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Global climate changes, particularly extreme weather events, can directly or indirectly
affect freshwater availability and food production, and cause disease outbreaks, floods and
droughts. Therefore, there is an urgent and necessary need to develop advanced climate
simulation and observation approaches and models, especially ones related to extreme
climate events. Advanced climate simulations and observations can improve the accuracy
of climate change predictions and long-term trends, which can mitigate the impacts of
climate events on social and economic development, as well as human lives.

Under these conditions, this Special Issue entitled “Advanced Climate Simulation and
Observation” aims to introduce advanced approaches in climate simulation and observation
for use in various practical studies related to climate variations.

A total of 22 papers have been published in this Special Issue, with 8 original research
articles reporting on climate change.

In their paper, Torsri et al. [1] evaluated the capability of the state-of-the-art atmo-
spheric GCM of the Institute of Atmospheric Physics (IAP-AGCM) in simulating summer
rainfall over Thailand by comparing the model’s results with ground-truth observation
during 1981–2012. It was found that the IAP climate model creditably reproduced the
spatial patterns of the first three dominant modes of summer rainfall in Thailand, and that
the correlation between the observed rainfall anomalies and the Niño 3.4 index could be
reproduced through the use of the IAP model.

In order to study the sensitivity of meteorological factors in the western Tianshan
Mountain region in China concerning different parameterization schemes of climate models,
Cheng et al. [2] used the regional climate model RegCM4.5 to simulate the meteorological
factor occurring in the western Tianshan Mountain region from 2012 to 2016, to investigate
the effects of different cumulus convective schemes (Grell, Tiedtke and Emanuel). The
results show that different combinations of cumulus convection schemes can improve the
simulation performance of meteorological factors.

Based on Beijing’s air quality index (AQI) and concentration changes of the six major
pollutants from 2019 to 2021, Liu T et al. [3] through descriptive statistics visualized the
results, and the air pollution status and influencing factors of Beijing’s AQI were analyzed
using the ARIMA model and neural network. The results show that PM2.5, PM10 and O3
of the six major pollutants had the greatest impact on the AQI. Meanwhile, the forecast
effect of the neural network model was better than that of the ARIMA model.

Chen et al. [4] proposed a weather radar nowcasting method based on the temporal and
spatial generative adversarial network (TSGAN), which can obtain accurate forecast results,
especially in terms of spatial details, by extracting spatial and temporal features, combining
attention mechanisms, and using a dual-scale generator and a multiscale discriminator.

Using the advanced research version of the weather research and forecasting model
(ARWv3) and a hydrostatic wind speed change equation, Liu et al. [5] assessed the effects
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of four CPSs on a 10 m wind speed simulation over mainland China in the summer of 2003.
The sensitivity of the wind speed simulation to CPSs was found to be the highest in eastern
and southern China, followed by the Tibetan Plateau and then northwest China. In addition,
the main physical processes influencing wind speed varied greatly with subregions.

In their paper, Gulakhmadov A et al. [6] evaluated the applicability of three gridded
datasets in different combinations against observational data for predicting the hydrology
of the Upper Vakhsh River Basin (UVRB) in Central Asia. The water balance components
were computed, the results were calibrated with the SUFI-2 approach using the calibration
of the soil and water assessment tool model (SWAT–CUP) program and the performance of
the model was evaluated. The simulation for the calibration, validation and overall scales
showed an acceptable correlation between the observed and simulated monthly streamflow
for all combination datasets.

Uwamahoro et al. [7] clarified the precipitation types in two selected catchments by
verifying the influence of accumulated and maximum temperatures on snow melting using
a separation algorithm of rain and snow that incorporated the temperatures. The novel
snow-melting process utilizing the algorithm in the soil and water assessment tool model
(SWAT) was also developed by considering the temperatures.

The paper by Al-Helal et al. [8] shows that a 3 m depth was optimal to bury EAHE
pipes, where the ground temperature was 32 ◦C in the summer and 29 ◦C in the winter.
These temperatures would provide a maximum cooling/heating capacity of 1000/890 MJ
day−1 for each 1 m3 of humid air exhausted from a greenhouse. If the EAHE pipes were
to operate in a closed loop with a greenhouse, the condensation of water vapor in them
would be impossible during the cooling process.

There are six papers in this Special Issue that reported on the impact of climate change
on society and the economy.

The paper by Li et al. [9] examines the decoupling between carbon emissions per capita
and HDI and the welfare output of carbon emissions by using data from 189 countries,
from 1990 to 2019; it also decomposes the drivers of the decoupling index and carbon
emission performance (CEP) in the example countries. The results show that most coun-
tries that achieved strong decoupling had a very high human development, while the
worst case was that a few countries with an extremely low human development achieved
strong decoupling.

Li et al. [10] used panel data from 236 prefecture-level cities in China from 2001 to
2012 to verify the impact of urban population agglomeration on haze pollution and its
mechanism based on a spatial lag model. They found that China’s urban haze pollution
had a significant positive spatial spillover effect, and presented a spatial distribution state
of high–high and low–low agglomeration.

In their paper, Li et al. [11] measured the green innovation efficiency of 30 provinces
in China from 2009 to 2019 using the SBM (slack-based measure) of super efficiency based
on the undesirable output. The results reveal that the green innovation efficiency of the
30 provinces showed a fluctuating upward trend, but that the differences among provinces
were relatively significant.

Based on data of historical floods in 31 provinces and municipalities in China from
2006 to 2018, Chen et al. [12] compared five machine learning methods to predict direct
economic losses. Among them, GBR performed the best, with a goodness-of-fit of 90%. The
results of the data showed that, in China, provinces heavily reliant on agriculture suffered
the most with the proportion of direct economic losses to provincial GDP exceeding 1‰.

With a set of panel data released from Hubei and Hunan provinces in China, Liu et al. [13]
adopted the mediating effect model to explore the relationship between rural labor migra-
tion and air pollution caused by agricultural activity in China. They found that the increase
in labor migration had intensified the comprehensive index of air pollution caused by agri-
cultural activity by changing the supply of labor force in the agricultural sector, the budget
line of rural residents, the scale of agricultural production and crop planting structure.
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Abdul-Rahim et al. [14] investigated the environmental Kuznets curve (EKC) for haze
in 31 cities and provinces across China using the spatial data for a period of 15 years, from
2000 to 2014. The results of the GWR model found the spatial variability of each variable
and showed significant spatial heterogeneity in the EKC across regions.

Three papers reported on the impact of climate change on agriculture in this Special Issue.
Miao et al. [15] examined the spatiotemporal pattern of China’s drought conditions

and cropland exposure to droughts under global warming of 1.5 ◦C and 2 ◦C, along with the
avoided impacts (as evaluated through the cropland exposure to droughts) when limiting
global warming to 1.5 ◦C instead of 2 ◦C. The results suggest that drought conditions could
be alleviated when the projected rise in mean global temperature is limited to 1.5 ◦C rather
than 2.0 ◦C. In addition, the total cropland exposure to droughts across China exhibited an
increasing trend in response to the 0.5 ◦C of additional global warming.

The paper by Shen et al. [16] used beans, the food crop with the largest supply and
demand gap in China, as the research object, and established a panel spatial error model
consisting of multiple indicators of four factors, including the climate environment, eco-
nomic market, human planting behavior and technical development level of 25 provinces
in China, from 2005 to 2019, to explore the impact of climate environmental changes on the
yields of beans.

Tao et al. [17] conducted [CO2] (ambient and enriched up to 500 μmol moL−1) and
temperature (ambient and increased by 1.5~2.0 ◦C)-controlled experiments from 2015 to
2017, as well as in 2020 in two free-air CO2 enrichment (FACE) sites. They provide evidence
that SPAD readings are significantly linearly correlated with the rice leaf chlorophyll a
+ b content (chl a + b) and N content, while the relationships are profoundly affected by
elevated [CO2 ] and warming.

The impact of climate change on human health was studied in five articles of this
Special Issue.

In their paper, Zhang et al. [18] investigated the impact of air pollutants on the respira-
tory system and its action mechanism by using information on inpatients with respiratory
diseases from two IIIA (highest) hospitals in Wuhan from 2015 to 2019, information on air
pollutants and meteorological data, as well as relevant demographic and economic data in
China. According to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2
and CO exposure totaled USD 454.46 billion, or, approximately, 0.20% of Wuhan’s GDP
in 2019.

In the study by Hao et al. [19], 26 environmental variables, namely, climatic, geograph-
ical and 2 socioeconomic indicators, were collected from regions where MT-ZVL patients
were detected during the period from 2019 to 2021, with the aim of creating 10 ecological
niche models. They found multiple ensemble ecological niche models based on climatic
and environmental variables to be effective at predicting the transmission risk of MT-ZVL
in China.

Based on the core collection of the Web of Science and CNKI databases, Gao et al. [20]
used CiteSpace software to draw and comment on maps of Chinese and English keywords,
publishing times, authors, countries and research institutions concerning the relationship
between air pollution and public health. The results point out that the number of studies on
the relationship between air pollution and health had increased year by year. Meanwhile,
the three areas of sustained pollution exposure, indirect consequences of negative health
effects of air pollution and air pollution and climate change may be the future focus of
the field.

Du et al. [21] used the 2018 China Health and Retirement Longitudinal Study (CHARLS)
project database for their paper. The multivariate linear regression analysis and binomial
logistic regression model were applied to detect the impact of the subjective evaluation of
air quality on QOL. The results show that there is a significant positive correlation between
the subjective evaluation of air quality and the two dimensions of QOL.

In the paper by Gao et al. [22], a penalized distributed lag nonlinear model was applied
to explore the influence of meteorological factors on the PTB incidence in Xinjiang from
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2004 to 2019. Moreover, they firstly used a comprehensive index (apparent temperature,
AT) to access the impact of multiple meteorological factors on the incidence of PTB. Overall,
it was indicated that environments with low air temperature, suitable relative humidity and
wind speed were more conducive to the transmission of PTB, and low AT was significantly
associated with an increased risk of PTB in Xinjiang.

Author Contributions: Conceptualization, Z.H. and X.T.; validation, Z.H., X.T. and Q.X.; writing—
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Abstract: Thailand is located in the Southeast Asian region, where the summer rainfall exhibits
strong interannual variability, and the successful simulation of rainfall variation in Thailand by
current climate models remains a challenge. Therefore, this paper evaluates the capability of the
state-of-the-art Atmospheric GCM of the Institute of Atmospheric Physics (IAP-AGCM) in simulating
summer rainfall over Thailand by comparing the model’s results with ground-truth observation
during 1981–2012. Generally, the model shows a certain skill in reproducing the observed spatial
distribution of the summer rainfall climatology and its interannual variability over Thailand, although
the model underestimated both rainfall amount and its variability. Using Empirical Orthogonal
Function (EOF) analysis, it is found that the IAP climate model reproduced creditably the spatial
patterns of the first three dominant modes of summer rainfall in Thailand, whereas it underestimated
the explained variance of the observed EOF-1 and overestimated the explained variance of the
observed EOF-2 significantly. It was further found that the correlation between the observed rainfall
anomalies in Thailand and the Niño3.4 index can be reproduced by the IAP model. However, the
observed negative correlation is largely underestimated by the IAP climate model, and this could
be the reason for the underestimation of explained variance of the EOF-1 by the IAP model. The
evaluation results would be of great importance for further model improvement and thus potential
application in seasonal prediction in the region.
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1. Introduction

With the advances in scientific understanding and improvements in computing capa-
bilities, the current general circulation models (GCMs) have involved many components
of the Earth system and can be used for long-term simulations, ranging from seasons to
decades, of historical climate and projection of future climate change [1]. These GCMs
have been widely applied in climate studies and for seasonal climate forecasts from the
global scale to the regional scale, and have been improved not only in spatial and vertical
resolution but also in parameterizations, to obtain a better representation of the different
processes within climate and earth system [2]. However, before adopting one specific
model for the simulation and prediction of climate anomalies or hydro-meteorological
disasters in any region, we need to first verify the model’s performance in the region [3]. It
is also essential to identify the model’s systematic biases and the possible reasons for these
biases, so that we can know the direction for further model improvement [4], as well as
bias correction for better model applications.
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Given the need for an enhanced understanding of rainfall variation and its impacts
on societies and ecology, many studies have attempted to develop GCMs to provide this
important information in advance in different time scales [1,2]. However, applying different
climate models for a region could yield different results, as demonstrated by Li et al. [5],
when evaluating the performance of GCMs in reproducing rainfall patterns over the Asian–
Australian monsoon region. Following their results, it was found that climate models can
generally reproduce the observed rainfall patterns over Southeast Asia (SEA) region, but
still overestimated its intensity. It is also reported that rainfall climatology over the SEA
region is still difficult to be simulated by an individual GCM, but can be improved when a
multi-model ensemble approach is employed [6]. Furthermore, the skill of climate models
in estimating rainfall over an area is also dependent upon the sea surface temperature
(SST) specified during the model integration [7]. Besides, many efforts have been made
to improve the model performance by increasing the GCM’s resolution [8]. Based on the
improved high-resolution GCM outputs (20–50 km) that participated in the Coupled Model
Intercomparison Project Phase 6 (CMIP6) [9], it was found that monsoon onset and rainfall
climatology over the SEA can be simulated better than that of its original resolution [10].
Moreover, applying a bias correction method to a GCM output can also yield more realistic
results than its original output [11]. However, model bias in rainfall simulation exhibits
spatial variations, depending on the area and model configuration [7,11–13]; therefore,
a systematic model evaluation is important before applying the climate model in the
study region.

In Thailand, summer rainfall exhibits strong interannual variation; hence, it is exposed
to frequent floods and drought conditions, leading to adverse impacts on many sectors (e.g.,
agriculture and economy) [14,15]. For instance, the 2011 flood was particularly severe as a
result of record-breaking rainfall extremes that caused huge economic losses, estimated at
30 billion USD [16]. In turn, Khadka et al. [17] showed that devastating drought events occur
every 6 years in the northeastern part of Thailand, with a notable impact on the agricultural
sector. Moreover, summer rainfall in Thailand is largely influenced by the interannual
variation in SST anomalies (SSTA) over the tropical Pacific Ocean (ENSO events) [15,18],
which serves as a predictor of summer rainfall in the country [19–21]. Nonetheless, strong
ENSO events are linked to summer rainfall extremes, as in the case that triggered the
2011 devastating flood event over Thailand [19]. Therefore, monthly and seasonal climate
predictions are important for guidance in managing risks in the water resources of the
country. During the past decade, the capability of dynamical regional climate models in
reproducing rainfall characteristics has also been examined for Thailand [22,23]. Based on
the previous studies, the simulation of rainfall characteristics in Thailand has remained
a challenge, which could be largely ascribed to the complexity of the topography of the
country [22,23], in addition to the inability of the models to reproduce the driving impact of
ENSO events on summer rainfall [24–26]. Meanwhile, the model performance in simulating
the rainfall characteristics is shown to be spatially and seasonally different [23] and was
also dependent on the model’s physics parameterizations [22]. Hence, before applying any
climate model for the climate simulation and prediction in a region, the behavior of the
model in reproducing its historical climate variation must be evaluated first.

The atmospheric component of the Chinese Academy of Sciences–Earth System Model
(CAS-ESM), the IAP-AGCM (Atmospheric GCM of the Institute of Atmospheric Physics,
Chinese Academy of Sciences), has been widely applied for climate simulation and pre-
diction studies over different parts of the world [27–31]. For example, it is found that the
model can reproduce the observed relationship between the summer rainfall anomalies
in East Asia and the East Asian subtropical western jet [30], and has shown promising
applications for extreme event simulation and prediction over mid-latitude regions, partic-
ularly in China [27,29]. For the tropical region, it also shows good skills in the simulation
of temperature and rainfall variations in West Africa [28]. In an attempt to apply the
IAP climate model for a climate simulation and future climate change projection study,
it is imperative to understand whether the IAP model can reproduce the observed char-
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acteristics of summer rainfall over Thailand. Moreover, for the potential application of
the IAP climate model in the seasonal prediction for disaster management in Thailand,
it is very important to understand whether the IAP model can reproduce the observed
relationship between ENSO and summer rainfall anomalies in the region, as ENSO has
already been identified as the key driver and predictor for summer rainfall anomalies in
Thailand [19–21,32]. Furthermore, it is also interesting to understand how the model’s
capability in reproducing the ENSO and summer rainfall relationship can be linked to the
model’s capability in simulating the observed rainfall variation in the country. The rest of
the paper is organized as follows: a brief description of the IAP climate model, study region,
data, and analytical method used are explained in Section 2; the results are presented in
Section 3; and the discussion and conclusions are summarized in Section 4.

2. Model Description, Study Region, Data, and Methods

2.1. Model Description and Experimental Setup

The model used in this study is IAP-AGCM version 4.1 (IAP-AGCM4.1), with a
horizontal resolution of about 1.4◦ × 1.4◦ and with 30 vertical levels, and the model top is
at 2.2 hPa. Its dynamic core is formulated based on the transformed velocity as the control
variable of air motion by the finite-difference method [33]. The model was originally
developed based on a two-level atmospheric general climate model [34] and has been
continually improved in its dynamic core, parametrizations, and adding a more realistic
view of Earth’s complexity in later versions [35–38].

The model uses a finite-difference scheme with a terrain-following sigma vertical coor-
dinate [39]. The model grid system is built from a two-dimensional horizontal staggered
Arakawa C-grid [40]. Formulation of the governing equations and the finite-difference
schemes of the current IAP-AGCM version is based on the baroclinic primitive equations
with subtraction of the standard stratification and conserves the total available energy,
which is a summation of kinetic energy, the available potential energy, and the available
surface potential energy rather than total energy. Compared to its previous version, IAP-
AGCM4.1 incorporates the more advanced physics parameterizations from the Community
Atmosphere Model version 5 (CAM5) physics packages. A general evaluation of IAP-
AGCM4.1 was done by Zhang et al. [33] and the model shows a reasonable performance.

An Atmospheric Model Intercomparison Project (AMIP)-type global simulation with
IAP-AGCM4.1 was performed for the 1978–2012 period, which is driven by observed
SST and sea-ice from the Hadley Centre Sea Ice and Sea Surface Temperature dataset
(HadISST) [41]. The greenhouse gas concentrations, anthropogenic aerosol, and precursor
gas emissions from the Coupled Model Intercomparison Project Phase 5 (CMIP5) [1]
were applied during the simulation, which varies from year to year. The simulation was
initialized from a former 10-year AMIP-like simulation forced by the observed climatology
of the SST and sea ice concentration. The last 32 years (1981–2012) of the model’s results
were used for the analysis, by discarding the first 3 years (1978–1980) as a spin-up period.

2.2. Study Region, Observation Data, and Model Evaluation Methods

Located in the SEA region, Thailand is significantly affected by the Asia monsoon
system, with abundant rainfall recorded in the summer season, as well as a strong inter-
annual variability of rainfall in the summer season. Meanwhile, the climate pattern over
Thailand can be divided into five distinct sub-regions, namely, Central, Eastern, Northeast-
ern, Northern, and Southern (see Figure 1), by which the first four sub-regions (i.e., the
North, Northeast, Central, and East) may be aggregately called Upper Thailand [42].

As seen in Figure 1, the geography of Thailand is quite different, in which the Northern
part is mostly characterized by hilly and mountainous terrain. Meanwhile, the Northeast-
ern part of Thailand is dominated by a high land plain, generally called the northeast
plateau. For the Central part, the sub-region is mostly a low-level large plain area, with
a mountainous range extending from the northern sub-region to the western part of the
Central sub-region. In the Eastern part, most of the sub-region is plain land and valleys with
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small hills in its northern, central, and eastern parts, while its southern and southwestern
parts are adjacent to the Gulf of Thailand. Whereas the Southern part of Thailand is a
peninsula with the Andaman Sea adjacent to its western part, and the South China Sea in
its eastern part.

Figure 1. Spatial distribution of the Thai Meteorological Department’s rainfall stations (black dots)
used in this study. The red line represents the border of Thailand and its five sub-regions (i.e., the
North, Northeast, Central, East, and South), superimposed on the terrain elevation obtained from the
30-m Shuttle Radar Topography Mission (SRTM) elevation data.

In this study, rain gauge observations from 69 stations of the Thai Meteorological
Department (TMD), covering the period of 1981 to 2012, were used for model evaluation.
Originally, we obtained daily rainfall datasets for 120 rain gauge stations from the TMD.
However, after general quality checks (e.g., negative rainfall, missing values, and length
of data record), only 69 stations’ data have a long-historical record from 1981 to 2012. The
selected 69 stations contain at least 80% of the observed daily rainfall (i.e., less than 20%
missing values). The spatial distribution of the selected TMD stations is depicted in Figure 1.
As seen, there is a relatively high density of TMD stations distributed across Thailand,
consisting of 19 stations in the North, 18 stations in the Northeast, 12 stations in the Central,
9 stations in the East, and the rest in the South.

As summer is the rainy season in Thailand, the simulated summer (June–July–August;
JJA) rainfall by the IAP climate model was examined. Besides the summer mean and
the variability, we also investigated the model’s capability in reproducing the spatial–
temporal variation in the observed rainfall in Thailand using the Empirical Orthogonal
Function (EOF) analysis, which is one of the most popular and widely used methods
to characterize the important features of the climate variables [43–46]. Meanwhile, the
temporal correlation coefficient (TCC), as well as pattern correlation coefficients (PCC)
between the observation and the model simulation, were also computed for comparison,
following Equations (1) and (2), respectively.

TCC =
1

N − 1

N

∑
t=1

(TMD − TMD)

SDTMD

(IAP − IAP)
SDIAP

(1)
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PCC =
1

M − 1

M

∑
i=1

(TMD − TMD)

SDTMD

(IAP − IAP)
SDIAP

(2)

where SD is the standard deviation of the observation (TMD) and simulation (IAP) over
time (t) space for TCC (N is the number of years) and grid space (i) for PCC (M is the
number of grid cells).

To quantify the error statistics between the observation and simulation, the monthly
gridded rainfall based on the 69 TMD stations’ data was constructed with a 0.5◦ × 0.5◦
latitude/longitude resolution, via an iterative objective analysis [47]. Meanwhile, the simu-
lated monthly rainfall was bi-linearly interpolated into a 0.5◦-grid resolution to facilitate its
comparison with the observation.

Moreover, regional statistics are herein provided for the aforementioned five sub-
regions of Thailand (see Figure 1). Note that to obtain a regional daily or monthly time
series, daily or monthly values from all stations or the grid cells in a sub-region were firstly
aggregated and averaged.

3. Results

3.1. Climatological Distribution of Summer Rainfall

Figure 2a shows the 32-year mean of the observed summer rainfall over Thailand.
Essentially, the seasonal rainfall shows a strong spatial variation in the sub-regions. For
instance, in Northern Thailand, the average rainfall intensity ranges between 2.0 and
10.0 mm day−1 in the summer season over the sub-region. However, a lower rainfall
intensity (<4.0 mm day−1) is observed in the narrow part of Central and a small part of
Southern Thailand. Meanwhile, the highest intensity of the summer rainfall is found in
Upper Thailand and some parts of the Southern sub-region (>10.0 mm day−1). Nonetheless,
Figure 2a further suggests that rainfall distribution in the center of the upper part of
Thailand is largely homogeneous, with a magnitude of about 6.0 mm day−1.

Figure 2. Spatial distribution of summer rainfall (mm day−1) over Thailand averaged over 1981–2012:
(a) observed; (b) simulated by the IAP AGCM4.1.
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Furthermore, it is observed that during the summer season, the narrow end of Central
Thailand experiences a drier condition relative to other parts of the sub-region, while
a wetter condition is observed in the east, northeast, and western part of Central Thai-
land, and some parts of Southern Thailand. Notably, the foregoing demonstrates that
the magnitude of rainfall in the Eastern sub-region and west coast of Southern Thailand
are similar, perhaps because of their proximity to the Gulf of Thailand and the Andaman
Sea, respectively. Meanwhile, a drier summer is observed on the southeast coast of South-
ern Thailand, with a rainfall intensity of less than 6.0 mm day−1. Therefore, during the
summer season, Southern Thailand is remarkably characterized by dry conditions on its
east coast and wet conditions on its west coast area. This is consistent with the findings
of Wang et al. [48], which also demonstrated that a high rainfall intensity occurs on the
southwest coast during the summer season. The authors further suggest that, in July,
heavy rainfall is centered northward around 10◦ N, which is associated with the seasonal
migration of the intertropical convergence zone (ITCZ) [48].

Figure 2b depicts the spatial distribution of the 32-year mean of the simulated sum-
mer rainfall as simulated by the IAP model. Interestingly, similar to the observation, the
model simulated summer rainfall with an intensity of 10.0 mm day−1. As compared to the
observation, the model reproduced largely the spatial patterns of rainfall distribution in
the Northern part, Northeast, Central, East, and Southern parts of Thailand with PCC of
0.10, 0.07, 0.34, 0.44, and 0.33, respectively. This indicates that the spatial distribution of the
simulated rainfall pattern suggests that the intensity varies depending on the sub-region
(Figure 2b). In general, the model shows better performance in reproducing the spatial
distribution pattern of observed rainfall intensity in areas where the rainfall intensity is
6.0 mm day−1, especially on the Central and east coast of Southern Thailand. However,
in some sub-regions, the model could not reproduce the magnitude of the observed rain-
fall intensity but the model captured, to a considerable extent, the magnitude and the
spatial distribution of rainfall intensity in the drier and moderate sub-regions. In turn,
it underestimated the magnitude of the rainfall intensity in the wetter sub-regions (see,
Figure 2b).

Furthermore, we show in Figure 3 the overall performance of the model in reproducing
the average summer rainfall in each sub-region. It was found that the model seems to
underestimate the summer rainfall, with a mean bias of −1.24 mm day−1 (Figure 3a).
However, the dry bias is seemingly apparent in the Eastern part of Thailand and other areas
characterized by mountainous terrain (Figure 3c–f), with bias = −3.65, −1.45, −0.14, and
−1.75 mm day−1 for the East, Northeast, North, and the South, respectively. Although
the IAP model seems to overestimate and underestimate the summer rainfall intensity in
the Central and Northern parts of Thailand, respectively, the magnitude of the difference
between the model and the observation is relatively small, with a magnitude between
0.49 and −0.14 mm day−1. Therefore, it can be inferred that the models performed better
in simulating the magnitude of summer rainfall in the Central and Northern parts of
Thailand. Meanwhile, we speculate that the model’s gross underestimation of the summer
rainfall intensity over the Eastern part of Thailand may be related to its proximity to the
Gulf of Thailand, where local impacts induced by the sea breeze process could be an
important factor controlling the local and sub-regional rainfall intensity [49–51]. Moreover,
it has been noted that global climate models find it difficult to resolve rainfall processes
in areas smaller than their grid cell, especially in coastal regions affected by a range
of physical processes [52–54]. Interestingly, Feng et al. [55] noted that the considerable
systematic underestimation of summer rainfall over Thailand is one of the limitations of
GCMs. Despite a significant improvement in CMIP6, a satisfactory accuracy of the rainfall
simulations over a region is still a challenge for the GCM models [12].
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Figure 3. The box–whisker plots show the maximum, minimum, mean, lower quartile, upper
quartile, and median of the observed and simulated rainfall over the 32-year period (1981–2012) for
(a) Thailand, (b) Central, (c) East, (d) Northeast, (e) North, and (f) South. Numbers in parenthesis
present the bias between the mean of the observed and simulated rainfall.

3.2. Distribution of Interannual Variability of Summer Rainfall

Figure 4a shows the observed standard deviation (SD) that is commonly used to
represent the interannual variability in rainfall. Notably, it is observed that the summer
season rainfall variability is higher than 2.0 mm day−1 in most parts of Thailand, ex-
cept in the Central part where the variability of the summer rainfall is relatively small
(SD < 2.0 mm day−1). However, it was found that higher rainfall variability, with SD
greater than 3.5 mm day−1, occurs in the upper part of the Northern, the fringes of the
Northeast, the narrow tip of the East, and the west coast of the Southern sub-regions. In
addition, a high summer rainfall variability is also observed in the western part of Central
Thailand close to the mountainous areas, adjacent to Myanmar, whereas on the east coast of
Southern Thailand, a lower rainfall variability, with SD less than 2.0 mm day−1 is observed.

Figure 4. Spatial pattern of the standard deviation of summer rainfall (mm day−1) over Thailand
during 1981–2012: (a) observed; (b) simulated by IAP AGCM4.1.
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As compared to the observation, the model’s capability in reproducing the spatial
pattern of the observed variability is also largely dependent on the sub-region (Figure 4b).
Overall, the model shows better performance in reproducing the spatial pattern of the
rainfall variability in Central Thailand and followed by the Eastern and Southern parts,
with a PCC equal to 0.70, 0.64, and 0.59, respectively. Additionally, it also was found
that the IAP model reproduced to a reasonable extent the spatial pattern of the observed
rainfall variability in Northeastern Thailand, with the PCC = 0.47, and fails to capture the
spatial pattern of the observed rainfall variability over Northern Thailand, with a PCC
less than 0.05. It is imperative to note that the IAP model underestimated the magnitude
of the summer rainfall variability in some parts of Thailand where the SD is greater than
3.0 mm day−1, except in the western part of Central Thailand, where the simulated SD
matches the observation. In fact, the model shows a good agreement with the observation
in reproducing rainfall variability in some portions of Central, Northern, Northeast, and
Southern Thailand. Moreover, the spatial pattern suggests that the model captured to
a certain extent the distribution of the dry and wet zone on the east and west coasts of
Southern Thailand.

3.3. Dominant Modes of Summer Rainfall and Their Variations

Next, we present comparatively the spatial–temporal variation of the simulated and
observed dominant modes of summer rainfall over Thailand. Figure 5 shows the first
three EOF modes of the observed summer rainfall and their corresponding IAP model
simulated EOF modes. Essentially, Figure 5a–c indicates that the first EOF (EOF-1) and the
second EOF (EOF-2) modes account for 23.1% and 20.7% of the total variance, respectively
while 10.2% is accounted for by the third EOF (EOF-3). Moreover, it was found that the
observed EOF-1 exhibits a dipolar structure, with a reverse signal in rainfall pattern in
Central Thailand and elsewhere. It was also observed that the explained variances of the
first two dominant modes are nearly equal, indicating these two dominant modes are
equally important for rainfall variation patterns in Thailand. However, the EOF-2 exhibits
a uniform pattern in most parts of Thailand. Whereas, the EOF-3 exhibits a dipolar mode
with opposite rainfall signs in the northeast and elsewhere in Thailand.

Figure 5d indicates that the simulated summer rainfall EOF-1 mode is found to be
relatively uniform and accounts for 76.7% of the total variance. Meanwhile, EOF-2 and
EOF-3 exhibit a dipole structure that accounts only for 10.8%, and 3.4%, respectively,
of the total variance (Figure 5d–f). As compared to the corresponding EOF mode of
the observation, it can be found that the IAP model seems not to reproduce the spatial
pattern of its corresponding observed EOF modes for the first two dominant patterns, with
PCC = 0.05 for the EOF-1 and PCC = 0.15 for EOF-2. Remarkably, the spatial pattern of the
simulated EOF-1 and observed EOF-2 show relatively similar patterns (see Figure 5b,d).
This suggests that there is a shift in the simulated EOF models, such that the model
reproduced the observed EOF-1 in its EOF-2 mode, as shown in Figure 5a,e, with the
PCC = 0.25. Besides, the spatial pattern of the observed EOF-3 is similar to the simulated
EOF-3 mode, with the PC = 0.22. Hence, we infer that the model can reproduce the spatial
structures of the observed dominant EOF modes of summer rainfall over Thailand, albeit
with the overestimation and underestimation of the observed explained variance of EOF-1
and EOF-2 respectively.

Furthermore, we examined the temporal variation in the observed dominant modes
of the summer rainfall (Figure 6a–c; red lines). The PC-1 and PC-2 suggest that after the
1990s, the summer rainfall of Thailand exhibited strong interannual variation (Figure 6a,b),
while PC-3 shows variation at a longer time scale (Figure 6c). Notably, the variation in
SST anomalies (SSTA) in the tropical Pacific Ocean (ENSO event) plays an important
role in controlling rainfall variability over Asia [56]. Hence, we further demonstrate the
relationship between summer rainfall variation in Thailand and the ENSO index, the so-
called Oceanic Niño Index (ONI) [57,58]. Meanwhile, the index is computed based on the
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variations in the 3-month running means of SST in the east-central tropical Pacific region
defined as Niño3.4 [57].

Figure 5. Spatial distribution of the first three dominant EOF modes of summer rainfall over Thailand
during 1981–2012: (a–c) observed; (d–f) IAP-AGCM4.1 simulation. Numbers in parenthesis indicate
the explained variance.

The results show that the first two dominant PC time series of the observed rainfall
are significantly correlated with ENSO, such that the temporal variation of EOF-1 shows
a positive correlation with SSTA in the Niño3.4 region, with the TCC = 0.31 (statistically
significant at 90% confidence level), while the observed PC-2 variation shows a negative
correlation with the ENSO index (TCC = −0.43, statistically significant at 95% confidence
level). This suggests that SSTA over the Niño3.4 region influences summer rainfall variation
in Thailand. Moreover, many studies have revealed the inverse relationship between ENSO
and Asian summer monsoon rainfall variation, such that drier conditions are experienced
in an ENSO warm phase and wet conditions are recorded as a response to the ENSO
cold phase [56]. This interannual variation pattern is found between summer rainfall and
the ENSO episodes over Thailand, consistent with the findings of [18]. Furthermore, this
relationship seems to be more pronounced during extreme rainfall events in the country [18].
The foregoing shows that the first two dominant EOF modes of the summer rainfall and
their PC time series are largely influenced by the interannual variation in SSTA in the
Niño3.4 region.

As compared to the observation, the simulated PC time series of the first three EOF
modes also show strong interannual variation. However, the PC time series did not match
well with their corresponding observed PC modes, with the TCC = 0.18, 0.09, and 0.12 for
PC-1, PC-2, and PC-3, respectively. As indicated in Figure 5, the observed EOF-1 and
the simulated EOF-2 exhibit relatively similar patterns and vice versa for the observed
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EOF-2 and the simulated EOF-1. Hence, we compared the TCC between the observed
PC-1 and simulated PC-2 and vice versa. The results show that the observed PC-1 and the
simulated PC-2 are similar, with the TCC equal to 0.25 (Figure 7a), which is higher than the
TCC obtained when compared with their corresponding PC time series directly. A better
relationship is obtained for the observed PC-2 and simulated PC-1, with the TCC equal
to 0.44 (Figure 7b). This thus demonstrates that the model can reproduce the spatial and
temporal pattern of the observed dominant EOF modes of summer rainfall over Thailand.

Figure 6. PC time series for the first three dominant modes of observed (solid red line) and IAP-
AGCM simulated (Dotted black line) summer rainfall over Thailand during 1981–2012 for (a) EOF-1,
(b) EOF-2, and (c) EOF-3, together with the ONI value (solid blue line). The first TCC value in
parenthesis indicates the correlation coefficient between TMD and IAP, while the second value is for
the coefficient between TMD and ONI. A single asterisk (*) indicates significance at p < 0.05, while
double asterisks (**) is for significance at p < 0.10.

Figure 7. PC time series for shifting modes of the observed (solid red line) and IAP-AGCM simulated
(dotted black line) summer rainfall over Thailand during 1981–2012 for (a) TMD PC-1 versus IAP
PC-2 and (b) TMD PC-2 versus IAP PC-2. A single asterisk (*) at the TCC value indicates significance
at p < 0.05.
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3.4. Relationship between ENSO and Summer Rainfall over Thailand

It is suggested that there is a significant negative relationship between summer rainfall
over Thailand and the variation in SSTA in the east-central tropical Pacific Ocean [18].
Given that the study used only a few rain-gauge stations located only in the Central part of
Thailand, it is, therefore, fair to state that the spatial–temporal variation in summer rainfall
over Thailand in response to the variability of ENSO is not well understood. Hence, we
re-examined the relationship between ENSO and the variation in summer rainfall in each
sub-region of Thailand, using the 69 TMD rainfall stations (see Figure 1). Furthermore, we
also investigated whether the model simulation can be ascribed to the model’s response to
SSTA in the east-central tropical Pacific region. Hence, the Niño3.4 index was computed
using observed SST data, which were also used to force the model simulation. The SST
data were further used to calculate the relationship between the Niño3.4 index and summer
rainfall anomalies in Thailand for both observation and model simulation. Note that the
linear trend in the SST anomaly was removed before calculating the TCC between the
rainfall time series and the Niño3.4 SSTA.

Figure 8a shows the spatial distribution of TCC between the Niño3.4 SSTA and ob-
served summer rainfall anomalies in Thailand. It was found that indeed the rainfall
variation in Thailand is negatively correlated with the ENSO in most parts of Thailand.
Moreover, the results indicate that rainfall anomalies in upper Thailand are significantly
and inversely correlated with the Niño3.4 index, with a TCC of about −0.4, especially in the
Central, East, and Northern parts of Thailand. Besides the negative response of the rainfall
to the ENSO signal, a positive correlation (TCC < 0.2) can also be found in the extremities
of the Northeast and western part of Central Thailand, adjacent to Myanmar’s border.

Figure 8. Temporal correlation coefficient (TCC) between (a) the detrended anomalies of the observed
summer rainfall and sea surface temperature anomalies (SSTA) in the Niño3.4 region during the
1981–2012 period, and (b) the same, but for the simulated rainfall and the SSTA in the Niño3.4 region.
Dotted regions indicate a significant correlation at the 90% level.

Interestingly, the model can well reproduce the spatial distribution of the observed
relationship between the Niño3.4 index and summer rainfall over Thailand (Figure 8b).
Although the spatial pattern of the observed relationship between the summer rainfall
and Niño3.4 index is significant in most parts of Thailand (at 99% significance levels),
the simulated summer rainfall response to the ENSO is relatively weak (at TCC < 0.2)
in most parts of Thailand, but the negative response of rainfall anomalies at the tip of
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the Southern sub-region to the ENSO is well reproduced by the model. The weaker
correlation between the summer rainfall anomalies and the ENSO signal in IAP-AGCM4.1
can be ascribed to the fact that atmosphere–ocean coupling process is not considered in the
atmospheric general circulation model used in this study [28], and it is further suggested
that this underestimation could be the main reason for the underestimation of the explained
variance in EOF-1 by the IAP model.

4. Discussion and Conclusions

This study evaluates the performance of the IAP atmospheric general circulation model
version 4.1 (IAP-AGCM4.1) in simulating summer rainfall variation over Thailand using
the model’s AMIP simulation results for the 1981–2012 period. Specifically, in comparison
with the observed TMD station-gauge rainfall data, we focused on the model’s capability
in reproducing the observed summer rainfall distribution, interannual variabilities, and the
spatial–temporal variation for the 32-year period. To facilitate comparison, the observed
and simulated rainfall datasets were interpolated into the same spatial resolution, and
regional statistics were considered for five of Thailand’s sub-regions, namely, Central, East,
Northeast, North, and Southern Thailand. Moreover, this study evaluated the similarity
between the model and the observation using the temporal correlation coefficient (TCC)
and pattern correlation coefficient (PCC). The spatial–temporal variation of the simulated
rainfall was computed using the EOF analysis and then compared with the observed
dominant modes of summer rainfall over Thailand. In addition, this study also examined
the capability of IAP-AGCM4.1 in reproducing the observed summer rainfall response to
the SSTA in the Niño3.4 region.

Results reveal that the model can reasonably reproduce the observed spatial distri-
bution of summer rainfall over Thailand, with a better performance in the Northern and
Central parts of Thailand. However, the model seems to underestimate the observed rain-
fall in some parts of Thailand, except in Central Thailand where the model overestimated
the observed summer rainfall by 0.5 mm day−1. Furthermore, it is also found that the
IAP-AGCM4.1 can reproduce the observed spatial distribution of interannual variability
in summer rainfall, with better performance in Central, Eastern, and Southern Thailand.
However, the low performance of the model in the northern and east coasts of Thailand
can also be found, which could be related to the inability of the model in resolving rainfall
processes over mountainous terrain because of its horizontal resolution [59,60], especially
in the high mountainous areas of the Northern sub-region and upland high plateau in the
Northeastern sub-region. A higher resolution IAP model is expected to capture the spatial
distribution of summer rainfall in these mountainous areas.

Furthermore, it was found that the observed EOF-1 and EOF-2 account for about 23.1%
and 20.7% of the total EOF variance. As such, the EOF-1 and EOF-2 are the most important
dominant modes of summer rainfall over Thailand. The spatial pattern of the observed
EOF-1 exhibit a dipole mode with an opposite rainfall sign mostly in Central Thailand and
elsewhere in Thailand, while the EOF-2 exhibits a uniform pattern, which is found to be the
dominant mode that is significantly associated with the ENSO. Interestingly, the simulated
EOF-1 exhibits a similar pattern to the observed EOF-2, and vice versa for the simulated
EOF-2 and the observed EOF-1. Furthermore, the TCC between the observed PC-1 and
simulated PC-2 as well as the observed PC-2 and the simulated PC-1 is higher than the
TCC obtained when they are directly compared with their corresponding PC time series.
Hence, we infer that the IAP model can reproduce the observed dominant EOF modes of
summer rainfall over Thailand, albeit with some level of overestimation of the observed
EOF-1 loading.

Based on observation datasets, it was found that the observed summer rainfall over
Thailand is negatively associated with SSTA in the Niño3.4 region, with the highest signifi-
cant correlation of about 0.4 (in absolute terms) found in the Northern, Central, some parts
of the Northeastern, and the Eastern sub-regions. The IAP model also captured the spatial
pattern of the summer rainfall response to the ENSO signal, but with a certain degree of
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underestimation when compared with the observation. It is further suggested that the
simulated weak response of summer rainfall to the ENSO signal in the model could be the
main reason for the underestimation of explained variance of EOF-1 by IAP-AGCM4.1,
and later versions of the IAP-coupled climate system model may improve the model’s
performance over Thailand through a consideration of a robust atmosphere–ocean cou-
pling processes. Therefore, further efforts are required to assess the performance of the IAP
atmosphere–ocean coupled model in simulating summer rainfall variations over Thailand,
as well as the associated air–sea interaction processes.

It is noteworthy that we only evaluated the relationship between ENSO and summer
rainfall in Thailand as simulated in IAP-AGCM in this study. However, previous studies
have shown that the SSTA over the Indian Ocean can also influence the summer rainfall
anomalies over Thailand to a certain extent [19,32,61], so the model’s simulated response of
summer rainfall to the Indian Ocean SST anomalies is subject to further verification in future
studies, which could be helpful for the further model improvement. Furthermore, besides
the model evaluation method and metrics used in this study, many other comprehensive
statistical metrics have already been proposed [62,63]. Further climate model assessment
with a combination of current and newly developed metrics will be needed, and this will
be of great importance for better application of the climate model simulations and thus
better seasonal disaster predictions over Thailand and the Southeast Asia region.
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Abstract: The western Tianshan Mountains region in China has a complex topography where basins,
mountains and glaciers co-exist. It is of great significance to study the sensitivity of meteorological
factors in this region to different parameterization schemes of climate models. In this paper, the
regional climate model RegCM4.5 is used to simulate the meteorological factor (mean temperature,
maximum temperature, minimum temperature, precipitation and wind speed) occurring in the
western Tianshan Mountains region from 2012 to 2016, so as to investigate the effects of different
cumulus convective schemes (Grell, Tiedtke and Emanuel), including land cumulus convective
schemes (LCCs) and ocean convective schemes (OCCs) on annual and seasonal simulations of
meteorological factor by using the schemes of RUN1 (Grell for LCC and Tiedtke for OCC), RUN2
(Tiedtke for LCC and Emanuel for OCC), RUN3 (Grell for LCC and Emanuel for OCC) and ENS (the
ensemble of RUN1, RUN2 and RUN3). The results show that the simulations of annual and seasonal
meteorological factors are not significantly sensitive to the combination of LCCs and OCCs. In the
annual simulations, RUN2 scheme has the best simulation performance for the maximum, average
and minimum temperatures. However, other schemes of precipitation simulation outperform RUN2
scheme, and there is no difference among the four schemes for wind speed simulation. In the
seasonal simulations, RUN2 scheme still performs well in the simulation of the average, maximum
and minimum temperatures for four seasons, except for the simulation of the average temperature
in spring and summer. For the simulation of the maximum temperature in summer, RUN2 scheme
performs the same as ENS. For the simulation of other seasons, different meteorological factors have
different performances in four seasons. Overall, the results show that different combinations of
cumulus convection schemes can improve the simulation performance of meteorological factors in
the western Tianshan Mountains of Xinjiang.

Keywords: regional climate model; RegCM4.5; western Tianshan Mountains; parameterization scheme

1. Introduction

Located in the hinterland of Eurasia, Xinjiang is the largest province with the longest
border line and the largest number of neighbors in China, and it has become the most
convenient access to Central Asia from the Chinese mainland. It is a very important region
in Asia. Xinjiang has a temperate continental climate, characterized by large temperature
differences and abundant sunshine, but little precipitation and a dry climate. The presence
of Tianshan Mountains divides Xinjiang into two parts: the north and the south. The
complex topography of western Tianshan Mountains in Xinjiang, where basins, hills and
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glaciers co-exist, has an important influence on the formation of climate in Xinjiang, China.
Although Xinjiang is generally deep inland and far from the sea, and the climate types
are all temperate continental, there are still significant differences in climate between the
southern and northern Xinjiang. Accurate modeling and prediction of the climate in the
region is important to address climate change [1,2].

At present, an important means of climate research is simulation by climate model,
which mainly includes global climate models (GCMs) and regional climate models (RCMs).
GCMs are not directly applicable to regional simulations due to the large differences in reso-
lution between the grid spacing and the end-user’s needs. Therefore, RCMs are widely used
for regional simulation due to their high resolution [3–5]. However, the proper selection of
horizontal resolution, land surface models [6,7] and convective parameterization schemes
(CPS) [8,9] remains problematic, and their selection mostly relies on empirical study. Many
studies have shown different simulation results using different CPS [10,11] for the same
region. The comparison of the simulated near-surface temperature with observational data
over the European region indicates a cold bias with both Grell scheme configurations, but
the bias can be reduced when the Emanuel convective scheme is applied, and the simulated
precipitation is not systematically positive in the southern part of Eastern Europe [12];
Tchotchou and Kamga found that monsoonal precipitations are sensitive to the choice of
cumulus parameterization and closure schemes in West Africa [13]; Raju’s research results
reveal that the mixed convective scheme responds better to the simulation of precipitation
and temperature over the Indian subcontinent, and the circulation features and the annual
cycle of precipitation and temperature are also well simulated with the mixed convection
scheme [14]. The authors of ref. [15] found that the Emanuel scheme shows an overall
overestimation of precipitation in China, while the other three CPSs overestimate only
in northern and northwestern China, and seasonally, the Tiedtke scheme simulates the
best annual variability of precipitation in China compared with the others CPSs. In the
RegCM4 version, the CPSs are described in more detail in two parts, and it is able to run
different convection schemes over land and ocean. Studies have shown that different CPSs
have different simulation performance over different regions, especially in land and sea
areas. Bhatla’s research found that out of six CPSs, Tiedtke and Mix99 (Grell over land
and Emanuel over ocean) correctly simulated the onset date, and they also found that the
Mix99 CPSs performed well in simulating the synoptic features during the monsoon phases.
Existing research shows that these physical processes cannot be accurately simulated over
the entire Earth. Choosing an appropriate convective parameterization scheme (CPS) in
RCMs is critical for region simulations [16–18], as it allows to simulate the region in a more
refined way. At the same time, the annual and seasonal climate simulations are also very
important for determining short-term adaptation measures [19,20].

In this paper, we apply the Regional Climate Model version 4.5 (RegCM4.5) to the
western Tianshan Mountain area in China. The objective of this study is to evaluate the
performance of three mixed CPSs and their ensemble averages, namely, Grell over land
and Tiedtke over ocean (RUN1), Tiedtke over land and Emanuel over ocean (RUN2), and
Grell over land and Emanuel over ocean (RUN3), with the ensemble being the average of
RUN1, RUN2 and RUN3. The remainder of this paper is organized as follows. Section 2
provides a brief description of the model and three convection schemes. Section 3 presents
the experimental design and Section 4 describes the results and discusses the sensitiv-
ity experiments with different convection schemes. Section 5 discusses the results and
summarizes the conclusion.

2. The Convective Parameterization Schemes

2.1. Grell Scheme

Grell’s [21] convective scheme is based on the Fritsch-Chappell (FC) assumption [22].
The scheme applies a simple cloud model assuming that the large amount of flux in the up-
stream and downstream is constant with the height, and that the original level of upstream
and sinking air flow are given by the maximum and minimum ambient humid static energy,
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respectively. The scheme is activated when the parcel finally reaches the wet convection
from the original horizontal up-draft. A large amount of flux (m0) in the downdraft is
proportional to the updraft (mb), and it is calculated by the following relationship.

m0=
βI1
I2

mb (1)

I1 is the condensed normalized updraft, I2 is the evaporative normalized downdraft, β is a
small part of the re-evaporation of updraft condensate during the descent and depends
on the change in the wind direction and varies mainly between 0.3 and 0.5. Hence, the
equation is as follows:

PCU = I1mb(1 − β) (2)

where P is precipitation. The meanings of other parameters are shown in Formula (1).

2.2. Tiedtke

Tiedtke is a mass flux and moisture convergence scheme originally designed for global
climate models with special attention to the correct display of deep tropical convection.
Tiedtke consists of three types of convection. Only one type of convection is allowed per
step in each grid, and the collection of clouds appearing in each type of convection is
assumed by the updraft and downdraft. The Tiedtke scheme considers only one ascent and
descent of the overall airflow, which is equivalent to the ascent and descent of all cumulus
monomer airflows in the grid. In the actual simulation, deep or shallow convection
occurs when there is an unstable convection on the cloud base with a large-scale increase.
Assuming that no deep or shallow convection can occur, then mid-stream convection
is applied.

2.3. Emanuel

The Emanuel scheme assumes that interactions in the cloud are random and non-
uniform, and increases convective fluxes based on an idealized condition of sub-cloud-scale
downdrafts and updrafts, and the convection model is activated when the cloud base level
is below the height of the neutral buoyancy layer. Assuming that clouds and the mixture
of ambient air are mixed in a uniform spectrum, when the air rises between the cloud base
and the zero-buoyancy layer, the condensed water vapor partly forms precipitation and
the rest forms clouds. The Emanuel scheme incorporates the automatic conversion formula
for clouds and water, and sets the water content of the initial cloud in the formula to a
temperature-related function, in order to take into account the microphysical process of
cloud ice, which is added to a single downdraft that is hydrostatic and unsaturated and
carries water and heat when precipitation is generated.

3. Model and Experimental Design

3.1. Description of the RegCM Model

RegCM is regional climate model developed by Abdus Salam International Center for
Theoretical Physics. The first version of RegCM was developed in the late 1980s [23,24],
which has since then been upgrades to RegCM2 [25], RegCM3 [26] and RegCM4 [27]. The
dynamical core of the RegCM model is similar to the hydrostatic version of the mesoscale
model MM5 [28]. The PBL computations are parameterized by using the scheme of
Holtslag et al. [29], the land surface model is the Biosphere-Atmosphere Transfer Scheme
(BATS) and the Community Land Model (CLM) [30] schemes, and the radiation scheme
is the modified NCAR Community Climate Model version 3 (CCM3) [31]. The model
used here is RegCM4.5, which has many upgrades in the model physics. One of the
main enhancements in this version of the model is the ability to run different convection
schemes over land and ocean, also known as ‘mixed convection’. Many studies have shown
that different schemes have different performance over different regions, especially over
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land versus ocean areas, and it currently includes three options for representing cumulus
convection [32].

The scheme of Grell is the implementation of Giorgi [33]. The other two schemes are
Tiedtke [34] and Emanuel scheme [35,36]. In this paper, we apply a combination of the
three schemes to simulate the meteorological factors when other parameters are consistent,
describe the following Table 1, where ENS is the average of the three schemes RUN1, RUN2
and RUN3, and icup_lnd and icup_ocn are the cumulus parameterization schemes that
must be set before the model simulation.

Table 1. Parameterization scheme.

Schemes icup_lnd icup_ocn

RUN1 Grell Tiedtke
RUN2 Tiedtke Emanuel
RUN3 Grell Emanuel
ENS Ensemble_mean Ensemble_mean

3.2. Experimental Design and Data Check

The model domain covers the western Tianshan Mountain region in Xinjiang (36◦–50◦ N,
70◦–100◦ E), as shown in Figure 1. The grid center of the simulated area is located at
43.15◦ N, 82.88◦ E. A model grid with a horizontal resolution of 20 km is selected for the
simulation experiments. The number of grid cells is 121 × 100 (East-West × North-South).
The reanalysis data from the National Centers for Environmental Prediction and National
Center for Atmospheric Research (NCEP&NCAR) are selected as the initial field and side
boundary values of the model [37,38]. The dynamic module uses MM4 frame, with a
step size of 6 h for the model output. The experiment was conducted for a period of
four years from 1 January 2012 to 31 December 2016. The results of the model-driven
data from January 2012 are used as model spin-up, and therefore are not analyzed. The
observations used for comparison with the model were based on the daily terrestrial
climate datasets from 66 sites in the western Tianshan Mountains of Xinjiang provided by
the China Meteorological Data Network (http://data.cma.cn, accessed on 12 March 2017),
which are continuous observation data, and the triangles in Figure 1 show the locations of
the 66 observation sites.

3.3. Verification Method
3.3.1. Correlation Coefficient

According to the existing analysis methods [39,40], the results are analyzed by calcu-
lating the correlation coefficient and root mean square error between the model simulated
value and the observed value. The correlation coefficient is defined as follows:

CORREL =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2 ∑N
i=1(yi − y)2

(3)

In the above formula, xi and yi are the simulated values and observed values in the
same position, x and y are their average values, N represents the number of grid points.

3.3.2. Root Mean Square Error

The root mean square error (RMSE) reflects the average deviation between the simu-
lations and observations, which is a trade-off standard of the total error and is one of the
ways to reflect the simulation performance. Typically, the greater the root mean square
error is, the lower the accuracy, and in turn, the higher the simulation accuracy would be.
The root mean square error formula is defined as follows:

RMSE =

√
∑N

t=1(Simt − Obst)
2

N
(4)

26



Atmosphere 2021, 12, 1544

In the above formula, Simt stands for the simulation results of RegCM4.5, Obst is the
actual observation value, and N represents the number of grid points.

Figure 1. RegCM simulated surface model and the area. The black lines are the simulation area, the
pentagram is the center point of the simulation and the triangles are the locations of the 66 observation
sites.

4. Results and Discussion

4.1. Annual Simulation and Inspection
4.1.1. The Analysis of Annual Temperature

It can be seen from Figure 2 that the three parameterization schemes and sets of
the model have a good simulation effect on the temperature distribution in the western
Tianshan Mountains of Xinjiang, and there is no significant difference between the sim-
ulated and observed values using different schemes, indicating that the annual average
temperature in the western Tianshan Mountains of Xinjiang is not sensitive to different
parameterization schemes of the model. The temperature decreases from the center of the
region to the border, which is consistent with the climate change in the basin. Meanwhile,
a small part of the central and western regions has lower temperatures. Compared with
the simulated elevation results in Figure 1, it can be seen that the higher altitude of this
small part of the region leads to lower temperatures, and the simulation result is consistent
with the actual situation. From the whole simulation area, the temperature in the north is
lower than that in the south, which reflects the temperature difference between the north
and the south. Comparing the northern and southern parts of the region, it can be seen
that the difference between the simulated and observed values in the south is not obvious,
and the simulation results are better, while the difference between the simulated values
and the observed values in the north is more obvious, and the difference is greater the
further north, which indicates that the model simulates the temperature better in the south
of Tianshan Mountains in Xinjiang than in the north.
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Figure 2. Comparison between simulation and observation of annual average temperature using
four cumulus parameterization schemes, where the circles are observed values, the rest are simulated
values, and the black lines is the simulation area. The same applies to Figures 3 and 4.

Table 2 shows the calculated correlation coefficients and RMSEs, in which the corre-
lation coefficients are calculated by Formula 3, and RMSEs are calculated by Formula 4.
Both the simulated value and the observed value are multi-year averages. Combined with
Table 2, it can be found that the model can well simulate the annual average, maximum
and minimum temperatures, and the simulation results of the four schemes for each tem-
perature factor do not differ significantly. Moreover, the correlation coefficients between
the simulated and observed annual average and minimum temperatures are the same in
the four schemes. However, we find that the RUN2 scheme has the lowest RMSE in the
annual average and minimum temperature simulations, which means that this scheme
has the best performance in simulating temperature. For the simulation of the maximum
temperature, the CORREL do not differ greatly. In this case, we still choose the scheme
with the lowest RMSE as the optimal scheme.

4.1.2. The Analysis of Average Annual Precipitation

As can be seen from Figure 3, the three parameterization schemes and sets of the
model can reflect the distribution of precipitation in the western Tianshan Mountains of
Xinjiang, China. The precipitation at the edge of the region is higher than that in the middle
of the region, and it is closely related to the terrain. Generally, it is consistent with the law
that the precipitation is higher in the mountain area than in the basin, higher in the basin
than in the center of the basin, and higher in the windward slope of the mountain area than
the leeward slope. On the whole, the precipitation distribution simulated by the model is
consistent with the impact of the actual terrain on the precipitation in the western Tianshan
Mountains, where the precipitation is scarce and the climate is dry. Combined with Table 2,
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it is found that the CORREL and RMSE of RUN1, RUN3 and ENS schemes are the same,
and all of them are better than the RUN2 schemes.

 

Figure 3. Comparison between simulation and observation of precipitation using four cumulus
parameterization schemes.

Figure 4. Comparison between simulated and observed wind speeds using four parameteriza-
tion schemes.
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Table 2. CORREL and RMSE of temperature, precipitation and wind speed simulated by different parameterization schemes;
the units for the RMSE of temperature, precipitation and wind speed are ◦C, mm and m/s, respectively.

Meteorological Factors Parameterization Schemes Correlation Coefficient Root Mean Square Error

Average annual temperature

RUN1_ann 0.8 4.8
RUN2_ann 0.8 4.5
RUN3_ann 0.8 4.8
ENS_ann 0.8 4.7

Maximum temperature

RUN1_maxTemp 0.9 5.2
RUN2_maxTemp 0.8 4.9
RUN3_maxTemp 0.9 5.2
ENS_maxTemp 0.8 5.1

Minimum temperature

RUN1_minTemp 0.7 4.4
RUN2_minTemp 0.7 4.1
RUN3_minTemp 0.7 4.4
ENS_minTemp 0.7 4.3

Precipitation

RUN1_ann 0.4 0.7
RUN2_ann 0.2 0.9
RUN3_ann 0.4 0.7
ENS_ann 0.4 0.7

Wind speed

RUN1_ann_wnd 0.4 1.2
RUN2_ann_wnd 0.4 1.2
RUN3_ann_wnd 0.4 1.2
ENS_ann_wnd 0.4 1.2

4.1.3. The Analysis of Average Annual Wind Speed

In Figure 4, we find that there is no difference between simulation and observation
among the four schemes. Combined with Table 2, it is found that the CORREL and RMSE
of wind speed simulations also have no difference among the four schemes. The main
reason for this situation is that the wind speed is highly uncertain.

4.1.4. The Results of Annual Simulation

Through the analysis in Sections 4.1.1–4.1.3, we draw the conclusion in Table 3. In
the simulation of western Tianshan Mountains in Xinjiang, China, the RUN2 scheme is
selected for temperature, maximum temperature and minimum temperature, which can
make the simulation results better and closer to the observed values. The RUN1, RUN3
and ENS scheme is selected for annual precipitation, and all schemes are the same for wind
speed simulation

Table 3. The optimal scheme of different meteorological factors in the simulation area.

Simulation Parameter Optimal Scheme

Average temperature RUN2
Maximum temperature RUN2
Minimum temperature RUN2
Annual precipitation RUN1/RUN3/ENS

Wind speed RUN1/RUN2/RUN3/ENS

4.2. RegCM Seasonal Numerical Simulation and Inspection

Four schemes are used to simulate the meteorological factors in four seasons in the
western Tianshan Mountains of Xinjiang, China. The simulated and observed CORREL
and RMSE are obtained, as shown in Tables 4 and 5, respectively.
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Table 4. The CORREL of seasonal simulation and observation.

Meteorological Factors Parametrization Schemes Spring Summer Autumn Winter

Mean Temperature

RUN1 0.8 0.8 0.8 0.7
RUN2 0.8 0.8 0.8 0.6
RUN3 0.8 0.8 0.8 0.7
ENS 0.8 0.8 0.8 0.7

Maximum Temperature

RUN1 0.9 0.8 0.9 0.7
RUN2 0.8 0.8 0.9 0.6
RUN3 0.9 0.8 0.9 0.7
ENS 0.9 0.8 0.9 0.7

Minimum Temperature

RUN1 0.8 0.7 0.7 0.6
RUN2 0.7 0.7 0.7 0.5
RUN3 0.8 0.7 0.7 0.6
ENS 0.8 0.7 0.7 0.6

Annual Precipitation

RUN1 0.4 0.4 0.3 0.5
RUN2 0.2 0.3 0.1 0.2
RUN3 0.4 0.4 0.3 0.5
ENS 0.4 0.4 0.2 0.5

Wind Speed

RUN1 0.4 0.4 0.4 0.2
RUN2 0.4 0.4 0.4 0.2
RUN3 0.4 0.4 0.4 0.2
ENS 0.4 0.4 0.4 0.2

Table 5. The RMSE of seasonal simulation and observation. the units for the RMSE of temperature, precipitation and wind
speed are ◦C, mm and m/s, respectively.

Meteorological Factors Parametrization Schemes Spring Summer Autumn Winter

Mean Temperature

RUN1 5.4 5.4 4.6 4.7
RUN2 5.1 5.3 4.4 4.1
RUN3 5.4 5.4 4.6 4.7
ENS 5.3 4.4 4.5 4.4

Maximum Temperature

RUN1 5.9 5.5 5.1 5.6
RUN2 5.6 5.4 5.0 4.8
RUN3 5.9 5.5 5.1 5.6
ENS 5.8 5.4 5.1 5.2

Minimum Temperature

RUN1 4.7 5.2 4.2 4.4
RUN2 4.5 5.0 4.0 3.9
RUN3 4.7 5.2 4.2 4.4
ENS 4.6 5.1 4.1 4.1

Annual Precipitation

RUN1 0.7 1.3 0.6 0.3
RUN2 1.0 1.5 0.8 0.3
RUN3 0.7 1.3 0.6 0.3
ENS 0.7 1.2 0.6 0.3

Wind Speed

RUN1 1.4 1.4 1.3 1.5
RUN2 1.4 1.4 1.3 1.6
RUN3 1.4 1.4 1.3 1.5
ENS 1.4 1.4 1.3 1.5

The RegCM4.5 model was used to simulate seasonal meteorological factors in the west-
ern Tianshan Mountains from 2012 to 2016. From Table 4, we can see that the correlation
coefficients of the four schemes for the simulation of the mean and maximum temperatures
are higher in spring, summer and autumn, and the values are greater than 0.8. Here, we
choose the scheme with lower RMSE as the optimal one. In the simulation of the minimum
temperature in four seasons, the correlation coefficients are lower than those of the mean
and maximum temperatures, and their RMSEs are also relatively low. In the simulation of
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annual precipitation and wind speed of four schemes, the correlation coefficients are lower
than those of the temperature simulations. Combined with Tables 4 and 5, the optimal
schemes for the four-seasons simulations are shown in Table 6.

Table 6. The optimal solution for different meteorological factors in spring, summer, autumn and winter.

Parameterzation Schemes Spring Summer Autumn Winter

Temperature RUN2 ENS RUN2 RUN2
Maximum Temperature RUN2 RUN2/ENS RUN2 RUN2
Minimum Temperature RUN2 RUN2 RUN2 RUN2

Precipitation RUN1/RUN3/ENS ENS RUN1/RUN3/ENS ALL
Wind Speed ALL ALL ALL RUN1/RUN3/ENS

5. Conclusions

In this study, we used the regional climate model RegCM4.5 and selected different
cumulus parameterization schemes to simulate annual and seasonal meteorological factors
in the western Tianshan Mountains region of Xinjiang from 2012 to 2016, and investigate the
applicability of different cumulus parameterization schemes to regional climate simulations.
The evaluation of the experimental results shows that: (1) In the annual simulations,
the RUN2 scheme performs best in simulating the average, maximum and minimum
temperatures, indicating that the RUN2 scheme is more suitable for the simulation of
temperature, while the other three schemes perform better in simulating precipitation. In
the simulation of wind speed, there is no difference among the four schemes. (2) In the
simulation of four seasons, the RUN2 scheme still performs better in the simulation of
average, maximum and minimum temperatures in four seasons, except for the simulation of
average temperature in spring and summer. In the simulation of the maximum temperature
in summer, the RUN2 scheme is the same as that of ENS. In the simulation of precipitation,
all other schemes perform better than the RUN2 scheme. In the simulation of wind speed,
there is no difference among the four schemes in spring, summer, autumn and winter. In
the simulation of winter, other schemes perform better than the RUN2 scheme.

This study provides additional information for the selection of available accurate
cumulus parameterization simulation scheme for regional climate simulation in western
Tianshan Mountains, Xinjiang, which effectively solves the problem of inaccurate simula-
tion caused by random selection of cumulus parameter schemes. However, there are still
some problems, for example, the current simulation time span is relatively short due to
the limitation of the data collected from the observation sites, and we will collect more
observation data later and lengthen the simulation period in the future.
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Abstract: Based on Beijing’s Air Quality Index (AQI) and concentration changes of the six major
pollutants from 2019 to 2021, the results are visualized through descriptive statistics, and the air
pollution status and influencing factors of Beijing’s AQI are analyzed using the ARIMA model and
neural network. A forecast system is built and the fitting effects of the two models are compared. The
results show that PM2.5, PM10, and O3 of the six major pollutants have the greatest impact on AQI.
Beijing’s air quality now shows a trend of improvement in recent years; however, there is obvious
seasonal evidence that the summer pollution index has been high. Therefore, special attention should
be paid to the treatment of ozone pollution in summer. Both models are useful for the forecast of
AQI, but the forecast effect of the neural network model is better than that of the ARIMA model.
Moreover, when using the additive seasonal model for the long-term forecast of monthly data, it is
found that the Beijing AQI still shows seasonal cyclicality and has a slightly decreasing trend in the
next two years. This research provides a basis for the forecast of air quality and policy enlightenment
for environmental protection departments to deal with air pollution.

Keywords: AQI; visual analysis; heat map; ARIMA model; neural network model

1. Introduction

In the past few years, air pollution problem in China, especially Beijing, has been so
severe that it has received widespread attention from all over the world. Cities are dense
areas of economic activities, and therefore, populations, and Beijing is the political and
economic center of China. After a stage of radical pursuit of economic growth, improving
air quality and overall living environment is the current focus of China’s realization of
green development. Therefore, it is important to study Beijing’s air quality issues to find
ways to tackle air pollution problems and provide a reference for other cities.

The correlation between human activities and the atmospheric system in urban ecosys-
tems has been increasing year by year [1]. Domestic research on air quality conditions began
in the 1990s, behind abroad [2]. In terms of air quality characteristics, some researchers have
studied the temporal and spatial distribution characteristics of China’s AQI, finding that
the national air quality situation shows a spatial clustering effect. High pollution and low
pollution regions show a pattern of north–south differentiation, and the overall air quality
of the country shows the distribution characteristics of slightly lighter in the south and
lighter in the east [3,4]. The AQI showed a downward trend from 2016 to 2019, showing
a “U” shape in the middle of the month [5]. The state has put forward clear pollution
control requirements. Many local government departments regard pollution prevention
and control as their primary task, and air quality monitoring has become an urgent need.
Therefore, an accurate air quality forecast system can reflect the air conditions promptly
and provide preparation information for the Ministry of Environmental Protection [6].

The statistical forecast is to analyze data through mathematical modeling, using
correlation analysis [7], multiple regression [8,9], principal component analysis [10], gray
model [11], fuzzy comprehensive evaluation method [12], harmonic regression [13], and
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other methods to predict air quality. However, it is difficult to provide air quality data in a
timely and rapid manner due to the long forecast period. With the development of data
collection and processing technology and the integration of various disciplines, data mining
and machine learning methods have been used to analyze environmental information, and
obtain timely and accurate air information and provide guiding suggestions [14–18].

