investigation
performed by Bae [35] presented similar results, namely sucrose content being smaller or
even undetectable compared to glucose and fructose in the first stage of growth, followed by
a significant increase at the full maturation stage [35]. These results indicate that the apricot
carbohydrates accumulation metabolism shifts from glucose-predominated to sucrose-
predominated during fruit development and ripening, presenting a balanced transition
from synthesis to degradation. Furthermore, harvest maturity assessment represents a
key component in determining fruit quality and customer acceptance [36]. Despite the
fact that the apricot harvest ripeness period depends on the intended application, such as
fresh consumption in local markets or long-term transit, realizing it too soon may have
a detrimental impact among fruit sensory quality (as they will not be able to continue
maturing or ripen properly), even if it makes it more resistant to postharvest handling.
Apricots picked at appropriate maturity indexes are expected to present a higher customer
satisfaction than those harvested at commercial ripe maturity, as is the case of peaches or
nectarine [37]. All of these findings suggest that apricot sucrose content could be considered
a variety and maturity marker. As a result, the PCA scores plot represented a valuable
tool for visualizing possible discrimination within the data set that can almost classify
the juices, from Prunus genus but does not represent a perfect analysis to complete the
botanical origin separation based only on carbohydrates data. In this regard, for further
investigation of potential botanical origin separation of fruit juices, LDA is a technique
that maximizes group separation (Figure 4). LDA proceeds by constructing discrimination
functions from linear equations of variable data sets. The obtained model could be used
to classify unknown observations (such as questionable or unknown samples). LDA was
generated directly to the raw data set even if spectral data are known to be highly collinear.

 
(a) (b) 

Figure 3. (a) PCA score plot of four fruit samples’ variety derived from conventional 1H-NMR
spectra; (b) correlation between the signals and factors responsible for fruits’ variety separation.
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(a) (b) 

Figure 4. (a) 2D and (b) 3D plots showing the discrimination of fruit juices samples according to their
botanical origin.

Three discriminant functions were obtained by LDA, which were demonstrated as
suitable for correct classification. A total of 100% of the distribution was explained by this
model; the first discriminant function accounted for 74.93%, the second function for about
19.46%, and the third one for 5.61%. Analyzing Figure 4a, it can be observed that the plum
samples are found in the superior quadrant. The apricot samples are distributed in the
third quadrant, excepting one sample. For the sour cherry and cherry, the results are not
satisfactory because, as in the case of the other fruits, the separation among the two groups
was not achieved due to some observations that overlapped. Function 1 provides the main
separation between apricots and the other three fruit juices and was primarily correlated
with sucrose, followed by fructose. Generally, the LDA results were superior and a reliable
classification of fruit juices by botanical origin was achieved, except the cherry and sour
cherry juices, where a slight separation was observed when using all three discriminant
functions. The third discriminant function was mainly correlated with the sucrose signals,
these not being identified in the cherries’ and sour cherries’ spectrum or being present in
very low concentrations. The apricot, cherry, plum, and sour cherry juices were correctly
classified with 100%, 100%, 96.30%, and 91.67%, respectively. The results obtained by the
two applied multivariate techniques are similar; this fact implies that the results are reliable.
More than 92% of the total fruit juices are classified correctly. However, these results could
be biased to a certain extent, due to the unbalanced number of samples in each class; there
two times more plum samples than apricot and sour cherry. Despite this drawback, the
classifications for apricot, cherry, and plum are promising, once the classes are equilibrated.

3.3. Harvest Year-Based Classification and Climatic Condition Influence

For harvest year-based classification of fruit juices, the same procedure was followed,
but the signals of carbohydrates were grouped after the three growing years (2015, 2016,
and 2017) in order to obtain the statistical analysis.

The PCA results according to growing year are shown in Figure 5a. Unfortunately,
the plots are spread over the all quadrants and no clusters were formed based on the
harvest years.
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(a) (b) 

Figure 5. (a) PCA and (b) DA F1/F2 score plot showing the separation between the 3 harvest years.

Despite the fact that PCA presented a differentiation between the botanical origin of
the fruits, in the case of the harvest years, the discrimination within each other with the
same method was not achieved. In this respect, to come with a supplement to strengthen
the results or to clear up some ambiguities related to PCA analysis, the same data were
subjected to LDA analysis. The results of the LDA are superior (Figure 5b), and, accord-
ing to the confusion matrix for the cross-validation results, a 96.05% was reached (two
2015 samples were classified as 2017, and one 2017 sample was classified as 2015). The
first function accounted for 75.33% and the second function for 24.67%. All three groups of
juice samples from fruits harvested in 2015, 2016, and 2017 are visibly separated. Taking
into account the different botanical origin of the samples, a good classification of the three
harvest years was done.

Due to the fact that each growing season could be different from the point of view
of temperatures and precipitation, the potential influence of climatic condition on the
sugar content was accessed by applying the Pearson analysis. Prior, the percentage of
individual sugar from total sugars and the average temperature and precipitation recorded
in the growing months of each season (June, July and August) for the studied years
were calculated.

According to climatic condition data (temperature and precipitation), the growing sea-
sons were different, presenting for the 2015 harvest year a seasonal average temperature of
20.8 ◦C and 58.3 mm precipitation, 20.3 ◦C and 86.7 mm for 2016, and a higher temperature
(22.5 ◦C) and lower precipitation (66.7 mm) for 2017. In 2016, the average precipitation
quantities were significantly higher than in 2015 and 2017, while the same year recorded
the lowest average temperature, with almost 2 degrees below the average temperature
recorded in 2017.

As it is shown in Table 2, the fructose and β-glucose are negatively correlated with
temperature and positively with precipitation. Unfortunately, correlation between sucrose
and precipitation or temperature was not found. From the same analysis, it can be remarked
that fructose is highly and positively correlated with α-glucose and β-glucose. Instead,
the sucrose contents significantly and negatively correlated with fructose, α-glucose, and
β-glucose. Fruit juice quality is generally controlled by the growth conditions, being first
dependent on the growing region climate (terroir, rainfall, humidity, hours of sun, tempera-
ture day/night, etc.) and secondly on technological influences. If the vintage year doesn’t
provide ideal circumstances for grape growth and quality, technology and enology can
only have a limited impact. Even if a strong correlation was not observed, the temperature
affects seedling development, photosynthesis, and the soluble sugar (fructose, glucose,
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and sucrose) content during fruit production [38,39]. The sugar content in various plant
parts is known to decrease at high temperature due to plants’ defense mechanisms to use
photosynthetic products to support higher metabolic activities, while lower temperatures
encouraged sugar accumulation. The observed differences in temperatures could have
influenced the investigated fruits’ soluble sugar leading to a possible explanation of the
separation of the fruits according to the harvest.

Table 2. Pearson correlation coefficients between precipitation, temperature and carbohydrates.

Variables Temperature Precipitation Carbohydrates F S SF αG βG

Temperature 1 −0.564 −0.047 −0.261 0.121 0.105 −0.066 −0.173
Precipitation −0.564 1 0.089 0.107 0.089 0.092 −0.036 0.083
Carbohydrates −0.047 0.089 1 0.567 −0.672 −0.679 0.693 0.698

F −0.261 0.107 0.567 1 −0.856 −0.863 0.778 0.816
S 0.121 0.089 −0.672 −0.856 1 0.993 −0.908 −0.885

SF 0.105 0.092 −0.679 −0.863 0.993 1 −0.893 −0.886
αG −0.066 −0.036 0.693 0.778 −0.908 −0.893 1 0.903
βG −0.173 0.083 0.698 0.816 −0.885 −0.886 0.903 1

4. Conclusions

Untargeted 1H-NMR carbohydrates profiling of fruit juice proved to be a powerful
tool for the classification and characterization of different Prunus sp. varieties. Apricot,
cherry, sour cherry, and plum juices’ 1H-NMR spectra were observed to be dominated by
sugars, which play a key role in defining the fruit’s taste and flavor and make them good
phytomarkers for species differentiation. Both botanical origin and harvest year could be
assessed by means of multivariate analysis of the data, highlighting fruit specific sugar
chemical traits. The carbohydrates profile differs among the analyzed fruit juices, and,
based on their signal intensities, the PCA revealed strong correlation between sucrose and
apricot juice, while the fructose and glucose were correlated with cherry and sour cherry
juices. Despite these specific correlations, for a better botanical origin classification, an
LDA was performed. A successful two-dimensional separation between plum and apricot
juices was achieved, whereas cherry and sour cherry juices were slightly differentiated by
implying all three discriminant functions. Additionally, the LDA represents a powerful
technique for harvest year separation as the different botanical origin juices with different
growing seasons (2015, 2016 and 2017) were clearly separated. From the point of view of
climatic condition, by applying Pearson analysis, some correlations between fructose and
β-glucose with temperature and precipitation were noted. However, solid associations
between basic climatic factors and certain carbohydrate metabolic profiles could not be
found, further studies being needed in order to obtain better correlations. Nevertheless,
these results suggest the possible use of NMR-based sugar profiling for Prunus sp. botanical
origin prediction and assessment of the possible correlation with different fruit juices,
and more models can be developed for future predictions related to their quality and
authenticity. In this regard, it should be noted that quality assessment was not the primary
goal of the current fruit juices carbohydrate profile characterization research, which simply
aimed to indicate potential metabolic profile variations across different species.
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Abstract: Members of the genus Salvia are used as culinary herbs and are prized for their purported
medicinal attributes. Since physiological effects can vary widely between species of Salvia, it is of
great importance to accurately identify botanical material to ensure safety for consumers. In the
present study, an in-depth chemical investigation is performed utilizing GC/Q-ToF combined with
chemometrics. Twenty-four authentic plant samples representing five commonly used Salvia species,
viz. S. apiana, S. divinorum, S. mellifera, S. miltiorrhiza, and S. officinalis, are analyzed using a GC/Q-ToF
technique. High-resolution spectral data are employed to construct a sample class prediction (SCP)
model followed by principal component analysis (PCA) and partial least square discriminant analysis
(PLS-DA). This model demonstrates 100% accuracy for both prediction and recognition abilities.
Additionally, the marker compounds present in each species are identified. Furthermore, to reduce
the time required and increase the confidence level for compound identification and the classification
of different Salvia species, a personal compound database and library (PCDL) containing marker and
characteristic compounds is constructed. By combining GC/Q-ToF, chemometrics, and PCDL, the
unambiguous identification of Salvia botanicals is achieved. This high-throughput method can be
utilized for species specificity and to probe the overall quality of various Salvia-based products.

Keywords: Salvia spp.; GC/Q-ToF analysis; chemometrics; quality evaluation; chemical fingerprints

1. Introduction

Members of the plant genus Salvia have a long and rich history of use as both culinary
and medicinal herbs [1,2]. In general, the perennial shrubs have long stems which can reach
heights of 50–100 cm. Although found throughout the world, most Salvia species grow in
the Mediterranean region, Southeast Asia, and Central and South America [2]. Alluding to
the importance of this plant’s medicinal properties, the word “Salvia” is derived from the
Latin word “salvere”, meaning “to save” [2]. Members of the genus Salvia have been pur-
ported to possess a wide range of pharmacological properties, including anti-inflammatory,
anti-dementia, anti-nociceptive, anti-hypertensive, anti-lipidemic, anti-mutagenic, anti-
hyperglycemic, and anti-ischemic effects [1–5]. In addition to these purported properties,
members of this genus have also been reported to possess anti-microbial and anti-oxidative
activities [2–5]. These pharmacological properties vary among Salvia genus members.
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Perhaps one of the most well-known members, Salvia officinalis, is utilized both as a
culinary and a medicinal herb. This evergreen plant, native to southern Europe, is also
cultivated in the United States and Central Asia [5]. As a medicinal herb, both the British
Pharmacopoeia and the German Commission E have recognized its use to treat oral cavity
and stomach ailments [5,6].

Another genus member, Salvia apiana (white sage), also has a rich history of use as a
medicinal herb. This drought-resistant shrub, native to California and Baja California, can
grow up to 1–3 m high. Traditionally, the herb has been used for its purported diuretic,
anxiolytic, and anti-microbial properties [7]. In addition to its medicinal use, the plant is
also an important part of traditional Native American religious and healing ceremonies [7].

Salvia mellifera (black sage), native to California and parts of Mexico, has also been
used as a traditional healing herb. An infusion comprised of the aerial portions of the plant
has traditionally been used as a drink to relieve muscle aches and pains [8].

As a popular ingredient in many traditional Chinese medicine (TCM) preparations,
the red rhizomes of Salvia miltiorrhiza contain a unique group of compounds known as
tanshinones, which have been reported to possess a broad spectrum of pharmacological
activities [3,9]. The natural habitat of S. miltiorrhiza includes the hilly regions of China,
Japan, Korea, and Mongolia; however, due to growing demand, most plant material is
typically obtained from commercial farming [9]. Commonly referred to as “Danshen” or
“Tanshen” in China, the rhizomes are purported to be beneficial for a number of disorders,
including hyperlipidemia, vascular diseases, stroke, arthritis, and hepatitis [9].

Salvia divinorum is the only member of the Salvia genus to contain salvinorins, a group
of neoclerodane diterpenes [10,11]. The plant, which can grow up to 1.5 m high, is native
to southern Mexico. Traditionally, the Mazatec people would chew the herb or prepare
an infusion using water and portions of the herb to take advantage of its psychoactive
compounds. One compound, in particular, salvinorin A, possesses psychoactive properties
and is a highly selective kappa-opioid receptor agonist [6,11]. Due to its high abuse
potential, many local jurisdictions and countries have begun or are considering regulating
the herb and/or salvinorin A as a controlled substance [6,11].

With nearly 900 species included in the genus Salvia, identifying plant materials and
products can be a daunting task [4]. Thus, chemical fingerprint analyses represent a compre-
hensive approach for the quality assessment of Salvia botanicals and their finished products.
Clearly, this is an important task given the wide range of pharmacological properties
found in members of this genus. A range of methods have been developed to aid in the
species identification of Salvia plant material [6,11–17]. Perhaps one of the most popular
analytical techniques utilized for the identification and quality control of Salvia species
is liquid chromatography/mass spectrometry (LC/MS) [6,12,13,15–19]. A brief literature
search can yield numerous studies concerning this subject [6,12,13,15–19]. In addition to
traditional LC/MS, techniques utilizing liquid chromatography/quadrupole time-of-flight
(LC/Q-ToF) and liquid chromatography/triple quadrupole mass spectrometry (LC/TQ)
have also been described [6]. While valuable to researchers, LC/MS/MS instruments are
not often used by botanical industries for quality control purposes due to the cost of the
instrument and the necessary technical skills required to develop and operate such tools.
Due to the physical separation characteristics of LC/MS, the vast majority of previous
research has focused on the non-volatile, LC-amendable polar compounds present in Salvia
species [6,12,13,15,16,18,19]. Although polar compounds of Salvia are pharmacologically
important, volatile constituents have also been implicated with bio-active properties and
could be useful for establishing species-specific chemical fingerprinting [4,7,20,21].

DNA barcoding is another technique that has been proposed to aid in the species
identification of Salvia. The authors of one study developed an effective DNA barcoding
method to differentiate S. miltiorrhiza from other Salvia species [22]. Although differentiation
was achieved, this technique involved extensive and complex sample preparation which
did not lend itself to high-throughput sample analysis. In addition, the authors explained
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that their method was particularly developed for S. miltiorrhiza identification and may not
be ideal for other Salvia species [22].

A high-performance thin-layer chromatography (HPTLC) fingerprinting method for
20 Salvia species was developed by Ciesla and co-workers [23]. The method utilized
polar and semi-polar compounds (mostly polyphenols) for identification purposes and
was successfully validated. Regarding its applicability as a high-throughput method, the
authors estimated that 20 samples could be fully processed within one hour. However,
one major limitation of this method was the requirement for a large amount of sample
material (around 5 g), which could be problematic if the plant material is difficult to obtain,
i.e., S. divinorum [23]. Therefore, there is a need to develop efficient and reliable methods.

Gas chromatography/mass spectrometry (GC/MS) is a well-established means of
obtaining chemical fingerprints from various plants, primarily by analyzing volatile com-
pounds. For example, this technique has been used to establish the chemical finger-
prints of Salvia species by Rzepa and colleagues [24]. Based on the number of products
sold in the U.S. market and pending botanical drug applications, five Salvia species, viz.
S. apiana, S. divinorum, S. mellifera, S. miltiorrhiza, and S. officinalis, were selected to conduct
a comprehensive and comparative study for quality evaluation and identification purposes.
Currently, to the authors’ knowledge, a comparative study of the five selected Salvia species
has not been conducted. Given these five species’ extensive history and current use as
medicinal herbs, it is important to develop reliable and efficient identification methods
for species specificity purposes and to assure the overall quality of various Salvia-based
finished products.

With this information in mind, our goal is to develop a simple, reliable, and efficient
GC method coupled with accurate mass spectrometry to establish species-specific chemical
fingerprints of Salvia. Chemometric analysis and principal component analysis (PCA)
are applied to differentiate between Salvia species, as well as to establish a sample class
prediction model (SCP) based on partial least square discriminant analysis (PLS-DA) for the
quality evaluation of commercial products. Marker and characteristic compounds present
in each of the five species are identified. The integration of analytical data with statistical
tools and the development of personal compound databases and libraries (PCDL) are
anticipated to expedite the rapid evaluation of the quality of Salvia-based finished products,
including raw materials used in commerce.

2. Materials and Methods

2.1. Plant Material

Twenty-four authentic plant samples from five Salvia species were used for this inves-
tigation. The samples included both leaf and aerial portions of the plants from S. divinorum,
S. officinalis, S. mellifera, and S. apiana, with each having 3, 7, 3, and 5 individual samples,
respectively. S. divinorum samples were procured from Trish Flaster (Botanical Liaisons,
LLC, Boulder, CO, USA) (#578) and cultivated at the Medicinal Plant Garden (University,
MS, USA) (#18434, #22491). S. officinalis samples were obtained from the Missouri Botanical
Garden (St. Louis, MO, USA) (#7917, #7686, 20712), China (#16732), Richters.com (#13095),
Trish Flaster (#2852), and Williams Warehouse (USA) (#1523). S. mellifera samples were
sourced from AHP (Scotts Valley, CA, USA) (#22771, #22772), and SageRageHerb (Montclair,
CA, USA) (#22506). S. apiana samples were obtained from AHP (#22773), Richters.com
(#13096), SageRageHerb (Montclair, CA, USA) (#22502), and commercial sources (#22497,
#22498). Six individual samples from the root portion of S. miltiorrhiza were also investi-
gated. These samples were procured from Harvard Medical School (Boston, MA, USA)
(#9729), the Medicinal Plant Garden (#11750), Beijing Yuke Botanical Development Co.
Ltd. (Beijing, China) (#767), Missouri Botanical Garden (#8676, #12535), and a commercial
source (#5399). The authenticity of the collected botanical samples was established based
on morpho-anatomical and organoleptic properties by Dr. John Adams, a taxonomist at
the National Center for Natural Products Research (NCNPR), University of Mississippi. In
addition, DNA barcoding was also used for species verification purposes. Voucher samples
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of all the botanical material were deposited in the Botanical Repository of the NCNPR. The
detailed sample information is given in Table 1.

Table 1. Analyzed authenticated Salvia samples.

No. NCNPR Code Part Botanical Name

1 1523 Leaf

Salvia officinalis

2 2852 Leaf
3 7686 Mixed Parts
4 7917 -
5 13095 Leaf
6 16732 Leaf
7 20712 -

8 13096 Leaf

Salvia apiana
9 22497 Aerial
10 22498 Aerial
11 22502 Aerial
12 22773 Leaf

13 578 Leaf
Salvia divinorum14 18434 Aerial

15 22491 Leaf

16 22506 Aerial
Salvia mellifera17 22771 Leaf

18 22772 Leaf

19 767 Root

Salvia miltiorrhiza

20 5399 Root
21 8676 Root
22 9729 Root
23 11750 Root
24 12535 Root

2.2. Chemicals

Dichloromethane was purchased from Fisher Scientific (Pittsburgh, PA, USA). Both
internal standards, tridecane (C13H28) and docosane (C22H46), were obtained from Poly-
science Corporation (Niles, IL, USA). The reference standards, α-pinene, β-pinene, 3-carene,
eucalyptol, camphor, endo-borneol, β-caryophyllene, viridiflorol, α-bisabolol, tanshinone
II, cryptotanshinone, salvinorin A, and salvinorin B, used to confirm compound identifica-
tion, were purchased from Sigma-Aldrich (St. Louis, MO, USA), Agilent Technologies, Inc.
(Santa Clara, CA, USA), or isolated from plant material in-house at the NCNPR.

2.3. Sample Preparation

Dry, solid plant material from each species was ground and homogenized utilizing a
ball mill. Approximately 100 mg of the powdered sample material was carefully weighed
and placed into a small centrifuge tube. Samples for GC/Q-ToF analysis were prepared
using a two-step method. Two internal standards (C13H32 and C22H46) were selected. Each
standard was combined with dichloromethane to obtain a solution with a concentration
of 100 μg/mL of each internal standard. First, 340 μL dichloromethane with 80 μL of the
prepared internal standard solution was added to the samples and sonicated for 1 hour.
Next, the samples were centrifuged for 10 min. This procedure was repeated one more
time without adding the internal standards, after which the supernatant was collected and
filtered prior to the GC/Q-ToF analysis. Each sample was prepared in duplicate.

2.4. GC/Q-ToF Analysis

All prepared samples were analyzed using an Agilent 7890B (GC) instrument equipped
with an RS185 PAL3 autosampler. The GC was connected to an Agilent 7250 accurate-mass
Q-ToF mass spectrometer. The capillary column (30 m × 0.25 mm i.d.) was coated with a
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0.25 μm film of 5% phenyl methyl siloxane (J&W, HP-5MS). Helium at a constant flow rate
of 1 mL/min was used as the carrier gas. Each sample was analyzed using the following
GC oven program: 50 ◦C, held for 2 min, then heated at 2 ◦C/min to 280 ◦C, and finally
held at 280 ◦C for 20 min. A post-runtime period of 5 min at 300 ◦C was also utilized. The
inlet was programmed at 280 ◦C, while 1 μL of each sample was injected with a split ratio
of 10:1. The transfer line from the GC to the Q-ToF was held at 300 ◦C. Duplicate injections
were made for each sample.

The Q-ToF mass spectrometer was equipped with a high-emission low-energy electron
ionization source which was operated with an electron energy of 70 eV and an emission
current of 5.0 μA. During the experiment, the source, quadrupole, and transfer line temper-
atures were 280 ◦C, 150 ◦C, and 300 ◦C, respectively. All mass spectra data were recorded
at a rate of 5 Hz from 35 to 500 m/z after a 5 min solvent delay. After every second sample
injection, automated ToF mass calibration was performed utilizing a keyword command in
the sequence table. Data were acquired utilizing Agilent MassHunter software (version
B7.06.274, Agilent Technologies, Santa Clara, CA, USA). Further data processing was ac-
complished using Agilent MassHunter Qualitative Analysis and Quantitative Analysis
(version 10.0.10305.0, Agilent Technologies, Santa Clara, CA, USA). The NIST database
(version 2.3, NIST Standard Reference Materials, Gaithersburg, MD, USA) was utilized for
tentative compound identification.

2.5. Data Processing and Statistical Analysis

As a part of data processing, the GC/Q-ToF data were converted into a .cef file format
utilizing Agilent MassHunter Unknown Analysis (version 10.0.7070, Agilent Technologies,
Santa Clara, CA, USA). The “SureMass” peak detection and deconvolution algorithm was
elected, and a peak area filter of 10,000 counts was applied. Ions with identical elution
profiles and similar spectral data were extracted as entities characterized by retention time
(tR), peak intensity, and mass to charge ratio (m/z). Then, the resulting .cef file for each
sample was exported into the Mass Profiler Professional software package (version B.12.05,
Agilent Technologies, Santa Clara, CA, USA) which includes SCP algorithms for further
data processing.

After examining various minimum abundance counts, a setting of 5000 counts was
finally selected for the extraction of entities from the spectra. The alignment of retention
time, with a tolerance window of 0.15 min, and the similarity of the spectral pattern were
carried out and compared across the entire sample set. The internal standard docosane
(C22H46) was selected to normalize the peak intensity across all spectra. A stepwise
reduction of entity dimensionality was performed based on common entities found across
samples to further process the data. In addition, software settings such as parameter
values (filter by flags), the frequency of occurrence (filter by frequency), the abundance of
respective entities in classes (filter by sample variability), and one-way analysis of variance
(ANOVA) were utilized and carried out by the software to filter the raw data. After filtering
the raw data, quality control of the samples was performed by PCA to further reduce
the dimensionality of the GC/Q-ToF data sets, increase interpretability, and minimize
information loss. Based on the PCA, an SCP model was constructed. Five algorithms,
namely, partial least squares discriminant analysis (PLS-DA), support vector machines
(SVM), naive Bayes (NB), decision tree (DT), and neutral network (NN), were evaluated.
The PLS-DA algorithm was selected since it was particularly well-suited for the project and
resulted in the best prediction accuracy when compared to other algorithms. To validate
the model, a k-fold cross-validation procedure was carried out. The validation procedure
had three k-folds and was repeated ten times.

2.6. Establishment of a Personal Compound Database and Library (PCDL)

A PCDL was constructed using Agilent PCDL Manager software (version B8.00).
Either readily available or isolated and fully characterized in-house chemical compounds
were utilized as reference standards to establish the PCDL. Data including the retention
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time, exact mass, and high-resolution MS fragmentation patterns were exported to the
PCDL. Additional information, such as the molecular formula, compound name, and CAS
number were assigned to each entry for constructing the PCDL.

3. Results and Discussion

3.1. Extraction

Although hexane is touted as an ideal extraction solvent for capturing a wide variety of
volatiles in botanicals, the extraction efficiency is questionable for some of the semi-volatile
polar constituents, such as salvinorins from S. divinorum. These limitations with hexane
are alleviated by utilizing dichloromethane [25] as the solvent of choice. A simple sample
extraction procedure with dichloromethane improved the overall throughput and captured
a wide variety of volatile analytes for species identification.

3.2. GC/Q-ToF Analysis

After developing a satisfactory sample extraction technique and an optimized GC/Q-ToF
method, the sample data were gathered (Figure 1). Upon examining the chromatograms of
the investigated species, compounds were detected in the GC/Q-ToF analysis of the authentic
Salvia plant extracts. Although there were slight variations among the concentrations of
components within a particular Salvia species, characteristic and consistent fingerprinting
patterns from the same species of Salvia were observed. However, distinct differences in their
chemical profiles were noticed for different species, as illustrated in Figure 1.

Although approximately 200 compounds were tentatively identified from the five
species, only 32 compounds which were found in the greatest abundance or were charac-
teristic for each species were reported. The tentative identity of each analyte suggested
by the NIST database was further confirmed with reference standards and the accurate
mass of molecular ions when they were available for each analyte. Many early-eluting,
highly volatile compounds were present in S. officinalis, S. apiana, and S. mellifera; however,
these compounds were mostly absent in the samples of S. divinorum and S miltiorrhiza.
After systematically examining the compounds present in each species, additional char-
acteristic patterns were also established. For example, samples of S. officinalis contained
the compounds β-thujone, viridiflorol, and verticiol, which were not detected in the other
Salvia species. Although these compounds have been reported in other plant species, e.g.,
viridiflorol has been reported as a major constituent of Allophylus edulis [26], they were only
present in S. officinalis among the five Salvia species in this study. Thus, the co-existence
of β-thujone, viridiflorol, and verticiol can be used to distinguish S. officinalis from other
Salvia species. This finding is also supported by a previous study comparing four Salvia
species [27]. Likewise, samples of S. mellifera contained statistically significant amounts
(p < 0.05) of camphor when compared to the other species. This is also consistent with
Martino et al. report of S. mellifera containing approximately 12.2% camphor [28]. In
addition, S. mellifera also contained β-amyrone, pectolinaringenin, and lupeol which were
not detected in the other analyzed species. Only S. apiana samples contained γ-gurjunene
and a statistically significant amount of isoledene. Unfortunately, due to the small amount
of available literature concerning the volatile constituents of S. apiana, the authors were
unable to confirm these findings with literature sources. S. miltiorrhiza samples contained
the greatest amount (p < 0.05) of ferruginol, as well as the unique compound tanshinone II.
The occurrence of tanshinone II in only S. miltiorrhiza samples is also supported by a review
from Zhang et al. [9] In addition to being the only group that possessed the compounds
salvinorin A and salvinorin B, S. divinorum also contained the greatest abundance (p < 0.05)
of 8-hexadecyne. Willard and colleagues also reported the utility of salvinorin A in the
identification of S. divinorum [25]. Utilizing these observed chemical distributions, each
species’ chemical fingerprint and the peak area percentage of detectable compounds can be
obtained (Table 2A,B).
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Figure 1. Representative chromatograms comparing Salvia species. Peak assignments: (1) α-pinene;
(2) 1,8 cineole; (3) camphor; (4) viridiflorol; (5) verticiol; (6) salvigenin; (7) 8-hexadecyne; (8) salvinorin
B; (9) salvinorin A; (10) γ-gurjunene; (11) lupeol; (12) ferruginol; (13) tanshinone II; (14) cryptotanshi-
none; (IS-1) tridecane; (IS-2) docosane.
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Table 2. Tentative compound identification based on NIST library and percent (% peak area)
of volatile compounds in methylene chloride extracts of (A) S. officinalis and S. apiana and
(B) S. divinorum, S. mellifera, and S. miltiorrhiza using GC/Q-ToF analysis.

A

Compound
tR

(min)

S. officinalis S. apiana

1523 2852 7686 7917 13095 16732 20712 13096 22497 22498 22502 22773

α-Pinene a 8.194 0.11 0.20 1.57 tr 1.91 0.54 tr 3.52 1.43 1.25 2.25 0.09
Camphene b 8.817 0.29 0.20 1.99 0.15 1.66 0.48 tr 0.37 1.17 0.92 0.57 0.10
β-Pinene a,b 10.113 tr tr 1.99 tr 0.25 0.28 tr 1.47 1.32 1.38 1.90 0.10
3-Carene a 11.852 nd nd nd nd nd nd nd 1.88 0.57 0.38 1.23 tr

Eucalyptol a,b 12.983 3.14 2.11 4.34 1.36 4.41 1.16 1.47 10.90 6.20 5.89 9.59 3.04
α-Thujone 17.393 1.15 0.62 3.46 nd nd nd nd nd nd nd nd nd
β-Thujone b 18.086 1.53 0.73 1.51 0.30 2.19 1.33 tr nd nd nd nd nd
Camphor a 19.697 3.73 5.32 6.33 3.61 6.18 3.40 4.32 tr 6.74 6.81 3.86 2.44

endo-Borneol a 21.160 1.50 0.74 1.78 1.84 1.66 1.23 0.47 0.12 0.30 0.21 0.2 0.21
β-Caryophyllene a 37.092 0.13 0.09 0.06 0.15 0.25 0.41 0.43 0.93 1.64 2.81 3.22 0.13

Isoledene b 43.496 tr tr tr tr 0.11 tr 0.23 2.35 1.84 2.59 1.05 0.33
Viridiflorol a 47.199 2.73 3.14 5.38 3.93 3.54 4.14 1.94 nd nd nd nd nd
Humulenol b 49.514 tr 0.15 1.94 0.98 0.77 0.93 1.71 nd nd nd nd nd
γ-Gurjunene b 49.927 nd nd nd nd nd nd nd 2.73 1.46 2.06 1.01 0.23
α-Bisabolol a 52.517 0.23 0.36 tr nd tr nd nd 0.28 0.41 0.66 2.59 0.33

8-Hexadecyne b 60.731 0.11 1.32 0.59 2.86 1.22 1.63 4.15 0.28 0.31 0.41 0.43 0.75
3,7,11,15-Tetramethyl-2-hexadecen-1-ol b 62.814 tr 0.47 0.24 1.16 0.42 0.53 1.26 0.21 0.21 0.35 0.36 0.32

Verticiol b 70.524 8.19 12.17 7.81 10.59 9.75 10.17 3.84 nd nd nd nd nd
Aromandendrene b 71.894 0.38 0.92 1.00 0.88 0.96 1.31 0.37 nd nd nd nd nd

Ferruginol b 82.097 nd nd nd nd nd nd nd 0.36 0.07 0.09 1.15 0.48
Hexanedioic acid, mono(2-ethylhexyl)ester b 85.533 0.65 2.88 2.83 0.96 0.25 0.67 1.24 0.42 0.44 0.50 0.45 0.49

Unknown 86.366 5.92 4.53 4.57 4.45 2.65 5.26 0.83 1.70 0.41 1.04 1.37 1.15
Salvicanol b 88.476 nd nd nd nd nd nd nd nd 1.41 1.19 2.05 2.45

Tanshinone II a 96.184 nd nd nd nd nd nd nd nd nd nd nd nd
Cryptotanshinone a 99.365 nd nd nd nd nd nd nd nd nd nd nd nd
Pectolinaringenin b 105.420 nd nd nd nd nd nd nd nd nd nd nd nd

Heptacosane b 109.945 1.47 1.96 2.02 2.26 1.57 2.25 4.35 2.12 1.51 1.79 1.25 3.69
Salvigenin b 110.291 0.60 0.06 0.05 0.06 0.64 0.64 0.29 1.72 4.26 3.45 2.01 5.90

Salvinorin B b 110.841 nd nd nd nd nd nd nd nd nd nd nd nd
Salvinorin A a 114.026 nd nd nd nd nd nd nd nd nd nd nd nd
β-Amyrone b 116.668 nd nd nd nd nd nd nd nd nd nd nd nd

Lupeol b 117.441 nd nd nd nd nd nd nd nd nd nd nd nd

B

Compound
tR

(min)
S. divinorum S. mellifera S. miltiorrhiza

578 18434 22490 22506 22771 22772 767 5399 8676 9729 11750 12535

α-Pinene a 8.194 nd nd nd 1.28 0.24 0.67 nd nd nd nd nd nd
Camphene b 8.817 nd nd nd 1.14 0.37 1.02 nd nd nd nd nd nd
β-Pinene a,b 10.113 nd nd nd 1.09 0.26 0.69 nd nd nd nd nd nd
3-Carene a 11.852 nd nd nd 0.38 tr tr nd nd nd nd nd nd

Eucalyptol a,b 12.983 1.12 0.31 1.13 6.44 3.55 4.20 0.67 0.81 tr 2.12 nd 1.67
α-Thujone 17.393 nd nd nd nd nd nd nd nd nd nd nd nd
β-Thujone b 18.086 nd nd nd nd nd nd nd nd nd nd nd nd

Camphor 19.697 1.63 tr 3.71 10.21 8.75 9.73 0.40 2.13 1.95 0.90 0.05 0.84
endo-Borneol a 21.160 nd nd nd 0.33 0.52 0.52 nd nd nd nd nd nd

β-Caryophyllene a 37.092 nd nd nd 1.28 0.73 0.82 nd nd nd nd nd nd
Isoledene b 43.496 nd nd nd tr 0.13 0.11 nd nd nd nd nd nd

Viridiflorol a 47.199 nd nd nd nd nd nd nd nd nd nd nd nd
Humulenol b 49.514 nd nd nd nd nd nd nd nd nd nd nd nd
γ-Gurjunene b 49.927 nd nd nd nd nd nd nd nd nd nd nd nd
α-Bisabolol a 52.517 nd nd nd 0.50 1.70 0.69 nd nd nd nd nd nd

8-Hexadecyne b 60.731 12.09 10.45 9.32 0.22 0.50 0.45 nd nd nd nd nd nd
3,7,11,15-Tetramethyl-2-hexadecen-1-ol b 62.814 4.70 3.11 3.20 0.10 0.11 0.15 nd nd nd nd nd nd

Verticiol b 70.524 nd nd nd nd nd nd nd nd nd nd nd nd
Aromandendrene b 71.894 nd nd nd nd nd nd nd nd nd nd nd nd

Ferruginol b 82.097 nd nd nd 0.20 0.31 0.39 9.14 2.61 1.05 8.11 9.18 1.61
Hexanedioic acid, mono(2-ethylhexyl) ester b 85.533 4.68 4.72 2.65 0.73 0.48 1.23 4.347 24.95 35.25 19.46 1.55 14.59

Unknown 86.366 nd nd nd nd nd nd nd nd nd nd nd nd
Salvicanol b 88.476 nd nd nd 3.23 2.55 2.81 nd nd nd nd nd nd

Tanshinone II a 96.184 nd nd nd nd nd nd 15.25 13.19 12.70 16.91 12.57 12.14
Cryptotanshinone a 99.365 nd nd nd nd nd nd nd nd nd nd 12.16 nd
Pectolinaringenin b 105.420 nd nd nd 1.63 4.22 3.98 nd nd nd nd nd nd

Heptacosane b 109.945 nd nd nd 2.55 1.93 2.21 nd nd nd nd nd nd
Salvigenin b 110.291 nd nd nd 2.55 1.93 2.21 nd nd nd nd nd nd

Salvinorin B b 110.841 3.60 0.75 1.12 nd nd nd nd nd nd nd nd nd
Salvinorin A a 114.026 33.48 20.24 22.70 nd nd nd nd nd nd nd nd nd
β-Amyrone b 116.668 nd nd nd 1.14 0.96 0.79 nd nd nd nd nd nd

Lupeol b 117.441 nd nd nd 4.16 3.34 4.09 nd nd nd nd nd nd

nd: not detected; tr: trace amount; a compound identification based on NIST library was confirmed with reference
standard; b accurate mass was consistent with GC/Q-ToF analysis.
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3.3. Chemometric Analysis

Although the GC/MS identification of Salvia species is a popular means of species
identification, it is often time-consuming [16]. While this method is well suited for small
sample sizes, it does not lend itself to high-throughput applications, such as batch process-
ing or quality control. With the coupling of GC to a Q-ToF mass spectrometer, vast amounts
of high-resolution structural data can be gathered from compounds in each sample. Utiliz-
ing this data along with chemometrics, researchers can develop an SCP model from the
data obtained from species [29,30].

PCA is a useful analysis that can transform large and complex data sets into manage-
able information for interpretation [31]. The stepwise reduction in entity dimensionality
was performed based on filtering by flags, filtering by frequency, filtering by sample vari-
ability, and the results of ANOVA. Stepwise filtering intentionally created a strong filter so
that the most discriminant entities could be used to construct the prediction model. After
filtering, a PCA was performed, as illustrated in Figure 2. Good separation and species-
specific clustering of the different Salvia species was achieved. Approximately 50% of the
variation among species could be attributed to component 1. Additional variation and
separation could be explained by component 2 (15%). Contributing the least, component 3

only accounted for approximately 9% of the variation observed among the species.

 
Figure 2. PCA score plot of five Salvia species.

Although the PCA demonstrated good separation between different Salvia species, it
was unable to assign and predict the identity of unknown/commercial Salvia species sold in
the U.S. market. Therefore, the GC/Q-ToF data for the authenticate samples were subjected
to supervised chemometric methods. The first step in the SCP model construction process
is to select the algorithm that is best suited to the project and the data set parameters. The
PLS-DA [29] algorithm was found to be the best suited to construct a statistical model for
Salvia classification and differentiation. Good separation obtained by the PLS-DA model
among different Salvia species is shown in Figure 3. Once established, the software can use
the sample characteristics and the associated algorithms to classify unknown samples. As
illustrated in Figure 3, the PLS-DA successfully separated and clustered members of the
authentic samples.
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Figure 3. Score plot of the PLS-DA model constructed based on GC/Q-ToF data for the authenticated
Salvia samples from five different species.

To validate the constructed model, the same authenticated samples used for the model
training were repeatedly used due to the limited number of authenticated plant samples
available. Although redundant, this is a valid statistical procedure (k-fold cross validation).
Both the recognition and prediction abilities of the class prediction model were 100%, as
shown in Table 3. Once the test was complete, a “confusion matrix” was generated. The
test results indicated that this SCP could successfully identify and classify samples (Table 3).
The construction of the SCP not only allows a large number of samples to be classified
efficiently, but also in an automated manner. This allows the user to process additional
samples at any point in the future.

Table 3. Summary of classification results obtained by the PLS-DA model.

S. apiana S. divinorum S. mellifera S. miltiorrhiza S. officinalis Accuracy (%)

Model Training
S. apiana 5 0 0 0 0 100

S. divinorum 0 3 0 0 0 100
S. mellifera 0 0 3 0 0 100

S. miltiorrhiza 0 0 0 6 0 100
S. officinalis 0 0 0 0 7 100

Recognition ability (%) - - - - - 100

Model validation
S. apiana 5 0 0 0 0 100

S. divinorum 0 3 0 0 0 100
S. mellifera 0 0 3 0 0 100

S. miltiorrhiza 0 0 0 6 0 100
S. officinalis 0 0 0 0 7 100

Prediction ability (%) - - - - - 100

3.4. Construction of a Personal Compound Database and Library (PCDL) for High-
Throughput Screening

Although compound identification can be accomplished by manual inspection, this
process can be both time-consuming and inefficient due to the large amount of high-
resolution data obtained. With this in mind, a PCDL was constructed to facilitate the
efficient throughput of samples. From the PCA loading plot (Figure S1 in the Supplementary
Material), which is a visual representation of the “characteristic compounds” found in
different Salvia species, marker compounds correlating to the separation of different species
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or the clustering of similar species were identified [30]. As illustrated in Table 4, each
species could be distinguished by a few select compounds. Hence, the identified marker
compounds that were commercially available or isolated in-house were analyzed by using
the identical GC/Q-ToF method.

Table 4. Proposed marker compounds tentatively identified for the differentiation of selected Salvia species.

No. Compound ID tR (min) Formula Base Peak M+ Diff (ppm) CAS Number

S. officinalis

1 β-Thujone 18.086 C10H16O 67.0542 152.1196 0.22 471-15-8
2 Viridiflorol 47.199 C15H26O 105.0697 222.1975 −1.43 552-02-3
3 Verticiol 70.524 C20H34O 95.0853 290.2598 −2.13 70000-19-0

S. divinorum

4 8-Hexadecyne * 60.731 C16H30 67.0542 222.2345 1.34 19781-86-3
5 Salvinorin B 110.800 C21H26O7 94.0413 390.1679 1.53 92545-30-7
6 Salvinorin A 114.026 C23H28O8 94.0412 432.1784 1.23 83729-01-5

S. apiana

7 Isoledene * 43.496 C15H24 119.0854 204.1877 1.21 95910-36-4
8 γ-Gurjunene 49.927 C15H24 105.0702 204.1875 1.21 22567-17-5

S. mellifera

10 Camphor * 19.697 C10H16O 95.0856 152.1195 −0.44 464-49-3
11 β-Amyrone 116.670 C30H48O 218.2034 424.3700 0.08 638-97-1
12 Lupeol 117.441 C30H50O 189.1639 426.3855 −0.28 545-47-1
13 Pectolinaringenin 105.42 C17H14O6 271.0607 314.0785 2.58 520-12-7

S. miltiorrhiza

14 Ferruginol * 82.097 C20H30O 189.1275 286.2297 2.04 514-62-5
15 Tanshinone II 96.184 C19H18O3 261.0912 294.1252 0.52 568-72-9

* Statistically significant amount detected (p < 0.05).

After analyzing the standards, data including the retention time, exact mass, and
a curated accurate mass spectrum containing mass assignments for each spectral peak
were exported to the PCDL. Utilizing the PCDL software, additional data such as the
molecular formula, compound name, and CAS number were also captured. Figure 4
shows an overview of the PCDL table with the spectrum of salvinorin A, one of the marker
compounds only present in S. divinorum.

The commercially available MassHunter Unknown Analysis software uses an algo-
rithm called “SureMass” to find peaks in the accurate mass chromatogram and searches a
mass spectral library or PCDL to identify compounds. If the library has locked retention
times or index values, these can also be used as filters. If these filters are utilized, “hits”
must have the correct retention time (tR) and be similar to the database spectrum. Figure 5
illustrates the results for the identification and isotope pattern for salvinorin A in one of
the S. divinorum samples.

The “SureMass” peak-finding algorithm uses the added information available in high-
resolution accurate mass data. For instance, extracted ion chromatograms of salvinorin
A are overlaid and compared in Figure 5A. In contrast, a “head-to-tail” comparison plot
of the high-resolution mass spectra of the suspected target and the reference compound
illustrates the matching spectra (Figure 5B). In addition, the software can generate the
compound’s isotope pattern if the molecular ion is detected in sufficient abundance. The
compound’s theoretical value is next compared to the detected isotope’s m/z and relative
abundance [30]. Additional confidence in the correct identification of the compound is
provided when the theoretical value and detected m/z and abundance are good matches. In
Figure 5C, the detected isotope pattern of salvinorin A (black vertical lines) is compared
to the theoretical isotope pattern represented by red boxes. In the present study, peaks
from the sample spectra of the five Salvia species that were identified by “SureMass” were
compared to the in-house-constructed PCDL. This approach is inherently simple and data
review is relatively easy. Once the PCDL is constructed, it not only allows for high sample
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throughput, but can be easily utilized in the future to analyze additional samples or be
shared with research labs that do not have standard marker compounds.

  

Figure 4. A section of the PCDL showing some of the content available for each entry and the accurate
mass EI spectrum of salvinorin A from the PCDL.

 

Figure 5. Identification of salvinorin A from S. divinorum (#22490). (A) Overlaid chromatograms
of the five ions extracted for salvinorin A; (B) a “head-to-tail” comparison plot of high-resolution
spectra of salvinorin A from PCDL (black) and the sample (orange); (C) the isotope pattern of the
molecular ion (black vertical lines) compared to the theoretical pattern (red boxes).
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4. Conclusions

Members of the genus Salvia have a rich history of both culinary and medicinal usage.
With approximately 900 species included in the genus Salvia, the accurate species iden-
tification of processed botanical material can be a daunting task [2]. Although arduous,
this task is of vast importance since the herb possesses species-specific pharmacological
properties [2]. In the present study, we analyzed five species of botanically verified, medici-
nally important Salvia (apiana, divinorum, mellifera, miltiorrhiza, and officinalis) to develop
a single analytical method for species differentiation purposes. Leveraging advances in
software, the GC/Q-ToF of volatile organics, and the accurate mass spectral data allowed
the unambiguous identification of five studied Salvia species. Although some of the marker
compounds can be found in other plants, it is both the combination and concentration
of the compounds that can aid in the species identification of Salvia botanical material.
The implementation of chemometric analysis, viz. the PCA [29,30] of the Salvia samples,
resulted in the identification of marker compounds for different Salvia species. Furthermore,
the same PCA programs can also be expanded to build prediction models which may be
utilized and modified for high-throughput sample analyses and classification purposes.
To aid further, a PCDL combined with high-resolution mass spectrometry was developed
with the versatility and ability to identify individual compounds present in Salvia samples.

In summary, by utilizing GC/Q-ToF, we obtained chemical fingerprints of each Salvia
species being investigated. This information was further processed to construct an SCP
model. By utilizing this model, future unknown samples can easily and efficiently be
identified. As analytical needs change over time, the SCP model allows researchers to
expand by including other economically important Salvia species. By leveraging advanced
analytical techniques and chemometrics, the quality of closely related botanicals can be
confirmed successfully, as demonstrated with a broad spectrum of biologically active Salvia
species with complex chemistries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11142132/s1, Figure S1: PCA loading plot illustrating
suggested species marker compounds.
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Abstract: Rapid and accurate detection of pesticide residue levels can help to prevent the harm of
pesticide residue. This study used visible/near-infrared (Vis-NIR) (376–1044 nm) and near-infrared
(NIR) (915–1699 nm) hyperspectral imaging systems (HISs) to detect the level of pesticide residues.
Three different varieties of grapes were sprayed with four levels of pesticides. Logistic regression
(LR), support vector machine (SVM), random forest (RF), convolutional neural network (CNN),
and residual neural network (ResNet) models were used to build classification models for pesticide
residue levels. The saliency maps of CNN and ResNet were conducted to visualize the contribution
of wavelengths. Overall, the results of NIR spectra performed better than those of Vis-NIR spectra.
For Vis-NIR spectra, the best model was ResNet, with the accuracy of over 93%. For NIR spectra,
LR was the best, with the accuracy of over 97%, but SVM, CNN, and ResNet also showed closed
and fine results. The saliency map of CNN and ResNet presented similar and closed ranges of
crucial wavelengths. Overall results indicated deep learning performed better than conventional
machine learning. The study showed that the use of hyperspectral imaging technology combined
with machine learning can effectively detect the level of pesticide residues in grapes.