Firstly, this paper compares data of Beijing’s AQI and the concentration data of
six major pollutants from 2019 to 2021, comprehensively evaluates its air quality, and
explores factors affecting the air quality. Secondly, it uses time series models and data
mining methods to establish predictive models. The ARIMA model is constructed based on
the time series data of AQI, and the three-layer neural network model is constructed based
on the daily average data and the data of the concentration of six major pollutants. Finally,
study shows that the two models are effective for AQI to make short-term forecasts and
analyses. Furthermore, this paper analyzes the long-term forecast of Beijing’s air quality
index based on the seasonal ARIMA model and compares it with the short-term forecast
to draw a comprehensive conclusion, which could be helpful to provide references for
relevant departments for urban air and environmental governance.

Compared with previous research on air quality, this paper not only uses the combina-
tion of visual analysis and time series model, but also considers the delayed effect of air
pollution. On the basis of short-term forecast, the long-term forecast of air quality index
is added, which makes the results more convincing and representative. Additionally, this
paper includes a cluster analysis on the air quality index of Beijing in different periods and
a multi-layer perceptron (MLP) neural network model based on the built-in algorithm of
data mining technology to classify and evaluate the air quality level of the city. Finally, the
classification rules of the six pollutants are used to explore a classification model with high
accuracy, and a comprehensive comparison is made with the previous descriptive analysis,
which effectively avoids the problems of chance and errors caused by the use of a single
method. Research results are time-sensitive and have strong practical significance.

2. Analysis of Beijing’s Air Quality

According to the “Technical Regulations on Ambient Air Quality Index” [19], the sub-
index of the air quality of each pollutant is calculated based on the monitoring concentration
of pollutants. The lower the value of AQI, the better the air quality; on the contrary, the
higher the value, the worse the air quality is. This paper crawls the daily and monthly data
of Beijing’s AQI and six pollutant concentrations from 1 January 2019 to 15 November 2021,
including nine effective fields such as date, AQI value, and air quality grade. After data
screening and testing, there is no missing information or errors, with a total of 1050 valid
data points day by day.

2.1. Analysis of the Change Characteristics of AQI
2.1.1. Temporal Characteristics of Beijing’s AQI over the Years

Due to the different number of days in February each year and the fact that the data
after November 2021 are not used, the blank data are represented by the value 0. The
number of good days of air quality is an important index to measure the quality of air
quality in a city. It can be seen from Figure 1 that the proportion of excellent and good
air quality in the whole year has increased significantly year by year. The proportion of
light pollution level decreased compared with the previous two years. As of 31 October,
although the moderate pollution in 2021 increased slightly compared with 2020, it still
decreased significantly compared with 2019. Only two days of serious pollution occurred
in 2021, indicating that the air quality in Beijing fluctuated greatly in 2021, but the air
quality was excellent, accounting for 29.93%, and the air quality was good, accounting
for 47.37%. Although some extreme weather conditions occurred, the overall trend of air
quality throughout the year was good.
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Figure 1. 2019–2021 Beijing’s AQI level comparison chart.

2.1.2. The Characteristics of Monthly and Seasonal Changes in Beijing’s AQI from 2019
to 2021

According to the four seasons in the northern hemisphere, spring is from March to
May, summer is from June to August, autumn is from September to November, and winter
is from December to February [20]. We analyzed the monthly data of Beijing’s AQI, as
shown in Figure 2. The monthly average of AQI reached a peak of 107.33 in June, followed
by March, and the monthly average of AQI was 99. The least polluted month of the year is
October. Seasonal changes in air quality are further considered and an AQI seasonal index
was derived. Compared with the overall average (81.18), the AQI in spring (87.67) and
summer (91.56) was above average, whereas the AQI in autumn (66.17) and winter (79.33)
was slightly below average. This is consistent with the conclusion of the monthly average
of AQI, indicating that there are significant seasonal differences in air quality in Beijing,
and the severe air pollution in summer may be related to the severe excess of ozone.

Figure 2. Visualization of the monthly average value of Beijing’s AQI 2019–2021.

2.2. Analysis of the Change Characteristics of the Concentration of Six Pollutants
2.2.1. The Time Characteristics of the Concentration Changes of the Six Pollutants

The time trend of the annual average concentration of the six pollutants is shown in
Figure 3. It can be seen from the chart that the annual average concentration changes of the
six pollutants have the same trend, and they all show a trend of the declining year by year.
Although the ozone concentration in 2021 has slightly increased compared with 2020, it
still has a downward trend compared with 2019. It shows that Beijing’s air control has been
somewhat effective in the past three years, but in the process of air pollution control in the
next few years, it is necessary to focus on the control of ozone pollution.
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Figure 3. The temporal characteristics of the six pollutants in Beijing from 2019 to 2021.

2.2.2. Monthly and Seasonal Variation Characteristics of the Six Pollutants

Cluster analysis is carried out on the average values of six types of air pollutants in
each month, as shown in Figure 4. The color depth in the heat map indicates the expression
amount of the index. The greater the expression amount, the darker the color. The tree
on the left shows the clustering results of different months. It is found that a year can be
divided into two parts by the expression of air pollutants. This corresponds to whether
Beijing is in the heating period. During the heating period, a large amount of fuel is
consumed and the exhaust emission increases, resulting in a high content of pollutants
in the air; In the north, the weather is dry and cold in winter, the probability of people
choosing to drive increases, and vehicles will produce a lot of tail gas. At the same time,
atmospheric inversion often occurs, which is not conducive to air convection, and pollutants
are difficult to diffuse, resulting in poor air quality.

Figure 4. Heat map of six air pollutant indicators.
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After the overall description of the six main pollutants in Beijing from 2019 to 2021, the
concentration variation characteristics are analyzed monthly. It can be seen from Figure 5
that the particulate pollutant PM2.5. The concentration of PM10 is higher in spring and
winter, and tends to be lower in summer. The lowest mass concentration occurs in August.
The change trend of the concentration values of pollutants CO, SO2 and NO2 is roughly
the same, showing a downward trend first and then an upward trend. On the whole,
it presents a “U”-shaped structure, in which CO concentration reaches its lowest value
in April; the concentration of SO2 reached its lowest value in July. NO2 also shows the
variation characteristics of low concentration in summer and high concentration in winter.
There is a small recovery from February to March, and the concentration reaches its lowest
value in July. It can be seen that the concentrations of these five pollutants are lower in
summer, lighter in pollution and higher in autumn and winter

As mentioned above, the monthly average index of Beijing’s AQI showed the highest
trend in June, which may be caused by the increase in ozone concentration. In order to
verify our conjecture, a monthly analysis of ozone concentration from 2019 to 2021 was
carried out. It can be seen from the monthly change trend of ozone that the annual ozone
concentration reaches its peak in June and is lower in December, showing an inverted
U-shaped structure different from the other five types of pollutants. Then, a seasonal anal-
ysis of the concentrations of six pollutants was conducted, finding that the concentrations
of the five major pollutants, as shown in Figure 5a–f PM2.5, PM10, SO2, CO, and NO2, are
low in summer and high in winter, whereas the concentration of O3 was the opposite, high
both in summer in winter. The concentration is lower, which indicates that the poor air
quality in summer is mainly caused by the increase in ozone concentration.

2.3. Correlation between AQI and the Concentration of Six Pollutants

Correlation analysis is carried out on the data of six pollutant indicators every day.
The main reference indicator is the Pearson correlation coefficient, which is used to measure
the degree of correlation between two variables. In the correlation heat map, the numbers
in the grid are the correlation coefficients, the red squares indicate the positive correlation
between the indicators, and the blue squares indicate the negative correlation between
the indicators. The heavier the color, the stronger the correlation between the indicators.
It can be seen from Figure 6 that at a significance level of 5%, the correlation between
particulate pollutants PM2.5 and PM10 is the largest, with a correlation coefficient as high
as 74%, whereas the content of O3 is not significant between PM2.5, PM10, and NO2. The
correlation between the amount of ozone and the content of PM2.5, PM10, and NO2 does
not affect each other; the content of PM2.5, PM10, and O3 has a relatively large and positive
correlation with AQI, that is, these three the higher the concentration of these pollutants,
the larger the corresponding AQI and the worse the air quality. This is exactly the same as
the results of the previous analysis.

In short, Beijing’s AQI and the concentration characteristics of the six major pollutants
are analyzed together, and the time development trend and the changes in months and
seasons are visualized to provide a comprehensive and intuitive understanding. The
current situation of air pollution in Beijing in the past three years. Studies have shown
that the three indicators that have the greatest impact on AQI are PM2.5, PM10, and O3.
Beijing’s air quality changes show obvious seasonal characteristics. In the past three years,
Beijing’s air quality reached the worst in June. This is due to the significant increase
in ozone concentration during summer. However, on the whole, Beijing’s AQI and the
concentration of six pollutants have shown a trend of the declining year by year. AQI has
improved significantly, with more and more days showing good grades, mainly due to the
recent years. The government has taken many measures to improve air quality and can
provide timely countermeasures when there are significant changes in air quality, especially
in the treatment of pollutant emissions during the heating period in winter. However, the
continuous high content of ozone is still a thorny issue facing today. Therefore, in the future
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air pollution control, in addition to continuing to control particulate pollutants in winter,
we should also focus on ozone pollution in summer.

Figure 5. Monthly average data of the six major pollutants in Beijing for the same period of the three
years from 2019 to 2021. (a) Monthly average data of the PM2.5 concentration in Beijing for the same
period of the three years from 2019 to 2021. (b) Monthly average data of the PM10 concentration in
Beijing for the same period of the three years from 2019 to 2021. (c) Monthly average data of the CO
concentration in Beijing for the same period of the three years from 2019 to 2021. (d) Monthly average
data of the SO2 concentration in Beijing for the same period of the three years from 2019 to 2021.
(e) Monthly average data of the NO2 concentration in Beijing for the same period of the three years
from 2019 to 2021. (f) Monthly average data of the O3 concentration in Beijing for the same period of
the three years from 2019 to 2021.
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Figure 6. Correlation heat map of six air pollutant indicators.

3. A Forecast of AQI

3.1. Establish an ARIMA Forecast Model
3.1.1. Data Selection and Description

When using the time series analysis method to predict Beijing’s AQI, considering
the completeness of time and the accuracy of the forecast, we selected the AQI data from
1 November 2020 to 31 October 2021 as a training set to build an ARIMA model and make
forecasts, with a total of 365 valid data points; we selected the AQI data from 1 November
2021 to 15 November 2021 as the test set to verify the fitting effect of the model.

3.1.2. Empirical Analysis of the ARIMA Model

(1) The stability test of the original sequence

Time series mapping of AQI of Beijing 1 November 2020–31 October 2021, as shown
in Figure 7. From the time series chart, it can be seen that in the past year, Beijing’s AQI
fluctuated greatly: there were two abnormal peaks, and the AQI value was not always in a
constant value near the fluctuation. In order to further verify the stability of Beijing’s AQI,
we have carried out a graph test of the self-correlation coefficient.

Figure 7. Time series of Beijing AQI original data.

Observing from Figures 8 and 9, the autocorrelation coefficient of the original Beijing’s
AQI has long-term training, the rate of decay to zero is relatively slow, and the self-
correlation coefficient after decay to double the standard deviation has a cyclical trend,
which directly indicates that there is a long-term correlation between the original time
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series data. Since the method of graph test has a certain degree of subjectivity, it is further
tested by unit root test, and the results are consistent. Therefore, the sequence can be judged
to be non-stable.

(2) Smooth processing of data

Figure 8. An apocalypse coefficient plot of the original AQI data in Beijing.

Figure 9. Partial correlation diagram of the original AQI data in Beijing.

The original data is smoothed, and the first-order difference is made on it, and the
time series diagram of AQI after the first-order difference is drawn. Verify the stationarity
of the sequence after the first-order difference. It can be seen from Figure 10 that after the
first-order difference of Beijing’s AQI, the time series graph fluctuates around a constant
value, essentially showing a steady state.

Figure 10. Time series diagram of Beijing’s AQI after first-order difference.
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In order to further verify the conjecture, the autocorrelation and partial autocorre-
lation coefficient graphs of AQI after the first-order difference was made. As shown
in Figures 11 and 12, the autocorrelation coefficient of the Beijing’s AQI series after the
first-order difference quickly decays to zero, indicating that the series after the first-order
difference has a short-term correlation, and it is preliminarily determined that the series is
stable after the difference. The unit root test method is used again to verify as shown in
Table 1. The p value is less than 0.01, and the null hypothesis of the unit root is rejected,
which is consistent with the conclusion of the graph test; that is, the AQI data is stable after
the first order difference.

(3) White noise test of stationary series

Figure 11. Autocorrelation coefficient after the first-order difference of Beijing AQI.

Figure 12. The partial autocorrelation coefficient after the first-order difference of Beijing AQI.

Table 1. Unit root test of the first-order difference sequence.

ADF Statistics p-Value

−9.8993 <0.01

After the differentiated sequence passes the stationarity test, it needs to be tested
for pure randomness to prevent the stationary sequence from being a pure white noise
sequence. If it is a white noise sequence, then the sequence does not have any value for
further research. Therefore, the R software is used to perform the Ljung–Box method for
the pure randomness test of the 6-period and 12-period lags on differential AQI column,
and the results are listed in Table 2. The analysis shows that in the first-order difference
series with a lag of 6 and 12 periods, the p-value is less than the significance level of 0.05.
Therefore, the null hypothesis that the differenced series is a white noise series is rejected,
and the result is significant. From this, it can be judged that the time series after the first-
order difference is not a purely random white noise series, it can be researched to a certain
extent, and the subsequent modeling analysis can be carried out on it.
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(4) Identification and order determination of ARIMA model

Table 2. White noise test of difference sequence.

X-Squared df p-Value

60.504 6 3.555 × 10−11

78.253 12 8.878 × 10−12

Since the autocorrelation coefficient and the order of the partial autocorrelation coef-
ficient of the model after the first-order difference are not obvious, the identification and
order determination of the ARIMA model has brought some obstacles. Therefore, using
the automatic order-setting model of R software and various manual repeated attempts,
many more reasonable models are compared and analyzed, and the results are listed below.
The results of other attempts are not listed one by one. According to the model’s Akaike
information criterion, the smaller the model’s AIC value, the better the model’s fitting
effect. After repeated experiments, it can be found that the model with more significant
parameters is ARIMA (5,1,4), and the fitting results are shown in Table 3.

(5) ARIMA model fitting effect test

Table 3. Model fitting results.

ARIMA Model σ2 Estimated Log-Likelihood Aic

ARIMA (5,1,2) 1864 −1888.06 3792.12
ARIMA (5,1,4) 1822 −1885.28 3790.57
ARIMA (4,1,2) 1885 −1890.33 3974.67

Perform a residual white noise test on the fitted ARIMA (5,1,4) model to see whether
it extracts the effective information completely, as shown in Table 4 below. After analysis,
it can be seen that the p-values of the lag 6 and 12 lag white noise tests are both greater
than the significance level of 0.05, and the original hypothesis that the residual is white
noise cannot be rejected, indicating that the fitting model has basically extracted effective
information, and the model is the significant sex.

(6) Model forecast

Table 4. Residual white noise test after model fitting.

X-Squared df p-Value

7.3767 6 0.2874
11.792 12 0.4625

Use the established ARIMA (5,1,4) to predict AQI for the next 30 periods, and select
the data of the first 15 periods in the future as the test set to verify the error of the forecast
model. The forecast results are shown in Figure 13. It can be seen from the forecast result
graph that in the next 30 days, although the air quality in Beijing will fluctuate to a certain
extent, the overall difference is not big, and the air quality is still showing a good trend.

In order to consider the fitting effect of the model, we use 1 November 2021–15
November 2021 as the test set, compare the predicted value obtained by the ARIMA (5,1,4)
model with the true value, and combine the error indicators specified in the previous
section to compare the results Include under. The comparison of the predicted value and
the real value of the model, the histogram of the absolute error and relative error, as shown
in Figures 14–16, indicates that the error between the real value and the predicted value in
the first six cycles is slightly larger, but after the six periods, the predicted value gradually
moves closer to the true value. In the thirteenth issue, the difference between the predicted
value and the true value is very small, indicating that the fitting forecast result of the
ARIMA model is more accurate, but there is still room for improvement.
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Figure 13. ARIMA model predicts Beijing’s AQI map.

Figure 14. Comparison of predicted value and the true value of ARIMA model.

Figure 15. Absolute error histogram of ARIMA forecasting model.

Figure 16. The relative error histogram of the ARIMA forecasting model.
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3.2. Establish a Neural Network Forecast Model
3.2.1. Data Selection and Description

The data used to build the neural network model are the daily average data of Beijing’s
AQI from 1 November 2020 to 15 November 2021, and the concentration of six major air
pollutants, a total of 380 items, and the most classic three-tier structure to build a model.
Through the dimensionless processing of the data, the construction of a training sample
set, and a test sample set to build a model, the model learns the changing laws of historical
pollutant concentration data and realizes short-term forecast of air quality changes.

3.2.2. Theoretical Overview of Neural Network Models

The neural network is derived from neuroanatomy and neurophysiology. It is a
technology that simulates the intelligent processing of the human brain. It is a mathematical
model of the structure and function of biological neural networks and has the ability to
process multi-dimensional functions. The neural network structure is composed of multiple
neurons combined with each other. Each neuron input has a specific weight, and the
learning process of the neural network is the process of constant adjustment of the weight
in the iterative process.

The neural network consists of three layers: input layer, hidden layer and output
layer. The input layer is not responsible for calculation but is mainly responsible for the
information of input variables. The number of nodes is the number of influencing factors
designed; the hidden layer is between the input layer and the output layer. The middle
of the output layer contains unobservable network nodes, which mainly transform the
sample variables. Each hidden node is a function of the sum of input weights so that it has
corresponding learning rules to train the network; the output layer is mainly responsible for
outputting the final forecast. As a result, it transmits information to the outside world, and
the number of nodes is the number of predictors required. The sample is usually divided
into a training set and a test set. The training set is used to build the model, and the test set
is used to test the fitting effect of the model.

Artificial neural networks are increasingly closely related to other subject areas. The
neural network field mainly includes multilayer perceptron models, back-propagation
neural networks, convolutional neural networks, and so on. The air quality seems disor-
derly on the surface, but its changing law is affected by many factors such as pollution
sources, coal burning, and transportation for a long time. It is a complex non-linear system.
Multi-layer perceptron is also called multi-layer feedforward neural network. Information
is transmitted in one direction and different layers are fully connected. It has an excellent
nonlinear mapping and generalization capabilities and can perform air quality control
based on the inherent connection of the data itself.

Based on the built-in algorithm of data mining technology, this paper establishes a
neural network model of multi-layer perceptron (MLP) to predict the air quality in Beijing,
correlate various dimensions in a large amount of data, train and learn the data, and mine
the associated information of the data. In total, 80% of the data is selected as the training
set for the learned model by a fixed random seed number, and the remaining 20% of the
sample data is used for testing.

3.2.3. Empirical Analysis of Neural Network Model

The fitting results of the true air quality value and the predicted value of the model
are shown in Figure 17, and the changes between the two are basically the same. The
effect of the model is judged by indicators such as average absolute error (MAE) and
average absolute percentage error (MAPE). The smaller the value, the higher the accuracy
of the model.
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Figure 17. Neural network model forecast diagram.

After obtaining the concentration values of the six major pollutants, the high/low
values of the concentration limits close to the concentration of the pollutants, and the
corresponding air quality sub-index, the air quality sub-index is calculated, and then the
maximum AQI value is selected as AQI. The final selection of values takes a long time.
Although accurate AQI values and levels can be obtained, there is a lag, and air quality
early warning cannot be effectively provided.

Therefore, this article is also based on the data mining algorithm and uses the daily
data of six pollutants to classify the air quality levels layer by layer, through regularization
and the use of Dropout and other methods to avoid data overfitting, the air quality in
Beijing on the day was finally determined. The pollutants that have the greatest impact
on air pollution levels can also be obtained. The accuracy of the model is 89.8%. The
classification levels of air quality results are shown in Figure 18.

Figure 18. Accuracy of the classification model.

The daily air quality level is used as the typed dependent variable, and the six air
pollutant indicators are used as independent variables for importance analysis. It can be
seen from Figure 19 that PM2.5, PM10, and O3 have a greater impact on the air quality
level, and are the main factors that determine the specific value of AQI and the air quality
level. Their importance is 23%, 19%, and 18%, respectively. The result corresponds to the
result of the correlation heat map. PM2.5 has the greatest impact on air quality. It stays in
the air for a long time and is rich in a lot of harmful substances. It not only affects human
health but also affects the global climate. Air governance is not one day’s work; thus, it
is necessary to accelerate industrial transformation, advocate the use of clean energy by
society, and strengthen waste gas treatment procedures.
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Figure 19. Analysis of the importance of six air pollutant indicators.

3.3. Model Comparison

In this chapter, the ARIMA model and the multi-layer perceptron neural network
model are used to predict Beijing’s AQI, and a variety of evaluation indicators such as
root mean square error and average absolute percentage error are selected for these two
models. Comparing the fitting effect of the model, these indicators take into account the
error between the predicted value and the true value, which can be a good analysis of the
pros and cons of the model fit. The expressions of these indicators are:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)
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1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (3)

SMAPE =
1
n

n

∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

× 100% (4)

Among them, is the predicted value of the test set data, and is the true value.
Combining the selected test set data, using these four indicators to compare the pros

and cons of the two models, the results are shown in Table 5. Combined with error analysis,
it is found that the forecast effect of the neural network model is far better than that of the
time series ARIMA model. However, the ARIMA model also has certain advantages. It
can predict future data based on historical data of endogenous variables without using
other variables. The forecast results within a certain period still have a certain reference
value. The neural network model has a good self-adaptive ability, and the forecast results
are relatively good, but it cannot accurately and specifically describe the mathematical
relationship between data and variables. Therefore, in the process of use, the two forecast
methods can be combined, or further consider the related influence of other factors, and
further optimize the forecast of Beijing’s AQI.

In this chapter, the data from 1 November 2019 to 15 November 2021 are selected,
and Beijing’s AQI is fitted and predicted using the ARIMA model and the neural network
model. Among them, the ARIMA model uses the data of the last 15 days as the test set,
and the neural network randomly selects the test set using the eight-to-eight method and
uses the error-index to comprehensively evaluate the fitting effect of the two models. The
results show that both the ARIMA model and the neural network model are significant
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in predicting AQI, and the established models are reasonable and effective. Through
comparison, it is found that the fitting effect of the neural network is better than that of the
ARIMA model. The features can be referred to each other and used in combination.

Table 5. Comparison of model errors.

Model MAE RMSE MAPE SMAPE

ARIMA model 39.06 51.21 50.84% 51.93%
Neural network model 13.66 43.17 12.81% 12.75%

4. Long-Term AQI Forecast Based on Seasonal Model

Based on the results of the previous analysis of Beijing air quality visualization, it
can be seen that the AQI of Beijing shows more obvious seasonal characteristics. In the
above paper, short-term forecast was made for the daily data of Beijing AQI, and in this
chapter, long-term forecast of Beijing AQI is made based on the seasonal model of ARIMA
model, so the model was built by selecting 83 monthly air quality data from January 2015
to November 2021. Therefore, 83 monthly air quality data points from January 2015 to
November 2021 were selected as the experimental data, and the data from December 2021
to February 2022 were used as the data set to verify the model fitting effect, and the original
monthly data points were pre-processed in the following section.

4.1. Data Preprocessing

(1) Smoothness test

The time series plot of the AQI monthly data is drawn using R software, as Figure 20
shown below. From the time series plot of the monthly data, it is known that from January
2015 to November 2021, the overall AQI of Beijing shows a decreasing trend and has a
more obvious seasonal effect. Subsequently, the graphical test of autocorrelation and partial
autocorrelation coefficients was conducted, as shown in Figures 21 and 22, and its autocor-
relation coefficients have a long-term trailing and periodic trend, and the monthly data of
Beijing air quality index is initially inferred to be unsteady by the graphical test observation,
and in order to further evaluate objectively the steadiness, the series is concluded to be a
non-steady time series after unit root test using R software.

(2) Pure randomness test

Figure 20. Time series of Beijing AQI monthly data.
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Figure 21. Monthly AQI series autocorrelation chart.

Figure 22. Monthly data AQI bias autocorrelation graph.

Similar to the ARIMA model for short-term forecast of AQI daily data, a pure ran-
domness test is performed on the original series before the modeling analysis in order to
investigate whether there is any correlation between the series and whether there is value
for further study. The pure randomness test was performed using the Box.test function
in the R software, and the results are shown in Table 6. It can be seen that the p-values of
delayed 6 periods and delayed 12 periods are significantly less than 0.05; therefore, the
original hypothesis is rejected, and the monthly data series of Beijing AQI is not a white
noise series, which can be used for subsequent modeling analysis.

Table 6. Results of pure randomness test.

Delayed Orders p-Value

Delayed by 6 periods 2.754 × 10−7

Delayed by 12 periods 3.188 × 10−11

4.2. Construction of Seasonal Model

From the above time series graph, we can see that the original series shows the change
of year as the cycle, and the selected air quality data is monthly data, so the cycle length
s = 12. To make the original time series smooth, we need to eliminate the linear trend
and seasonal periodicity of the series. Therefore, the monthly AQI data of Beijing are first
differenced to eliminate the linear trend, and then differenced to eliminate the seasonal
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periodicity in 12 steps. The series after the first-order twelve-step differencing is denoted
as AQI-diff12, and its time series is plotted as shown in Figure 23. The series after trend
differencing and seasonal differencing has no obvious upward or downward trend and
no obvious periodicity, fluctuating around the zero value, which can be initially judged
as a smooth time series after differencing. The autocorrelation coefficients and partial
autocorrelation coefficients of the series after differencing are verified by the graph test
method, as shown in Figures 24 and 25. The autocorrelation coefficient quickly decays to
zero, and the p-value of the pure randomness test of the differenced series is 0.01, which is
smaller than the significance level of 0.05. The original hypothesis is rejected, indicating
that the series is smooth after eliminating the linear trend and seasonal trend. The p-value
of the differenced series after the pure randomness test is 0.019, which is less than the
significance level of 0.05. Therefore, the differenced series is still a non-white noise series,
and the next modeling analysis is conducted for this series.

(1) Model identification and model ranking

Figure 23. Time series of monthly AQI data after first-order twelve-step differencing.

Figure 24. Autocorrelation of monthly AQI data after first-order 12-step differencing.

Based on the above autocorrelation and partial autocorrelation plots after differencing,
the first step is to consider the characteristics of the autocorrelation coefficients and par-
tial autocorrelation coefficients within 12 orders of the series after trend differencing and
seasonal differencing in order to determine the short-term correlation model. In the auto-
correlation and partial autocorrelation plots of the differenced series, the autocorrelation
coefficients and partial autocorrelation coefficients up to order 12 are not truncated, so an
ARMA(1,1) model is attempted to extract the short-term autocorrelation information of the
differenced series.
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Figure 25. Biased autocorrelation of monthly AQI data after first-order 12-step differencing.

The second step considers the autocorrelation characteristics of the season in question
in order to confirm the choice of additive or multiplicative seasonal model. The approach
is to consider the characteristics of autocorrelation coefficients and partial autocorrela-
tion coefficients in autocorrelation plots and partial autocorrelation plots with delayed
12th order, 24th order, etc. with the length of the period as the unit. According to the
autocorrelation and partial autocorrelation plots, the autocorrelation coefficients and partial
autocorrelation coefficients of the delayed 12th and 24th orders fall within the range of
2 times the standard deviation, and the corresponding values of the delayed 24th order are
smaller, which shows that there is no significant seasonal effect in the differenced series,
so we initially consider a simple seasonal model, i.e., an additive seasonal model. At this
point, the seasonal differencing order D = 1, p = 0, and Q = 0.

Combined with the previous first-order twelve-step differencing information, the
additive seasonal model fitting ARIMA (1,(1,12),1) was finally determined, and its model
structure is as follows.

∇1∇1xt =
(1 − θ1B)
(1 − φ1B)

εt (5)

(2) Parameter estimation of the model

The final fitted model has been determined in the previous step of the analysis, and
the next step is to determine the caliber of this model based on the observed values of the
series, which means that the values of the unknown parameters in the fitted model need to
be estimated. Using R software, the parameters of the fitted additive seasonal model were
estimated according to the maximum likelihood estimation method, and the following
results were obtained, as shown in Table 7.

Table 7. Estimated values of parameters.

Parameter p-Value Standard Deviation

φ̂1 0.2895 0.1163
θ̂1 −1.0000 0.0501

Based on the above results, the caliber of the fitted additive seasonal model can be
seen as

∇1∇1xt =
(1 + B)

(1 − 0.2895B)
εt (6)

where B is the delay operator and εt is the white noise sequence, i.e., εt ∼ WN(0, σ2).

(3) Model testing
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A white noise test of the residuals was performed on the established additive seasonal
model in order to determine the significance of the model. Next, the Box.test function in the
R software was used to test whether the residual series is a white noise series, and the test
results are shown in Table 8. According to the results of the white noise test of the residuals,
the p-value corresponding to the LB statistic at each order of delay is significantly greater
than the significance level of 0.05; therefore, it can be considered that the residual series of
the fitted additive seasonal model is a white noise series, which means that the established
model is significantly valid.

Table 8. White noise test.

X-Squared df p-Value

2.0741 6 0.9128
18.393 12 0.1043

4.3. Forecast Analysis of the Additive Seasonal Model

Based on the established additive seasonal model, the Beijing air quality index from
December 2021 to February 2022 was selected as the test set to verify whether the model
had a more accurate fit. Using the same short-term correlation criteria as above, the results
are shown in Table 9. As can be seen from the graphs, the differences between the predicted
and true values are small and the error values are within acceptable limits, indicating that
the additive seasonal model is appropriate and valid for extrapolating the future long-term
Beijing AQI, with high forecast accuracy and reasonable and credible results.

Table 9. Model goodness of fit.

Model MAE RMSE MAPE SMAPE

ARIMA
(1,(1,12),1) 15.55 24.87 34.57% 23.89%

The predicted results of Beijing AQI for the next 24 periods are shown in Figure 26. It
is observed that the AQI index still shows seasonal cycles and still has a slightly decreasing
trend in the next two years.

Figure 26. ARIMA model long-term forecast graph.

4.4. Section Subsection

In this section, the long-term forecast of AQI in Beijing is based on the seasonal model
of ARIMA model, which shows an overall decreasing trend of AQI in Beijing from January
2015 to November 2021 with a more obvious seasonal effect. The parameters of the fitted
additive seasonal model are estimated according to the maximum likelihood estimation
method, and the AQI of Beijing from December 2021 to February 2022 is predicted according
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to the additive model, and the results show that the AQI still shows a seasonal cycle and
still has a slightly decreasing trend in the next two years.

5. Summary and Outlook

Based on Beijing’s AQI from January 2019 to November 2021 and the daily average
and monthly data of six major air pollutants, this article uses descriptive statistical analysis,
correlation analysis, and cluster analysis to visualize air quality development trends; Using
time series analysis and data mining algorithms to build models and make short-term
forecasts of Beijing’s air quality, the following conclusions are obtained:

Using statistical methods to analyze the air quality level, AQI and the distribution of
the six types of pollution concentration changes, the daily analysis results show that with
the continuous deepening of air pollution prevention and control work, the air quality in
Beijing continues to improve, AQI has improved significantly, and the level is excellent.
The proportion of days has increased year by year. The monthly analysis results show that
in the past three years, the air pollution level was the most serious in June, which was
mainly related to the serious excess of ozone content. The changes in air quality in Beijing
show obvious seasonal characteristics. The five main pollutants PM2.5, PM10, SO2, CO,
and NO2 have low concentrations in summer and high concentrations in winter; only O3
is the opposite of other pollutants. Because of the high concentration in summer and low
concentration in winter, the persistently high content of ozone is still a thorny issue facing
today, and the air quality varies greatly between the heating period and non-heating period.

The short-term forecast of Beijing air quality index using time series model and neural
network model overcomes the lag of the current air quality monitoring system, and the
AQI index high and low is determined by the co-construction of six air pollutants. The
results show that both ARIMA model and neural network model are significant for the
forecast of air quality index, and the established models are reasonable and effective, and it
is found by comparison, the fitting effect of the neural network is better than that of the
ARIMA model, but both models have their own characteristics. It was also found that
PM2.5, PM10, and O3 have a greater influence on the air quality class, and are the main
factors to determine the specific value of AQI and air quality class. When using the additive
seasonal model for long-term forecast of monthly data, it was found that the Beijing AQI
still shows seasonal cyclicality and still has a slightly decreasing trend in the next two years.
In summary, based on the conclusions of the article, we can propose measures to improve
air quality from the three perspectives of the government, society, and individuals.

The government must increase implementation of environmental protection policies
and investment in environmental protection technology. Environmental protection de-
partments should strengthen environmental management, earnestly implement national
and local laws and regulations, comprehensively use technical means and administrative
measures, and manage air quality through legislation, monitoring, and protection.

The analysis shows that PM2.5, PM10, and O3 have a greater impact on air quality
levels. Therefore, environmental protection management agencies have been established at
all levels from the central to the local level to use monitoring technology tools to publish
monitoring data promptly, inspect and dispose of pollution sources, and control building
dust, Pollution behaviors such as burning coal for heating and burning straw. Increase
investment in the field of environmental protection technology, develop reasonable treat-
ment equipment, reduce waste of resources, and improve sewage treatment technology.
Optimize the industrial structure, lower pollution standards, and increase pollution punish-
ment. Resource control policies such as pollutant discharge fees have a significant impact
on pollution control costs. The development of a washing energy industry with high energy
utilization and low pollution, and making good use of renewable resources such as solar
and wind energy. Air pollution has fluidity and regional characteristics, and its changes
are synchronized. Pollution between regions affects each other. Pollution prevention and
control is not just an administrative region’s problem. It is necessary to establish a regional
cooperation system, regional joint prevention and control, to solve cross-regional air pol-
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lution problems, for example, the Beijing-Tianjin-Hebei simultaneous implementation of
the “Regulations on the Prevention and Control of Emission Pollution from Motor Vehicles
and Non-road Mobile Machinery”, and so on. Improve urban green coverage, borrow the
characteristics of plants to absorb dust and purify the air, provide zoning control strategies
for the in-depth fight against pollution, and continue to promote precise, scientific, and
legal pollution control.

The society must vigorously promote environmental protection knowledge, raise
awareness of protecting the atmospheric environment, and advocate low-carbon life. Pre-
vention and control work increasingly requires scientific and refined management. The
city should adhere to project emission reductions and management emission reductions
according to changes in air quality in months and seasons, and promote the formation of a
spatial pattern, industrial structure and lifestyle that conserves resources and protects the
environment. The aims are to deepen the “one microgram” action, focus on the coordinated
governance of PM2.5, PM10 and O3, and achieve green transformation of the industrial
structure, green and low-carbon energy structure, green optimization of vehicle structure,
and green and clean urban appearance.

Another aim is to establish an action pattern led by the government and public par-
ticipation. With the expansion of the scale of cities and the improvement of the level of
economic activities, the number of motor vehicles has increased, and cars emit a large
amount of NO2 and inhalable particulate matter, which will seriously damage the envi-
ronment and affect people’s health. Therefore, it is necessary to consciously eliminate
old motor vehicles and improve awareness of the purification and treatment of polluting
vehicle exhausts, supporting the development and use of new energy vehicles. The general
public should actively participate in environmental protection activities and environmental
protection supervision, consciously practice a simple and moderate, green and low-carbon
lifestyle, and offer advice and suggestions for a more beautiful Beijing.
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Abstract: Since strong convective weather is closely related to heavy precipitation, the nowcasting
of convective weather, especially the nowcasting based on weather radar data, plays an essential
role in meteorological operations for disaster prevention and mitigation. The traditional optical flow
method and cross-correlation method have a low forecast accuracy and a short forecast leading time,
while deep learning methods show remarkable advantages in nowcasting. However, most of the
current forecasting methods based on deep learning suffer from the drawback that the forecast results
become increasingly blurred as the forecast time increases. In this study, a weather radar nowcasting
method based on the Temporal and Spatial Generative Adversarial Network (TSGAN) is proposed,
which can obtain accurate forecast results, especially in terms of spatial details, by extracting spatial-
temporal features, combining attention mechanisms and using a dual-scale generator and a multi-
scale discriminator. The case studies on the forecast results of strong convective weather demonstrate
that the GAN method performs well in terms of forecast accuracy and spatial detail representation
compared with traditional optical flow methods and popular deep learning methods. Therefore,
the GAN method proposed in this study can provide strong decision support for forecasting heavy
precipitation processes. At present, the proposed method has been successfully applied to the actual
weather forecasting business system.

Keywords: weather radar nowcasting; generative adversarial network (GAN); Temporal and Spatial
GAN (TSGAN); heavy precipitation

1. Introduction

Precipitation is an important weather phenomenon and an important part of the water
cycle, which has a profound impact on all aspects of people’s lives. Extreme precipita-
tion is one of the important factors that cause natural disasters. The accurate and timely
prediction of upcoming extreme precipitation can avoid economic losses and help protect
the safety of people’s lives and property. Using algorithms such as the Z–R relationship
in business [1], weather radars can effectively observe precipitation. The precipitation
derived from a series of radar echoes could be used to forecast precipitation in the next 1
to 2 h and provide information on the development and change of precipitation, which is
helpful to making the right decisions about the possible effects of precipitation. However,
the spatiotemporal characteristics of the precipitation development process have great
uncertainty, resulting in difficulties in predicting its change and movement trends. There-
fore, accurately predicting the future changes of radar echoes is the key to improving the
accuracy of precipitation prediction.

Convective weather nowcasting refers to the forecast of the occurrence, development,
evolution and extinction of thunderstorms and other disastrous convective weather in the
next few hours, which is crucial for meteorological disaster prevention and mitigation.
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Weather radars are the primary tool for convective weather nowcasting in 0–2 h. Currently,
the operational nowcasting methods mainly include the identification and tracking of
thunderstorms and the automatic extrapolation forecasting technology based on radar
data, such as the single centroid method [2], cross-correlation method [3] and optical flow
method [4]. The traditional extrapolation methods based on radar echoes only use the
shallow-level feature information of the radar images, and their application is limited to
a single unit with strong radar echoes and a small range. Therefore, these methods are
unreliable for predicting large-scale precipitation. The TREC (Tracking Radar Echoes by
Cross-correlation) technique and its improved algorithm usually treat the echo variation as
linear. However, the evolution of the intensity and shape of radar echoes is relatively com-
plex during the generation and extinction of a convective process in the actual atmosphere.
Moreover, these traditional methods have a low utilization of historical radar observations.
Therefore, the forecast leading time is usually less than one hour, and the forecast accuracy
can no longer meet the needs of high-precision prediction.

In recent years, artificial intelligence technology represented by deep learning has
analyzed, associated, memorized, learned and inferred uncertain problems, whose applica-
tions have made significant progress in image recognition, nowcasting, disease prediction,
environment changes and other fields [5–10]. As an advanced nonlinear mathematical
model, deep learning technology contains multiple layers of neurons and has an excellent
feature learning capability, which can automatically learn from massive data to extract the
intrinsic characteristics and physical laws of the data and is widely used to build complex
nonlinear models. Convective weather nowcasting is a sequence of forecast problems
based on time and space. Some scholars have applied deep learning technology to weather
nowcasting and have achieved satisfactory results [11,12].

Spatiotemporal forecasts based on deep learning involve two essential aspects, namely,
spatial correlation and temporal dynamics, and the performance of a forecast system
depends on its ability to memorize relevant structural information. Currently, there are two
main types of neural network models for spatiotemporal sequence forecasting, i.e., image
sequence generation methods based on a convolutional neural network (CNN) and image
sequence forecast methods based on a recurrent neural network (RNN).

The CNN-based method converts the input image sequence into an image sequence of
one or more frames on a certain channel, and many scholars have proposed implementation
schemes based on this method [13,14]. For example, Kalchbrenner et al. [15] proposed a
probabilistic video model called Video Pixel Network (VPN). Xu et al. [16] proposed a
PredCNN network, which stacks multiple extended causal convolutional layers. Ayzel
et al. [14] proposed a CNN model named DozhdyaNet. Compared with traditional radar
echo extrapolation methods, the CNN-based methods can use a large amount of historical
radar echo observations during training and learn their variation patterns, including
the enhancing and weakening processes of rainfall intensity. However, the unchanged
position of the convolution structure makes the radar images show the same rainfall field
transformation. Thus, the CNN-based methods have certain limitations and are not widely
used in radar echo extrapolation.

The long short-term memory RNN (LSTM-RNN) [17] with convolutional LSTM units
has dramatically improved the forecast accuracy of precipitation with an intensity of more
than 0.5 mm per hour. Predictive RNN with spatiotemporal LSTM units has achieved
significant performance gains in practical applications. The LSTM units with a spatiotem-
poral memory unit have a certain ability to predict the intensity variation of the radar
reflectivity factor [18]. Shi et al. designed the Convolutional LSTM (ConvLSTM) model
based on previous research, which can capture spatiotemporal motion features by replacing
Hadamard multipliers with convolution operations in the internal transformation of the
LSTM [19]. A well-known variant of ConvLSTM is the Convolutional Gate Recurrent
Unit (ConvGRU). However, the spatial position is unchanged due to the introduction
of convolution kernels, which is a disadvantage for weather patterns with rotation and
deformation. Wang et al. [20,21] proposed a spatial-temporal LSTM (ST-LSTM) with a
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zigzag connection structure model, which can transfer memory states horizontally across
states and vertically transfer memory states among different layers. Shape deformation
and motion trajectories can be effectively modeled by introducing spatiotemporal memory
units. However, the spatial-temporal LSTM also faces the problem of vanishing gradients.
For this, several scholars proposed a PredRNN++ model [22] and Memory in Memory
(MIM) method [23], which can capture long-term memory dependencies by introducing a
gradient highway unit module. Shi et al. [24] developed the TrajGRU model to overcome
the problem of spatial consistency by generating a neighborhood set with parameterized
learning subnetworks for each location. Eidetic 3D LSTM(E3D-LSTM) [25] utilizes the self-
attention [26] module to preserve the long-term spatiotemporal correlation. Jing et al. [27]
designed the Hierarchical Prediction RNN for long-term radar echo extrapolation, which
can meet the needs of long-term extrapolation in actual precipitation predictions. This
model employs a hierarchical forecasting strategy and a coarse-to-fine round-robin mech-
anism to alleviate the accumulation of forecast errors over time and therefore facilitate
long-term extrapolation.

However, the extrapolation results of all existing deep learning methods inevitably
suffer from blur, i.e., as the forecast leading time increases, the diffusion of forecast echoes
becomes more and more serious, resulting in blur. Therefore, how to reduce the blur of
the predicted echo and improve the forecast accuracy at the same time is an urgent issue
to be solved in the current forecast operational applications. In this study, we propose a
radar echo prediction method based on the Temporal and Spatial Generative Adversarial
Network (TSGAN), which can extract the spatiotemporal features of input radar images
through the three-dimensional convolution and attention mechanism module and can use
a dual-scale generator and a multi-scale discriminator to restore the detailed information
of the predicted echoes. Therefore, the main advantage of the proposed method is that it
obviously improves the forecasts of the echo details while ensuring the accuracy of the
forecast results and effectively reducing the blur of the predicted echoes.

The remainder of this manuscript is organized as follows. Section 2 describes the
basic principle of the Generative Adversarial Network. The proposed methodology for
weather radar nowcasting, including the dual-scale generator, multi-scale discriminator
and loss function, is introduced in Section 3, followed by the experiments and results of
two typical strong convective weather nowcasting, i.e., the squall line and typhoon. Further
conclusions are offered in Section 5, and a brief summary of this work is also given.

2. Generative Adversarial Network

Inspired by the zero-sum game, the training process of the model in the GAN is
designed as a confrontation and game between the two networks: the generative network
G and the discriminant network D. The schematic diagram of the overall GAN model
structure for radar echo extrapolation is as follows (Figure 1).

In the generative network G, the random noise vector z, obeying the standard normal
distribution N(0, 1), is taken as the input, and the generated image G(z) is the output.
The generative network tries to generate images that make the discriminative network
indistinguishable during training. The generative network G is responsible for the data
generation task in the generative adversarial network. For the random distribution of the
input samples, the "generated" samples are as similar as possible to the "real" samples.
For the generative network G in the GAN network, a new data distribution is generated
through complex nonlinear network transformation. In order to make the generated data
distribution approach the real data distribution, it is necessary to minimize the difference
between the generated data distribution and the real data distribution.
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Figure 1. The basic structure of the Generative Adversarial Network.

The role of the discriminant network D in the training process is equivalent to that of a
binary classification network, which is used to distinguish the actual training image x from
the generated image G(z). In this way, the two networks continue to conduct adversarial
training, and both are optimized in the process of mutual confrontation. After optimization,
the two networks continue to confront each other, and the generated images obtained from
the generative network G become closer and closer to the actual images.

Under normal circumstances, the discriminant network assigns the label “1” to the
actual image and the label “0” to the generated image. The generative network tries to
make the discriminative network “misjudge” the generated image as “1”. Suppose Pr
represents the data distribution of the real image x, Pg denotes the data distribution of
the generated image G(z) and Pz indicates the prior distribution N(0, 1) of the random
noise vector z. G and D denote the generation network and the discriminant network,
respectively. By using the cross-entropy loss function, the optimization objective of the
GAN can be expressed as the following equation (Equation (1)).

min
G

max
D

V(G, D) = Ex∼Pr[log D(x)] + Ez∼Pz[log(1 − D(G(z)))] (1)

where E is the mathematical expectation. The former term Ex∼Pr[log D(x)] represents the
probability that the discriminant model judges the real original data, and the latter term
Ez∼Pz[log(1 − D(G(z)))] represents the probability that the generated data is judged to be
false. The GAN optimizes G and D alternately through a Max-Min game until they reach
the Nash equilibrium point. Simultaneously, as the alternate optimization proceeds, D
will gradually approach the optimal discriminator. When this proximity reaches a certain
level, the optimization objective of the GAN is approximately equivalent to minimizing the
Jensen–Shannon Divergence between the data distribution of the actual image (Pr) and the
data distribution of the generated image (Pg). In other words, the principle of the GAN is
based on the zero-sum game in game theory, which is equivalent to the optimization of the
distribution distance between the actual and generated data.

For the training process of the GAN model only, D is equivalent to a binary classifier.
Each update to D enhances its ability to distinguish between the actual and generated
images, i.e., correctly assigning two kinds of labels to the two kinds of data and dividing
the correct decision boundary between the two kinds of data. The update of G tries to
classify generated images as actual images. Thus, the newly generated images are closer
to the decision boundary and the actual images. As the alternate iterations continue,
the generated images will continue to approach the actual images, eventually making D
indistinguishable. Therefore, G can highly and realistically fit the actual data.
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3. Temporal and Spatial Generative Adversarial Network (TSGAN)

The GANs are theoretically feasible through mathematical derivation, but they face
many problems in the actual training process, the most important of which are gradient
disappearance and mode collapse. The reason for the disappearance of the gradient is that
the probability of non-negligible overlap between the real distribution and the generated
distribution is very small. Therefore, the discriminant network can easily divide the
generated data and the real data. The generative network can hardly obtain gradient
updates, so it is difficult to optimize the network iteratively. Furthermore, the reason for
the mode collapse is that the optimization of the distance between the generated data and
the real data distribution is very difficult to control, resulting in the degradation of the
generative model and the inability to capture all the changes in the real data distribution.

For the above reasons, inspired by Pix2PixHD [28], the TSGAN proposed in this
study consists of two parts, namely, a dual-scale generator and a multi-scale discriminator.
The dual-scale generator uses two radar echo sequences with different resolutions to
extract spatiotemporal features. Then, the UNet structure and attention mechanism are
used to generate predicted echo sequences. The multi-scale discriminator distinguishes
the generated predicted echo sequences at multiple scales. Subsequently, the dual-scale
generator is guided to generate higher-quality predicted echo sequences.

3.1. Dual-Scale Generator

The task of the generator is to use an input radar echo sequence to generate the subse-
quent 20 frames of the radar echo sequence while retaining as much detailed information of
the echoes as possible. Therefore, the spatiotemporal features of the radar echoes need to be
considered during this process. A deeper network structure can generate better sequences,
but it also faces the problems of overfitting and training difficulties. Therefore, this study is
conducted on two scales to take into account the generation effect and network scale. We
use three-dimensional convolution to extract the spatial-temporal features of radar echo
sequences and employ the UNet structure to restore the spatial details of the generated
echo sequences.

The basic structure of the dual-scale generator is shown in Figure 2:

 

Figure 2. The structure of the dual-scale generator.

The input of the generator is the radar echo data of 1 h before the current time. Since
the time resolution is 6 min, the input is the radar echo data of 10 consecutive moments,
with a size of 896 × 896 × 10 pixels. In terms of the dual-scale generator, the second scale
is half of the original scale. At the original scale, the input radar echo sequence (896 × 896
× 10 pixels) passes through several three-dimensional convolutional layers and ordinary
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convolutional pooling layers to obtain a series of feature maps with a size of 448 × 448
pixels. At the second scale, the input radar echo sequence is down-sampled by a factor of 2,
and then the size is changed to 448 × 448 × 10 pixels. The down-sampled data also pass
through the three-dimensional convolutional layer and the ordinary convolutional pooling
layer. Then, this sequence proceeds through a ResUNet-structured module consisting of
the ResNet module [29] and the CBAM attention mechanism [30]. The UNet-structured
module is composed of modules that resize the output feature maps to the size of the
original feature maps, i.e., 448 × 448 pixels. ResUNet replaces the convolution layers in the
conventional UNet model with the ResNet module, whose role is to preserve the spatial
details of different feature maps as much as possible. The CBAM attention mechanism
consists of spatial attention and channel attention, and its role is to preserve the more
important information on the space and channel as much as possible. After adding the
feature maps of the two scales, the output is restored to the size of the original input radar
echoes (896 × 896 pixels) through the convolution pooling layer and the UNet structure
module of another ResNet + CBAM layer. Therefore, the final 2 h predicted radar echo
sequence is obtained with a size of 896 × 896 × 20.

Two scales are used in the generator. The spatial resolution of the original scale is
consistent with that of the input radar echo sequence, which is conducive to retaining the
spatial details of the predicted echoes. Because the original scale has the highest spatial
resolution, in the process of radar echo time series prediction, almost all of the algorithms
will face the problem that the predicted echo becomes more and more blurred as the forecast
time increases. The main reason for this is that the spatial detail information is gradually
weakened in the process of gradual extrapolation. Using the original scale data, we hope
that the spatial details are preserved as much as possible in the network. Meanwhile,
the spatial resolution of the second scale is half that of the input radar echo sequence,
which facilitates a more thorough control of the orientation of the generator network.
The reduction in spatial resolution is equivalent to increasing the receptive field of each
convolution kernel, which is beneficial to the network obtaining more global information,
thereby controlling the generator network to better fit the trend of future echoes. The
balance between the generation effect and the network training can be achieved through the
joint action of the spatiotemporal features extracted by three-dimensional convolution and
the two scales, obtaining the extrapolation results that not only conform to the development
law of radar echoes but also maintain the spatial details.

3.2. Multi-Scale Discriminator

The generated images have high spatial resolution and rich spatial details. Therefore,
the discriminator generally needs a deeper network or a larger convolution kernel to ensure
that the discriminant network has a larger receptive domain. However, the discriminator
may lead to overfitting due to the excessive network capacity and requires more GPU
memory for network training.

Therefore, a multi-scale discriminant network is adopted in this study to identify the
generated images from different scales, i.e., three discriminators are utilized. The three
discriminators all have the same network structure but operate on images of different
sizes. Specifically, we down-sample the real and generated images by factors of 2 and 4,
respectively, to create image pyramids at three scales. Three discriminators are trained
by using different real and generated images of the three sizes. Although the structures
of the discriminators are the same, the discriminator with four times down-sampling has
the largest receptive field, which ensures that it has more global perspective information
and can guide the generator to generate overall consistent images. Additionally, the
discriminator at the original scale favors the generator to generate finer details, which also
makes the training of the generator easier.

The structure of the discriminant network is shown in Figure 3, consisting of a series
of convolutional layers, pooling layers and fully connected layers. The input size of the
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original scale discriminator is 896 × 896, and for the second and third scales, it is 448 × 448
and 224 × 224, respectively.

 

Figure 3. The structure of the multi-scale discriminator.

3.3. Loss Function

The loss function consists of three parts, namely, adversarial loss, multi-scale feature
loss and overall content loss. Assuming that the discriminator of the network has three
scales, “in” represents the input radar echo sequence, “tar” represents the future real radar
echo sequence, “G” represents the output of the generator network, and Dk represents the
output of the discriminator at the k-th scale (k = 1, 2, 3). The total loss function is expressed
as Equation (2).

Loss = min
G

{[ max
D1,D2,D3

∑
k=1,2,3

lGAN(G, Dk)] + α ∑
k=1,2,3

l f eature(G, Dk) + λlcontent(G, tar)} (2)

where α and λ are the weights of the multi-feature loss l f eature and the overall content loss
lcontent. The adversarial loss lGAN in the above formula can be expressed as Equation (3)

lGAN(G, Dk) = E(in,tar)[log Dk(in, tar)] + Ein[log(1 − Dk(in, G(in))] (3)

The multi-feature loss l f eature can be represented as Equation (4).

l f eature(G, Dk) = ∑
i

∣∣∣Di
k(in, tar)− Di

k(in, G(tar))
∣∣∣ (4)

where k (k = 1, 2, 3) denotes the number of discriminators, and i represents the i-th layer of
the discriminant network.

The overall content loss lcontent can be obtained according to Equation (5).

lcontent(G, tar) = L1(G, tar) (5)

where L1 is the L1 loss, i.e., the MAE loss. The adversarial loss is mainly used to recover the
detailed information of the predicted echoes. The multi-scale feature loss and the overall
content loss characterize the difference in content between the predicted and observed
echoes in the aspects of deep features and pixels. The joint effect of the three loss functions
guides the results from the generator to gradually approach the actual radar echoes.
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4. Experiments and analysis

The study area is Guangdong Province in southern China. The whole area is located
at a latitude of 20◦13′ to 25◦31′ north and a longitude of 109◦39′ to 117◦19′. It belongs to
the subtropical monsoon climate region. The land spans the northern tropics, the southern
subtropics and the central subtropics from south to north. The airflow in this area is
particularly strong, and the hot and cold flows frequently meet and collide in this area,
resulting in frequent strong convective weather and abundant precipitation. There are
many meteorological disasters in the region. The main disasters are: low temperature and
rain, strong convection (hail, tornado, strong thunderstorm and strong wind), rainstorm
and flood, typhoon, drought, cold dew wind, cold wave, etc. Among them, tropical
cyclones and rainstorms have a high frequency and high intensity, ranking first in the
country. Meteorological disasters have caused heavy losses to the national economy. For
example, Typhoon No. 9615 caused losses of nearly CNY 17 billion to western Guangdong.
Therefore, it is extremely important to improve the nowcasting technology.

In this research, the reflectivity factor mosaic data during 2015–2021 from 11 new-
generation S-band Doppler radars in Guangdong are used for the experiments. The data in
2015–2019 are selected as the training dataset, the data in 2020 are selected as the validation
dataset and the data in 2021 are selected as the test dataset. These original data have
horizontal grid points of 700 × 900, with spatiotemporal resolutions of 1 km × 1 km and
6 min. Each sample contains the radar echo input sequence of 10 moments in 1 h and the
radar echo target sequence of 20 moments in the next 2 h.

In order to verify the forecast performance of the TSGAN method on extreme convec-
tive rainfall, over 80,000 cases in 2021 every 6 min were analyzed. For the page limitation,
we only select the squall line process on 4 May 2021 and the typhoon process on 8 October
2021 as study cases for radar echo extrapolation forecasts visualization. Moreover, for
comparing the forecasting effectiveness of various methods, the results from the TSGAN
method are compared with those from the optical flow [4], ConvGRU [19], PredRNN [21]
and PredRNN V2 [21] methods, which are widely used in the existing operations. The
optical flow method employs the Lucas–Kanade algorithm to calculate the optical flow
and performs the extrapolation by using the semi-Lagrangian method. The ConvGRU,
PredRNN and PredRNN V2 are trained by using the official codes. All of the employed
methods should be evaluated by many aspects and multi-dimensions [31,32]. By comparing
the observed radar echo images, we perform a grid-by-grid test for the prediction accuracy
in this study. Additionally, the prediction ability at different radar reflectivity levels is
investigated according to the radar reflectivity factors of different intensities. Finally, the
critical success index (CSI) is used to evaluate the forecast results quantitatively.

The expression of the CSI is shown in Equation (6).

CSIk =
NAk

NAk + NBk + NCk
(6)

where NAk denotes the number of the correct grid points, NBk denotes the number of false
grid points, NCk denotes the number of missing grid points and k (k = 20 dBz, 30 dBz, 40 dBz
and 50 dBz) denotes the threshold value of the different intensities of radar reflectivity.
The validation method is adopted according to the forecast leading time and the threshold
value. The calculation is performed grid-by-grid, i.e., the predicted and observed values at
the same grid point are selected for testing and comparison (Table 1).

Table 1. The validation of the radar echo predictions at different reflectivity levels.

Obs

Pred ≥k <k

≥ k NAk NCk
< k NBk NDk
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As mentioned earlier, the results obtained by most extrapolation methods suffer from
blur, i.e., as the forecast leading time increases, the predicted echoes become more and
more blurred, and more details are lost. However, the TSGAN method proposed in this
study can recover the detailed information of the radar echoes to a certain extent. To enrich
spatial details that are characterized, two indicators, definition and spatial frequency, are
introduced in this study. The expression of the definition is as follows (Equation (7)).

De f inition =
1

(M − 1)(N − 1)

M

∑
i=1

N

∑
j=1

|I(i, j)− I(i, j − 1)|+|I(i, j)− I(i − 1, j)| (7)

The spatial frequency is defined by the frequency in both vertical and horizontal
directions. The frequency in the vertical direction is defined as follows (Equation (8)).

RF =

√√√√ 1
MN

M

∑
i=0

N−1

∑
j=1

[I(i, j)− I(i, j − 1)]2 (8)

The frequency in the horizontal direction is defined as follows (Equation (9)).

CF =

√√√√ 1
MN

M−1

∑
i=1

N

∑
j=0

[I(i, j)− I(i − 1, j)]2 (9)

Therefore, the overall spatial frequency can be expressed as Equation (10).

SF =
√

RF2 + CF2 (10)

4.1. Squall Line Process on 4 May 2021

On 4 May 2021, a squall line process swept across Guangdong Province, resulting in
extreme heavy rainfall in several areas. In this research, the initial forecast time is 16:00
China Standard Time (CST, same as below) on 4 May 2021, and the echoes for the next 2 h
are predicted. Figures 4–7 show the forecast results of this squall line process for the next
0.5 h, 1 h, 1.5 h and 2 h by using each method.

In terms of the overall trend, the difference between the forecast results of the optical
flow method and the observations is the largest, where the echo intensity and shape are
basically the same, while the difference in the spatial position is the largest among all
methods. The other four methods can better grasp the evolution trend of the echoes within
2 h and can also predict the position of the strong echoes. However, except for the TSGAN
method, the overall intensity predicted by all the methods decreases rapidly with increasing
forecast time. For the detail retained, the forecasts of both the optical flow method and the
TSGAN method can present richer detailed information, while those of the other methods
become more and more blurred as the forecast time increases. The details predicted by the
PredRNN V2 method are slightly better than those predicted by the PredRNN method, and
the results of the ConvGRU method are the most blurred. The TSGAN method can retain
richer detailed information, and its results do not become more blurred with increasing
forecast time.
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(a) (b) (c) 

(d) (e) (f) 

Figure 4. Nowcasting results of the squall line process for the next 0.5 h. (a) Observation; (b) Opti-
calflow; (c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.

(a) (b) (c) 

(d) (e) (f) 

Figure 5. Nowcasting results of the squall line process for the next 1 h. (a) Observation; (b) Opti-
calflow; (c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.
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(a) (b) (c) 

(d) (e) (f) 

Figure 6. Nowcasting results of the squall line process for the next 1.5 h. (a) Observation; (b) Opti-
calflow; (c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.

(a) (b) (c) 

(d) (e) (f) 

Figure 7. Nowcasting results of the squall line process for the next 2 h. (a) Observation; (b) Opti-
calflow; (c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.

Figures 8 and 9 present the objective assessment scoring results for each method
every 6 min over the 2 h period, and the labels of the horizontal axis are the prediction
leading times.
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(a) (b) 

 
(c) (d) 

Figure 8. The scores of the critical success index for the forecasts of the squall line process. (a) 20 dBZ;
(b) 30 dBZ; (c) 40 dBZ; (d) 50 dBZ.

 
(a) (b) 

Figure 9. The scores of the spatial details for the forecasts of the squall line process. (a) Definition;
(b) Spatial frequency.

The CSI scores suggest that the CSI values of all methods decrease with the increase
in the forecast time, indicating that the longer the forecast time is, the lower the forecast
accuracy is. The higher the radar reflectivity is, the more dramatic the CSI value of each
method decay is, which means that the longer the forecast time is, the more difficult it
is to predict strong echoes. Overall, the PredRNN V2 algorithm performs the best in all
reflectivity levels. The PredRNN and TSGAN methods have a little difference between each
other, followed by the ConvGRU method, and the optical flow method has the lowest CSI
value due to the large deviation in the predicted echo position. In terms of the high-intensity
echoes at the 50 dBZ level, the CSI values of the TSGAN and PredRNN V2 differ slightly.
The definition and spatial frequency indicators of the ConvGRU, PredRNN and PredRNN
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V2 methods all show a continuous decreasing trend with increasing forecast time, which is
consistent with the fact that their results become more and more blurred. However, for the
optical flow method and the TSGAN, the definition and spatial frequency indicators have
no obvious decreasing trend, and the definition and spatial frequency values of the TSGAN
are higher than those of the optical flow method. This finding indicates that the TSGAN
method has obvious advantages in retaining spatial details. Therefore, the comprehensive
analysis of the CSI and the spatial information indexes indicates that the TSGAN method
performs the best in predicting the squall line process.

4.2. Typhoon Lion Rock on 8 October 2021

On 8 October 2021, Typhoon Lion Rock was generated, and strong wind and rainfall
occurred in the east of Hainan Island and in the south of Guangdong. The precipitation
within 6 h in Shenzhen and Shanwei exceeded 80 mm. Furthermore, Shanwei experienced
short-term heavy rainfall from 10:00 to 11:00, and the hourly rain intensity reached 34.3 mm.
In addition, gusts of 17 m s−1 and above occurred in Qiongshan of Haikou City and
Mulantou of Wenchang City in Hainan Province and in Pinghu of Shenzhen City and
Jiuzhou Port of Zhuhai City in Guangdong Province. Figures 10–13 present the forecast
results of Typhoon Lion Rock. The initial forecast time is 06:00 on 8 October 2021, and the
leading time is 2 h, with an interval of 6 min.

(a) (b) (c) 

(d) (e) (f) 

Figure 10. Nowcasting results of the typhoon process for the next 0.5 h. (a) Observation; (b) Opti-
calflow; (c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.
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(a) (b) (c) 

(d) (e) (f) 

Figure 11. Nowcasting results of the typhoon process for the next 1 h. (a) Observation; (b) Opticalflow;
(c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.

(a) (b) (c) 

(d) (e) (f) 

Figure 12. Nowcasting results of the typhoon process for the next 1.5 h. (a) Observation; (b) Opti-
calflow; (c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.
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(a) (b) (c) 

(d) (e) (f) 

Figure 13. Nowcasting results of the typhoon process for the next 2 h. (a) Observation; (b) Opticalflow;
(c) ConvGRU; (d) PredRNN; (e) PredRNN V2; (f) TSGAN.

Overall, the forecast results of this typhoon case from each method can better display
the development trend of typhoon echoes, and the predicted position is similar to the actual
observation. Similar to the previous case on 4 May 2021, the ConvGRU, PredRNN and
PredRNN V2 methods still have the problem that as the forecast time increases, the forecast
results become more and more blurred, and the predicted radar intensity also weakens
considerably. The PredRNN V2 method improves the results of the PredRNN method in
detail but still has the problem of blur prediction results. Although the position predicted
by the optical flow method changes somewhat within 2 h, the predicted intensity remains
basically constant, resulting in strong echoes appearing in the east of Guangdong Province,
which is determined by the principle of the optical flow method itself. The forecast results
of the TSGAN method retain rich spatial details and are consistent with the observations in
intensity and spatial position.

The objective assessment results of the forecasts from each method are presented in
Figures 14 and 15. The labels of the horizontal axis are the prediction leading times of the
future 2 h every 6 min.

The results of the objective assessment indicators have a certain similarity with those of
the squall line process. Due to the accurate predicted location and shape of radar echoes, the
PredRNN V2, TSGAN and PredRNN methods show apparent advantages in the CSI scores.
The spatial location of the optical flow method is not satisfactory in terms of accuracy.
Thus, the CSI scores of the optical flow method are lower than those of the ConvGRU
method. The PredRNN V2 method has a noticeable improvement in detail compared with
the PredRNN method but still suffers from blur. In terms of definition and spatial frequency
indicators, similar to the case on 4 May 2021, the TSGAN and optical flow methods can
maintain stable spatial detail forecasts in each forecast time, while the other three methods
become more and more blurred with increasing forecast time, resulting in more detail
loss. In summary, the objective assessment suggests that the TSGAN method has certain
advantages in forecasting this typhoon process while retaining more spatial details.

71



Atmosphere 2022, 13, 1291

 
(a) (b) 

 
(c) (d) 

Figure 14. The scores of the critical success index for the forecasts of the typhoon process. (a) 20 dBZ;
(b) 30 dBZ; (c) 40 dBZ; (d) 50 dBZ.

  
(a) (b) 

Figure 15. The scores of the spatial details for the forecasts of the typhoon process. (a) Definition;
(b) Spatial frequency.

5. Conclusions

Currently, artificial intelligence forecasting methods based on weather radar data
generally suffer from the problem that, with the increase in forecast time, the forecast
results become increasingly blurred. In order to address this problem, an artificial intelli-
gent forecasting method based on the GAN is proposed in this study. The spatiotemporal
features of the radar echo sequence are extracted by three-dimensional convolution, and the
local receptive domain is enlarged by the dual-scale generator and multi-scale discriminant
network. Then, combining the attention mechanism and the training method of generative
confrontation, we proposed a TSGAN method that can effectively mitigate the common
problem suffered by artificial intelligence methods. The testing results of the two cases
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demonstrate that the TSGAN method can better predict the position and shape of radar
echoes while retaining rich spatial details. Although the TSGAN method shows distinct
advantages in predicting spatial details, the increase in spatial details does not necessarily
lead to an increase in the CSI score due to the comprehensiveness and grid-to-grid calcula-
tion method of the CSI. Therefore, in future studies, more types of weather processes will
be selected as test cases, and the idea of the spatial neighborhood will be introduced to
optimize the algorithm further, improving the operational application of the algorithm.
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Abstract: Wind speed is an important meteorological parameter, whose simulation is influenced
by various physical process parameterizations. However, the impact of cumulus parameterization
schemes (CPSs) on wind speed simulation at the climate scale has not been sufficiently investigated
in previous studies. Using the Advanced Research version of the Weather Research and Forecasting
model (ARWv3) and hydrostatic wind speed change equation, we assessed the effects of four CPSs on
a 10 m wind speed simulation over mainland China in the summer of 2003. In general, different CPSs
can reproduce the wind speed distribution. Meanwhile, the sensitivity of wind speed simulation to
CPSs was found to be the highest in East and southern China, followed by the Tibetan Plateau, and
then Northwest China. We found that the main physical processes influencing wind speed (i.e., the
pressure gradient (PRE), diffusion (DFN), and convection (CON) terms) vary greatly with sub-regions.
CPSs mainly affect the secondary CON that regulates the balance between the dominant terms PRE
and DFN, and also has a significant effect on PRE. For example, for CON, the difference index (DIF)
between the Kain–Fritsch (KF) and previous KF (pKF) CPSs is larger than 20%, corresponding to a PRE
DIF of about 14%. The term of local wind speed change (Vt) is significantly more sensitive to the CPSs
than the other terms with a DIF of 283% over the Tibetan Plateau, suggesting high CPS sensitivity
of the simulated wind speed. In addition, we explained the causes of the CPS-induced sensitivities.
This work helps understand the Weather Research and Forecasting model (WRF) performance and
emphasizes the importance of the CPS choice in simulating/forecasting wind speed.