Keywords: hyperspectral imaging; pesticide residue; table grape; deep learning; non-destructive detection

1. Introduction

Grapes are one of the most popular fruits due to its unique taste, multiple vitamins,
and nutrients. Grapes can be eaten fresh and processed into various products, for instance,
juice and wine. Thus, there exists excellent commercial potential for the grape industry.
During the grape growing season, fungicides, insecticides, and herbicides are often applied
to cure the stresses of the diseases and pests [1,2]. The pesticide residue in grapes has
increasingly aroused the attention of consumers. Certain intake of pesticide residue content
may harm consumers’ health [3,4].

Various methods have been developed for the detection of pesticide residue in fruits
and vegetables [5]. Generally speaking, they can be divided into conventional and rapid
detection methods. Traditional detection methods for detecting pesticide residues include
gas chromatography (GC) and capillary electrophoresis (CE) [6], gas chromatography-
mass spectrometry (GC-MS) [7], high-performance liquid chromatography (HPLC) [8],
supercritical fluid chromatography (SFC) [9], and so on. Rapid detection methods include
the fast detection card method and enzyme inhibition rate method. These methods have
high accuracy for the detection of pesticide residue. However, they are costly. Moreover,
they require complex pre-processing and highly skilled operators.

Foods 2022, 11, 1609. https://doi.org/10.3390/foods11111609 https://www.mdpi.com/journal/foods
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Hyperspectral imaging (HSI) is a technology that combines spectroscopy and conven-
tional imaging to attain the spectral and spatial information from the research object [10].
HSI has been used effectively in the non-destructive quality detection of grapes, such as
total soluble solids [11–13], total phenolic compounds [12], polyphenol contents [14], amino
acids [11], and PH [11,12], etc. Moreover, there have been quantitative analyses, such as
discriminating geographical origin [15], the year of harvest [15,16], and the maturation
stage [17], etc.

Detection of pesticide residue in agricultural products combined with HSI technology
has also been used widely, due to its advantage of rapid, non-destructive, and accurate
quality detection. Sun et al. used HSI technology (431–962 nm) to quantitatively identify
the pesticide mixtures on lettuce leaves [18]. Jia et al. detected apple surface pesticide
residue based on HSI technology (865–1712 nm) [19]. Mohite et al. used hyperspectral
sensing (350–1052 nm) to detect pesticide (Cyantraniliprole) residue on grapes with no,
single, and double doses [20]. Ren used HSI technology (900–170 nm) to distinguish various
concentrations of pesticide residues of dimethoate on the surface of spinach leaves [21].
Sun et al. identified pesticide residues in lettuce combining chemical molecular structure
and NIR hyperspectral (870–1780 nm) [22]. Jiang et al. used NIR HIS (390–1050 nm)
to predict the distribution of pesticide residues on mulberry leaves and visualize the
results [23]. Studies have shown that HSI technology has been widely used in the non-
destructive detection of pesticide residue in agricultural products. However, research on
the pesticide residue in grapes is still rare, and a single spectral region was studied for most.
Therefore, it is feasible and proposed to use hyperspectral imaging technology to detect
different levels of pesticide residues in grapes here.

It is a great challenge to research massive and redundant data obtained by hyperspec-
tral imaging systems (HIS) effectively, which prevents its application. Machine learning
is exceptionally crucial for predicting features and analyzing spectral information. Re-
cently, deep learning, as a new method of machine learning, has gained remarkable results
for detecting and classifying the spectral and spatio-spectral signatures in HIS. Deep
learning learns features deeply and automatically, and processes large volumes of data
effectively [24–26]. Thus, it can construct a network containing many neurons efficiently
and quickly, and it is applied widely in spectroscopy [27–30]. Yan et al. used HIS with deep
learning to detect geographical origin of Radix Glycyrrhizae [31]. Jiang et al. used HIS
with AlexNet-CNN deep learning network to detect postharvest pesticide residues [32].
Dreier et al. used CNN and ResNet with HSI to identify the bulk grain [33]. Gomes et al.
used deep learning CNN to predict sugar and pH levels in grapes [34]. Deep learning has
decent performance, but the process is obscure and difficult to understand. The contribu-
tion of wavelength is visualized to observe crucial wavelengths, which can explain the
deep learning process well and analyze data effectively.

The purpose of the study was to use hyperspectral imaging technology combined with
machine learning to identify the different pesticide residue levels in grapes. The specific
goals were: (1) to explore the spectral differences among different pesticide residue levels
of different varieties of grape; (2) to compare the performances of hyperspectral imaging
at two different spectral regions for pesticide residue level identification; (3) to compare
the performances of conventional machine learning methods (LR, SVM, and RF) and deep
learning (CNN and ResNet); (4) and to explore the spectral features of different models
which contribute more to the identification.

2. Materials and Methods

2.1. Samples Preparation

The research was carried out in the laboratory and simulated the process of spraying
pesticides. Three grape varieties were used in this study, including Munage, Cabernet
Sauvignon (Cabernet), and Red grape. The fresh grapes of Munage were purchased from
the Jinma Market near Shihezi University, and Cabernet and Red grape were collected from
the experimental vineyard located in the School of Agriculture, Shihezi University, Xinjiang
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Uygur Autonomous Region (Xinjiang), China (73◦40′–96◦18′ E, 34◦25′–48◦10′ N). Each
grape variety was randomly divided into four groups, corresponding to four different con-
centrations of pesticide residues (corresponding to four levels mentioned later). To increase
the number of samples and comply with sampling inspection in the actual production, the
bunch of the grape was cut smaller, considering the cluster of 3–6 berries as a sample, as
shown in Figure 1. After cutting off grape bunches, 288 clusters of Cabernet, 411 clusters
of Red grape, and 372 clusters of Munage were collected. In total, 1071 small clusters of
grapes were used as input samples. The sample data were randomly divided into training,
validation, and test sets with a ratio of 3:1:1. The specific sample size of clusters of the
grape is shown in Table 1.

Figure 1. The flow chart of spraying pesticides and obtaining clusters of the grape.

Table 1. Number of samples after cutting intact grapes.

Category Cabernet Red Munage Total

Level 0 73 92 89 254
Level 1 84 99 78 261
Level 2 60 107 104 271
Level 3 71 113 101 285

Total 288 411 372 1071
Level 1, Level 2, and Level 3 mean the pesticide mixtures with concentrations of 10%, 15%, and 50% prepared
later, and Level 0 means distilled water.

In this study, Jiatu (25% trifloxystrobin, 50% tebuconazole), Xishuangke (56% cymox-
anil, 14% cyazofamid), and Huiyin (80% procymidone) were prepared, and the details
are shown in Table 2. According to relevant information and instructions, these pesticide
mixtures do not react chemically but only enhance the effect. Pesticide mixtures were
sprayed on the grapes to simulate the pesticide residue. Different pesticides were applied
to evaluate their effects on the growth of the grape. One reason for choosing these three
pesticides was wide use during the ripening period of the grapes, and the other was the
recommendations and suggestions of the planter. Roughly speaking, Jiatu, Xishuangke,
and Huiyin are common fungicides, and they have a certain inhibitory effect on the growth
of fungi.
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Table 2. Information about the pesticides used in the experiment.

Category Active Ingredients Proportion Efficacy

Jiatu 50% tebuconazole (C16H22ClN3O)
25% trifloxystrobin (C20H19F3N2O4) 4000 Brown spot

Huiyin 80% procymidone (C13H11Cl2NO2) 2400 Botrytis

Xishuangke 56% cymoxanil (C7H10N4O3)
14% cyazofamid (C13H13ClN4O2S) 6000 Downy mildew

There were two steps to making pesticides mixtures:
(1) Make standard pesticide mixtures. According to the instructions of each pes-

ticide, three single-pesticide solutions (Jiatu, Huiying, and Xishaungke) were prepared
with the proportion of 1:4000, 1:6000, and 1:24,000, respectively. Then, the three single-
pesticide solutions were mixed together to make a 2 L pesticide mixture, as 100% standard
pesticide mixtures.

(2) Make three pesticides mixtures. A beaker was used to dilute the 100% standard
solution into three different pesticide mixtures. Concentrations of three pesticide mixtures
were 10%, 15%, and 50% (respectively corresponding to Level 1, Level 2, and Level 3).
Level 0 represented distilled water as a control group for comparing with others.

The corresponding concentration of the final configuration of each pesticide is shown
in Table 3.

Table 3. Information about the concentration of each pesticide in the mixture.

Concentration Jiatu Xishuangke Huiyin

Level 0 a (0%) 0 0 0
Level 1 b(15%) 0.0375 0.0250 0.0625
Level 2 c (30%) 0.0750 0.0500 0.0125
Level 3 d (50%) 0.1250 0.0834 0.2085

Standard solution(100%) 0.2500 0.1667 0.4167
a means distilled water; b,c,d mean the pesticide mixtures with Level 1, 2, and 3, corresponding to concentrations
of 10%, 15%, and 50%. The unit of concentrations is g/L.

With a spraying bottle, four groups of grapes were sprayed with Level 0, 1, 2, and 3
mixed pesticides, respectively. Then, the sprayed grapes were placed in a low-temperature
and ventilated area for air drying for about 36 h [18,23,35–37]. When there was no more
water on the grape surface, each intact bunch of grapes was cut, as shown in Figure 1.

2.2. Hyperspectral Image Acquisition and Correction

In this study, Vis-NIR and NIR HISs (SOC 710VP and SOC 710SWIR) were used in
obtaining hyperspectral images. The SOC 710VP covers the spectral range of 376–1044 nm
(128 bands), captures the image size of each waveband with 520 pixels × 696 pixels, and
has an exposure time of 24 ms and a spectral resolution of 5 nm. The SOC 710SWIR covers
the spectral range of 915–1699 nm (288 bands), captures the image size of each waveband
with 512 pixels × 640 pixels, and has an exposure time of 34 ms and a spectral resolution of
2.7 nm. The distance from the sample to the imaging device was adjusted to 93.5 cm. Other
information about the two HISs can be shown in Yan [31]. In the study, grapes of Level 0,
Level 1, Level 2, and Level 3 were captured sequentially by the HIS. Each sample was fully
photographed by shooting the front and back (randomly, one side was the front, and the
other side was the back).

The raw hyperspectral images were corrected into the reflectance images by using a
grayscale reference image. The correction was conducted by the following Equation (1):

Ir =
Iraw − Idark

Iwhite − Idark
(1)
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Ir is the reflectance image, Iraw is the raw image, Iwhite is the entirely white reference
image, and Idark is the entirely black reference image. The grayscale reference image was
composed of 50% Idark and 50% Iwhite.

2.3. Spectral Data Preprocessing and Extraction

The segmentation between the grape and the background was necessary to obtain accu-
rate spectral information. In this study, ENV 5.2 (ITT Visual Information Solutions, Boulder,
CO, USA) was used to crop a hyperspectral image to various hyperspectral sub-images
containing a sample of 3–6 single berries. The sample in each hyperspectral sub-image
was defined as a region of interest (ROI), which is a mask formed by threshold segmenta-
tion of the 804 nm Vis-NIR hyperspectral sub-image and the 1092 nm NIR hyperspectral
sub-image. Further, spectra information in the ROI of the hyperspectral sub-image was
extracted by Matlab R 2018b (The Math Work, Natick, MA, USA). The average spectrum
of ROI was calculated as the spectral value of the sample, as shown in Figure 2. The
spectral value at the beginning and the end were removed to eliminate obvious noise. The
reserved wavelength range of Vis-NIR spectra was 476–890 nm (80 bands), and that of NIR
spectra was 970–1594 nm (230 bands). For Vis-NIR and NIR spectral value, Savitzky–Golay
(SG) [38] smoothing filter (the polynomial order was 0, the kernel size was 3) was used to
improve the smoothness of the spectra and reduce noise interference. Then, the Standard
Normal Variate transform (SNV) [39] was applied to avoid the impact of surface scattering,
solid particle size, and the optical path change of diffuse reflection spectra.

Figure 2. The flow chart of hyperspectral image data acquisition and data contact.

2.4. Data Analysis Method
2.4.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a commonly used statistical method. A group of
variables related to each other can be transformed into uncorrelated and independent ones
through orthogonal transformation [40,41]. The primary purpose is to reduce the number
of variables, namely dimensionality reduction. It is a linear dimensionality reduction
method. The transformed variable is called the principal component (PC), and the top PCs
explain most of the information of the hyperspectral image. The PCA score scatter plots for
qualitative analysis of grape pesticide residues could be formed.

2.4.2. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised pattern recognition approach. SVM is a
traditional classification method, and it is widely applied in classification conditions [42,43].
Moreover, SVM has excellent generalization ability, so it is widely used in spectroscopy.
The kernel function is highly vital to the SVM model. In this paper, the tuning range of the
kernel function was “poly, rbf, sigmoid”. The kernel parameter g and penalty coefficient C
were used to get optimal performance. A grid-search procedure was used to optimize g
and C. The searching range of g and C were 10−5 to 50 and 10−5 to 50, respectively.
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2.4.3. Logistic Regression (LR)

Logistic regression (LR) is a generalized linear regression analysis model, and it is
often used in data mining, automatic disease diagnosis [44], economic forecasting [45],
and other fields [46]. Linear regression is a machine learning method used to solve binary
classification (0 or 1) problems, which are used to estimate the possibility of something.
Adding the sigmoid active function to linear regression, LR can then be used for multiple
classifications and introduced non-linear elements [47]. In this study, the optimization
range of the solver was in “newton-cg”, “lbfg”, ‘’liblinea”, ‘’sag”, and that of C was between
10−5 and 105. The penalty was set to L2.

2.4.4. Random Forest (RF)

RF is ensemble learning, which consists of the decision tree (DT) [48]. RF shows two
important traits: random sampling of training data points when building trees, and random
subsets of features considered when splitting nodes [49,50]. The last result of the decision is
determined by the voting method, so it has strong robustness. Random forest can process
high-dimensional data without feature selection. In our study, n_estimators were between
100 and 1000, and max_depth was between 4 and 8.

2.4.5. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a forward neural network. It usually
consists of the following six layers: input layer, convolution layer, activation layer, pooling
layer, fully connected layer, and output layer [31]. CNN has an excellent performance in
classification. One advantage of CNN is local perception. CNN only perceives the local
elements of the data and then merges local information in the higher-level network to
obtain all the characterization information of the data. The second is weight sharing. By
weight sharing, the number of weights of the network can be decreased, and the complexity
of the network can be reduced [29]. A simple CNN architecture was designed for our study.
The structure of the CNN is shown in Figure 3.

Figure 3. The proposed convolutional neural network (CNN) structure for the identification of
pesticide residues in grapes.
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In Figure 3, two main blocks were involved in the structure. The first block was the
convolutional block (Conv Block), which consisted of three convolutional layers. Each
convolutional layer was followed by a batch normalization layer (BN) and rectified linear
unit (ReLU). In the end, an average pooling layer was added to alleviate the excessive
sensitivity from the convolutional layer. In this process, one-dimensional (1D) spectral
data were involved, and Conv1D was used, as shown in Figure 3. The second was a fully
connected block (FC Block). The features extracted by the convolutional layer were learned
through the fully connected layer. A linear layer was added, and BN and ReLU followed.
The dropout was applied to alleviate overfitting. For the output layer, the network outputs
the final result according to the probability of the four classification results. The input
channels of the first three convolutional layers were 128, 64, and 32; the kernel sizes were
3, 3, and 5; the stride was 1, and the padding was 1. For the average pooling layer, kernel
size was 2. The FC block included two fully connected layers, which consisted of 256 and
128 neurons, respectively. The dropout ratio was set as 0.5. Another linear layer was set
for output at the end of the network. During the training process of CNN, the Adaptive
Moment estimation (Adam) algorithm was used to optimize softmax cross-entropy. Weights
were initialized using the Xavier algorithm.

2.4.6. Residual Neural Network (ResNet)

With the deepening of the neural network, there would be problems of overfitting, gra-
dient explosion, and network degradation, and ResNet could effectively handle those [51].
In this study, based on the ResNet18, the ResNet was applied to identify pesticide residual
levels. Figure 4a shows the structure of ResNet. The ResNet consisted of one convolutional
layer and two residual blocks, the last was average pooling. The output channel of the
convolutional layer was 64, kernel size was 1 × 3, and stride and padding were 1. Then a
batch normalization layer (BN) and rectified linear unit (ReLU) were added. The channels
of 3 residual blocks were 64, 128, and 256, kernel size was 1 × 3, and stride and padding
were 1. The average pooling was followed to extract features smoothly, the last was the
linear layer.

 
(a) (b) 

Figure 4. The proposed residual neural network (ResNet) (a) and residual block (b) structures for the
identification of pesticide residues in grapes.

2.5. Saliency Map

Saliency map is a visualization technique in order to gain better insights into the
decision-making of a neural network. When a sample was predicted correctly, it would
be added to compute the feature importance [52]. Scale information contributions within
the network could be computed [53]. Once the sample label was correctly predicted, the
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corresponding weights of the elements would be obtained, which represents the contribu-
tion rate (importance) of the elements. A saliency map can visualize the contribution rate
of each element to intuitively see which elements play important roles in the process of
CNN-based sample identification. For hyperspectral data, a saliency map could effectively
visualize the importance of the wavebands.

Given the hyperspectral data X0 with the set of the test, which was built by the
classification model CNN-based, the class score function SC (X0) was obtained for all the
wavebands [53]. When the label of this sample was correctly classified, the weight w could
be calculated by the followed Equation (2).

w = abs
(

∂S
∂X

∣∣∣∣X0

)
(2)

where w means the absolute value of the derivative of the score value S concerning the
spectral data X0.

In this study, test set data were used to compute the importance of all the wavelengths,
when the sample label was predicted correctly.

2.6. Software and Model Evaluation

In this study, the areas of the samples were defined in ENVI 5.2 (ITT Visual Information
Solutions, Boulder, CO, USA). The spectral data were extracted in Matlab R 2018b (The
Math Work, Natick, MA, USA). The Python scripting language (version 3.8,64 bit) was
applied for the numerical calculations. SVM, LR, and PLS-DA were conducted by using
the machine learning library scikit learn (version 0.23.2). The 1D CNN model was built on
the deep learning Pytorch framework (version 1.5.1). All data analysis procedures were
implemented on a computer with a memory of 10 GB, a SSD of 238.35 GB, and a CPU
of i5-7200 U.

The accuracy is used to illustrate the discrimination ability of classifier systems. The
definition was the following:

Accuracy =
TP
All

(3)

TP (true positive) means the number of the predicted result consistent with the actual
label. All means the number of all samples. Accuracy is the index to evaluate the model.

3. Results

3.1. Spectral Profiles

The spectra in the range of 376–1073 and 915–1699 nm were extracted from the Vis-NIR
and NIR HISs. The beginning and end of the spectra showed obvious noises. The spectral
data were preprocessed by SG. The average spectra of four pesticide mixture levels and
corresponding standard deviation are shown in Figure 5.

According to Figure 5, it is clear that the trend of the four average spectral curves is
mostly similar. Peaks and valleys exist in the certain same positions and have no overlap
(around 825, 550 and 1725 nm), which might have the potential to identify the different
levels of pesticide residue in grapes due to variation of spectral reflectance in Vis-NIR
and NIR regions. However, different pesticide levels and spectral ranges showed some
discrepancies. In Figure 5a, the error bar overlaps at almost the entire band, and the curves
of average spectra intersect at about 690 nm and 950 nm. In Figure 5b, the error bar overlaps
in the spectra between 1160 nm and 1490 nm, and curves of average spectra intersect at
1310 nm. Therefore, it is impossible to directly distinguish different levels of pesticide
residues in grapes clearly. It is necessary and crucial to do further research.

142



Foods 2022, 11, 1609

  
(a) (b) 

Figure 5. (a) Vis-NIR average (405–1016 nm) spectra with standard deviation each wavelength of
different levels of pesticide residues in grape, using Vis-NIR spectrometer. (b) NIR average spectra
(994–1641 nm) with standard deviation each wavelength of different levels of pesticide residues in
grapes, using NIR spectrometer.

3.2. Principal Component Analysis (PCA)

To preliminarily explore significant differences between four levels of pesticide residues
in grapes, spectral data were analyzed based on PCA. The two-dimensional PCA score plots
were shown in Figure S1, with the sample’s distribution of each PC. The corresponding
confidence ellipse was added, with a confidence level of 0.95.

For Vis-NIR spectra, the contributions of the first three PCs of Cabernet were 48.5%,
27.5%, and 10.0%; those of Red grape were 49.4%, 26.8%, and 12.7%; those of Munage were
71.0%, 13.3%, and 4.6%. Their cumulative contributions of them were, respectively, 86.0%,
88.9%, and 88.9%, which explained most of the sample. However, the PCA score plots were
clustered badly and there was serious overlap. For Cabernet, in Figure S1a–c, distributions
of PC1 versus PC2, PC1 versus PC3, PC2 versus PC3 are chaotic and huddled, which means
the four levels of pesticide residue are indistinguishable from each other. This phenomenon
is consistent with trends of the spectral profile in Figure 5a. In addition, there is a certain
similarity in Figure S1d–i.

For NIR spectra, the contributions of the first three PCs of Cabernet were 56.3%, 22.3%,
17.5%; those of Red grape were 57.4%, 31.3%, 6.6%; and those of Munage were 70.8%, 20.0%,
4.9%. The cumulative contributions of the first three PCs were 96.1%, 95.3%, and 95.7%,
respectively, which also explained most of the variance information. Regarding the sample
distribution, the overall clustering effect was slightly better than that of the Vis-NIR. For
Cabernet, in Figure S1j–l, two major aggregating regions were shown (Level 0 and Level 2,
Level 1 and Level 3), which is consistent with the phenomenon in Figure 5b. Therefore, the
result comparatively illustrates the feasibility of the identification of four levels of pesticide
residues in the range of NIR spectra.

In general, PCA visualizes sample distribution and provides the feasibility of classifica-
tion, but it is not easy to directly distinguish the four levels of pesticide residues. Therefore,
it is necessary to find other multivariate analysis methods for further research.

3.3. Classification Models

Three machine learning algorithms (SVM, LR, and RF) and two deep learning (CNN
and ResNet) algorithms were conducted to analyze spectral data in this stage. The results
are shown in Table 4 below.
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Table 4. The classification of the accuracy of the logistic regression (LR), support vector machine
(SVM), random forest (RF), convolution neural network (CNN), and residual neural network (ResNet).

Models Categ Parameter Vis-NIR (%) Parameter NIR (%)

Train a Val b Test c Train Val Test

SVM 0 2.0, 0.1, poly 95.9 94.8 91.4 6.6, 1.0, linear 99.4 100.0 96.6
1 1.2, 0.1, poly 98.4 96.3 92.7 1.0, 1.0, poly 100.0 100.0 96.3
2 1.0, 1.0, poly 1.00 88.0 93.2 1.0, 1.0, poly 100.0 100.0 95.9

LR 0 1 × 105, liblinear 100.0 89.7 93.1 100, lbfgs 99.4 93.1 98.3
1 1 × 105, liblinear 100.0 98.8 93.9 1 × 105, liblinear 100.0 100.0 100.0
2 1 × 104, liblinear 100.0 92.0 95.9 100, newton-cg 100.0 98.7 97.3

RF 0 8, 450 100.0 77.6 79.3 6, 750 100.0 74.1 81.0
1 7, 500 99.6 72.3 73.2 5, 550 98.8 86.7 87.8
2 8, 200 100.0 66.7 75.7 4, 250 99.1 98.7 93.2

CNN 0 500, 32, 0.001 99.4 98.3 93.1 500, 32, 0.001 100.0 100.0 98.3
1 500, 32, 0.001 97.6 97.6 92.7 500, 32, 0.001 100.0 100.0 98.8
2 500, 32, 0.001 100.0 98.7 93.2 500, 32, 0.001 99.5 100.0 98.6

ResNet 0 1000, 32, 0.005 100.0 94.8 93.1 600, 32, 0.005 100.0 93.1 86.2
1 1000, 32, 0.005 100.0 100.0 98.8 1000, 32, 0.005 100.0 100.0 97.6
2 1000, 32, 0.005 100.0 97.3 94.6 600, 32, 0.005 97.7 100.0 97.3

a,b,c represent training, validation, and test sets for the model; 0,1,2 represent Cabernet, Red grape and Munage,
respectively, Categ mean Category of the grape. Parameters of the SVM, LR, RF, and CNN ResNet are shown.
The parameters of the SVM, are (C, gamma, kernel); those of the LR are (C, solver); those of the RF are (n_estimator,
max_depth); those of the CNN and ResNet are (epoch, batchsize, learning rate).

Vis-NIR spectra. All the models had good performances and had an average accuracy
of over 90% for training, validation, and prediction sets. For Cabernet, the best models,
the CNN and ResNet models, showed closed results, with the accuracy of over 99%, 94%,
and 93% for train, validation, and test sets. SVM and LR models showed closed results,
with the accuracy of over 91%, 89%, and 100% for training, validation, and test sets. For
Red grape, all the models showed an accuracy of over 90% for training, validation, and test
sets. RF showed overfitting, with the accuracy of over 100%, 77%, and 79%. For Red grape,
the best model was ResNet, with the accuracy of over 100%, 100%, and 98% for training,
validation, and test sets. CNN, SVM, and LR were slightly lower, with the accuracy of 97%,
96%, and 92% for training, validation, and test sets. RF still showed overfitting, with the
accuracy of 99%, 72%, and 73% for training, validation, and test sets. For Munage, the best
model was ResNet, with the accuracy of 100%, 97%, and 94% for training, validation, and
test sets. CNN was slightly lower, with the accuracy of 100%, 98%, and 94% for training,
validation and test sets. SVM performed with an accuracy of 100%, 88%, and 93.2% for
training, validation, and test sets. RF was inferior to others, with the accuracy of 100%, 66%,
and 75% for training, validation, and test sets. Overall, there was no significance with a
different variety. ResNet performed better than other models, RF showed the overfitting,
and SVM, LR, and CNN presented the fine result.

NIR spectra. Generally, all models had a slightly better result than Vis-NIR spectra,
SVM, LR, CNN, and ResNet showed the average accuracy of over 90% for the validation
set. For Cabernet, the CNN, LR, and SVM models presented the best and similar results,
with an accuracy of close to 96% of the validation set. The following was ResNet, with
the accuracy of 100%, 93%, and 86% for training, validation, and test sets. RF showed
overfitting, with the accuracy of 100%, 74%, and 81% for training, validation, and test sets.
For Red grape, SVM, LR, CNN, and ResNet presented closed and fine results, with the
accuracy of over 100%, 100%, and 96% for training, validation, and test sets. RF showed
lower results, with the accuracy of 98%, 86%, and 87.8% for training, validation, and test
sets. For Munage, all models presented decent results, with the accuracy of over 93%.
Overall, all the models showed fine results, and the results performed better than those
of Vis-NIR. RF still showed the overfitting for Red grape and Munage. Varieties were not
significant in the three grapes.
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Methods. Considering different methods, there was a slight difference. For Vis-NIR
spectra, overall, ResNet was the best model, with the accuracy of over 100%, 94%, and
93% for training, validation, and test sets. The following was CNN, with the accuracy of
over 97%, 97%, and 92% for training, validation, and test sets. SVM and LR model were
closed, with the accuracy of over 91% for the validation set. RF showed overfitting. For
NIR spectra, SVM, LR, CNN, and ResNet showed closed and fine results, with an average
accuracy of over 90%, but RF also showed overfitting for Cabernet. Overall, the deep
learning methods (CNN, ResNet) performed better and had more stable results than those
of machine learning (SVM, LR, RF).

The overall classification results showed NIR spectra performed better than Vis-NIR
spectra. HIS in the NIR region was attributed to the overtone and overtone combination of
molecular bonds (e.g., N-H, C-H, and O-H), and HIS in the Vis-NIR region was related to
object color (e.g., chlorophyll). The results showed that spectral information on pesticide
residues was related to the overtone of molecular, and more valuable information would
be extracted via NIR spectra than Vis-NIR spectra regarding pesticide residue in grape.
Therefore, it was more suitable to detect pesticide residues using NIR spectra. For Vis-NIR,
CNN and ResNet performed best. For NIR, all results performed equally well, with the
accuracy of over 95%. Overall, it shows that the deep learning method is superior to the
traditional method. However, RF showed overfitting, and the reason might be the small
size of the sample. The results of each grape variety showed a consistent trend. Thus, the
classification accuracy did not correlate with the grape variety.

3.4. Visualization for Discovering the Wavelength Importance

Overall, deep learning (CNN and ResNet) offered finer results than machine learning,
but their process of operation is hard to interpret. Therefore, CNN and ResNet were
selected to visualize the wavelength importance, and saliency map was applied to analyze
the model to find the critical wavelengths. The data were processed with normalization.
The larger the value of the saliency map, the more critical the wavelength. The results are
shown in Figure 6 for CNN and Figure 7 for ResNet.

   

  

Figure 6. (a–c) Mean average value of saliency map of CNN for Cabernet, Red grape, and Munage
for Vis-NIR spectra. (d–f) Mean of CNN for Cabernet, Red grape, and Munage for NIR spectra.
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Figure 7. (a–c) mean average value of saliency map of ResNet for Cabernet, Red grape, and Munage
for Vis-NIR spectra. (d–f) mean that of ResNet for Cabernet, Red grape, and Munage for NIR spectra.

Saliency map of CNN. For Vis-NIR spectra of Cabernet, approximately 500–530 nm,
550–580 nm, 600–730 nm, and 760–900 nm showed the largest contribution, and the dif-
ference between all bands was not very significant. For Vis-NIR spectra of Red grape
and Munage, there were similar trends, approximately 660–900 nm contributed the most.
For NIR spectra of Cabernet and Red grape, there was a consistent trend, approximately
1150–1300 nm and 1320–1600 nm contributed the most, the others showed low contribu-
tion. For NIR spectra of Red grape, regions of large contribution rate were 1290–1600 nm
and 1120–1195 nm. For the NIR spectra of Munage, regions of main contribution were
960–1080 nm, 1110–1150 nm, 1280–1320 nm, 1390–1460 nm, and 1500–1550 nm.

Saliency map of ResNet. For the Vis-NIR spectra of Cabernet, the wavelengths at
approximately 470–530 nm and 650–690 nm contributed the most, followed by the wave-
lengths at approximately 530–650 nm and 750–880 nm. For the Vis-NIR spectra of Red
grape and Munage, the results presented the similarity; the wavelength at approximately
710–900 nm contributed the most. For the NIR spectra of Cabernet, the wavelengths at
approximately 1120–1210 nm and 1260–1310 nm contributed the most, followed by the
wavelengths at approximately 1210–1310 nm and 1420–1600 nm. For NIR spectra of Red
grape, the wavelengths at approximately 1300–1500 nm and 1590 nm contributed the
most, the others were low. For the NIR spectra of Munage, the wavelengths at approxi-
mately 970–980 nm, 1130–1180 nm, 1400–1420 nm, and 1580–1600 nm contributed the most,
followed by the wavelengths at approximately 980–1110 nm and 1300–1440 nm.

For Vis-NIR spectra, generally, wavelengths of 380–780 nm were mainly relevant to the
color variations of grape, e.g., chlorophyll [12,54]. For the rest of the NIR regions between
780 and 900 nm, those wavelengths are attributed to the third overtone stretch of O-H
related to water in grapes [55]. The range of 900–980 nm was contributed to by the third
overtone of C-H relevant to sugar [55]. For NIR spectra, wavelengths between 1050 nm and
1200 nm are mainly made up of the second overtone of C−H, and those between 1300 nm
and 1500 nm are mainly related to the frequency of C-H [56]. The range of 1210–1450 nm is
attributed to the 2nd overtone of C-H and the 1st overtone of O-H [54]. The wavelength
between 975 nm and 1015 nm is mainly attributed to N-H stretch second overtone [57], and
1526 nm (N-H stretch first overtone) [58], which can reflect pesticide residue differences
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among different levels. Since Jiatu, Huiyin, and Xishuangke contain a large amount of C-H,
O-H, and N-H as observed by their chemical molecular formula, these selected bands have
a great correlation with pesticides. Overall, the saliency map of CNN and ResNet showed a
similar and consistent trend, which confirmed the feasibility of visualizing the contribution
of wavelengths by this method.

4. Discussion

Visible/near-infrared spectroscopy or hyperspectral imaging is a fast and non-destructive
method to detect pesticide residues. Some studies have applied HSI to detect pesticide
contaminants in foods [9,19–22], but the research object in those experiments was single
and lacked mutual comparison between the objects. In our study, we chose three grapes
to identify the difference between the varieties. Moreover, those studies used one [23] or
two [18] pesticides as solvents for the research, and few studies mixed pesticides. Generally
speaking, mixed pesticides can more effectively control plant diseases and insect pests
without affecting the chemical properties and structure of the active ingredients. In this
study, we used three pesticides together (Jiatu, Huiyin, and Xishuangke) to make the
pesticide mixture and set four levels to compare the correlation among them, which was
more consistent with the actual production with the use of pesticide. In addition, other
studies mainly focused on assessing the pesticide residue within a single spectral range, and
there is rarely a combination of Vis-NIR and NIR used on pesticide residues. In particular,
to the best of our knowledge, no attempts have been made to analyze the different spectral
ranges of mixed pesticides in grapes. Two spectral ranges were chosen to form a contrast
and study the difference between the spectra, which increases the range of the spectrum
and makes the research more comprehensive.

Due to the redundancy and high volumes of hyperspectral data, machine learning
and deep learning were used to process the data and extract features. Previous studies
have used SVM [22,59], DT [59], KNN [59], or RF [18] to detect pesticide residue, which
showed fine results. SVM [60–62], LR [63], CNN [31,56,64], RF [60,62], and ResNet [56]
have been applied widely in quality detection of hyperspectral imaging. In this study,
classic machine learning and deep learning methods, CNN, ResNet, LR, SVM, and RF, were
used to achieve a multivariate analysis of the detection of pesticide residue levels in grapes.
More importantly, the saliency maps of CNN and ResNet were conducted to visualize the
contribution rate of the wavelength, which brought us a clear understanding of the crucial
wavelength information.

The two spectral ranges of the Vis-NIR (376–1044 nm) and NIR (915–1699 nm) showed
great potential and decent results for detecting pesticide residue at different levels. The
results (Table 4) of the NIR spectra were slightly better than those of the Vis-NIR spectra,
with average accuracies of 95% and 90%, respectively. However, in this study, the main
challenge was to make pesticide mixtures well-distributed in grapes. The uneven spraying
of pesticides has a profound impact on the reflectance of hyperspectral images. The
brightness unevenness of the hyperspectral image caused by the change in the surface
curvature of the sphere also needs to be carefully corrected. The time-varying nature of
spectrum acquisition deserves attention, such as drying time and acquisition sequence. The
study promotes the non-destructive detection of pesticide residues in grapes, and other
fruits, which accelerates the development of agro-products.

5. Conclusions

Detection of pesticide residuals in agro-products is of significant importance for food
safety. This study successfully identified pesticide residual levels of grapes using hyper-
spectral images at two different spectral ranges. The results showed that it was feasible to
detect different residual levels treated by the mixtures of different pesticides which were
in accordance with the real-world pesticide usage of grapes. Furthermore, to validate the
performances of the HSI technology, three different varieties of grapes were studied, and all
of them showed good performance. The comparison between conventional machine learn-
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ing methods and deep learning illustrated the effectiveness of deep learning in pesticide
residual level identification by HSI. More importantly, the wavelengths contributing more
to the identification were identified by saliency maps of deep learning models, which was of
great help to understand the spectral responses to the pesticides. This study illustrated that
HSI can be used for pesticide residual levels identification. The non-destructive approach
of HSI can be conducted in a contactless, rapid, and accurate manner, which improves
the detection efficiency and reduces the costs and the use of chemical reagents. HSI can
further be studied for on-line pesticide residual level identification. In future studies, a
larger number of samples and more varieties of grapes should be studied to establish more
robust models for real-world application. The optimization of deep learning models should
be studied. Deep transfer learning can be used to improve the generalization ability of
the established deep learning models. Furthermore, in addition to qualitative analysis,
the quantification of pesticide residual content and the limit of detection (LOD) should be
determined by HSI with deep learning methods. The mechanism of the active ingredients
of pesticides on the spectral responses of grapes should also be studied.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11111609/s1, Figure S1: PCA score plot for the Cabernet,
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Abstract: In today’s era of increased food consumption, consumers have become more demanding in
terms of safety and the quality of products they consume. As a result, food authorities are closely
monitoring the food industry to ensure that products meet the required standards of quality. The
analysis of food properties encompasses various aspects, including chemical and physical descrip-
tions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions,
and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on
conventional analytical techniques. However, these methods often involve destructive processes,
which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced
spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral
and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods
provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis.
Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images,
can be complex without the assistance of statistical and innovative chemometric approaches. These
approaches involve various steps such as pre-processing, exploratory analysis, variable selection,
regression, classification, and data integration. They are essential for extracting relevant information
and effectively handling the complexity of spectroscopic data. This review aims to address, discuss,
and examine recent studies on advanced spectroscopic techniques and chemometric tools in the
context of food product applications and analysis trends. Furthermore, it focuses on the practical
aspects of spectral data handling, model construction, data interpretation, and the general utilization
of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring
the advancements in spectroscopic techniques and their integration with chemometric tools, this
review provides valuable insights into the potential applications and future directions of these analyt-
ical approaches in the food industry. It emphasizes the importance of efficient data handling, model
development, and practical implementation of statistical and chemometric methods in the field of
food analysis.

Keywords: food analysis; food authenticity; food chemicals; spectroscopy techniques; chemometrics;
multivariate analysis

1. Introduction

The growing world population is increasing the demand for food in multiple ways,
which is leading to a higher demand for safety and quality control of commercialized
products. Food can become contaminated by chemicals and physical substances through
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accidental or intentional means. In recent years, there have been several major cases of
food adulteration, highlighting the critical need for controlling product authentication [1].
In one instance, wheat gluten samples were infused with melamine to improve their
protein content. In 2008, China experienced a milk scandal where milk was found to
be adulterated with melamine, and in 2012, India had a similar scandal where milk was
found to be adulterated with detergent, urea, and other substances [2]. Several noteworthy
incidents occurred in 2005, including the adulteration of chili powder with dye and the
contaminated chili powder in Indian Worcestershire sauce [3]. Gelatin-like chemicals were
used in the aquaculture market recently to increase weight in many instances in China.
Spices are frequently adulterated with ground material worldwide, particularly in Europe
and India [4,5]. These incidents demonstrate the importance of product authentication and
quality control in the food industry to protect consumers from harmful and potentially
dangerous adulterated products. To gain economic benefit, consumers are at risk of being
exposed to serious health threats if food products are adulterated with cheap or chemical
materials. This was seen in the Chinese milk scandal, where six infants passed and several
thousand were hospitalized. A further case is the contamination of paprika with lead
oxide to give it a reddish color, which caused over sixty hospitalized. In recent years,
both controlling agencies and the public have grown increasingly concerned about the
application of the phthalate plasticizer di-2-ethylhexyl phthalate as a clouding agent in
beverages and food [6,7]. In the past decade, both food and feed products have been
found to be adulterated. Some of the most adulterated agro-food commodities include
honey, edible oils, and spices. Additionally, it has been reported that food products such as
milk products, fruit extract, flour, coffee, alcohol, and meats, are being adulterated more
frequently [8]. All these examples illustrate a significant global problem that poses a threat
to consumers and has prompted food authorities to increase their scrutiny and inspection
of the food production chain from farming to consumption.

Food adulteration can occur for various reasons, including complex production pro-
cesses and long supply chains. Therefore, authentication is crucial for both labeling or-
ganizations and industries that must test raw materials and finished products to ensure
compliance with specifications [9]. Additionally, confirming the authenticity of the food
is essential for maintaining quality and preventing economic fraud. To address authen-
tication challenges and ensure product quality, fast, reliable, and competent analytical
methods are needed. The detection of composition properties and contaminants in food
and agricultural commodities can be accomplished using a wide variety of physical and
chemical methods. These properties, such as density, texture, color, acidity, and solubility,
are typically measured by physical or chemical methods. The chemical composition of the
samples determines the different chemical techniques involved and used in the identifica-
tion of components and contamination detection of food commodities [10]. Despite being
powerful analytical techniques, separation techniques including liquid-chromatography or
gas-chromatography are not always suitable when the workflow is rapid and the exper-
iments are costly, as the samples may be damaged during the study process. Therefore,
advanced spectroscopic techniques, along with chemometrics, are now being used for the
quality analysis and authentication of a wide range of food products. The main advan-
tages of these techniques are that they are non-damaging, rapid, ecologically friendly, and
economical. Spectroscopy data are complex and are typically handled by chemometric ap-
proaches for supervised and unsupervised pattern recognition, such as hierarchical cluster
analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA),
soft independent modeling of class analogy (SIMCA), and partial least squares-discriminant
analysis (PLS-DA) among others. These tools are mainly used to assess classes, such as
attributing samples as either adulterated/unadulterated or authentic/not authentic. In
addition to the qualitative chemometric approaches, there are also quantitative approaches
including multivariate calibration tools, including principal component regression (PCR),
and partial least squares (PLS) [11,12]. These tools are mainly used for quantitative parame-
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ters to quantify the number of adulterants and fatty acids content, based on data generated
from spectroscopic techniques.

The focus of this review is to provide an overview of recent studies on advanced
spectroscopy techniques and chemometric methods that are widely utilized in food evalua-
tion, safety assessment, quality analysis, and manufacturing processes. The review aims
to emphasize the advantages of these techniques over traditional analytical methods and
underscore the importance of efficient data handling, model construction, and practical
implementation of statistical and chemometric approaches in the field of food analysis.
Additionally, the review aims to discuss the potential applications and future directions
of these techniques in the food industry, while addressing the challenges associated with
traditional analytical methods, including their destructiveness, laborious nature, time
consumption, cost, and negative environmental impact.

2. Chemometric Approaches in Spectroscopy Data

The advancement of modern instruments, represented by spectroscopy techniques,
has accelerated the development of the food industry and food research in recent decades.
As a result, the data available to food analysts has become increasingly complex. Not
only does the amount of data tend to be large, but the dimensionality of the data can also
increase dramatically. Effectively analyzing and managing large amounts of spectroscopy
data from food production, food processing, and food research is both a practical and
theoretical issue. Chemometrics, which combines the power of statistics and mathematics
for use by chemists, provides a valuable solution to the challenging analytical issues in food
spectroscopy analysis. The general framework and pipeline of advanced spectroscopic
techniques coupled with chemometric approaches applied in food analysis is illustrated
in Figure 1. Advanced spectroscopic techniques combined with chemometric approaches
are of great significance in food analysis. These techniques provide fast, precise, and
non-destructive measurements of diverse food properties (Figure 1). Their integration
offers multiple advantages, such as rapid analysis, non-destructive measurement, multi-
variate data analysis, quality control, process optimization, and allergen detection. These
advancements contribute significantly to enhancing food safety, ensuring quality assurance,
and safeguarding consumer protection. On the other hand, several chemometric tools
have been developed and validated to be powerful in terms of information extraction,
multivariate relationship analysis, prediction, and discrimination analysis, among others,
in food spectroscopy data analytics. A roadmap workflow example in Figure 2 for using
chemometric tools to handle spectral data in different scenarios for either qualitative or
quantitative purposes. However, the interpretation of spectroscopy data, be it in the form
of signals or images, can be intricate without the aid of statistical and innovative chemo-
metric approaches. These approaches encompass crucial steps, including pre-processing,
exploratory analysis, variable selection, regression, classification, and data integration. By
employing these methods, researchers can extract pertinent information and effectively
manage the complexities inherent in spectroscopic data.
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Figure 1. A general workflow of advanced spectroscopic techniques combined with chemometric
approaches for food analysis.
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Figure 2. A roadmap example for chemometric approaches applied to different spectroscopic data
for both quantitative and qualitative food analysis purposes.
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2.1. Pre-Processing Techniques

Pre-processing plays a crucial role in spectral data analysis as it prepares the data
for further analysis and modeling. Various pre-processing techniques are employed to
address common challenges such as scattering correction, baseline correction, peak shift
alignment, denoising, and handling missing values. Effective pre-processing is essential for
enhancing the performance of models by eliminating artifacts from the data and reducing
fitting errors. By applying appropriate pre-processing methods, the spectral data becomes
more reliable and conducive to accurate analysis and interpretation. In the context of
missing data, several chemometric tools have been developed to address this issue [13].
For instance, maximum likelihood PCA-based imputation [14], as well as data regres-
sion methods like KDR-PLSR (kernel density-ratio-based partial least squares regression)
and KDR-PCR (kernel density-ratio-based principal components regression) [14], have
recently emerged as highly effective approaches for handling missing data. For multi-way
data, such as fluorescence data, practical solutions for missing data imputation include
alternating least squares with single imputation, Parallel Factor (PARAFAC) analysis, and
the Levenberg-Marquardt method [15,16]. These techniques offer reliable and efficient
means to impute missing data, enabling more comprehensive and accurate analyses of
complex datasets. In the context of scatter correction, Multiplicative Scatter Correction
(MSC) [17], Standard Normal Variate (SNV) [18], and other normalization methods are
widely employed chemometrics techniques. These methods effectively address the issue
of scatter in spectral data. Additionally, advancements in scatter correction tools have led
to the development of new versions and improved approaches [17]. To tackle baseline
drift problems in spectral data, adaptive reweighing schemes for polynomial fitting and
penalized least squares [19], as well as Tikhonov regularization [20], have proven successful
in removing unwanted baseline variations. These techniques offer reliable means to address
baseline drift and enhance the accuracy of subsequent analysis.

In order to mitigate peak shift problems, several methods have been reported to be use-
ful. Automatic time shift alignment (ATSA) [21], coherent point drift peak alignment [22],
Global peak alignment with point matching algorithm [23], and PARAFAC Applied to Shift
Invariant Amplitude Spectra (PARASIAS) [24] are among the techniques that have demon-
strated effectiveness in aligning peaks accurately despite shifts or distortions. Derivative
calculation of spectral data is a promising solution to some different artefacts problems
especially when it is combined with other techniques, e.g., combining the first derivative
and simple spectral ratio can correct both the additive effects and multiplicative effects [25].

Overall, the utilization of these advanced techniques in scatter correction, baseline drift
correction, and peak shift alignment significantly improve the quality and reliability of spectral
data, facilitating more robust and accurate analyses in various chemometric applications.

2.2. Variable Selection Tools

Variable selection is a valuable technique in spectral data analysis as it enhances model
performance, provides better interpretations, and reduces measurement costs [26]. Several
popular methods are commonly used in chemometrics for spectral data analysis, including
model factors and assessment, model-based feature importance statistics, interval partial
least squares regression (iPLS) [27], and genetic algorithm (GA) [28]. When considering
model parameters, variables with lower loadings and regression coefficients may not be
as important as those with higher values. In the case of model-based variable importance
statistics, variables such as variables important for projection (VIP) [29], which measures
the contribution of a variable in describing the data, and selectivity ratios [30], which
evaluate the predictive performance of variables, are commonly used in chemometrics
analysis of spectral data. These statistics help identify the most influential variables in
the model. The iPLS is a variable selection method that operates by selecting windows of
variables, making the selection of window size a critical aspect of iPLS. On the other hand,
GA performs variable selection by simulating the process of natural selection, estimating
models involving patterns in variable generation [26]. However, GA requires more com-
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plex parameter settings compared to other variable selection methods. Regardless of the
specific variable selection method employed, it is important to remember that validation
is always necessary to avoid erroneous conclusions resulting from overfitting. Validation
procedures help ensure the robustness and reliability of the selected variables and the
overall model performance.

In summary, the utilization of variable selection techniques in spectral data analysis
offers improved model performance, interpretability, and cost-effectiveness. Methods such
as iPLS, GA, and model-based feature importance statistics contribute to selecting relevant
variables and enhancing the accuracy and reliability of chemometric analyses. Validation
procedures are crucial to validate the selected variables and mitigate the risk of overfitting.