Keywords: 10 m wind speed; cumulus parameterization schemes; sensitivity of physical processes;
WRF; mainland China

1. Introduction

As one of the key variables of meteorological fields, the simulation and prediction of
wind has been a goal of intensive research in various academic and industrial fields [1]. On
the one hand, changes in wind direction are important, especially in coastal areas where
they affect hydrodynamic factors such as waves and storm surges [2]. On the other hand,
the change and distribution of wind speed have a significant influence on the change in
the thermal structure of the boundary layer [3], surface fluxes [4], heat transfer, and mass
transport [5], and even the estimation of pollutants [6]. Therefore, the studies of the pro-
cesses affecting wind speed change and the sensitivity of wind speed simulation to different
physical schemes are of importance for reference to further understand atmospheric motion.
Meanwhile, from the perspective of society and economics, global warming leads to the
frequent occurrence of extreme weather (e.g., storms and typhoons), so the forecast of wind
speed is also extremely important to reduce economic losses and personal injury [7].
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To explore the factors affecting wind speed simulation, it is necessary to understand
the effects of atmospheric and land processes on wind speed. Previous studies on wind
speed have been mainly based on the direct momentum balance method, i.e., the surface
wind vector is determined by pressure gradient force, Coriolis force, gravity, and friction.
For example, using this method in a weather case, Van den Broeke and Van Lipzig [8]
suggested that large-scale pressure gradient forces controlled the momentum budget on
the near-surface and contributed the most to wind speed, while the Coriolis force and
gravity wave drag also affected wind speed. Horvath et al. [9] showed through a case
study in winter that local and regional thermally driven circulation could influence the air
mass through pressure gradient force within the pressure system, which was an important
part of wind speed formation. In addition, the effects of land surface properties and their
changes on wind speed cannot be ignored. For example, Wen et al. [10] studied the heat
circulation of an oasis in the Gobi desert, and their results showed that the changes in land
use types and land surface parameters could also change the land surface processes and
affect the lower atmosphere and boundary layer with the change in atmospheric circulation
situation, humidity, and temperature. Carvalho et al. [1] found that due to the limitation of
topographic data for the area with complex terrain, a worse simulation could be produced
by the WRF model. Lin et al. [11] studied the wind speed on the Qinghai–Tibet Plateau and
pointed out that global warming and cooling caused by atmospheric thermal adaptation
would greatly change the surface wind speed at the regional scale, and the surface wind
speed on the Qinghai–Tibet Plateau changed more than other regions in mainland China.
In addition, Zhang et al. [12] indicated that the pressure gradient force decreased when
the wind speed dropped over the Qinghai–Tibet Plateau in summer, mainly due to the
adjustment of atmospheric circulation. Zeng et al. [13] derived an equation affecting wind
speed change, and the simulation results showed that the Coriolis force had no effect on
wind speed, while the main physical processes affecting wind speed change were pressure
gradient force, convection and turbulence, and these physical processes showed large
differences with regional land perturbations, i.e., the simulation of these processes could be
very sensitive to the choice of land surface schemes.

As can be seen from previous simulations of wind speed, there have been many
influencing factors involved, among which the relationship between cumulus development
and the wind field cannot be ignored. Previous studies of cumulus parameterization
schemes (CPSs) were basically related to the study of precipitation, e.g., how cumulus
development can affect heavy rainfalls [14], while the influence of CPSs on wind speed
simulation has been rarely investigated [13,15]. Srinivas et al. [16] employed a mesoscale
model of ARWv3.2, and found that compared to cloud microphysics and boundary layer
schemes, the selection of cumulus convection parameterization schemes was more sensitive
to tropical cyclone intensity and path. Therefore, different CPSs had influences on the
simulation of surface wind speed to varying degrees. In fact, in addition to calculating
cloud water content, CPSs are also intended to consider the effects of unresolved deep and
shallow convective clouds, in which one of the main purposes is to calculate vertical fluxes
caused by subgrid updrafts and downdrafts, as well as corresponding horizontal motions to
compensate the change in vertical velocity, i.e., CPSs directly affect grid-scale wind speeds
in the model. For example, Asai [17] found that vertical wind shear tended to inhibit the
development of convection in the vertical plane parallel to the wind. Sui and Yanai [18]
estimated the influence of cumulus clouds on the rotating part of the large-scale momentum
field by using the vorticity balance residual, and found that cumulus clouds could slow
down the mean airflow, and in the lower troposphere, such deceleration tended to reduce
the vertical wind shear of the environment. The relationship between cumulus clouds and
wind fields is more complicated in summer when convection is frequent. Das et al. [19]
used different CPSs to simulate the Indian summer monsoon, showing that the simulation
of typical characteristics of the Indian summer monsoon was quietly different with different
schemes, among which the velocity potential and divergent winds obtained by Kuo-type
CPS simulation were weak. Using the obliquely rotated principal component analysis,
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Rao et al. [20] found that the summer topographic convection in China was controlled
not only by topographic thermal conditions but also by the dynamic force of increasing
wind speed in the mountainous area of the northeast Pearl River Delta. However, these
studies have seldom focused on CPS-induced effects on simulated wind speed on the
climate scales.

Therefore, the objective of this work is to assess the impact of CPSs on simulated
wind speed over mainland China on a seasonal scale. The summer of 2003 was a very
special season, during which extreme high temperature and rainstorm events occurred
in southern/eastern China [21,22]. In this paper, the sensitivity of simulated summer
wind speed to CPSs over typical underlying surfaces of different subregions of China (i.e.,
Northwest China, NW; East China, EC; and the Tibetan Plateau, TP) was evaluated, with
the summer of 2003 taken as the study period. The following section describes the model,
designed experiments, data, and relevant methods used in the study. Section 3 presents
simulation results, and a summary and discussion are given in Section 4.

2. Methodology and Data

2.1. Model and Experimental Design

This work is a continuation of Zeng et al. [13], who assessed the sensitivity of 10 m
wind speed to land surface schemes and the processes affecting wind speed in China
during the summer of 2003 using the third version of the Advanced Research WRF (ARWv3)
mesoscale model. In the summer of 2003, extremely heavy precipitation [21] and continuous
high-temperature weather [22] occurred in eastern China, and there was an overall slightly
positive anomaly of 10 m wind speed in mainland China (Figure 1b,c). The model selected
in this study is the ARWv3 [23]. The physical schemes used in all experiments were the
rapid radiative transfer model (RRTM) for long-wave radiation scheme, Dudhia short-wave
radiation scheme, the WRF single moment 5-class microphysics scheme (WSM5), Monin-
Obukhov near-surface scheme, Yonsei University (YSU) planetary boundary scheme, and
Noah land surface scheme [13].

It should be noted that as a continuation of the work on the impact of land surface
schemes (LSSs) on simulated wind speed by Zeng et al. (2018), the present study em-
ploys the same model and almost the same suite of model configurations, except for the
CPSs, and intends to compare the impact induced by LSSs with that by CPSs. Because
Zeng et al. (2018) had used four LSSs, correspondingly, for the sake of comparability, this
study uses the four widely-used CPSs as follows: (1) The Kain–Fritsch (new Eta) scheme
(KF hereafter; [24]) is an adjustment of the old Kain–Fritsch scheme in the Eta model. Its
closure hypothesis is consistent with that of the old KF scheme, and the simple cloud
model with water vapor rising and sinking is used to consider the role of entrainments and
detrainments with relatively rough microphysical processes. In addition, the scheme in-
hibits large-scale convections in both marginal unstable and dry environments [25]. (2) The
Betts–Miller–Janjic scheme (BMJ hereafter; [26]) is an adjusted and improved Betts–Miller
scheme; the thermodynamic profile is relaxed at a given time, and the convective mass flux
can consume a certain amount of effective buoyancy. Furthermore, the scheme considers
the role of both deep and shallow convection processes. (3) The Grell–Devenyi ensem-
ble scheme (Grell hereafter; [27]) is characterized by a parameterization framework of a
simple scheme based on a previous convective parameterization, and this simple scheme
was expanded to allow for a series of different assumptions that are commonly used in
convective parameterizations with large sensitivity in model simulations, in which values
for the assumed parameters are perturbed to obtain the ensemble scheme. (4) The previ-
ous Kain–Fritsch (pKF hereafter; [25]) is a one-dimensional entraining/detraining plume
model for cumulus clouds, which is characterized by its representation of environmental
entrainment and updraft detrainment rates, e.g., the mass exchange between clouds and
their environment is regulated at model levels by a buoyancy sorting mechanism.
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(a) (b)

(c) (d)

Figure 1. The studied domain and its 10 m wind speed distributions. (a) The terrain of the simulation
domain (unit: m) and distribution of the studied sub-regions (i.e., Northwest China, NW; East China,
EC; and the Tibetan Plateau, TP); (b) the distribution of the wind speed anomaly during the summer
of 2003 (units: m s−1); (c) the distribution of the wind speed anomaly in percentage in the summer
(unit: %); (d) the seasonal mean wind speed of FNL analysis [13].

As in Zeng et al. [13], the simulation domain of in this study is centered at (37◦ N,
103◦ E) for mainland China. The total number of grids in the study area is 144 × 116 with
horizontal and vertical resolutions of 40 km and 28 levels, and the top pressure of the model
is 50 hPa. This area includes three sub-regions (Figure 1a) with typical and contrastive land
surface features: NW (arid and semi-arid areas with a large topographic variability), EC
(subtropical humid and temperate monsoon climate with high vegetation coverage and flat
terrain), and TP (cold climate with high altitudes). The simulation period of all experiments
was from 1 May 2003 to 1 September 2003, and the integral time step was 180 s. In order
to make the simulation results more robust, here we conducted 12-ensemble experiments,
with a small disturbance (i.e., at a 6-h interval) of the starting time of each experiment, i.e.,
0000 UTC on 1 May 2003 to 1800 UTC on 3 May 2003 as the initial time of each ensemble. In
the consecutive four-month tests, we took the first month as the model spin-up time, and
used the simulation results of the ensemble simulation tests in June, July and August to
conduct seasonal scale analysis. It should be noted here that we will use the names of CPSs
(i.e., KF, BMJ, Grell, and pKF) to represent the ensemble averages of the simulations of the
corresponding CPSs. Due to all experiments adopting the same physical parameterization
schemes and the same simulation area and time period (i.e., June–August), the differences
in simulation results were caused by the differences among the CPSs.

2.2. The Data

The ARW modeling system includes a number of datasets for default options or
for users’ selection, e.g., the present study employs a background albedo dataset and a
dataset for vegetation indices based on the Moderate Resolution Imaging Spectroradiometer
(MODIS) data, and a United States Geological Survey 10 min resolution topography dataset.
Following Zeng et al. [13], the FINAL (FNL) 1◦ × 1◦ analysis data with a 6 hourly interval
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provided by the National Centers for Environmental Prediction (NCEP) were used for the
initial fields, boundary conditions and validation data for simulation results. The NCEP
Climate Forecast System Reanalysis (CFSR) monthly average data with a resolution of 0.5◦
× 0.5◦ were used in the anomaly distribution of summer wind speed in 2003 relative to the
summer average over the last 30 years (Figure 1b,c).

2.3. Wind Speed Change Equation

Zeng et al. [13] derived the equation for full wind speed (other than wind components),
which can be expressed as

Vt = ADV + PRE + CON + DFN, (1)

where the 4 terms ADV, PRE, CON and DFN indicate the influences on local full wind
speed change Vt, by advection, pressure gradient force, convection, and turbulent diffusion,
respectively, where

ADV = −
∫
t

(u
∂V
∂x

+ v
∂V
∂y

)dt, (2)

PRE = −
∫
t

1
V
(αu

∂p
∂x

+ αv
∂p
∂y

+ u
∂Φ
∂x

+ v
∂Φ
∂y

)
dt, (3)

CON = −
∫ ·

σ
∂V
∂σ

dt, (4)

DFN =
∫
t

V · F
V

dt, (5)

where u and v are zonal and meridional wind speed components, respectively. V and V are
the wind vector and full wind speed (V =

√
u2 + v2), respectively, p is pressure,

·
σ is the

vertical velocity of the coordinate system, α is the specific volume, Φ is the geopotential, and
F is the friction. For the above formulas, Vt, ADV, PRE, and CON can be calculated directly
through the model outputs, then DFN can be calculated using Equation (1), and therefore
the relative contribution of each factor/term to the wind speed change can be investigated.

Compared with the traditional momentum balance equation, the advantage of Equa-
tion (1) is that it is a variant of the prognostic equation for full wind speed, and can give
exact quantitative results of the physical processes that affect the full wind speed, in which
the influence of the Coriolis force on full wind speed is reasonably excluded although it
must be considered for wind speed components [13].

By selecting different CPSs, the terms in Equations (1)–(5) can be affected in the follow-
ing two ways. First, the CPSs can affect the thermodynamic structure of the atmosphere.
The CPS-related processes of clouds and precipitation can directly heat the air mass, which
changes the air density and also leads to modifications of geostrophic winds and hydro-
static stability in the horizontal and vertical directions, respectively, i.e., the terms of ADV,
PRE, and CON, which are, respectively, associated with the wind, temperature (or air den-
sity), and stability, can be altered. Furthermore, when precipitation is received at the land
surface, the surface energy balance is affected, which also results in a change in hydrostatic
stability at the land surface. All of the stability changes would lead to changes in convective
activities. Second, the CPSs can affect the dynamic structure of the atmosphere. Affected
by cumulus entraining/detraining processes at the subgrid scale, the environmental wind
field would be changed for compensation, which further causes the grid-cell averaged
change of wind at different heights and can further result in wind shear-related turbulence,
i.e., DFN can be altered.

2.4. Measures for Assessment

In order to quantitatively compare the consistency between simulation results and NCEP
analysis data and investigate the differences among the CPSs, following Zeng et al. [13],
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several measures were used for the assessment, i.e., the seasonal mean bias of simulations
and reference data (BIAS), the standard deviation (STD; STDM and STDO are for simulations
and reference data, respectively), the spatial correlation coefficient (CRMO), and the difference
index (DIF) of simulated processes affecting the wind speed in different CPSs, which are
computed as follows:

BIAS = M − O, (6)

STDM =

√√√√ 1
N

N

∑
i=1

(
Mi − M

)2

, (7)

STDO =

√√√√ 1
N

N

∑
i=1

(
Oi − O

)2

, (8)

CRMO =

N
∑

i=1
(Mi − M)(Oi − O)√

N
∑

i=1
(Mi − M)

2
√

N
∑

i=1
(Oi − O)

2
, (9)

DIF =
Tk1 − Tk2

1
km

km
∑

k=1

∣∣Tk
∣∣ × 100%, k1 �= k2, k1 < km, k2 < km, (10)

where N is the number of grid points involved in the assessment within a region, M and O
represent the simulated and observed values of a quantity, respectively, km is the number of
the CPSs (4 in this case) for the difference index DIF, Tk is the regional mean value of a term
for a certain physical process in Equation (1) from the CPS as labeled by k. DIF indicates
the relative differences in the simulations between the different schemes.

3. Simulated Results

Because the same initial and boundary conditions and almost the same physical
options were used in this study, in this section we focus on the CPS-induced differences
of the 10 m full wind speed simulations in terms of the 12-member ensemble summer
mean results.

3.1. The 10 m Wind Speed
3.1.1. Spatial Distributions

Figure 2 presents the spatial distributions of the seasonal average 10 m surface wind
speed simulated by different CPSs. It can be found that except for southeastern mainland
China, the CPSs generally well produced the wind speed distributions over almost the
entire study domain as compared with the reference FNL data (e.g., Figure 1d vs. Figure 2a).
Specifically, with a quite high simulation–reference correlation over the land portion of
the study domain (Table 1), the general characteristics of wind speed were successfully
simulated by the WRF model, e.g., the low values over the area north of 50◦ N and over
the Indochina peninsula, and high values over North China, Northwest China, the Tibetan
Plateau, and the surrounding oceans, showing a larger part of the study domain with
simulated wind consistent with the reference data. Relatively, the area with values quite
different from/higher than the reference data is small (i.e., over southern China and part of
North China).

80



Atmosphere 2022, 13, 617

Figure 2. Ensemble mean seasonal spatial distributions of the 10 m wind speed in the CPS simulations
(units: m s−1), where grid cells are marked with grey dots for significant differences at the 0.10
significance level.
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Table 1. Ensemble seasonal mean correlation coefficients (CRMO) for Northwest China (NW), East
China (EC), the Tibetan Plateau (TP), and the land portion of the model domain (ALL).

Scheme NW EC TP ALL

BMJ 0.31 0.80 0.31 0.69
KF 0.31 0.75 0.28 0.71

Grell 0.24 0.74 0.42 0.72
pKF 0.33 0.77 0.39 0.76

The wind field distributions by the CPSs appear to be close to each other due to
the same initial and boundary conditions, and almost the same physical options as well.
Overall, the CPSs tend to moderate the wind speed, i.e., the simulated wind speed is shown
to be higher in the reference low wind speed zone and lower in the reference high wind
speed zone (Figure 1d, Figure 2a–d). For the three subregions, the simulated wind speeds
of the four CPSs decrease from west to east in TP, are larger in the north of NW than in the
south, and decrease from southwest to northeast in EC.

However, a closer comparison would lead to clearer and larger differences among the
CPSs. It can be seen more clearly from the CPS-induced different fields (Figure 2e–j) that
the differences in simulated wind speed between different CPSs are relatively smaller in
northern China and larger in southern China. For example, large KF–BMJ differences with
absolute values of more than 0.3 m s−1 (Figure 2e) mainly exist in South China, and also
a similar amplitude of the BMJ-pKF differences can be observed in the TP, South China,
and the EC area around the Shandong Peninsula. This is mainly due to the fact that in
the summer, the area of South/East China is a wind convergence region of the East Asian
monsoon zone, where prevailing northwesterly wind from Siberia is relatively cold and
dry in contrast with the warm and moist southwesterly wind from the Indian Ocean [28].
These two types of contrastive winds converge with approximately the same strength, and
therefore fronts are formed which lead to the updrafts in the front zones and favor the
release of the convective available potential energy; as a result, a large number of convective
activities occur in South/East China. For the TP, the summer climate is controlled by the
thermal low, which further brings the biggest portion of convective activities and hence
precipitation of the year. All of these suggest that the above areas can be most affected by the
CPSs. In addition, the CPS differences can enlarge the differences in simulated wind speed.
For example, the pKF scheme is a mass flux parameterization using the Lagrangian parcel
method to estimate whether instability exists, whether existing instability can become
available for cloud growth, and what the properties of convective clouds could be. In
contrast, the KF CPS considers a set of parameterizations including the convective trigger
function, the mass flux formulation, and the closure assumptions [24], which makes it
very different from pKF in simulating wind speed, e.g., KF presents significantly different
wind speed compared with pKF in EC and the TP, with differences as large as about
0.3 m s−1 (Figure 2i). In addition, the Grell CPS makes use of a large variety of assumptions
previously introduced in earlier formulations, with the assumptions generating a large
spread in the solution for the ensemble scheme [27], which makes the CPS very unique as
compared to a single scheme such as the other CPSs in the present study. As a result, the
Grell–BMJ difference is apparently large in southern China (Figure 2f).

Correspondingly, the Student’s t-test results at the 0.10 significance level [29] show
that there is a quite large total area with significant differences, mostly in the southeast of
mainland China. This further confirms that wind speed simulation is sensitive to the CPSs
in areas with high convective precipitation. At the same time, there are some differences in
the results of these CPS-produced simulations, e.g., the BMJ-pKF, KF-pKF and Grell-pKF
differences are mainly distributed in the southeast of mainland China, while the total area
with significant differences between KF and Grell is small, which is consistent with the
above-mentioned results.
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3.1.2. Assessment Results

Figure 3a shows the BIAS of the average seasonal wind speed simulated by different
CPSs in the total area and each subregion. It can be seen that the wind speed values of
the total area and subregions simulated by the four CPSs are similar to those of different
land surface schemes [13]. For example, for simulated wind speeds of the total area, NW
and EC are higher than the reference, while the TP value is lower. This result is closely
associated with the distributions of simulated surface air temperatures. Generally, the
model produced higher surface air temperatures over different parts of mainland China
except for the TP (not shown). This means that the CPSs produced low-level stratifications
that were more stable than they should have been over the TP, which does not favor the
downward momentum transport and results in a lower wind speed in the TP. Similarly,
simulated wind speed for subregions other than the TP is higher.
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Figure 3. Ensemble seasonal mean wind speed results of BIAS (a) and STDM minus the STDo (b) for
each sub-region, where the regional means of wind speed from reference FNL data for NW, EC, TP,
and ALL (land portion of the model domain) are 3.83, 2.42, 4.61, 3.58 m s−1, respectively [13]. The
FNL data are available at: https://rda.ucar.edu/datasets/ds083.2 (accessed on 24 February 2022).

In terms of BIAS, the CPSs present an overall higher wind speed for the total area (with
the BIASs less than 0.50 m s−1) while sub-regions might show different results, e.g., the
BIAS of East China is much larger, and there exists a negative BIAS in the TP. In addition,
wind speed in NW (EC) is the best (worst) simulated among the sub-regions, which is
consistent with the above-mentioned results of wind speed distributions, e.g., there are
much higher wind speed values in EC compared with the reference data (Figure 2 vs.
Figure 1d).

The sensitivities of simulated wind speed to CPSs vary in different sub-regions. For
example, although CPS-induced BIAS differences are relatively small for EC, while for NW,
TP, and the total area, the differences can be much larger between the least and the largest,
e.g., compared with the Grell BIAS of about −0.40 m s−1, the amplitude of the pKF BIAS is
approximately 50% larger for the TP, and for the total area, the BIAS differences also show
the largest amplitude change of 70% as compared to the pKF BIAS of 0.30 m s−1 with the
BMJ BIAS of 0.50 m s−1.

Figure 3b shows the CPS-induced difference between STDM and STDO for the seasonal
wind speed in the total area and sub-regions. Obviously, among the study sub-regions,
the difference amplitude of the four schemes in EC is the smallest (less than 0.05 m s−1),
while the difference amplitude in NW is the largest (around −0.4 m s−1), showing that
although for different sub-regions simulated spatial variability is quite different with small
CPS-induced changes, the CPS-induced changes for the total area are very large, e.g., the
STDM -STDO difference amplitude by BMJ is 60% larger than that by KF.

It is noteworthy that in Figure 3b, the fluctuations of wind speeds are all smaller
than the reference data. Possible reasons for this result are as follows. (1) Some influences
of land surface heterogeneity are probably missing from the simulation. The subgrid
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heterogeneity could induce modifications of grid-scale changes in surface variables such
as wind speed. For example, microscopic topography could dynamically change the
atmospheric flow [30], subgrid variations in the surface moisture could thermally induce
mesoscale circulations [31], and all of these could lead to grid-scale changes [32]. (2) The
model has some deficiencies in simulating the wind speed, e.g., the simulated temperature
fields were not well simulated, which would affect vertical momentum transport and then
wind speed (as stated above). (3) Models are generally difficult to reproduce extremes of
observations, suggesting that they tend to give moderate results compared to observations.

In addition, Table 1 lists the correlation (CRMO) values by the CPSs for the sub-regions.
Overall, the CPSs present wind speed patterns quite consistent with the reference (i.e.,
the CRMO values are approximately 0.7). However, the values differ from sub-regions
greatly, and moreover, large CPS-induced CRMO difference can be seen, e.g., the KF–Grell
difference amounts to up to 0.14 for the TP.

In general, the assessment measures show that the simulated wind speed is sensitive
to the CPSs with different sub-regional characteristics, suggesting that the CPS choice or
improvement is important for seasonal wind speed simulations or forecasts. Meanwhile, it
is worth noting that the CPS-induced sensitivity is less than that induced by land surface
schemes [13].

3.2. Processes Affecting Wind Speed Change

According to the summer mean integral results of Vt, ADV, PRE, CON, and DFN
(Table 2), the main processes affecting the wind speed changes are PRE, DFN, and CON,
and the effects of PRE and DFN are much larger than that of CON, having a positive and a
negative contribution to wind speed, respectively, which is consistent with Zeng et al. [13].
Meanwhile, due to the influence of climate characteristics, there are certain differences
in the factors affecting wind speed variation in different subregions. For subregion NW,
PRE and DFN of KF have the greatest impacts among those of the CPSs, with both mean
integral values of five and four times as large as that of CON, respectively, while PRE and
DFN of the other schemes are also 3–5 times higher than CON. For EC, the absolute values
of the mean integral PRE and DFN are the largest by BMJ, which are about three and four
times larger than that of CON, respectively, but the signs of PRE and DFN are opposite
(i.e., they have opposite effects on wind speed change). For the TP, a striking feature of
CON appears: the CON contribution to the wind speed change is negative (i.e., the weak
updraft formed by the thermal low pressure in summer restrained downward momentum
transfer), which is the opposite of the facts observed for EC and NW. In addition, the
integral means of PRE and DFN by Grell are the largest for the TP, reaching 12 and 11 times
that of CON, respectively.

Table 2. Different CPS-ensemble area-averaged summer mean integral results of the five terms in
Equation (1) (units: m s−1).

V t ADV PRE CON DFN

NW EC TP NW EC TP NW EC TP NW EC TP NW EC TP

KF −0.99 −0.13 −0.26 57.37 31.52 17.91
4.27
×

103

2.77
×

103

1.72
×

104

1.01
×

103

8.47
×

102

−1.43
×

103

−5.34
×

103

−3.65
×

103

−1.58
×

104

BMJ −1.52 −0.09 −0.53 64.27 24.17 8.07
4.30
×

103

2.62
×

103

1.88
×

104

1.04
×

103

8.83
×

102

−2.45
×

103

−5.40
×

103

−3.53
×

103

−1.64
×

104

Grell −1.33 0.18 −0.21 56.96 30.91 13.46
4.19
×

103

2.54
×

103

1.89
×

104

1.06
×

103

8.94
×

102

−1.26
×

103

−5.31
×

103

−3.46
×

103

−1.77
×

104

pKF −1.51 −0.35 −0.65 53.69 36.94 11.05
3.72
×

103

2.43
×

103

1.68
×

104

1.27
×

103

9.22
×

102

−9.91
×

102

−5.04
×

103

−3.39
×

103

−1.59
×

104
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As can be seen from the difference index DIF of the terms in Equation (1) simulated
by different CPSs (Table 3), the least term Vt is much more sensitive to CPSs than the
other terms. Among them, the Vt DIF values in NW are less than 40%, while the DIF
by pKF and Grell in EC and TP can reach 283% and 106%, respectively. Except Vt, the
sensitivities of the other terms to CPSs are complicated. For example, CON is most sensitive
to CPSs in NW, with a maximum DIF of 24%, while DFN is the least sensitive. For EC, the
sensitivity of each term to CPSs is the lowest among the three sub-regions, with absolute
DIF values within 13%. For the TP, CON has the largest effect (corresponding to a maximum
DIF amplitude of −95%), followed by ADV, while the DIF maxima of PRE and DFN are
lower than 12%. Compared with the sub-regions of EC and NW that show moderate
CPS-induced sensitivities in the three major terms (i.e., PRE, DFN, and CON), the TP
displays an apparently higher sensitivity, e.g., the DIF between KF and pKF can reach 95%
for CON, suggesting that the influence of CPSs on wind speed processes varies greatly
with sub-regions. For the overall wind speed change, it suggests that the CPS-induced
influence on Vt is great in EC, probably due to frequent convective activities in the summer
monsoon; for an even higher CPS-induced influence on Vt in the TP, the high topographic
elevations that lead to a thin troposphere in this area could be a main cause.

Table 3. The difference index (DIF) in different CPS-ensemble area-averaged summer mean integral
results of the five terms in Equation (1) for the sub-regions, corresponding to the value of the vertical
CPS minus the one of the horizontal CPS (unit: %).

V t ADV PRE CON DFN

BMJ Grell pKF BMJ Grell pKF BMJ Grell pKF BMJ Grell pKF BMJ Grell pKF

NW
KF 40 25 39 −12 1 6 −1 2 14 −3 −5 −24 1 −1 −6

BMJ - −14 −1 - 13 18 - 3 14 - −2 −21 - −2 −7
Grell - - 14 - - 6 - - 12 - - −19 - - −5

EC
KF −25 −168 115 6 0 −4 6 9 13 −4 −5 −8 −3 −5 −8

BMJ - −143 140 - −5 −10 - 3 8 - −1 −4 - −2 −4
Grell - - 283 - - −5 - - 4 - - −3 - - −2

TP
KF 66 −11 95 78 35 54 −9 −10 2 67 −11 −28 3 12 0

BMJ - −77 29 - −43 −24 - −1 11 - −77 −95 - 8 −3
Grell - - 106 - - 19 - - 12 - - −18 - - −11

3.3. Associated Boundary-Layer Parameters
3.3.1. Near-Surface Fluxes

The change in convective activities can affect the change in surface energy fluxes, while
the change in surface sensible and latent heat fluxes will affect the convective processes
and wind speed through energy transfer and release in the vertical direction with land
surface disturbances. Figure 4 shows the average sensible and latent heat fluxes simulated
by different CPSs. It can be seen that although CPS-induced sensible and latent heat flux
differences are relatively small over most of mainland China, the largest differences still
exist in EC (e.g., with an amplitude of over 20 w m−2; Figure 4c,g), which is consistent with
the above-mentioned result that over this area, simulated convective activities are affected
by the CPSs to quite an extent.
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 (b) Mean BMJ-KF SHF Difference 

 (c) Mean BMJ-Grell SHF Difference  (d) Mean BMJ-pKF SHF Difference 

 (e) BMJ seasonal mean LHF  (f) Mean BMJ-KF LHF Difference 

 (g) Mean BMJ-Grell LHF Difference  (h) Mean BMJ-pKF LHF Difference 

 (a) BMJ seasonal mean SHF 

Figure 4. Ensemble seasonal mean distributions of sensible heat flux (SHF), latent heat flux (LHF),
and their differences (units: W m−2).

By comparing the difference field of wind speed with that of sensible/latent heat
flux, there appears no clear correlation. This suggests that the CPS-induced sensitivities
are complicated. Although the land surface plays an important role in modifying 10 m
wind speed [13], the changes in surface fluxes are probably less important in CPS-induced
changes in wind speed compared with the changes in the interior atmosphere.

3.3.2. Atmospheric Boundary Layer Stability

On the weather scale, different CPSs can influence simulated momentum exchange by
influencing the stability of the simulated atmospheric boundary layer, i.e., the stability of the
atmospheric boundary layer can be affected by the energy release in the convective process,
which will lead to a difference in the momentum exchange between the upper and lower
levels and thus affect the wind speed [1]. Figure 5 shows the CPS-produced seasonally
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average Richardson number (Ri), which can be used as a measure for atmospheric boundary
layer stability. On the whole, similar to the simulation by different land surface schemes that
presented the vertical distributions of atmospheric stability in the three sub-regions [13], it
can be also concluded that the CPS-produced instability layer over the TP is the thickest,
followed by NW and EC (e.g., Figure 5d). Consistent with the above-mentioned results for
the sub-regions, the Ri for NW is not sensitive to the CPSs, while the TP shows the highest
sensitivity, e.g., there is a quite large Ri difference between Grell and pKF (Figure 5c),
corresponding to the highest sensitivity of CON to the CPSs, as addressed in Section 3.2. In
addition, Grell produces a more unstable boundary layer than pKF does, which favors the
downward momentum transfer, further strengthens the 10 m wind speed, and results in a
higher Grell wind speed compared to pKF (Figure 2j). Note that the simulated wind speed
sensitivity for the TP is not the highest of the CPSs., i.e., the DIF of Vt for the TP is not
the largest among the sub-regions (Table 3). The reason for this complexity is that vertical
momentum transfer is a result of convection (i.e., CON), while there are other important
processes responsible for wind speed change (e.g., PRE).

(a) NW Ri (b) EC Ri

(c) TP Ri (d) BMJ Ri
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Figure 5. Ensemble seasonal mean Richardson number (Ri) in the selected atmospheric boundary
layer in the three sub-regions, where Layers 1–8 are approximately 10, 30, 100, 200, 320, 470, 600, and
900 m above ground level, respectively, with Ri =

gΔθΔz
θ[(ΔU)

2
+(ΔV)

2
]
, where Δθ represents the potential

temperature difference between the top and bottom of the atmospheric layer, Δz the thickness of the
layer, θ the mean potential temperature, and ΔU (ΔV) the zonal (meridional) wind speed difference
between the top and bottom of the atmospheric layer [33]. (a) The four CPS ensembles for NW;
(b) same as (a) but for EC; (c) same as (a) but for the TP; (d) the BMJ ensemble for the three sub-regions.

4. Summary and Discussion

In order to investigate the sensitivity of simulated wind speed and its influencing
processes to the CPS choice, we selected four CPSs (KF, BMJ, Grell, and pKF) as employed
in the mesoscale model WRFv3 to separately conduct ensemble simulations for the summer
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of 2003 in mainland China. Using the wind speed change equation under the hydrostatic
condition, we calculated the four physical terms responsible for the wind speed change
(Vt), i.e., the terms induced by advection (ADV), pressure gradient force (PRE), convection
(CON), and turbulent diffusion (DFN), and quantified the relative importance of influencing
processes and analyzed their sensitivities to the CPSs. The main results and conclusions
are as follows:

(1) By and large, different CPSs can reproduce 10 m wind speed over mainland China,
which is also indicated by the simulation–reference correlation efficiency of approx-
imately 0.70. Previous studies of CPSs were basically associated with precipita-
tion [14], while this result indicates an overall performance of simulating wind speed
by the CPSs.

(2) In comparison to the CPS ensembles, the largest simulated difference is generally
found between Grell and pKF. Although the CPS choice does not greatly modify the
simulated wind speed, sub-regions of mainland China show quite a large CPS-induced
impact on wind speed. It can be seen that northern China is relatively unaffected
by the CPSs, but southern China, East China, and the Tibetan Plateau are affected to
quite large extents, as is confirmed by Student’s t-tests. These high sensitivities are
associated with the frequent convective activities in the summer monsoon (e.g., over
East China) and a relatively thin troposphere (i.e., over the Tibetan Plateau). Because
the influence of CPSs on wind speed simulation has been rarely investigated on a
climate scale [13,15], these results clearly indicate where the simulated wind speed is
greatly affected in mainland China on the summer scale, and the mechanisms have
been revealed.

(3) Among the terms of influencing processes, CON is most affected by the CPSs, followed
by PRE and DFN, corresponding to CPS-induced DIF values of 95%, 14%, and 12%
for the sub-regions, respectively. ADV is a secondary term for contribution to Vt, with
the latter having a large DIF value of 283% for East China. Previous works seldom
showed the CPS-induced impacts on complete influencing processes [14]; this study
presents the impacts of the turbulence effect (DFN) and revealed that they cannot be
conventionally quantified.

(4) The results of the related boundary layer parameters can demonstrate the CPS-induced
impact on simulated wind speed, in which surface fluxes do not show clear corre-
lations with wind change while the Richardson number does. This suggests that
compared with the CPS-induced changes in wind speed in the interior atmosphere,
the CPS-induced changes of surface fluxes are less important. This work makes an in-
cremental advance in wind speed study based on the LSS-induced impact [13], empha-
sizing the importance of the atmospheric process rather than land surface processes.

Because CPSs are closely associated with precipitation simulations, it is expected
that there is a correlation between simulated precipitation and wind speed as induced
by the CPSs. We found that simulated precipitation is sensitive to the CPSs over the
selected subregions, especially over EC (not shown). However, the precipitation–wind
speed correlation is complicated. On the one hand, higher precipitation generally means
more frequent convective activities that would strengthen surface wind speed by stronger
downward momentum transport. On the other hand, precipitation-related surface cooling
would strengthen the low-level stable stratification and then restrain downward momentum
transport. All of these are likely to lead to opposite results (not shown), i.e., that no definite
correlation between CPS-induced precipitation and wind speed can be validated.

It is noteworthy that this work is a case study focusing on the quantitative assessment
of physical processes affecting summer wind speeds and their sensitivities to CPSs with a
regional climate model. Due to the complexity of the CPSs, the differences in the physical
parametrizations of the specific CPSs have not been discussed here. As addressed in
previous studies [1,13], the coupled-model simulation reflects not only the performance of a
single scheme that is coupled to the model, but also the overall performance of the modeling
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system, which suggests that this CPS evaluation is of significance to our understanding of
the CPS performance and improving the model to simulate the summer wind speed.
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Abstract: In this study, the applicability of three gridded datasets was evaluated (Climatic Research
Unit (CRU) Time Series (TS) 3.1, “Asian Precipitation—Highly Resolved Observational Data Inte-
gration Toward the Evaluation of Water Resources” (APHRODITE)_V1101, and the climate forecast
system reanalysis dataset (CFSR)) in different combinations against observational data for predicting
the hydrology of the Upper Vakhsh River Basin (UVRB) in Central Asia. Water balance compo-
nents were computed, the results calibrated with the SUFI-2 approach using the calibration of soil
and water assessment tool models (SWAT–CUP) program, and the performance of the model was
evaluated. Streamflow simulation using the SWAT model in the UVRB was more sensitive to five
parameters (ALPHA_BF, SOL_BD, CN2, CH_K2, and RCHRG_DP). The simulation for calibration,
validation, and overall scales showed an acceptable correlation between the observed and simu-
lated monthly streamflow for all combination datasets. The coefficient of determination (R2) and
Nash–Sutcliffe efficiency (NSE) showed “excellent” and “good” values for all datasets. Based on
the R2 and NSE from the “excellent” down to “good” datasets, the values were 0.91 and 0.92 us-
ing the observational datasets, CRU TS3.1 (0.90 and 0.90), APHRODITE_V1101+CRU TS3.1 (0.74
and 0.76), APHRODITE_V1101+CFSR (0.72 and 0.78), and CFSR (0.67 and 0.74) for the overall
scale (1982–2006). The mean annual evapotranspiration values from the UVRB were about 9.93%
(APHRODITE_V1101+CFSR), 25.52% (APHRODITE_V1101+CRU TS3.1), 2.9% (CFSR), 21.08% (CRU
TS3.1), and 27.28% (observational datasets) of annual precipitation (186.3 mm, 315.7 mm, 72.1 mm,
256.4 mm, and 299.7 mm, out of 1875.9 mm, 1236.9 mm, 2479 mm, 1215.9 mm, and 1098.5 mm). The
contributions of the snowmelt to annual runoff were about 81.06% (APHRODITE_V1101+CFSR),
63.12% (APHRODITE_V1101+CRU TS3.1), 82.79% (CFSR), 81.66% (CRU TS3.1), and 67.67% (ob-
servational datasets), and the contributions of rain to the annual flow were about 18.94%, 36.88%,
17.21%, 18.34%, and 32.33%, respectively, for the overall scale. We found that gridded climate datasets
can be used as an alternative source for hydrological modeling in the Upper Vakhsh River Basin in
Central Asia, especially in scarce-observation regions. Water balance components, simulated by the
SWAT model, provided a baseline understanding of the hydrological processes through which water
management issues can be dealt with in the basin.
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1. Introduction

Watershed-based hydrological models provide a practical approach to evaluating the
water cycle’s components, particularly snowmelt’s contribution to river flow [1,2]. One of
the challenges in mountainous regions when modeling watershed hydrology and evaluat-
ing water balance components is obtaining weather input data, which are generally among
the most essential drivers of watershed models [3]. Unfortunately, observational climate
stations are often sparsely located and thus cannot characterize the climate conditions
throughout a catchment, particularly if large hydroclimatic gradients exist. Additionally,
climate station measurements often do not cover the proposed modeling period, and there
may be gaps in the records. In order to solve this issue, the investigation of alternative
climate data is essential in mountainous areas.

The applicability of the climate forecast system reanalysis (CFSR), “Asian Precipitation—
Highly Resolved Observational Data Integration Toward the Evaluation of Water Re-
sources” (APHRODITE), and Climatic Research Unit (CRU) datasets for hydrological
models in water balance components analysis has not been investigated thus far in the
UVRB. Similarly, previous studies on the applicability of models to estimate hydrological
components in the highlands of Tajikistan (UVRB) in Central Asia have not been conducted.
Various hydrological models at the watershed scale have been used for the estimation of
water cycle components, including the Hydrologic Engineering Center hydrologic mod-
eling system [4], MIKE SHE [5], the soil and water assessment tool [6], the hydrologic
simulation program Fortran [7], and the snowmelt runoff model [2]. The SWAT model is
internationally recognized as a robust hydrological model and is widely used, including in
several basins that have snowmelt-dominated streamflow [8–14].

Previous research indicated that the SWAT model is a common tool to assess the water
balance components of watersheds. Combinations of CFSR datasets with the SWAT model
and observational datasets with the SWAT model were applied to different watersheds
in the Blue Nile Basin in Ethiopia to assess water-balance components, particularly ac-
tual evapotranspiration [15]. In most cases, CFSR weather simulations gave similar or
lower evaluations than those obtained when using in situ observations in model inputs.
Independent observation datasets and CFSR were used in the SWAT model to estimate
water-balance components in the Melka Kuntur watershed in Ethiopia [16]. Analysis of the
mean annual water balance demonstrated that higher values of water-balance components
were acquired when applying the CFSR datasets to the Melka Kuntur watershed. This may
be associated with the relatively high total precipitation in the CFSR dataset for the Melka
Kuntur watershed [16]. Adeogun et al. noted that the SWAT model could be a promising
tool for predicting water balance and water output for sustainable water management in
Nigeria [17]. Gupta et al. noted that SWAT is a powerful tool that very effectively evaluated
the hydrological components in a study of water balance and river flow in the Sabarmati
River Basin in India [18]. Goswami et al. used the SWAT model and CFSR datasets from
1984 to 2013 in the Narmada River Basin in India and suggested that the SWAT model
was able to simulate the water balance components at the basin and sub-basin scales [19].
Himanshu et al. [20] concluded that the SWAT model can accurately simulate the hydrology
and water balance components of the Ken River Basin in India. Nasiri et al. [21] applied
the SWAT model to the Samalqan Basin in Iran to assess water-balance components. Ac-
tual evapotranspiration contributed to the largest water loss from the basin, which was
approximately 86%. Nasiri et al. pointed out that the high evapotranspiration rate that
was simulated may be related to the vegetation types in the region [21]. The applicability
of the SWAT model for the simulation of water-balance components, particularly surface
runoff, has been assessed in the Heihe mountain river basin in northwest China [22]. The
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components of the water balance tended to increase, and the total runoff increased by 30.5%
between 1964 and 2013. Rising surface runoff accounted for 42.7% of the total increasing
runoff [22]. Pritchard [23] used a combination of CFSR temperature and APHRODITE
rainfall datasets in the SWAT model to simulate water-balance components, in particular
the actual evapotranspiration in five Asian river basins, including the Aral, Indus, Ganges,
Brahmaputra, and Tarim, and the lakes of Issyk-Kul and Balkhash. Regarding the Aral Sea
Basin in Central Asia, Pritchard reported that summer evaporation is approximately equal
to summer precipitation [23].

The snowmelt runoff model (SRM) and SWAT model with conventional weather data
were used to carry out a water balance study of the Karnali River Basin in Nepal and to
simulate the contribution of snowmelt to river runoff [2]. Dhami et al. reported that after
comparing the results obtained from the SWAT model and the SRM model, it is recom-
mended to use the results obtained from the SWAT model, which is able to control the
volume of melting snow compared to the SRM model [2]. Siderius et al. [24] calculated the
contribution of snowmelt to river runoff in the Ganges River in the Himalayan arc, using
APHRODITE data with the SWAT model. The simulation results showed that approxi-
mately 1% and 5% could be considered indicative of the actual total annual contribution of
snowmelt to total runoff [24]. Chiphang et al. [1] used the SWAT model in the mountainous
Mago River basin, located in the Eastern Himalayan region of India, from 2006 to 2009
to compute the contribution of snowmelt to streamflow and evapotranspiration changes
in the basin. The results showed that the contribution of snowmelt runoff to the annual
streamflow of the basin was about 8% [1]. Another study was conducted to simulate
snowmelt using the SWAT model in the Tizinafu River Basin (TRB) in Xinjiang, in Central
Asia, from 2013 to 2014 using observational climate data [25]. Duan et al. found that about
44.7% of the total runoff comes from snowmelt runoff in the TRB [25].

Climate data are regarded as among the most important data for setting up the SWAT
model. Therefore, assessment of the reliability of the most commonly used gridded climate
data in SWAT modeling and water-balance analysis has become a popular theme in recent
times, particularly in developing and less developed countries [26–28]. Malsy et al. [29]
examined the performance of hydrologic modeling using four datasets, including the
Global Precipitation Climatology Center (GPCC) Reanalysis product v6, APHRODITE,
WATCH forcing data (WFD), and CRU in a hydrological model named “Water Global
Assessment and Prognosis 3” (WaterGAP 3). According to Malsy et al., the GPCC and
APHRODITE datasets, coupled with the WaterGAP 3 hydrological model, showed better
hydrological results than CRU and WFD datasets at the Tuul River Basin and Khovd River
Basin in Mongolia in East Asia. Due to the lack of data on the Upper Helmand Basin in
Afghanistan, which is a neighboring country to Tajikistan, the SWAT model and the global
CRU dataset were applied to create long-term hydrological conditions [30]. The results
showed the good performance of the SWAT model using CRU data for the study area;
therefore, the NSE was 0.84 for the calibration period and 0.82 for the validation period [30].
It is not known if the same results can be generated with a different hydrological model.
For instance, Luo et al. [31] used the SWAT and the MIKE SHE hydrological models to
assess their performance in the Hotan River Basin in southwestern Xinjiang, in Central
Asia. The results demonstrated that the SWAT model performs better than the MIKE
SHE model for the same climate input. Liu et al. used the SWAT model with climate
data from the China meteorological assimilation driving datasets (CMADS V1.0) and
CFSR in the Yellow River Source Basin, Qinghai–Tibet Plateau [32]. The APHRODITE
dataset with a SWAT model, in the Yarlung Tsangpo–Brahmaputra River Basin (YTBRS) in
Southeast Asia, was used for hydrological modeling. The results showed the validity of
APHRODITE estimates in driving the hydrological model in the YTBRB [33]. Tan et al. [34]
assessed the capabilities of the APHRODITE, CFSR, and PERSIANN datasets to model
river flow using the SWAT model for the Kelantan River Basin and the Johor River Basin in
Malaysia, in Southeast Asia. The combination of APHRODITE precipitation data and CFSR
temperature data resulted in the accurate simulation of river flow. Tan et al. recommended
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the use of APHRODITE precipitation and CFSR temperature data in the modeling of
water resources in Malaysia [34]. Xu et al. [35] applied a SWAT model with WFD and
APHRODITE datasets to the Xiangjiang River Basin (XRB) in China, to simulate river flow.
In XRB, APHRODITE data performed better than WFD data, during both calibration and
validation periods [35]. The Tropical Rainfall Measuring Mission (TRMM), National Center
for Environmental Prediction (NCEP), Global Precipitation Climatology Project (GPCP),
CFSR, and APHRODITE datasets were used to assess the performance of SWAT in the
Wunna Basin in India. In the Wunna Basin, APHRODITE datasets can be an alternative
source for hydrological modeling as APHRODITE simulations perform much better than
TRMM, NCEP, GPCP and CFSR [36]. Shen et al. used gridded products, including CFSR,
APHRODITE, CRU, TRMM, ERA-Interim and MERRA-2, with the J2000 model to analyze
the spatiotemporal patterns of water balance and the distribution of runoff components in
the glacierized Kaidu Basin in Central Asia. The results showed that APHRODITE and
CRU represented annual and seasonal precipitation dynamics similar to the observational
results at most climate points [37]. However, it should be noted that these results are
region- and model-dependent. Many studies show that the accuracy of gridded data
results varies by region [38,39]. Meanwhile, a hydrological model with a different concept
and representation of the streamflow procedure may lead to different conclusions.

The present work focuses on modeling mountainous terrain with insufficient obser-
vational climate data. The major goal of this study is to investigate alternative climate
data sources for improving the performance of distributed hydrological models, to explore
options that could substitute existing observational data in data-scarce areas. The second
objective was to investigate the performances of grid-based data combinations of precipita-
tion and temperature data from multiple sources in order to understand the status of water
resources by simulating water balance components in general in the UVRB in Central Asia.

2. Materials and Methods

2.1. Study Area

The study presented in this paper was conducted in the Upper Vakhsh River Basin
(UVRB) in Central Asia. The watershed area of the UVRB, including the river network and
the location of the measured hydro-climatic stations, as well as the CRU, APHRODITE and
CFSR, are shown in Figure 1. The Vakhsh River is the second-largest northwestern tributary
of the Amu Darya River in the Aral Sea Basin in Central Asia. The UVRB is located in the
north-central part of Tajikistan and the south-west part of Kyrgyzstan (latitude 38.52◦ to
39.48◦ N, and longitude 69.78 to 73.70◦ E). Vakhsh is a very seasonal river, with a discharge
maximum in July and a minimum in February, as can be seen in Figure 2. River flow is
mainly influenced by snowmelt, since a major part of the annual precipitation falls during
the winter months, in higher areas, as snow. A seasonal and annual temperature and
precipitation trend analysis of the flat and mountainous areas of Tajikistan can be found in
our previous study [40]. In the upstream reaches of the Vakhsh River, due to limitations in
the availability of suitable land, irrigation is rather limited. Furthermore, water for this
small-scale irrigation setup is taken from tributaries of the Vakhsh River and not drawn
directly from the river itself. Therefore, the water used for this purpose is not evidenced by
measuring the flow of the river.
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Figure 1. The digital elevation model of the Upper Vakhsh River Basin in Central Asia with the locations of the observed
weather and hydro-gauging stations, Climatic Research Unit (CRU), Asian Precipitation Highly Resolved Observational
Data Integration Towards the Evaluation of Water Resources (APHRODITE), and Climate Forecast System Reanalysis
dataset (CFSR), as well as the global weather data points and streamflow.

 

Figure 2. The monthly dynamics of the streamflow and precipitation in the Upper Vakhsh River
Basin in Central Asia (Darband station).

2.2. Data

Precipitation is the main factor in hydrological processes, as well as in hydrological
modeling, while mountainous regions suffer from a lack of observational climate stations.
In order to overcome this issue, most researchers are looking for an alternative option
to obtain hydro-climatic data, in order to build hydrological models in mountainous
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watersheds and to evaluate water-balance components. Comparisons of different datasets
with observational data and the combination of different datasets are appropriate objectives
that have been considered here. In this study, the water-balance components were derived
from the SWAT model results by applying multiple combinations of weather data products
to the observational hydro-meteorological data.

Furthermore, in this study, we used the CRU Time Series (TS) version 3.1 data in our
hydrological modeling of the UVRB. This data product was produced by the Climatic
Research Unit at the University of East Anglia. The CRU TS 3.1 daily maximum and
minimum temperatures, as well as precipitation data, were obtained from the website https:
//www.2w2e.com/home/CRU (accessed on 20 April 2019) for the period of 1979–2006.
The reason we derived the data of CRU TS 3.1 from this site is that the historical (1970–2006)
reanalysis data of precipitation and maximum and minimum temperatures from CRU
TS3.1 are reformatted from NetCDF data into TXT files, which are required by SWAT. The
database is updated daily, has a resolution of 0.5◦ and covers 67,420 files across the world’s
land areas. The CRU TS 3.1 data have been used in an analysis of the historical (1970–2005)
climate variability and extreme weather conditions in the state of California in the United
States [41]. Touseef et al. [42] applied the CRU TS 3.1 data to validate the historical daily
precipitation measurement-based data in the Xijiang River Basin in China.

The “Asian Precipitation—Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources Version 1101” (APHRODITE_V1101) project contains
daily gridded precipitation datasets [43]. The Research Institute of Humanity and Na-
ture and the Meteorological Research Institute of Japan’s Meteorological Agency created
the APHRODITE_V1101 project by combining precipitation station data recorded from
thousands of stations throughout Asia, including Japan, the Middle East, Russia, and
the Asian monsoon region, to a spatial extent of 15◦ S–55◦ N, 60◦ E–150◦ E [44]. The
APHRODITE_V1101 dataset is available at http://www.chikyu.ac.jp/precip/ (accessed on
6 February 2019). In the SWAT model, precipitation data alone cannot be used to build a
hydrological model.

The climate forecast system reanalysis dataset (CFSR) is developed by the National
Center for Environmental Prediction (NCEP) and is derived from the Global Forecast
System [45]. The CFSR product is widely used in hydrological modeling, considering
its high spatial resolution, robustness, and long time series. Publicly available data from
January 1979 to July 2014 can be found on the official SWAT website (http://globalweather.
tamu, accessed on 15 June 2019) for an almost 36-year period, in the format required by the
SWAT model, for a given location. For this study, we obtained all variables of the CFSR
data for 54 locations (Figure 1). Previously, many studies have been conducted to compare
CFSR climate data with observational datasets to assess the reliability of gridded climate
data by applying hydrological models [46,47].

The monthly discharge data for the Darband gauging station during the period of
1979–2006 in the UVRB were derived from the Department of Water Resources of the
Ministry of Energy and Water Resources of the Republic of Tajikistan. The measurement-
based climate data, including daily maximum and minimum temperatures and daily
precipitation, were obtained from the Agency of the Hydrometeorology Committee on
Environmental Protection under the Government of the Republic of Tajikistan. From the
existing climate stations in Tajikistan within and outside of the UVRB, we found four
climate stations, two of them within the basin—Lakhsh station in the central part of the
basin, and Rasht station in the eastern part—and two more climate stations were selected
from outside of the basin, Dehavz station, near to the northeastern part and Bustonobod,
near to the southeastern part of the basin’s boundary.

To delineate the watershed boundary and river network of the basin, the digital ele-
vation model (DEM) Shuttle Radar Topographic Mission (SRTM) with a 90 m (Figure 1)
spatial resolution was employed, from the Consultative Group for International Agricul-
tural Research (CGIAR) (https://www2.jpl.nasa.gov/srtm/, accessed on 16 December
2018) [48]. Soil data were obtained from the Harmonized World Soil Database (HWSD)
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version 1.2, with the 1:5,000,000 scale FAO/UNESCO (Food and Agriculture Organiza-
tion/The United Nations Educational, Scientific and Cultural Organization) Soil Map of the
World (http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/, accessed on 29 September 2018) [49]. The area and percentage
of the soil type, the latter of which is prominent in the UVRB, are shown in Table 1.

The land-use map was obtained from the Envisat Medium Resolution Imaging Spec-
trometer (MERIS) with a 300 × 300 m grid-scale. Based on the data from Envisat MERIS,
the GlobCover initiative of the European Space Agency (ESA) developed and presented a
service for the creation of land cover maps worldwide (https://ladsweb.modaps.eosdis.
nasa.gov/missions-and-measurements/meris/, accessed on 12 September 2019) [50]. The
land-use map, area, and percentage of land-use types in the UVRB are shown in Table 1.
We provided five different ranges of slope classes (0–10%, 10–20%, 20–30%, 30–40%, and
>40%) for the hydrologic response unit (HRU) resolution. Slope (in percent) is measured
by computing the difference in the height distance (meters), divided by the lateral distance
(meters), multiplied by 100. The SWAT model allowed a maximum of five ranges of slope
classes. More detailed information regarding the significance of slope in hydrological mod-
eling can be found in the studies of Yacoub et al., where the relative importance of slope
discretization, compared with other discretization criteria, was assessed in the streamflow
results of the SWAT model in a mountainous basin [51]. Figure 3 shows the area occupied
by HRUs in the UVRB, calculated by ArcSWAT, the geographic information system (GIS)
interface for SWAT.

Figure 3. The map of HRUs of the Upper Vakhsh River Basin in Central Asia. HRUs: hydrologic response units.

Distributed models include a large number of parameters and dealing with all these
parameters at the calibration stage is not feasible. So, to ensure efficient calibration, a
sensitivity analysis was conducted to filter out less influential parameters using a built-
in SWAT sensitivity analysis tool. During the model calibration, the monthly observed
discharge of 1979–1999 recorded at the Darband discharge station was used, which is
located at the outlet of the UVRB.
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Table 1. Soil and land-use data of the Upper Vakhsh River Basin, based on area and percentage.

Land Cover Types Area (% of Basin) Area (km2 of Basin) FAO Soil Name Area (% of Basin)
Area

(km2 of Basin)

Pasture 6.57 1935.31 Acrisols 22.06 6495.10
Agriculture 6.58 1938.49 Gleysols 25.47 7499.95

Forest 1.16 340.38 Leptosols 9.17 2701.29
Grassland 48.63 14,318.06 Phaeozems 7.13 2099.55
Shrubland 4.30 1267.29 Rock outcrops 20.46 6024.15

Urban 0.03 8.07 Eutric cambisols 0.68 199.90
Bare land 16.84 4957.09 Gelic gleysols 0.02 7.33

Water body 0.14 42.08
Glaciers 15.00 4417.40Ice and snow 15.75 4637.89

Total 100 29,444.66 100 29,444.66

3. Methodology

In this study, a physical-based, watershed-scale, continuous-time, semi-distributed
hydrological model using a SWAT (soil water and assessment tool) was implemented for
the evaluation of water availability in various components of the hydrological cycle in
the UVRB. The United States Department of Agriculture’s Agricultural Research Service
(USDA-ARS) developed the SWAT model; a detailed description of this model can be
found in the theoretical documentation [52]. The SWAT model has been widely used to
support water-resource managers and worldwide research dealing with water quality
analyses, hydrological assessment, climate and land-use changes, water supplies, non-
point-source pollution, soil erosion/sediment transport, and watershed management
impact studies in small- to large-scale river basins [53]. The model does not have any
limitations in terms of the river basin areas of study and is compatible with ArcGIS,
QGIS, and MapWindow software, as well as providing reliable and useful theoretical
documentation that is readily available. Using the ArcGIS version 10.3 interface of SWAT,
named ArcSWAT, the UVRB was divided into sub-basins, based on a digital elevation
model. Each sub-basin is connected through a stream channel and the model operates
by dividing sub-basins into many HRUs (Figure 3), according to a unique homogenous
combination of land cover, soil properties, and terrain features. The model performs
a modification of the soil conservation service curve number (SCS-CN) method, which
identifies the surface runoff from daily precipitation, land use, the area of the hydrological
group and the antecedent moisture content for each HRU [54,55].

The UVRB is a mountainous catchment; hence, the observational climate stations
in the UVRB are located at lower altitudes. For instance, the Rasht station is located at
an elevation of 1316 m, Bustonobod at an elevation of 1964 m, Lakhsh at an elevation
of 1998 m, and Dehavz at an elevation of 2561 m. The orographic features of the UVRB
mountainous catchment, in terms of temperature and precipitation, led to the splitting
of the UVRB into different elevation bands in the SWAT model. In order to simulate the
snowmelt in this study, we used a temperature index algorithm employing the elevation
band approach [56,57]. We weighted the temperature and precipitation elevation band
between the climatic station band and the other elevation band (EB) by using the following
mathematical equations:

Rband = Rday + (ELband − ELc.s)× plaps
dayspcp,yr × 1000

, Rday > 0.01, (1)

Tmax,band = Tmax + (ELband − ELc.s)× tlaps
1000

, (2)

Tmin,band = Tmin + (ELband − ELc.s)× tlaps
1000

, (3)

Tmean,band = Tmean + (ELband − ELc.s)× tlaps
1000

, (4)
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where 1000 serves as the conversion element from meters to kilometers; Rband is the
precipitation in an EB (mm); Rday is the precipitation recorded at the measurement gauge
(mm); Tmax,band shows the daily maximum temperature of the EB (C); Tmin,band indicates
the daily minimum temperature of the EB (C); Tmean,band is the daily mean temperature of
the (C); Tmax shows the daily maximum temperature recorded at the measurement gauge
(C); Tmin indicates the daily minimum temperature recorded at the measurement gauge
(C); Tmean shows the daily average temperature recorded at the measurement gauge (C);
tlaps is the lapse rate of temperature (C/km); ELband shows the mean elevation in the EB
(m); ELc.s indicates the elevation at the measurement gauge (m); plaps is the precipitation
lapse rate (mm/km) and dayspcp,yr represents the average annual value of the days when
precipitation occurred. The EB approach to the SWAT model has been employed in various
mountainous catchments across the globe [58–60]. As in our previous study, Gulakhmadov
et al. presented the hydrological model calibration results they obtained with the SWAT–
CUP tool before and after the EB approach. The application of EB had a positive impact on
the modeling of river flow in a mountain watershed [61].

The model was auto-calibrated for sensitive parameters, such as runoff curve number
(CN), Manning’s n, and groundwater (GW) parameters (Soil K, Ch_K, Alpha BF, REVAP,
ESCO, soil AWC, GW delay, Recharge_DP, Soil Z), based on their rankings. A multiple
regression equation was used to identify the sensitive parameters, as follows:

g = α +
m

∑
i=1

βibi, (5)

where g shows the value of the objective function; bi indicates the parameter of the calibra-
tion; α and βi represent the regression coefficients; and m indicates the selected parameter
number [62].

The simulation of the hydrological processes by SWAT is carried out on the basis of
the water balance equation:

SWt = SW0 +
t

∑
i=1

(
Pday − Qsurf − Ea − Wseep − Qgw

)
, (6)

where SW0 shows the initial soil water content on day i (mm H2O); i is time in days; Pday
shows the amount of precipitation on day i (mm H2O); Qsurf is the amount of surface runoff
on day i (mm H2O); Ea is the amount of evapotranspiration (ET) on day i (mm H2O); Wseep
is the amount of water entering the vadose zone from the soil profile on day i (mm H2O);
Qgw is the amount of return flow on day i (mm H2O); and SWt shows the final soil water
content (mm H2O).

On the basis of the average daily air temperature, the SWAT model divides the precip-
itation into rain or snow. The user of the model will give a threshold temperature in order
to categorize precipitation as rain or snow. The precipitation, as snow, will be modeled and
the equivalent water will be supplemented to the snowpack if the average air temperature
is lower than the temperature threshold. The precipitation will be modeled in the form of
liquid rain if the average daily temperature is higher than the temperature threshold. If
additional snow falls, the snowpack will be raised and if snowmelt or sublimation occur,
the snowpack will be reduced, and the water accumulation in the snowpack will be given
as the snow water component.

The SWAT model calculates the snowmelt as a linear function of the divergence
between the mean maximum temperature of the snowpack and the snowmelt thresh-
old temperature or base. The snowmelt on a given day is calculated based on the
following equation:

SNOmlt = bmlt × SNOcov ×
[

Tsnow + Tmx

2
− Tmlt, sno

]
, (7)
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where bmlt represents the melt factor for the day (mm H2O/day-◦C); the fraction of the
HRU area covered by snow is SNOcov; the temperature of the snowpack is Tsnow (◦C); the
maximum air temperature is Tmx; the base temperature above which snowmelt is allowed
is Tmlt, sno(◦C); and SNOmlt indicates the amount of snowmelt (mm). Seasonal differences
are allowed by the melt factor, with maximum and minimum indices, taking place towards
winter and summer solstices:

bmlt =
(bmlt6 + bmlt12)

2
+

(bmlt6 − bmlt12)

2
× sin

(
2π
365

× (dn − 81)
)

, (8)

where bmlt6 represents the melt factor for 21 June (mm H2O/day-◦C); the melt factor for
21 December is bmlt12 (mm H2O/day-◦C); dn is the day of the year, and the resulting value
(bmlt) shows the melt factor for the day (mm H2O/day-◦C).

The evaluation of evapotranspiration (ET) is essential for water-resource manage-
ment and hydrological research. The studies of previous researchers suggested that it
is acceptable to apply PET (potential evapotranspiration) in models and water alloca-
tions [63,64]. In order to estimate PET, there are three methods given in the SWAT model,
including the radiation-based Priestley and Taylor method [65], the temperature-based
Hargreaves method [66], and the combined Penman–Monteith method [67,68]. For the
present study, the Hargreaves method depends on inputted climate data, which were
selected to determine the potential evapotranspiration in a mountainous catchment. The
Hargreaves approach is the most commonly used method; it is based on temperature
and is recommended by the FAO. Li et al. compared the results of the Hargreaves and
Penman–Monteith methods in the Ganjiang River Basin in Southern China by using two
different datasets [69]. The results of the analysis showed that there is no significant dis-
crepancy between the Hargreaves and Penman-Monteith methods in terms of streamflow
simulations with the same spatial scale. The ET was computed as a function of the corrected
potential evapotranspiration, soil depth, soil cover, and plants’ water uptake [52]. Based on
each hydrological response unit, the water balance components were simulated, including
precipitation partitioning, precipitation interception, evapotranspiration, snowmelt water,
the redistribution of soil water content, return flow from shallow aquifers and lateral
subsurface flow from the soil profile.

Model Assessment

The model evaluation was carried out based on the Nash–Sutcliffe efficiency (NSE)
measure, the coefficient of determination (R2), and the percentage bias (PBIAS). Model
assessment statistics were evaluated using the NSE, R2, and Kling–Gupta efficiency (KGE)
calculations [70]. In watershed modeling, the NSE, R2 and KGE are standard regression
statistics [71]. NSE ranges from −∞ to 1, with 1 being the best performance. The degree
of the linear relationship between measured data and model output is R2 and it ranges
between 0 and 1. KGE is the goodness-of-fit measure initiated by Gupta et al. [70], which
gives a decomposition of mean squared error and NSE. In hydrological modeling, the
KGE statistic value contributes to the analysis of the relative significance of the correlation,
variation, and bias [72]. The model result is more accurate if the KGE output value is
closer to 1, and it ranges from −∞ to 1. Moreover, in the model performance, we used
the root mean square error (RMSE) observed standard deviation ratio (RSR) and an error-
index statistic. The values of NSE > 0.50 and R2 > 0.60 are considered satisfactory for
river discharge on a monthly scale [71]. The values of KGE > 0.5 and RSR < 0.60 are also
considered satisfactory levels [70,71]. To assess the strength of the model calibration and
uncertainty, two important factors were computed based on the calibration of soil and
water assessment tool model (SWAT–CUP) performance, the P-factor and R-factor [73,74].
According to Abbaspour et al. [74], the P-factor describes the percentage of observational
data that is covered with a 95% prediction uncertainty (95PPU). It quantifies the model’s
capability in terms of catching uncertainties, and its magnitude ranges between 0 and 1,
where 1 demonstrates that 100% of the station-recorded variability is captured by 95PPU.
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The thickness of 95PPU is the value of the R-factor, which presents the ratio of the mean
width of the 95PPU band and the standard deviation of measured variability. The model
performance is superior if the R-factor value is low. For discharge modeling, in order to
compute prediction uncertainty, the studies of Abbaspour et al. [74] recommended that the
value of the P-factor be > 0.7 and the value of the R-factor be < 1.5.

The NSE, the R2, the PBIAS, the RSR, KGE, and MSE are frequently applied measures
in hydrological modeling studies [71], which are calculated as:

PBIAS =
∑n

i=1

(
Qobs

i − Qsim
i

)
× 100

∑n
i=1(Q

obs
i )

, (9)

R2 =

[
∑n

i=1

(
Qobs

i − Qobs
)
(Qsim

i − Qsim)
]2

∑n
i=1

(
Qobs

i − Qobs
)2

∑n
i=1

(
Qsim

i − Qsim
)2 , (10)

KGE = 1–
√
(r − 1)2 + (α − 1)2 + (β − 1)2, (11)

RSR =

√
∑n

i=1

(
Qobs

i − Qsim
i

)2

√
∑n

i=1

(
Qobs

i − Qobs
)2

, (12)

NSE = 1 −
∑n

i=1

(
Qsim

i − Qobs
i

)2

∑n
i=1

(
Qobs

i − Qobs
)2 , (13)

where n is the whole number of sample couples; Qobs
i is the station-recorded discharge

variable; Qobs is the mean of the station-recorded discharge parameters; Qsim
i is the simu-

lated discharge parameter; Qsim is the mean of the simulated discharge parameters; and i
is the ith station-recorded data or simulated data. Moreover, α = σs

σm
and β = μs

μm
, while r

is the linear regression coefficient of the simulated value against station-recorded value,
μs and μm are the averages of the simulated value against the station-recorded value, and
σs and σm are the standard deviations of the simulated value against the station-recorded
value [70].