2.3. Exploratory and Clustering Tools

Exploratory data analysis is a critical component of food spectroscopy data analysis,
serving as a means to understand descriptive statistical characteristics and gain multivariate
insights from complex datasets. A range of exploratory analysis tools, including both
graphical techniques and quantitative dimensionality reduction techniques, are widely
utilized in the analysis of food spectroscopy data. Graphical techniques such as box plots,
histograms, and scatter plots are valuable for visualizing the distribution, variation, and
presence of missing values in samples. These tools are commonly employed in the analysis
of metabolite data obtained from mass spectroscopy [31]. By utilizing graphical tools,
researchers can effectively explore the properties and patterns present within the data.

Principal Component Analysis (PCA) is a representative dimensionality reduction
technique and one of the most popular tools employed in food spectroscopy data analysis.
The earliest invention of PCA dates back to the early 20th century [32]. However, this first
invention focused more on the modeling property and explained the variation of PCA.
However, it was later expanded upon by Hotelling, who introduced the concept of PCA
as a linear combination of variables [33]. Nowadays, PCA is now widely recognized for
its ability to reveal complex relationships within multivariate data, making it a powerful
tool for obtaining an overview of complex datasets. It is frequently used to explore relation-
ships between samples and variables, identify outliers, discover and determine patterns
(groups), as well as generating new hypotheses [34]. Moreover, PCA can also be utilized
for conducting clustering analysis. By examining the relationships between samples, PCA
can effectively divide samples with different statistical characteristics into distinct groups.
In addition to PCA, Hierarchical Cluster Analysis (HCA) [35] and k-means clustering
analysis [36] are widely used as clustering analysis tools in food spectroscopy data analysis.
In the format of a dendrogram, HCA constructs a dendrogram that hierarchically divides
samples into groups based on their similarities, facilitating the identification of distinct
clusters. On the other hand, K-means clustering analysis partitions objects into k-clusters,
with each object belonging to the group with the closest average.

Overall, exploratory data analysis, comprising graphical techniques, dimensionality re-
duction methods like PCA, and clustering analysis tools such as HCA and k-means, enables
researchers to gain insights into complex food spectroscopy datasets. These approaches
facilitate the understanding of data properties, identification of patterns, and generation of
hypotheses, ultimately advancing the knowledge and interpretation of food analysis.

2.4. Regression and Prediction Tools

Prediction models are essential in food spectroscopy data analysis, as they enable the
successful prediction of chemical and physical properties, supporting green food research
and the sustainable food industry. Partial least squares (PLS) regression is a standard
chemometric method used for prediction analysis of spectral data [37]. By projecting the
predictor variables and response variables onto a new space, PLS seeks to uncover the
underlying relationship between X and Y matrices by modeling the covariance structures
in this new space [38]. PLS has the added advantage of effectively handling the collinearity
problem often encountered in spectral data [39]. In addition to PLS, N-way PLS [40]
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is a powerful tool for handling multi-way spectral data and the N-way PLS model is
advantageous in well modeling performance, robustness to noise, stabilized solution, and
improved prediction capabilities [41] specifically for multi-way spectral data. Various other
regression methods, such as support vector machine (SVM) regression artificial neural
network (ANN) and multiple linear regression (MLR), are also employed in spectral data
analysis [42]. MLR is a linear regression method that establishes the relationship between
independent variables and dependent variables by fitting a linear model. However, MLR
has strict assumptions that need to be met, including constant variance of the residuals,
multivariate normality, and linear assumption [43], which can limit its applications in
certain cases. In contrast, SVM regression and ANN are often utilized for non-linear
prediction analysis in spectral data. For instance, ANN can capture highly non-linear
relationships between inputs and outputs, enabling the prediction of an output variable
based on input data [44]. The non-linear models such as SVM and ANN can offer attractive
predictive performance in many applications [42], but the issue of overfitting must be
carefully addressed. Therefore, validation is a crucial step in non-linear prediction analysis
to ensure the reliability and generalization of the models when applied to spectral data.

In short, prediction models, including PLS regression, N-way PLS, SVM regression,
ANN, and MLR, are valuable tools in food spectroscopy data analysis. These models
enable the prediction of chemical and physical properties, and their selection depends
on the nature of the data, linearity assumptions, and the need for handling collinearity
or capturing non-linear relationships. Validation procedures are essential to evaluate
and validate the performance of these models, ensuring their accuracy and robustness in
spectral data analysis.

2.5. Classification Tools

Classification is an essential task in food analysis, aimed at identifying and assigning
categories to samples in order to detect pattern differences and enable subsequent analysis.
Various chemometrics techniques are employed for the classification analysis in food
analysis, including tree-based methods, regression-based methods, discriminant analysis,
and neural networks, among others. One popularly used classification tool in food analysis
is partial least squares-discriminant analysis (PLS-DA) [45]. PLS-DA is a discrimination
method based on PLS regression but incorporates an additional classification step based on
the thresholding of predicted y-values. Another method, the soft independent modelling
class analogy (SIMCA) method combines the concept of PCA in performing classification
analysis [46]. SIMCA utilizes the residuals from disjoint PCA models to assign samples
to one or several classes, with the critical distance being based on the F-distribution [47].
In addition to PLS-DA and SIMCA models, Linear Discriminant Analysis (LDA) [48]
and SVM [49] are also frequently used for classification analysis in food analysis. LDA
models the differences between groups by finding a linear combination of features and
projecting them from a higher dimensional space into a lower dimensional space, effectively
separating them into distinct classes. On the other hand, SVM can also be used for non-
linear classification analysis. In the case of non-linear classification, SVM employs a
kernel function to transform the data from a non-linear space to a linear space, enabling
the classification task in a high-dimensional space. However, it’s important to note that
performing SVM classification on large spectroscopy datasets may be time-consuming due
to the training and kernel computation requirements.

In brief, classification is a fundamental data analysis task in food analysis, and several
chemometric techniques such as PLS-DA, SIMCA, LDA, and SVM are commonly utilized
for this purpose. These methods enable the identification of patterns and the assignment
of samples to different categories, facilitating subsequent analysis and decision-making
in the field of food analysis. It’s important to consider the nature of the data, linear or
non-linear relationships, and computational considerations when selecting the appropriate
classification method for a given analysis.
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2.6. Mixture Analysis Tools

Mixture analysis is a critical area of focus in food analysis, driven by advancements
in omics technologies and the demand for improved production processes in the food
industry. A wide range of chemometric tools is employed to analyze mixtures in food,
encompassing both two-way analytical methods and multi-way analytical methods.

Multivariate curve resolution-alternating least squares (MCR-ALS) is one of the rep-
resentative two-way chemometrics tools used for food mixture analysis. It allows for the
extraction of chemically meaningful bilinear models from a data matrix that includes mixed
measurements, with an additive model structure [50]. Basically, MCR-ALS decomposes the
mixture data matrix into two matrices and a residual matrix. For instance, in the case of
high-performance liquid chromatography with diode array detection (HPLC-DAD) data,
MCR-ALS separates the data into a matrix containing elution profiles of all components,
another matrix containing the corresponding pure spectra, and a residual matrix of the
same dimensions as the raw data, capturing unexplained variations. Although MCR-ALS
encounters challenges such as permutation ambiguity, intensity ambiguity, and rotational
ambiguity, these issues can be partially addressed through specific strategies [51]. Parallel
Factor Analysis (PARAFAC) [52] and Parallel Factor Analysis2 (PARAFAC2) [53] models
are widely used multi-way models for complex mixture analysis. These models generalize
the bilinear models to handle multi-way data. Instead of generating a set of bilinear com-
ponents, PARAFAC and PARAFAC2 decompose the high-order tensor data into a set of
trilinear components (in the case of three-way data) in which each vector represents the
information from each mode. Due to the unique advantages of PARAFAC and PARAFAC2
models [54], they are powerful for decomposing the pure chemical from the multi-way
fluorescence and mass spectroscopy data. The main difference between PARAFAC and
PARAFAC2 models is that the strict multilinear assumption in the PARAFAC model is
relaxed in PARAFAC2 model, meaning that the profiles for each slab in the multi-way data
is not required to be the same in PARAFAC2 model if the cross products of the components
keep the same [55].

In outline, mixture analysis holds significant importance in food analysis, and a
range of chemometric tools are applied for this purpose. MCR-ALS is a powerful two-
way method for mixture analysis, while PARAFAC and PARAFAC2 models are widely
used in multi-way analysis of complex mixtures. These methods enable the extraction of
chemically meaningful information from mixture data, aiding in the identification and
characterization of individual components within complex food matrices. While certain
challenges exist, strategies have been developed to address them and enhance the reliability
and applicability of these chemometric tools in mixture analysis.

In this section, a general overview was provided regarding the various chemomet-
ric tools utilized for handling spectroscopy data. These tools encompass pre-processing
techniques, exploratory analysis methods, variable selection approaches, regression mod-
els, classification algorithms, and mixture analysis methodologies. However, the specific
methodologies and algorithms underlying each technique were not thoroughly explored,
nor were the advantages or disadvantages of individual approaches discussed in detail.

3. Advanced Spectroscopy Techniques with Chemometrics in Food Analysis

Advanced spectroscopy techniques paired with chemometric tools are crucial in
analyzing food by providing a fast, non-destructive, and efficient means of obtaining
detailed information about food samples. This information can be used to improve the
quality, safety, and authenticity of food products. Table 1 summarizes recent applications of
advanced spectroscopic techniques and chemometric approaches for quantitative analysis
in food whereas a summary of recent applications of advanced spectroscopic techniques
linked to chemometric approaches for qualitative analysis in food can be found in Table 2.
In this section, the focus was on discussing the most notable studies conducted on advanced
spectroscopic techniques, including X-ray-based methods, hyperspectral and multispectral
imaging, NMR, Raman, IR, UV, visible, fluorescence, and portable techniques. These
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studies were examined with respect to their applications, both qualitative and quantitative,
and their overall utility in the field of food analysis.

Table 1. Advanced spectroscopic techniques combined with chemometric approaches for quantitative
analysis in food application. Table was ordered regarding used techniques.

Quantitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Gamela et al. Cocoa beans EDXRF Cu, K, Sr and Zn Cocoa beans PLS [56]

Sperança et al. Bananas X-ray fluorescence Zn Determination Zn
content in Banans PLS [57]

Priyashantha et al. Cheese
Near-infrared
hyperspectral
(NIR-HS) imaging

-
Explain the relationship
between average spectra
and cheese maturity

PLS [58]

Darnay et al. Semi-hard cheese HSI Transglutaminase
Detection of the enzyme
of transglutaminase in
the cheese

PLS [59]

Lu et al. Potatoes Fluorescence HSI Solanine Predict the solanine
content in potatoes SVR [60]

Xiao et al. Fresh-cut potato HSI
Color parameters
(bruising index)
and water content

Assess the quality
of potatoes LS-SVM and PLS [61]

Tian et al. Purple sweet
potato Vis-NIR HSI Moisture and

anthocyanins

Predict the critical
indexes of moisture and
anthocyanins in purple
sweet potato

PLSR [62]

Li et al. Plum VNI-HSI Nan
Predict the soluble solid
contents and the color of
two plums cultivars

PLS [63]

He et al. Wheat flour HSI Talcum powder
Detection of talcum
powder adulterated in
wheat flour

SNV-CARS-PLS [64]

Kim et al. Wheat flour SWIR-HSI Benzoyl peroxide
Detecting the bleaching
agent of benzoyle
peroxide in wheat flour

PLS [65]

Sun et al. Melons HSI Nan Predict the sugariness
and hardness of melons PLS, SVM and ANN [66]

Wang et al. Chinese steamed
bread FT-NIR Potato flour content Predicting potato flour in

Chinese steamed bread PLS-R [67]

Tu et al. Wheat flour FT-NIR Talcum powder
Quantitation of low
content of talcum
powder in wheat flour

Gradient-boosted
decision tree (GBDT) [68]

Kandpal Tuber flour NIR and MIR

Chemical compo-
nents:amylose, starch,
protein, glucose,
cellulose, and
moisture contents

Prediction of quality
traits in tuber traits by
mean of Data fusion of
FT-IR and FT-NIR

SOPLS [69]

Kamboj et al. Wheat FT-NIR Crude protein
and carbohydrate

Compare chemometrics
for predicting the quality
parameters of wheat

PLS, MLR, SVM [70]

Liang et al. Potatoes FT-NIR Sugar content Detection of zebra chip
disease (ZC) in potatoes PLS [71]

Jiang et al. Wheat flour Portable NIR Fatty acid Quantitation of fatty
acids in wheat

Variable combination
population analysis
(VCPA), extreme
learning machine
(ELM)

[72]
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Table 1. Cont.

Quantitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Ning et al. Wheat grains FT-NIR Zearalenone Detection of zearalenone
in wheat SVM [73]

Cámara et al. Clove and
pomegranate IR Antioxidant activity

Estimation of antioxidant
activity in clove
and pomegranate

MCR-ALS and PLS [74]

Castro et al. Peanut oil NIR and Raman Adulterants (corn
oil and vegetable oil)

Assessment of
vibrational spectroscopy
with chemometrics

MCR-ALS and
PLS regression [75]

Castro et al. Saffron FT-NIR

Saffron adulterants
(onion, calendula,
pomegranate, and
turmeric)

Detection of
Saffron adulterants

MCR-ALS and
PLS regression [76]

Li et al. Saffron FT-NIR
Saffron adulterants
(lotus stamens and
corn stigmas)

Detection of
saffron adulterants

Synergistic interval
PLS (SI-PLS),
competitive adaptive
reweighted sampling
PLS (CARS-PLS)

[77]

Li et al. Saffron FT-NIR Corcin Determination of corcin
content in Saffron PLS [78]

Liu et al. Panax notoginseng FT-NIR

Adulterants
(hizoma curcumae,
Curcuma longa and
rhizoma alpiniae
offcinarum)

Quantification of Panax
notoginseng with its
adulterants

PCR, PLS, ELM
and SVR [79]

Liu et al. Vegetable oils FT-NIR Phytosterols
Determination of
phytosterols in
vegetable oils

Pls [80]

Joshi et al. Eggs FTIR
Constituents of
eggs (yolk
and albumen)

Detection of
fabricated eggs PLS-DA and SVM [81]

Mazivila et al. Milk FT-NIR Melamine and
sucrose

Estimation the adulterant
contents in the milk MCR-ALS [82]

Novianty et al. Palm fruit FT-NIR Oil content Quantitation of oil
content in palm fruit EMD-ANN [83]

Basar et al. Honey FTIR
Adulterant (beet
sugar and
corn syrup)

Determination of
honey adulteration

Genetic-algorithm-
based inverse least
squares (GILS)
and (PLS)

[84]

Qin et al. Wheat flour Raman chemical
imaging Benzoyl peroxide Detection of

benzoyle peroxide PLS [85]

Yuan et al. Duck meat Surface-enhanced
Raman

Testosterone
propionate and
nandrolone residues

Quantitation of residues
in the duck meat LS-SVR [86]

Nakajima et al. Banana Raman Starch Quantification of starch
in banana PLS [87]

Hara et al. Tomatoes Raman Carotenoids Determination of
carotenoids in tomatoes PLS [88]

De Olieveira
mendes et al. Raw milk Raman Whey Quantitation of whey in

raw milk PLS [89]

Czaja et al. Youghurts Raman Fat, lactose,
and protein

Determination of
nutritional parameters
of yoghurts

PCA and PLS [90]
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Table 1. Cont.

Quantitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Tian et al. Milk Raman

Adulterants
(maltodextrin,
sodium carbonate,
and whey)

Prediction of adulterants
in raw milk PLS [91]

Berzins et al. Breast milk Raman and FTIR
Macronutrients
(protein, fat, and
carbohydrate)

Determination of
macronutrients in the
breast milk

PLS [92]

De sa
oliveira et al. Spreadable cheese Raman Starch

Quantitation of starch
in adulterated
spreadable cheese

PLS [93]

Liu et al. Edible oils Raman and FT-IR
data fusion

Peroxide values and
acid values

Determination of
chemical quality indices
of edible oils during
thermal oxidation

PLS [89]

Puertas et al. Egg yolk Data fusion of FTIR
and UV-Vis Cholesterol Prediction of cholesterol

in egg yolk PLS and PCR [94]

Wang et al. Infant formula Vis-NIR and Raman
data fusion -

Assessment of infant
formula storage
temperature and time

SVM [95]

Valinger et al. Honey UV-Vis and NIR
data fusion Sugar syrups Detection of

honey adulteration PLS and ANN [96]

Wang et al. Camelia oil Excitation-emission
matrix fluorescence Vegetable oils Quantitation of

adulterant in camelia oil
N-PLS and
PARAFAC [97]

Baretto et al. Milk Fluorescence Melamine Determination of
melamine in milk

PARAFAC
and UPLS [98]

Gu et al. Rapessed oil
in water Fluorescence Lipid

Quantitative assessment
of lipid oxidation in a
rapeseed oil-in-water

GA-SVR [99]

Tarhan Extra virgin olive
oil (EVOO)

FTIR, UV–Vis and
fluorescence Squalene

Quantification of
squalene in extra
virgin olive oils

PLS [100]

Wu et al. Edible blend oil UV-Vis Adulterant
(vegetable oil)

Quantification of
vegetable oils in
edible blend oil

Weighted
multiscale SVR [101]

Zhang et al. Edible oils UV-Vis Acid value Impact of heating on
edible oils PLS and PCR [102]

Rios-Reina et al. Wine and
balsamic vinegar UV-Vis Grape-must caramel

(E-150d caramel)

Quantitation of grape-
must caramel in wine
and balsamic vinegars

PLS [103]

Cavdaroglu et al. Vinegar UV-Vis and MIR

Phenolic components,
p-coumaric and
syringic acids, citric
and acetic acids,

Predict quality and
chemical parameters
of vinegar

PLS and OPLS [104]

Santos et al. Milk NMR

Adulterants (Whey,
urea, hydrogen
peroxide, synthetic
urine and
synthetic milk)

Quantification of
milk adulteration PLS [105]

Liu et al. Cream NMR Artificial bright
blue pigment

Detecting additives
content in cream PLS and MLR [106]

Sun et al.
Carrot, banana
and pleurotus
eryngii

NMR Moisture

Monitor water states
of typical fruits
and vegetables
during microwave
vacuum drying

PLS, SVM
and BP-ANN [107]
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Table 1. Cont.

Quantitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Hajjar et al. Hen egg NMR Fatty acids Quantification of fatty
acids in hen eggs PLS [108]

Galvan et al. Edible oils NMR Fatty acids and
iodine value Analysis of edible oils PLS and SVR [109]

Haddad et al. Cheese NMR Fatty acids Quantitation of
individual fatty acids PLS [110]

Jiang et al. Rice Surface-enhanced
Raman scattering

Chlorpyrifos
residue

Quantify chlorpyrifos
residues in rice samples

GA-PLS, UVE-PLS,
VCPA-PLS and
CARS-PLS

[111]

Richardson et al. Coconut water Raman Sugars Detection of adulteration
in Coconut water PLS [112]

Table 2. Advanced spectroscopic techniques combined with chemometric approaches for qualitative
analysis in food application. Table was ordered regarding used techniques.

Qualitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Galvan et al. Tomato and
sweet paper EDXRF -

Discrimination of tomato
or sweet pepper samples
effectively according to
the agronomic
production mode or
geographical origin

PLS-DA [113]

Scatigno et al. EVOO EDXRF Ni, Fe and Ti Discrimination of EVOO PCA [114]

Panebianco et al. Tomato fruit XRF -

Establish an assessment
procedure for the origin
and quality assessment
of Sicilian tomato fruits

PCA [115]

Allegretta Beans TXRF -
Clustering of the seeds of
beans according to their
geographical origin

PCA and PLS-DA [116]

Vitali et al. Croatian wines TXRF

Contents of metals
(K, Ca, Fe, Cu, Zn,
Mn, Sr, Rb, Ba, Pb,
Ni, Cr and V)

Classification of
origin and type
of Croatian wines

PCA and
cluster analysis [117]

Li et al. Peaches

Short-wave near-
infrared (SW-NIR)
and long-wave near-
infrared (LW-NIR) hy-
perspectral imaging

- Detection bruises
in peaches PCA [118]

He et al. Flour Vis-NIR HSI
Mites Tyrophagus
putrescentiae and
Cheyletus eruditus

Detection of mites
Tyrophagus putrescentiae
and Cheyletus eruditus
in flour

Random forest
and PCA-ANN [119]

Al-Sarayreh et al. Meat NIR-Vis HSI -

Deep learning approach
for red-meat
classification by
combining the spectral
and spatial features of
HSI data

CNN [120]

Pan et al. Peaches Hyperspectral
reflectance imaging - Detection of cold injury

in peaches ANN [121]

Sun et al. Peaches Hyperspectral
reflectance imaging - Characterization of

chilling injury in peaches
PLS-DA, ANN
and SVM [122]
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Table 2. Cont.

Qualitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Babellahi et al. Green bell peppers HSI -
Detection of chilling
injury in green
bell peppers

PLS-DA [123]

Cen et al. Cucumber fruit HSI - Detection of chilling
injury in cucumber fruit SVM and KNN [124]

Carreiro
Soares et al. Cotton seeds HSI -

Discrimination of
different varieties
of seeds

PLS-DA [125]

Fan et al. Blueberry HSI -
Detection of blueberry
internal bruising
over time

LS-SVM [126]

Sun et al. Tomatoes HSI - Characterization of
bruised tomatoes PLS-DA [127]

Susic et al. Tomatoes HSI -

Discrimination between
abiotic and biotic
drought stress
in tomatoes

PLS-DA PLS-SVM [128]

Zhao et al. Wheat seeds HSI - Characterization the
purity of wheat seeds CNN [129]

Zhao et al. Maize seeds HSI - Classification of
maize seeds Neural network [130]

Tsouvaltzis et al. Eggplant fruit FT-NIR and NIR-HSI -

Evaluating the
temperature effect on
chilling injury
of eggplant

PLS-DA, SVM
and KNN [131]

Liang et al. Potatoes FT-NIR Sucrose, glucose
fructose

Detection of zebra chip
disease (ZC) in potatoes

Canonical
discriminant
analysis

[71]

Huang et al. Honey NIR and FTIR Syrup adulterant
Distinguish the normal
honey from
adulterant one

SVM [132]

De Girolamo Wheat FT-MIR and FT-NIR Ochratoxin A
Assessment of the
adulteration of wheat
by ochratoxin

PLS-DA and
PC-LDA [133]

Chen et al. Eggs FT-NIR - Verifying the authenticity
of native eggs

Data-driven-based
class-modeling
(DDCM), PCA

[134]

Liu et al. Panax
notoginseng FT-NIR

Adulterants
(rhizoma curcuma,
Curcuma longa and
rhizoma alpiniae
offcinarum)

Identification of panax
notoginseng with
its adulterants

PLS-DA and SVM [79]

Marquetti et al. Arabica Coffee FT-NIR -
Evaluation of geographic
and genotypic origin of
arabica coffee

PLS-DA [135]

Mazivila et al. Milk FT-NIR Melamine and
sucrose

Discrimination of pure
milk from the
adulterant one

DD-SIMCA [82]

Miao et al. Rice FT-NIR - Classification of rice
based on storage time

PCA, KNN
and PLS-DA [136]

Rovira et al. Cashew nuts FT-NIR Adulterants
(peanuts)

Characterization of the
adulterant cashew nuts
by other nuts

SIMCA [137]

Visconti et al. Cheese FT-NIR Cellulose and
silicon dioxide

Determination of
additives in the grated
hard cheese

PLS-DA [138]
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Table 2. Cont.

Qualitative Analysis

Authors Food Materials
Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Xie et al. Waxy rice FT-NIR Amylose and
amylopectin

Determination of quality
parameters by FT-NIR

Modified PLS
(MPLS) [139]

Ziegler et al. Kernels and
flours FT-NIR -

Differentiation of flours
and kernels of costly
ancient species from less
expensive bread wheat

PLS-DA [140]

Joshi et al. Eggs FTIR
Constituents of
eggs (yolk
and albumen)

Detection of
fabricated eggs PLS-DA and SVM [81]

Rozali et al. Crude palm oil FTIR -

Authentication of
different geographical
and temporal origins of
crude palm oils

OPLS-DA [141]

Li et al. Hazelnuts FT-Raman and NIR
data fusion Almonds adulterant

Discriminate the
unadulterated hazelnuts
from the adulterated
hazelnuts with almonds

SIMCA [142]

Yuan et al. Duck meat Surface-enhanced
Raman

Testosterone
propionate and
nandrolone residues

Classification of duck
meat based on residues

Particle swarm
optimization–
support vector
classification
(PSO-SVC)

[86]

Unuvar et al. Durum wheat
flour

Raman spectroscopy,
FT-NIR, synchronous
fluorescence spec-
troscopy (SFS),
(ATR-FTIR)

-

Distinguishing common
and durum wheat
flour samples with
different genotypes

PCA, PLS-DA [143]

Amjad et al. Milk Raman Proteins, milk
fats, lactose

Differentiation between
milk samples of
different species

Random forest
classifier (RF),
PCA

[144]

De Oliveira et al. Enriched eggs Raman Omega-3 fatty acids

Discrimination between
conventional and
omega-3-fatty acids
enriched eggs

PLS-DA [145]

De sa
oliveira et al. Spreadable cheese Raman Starch

Classify spreadable
cheese as adulterated or
without starch

PLS-DA [93]

Nieuwoudt et al. Milk Raman spectroscopy
Nitrogen-rich
molecules and
sucrose

Detecting adulteration
of milk PLS-DA [146]

Ning et al. Duck meat Raman Sulfadimidine and
Sulphapyridine

Classification of duck
meat based on
Sulfadimidine and
Sulphapyridine

SVM and PCA [87]

Robert et al. Meat Raman -

Discrimination between
different species of meat
(intact beef, venison, and
lamb meat)

PLS-DA [147]

Tian et al. Milk Raman spectroscopy

Adulterants
ofaltodextrin,
sodium carbonate,
and whey

Distinguishing raw milk
from the adulterated one PLS-DA [91]

Tian et al. Rice Raman spectroscopy - Distinguishing rice based
on producing areas

PCA-KNN,
SPA-KNN,
PCA-LS-SVM
and SPA-LS-SVM

[148]
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Fingerprinting
Technique

Analysed
Components

Objectives
Chemometric
Analysis

Ref.

Wu et al. Honey Raman spectroscopy

Adulterants
(fructose corn
syrup, rice syrup,
maltose syrup,
blended syrup)

Characterization of
adulterant honey CNN [149]

Wang et al. Infant formula Vis-NIR and Raman
data fusion -

Assessment of infant
formula storage
temperature and time

SVM [95]

Yao et al. Boletus
mushrooms

Data fusion of FT-IR
and UV -

Discrimination of
different geographical
origins of Boletus
mushrooms

PLS-DA and SVM [150]

Antonio et al. Honey Spectrofluorimetry

Adulterants (corn
syrup, sugar cane
molasses and
polyfloral honey)

Detection of
adulterations in a
valuable Brazilian honey

Multilinear
PLS-DA
(NPLS-DA),
unfolded PLS-DA
(UPLS-DA),
PARAFAC

[151]

Fang et al. Chinese lager
beers

Excitation-emission
matrix fluorescence -

Characterization and
classification of Chinese
pale lager beers
produced by different
manufacturers

PARAFAC-KNN [152]

Jiménez-
Carvelo et al.

Extra virgin
olive oils Fluorescence and NIR Adulterant

(vegetable oil)

Authenticate the
geographic origin of
Argentinean EVOO
samples

NPLS–DA [153]

Meng et al. Olive oil Excitation-emission
matrix fluorescence

Adulterant
(soybean)

Detection of adulteration
of olive oil with
soybean oil

Multiway-PCA
(MPCA), ANN,
PLS-DA

[154]

Yuan et al. Edible vegetable
oils

Infrared, NIR and
fluorescence - Identification of different

vegetable oils MPCA, NPLS-DA [155]

Uncu et al. Fresh olive oils Mid-infrared, UV–Vis
and fluorescence

Adulterant (old
olive oil)

Detection of adulteration
of olive oil OPLS-DA [156]

Gonçalves et al.
Monovarietal
Extra Virgin
Olive Oils

UV-Vis Phenolic
compounds

Monitor the behavior of
autoxidative processes
through the storage time
in two packaging systems
of different EVOO

MCR-ALS [157]

Suhandy et al. Peaberry coffee UV-Vis -
Classify coffee samples
as either pure peaberry
or pure normal coffee

SIMCA and
PLS-DA [158]

Torrecilla Vinegar UV-Vis -

Characterization of
vinegars produced from
six different
raw materials

PLS-DA and ANN [159]

Cavdaroglu et al. Vinegar UV-vis and FTIR
Adulterant (spirit
vinegar and
acetic acid)

Discrimination of
non-adulterated vinegar
from the adulterated

ANN [160]

Kucharska-
Ambrożej et al. Mint UV-Vis and FTIR

Distinguish between
two species of
mint (peppermint
or spearmint)

PLS-DA and SVM [161]

Botoran et al. Fruits NMR Amino acid
Differentiation of the
fruit samples in
varietal origin

PCA and LDA [162]
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Consonni et al. Coffee NMR

Fatty acids, β-(1-3)-
d-galactopyranose,
quinic acid and its
cyclic ester)

Characterizing organic
roasted coffee from the
conventional roasted
coffee

OPLS-DA [163]

De Moura
Ribeiro et al. Roasted coffee NMR

Adulterants (corn,
coffee husks, barley,
and soybean)

Investigating the
authenticity of the
roasted coffee

PCA [164]

Da Silva et al. Larger beer NMR Carbohydrates

Discriminate lager beer
samples from two
different classes,
according to their style
and information
provided on the label

PCA, PLS-DA [165]

Gougeon et al. Wines NMR -
Classifying wines of
different geographical
origins

OSC-PLS-DA [166]

Marseglia et al. Cocoa beans NMR

Amino acids,
polyalcohols,
organic acids, sugars,
methylxanthines,
lipids

Assess the geographical
origin of cocoa beans

OSC-PCA,
OPLS-DA [167]

Milani Ground coffee NMR Adulterants
Authentication of roasted
and ground coffee based
on adulterants

PCA, SIMCA [168]

Rachineni et al. Honey NMR
Adulterants (brown
rice syrup, corn syrup,
and jaggery syrup)

Identifying type of sugar
adulterants in honey

Deep learning-
based neural
network

[169]

Santos et al. Milk NMR

Adulterants (Whey,
urea, hydrogen
peroxide, synthetic
urine and
synthetic milk)

Detection of
adulterated milk SIMCA, KNN [105]

Shi et al. Camelia oils NMR Adulterants (cheap
vegetable oils)

Detection of adulteration
in camellia oils PCA, OPLS-DA [170]

Zhang et al. Edible oils NMR Fatty acids Distinguishing plant
origin of edible oils PCA, OPLS-DA [171]

3.1. X-ray-Fluorescence-Based Methods

Energy dispersive X-ray spectroscopy (EDXRF) is a technique commonly used for
determining mineral content in food samples. Additionally, its association with the un-
supervised and supervised data analysis tools demonstrated its efficiency to deal with
the challenges of food analysis. The scope of this section is to discuss the application and
usefulness of X-ray-based spectroscopic techniques in combination with chemometric tools
for qualitative and quantitative analysis of various food samples.

For example, [57] EDXRF has been applied with PLS Regression for analyzing the
micronutrient zinc in biofortified banana samples. This method showed good results
mainly on low limits of detection (LOD) and quantification (LOQ). Another research work,
conducted by Gamela et al. [56] used the same combination of EDXRF and PLS to determine
not only zinc but also the contents of copper and strontium in cocoa bean samples. The
study proved satisfactory results through the evaluation of developed PLS models in terms
of the same criteria. Additionally, this study has been extended and proved the ability of
EDXRF to be fused with Laser Induced Breakdown Spectroscopy (LIBS) to determine the
micronutrient potassium in cocoa beans using the supervised technique of multivariate
calibration. This fusion showed besides the satisfactory results an advantage to minimize
the matrix effect induced by samples of cocoa beans.

167



Foods 2023, 12, 2753

The combination of Energy-Dispersive X-ray Fluorescence (EDXRF) and chemometric
tools have been used for qualitative purposes too. Galvan et al. [113] carried out an analysis
by EDXRF under two measurement conditions, to classify the geographical area of two
food species and also according to the production mode by PLS-DA. These food species
were tomato and sweet pepper samples Based on the good results of classification EDXRF
was considered an excellent technique for authentication of plant-based food products
based on the mineral elements K, Ca, Mn, and Fe. Another study for the same qualitative
purpose [115] carried out by the association of X-ray Fluorescence (XRF) to (PCA) permitted
to identify elements like Cl, K, Ca, Fe, Br, Cl, Rb and Sr which establish a clear fingerprint
pattern of the tomato. Similarly, other work applied several chemometrics tools for the
discrimination of Italian Extra Virgin Olive Oil (EVOO) geo-markers through the analysis
of mineral constituents using EDXRF and associated with PCA and SIMCA [114]. Besides
EDXRF and XRF, Total-Reflection X-ray Fluorescence was also employed for food screen-
ing [172]. For example, different wine samples from two different geographical regions of
Croatia were discriminated against based on the analysis of thirteen metal contents through
the association of TXRF with PCA, cluster analysis, and Linear Discriminant Analysis
(LDA). Thanks mainly to PCA, elements such as K, Mn, Ba, and Ni were determined as the
most relevant to characterize between different origins of wines [117]. TXRF has already
been associated with both PCA to obtain the clustering of the bean seeds according to their
geographical origin, then it was coupled to PLS-DA for classification purposes [116]. Spe-
cific studies that utilize EDXRF in combination with chemometric tools for qualitative and
quantitative analysis of various food samples are highlighted. The end points emphasize
EDXRF’s efficiency in determining mineral content, addressing challenges in food analysis,
and its application in food authentication and geographical classification.

XRF-based methods are commonly used in food quality control and analysis due to
their non-invasive and time-efficient nature. They can simultaneously detect and quantify
trace elements and contaminants in food. However, they have limitations such as limited
sensitivity, making them unsuitable for some applications, and being a surface analysis
technique, they may not provide information on deeper layers of the sample. The presence
of other compounds in the food matrix may also interfere with the analysis, necessitating
calibration and standardization to minimize such effects.

3.2. Hyperspectral and Multispectral Imaging

In contrast to traditional spectroscopy, hyperspectral imaging affords continuous
and high-resolution narrow-band spectral data linked to both physical and chemical sam-
ple composition [173]. With The HSI, an object’s spectral and spatial information can
be retrieved simultaneously by integrating spectroscopic and imaging techniques. This
technique has immense potential and has been reported in the detection of various food
adulteration, especially when it is associated with chemometric approaches for quanti-
tative purposes. The scope of the proposed paragraph is to discuss the application and
advantages of hyperspectral and multispectral imaging combined with chemometric tools
in detecting food adulteration, assessing food composition, monitoring food quality, and
classifying different food products.

Various studies have been conducted recently on wheat flour to estimate its different
contents [174]. Unlike conventional methods, HSI is a reagent-free, non-invasive [175]. One
of the special HSI characteristics is to exhibit metabolic transformations, making it useful to
assess food composition. A significant amount of recent work has been focused on the appli-
cation of HSI to various food and agricultural products and animal products. For instance,
hyperspectral imaging was used within 400–800 nm to develop a method for analyzing
impurities of mites in wheat flour through the supervised chemometric tool of ANN [119].
Benzoyl peroxide, which can also be found as a bleaching agent in wheat [85], was inves-
tigated using shortwave infrared (SWIR) HSI and PLS regression [65]. The estimation of
talcum content has also been done using hyperspectral imaging and the SNV-PLS model,
which proved to estimate adequately the talcum content [64]. In terms of food analyzed
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by HSI, research by Al-Sarayreh et al. investigated the efficiency of hyperspectral imaging
systems to detect meat adulteration, depending on its storage conditions. This analysis
proved efficiently the advantage of CNN compared to SVM for this analysis purpose [120].
In addition to wheat and meat, HSI has also been applied to other food samples such as
cheese. Priyashantha et al. developed and evaluated a predictive model based on coupling
the NIR-HS imaging technique and PLS for determining the maturity state of cheese. The
model was then applied on a pixel-wise basis, producing prediction images, and allowing
for the determination of how and where the maturity spread in the cheese [58]. On the same
food product, PLS and Monte Carlo Cross Validation (MCCV) were applied to HSI to detect
the main wavelengths of fat and microbial transglutaminase (mTG), which is responsible
for the color and yield of the cheese. Additionally, this study mentioned the possibility of
using HSI to inspect the cheese remotely through its transparent foil [59]. Potato is another
food sample that has recently started to be useful for monitoring its quality with HSI. Lu
et al. assessed the impact of storage times on the evolution of solanine content in potatoes
by using HSI in the spectral region of 500–1000 nm and support vector regression (SVR)
and then allowed estimating the edibility of the potatoes [60]. Besides solanine content,
the color is another indicator, that is also considered as a parameter to judge the quality of
potatoes. Xiao et al. combined HSI in the region of 477–947 nm and used and compare two
supervised tools: (PLS) and (LS-SVM) for predicting this last parameter [61]. The sweet
potato has been subjected to HSI analysis. Tian et al. investigated how the moisture and
total anthocyanin contents of potato samples under various drying conditions, by using
HSI in the region of 400–1000 nm and PLS. The obtained results of this method showed a
low prediction error and a high R2p [62]. The use of HSI has been shown to be useful in
predicting specific parameters that characterize food products. Recently, Li et al. analyzed
the quality of plum fruit based on color and soluble solid content using HSI and PLSR and
showed how short-wave infrared (SWIR) hyperspectral imaging can predict soluble solid
content, [63]. Sun et al. monitored the quality of melon through its indicators as sweetness
and hardness by associating NIR hyperspectral imaging system to PLSR [66].

Besides the quantitative advantages of HSI that have been cited, HSI has also been
widely used for qualitative purposes. HSI in the spectral domain has been applied to
detect chilling injury in agri-food products, which could not be achieved without subjecting
HSI to multivariate data analysis. For example, Cen et al. employed HSI in reflectance
(500–675 nm) and transmittance (675–1000 nm) modes with supervised classification tools
for the detection of chilling injury in cucumbers [124]. Tsouvaltzis et al. evaluated the
chilling injury in eggplant fruit by coupling visible and Near-Infrared (NIR) HSI to clas-
sification tools such as PLS-DA, SVM, and KNN to classify eggplant fruit according to
storage temperature [131]. Recently, Babellahi et al. demonstrated the convenience of HSI
with PLS-DA to discriminate between cold-stored green peppers that can be impacted by
chilling injury and fresh ones [123]. Another example applied to fruits; peaches might
have chill damage during cold storage which Pan et al. associated HSI to Artificial Neural
Network (ANN) to differentiate normal peaches from chill-damaged ones [121]. Sun et al.
assessed the classification of peaches based on the chilling injury by PLS-DA, SVM, and
ANN with Spectral Angle Mapper (SAM) which achieved the best classification perfor-
mances [122]. Related to the application of HSI on peaches, Li et al. investigated and
compared Long-Wavelength-Near-Infrared (LW-NIR) and Short-Wavelength-Near-Infrared
(SW-NIR) hyperspectral imaging by associating them with PCA and the approach of wa-
tershed segmentation for discriminating bruised from healthy peaches [118]. This study
clearly proved the advantage of SW-NIR in detecting early bruises in peaches. Moreover,
bruises have also been identified in blueberries samples by SWIR hyperspectral image
and the developed models based on two approaches: considering Least Squares-Support
Vector Machine (LS-SVM) with full spectra and optimum selected wavelengths by (CARS)
(CARS-LS-SVM model) [126]. There are many factors that can lead to bruising food items.
For example, Hyperspectral imaging technology applied in the region 400–1000 nm, was
used with PLS-DA to classify bruised tomatoes that were caused by falling damage, de-
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tection times, falling heights or fruit sizes [127]. Besides fruits and vegetables, HSI with
chemometric tools has shown its convenience in the qualitative analysis of wheat. Zhao
et al. developed an approach based on a hybrid CNN model with hyperspectral imaging
technology to classify different varieties of wheat seed [129,176]. In addition to wheat
seeds, maize seeds were classified through the association of HSI with the chemometric
approach of Radial Basis Function Neural Network (RBFNN) [130]. Soares et al. also
presented a new strategy for fast and non-destructive classification of cotton, based mainly
on coupling NIR-HSI images to PLS-DA. The results of this method showed good accuracy
in the classification of test samples, with correct classification rates [125]. The endpoints of
this section are to emphasize the potential of hyperspectral and multispectral imaging in
providing continuous and high-resolution spectral data linked to physical and chemical
composition, their non-invasive and reagent-free nature, and their ability to analyze various
food samples.

Hyperspectral and multispectral imaging are valuable tools for food quality control
and analysis, with advantages and limitations to consider. These imaging techniques
offer non-destructive analysis and high spatial resolution for detailed surface analysis,
simultaneous detection of multiple analytes, and real-time analysis for efficient quality
control. However, hyperspectral, and multispectral imaging equipment can be expensive,
have limited penetration for internal composition analysis, may lack sensitivity for detecting
low analyte levels, and require complex image processing and specialized expertise for
data analysis.

3.3. Infrared Spectroscopy

Infrared including (NIR) and (MIR) are ones of the conventional spectroscopy that
have been usually used with many multivariate data analysis tools in food quantitative
analysis. The scope of the proposed paragraph is to discuss the application and benefits of
infrared spectroscopy with chemometrics, in quantitative and qualitative analysis of food
components, such as carbohydrates, proteins, fats, and moisture content, as well as the
determination of functional groups, carbon, and nitrogen.

MIR is responsible mainly for detecting functional groups as well as carbon and
nitrogen, whereas NIR is used for determining carbohydrates, proteins, fats, and moisture
content in various foods [177]. However, the method is not sensitive enough for samples
containing just small amounts of target components. The fundamental vibrations occur
when absorbed in the NIR [178]. Wang et al. combined NIR PLSR to estimate the content
of potato flour in steamed bread [67]. Recently, the same association of NIR with PLS
regression was applied to wheat flour samples to estimate the quantity of low-content
talcum. In this study, several chemometrics were applied with PLS together to select the
effective feature as genetic algorithm and elastic net, thus improving the capacity of the PLS
model [68]. In addition to talcum, zearalenone might have an impact on the quality and
safety of wheat grains. Recently, a study was carried out to determine zearalenone in wheat
by NIR spectroscopy and (SVM) model. The results were significantly improved after the
application of a variable selection approach called least absolute shrinkage and selection
operator (LASSO) to extract useful spectral regions of NIR. In contrast to the contents that
can have an impact on wheat, the determination of valuable contents has been featured
in many recent research works [73]. Kamboj et al. predicted quality parameters mainly
protein and carbohydrate of wheat content that has been stored at different temperatures
using NIR Spectroscopy (NIRS) with PLS, MLR, and SVM [70]. Additionally, the fatty acid
value is also considered an important indicator of the quality of wheat flour, particularly
during storage. Therefore, Jiang et al. demonstrated the feasibility of using portable NIR
spectroscopy in conjunction with appropriate chemometric methods to achieve quantitative
determination of fatty acid values in wheat flour during storage. Jiang et al. used a method
called variable combination population analysis (VCPA) in addition to PLS to improve
NIR spectral characteristic wavelengths [72]. In addition to the chemometric tools that
were cited and used for quantitative purposes, MCR-ALS is one of the chemometric tools
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that is combined with FT-NIR spectroscopy to estimate certain characteristics of food
samples. For instance, an assessment of the combination of multivariate tools, including
PLS regression and MCR-ALS, was used to predict antioxidant activity from clove and
pomegranate extracts. The results showed that MCR-ALS with FT-NIR stood out among
PLS with high R2 and low RMSEP [74]. Another application of PLS and MCR associated
with FT-NIR was used successfully to estimate peanut oil adulterants, [75]. Castro et al.
also proved the efficiency of coupling FT-NIR with MCR-ALS for the quantitative purpose
of four adulterants at low levels in a complex mixture of saffron, including onion, calendula,
pomegranate, and turmeric [76]. In terms of determining adulterants in saffron, PLS-R was
applied to FT-NIR data of saffron to estimate lotus stamens and corn stigmas. This study
proved the efficiency of combining PLS with the variable selection approach of competitive
adaptive reweighted sampling (CARS) showing good results [77]. Additionally, crocin I
and II were analyzed using near-infrared spectroscopy and chemometrics. Crocin I and
II are considered the most important indicators of the quality and commercial value of
saffron [179]. Le et al. used FT-NIR and PLS to determine these two contents in saffron
with low RMSECV [78].

Many studies have shown how MIR and NIR spectroscopy are efficient for the qualita-
tive analysis of different food varieties comprised for example identification, classification,
and authentication, based on, for example, country of origin. For instance, Liang et al. used
NIR spectroscopy appropriately for the detection of zebra chip disease using Canonical
Discriminant Analysis with a low classification error rate [71]. Discriminative analysis
was applied to durum wheat to determine if they were contaminated by ochratoxin by
combining FT-IR and FT-NIR with PLS-DA and PCA-LDA. In this study, FT-IR and FT-NIR
were convenient spectroscopic techniques for discrimination purposes [133]. PLS-DA was
compared to other classification tools such as HCA, SVM, and ANN to identify and clas-
sify Panax notoginseng with its adulterants. The classification purpose of this work was
achieved by both PLS-DA and SVM with 100% classification accuracy [79]. PLS-DA showed
its efficiency in detecting the freshness of rice based on storage time using FT-NIR with an
accuracy of 96%, whereas the application of KNN achieved an accuracy of 100% [136]. In
relation to the analysis of rice by NIR, L.-H. Xie et al. led a discrimination of two kinds of
rice, waxy, which contains very low apparent amylose content, and non-waxy rice. The
developed PLS-DA model allowed the recognition of these two types of rice with 100%
accuracy [139]. Detecting fake eggs from authentic ones is another example that proves
the efficiency of FT-IR and chemometrics in this field of food analysis. Joshi et al. showed
how PLS-DA and SVM achieved a good classification of 100% [81]. The authenticity of the
native was subjected to FT-NIR analysis by Chen et al. who proved the efficiency of using
Data-Driven Class Modeling (DD-SIMCA) as an alternative tool for this classification [134].
The end points of the paragraph are to emphasize the effectiveness of infrared spectroscopy
in estimating the content of target components in food samples, such as potato flour, talcum,
zearalenone, protein, carbohydrate, fatty acid values, and antioxidant activity. The para-
graph also mentioned the successful application of chemometric approaches in enhancing
the accuracy and reliability of quantitative analysis using NIR and MIR spectroscopy.

Overall, infrared spectroscopy is a powerful and versatile tool for food quality control
and analysis. However, limitations such as limited penetration, sample homogeneity
requirements, calibration requirements, complexity of data analysis, and interference from
other components should be taken into consideration when using this technique.

3.4. Raman Spectroscopy

Raman spectroscopy is a vibration spectroscopy technique that is based on monochro-
matic light diffusion. It involves the excitation of a sample by collisions with photons,
which causes the sample to reach an unstable state of virtual energy. The scope of the
proposed paragraph is to discuss the application of Raman spectroscopy in food analysis,
both qualitatively and quantitatively.
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Raman spectroscopy was carried out for the determination of fat content in various
food samples such as milk and meat. Heterogeneous foods have recently been detected
chemically with Raman microscopy [180]. This combination is used qualitatively and
quantitatively to evaluate food value. Many organic components are detected and identified
based on the absorption curves. Microscopic food species can be analyzed too. Raman
microscopy has been carried out to determine the main composition of wheat and to detect
protein content changes during milling [181,182]. Raman spectroscopy detects changes in
protein secondary structure, conformational changes in lipid-binding proteins.