4. Results

In hydrological process analysis, and for reliable hydrological modeling, precipita-
tion data are considered to be the main factor. To apply the precipitation data initially in
hydrological modeling, we carried out a correlation analysis to examine the data’s suitabil-
ity for watershed modeling. Figure 4 presents a Taylor diagram with the performances
of the three precipitation data sources, the CRU TS3.1, CFSR and APHRODITE_V1101,
against measurement-based precipitation data on a monthly scale. Taylor diagrams are
capable of providing performance insights by comparing precipitation satellite datasets
and measurement-based data sets, in terms of their standard deviation, root mean square
error and correlation coefficient. In the Taylor diagram, the radial blue dotted lines show
the standard deviation and the red semicircles present the root mean square error. Hence,
the black dotted lines describe the correlation coefficient. These three statistic indices are
shown solely for the Lakhsh precipitation gauge point in the central part of the catchment
on a monthly scale, for the purposes of demonstration (Figure 4). The precipitation cor-
relation showed the highest value (0.86) between the APHRODITE_V1101 datasets and
measurement-based datasets. Meanwhile, the precipitation correlation between the CRU
TS3.1 and measurement-based data is 0.76, and the correlation between the CFSR and
measurement-based datasets is 0.59. The correlation coefficients between all three different
combinations, the CRU TS3.1 and measurement-based datasets, CFSR and measurement-
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based datasets, as well as APHRODITE_ V1101 and measurement-based datasets, showed
a good performance, meaning that they could be used for hydrological modeling in the
UVRB. In many studies, Taylor diagrams have been applied to evaluate the performance of
satellite products against observational datasets [75,76].

Figure 4. Taylor diagram indicating the performances of CRU, CFSR and APHRODITE precipitation
data on a monthly scale at the Lakhsh climate station in the Upper Vakhsh River Basin in Central Asia.

4.1. Parameter Sensitivity Analysis

The hydrological model was calibrated and validated by employing a software applica-
tion for the SWAT–CUP, SUFI-2 (sequential uncertainty fitting, version 2). The SWAT–CUP
software is a semi-automatic calibration and uncertainty analysis tool that was developed
by the EAWAG Swiss Federal Institute of Aquatic Science and Technology for the SWAT
model [3]. The SUFI-2 algorithm utilizes an inversion modeling technique that determines
a wide range of parameters and then carries out several iterations that contain a number
of simulations. After running the iterations, the result of each iteration was compared
with the result of other iterations and, in this way, the most suitable ranges of the model’s
parameters were identified [74]. This iterative procedure takes into account the uncertainty
of parameters from all types of sources, including model structure, model parameters,
weather, etc. By using the global sensitivity approach in the SUFI-2 algorithm, detailed
uncertainty and optimization examinations are possible [77]. In order to obtain satisfactory
watershed characteristics, the calibration and validation of the hydrological model are
essential. Following the outcome of the final modeled simulation, a sensitivity ranking
was presented for the appropriate parameters by analyzing the values of the “t-stat” and
p-value statistics. The SWAT–CUP contains multiple parameters that could impact the
simulation of the water cycle. The selection of suitable parameters plays an important role
in identifying the effectiveness of model calibration.

In this study, the sensitivity analysis was executed using the Latin hypercube global
sensitivity approach, which is included in the SWAT–CUP (version 2019) package. Char-
acteristically, sensitivity analysis is required prior to calibration due to the recognition of
sensitive parameters and model elements. The global sensitivity approach leads to the at-
tainment of a set calibration with optimal parameters and allows us to find the parameters
using the degree of sensitivity of their performance characteristics in the model.

A gridded dataset comparison was performed to evaluate how well gridded datasets,
such as CRU TS3.1, APHRODITE_V1101 and CFSR, correlated with the observational
data. The analysis years were determined to include similar years from all datasets since
CRU daily data availability ended in 2006. The first three years of the total simulation
period (January 1999–December 2002) were used as a warm-up to allow the model to
reach hydrological equilibrium and were excluded from the analysis. For each of the
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datasets, the semi-automated calibration process was conducted with an identical range
of parameter values and calibration/validation periods for comparison purposes. Semi-
automated calibration ensures the consistency of the process for all models, minimizing the
model bias due to the modeler in calibration exercises conducted for different precipitation
and maximum/minimum temperature sources. Initial parameter ranges were selected
based on the professional judgment of the authors and the literature. Each model executed
1000 simulations for each iteration of the semi-automated calibration. An initial 300–500
simulations are recommended for studying model performance and for regionalizing
parameters [73]. At the end of the iteration with 1000 simulations, parameter sensitivities
were determined through a global sensitivity analysis. Only one iteration was used to
avoid re-calibration, using a different range of parameter values for each model in the
subsequent calibration. The Nash–Sutcliffe efficiency (NSE) measure was used to estimate
model performance during calibration since it is a commonly used statistical measure in
SWAT studies [71].

While determining the parameters’ distribution and sensitivity, the baseflow alpha
factor (ALPHA_BF), moist bulk density (SOL_BD), SCS runoff curve number for moisture
condition II (CN2), effective hydraulic conductivity in main channel alluvium (CH_K2),
and deep aquifer percolation fraction (RCHRG_DP) are computed as the most sensitive
parameters. The results of sensitivity parameters and analyses of statistical indices, such
as P-factor and R-factor, in both calibration and validation parts indicated that all climate
datasets utilized in this study have acceptable prediction uncertainty and reasonable
parameter adjustment. These results indicate the potential of applying gridded datasets for
hydrological modeling. It should be noted that gridded datasets are advantageous because
they give continuous data at spatial and temporal scales throughout the catchment area
and for an extensive duration.

4.2. Calibration and Validation

Figure 5 shows the calibration results of the SUFI-2 algorithm of the SWAT–CUP
model, utilizing monthly discharge data at the Darband gauging station for the period
of 1982–1999, where a combination of four different datasets was used (Figure 5a–d),
including an initial warm-up period of three years (1979–1981). Figure 6 indicates the
validation results of the fit between the monthly measurement-based flow and the flow
simulated by SWAT. In addition, to demonstrate the flow peaks over a long period of
time, in Figure 7, we present the overall calibration hydrographs via the application of five
different dataset combinations.

Table 2 shows the ability of gridded datasets to derive the long-term average annual
flow from the simulated flow at the Darband gauging site in UVRB in Central Asia. The
observation and simulated flow over a 25-year period demonstrated that the average
annual flow between the observation and the simulated flow does not differ much, with
the exception of a few years. The results shown as Simulated-1 in Table 2 demonstrate
that, in most years, the average annual flow was simulated to be less, compared to the
other three simulated flows. In Simulated-1, the largest negative ratio value between the
observed and simulated average annual flows was found in 1996 (−123.87%) and 1988
(−124.79%), while the largest positive value of the ratio was observed in 1983 (13.58%).
The results of Simulated-2 presented the lowest negative ratio value of the average annual
flow in 2006 (−59.79%) and the highest positive value in 1989 (35.69%). The maximum
negative and positive rates of the average annual flow for Simulated-3 were detected
in 1984 (27.66%) and 1998 (−74.62%), while for Simulated-4, the biggest downward and
upward rate values compared to observational flow were obtained in 1997 (−42.27%) and
2003 (26.53%). Our results show that, compared with the observational average annual
flow, the average annual flow of Simulated-1 indicated the largest negative rate, and the
Simulated-4 results showed the lowest negative and positive rates (Table 2). In this study,
the four different quantity comparisons of the average annual flow were derived after the
application of a well-calibrated hydrological model.
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Table 2. Average annual simulated flow of four different simulation results from SWAT–CUP and their rates, compared
to observational flow at the Darband hydrological station over the period of 1982–2006 in the Upper Vakhsh River
Basin in Central Asia. Simulated-1: results of the combination of the APHRODITE_V1101 precipitation datasets and
CFSR maximum/minimum temperature datasets; Simulated-2: results of the combination of the APHRODITE_V1101
precipitation datasets and CRU TS3.1 maximum/minimum temperatures datasets; Simulated-3: results of the CFSR as
maximum/minimum temperatures, precipitation, average solar radiation, average wind speed and relative humidity
datasets; Simulated-4: results of the CRU ST3.1 precipitation and maximum/minimum temperature datasets.

Year

Observation Simulated-1 Simulated-2 Simulated-3 Simulated-4

Flow
(m3/s)

Flow
(m3/s)

Rate
(%)

Flow
(m3/s)

Rate (%)
Flow

(m3/s)
Rate (%)

Flow
(m3/s)

Rate (%)

1982 519.42 518.25 −0.23 731.39 28.98 608.03 14.57 541.45 4.07
1983 573.58 663.75 13.58 727.21 21.13 760.64 24.59 550.86 −4.13
1984 644.50 707.10 8.85 734.60 12.27 890.92 27.66 577.44 −11.61
1985 595.75 595.67 −0.01 765.99 22.23 657.31 9.37 603.96 1.36
1986 492.25 492.34 0.02 633.18 22.26 515.41 4.49 492.89 0.13
1987 683.42 562.95 −21.40 949.26 28.01 545.32 −25.32 658.34 −3.81
1988 711.75 685.50 −3.83 924.93 23.05 764.24 6.87 666.43 −6.80
1989 443.08 440.85 −0.51 688.96 35.69 568.37 22.04 454.13 2.43
1990 624.67 684.65 8.76 791.25 21.05 805.38 22.44 620.63 −0.65
1991 565.17 586.13 3.58 796.42 29.04 659.22 14.27 633.34 10.76
1992 650.42 507.05 −28.27 773.53 15.92 597.96 −8.77 661.16 1.62
1993 694.67 449.89 −54.41 744.46 6.69 551.77 −25.90 678.11 −2.44
1994 631.81 638.18 1.00 811.60 22.15 745.32 15.23 641.08 1.45
1995 568.18 377.26 −50.61 592.66 4.13 491.28 −15.65 606.12 6.26
1996 638.31 285.13 −123.87 595.88 −7.12 382.11 −67.05 634.59 −0.59
1997 600.54 472.78 −27.02 439.89 −36.52 623.95 3.75 422.12 −42.27
1998 828.35 368.49 −124.79 710.06 −16.66 474.37 −74.62 773.38 −7.11
1999 673.37 459.95 −46.40 702.52 4.15 533.08 −26.32 667.83 −0.83
2000 572.29 472.56 −21.10 567.44 −0.85 563.35 −1.59 517.43 −10.60
2001 564.96 610.16 7.41 568.66 0.65 677.75 16.64 500.73 −12.83
2002 726.54 617.11 −17.73 693.48 −4.77 558.38 −30.12 698.52 −4.01
2003 656.57 587.33 −11.79 695.84 5.64 573.49 −14.49 893.66 26.53
2004 649.40 568.10 −14.31 704.03 7.76 555.56 −16.89 779.52 16.69
2005 695.60 472.60 −47.19 587.79 −18.34 593.18 −17.27 660.14 −5.37
2006 647.45 477.57 −35.57 405.19 −59.79 646.72 −0.11 668.40 3.13

APHRODITE_V1101: Asian Precipitation—Highly Resolved Observational Data Integration Toward Evaluation of Water Resources Version
1101; CFSR: Climate Forecast System Reanalysis; CRU ST3.1: Climatic Research Unit Time Series Version 3.1.

The observed and simulated monthly streamflow values for the calibration (1982–1999),
validation (2000–2006), and overall values (1982–2006) are shown in Figures 5–7, respec-
tively. Figures 5–7 present the simulated flow hydrographs and peak flows, which are
in good agreement with the timing of the observational flow hydrographs and flow
peaks comprising the outcomes of the APHRODITE_V1101 and CFSR combination, the
APHRODITE_V1101 and CRU TS3.1 combination, and the CRU TS3.1, CFSR, and
measurement-based combination. Calibration using monthly river flow data for long-
term simulations demonstrates a better performance than short-term simulations. The base
flow as well as most of the peak flows are well simulated. The hydrographic results show
that the observed and modeled discharges are nearly the same for most of the study period
(25 years), except for a few years when high-flow events occurred. For example, the peak
flow in the hydrograph for the combination of APHRODITE_V1101 and CFSR in 1987,
1993, 1996, and 1998 is underestimated by the model, while in the years 1984 and 1994 it is
overestimated (Figure 7a). The peak flow rate for the combination of APHRODITE_V1101
and CRU TS3.1 in 1989, 1991 and 1997 is insignificantly underestimated (Figure 7b). The
model insignificantly underestimated the peak flow for the CFSR dataset in the years 1987,
1989, 1996 and 1998, while in the years 1983, 1984, 1994 and 2001, it slightly overestimated
the flow (Figure 7c). For the CRU TS3.1 hydrograph, a slight underestimation of the peak
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flow is observed in the years 1983, 1987, 2000 and 2001, whereas in the year 2003, the flow
is slightly overestimated (Figure 7d). Lastly, the model insignificantly underestimated the
peak discharges in 2008 and 2011 for the observational datasets (Figure 7e). Our results
showed that better simulation flows were obtained from APHRODITE_V1101 and CRU
TS3.1 climate datasets compared to the CFSR, which demonstrates the advantage of using
the CRU TS3.1 and APHRODITE_V1101 products in SWAT modeling.

Figure 5. Hydrographic calibration between monthly observed and simulated streamflow, when applying the SWAT–CUP
tool, at Darband gauging station in the Upper Vakhsh River Basin in Central Asia. (a) Results of the daily precipitation
of the APHRODITE_V1101 and daily maximum/minimum temperatures from the CFSR datasets; (b) results of the daily
precipitation of the APHRODITE_V1101 and daily maximum/minimum temperatures of the CRU TS3.1 product; (c) results
of the daily maximum/minimum temperatures, precipitation, average solar radiation, average wind speed and relative
humidity from the CFSR product; (d) results of the daily maximum/minimum temperatures, and precipitation from the
CRU TS3.1 product; (e) results of the daily maximum/minimum temperatures and precipitation from the observational
climate datasets.
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Figure 6. Hydrographic validation between monthly observed and simulated streamflow, when applying the SWAT–CUP
tool, at Darband gauging station in the Upper Vakhsh River Basin in Central Asia. (a) Results of the daily precipitation
of the APHRODITE_V1101 and daily maximum/minimum temperatures from the CFSR datasets; (b) results of the daily
precipitation of the APHRODITE_V1101 and daily maximum/minimum temperatures of the CRU TS3.1 product; (c) results
of the daily maximum/minimum temperatures, precipitation, average solar radiation, average wind speed and relative
humidity from the CFSR product; (d) results of the daily maximum/minimum temperatures, precipitation from the
CRU TS3.1 product; (e) results of the daily maximum/minimum temperatures and precipitation from the observational
climate datasets.
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Figure 7. Hydrograph of the overall calibration and validation period between monthly observed and simulated streamflow,
when applying the SWAT–CUP tool, at Darband gauging station in the Upper Vakhsh River Basin in Central Asia. (a) Results
of the daily precipitation of the APHRODITE_V1101 and daily maximum/minimum temperatures from the CFSR datasets;
(b) results of the daily precipitation of the APHRODITE_V1101 and daily maximum/minimum temperatures of the CRU
TS3.1 product; (c) results of the daily maximum/minimum temperatures, precipitation, average solar radiation, average
wind speed and relative humidity from the CFSR product; (d) results of the daily maximum/minimum temperatures,
precipitation from the CRU TS3.1 product; (e) results of the daily maximum/minimum temperatures and precipitation from
the observational climate datasets.

4.3. Performance of the Hydrological Model

Table 3, which presents the statistical values for the calibration, validation and overall
periods of the Darband discharge station, confirms the essentially “excellent”, “very good”
and “good” performance of the model. Firstly, in the SUFI-2 algorithm, we adopted the
Nash–Sutcliffe efficiency (NSE) calculation as an objective function for the optimization
process. It was used as a goodness-of-fit metric for calibration, in order to set up the
adjustment during the calibration period and for the performance examination of the
validation and overall periods. The NSE working system has been recognized for its ability
to concentrate on the good simulation of peak flows. Its selection and related influence
should be considered in view of the results obtained in this study. A more general view,
which included all modeling on an overall scale for all datasets, showed that most of the
years provided accurate modeling in all angles of the hydrograph.

In general, eight kinds of evaluation indices (R2, NSE, PBIAS, RSR, MSE, KGE, P-factor
and R-factor) were used to evaluate the acquisition accuracy of the hydrological modeling.
The statistical evaluation of the model performance based on monthly streamflow is
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described in Table 3. The streamflow is slightly overestimated by 14.8%, 1.32% and 0.69%
for the APHRODITE_V1101+CFSR, CRU TS3.1 and measurement-based data while being
slightly underestimated by −17.70% and −0.31% for APHRODITE_V1101+CRU TS3.1 and
CFSR during the calibration period. During the validation period, the model results for
the employed APHRODITE_V1101+CFSR, APHRODITE_V1101+CRU TS3.1, CFSR and
observational datasets indicated an overestimation of the monthly streamflow by 17.22%,
1.3%, 9.58% and 5.51%, respectively, while the model results showed an underestimation
by −6.09% for the CRU TS.3.1. The model results of the overall test performance of the
calibration indicated an overestimation of the peak flow for the APHRODITE_V1101+CFSR,
CFSR, CRU TS3.1, and observational data by 15%, 2%, 0.29% and 5.21% respectively,
whereas, for the APHRODITE_V1101+CRU TS3.1, the results showed an underestimation
of peak flow by −10.80% (Table 2). However, the combination of the precipitation data
from APHRODITE_V101 and the maximum/minimum temperatures data from CFSR
exhibited a slightly overestimated streamflow, which can probably be explained by the
large amount of precipitation generated by APHRODITE_V1101. As we realized that
precipitation is a major factor in hydrological processes, and in an effort to demonstrate
the difference in precipitation between the four climate datasets, before implementing
the data into the model, we correlated the precipitation between the observational data
and APHRODITE_V1101, CFSR, and CRU TS3.1, as presented in Figure 4. In general, for
calibration and validation periods, the hydrographs of all utilized datasets are nearly in
line with measurement-based data. According to the recommendation of Moriasi et al. [71],
the performance of the model is “very good” (PBIAS ≤ 10) in the study area, based on four
different combinations of datasets.

In the case of monthly calibration, validation and overall scales, the P-factor ranges
from 0.66 to 0.82 for all employed datasets. By using the APHRODITE_V1101+CFSR,
APHRODITE+CRU TS3.1, CFSR, CRU TS3.1 and observational values, the bracketed
values of the 95PPU band for the monthly streamflow data were 66%, 66%, 75%, 82% and
69% during the calibration period, 67%, 70%, 79%, 80% and 81% during the validation
period and 66%, 68%, 75%, 81% and 73% on an overall scale, respectively. The R-factor
is the average thickness of the 95PPU band, and, for the monthly calibration, validation
and overall scales, the R-factor values were 0.66, 0.79, 0.95, 1.01, and 0.80 (calibration), 0.66,
0.66, 0.89, 1.08, and 0.76 (validation), and 0.67, 0.75, 0.95, 1.02, and 0.78 (overall) when
coupling the SWAT model with the respective datasets. The wider 95PPU indicates more
parameter uncertainties [62]. According to the recommendations of Schuol et al. [78], the
perfect simulation is the one that has an R-factor equal to zero; however, values around
1.0 are considered quite reasonable. In this study, the values obtained for the width of the
uncertainty band were quite reasonable for the monthly simulation (Table 3).

The model results for the calibration, validation and overall periods were found
to produce a reliable assessment of monthly observed and simulated streamflow. The
monthly calibration results for streamflow were “very good”, with R2 values of 0.92, 0.90,
0.79, and 0.76 for the CRU TS.3.1, measurement-based, APHRODITE_V1101+CRU TS3.1,
and APHRODITE_V1101+CFSR data, whereas for CFSR, the data were found to possess a
“good” performance, with an R2 value of 0.71. The NSE values were “very good” at 0.91
and 0.90 for CRU TS3.1 and observational datasets, “good”, at NSE = 0.74 and NSE = 0.70 ,
for APHRODITE_V1101+CRU TS.3.1 and APHRODITE_V1101+CFSR, and “satisfactory”
at NSE = 0.64, for CFSR during the calibration period. The R2 and NSE coefficient values
during the validation period were “very good” (R2 equal to 0.94, 0.89, 0.85, 0.83, and 0.79
and NSE equal to 0.93, 0.88, 0.83, 0.77, and 0.78) for the observational datasets, CRU TS3.1,
CFSR, APHRODITE_V1101+CFSR and APHRODITE_V1101+CRU TS3.1, respectively. This
is likely due to the availability of data and the mountainous location of the precipitation
station in this region, since the distribution of precipitation strongly influences the flow
formation and therefore the NSE. The overall R2 coefficient values were “very good” (0.92,
0.90, 0.78, and 0.76 for the observational datasets, CRU TS3.1, APHRODITE_V1101+CFSR,
and APHRODITE_V1101), whereas R2 was “good” (0.74 for the CFSR (Table 3)). The
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overall NSE coefficient values were “very good” (0.91 and 0.90 for the observational
datasets and CRU TS3.1), while the NSE values were “good” (0.74, 0.72, and 0.68 for the
APHRODITE_V1101+CRU TS.3.1, APHRODITE_V1101+CFSR, and CFSR, respectively).
According to the model evaluation criteria, the simulation of the observational data per-
formed better than the APHRODITE_V1101+CFSR, APHRODITE_V1101+CRU TS.3.1,
CFSR and CRU TS3.1 simulations on an overall scale. The model using observational
dataset calibration, validation, and overall scales demonstrated an excellent performance
(Table 3). The less accurate results that were obtained overall, when using gridded datasets
in mountainous regions, are most probably associated with the fact that there are fewer
weather stations that can be used for product development.

Table 3. Summary statistical indices of monthly streamflow periods with different climate datasets, based on the model’s
performance. NSE: Nash–Sutcliffe efficiency; R2: coefficient of determination; PBIAS: percentage bias; MSE: mean square
error; RSR: root mean square error standard deviation ratio; KGE: Kling–Gupta efficiency; P-factor; R-factor.

Data Source\Statistical Indices R2 NSE PBIAS (%) RSR MSE (%) KGE P-Factor R-Factor

Calibration

Combination of the
APHRODITE_V1101 and CFSR data

(1982–1999)
0.76 0.70 14.80 0.55 7.78 0.80 0.66 0.66

Combination of the
APHRODITE_V1101 and CRU TS3.1

data (1982–1999)
0.79 0.74 −17.70 0.77 6.72 0.77 0.66 0.79

CFSR data (1982–1999) 0.71 0.64 −0.31 0.60 9.12 0.81 0.75 0.95
CRU TS3.1 data (1982–1999) 0.92 0.91 1.32 0.29 2.23 0.95 0.82 1.01

Observational data (2003–2009) 0.90 0.90 0.69 0.31 2.54 0.90 0.69 0.80

Data source Validation

Combination of the
APHRODITE_V1101 and CFSR data

(2000–2006)
0.83 0.77 17.22 0.48 6.01 0.81 0.67 0.66

Combination of the
APHRODITE_V1101 and CRU TS3.1

data (2000–2006)
0.79 0.78 1.30 0.46 5.54 0.80 0.70 0.66

CFSR data (2000–2006) 0.85 0.83 9.58 0.42 4.48 0.87 0.79 0.89
CRU TS3.1 data (2000–2006) 0.89 0.88 −6.09 0.35 3.18 0.91 0.80 1.08

Observational data (2010–2013) 0.94 0.93 5.51 0.26 2.04 0.93 0.81 0.76

Data source Overall

Combination of the
APHRODITE_V1101 and CFSR data

(1982–2006)
0.78 0.72 15.00 0.53 7.20 0.81 0.66 0.67

Combination of the
APHRODITE_V1101 and CRU TS3.1

data (1982–2006)
0.76 0.74 −10.80 0.51 6.70 0.78 0.68 0.75

CFSR data (1982–2006) 0.74 0.68 2.00 0.56 8.10 0.83 0.75 0.95
CRU TS3.1 data (1982–2006) 0.90 0.90 0.29 0.31 2.51 0.95 0.81 1.02

Observational data (2003–2013) 0.92 0.91 5.21 0.29 2.34 0.93 0.73 0.78

4.4. Water Balance of the Upper Vakhsh River Basin in Central Asia

Obviously, in order to skillfully tackle water management issues, it is necessary to
quantify and study the various hydrological components within the basin. Regardless
of the issues explored by the SWAT model, water balance is a critical component in the
SWAT model as it includes all processes in the basin [79,80]. A water-balance study was
conducted using a simulation of the overall scale, as well as the appropriate SWAT output
tables. The mean annual water-balance components of the UVRB are presented in Table 4.
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The results of the SWAT model for the overall period of the simulation (1982–2006)
are presented; the annual precipitation values for the basin are 1875.9 mm, 1236.9 mm,
2479 mm, 1215.9 mm, and 1098.5 mm, out of which about 93.82% (1760.11 mm), 70.41%
(870.85 mm), 96% (2379.86 mm), 86.52% (1051.98 mm), and 76.16% (836.65 mm) of precip-
itation falls as snow, according to the respective datasets employed (Table 4). The CFSR
simulations demonstrated a higher amount of precipitation than other utilized, which
means that the CFSR overestimated the precipitation in the UVRB. Similarly, Hu et al. [81]
reported an overestimation in the results of the CFSR precipitation datasets used in a
mountainous region of Central Asia. Mean annual evapotranspiration from the whole
catchment is about 9.93%, 25.52%, 2.9%, 21.08%, and 27.28% of the annual precipitation
(186.3 mm, 315.7 mm, 72.1 mm, 256.4 mm, and 299.7 mm out of 1875.9 mm, 1236.9 mm,
2479 mm, 1215.9 mm, and 1098.5 mm) when using the respective datasets. Water yield is
as streamflow, which is obtainable at the catchment outlet and is determined from surface
runoff, lateral flow and baseflow or return flow. Based on the respective datasets on an
overall scale, the annual water yields at the catchment outlet are 534.72 mm, 771.24 mm,
661.98 mm, 672.11 mm, and 654.97 mm, from which surface runoff or overland flow can
be obtained; these take place across a sloping surface at about 46.54 mm, 276.79 mm,
90.56 mm, 30.73 mm, and 243.22 mm (including channel losses). The lateral subsurface
flow or interflow, which originates below the surface but above the rock saturation zone,
contribute 413.34 mm, 371.49 mm, 331.92 mm, 394.21 mm, and 307.92 mm (about 77.30%,
48.17%, 50.14%, 58.65%, and 47.01% of the total water yield) to all aforementioned combi-
nations of datasets. The remaining flow is contributed by the base flow, which originates
from groundwater (shallow aquifer). The annual mean streamflow during the period of
1979–2006 at the Darband discharge station at the outlet point of the UVRB is 626.08 m3/s.
The threshold depth of water in the shallow aquifer (REVAP) takes into account the volume
of water transported from a shallow aquifer to overlying unsaturated terrain during the
dry season.

The mean monthly values of precipitation, water yield, and actual evapotranspiration
for the UVRB are also estimated by coupling the combination of the respective datasets,
as demonstrated in Figure 8. The low precipitation period occurs in July, August and
September, while May–September is the high flow period and flow is less affected by
precipitation events during this time. Similarly, evapotranspiration is higher from May
to September and the large runoff over this period is mainly due to the melting of the
snowpack and permanent glaciers. Moderately high and high precipitation occurs from
October to June. In this study, the maximum precipitation values of 227.21 mm, 154.87 mm,
279.76 mm, 153.29 mm, and 135.54 mm per month occurred in May, according to the
respective datasets. Based on the CRU TS3.1 and observational datasets, July and August
are the only months where actual evapotranspiration is higher than total precipitation
during the dry period. This may have happened because evapotranspiration is a sustained
process that takes place during the day and night. The simulation of all employed datasets
revealed that the maximum evapotranspiration occurred in July. The higher mean monthly
actual evapotranspiration generated the simulation of the observational datasets, while the
CFSR simulation produced lower than average actual evapotranspiration in all months
compared to other simulated datasets for the entire catchment. The CRU TS3.1 dataset
simulations and the APHRODITE_V1101+CRU TS3.1 simulations of the mean monthly
actual evapotranspiration showed a “very good” correlation with the observational dataset
simulations. For example, about 70% of the evapotranspiration occurred from May to
August and, during this period, the APHRODITE_V1101+CRU TS3.1 datasets simulated
about 39.86 mm, 55.01 mm, 62.70 mm, and 49.27 mm, the CRU S3.1 datasets simulated
about 36.36 mm, 50.63 mm, 55.02 mm, and 33.93 mm, and the observational datasets
simulated about 42.95 mm, 56.69 mm, 60.19 mm, and 48.05 mm of evapotranspiration.

The mean annual values of precipitation for the UVRB are also estimated using the
SWAT model by coupling the combination of the respective datasets, as demonstrated in
Table 4. Due to the combination of the different dimensions of the gridded datasets, the
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SWAT model results showed mean annual precipitation differently. In particular, for scenar-
ios (a) and (c), as shown in Table 4, the average annual precipitation in these two scenarios
is higher than in other scenarios because the CFSR datasets were combined in scenario (a)
with APHRODITE_V1101, and in scenario (c) the CFSR results were demonstrated indepen-
dently. The CFSR is a global coupled atmosphere-ocean–land surface–sea ice assimilation
system, developed by NCEP at a resolution of 38 km (T382) and APHRODITE_V1101 for
monsoons in Asia, used at a resolution of 0.25◦ × 0.25◦.

Figure 8. Mean monthly basin values of precipitation, water yield and actual evapotranspi-
ration in the Upper Vakhsh River Basin in Central Asia, using (a) APHRODITE_V1101+CFSR,
(b) APHRODITE_V1101+CRU TS3.1, (c) CFSR, (d) CRU TS3.1, and (e) observational datasets.
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The deviation between the mean monthly actual evapotranspiration levels obtained
from the simulated CRU TS3.1 datasets and the simulated observational datasets was
less than 7 mm in all months except August, when it reached 14 mm (Figure 8d,e). The
deviation between the mean monthly actual evapotranspiration levels, produced by the
APHRODITE_V1101+CRU TS3.1, and observational dataset simulations for the entire basin
was less than 4 mm in all months except October, when it reached 5.28 mm (Figure 8b,e).
These results for the simulated actual evapotranspiration can be explained by the fact
that in the UVRB, most of the land is covered with seasonal grassland (48.63%) and,
after grassland, the prevailing land cover type is bare land (16.84%) and snow/ice cover
(15.75%). The amount of evapotranspiration depends mainly on the type of land cover.
Evapotranspiration also depends on soil moisture, i.e., the water held in the spaces between
soil particles. Nevertheless, the hydrological model of SWAT is a continuous-time model
and considers the variation in the moisture content of the soil. It also takes into account
the soil moisture from the previous day. Consequently, evapotranspiration occurs on a dry
day, and on such days, the soil moisture decreases. Accordingly, during the dry season,
evapotranspiration may exceed precipitation. In general, the total precipitation is greater
than the annual evapotranspiration.

4.5. Snowmelt Contribution to the Streamflow of the Upper Vakhsh River Basin, Using the
SWAT Model

Melting snow in the Pamir-Alay is the main source of groundwater recharge and
streamflow in the dry se ason for all perennial rivers in Tajikistan, which supply fresh
water for drinking and irrigation to Uzbekistan and Turkmenistan in Central Asia. In
addition, snowmelt flow facilitates hydropower production in Tajikistan, which accounts
for over 95% of total electricity production. For that reason, it is important to assess the
contribution of snowmelt in the UVRB in order to successfully develop, plan, distribute and
maximize the efficient and beneficial use of water resources. In this study, the contribution
of snowmelt to the streamflow of the Upper Vakhsh River is computed by applying the
SWAT model to the snowfall–snowmelt mode.

The hydrology of snowmelt is important for SWAT applications in catchments where
the river flows in spring and summer are mainly associated with snowmelt. The SWAT
model’s snowmelt module uses a linear function based on air temperature, snowpack
temperature and melting rate, and measures the amount of snowmelt based on the areal
coverage of snow and the snowmelt factor method [8]. In alpine basins with cold weather
conditions and rare precipitation, the snowmelt streamflow is influenced along with the
air temperature by the slope gradient, aspect, climatic variations, and solar radiation. In
the SWAT model, which depends on the temperature index, the melting rate changes
only with elevation, due to the air temperature gradient. The SWAT model divided the
watershed into ten altitude ranges and, for each band, simulated snow cover and snowmelt
separately. In this study, five established elevation bands were incorporated into the SWAT
model to account for the spatial variation in the snowmelt parameters across the entire
watershed, based on its topographic controls. The output tables for the overall simulation
periods of the SWAT model, along with various climatic products, were used to compute
the snowmelt streamflow in the UVRB. The results are shown in Tables 5–7.
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Table 5. Average monthly snowmelt contribution in the Upper Vakhsh River flow by coupling the SWAT model with the
APHRODITE_V1101+CFSR and APHRODITE_V1101+CRU TS3.1 during the overall period of the SWAT model simulation.

Month
Rainfall (mm)

(a)
Snowmelt
(mm) (b)

Net Rainfall
Input (a + b)

Water Yield
(mm)

Snowmelt
Contribution

(mm)

Monthly Snowmelt
Contribution to the

Streamflow (%)

Combination of the APHRODITE_V1101 and CFSR datasets
January 0.08 0.10 0.18 4.79 2.64 55.19

February 0.10 0.33 0.43 3.27 2.51 76.78
March 2.27 4.85 7.12 3.35 2.28 68.10
April 6.23 26.13 32.36 16.32 13.18 80.75
May 18.86 63.04 81.90 56.58 43.55 76.97
June 26.07 131.06 157.13 123.71 103.18 83.41
July 32.56 172.81 205.37 165.00 138.84 84.15

August 21.28 101.46 122.74 106.71 88.21 82.66
September 4.37 16.68 21.05 24.44 19.36 79.24

Octpber 3.22 4.86 8.08 12.69 7.63 60.13
November 0.40 0.94 1.34 8.39 5.88 70.07
December 0.35 0.48 0.83 6.45 3.72 57.66

Total 115.79 522.72 638.51 531.70 430.99

Combination of the APHRODITE_V1101 and CRU TS3.1 datasets
January 2.35 9.22 11.57 11.56 9.22 79.70

February 2.88 13.56 16.44 11.98 9.88 82.49
March 15.51 40.87 56.38 38.55 27.94 72.49
April 37.49 104.65 142.14 110.93 81.68 73.63
May 68.70 113.25 181.95 134.35 83.62 62.24
June 70.65 122.18 192.83 152.15 96.41 63.36
July 65.80 116.29 182.09 145.97 93.22 63.86

August 43.56 45.86 89.42 72.72 37.30 51.29
September 20.86 13.01 33.87 29.57 11.36 38.42

Octpber 23.10 23.74 46.84 31.93 16.18 50.68
November 10.21 15.01 25.22 20.50 12.20 59.52
December 4.95 10.97 15.92 14.33 9.88 68.92

Total 366.06 628.63 994.69 774.54 488.88

Table 6. Average monthly snowmelt contribution in the Upper Vakhsh River flow, by coupling the SWAT model with the
CFSR and CRU TS3.1, during the overall period of the SWAT model simulation.

Month
Rainfall (mm)

(a)
Snowmelt
(mm) (b)

Net Rainfall
Input (a + b)

Water Yield
(mm)

Snowmelt
Contribution

(mm)

Monthly Snowmelt
Contribution to the

Streamflow (%)

CFSR datasets
January 0.04 0.06 0.10 13.26 8.20 61.81

February 0.19 0.22 0.41 9.04 4.88 54.01
March 1.00 3.46 4.46 8.09 6.28 77.57
April 3.64 23.25 26.89 18.93 16.37 86.47
May 13.12 63.62 76.74 53.86 44.65 82.90
June 24.06 135.85 159.91 106.03 90.08 84.95
July 29.53 197.33 226.86 158.66 138.01 86.98

August 19.84 156.09 175.93 148.17 131.46 88.72
September 5.22 30.26 35.48 63.33 54.01 85.29

Octpber 1.95 4.68 6.63 36.37 25.68 70.60
November 0.29 0.80 1.09 24.32 17.84 73.38
December 0.24 0.17 0.41 18.16 7.48 41.18

Total 99.12 615.80 714.92 658.22 544.93
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Table 6. Cont.

Month
Rainfall (mm)

(a)
Snowmelt
(mm) (b)

Net Rainfall
Input (a + b)

Water Yield
(mm)

Snowmelt
Contribution

(mm)

Monthly Snowmelt
Contribution to the

Streamflow (%)

CRU TS3.1 datasets
January 0.69 5.77 6.46 10.35 9.25 89.32

February 0.57 10.05 10.62 8.20 7.76 94.63
March 4.04 32.84 36.88 17.68 15.74 89.05
April 17.96 88.73 106.69 52.67 43.80 83.17
May 37.72 136.36 174.08 104.58 81.92 78.33
June 40.37 160.78 201.15 143.77 114.91 79.93
July 31.73 159.57 191.30 155.30 129.54 83.41

August 5.07 56.39 61.46 79.87 73.28 91.75
September 8.41 20.02 28.43 36.66 25.81 70.42

Octpber 9.28 26.40 35.68 29.17 21.58 73.99
November 5.85 16.09 21.94 21.73 15.93 73.33
December 2.21 7.66 9.87 14.63 11.35 77.60

Total 163.90 720.67 884.57 674.61 550.89

Table 7. Average monthly snowmelt contribution in the Upper Vakhsh River flow, by coupling the SWAT model with the
observational datasets, during the overall period of the SWAT model simulation.

Month
Rainfall (mm)

(a)
Snowmelt
(mm) (b)

Net Rainfall
Input (a + b)

Water Yield
(mm)

Snowmelt
Contribution

(mm)

Monthly Snowmelt
Contribution to the

Streamflow (%)

Observational datasets
January 0.09 0.32 0.41 5.47 4.28 78.20

February 0.53 1.14 1.67 3.96 2.71 68.35
March 5.23 25.77 31.00 13.80 11.47 83.13
April 25.72 152.84 178.56 124.85 106.87 85.60
May 57.90 120.70 178.60 123.98 83.79 67.58
June 63.90 115.64 179.54 140.94 90.78 64.41
July 44.26 100.51 144.77 120.89 83.93 69.43

August 29.86 45.71 75.57 67.34 40.73 60.49
September 18.11 4.68 22.79 21.00 4.31 20.55

Octpber 12.64 3.81 16.45 15.77 3.65 23.14
November 3.32 4.08 7.40 10.95 6.04 55.16
December 0.32 0.97 1.29 7.61 5.72 75.18

Total 261.88 576.19 838.07 656.57 444.28

The basin-wide monthly snowmelt simulation showed that gridded datasets and
observational datasets generated more or less similar outputs, as shown in Tables 5–7. The
results acquired from the overall SWAT (1982–2006) simulation revealed that about 81.06%
of the annual runoff (out of 531.70 mm of the annual runoff, 430.99 mm is snowmelt runoff)
is supplied by snowmelt runoff when using a combination of the APHRODITE_V1101 and
CFSR. For the combination of APHRODITE_V1101 and CRU TS3.1, the overall SWAT model
results showed that about 63.12% of the annual runoff (out of 774.54 mm of annual runoff,
488.88 mm is the snowmelt runoff) is provided by snowmelt runoff. The simulation of the
CFSR in the SWAT model reveals that about 82.79% of the annual runoff (out of 658.22 mm
of annual runoff, 544.93 mm is the snowmelt runoff) is supplied by snowmelt runoff. By
coupling CRU TS3.1 and the SWAT model, we found that in the annual runoff, about 81.66%
is contributed by snowmelt runoff (out of 674.61 mm of the annual runoff, 550.89 mm is
the snowmelt runoff). The overall simulation of the SWAT model in the application of the
observational revealed that from the annual runoff, about 67.67% is supplied by snowmelt
runoff (out of 656.57 mm of the annual runoff, 444.28 mm is the snowmelt runoff). We used
five combinations of datasets in the SWAT model and the simulation results of the model
showed that, in general, during winter (December–February), the monthly snowmelt and
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rainfall was estimated to be less than 5 mm for all types of datasets. The minimum rainfall
and snowmelt are simulated in winter, including the fact that in winter, the precipitation
mostly falls in a solid form rather than a liquid form (rain) in the UVRB in Central Asia.
According to the simulated observational datasets, September and October are the only
periods in which rainfall in the catchment is dominant.

In addition, the results of all combination datasets show that during the spring and
summer (March–August) most of the runoff is provided by the runoff from snowmelt
(Tables 5–7). For example, according to the simulated SWAT model based on the
APHRODITE_V1101+CFSR, during the period of 1982–2006, about 68.10%, 80.75%, 76.97%,
83.41%, 84.15%, and 82.66% of the river flow is provided by the snowmelt runoff from
March to August. The simulation results of the APHRODITE_V1101+CRU TS3.1 showed
that the contribution of snowmelt runoff to annual runoff is about 72.49%, 73.63%, 62.24%,
63.36%, 63.86%, and 51.29% (March–August). The overall (1982–2006) simulation of the
CFSR datasets showed that between March and August, about 77.57%, 86.47%, 82.90%,
84.95%, 86.98%, and 88.72% of the annual runoff is supplied by snowmelt runoff. The
SWAT simulation on the CRU TS3.1 showed that, in spring and summer (March–August),
of the total runoff, about 89.05%, 83.17%, 78.33%, 79.93%, 83.41%, and 91.75% originates
as snowmelt runoff. Using the observational datasets in the SWAT model, the simulation
results revealed that from March to August, about 83.13%, 85.60%, 67.58%, 64.41%, 69.43%,
and 60.49% of the annual runoff is contributed by runoff formed due to melting snow. As
a result of using different datasets in the SWAT hydrological model, the model results
showed that an increase in the contribution of melt runoff to total runoff begins in March
and continues with a fairly good contribution until September, while the maximum peak
of snowmelt runoff is observed in June and July (Tables 5–7). In winter, the contribution of
snowmelt and total runoff is low due to limited rainfall, and snowmelt is constrained by
low temperatures in mountainous areas. Our results also showed that the hydrology of
the Vakhsh River Basin is dominated by snowmelt. In this study, the amount of simulated
snowmelt, based on applied datasets, ranges from 115.64 mm to 160.78 mm in June and
from 100.51 mm to 197.33 mm in July. However, the contribution of snowmelt to the total
runoff during June and July is considered to be a peak period of contribution, and simula-
tions of the observation datasets presented the lowest amount of snowmelt contribution to
the total runoff, compared to other simulated datasets. The reason for these minimal values
might be the number of climate stations that were used in the hydrological modeling in this
mountain catchment. Similarly, previous studies have shown that mountainous catchments
in most regions of the world have very few climate stations. In this study, the situation
is the same; we used only four observational climate stations, Lakhsh, Dekhavz, Rasht,
and Bustonobod because there are no other operating climatic stations in the catchment.
Regarding the maximum contribution of snowmelt to total runoff during peak periods
(June–July), in June, simulations of snowmelt using the CRU TS3.1 showed the maximum
contribution of snowmelt to total runoff compared to other utilized datasets, while for
snowmelt in July, the simulation of snowmelt using the CFSR compared to other datasets
showed the maximum contribution of snowmelt to total runoff.

Figure 9 shows the mean monthly snowmelt and rainfall contribution in the Upper
Vakhsh River flow, using the SWAT model. The cumulative curves of the runoff input
components, including snowmelt and rainfall, are shown in Figure 10. Figures 9 and 10
demonstrate that the various gridded datasets in the hydrological model perform slightly
differently in snowmelt and rain simulations. One possible explanation could be the fact
that the resolution of the climate inputs varies, i.e., the numbers of gridded points are
different. However, the performance of the employed objective functions in hydrological
models was almost equal under different gridded climate inputs and this is to be expected
since, each time, the model adjusts its parameters during calibration so as to maximize
the utility of the input dataset. The results obtained from the SWAT model, using the
respective datasets, indicated that an average of about 81.06%, 63.12%, 82.79%, 81.66%, and
67.67% of the annual flow of the Upper Vakhsh River is contributed by the snowmelt runoff.
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Snowmelt is the dominant hydrological process in the VRB and flow is less influenced by
precipitation events. The contribution of the rain to the annual flow was estimated to be
about 18.94%, 36.88%, 17.21%, 18.34%, and 32.33%, according to the simulations of the
respective datasets.

Our study revealed that the gridded climate data from APHRODITE, CRU and CFSR
can be used as alternative data, especially in areas with fewer climate stations, including the
UVRB. These results represent the potential of the use of gridded datasets for hydrological
modeling. If complete observational data are available for the reference period, it is more
appropriate to use these data. In some cases, because of the provision of continuous
data at spatial and temporal scales over a longer period, gridded datasets are preferred
over observational datasets. The use of the most recently available gridded datasets
in a consistent format and with improved technology has made them easier to use for
hydrological modeling. Meanwhile, the combination of different gridded datasets can lead
to improved hydrological modeling [82]. Similarly, we used the reference gridded datasets
in combination, by combining their corresponding features with the daily measurement-
based climate data to achieve evaluation and better model simulations. The snowmelt
and rainfall contributions to annual river flow, according to the simulation results of the
respective datasets, were different (Figures 9 and 10). The differences in the contributions
of the snowmelt and rainfall to annual river flow from the simulations of all combinations
of datasets are due to the differences in the climate data. Such a difference may have
occurred because the climate data came from different independent sources, with different
approaches toward acquisition, processing data, and resolution. However, our results
demonstrated that the gridded datasets performed well in capturing peak flows and base
flows. The overall modeling results indicate that the SWAT model is potentially useful for
studying hydrology and assessing the water yield of catchments.

Spring and summer runoff from the Vakhsh River Basin supplies several Central
Asian countries, including Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan, with
water for domestic and agricultural needs, hydropower production and recreation [83].
Modeling the spring and summer snowmelt runoff is critical to understanding seasonal
runoff variability. Water management and flood protection strategies in Central Asia are
based on capturing and storing runoff for delivery in the fall months. Water managers
track spring and summer runoff as a key factor when planning to meet Central Asia’s water
supply needs [84]. It is also important to use spring and summer runoff data to predict the
water supply and flooding in the basin.
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Figure 9. Mean monthly rainfall and snowmelt contribution in the Upper Vakhsh River flow, using the SWAT
model with (a) APHRODITE_V1101+CFSR, (b) APHRODITE_V1101+CRU TS3.1, (c) CFSR, (d) CRU TS3.1, and
(e) observational datasets.
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Figure 10. Cumulative curves of the runoff input components for the Upper Vakhsh River, using the SWAT
model with (a) APHRODITE_V1101+CFSR, (b) APHRODITE_V1101+CRU TS3.1, (c) CFSR, (d) CRU TS3.1, and
(e) observational datasets.

5. Discussion

To the best of our knowledge, the simulation of the water balance component, par-
ticularly snowmelt runoff and its contribution to total runoff in the Vakhsh River Basin,
has not been conducted previously. Similarly, an evaluation of the datasets’ ability to
simulate the hydrological behavior of the UVRB from 1982 to 2006 has not previously been
performed, especially not when using a combination of the APHRODITE_V1101+CFSR,
AHPRODITE_V1101+CRU TS3.1, CFSR, and CRU TS3.1 datasets in a hydrological SWAT
model. Water-balance elements in a catchment are influenced by climate and the physical
characteristics of the basin, such as topography, land use, soil properties, glaciers, and
human economic activities. For any analyses related to sustainable water resource manage-
ment, understanding all the hydrological components is important. Snowmelt from the
Vakhsh River is the main source of groundwater recharge and runoff in the dry seasons
of many perennial rivers in Tajikistan, supplying fresh water for drinking, irrigation and
hydropower generation. For this reason, it is very important to assess the contribution of
snowmelt to the total runoff of UVRB for effective water resources management. Moreover,
when modeling mountainous watershed hydrology, the most important determinant is
the provision of accurate and alternative climate inputs in modeling. The lack of data has
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a large impact on modeling in mountainous regions. Ordinary climate stations are often
scattered sparsely and cannot fully reflect the climatic conditions in the basin, especially
in mountainous areas. In addition, the records of climate stations often do not cover the
proposed modeling period or contain gaps. To address/mitigate this issue in UVRB CA,
we examined the performance of gridded precipitation and temperature data combinations
from various sources for simulating river flow, using the SWAT model.

In this study, the simulation of the observational-based datasets performed better
than the gridded products in the UVRB for modeling river flow. Our results revealed that
among the applied gridded datasets, the use of the CRU TS3.1 datasets for the overall
scale (1982–2006) showed higher accuracy in river flow simulations, followed by the
APHRODITE_V1101 and CRU TS3.1 combination, the APHRODITE_V1101 and CFSR
combination, and the CFSR in the UVRB in Central Asia. Our results are consistent with
those of Hajihosseini et al., who used the global CRU and SWAT models in the Upper
Helmand Basin (UHB) in Afghanistan, which is a neighboring country to Tajikistan, to
simulate the long-term hydrological conditions of the basin. Hajihosseini et al. used the
CRU as an alternative data source, due to the lack of observational data at the UHB [30].
The results revealed the good performance of the SWAT model, using the CRU dataset
for the UHB from 1969 to 1979, while NSE was 0.84 for the calibration period and 0.82
for the validation period [30]. As is similar to the results of our study, CRU datasets were
used in the SWAT model to simulate river flows in the African continent over the period
of 1968–1995, and the results showed a “good” performance (NSE > 0.6) [85]. However,
our results for the CRU TS3.1 simulation contradicted the results of Malsy et al. [29],
who examined the performance of hydrological modeling using four datasets, the Global
Precipitation Climatology Centre (GPCC) Reanalysis product v6, APHRODITE, WATCH
forcing data (WFD), and CRU, in a hydrological model (Water Global Assessment and
Prognosis 3, WaterGAP 3) for the period from 1976 to 1999. According to Malsy et al., the
GPCC and APHRODITE datasets with the WaterGAP 3 hydrological model showed better
hydrological results than the CRU and WFD at the Tuul River Basin and Khovd River
Basin in Mongolia in East Asia [29]. This contradiction may be associated with the use
of a different hydrological model, a different selected period and a different study area
location. It is not known if the same results could be generated in our study area with
a different hydrological model. For instance, in the Hotan River Basin in southwestern
Xinjiang in Central Asia, from 2004 to 2008, Luo et al. [31] assessed the performance of
the SWAT and MIKE SHE hydrological models. The results showed that the SWAT model
performs better (NSE = 0.77) than the MIKE SHE model (NSE = 0.66) for the same climate
input. Besides hydrological modeling, the CRU dataset was evaluated for climatological
studies in Central Asia by other researchers and their results showed that the CRU dataset
is applicable and satisfactory for climatological studies in Central Asia [86,87].

Furthermore, our results indicated that a second alternative source for the hydrological
simulation of the UVRB with the SWAT model could be the combination of precipitation
with APHRODITE_V1101 and maximum/minimum temperature with CRU TS3.1, fol-
lowed by the combination of APHRODITE_V1101 and CFSR, and CFSR. These results
are in agreement with the findings of Tan et al. [34], who assessed the capabilities of the
APHRODITE, CFSR and the “Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks” (PERSIANN) datasets to model river flow using the
SWAT model for the Kelantan River Basin (KRB) and the Johor River Basin (JRB) in Malaysia
in Southeast Asia, from 1985 to 1999. The combination of APHRODITE precipitation data
and CFSR temperatures resulted in an accurate simulation of the river flow of the KRB and
JRB. Tan et al. recommend the use of APHRODITE precipitation and CFSR temperature
data when modeling the water resources of Malaysia [34]. Similarly, the APHRODITE
dataset and the SWAT model were used for hydrological modeling from 1980 to 1989 in
the Brahmaputra River Basin (BRB) and Yarlung Tsangpo River Basin (YTRB), which is
the main international river flowing through China, Bhutan, India, and Bangladesh. The
results showed the validity of APHRODITE estimates in driving the hydrological model in
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the YTRB and BRB [33]. Comparable results were reported by Xu et al. [35], who applied
the SWAT model with APHRODITE and WFD in the Xiangjiang River Basin (XRB) in China
to simulate river flow, particularly high flow and low flow. The APHRODITE simulation
(NSE = 0.79, NSE = 0.82) performed better than the WFD dataset (NSE 0.69, NSE = 0.71),
both during calibration (1991–2005) and validation (2001–2005) periods. WFD modeling
leads to more errors in simulating flood events than APHRODITE [35]. The TRMM, NCEP,
GPCP, CFSR and APHRODITE were used to assess the performance (NSE) of SWAT in
the Wunna Basin in India [36]. APHRODITE dataset simulations performed much better
(NSE = 0.68) than TRMM, NCEP, GPCP and CFSR, meaning that APHRODITE can be seen
as an alternative source for hydrological modeling in the Wunna Basin [36]. Our results
indicated the superiority of the combination of the APHRODITE_V1101 and CRU TS3.1
in the streamflow simulation in the UVRB from 1981 to 2006. However, these results are
somewhat inconsistent with the findings of Eini et al. [88], who modeled hydrology systems
and evaluated the performance of the SWAT model in the Maharlu Lake Basin in Iran by
comparing CRU, NCEP CFSR, and APHRODITE, as well as reanalyzing Asfezari rainfall
data using conventional data from 1983 to 2010. In this Iranian catchment, a simulation
that was achieved through a combination of APHRODITE and CFSR showed superior
performance (NSE = 0.91) compared to the other dataset combinations [88]. However, it
should be noted that these results are region- and model-dependent. Many studies show
that the accuracy of gridded data results varies by region [38,39]. Meanwhile, a hydrologi-
cal model with a different concept and representation of the streamflow procedure may
lead to different conclusions.

Our results demonstrated that for the overall scale (1982–2006), the CFSR simu-
lated the hydrology of the UVRB with lower accuracy than APHRODITE_V1101+CFSR,
APHRODITE_V1101+CRU TS3.1, and CRU TS3.1. Correspondingly, the simulation of
river flow using a SWAT model based on the characteristics (NSE) of weather products,
with reference to the CFSR, showed that despite the small number of observational cli-
mate stations in the basin, the modeling of observational datasets was more accurate
for representing climate relationships in the basin than the CFSR. These results are very
similar to those of Dile et al. [15] in the Gilgel Abay River and Gumera River in the Lake
Tana Basin, and the upper part of the Upper Blue Nile Basin, where SWAT was also set
up to assess the performance of CFSR datasets compared with conventional datasets for
hydrological predictions from 1994 to 2008. Liu et al. [32] also used the SWAT model with
climate data from the “China Meteorological Assimilation Driving Datasets” (CMADS
V1.0) and CFSR in the Yellow River Source Basin, Qinghai–Tibet Plateau, from 2009 to 2013.
Liu et al. found that the performance of the hydrological model for the monthly scale of
CMADS (NSE = 0.78) was higher than that of the CFSR (NSE = 0.69) [32]. However, our
results, as found in the UVRB, conflict with the findings of Tolere et al. [16], Fuka et al. [45],
Cuceloglu and Ozturk [46], and Grusson et al. [89]. For instance, Tolere et al. [16] reported
more successful SWAT streamflow simulation results using the CFSR than conventional
datasets from 1990 to 1995 for the Keleta watershed in Ethiopia, where conventional data
are scarce [16]. Fuka et al. [45] reported that the SWAT model presented better simulation
results with CFSR datasets, compared to using traditional weather-gauging stations in
the Catskill Mountains, NY, USA, and the Gumera Watershed in the Blue Nile River in
Ethiopia, from 1996 to 2010. Similarly, Cuceloglu and Ozturk [46] evaluated CFSR using
the SWAT model as a hydrological simulator in the Black Sea catchment from 2000 to 2012.
The results showed that the CFSR gives quite reasonable agreement between simulated and
observed river flow, compared to the observational dataset. Another study was conducted
by Grusson et al. [89] in the Garonne River Watershed in France, employing CFSR and
conventional datasets in hydrological simulations using the SWAT model from 2000 to
2010. The results revealed that the CFSR provided better hydrological simulations than
conventional datasets [89]. Differences in climate and geographic conditions are the most
likely explanation for such differences between the findings of Tolere et al. [16], Fuka
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et al. [45], Cuceloglu and Ozturk [46], Grusson et al. [89], and the results presented in
this study.

The applicability of the SWAT model for the simulation of water balance compo-
nents was assessed in the Heihe mountain river basin in northwest China, from 1961 to
1988 [22]. Water-balance components over the Narmada River Basin in India were assessed
by Goswami et al. using the SWAT model and CFSR, from 1984 to 2013. The results
suggested that the SWAT model was able to simulate the water-balance components at
the basin and sub-basin scales [19]. Pathak et al. [90] applied the SWAT model in nine
watersheds in India to validate the annual water yield obtained from diverse water-balance
models. Moreover, Pathak et al. assessed the applicability of the Lumped Zhang model and
InVEST model, together with the SWAT model, to compute water yield in scenarios before
and after climate change for 1980, 1990, 2001, and 2015 [90]. Gupta et al. [18] estimated the
water-balance components in the Sabarmati River Basin (SRB) in India using the SWAT
model, from 1999 to 2005. Gupta et al. noted that SWAT is a powerful tool that very
effectively evaluated hydrological components in the study of the water balance and river
flow of the SRB [18]. In Nepal, Thapa et al. used the HBV and BTOPMC models, along
with the SWAT model, to assess the components of water balance from 2001 to 2010. The
results of the three models were similar [91]. A predictive study using three models also
offered a reasonable range for runoff and evapotranspiration estimates [91]. Water balance
and water yield were predicted by the SWAT model in a basin in the north-central part
of Nigeria, from 1985 to 2010 [17]. Adeogun et al. noted that the SWAT model can be a
promising tool for predicting water balance, in terms of sustainable water management
in Nigeria [17]. The SWAT model was applied by Leta et al. to model water balance
components in the Heeia watershed in Hawai’i, an island in the Pacific Ocean, from 2006
to 2013 [92]. This study demonstrated the applicability of SWAT to small island water-
sheds with large topographic, precipitation, and land-use gradients. Our seasonal and
annual precipitation results in the UVRB in Central Asia, using the APHRODITE_V1101
and CRU TS3.1, demonstrated much closer results to the observational dataset. These
findings are in agreement with the results of a study by Shen et al. in the Kaidu Basin in
Central Asia. Shen et al. [37] used gridded products, including CFSR, APHRODITE, CRU,
TRMM, ERA-Interim and MERRA-2, with the J2000 model to analyze the spatiotemporal
patterns of water balance and the distribution of runoff components in the glacierized
Kaidu Basin in Central Asia. The results showed that APHRODITE and CRU represented
annual and seasonal precipitation dynamics that were similar to the observational dataset
at most climate points [37]. Similarly, a water balance study with the application of the
SWAT model and observational datasets was conducted in the Indian Ken River Basin in
South Asia, from 1986 to 2005 [20]. Himanshu et al. concluded that the SWAT model can
accurately simulate the hydrology of the Ken River Basin in India. The water balance study
of the basin showed that evapotranspiration is more predominant, accounting for about
44.6% of the average annual precipitation [20].

In this study, considering the more accurate performance of the CRU TS3.1 and
observational datasets than other studied datasets, the simulations of the CRU TS3.1
and observational datasets showed that the actual evapotranspiration in July is almost
equal to the July catchment precipitation values. These results are in accordance with
those of Pritchard [23], who used a combination of CFSR temperature and APHRODITE
precipitation datasets in the SWAT model to simulate water-balance components, espe-
cially the actual evapotranspiration in five Asian river basins, including the Aral, Indus,
Ganges, Brahmaputra, Tarim, and the lakes of Issyk-Kul and Balkhash. For the Aral
Sea Basin in Central Asia, Pritchard reported that summer evaporation is approximately
equal to summer precipitation [23]. In this study, less actual evapotranspiration occurs
in December, January, and February for all datasets studied, including CFSR. However,
this result contradicts the findings of Goswami et al. [19], who found that the simula-
tions of actual evapotranspiration showed minimal values in May, using CFSR and the
SWAT model, in the Narmada River Basin of India in South Asia between 1984 and 2013.
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The results of our simulation showed that the average annual actual evapotranspiration
is about 2.9% (CFSR), 9.93% (APHRODITE_V1101+CFSR), 21.1% (CRU TS3.1), 25.52%
(APHRODITE_V1101+CRU TS3.1), and 27.28% (observational datasets) of the average
annual precipitation in the UVRB from 1982 to 2006. The same methodology was applied
by Budhathoki et al. [93] in the West Seti River Basin (WSRB) in South Asia, to simulate the
mean annual water balance components, including precipitation and evapotranspiration,
using the SWAT model and a combination of conventional weather data and APHRODITE,
for the period of 1986–2005. The mean annual total evapotranspiration matched about
36% of the mean annual precipitation in the WSRB [93]. In another study, Nasiri et al. [21]
applied the SWAT model to the Samalqan Basin in Iran in Western Asia, from 2004 to
2014, to compute actual evapotranspiration using observational weather data. Actual
evapotranspiration contributed to the largest water loss from the basin, at approximately
86%. Nasiri et al. pointed out that the high evapotranspiration rate that was simulated
may be related to the vegetation types in the region [21].

Our results indicated that the simulation of the CFSR provided lower actual evapo-
transpiration values than traditional weather data for the UVRB from 1981 to 2006. Similar
results were obtained by Dile et al. [16] in the Gumera, Rib and Megech River Basins in
Ethiopia in the Horn of Africa, where independent observation datasets and CFSR were
used in the SWAT model in 1990–1995 [16]. However, Dile et al. stated that the results in
the Melka Kuntur Basin showed higher values for the water-balance components; this may
be due to the relatively high total precipitation in the CFSR dataset in the Melka Kuntur
Basin [16]. In general, in our study, CFSR also simulated higher total annual precipitation
in the UVRB in Central Asia, compared to other reference datasets. We found the largest de-
viation between the monthly mean actual evapotranspiration CFSR and the observational
datasets, compared to other applied datasets in the UVRB. However, from previous studies,
we have observed that in some regions, CFSR, when calculating actual evapotranspiration,
produced values very similar to conventional weather data. For instance, the CFSR and
observational datasets, with the SWAT model, were applied to different watersheds in the
Blue Nile Basin in the northwestern Ethiopian Plateau from 1994 to 2008, to estimate actual
evapotranspiration [15]. For the Megech sub-basins in Ethiopia, the results showed that the
deviation between the monthly mean actual evapotranspiration levels, obtained from CFSR
simulations, and observational datasets was less than ±5 mm in all months besides August
and September, when it reached 12 mm and 19 mm, respectively. Dile et al. noted that CFSR
weather data can be a valuable option for hydrological prediction where conventional data
are not available, such as in remote parts of the Upper Blue Nile Basin [15].

Based on the SWAT model application, our results for the simulations of five different cli-
mate data combinations, including APHRODITE_V1101+CFSR, APHRODITE_V1101+CRU
TS3.1, CFSR, CRU TS3.1, and observational data showed that approximately 81.06%, 63.12%,
82.79%, 81.66%, and 67.67% of annual runoff was contributed by snowmelt runoff from
1982 to 2006 in the UVRB. The largest contribution of snowmelt runoff to the total runoff
appears during the spring and summer periods. The monthly APHRODITE_V1101+CFSR
simulations showed that from May to August, the snowmelt runoff contribution to river
flow was about 68.10% (March), 80.75% (April), 76.97% (May), 83.41% (June), 84.15% (July),
and 82.66% (August); for the APHRODITE_V1101+CRU TS3.1 simulations, it was about
72.49%, 73.63%, 62.24%, 63.36%, 63.86%, and 51.29%; for the CFSR simulations, it was about
77.57%, 86.47%, 82.90%, 84.95%, 86.98%, and 88.72%; for the CRU TS3.1 simulations, it was
about 89.05%, 83.17%, 78.33%, 79.93%, 83.41%, and 91.75%; and, for the observational sim-
ulations, it was about 83.13%, 85.60%, 67.58%, 64.41%, 69.43%, and 60.49%. Many studies
have shown that the application of the SWAT model is quite useful in snowmelt simula-
tions [1,2,24,25]. As far as we are aware, in this study, the use of the SWAT model with
various combinations of the respective climate datasets was conducted for the first time as
a way to simulate snowmelt runoff contribution to river flow in this mountainous basin.

By using observational climate data in the SWAT model, Duan et al. simulated the
snowmelt contribution to total runoff in the Tizinafu River Basin (TRB) in Xinjiang in
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Central Asia, from 2013 to 2014 [25]. Duan et al. found that about 44.7% of the total runoff
comes from snowmelt runoff in the TRB [25]. Siderius et al. [24] calculated the contribution
of snowmelt to river runoff using APHRODITE data with the SWAT model, from 1971 to
2000, in the Ganges River in northern India in the Himalayan arc in South Asia. The SWAT
results showed that approximately 1% and 5% can be considered to be indicative of the
actual total annual contribution of snowmelt to total runoff. The contribution of seasonal
snowmelt to total runoff during the dry season before the summer monsoon (MAM) is
estimated to range from 12% to 38% [24]. A similar approach was applied by Chiphang
et al. [1], who used the SWAT model in the mountainous Mago River Basin, located in
the Eastern Himalayan region of India, from 2006 to 2009 to compute the contribution of
snowmelt to streamflow changes in the basin. Their results showed that the contribution
of snowmelt runoff to the annual streamflow of the basin was about 8% [1]. Another
study was performed by Dhami et al. using the snowmelt runoff model (SRM) and SWAT
model with conventional weather data, to compute the water balance components of the
Karnali River Basin in Nepal in South Asia and to simulate the contribution of snowmelt
to river runoff, from 1993 to 2005 [2]. Dhami et al. reported that, from the comparison
of the results obtained from the SWAT model and the SRM model, it is recommended
that the results obtained from the SWAT model are used due to its better performance
in terms of predicting reality than the SRM model [2]. The results of the SWAT model
indicated that in the Karnali River Basin, about 35% of the total runoff is contributed by
snowmelt runoff [2]. An accurate representation of the snowmelt process could improve
the prediction of streamflow in mountainous catchments [89,94]. The UVRB has good
seasonal snow cover at high altitudes. Snowmelt is usually an important source of river
flow at high altitudes. In this study, SWAT appropriately demonstrates both the beginning
of snowmelt and the peak of spring snowmelt.

The perennial river basin system, when combined with steep slopes, provides enor-
mous hydropower potential, the exploitation of which requires a deep understanding of
the hydrological system of the catchment. The capacity of hydropower is determined by
the flow rate of the river, so a change in flow will directly lead to changes in hydropower
potential [95]. Determining the effect of snowmelt on streamflow in the catchment allows
an assessment of the hydrological processes within a river basin in a mountainous region.
Snowmelt tends to create regular seasonal patterns of river flow during warmer tempera-
tures, with the melting of snowpacks accumulated over the winter. The impact of melting
snow on potential flooding, mainly in the spring, is of concern to many inhabitants across
the globe. The performance of the SWAT model presents evidence that it can be applied
efficiently in the transboundary Vakhsh River Basin in Central Asia for water resources
assessment and management. Semi-distributed hydrological models can be used as an
essential feature of the water resources monitoring approach and can play a crucial part
in the management of transboundary water resources [96]. Furthermore, well-calibrated
models are an important tool for a variety of water management applications, such as
for assessing the availability and balance of water resources, modeling water quality and
sediment transport, etc.