Based on the Raman spectrum, it is possible to estimate the relative concentration
of food contents. For instance, a recent study aimed to determine starch using Raman
spectroscopy and a linear regression model for a specific band, and PLS regression for a
specific spectral region [183], which confirmed the efficiency of association of FT-Raman to
PLS for the estimation of gluten content in flour [184]. Carotenoids have been determined in
tomatoes by Raman spectroscopy and PLS regression and proved low prediction error [88].
The main characteristic of Raman spectroscopy is that it can directly measure aqueous
solutions because of the low effect of water, and even the sample preparation of liquids for
Raman analysis is simple, which can be considered an advantage to estimating the contents
in food liquids such as milk [185]. Whey is one of the contents that has been quantified
accurately in the milk [89]. In addition to whey, macronutrients such as fat, lactose, and
protein have been successfully quantified in commercial yoghurt samples using FT-Raman
spectroscopy and PLS models [90]. In a recent study, milk adulterants such as sodium
bicarbonate, maltodextrin, and whey were also analyzed using Raman spectroscopy and
the PLS chemometric tool, with a low detection limit [91]. A handheld Raman spectrometer
has also been applied to quantify lard in adulterated butter, another milk derivative,
through PLS [186]. Richardson et al. demonstrated how Raman spectroscopy is able with
PLS to detect coconut water adulteration [112]. In a recent study, various variable selection
approaches were tested on surface-enhanced Raman scattering spectra of rice, used with
PLS for quantifying the target residue analyte of chlorpyrifos [109].

As it has shown its relevance for quantitation, Raman spectroscopy has proven its
efficiency with chemometric tools in many recent studies. For example, Robert et al.
built a classification model using SVM and PLS-DA to discriminate lamb meat from beef
meat despite the similar chemical composition of these two species [147]. Hai Chao et al.
classified duck meat according to the residues of testosterone propionate and testosterone
nandrolone using Raman Spectroscopy and Support Vector Classification (SVC) which
shows a classification rate of 100% for the test set [86]. Other residues that have an impact
on duck meat and have been subjected to analysis by means of Raman spectroscopy and
chemometrics are sulfonamides, comprised of sulfadimidine and sulphapyridine [187]. A
recent research work used a support vector classification on Raman Spectroscopic data
to classify duck meat into four groups, which are as follows: samples free of residues,
samples containing one of the two residues, and samples containing both residues [87].
Another mode of Raman spectroscopy called Spatially Offset Raman Spectroscopy, which
allows to measure the chemical compounds under the surface of meat tissues [188]. Besides
that, a study has also proven that the use of Raman spectroscopy in combination with
the SVM method can discriminate rice samples according to their regions with high-rate
accuracy [148]. Raman was applied to differentiate four categories of milk species of cow,
buffalo, goat, and human. Thus, Principal Component Analysis (PCA) besides Random
Forest (RF) was applied on Raman data to highlight and characterize the Raman spectra
of different milk samples with high accuracy of 93.7% [144]. In addition to benchtop
Raman, Handheld Raman spectroscopic devices have shown their efficiency using SIMCA
to classify milk samples from adulterated ones [189]. In addition to milk and its derivative
samples, PLS-DA was employed with Raman to accurately classify a milk derivative
of cheese whether it was adulterated by starch or not [93]. Related to handheld Raman,
Aykas, et al. succeeded in seeking to characterize commercial honey by combining handheld
Raman equipment and SIMCA [190]. A recent research work monitors according to a new
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method the adulteration in cassava starch, by means of Raman spectroscopy and supervised
tool One-Class Modelling (OC-SVM) which proved its higher accuracy compared to the
SIMCA, allowing for the discrimination of samples [191]. Discriminant analysis by PLS-DA
of coffee genotypes by Raman spectroscopy based on two main contents, kahweol and
fatty acids, has shown how Raman with chemometrics was more effective compared to
sensorial analysis [192]. Sha et al. combined Raman with PCA, HCA, and SVM for feature
extraction to improve the efficiency of identification of rice varieties [176]. For oil samples,
Jiménez-Carvelo et al. used chemometrics for the classification and characterization of pure
olive oil from adulterated using Raman spectroscopy in addition to NIR by employing
classification models. While PCA was used to reduce the features, other supervised
techniques were applied to for the discrimination goal [193]. Raman analysis was also
employed to discriminate waste cooking oil from edible vegetable oil. Thanks to PCA,
signals at 869, 969, 1302, and 1080 cm−1 were found to be the most important features to
differentiate between these two types of oils. In addition, PCA demonstrated its ability
to separate adulterated from pure oils when the adulteration proportions reached 10%
and 20% [194]. The endpoints of this part include the successful application of Raman
spectroscopy in estimating the content of specific food components and the detection and
classification of various residues and adulterants in food samples.

Finally, Raman spectroscopy is a valuable method for analyzing and controlling
the quality of food, offering several advantages such as non-destructiveness, molecular
specificity, sensitivity, minimal sample preparation, and high spatial resolution. However,
when using this technique, some limitations must be considered, including its limited
penetration depth, susceptibility to fluorescence interference, equipment cost, complexity
of data analysis, and sensitivity to water.

3.5. NMR Analysis

Nuclear magnetic resonance (NMR) is a spectroscopic technique used to determine the
molecular structure and physical properties of substances, and efficiently used to ensure the
quality of different varieties of food samples [195]. The scope of the proposed paragraph is
to discuss the application of NMR spectroscopy in food analysis, both qualitatively and
quantitatively. It focuses on the use of NMR spectroscopy and chemometric tools for food
identification, discrimination, and characterization purposes.

For example, the combination of low and high-field NMR and chemometrics, including
PLS-R and SVR, has proved its ability to accurately estimate essential quality parameters of
edible oils, especially to detect potential adulteration. The results summarized in statistical
parameters indicate that all developed models, whether of PLS-R or SVR on the three
different fields of NMR, were similar. In addition to oil applications, Haddad et al. have
carried out a quantitative analysis of fatty acids based on 1H-NMR variables as predictors
and relative mass percentages of fatty acids as targets, including caproic, caprylic, capric,
oleic, palmitic, and margaric [110]. Fatty acids have been accurately estimated in hen
egg samples by 1H-NMR and PLS regression [108]. Proton nuclear magnetic resonance
(1H-NMR) associated with chemometrics were combined to investigate the camellia oil
adulterants with other vegetable oils [170]. In addition to 1H-NMR, 1H TD-NMR was
combined efficiently with PLS regression to detect the percentage of adulterants such as
water and whey in milk products varied from 5% to 50% through milk package and without
sample preparation [105]. Besides PLS regression, Sun et al. successfully set up a model
to detect moisture content through the association of low-field NMR and ANN with a
low RMSE [107].

As previously shown, NMR spectroscopy supported by multivariate data analysis
tools has been applied for various qualitative purposes in different foods. For example,
Milani et al. successfully explored the versatility of 1H NMR with pattern recognition
of PCA and SIMCA for identification and discrimination of pure Brazilian coffee from
adulterated ones by corn, barley, or even coffee husks. The built SIMCA model ensured its
high classification accuracy [168]. In relation to these quality analysis of coffee, 1H NMR
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data of roasted coffee samples were analyzed qualitatively by OPLS-DA to characterize
organic roasted coffee from conventional coffee. The orthogonal signal correction (OSC)
allowed for the extraction of the main features of each coffee category and thus improved
the PLS-DA model discrimination. While fatty acids, β-(1-3)-d-galactopyranose, quinic
acid, and its cyclic ester were the major metabolites characterizing organic roasted cof-
fee, conventional coffee was characterized mainly by trigonelline and chlorogenic acid
isomers [163]. The OSC filter was used with PCA (OSC-PCA) and applied to HR MAS 1H
NMR data of cocoa beans to discriminate them based on their origin, whether they were
American or African, based on the fatty acids, acetate, and saccharides components [167].
In another research work, both 1H NMR and 13C NMR were employed to analyze refined
edible oils from different sources. By applying PCA on the 1H NMR or on 13C NMR,
it was possible to identify and characterize these plants based on their fatty acids [171].
Amino acids were analyzed by NMR and explored by chemometric tools in fruits, since
they are considered essential metabolites in cell function and enable distinction between
plants of the same fruit. For example, Botoran et al. identified ten kinds of amino acids that
allowed for the observation of differences and distinctions of different varieties of juice
using PCA and LDA, which accurately classified juices from different plant sources [162].
In the honey adulteration problem, Rachineni et.al analyzed successfully honey by associ-
ating 1H NMR with supervised machine learning (neural network) for the characterization
purpose of authentic honey from the adulterated whether by sugar, brown rice syrup or
jaggery syrup [169]. The endpoints of the paragraph include the successful application
of NMR spectroscopy combined with chemometrics, and machine learning, in accurately
estimating and detecting various quality parameters and adulterants in food samples.

Overall, NMR spectroscopy is a valuable tool for food quality control and analysis,
offering numerous advantages such as non-destructiveness, molecular specificity, sensitiv-
ity, and versatility. Additionally, it allows for quantitative analysis, making it particularly
useful for determining the concentration of specific compounds in food products. However,
the technique also has limitations that should be considered, including equipment cost,
limited penetration, sample preparation requirements, and sensitivity to sample properties.

3.6. UV-Visible

UV-visible spectroscopy is known as one of the most sensitive techniques for determin-
ing less concentrated contents in food samples. Its association with multivariate tools offers
an added advantage for such quantitative analysis. This technique uses electromagnetic
radiation between 200 and 800 nm and detects two different aspects: color and fat oxida-
tion [104]. The scope of the proposed paragraph is to discuss the application of UV-visible
spectroscopy in food analysis, particularly for quantitative and qualitative purposes.

In addition to other analytical techniques, a recent research work for the same food
product employed UV-Vis with PLS regression to accurately determine squalene in Extra
virgin olive oils (EVOO) [100]. Wu et al. integrated empirical mode decomposition with
SVR (EMD-SVR) to evaluate the quality of edible blend oils samples, concluding that
EMD-SVR was more accurate for the quantitative analysis of ternary edible blend oil [101].
Zhang et al. developed models by coupling UV-Vis to Partial least squares regression (PLS)
and principal component regression (PCR) for the quantitation of acid value in various oils.
The PLS models performed well compared to PCR models [102]. In addition to different
oil analyses, UV-Vis spectroscopy was proved to be more efficient as a method associated
with PLS instead of univariate tools for the quantitation of grape-must caramel in Balsamic
vinegars of different varieties of wine vinegars [103].

The UV-Vis spectroscopy has been combined with multivariate techniques for various
qualitative purposes in food analysis. For instance, UV-Vis combined with MCR-ALS is
a suitable tool to pursue the autoxidation of edible oils and to monitor the quality of
extra virgin olive oil (EVOO) in different packaging systems [157]. In addition to olive
oil samples, multivariate discrimination tools using UV-Vis spectroscopy, such as PLS-
DA and SVM, have been used to distinguish between two specific mint species, such as
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spearmint and peppermint, while SIMCA has been used to detect outlier samples other
than the two species [161]. Similarly, coffee has been analyzed by UV-Vis spectroscopy and
SIMCA to accurately classify and discriminate between Peaberry and normal coffee [158].
In addition to SIMCA and PLS-DA, artificial neural networks (ANN) have been applied
to UV-Vis spectroscopy to discriminate between vinegars produced from different raw
materials, showing the discrimination efficiency compared to PLS-DA [159]. Another study
used UV-Vis spectroscopy and ANN to discriminate between vinegars adulterated with
spirit vinegar or acetic acid [160]. The end points of the paragraph include the successful
application of UV-visible spectroscopy combined with multivariate techniques for food
analysis adulteration, improved discrimination, and classification purposes.

Generally, UV-Visible spectroscopy is a valuable tool for food quality control and
analysis, with several advantages such as simplicity, non-destructiveness, versatility, and
cost-effectiveness. However, it has limitations in sensitivity, interference, and surface
analysis that should be considered while using this technique.

3.7. Fluorescence Spectroscopy

Fluorescence spectroscopy is a technique that focuses mainly on the molecular level.
It refers to the process in which a specific wavelength of light is irradiated in a solution,
and the fluorescent substance in the solution absorbs the released energy. The scope of
the proposed paragraph is to discuss the application of fluorescence spectroscopy in food
analysis, both for quantitative and qualitative purposes. It highlights the molecular-level
focus of fluorescence spectroscopy and its ability to detect and analyze various elements in
food samples.

In recent years, fluorescence spectroscopy has been applied for the analysis of various
elements of food. For example, a recent research study exhibited the application of front-
face fluorescence mode spectroscopy and supervised PLS to estimate cow milk adulteration
with other milk kind [196]. Another study used excitation-emission matrix (EEM) fluo-
rescence spectroscopy and second-order calibration ways, like (PARAFAC) and (U-PLS),
to detect and estimate the content of melamine in milk [98]. Additionally, fluorescence
spectroscopy has been used to detect and quantify adulteration in olive oils [156]. Three-
dimensional fluorescence spectra were subjected to analyze the same analysis purpose
using the supervised approach of GA-SVR [99].

Many studies have shown the potential of fluorescence spectroscopy combined with
multivariate data analysis tools for the qualitative analysis of various food samples. For
example, Yuan et al. [155] conducted a comparative study using excitation-emission matrix
fluorescence, FTIR, and vis-NIR on different types of vegetable oils for discrimination
purposes using advanced chemometric tools (PCA, multiway-PCA, PLS-DA, and unfold-
PLS-DA). The study found that FTIR and Vis-NIR, were more suitable compared to EEM
for the identification of vegetable oil species. This is because most chemical components
in vegetable oil produce FTIR and NIR absorption, while only a small number of fluo-
rophores produce fluorescence [155]. Another study proved the same classification results
of these techniques for detecting olive oil adulteration. This highlights the importance
of combining analytical techniques with the appropriate chemometric tool [154]. Fluores-
cence spectroscopy has been combined with chemometrics to distinguish pure Aroeira
honey from adulterated. The advanced chemometric methods (PARAFAC, PLS-DA, un-
folded PLS-DA (UPLS-DA), and N-way PLS-DA (NPLS-DA)) were used to decompose
the spectral data and build classification models. This qualitative analysis has proven the
convenience of fluorescence spectroscopy with UPLS-DA for this kind of honey analy-
sis [151]. It can be noted from previous research that multi-way chemometric techniques are
often applied conveniently to EEMs data, whether on edible oils, honey, or beverages, as
demonstrated by Fang et al. for the classification of Chinese lager beers made by different
manufacturers [152]. The end points of the paragraph include the successful application of
fluorescence spectroscopy combined with multivariate data analysis tools for quantitative
and qualitative analysis of various food samples.
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Fluorescence spectroscopy is a powerful tool for food quality control and analysis,
offering advantages such as high sensitivity, specificity, non-destructiveness, and rapid
analysis. However, there are certain limitations that should be considered when using this
technique, including the complexity of sample preparation, potential interference from
other compounds, limited penetration depth, and high instrumentation costs.

3.8. Fusion of Spectroscopic Techniques

In recent years, the strategy of data fusion combined with multivariate statistical
analysis, that has been widely used to ensure the safety of food and to extract more
information for both qualitative and quantitative purposes. The scope of the proposed
paragraph is to discuss the application of data fusion combined with multivariate statistical
analysis in food analysis for both qualitative and quantitative purposes. It highlights the
use of various spectroscopic techniques such as UV-VIS, NIR, Raman, FT-IR, FT-Raman,
and MID, and their fusion with multivariate statistical models for food analysis.

A recent research work developed PLS and ANN models for the quantification of
adulteration in honey, using data fusion of non-pre-processed UV-VIS and NIR spectra [96].
Vis-NIR and Raman have also been merged and applied to predict the storage time of infant
formula between 0–12 months [95]. UV-Vis-NIR was combined with PLS to accurately quan-
tify cholesterol in egg yolk, whether in the shell or in pasteurized form [94]. Additionally,
the combination of PLS regression with the data fusion of FT-IR with Raman spectroscopy
allowed the determination of peroxide values and acid values in oils [197]. A study was
elaborated to test merging mid-infrared (MIR) with Raman spectroscopy for the fructose
syrup determination in honey samples. The PLS model was used to estimate the adulterant,
and the results were improved after the data fusion compared to the results obtained by
each of the two spectroscopic techniques [198]. The same conclusion was achieved by a
recent research work that evaluated the data fusion of NIR and MIR, combined with the
sequential orthogonalized partial least square regression (SOPLS), to estimate different
quality traits of tubers and root flours. These traits included different chemical compounds
including for example amylose and protein [69].

The efficiency of data fusion methodology for qualitative purposes has been proved
by Yao et al., who established a method based mainly on Fourier transform infrared (FT-IR)
and ultraviolet (UV) spectroscopies associated with data fusion to distinguish different
regions of mushroom samples [150]. A synergistic strategy of FT-Raman and NIR for the
classification of two classes of hazelnut: unadulterated and adulterated with almonds
using SIMCA was also demonstrated. The obtained results proved that merging the two
techniques can be more effective than using each technique alone, based on sensitivity and
specificity [142]. NIR and MID were also used with the SVM model to discriminate natural
honey from syrup-adulterated one. In this case study, Huang et al. showed two levels of
data fusion. A low level, in which redundant and irrelevant variables were introduced,
and an intermediate level, where PCA was applied to extract the feature variables. The
results acquired from this study had a significant increase in SVM model parameters of
accuracy, precision, and sensitivity using the intermediate-level data fusion [132]. The
endpoints of this section include the successful application of data fusion methodologies
with chemometrics for quantification of adulteration, for estimating different chemicals,
as well as for qualitative purposes and classifying unadulterated and adulterated food
samples. However, there are limitations to consider when using data fusion methodologies
in food analysis. The success of data fusion relies on the compatibility and complementarity
of the combined techniques and the availability of appropriate statistical models. Proper
calibration and validation procedures are necessary to ensure the reliability and robustness
of the fused data. Furthermore, data fusion may introduce additional complexity and
computational requirements, requiring careful data preprocessing and analysis. It is also
important to consider the specific requirements and limitations of each spectroscopic
technique and statistical model being used for data fusion.
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The fusion of spectroscopic techniques provides an advanced tool for food quality
control and analysis, offering advantages such as enhanced accuracy, complementary infor-
mation, improved sensitivity, and non-destructiveness. However, it should be noted that
this technique has some limitations, such as complexity, high equipment cost, sample prepa-
ration requirements, and limited penetration depth. These factors should be considered
before implementing this technique for food analysis.

3.9. Portable Spectroscopic Techniques

The food industry is constantly seeking faster, more accurate ways to assess the
safety and quality of their products while also detecting possible adulteration. Portable
spectroscopic equipment, such as Raman, NIR and HSI among other techniques, have
become increasingly popular due to their portability, accuracy, and ability to control food
products [199]. The scope of the proposed paragraph is to discuss the application of portable
spectroscopy techniques in the food industry for assessing food safety and quality, detecting
adulteration, and enabling in-process monitoring. It highlights the advantages of portable
spectroscopy equipment, such as Raman, NIR, and HSI, including their portability, accuracy,
low sample preparation requirements, and cost-effectiveness.

Portable spectroscopies equipment in general requires less sample preparation and
less hazardous consumption than traditional laboratory-based processes, granting fast
results on food quality and safety. Furthermore, these technologies provide the food in-
dustry the low cost-effective analysis and product safety [200,201]. Portable spectroscopy
techniques are highly effective in detecting food fraud and contaminants, such as pesticides,
heavy metals, and pathogens. Previous developments in portable fluorescence and Raman
spectroscopy have enabled water detection in milk and honey products with less expen-
sive syrups, respectively [202,203]. Moreover, they are involved to analyze food quality
attributes, for instance, mid-infrared spectroscopy used for fatty acid profile and fat content
in lamb meat [202], and the amount of fat in meat and its degree of tenderness [204]. The
NIR-HSI as a portable technique coupled with chemometric tools was showed excellent
application in different food products [205,206].

Portable spectroscopy techniques were demonstrated to be a valuable solution for
food manufacturers and processors, as they can be used for in-process monitoring of food
quality and safety. The technology can also be used for post-harvest processing, such as
the detection of mold and fungal infections in food products [207]. In addition, they have
demonstrated to be versatile in identifying various food tampering and contaminants, in-
cluding pesticides, heavy metals, and biological contaminants. They are also beneficial with
chemometrics for quality control testing and authentication for rapid food chain analysis
aimed at a perfect digital traceability system [201]. For a deep understanding, a recent
review article provides an overview of how miniaturized NIR spectroscopy can be applied
to address a range of issues in food-related settings [208]. They provide a comprehensive
summary of the latest research trends, highlighting key factors driving the development of
the micro-NIR analytical framework for modern food analysis, quality control, and safety
risk monitoring. Emphasis is placed on the significance of combining complementary tools
with the NIR analytical method, which enhances its precision, dependability, and versatility
for food applicability. The endpoints of this section include the successful use of portable
spectroscopy techniques and the use of chemometric tools for detecting food fraud and
contaminants, analyzing food quality attributes, monitoring in-process food quality, safety,
and rapid food chain analysis.

Finally, to highlight portable spectroscopy tools have several advantages in food
applications, including non-destructive sample analysis, rapid analysis where timely deci-
sions are needed, in situ analysis which is particularly useful in food-based applications.
However, there are also some limitations to the use of portable spectroscopy techniques
in food applications, such as limited accuracy particularly for complex samples, limited
range of wavelengths which may not be suitable for all applications, regular calibration
requirements which can be time-consuming, sensitivity to environmental conditions such
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as temperature and humidity, and often more cost-effective than traditional laboratory-
based techniques [201]. These limitations should be taken into account when implementing
portable spectroscopy in food analysis and quality control processes.

4. Importance of Integrating Advanced Spectroscopy Techniques in Food Analysis

The use of advanced spectroscopy techniques in food analysis is crucial for several
reasons. The scope of the proposed paragraph is to discuss the significance of advanced
spectroscopy techniques in food analysis, including their non-destructive nature, ability
to provide detailed information about food composition, and the use of chemometric
tools for data analysis. Firstly, techniques such as NIR, Raman, FTIR, and UV-Vis offer
a non-destructive and non-intrusive way of analyzing food samples, making them ideal
for large-scale analysis in the food industry without affecting the quality or safety of the
samples. Secondly, they provide detailed information about the chemical composition
and structure of food, which can be used to classify and identify different food types,
detect contamination, and monitor food quality changes. Lastly, the implementation of
advanced chemometric tools enables effective analysis of complex spectral data for food
quality assessment. The food industry faces a significant challenge in ensuring consistent
quality and overall food safety information throughout the entire supply chain, from
production to distribution, to meet consumer demands and expand the market. To address
this challenge, advanced non-invasive technologies are increasingly being used to monitor
the nutritional and hygienic properties of raw and end food products. The initial perception
of a food’s quality is often based on its texture, while the nanostructures in food play a role
in determining its color, shape, and sensory appeal (Figure 3).

 

Figure 3. Factors that affect the quality of food.

Spectroscopy techniques can help to determine the presence and quantity of key
components like flavonoids and antioxidants in food, which play a vital role in assessing
its quality. The effectiveness of using anthocyanin profile, color image analysis, and NIR-
HSI to differentiate between different grape varieties, with the aid of Stepwise Linear
Discriminant Analysis (SLDA) that was created for each dataset to differentiate grapes
based on their variety.
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Spectroscopic methods provide a valuable means to assess the quality of food by
determining the presence and quantity of important components such as flavonoids and
antioxidants. The combination of anthocyanin profiling, color image analysis, and near-
infrared hyperspectral imaging (NIR-HSI), along with the aid of dataset-specific Stepwise
Linear Discriminant Analysis (SLDA), proves effective in distinguishing between different
grape varieties based on their specific characteristics. In addition, it can be concluded that
NIR spectroscopy holds substantial promise for the non-destructive determination of total
phenolics and flavonoids [209]. The content of flavonoids in food can be influenced by
various factors, including seasonality, food maturity, and preparation methods employed.
In this sense, the spectroscopy methods such as Visible/NIR were used to determine the
levels of flavonoids in food [210]. These techniques are employed by various industries
including the milk, meat, coffee, and wine sectors to analyze the composition of food [211].
Assessing the quality of food based solely on sensory evaluation may not suffice, partic-
ularly for intricate evaluations. Advanced spectroscopy equipment with chemometrics
is highly recommended in such scenarios as it offers advantages that are not attainable
through manual inspection alone.

Traditional methods of food quality detection can be cumbersome, repetitive, destruc-
tive, and take up a lot of time. Non-destructive methods, on the other hand, offer a more
efficient way of gaining both quantitative and qualitative data without destroying the
sample. The recent developments in non-destructive food quality assessment techniques
include imaging, spectroscopy, and cutting-edge approaches such as electronic nose, elec-
tronic tongue, dielectric, and acoustic methods [212]. For instance, conventional methods
of analysis and detection, for instance, thin-layer chromatography and high-performance
liquid chromatography (HPLC) are yet largely used in the basic food industry to detect food
quality. Nevertheless, these procedures are damaging, laborious, and time-consuming. Con-
sequently, spectroscopic techniques were demonstrated their use and importance for food
quality control including visible/infrared (VIS/IR) [212,213], Raman spectroscopy [214],
NMR [215], and HSI [216].

In contrast, the field of food authentication poses a major challenge that can be ad-
dressed using advanced spectroscopic tools. Adulteration in food is often accomplished by
substituting ingredients with cheaper options that are not easily distinguishable by either
consumers or conventional analytical techniques [217]. To confirm the geographical origin,
storage conditions, and processing methods listed on food labels, it is necessary to analyze
specific components in samples. Hence, the development of trustworthy and effective
analytical methods is vital for creating new policies, programs, and techniques to verify
food authentication.

The scope of the proposed paragraph is to emphasize the importance of advanced
spectroscopy techniques in food analysis, including their non-destructive nature, ability
to provide detailed chemical information, and the role of chemometric tools in analyzing
complex spectral data. The endpoints are to highlight the use of spectroscopy techniques for
assessing food quality, detecting adulteration, and verifying food authentication. However,
it should be noted that the paragraph does not delve into the specific methodologies
or algorithms associated with spectroscopy techniques and chemometric data analysis.
However, there are limitations to consider when using spectroscopy techniques in food
analysis. These limitations include the influence of various factors on the content of
flavonoids in food, the need for dataset-specific analysis methods, and the challenges
associated with distinguishing food adulteration using conventional analytical techniques.

In summary, the integration of different spectroscopy techniques either separately or
in a combination or fusion can also enhance the overall performance of food analysis. This
can be achieved by using chemometric data analysis approaches.

5. Food Application and Aspects

Spectroscopic methods involve the use of electromagnetic radiation through absorp-
tion, transmission, and emission, and are based on the wavelength of the radiation. Unlike
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traditional techniques, spectroscopic methods have become essential tools for determin-
ing food properties through real-time monitoring and non-invasive techniques. Recently,
advanced spectroscopic techniques combined with chemometric approaches have been
developed and applied in various food applications and areas such as sensory analysis,
adulteration detection, chemical analysis, mycotoxin detection, parasitic infection detection,
internal physiological analysis, and others.

5.1. Sensory Attributes

The sensory characteristics of basic foods, such as structure, color, toughness, texture,
and outside defects, are crucial elements of food quality. The color of a food is generated
by the reflection of distinct wavelengths in the visible light section. The structure of a
product, which is often determined by its size, weight, or volume, can influence consumer
preferences and final consumption. Hardness is a primary indicator of food property,
indicating the texture and moisture content of food. External defects, which occur during
or after harvest, are another common sensory attribute that greatly impacts food quality.
Consequently, precise, and timely forecasting of these sensory characteristics is a primary
concern for the farming and food industry. The scope of the proposed paragraph is to
discuss the importance of sensory characteristics in food quality and the role of spectroscopy
techniques combined with chemometrics in evaluating these characteristics. It highlights
the significance of texture, color, hardness, and external defects in determining food quality
and consumer preferences.

The sensory characteristics of texture and color were established using VIS and NIR
spectroscopy. The VIS/NIR spectroscopy was shown to be a reliable method for evalu-
ating the quality of dry beans during the canning process [218]. A discriminatory linear
model was applied to classify the canned beans into two categories: “acceptable” and
“unacceptable”. The model achieved an ordinary classification accuracy of 72.60%. As
sensors and instruments improve, it is expected that VIS/NIR spectroscopy will meet the
necessary requirements for its use. The evaluation of basic foods using HSI systems mainly
focuses on color, hardness, and external defects. In a recent study [219], the color of fresh
soybeans was determined using an active contour model to segment the spectral images.
This HSI technique was found to be more effective in acquiring the mean reflectance and
entropy parameters of the image. A PLSR model was established to detect the color of
processed soybeans with a good R2 of 0.74 and used HSI in the range of 400–1000 nm
to discriminate rice samples based on color and shape. Five shape features (minor axis
length, major axis length, perimeter, length-width ratio, and eccentricity) and one-color
feature (degree of chalkiness) were utilized as inputs for a back propagation neural network
(BPNN) model, resulting in a high classification accuracy of 94.45%. The performance of
PLSR and PCR in evaluating the hardness of wheat samples using HSI in the wavelength
range of 960–1700 nm and found that PLSR outperformed PCR. Additionally, hyperspectral
imaging was also significantly used to determine the surface defects of potatoes [220]. The
effectiveness of the proposed method in identifying kernels where the germination process
has begun was demonstrated through experiments involving three wheat cultivars. The
results achieved 100% accuracy for the samples utilized in this study [221]. The surface
defects of potatoes were also determined using the HSI technique. Moreover, the results
were combined with the SVM classification tool to achieve a high-accuracy performance in
determining the surface defects of potatoes [222]. The endpoints of the paragraph include
the effectiveness of spectroscopy techniques, such as VIS/NIR and HSI, in determining
the color, hardness, and external defects of food samples. It also highlights the successful
application of discriminatory models and neural networks in classifying and predicting
sensory characteristics based on spectroscopic data.

Spectroscopic techniques are useful in food sensory analysis to measure properties
such as color, texture, and flavor. The advantages of these techniques include objective
measurement, non-destructiveness, and rapid results. They can provide a detailed analysis
of food chemical composition, helping to identify changes due to processing or storage.
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However, limitations include the need for calibration and reference materials, the possibility
of interference from other compounds, and the complexity of data analysis. The cost of
equipment and expertise required may also be a barrier for smaller food businesses.

5.2. Adulteration Attributes

Adulteration refers to the practice of mixing inferior quality substances with superior
original substances and or/by adding ingredients of lower quality, which can negatively
impact the completeness and nutritional value of food products [217]. Often, the presence
of contaminated materials is very comparable to that of the initial products, making it
complicated to differentiate them when blended. Additionally, establishing the species
and source of staple foods is important in protecting consumers from potential fraud, as
food geographical indications cannot be confirmed solely from food labels. Thus, reliable
analysis of adulteration is required to confirm the quality of the product. The scope of
the proposed paragraph is to discuss the problem of food adulteration and the role of
spectroscopic techniques with chemometrics in detecting and differentiating adulterated
food samples. It highlights the challenges posed by adulteration, including the difficulty in
differentiating contaminated materials from the original products and the importance of
confirming the species and source of staple foods.

Spectroscopic techniques, such as Transmission Raman spectroscopy, have been used
to achieve this goal. In a recent study, Transmission Raman spectroscopy was used to
differentiate rice samples based on their geographic origin using PCA and LDA [223].
Similarly, Feng et al. (2013) used a combination of Raman spectroscopy and multivariate
data analysis techniques to differentiate rice samples from various regions of China, with
an overall accuracy of over 90% [224]. Different types of rice samples and their geograph-
ical origin were effectively discriminated using 1H-NMR spectroscopy and multivariate
data analysis. The accuracy of wheat flour sample discrimination using a simple linear
model was 80% [225]. The study by Esteve Agelet et al. (2012) tested the feasibility of
NIR spectroscopy to discriminate viable-germinating corn and soybeans from dead seeds
and found that dead corn kernels could be discriminated with an accuracy of 99% using
partial least squares discriminant analysis (PLS-DA) [226], Haughey et al. (2013) used
NIR spectroscopy (833–2632 nm) to detect adulteration of soybeans with melamine and
achieved R2 values ranging from 0.89 to 0.99 using PLSR and PCR algorithms [227]. The use
of Fourier transform mid-infrared (FT-MIR) spectroscopy and discriminant analysis was
successful in detecting adulterated potato and sweet potato starch by Liu et al. (2013) [228].
Similarly, FT-IR spectroscopy and discriminant analysis were combined for the geographi-
cal differentiation of dried lentil seeds [229]. For imaging spectroscopy, it was examined
to identify different types of wheat kernels, and found that better results were obtained
by selecting three specific wavelength intervals. The ability of NIR spectroscopy to detect
adulteration of soybeans by melamine was demonstrated, with R2 values of 0.89 to 0.99
using PLSR and PCR algorithms [230]. NIR spectroscopy was also used to distinguish
viable-germinating corn and soybeans from dead seeds, with perfect accuracy based on
PCA and PLS-DA [231]. The NIR and HSI in combination with PCA to detect residues of
0.10% peanuts in wheat flour, with an R2 of 0.95 [232]. All these spectroscopic techniques
demonstrated very great accomplishments in detecting different forms of food fraud and
authentication. The end points of the paragraph include the effectiveness of spectroscopic
techniques in detecting and differentiating adulterated food samples based on their chem-
ical composition. It mentions the advantages of spectroscopic techniques, such as high
sensitivity, specificity, and non-destructiveness, which allow for the identification of small
changes in the food samples.

Spectroscopic techniques detect food adulteration by analyzing the chemical com-
position of food samples. Advantages include high sensitivity, specificity, and non-
destructiveness, which can identify small changes in the food sample. Limitations in-
clude the need for calibration and reference materials, interference from other compounds,
limited applicability, and cost of equipment and expertise.

181



Foods 2023, 12, 2753

5.3. Chemical Attributes

The chemical composition of food plays a crucial role in determining its nutritional
value and consumer acceptance. The scope of the proposed paragraph is to discuss the
chemical composition of food, focusing on cereals and legumes, and highlight the impor-
tance of accurate measurement and control of their chemical components for determining
nutritional value and food quality. The main chemical components in cereals and legumes
are carbohydrates, protein, moisture, fiber, fat, and ash. Starch, a type of carbohydrate,
is composed of helical amylose and branched amylopectin. The nutritional value and
consumer acceptance of food are significantly influenced by its chemical composition.
Cereals and legumes primarily consist of carbohydrates, protein, moisture, fibre, fat, and
ash. For instance, maize can range from 20% to 36%, sorghum from 21% to 35%, wheat
from 17% to 29%, barley from 11% to 26%, rice from 8% to 37%, pea from 34% to 37%,
and potatoes from 18% to 23% [233]. Among these components, starch, a type of carbo-
hydrate, is composed of amylose and amylopectin. The relative proportions of amylose
and amylopectin in starch have a notable influence on the quality of food products such
as bread and noodles [234]. The content of those chemicals can vary greatly which can
influence the food quality properties and high-performance techniques needed to control
their concentrations. Staple foods are primarily composed of proteins, which contribute to
their structural and functional properties, affecting their quality and taste. Moisture content
is a major factor that influences the shelf life and germination success of staple foods. The
fiber in these foods, made up of cellulose, hemicellulose, lignin, pectin, and gums, can help
lower cholesterol levels but does not provide energy. Lipids are the most energy-dense
component, providing more energy per gram than carbohydrates and proteins. Ash con-
tent, which is the inorganic residue after organic matter is burned, indicates the presence
of minerals in the food sample. Moisture content is commonly measured through drying
with an oven or Karl Fisher titration, both of which have low efficiency [235]. The content
of crude fat in staple foods can be measured by extracting the dried material using ether
or petroleum ether. The crude protein content is typically determined using Kjeldahl
or Dumas methods, which quantify the organic nitrogen content [236]. However, these
traditional methods are destructive, time-consuming, and require a long preparation time.
To overcome these limitations, the use of non-destructive and rapid detection methods
is desired. The VIS/IR spectroscopy techniques hold the potential for determining the
chemical components in staple foods. Nie et al., demonstrated that VIS/NIR spectroscopy
in the range of 400 to 1000 nm can be used non-destructively to determine the presence of
the poisonous phytohemagglutinin in beans by monitoring the boiling time of yard-long
beans [237]. Both NIR and MIR techniques were used to verify the chemical characteristics,
as well as protein, lipid, moisture, and ash amounts in soybean, while PLSR models showed
good performance [238]. The preparation and determination of staple food samples using
VIS/IR spectroscopy techniques take less than five minutes, compared to the 10–16 h
required by traditional methods. FT-NIR spectroscopy has been shown to estimate the
concentration of moisture, protein, lipid, ash, and carbohydrate in Brazilian soybeans with
high accuracy [239]. The protein and moisture content had the best results with correlation
coefficients of 0.81 and 0.80, respectively. NIR spectroscopy has also been used to accurately
predict the crude protein content in potatoes, with high correlation coefficients ranging
from 0.86 to 0.95 using PLSR for calibration [240]. The VIS/NIR (446–1125 nm) was ap-
plied for chemical components in two varieties of potato tubers [241]. The chemical and
enzymatic compositions of staple foods, including phenolics, flavonoids, anthocyanins,
carotenoids, dioscin, and catalase, have been screened using NIR or MIR spectroscopy and
analyzed using chemometric methods namely HCA, PCA, SVM and PLS-DA, producing
good predictive ability [241–243]. The endpoints of this section include the advantages of
spectroscopic techniques in offering high sensitivity, specificity, and non-destructiveness
for food chemical analysis. It mentions their ability to quickly identify small changes in
food composition and measure parameters such as acidity, pH, and moisture content.
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Spectroscopic techniques offer high sensitivity, specificity, and non-destructiveness
for food chemical analysis. They can quickly identify small changes in food composition
and measure parameters such as acidity, pH, and moisture content. However, limitations
include the need for calibration and reference materials, interference from other compounds,
and the complexity of data analysis. The cost of equipment and expertise required may
also be a barrier for smaller food businesses.

5.4. Mycotoxin Attributes

The presence of mold and its associated toxins during post-harvest storage can result
in a decrease in food quality, leading to losses in nutrients and market value, as well as
pose serious food safety risks. The scope of the proposed paragraph is to discuss the
presence of mold and mycotoxins in post-harvest storage and their negative impact on
food quality, safety, and market value. It emphasizes the harmful effects of mycotoxins,
such as aflatoxins and Fusarium toxins, which are known to be carcinogenic and linked to
liver and lung cancer in humans.

Mycotoxins, like aflatoxins and Fusarium toxins, are harmful byproducts produced
by mold and are recognized as carcinogenic, linked to liver and lung cancer in humans.
According to estimates, as much as 25% of crops grown for both animal feed and human
consumption globally may be contaminated with mycotoxins [244]. Mycotoxin amounts
for essential food products have been specifically restricted by the EU [245]. In the USA,
20 ppb (parts per billion) of aflatoxin amounts in food and 100 ppb in feed are permitted
for the administrative market [246]. Giving to the FAO, one billion metric tons of food are
rotten worldwide yearly caused by mycotoxins [247]. Hence, the ability to accurately detect
various levels of fungal contamination can greatly aid in controlling plant diseases and
reducing food safety hazards. Currently, the methods for identifying and measuring toxins
consist primarily of thin-layer chromatography and high-performance liquid chromatogra-
phy, but these methods are both expensive and time-consuming and involve the destruction
of samples [248]. The detection of mycotoxins in staple foods can be performed quickly
and easily using IR spectroscopy. The NIR spectroscopy in the range of 950–1650 nm was
used in conjunction with PLSR to detect total fungal and yellow-green Aspergillus flavus
infections in rice [249]. However, the accuracy levels for both total fungi and yellow-green
A. flavus infections were not high. The PLS was based on full cross-validation to detect
fumonisin contamination in maize through NIR spectroscopy, achieving a high R2 of 0.91.
This demonstrates that NIR spectroscopy is a viable alternative tool for detecting fumonisin
infections [250]. The FT-MIR spectroscopy in the range of 2500–16,000 nm with an attenu-
ated total reflectance unit to differentiate peanut kernels contaminated with aflatoxin and
non-aflatoxin strains. The “Acceptable” stream (aflatoxin ≤ 20 ppb) was separated from
“Mildly” (20 < aflatoxin < 300 ppb), “Highly Toxic” (300 < aflatoxin < 1200 ppb), and
“Highly Moldy” (aflatoxin > 1200 ppb) through classification. The fingerprint region
(5556–12,500 nm) was utilized to predict the A. flavus and A. parasiticus species with vary-
ing levels of contamination based on PLS regression, achieving an R2 of 99.98% [251]. The
utilization of the Raman technique in combination with PCA allows for the non-invasive
detection of deoxynivalenol (commonly known as vomitoxin) in contaminated wheat and
barley [252]. The benefits of this approach consist of the utilization of a NIR laser excitation
(1064 nm), which minimized disruption from the fluorescence of biological substances.
The endpoints of the paragraph highlight the advantages of spectroscopic techniques in
food mycotoxin analysis, including high sensitivity, specificity, and non-destructiveness.
It emphasizes the ability of these techniques with chemometric models to detect even
small amounts of mycotoxins in food samples and provide rapid measurements of various
chemical parameters.

Spectroscopic techniques offer advantages in food mycotoxin analysis such as high
sensitivity, specificity, and non-destructiveness. These techniques can detect even small
amounts of mycotoxins in food samples and provide rapid measurements of various
chemical parameters. However, limitations include the need for calibration and reference
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materials, the interference of other compounds in the sample, and the limited applicability
of certain techniques to specific mycotoxins.

5.5. Parasitic Contamination

Staple foods can be degraded and lose market value due to contamination from
parasitic insects. The scope here is to discuss the contamination of staple foods by parasitic
insects and the detrimental effects they have on food quality and market value. The
activities of parasitic insects, both external and internal, and their impact are highlighted.

The insects not only feed directly on the food, but also create heat and moisture through
their metabolic activity, leading to localized hotspots and spoilage. This results in weight
loss, nutrient depletion, reduced germination ability, and increased risk of contamination
during storage. External insects like the Oryzaephilus surinamensis and internal insects
such as Sitophilus granarius can both harm stored products. Some insects like the sweet
potato weevil (Cylas formicarius elegantulus) do most of the damage inside the food
without significant external changes. Others, like the rice weevil (Sitophilus oryzae) and
lesser grain borer (Rhyzopertha dominica), lay eggs, larvae, or pupae in seeds, continuing
their destructive activity for up to 7 weeks, until the adult insects emerge and leave an exit
hole, making the damage visible [253].

The detection of parasitic insect infestations in staple foods is crucial for the food indus-
try. Such infestations can decrease the quality and value of the food. Internal infestations
are more challenging to detect and require effective methods for inspection. HSI, a spectral
information technique, has the potential to provide information about internal infestations
through reflectance or absorbance measurements. A study by Singh et al. (2009) used LW-
NIR HSI (900–1700 nm) to differentiate between insect-infested and healthy wheat kernels,
achieving an accuracy of over 85% with LDA and QDA classifiers [254]. The endpoints of
the paragraph emphasize the importance of detecting parasitic insect infestations in staple
foods to mitigate the negative effects on food quality and value. Internal infestations are
highlighted as being more challenging to detect and requiring effective inspection methods.

Spectroscopic techniques detect parasitic contamination in food with high sensitivity,
specificity, and non-destructiveness. These techniques rapidly and precisely measure
various chemical parameters, but limitations include the need for calibration and reference
materials, the possibility of inaccurate results due to other compounds in the sample, and
limitations in detectability for certain parasites. The cost and expertise required may also
be a barrier for smaller food applications.

5.6. Internal Functional Characteristics

Functional disturbances within staple crop plants are linked to irregular growth
patterns brought on by less-than-ideal environmental factors. The scope here is to discuss
briefly some examples of the internal functional characteristics disturbances within staple
crop plants such as those caused by environmental factors.

The functional disturbances include variations in temperature, moisture, oxygen, nu-
trients, the presence of toxic gases, and a deficiency in growth regulators. The symptoms
of these internal conditions appear to be root tuber disorders such as hollow heart, black
heart, and internal brown spot. Overuse of nitrogen fertilizer during the growth phase
can cause hollow heart in tubers, a condition where the tuber’s core dies or splits, creating
a cavity [255]. This disorder is commonly triggered by the rapid growth of the tuber
and results in reduced storage life, poorer quality chips, and an unattractive appearance.
Blackheart is a condition that arises when there’s insufficient oxygen during the tuber’s
growth or storage period. Tubers cultivated in excessively damp areas or those exposed
to severe temperatures are more prone to this condition. Internal brown spot refers to
the internal death of the tuber’s central tissue, which significantly diminishes its culinary
worth. Other physiological damage, such as freezing or chilling injuries, occurs due to
extended exposure to freezing temperatures post-harvest. The symptoms of these injuries
manifest as grey or black patches, or a brown discoloration around the tuber’s vascular
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ring. Even though these internal physiological disorders may not be immediately visible,
they greatly affect the quality and value of root and tuber crops. X-ray examination has
been reported to successfully detect hollow hearts in potatoes but attempts to use acoustic
methods for detection have been unsuccessful [256], although unsuccessful using an acous-
tics method [257]. Traditional methods are also heavily dependent on the orientation of the
potato. However, spectroscopic techniques have been shown to be effective for the non-
destructive prediction of internal physiological disorders, including black heart, hollow
heart, and internal brown spot in root tubers. The VIS/NIR transmission spectroscopy
(513–850 nm) used to compare three different morphological correction methods combined
with PLS-DA and PCA to detect black hearts in potatoes. The best performance was found
with height-corrected transmittance. Using six wavelengths (839, 817, 741, 711, 698 and
678 nm), the overall validation classification rate for the black heart was 96.53% [258]. The
HSI in the 1000–1700 nm range was applied to distinguish hollow heart and internal brown
spots in tubers. Specifically, the HSI technique was applied to detect the presence of hollow
hearts in potato tubers [259]. An accurate recognition rate of 89.10% was achieved by
combining support vector machine (SVM) with various image processing techniques. Simi-
larly, time-resolved reflectance spectroscopy (540–900 nm) was used for non-destructive
external measurement of internal brown spots in potato tubers [260]. By internal detection
of healthy tissue and black spots, the most sensitive wavelength for detection was found to
be 690 nm. The endpoints of the paragraph emphasize the negative effects of these internal
physiological disorders on the quality and value of root and tuber crops.

Spectroscopic techniques offer insights into food’s internal functional characteristics,
such as composition, structure, and functional properties, with high sensitivity, specificity,
and non-destructiveness. They allow for rapid and precise measurements of various
chemical and physical parameters. However, challenges arise from the need for calibration
and reference materials, potential interference from other compounds, and limitations in
the applicability of certain techniques. Moreover, the cost of equipment and expertise
required may be an obstacle.

6. Conclusions

In conclusion, advancing spectroscopy techniques offer a game-changing solution
for food composition analysis, presenting a non-destructive, rapid, cost-effective, and eco-
friendly alternative to traditional methods. These techniques provide valuable insights into
food quality, chemical components, composition, structure-function relationships, and sen-
sory attributes, eliminating the need for extensive sample preparation in many cases, thus
saving time and resources. Coupled with appropriate chemometric multivariate methods,
spectroscopy enables comprehensive and accurate analyses of various food materials.

This review has highlighted recent studies showcasing the effectiveness of spec-
troscopy techniques, such as hyperspectral and multispectral imaging, NMR, IR, Raman,
X-ray-based methods, fluorescence, and UV-visible, in conjunction with chemometric
approaches for diverse food analysis applications. From determining the chemical composi-
tion and identifying geographical origin to ensuring food safety and traceability, monitoring
storage and preservation, assessing sensory characteristics, evaluating microbial quality,
and detecting food spoilage, these techniques have shown immense potential and versatility
in the food industry.

Looking ahead, the future of spectroscopic techniques in food analysis appears highly
promising. As technology continues to advance, these techniques are expected to be-
come even more powerful, accurate, and efficient, opening new avenues of research and
application. It is strongly recommended that food businesses and researchers embrace
spectroscopy in their analyses and consider integrating these techniques into their standard
practices to enhance the overall efficiency and quality of food analysis.

However, it is crucial to acknowledge the challenges and limitations that may arise
with spectroscopic methods, such as issues related to sample heterogeneity, sensitivity, ac-
curacy, and the need for proper calibration and reference materials. Chemometric methods,
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while invaluable, require careful handling to avoid issues like overfitting and to ensure
reliable results, potential drawbacks of chemometric methods, such as overfitting or the
need for extensive data processing and model optimization should be also considered.

As the field progresses, further research and development are essential to optimize
and expand the capabilities of spectroscopic techniques in food analysis. By addressing
these challenges and pushing the boundaries of innovation, spectroscopy can revolutionize
the food industry, bolstering food safety, quality control, and product innovation in a
sustainable and impactful manner.
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