Uncertainties and Limitations

The SWAT model has been applied in several hydrological modeling studies in var-
ious catchments around the world [14,25,97]. There may be a few areas of uncertainty
in modeling snow and glacier melt, such as orographic impacts and hydrological model
parameterization, as well as heterogeneity in forest cover, slope, and features, which are
evident issues in snow and glacier hydrology. All of these aspects are not well represented
by a simple temperature index of snowmelt and glacier melt simulation. However, the eval-
uation of snowmelt based on a temperature index appears to be good enough to compute
the physics of snowmelt processes entirely. Snowmelt hydrology is specifically considered
as an essential variable in local catchments. Due to the degree-day approach with elevation
bands in the SWAT snowmelt module, it is hard to avoid the uncertainties inherent in
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the model structure, parameters and input data. On the other hand, the absence of an
ice-melt module would also cause potential uncertainties. Calibration solely by discharge
records might produce good results, as well as potential uncertainties [8]. Parameter uncer-
tainty occurs when certain physical processes in a hydrological or climatic system cannot
be explicitly resolved. As a replacement, they must be included via parameterization,
which contains some uncertain variables. The UVRB is situated in a mountainous area,
within which a wide range of regions subject to permafrost and seasonal cold is spread.
The freezing/thawing processes of the soil also affect the accuracy of the simulation [98].
Furthermore, measurement-based flow data that have been used in a comparison with
a simulated flow may be exposed to human or tool errors in river-level observations, or
inaccuracies in estimated curves, all of which are designed for natural river stretches that
are subject to erosion and deposition [99]. The uncertainty of the data source stems from
the use of the CRU, which is generated by interpolating data from weather stations in
the region. Therefore, the entered climatic data are approximate [100]. The APHRODITE
dataset, which includes multiple climate stations, provides high-resolution, gridded, long-
term daily precipitation estimates, as commonly used in South Asia. In the UVRB, most of
the climate stations are located in valleys and are not in mountains with a large amount of
precipitation. The combination of all of these factors can increase the uncertainty of the
APHRODITE estimates. Precipitation data from CFSR showed more heterogeneity than
the temperature data. The gridded dataset was obtained directly; thus, its applicability in
the study region must be assessed prior to its use. The precipitation error characteristics of
datasets vary due to climatic regions, elevations, surface conditions, seasons and storm
patterns [101]. Similarly, these datasets are inevitably prone to inaccuracies caused by
sampling uncertainties, indirect measurements, and exploration algorithms [102]. In future
investigations, it might be possible to analyze the effects of bias correction on multiple
gridded climate data estimates in SWAT hydrological element simulations.

6. Conclusions

We used the SWAT–CUP Sequential Uncertainty Fitting (SUFI-2) program to assess
the water balance components of the basin. APHRODITE_V1101, CFSR, and CRU TS3.1
gridded datasets were tested both independently and in combination with observational
datasets for hydrological simulation. The SWAT hydrological model was used to examine
the datasets in Central Asia’s Vakhsh River Basin. We also tested the SWAT model’s
applicability to the UVRB hydrology. The authors came to the following conclusions:

(a) The results of the study indicated that the applied gridded datasets, such as CRU
TS3.1, AHPRODITE_V1101, and CFSR, can be used as alternative climate data in an
assessment of the hydrology in the UVRB.

(b) We observed that the CFSR datasets performed worse than APHRODITE_V1101+CFSR,
APHRODITE_V1101+CRU TS3.1, and observational datasets.

(c) Aquifer percolation fraction (RCHRG_DP), baseflow alpha-factor (ALPHA_BF), moist
bulk density (SOL_BD), SCS runoff curve number for moisture condition-II (CN2), and
effective hydraulic conductivity in main channel alluvium (CH_K2) were determined
to be the most sensitive factors for streamflow simulation using the SWAT model in
the UVRB.

(d) APHRODITE_V1101+CFSR showed “good” [71] results in simulating the monthly
observed streamflow (with NSE = 0.70 and 0.72 for calibration and for overall pe-
riod, respectively, and PBIAS = 14.8% and 15% for calibration and for overall period,
respectively). The APHRODITE_V1101+CRU TS3.1 gave “good” results for calibra-
tion and overall periods (NSE = 0.74 and 0.74, respectively), with “satisfactory” [71]
(PBIAS = −17.7%) and “good” (PBIAS = −10.80%) underestimation of streamflow.
This combination showed “very good” [71] results (NSE = 0.78) for the validation
period with a “very good” overestimation of streamflow (PBIAS of 1.30%). The CFSR
datasets presented “good” results (NSE = 0.68) with a “very good” (PBIAS of 2%)
overestimation of streamflow and, for the validation period, CFSR provided “very
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good” results (NSE = 0.83) with a “very good” overestimation of streamflow (PBIAS
of 9.58%). The CRU TS3.1 datasets gave “very good” results for calibration, validation
and overall scales (NSE = 0.91, 0.88 and 0.91, and PBIAS = 0.32%, 6.09%, and 0.29%,
respectively). The observational datasets for calibration, validation and overall pro-
vided “very good” results (NSE = 0.90, 0.93 and 0.91 and PBIAS = 0.69%, 5.51%, and
5.21%, respectively). The better performance corresponds to observational datasets
with higher NSE values, followed by the CRU TS3.1 datasets.

(e) The coefficient of determination (R2) showed an acceptable (>0.6) [103] correlation be-
tween the observed and simulated monthly streamflow during calibration, validation,
and overall scales (R2 ranges from 0.74 to 0.94) for all five datasets.

(f) For APHRODITE_V1101+CFSR, APHRODITE_V1101+CRU TS3.1, CFSR, CRU TS3.1,
and observational datasets, the SWAT model simulated mean annual precipitation
of the UVRB as 1875.9 mm, 1236.9 mm, 2479 mm, 1215.9 mm, and 1098.5 mm,
respectively, with 93.82% (1760.11 mm), 70.41% (870.85 mm), 96% (2379.86 mm),
86.52% (1051.98 mm), and 76.16% (836.65 mm) as snowfall, out of which 29.70%
(522.72 mm), 72.19% (628.63 mm), 25.88% (615.80 mm), 68.51% (720.67 mm), and
68.87% (576.19 mm), respectively, melts and facilitates snowmelt runoff in the basin.

(g) The UVR basin evapotranspiration is 9.93% (APHRODITE_V1101+CFSR), 25.52%
(APHRODITE_V1101+CRU TS3.1), 2.9% (CFSR), 21.08% (CRU TS3.1), and 27.28%
(observational datasets) (186.3 mm, 315.7 mm, 72.1 mm, 256.4 mm, and 299.7 mm
out of 1875.9 mm, 1236.9 mm, 2479 mm, 1215.9 mm, and 1098.5 mm, respectively).
Overall, less evapotranspiration occurs in December, January, and February.

(h) From 1982 to 2006, the simulation of five different weather products (APHRODITE_V1101
+CFSR, APHRODITE_V1101+CRU TS3.1, CFSR, CRU TS3.1) and observational datasets
in the UVR basin showed that snowmelt runoff contributes approximately 81.06%,
63.12%, 82.79%, 81.66%, and 67.67%, respectively, of annual runoff. Snowmelt runoff
contributes the most to overall runoff in spring and summer.

(i) The annual flow contribution of rain was estimated at 18.94%, 36.88%, 17.21%, 18.34%,
and 32.33% using APHRODITE_V1101+CFSR, APHRODITE_V1101+CRU TS3.1,
CFSR, CRU TS3.1, and observational datasets.

The SWAT hydrological simulation of observational datasets outperformed gridded
products in the mountainous UVRB. The SWAT model-simulated streamflow variations
better than CFSR gridded datasets using CRU TS3.1 and APHRODITE_V1101. Gridded
meteorological datasets like CRU TS3.1, APHRODITE_V1101, and CFSR can also be used
for hydrologic modeling, especially if observational data is scarce. The SWAT model
captured the monthly observed flow patterns and trends well. The model produced
reliable monthly streamflow estimates, as evidenced by NSE, R2, and PBIAS values that
were superior for calibration, validation, and overall scales. The high NSE, R2, and PBIAS
values for monthly streamflow during the calibration, validation and overall periods
indicate the model’s predictive ability. For water management challenges in the basin,
the SWAT model offered a baseline understanding of hydrological dynamics. The current
study demonstrates that the SWAT model could be a helpful tool for predicting water
balance components to assist basin-level policies and decisions.
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Abstract: Streamflow impacts water supply and flood protection. Snowmelt floods occur frequently,
especially in mountainous areas, and they pose serious threats to natural and socioeconomic sys-
tems. The current forecasting method relies on basic snowmelt accumulation and has geographic
limitations that restrict the accuracy and timeliness of flood simulation and prediction. In this study,
we clarified the precipitation types in two selected catchments by verifying accumulated and maxi-
mum temperatures’ influences on snow melting using a separation algorithm of rain and snow that
incorporates with the temperatures. The new snow-melting process utilizing the algorithm in the
soil and water assessment tool model (SWAT) was also developed by considering the temperatures.
The SWAT model was used to simulate flooding and snowmelt in the catchments. We found that
the contributions of snowmelt to the river flow were approximately 6% and 7% higher, according to
our model compared to the original model, for catchments A and B, respectively. After the model
improvement, the flood peaks increased by 49.42% and 43.87% in A and B, respectively. The contribu-
tions of snowmelt to stream flow increased by 24.26% and 31% for A and B, respectively. Generally,
the modifications improved the model accuracy, the accuracy of snowmelt’s contributions to runoff,
the accuracy of predicting flood peaks, the time precision, and the flood frequency simulations.

Keywords: Issyk-Kul; SWAT; accumulated temperature; snowmelt

1. Introduction

Water resources are essential for society’s long-term development, economic growth,
and ecological environment [1–4]. Large amounts of water are stored as snow and
glaciers [5,6], and this water can be discharged into catchments [7–9]. Approximately
one-sixth of the world’s population lives near rivers that originate from snowmelt [10],
which can occur in mountainous areas, even in otherwise arid regions. The melt water
is used for agricultural, industrial, and municipal purposes [11]; however, its availability
may alternate the water levels of lakes and cause floods that can pose serious threats to
natural and socioeconomic systems. According to recent statistics, mountain torrents were
responsible for approximately 70% of flood-related deaths [12,13], and associated disaster
losses accounted for more than 50% of the total deaths [14,15]. Frequent floods may pose
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a significant threat to certain populations, especially those in high-altitude areas, such as
Kyrgyzstan. Indeed, Kyrgyzstan is among the countries affected by such floods.

Kyrgyzstan is a Central Asian country with abundant underground and surface water
resources. Changes in the runoff and distribution of its sources, mainly rainfall, snowmelt
water, glaciers, and other tributaries, affect the water in Issyk-Kul, Kyrgyzstan’s large
endorheic lake [16]. The Issyk-Kul basin contains a number of streams. About 123 of them
are used for irrigation [17,18]. Water supply and flood protection are both impacted by
streamflow [19,20]. Furthermore, Issyk-Kul is fed by rivers, the majority of whose water
comes from snow and glaciers, which cover about 509 km2 of the drainage basin and are
located at elevations of 3000 m a.s.l. and higher [21–23]. Precipitation increases from May to
August, corresponding with a seasonal increase in agricultural water demand [16]. During
the summer (June to September), rivers primarily fed by glacial meltwater experience
significant increases in runoff, resulting in floods during the “flood season” [5]. There are
four types of rivers. The majority of glacial-snow-type rivers flow into Issyk-Kul [24]. River
runoff’s shifting properties have long been focuses of hydrological and water resource
research [25]. Since Issyk-Kul’s rivers affect its water level, it is important to focus on the
sources of the rivers, especially the snowmelt.

Snowmelt runoff is a significant source of water and a substantial driving force for
catastrophic flooding in inland desert regions during the spring flood season, so it must
be carefully analyzed. To mitigate or minimize the tragedies and losses caused by floods,
it is vital to analyze the complete snow melting and flood process [26]. Many models
have been developed, including empirical models, conceptual models, physical models,
and distributed hydrological models with snowmelt modules [27–33]. Water balance is
calculated by analyzing evaporation during strong winds, low relative humidity, and low
temperatures [34]. More advanced models [35,36] were shown to be flawed when simulat-
ing runoff in snowmelt watersheds [37]. The soil water assessment tool (SWAT) [38–40] is
a distributed watershed hydrological model developed by the US Department of Agricul-
ture and relies on the Simulator for Water Resources in Rural Basins (SWRRB) model [41–44].
It has good precision when dealing with plains with abundant precipitation and flat terrain,
but it has relatively lower accuracy when dealing with mountainous areas with complex
terrains [37,45]. The model uses few parameters and little input data. For snow watersheds,
the model is used to evaluate dispersed snowmelt and runoff formation [46]. The degree-
day factor approach is used in the SWAT model to calculate snowmelt [35,47,48]. In this
approach, snowmelt is considered to occur when the average temperature on a given day
exceeds the snow-melting temperature threshold. However, the condition for snowmelt
is only the daily average temperature, thereby ignoring the influence of cumulative tem-
perature on energy accumulation [49]. Previous researchers, such as Meng et al., Yu et al.,
and Luo et al., attempted to use the SWAT model with the snowmelt module, but there
was confusion about how to distinguish precipitation types. Other studies failed to ac-
count for the conditions of mountainous regions, expended immense amounts of effort,
or relied on the standard degree-day factor system (which provides limited simulation
accuracy) [36,37,50]. Improvements to precipitation type recognition have been ignored
in related attempts to enhance snow-related models which omit the standard degree-day
factor technique. Therefore, based on recent analysis, the determination of precipitation
type was used in this study, and the classic degree-day factor approach was updated.
The goal of this research was to differentiate rain from snow in total precipitation by
adding accumulated temperature to the temperature condition. Thereby, the accuracy
of the original model was improved to raise its ability to determine precipitation type.
The temperature condition of the traditional degree-day factor method was improved by
adding an accumulated temperature judgment condition and modifying the parameter set.
This improved the simulation accuracy of the model [9,37] and improved the calculations
of snowmelt capacity and snowmelt’s contributions to runoff in the selected catchments
around Issyk-Kul.
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2. Study Area and Materials

2.1. Study Area

The Issyk-Kul basin is located on the northern slopes of the Tian-Shan Mountains in
Kyrgyzstan, which is part of arid Central Asia, between 42◦250 N and 77◦150 E (Figure 1), at
an altitude of 1606 m above sea level (a.s.l.) [51]. Issyk-Kul is the continent’s fourth-deepest
reservoir. It is an endogenous mountain lake (one of the world’s highest saline lakes). It is
Central Asia’s largest high-altitude lake [52]. It is surrounded by high mountains, such as
Teskey Ala-Too, a mountain range to the south with peaks exceeding 4808 m, and Kungey
Ala-Too, a mountain range to the north with peaks exceeding 4648 m. Its watershed covers
an area of 22,080 km2, and all major branches of Issyk-Kul originate from 834 g1aciers with
a volume of 48 km3 and a total glacial area of 650 km2 [53,54].

 

Figure 1. Locations of the selected catchments around the Issyk-Kul basin and digital elevation levels.

One of Kyrgyzstan’s most densely populated areas is around Issyk-Kul. With an average
annual growth rate of 1.84%, the population of its Oblast increased from 177,300 in 1940
to 448,000 in 2012 [55]. The moderately warm climate of the Issyk-Kul basin is ideal for
cereals, crops, and gardening [16,56]. The average temperature in the basin is 19–20 ◦C
in July and 2–3 ◦C in January, and precipitation ranges from 12.3–35 mm per year [16].
Intensive agriculture has developed throughout the lake basin due to the basin’s unusually
mild climate [57–59]. Therefore, we selected two catchments in the Issyk-Kul basin, one in
the northwest (A) and the other in the south (B), with areas of 2153.46 km2 and 2254.32 km2,
respectively. The aim of this study was to improve the modelling processes of the selected
catchments by incorporating accumulated temperature, allowing for better differentiation
of rain and snow in overall precipitation.

2.2. Data and Source

The hydrological model (SWAT) was built with the help of digital elevation models
(DEMs), land cover, soil classification, meteorological data, and precipitation type event
statistics. A DEM with a resolution of 30 m was downloaded from the Shuttle Radar
Topography Mission (SRTM); (http://srtm.csi.cgiar.org/ (accessed on 22 January 2020)).
The visual interpretation of the Landsat 8 with 30-meter resolution remote sensing imagery
extracted from (https://www.usgs.gov/products/data-and-tools/real-time-data/remote-
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land-sensing-and-landsat (accessed on 30 December 2019)) provided land use data. The
Food and Agriculture Organization (FAO) and the International Institute for Applied Sys-
tems Analysis (IIASA) provided the soil data, which included a 1:100,000 soil type map and
information on related soil properties. Local Meteorological stations provided precipitation
type event statistics. The stations Balykchy and Tossor also provided daily maximum and
minimum temperature data (MAX.T and MIN.T, respectively), along with average daily
temperatures and precipitation data. The altitude, solar radiation, relative humidity, wind
speed, and wind direction data of catchments A and B were collected from the Meteorolog-
ical Service of Canada (MSC) https://www.canada.ca/en/environment-climate-change/
services/climate-change/canadian-centre-climate-services/display-download.html (ac-
cessed on 3 February 2020). Model input data (snow cover) were provided by the MODIS
snow product MODA10A2.006, with data for 500 m, 8-day, and from 2015 to 2016. We
used the data to determine the corresponding temperature thresholds. The Kyrgyzstan
hydrological bureau provided daily discharge data from 2015 to 2016, which were used to
validate the model.

3. Methods

The daily accumulated temperature was calculated using the temperature integral
method. The accumulated temperature inflection points of the precipitation type and snow
melting were validated by remote sensing snow data. The traditional degree-day factor,
precipitation type determination, and accumulated and maximum temperatures for snow
melting were used in this study.

3.1. SWAT Model Definition

The SWAT model is a hydrological, physically-based, and distributed model [60,61]. It
uses the runoff curve number approach from the soil conservation service (SCS) to quantify
surface runoff and the degree-day factor method to measure snowmelt runoff. The model
simulates snowmelt runoff, surface runoff [39,62,63]. The average runoff for the whole
watershed is calculated using the hydrological model [37,64]. The water balance equation
for the SWAT model is the following:

swt = sw0 + Σt
n=1(Nday − Qsur f − Ea − Rseep − Qgw) (1)

The final soil water content is denoted by swt (mm H2O), sw0 is the soil water content
on day i (mm H2O), t is the time (days), Nday is the amount of precipitation on day n (mm
H2O), Qsur f is the amount of surface runoff on day n (mm H2O), the initial soil water
content is sw0, Ea is the quantity of evapotranspiration on day n (mm H2O), Rseep is the
amount of water from the soil profile that enters the vadose region on day n (mm H2O),
and Qgw is the groundwater recharge (water that is not consumed by evapotranspiration)
on day n (mm H2O).

3.2. Snow Cover in the SWAT Model

The mean daily air temperature is used in the SWAT model to classify precipitation as
rain or freezing rain/snow. The boundary temperature, ks−r, is set by the user and is used
to classify precipitation as rain or snow. The mass balance of the snow pack is as follows:

SNOi = SNOi−1 + Rdayi
− Esubi

− SNOmlti
(2)

where SNOi and SNOi−1 are the water content of the snow pack on the current day (i)
and previous day (i − 1), respectively (mm H2O), Rdayi

is the amount of precipitation on
a given day (added only if kav ≤ k (mm H2O)), Esubi

is the amount of sublimation on
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a given day (mm H2O), and SNOmlti
is the amount of snowmelt on a given day (mm H2O).

The equation for the areal depletion curve is

SNOcov =
SNO

SNO100
·
(

SNO
SNO100

+ exp
(

cov1 − cov2 · SNO
SNO100

))−1
(3)

where SNOcov is the fraction of the HRU area covered by snow, SNO is the water content
of the snow pack on the current day (mm H2O), SNO100 is the threshold depth of snow
at 100% coverage (mm H2O), and cov1 and cov2 are coefficients that define the shape of
the curve.

3.3. The Original Degree-Day Factor Algorithm

The snowmelt in the SWAT model is important, as is the source of water during the
alpine spring [65,66]. The snowmelt runoff temperature threshold is obtained from the
snow cover state and the temperature threshold of the snowmelt runoff [67]. The melting
snow equation is given below.

SNOmlt = ymlt · Snocov ·
[

Ksnow + Kmx

2
− Kmlt

]
(4)

The total snowmelt on a given day (mm H2O) is represented by SNOmlt. ymlt stands for
the day’s melt factor (mm H2O/◦C day−1). The fraction of the HRU region is represented
by Snocov. Ksnow represents the temperature of the snow pack. Kmx is the highest air
temperature on a given day (◦C), and Kmlt is the base temperature threshold (◦C) for snow
being able to melt. On a daily basis, the classical degree-day model links ice or snowmelt
(mm) to air temperature [68]:

M =

{
r ·
(

Kav − Kgmlt

)
, when Kav > Kgmlt

0, otherwise
(5)

where M is the melt rate, r (mm day−1 ◦C) is the degree-day factor for snowmelt, Kav (◦C) is
the average air temperature of a given day, and Kgmlt is the snowmelt base temperature in
◦C. The degree-day factor for snowmelt is calculated in the SWAT model with a sinusoidal
function to simulate the seasonal shift pattern [69]. The temperature of the snow pack is:

Ksnowp = Ksnowp−1 · (1 − αsno) + Kav · αsno (6)

Ksnowp is the temperature (◦C) of the snow pack on a given day. αsno is the snow
temperature (◦C), which takes into account the previous day’s snow pack temperature.
Kav is the average air temperature (◦C) on the current day. αsno is used to represent the
influence of linkages among factors affecting snow pack temperature. ymlt is the melt
factor, which incorporates the seasonal alterations in maximum and minimum temperature
values that happen during dry and wet periods, respectively. The snow/ice melt factor is
calculated using sinusoidal interpolation in some snow/ice melt–runoff models [70]. The
degree-day factor for snowmelt is expressed as follows:

ymlt =
ymlt6 + ymlt12

2
+

ymlt6 − ymlt12
2

· sin
(

2π
365

· (p − 81)
)

(7)

where ymlt6 (mm H2O day−1 ◦C−1) is the melt factor for 21 June, ymlt12 (mm H2O day−1 ◦C−1)
is the melt factor for 21 December, and p denotes the number of days in a year. The model
divides any sub-basin into several elevation zones [71].
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3.4. Model Modifications: Accumulated Temperature and Differentiation of Snowfall and Rainfall

Previous studies, such as [66–69], revealed that the accumulated temperature can only
affect the form of precipitation and the determination of snow melting when the minimum
air temperature is above 0 ◦C. The melt factor is calculated using the following equation:

T = (Tmax − Tmin) sin t + Tmin0 ≤ t ≤ π (8)

T denotes the temperature at any given time of day; Tmax and Tmin are the highest
and lowest temperatures ever recorded in a single day, respectively; and t is the value of
the arc in a single moment. The equation used to calculate the accumulated temperature
when the maximum daily air temperature is greater than 0 ◦C and the minimum daily air
temperature is less than 0 ◦C is as follows:

T =

⎧⎪⎨
⎪⎩

∫ π
0 (Tmax − Tmin) sin t+Tmindu, u ∈ (0, π)∫ π−sin−1 (

−Tmin
Tmax−Tmin

)

sin−1 (
−Tmin

Tmax−Tmin
)

Tmax sin udu, u ∈
(

sin−1
( −Tmin

Tmax−Tmin

))
, π − sin−1

( −Tmin
Tmax−Tmin

) (9)

The sin−1
( −Tmin

Tmax−Tmin

)
and π − sin−1

( −Tmin
Tmax−Tmin

)
represent Radian values when the

temperature is 0 ◦C. The determination of precipitation type and snowmelt calculations are
primarily based on the maximum temperature on a given day, the average temperature on
that same day, and the set threshold value, while neglecting the accumulated temperature as
an important factor affecting both the precipitation type and the snowmelt process [72,73].

Our modified method of snow melting is mentioned in segments (for the original
model, see Figure 2). The modifications were added to distinguish between snow and
rain. The modified model requires spatial and weather data, and the types of precipitation
are determined by applying accumulated and maximum temperatures to HRUs. If the
temperature requirement for rainfall is reached, the precipitation is classed as rainfall, and
the contribution of rainfall to river flow is estimated using processes from the original
model. Snow can melt when accumulated and maximum temperatures fulfill the prescribed
conditions at the same time. The snow pack is formed when there is no release of snowfall
and snowfall accumulates. If the type of precipitation is found to be snowfall, snowfall
is added to the snow pack. When snow-melting conditions are satisfied, the amount of
snow melting and its contribution to river runoff are both measured at the same time;
otherwise, there is no snowmelt. In other words, the degree-day factor has been corrected,
as snowmelt conditions are calculated by adding accumulated and maximum temperatures,
and the model was also improved by making it ignore non-melt periods.

3.5. Comparison of Snow Pack Area and Temperature for the Selected Catchments

Analysis of the temperatures (maximum/accumulated) and remotely sensed snow
packing of A and B catchments in 2015 was conducted (Figure 3). The eight-day range was
the time taken for the snow pack measurements. The two arrows in Figure 3 indicate how
the snow area’s turning points change throughout the year. For catchments A and B, the
snow pack areas at the turning points from left to right were 1853.68 and 1200 km2 and
2053.68 and 2164.76 km2, respectively. For A, the first arrow was between May and June.
The snow pack areas of both catchments began to decrease then. The snow-melting process
started at this point denoted by the red arrow while the inflection point, which is the
second turning point, started in early November. As the time between the first arrow (on
the left) and the second arrow (on the right) contained temperatures that fit the conditions
for rainfall, the snow pack obviously decreased, and the precipitation took the form of
rain. When there was precipitation on a given day, the measured temperature conditions
were compared to the values we were given. The daily average values of temperatures
(maximum/accumulated) were used to determine the temperature conditions for snowfall
during this time. Since the snow pack area increased as time approached the right arrow,
for both catchments, snowfall clearly occurred (A and B).
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Figure 2. Outline of the degree-day factor method in the SWAT model.

Figure 3. Cont.
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Figure 3. Relationship between snow pack and temperatures (accumulated and maximum) for
catchments A (A) and B (B) in 2015. The red arrows on catchment A and B represent the 2 inflection
points of the snow area change during the year.

3.6. Calibration and Validation

To improve the model’s simulation accuracy, the optimal parameter set was deter-
mined using parameter calibration. The study period was divided into three sections:
warm-up period (2013–2014), calibration period (2015), and validation period (2016). The
objective function was used to calibrate the simulated daily streamflow based on observa-
tions made at the Balykchy and Tossor stations, depending on the catchment’s location.
The simulated results were evaluated using three statistical coefficients indices: the Nash–
Sutcliffe efficiency (NSE) [74], goodness of fit (R2), and percent bias (PBIAS) [75]. The NSE
is a metric that indicates how well the simulated and measured values match. The result
is acceptable if the NSE value is between 0 and 1. The model’s performance is defined as
“very good”, “good”, “satisfactory”, or “unsatisfactory” [75]. The NSE is calculated using
the following formula:

NSE = 1 − ∑n
i=1(Qobs,i − Qsim,i)

2

∑n
i=1
(
Qobs,i − Qsim,i

)2 ;−∞ ≤ NSE ≤ 1 (10)

The correlation between the simulated and measured values is expressed as R2. It is
calculated using the following formula:

R2 =
∑n

i=1
[(

Qsim,i − Qsim,i
)(

Qobs,i − Q0bs,i
)]2√

Σn
i=1
(
Qsim,i − Qsim,i

)2Σn
i=1
(
Qobs,i − Q0bs,i

)2
(11)

The PBIAS value measures the average tendency of the simulated results to be higher
or lower than the observations. The PBIAS is calculated using the following equation:

PBIAS =

(
∑n

i=1 Qsim,i − ∑n
i=1 Qobs,i

∑n
i=1 Qobs,i

)
(12)

where Qobs,i is the measured discharge on the ith day (m3·s−1); Qsim,i is the simulated
discharge on the ith day (m3·s−1); Qsim,i and Qobs,i are the average simulated and measured
discharges during the simulation period (m3·s−1), respectively; and n is the total number
of daily flow observations.
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4. Results

4.1. Rain and Snow Temperature Differences

Due to the sizes of the watersheds, temperature data from two corresponding sta-
tions could represent the temperature situation of the entire catchment (2153.46 km2 and
2254.32 km2). The temperature conditions in relation to rainfall and snowfall for the years
2015–2016 have been measured (Table 1). It is clear that rainfall occurs when ACCT reaches
40.59 or 31.97 ◦C with a MAXT of 16.18 or 13.095 ◦C for A and B, respectively. Snowfall
occurs when ACCT is lower than 31.97 or 26.80 ◦C with a MAXT of 16.93 or 13.1 ◦C for A
and B, respectively. During snowfall events on catchment A, the ACCT and MAXT cannot
exceed 31.9 and 16.93 ◦C, respectively, and on catchment B, the ACCT and MAXT cannot
exceed 26.805 and 13.1 ◦C, respectively. The two catchments experience differences in
temperature conditions. The temperatures were higher in the northern catchment (A) than
in the southern catchment (B). Catchments A and B are located in high mountains, Kungey
Ala-Too and Teskey Ala-Too, at 3798 and 4762 m, respectively [76]. The temperatures
of snowfall in high mountains are lower than those in low mountains [39,77]. From the
Balykchy and Tossor stations, the different precipitation events were corrected. Using prob-
ability statistics for different precipitation type events at the two stations was considered
to indicate the conditions of temperature linked to the precipitation events. Measured
temperature conditions, all precipitation types, and simulated temperature conditions were
compared. For the correct precipitation type, the temperature conditions needed to be
the same. The proportion of the precipitation events that met that condition was used
to show the accuracy. The accuracies were 79.45% and 84% for both catchments, given
measurements from Balykchy and Tossor stations, respectively.

Table 1. The temperature (◦C) conditions of rain and snow in the study area. ACC.T means accumulated temperature and
MAX.T means maximum temperature. Balykchy: 42.46 lat, 76.19 long; Tossor: 42.17 lat, 77.44 long.

Location A B

Average Temperature for Rainfall Temperature for Snowfall Temperature for Rainfall Temperature for Snowfall

ACC.T MAX.T ACC.T MAX.T ACC.T MAX.T ACC.T MAX.T
2015 39.12 16.42 28.51 14.84 27.91 11.94 29.4 12.5
2016 42.06 15.94 35.43 19.02 36.12 14.25 24.21 13.7

Average 40.59 16.18 31.97 16.93 32.01 13.09 26.80 13.1

Sensitivity Analysis

The parameter sensitivity analysis for the original and updated SWAT models in SWAT-
CUP, a SWAT model extension, is summarized in Table 2. SNO_SUB represents initial snow
water content (mm H2O), SNOCOVMX stands for minimum snow water content equal to
100% snow cover (mm), SOL_AWC is the soil evaporation compensation factor, SMFMX
means melt factor for snow on June 21 (mm H2O/◦C-day), and ESCO stands for the soil
evaporation compensation factor. When comparing the performance of the model before
and after adjustment, the model was found to be less effective before adjustment. The
original model’s p-values for catchments A and B were 0.03–0.85 and 0.81–0.08, respectively.
The updated model’s p-values were 0.57–0.95 and 0.51–0.96, respectively.

Table 2. Parameter sensitivity analysis of the model for the chosen catchments.

A B

Before Modification After Modification Before Modification After Modification

No Parameter T-Test p-Value Parameter T-Test p-Value Parameter T-Test p-Value Parameter T-Test p-Value

1 SMTMP 0.05 0.85 SMTMP 0.04 0.95 SNO_SUB 0.24 0.81 SMTMP_accu 0.04 0.96
2 SNO_SUB −0.08 0.81 TLAPS 0.04 0.94 SMTMP −0.68 0.79 TLAPS 0.04 0.94
3 TLAPS −0.32 0.75 SMTMP_accu −0.1 0.90 SFTMP −0.33 0.71 SFTMP_accu −0.1 0.92
4 SNOCOVMX −0.34 0.69 SFTMP_accu 0.14 0.89 SMFMX −0.44 0.69 SNO_SUB −0.15 0.87
5 SFTMP −0.37 0.61 SFTMP 0.20 0.85 TLAPS −0.47 0.61 PLAPS 0.20 0.86
6 SMFMX 0.50 0.59 SNO_SUB 0.24 0.80 SOL_AWC 0.48 0.58 SFTMP 0.24 0.81
7 PLAPS −0.49 0.57 PLAPS 0.33 0.75 PLAPS −0.58 0.57 SMTMP 0.33 0.79
8 SOL_AWC 0.83 0.41 SNOCOVMX 0.60 0.63 SNOCOVMX 0.61 0.40 SNOCOVMX 0. 0.71
9 ESCO 2.78 0.39 SMFMX 0.68 0.60 SMFMX 1.58 0.29 SMFMX 0.75 0.69
10 SMFMN −0.79 0.03 SMFMN 0.77 0.57 SMFMN −0.80 0.08 SMFMN 0.80 0.51

139



Atmosphere 2021, 12, 1580

4.2. Best Parameter Set

The parameters adjusted in the snow-melting route were analyzed (Table 3). The
ACCT thresholds for rainfall during model calibration (in 2015) were 39.12 and 27.91 ◦C
for A and B, respectively. The ACCT thresholds for snowmelt were 28.51 and 29.4 ◦C for
A and B, respectively. The parameters were set to different values during the calibration
process. Some parameters, such as groundwater and soil, were omitted because they
played a minor role in model calibration. The temperature of snow melting was one of the
most important parameters.

Table 3. List of important parameters adjusted during calibration.

CB CA

Parameter Description Unit CV(A) CV(B) CV(A) CV(B)

Snowfall temperature (SFTMP) ◦C 3.67 4.5 3.89 4.68

Snowfall (SFTMP_accu) ◦C 31.97 25.6 31.8 25.5
Snowmelt base temperature (SMTMP) ◦C 2.42 3.8 2.69 3.89

Snowmelt base (SMTMP_accu) ◦C 28.51 29.4 28.39 28.9
Melt factor for snow on 21 June (SMFMX) mmH2O/◦C-day 6.87 2.93 6.81 2.83

Melt factor for snow on 21 December (SMFMN) mmH2O/◦C-day 9.76 5.62 9.77 5.61
Temperature lapse rate (TPLAS) ◦C.km−1 −7.46 2.32 −7.44 2.33

Precipitation lapse rate (PLAPS) mm.km−1 24 21 25 22

CB: Calibration before modification, CA: Calibration after modification CV (A): Calibrated values (A), CV (B): Calibrated values (B).

4.3. SWAT Model Performance

The statistical coefficients (NSE, R2, and PBIAS) were determined and used to indicate
the accuracy of the model (during calibration and validation) by comparing the observed
and simulated daily streamflow of the catchments before and after modifying the model
(Tables 4 and 5). The simulation period was from 2013 to 2016; the warmup period was from
2013 to 2014; and the calibration and validation periods were 2015 and 2016, respectively.
The periods were chosen based on observation discharge data.

Table 4. Statistical coefficients calculated to verify the model’s accuracy for the catchment A.

Before Modification After Modification

NSE R2 PBIAS (%) NSE R2 PBIAS (%)

Calibration 0.72 0.73 2.56 0.80 0.84 1.51
Validation 0.67 0.69 1.24 0.79 0.79 −2.2

Overall 0.64 0.72 5.75 0.75 0.87 4.31

After model modification, there was improvement of the statistical values, which
were used to verify the accuracy of the model for the catchments (Tables 4 and 5). Overall,
differentiation of snowfall and rainfall, along with the modified degree-day factor, may
cause PBIAS to increase or decrease [37]. The statistical values improved significantly after
the model was updated. As a result, it should be stated that modifications made to the
SWAT model improved its performance. In general, the SWAT model was upgraded due
to the enhancement of the snowmelt module.

Table 5. Statistical coefficients calculated to verify the model’s accuracy for the catchment B.

Before Modification After Modification

NSE R2 PBIAS (%) NSE R2 PBIAS (%)

Calibration 0.69 0.74 4.71 0.75 0.75 3.79
Validation 0.73 0.73 1.02 0.79 0.81 0.94

Overall 0.61 0.75 6.5 0.69 0.86 4.97
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4.3.1. Stream Flow in the Catchments

For both catchments (A and B), a comparison of observed and simulated discharges
before and after model adjustment was conducted (Figure 4). During the winter months
(October to March), the mean observed daily discharges for catchments A and B were
2.2 and 1.91 m3·s−1, respectively. The simulated discharges before model modification
were 1.89 and 2.4 m3·s−1 for catchments A and B, respectively; and after model modifi-
cation, they were 4.3 and 3.9 m3·s−1. Before, the model underestimated the peaks. After
model modifications, some peaks were overestimated, and others remained unchanged,
especially during the snowmelt periods (April to September) during the calibration and
validation periods. The mean observed daily discharges for catchments A and B were 12.3
and 11.34 m3·s−1, respectively, and the mean simulated discharges before and after model
modification were 10.23 and 14.13 m3·s−1 for catchment A and 11.67 and 13.43 m3·s−1 for
catchment B during these seasons. In general, the model’s simulated discharge was closer
to the observed discharge before modification. After modification, the model estimated
more flood peaks compared to the peaks estimated before modification (Figure 4), which
could indicate the likelihood of flood occurrence due to snow in high mountains causing
flooding. The shifting time of peak appearing time (S.T) and error of peak flood (E.F: be-
tween observed and simulated discharges during calibration and validation periods) were
calculated. The maximum value of the peak flood appeared in July for both catchments.
The S.T values were 2.14 and 0.95–1 days for A and B, respectively; E.F accounted for –2.12
and –0.39% for A and B, respectively. This is consistent with the findings of [37,78], who
also stated that, occasionally, there is a “one peak, one day” flood phenomenon, which
helps peak selection analysis. During calibration and validation, the arrangement of the
16 high peaks for each catchment was analyzed. The average peak flows after model
modification in catchments A and B were 12 and 10% higher than the average of peak flows
before model modification. It is indicated by the peaks provided in different colors for
the simulated, observed, and modified discharge (Figure 4). This made the peaks become
closer to their corresponding observation discharges. This suggests that upgrading the
snowmelt module can result in more accurate model simulations, which is indicated by
statistical values (Tables 4 and 5).

4.3.2. Accumulation Temperature and Snowmelt

The degree-day factor method engaged in SWAT is an important approach for calcu-
lating snow and ice melt [79,80]. A comparison of daily snowmelt before and after model
modification was conducted (Figure 5). This snowmelt stream flow simulation approach
matches the characteristics of the snowmelt floods in the watersheds surrounding the
Issyk-Kul Lake. The daily average snowmelt amounts for catchments A and B were 43.01
and 46.14 mm, respectively, and after model modification, they were 37.36 and 45.20 mm
reductions of 13.12 and 2.03%. However, prior to model modification, the amount of
snowmelt by considering flood peaks were 122.45 and 134.27 mm for A and B, respectively.
After model improvement, the snowmelt amounts for A and B were 129.8 and 143.67 mm,
respectively. After modifying the model, the increases were about 6 and 7% for A and B,
respectively. These results revealed that the simulated snowmelts were significantly higher
in the spring and summer when using the modified model (high frequency in spring).
Snowmelt is obviously more pronounced in high mountains with snow and ice, causing
floods; similar findings have been found by [16] and in neighboring regions [37]. Some
exceptions, such as snowmelt obtained using the original model, were neglected. Before
the modifications, runoff contributed 45.3 and 40.67% to catchments A and B, respectively,
which then became 56.29 and 53.26% for A and B.

The relationship between the amount of eight-day snowmelt and the snow cover
during melting periods was investigated. The model’s rationality before and after mod-
ification and snowmelt calculations were revealed too (Figure 6). For all catchments in
August, the volume of snowmelt calculated after modification showed an increasing trend
that tended towards strong matching of the peaks, whereas before modification, there
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was a decreasing trend. In general, the snow cover decreased in summer, owing to the
high temperatures. As indicated by the peaks that form a circle for a few days, the snow
cover can increase for a short period of time, which corresponds to a rapid decrease and
then increase in temperature. According to the findings, the model’s performance after
modification was better. This is also indicated by how the modified model’s trend was an
increasing one, whereas the original model’s trend decreased in Figure 6, more especially
in August. Sudden changes in a short period of time, according to [81], can result in intense
runoff, which can cause flooding. The modified model revealed the characteristics of floods
in the area.

 

Figure 4. The model calibration (2015) and validation (2016) comparisons for the discharge processes
at catchment A (A) and catchment B (B).

Figure 5. Cont.
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Figure 5. Amounts of snowmelt calculated by the model before and after modification during
calibration (2015) and validation (2016). Catchment A (A) and catchment B (B).

Figure 6. Amount of eight-day snowmelt during the snowmelt season calculated by the modi-
fied model, compared with the snow cover area from the original model. Catchment A (A) and
catchment B (B).

The relationships between ACCT and MAXT and monthly snow melting during the
calibration (2015) and verification periods (2016) are presented in Figure 7. When the
accumulated temperature in the selected catchments reaches 10 ◦C, the snow melts. The
crosses denote non-melting months; normally, there is no snowmelt from November to
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February. Prior to the introduction of the degree-day though, the model indicated some
amount of snowmelt in the non-melting months; however, after modification, there was
no snowmelt found in those months, making snowmelt more accurate and reasonable.
The cumulative temperature threshold of snow melting was reached between January and
March in 2016 and November and December of the same year.

Figure 7. Comparison of accumulated temperature (ACCT), monthly snowmelt before and after
modification, and maximum temperature (MAXT) during calibration (2015) and verification (2016)
periods. Catchment A (A) and catchment B (B). The crosses denote non-melting months. The red
dummy line represents the amount of accumulated temperature at which snow melt will start.

4.4. Land Surface and Air Temperatures
Simulation of Snow Cover Area

To validate the modeled snow cover, simulated results of snow cover area and data
of MODIS (Figure 8) were compared during the calibration and verification periods, 2015
and 2016, respectively. During the calibration period, the snow cover area reached a lower
value in summer and the MODIS data overestimated the value in later and earlier spring
for catchments A and B, respectively. In general, in spring and summer during calibration
and validation, the snow cover area tended to decrease, and in non-melting periods, the
area increased.
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Figure 8. Comparison between (A) eight-day simulated snow cover area and MODIS data during model calibration and
(B) validation periods for catchments.

The results of a linear regression analysis of the relationship between snowmelt and
ACCT are presented in Figure 9. Snow is sensitive to temperature, and snow accumulation
in the area is concentrated in the high-altitude regions [82]. On the surface of snow cover,
the temperature drives the melting process. The modified model performed better with
R2 = 0.762 and 0.757 for A and B, respectively. However, after the model was modified, the
correction was relatively low, with R2 = 0.506 and 0.515 for A and B, respectively. Based on
our results, it can be concluded that modifying the SWAT model, particularly using the
degree-day factor method, is highly effective for snowmelt analysis and prediction.

The average monthly land surface temperatures (LST) of MODIS were calculated and
compared to air temperatures of the SWAT model from 2015 to 2016. To validate the air
temperatures used in the model, the land surface temperatures within elevation bands
of the whole catchments were calculated and were compared with the air temperatures.
The R2 values were 0.85 and 0.83 for A and B catchments, respectively, (Figure 10). These
statistical values indicate that the used air temperature in the model was sufficient for the
simulations. Furthermore, a comparison between discharge and accumulated temperature
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has been undertaken to better understand the relationship between the two (Figure 11).
The findings demonstrated that as the accumulated temperature rises in the spring and
summer, so does the overall discharge.

 

Figure 9. Correlations between monthly snow melting and accumulation temperature before and after model modification
for catchments A and B. Catchment A (A) and catchment B (B).

2015-2016 R2=0.85

Figure 10. Cont.

146



Atmosphere 2021, 12, 1580

2015-2016 R2=0.83

Figure 10. The monthly land surface temperatures of MODIS and air temperature in the SWAT model
for the period 2015–2016 in the catchment (A,B).

 

Figure 11. Comparison between accumulated temperature and discharge of catchment (A,B) for the
period 2015–2016.
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5. Discussion

This study proposed a method for estimating the snowmelt degree-day factor based
on MODIS snow cover data. In the selected catchments, the spatial distribution of
the degree-day factor method was estimated and attributed to the interactions of cli-
mate conditions, topography, and vegetation. The estimated degree-day factor values
were 4.7 and 4.3 mmH2/◦C for A and B, respectively, which are within the ranges of
3.1–5.9 mmH2/◦C [43] and 4.3–5 mmH2/◦C [83]. These values are also close to the range
of 5.0–11.6 mmH2/◦C found by studies in the Himalayas [3,4]. The simulations using
the modified degree-day factor method on runoff in terms of discharge and volume of
snowmelt are more plausible than the original model, pre-modification. They were influ-
enced by a variety of hydrological processes, along with the interactions of the hydrological
model parameters [84]. The SWAT model ignores the possibility of snowfall and calcu-
lates precipitation as rain [85]. This may reduce snowmelt runoff and increase rainfall.
The modeling scale can have a significant influence on the simulations, considering the
spatial resolution of MODIS data for precipitation and temperature [86]. The temperature
threshold values determine the occurrence of snowmelt in mountain basins. This is in line
with the study by [87], who stated that the accumulation temperature is the driving force
for triggering the snowmelt. The results revealed that the temperature threshold of the
catchment located in the northwest of Issyk-Kul was 4.89% higher than the threshold of
the catchment located in the south of the lake, due to elevation differences, topography,
and water vapor conditions; this is consistent with [37]. The lower the elevation, the
more accurate the rain and snow estimations [88]. Changes in climate conditions in high
mountains affect the correctness. In the SWAT model, the daily maximum and minimum
temperatures are used, but there is a difference between land surface temperature and air
temperature [89]. Temperature variations in a single day can be classified into three main
parts: the maximum daily temperature is below 0 ◦C; the maximum daily temperature
is above 0 ◦C, but the minimum daily temperature is less than 0 ◦C; and the minimum
daily temperature is greater than 0 ◦C [90]. It is preferable to use land surface temper-
ature to calculate snowmelt [91,92]. In this context, for this study, the differences in air
and ground temperatures were taken into account [37]. When observations of precipi-
tation are corrected from meteorological stations, the precipitation types are always the
same [93], except that the temperature threshold is set to determine the precipitation type
when passing observation values into the SWAT model [94,95]. The catchment’s area is
enough for their components to be verified. The accumulated and maximum temperatures
were improved, and then the snow and rain accuracies were verified, as part of a model
modification process, to improve its performance. Furthermore, the optimal accumulated
and maximum temperatures were achieved, and the accuracies of precipitation type and
snowmelt measurements were modified. The use of average temperature as a criterion for
snowmelt has an impact on snowmelt volume computation [37,96]. The process of surface
temperature accumulation can then be well represented, improving calculation accuracy, by
using both the accumulated and maximum temperatures in the snow-melting calculation.

5.1. Model Performance

The statistical coefficients before and after model modification were calculated
(Tables 4 and 5). For all catchments, the simulation results obtained after modification
were better than before. The PBIAS values from verification using the modified model
were better than that of the model before (Tables 4 and 5). The temperatures in Issyk-Kul’s
northern and southern catchments begin to rise in early April, snow begins to melt into
stream flow, and the water levels in the catchments begin to rise rapidly [25], eventually
leading to floods [97–99]. Our results showed that the participation of snowmelt from
October to March was limited to the modified degree-day method, which increased from
April to September. In fact, the method brought the observed discharge closer to the
simulated values (Figure 2). During simulations, the differentiation between rain and snow
in terms of precipitation for all catchments increased snowmelt and decreased rainfall in
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proportion to runoff, which matches our findings from a simulation conducted in the Xin-
jiang region’s Kunlun Mountains [40]. Rainfall in the catchments is scarce, and the increase
in the runoff from April to September is due to snowmelt, as described by [16,48]. Flooding
was predicted by the modified model to occur during the spring. The temperature, which
causes snow to melt, increases in summer [100]. To evaluate the discharge, the shifting
time of peak appearing time and the error of peak flood were considered. Most of the high
peaks occurred during spring and winter.

The modified model performed better than the original model; the peaks of flood
flow increased, bringing the discharge closer to the measured values. The northwestern
catchment of Issyk-Kul indicated lower discharge compared to the southern catchment for
the study period, probably due to differences in location, elevation, and catchment area.
For catchment A, the average daily flow in 2015 was 25.72 m3·s−1, which was lower than
35.12 m3·s−1 in 2016. In 2015, the average daily flow into catchment B was 39.04 m3·s−1,
which was lower than 41.83 m3·s−1 in 2016. These differences could be due to both climate
change and human activities [16]. Furthermore, variations in runoff in catchments are
primarily caused by changes in climate [76]. The contributions of snowmelt to the water
flow were approximately 6 and 7% greater for catchments A and B, respectively, according
to the modified model compared to the original model. The Sequential Uncertainty Fitting
(SUFI-2) algorithm [101] considers uncertainties in observation data, parameters, model
structure, and input data. After consideration, the algorithm determines the impacts
of the parameters and puts them in ranges. The sensitivity parameters were ranked
before and after modification for both models. To improve the model’s performance, the
parameters related to snowmelt were modified. In the traditional and modified models,
the parameters of snowmelt base temperature SMTMP for catchment A, initial snow water
content (mm H2O) (SNO_SUB) for catchment B, (SMTMP_accu) for catchment A, and
snowmelt base temperature (SMTMP_accu) for catchment B showed strong sensitivity.
Before and after model modification, the parameter of melt factor for snow on December 21
(SMFMN) showed a low sensitivity for both catchments. Because of differences in input
data, the snowmelt module in the modified model of catchment A performed better than
the modified model for catchment B. Generally, the entire snowmelt module in both selected
catchments’ original models indicated a low response during the calibration process. Thus,
model modification for the snowmelt module improved the model’s results by increasing
accuracy and reliability.

5.2. Accumulation Temperature and Snowmelt

The precipitation within the HRU is labeled as snow if the mean daily air temperature
falls below the boundary temperature and the snow equivalent is applied to the snow pack.
When snowfall accumulates on the ground surface, it forms a snow pack. The amount of
water contained in the snow pack is measured in snow water equivalents. Additionally,
snowfall will increase the snow pack, whereas snowmelt or sublimation will reduce it.
During simulation, the traditional degree-day factor method only uses average temperature
in calculations [99], but after adding accumulation temperature, the model performed better
in melt seasons simulations. The temperatures were higher in the northern catchment (A)
than in the southern catchment (B). This is due to altitude differences and the wet air from
Issyk-Kul. The increase in elevation causes air pressure to decrease; hence, air molecules
are further apart, causing the temperature decreases [1–3]. The snow melts when certain
accumulated and maximum temperatures are reached, which can happen in a single day.
The modified model simulated more flood peaks in the simultaneous snowmelt floods
and rainfall floods that occur during melting seasons. The accumulated threshold for
all catchments was 10 ◦C (Figure 7), which improved the snowmelt calculations. There
was some inconsistency between the simulated discharge before the model modification
during melt seasons and non-melt seasons for all catchments, but the model modification
eliminated the errors. After model modification, the results showed higher snowmelt peaks
during snowmelt seasons (summer), and the amount of snowmelt was increased for all
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catchments (Figure 5). This means that upgrading the snow melt module led to an increase
in the amount of snowmelt, which shows that the model made a significant improvement
after the modifications. Our results look quite similar to the results obtained by [37].

6. Conclusions

In this study, a new algorithm was used to calculate snowmelt in the catchments
around Issyk-Kul in SWAT. The model was able to simulate the discharge and snowmelt. It
needs to be calibrated and validated. The existence of the degree-day factor method and
the precipitation type differentiation in the model were highlighted. The modifications
seemed to improve the snowmelt module of the model. Through the improvement of the
module, the sensitivity of the snowmelt-related parameters was been greatly improved. To
improve the accuracy of the original model, the accumulation of temperature conditions
was determined. During the calibration process, the modified model was used to calculate
the discharges in the catchments. Through model modification, the degree day factor
method calculated snow melt, and the snow-related parameters were calibrated manually;
the statistical values such as NSE and R2 were improved. The NSE increased from 0.72 to
0.80 and from 0.69 to 0.75 for catchments A and B, respectively. R2 increased from 0.73 to
0.84 and from 0.74 to 0.75 for A and B, respectively (Tables 4 and 5). The shifting times
were 2.14 and 0.95–1 days for A and B, respectively. Errors of peaks accounted for −2.12
and −0.39% for A and B, respectively. These results indicated that the model was good
enough to simulate the discharge. After modifying the model, the flood peaks increased
for A and B by 49.42 and 43.87%, respectively, bringing them closer to the reality of the
observation discharge. This was more consistent with the characteristics of floods caused
by snowmelt in the catchments around Issyk-Kul. The contributions of snowmelt to stream
flow increased by 24.26 and 31% for A and B, respectively. Therefore, it is possible to
limit snowmelt to reasonable times of the year by improving the traditional degree-day
factor method with the addition of accumulated temperature conditions, while avoiding
non-melting seasons. Finally, when using the model for mountainous regions, it is best to
improve the degree-day factor method to improve accuracy. Differentiating precipitation
and flood types may provide reliable information for flood forecasting, allowing for the
identification of hazards and appropriate adaptive measures.
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Abstract: In arid regions, drastic seasonal variations in the climatic parameters are common; thus,
a high potential of geothermal effects for heating/cooling applications is expected. However, such
applications are very limited in these regions due to the lack of information about underground
temperature profiles of the surface and shallow zones. Therefore, this study aims to (i) measure the
underground temperature profile for one year to determine the optimum depth for burying EAHE
pipes; (ii) examine the possibility of water vapour condensation occurring in the buried EAHE pipes,
if the air let into the pipes was humid; and (iii) quantify the maximum cooling/heating capacity, if an
EAHE was implemented. The results show that a 3-m depth is optimal to bury EAHE pipes, where
the ground temperature is 32 ◦C in the summer and 29 ◦C in the winter. These temperatures would
provide a maximum cooling/heating capacity of 1000/890 MJ day−1 for each 1 m3 of humid air
exhausted from a greenhouse. If the EAHE were to operate in a closed loop with a greenhouse, the
condensation of water vapour in the EAHE pipes would be impossible during the cooling process.
The results of this study are useful for designers using geothermal effects for indoor space cooling
and heating in arid regions.

Keywords: arid climate; geothermal energy; underground temperature; greenhouse; heat exchanger

1. Introduction

The use of greenhouses in arid areas, such as in the Arabian Peninsula, faces serious
obstacles due to the extremely harsh environment; daytime overheating caused by intensive
solar irradiance and night-time unfavourable undercooling are common weather conditions
in desert areas [1]. By solving greenhouse operational problems (cooling in summer days
and heating in winter nights), farmers can grow protected crops throughout the year.

Evaporative cooling (wet pad–fan systems) and fuel burners are commonly used for
cooling and heating greenhouse air, whereby cold humid air (in summer) and warm air
(in winter) are exhausted from the greenhouse and lost to the surrounding (useless air)
during ventilation processes. Moreover, heating and evaporative cooling systems are an
additional burden of energy and water consumption in greenhouses [2]. To overcome
these difficulties, a semi-closed greenhouse has been suggested, where the inside green-
house air is circulated in a closed loop and its cooling or heating are obtained by using
sustainable energy resources. Looking for low-cost, energy- and water-saving techniques
for heating/cooling inside greenhouse air is an essential priority for sustainable agriculture
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and the development of the rural areas in arid regions [3]. Therefore, a semi-closed green-
house coupled with an earth–air heat exchanger (EAHE) was suggested in the Kingdom
of Saudi Arabia (KSA). The EAHE is expected to be an effective way for heating/cooling
greenhouses in the deserts characterised by hot arid climates. This is because the extracted
low-grade geothermal energy (fluid temperature < 100 ◦C) as a sustainable energy resource
is applicable for different purposes, such as desalination; drying technology; heating and
cooling load production, using single-effect lithium bromide absorption chillers; agriculture
greenhouses; and domestic use [4]. On the other hand, high-grade geothermal energy is
applicable for power generation based on the Rankin cycle concept [5,6].

Even though the KSA is considered one of the most geothermally active countries in
the Middle East [7], there is a lack of studies that address the issues of geothermal energy
potential and its applications in the KSA [8]. Very few studies can be found that discuss
the geothermal activity in the KSA from a geological science point of view [7,8]. Moreover,
the geothermal energy potential, as well as the underground temperature profile in the
shallow zone (0~8 m), has never been measured or evaluated in the KSA desert. Specifically,
accurate information about the vertical distribution of soil temperature and geothermal
energy potential in the shallow zone are still missing relatively to the KSA desert.

It is well known that the earth strongly absorbs solar energy during the daytime
and stores a considerable amount of thermal energy at a particular depth. This is mainly
attributable to the high solar irradiance intensity and large heat capacity of the soil. Accord-
ing to the diurnal variation in solar irradiance and ambient air temperature, the maximum
temperature oscillation occurs at the Earth’s surface, and it varies with the depth inside
the Earth. Many researchers have measured the temperature distribution with depth and
found that the oscillation of temperature below the ground attenuated with depth and
became constant at a particular depth. For example, at a 0.18-m depth, the daily average soil
temperature was 17.84 ◦C in the winter and 32.87 ◦C in the summer in New Delhi, India [9].
Moreover, the annual average temperatures of soil were measured at a 4-m depth and
under different conditions of the ground surface in New Delhi, India. It was 29 ◦C when
the ground surface was exposed to solar radiation, 19 ◦C when the ground surface was
wetted, and 17 ◦C when the ground surface was wetted and shaded [9]. Different values of
the annual average temperature of different soils in different places worldwide have been
measured at different depths and reported in the literature, e.g., 23.45 ◦C at a 4-m depth in
Las Vegas, USA [10]; 27–28 ◦C at a 2.5-m depth under warm humid weather conditions
in Mexico City [11]; 18.7 ◦C at a 2-m depth and 20 ◦C at a 4-m depth in Brazil [12]; 25 ◦C
at a 2-m depth in Bhopal, India [13]; 11.5 ◦C in winter and 17.5 ◦C in summer at a 2-m
depth in Tianjin, China [14]; and 17.6 ◦C at a 3.6-m depth in Shouguang City, China [15].
In a typical arid climate (the desert in the south part of Algeria), the underground tem-
perature was measured, in the hottest month in summer, to be 30 ◦C at a 2-m depth and
27 ◦C at a 5-m depth [16]. These temperatures are usually defined as ground undisturbed
temperatures (GUTs). The GUT at a certain depth in the ground is nearly constant during
the day and night and throughout the year. This depends on the groundwater level, the
physical/chemical properties of soil and the ground surface conditions (mainly solar radia-
tion flux and ambient air temperature). For greenhouse applications, the GUTs reported in
the literature are reasonable for heating and cooling greenhouses; further, they can be used
for indoor space heating and cooling (e.g., residential buildings, poultry houses, livestock
houses, etc.) [17]. However, the cost of digging to the optimum depth for availing free
geothermal energy should be considered; this depends on the type and nature of the soil.
Besides the sustainability and low-cost and/or free geothermal energy for heating/cooling
greenhouses, it can also be recognized that the thermal load levelling of the underground
temperature at a depth from 2.5 m to 4 m is very low and is required for plants’ healthy
growth, irrespective of any climatic condition [17,18]. To use the geothermal energy po-
tential for cooling/heating greenhouses in a closed loop, Polyvinyl Chloride (PVC) or
High-density Polyethylene (HDPE) pipes are an optimum choice due to their low cost, low
heat capacity and physical/chemical properties when they are buried at an optimum depth
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in the ground. In greenhouse applications, buried pipes are to carry the exhausted humid
air from the greenhouse; then, the air flowing through the pipes is either heated or cooled
according to the requirement. This depends on the temperature difference between the
inside greenhouse air and the inside surface temperature of the buried PVC or HDPE pipes.
The mass flow rate, which depends on the cross-sectional area of the pipe and air velocity,
can be optimized for a given greenhouse volume. This arrangement is generally referred to
as the closed-loop earth–air heat exchanger (CL-EAHE). Such an arrangement has been
implemented and evaluated for heating/cooling greenhouses by many researchers [17–23];
however, a survey of the literature revealed that there is a lack of and unclear information
about CL-EAHEs operated in gravel–sand soil and arid climates (such as in the KSA). More-
over, because the buried pipes of CL-EAHEs carry humid greenhouse air, water vapour
condensation inside the pipes is possible during the cooling process. This possibility needs
to be examined for greenhouse applications. Another arrangement, called open-loop earth–
air heat exchanger (OL-EAHE), is out of the scope of the present study. This is because, in
the OL-EAHE, the preconditioned greenhouse air is usually discharged to the surrounding
area outside the greenhouse (i.e., energy and water vapor losses) during the heating and
cooling processes of inside greenhouse air. Accordingly, the main objectives of this study
are (i) to experimentally measure the temperature profile at different depths inside the
ground at the King Saud University campus (as a desert in an arid climate) to determine
the optimum depth for burying EAHE pipes; (ii) to examine the possibility of condensation
inside the buried pipes; and (iii) to evaluate the maximum heating and cooling potential of
the geothermal energy in the KSA for possible use in greenhouses and other domestic and
residential building applications.

2. Methodology

2.1. Study Area

The experiment was conducted at the Agricultural Research and Experiment Sta-
tion, Agriculture Engineering Department, King Saud University (Riyadh, Saudi Arabia;
46′′43′ E longitude and 24′′38′ N latitude). The soil at the site of the experiment, as well
as that of most of arid regions such as the Arabian Peninsula, is composed of gravelly
sand and dries up to a 5-m depth or more. Therefore, mechanical digging was used to
prepare a hole with a surface area of about 1 m2 and a depth of 3.5 m. In order to protect
the cables of temperature sensors in the soil, these cables were collected to pass through
a 5-cm diameter PVC pipe, installed vertically and fixed at the bottom of the hole with a
concert block (Figure 1).

 

Figure 1. Schematic diagram showing the hole dug into the ground and the locations of thermocou-
ples used to measure underground temperatures (Tg) and ambient temperature (Tam).
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2.2. Measuring Underground Temperature Profiles

To determine the optimum depth at which the CL-EAHE pipes should be buried, the
temperature profile of underground soil was measured at different depths. The optimum
location for burying pipes is where the soil temperature became constant, unaffected by
the diurnal and seasonal variations in the climatic parameters (GUT). The experiment was
conducted during the period from 1 November 2020 to 31 October 2021, to measure the
temperatures at the depths of 0.1, 0.5, 0.9, 1.3, 1.7, 2.1, 2.5 and 3 m, in addition to ambient
air temperature. Digging up to only a 3.5-m depth was considered because more digging
is quite hard and expensive due to the hard nature of soil in the desert of the KSA (i.e.,
mixture of gravelly sand and rocks). Moreover, the annual variation in soil temperature,
Tg (Tg,max–Tg,min) at the 3-m depth was expected to be low. Eight small holes were made
vertically in the pipe wall (Figure 1) at the levels of measurement (3, 2.5, 2.1, 1.7, 1.3, 0.9, 0.5
and 0.1 m below the ground surface). These holes were to create a path for the allocation of
the cables of the temperature sensors and to protect the cables to reach the data logger above
the ground via the pipe in a safe (Figure 1). The sensors were inserted into the soil 0.8 m
apart from the vertical pipe. The backfilling of the ground hole was performed in steps.
The first filling was up to a 3-m depth; then, the temperature sensor was fixed carefully on
the soil surface; after that, the second backfilling was made at the level of a 2.5-m depth;
then, the temperature sensor was inserted, etc. Thermocouple sensors (wzp-035 Pt100/k;
Shenzhen More-Suns Electronics Co., Ltd., Shenzhen, China) were used to measure the
underground temperature at the specified locations. The thermocouple had a precision
of ±0.1 ◦C and a temperature range of 0~85 ◦C. Measurements were taken every 5 min,
averaged at every 15 min and recorded in a COMBILOG-1022 data logger (32 channels;
Theoder Friedrichs & Co., Schenefeld, Germany).

Due to difficulties and to the high cost of digging, the vertical variation in Tg at
different depths and at any time was calculated using the Kasuda formula [24]. Assuming
homogeneous soil with a constant thermal diffusivity (αs), the monthly averaged soil
temperature (Tg) at any depth (z) and month number (t) can be estimated by using the
following formula:

Tg(z, t) = Tm − Tamp × Exp

[
−z

√(
π

12αs

)]
× cos

{
2π

12

[
t − to − z

2

√
12

παs

]}
(1)

where Tg (z,t) is the soil temperature at depth z and month number t; Tm is the annual
mean soil surface temperature (◦C); Tamp is the amplitude of the soil surface temperature
[(max − min)/2] in (◦C); z is the depth below the ground surface (m); αs is the ground soil
thermal diffusivity (m2/month); t is time (the month number that the ground temperature
is calculated for); to is the time shift (month of the year of the lowest ground surface
temperature). For the desert of the KSA, the value of αs was estimated as 2.736 (m2/month)
and thermal conductivity of soil as 2.2–2.8 (W m−1 ◦C−1) [7,8]. From 1 November 2020 to
31 October 2021, the values of Tm and Tamp were estimated (from measurements) to be
30 and 12 ◦C, respectively. Moreover, in January, the lowest ground surface temperatures
were recorded; then, to, in Equation (1), is equal to one.

2.3. Possibility of Condensation in the Buried CL-EAHE Pipes

In the summer months, the inner surface temperature of the buried EAHE pipes is
expected to be much lower than the temperature of the humid air exhausted from the
greenhouse. This makes the geothermal effect for cooling inside greenhouse air possible.
In summer, when humid air flowing through the buried pipes may cool to its dew-point
temperature (Tdp) through contact with the inner surface of the pipe, which is cooler than
the air, water vapour condenses on the pipe surface. In this case, design considerations
should be taken into account to collect the condensed water from the buried EAHE pipes.
This may increase the EAHE’s cost; therefore, an accurate calculation for Tdp is important for
the appropriate design of a low-cost CL-EAHE. To examine the possibility of condensation,
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an experiment was conducted to measure the dry-bulb temperature (Td) and relative
humidity (RH) of the ventilated humid air at the greenhouse outlet (exactly before the
exhaust fans). A crop-free greenhouse with a floor area of 165 m2 was used; it was covered
with a double-layered polycarbonate sheet of an 8.15-mm thickness. The greenhouse was
mechanically ventilated using two exhaust fans, each with an airflow rate of 350 m3 min−1,
operated in summer (July 2021) and in winter (December 2020) to obtain data for two
extreme weather conditions, in Riyadh, KSA. Td and RH were measured using a DMA033
Thermo-hygrometer (LSI-Lastem, Milano, Italy). The parameters were measured every
1 min, averaged at every 15 min and recorded in a data logger (CR23X Micro logger,
Campbell Scientific, Inc., Oldenburg, Germany). The well-known approximate formulation
used to calculate the dew-point temperature (Tdp) is based on Magnus’ formula [25], for
which the measured Td (in ◦C) and RH (%) are required; then, the saturated water vapour
pressure (Ps in Pascal) corresponding to Td is given, by [25], as follows:

Ps = 610.78 × Exp
(

17.2694 × Td
(Td + 238.3)

)
(2)

The actual water vapour pressure (Pa, in Pascal) is given by the following:

Pa = Ps × RH(%)/100 (3)

S = ln(Pa/610.78) (4)

Tdp = S × 238.3/(17.294 − S) (5a)

Another simple approximation is used to calculate Tdp (◦C) for RH > 50% and ±1 ◦C
error [26], in the following form:

Tdp = Td −
(

100 − RH
5

)
(5b)

These approximations are commonly used to calculate Tdp; however, in arid cli-
mates (where Td is very high and RH is very low), the validity of these approximations
((Equation (5a,b)) needs to be examined specifically for the arid climate.

For greater accuracy, the saturation water vapour pressure (Ps) has been modified and
Equation (5a) enhanced, becoming known as an Arden Buck equation [27], by which the
modified saturation water vapour pressure (Psm, in Pascal) corresponding to a dry bulb
temperature of air (Td, in ◦C) is given by the following:

Psm = a × Exp
{(

b − Td
D

)(
Td

c + D

)}
(6)

Tdp =
c × ln

(
RH
100 × Psm

a

)
b − ln

(
RH
100 × Psm

a

) (7)

The constants in Equations (6) and (7) were provided with a maximum error of
≤0.05% and Td from 0 up to 50 ◦C as follows: a = 611.21 Pa, b = 17.368, c = 238.88 ◦C and
D = 234.5 ◦C [27].

2.4. Geothermal Cooling/Heating Capacity

In an EAHE, the PVC or HDPE pipes are buried permanently under the ground at a
specified location, where the ground temperature (Tg) is annually stable and nearly constant;
therefore, the thermal conditions can be characterized as steady state and equilibrium.
Moreover, the thickness of an EAHE pipe is very modest (e.g., 4.25 mm) compared to the
pipe surface area or the pipe diameter (203.2 mm). Hence, for simplicity, we assumed that
the thermal resistance of the pipe material was negligible, and the inner surface temperature
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of the pipe (Ts) was almost uniform and constant along the axial direction of pipe and
equal, in most cases, to the ground temperature (Tg) at the pipe location. The cooling and

heating capacity of an EAHE (
.

Qc/h) is defined as follows:

.
Qc/h =

.
maCp (Tout − Tin) (8)

where
.

ma is the mass flow rate of air exhausted from the greenhouse (ventilation rate at Tex)
and flowing through the EAHE pipes (kg s−1); Cp is the specific heat capacity of air (J kg−1

◦C−1); and Tin and Tout are the temperatures of the inlet and outlet air (◦C) for the EAHE
pipes. Tin is assumed to be the temperature of air exhausted from the greenhouse (Tin = Tex
in ◦C) and it can be obtained directly from measurements. For a very long pipe, Tout is
assumed to be equal to the inner surface temperature of the EAHE pipes (i.e., Tout = Ts = Tg).
In this case, Equation (8) represents the maximum cooling/heating capacity that can be
provided by an EAHE (Qc/h,max). In a similar manner, the cooling/heating potential (Qc/h),
in Joules, over a specified period is defined, by [17,18], as follows:

Qc/h = ∑
time

.
maCp(Tout − Tin)Δt (9)

where Δt is the time interval (s). In fact, the outlet air temperature of EAHE pipes (Tout)
is lower than the ground temperature (Tg) or the inner surface temperature of the pipes
(Ts); this depends on the effectiveness of the EAHE. Therefore, an expression for Tout in
terms of underground temperature (Tg) and inlet temperature of air (Tin) is given, by [13],
as follows:

Tout = Tg

{
1 − exp

(
− Ash f

.
maCp

)}
+ Tinexp

(
− Ash f

.
maCp

)
(10)

where As is the inner surface area of a single pipe in the EAHE;
.

ma and Cp are the mass
flow rate and specific heat of air flowing in a single pipe (kg s−1 and J kg−1 ◦C−1); and
hf is the convective heat transfer coefficient between the inner surface of the pipe and the
flowing air (W m−2 ◦C−1). hf is a critical parameter in the EAHE design; in such a case, it is
reasonable to assume that the air flow in the EAHE pipes is fully developed. To adapt an
appropriate correlation to calculate hf, Bisoniya [13] examined eight Nusselt number (Nu)
correlations and recommended the following correlation for turbulent flows in a pipe with
a smooth internal surface [13]:

Nu =
f /8(Re − 1000)Pr

1 + 12.7
√
( f /8)

(
P2/3

r − 1
) (11)

The friction coefficient f for turbulent flow is given by the following:

f = (1.82 logRe − 1.64)−2,
(

2300 ≤ Re < 5 × 106
)

and
(

0.5 < Pr < 106
)

(12)

where the Reynolds number (Re = dvρ/μ) and Prandtl number (Pr = μCp/k) are calculated
for the air flowing through a pipe; d is the inner diameter of the pipe; v is the air velocity in
the pipe; ρ is the air density; μ is the air viscosity; and k is the thermal conductivity of air.
The unit of each parameter was adjusted to give dimensionless numbers (Nu, Re and Pr).

By determining the value of hf, Equation (10) can be used as a design tool to optimize
the number of pipes and the length and diameter of each pipe for the EAHE design.

3. Results and Discussion

3.1. Underground Soil Temperature

It is well known that the ground temperature is affected by the cyclic variation in
climatic parameters such as solar radiation, ambient air temperature, wind speed, hu-
midity, rainfall and snow, if any, etc. The interaction between the climatic parameters
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and the ground is mainly at the ground surface; then, the cyclic variation in the ground
temperature (Tg) decreases as the ground depth increases. At a certain depth, according
to the chemical/physical properties of soil, Tg becomes nearly constant, unaffected by
the diurnal and seasonal variations in the climatic parameters, and it is defined as the
ground undisturbed temperature (GUT). The GUT is an essential parameter in designing
an EAHE system. It is quite difficult to theoretically calculate the GUT correctly, because it
depends on the soil parameters and the climatic conditions affecting the ground surface.
Therefore, an experiment was conducted (Section 2) for measuring Tg at different ground
depths during different seasons to determine the depth at which Tg became nearly constant
throughout the year (GUT). To illustrate the daily cyclic variation in ambient air and soil
temperatures during the period of the experiment (from 1 November 2020 to 31 October
2021), four days were selected to represent the extreme weather conditions, two days in
cold winter (29–30 December) and two days in hot summer (30–31 July). The measured
parameters (i.e., Tam and Tg at different depths) are depicted in Figure 2 (for winter days)
and in Figure 3 (for summer days). In winter, the ground temperature (Tg) increased as
the ground depth increased (Figure 2) and the opposite observation was noted in summer
(Figure 3). In Figures 2 and 3, the cyclic variation in Tg is significant at a 0.1-m depth as
affected by the diurnal variation in the climatic parameters (mainly the solar irradiance and
Tam) in summer and winter. At a depth from ≥0.5 m up to 3 m, Tg became nearly constant
in summer and in winter and was not affected by the diurnal variation in the climatic
parameters. At a 3-m depth, Tg was about 29 ◦C in winter (Figure 2) and about 32 ◦C in
summer (Figure 3) and a difference of 3 ◦C in the Tg value is acceptable between the hot
summer and cold winter seasons. For more clarification and to find the optimum depth for
burying the EAHE pipes, the vertical variation in the monthly average soil temperature
(Tg) at different depths for the experimental site (Riyadh, KSA) is plotted in Figure 4 and
the annual variation in temperatures of ambient air (Tam) and soil (Tg) at the 0.5-m and
3-m depths is plotted in Figure 5. As illustrated in Figures 4 and 5, at the 3-m depth, the
maximum annual variation (max – min) in Tg was about 5 ◦C. The lowest value of Tg was
around 27 ◦C in February and March and the highest value of Tg was around 32 ◦C in
September and October. This annual variation in Tg (29–32 ◦C) is adequate for heating and
cooling purposes and can be considered as the GUT and the depth of 3 m is adequate for
burying the EAHE pipes. The annual variation in Tg is considerable at the 0.5-m depth;
more stability of Tg was observed at the 3-m ground depth (Figure 5). According to Figure 5,
the heating effect of a supposed EAHE in winter is expected to be relatively higher than
its cooling effect in summer; this depends on the temperature difference between Tam and
GUT (Tg at the 3-m depth).

 

Figure 2. Diurnal variation in ambient temperature (Tam) and underground soil temperature (Tg) at
different depths (z) in winter season (29–30 December 2020).
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Figure 3. Diurnal variation in ambient temperature (Tam) and underground soil temperature (Tg) at
different depths (z) in summer season (30–31 July 2021).

 
Figure 4. Vertical variation in the monthly average ground temperature (Tg) at different depths (z)
for Riyadh region, KSA, in the years 2020–2021.

As farther digging in the desert of arid regions is quite difficult and expensive, we
used Equation (1) to predict the monthly average values of Tg at different depths. To
calculate the values of Tm and Tamp in Equation (1), the measured Tg at the 0.1-m depth
was considered as the soil surface temperature. The predicted results for 12 months and
depths of >3 m are plotted in Figure 6. As illustrated in Figure 6, at a depth (z) greater than
13 m, Tg becomes constant at 30 ◦C throughout the year. As the arid climatic condition is
almost similar every year in the deserts of KSA, the GUT can be considered constant at
30 ◦C throughout the year at a depth greater than 13 m.
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Figure 5. Annual variation in temperatures of ambient air (Tam) and ground soil (Tg) at 0.5- and 3.0-m
depths for Riyadh, Saudi Arabia.

Figure 6. Ground temperature variation (monthly average) with depth, predicted using Equation (1)
for the KSA desert.

3.2. Possibility of Condensation in the EAHE Pipes

The proposed CL-EAHE was applied in a greenhouse for cooling/heating purposes in
the summer and winter seasons. In the cooling/heating processes, humid air is exhausted
from the greenhouse (at Tex and RHex); it flows in the buried pipes, then the condensation
of water vapour in the pipes is possible during cooling. The occurrence of condensation
requires extra design consideration to collect the condensed water from the pipes. The
most accurate correlation (Equation (7)) was used to calculate the dew-point temperature
(Tdp) of the exhausted air (having Tex and RHex) for the four previously selected days (hot
and dry in summer and humid and cold in winter). No heating or cooling was applied to
the greenhouse to represent the actual practical situations. Figures 7 and 8 illustrate the
diurnal variation in the measured Tex and RHex for the exhausted air from the greenhouse,
the measured GUT (Tg at the 3-m depth) and the calculated Tdp (using Equation (7)). A
considerable difference could be observed between Tex and Tdp in summer (Figure 8) and in
winter (Figure 7). For winter heating (Figure 7), Tex increased, as affected by the warm inner
surface of the EAHE pipes; if the upper limit of Tex was to reach the GUT, then the gap
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between the Tex and Tdp of the air would increase and the condensation of water vapour
would be impossible. For summer cooling (Figure 8), if Tex was to decrease to its lower
limit GUT (i.e., Tg at the 3-m depth), there would still be a large difference between Tex
and Tdp (Figure 8); therefore, condensation would never take place or would be impossible.
Moreover, a large number of combinations for Tex and RHex was used to calculate Tdp using
Equation (7) and the resulting values of Tdp do not exceed 20 ◦C; in each combination, a
large difference between Tex and Tdp remained. Accordingly, condensation in CL-EAHE
pipes would be impossible throughout the year for the pipes buried at a 3-m depth in the
Riyadh area, KSA.

Figure 7. Diurnal variation in estimated dew-point temperature (Tdp) of air ventilated from a
greenhouse at Tex and RHex and flowed through EAHE pipes buried at the GUT in winter season
(29–30 December 2020).

Figure 8. Diurnal variation in estimated dew-point temperature (Tdp) of air ventilated from a
greenhouse at Tex and RHex and flowed through EAHE pipes buried at the GUT in summer season
(30–31 July 2021).
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Similarly, Tdp was calculated using Equation (5a,b) to check the validity of these
approximations to be used to calculate Tdp for an arid climate. The percentage error, ER
(%), was calculated in each case as ER (%) = abs{(Taccurate-Tapproximate)/Taccurate} × 100.
The values of ER (%) were calculated for a wide range of Td and RH and are plotted in
Figure 9a,b for Equation (5a) and in Figure 10 for Equation (5b). Based on Figure 9a,b,
Equation (5a) can be used to calculate Tdp with an error less than 1% for RH > 40% and
Td < 30 ◦C. However, Equation (5b) can be used only for RH > 60% with an error of about
3–4%; for low RH values (as in the arid climate), such an approximation (Equation (5b))
cannot be used. Accordingly, for arid climatic conditions (as in the Arabian Peninsula
region), such approximations (Equation (5a,b)) are not recommended and Equation (7) is
the appropriate correlation to determine Tdp correctly.

Figure 9. Percentage error, ER (%), in the approximated value of Tdp (estimated by using Equation (5a))
as affected by (a) relative humidity (RH) and (b) dry bulb temperature (Td).

Figure 10. Percentage error, ER (%), in the approximated value of Tdp (estimated by using Equation (5b))
as affected by relative humidity (RH).
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3.3. Maximum Cooling/Heating Capacity

An EAHE’s geothermal energy potential, as well as its cooling/heating capacity,
depends mainly on the climatic parameters and the underground soil conditions. For
EAHE pipes buried at a specified optimum depth, Tg equals the GUT. Under the steady-
state thermal condition, the inner surface temperature of the pipe (Ts) is assumed to be
uniform in the axial flow direction and by assuming the thermal resistance of the pipe
material is negligible, the equality Ts = Tg = GUT can be assumed with insignificant error.
If the pipe is long enough, the outlet air temperature (Tout) from the pipe can be assumed
to be equal to Ts (Tout = Ts = Tg = GUT). In this case, the EAHE provides its maximum
possible cooling/heating capacity. Therefore, in Equation (8), Tin and Tout were taken
as Tex (exit air from the greenhouse) and GUT, respectively;

.
Qc/h,max was estimated per

cubic meter of airflow. For winter cooling, a considerable amount of heat is expected
to be added to the flowing air at around midnight (Figure 11). In addition, at around
noon, in winter, operating the EAHE is not necessary and the transmitted solar radiation
into the greenhouse is enough for warming up the inside air. In summer, a considerable
amount of heat is expected to be removed from the flowing air at around noon; however, at
around midnight, it is not necessary to operate the EAHE (Figure 11). Under the presumed
ideal conditions and to estimate the maximum possible cooling/heating potential that the
ground (at a 3-m depth) can provide in the cold winter and hot summer in the Riyadh
region, the results are integrated in Figure 11. The expected maximum possible cooling and
heating potential are 890 and 1000 MJ m−3 day−1, respectively. These values are promising
to use EAHEs for different applications in the KSA and the Arabian Peninsula regions.

Figure 11. Diurnal variation in maximum cooling/heating capacity (
.

Qc/h,max) that an EAHE can
provide and the maximum cooling/heating potential per day.

4. Conclusions

This study is an attempt to provide critical information for EAHE designers and to
evaluate the geothermal energy potential for possible cooling/heating greenhouses and
indoor spaces in hot arid regions, for which two experiments were conducted. The main
conclusion is summarized below.

The daily cyclic variation in the climatic parameters affected the ground temperature
(Tg) up to a 0.5-m depth, after which Tg was constant daily; it increased with depth in
winter and decreased with depth in summer.

At a 3-m depth, the annual variation in Tg was minor and it can be considered as the
ground undisturbed temperature, GUT. The GUT value was 29 ◦C in winter and 32 ◦C in
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summer; these values are adequate for cooling/heating purposes in a climate in which
the ambient air temperature drops below 10 ◦C on winter nights and exceeds 47 ◦C on
summer days. For an EAHE operating under ideal conditions, the geothermal energy level
can provide a maximum cooling/heating potential of 890/1000 MJ per m3 of flowing air
per day.

In summer seasons, during the cooling process of greenhouse air in EAHE pipes
distributed at a 3-m depth, the condensation of water vapor in the pipes could never
take place.

In arid climates, approximate correlations (Equation (5a,b)) are not recommended to
calculate the dew-point temperature of air (Tdp). However, Equation (7) is the appropriate
correlation to determine Tdp correctly.

The geothermal energy potential is promising for cooling/heating applications in arid
regions such as the Arabian Peninsula for sustainable development and environmental
protection. Further research should be conducted to design, construct and operate an
EAHE connected to a greenhouse and evaluate the system performance under different
operating and climate conditions.
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Nomenclature

Symbol Description (unit)

As Inner surface area of EAHE pipe (m2)
Cp Specific heat of flowing air through EAHE pipes (J kg−1 ◦C−1)
d Inner diameter of the EAHE pipes (m)
ER Percentage error (%)
hf Convective heat transfer coefficient between inner surface of (W m−2 ◦C−1)

EAHE pipe and flowing air
k Thermal conductivity of flowing air (W m−1 ◦C−1)
L Length of one EAHE pipe (m)
.

ma Mass flow rate of flowing air through EAHE pipes (kg s−1)
Nu Nusselt number (Nu = dh/k )
Pa Actual water vapor pressure (Pa)
Pr Prandtl number

(
Pr = μCpa/k )

Ps Saturation water vapor pressure (Pa)
.

Qc/h Cooling/heating capacity (W)
Qc/h Cooling/heating potential (J)
Re Reynolds number (Re = dvρ/μ )
RH Relative humidity of air (%)
RHex Relative humidity of air exhausted from the greenhouse (%)
t Time (s; day; month)
Tamp Amplitude of the annual ground surface temperature (◦C)
Td Dry bulb temperature of air or ambient temperature (Tam = Td) (◦C)
Tdp dew point temperature of flowing air in the EAHE pipe (◦C)
Tex Temperature of air exhausted from the greenhouse (◦C)
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Tg Underground soil temperature (◦C)
Tin Inlet hot/cold air temperature to the EAHE pipes (◦C)
Tm Mean ground surface temperature, annual average (◦C)
Tout Outlet hot/cooled air temperature from the EAHE pipes (◦C)
Ts Outlet hot/cooled air temperature from the EAHE pipes (◦C)
v Velocity of flowing air through EAHE Pipe (m s−1)
z Depth below the soil surface (m)

Greek letter

αs Thermal diffusivity of soil (m2/day)
ρ Density of flowing air through EAHE pipe (kg m−3)
μ Dynamic viscosity of flowing air through EAHE pipe (kg m−1 s−1)
Δt Interval of time (s, h, day, etc.)

Abbreviations

CL-EAHE Closed-loop earth to air heat exchanger
EAHE Earth to air heat exchanger
KSA the Kingdom of Saudi Arabia
OL-EAHE Open loop earth to air heat exchanger
GUT Ground undisturbed temperature (◦C)
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Abstract: The concept of low carbon is extended to the welfare dimension by considering the rela-
tionship between carbon emissions and the Human Development Index (HDI). This paper examines
the decoupling between carbon emissions per capita and HDI and the welfare output of carbon
emissions by using the data from 189 countries, from 1990 to 2019, as well as decomposes the drivers
of the decoupling index and carbon emissions performance (CEP) in the example countries. The
results show that most countries that achieve strong decoupling have very high human development,
while the worst case is that a few countries with an extremely low human development achieved
strong decoupling. Moreover, the status of strong decoupling in most countries is not stable, and
there is a risk of transformation to another decoupling status. Although the CEP of most countries
has gradually improved, very few countries have high CEP. Economic development effects are the
primary inhibitor to achieving and maintaining strong decoupling in example countries. The main
drivers of CEP improvement are the carbon productivity effects in the Czech Republic, Germany,
and the United Kingdom, and the economic development effects in South Korea and Turkey. The
main factors inhibiting the increase of CEP are the energy intensity effect in the Czech Republic,
Germany, and the UK, and the welfare effect in South Korea and Turkey. These effects are all re-
lated to GDP. Economic activity broadly affects the decoupling index and CEP. Recommendations
for maintaining HDI growth and reducing carbon emissions are made for countries with different
human development.

Keywords: HDI; decoupling index; carbon emission performance; LMDI

1. Introduction

In the context of global warming, the low-carbon economy with low energy con-
sumption, low pollution, and low emissions have become the focus of global attention.
In compliance with the Kyoto Protocol and the Paris Agreement, governments have taken
actions to reduce carbon emissions, improve energy efficiency, and enhance their ability to
cope with climate change. Despite this, global energy demand and CO2 emissions continue
to increase, except in 2020 [1]. Ideally, we would like to see economic growth that is not
dependent on the increase in carbon emissions, with decoupling between economic growth
and carbon emissions. Therefore, revealing the decoupling process is conducive to finding
critical breakthroughs in the path of global low-carbon economic development [2].

Low-carbon development is being achieved at the economic level, but it should also
be extended to the welfare dimension. Based on Sen’s capability approach, the Human
Development Index (HDI) is constructed to measure the combined performance of a
country in health, education, and income [3]. The increase in HDI is taken as a starting
point for human welfare. To achieve higher human development is the pursuit of each
country. However, realizing the right to human development requires the guarantee of
energy consumption and the demand for carbon emissions [4]. The 30th anniversary
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Human Development Report introduced a new index—Planetary pressures-adjusted HDI
(PHDI), which emphasizes how human activities significantly influence the environment
and ecology and place great stress on the planet. These pressures will react to human
development in the form of extreme climate or species extinction, resulting in the decline
or loss of HDI [5]. Therefore, studying the relationship between CO2 emissions and human
development will provide policymakers with more evidence for achieving sustainable
development [6].

This paper aims to analyze the decoupling between carbon emissions and HDI and
the carbon welfare output of 189 countries from 1990 to 2019 and understand the drivers.
First, the overall decoupling performance of 189 countries from 1990 to 2019 is analyzed.
Furthermore, the evolution of decoupling trends is shown over six periods. However,
the decoupling index and decoupling status are not comprehensive enough to explain
the coupling relationship between carbon emissions and HDI. Therefore, the total carbon
emissions and carbon emissions per capita were combined to analyze the welfare output
of carbon emissions in 189 countries, namely carbon emission performance (CEP). Finally,
several countries that maintained continuous decoupling and expansive negative decou-
pling over six periods are identified in the decoupling analysis. And LMDI analyzed the
driving factors of the decoupling index and CEP.

This paper consists of five sections and is arranged as follows. The second section
reviews and summarizes the relevant literature. The appropriate methods and data are
described in Section 3. Section 4 shows the results of a series of methods. Section 5
summarizes the main conclusions and makes recommendations on maintaining a stable
decoupling status.

2. Literature Review

2.1. Review of Decoupling Model

The decoupling model is widely used to analyze the coupling relationship between
economy and resource consumption or environmental pollution. The two main decoupling
models are the OECD decoupling model and the Tapio decoupling model. OECD analyzed
the decoupling status of 30 member countries and confirmed the widespread decoupling
between environment and economy in OECD countries [7]. Tapio adopted the concept
of elasticity to dynamically reflect the decoupling relationship between variables and
determined eight reasonable decoupling statuses, overcoming the difficulties in the base
period selection of the OECD decoupling model [8]. Lin et al. used the OECD and Tapio
decoupling model to evaluate the decoupling status between CO2 emissions and GDP
in South Africa during 1990–2012 and found that the decoupling effect was gradually
increasing [9]. The results of the two decoupling models have a good correlation, but the
OECD decoupling model has limitations for analyzing the decoupling of sub-periods. To
compare the decoupling trend between economic growth and carbon dioxide emissions
in typical developed and developing countries from 1965 to 2015, Wu et al. used three
decoupling models—the OECD decoupling model, the Tapio decoupling model, and
the IGTX decoupling model [10]. The research has shown that the decoupling effect is
stronger in developed countries than in developing countries, and the accuracy of the Tapio
decoupling model is not easily limited by the length of the research period among the three
decoupling models.

In the decoupling analysis between carbon dioxide and economy, the Tapio model
and LMDI decomposition method are generally combined to discuss the driving factors
affecting the decoupling status. Chen et al. embedded the LMDI decomposition formula in
the Tapio decoupling model to study the driving factors affecting CO2 emissions in OECD
countries from 2001 to 2015 [11]. The results showed that energy intensity and GDP per
capita are the main factors affecting CO2 emissions, and the impact of technological factors
is greater than that of non-technological factors. Yang et al. combined the LMDI decom-
position model and Tapio decoupling model to analyze the determinants of decoupling
between global carbon emissions and global economic growth during 2000–2017 [2]. It
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is found that energy conservation, production efficiency, and energy structure optimiza-
tion played a positive role in the global decoupling process, while GDP per capita and
population expansion played a restraining role. In general, the application of the Tapio
model and LMDI decomposition model is wide. Therefore, the Tapio model and LMDI
decomposition model are used in this paper to identify each country’s decoupling status
and driving factors.

2.2. Review of Carbon Emissions and HDI

Most literature focuses on the relationship between energy consumption/environmental
pollution and economic growth but ignores the relationship between energy/environment
and human welfare. Economic growth is only one of the goals of human development.
In essence, promoting human development is the ultimate goal. In the context of lim-
ited global energy resources, ensuring the effective use of energy and promoting human
development is particularly important. Martínez and Ebenhack found a significant corre-
lation between HDI and energy consumption per capita in 120 countries [12]. For some
energy-poor countries with a low HDI, a small amount of energy assistance can make great
strides in human development. Akizu-Gardoki et al. conducted a decoupling analysis
of 126 countries from 2000 to 2014, based on Total Primary Energy Footprint and HDI,
and the results showed that human welfare could be increased by reducing energy con-
sumption [13]. According to the analytical framework of HDI, there is also research on
how to formulate and implement global emission reduction policies. Pan believes that
countries with a low HDI should be given priority in international negotiations on global
climate change mitigation to guarantee their rights in achieving human development [4].
Hu proposed to implement global emission reduction policies according to the HDI of
countries/regions and the principle that major carbon emitters take the lead in emission
reduction [14]. Costa et al. used the positive correlation between HDI and CO2 emissions
per capita to evaluate the cumulative CO2 emissions required to achieve high human
development in developing countries and determine their respective emission reduction
according to the HDI [15].

The decoupling relationship between carbon emissions and HDI is mainly studied
at the levels of nation and district. Based on the Tapio decoupling model and LMDI
decomposition, Chen et al. discussed the decoupling status between carbon emissions per
capita and the HDI of four provinces in southwest China from 2000 to 2015 [16]. The results
showed that the overall decoupling effect of southwest China was gradually increasing.
Hossain and Chen demonstrated weak and strong decoupling between HDI and CO2
emissions in Bangladesh from 1990 to 2018, with economic activity being the primary
driver of CO2 emissions, compared to other influencing factors [6]. Therefore, this paper
expands the research perspective to the global dimension instead of studying a specific
country or region. The decoupling relationship between carbon emissions and HDI can
be studied from the perspective of multiple countries, and comparative analysis can be
conducted among countries with the same data source.

2.3. Review of Carbon Emission Performance

Carbon productivity originated from the resource productivity in ecological economics
and was later measured by consultants McKinsey & Company, in terms of GDP output
per unit of CO2 emissions [17]. According to the definition of carbon productivity, carbon
emission performance (CEP) measures the economic and social welfare output per unit
of carbon emission [18,19]. Therefore, the welfare output of carbon emissions should be
considered from the perspective of human well-being to broaden the research horizon of
low-carbon development. Zhu and Liu measured the CEP of G20 countries, expressed by
the ratio of HDI to carbon emission index—the average of the proportion of total carbon
emission and carbon emission per capita after standardization [18]. Liu and Zhu and
Hu et al., respectively, measured the carbon emission performance of G20 countries and
30 Provinces in China, but the carbon emission index only included carbon emissions per
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capita, without the important information of total carbon emissions [19,20]. The PHDI in
the Human Development Report 2020 adjusts HDI through carbon emissions per capita
and material footprint per capita to explain the pressure on the earth caused by human
activities [5]. In this paper, the calculation method of Zhu and Liu and PHDI was used to
construct the carbon emission performance index.

3. Methods and Data

3.1. Analysis of Decoupling

In economics, the decoupling model is usually used to study the coupling relation-
ship between economic growth and resource consumption or environmental pollution,
reflecting the sensitivity of resources and environmental pressure changes to economic
changes [21]. This paper uses the Tapio decoupling model to analyze the decoupling rela-
tionship between carbon emissions per capita and HDI. Since HDI is a per capita indicator,
carbon emissions per capita are selected instead of total carbon emissions. The equation is
expressed as follows.

D(PC, HDI) =
%ΔPC

%ΔHDI
=

ΔPC/PC0

ΔHDI/HDI0
(1)

In Equation (1), D(PC, HDI) represents the decoupling index between carbon emis-
sions per capita (PC) and the Human Development Index (HDI), and %ΔPC and %ΔHDI
represent the growth rate of carbon emissions per capita and HDI, respectively. Both ΔPC
and ΔHDI represent the change of carbon emissions per capita and HDI from the base
period to the end period respectively. Lastly, PC0 and HDI0 represent carbon emissions
per capita and HDI at the base period, respectively.

According to the decoupling index, the decoupling status is divided into eight statuses:
strong decoupling, weak decoupling, expansive coupling, expansive negative decoupling,
weak negative decoupling, strong negative decoupling, recessive coupling, and recessive
decoupling. The meanings of the eight decoupling statuses are detailed in the other
literature [22].

3.2. Construction of Carbon Emission Performance (CEP)

According to the definition of CEP, HDI is used to represent welfare. The HDI data
provided by the Human Development Data Center is non-continuous, and direct use may
cause errors. According to the calculation method, the HDI of 189 countries from 1990
to 2019 was recalculated, but the calculation steps were omitted. Carbon emissions are
expressed by Carbon Emission Index (CEI). CEI needs to consider two factors: total carbon
emissions and carbon emissions per capita. Zhu and Liu standardized the ratio of total
carbon emissions to the total global emissions as the total Carbon Emission Index [18].
However, the total global emissions are determined by the total carbon emissions of the
sample countries, and the proportion of total carbon emissions is not stable. In this paper,
the total carbon emissions and carbon emissions per capita are directly standardized.
Construction of carbon emission performance is shown in Equation (2):

CEP =
HDI
CEI

(2)

CEI =
1
2

[
Ln(C)− Ln(0)

Ln(10, 490, 000)− Ln(0)
+

Ln(PC)− Ln(0)
Ln(68, 720)− Ln(0)

]
(3)

In Equation (3), C is carbon emission and PC is carbon emission per capita. The
standardized method for calculating PHDI is used [5]. Zero is set as the minimum value.
The maximum value is the highest value in all countries from 1990 to 2019. Therefore,
the minimum value of total carbon emission and carbon emission per capita is 0. The
maximum value of total carbon emission is 10.49 billion tons, observed in China in 2019,
and the maximum value of carbon emission per capita is 68.72 tons, observed in Qatar
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in 1997. It should be noted that logarithmic standardization is meaningful only if the value
of total carbon emission and carbon emission per capita is greater than 1. Therefore, the
total carbon emission is expressed in 10,000 tons, and the carbon emission per capita is
expressed in kilograms.

3.3. Analysis of Decomposition

Logarithmic Mean Divisia Index (LMDI) decomposes the variables into several effects
and analyzes the contribution of each effect to the change in the variable [23]. This method
can show the decomposition results as additivity, complete decomposition, and no residual
error. The LMDI method has been widely used to decompose drivers of carbon emission
due to its variety of forms and simplicity of calculation [24,25]. This paper decomposes the
decoupling index and CEP by combining the Kaya Identity and the LMDI method.

3.3.1. Decomposition of Decoupling Index

Based on the idea of existing studies, the decomposition process of drivers affecting
CO2 emission is determined as follows [6,16]:

PC =
C
F
× F

E
× E

GDP
× GDP

P
(4)

where, CF = C
F , FE = F

E , EG = E
GDP , GP = GDP

P
In Equation (4), C represents total carbon emissions, F represents fossil fuel consump-

tion (oil, natural gas, and coal), E represents primary energy consumption, GDP represents
total economic output, and P represents the size of the population. CF represents the
carbon emission intensity of fossil fuel. FE represents the structure of energy consump-
tion. EG represents energy intensity. GP represents GDP per capita. Equation (4) can be
transformed into:

PC = CF × FE × EG × GP (5)

According to the LMDI model, the change of carbon emissions per capita from the
base period (0 period) to the reporting period (T period) is shown in Equation (6).

ΔPC = PCt − PC0 = CFt × FEt × EGt × GPt − CF0 × FE0 × EG0 × GP0
= ΔCF + ΔFE + ΔEG + ΔGP

(6)

ΔCF = Ln
(

CFt

CFo

)
× PCt − PC0

Ln(PCt)− ln(PC0)
(7)

ΔFE = Ln
(

FEt

FE0

)
× PCt − PC0

Ln(PCt)− ln(PC0)
(8)

ΔEG = Ln
(

EGt

EG0

)
× PCt − PC0

Ln(PCt)− ln(PC0)
(9)

ΔGP = Ln
(

GPt

GP0

)
× PCt − PC0

Ln(PCt)− ln(PC0)
(10)

In Equation (6), ΔCF represents the carbon intensity of fossil fuel effect, ΔFE represents
the energy structure effect, ΔEG represents energy intensity of fossil fuel effect, and ΔGP
represents economic development effect. The four effects from the base period to T period
are calculated based in Equations (7)–(10).

By combining the Tapio decoupling model with the LMDI method, the decoupling
index from the base period (0 period) to the reporting period (T period) can be expressed
by Equation (11).

D(PC, HDI) =
%ΔPC

%ΔHDI
=

ΔPC/PC0

ΔHDI/HDI0
= ΔPC × HDI0

ΔHDI × PC0

= (ΔCF + ΔFE + ΔEG + ΔGP)× HDI0

ΔHDI × PC0
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= ΔCF × HDI0

ΔHDI × PC0
+ ΔFE × HDI0

ΔHDI × PC0
+ ΔEG × HDI0

ΔHDI × PC0
+ ΔGP × HDI0

ΔHDI × PC0

= DCF + DFE + DEG + DGP (11)

In Equation (11), the decoupling index of carbon emissions per capita and HDI is
divided into four components. DCF, DFE, DEG, and DGP represent the decoupling index of
ΔCF, ΔFE, ΔEG, and ΔGP, respectively.

3.3.2. Decomposition of CEP

Similarly, the Kaya Identity and the LMDI method are used to decompose the driving
factors of CEP. The decomposition form is shown in Equation (12).

CEP =
CEP
GDP

× GDP
C

× C
F
× F

E
× E

GDP
× GDP

P
× P (12)

where, CG = CEP
GDP , GC = GDP

C , CF = C
F , FE = F

E , EG = E
GDP , GP = GDP

P , P = POP.
In Equation (12), CG represents the contribution to CEP per unit of economic growth.

GC represents the economic output per unit of carbon emissions, i.e., carbon productivity.
CF, FE, EG, and GP are the same as in Equation (4), respectively. P denotes the size of the
population. Equation (12) is simplified into the following form:

CEP = CG × GC × CF × FE × EG × GP × P (13)

The change of CEP from 0 period to T period is expressed as Equation (14).

ΔCEP = CEPt − CEP0 = ΔCG + ΔGC + ΔCF + ΔFE + ΔEG + ΔGP + ΔP (14)

ΔCG = Ln
(

CGt

CGo

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(15)

ΔGC = Ln
(

GCt

GC0

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(16)

ΔCF = Ln
(

CFt

CF0

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(17)

ΔFE = Ln
(

FEt

FEo

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(18)

ΔEG = Ln
(

EGt

EG0

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(19)

ΔGP = Ln
(

GPt

GP0

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(20)

ΔP = Ln
(

Pt

P0

)
× CEPt − CEP0

Ln(CEPt)− ln(CEP0)
(21)

In Equation (14), ΔCG represents the welfare effect, ΔGC represents the carbon pro-
ductivity effect, and ΔP represents the population effect. The terms ΔCF, ΔFE, ΔEG, and
ΔGP are the same as in Equation (6), respectively. The seven effects from the base period to
T period are calculated based on Equations (15)–(21).

3.4. Data

Frequently used data on carbon emissions are taken from BP statistics. But data for
just over 70 countries is not enough to give a complete picture of global carbon emissions.
The carbon emissions data used in this paper are from the Global Carbon Project, which
mainly refers to the carbon emissions generated by burning fossil fuels within the national
territory [26]. UNDP also uses carbon emissions data from the Global Carbon Project
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to calculate PHDI [5]. BP Statistical Review of World Energy 2021 provides a long period
of energy consumption data for the decomposition analysis of countries with certain
characteristics [1]. The GDP data derived from World Development Indicators is updated
in March 2021 [27]. Population data were derived from the World Population Prospects:
The 2019 Revision [28]. Raw data on health, education, and income were obtained from the
Human Development Data Centre to recalculate the HDI [29]. The variable definitions and
sources are shown in Table 1.

Table 1. Variable definition and source.

Variable Definition Source

C Total carbon emissions (million tons) Global Carbon Project
F Fossil fuel consumption (Twh) BP Statistical Review of World Energy
E primary energy consumption (Twh) BP Statistical Review of World Energy

GDP Total GDP (constant 2017 PPP $) World Development Indicators
P Total population (thousand) World Population Prospects

HDI The geometric average of health,
education, and income index Human Development Data Center

4. Result

4.1. Relationship between Carbon Emissions Per Capita and HDI

Figure 1 depicts the corresponding relationship between CO2 emissions per capita
and the HDI for four years. There is a strong correlation between CO2 emissions per capita
and the HDI. The figures show a power–exponential relationship, that is, with the increase
of HDI, the increase of carbon emissions per capita is gradually accelerating. Carbon
emissions per capita of countries with extremely low HDI are minor, and the growth is flat.
When countries achieve medium, high, and very high human development, the growth
rate of carbon emissions per capita begins to accelerate. This indicates that the demand
for carbon emissions and the carbon emissions per capita will gradually increase for the
country to achieve a higher level of human development. The non-linear relationship
between CO2 emissions per capita and HDI is consistent with Costa et al., who found an
exponential relationship between CO2 emissions from fossil fuels and HDI [15].

It can also be seen from Figure 1 that the CO2 emissions per capita of countries with
extremely low HDI are relatively close, with little difference between countries. As the
HDI of countries gradually increases, differences in carbon emissions per capita become
apparent. The differences in emissions per capita among countries are most remarkable at
very high human development. Since 1990, emissions per capita by the poorest half of the
world’s population have only slightly increased, from 1.2 tons to 1.6 tons [30]. For countries
with high levels of human development, their carbon emissions per capita are different,
and they follow different development paths. Some countries will achieve high human
development at the cost of large carbon emissions. Some countries will aim at low-carbon
development, improving emission-reduction technologies, and developing new energy
sources to achieve high human development.
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Figure 1. Relationship between HDI and CO2 per capita emissions. Source: Authors’ own con-
struction. Note: The p-values for the four exponential functions are all less than 0.01 and pass the
significance test. (a) 1990; (b) 2000; (c) 2010; (d) 2019.

4.2. Analysis of Decoupling between Carbon Emissions Per Capita and HDI
4.2.1. Decoupling between Carbon Emissions Per Capita and HDI, 1990–2019

It is the right of every country to achieve high human development. Carbon emissions
should be targeted to increase the HDI. If carbon emissions per capita increase without
increasing the HDI, this may indicate that no effort has been made to reduce carbon
emissions. Countries with strong decoupling and very high human development are
considered to have achieved positive decoupling. However, countries that do not achieve
very high HDI and strong decoupling are referred to as negative decoupling.

As shown in Figure 2, no country experienced negative growth HDI from 1990 to 2019.
HDI data for 1990 are missing for 46 countries, and 59 countries out of the 143 are strongly
decoupling. In addition, 40 countries are positively decoupling whereas 19 countries are
negative decoupling. Negative decoupling is not a good thing for countries with extremely
low HDI. These countries are the Central African Republic, the Democratic Republic of
Congo, and Yemen. Their HDI is still at low human development after 29 years, due to
constant war and political unrest. Because of their weak industrial base and poor infrastruc-
ture, they are strongly decoupling with low carbon emissions and low energy consumption.
Much investment is needed to develop in the future due to the low starting point.
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Figure 2. Decoupling between carbon emissions per capita and HDI, 1990–2019. Source: Authors’
own construction using Excel.

In total, 63 countries are expansive negative decoupling, meaning carbon emissions
per capita are growing much faster than HDI. Most of the 63 countries are at high or
medium human development, and 11 countries with very high HDI are expansive negative
decoupling, such as South Korea, Kuwait, and Qatar. Achieving high HDI growth comes at
the cost of high carbon emissions per capita.

4.2.2. Evolution of the Decoupling between Carbon Emissions Per Capita and HDI

The whole observation period from 1990 to 2019 is divided into six sub-periods. The
decoupling index between carbon emissions per capita and HDI is calculated to analyze the
change in the decoupling status in each period. As shown in Figure 3, the decoupling status
of countries changed significantly over the six periods. Most countries have maintained
positive HDI growth. In general, the main decoupling statuses are strong decoupling, weak
decoupling, expansive coupling, and expansive negative decoupling. The proportion of
countries with these four decoupling statuses is between 80% and 97%.

Four undesirable decoupling status will emerge if some countries experience negative
HDI growth. The worst status is recession decoupling. A significant decline in HDI has
accompanied the reduction in carbon emissions per capita. There were more countries with
recessive decoupling in the first period. The main countries are the Russian Federation,
Cuba, and Mongolia, which were more affected by the collapse of the Soviet Union. Other
countries are in Sub-Saharan Africa. In the later periods, the countries with recessive
decoupling were mainly in Sub-Saharan Africa, the Middle East, and Latin America. Based
on the experience of most countries, the decoupling status between carbon emissions
per capita and HDI experienced an evolutionary trend: expansive negative decoupling,
expansive coupling, weak decoupling, and strong decoupling. Strong decoupling in the
early period is unsuitable for countries with extremely low HDI, which requires vast
investments later. However, there has been a shift from recessive decoupling to expansive
coupling and expansive negative decoupling for some countries with extremely low HDI
(Rwanda, Tanzania, and Zambia).

Overall, the proportion of countries with strong decoupling and weak decoupling
continues to rise, while the proportion of expansive coupling and expansive negative
decoupling is declining. Although the relationship between HDI and energy consumption
has entered a new phase in most countries, the status of strong and weak decoupling
is unstable. Strong decoupling and weak decoupling carry the risk of shifting to other
status of decoupling. In addition, economic, social, political, and resource factors vary
among countries, and the unbalanced trend of economic growth and carbon emissions will
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continue in the future. Solving these problems requires the concerted efforts of the whole
world.

Figure 3. Spatial distribution of the decoupling index over six periods. Source: Authors’ own
construction using Excel. (a) 1990–1995; (b) 1995–2000; (c) 2000–2005; (d) 2005–2010; (e) 2010–2015;
(f) 2015–2019.

Only three countries (the Czech Republic, Germany, and the United Kingdom) have
sustained positive decoupling over the six periods. They reduce carbon emissions while
maintaining relatively high HDI. Five countries (Mauritius, Panama, South Korea, Turkey,
and Uruguay) with high HDI are expansive negative decoupling over at least five periods.
Their growth rate of carbon emissions per capita is larger than their HDI. These countries
emit more carbon dioxide without a corresponding increase in the HDI.

4.3. Evolution and Two-Dimensional Analysis of Carbon Emission Performance
4.3.1. Results of Carbon Emission Performance Measurement from 1990–2019

Figure 4 shows the evolution of countries’ carbon emission performance in 1990, 1996,
2002, 2008, 2014, and 2019. As shown in Figure 4, there are more and more countries with
dark colors. The carbon emission performance of countries is gradually increasing.
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Figure 4. Evolution of carbon emission performance, 1990–2019. Source: Authors’ own construction
using Excel. (a) 1990; (b) 1996; (c) 2002; (d) 2008; (e) 2014; (f) 2019.

Countries showing significant increases in carbon emissions performance (50% above
from 1990 to 2019) include the Democratic Republic of Congo, Mozambique, Niger, Rwanda,
and Sierra Leone, all in sub-Saharan Africa. The most considerable increase was in Rwanda,
where CEP increased by 99.89%. In 1990, the total and carbon emissions per capita in
Rwanda were 0.52 million tons and 0.0719 tons, respectively. The total and per capita
emissions in 2019 were 1.19 million tons and 0.094 tons in Rwanda, respectively. The carbon
emission index increased by only 9.69%, whereas the HDI doubled by 119.26%. This result
is consistent with the transition of Rwanda’s decoupling status. Rwanda started with a
deficient level of economic and human development. In the long term, economic growth
has accelerated, life expectancy has improved significantly, and primary education has
developed significantly in Rwanda. Thus, the increase in HDI results from the overall
improvement in all aspects.

Carbon emissions performance declined in 14 countries. The most significant decrease
in CEP was recorded in Laos. Total carbon emissions were 0.51 million tons, and carbon
emissions per capita were 0.1205 tons in 1990. Total and carbon emissions per capita were
33.93 million tons and 4.7328 tons in 2019, respectively. The carbon emission index of Laos
increased by 72.15%, and the human development index increased by 51.35%. The growth
of HDI is less than that of carbon emissions. Laos achieved an increase in HDI at the cost of
environmental pollution.

The carbon emission performance for the six years was a normal distribution. The
majority of countries (73–96%) are at the middle intervals (0.85–1.449). Only a tiny propor-
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tion of countries (4–27%) are at the two ends of the interval. The number of countries with
CEP at 0.85–1.149 is the greatest, but the proportion has gradually decreased, from 63.64%
in 1990 to 53.44% in 2019. The proportion of countries with CEP at 1.15–1.449 gradually
increased, rising from 9.79% in 1990 to 42.33% in 2019. The proportion of countries with
CEP at 0.55–0.849, mainly in South Asia and Sub-Saharan Africa, fell from 25.17% in 1990 to
2.12% in 2019. Carbon emission performance has been significantly improved, and there are
fewer and fewer countries with low carbon emission performance. Although the proportion
of countries with CEP at 1.45–1.749 increased to 2.12% in 2019, the number of countries with
high CEP is still minimal. There are only four countries (Kiribati, Liechtenstein, Micronesia,
and Tonga) with CEP at 1.45–1.79, and their CEP is relatively stable.

4.3.2. Two-Dimensional Analysis Based on HDI and Carbon Emission Performance

The HDI ranges from 0 to 1. The UNDP considers countries with HDI above 0.8 to be
very high in human development. The country with the highest CEP is Liechtenstein, with
CEP at 1.7471 in 2019. Referring to the analysis method of Zhu and Liu, the upper limit of
CEP is set as 2 [18]. According to the classification of HDI, countries with CEP at the top
20% (above 1.6) are regarded as countries with high CEP. The two-dimensional analysis of
HDI and CEP in 2019 was performed. Countries can be divided into four types based on
the set thresholds: (a) high HDI and high CEP; (b) high HDI and low CEP; (c) low HDI and
low CEP; (d) low HDI and high CEP.

As shown in Figure 5, only Liechtenstein has a high HDI and high CEP, which is an
ideal state. There are 65 countries with high HDI and low CEP, such as the United States,
Norway, Canada, and other developed countries, mainly centered in Europe, Central Asia,
and North America. These countries with a very high HDI enjoy better economic and
social development. Development should focus on maintaining economic growth while
reducing environmental pollution. These countries need to improve emission reduction
technologies, develop new renewable energy sources, and optimize industrial structures to
achieve energy conservation and emission reduction. The number of countries with low
HDI and low CEP is the largest, over 65%, and includes developing countries such as China
and India, and least-developed countries, such as Lesotho and Yemen. These countries
are in the stage of comprehensive development. They not only need to meet the energy
needs to promote the economy and society, but also need to control carbon emissions,
and face the dual challenges of economic and social development and environmental
sustainability. There are currently no countries with low HDI and high CEP. The fourth
type will not appear based on the exponential relationship between carbon emissions per
capita and HDI.

4.4. Decomposition of Drivers

As known from Section 4.2, only the Czech Republic, Germany, and the United
Kingdom have maintained continuous strong decoupling over the six periods. The status of
decoupling is unstable for most countries, and it is a challenge to sustain strong decoupling
for a long time. Therefore, it is necessary to understand the drivers of the decoupling
index and CEP of exemplary countries. In addition to the three countries with continuous
positive decoupling, the carbon emission paths of five countries with expansive negative
decoupling were studied. However, the data for Mauritius, Panama, and Uruguay were
not available, and so the decomposition analysis is only for South Korea and Turkey, to
explore why they have not yet achieved strong decoupling.
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Figure 5. Two-dimensional analysis based on HDI and CEP in 2019. Source: Authors’ own construc-
tion using Excel.

4.4.1. Decomposition of the Decoupling Index

Combining the Tapio decoupling model with the LMDI decomposition model, the
decoupling index between carbon emissions per capita and HDI can be understood from
the carbon intensity of fossil energy effect, energy structure effect, energy intensity effect,
and economic development effect. The smaller decoupling index indicates the lower
dependence of HDI growth on energy consumption for strong decoupling status. The
strong decoupling index gets smaller and smaller only when the four effects are negative.
That is, the contribution rate of the four effects is positive. As shown in Table 2, the
decoupling index is becoming smaller, and the strong decoupling effect is increasing in the
Czech Republic, Germany, and the UK. The main factors influencing the decoupling index
are the same for all three countries. The main contributing factor is the energy intensity
effect, indicating high energy use efficiency. On the other hand, the economic development
effect is the main inhibiting factor, indicating an increase in carbon emissions in daily life
with the popularization of energy-consuming consumer goods. But the contribution of the
economic development effect tends to decrease.

In order to transform from expansive negative decoupling to strong decoupling, South
Korea and Turkey need to make the decoupling index as small as possible under the
premise of positive HDI growth. In other words, all four driving factors are guaranteed
to be negative, i.e., the contribution rate is positive. As seen in Table 1, the decoupling
index for Korea has decreased in a fluctuating way but has not yet reached weak and
strong decoupling. For Korea, the carbon intensity of fossil energy was the main factor
contributing to the decline in the decoupling index during the 1990–1995 and 1995–2000
periods. The main factors in the last four periods are transformed into energy intensity.
Economic development effects have been the primary inhibitor to transition to weak and
strong decoupling for South Korea. Similarly, Turkey’s decoupling index has declined,
even to the threshold of strong decoupling in the 2015–2019 period. However, the main
factors affecting the decline in the decoupling index are different in each period, indicating
that some efforts have been made to optimize energy consumption structure and improve
energy efficiency. The factor inhibiting the decrease of the decoupling index is always the
effect of economic development.
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Table 2. Decomposition of the decoupling index for the example countries.

Country Phase D(PC,HDI) DCF/% DFE/% DEG/% DGP/%

CZE

1990–1995 −6.49 39.34 6.09 37.56 17.01
1995–2000 −0.5 −5.4 35.33 401.95 −331.88
2000–2005 −0.17 519.75 687.84 1204.19 −2311.78
2005–2010 −2.78 13.1 32.73 156.96 −102.79
2010–2015 −4.61 −7.96 17.4 154.99 −64.43
2015–2019 −4.7 71.07 38.41 245.67 −255.15

DEU

1990–1995 −3.22 33.33 9.43 108.6 −51.36
1995–2000 −1.11 47.91 49.97 198.52 −196.4
2000–2005 −1.09 31.5 27.25 101.63 −60.38
2005–2010 −1.33 −47.16 41.75 331.54 −226.13
2010–2015 −4.94 −7.48 36.5 195.64 −124.66
2015–2019 −12.67 38.59 26.05 69.22 −33.86

GBR

1990–1995 −0.83 65.59 37.45 89.43 −92.47
1995–2000 −0.45 313.71 −47.44 814.77 −981.04
2000–2005 −0.7 80.7 −22.53 664.23 −622.4
2005–2010 −8.96 11.57 −1.33 73.01 16.75
2010–2015 −17.93 0.48 35.1 91.95 −27.53
2015–2019 −15.34 29.39 23.28 72.66 −25.33

KOR

1990–1995 6.55 −32.13 12.28 24.43 95.42
1995–2000 1.92 −60.44 −38.77 −51.55 250.76
2000–2005 2.18 −16.17 −17.38 −88.48 222.03
2005–2010 5.56 1.85 15.33 −39.42 122.24
2010–2015 1.92 −26.98 −10.22 −183.35 320.55
2015–2019 1.15 −288.26 117.59 −566.1 836.77

TUR

1990–1995 2.02 −27.03 −30.24 77.32 79.95
1995–2000 2.21 −3.73 28.58 −1.66 76.81
2000–2005 1.28 8.71 −12.29 −141.63 245.21
2005–2010 1.95 −45.58 −7.35 69.11 83.82
2010–2015 1.39 −24.29 −14.67 −95.17 234.13
2015–2019 −0.58 173.68 357.1 145.12 −575.9

Source: Authors’ own calculation.

4.4.2. Decomposition of the CEP

As shown in Table 3, the carbon productivity effect, economic development effect,
and population effect are positive in most periods for these five countries, indicating that
the three effects positively impact the improvement of CEP. But the role of the population
effect is relatively small. In most periods, the welfare effect, the carbon intensity of fossil
fuels effect, the energy structure effect, and the energy intensity effect are negative. The
welfare effect is negative, which means the low CEP is generated by unit economic output
growth. The latter three effects are related to the energy utilization, energy structure, and
efficiency of fossil fuels, and the negative effects indicate the need to adjust the energy
structure further and reduce energy consumption. However, the main influencing factors
are different for different countries.

The CEP of the Czech Republic, Germany, and the United Kingdom are primarily
similar and gradually increased from around 0.95 in 1990 to 1.2 in 2019, with a growth rate
of around 25%. The main influencing factors for the three countries are also the same. The
carbon productivity effect is the primary driver of the improvement in CEP. The higher
the carbon productivity, the greater the economic output per unit of carbon emissions,
representing the progress of emission-reduction technologies in economic development.
The main driving factor that inhibits CEP is the energy intensity effect, which indicates
that economic growth is highly dependent on primary energy, and new energy needs to be
developed to improve energy efficiency.
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Table 3. Decomposition of CEP for the example countries.

Country Phase ΔCG/% ΔGC/% ΔCF/% ΔFE/% ΔEG/% ΔGP/% ΔP/%

CZE

1990–1995 170.42 359.34 −170.32 −26.37 −162.64 −73.68 3.25
1995–2000 −51.04 211.79 2.65 −17.33 −197.11 162.75 −11.71
2000–2005 −292.69 416.17 −89.69 −118.69 −207.79 398.91 −6.22
2005–2010 −210.7 479.05 −30.96 −77.31 −370.79 242.83 67.88
2010–2015 −133.4 552.1 26.72 −58.41 −520.4 216.33 17.06
2015–2019 −813.48 1190.71 −238.29 −128.76 −823.66 855.44 58.04

DEU

1990–1995 −90.67 412.67 −90.88 −25.71 −296.09 140.04 50.64
1995–2000 −113.46 310.98 −50.26 −52.43 −208.28 206.06 7.39
2000–2005 31.65 164.67 −32.35 −27.98 −104.35 62 6.36
2005–2010 −132.59 390.05 56.4 −49.93 −396.52 270.46 −37.87
2010–2015 −420.54 805.75 26.81 −130.88 −701.68 447.09 73.45
2015–2019 −211.56 840.44 −242.27 −163.58 −434.59 212.59 98.97

GBR

1990–1995 6.57 160.86 −54.82 −31.29 −74.75 77.28 16.15
1995–2000 −389.36 484.07 −140.47 21.24 −364.84 439.29 50.07
2000–2005 −414.51 499.08 −55.75 15.56 −458.89 430 84.51
2005–2010 15.64 454.58 −63.15 7.25 −398.68 −91.46 175.82
2010–2015 −217.43 925.28 −3.48 −254.7 −667.1 199.76 117.67
2015–2019 −173.28 835.77 −195.96 −155.27 −484.55 168.94 104.35

KOR

1990–1995 −1323.83 −59.34 −416.45 159.15 316.63 1236.61 187.23
1995–2000 −612.13 358.88 −143.88 −92.29 −122.71 596.94 115.19
2000–2005 −580.58 332.14 −44 −47.31 −240.83 604.34 76.24
2005–2010 −1281.23 230.83 19.24 159.04 −409.11 1268.73 112.5
2010–2015 −838.08 536.13 −65.57 −24.84 −445.71 779.21 158.86
2015–2019 −1096.92 977.66 −382.51 156.03 −751.19 1110.36 86.57

TUR

1990–1995 −347.94 −54.58 −73.58 −82.32 210.48 217.65 230.29
1995–2000 −258.08 −66.25 −10.67 81.65 −4.73 219.46 138.62
2000–2005 −441.04 224.96 13.49 −19.04 −219.41 379.88 161.16
2005–2010 −248.82 −40.09 −112.93 −18.2 171.21 207.68 141.15
2010–2015 −412.24 222.78 −40.34 −24.36 −158.08 388.89 123.35
2015–2019 −513.97 416.24 −106.95 −219.91 −89.37 354.65 259.31

Source: Authors’ own calculation.

The CEP of South Korea was 0.95 in 1990. It was 1.09 in 2019, an increase of only
14.74%. The CEP of Turkey was 0.8 in 1990, a low starting point, and then increased
significantly to 1.05, at an increase of 31.25%. The main drivers in the two countries are
slightly different. In South Korea, it is clear that the most significant positive effect of
increasing CEP is the economic development effect, and the most significant negative effect
is the welfare effect. Other effects are not significant. The economic development and the
living standard in South Korea have greatly improved, which has played a leading role
in the improvement of CEP. However, South Korea’s economic growth has not promoted
the overall welfare improvement very well, resulting in a potent inhibitory effect on
the welfare effect. Although the main positive and negative effects in Turkey are also
economic development effects and welfare effects, respectively, the contribution rate is not
significantly prominent. The facilitation of carbon productivity effects and the inhibition
of energy intensity effects also play a role. As a result, CEP in Turkey has been greatly
improved. Overall, South Korea and Turkey should focus on energy efficiency and improve
the development of emission-reduction technologies.

5. Conclusions and Recommendations

5.1. Conclusions

This paper examines the decoupling between carbon emissions and HDI and the CEP.
Combining the Tapio decoupling model and the LMDI decomposition model, it is found
that the decoupling status and CEP of various human development countries are different.
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Due to data availability, only the drivers of the decoupling index and CEP for the example
countries are decomposed. The main findings of the study are as follows:

1. There are noticeable differences in the decoupling status of countries with different
human development. The countries that achieve strong decoupling mostly have very
high human development. A few countries with extremely low human development
have achieved strong decoupling, which is not an ideal decoupling status. Only three
countries are sustaining strong decoupling. The strong decoupling status in most
countries is unstable, and there is a risk of transition to another decoupling status.

2. Overall, the CEP of most countries shows a gradual upward trend. Countries with
high human development and low CEP are mainly in Europe, Central Asia, and North
America. Most countries with low human development and low CEP face the dual
challenges of welfare growth and environmental sustainability.

3. The main contributing factor of strong decoupling in the Czech Republic, Germany,
and the United Kingdom is the energy intensity effect, while the main inhibitory
factor is the economic development effect. The economic development effect is the
main inhibiting factor for South Korea and Turkey, which causes South Korea and
Turkey to be unable to shift from expansive negative decoupling to strong decoupling.
For the Czech Republic, Germany, and the United Kingdom, the main driving force of
improvement in CEP is the carbon productivity effect, and the main inhibitory effect
is the energy intensity effect. The main positive effect of promotion in South Korea
and Turkey is the economic development effect, and the main inhibitory factor is the
welfare effect.

5.2. Recommendations

Some targeted recommendations need to be put forward to achieve decoupling be-
tween carbon emissions and HDI and improving CEP.

1. For countries with a very high HDI, reduce carbon emissions while maintaining
the growth of their HDI. Following the commitments of the Paris Agreement, devel-
oped countries continue to take the lead in emission-reduction actions, improve the
emission-reduction technologies, and provide developing countries with technical and
financial support for emission reduction. In daily life, developed countries continue
to implement the concept of environmental protection and achieve low-carbon life.

2. Most countries with high and medium human development are the major carbon
emitters. A synchronized increase in carbon emissions has accompanied their HDI
growth. The first thing to do is increase their HDI to very high human development.
Economic growth has made remarkable achievements, and more attention needs to
be paid to developing health and education, especially the improvement of quality
healthcare and higher education (UNDP, 2019). The improvement of population
quality will be conducive to the transmission of low-carbon concepts, as carbon
emissions from living are gradually increasing. It is also necessary to reduce carbon
emissions, learn advanced emission-reduction technologies, improve energy efficiency,
and adjust the energy structure. If new energy sources are developed and new energy
industries are encouraged, it is possible to surpass developed countries, such as
China’s electric vehicle industry.

3. Low human development countries have the worst decoupling status. The most ur-
gent thing for these countries is to maintain a stable political environment. Then there
is the construction of infrastructure, including medical, educational, and industrial, to
improve the HDI.
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Abstract: Pulmonary tuberculosis (PTB) has been a major threat to global public health. The associa-
tion between meteorological factors and the incidence of PTB has been widely investigated by the
generalized additive model, auto-regressive integrated moving average model and the distributed lag
model, etc. However, these models could not address a non-linear or lag correlation between them.
In this paper, a penalized distributed lag non-linear model, as a generalized and improved one, was
applied to explore the influence of meteorological factors (such as air temperature, relative humidity
and wind speed) on the PTB incidence in Xinjiang from 2004 to 2019. Moreover, we firstly use a
comprehensive index (apparent temperature, AT) to access the impact of multiple meteorological
factors on the incidence of PTB. It was found that the relationships between air temperature, relative
humidity, wind speed, AT and PTB incidence were nonlinear (showed “wave-type “, “invested U-
type”, “U-type” and “wave-type”, respectively). When air temperature at the lowest value (−16.1 ◦C)
could increase the risk of PTB incidence with the highest relative risk (RR = 1.63, 95% CI: 1.21–2.20).
An assessment of relative humidity demonstrated an increased risk of PTB incidence between 44.5%
and 71.8% with the largest relative risk (RR = 1.49, 95% CI: 1.32–1.67) occurring at 59.2%. Both high
and low wind speeds increased the risk of PTB incidence, especially at the lowest wind speed 1.4 m/s
(RR = 2.20, 95% CI: 1.95–2.51). In particular, the lag effects of low and high AT on PTB incidence were
nonlinear. The lag effects of extreme cold AT (−18.5 ◦C, 1st percentile) on PTB incidence reached a
relative risk peak (RR = 2.18, 95% CI: 2.06–2.31) at lag 1 month. Overall, it was indicated that the
environment with low air temperature, suitable relative humidity and wind speed is more conducive
to the transmission of PTB, and low AT is associated significantly with increased risk of PTB in
Xinjiang.

Keywords: pulmonary tuberculosis; penalized distributed lag non-linear model; meteorological
factors; apparent temperature; cumulative risk

1. Introduction

As one of the widely distributing and potentially fatal infectious diseases, tuberculosis
remains one of the top ten causes of mortality worldwide. According to the Global Tu-
berculosis Report of the World Health Organization in 2020 [1], there were approximately
9.96 million cases and 1.42 million tuberculosis-related deaths worldwide in 2019, of which
about 5.94 million were new PTB cases. China accounted for 8.6% of the world’s new tuber-
culosis cases in 2019, ranking third among 30 countries with a high burden of tuberculosis.
The incidence of PTB in Xinjiang is relatively serious, which has always been one of the
highest in China, and the reported incidence of PTB in 2019 is about three times the national
level.
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PTB is a chronic respiratory disease caused by Mycobacterium tuberculosis (M. tuberculo-
sis). A large number of lipids in M.tb resist the multiplication of lysozymes and damage
macrophages. Hence, it can inhibit the intracellular bactericidal mechanism and cause
an inflammatory response in the lungs [2]. Susceptible people can be infected through
breathing in dust with M.tb and inhaling the droplet nucleus released into the air by actively
infectious PTB coughing or sneezing [3]. It is revealed that meteorological factors (such as
air temperature, relative humidity and wind speed) may indirectly affect M.tb transmission
in the environment [4–7]. For instance, within a certain range of air temperature and
relative humidity, droplets containing M.tb are more likely to be evaporated in the air to
form into certain diameters that can be suspended in the air for a longer time (especially,
droplets containing M.tb can grow and reproduce at 35~37 ◦C, and it can survive for
4~5 years in −8~−6 ◦C), to be easily inhaled into the body by susceptible persons [5].
Moreover, changes in air temperature can also affect the human body’s physiological re-
sponse to toxic agents and retard the clearance rate of M.tb [6], and activate or inhibit the
development of PTB by influencing blood pressure [7]. Suitable humidity can promote the
growth and reproduction of M.tb and increase the time for M.tb to float in the air [8]. When
M.tb adheres to dust, it is easily affected by the wind speed, i.e., the higher the speed of the
wind, the wider spread of M.tb [9].

The annual PTB incidence in Xinjiang is still higher, which may be closely related
to its unique geographical location and climatic conditions [10]. Xinjiang, located at the
northwest border of China, has a temperate continental climate, with long winters, sparse
precipitation, dry climate, frequent wind and sand activities, and frequent snowfall [11].
With an annual average temperature of 11 ◦C, Xinjiang is one of the regions with a lower
annual average temperature in China. The heating period in Xinjiang is from October to
March of the next year, and the air pollution is serious in this period. M.tb is so small
that normal air currents can keep the pollution particulates containing M.tb airborne and
transport them through rooms or some buildings, which may increase the risk of PTB
development [3,5,12]. In addition, the snowfall in winter increases the humidity and makes
the droplet nucleus ejected by actively infectious PTB stay in the air longer [13], which may
create favorable conditions for the transmission of PTB. Therefore, it is of great significance
to study the relationship between meteorological factors and the PTB incidence in Xinjiang.

There have been various statistical models to characterize the relationship between me-
teorological factors and PTB incidence. For instance, a generalized additive model [14] was
used to quantitatively evaluate the effects of meteorological factors on the risk of pulmonary
tuberculosis in Jiangsu Province. The results illustrated that an environment with low temper-
ature, relatively high wind speed, and low relative humidity is conducive to the transmission
of PTB. Li et al. [15] employed an auto-regressive integrated moving average model to exhibit
the best predicting performance of PTB incidence by incorporating meteorological factors.
However, some results [8,9,15,16] demonstrated there is a non-linear and lag correlation
between meteorological factors and the incidence of PTB. The generalized additive model
somewhat ignores the collinearity among different lag days [4,17], and the auto-regressive
integrated moving average model fails to solve the collinearity problem and ignores the
lag effects [12,18]. Fortunately, the distributed lag non-linear model (DLNM) proposed by
Armstrong [19] can effectively evaluate the nonlinear and lag relationship between them.
For example, Wu et al. [20] investigated the cold and hot effects on mortality at different lags
in four subtropical cities. Yang et al. [21] evaluated the association between meteorological
factors and the mumps incidence in Guangzhou. Subsequently, a penalized framework
DLNM (P-DLNM) was put forward in [22], which introduces a penalized framework to the
exposure and lag dimensions in the DLNM, to overcome the complex fitting and the lack
of general standards in the selection of basic functions, the number of nodes, the maximum
number of lag days and the optimal model in the DLNM. It can control the smoothness of
the basis function, and effectively reduce the total number of degrees of freedom to make
itself more robust.
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Another concerning issue is how the combination of some meteorological factors
influenced the incidence of PTB. AT, firstly proposed by Stead-man [23], is a comprehensive
index to measure the interaction of air temperature, wind speed and relative humidity,
which more objectively represents the actual perception of air temperature. Many research
works [15,16,24] evaluated the relationship between meteorological factors and human
health by applying AT, such as acute coronary syndromes [15], stroke [16] and acute
excessive drinking [24]. However, there are few studies that quantified the impact of
meteorological factors and AT on PTB incidence in Xinjiang. Therefore, in this paper, a
penalized framework DLNM model is used to analyze the impact of meteorological factors
(such as air temperature, wind speed, and relative humidity) on PTB incidence, and AT,
is applied to quantify the comprehensive impact of multiple meteorological factors on
PTB incidence in Xinjiang from 2004 to 2019, which provides a theoretical basis for the
prevention and control of PTB in Xinjiang.

2. Materials and Methods

2.1. Study Area

Xinjiang, located in Northwest China (73◦40′–96◦18′ E, 34◦25′–48◦10′ N), has a special
topography named as two basins lie in between three mountains, with an average altitude
of about 1000 km. From 2004 to 2019, the average annual temperature in Xinjiang was
10.1 ◦C, the average annual precipitation was 110.0 mm [11], the average annual wind
speed was 2.3 m/s, the average annual air pressure was 898 hPa and the average annual
relative humidity was 48.3% [25].

2.2. Meteorological and PTB Data

The monthly PTB cases in Xinjiang from 2004 to 2019 were obtained from Public Health
Scientific Data Sharing Center (http://www.phsciencedata.cn/, accessed 30 December
2021)and Health Commission of Xinjiang Uygur Autonomous Region (http://wjw.xinjiang.
gov.cn/, accessed 8 January 2022).

The monthly average values of meteorological indicators from 2004 to 2019 were de-
rived from 54 stations in Xinjiang (Supplementary Figure S1) from the China Meteorological
Data Sharing Center (http://data.cma.cn, accessed 21 November 2021), including average
air temperature (◦C), average precipitation (mm), average wind speed (m/s), average air
pressure (hPa), average relative humidity (%), average sunshine duration (hours/month).
AT, is calculated as follows [24]:

AT = T + 0.33 × e − 0.70 × W − 4.00, (1)

e =
RH
100

× 6.105 × exp
(

17.27 × T
237.7 + T

)
, (2)

where T represents air temperature (◦C); e represents water vapor pressure (hPa); RH is
relative humidity (%); and W represents wind speed (m/s).

In this paper, based on percentile range the AT was divided into seven categories for
analysis of the associations between low AT, high AT and PTB incidence: extreme cold
(≤1st percentile), cold (1st–5th percentiles), mild cold (5th–25th percentiles), comfortable
(25th–75th percentiles), mild heat (75th–95th percentiles), heat (95th–99th percentiles)
and extreme heat (≥99th percentile), respectively. In addition, the influences of low AT
(including extreme cold, cold and mild cold) and high AT (including extreme heat, heat,
and mild heat) on PTB incidence were investigated [24].

2.3. Spearman’s Rank Correlation

In order to measure the nonlinear relationship between meteorological variables
and PTB incidence, Spearman’s rank correlation analysis was used [26]. The correlation

191



Atmosphere 2022, 13, 533

coefficient rs denotes the strength of an association between two variables, which can be
calculated as follows [27]:

rs = 1 − 6 ∑ d2
i

n(n2 − 1)

where n is the count of variables and d is the rank difference between each pair of variables.
The heatmap can be used to represent the values of the correlation coefficient between
multiple variables. In the heatmap, the darker the color grid, the greater the Spearman’s
rank correlation coefficient, and the blank space is usually used to represent two variables
without significant correlation.

2.4. Statistical Method

DLNM, proposed by Gasparrini and Armstrong in 2010 [19], is widely used to evaluate
the relationship between meteorological factors and health effects, which is a nonlinear
model reflecting the exposure-lag-response relationship by selecting basis functions for
exposure-response and lag-response and to form a cross-basis function [28].

Define, f (xt; β) = Zt
T β as the exposure-response function, where Zt is a matrix with

dimensions n × νx (n represents the length of the time series, νx represents the degree of
freedom), and β is the shape parameter of Zt

T . Define, qx,t =
[
xt−�0 , . . . , xt−�, . . . , xt−L

]T is
lagged effects of the exposure xt, where �0 and L are the minimum and maximum lags,
respectively, i.e., the lag structure can be formulated as [28] � = [�0, . . . , L]T . The cross-basis
function s(xt,η) is constructed by:

s(xt,η) =
(

1T
L−�0+1Ax,t

)
η = wT

x,tη,

where wT
x,t is a cross-basis matrix transformed from Ax,t (with dimensions νx × ν�), and

η is the coefficient of wT
x,t. Ax,t is computed by a row-wise Kronecker product between

the two basis matrices R (with dimensions (L − �0 + 1) × νx) and C (with dimensions
(L − �0 + 1)× ν�) that obtained by applying basis transformations to vectors qx,t and �,
thus Ax,t can be expressed as:

Ax,t =
(

1T
ν�
⊗ Rx,t

)
�
(

C ⊗ 1T
νx

)
,

where 1T
ν�

is a unit vector with length ν�, ⊗ and � denote the Kronecker and Hadamard
products, respectively [29].

The distributed lag non-linear model with a penalized framework (P-DLNM) applies
varying degrees of penalties in exposure and lag dimensions to smooth the surface of
exposure-lag-response, the log-likelihood function lp(η, γ, λ) of P-DLNM is:

lp(η, γ, λ) = l(η, γ)− 1
2

ηT
(

λx

(
Sx ⊗ 1T

ν�

)
+ λ�

(
1T

ν�
⊗ S�

))
η,

where the penalty matrices Sx and S� are separately obtained by introducing the penalties
term to the base matrices R and C, λx and λ� represent the penalty parameters of Sx and
S�, respectively. η is the coefficient for the cross-basis, restricted by Sx, S� and the penalty
parameter λ = [λx, λl ]

T . In this paper, the ridge penalty is used to add the penalty term
for the lag dimension and control the coefficient of S� to shrink towards the zero value
at different lag times [29]. The penalties of lag-response dimension are based on cubic
regression splines, i.e., CR smoother, which can be expressed as S� = Pν� , here Pν� is a
pre-specified diagonal matrix with the weight p.

Based on the generalized additive model and combined the cross-basis functions with
penalties, meanwhile, controlled the long-term trend of time and other confounding factors,
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the association between meteorological factors and PTB incidence was investigated by the
following model in this paper:

ln(λt) = α +
4

∑
i=1

si(xi, ηi) + ns(MF, d f ) + ns(time, d f ) + γS + εAR + θSF + τPC,

where λt is the case number of PTB on month tth; α is the intercept; are the cross-basis
functions with coefficients ηi (i = 1, . . . , 4), xi are meteorological variables (such as air
temperature, wind speed, relative humidity and AT); ns(·) is a natural cubic spline function,
which can be used to control the long-term trends (time with the degree of freedom 10,
d f = 10) and other meteorological factors (air pressure, precipitation and sunshine duration
with the degrees of freedom 3, 3 and 1, respectively). S is a categorical variable with
coefficient γ to control for the seasonality (spring: Mar.-May., summer: Jun.-Aug., autumn:
Sep.-Nov. and winter: Dec.-Feb.); AR is the autoregressive term with coefficient ε to correct
for autocorrelation in the residuals [30]; is a binary variable with coefficient θ to control
for the potential influences on delayed medical treatment of PTB patients caused by the
Spring Festival [12]; PC is a binary variable with coefficient τ to avoid the impact of PTB
transmission caused by immigrants entering Xinjiang to pick cotton from August to October
every year.

In this paper, taking the median of air temperature, wind speed, relative humidity
and AT as references, four cross-basis functions (defined by an exposure-response rela-
tionship with four equally spaced intervals knots and a lag-response relationship with
four equal space log-knots) were built to more flexibly reflect the 3-D relationship between
meteorological factors and the incidence of PTB in Xinjiang.

2.5. Parameter Estimation

To quantify the risk between meteorological factors and PTB incidence, the relative
risks (RR) of specific exposure and lag time were used [22]. The values of RR and standard
error (SE) of specific exposure level xp are as follows:

RRxp = exp
(

β̂xp

)
= exp

(
Axp η̂

)

SExp = exp

(√
V
(

β̂xp

))
= exp

(√
Axp V(η̂)Axp

T
)

where Axp denotes the cross-basis matrix with x = xp; V(·) denotes the variance of a
random variable. Similarly, the lag-specific risk RR�p and SE�p can be estimated. In
addition, the overall cumulative effect (RRc) of such exposure history, with associated SEc
could be computed with:

RRc = exp
(

β̂c

)
= exp(Wpη̂),

SEc = exp

(√
V
(

β̂c

))
= exp

(√
WpV(η̂)WpT

)

where Wp denotes the cross-basis matrix.

2.6. Sensitivity Analysis

To assess the robustness of the model, a sensitivity analysis was conducted to examine
the influence of d f of parameters and maximum lag time on the overall cumulative effect of
AT. In this paper, d f of time in the model was varied from 10, 11 to 12, respectively. The d f
of air pressure and precipitation in the model were changed between 3 and 5, respectively.
The d f of sunshine duration was altered between 1 and 3, respectively. The maximum lag
time of AT was also set to 8, 10 and 12, respectively.

All statistical analyses were performed by carrying out R software version 4.0.5.

193



Atmosphere 2022, 13, 533

3. Results

3.1. Descriptive Statistics of PTB Cases and Meteorological Factors

During the study period from 2004 to 2019 (192 months), a total of 668,753 PTB cases
were included, with an average of 3427 cases per year and a maximum of 74,549 cases in
2018. The case number of PTB in Xinjiang had an obvious seasonal pattern and showed
an increasing trend, with a peak from January to April (see Figure 1 and Supplementary
Figure S2).

 

Figure 1. Time series of monthly PTB cases and meteorological factors in Xinjiang from 2004 to 2019.
Abbreviations: Temp, air temperature (◦C); AT, apparent temperature (◦C); SD, sunshine duration
(h); RH, relative humidity (%); AP, air pressure (hPa); Pre, precipitation (mm); WS, wind speed (m/s).
Note: The blue dotted line represents the median.

There were seasonal fluctuations and periodic trends of meteorological factors in
Xinjiang, roughly showing the variation of single peak and single valley (see Figure 1
and Supplementary Figure S3). Air temperature, AT and sunshine duration had similar
seasonal patterns, with higher values occurring from April to October (Seasonal index
>1 indicates obvious seasonal variation). The peak of relative humidity and air pressure
occurred from October to February of the next year, whereas the trough appeared from
March to September. A seasonal peak of precipitation emerged from May to September
and a trough occurred from October to March of the next year. Wind speed had a seasonal
trend with a peak from March to August and a valley from September to February of the
next year. In addition, the median of AT, air temperature, relative humidity, air pressure,
precipitation, wind speed and sunshine duration were 7.8 ◦C, 11.3 ◦C, 45.6%, 898.2 hPa,
8.0 mm, 2.3 m/s and 251.0 h, respectively (see Figure 1).

The descriptive statistics of meteorological factors and the case number of PTB were
shown in Table 1. The monthly average of AT was 5.7 ◦C, which was 3.5 ◦C lower than the
air temperature. The distributions of AT in the1st, 5th, 25th, 75th, 95th and 99th percentiles
were −18.5 ◦C, −15.1 ◦C, −6.3 ◦C, 7.8 ◦C, 18.0 ◦C, 23.3 ◦C and 24.3 ◦C, respectively.
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Table 1. Descriptive statistics for monthly PTB cases and meteorological factors in Xinjiang from 2004
to 2019.

Group Range ¯
x±s

Percentiles

P1 P5 P25 P50 P75 P95 P99

Pre 0.4~34.2 10.1 ± 7.0 1.7 2.5 4.5 8.0 14.4 24.4 30.0
AP 869.8~908.8 898 ± 6.0 888.5 889.3 893.0 898.2 903.5 906.3 908.3
WS 1.4~3.3 2.3 ± 0.5 1.4 1.6 1.9 2.3 2.6 3.0 3.2

Temp −16.1~26.5 9.2 ± 12.5 −14.0 −10.6 −1.8 11.3 21.1 24.6 25.4
RH 29.1~74.7 48.3 ± 10.8 31.4 33.4 40.2 45.6 57.9 67.4 70.1
SD 124.8~328.6 239.6 ± 52.7 145.2 157.6 188.1 251.0 286.3 306.9 319.8

PTB cases 1194~8151 3427 ± 1152 1346 1937 2661 3271 4100 5279 7555
AT −20.9~25.0 5.7 ± 13.5 −18.5 −15.1 −6.3 7.8 18.0 23.3 24.3

Abbreviations: Temp, air temperature (◦C); AT, apparent temperature (◦C); SD, sunshine duration (h); RH, relative
humidity (%); AP, air pressure (hPa); Pre, precipitation (mm); WS, wind speed (m/s).

3.2. Spearman’s Rank Correlation Analysis

The Spearman’s rank correlation results between monthly PTB cases and meteorologi-
cal factors in Xinjiang from 2004 to 2019 were provided in Figure 2. AT (rs = −0.25), air
temperature (rs = −0.23), sunshine duration (rs = −0.17) and precipitation (rs = −0.14)
were negatively correlated with the incidence of PTB, and wind speed (rs = 0.15) is posi-
tively correlated with it. There was no significant correlation between relative humidity,
air pressure and the incidence of PTB. There were high correlations among meteorological
factors, especially between air pressure and AT (rs = −0.94). The p-value < 0.05 was
considered statistically significant.

Figure 2. Spearman’s rank correlation results between the cases number of PTB and meteorological
factors in Xinjiang from 2004 to 2019. Abbreviations: Temp, air temperature (◦C); AT, apparent
temperature (◦C); SD, sunshine duration (h); RH, relative humidity (%); AP, air pressure (hPa); Pre,
precipitation (mm); WS, wind speed (m/s); rs, Spearman’s rank correlation coefficient.

3.3. The Influences of Air Temperature on the Incidence of PTB

Taking the overall median of monthly average air temperature (11.3 ◦C) as a reference,
it was obtained that the correlation between average air temperature and PTB incidence was
nonlinear at 12 lag months for the general population, and the largest exposed and delayed
cumulative effects occurred at −16.1 ◦C and lag 0 months, respectively (see Figure 3A). The
overall exposure-response curve between air temperature and the incidence of PTB took
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on a U-type when the air temperature below 11.3 ◦C, with a maximum value, occurred at
−16.1 ◦C (RR = 1.63, 95% CI: 1.21–2.20), whereas an inverted U-type when the air temper-
ature was higher than 11.3 ◦C with a minimum value appeared at 26 ◦C (RR = 0.12, 95%
CI: 0.06–0.20), as shown in Figure 3B. The association between extreme air temperature
and the risk of PTB at specific lag months was shown in Figure 3B and Table S1. The
lag 0–1 and lag 11–12 months could significantly increase the risk of PTB at extremely
low air temperature −11.9 ◦C (2.5th percentiles), with a peak at lag 0 (RR = 1.59, 95% CI:
1.53–1.66). The cumulative risk at lag 12 months was largest (RR = 1.19, 95% CI: 1.14–1.24)
at the extremely high air temperature 25 ◦C (97.5th percentiles). The relationship of air
temperature-lag-PTB was evaluated by using the heatmap, as shown in Figure 3C.

Figure 3. The exposure-lag-response correlations between meteorological factors and PTB incidence
in Xinjiang from 2004 to 2019. (A–C) represent the 3–D graphs of the relationships between air
temperature, relative humidity, wind speed and PTB incidence, respectively. (D–F) represent the
overall cumulative relative risks of air temperature, relative humidity, wind speed on PTB incidence
acrosslag 0–12 months, respectively. (G–I) represent the heatmaps of air temperature, relative
humidity, wind speed on PTB incidence, respectively.
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3.4. The Influences of Relative Humidity on the Incidence of PTB

Setting the overall median of monthly average relative humidity (45.6%) as a refer-
ence, it was found that the association between relative humidity and PTB incidence was
nonlinear at 12 lag months for the general population, and the largest exposed and delayed
cumulative effects occurred at the relative humidity 59.2% and lag 0 months, respectively
(see Figure 3D). The overall exposure-response curve between relative humidity and the
PTB incidence appeared an inverted U-type, with a peak at a relative humidity of 59.2%
(RR = 1.49, 95% CI: 1.32–1.67), as shown in Figure 3E. The relationship between extreme
relative humidity and the risk of PTB at specific lag months was revealed in Figure 3E and
Table S1. The lag 0, 10, 11 and 12 months could significantly increase the risk of PTB at the
extreme low relative humidity of 32.8% (2.5th percentiles), with a top at lag 0 (RR = 1.05,
95% CI: 1.03–1.07). The lag 0–3 months could significantly increase the risk of PTB at the
extreme high relative humidity 68.9% (97.5th percentiles), with a top at lag 0 (RR = 1.15,
95% CI: 1.13–1.17). The association of relative humidity-lag-PTB was estimated by using a
heatmap, as shown in Figure 3F.

3.5. The Influences of Wind Speed on the Incidence of PTB

Using the overall median of monthly average wind speed of 2 min (2.3 m/s) as a
reference (the wind speed corresponding to the lowest risk of PTB), it was found that the
influence of wind speed on PTB incidence was nonlinear at 12 lag months for the general
population, and the largest exposed and delayed cumulative effects occurred at 1.4 m/s and
lag 2 months, respectively (see Figure 3G). The overall exposure-response curve between
wind speed and the incidence of PTB showed a U-type with a trough that emerged at
2.3 m/s and a maximum relation arose at 1.4 m/s (RR = 2.20, 95% CI: 1.95–2.51), as shown
in Figure 3H. The correlation between extreme wind speed and the risk of PTB at specific
lag months was shown in Figure 3H and Table S1; the lag 0–9 months were separately
significantly associated with an increased risk of PTB effect at the extreme low wind speed
of 1.6 m/s (2.5th percentiles), with a maximum value at lag 2 (RR = 1.15, 95% CI: 1.13–1.16).
The lag 6–12 were separately significantly related to an increased risk of PTB at the extreme
high wind speed 3.1 m/s (97.5th percentiles), with a maximum value at lag0 (RR = 1.14,
95% CI: 1.12–1.15). The correlation of wind speed-lag-PTB was also assessed by using the
heatmap as shown in Figure 3I.

3.6. The Effect of AT on PTB Incidence

Considering the overall median of the monthly AT (7.8 ◦C) as a reference, it was discov-
ered that the connection between AT and the incidence of PTB was nonlinear at 12 lag months
for the total population, and the largest exposed and delayed cumulative effects occurred at
−20.9 ◦C and lag 0 months (see Figure 4A). As shown in Figure 4B, the overall exposure-
response curve between AT and the incidence of PTB presented a U-type when the AT
below 7.8 ◦C, with a maximum value occurred at −20.9 ◦C (RR = 2.01, 95% CI: 1.50–2.69),
whereas an inverted U-type when the AT was higher than 7.8 ◦C with a maximum risk
appeared at 12.6 ◦C (RR = 1.29, 95% CI: 1.16–1.44). The extreme cold −18.5 ◦C and mild
heat 18 ◦C had no significantly risky effects on PTB incidence, and the cold −15.1 ◦C
(RR = 0.59, 95% CI: 0.46–0.76), the mild cold −6.3 ◦C (RR = 0.22, 95% CI: 0.18–0.27), the
heat 23.3 ◦C (RR = 0.58, 95% CI: 0.38–0.90) and the extreme heat 24.3 ◦C (RR = 0.51, 95%
CI: 0.32–0.82) had significantly protective effects on PTB incidence. The connection of
AT-lag-PTB was also observed by using the heatmap, as shown in Figure 4C.

It is noteworthy that the lag effects of low AT presented a V-shape with the highest risk
at lag 0, whereas the lag effects of high AT presented an N-shape with the highest risk at lag
12 (see Figure 5). As shown in Figure 5, lag 0 and lag 1 could significantly increase the inci-
dence of PTB at the extreme cold, with the highest risk at lag 0 (RR = 1.81, 95% CI: 1.73–1.90).
The cold had a significantly risky effect on increasing PTB incidence at lag 0–1, with the
highest risk at lag 0 (RR = 1.60, 95% CI: 1.54–1.67), which was a protective factor for the risk
of PTB at lag 2–11. The mild cold had a significantly risky effect on increasing the incidence
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of PTB at lag 0 and lag 1, with the highest risk at lag 0 (RR = 1.22, 95% CI:1.19–1.26), which
was a protective factor for the risk of PTB at lag 2–12. The mild heat had a significantly risky
effect on increasing the incidence of PTB at lag 2 and lag 9–12, with the highest risk at lag 12
(RR = 1.11, 95% CI: 1.09–1.14), which did not significantly influence the incidence of PTB
at lag 3. The heat and extreme heat had a significantly risky effect on increasing the inci-
dence of PTB at lag10–12, with the highest risk at lag 12 (RR = 1.18, 95% CI: 1.14–1.22 and
RR = 1.20, 95% CI: 1.15–1.25), which did not significantly influence PTB incidence at lag 2
and lag 8–9.

Figure 4. The exposure-lag-response correlations between meteorological factors and the incidence
of PTB in Xinjiang from 2004 to 2019. (A) represents the 3–D graph of the relationship between AT
and PTB incidence, (B) represents the overall cumulative relative risk of AT on PTB incidence across
lag 0–12 months, (C) represents the heatmap of AT on PTB incidence.

Figure 5. The distribution of RR at various lag months with a reference of medium value 7.8 ◦C in
Xinjiang from 2004 to 2019.

In addition, the cumulative effects of low and high AT on PTB incidence at different
lag months were compared (see Table 2). For the extreme cold of low AT, the cumulative
effects were risky from lag 0 to lag 0–8, with a maximum value at lag 0–1 (RR = 2.18, 95% CI:
2.06–2.31). For the cold, the cumulative effects were risky effects from lag 0 to lag 0–4, with
a maximum value at lag 0–1 (RR = 1.84, 95% CI: 1.74–1.94). For the mild cold the cumulative
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effects were risky from lag 0 to lag 0–2, with a maximum value at lag 0–1 (RR = 1.28, 95%
CI: 1.22–1.34). For the high AT, there was no significant risk of the cumulative effects of the
mild heat, heat and extreme heat, in particular, the cumulative effects of mild heat had no
significant influences from lag 0–10 to lag 0–12.

Table 2. The cumulative effects of low and high AT on the incidence of PTB by different lag period in
Xinjiang from 2004 to 2019.

Lag P1 P5 P25 P75 P95 P99

Lag 0 1.81 (1.73, 1.90) 1.60 (1.54, 1.67) 1.22 (1.19, 1.26) 0.86 (0.83, 0.88) 0.77 (0.74, 0.81) 0.76 (0.72, 0.80)
Lag 0–1 2.18 (2.06, 2.31) 1.84 (1.74, 1.94) 1.28 (1.22, 1.34) 0.84 (0.80, 0.87) 0.74 (0.70, 0.80) 0.73 (0.68, 0.78)
Lag 0–2 2.01 (1.89, 2.14) 1.67 (1.58, 1.77) 1.16 (1.09, 1.22) 0.86 (0.82, 0.91) 0.76 (0.70, 0.84) 0.75 (0.68, 0.82)
Lag 0–3 1.79 (1.65, 1.94) 1.42 (1.32, 1.54) 0.95 (0.88, 1.02) 0.85 (0.78, 0.91) 0.69 (0.61, 0.78) 0.66 (0.58, 0.76)
Lag 0–4 1.61 (1.45, 1.78) 1.20 (1.09, 1.32) 0.74 (0.68, 0.81) 0.80 (0.73, 0.89) 0.58 (0.49, 0.69) 0.54 (0.46, 0.65)
Lag 0–5 1.46 (1.29, 1.66) 1.02 (0.90, 1.14) 0.58 (0.53, 0.65) 0.77 (0.68, 0.87) 0.49 (0.40, 0.61) 0.45 (0.36, 0.56)
Lag 0–6 1.35 (1.17, 1.57) 0.88 (0.77, 1.01) 0.47 (0.42, 0.53) 0.75 (0.64, 0.87) 0.44 (0.34, 0.56) 0.39 (0.30, 0.51)
Lag 0–7 1.27 (1.07, 1.51) 0.78 (0.67, 0.91) 0.39 (0.34, 0.45) 0.74 (0.63, 0.88) 0.40 (0.31, 0.54) 0.36 (0.26, 0.48)
Lag 0–8 1.21 (1.01, 1.47) 0.70 (0.59, 0.84) 0.33 (0.28, 0.38) 0.76 (0.63, 0.91) 0.39 (0.29, 0.54) 0.34 (0.24, 0.48)
Lag 0–9 1.18 (0.95, 1.45) 0.65 (0.54, 0.79) 0.29 (0.24, 0.34) 0.79 (0.64, 0.97) 0.40 (0.28, 0.57) 0.35 (0.24, 0.51)
Lag 0–10 1.16 (0.92, 1.46) 0.62 (0.50, 0.76) 0.25 (0.21, 0.31) 0.84 (0.67, 1.05) 0.43 (0.30, 0.63) 0.38 (0.25, 0.57)
Lag 0–11 1.16 (0.90, 1.49) 0.59 (0.47, 0.75) 0.23 (0.19, 0.28) 0.91 (0.71, 1.16) 0.49 (0.32, 0.73) 0.43 (0.27, 0.66)
Lag 0–12 1.18 (0.90, 1.55) 0.59 (0.46, 0.75) 0.22 (0.18, 0.27) 1.01 (0.78, 1.31) 0.58 (0.37, 0.89) 0.51 (0.32, 0.82)

3.7. Sensitivity Analysis

The result of sensitivity analysis showed the model was robust when the df were
altered for the time trend (df = 10–12), air pressure (df = 3–5), precipitation (df = 3–5) and
sunshine duration (df = 1–3) (see Figures S4–S6). Changing the maximum lag day into 8, 10
and 12 in the model did not show an obvious difference for fitting the overall effect curve
of AT in the model (see Figure S7).

4. Discussion and Conclusions

In this paper, the effects of meteorological factors (air temperature, wind speed and
relative humidity) on PTB incidence in Xinjiang were investigated by using a P-DLNM
model, and the relationship between AT and PTB incidence was evaluated. It was found
that the correlations between air temperature, relative humidity, wind speed, AT and PTB
incidence were nonlinear and lagged.

The overall effect between air temperature and PTB incidence showed a curve fluctua-
tion, and the low air temperature could have a significantly risky effect on PTB incidence,
which was consistent with previous studies [4,31,32]. It was reasonable that Xinjiang has a
longer winter and thus, people are more susceptible to being infected with M.tb because
the time of outdoor activities for humans was shorted [31]. Another reason is that the
air pollution is serious during the heating period in Xinjiang (from October to March of
the next year), then pollution particulates may attach more pathogenic bacteria including
M.tb [3,12]. Moreover, vitamin D was demonstrated as an important factor that affected
people’s immune response to resist and remove M.tb when someone was during incubation,
and with a long winter and low levels of vitamin D, latent infected PTB peoples are sensitive
to M.tb [32]. The association between high air temperature with PTB incidence is negative,
which may be the result that the recombinant strain of M.tb may stop growing or even be
destroyed when the temperature exceeds 37 ◦C. In addition, sunshine is the main route of
vitamin D synthesis. More sunbathing could help humans to enhance immunity so that the
risk of transmission of PTB is relatively lower [33]. As a reference of the overall median
of monthly average relative humidity (45.6%), it was obtained that the relative humidity
was possible to increase the risk of PTB when it was between 44.5% and 71.8%, while it
decreased the risk if it ≥ 72%, which is consistent with the results in reference [4]. One
explanatory hypothesis for the high relative humidity is a lower chance of infection with
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PTB because Xinjiang is an arid/semi-arid region with a dry climate, scarce precipitation
and infrequent high relative humidity environment [11]. Another explanatory hypothesis
is high relative humidity promotes the production of protective mucus on the surface of
the respiratory tract thereby resisting the invasion of M.tb [34]. The overall effect of wind
speed on the incidence of PTB was a U-shape, low and high wind speed are significantly
positively correlated with the incidence of PTB, which is different from previous results
that high wind speed was positively correlated with PTB [31,35]. It can be seen in the
results that high wind speed may affect the transmission of M.tb, which may be because the
frequent dust weather in Xinjiang makes M.tb float in the air for a longer time [9]. Moreover,
the lower wind speed may also increase the chance of M.tb floating in the air in Xinjiang
because the wind speed in winter is lower but the frequency is higher [36].

One of the highlights of this paper is to illustrate that there is a significant association
between low AT and PTB incidence in Xinjiang. Generally, people are exposed to multiple
meteorological factors in the environment, with low air temperature, wind and high
relative humidity the sensations experienced by the human body are usually lower than
the air temperature. AT is a comprehensive index combining ambient temperature, wind
speed and humidity, which characterizes the physiological experience better than just
air temperature alone, then it may be more realistic and objective. In this paper, it was
shown that there was a nonlinear and lagged relationship between AT and PTB incidence in
Xinjiang, and low AT can significantly increase the risk of PTB. Using the overall median of
monthly AT (7.8 ◦C) as a reference, it was discovered that the lag effects of low AT presented
a V-shape with the highest risk at lag 0, while the lag effects of high AT emerged as an
N-shape with the highest risk at lag 12. Some specific biological mechanisms can account
for why low AT can significantly increase the risk of PTB [37]. In a low air temperature,
the human body is more sensitive to cold stimulation than heat stimulation, and the
sympathetic nervous system is stimulated if the human body is invaded by cold air, which
leads to the contraction of bronchial smooth muscle and excessive response, thus affecting
the pulmonary ventilation and the decline of human lung function [38]. Furthermore, the
human body’s perception of cold and heat is mainly controlled by the thermoregulation
system, nervous system and endocrine system [39], M.tb is more likely to invade the body in
extreme cold weather, thus the human body’s autonomous regulation is limited, the defense
ability of the immune system is weakened. AT, as a comprehensive index combining air
temperature, wind speed and relative humidity can be used to evaluate the impact of
meteorological factors on PTB incidence, thus it can better reflect the relationship among
human body, environment and disease.

The adjustment of energy structure has improved air quality in Xinjiang, and the
incidence of PTB decreased slowly in recent years [25]. However, there is still a long way
to go to mitigate the adverse effect of meteorological factors on the incidence of PTB in
Xinjiang. Some measures should be implemented to improve the air quality. For example,
the government should encourage the use of clean energy during the heating period.
Moreover, more trees should be planted to alleviate the harm of dust storms. People should
be appealed to wear masks in public places (especially in dusty weather) and enhance their
immunity by getting more sunlight (at a favorable temperature) and exercising.

This paper also has some limitations. Firstly, the incidence of PTB is also affected
by many variables (such as age, gender and air pollutant concentration) [40]. If these
confounding variables are included in the model, the impact of meteorological factors and
AT on PTB incidence can be more accurately evaluated. Secondly, other periodic dynamic
models also can be applied to investigate the relationship between meteorological factors
and PTB incidence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13040533/s1, Figure S1: The study area and locations
of weather stations; Figure S2. The plot of partial auto-correlation function in the distributed lag
non-linear model; Figure S3. Seasonal decomposition of the time series of meteorological factors and
the case in-cidence of PTB in Xinjiang from 2004 to 2019. Abbreviations: PTB, pulmonary tuberculosis;
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Temp, temperature; AT, apparent temperature; SD, sunshine duration; RH, relative humidity; AP, air
pressure; Pre, precipitation; WS, wind speed; Figure S4. Sensitivity analysis when altering the degrees
of freedom (df = 10–12) of time for con-trolling for the long-term trend in the model in Xinjiang
from 2004 to 2019; Figure S5. Sensitivity analysis when altering the degrees of freedom (df = 3–5) of
air pressure and precipitation for controlling for the effect of confounding factors in the model in
Xinjiang from 2004 to 2019; Figure S6. Sensitivity analysis when altering the degrees of freedom (1–3)
of sunshine duration for controlling for the effect of confounding factors in the model in Xinjiang
from 2004 to 2019; Figure S7. Sensitivity analysis when altering the maximum lag periods for 8, 10
and 12 months in the model in Xinjiang from 2004 to 2019; Table S1. Estimated relative risks (95% CI)
of pulmonary tuberculosis cases with extremely low temperature (2.5th percentile, −11.9 ◦C) and
ex-tremely high temperature (97.5th percentile, 25 ◦C) and extremely low relative humidity (2.5th
percentile, 32.8%) and extremely high relative humidity (97.5th percentile, −68.9%) and extremely
low wind speed (2.5th percentile, 1.6 m/s) and extremely high wind speed (97.5th percentile, 3.1 m/s)
at lagged months in Xinjiang from 2004 to 2019.
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Abstract: The impact of human-caused environmental pollution and global climate change on
the economy and society can no longer be underestimated. Agriculture is the most directly and
vulnerably affected sector by climate change. This study used beans, the food crop with the largest
supply and demand gap in China, as the research object and established a panel spatial error model
consisting of multiple indicators of four factors: climate environment, economic market, human
planting behavior and technical development level of 25 provinces in China from 2005 to 2019 to
explore the impact of climate environmental changes on the yields of beans. The study shows that:
(1) The increase in precipitation has a significant positive effect on bean yields; however, the increase
in temperature year by year has a significant negative effect on bean yields; (2) carbon emissions do
not directly affect bean production at present but may have an indirect impact on bean production;
(3) artificial irrigation and fertilization behavior on bean production has basically reached saturation,
making it difficult to continue to increase bean yields and (4) the development of technology and
human activity is a mixed blessing, and the consequent inhibiting effects on bean production are
currently unable to offset their promoting effects. Thus, when it comes to bean cultivation, China
should focus mainly on the overall impact of environmental changes on its production, rather than
technical enhancements such as irrigation and fertilization.

Keywords: yield per unit area of beans; climate change; panel spatial error model

1. Introduction

In recent decades, the global climate has undergone significant changes due to natural
environmental changes and human activities, and this change is mainly characterized by
global warming. The main reason for the warming is the emission of greenhouse gases
such as carbon dioxide caused by human activities [1]. Climate change research intends to
assess the effects of climate change on ecosystems, economies and societies by predicting
possible future changes of climate [2]. The influence of climate change on human beings is
comprehensive, multi-level and multi-scale. Agriculture is the sector most directly affected
by and vulnerable to climate change. It is also the sector on which human society depends
for the output of basic means of living, and the sustainable development of agriculture is
directly related to the survival and development of human society [3,4]. As grain is a crucial
agricultural product, grain security, grain varieties and grain production have always been
the top priority of the global economy. With the advancement of agricultural technologies
and the improvement of life quality, the yields of crops and productivity have been boosted
over time. At the same time, climate warming, precipitation instability, extreme weather
and disasters have brought negative impacts on food production [5]. Studies have shown
that the determinants of crop production are climatic (e.g., rainfall, high temperatures) and
weather extremes (e.g., floods, droughts and storms) [6]. Changes in rainfall patterns and
increased temperature could have a marked impact on food production [7]. According to
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IPCC (2012), crop production is sensitive to climate change associated with temperature
increases, changes in rainfall patterns and extreme weather events. In addition to the
changes of climate and temperature, carbon dioxide also affects the food production, and
it has a higher impact on C3 species (including wheat, rice and bean) than C4 species
(including maize and sorghum) [8]. Food production in countries around the world is
currently under serious threat from climate change, which leads to challenges to sustainable
development as well [9]. Climate change is also an important challenge for food production
and security in China. In the context of global warming, changes in temperature and
precipitation patterns could lead to a 20–36% decline in maize, wheat, and rice yields in
China over the next 20–80 years [10]. China’s grain production with the background of
climate change has the following three main problems: Firstly, grain production becomes
more volatile; secondly, the structure and layout of food production may change, and
crop cultivation systems need to change accordingly and thirdly, climate change will
substantially increase the cost of grain production [11].

China is a global grain-producing country. For example, in 2020, the total grain
production in China reached 669 million tons, an increase of 0.85% year-on-year, accounting
for about 24% of the world’s grain production, and the grain supply was more than
adequate. However, the production of bean products accounted for only 3.42%, or about
22.87 million tons. In contrast to the reality of limited bean supply, China is a major
consumer of beans in the world, and bean consumption is rising annually, with bean
consumption demand exceeding 120 million tons in 2018 and 2019, implying a huge
domestic bean supply and demand gap in China and high dependence of the bean industry
on imports [12,13]. Therefore, this study turned the research perspective to the Chinese
bean industry, which is severely limited in self-sufficiency, and investigated the impact of
climate change on bean production so as to provide some practical suggestions for the bean
industry in China regarding future changes in the structure, layout of food production and
the long-term development.

The impact of climate change on agricultural production is an interdisciplinary subject
between climatology, agronomy and economics, and different methods and emphases have
been adopted by different disciplines in the study of this subject. In existing studies, the
impact of agronomic climate change on agricultural production has been mainly used in
the crop growth simulation model (CGSM), which examines the changes in crop growth,
development and yield due to changes in climatic factors by dynamically simulating crop
growth and development processes and their relationships with climatic factors, soil prop-
erties and management techniques and provides a quantitative tool for predicting early
warning and assessing the effects of crop productivity under different conditions [14–16].
The agronomic approach focuses on the process of crop growth and development cycles
without considering economic factors, while the economic approach focuses more on
the economic value dimension. The representative studies in economics have measured
agricultural production by constructing land value indicators and with the help of crop
yields, progress in controlling technology and economic factors using a large quantity of
statistical data and relevant econometric models to examine the causal relationship between
climate factors and agricultural production [17,18]. A review of representative literature
reveals that the current research trend gradually shifts to examine specific crop yields,
and the empirical method of causality shifts from traditional cross-sectional regression
to panel spatial econometric empirical analysis [19–21]. Spatial measurement is a com-
mon econometric method. When spatial correlations and spatial differences exist among
individual research objects, spatial measurement can be used to consider the variability
under multiple influencing factors in different spaces at the same time, removing these
differential influences and focusing on the main influencing factors of the research object.
In the present studies on the relationship between grain production and climate in China,
most of the research objects are cereal grains such as wheat and rice, and the influencing
factors are covered comprehensively with various analysis methods; however, the research
on beans is relatively insufficient and covered with fewer dimensions of influencing fac-
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tors. This study used bean productivity as the research object and analyzed the influence
of four influencing factors on bean production: climate environment, economic market,
human planting behavior and technology development level. The spatial error model
was selected in this study for empirical analysis, which focuses on climatic environmental
factors as the variables of interest, while economic market, human planting behavior and
technology development level are the variables that need to be controlled. Moreover, the
inter-regional factors such as geographic rationality and policy institutional differences
should be excluded.

2. Materials and Methods

2.1. Variable Selection

In this study, the unit area yield of bean crops was selected as the explanatory variable,
and the four factors affecting the unit area yield of bean crops were climate environment,
economic market, human cultivation behavior and technology development level. Eco-
nomic market factors mainly include economic factors such as market price and cost of
food. Human cultivation behavior refers to the human intervention in food crops, in-
cluding both fertilization and irrigation. The level of technological development refers to
the level of technology in growing food, which is reflected in the paper using the degree
of modernization of the cultivation area. Therefore, the specific indicators including the
explanatory variables and the four aspects of explanatory variables selected in this study
are shown in Table 1 below.

Table 1. Table for selection of variable indicators.

Explained and Explanatory Variables Name of Indicator

Production of beans Bean yields (per unit)

Climatic environment

Effective cumulative temperature
Precipitation (meteorology)

Extent of disaster
Carbon Emissions

Sulfur dioxide emissions from exhaust gases
Total wastewater discharge

Economic market Food benefit–cost ratio

Human cultivation behavior
Fertilizer use per unit area

Effective irrigated area ratio

Level of technological development Rural electricity consumption

2.2. Modeling

In this study, a panel spatial error model was constructed to analyze the effect of
climatic environmental changes on the yield per unit area of beans. The model was
constructed as shown below [22].

Yi,t = Hi,tβ0 + Pi,tβ1 + Xi,tβ2 + Ei,tβ3 + Ai,tβ4 + Ti,tβ5 + λt + εi,t (1)

εi,t = ρ∑
i′

Wi,i′ εi′ ,t + ηi,t (2)

(1) In the equation, i and t denote province and year, respectively; Yi,t denotes grain
yield; Hi,t, an indicator of regional heat resources, denotes effective cumulative temperature,
the sum of effective temperature of crops during the reproductive period, reflecting the
heat demand of biological growth and development; pi,t denotes total annual precipitation
of each province and Xi,t denotes other climate variables, including the degree of disaster,
carbon emission, SO2 emission in exhaust gas and total wastewater discharge. Considering
that coal is the main source of carbon emissions, coal usage was chosen to represent carbon
emissions, while the degree of disaster was calculated by dividing the number of disasters
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by the total sown area in each province. Ei,t represents economic market factors, expressed
as the benefit–cost ratio of grain cultivation. Due to the interplay between economic
market factors and bean yields, there is a significant endogeneity problem between the two
variables. A one-period lagged price variable was used in this study as a proxy for current
period prices. The rationale for this treatment is that climatic conditions and market factors
in the previous year have a strong influence on farmers’ decisions to plant in the following
year, which in turn changes farmers’ expectations of the returns and costs of planting
in the current year, but there is no direct link between climatic conditions and economic
factors in the previous year and crop yields in the current year (i.e., the residuals of the
model). Thus, the price index of agricultural production with a lag of one period can be
considered as the expected return to planting in the current period, while the price index of
agricultural production materials in the current period represents the cost of planting faced
in the current period, and the ratio of these two price indices, i.e., expected return/cost
of planting, characterizes economic market factors, with higher ratios indicating greater
returns to planting [23]. Ai,t characterizes human behavioral interventions, including
fertilizer use per unit area and effective irrigated area. The ratio of effective irrigated area
is calculated by dividing the effective irrigated area by the total sown area [24]. The factor
Ti,t characterizes technology development, i.e., the level of modernization of the growing
area, as reflected by rural electricity consumption, and the time fixed effect λt captures
factors that do not change with the area, such as policy regimes.

In addition, other influences not captured by the independent variables in Equation (1)
were all included in the residual term (εi,t), including regional farming systems, regional
soil environments, and regional cropping habits that are both highly correlated with local
climate and affect bean yields and therefore also affect the consistency of the estimation
results. To compensate for potential omitted variable bias, this study allows for spatial cor-
relation between samples and uses residuals from neighboring provinces (εi′ ,t) to explain
province-specific residuals (εi,t) to capture all omitted variables with regional character-
istics. The basic idea behind the ability of the spatial error models to correct for omitted
variable bias is that anything that cannot be captured by the independent variables in the
regression model will enter the model residual term (εi,t); however, once the unobservable
omitted variables share common spatial regional characteristics (i.e., regional character-
istics common to a particular province and adjacent provinces, such as regional farming
systems, regional natural hazards, regional varieties and soil types), using the residuals εi′ ,t
as an additional independent variable to explain crop yields (Yi,t) in a given province from
adjacent provinces can reflect all common regional characteristics as shown in Equation
(2). In Equation (2), Wi,i′ is the spatial weighting matrix that specifies the range of spa-
tially correlated influences. The spatial adjacency matrix was used in this study to reflect
the spatial correlation of the samples, with a priori assumption that there are spatially
correlated influences between neighboring sample provinces but no spatial correlation
between non-adjacent sample provinces. The spatial adjacency matrix is a square matrix
whose elements take the values (0, 1). It takes the value 1 if the sample county domains
are adjacent and 0 if they are not. The spatial adjacency matrix was chosen as the baseline
case in this study for three reasons: first, to be consistent with the existing literature [17,22];
second, because existing studies [17,25] confirm that while the choice of different spatial
weighting matrices affects the magnitude of the spatially relevant degree, indicator ρ does
not significantly change the coefficient estimates of the climate variables of interest to the
empirical analysis model. Furthermore, in the panel data case, it is often assumed that
the extent and magnitude of spatially correlated impacts (i.e., spatial weighting matrices
Wi,i′ ) do not change over time [26]. The degree of spatial correlation between neighboring
sample provinces is reflected by the estimated coefficients. Equations (1) and (2) form the
panel spatial error model in this study, after stripping out εi,t the spatial correlation, where
ηi,t is the true residual term of the empirical analysis model.
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Thus, the economic significance of the climate factor coefficients (β0, β1, β2) in this
paper is the marginal impact per unit (Hi,t, Pi,t, Xi,t) change in climate factors on crop
yields, with all else remaining the same(Ei,t, Ai,t, Ti,t and λt).

2.3. Data Sources and Processing

The sample data used in this study contained the following four aspects: planting
data, basic climate data, environmental data and socioeconomic data. The time interval
was 2005–2019, and the research sample area was initially selected from 31 provinces in
China. Among them, considering the special geographical environment of Hainan Province
and Tibet Autonomous Region, their low bean yield and missing data, these regions were
excluded. At the same time, the four municipalities directly under the central government
of Beijing, Tianjin, Shanghai and Chongqing have less arable land compared with other
provinces and have a higher level of modernization, which makes them unsuitable for the
cultivation of beans and other agricultural products and not representative for the analysis
of factors influencing bean yields in this study, so they were also excluded. The specific
sources of data for the four areas are as follows.

Planting data: Among the 25 provinces, planting data were selected to include bean
planting area, yield per unit area, effective irrigated area and fertilizer use per unit area
for each province. The data were obtained from the Yearbook of the National Bureau of
Statistics of China and the CSMAR database, respectively, and all 375 complete sample
data were collected.

Basic climate data: The basic climate data were obtained from 820 meteorological
observation sites across the country, and the meteorological data of daily values from
25 urban meteorological stations with the highest bean production in each province were
selected as the representative of the basic climate data in the province. The growing
temperature of bean crops is above 10 ◦C, so the average daily temperature greater than
10 ◦C in each station in each year was accumulated in this study as the annual effective
cumulative temperature value in the province, which reflects the influence of temperature
in bean cultivation. Precipitation data for each province were obtained from the China
National Meteorological Science Data Sharing Service Platform—China Terrestrial Climate
Information Daily Value Dataset v3.0. These data were complete and free of defects.

Environmental data: Environmental data mainly include total carbon emissions, total
SO2 emissions in exhaust gas, total wastewater emissions and severity of disaster, where
severity of disaster is expressed as the number of disasters per year in the province divided
by the area of bean cultivation. The data on total carbon emissions and the number of
disasters were obtained from the yearbook of the National Bureau of Statistics of China, in
which there were 25 missing values for the indicator of total carbon emissions; the data on
total SO2 emissions in exhaust gas and total wastewater emissions were obtained from the
statistical database of the China Economic Network, in which there were 25 missing values
for total wastewater emissions, and the missing values above were supplemented by the
interpolation method.

Socioeconomic data: The socioeconomic data include the benefit–cost ratio of food and
rural electricity consumption; the benefit–cost ratio is calculated by dividing the relative
price index of agricultural production in the previous period by the relative price index of
agricultural production materials in the current period. The data on the relative price index
of agricultural production and the relative price index of agricultural production materials
were obtained from the CSMAR database, and the data were complete and free of missing
values; the data on rural electricity consumption were obtained from the CSMAR database,
and the data had 25 missing values, which were completed by interpolation.

Numerous studies have shown that precipitation has an important influence on the
production of crops. The national precipitation is plotted for the years 2005–2009, 2010–2014
and 2015–2019 as shown in Figures 1–3, respectively. The major growing provinces of
beans in China are in Xinjiang Uyghur Autonomous Region, Fujian Province, Shandong
Province and Guangdong Province, and as can be seen from the figure, the distribution of
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precipitation in these provinces varies widely, indicating that beans are not very sensitive
to precipitation. The result is not quite consistent with the conclusion that the yields of
many cereal crops are more sensitive to changing patterns of precipitation.

For the 11 independent variables selected in this study, the same descriptive statistics
are shown in Table 2 for each of the 5-year periods 2005–2009, 2010–2014 and 2015–2019.

As can be seen in Table 2, the average bean yields in China increased steadily; there
was also a gradual increase in temperature levels and average precipitation across the
country. The level of disasters decreased year by year, although this was not because the
number of disasters became less frequent. In contrast, the frequency of disasters increased
gradually, but the area of bean cultivation in China decreased year by year, and the area
of efficient, bean-adapted arable land also decreased year by year. Emissions of SO2 from
exhaust gases decreased significantly from 2015 to 2019. As a positive effect of policy
interventions, the control of emissions from wastewater increased year by year. There is a
more pronounced downward trend in the benefit–cost ratio of food, which implies that the
willingness of Chinese farmers to grow on their own may have declined to some extent,
and the use of fertilizer per unit area remains largely stable or even slightly declines as
an indication of this phenomenon. Rural electricity consumption, on the other hand, has
shown a very significant upward trend, indicating that the modernization and scientific
and technological development of China’s rural areas over the past 15 years have had a
remarkable effect.

Figure 1. Distribution of precipitation in China, 2005–2009 (unit: millimeter, aggregated data from
2005 to 2009).
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Figure 2. Precipitation distribution in China, 2010–2014 (unit: millimeter, aggregated data from 2010 to 2014).

Figure 3. Precipitation distribution in China, 2015–2019 (unit: millimeter, aggregated data from 2015 to 2019).
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3. Model Results and Conclusions

3.1. Testing for Spatial Effects

Moran’s index and Geary’s c coefficient, which measure the existence of spatial
autocorrelation between global areas, and the spatial adjacency matrix (W) was used as the
baseline matrix reflecting the spatial correlation of the sample, which is defined in the same
way as in Section 2.2. If both Moran’s index and Geary’s c coefficient values are significant,
this indicates that there is correlation between bean unit yield samples. The positive
or negative sign of the coefficient reflects the corresponding spatial correlation between
samples. Table 3 shows the results of the test for spatial correlation for this indicator of
bean yields for the sample studied in this work.

Table 3. Results of spatial autocorrelation test.

Test Coefficient Bean Yields

Moran‘s I 0.201 **
Geary’s c 0.733 **

** denotes 5% level of significance.

The results of the above tests indicate that there is a significant positive spatial correla-
tion effect between the bean unit yield samples. The traditional panel model is inadequate
to deal with the spatial correlation problem since its estimation results are not only biased
but could greatly overestimate the significance level of the variables. The bias essentially
stems from the omission of spatial factors, and therefore, a spatial econometric model was
used in this study for the empirical analysis.

3.2. Model Selection and Robustness Tests

The stability test is a necessary step before using the model for panel data. It is
necessary to ensure that each variable is a stable series and that a cointegration between
the variables can be modeled. The test revealed that bean yields were not stable, so they
were logarithmically processed. The results of the stability test of the processed bean yields
with the rest of the variables are shown in Table 4.

In this study, the Levin–Lin–Chu test, Hadri (2000) panel unit root test and Im–Pesaran–Shin
test were selected for the above 11 variables. In the test results of these three coefficients,
more than two coefficients needed to be significant to consider the variable as a stable series.
The results in Table 4 show that the panel data of the above variables are all stable series.

Section 3.1 validates the findings of this study using a spatial econometric model from
the perspective of a single variable, grain yields. The LM test, on the other hand, tests
whether a spatial regression method or the OLS regression method should be used for
ordinary panel data from the perspective of the panel data containing all variables. The LM
test can test whether there are spatial error effects and spatial lag effects in the overall panel
data. Table 5 shows the results of LM test for the overall model. The three test coefficients
of spatial error effect are significant, indicating that the panel data has spatial error effect,
while the robust Lagrange multiplier in spatial lag effect is not significant, so it is not fully
confirmed that the panel data has a spatial lag effect.
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Table 4. Table of results of stability tests.

Inspection Method Test Results

Ln(Yield)
LLC −9.013 ***

HARDI 15.238 ***
IPS −1.781 *

EAT
LLC −11.331 ***

HARDI 7.187 ***
IPS −2.304 ***

PRE
LLC −12.314 ***

HARDI 1.216
IPS −2.236 ***

DISASTER
LLC −14.212 ***

HARDI 12.848
IPS −2.550 ***

COAL
LLC −4.327 **

HARDI 37.559 ***
IPS −1.175

SO2

LLC −3.725
HARDI 33.522 ***

IPS −0.717

WASTE
LLC −5.141 *

HARDI 34.790 ***
IPS −0.988

RATIO
LLC −19.627 ***

HARDI −1.484
IPS −3.602 ***

FER
LLC −8.599 ***

HARDI 27.550 ***
IPS −1.588

IRRI
LLC −12.055 ***

HARDI 28.060 ***
IPS −2.329 ***

POWER
LLC −7.422 ***

HARDI 37.509 ***
IPS −1.374

*** denotes 1% level of significance. ** denotes 5% level of significance. * denotes 10% level of significance.

Table 5. LM test results.

Spatial Error

Moran’s I 15.347 ***
Lagrange multiplier 204.345 ***

Robust Lagrange multiplier 13.433 ***
*** denotes 1% level of significance.

The test provides strong support for the choice of the spatial error model, while for
panel data, whether to use the fixed effect or random effect model depends on the Hausman
test. Table 6 shows the results of the Hausman test.

The original hypothesis of the Hausman test is that there is a random effect in these
panel data. As can be seen from Table 6, the p-value is 0.0008, so the original hypothesis can
be rejected at the 95% confidence level. That is, the panel data do not have a random effect
but a fixed effect, and the fixed effect model should be selected. The four tests in Tables 3–6
provide support for model Equations (1) and (2) outlined in Section 2.2 of this paper.
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Table 6. Hausman test results.

Coef. Std. Err. p-Value

_Cons 7.200671 *** 0.2130221 0.000
EAT 0.000091 * 0.0000525 0.083
PRE 0.0000683 0.0000633 0.280

DISASTER −0.1533701 ** 0.0771955 0.047
COAL 2.58929 *** 0.7248598 0.000

SO2 −0.4844776 3.493605 0.890
WASTE −0.0051428 ** 0.0022797 0.024
RATIO −0.1334411 0.1251934 0.286

FER −0.0001154 0.0002452 0.638
IRRI 0.6176916 *** 0.2025145 0.002

POWER 0.0000286 0.0001004 0.775
*** denotes 1% level of significance. ** denotes 5% level of significance. * denotes 10% level of significance.
H0: Difference in coefficients not systematic chi2(11) = 31.74 Prob > = chi2 = 0.0008.

3.3. Model Results

According to the settings of panel spatial error model (1) and (2), the goodness of fit
of the three models of time fixed effect, individual fixed effect and double fixed effect was
0.27, 0.06 and 0.03, respectively, so the time fixed effect model was chosen to examine the
effects of the four types of factors on bean yields in China, and the regression results are
shown in Table 7.

Table 7. Regression results of panel spatial error model.

Coef. Std. Err. p-Value

EAT −0.0002578 *** 0.0000468 0.000
PRE 0.0004895 *** 0.0000757 0.000

DISASTER −0.6823345 *** 0.1305011 0.000
COAL −0.00009 0.000079 0.254

SO2 0.0015519 *** 0.0006016 0.010
WASTE 7.67 × 10−7 *** 2.38 × 10−7 0.001
RATIO 0.227392 0.3739179 0.543

FER 0.0002584 0.0001873 0.168
IRRI 1.03056 *** 0.128758 0.000

POWER −0.000172 ** 0.0000844 0.041
within between overall

R-sq 0.0094 0.5439 0.2793
*** denotes 1% level of significance. ** denotes 5% level of significance.

Table 7 reflects the following findings. The overall R squared is 0.2793, which indicates
that the overall fit of the model is good. The within R squared is 0.0094, which shows that
the within fit of the model is poor. The between R squared is 0.5439, indicating that the
between fit of the model is good.

(1) Biologically, similar to cereals such as wheat and rice [27], there is an “inverted
U-shaped” relationship between temperature and precipitation and unit yield of beans,
i.e., the effect of temperature and precipitation on bean production is a non-linear relation-
ship that increases first and then decreases. The model results showed that the current
effective cumulative temperature had a negative effect on bean yields (Coef. = −0.0002578,
p < 0.01), i.e., for every 1 ◦C increase in effective cumulative temperature, bean yields
decreased by 0.02578%. The result not only implies that the effect of extreme weather on
bean yields is significant, with either lower or higher cumulative temperatures causing
a reduction in bean yields, but also, combined with the descriptive statistics in Table 2,
we can conclude that the warming phenomenon occurring in China significantly and
negatively affects bean production. In the long run, elevated temperatures can adversely
affect crop production [28,29], and the results of this paper suggest that the relationship
between legumes and temperature factors is consistent with this conclusion. There is also a
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positive relationship between precipitation and bean yields (Coef. = 0.0.0015519, p < 0.01),
i.e., grain yields increase with increasing rainfall, with each 100 mm increase in precip-
itation increasing bean yields by 4.895%. In countries such as China, where agriculture
is more dependent on rainfall, climate change is more significant for crop production,
and changes in rainfall may adversely affect crop production [30]. There is a negative
relationship between rice production and precipitation in China, which is contrary to the
findings of the relationship between legumes and precipitation studied in this research.
The current precipitation situation in China remains in an interval of positive effects on
bean production and growth.

(2) Among the climatic variables in the environment category, there are significant rela-
tionships between SO2 emissions from exhaust gases (Coef. = 0.0015519, p < 0.05), wastew-
ater emissions (Coef. = 7.67 × 10−7, p < 0.05) and severity of damage (Coef. = −0.68233,
p < 0.01) and bean yields. Among them, the effect of SO2 emissions from waste gas on bean
yields is the largest, with an increase of 0.155194% in bean yields for every 10,000 tons of
SO2 emissions from waste gas. The effect of wastewater emissions on bean yields is the
smallest and almost negligible, with an increase of 0.0000766% in bean yields for every
10,000 tons of increase in wastewater emissions. The results show that there is a positive
relationship between SO2 emissions from exhaust gas and wastewater emissions and bean
yields, which is different from the hypothesis.

With the rapid development of China’s economy, the domestic energy situation is
becoming increasingly scarce, and the demand for natural gas as a clean gas fuel and
an important chemical raw material is increasing. Therefore, some domestic scholars
have studied the short-term and long-term effects of SO2 emissions from waste gas on the
environment, soil and crops. Some studies have shown that although SO2 is higher than the
requirements of the Limits of Concentration of Air Pollutants for the Protection of Crops, it
does not cause acute harm to wheat, rice, beans, corn or rapeseed in the predicted impact
area, let alone to their long-term growth [31]; some studies have also shown that high sulfur
gas field SO2 emissions from high sulfur gas fields can significantly reduce the thousand-
grain-weight of rice seeds, thereby affecting rice yield and reducing rice quality [32]. There
are no studies that support a positive effect of SO2 emissions on bean yield, which is
contrary to the results of the study, probably due to the inaccurate location of the selected
emissions data collection, which does not fully reflect the effect on bean cultivation, and
the fact that emissions are related to human activities and industrial production, which
may have omitted variables and endogeneity problems. Similarly, the same problem exists
in the relationship between wastewater emissions and bean yields. It has been suggested
that each percentage point increase in CO2 emissions decreases cereal production by 0.29%,
showing a negative correlation [30,33–35], and it has also been suggested that there is no
significant relationship between CO2 emissions and cereal production [36]. The effect of
bean yields and CO2 emissions studied in this work is similar to the findings of Sossou
et al., who studied cereal yields, where the effect of carbon emissions (Coef. = −0.00009,
p > 0.05) on bean yields was not significant. The reason may be that on the one hand, the
increase in carbon emissions brings negative climate effects such as extreme weather and
global warming, which have a negative effect on the growth of beans, and on the other
hand, CO2 is a condition for photosynthesis in beans, which has a positive effect on their
growth, and the two effects are currently in a state of offset; carbon emissions have not
yet had a significant effect on bean yields. There is a negative relationship between the
degree of damage and bean yields. In bean growing areas, each increase in the degree of
damage per hectare reduces bean yields by 68.233%, indicating that the degree of damage
is the most serious factor affecting bean yields per unit area. This is in agreement with
Chijioke et al. who concluded that extreme climatic events such as floods and droughts
significantly affect crop yields [37], suggesting that beans as a crop are also sensitive to the
degree of damage.
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(3) The benefit–cost ratio of grain does not have an effect on bean yields (Coef. = 0.227392,
p > 0.05), and farmers’ expected returns and costs of growing beans are not significantly
related to bean yields.

(4) Among the human behavioral intervention factors, there is a positive relationship
between effective irrigated area ratio (Coef. = 1.030, p < 0.001) and bean yields, i.e., an
increase in effective irrigation ratio boosted grain yields, whereas the effect of fertilizer
being used per unit area (Coef. = 0.0002584, p > 0.005) on grain yield is insignificant. This
may be due to the good soil environment of the farmland, where fertilizer self-supply and
micro-ecological cycles are at a better level and the farmers’ fertilizer application for bean
tillage is at a more desirable level, which has a weaker effect on bean growth.

(5) There is a negative relationship between rural electricity consumption (Coef. = −0.0001,
p < 0.05), a proxy for the technology level factor, and bean yields, with an increase in rural
electricity consumption of 100 million kWh reducing bean yields by 0.01%. An increase
in electricity consumption in turn reduces bean yields. The development of modern
technology has effectively improved agricultural cultivation techniques, which will increase
the production capacity of beans to a certain extent, but from another perspective, the
modernization of the countryside means an increase in human activities, overexploitation
of the ecological environment and a reduction in the area of high-quality arable land, all
of which have a negative impact on the production capacity per unit area of beans, and
the conclusion shows that the negative impact under this factor is slightly greater than the
positive effects.

4. Discussion

A large number of observations and research results show that climate change has
different impacts on crop growth and development, cropping systems and yield quality,
with both advantages and disadvantages, but the negative impacts outweigh positive
ones. The relationship between climate change and grain production in China is complex.
From an ecosystem perspective, not only are there two major agroecosystems, the southern
paddy field and the northern dryland, which play an important role in crop growth, but
grain production is also affected differently by climate change due to the vast geographical
area, the diversity of crops, the many varieties, the differences in cultivation practices,
cropping systems and production structures [38]. In this study, based on panel data of
25 Chinese provinces from 2005 to 2019, we analyzed the effects of the above factors on the
unit yield of beans in China in four dimensions: climatic environment, economic market,
human cultivation behavior and technological development level, where the focus is on
the climatic environment factor and other factors are considered as control variables in
the model.

The results of this study show that in recent years, all aspects of bean production in
China have been characterized by progressive changes in the context of climate change.
During 1979–2002, climate warming was more favorable for bean growth in China, espe-
cially in the northeast, where warmer temperatures could extend the growing period of
the crop and reduce the impact of frost damage on beans [39]. However, the results of
this study of 2005–2019 show that as global warming intensifies and the growing season
accumulation temperature exceeds the inflection point optimum accumulation level, the
increase in temperature begins to show a suppressive effect on bean yields, which is dif-
ferent from the relationship between temperature change and bean yields in 1979–2002.
In addition, carbon emissions increase each year. Kumar, P. et al. indicated a positive
relationship between carbon emissions and cereal production [40]; Pickson, R. B et al. stated
that CO2 emissions have a significant negative impact on cereal production in the long
run [30] and show a unidirectional causality and Ahsan F et al. had the same conclusion
as Pickson, R. B et al. on the relationship between cereal production and CO2 emissions,
but their study showed a bidirectional causal relationship between CO2 emissions and
cereal production [35]. These findings are not the same as the relationship between bean
yields and CO2 emissions in this paper, but this does not mean that it has no effect on the
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growth of bean crops in China. Excessive carbon emissions are an important cause of large
changes and significant fluctuations in climate, and the most direct result is the increase
in the number of disasters each year, which has a significant effect on the reduction in
bean yields. It can be seen that the increasing temperature will cause changes in the spatial
and temporal distribution of light, temperature, water and other climatic resources in the
main grain-producing regions of China, which will lead to changes in soil organic matter,
soil microorganisms and soil fertility and intensify the outbreak of agricultural pests and
meteorological disasters in local areas.

At the same time, climate change will also lead to changes in the physiological and
ecological characteristics of grain crop varieties by changing environmental factors, thus
affecting the grain yield, cropping system, production method and structure in China.
Climate change also leads to changes in the physiological and ecological characteristics
of food crop varieties through changes in environmental factors, thus having far-reaching
effects on China’s grain production, cropping systems, production methods, structural
layout and variety quality. In addition, the high level of rural modernization has started
to have a slight negative impact on the growing environment of beans, which is also a
conclusion that deserves our attention. The growing industry is one of the most sensitive
areas to climate change, which has caused changes in crop fertility, farming systems,
etc., and increased frequency and intensity of disasters, posing risks to and increasing
pressure on global food production systems and food security. Ensuring sustainable
agricultural development and food security is one of the important objectives of addressing
climate change.

In international studies, many other countries have studied the relationship between
local bean production and climate, for example, Wurr, D. et al. conducted a detailed
analysis of French bean production in relation to CO2 emissions and temperature variation.
They concluded that temperature has a large positive effect on French bean production,
while CO2 has a negative or even no significant effect on French bean growth [41]. The
current studies on bean crop yield in China are insufficient, and the factors involved are
not comprehensive. The panel spatial error model used in this study explains the impact
of current climatic and environmental factors on the yield per unit area of beans in China
in four aspects, and the conclusions of the paper provide a reference for Chinese bean
cultivation in response to climate change, while showing a positive correlation between
CO2 and SO2 emissions, wastewater emissions and bean yield and the negative correlation
between technological level development and bean yield. The two findings, which are
different from cereal yields, are worthy of our attention and consideration. However, the
limitations of the index still hindered the study somewhat. When considering the impact
of air pollution and water environment pollution on bean production, SO2 emissions from
exhaust gas and total wastewater discharge essentially reflect the emission behavior of
human life, which can only reflect the actual situation of air pollution and water pollution
to a certain extent, while the distinction between planting and non-planting areas in these
two indicators appears difficult to achieve, which is due to the low selectivity of statistical
indicators for planting areas. Therefore, only the overall indicator can be chosen to replace
the indicator for planted areas. The errors introduced by this indicator choice may lead to
problems such as lower overall model fit superiority and insignificant estimated coefficients.
In later studies, other alternative variables or instrumental variables that are highly accurate
and can be collected to respond to pollutant concentrations in air and water pollution need
to be considered.
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Abstract: As climate change becomes increasingly widespread, rapid, and intense, the frequency of
heavy rainfall and floods continues to increase. This article establishes a prediction system using
feature sets with multiple data dimensions, including meteorological data and socio-economic data.
Based on data of historical floods in 31 provinces and municipalities in China from 2006 to 2018, five
machine learning methods are compared to predict the direct economic losses. Among them, GBR
performs the best with a goodness-of-fit of 90%. Combined with the input-output (IO) model, the
indirect economic losses of agriculture to other sectors are calculated, and the total economic losses
caused by floods can be predicted effectively by using the GBR-IO model. The model has a strong
generalization ability with a minimum requirement of 80 pieces of data. The results of the data show
that in China, provinces heavily reliant on agriculture suffered the most with the proportion of direct
economic losses to provincial GDP exceeding 1‰. Therefore, some policy implications are provided
to assist the government to take timely pre-disaster preventive measures and conduct post-disaster
risk management, thereby reducing the economic losses caused by floods.

Keywords: economic loss prediction; machine learning; input-output model; flooding

1. Introduction

The acceleration of climate change has intensified the water cycle, affected rainfall
patterns, and caused rising sea levels, triggering more frequent heavy rainfall and wors-
ening flood situations [1]. Due to global warming, research shows that the death toll
and economic damage of floods have risen by around 75% and 200%, respectively [2].
According to a comprehensive analysis published in Geneva, 23 July 2021 by the World
Meteorological Organization (WMO), of the top 10 meteorological disasters, floods have
inflicted the top three largest economic tolls and human losses around the world over the
past half-century. Fatal floods, incurred by heavy rains, occur with a low frequency, a wide
range of influence, and can cause serious economic losses [3]. The economic loss from such
natural disasters should be evaluated as soon as possible and effective countermeasures
should be taken to manage natural hazards [4]. Hence, if potential economic losses of
floods can be accurately predicted prior to or just after the beginning of heavy rainfall,
more time can be provided for people to take precautions and put in place measures to
avoid and alleviate unnecessary losses and secondary hazards.

In response, relevant studies of economic loss assessment have been conducted. Gen-
erally, economic losses, which can be measured with monetary value, are classified into
two sorts: direct economic losses and indirect economic losses [2]. Direct economic losses
refer to property losses of residences, asset losses of enterprises, loss of infrastructure, loss
of natural resources, etc., while indirect economic losses arise from the suspension and
reduction of production, investment premiums, material shortages, overstock, and losses
from related industries [5].

Atmosphere 2021, 12, 1448. https://doi.org/10.3390/atmos12111448 https://www.mdpi.com/journal/atmosphere
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For direct economic losses, assessments are normally conducted by using a flood stage-
damage calculation [6], loss rate approach, comprehensive loss value method, Category-
Unit Loss Functions [7], approach based on RS and GIS [8], and Regression Analysis Rapid
Evaluation Model [9], etc. By far, most of the direct economic assessments are conducted
post-disaster, while pre-disaster assessment is currently at an initial stage. Yet with the
boom in artificial intelligence, advanced approaches, such as backpropagation neural
networks (BPNN) [10], random forest, support vector regression (SVR) [11], and gradient
boosted regression tree (GBR) [12], etc., are implemented to predict the direct economic
losses of natural disasters. The most popular approach among these is BPNN. Although
BPNN better fits the complex nonlinear function relationship and has higher assessment
accuracy, it requires a huge amount of data, which is lacking in extreme weather data as
the number of flood occurrences across history are limited [10]. Another commonly used
method, SVR—the extension of support vector machine (SVM)—is suitable for solving
high-dimensional regression problems using a small number of samples, which is in
accordance with the features of natural disasters [13]. Additionally, ensemble learning—
a commonly used algorithm—integrates several machine learning methods to reduce
deviation and improve prediction accuracy [14]. Extreme Gradient Boosting Regressor
(XGB) has been demonstrated to be a good fit for evaluating economic losses of natural
disasters, but the generalization ability is unsatisfactory [12]. Sun et al. used GBR in the
field of direct economic loss evaluation caused by storm surge disasters, improving the
prediction accuracy and reducing model overfitting caused by small datasets [11]. However,
there has not yet been any report of research applying GBR to the disaster assessment
of floods.

For indirect economic loss assessment, empirical analysis methods, Computable
General Equilibrium (CGE) models, and Input-Output (IO) models are commonly used.
The empirical analysis method assumes a certain proportional relationship between the
indirect economic losses caused by a flood to different sectors and industries and its direct
economic losses in the inundated area, but the result is relatively ineffective [15]. The
dynamic CGE model can realize a comprehensive assessment of the indirect economic
impact of flood disasters through parameter simulation, flow restriction simulation, and
variable shock simulation [16]. However, CGE models are based on more restrictive
assumptions, which typically assume optimizing behavior and equilibrium economy. Such
assumptions are easily violated under real-world economic conditions [17]. In contrast, the
input-output approach, an improvement in methodologies, is more suitable for assessing
economic losses caused by exogenous shocks [18]. Zhang et al. implemented the IO model
to analyze the indirect economic losses of floods in Hunan Province, China, in 1998 [2]. It
is proven that the model is an effective and flexible approach to assess indirect economic
losses as it can select the number of sectors according to the retrieved data.

Therefore, in this paper, we establish a comprehensive prediction system to assess the
direct and indirect economic losses caused by floods in 31 regions of China. There are two
main contributions in this paper. Firstly, we designed a timely and effective pre-disaster
prediction system with the GBR-IO model by using indicators which can be collected
pre-disaster or at the beginning of a flooding episode and found the minimum amount of
data required for the prediction system to be able to provide results with high effectiveness.
Secondly, based on the meteorological features of natural disasters, we combined machine
learning methods, using advanced regression prediction approaches, with the input-output
model, a traditional economic method, resulting in what can have a profound impact on
inter-disciplinary research. Thirdly, the method we used has a high generalization ability,
meaning that it can be applied to other countries and regions which experience flooding,
especially those with small datasets.
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2. Materials and Methods

2.1. Study Area

Statistics show that Asia is the continent where floods are, by far, the most frequent
and devastating natural disasters around the world [19]. Among Asian countries, China—
with a monsoon climate and major rivers of the world—is the most frequently affected
country. Around the world, the frequency of floods and economic losses caused by floods
in China ranked first, and the casualties and death toll ranked second during the last
decade [20]. Recently, in mid to late July 2021, rainstorms and devastating floods battered
large portions of North China and the Huanghuai Region, especially Zhengzhou, the state
capital of Henan province, causing the deaths of 302 people, 50 people to be missing, and
114.3 billion RMB yuan (US $17.7 billion) in direct economic losses [21]. For studying floods
or the economic losses caused by floods, China is ideal in terms of sample size and practical
significance. Thus, in this research we focused on 31 provinces in China (excluding the
Hong Kong, Macao, and Taiwan regions) with the aim having the ability to extend the
prediction system to other countries affected by flood threats.

2.2. Data

The process of establishing the pre-disaster prediction system is data-driven. We
primarily used two sorts of data: first, meteorological data; and second, socio-economic
data. To predict the direct economic losses in terms of geographical information and
timescale, while considering the integrity, continuity, and variety of data, we selected a
time-series dataset of 31 provinces and municipalities in China composed of a period of
13 years, from 2006 to 2018. With the aim of ensuring the timeliness of the prediction
system, we chose variables based on significance and whether they can be retrieved pre-
disaster or at the beginning of a flooding episode. Therefore, 23 independent variables
and a dependent variable, the latter being direct economic loss, were used in the study, as
shown in Table 1. There were 403 pieces of data in total showing the meteorological and
socio-economic conditions. To predict the indirect economic losses, which are based on the
direct economic losses of the agricultural sector, we further utilized the direct economic
loss data as the input of the IO model. With the combination of other socio-economic
data, we generated the indirect economic losses caused by the demand reduction in the
agricultural sector.

Table 1. Floods disasters direct economic loss prediction index system.

Criteria Indicators Variables

Disaster-inducing factors

Year X1
Daily Maximum Precipitation X2
Precipitation Anomaly Percentage X3
Precipitation Anomaly Percentage in Spring X4
Precipitation Anomaly Percentage in Summer X5
Precipitation Anomaly Percentage in Autumn X6
Precipitation Days X7
Moderate Rainy Days X8
Heavy Rainy Days X9
Torrential Rainy Days X10
Maximum Continuous Precipitation X11
Maximum Annual Rainfall X12
Maximum Annual Continuous Rainy Days X13
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Table 1. Cont.

Criteria Indicators Variables

Disaster-affected bodies

Casualties X14
Death Toll X15
Sown Area with 10% Reduced Production X16
Sown Area with 30% reduced production X17
Sown Area with 80% reduced production X18
Railway Disruption X19
Road Disruption X20
Reservoir Loss X21
Province X22

Disaster
Prevention Capabilities

Number of Reservoirs X19
Capacity of Reservoirs X20
Area with Flood Prevention Measures X21
Areas with Soil Erosion under Control X22
City Sewage Pipes Length X23

2.2.1. Meteorological Data

Meteorological data were obtained from “Daily meteorological dataset of basic meteo-
rological elements of the China National Surface Weather Station (V3.0)” including China’s
national basic weather stations, reference climatological station, and general weather sta-
tions, with a total of 2474 stations of the China Meteorological Administration. All of the
research data were retrieved at an annual provincial level. The data included daily maxi-
mum precipitation, precipitation anomaly percentage, precipitation anomaly percentage in
spring, precipitation anomaly percentage in summer, precipitation anomaly percentage in
autumn, precipitation days, moderate rainy days, heavy rainy days, torrential rainy days,
and maximum continuous precipitation days.

2.2.2. Socio-Economic Data

To predict the direct losses, the socio-economic data included: casualties, death toll,
direct economic losses, sown area with 10% reduced production, sown area with 30%
reduced production, sown area with 80% reduced production, railway disruption, road dis-
ruption, number of reservoirs, capacity of reservoirs, area with flood prevention measures,
area of soil erosion under control, and length of city sewage pipes. The above data were
retrieved from the Bulletin of flood and drought disasters in China (2006–2018), published
by the Ministry of Water Resources of the People’s Republic of China, China statistical
Yearbook (2006–2018). To predict the indirect economic losses, the Input and Output table
with 42 sectors of 31 provinces from the National Bureau of Statistics (2017) was used to
calculate the industry linkage [22].

2.2.3. Data Processing

Step 1 processing the missing data: As mentioned in the previous section, all data
used in the study were collected online and offline from official datasets, official reports,
and reference books. For some missing data, if the data were proved to be below the
statistical standard, we substituted it with 0. For the data where the true value was missing,
the data were substituted with the average figure in order to mitigate the impact on the
prediction model.

Step 2 normalization: Each sample of the original dataset had 23 features (independent
variables) to reflect the flood disasters from a specific aspect or information related to the
local province. If components are with different magnitudes, they will not make equal
contributions to fit the model and are likely to cause a bias. Due to this, we used the
normalization process of Min-Max normalization to make the indicators comparable. By
doing so, all features were transformed into the range [0, 1], meaning that the minimum
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value of a feature becomes 0, while the maximum value of that becomes 1. The formula is
as follows:

xnormalised =
x − min(x)

max(x)− min(x)
(1)

where x denotes the input of independent variables.

2.3. Methods
2.3.1. Gradient Boosting Regression Trees (GBR)

A new machine learning method, Gradient Boosting Regression Trees (GBRT or GBR)
was adopted in our research to efficiently predict the direct economic losses of floods. It is
a modification of the gradient boosting (GB) algorithm and Classification and Regression
Trees (CARTs) by using a regression tree of fixed size as weak learners [23].

The gradient boosting algorithm, proposed by Friedman in 1999 [24], integrates
various machine learning and statistical methods, such as gradient algorithm, boosting
algorithm and tree algorithm. The rationale of the gradient boosting algorithm is to
create new base learners which are maximally correlated with a negative gradient of the
loss function. Compared with traditional boosting algorithms, along the direction of the
gradient, every new model is built with the aim of reducing the loss function of the previous
model. By using the gradient boosting algorithm during the training process, regression
was achieved by continuously reducing the residuals [25]. The process of gradient boosting
with multiple iterations is shown in Figure 1. To elaborate on the training process, in
each iteration, a weak classifier is generated by the model, which goes through further
training according to the residuals of the previous classifier. Based on the performance of a
classifier, the weight is generated. The poorer the performance, the more weight will be
given. Finally, the ensemble model is achieved by the weighted summarization of all weak
classifiers. With a variance reduction, the prediction accuracy of a classifier is improved.
Both continuous and discrete values can be dealt with gradient boosting, and this algorithm
can mitigate the drawbacks of overfitting. In the process, a base classifier, also known as a
weak classifier, is generally CARTs, a series of decision tree regression models. The weight
is generated based on the performance of weak classifiers, and the process of learning
consists of inputting the residuals from the previous iteration as the object function of the
next base classifier.

Figure 1. Training Process of Gradient Boosting.
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Classification and regression trees (CARTs), proposed by Breiman et al. in 1984 [26],
can be used for both classification and regression models [27–29]. The two types of trees
used in these two models are decision trees and regression trees. Compared with other
artificial intelligence models, CARTs have better performance in terms of prediction as
they can obtain nonlinear relationships without requiring prior information about the
probability distribution of variables.

The GBR algorithm combines weak learners by iteratively concentrating on the errors
resulting at each step until a sum of the successive weak learners can a create suitable
strong learner.

Given the Dataset {Xi, Y}n
i=1 (i.e., historical flooding dataset), the loss function is used

to evaluate a set of weights to seek a minimized error with the aim of optimizing the model.
Let Xi denote a set of explanatory variables (i.e., disaster-inducing factors, disaster-affected
bodies and the disaster-prevention capabilities) and Y be dependent variables (i.e., direct
economic losses). There are six main steps of the GBR, which can be expressed as follows:

1. Initialize the parameters in the learning machine with the following equation:

F0(x) = argminρ

N

∑
i=1

L(yi, ρ) (2)

where F0(x) is the parameter set. ρ is the parametric variable that minimizes the loss
function, and L(yi, ρ) is the square error loss function in our model. The negative gradient
of the loss function is used in the current model as an approximation of the residual. The
calculation process of the residual is shown as follows:

yi = −
[

∂L(y, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

, i = 1, 2, · · · , N (3)

For iterations m = 1 to M:
where F(xi) refers to the objective function.

2. A regression tree is generated with J leaf nodes, described as follows:

{
Rjm

}J
1 = J − TNT

(
{yi, xi}N

i

)
(4)

where Rjm refers to a regression tree with J leaf nodes, TNT refers to terminal node tree.

3. Estimating the value of the leaf nodes in the regression tree. The value can be
estimated by the following equation:

γjm = argminγ ∑
xi∈Rjm

L(yi, Fm−1(xi) + γ) (5)

where γ refers to the value of the leaf nodes in the regression tree.

4. The learning machine of this iteration can be obtained, as shown in the following:

Fm(x) = Fm−1(x) +
J

∑
j=1

γjm I
(
x ∈ Rjm

)
(6)

5. After iterations, the final regression model can be shown as follows:

F(x) = Fm(x) = γ +
M

∑
m=1

J

∑
j=1

γjm I
(
x ∈ Rjm

)
, where I

(
x ∈ Rjm

)
=

{
1, x ∈ Rjm
0, x /∈ Rjm

(7)

Numerous researchers have developed an index system-based assessment method
to gain a better understanding of the relationship between factors and natural disaster
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loss. Sun et al. classified the indicators into several different categories, including disaster-
inducing factors, disaster-affected factors and disaster-prevention capabilities [30]. In our
research, we also designed an index system for independent variables as the input of GBR,
as shown in Table 1.

To predict the direct economic losses of floods pre-disaster or at the beginning of a
flooding episode is to establish a regression model. Since the dataset of flooding, a disaster
occurring with a low frequency, is discrete with a small scale and large time span, five
machine learning methods are generally used, including Bayesian Ridge, Line Linear,
Elastic Net, XGB, and GBR [31]. Despite the advantages of the other four methods, we
compared the five different models to verify the effectiveness of GBR. The comparative
experiment is designed as follows in Figure 2:

Figure 2. The flowchart of model comparison.

To further reduce the autocorrelation between the variables, principal component
analysis (PCA) is implemented. In this study, we used a randomized truncated singular
value decomposition (SVD) by the method Halko et al. 2009 [32].

To compare the validation of the performance of the five models, four indicators are
used, including Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE), Explained
Variance (EV), and R-squared score(R2). The formulas are as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(8)

MAE =

n
∑

i=1
|yi − ŷi|

n
(9)

EV(yi, ŷi) = 1 − Var(yi − ŷi)

Var(yi)
(10)
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R2(yi, ŷi) = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

= 1 − RMSE
Var(yi)

(11)

where yi is the actual measurement, ŷi is the predicted value y = 1
n

n
∑

i=1
yi, n is the number

of measurements.
In this article, Anaconda Navigator 2.0.3, python 3.8.8, Jupyter notebook 6.3.0 were

implemented.

2.3.2. Input-Output (IO) Model

Natural disasters, especially floods, have detrimental impacts on the agricultural in-
dustry and disrupt public transportation. The agricultural industry and the transportation
industry are closely related to other industries, such as real estate, construction, ware-
housing and retail, accommodation, and catering, etc. Floods also cause indirect losses
in upstream and downstream industries that are not directly related, such as the finan-
cial, mining, and other industries. Therefore, losses of directly affected industries were
predicted by using the machine-learning prediction system, and then as the input, the
predicted direct losses were used to evaluate the indirect losses of other industries using
the Input-Output (IO) model.

The IO model has been implemented to assess the economic effect of natural disasters
since the 1970s. Results have shown that the model can assess related economic losses
effectively. In this article, indirect economic losses among the industries are evaluated by
using a static IO model [18].

The correlations among the industries in the IO table can be expressed as:

AX + Y = X (12)

That is,
n

∑
i,j=1

aijXj + Yi = Xi (i, j = 1, 2, . . . , n), (13)

where aij is the direct consumption coefficient, Xi is the total output of sector i, and Yi is
the final demand for sector i. The above formula can then be transformed as:

X = (I − A)−1Y (14)

where I is the identity matrix and (I − A)−1 is the inverse matrix of Leontief.
Taking the sectional direct economic losses as losses in final products, ΔY = (ΔY1, ΔY2, . . .,

ΔYn)T. The total product loss is then:

ΔX = (I − A)−1ΔY. (15)

where ΔX denotes the total economic losses, and ΔY denotes the direct economic losses
Thus, the loss of indirect input is expressed by the reduction of intermediate input, as
ΔX − ΔY.

To improve the accuracy of the indirect loss assessment of various departments,
this paper uses the complete consumption coefficient for analysis. Let B be a complete
consumption coefficient matrix obtained by transforming the direct consumption coefficient
matrix A, then B = (I − A)−1 − I. Therefore, the total loss of the product can be further
expressed as:

ΔX = (B + I)ΔY. (16)
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Assume that ΔYi is the economic loss in the sector i caused by floods and the final use of
other sectors has no change. The total output of the entire economic system then becomes:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ΔX1
ΔX2

.

.

.
Δ

.
Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

b1iΔYi
b2iΔYi

.

.

.
bniΔYi

⎞
⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
.

ΔYi
.
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (17)

where bij(i, j = 1, 2, . . . , n) are the complete consumption coefficients. The total output loss
of sector i is then:

ΔXi = biiΔYi + ΔYi, (18)

where ΔYi is the direct economic loss of sector i and biiΔYi is the indirect economic loss of
sector i. The total product losses of other sectors are:

ΔXn = bniΔYi, n �= i. (19)

2.3.3. The Pre-Disaster Prediction System

The overall prediction system process of the GBR-IO model is shown, as follows, in
Figure 3.

Figure 3. Prediction system process.
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3. Results & Discussion

3.1. Direct Economic Loss Prediction

To analyze which features make the most contribution in causing direct economic
losses, we firstly retrieved feature importance indicating the usefulness and value of each
feature in the construction of the boosted regression trees within the model. The more an
attribute is used to make key decisions with decision trees, the higher the F score is. From
Figure 4, below, it can be seen that reservoir loss, sown area with 10% reduced production,
road disruption, annual anomaly percentage and daily maximum precipitation are the top
five features of importance.

Figure 4. Features of importance, measured with the F score.

Further, we developed a heat map of the correlation coefficient between the top
10 features and the model. The heat map is used to directly illustrate the correlation
between the indicators and economic losses of flooding. The color shade of the heat map
shows the degree of the correlation; that is, the greater the correlation, the lighter the color.
The correlation between the indicators and direct economic losses, ranging between −1
to 1, shows whether they are positively correlated or negatively correlated. From the heat
map, shown in Figure 5, it is notable that reservoir loss (with the correlation of above 0.8),
sown area with 10% reduced production (correlation of 0.6–0.8), casualties (correlation of
0.6), road disruption, number of reservoirs, annual anomaly percentage, summer anomaly
percentage and daily maximum precipitation are positively correlated with direct economic
losses. In contrast, length of city sewage pipes (correlation of −0.2–0), reservoir capacity
(correlation of −0.3) and annual rainy days are negatively correlated (correlation of below
−0.2). From the results, it can be inferred that: (1) the agricultural industry is the most
directly affected sector; (2) there is a time lag in constructing reservoirs for the mitigation
of economic impacts caused by floods; (3) since a region with high annual rainy days is
less likely to suffer from economic losses of floods, a possible explanation could be that
such regions have a balanced precipitation trend and are unlikely to suffer from floods
caused by short-term torrential or heavy rains; (4) the improvement of disaster prevention
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capabilities is effective in reducing economic impacts; and (5) reservoir loss contributes the
most to direct economic losses, among other factors.

Figure 5. Heat map of the correlation coefficient between features and the model.

To further reduce the autocorrelation between variables, principal component analysis
(PCA) was implemented. PCA is used to decompose a multivariate dataset in a set of
successive orthogonal components that explain a maximum amount of variance. The PCA
screen plot in Figure 6 shows the explained variance of all of the variables used in the
model. Based on the ranking of variance that is explained, we selected the top 16 principal
components as new features, i.e., F1 to F16 in Figure 6. Such new features retained 90.75%
of the original information. Due to the characteristics of decision tree algorithms, they do
not address the value of variables. Therefore, there is no need for feature normalization
and PCA. The tree models (GBR and XGB) in the study were not processed with PCA.

The above new features are input into the prediction system to be trained with
five different machine learning algorithms. During the training process, K-fold cross-
validation (k = 5 in this prediction system) is performed. Firstly, the original data set is
split into five sets. We then use the four of the five sets as the training set to train the model
without repetition. Such an approach can obtain a substantial amount of information
from limited data. The cross-validation results are shown in Figure 7. Among the five
machine learning methods, Bayesian Ridges and GBR performed better than the other
three methods, with a cross score of around 0.7. To further determine which method is
better, four regression model evaluation metrics, including RMSE, MAE, EV, and R2, were
used to compare the prediction effect of the model.
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Figure 6. PCA screen plot.

Figure 7. Cross validation of machine learning models.

RMSE, MAE, EV, and R2 were calculated for the gradient boosting regression tech-
nique, as well as the other four machine learning methods. The lower value of RMSE
and MAE and the higher value of EV indicate the more accurate prediction result, and
the higher value of R2 indicates a heightened match between the analytical and predicted
values. The advancement of gradient boosting regression, compared to other approaches,
is shown in Table 2. Observing the regression metrics, it is notable that, although Bayesian
Ridge, Linear Regression, and Elastic Net perform better than GBR in some error metrics,
the prediction of a specific dataset can substantially deviate from the true value, indicating
overfitting. GBR has the highest R2 and low RMSE, MAE and high EV in comparison to
the predicted and the actual value, indicating that GBR has the best fit of values and a
better fit than the other four methods. Therefore, combining the cross-validation results
and regression metrics, we obtained GBR as the best machine learning regression model in
predicting the direct economic losses of floods.
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Table 2. Regression metrics.

RMSE MAE EV R2

Bayesian Ridge 32.80 24.61 0.86 0.84
Linear Regression 36.66 28.97 0.84 0.80

Elastic Net 34.03 26.06 0.85 0.82
XGB 31.76 18.64 0.85 0.85
GBR 25.57 16.49 0.90 0.90

The learning curve is generally used in machine learning to evaluate both the per-
formance of the training and the validation of datasets to diagnose whether the model is
underfit, overfit, or well-fit [33]. Training samples on the horizontal axis show the size of
datasets used in the learning process, while the score on the vertical axis represents R2,
which is used to evaluate the overall performance. The learning curve of the GBR model
is shown in Figure 8. With the expansion of the training set, the cross-validation score
approaches a desirable level, and it converges with the training score. It can be seen from
the figure that when the training data size reaches about 80 pieces, the over-fitting and
under-fitting of the model have been significantly reduced, proving that the GBR model is
well-fit. Adding more training data can decrease the variance and bias of the GBR model.
When the data size reaches about 150 pieces, the variance and deviation of the prediction
results can be further mitigated. Therefore, when the model is generalized to analyze
similar problems in other countries or regions, the required data size must reach at least
80 pieces, and the prediction accuracy will be improved with the expansion of data size.

Figure 8. Learning curve of GBR model.

Integrated learning is considered to have high predictive precision, especially in terms
of those algorithms which use a decision tree as the base learner. To validate GBR as the
optimal combined model, we compared the regression result with Bayesian Ridge, Linear
Regression, Elastic Net, XGB, and GBR, as is shown in Figure 9. It can be seen that GBR is
the best fit for the true value.

To verify the effectiveness of the prediction model, we did descriptive analysis and
empirical analysis based on the dataset in China from 2006 to 2018.

According to the descriptive statistical analysis for the years 2006 to 2018, the direct
economic losses caused by floods in China were overwhelmingly higher in the years 2010
and 2016 than of that in other years and showed an overall increasing trend, as shown in
Figure 10. Among the floods in China over this period, floods in 2010 caused by torrential
rainfall in southern China were the most devastating to occur since 1998, leading to the
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worst economic conditions in the past half century [34]. Global warming had caused a
surge of moisture in the atmosphere. With the combination of a strong El Niño effect
and climate change, severe flooding occurred along the Yangtze River in the summer
of 2016 [35]. The floods that broke out in these two years were the worst in the recent
decades resulting in the direct economic losses being much more severe than in the other
years analyzed.

Figure 9. The fitting and prediction result of compared models.

Figure 10. Direct economic losses (billion RMB).

As for the empirical analysis, by splitting the samples into training sets (data from
2006 to 2017) and the validation set (data in 2018), we gained the regression result of direct
economic loss with GBR, as shown in Table 3. The comparison between the true value and
predicted value is shown in Figure 11. It is notable that the deviation between the predicted
direct economic losses and the true economic losses is relatively negligible. From Table 3,
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we can see that among 31 provinces in China, Heilongjiang, Shandong, Inner Mongolia,
and Gansu provinces, which are heavily reliant on agriculture, suffered the most, with the
proportions of the direct economic losses to provincial GDP at 1.73‰, 0.94‰, 0.86‰, and
0.75‰ respectively.

Table 3. Predicted direct economic losses.

Province

Predicted Direct
Economic Losses

(PDEL,
billion RMB)

PDEL/
Provincial GDP

(‰)
Province

Predicted Direct
Economic Losses

(PDEL,
billion RMB)

PDEL/
Provincial GDP

(‰)

Beijing 3.84 0.02 Hubei 2.23 0.15
Tianjin 0.2 0.05 Hunan 0.64 0.05
Hebei 1.28 0.14 Guangdong 32.55 0.11
Shanxi 0.16 0.04 Guangxi 3.92 0.32

Inner Mongolia 5.77 0.86 Hainan 0.64 0.23
Liaoning 2.71 0.42 Chongqing 3.79 0.03

Jilin 6.77 0.3 Sichuan 32.07 0.22
Heilongjiang 5.08 1.73 Guizhou 4.14 0.08

Shanghai 7.08 0.02 Yunnan 4.42 0.11
Jiangsu 3.98 0.08 Xizang 3.68 0.16

Zhejiang 2.08 0.04 Shaanxi 3.7 0.06
Anhui 4.63 0.39 Gansu 10.15 0.75
Fujian 2.32 0.07 Qinghai 2.25 0.17
Jiangxi 3.81 0.42 Ningxia 0.88 0.12

Shandong 20.04 0.94 Xinjiang 1.15 0.06
Henan 3.1 0.35

Figure 11. Predicted direct economic loss versus true value in 2018.

From the charts above, it can be seen that, for provinces suffering mild losses from
natural disasters, the GBR model can provide relatively accurate prediction results in
terms of the direct economic losses, while for the losses caused by extreme weather,
despite the suddenness and uncertainty, the prediction results can still partially reflect the
characteristics; reflecting the robustness and effectiveness of the model. It is also notable
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that the provincial direct economic losses caused by floods are geographically unevenly
distributed. Gansu, Guangdong, Shandong, Inner Mongolia, and Yunnan suffered more
direct economic losses, while Ningxia, Shanxi, and Tianjin suffered less. Such distribution
can be attributed to the following reasons: (1) coastal regions are more susceptible to floods
caused by typhoons and monsoon climates; (2) provinces with a high reliance on agriculture,
such as Henan, Shandong, and Gansu, are more likely to be economically affected by floods
as the agriculture sector is directly related to natural disasters; (3) provinces with more
flood prevention facilities and infrastructure, such as Beijing, Tianjin, and Shanghai have
strong resistance to floods.

3.2. Indirect Economic Loss Prediction

In this paper, the IO model was introduced to predict the indirect economic losses
caused by floods in 42 sectors of 31 provinces in China. The precondition of the IO model
is to apply the economic loss data of directly affected sectors. Since agriculture is the
most directly affected sector among all of the 42 sectors, according to the Chinese National
Bureau of Statistics, we took it as the directly affected sector to calculate the indirect losses
of all of the sectors by using the industry linkage generated from the IO table [36].

For the direct economic loss of the agricultural sector, according to the descriptive sta-
tistical analysis (as shown in Figure 11), most of the floods in Northern China happened in
autumn, while those in Southern China happened in summer. The sown areas in both north-
ern China in autumn and southern China in summer were used for planting rice. According
to China’s Ministry of Agriculture and Rural Affairs of the People’s Republic of China, the
price of rice and the average yield per hectare are published in each season and can be de-
noted with Pi. To verify the model validation, we obtained the official average price in 2018,
i.e., 2.56 RMB/kg, and the average yield per hectare, which was 2347.6667 kg/hectare.
Thus, the average production per hectare is 2.56 * 2347.6667 = 6010.0267 RMB/hectare.
Since the national standard for affected sown areas includes the sown areas with 10%, 30%
and 80% reduced production, according to the bulletin of flood and drought disasters in
China (2006–2019), we did a scenario analysis to reflect an average scenario of affected
production with the assumption that 40% of the production was reduced due to flood disas-
ters [37]. In other extreme situations, related calculations can be also conducted according
to the specific situation. The estimated direct economic losses of the agriculture sector in
31 provinces in 2018 is shown, as follows, in Figure 12.

Further, to estimate the indirect economic losses of floods of other industries related
to the agricultural industry, we analyzed the IO model. Although the 42 sectors are
integrated and related, in the Input-Output table, they are split into different sectors without
overlapping. Considering the analysis method of the input-output relationship from direct
and indirect economic losses, we chose the direct economic loss of the directly affected
sectors as the final product loss, where ΔY and ΔX − ΔY are defined the same as above. The
complete consumption coefficient was introduced to obtain an accurate assessment of the
indirect input loss of various sectors. The complete consumption coefficient is the quantity
of the products in sector i that need to be consumed directly and indirectly to produce
final products per unit of sector j. As defined above, B was used to represent the complete
consumption coefficient matrix. Accordingly, B = (I − A)−1 − I is the relationship between
the complete consumption coefficient and the direct consumption coefficient. Thus, B is
obtained by the direct consumption coefficient matrix of each one given by the 42 sectors
in the IO table of nationwide provinces in 2017. In this paper, we investigated the most
directly hit industry—the agricultural sector—which has an indirect effect on all industries.
Here we only demonstrated the top six most affected industries’ complete consumption
coefficients of agriculture out of 42 industries, as shown in Table 4. The figure indicates the
correlation between other sectors and the agricultural sector, which can be treated as the
input for the following calculations.
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Figure 12. Direct economic losses of agriculture sector in 2018.

Table 4. Matrix of cumulative input coefficients of agriculture, forestry, animal husbandry and fishery sectors to other sectors.

Province

Sector Agriculture
Forestry
Animal

Husbandry
and Fishery

Food and
Tobacco

Processing

Manufacture
of Chemical

Products

Smelting and
Processing of

Metals

Repair of Metal
Products,

Machinery and
Equipment

Wholesale
and Retail

Trades
Real Estate

Beijing 0.28 0.28 0.23 0.13 0.18 0.11 0.22
Tianjin 0.24 0.26 0.20 0.06 0.06 0.14 0.07
Hebei 0.19 0.19 0.11 0.02 0.05 0.06 0.02
Shanxi 0.16 0.06 0.20 0.03 0.04 0.04 0.01

Inner Mongolia 0.22 0.12 0.13 0.02 0.04 0.09 0.03
Liaoning 0.33 0.18 0.21 0.04 0.05 0.05 0.02

Jilin 0.30 0.18 0.15 0.05 0.03 0.06 0.04
Heilongjiang 0.32 0.10 0.13 0.01 0.03 0.05 0.02

Shanghai 0.24 0.21 0.25 0.04 0.06 0.14 0.10
Jiangsu 0.20 0.13 0.19 0.04 0.04 0.06 0.03

Zhejiang 0.09 0.11 0.22 0.03 0.08 0.07 0.02
Anhui 0.23 0.16 0.18 0.04 0.04 0.05 0.04
Fujian 0.03 0.02 0.22 0.00 0.03 0.00 0.01
Jiangxi 0.04 0.02 0.35 0.00 0.02 0.02 0.02

Shandong 0.03 0.06 0.21 0.05 0.11 0.18 0.05
Henan 0.03 0.01 0.29 0.03 0.05 0.06 0.02
Hubei 0.02 0.01 0.08 0.07 0.04 0.05 0.02
Hunan 0.22 0.18 0.17 0.02 0.04 0.04 0.02

Guangdong 0.21 0.26 0.13 0.04 0.05 0.04 0.02
Guangxi 0.02 0.00 0.09 0.00 0.01 0.00 0.01
Hainan 0.10 0.12 0.20 0.01 0.02 0.10 0.05

Chongqing 0.09 0.09 0.10 0.02 0.05 0.04 0.03
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Table 4. Cont.

Province

Sector Agriculture
Forestry
Animal

Husbandry
and Fishery

Food and
Tobacco

Processing

Manufacture
of Chemical

Products

Smelting and
Processing of

Metals

Repair of Metal
Products,

Machinery and
Equipment

Wholesale
and Retail

Trades
Real Estate

Sichuan 0.22 0.14 0.20 0.02 0.02 0.04 0.02
Guizhou 0.20 0.04 0.16 0.02 0.05 0.08 0.01
Yunnan 0.21 0.07 0.15 0.02 0.04 0.04 0.03
Xizang 0.25 0.17 0.15 0.01 0.03 0.05 0.02
Shaanxi 0.17 0.11 0.21 0.04 0.03 0.05 0.03
Gansu 0.19 0.06 0.17 0.02 0.06 0.06 0.02

Qinghai 0.16 0.14 0.14 0.02 0.07 0.05 0.01
Ningxia 0.20 0.14 0.19 0.02 0.09 0.09 0.03
Xinjiang 0.27 0.09 0.29 0.01 0.03 0.07 0.01

Based on the above matrix, taking the computation of indirect economic loss of
agriculture, forestry, animal husbandry and fishery to other sectors, the total indirect
economic loss of the 31 provinces was calculated, as shown in Figure 13. It can be seen that
Shandong, Henan, Heilongjiang, and Inner Mongolia, all of which are provinces that are
reliant on agriculture, suffered the most indirect economic losses among all provinces, with
the predicted indirect economic losses reaching 6235.55 million RMB, 1770.49 million RMB,
2227.45 million RMB, and 1389.13 million RMB, respectively. Thus, to prevent unnecessary
economic losses and secondary disasters, these provinces should be given more attention.

Figure 13. Indirect economic losses (million RMB).
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4. Conclusions

This paper proposes an effective prediction model consisting of a cutting-edge machine
learning regression model and a traditional economic model, i.e., the GBR-IO model. The
performance of the GBR-IO model used in the paper is superior to other models because
it improves the prediction effectiveness, reduces the issue of overfitting and combines
inter-disciplinary methods. The prediction model obtains outstanding results of direct
economic losses on datasets in 31 provinces (excluding Hong Kong, Macau, and Taiwan)
in China from 2006 to 2018, with a goodness-of-fit of 90%. Based on the predicted direct
economic losses, we obtained the indirect economic losses by using the Input-Output model.
Compared with previous studies, the GBR-IO model can predict regional direct economic
losses and indirect economic losses pre-disaster or at the beginning of a flooding episode
with effectiveness and efficiency. Further, the GBR-IO model has a high generalization
ability, which can be applied to other countries, especially to those with small datasets at
the minimum requirement of 80 pieces.

However, there is still room for improvement of the pre-disaster prediction model.
First, as flood forecasting systems and the numerical simulation technology advance in
meteorology, the variables used in the model could be estimated more accurately before a
disaster happens. Second, the limitation of the datasets results in a failure to categorize
floods. If floods are categorized into river floods, flash floods, and drainage problem floods,
the accuracy of the model can be further improved. Third, since geographical conditions
are not included in the system, global climate models (GCMs) and regional climate models
(RCMs) can be further integrated into the system to boost performance. With the above
improvements, the model performance can be further enhanced.

According to the prediction model, it can be concluded that positively correlated
indicators include reservoir loss, sown area with 10% reduced production, casualties,
road disruption, annual anomaly percentage, and daily maximum precipitation while
the length of city sewage pipes, reservoir capacity and annual rainy days are negatively
correlated with economic losses. From the empirical case based on datasets in China, we
can also conclude that from the proportion of direct economic losses to provincial GDP, it
is notable that the impact of flooding on the economy is relatively significant. Among the
31 provinces in China, especially Gansu, Inner Mongolia, Shandong, and Heilongjiang, the
direct economic losses even approached or exceeded one-thousandth of the province’s GDP.

Thus, some policy implications can be drawn from the results. Since the GBR-IO
model has a strong generalization ability, regional flooding databases are encouraged to be
established in order to improve the prediction accuracy with more data. Although there is
a time lag of reservoir capacity, giving priority to reservoir construction and city drainage
capacity can mitigate the economic impact of flooding. Policymakers could also pay more
attention to those regions that are heavily reliant on agriculture as they are more vulnerable
to flood disasters. Further, if the accuracy of meteorological forecasts can be improved,
more effective measures can be taken in advance.
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Abstract: In recent years, air pollution has received serious concerns from researchers, media, and
the public sectors, but air pollution from agricultural production activities has not received enough
attention. This paper focuses on agricultural air pollution in central China, which is aggravated by
the ongoing rural labor migration trend. With a set of panel data released from Hubei and Hunan
provinces in China, we adopt the mediating effect model to explore the relationship between rural
labor migration and air pollution caused by agricultural activity in China. First, we use the inventory
analysis method and principal component analysis method to calculate the comprehensive index
of the air pollution of agriculture in 152 counties and districts from Hubei and Hunan provinces,
and we empirically test the impact of labor migration on air pollution with a mediating effect model
as well as carry out regional heterogeneity analysis on the pollution effect of these two provinces
mentioned above. The analysis above indicates that the increase of labor migration has intensified
the comprehensive index of air pollution caused by agricultural activity by changing the supply of
labor force in the agricultural sector, the budget line of rural residents, and the scale of agricultural
production and crop planting structure, but there is a difference in the indirect total effect between
the two provinces mentioned above according to our regional heterogeneity analysis. This study is a
necessary extension to studies on alleviating and controlling air pollution in China.

Keywords: agricultural air pollution; labor migration; mediation effect; income effect;
economy of scale

1. Introduction

The current COVID-19 pandemic interrupted many production and industrial activi-
ties, but the agriculture industry seems to have suffered less. Evidence from Lovarelli’s
research suggests that during the quarantine, the increase in ammonia emissions is mainly
due to agricultural production activities, as there was a significant reduction in transporta-
tion and industrial activities [1]. Air pollution control in rural areas has fallen into a state
of considerable stress and crucial difficulty regarding protecting the environment and
ecosystem in China, which has a direct influence on the process of China’s sustainable de-
velopment. There are two sources of air pollution: human activities and natural processes.
Agricultural production is one of the typical human activities that brings air pollution.
Hellin (2021) has evaluated the impact of agricultural production on the atmosphere in
India, which confirmed that agricultural production will pollute the atmosphere [2].

Agricultural activities include cultivating the soil, producing crops, and raising live-
stock, most of which will pollute the atmosphere. Crop farming pollutes the atmosphere
when straw is burned, pesticides are sprayed, and fertilizer is applied. In China, a large
amount of straw is burned artificially in the open air after harvest, causing serious air
pollution. The emissions from biomass combustion are considered to be the sources of
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greenhouse gases such as carbon dioxide, methane, and nitric oxide. In addition, aerosols
emitted from biomass burning have high mass concentrations of PM2.5, organic carbon,
elemental carbon, and potassium [3]. In Jiaodong Peninsula, the North China Plain, East
China, and other areas, the particulate matter produced by farmland incineration of agri-
cultural residues accounts for more than 35% of the aerosol optical thickness and more
than 60% in some areas of Shandong, Henan, and Jiangsu provinces in China [4]. Agricul-
ture is the second largest carbon emission source after power generation and waste gas,
accounting for 14% of the total emissions of human activities in the world, according to
the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report in 2007.
Furthermore, as a traditional agricultural country, China’s agriculture has produced nearly
500 million tons of carbon dioxide emissions [5]. Wang (2022) introduced the ecosystem
health risk index (EHR) to evaluate the impact of agricultural pollutants on the health
of natural ecosystems and found that in the process of agricultural production related to
nitrogen fertilizer, air pollutants (including NH3 and N2O) cause much more damage to
ecosystem health than soil or water pollutants [6]. There is also evidence from Stacy’s
research (2011) that the livestock industry will also exacerbate the degree of air pollution [7].
Huang (2020) found that livestock and fertilizer application are the two main NH3 emission
sources that will exacerbate air pollution [8].

This paper has great significance regarding balancing urbanization and air pollution
control in China. Over the past forty years, there has been a large scale of rural labor
migration from the traditional agricultural sector to various types of non-farm employment
in China. Guo’s study show that they are also one of the most important driving forces to
the emerging urbanization and rapid economic growth [9]. However, the ecosystem cannot
be neglected in order to maintain the fast pace of the rural economy. Air pollution control
in rural areas has become a crucial difficulty to the environment protection and sustainable
development for China.

The vast peasantry are the major stakeholders of rural ecological environment status,
whose economic and social behavior will also inevitably have a profound impact on
agricultural air pollution. The continuous large-scale labor migration provides the internal
impetus for the sustainable growth of the regional economy, but in Xu’s study, it also affects
the household land use arrangements [10], afterwards exerting an influence on agricultural
air pollution.

2. Theoretical Mechanism

Agricultural air pollution refers to air pollutants generated during agricultural pro-
duction activities, such as straw burning, application of volatile fertilizers, rural livestock
feces, etc. Accordingly, by what means does the migration of the rural labor force change
the mode of agricultural activities, therefore affecting the agricultural air pollution? Sum-
marizing the currently available academic research, there are basically four paths listed
as follows:

First, Bhandari et al. (2016) and Tian et al. (2020) suggested a substitution relationship
between farming supplies such as chemical fertilizers and labor force in agricultural pro-
duction [11,12]. Bounded by a limited labor force, farmers tend to increase their usage of
farming supplies, especially chemical fertilizers to offset the shortage of labor force and
gain the same amount of output. Likewise, Luan (2017) conducted an empirical study on
the relationship between the outflow of rural labor force and the application of agricultural
chemical fertilizer based on the panel data of major grain-growing provinces in China from
2004 to 2015. The regression results confirmed the substitution relationship between rural
labor migration and fertilization [13]. Hence, there is the first hypothesis of this paper.

Hypothesis 1. Rural labor migration leads to the reduction of labor force supply for agricultural
production, which increases the input intensity of farming supplies as its substitution factors and
then aggravates the agricultural air pollution level.
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Second, there is the income effect. Changes in income shift the consumer choice,
increasing or decreasing the consumption of consumables and other agricultural goods.
According to the consumer equilibrium theory, under the condition of unchanged consumer
utility preferences, income growth will expand the income constraints, thus affecting the
demand for certain consumption. As a matter of fact, with different utility preferences, the
impact of income growth on different variety of goods is also different.

Changes in income can also have an impact on labor supply. In the labor market,
workers provide different amounts of work according to their income and leisure estimates
at different wages, and the results are shown in two opposite dimensions. On one hand,
a growth of wage rate increases the opportunity cost of leisure, which can result in a rise
of working hours; on the other hand, a growth of wage rate increases the savings and
consumption level of the workers, which then leads to an increase of the utility demand
preference for leisure, thus bringing a reduction of the working time.

As for the influence of non-farm income on agricultural production, some scholars
believed that the increase of non-farm income expanded the budget for their family mem-
bers who were left behind in rural areas, providing them with the economic capacity of
purchasing more farming supplies, resulting in applying more fertilizers (Goodwin and
Mishra, 2004; Luan et al., 2016) [14,15]. On the contrary, some other scholars believe that
the family’s increased income is actually not for farming supplies but for household fixed
assets investment, education, and life consumption. So, the increase in income does not
affect the chemical fertilizers usage and does not exacerbate air pollution (Cheng et al.,
2015) [16]. Meanwhile, the non-farm income increased opportunity costs for farming,
leading to extensively rough agricultural management and even abandoned farmland,
resulting in a decrease of various farming supplies including chemical fertilizers (Carletto
et al., 2013; Qiu, 2018) [17,18].

Hypothesis 2. The migration of rural labor force leads to an increase of non-farm income. On one
hand, it can increase the purchase and application of farming supplies because of the alleviating
financial constraints, aggravating agricultural air pollution; on the other hand, it also increases
the opportunity cost for farming, encouraging discarded farmland, which alleviates agricultural air
pollution. The overall effect is uncertain.

Third, there is economy of scale. The transfer of land use rights can affect agricultural
production efficiency by reducing the degree of land division and expanding the business
scale, and it can also produce a “leveling effect”, that is, the transfer of land use right from
farmers with less land to farmers with more land. Based on the survey data of Southern
Henan, a major grain-producing area in China, Gao (2020) conducted an empirical study
on the impact of farmers’ migration to rural land transfer using the threshold model and
CHARLS 2015 data. This study empirically analyzed the impact of the labor migration
scale on the ratio of rural transferred land to total land area and concluded that the
migration of rural labor force has affected the turnover speed of farmland circulation
and the concentration of agricultural operation [19]. The migration of labor force and
the increase of non-farm income reduce the dependence of rural families on farmland,
promoting the transfer of use rights of agricultural land, making extensive running possible
and bringing more air pollution. Therefore, we have the third hypothesis of this paper:

Hypothesis 3. The migration of rural labor force accelerates the transfer of use rights of land and ex-
pands the production scale, thus improving the productivity efficiency of farming supplies, reducing
the average application intensity, and then contributing to aggregating the agricultural air pollution.

Fourth, there is the effect of crop planting structure. Two different views appeared
related to the impact of rural labor migration on the crop planting structure (proportion
of cash crop planting area). From the perspective of the farmers’ own families, Zhong
et al. (2016) believed that the migration of the labor force reduces the core labor force of
rural families, leading to the trend of farmers’ aging and part-time agriculture. They prefer
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mechanized agriculture because mechanized agriculture is very convenient [20]. However,
from the perspective of transfer of use rights of land, Wan (2014) believed that under the
stimulation of maximizing short-term benefits, land contractors were more willing to shift
from planting “safety first” food crops to cash crops with higher planting density, more
complex compounds, and basically higher yield for production. It makes it difficult to
control the application amount of pesticides, chemical fertilizers, and various additives,
thus aggravating agricultural air pollution [21]. Consequently, there we have the fourth
hypothesis of our research.

Hypothesis 4. There are two opposite dependent paths of how rural labor migration affects the
agricultural crop planting structure, and therefore, the overall impact on agricultural air pollution
is temporarily uncertain.

In summary of all the assumptions above, the substitution effect and economy of scale
effect aggravate the pollution level of agricultural air; meanwhile, the influence of income
effect and crop planting structure effect is temporarily uncertain. Therefore, the overall
impact of rural labor force migration on agricultural air pollution needs to be tested.

3. Data Description and Research Methodology

3.1. Data Description

This paper selected the rural agricultural data from every county and district of Hubei
and Hunan provinces from 2007 to 2017 in China as the data sample. All the underlying
data involved are from the Statistical Yearbook, Rural Statistical Yearbook, and China
County Statistical Yearbook of each province and city. Based on the availability of data,
we remove outliers and deal with the missing values of some data with the method of
line deduction in data from 69 counties and districts in Hubei Province and 83 counties
and districts in Hunan Province. Finally, 152 counties and districts were retained as valid
samples. To eliminate the possible heteroscedasticity of time-series data, some variables in
this paper use natural logarithms in empirical analysis.

According to the research purpose, the comprehensive index of agricultural air pol-
lution (AAPI) is taken as the prediction variable. The main explanatory variables are the
scale of labor migration, per-capita non-farm income, farmland scale, and the cash crop
ratio. In addition, other factors are considered as control variables, including the size of the
rural population, the output of agricultural production, agricultural irrigation area, and the
mechanical power for agricultural use.

Table 1 below clearly demonstrates the setting and statistical description of the vari-
ables. Among them, the minimum and maximum values of the core variable labor migra-
tion are 3.438 and 87.698, respectively, with a standard deviation of 14.186. It reflects that
the data samples of rural labor migration have great differences and changes in the region.
The comprehensive index of agricultural air pollution was established based on principal
component analysis (PCA). The minimum and maximum value of the comprehensive
agricultural air pollution index are 0.445 and 34.686, respectively, with a standard deviation
of 6.638. Large variations in variables can also meet research needs.

Figure 1 demonstrates a fitting diagram between the comprehensive index of agricul-
tural air pollution (AAPI) and rural labor force migration in Hubei and Hunan provinces.
It is obvious that there is a positive correlation between labor migration and agricultural
air pollution, indicating that the higher the migration scale of rural labor force, the more
serious the air pollution, providing an intuition to the preliminary research.

3.2. Research Methodology
3.2.1. Inventory Analysis Method

The inventory analysis method is commonly used in environmental pollution research.
First, we determine the pollutant generating unit, and then, we use the pollutant producing
coefficients and accounting formula of the pollutant producing unit to indirectly calculate
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the amount of agricultural pollution. The pollution production unit, pollution production
coefficient, and accounting model constitute the core considerations of this method. In
this paper, chemical fertilizers, straw, and mammal livestock are selected as the pollution
production unit, referring to the study of Chen et al. (2006) and Fan (2014) [22,23].

Table 1. Variables setting and statistical description.

Variable Indicator Unit Mean
Standard
Deviation

Min Max

Rural labor
migration (LM)

Rural non-farm payroll
employments/total rural labor force % 48.340 14.186 3.438 87.698

Non-farm income
(NI)

Per-capita non-farm income of rural
residents

hundred US
dollars 12.689 7.351 1.413 46.880

Farmland scale (FS)
Total cultivated farmland/total

number of agricultural
employments

0.1 hectare
per person 7.112 3.435 2.224 24.697

Cash crop ratio
(CCR)

Cash crop sown area/total sown
area % 41.724 9.819 7.468 69.393

Rural population
(Rpop) Rural resident population ten thousand 40.799 22.518 2.330 129.250

Agricultural output
(Aoutput)

Gross output of agricultural
production at constant price 100 million 47.687 33.875 1.274 208.257

Total mechanical
power (Mpower)

Total energy consumption of
agricultural machinery 10 megawatts 47.819 34.165 0.679 178.249

Agricultural
irrigation area

(Irrigation)

Total area of cultivated farmland for
agricultural irrigation

thousands of
hectares 32.852 26.097 0.770 206.390

Figure 1. AAPI and rural labor migration (LM, %) of counties in Hubei and Hunan.

According to the above text, we know that agricultural activity affects air pollutants
mainly by crop farming and livestock breeding. Hence, it is reasonable to choose an
index related to crop farming and livestock breeding. We use nitrogenous fertilizer and
application to describe the chemical fertilizer part because nitrogenous fertilizer is one of
the main sources of air pollutants such as N2O and NH3. Yichao Wang (2020) calculated
cropland N2O and NH3 emission factors from fertilized farmland, and we adapt this
index [6]. Straw residue burning is one of the most important polluting agricultural
activities that affects the atmosphere, and we choose the total output of rice, maize, wheat,
beans, and tubers and other air pollutants emitted via straw burning to calculate air
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pollutants emitted via straw burning. The grain–straw ratio and straw open burning
ratio in Hubei and Hunan are from Cao’s research in 2005 [24]. Livestock breeding also
contaminates air quality, and ammonia (NH3) emissions, the majority of which arise from
livestock production, are linked to the high concentration of PM2.5 and degraded air quality
in China, according to Haodan Wang’s study in 2021. The NH3 emitted ratio from livestock
breeding is from Wang’s paper and livestock breeding total nitrogen are selected from the
announcements published by the Ministry of Ecology and Environment of China [25,26].
Other data are collected from China rural statistical yearbook, and China County Statistical
Yearbook. The specific accounting method is shown in Table 2.

Table 2. Accounting method of pollution production unit.

Agricultural
Activity

Category Accounting Method Result

Crop farming

chemical
fertilizer

rice The amount of fertilizer air pollutants = crop planting area(ha) ×
cropland emission factors (N2O and NH3; kg/ha)

Total
agricultural
emission of
multiple air

pollutants (kg)

maize
wheat

straw

rice The amount of air pollutants emitted via straw burning = total crop
output × grain–straw ratio−1 × straw open burning ratio (of Hubei

and Hunan, estimated) × emission factors (CH4,NH3,SO2,NO2,PM2.5;
g/kg)/1000

maize
wheat
beans
tubers

Livestock
breeding

livestock
waste

hog The amount of livestock air pollutants = livestock breeding numbers
× livestock breeding total nitrogen (TN, g/day per animal) coefficient
× livestock output average duration (day) × NH3 emitted ratio/1000

cattle
fowl

3.2.2. Principal Component Analysis (PCA) on the Agricultural Air Pollution
Comprehensive Index (AAPI) as the Dependent Variable in Subsequent Regression Model

Principal component analysis is a statistical method. Through the orthogonal trans-
form, a set of possible relevant variables was transformed into a set of uncorrelated variables.
The transformed group of variables is called the principal component.

In order to simplify the steps of regression, the agricultural air pollutants comprehen-
sive index (AAPI) is calculated by synthesizing the air pollutants released by chemical
fertilizer (CF), air pollutants emitted via straw burning (ST), and air pollutants released by
livestock breeding (LS) using principal component analysis (PCA). Based on the principle
of a feature root greater than 1, a principal component, indicated as “comp” reflecting the
comprehensive level of agricultural air pollutants of the total sample, is extracted, with a
feature root of 2.595 and a variance interpretation of 86.51%, and the calculation function is
shown as:

comp = 0.602 × CF + 0.583 × ST + 0.546 × LS.

3.2.3. Causal Steps Approach in Mediating Effect Model

Mediating effect models are often used to study the complex process and mechanism
of the explanatory variables on the predicted variables. Mediation effects are indirect
effects and can be modeled using structural equation models. The main methods to test the
mediation effect include the product of coefficient approach, causal steps regression test,
and significance test of difference (Wen et al., 2004) [27]. To examine the mechanism by
which the rural labor migration affects agricultural production activities, thereby affecting
agricultural air pollutants, this paper selected the causal steps approach, a more commonly
used method by domestic scholars, to test the mediation effect in this scenario. Under
the assumptions of the hypothesis mentioned previously, the following five regression
equations are set to constitute the mediating effect model as Function (1) to (5):

lnAAPIit = αi + β0 LMit + ∑
j

β jXit + vt + ξit (1)
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lnNIit = αi + λ1 LMit + ∑
j

λjXit + vt + ξit (2)

lnFSit = αi + π1 LMit + ∑
j

πjXit + vt + ξit (3)

CCR = αi + θ1 LMit + ∑
j

θjXit + vt + ξit (4)

lnAAPIit = αi + β1 LMit + ρ1lnNIit + ρ2lnFSit + ρ3CCRit + ∑
j

β jXit + νt + ξit (5)

X are control variables, including the rural population size, agricultural production,
agricultural irrigation, and agricultural machinery power; these control variables affect the
degree of agricultural air pollution. α is the constant of the regression, v is the time variable,
and ξ represents the regression residual in the equation. Among them, Function (1) is the
benchmark equation for the agricultural air pollutants comprehensive index; Function (2)
to (4) test the mediation effect of the income effect, the economy of scale effect, and the effect
of the crop-planting structure, respectively; Function (5) combines the direct effect variable
labor migration (LM) with the mediation effect variables of non-farm income (NI), farmland
scale (FS), and cash crop ratio (CCR) to measure the total effect on agricultural air pollution.

4. Analysis Process

In order to exclude heteroscedasticity, some variables were converted to their loga-
rithmic form and estimated using the fixed effect model (FE) based on the p value of the
Hausman test being zero.

4.1. Total Sample Analysis: The Effect of Labor Migration on Agricultural Air Pollution

Table 3 shows the impact results of labor migration, LM, on the comprehensive index
of agricultural air pollution, AAPI.

Based on the research design of Model (1-1) to (1-5) presented in the previous section,
the calculation of the pollution effect of rural labor migration is divided into the following
three steps:

4.1.1. Benchmark Model Test

The explanatory variables in Model (1-1) include only labor migration variables and
four related controlled variables, which is the benchmark model to test the significance
of rural labor migration on the AAPI. In the results, the coefficient of labor migration is
significantly positive (0.0023), which suggests that the total effect of labor migration on
AAPI is positive. This is consistent with the previous theoretical hypothesis.

4.1.2. Mediation Test of Indirect Effect of Labor Migration

In the second step, we tested the mediation effect variables (non-farm income, farm-
land scale, and crop-planting structure) with Model (1-2), (1-3), and (1-4) separately. The
test results show that the coefficient of rural labor migration on the non-farm income vari-
able and farmland scale variable are significantly positive (0.1248 and 0.159), which means
that the migration of rural labor force has improved the per-capita income of rural resident
households, promoting farmland concentration and increasing the per-capita farmland
for rural residents. Whereas, the coefficient of rural labor migration on the crops planting
structure variable is not significant, suggesting that the migration of labor force in Hubei
and Hunan provinces has not significantly increased the proportion of cash crops, also
confirming the research conclusion from Zhong (2016) [20].
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Table 3. Results of mediating effect model analysis.

Model

1-1 1-2 1-3 1-4 1-5

Benchmark Model
Mediation Test of the Income, Scale and Crop-Planting Structure

Effect of Rural Labor Force Migration

Direct and Indirect
Effect of Labor

Migration on AAPI

Variable lnAAPI 1 lnNI lnFS CCR lnAAPI

lnNI
0.0564 * 2

(0.0294) 3

lnFS
0.1970 ***
(0.0467)

CCR
−0.0098 ***

(0.0013)

LM
0.0023 *** 0.1248 *** 0.1590 *** −0.0396 −0.0030 **
(0.0006) (0.0474) (0.0229) (0.0990) (0.0013)

lnRpop 0.0869 * −0.0452 −0.0347 ** −0.0041 0.0899 *
(0.0453) (0.0471) (0.0227) (0.0169) (0.0455)

lnAoutput 0.227 *** 1.1279 *** 0.3005 *** 0.0622 *** 0.2080 ***
(0.0679) (0.0402) (0.0194) (0.0143) (0.0693)

lnMpower 0.0724 ** 0.2557 *** 0.0227 0.0082 0.0724 **
(0.0330) (0.0532) (0.0256) (0.0190) (0.0307)

lnIrrigation 0.0443 0.1008 *** −0.0745 ** 0.0621 * 0.0334
(0.0332) (0.0303) (0.0146) (0.0108) (0.0351)

Constant
−0.966 ** −1.399 *** 0.4488 *** 3.6953 *** −0.802 **

(0.381) (0.2561) (0.1234) (0.0916) (0.390)
Fixed location controlled controlled controlled controlled controlled

Fixed time controlled controlled controlled controlled controlled
R-sq 0.289 0.6951 0.3550 0.0312 0.362
rho 0.9707 0.8994 0.8451 0.8595 0.9692

Observations 1672 1672 1672 1672 1672
Number of ids 152 152 152 152 152

Direct effect Indirect effect (aggregate) Total effect
−0.0030 0.0383 0.0353

1 Abbreviations are used for the following variables: logarithmic comprehensive index of agricultural air pol-
lution (lnAAPI), logarithmic non-farm income (lnNI), logarithmic farmland scale(lnFS), cash crop ratio (CCR),
labor migration ratio (LM), logarithmic rural population (lnRpop), logarithmic agricultural output (lnAoutput),
logarithmic mechanical power (lnMpower), the same below. 2 The asterisks indicate different significance levels,
*** for p < 0.01, ** for p < 0.05, and * for p < 0.1, the same below. 3 Content in brackets is the standard error, the
same below.

4.1.3. Calculation of the Direct Effect and Indirect Effect

Model (1-5) includes rural labor migration and indirect variables, controlled variables
into the regression model, testing the direct factor substitution effect, indirect effect, and
total effect of labor force migration on the AAPI.

First, the study found that the direct effect, indirect income, and scale effects of labor
migration have passed the statistical significance test, so the impact effect of labor migration
on agricultural air pollution is manifested as a partial mediation effect.

Next, the report results indicate that the influence coefficient of the non-farm income
variable is 0.0564, that is, the increase of non-farm income has a significantly positive
correlation on the AAPI. This can be interpreted in that the increase of household income
greatly increases the farming materials and chemical fertilizer, which aggravates agricul-
tural air pollution. The mediation effect of scale variable has a significantly positively
correlation, which is in line with Hypothesis 3. A peasant who manages more land than
his/her capacity will lead to extensive operation, using more fertilizer and bringing more
air pollution. In addition, the coefficient of crop-planting structure variable is significantly
negative. According to Hypothesis 4, it can be interpreted that this non-grain trend of
crop-planting structure will alleviate agricultural air pollution, but provided the result of
Model (1-4), the coefficient of mediator structure variable is not significant, so the indirect
effect of crop-planting structure is not included in the aggregate indirect effect calculation.

Finally, the premise of the total effect calculation is that the coefficient must be
statistically significant. According to this screening, the coefficient of the direct effect
is −0.0030; the indirect income effect is 0.0070 (indirect income effect is calculated as:
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0.1248 × 0.0564 = 0.0070, the coefficients of non-farm income from Model (1-2) and (1-5);
accordingly, indirect scale and structure effect are calculated in the same way), the scale
indirect effect is 0.0313, the structure effect is not significant, so the aggregate indirect effect
is 0.0383. The total effect is the sum of the direct effect and the aggregate indirect effect,
that is, 0.0353.

It is also evident to analyze the other controlled variables to find that the influence
coefficients of rural population, agricultural output value, and mechanical power on
the AAPI are significantly positive, and the coefficients are 0.0869, 0.227, and 0.0724.
Among them all, the output of agricultural production is undoubtedly the main culprit of
agricultural air pollution.

4.2. Heterogeneity Analysis: The Regional Analysis of Rural Labor Migration in Hubei and Hunan

The original data show that the overall number of rural labor migration in Hubei
Province is significantly lower than that in Hunan province, which supports the further
exploring of the discriminative results of them. In this section, we divided the samples into
two sub-sample sets and carried out the same test as the previous section. Tables 4 and 5
are the results of it in Hubei Province and Hunan Province, respectively.

Table 4. Heterogeneity analysis: results of mediating effect model analysis in Hubei Province.

Model

2-1 2-2 2-3 2-4 2-5

Benchmark Model
Mediation Test of the Income, Scale, and Crop-Planting Structure

Effect of Rural Labor Force Migration

Direct and Indirect
Effect of Labor

Migration on AAPI

Variable lnAAPI lnNI lnFS CCR lnAAPI

lnNI
0.0285

(0.0232)

lnFS
0.238 ***
(0.0412)

CCR
−0.0071 ***

(0.0011)

LM
0.0002 0.2241 ** 0.1813 *** −0.1194 *** −0.0055 ***

(0.0007) (0.1101) (0.0481) (0.0343) (0.00125)

lnRpop 0.589 *** −0.1964 ** −0.0283 −0.0159 0.639 ***
(0.153) (0.0907) (0.0396) (0.0282) (0.142)

lnAoutput 0.212 *** 0.8540 *** 0.2690 *** 0.0207 0.186 ***
(0.0439) (0.07462) (0.0326) (0.0232) (0.0406)

lnMpower 0.00257 0.3238 *** 0.0898 * −0.0176 0.0093
(0.0148) (0.1084) (0.0474) (0.0338) (0.0130)

lnIrrigation −0.0358 0.2019 *** 0.0782 *** −0.0163 −0.0198
(0.0230) (0.0443) (0.0194) (0.0138) (0.0192)

Constant
−1.965 *** −0.9428 * 0.4365 ** 4.2857 *** −2.111 ***

(0.454) (0.5652) (0.2471) (0.1761) (0.449)
Fixed location control control control control control

Fixed time control control control control control
R-sq 0.317 0.6038 0.3667 0.0214 0.369
rho 0.9665 0.7251 0.6746 0.8581 0.9525

Observations 759 759 759 759 913
Number of ids 69 69 69 69 83

Direct effect Indirect effect (aggregated) Total effect
−0.0055 0.0440 0.0385

1 Abbreviations are used for the following variables: logarithmic comprehensive index of agricultural air pol-
lution (lnAAPI), logarithmic non-farm income (lnNI), logarithmic farmland scale(lnFS), cash crop ratio (CCR),
labor migration ratio (LM), logarithmic rural population (lnRpop), logarithmic agricultural output (lnAoutput),
logarithmic mechanical power (lnMpower), the same below. 2 The asterisks indicate different significance levels,
*** for p < 0.01, ** for p < 0.05, and * for p < 0.1. 3 Content in brackets is the standard error.
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Table 5. Heterogeneity analysis: results of mediating effect model analysis in Hunan Province.

Model

3-1 3-2 3-3 3-4 3-5

Benchmark Model
Mediation Test of the Income, Scale, and Crop-Planting Structure

Effect of Rural Labor Force Migration

Direct and Indirect
Effect of Labor

Migration on AAPI

variable lnAAPI lnNI lnFS CCR lnAAPI
lnNI 0.393 **

(0.173)
lnFS 0.0836

(0.0710)
CCR −0.0113 ***

(0.0021)
LM 0.0028 ** 0.0906 ** 0.1482 *** −0.0109 0.0001

(0.0011) (0.0371) (0.0241) (0.0175) (0.0021)
lnRpop 0.0247 −0.0021 −0.0375 * −0.2061 0.00644

(0.0182) (0.0409) (0.0202) (0.0193) (0.0168)
lnAoutput 0.136 1.4673 *** 0.3131 *** 0.1509 *** 0.197 **

(0.0878) (0.0373) (0.0242) (0.0176) (0.0828)
lnMpower 0.247 ** 0.1833 *** −0.0176 0.0035 0.253 ***

(0.111) (0.0446) (0.0290) (0.0211) (0.0945)
lnIrrigation 0.0703 ** −0.0181 −0.0627 ** −0.0134 0.0428

(0.0350) (0.0395) (0.0256) (0.0187) (0.0345)
Constant −1.205* −1.7712 *** 0.3872 *** 3.3162 *** −2.151 ***

(0.619) (0.2092) (0.1358) (0.0988) (0.788)
Fixed location control control control control control

Fixed time control control control control control
R-sq 0.488 0.8456 0.3429 0.1714 0.553
rho 0.9583 0.9723 0.8378 0.9007 0.9511

Observations 913 913 913 913 759
Number of ids 83 83 83 83 69

Direct effect Indirect effect (aggregated) Total effect
Not

significant 0.0356 0.0356

1 Abbreviations are used for the following variables: logarithmic comprehensive index of agricultural air pol-
lution (lnAAPI), logarithmic non-farm income (lnNI), logarithmic farmland scale(lnFS), cash crop ratio (CCR),
labor migration ratio (LM), logarithmic rural population (lnRpop), logarithmic agricultural output (lnAoutput),
logarithmic mechanical power (lnMpower), the same below. 2 The asterisks indicate different significance levels,
*** for p < 0.01, ** for p < 0.05, and * for p < 0.1. 3 Content in brackets is the standard error.

4.2.1. Benchmark Model Test of Hubei and Hunan Provinces, Separately

In the Model (2-1) and (3-1), the coefficients of the rural labor force migration variables
on the AAPI are both positive, but in Hubei, it is not significant. Moreover, rural labor
migration in counties in Hunan is higher than that in Hubei, the coefficient of rural labor
migration variables in counties on the pollution index in Hubei Province is higher by
0.0026% than that in Hunan Province as a result.

4.2.2. Analysis of the Mediation Variables

In Model (2-2) and (2-3) of Hubei Province, we showed that the income intermediary
variables and scale mediation variable coefficient of rural labor migration are significant,
0.2241 and 0.1813, and Model (3-2) and (3-3) of Hunan Province present that the coefficients
of the income mediation variable and scale mediation variable are 0.0906 and 0.1482. The
income effect and scale effect of rural labor migration in the two provinces are likewise
significant, which indicates that the migration of rural labor force has also increased the
household income and the rural per-capita cultivated land area. However, the difference
lies in that the crop-planting structure effect of the counties in Hunan Province is negative
but not significant; meanwhile, the structure effect coefficient of the counties in Hubei
Province is significant negative. According to the study of Zhong (2016), it is mainly
because the crop-planting structure of Hubei Province is relatively flexible, considering that
the labor migration reduces the agricultural young and middle-aged labor force, and the
convenience of mechanical operation for replacing manpower, labor migration substantially
increases the proportion of food crops planted [20].
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4.2.3. Calculation of the Mediation and Total Effect in Hubei and Hunan Provinces

The results of counties in Hubei show that although the direct effect is negative
(−0.0055), the indirect effect is large enough to make the total effect positive (0.0385). In
other words, the migration of labor force has generally improved the level of agricultural
air pollution in Hubei Province. In addition, the income effect is not significant, and the
farmland scale effect is dominant in the indirect effect (0.0431 out of 0.044).

In Hunan Province, the results are not all alike. Only the income effect on the pollution
index is significantly positive (0.0356), while all other direct and indirect coefficients are
not. Therefore, the total effect of labor migration on AAPI is entirely explained by income
indirect effect. In other words, the migration of labor force has generally increased the
agricultural air pollution in Hunan Province through the non-farm income indirect effect.

Comparing the results of these two provinces, we can draw such a conclusion: there
are many practical factors, such as agricultural traditions, terrain, economic level, etc.,
which together lead to the difference in direct and indirect effects on pollution between the
two. However, the effect of labor migration cannot be ignored, a higher migration ratio
will lead to a more significant indirect and total effect.

Finally, in each province, the indirect and total effect of rural labor migration on
agricultural air pollution is consistent with the results from the whole sample. This indicates
that our previous analysis is generally applicable to each province, with minor differences
in indirect effects.

4.3. Preliminary Summary

In this section, we introduced and calculated an index, AAPI, to evaluated the air
pollutant emission from agricultural production activities and conducted research on the
connection between agricultural air pollution and rural labor migration. The above studies
can be summarized in Table 6.

Table 6. Summary of the pollution effect and decomposition conclusions of rural labor transfer.

Sample Direct
Effect

Indirect Effect

Total EffectIncome
Effect

Land Scale
Effect

Crop-Planting
Structure

Effect

Indirect
Effect

Total
sample −0.0030 0.0070 0.0313 Not

significant 0.0383 0.0353

Hubei province −0.0055 Not
significant 0.0431 0.0008 0.0440 0.0385

Hunan
province

Not
significant 0.0356 Not

significant
Not

significant 0.0356 0.0356

First, the increase of rural labor migration has a significant impact on both the mediator
variables of non-farm income and farmland scale, but there is a difference in the indirect
effect between the two provinces mentioned above according to our regional heterogeneity
analysis. In general, the crop-planting structure effect of rural labor migration is not
significant, but the income effect and scale effect are significant, indicating that a higher
proportion of labor migration will not increase the proportion of cash crops obviously,
but it does through the increase of non-farm income, which increases the opportunity
cost of farming and discourages the labor force to farm, leading to an acceleration of
the transfer of use rights of farmland, enlarging the per-capita farming area. In addition,
certain differences occur in the rural labor migration on the mediator variables between two
provinces. The income effect and scale effect of labor migration on the two provinces are
both significant, but in Hubei, the impact of labor migration on the crop-planting structure
is also significant, but the coefficient is negative; namely, in Hubei, labor migration actually
increased the proportion of food crops.
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Second, in the overall sample, a higher proportion of labor migration has exacerbated
the level of agricultural air pollution, and it mainly comes from the indirect effect, specifi-
cally, from income effect and scale effect. The direct effect of migration on pollution is less
significant compared with its indirect effect.

Third, there are heterogeneity differences between the two provinces. For the counties
in Hubei province, the migration of rural labor has less of a direct effect on agricultural air
pollution than that in Hunan; Figure 1 clearly shows this difference.

5. Conclusions and Discussion

5.1. Conclusions

Nowadays, air pollutant emissions from agriculture have increased tremendously, and
it is imperative to contain this trend in China to ensure the sustainability of agricultural
production, the health of the rural population, and the development of rural economy.

This paper mainly analyzed the effect of rural labor migration on agricultural air
pollution. First, we conducted mechanism research on the internal connection between
agricultural air pollution and rural labor migration and put forward some hypotheses.
Second, we evaluated air pollutant emission from agricultural production activities by
introducing a new index air pollution comprehensive index (AAPI), and we calculated it
with the data from counties in Hubei and Hunan. Lastly, we used the empirical method to
examine the hypotheses above and obtained some conclusions.

We found that the increase of labor migration could intensify the air pollution dis-
charged from agricultural activity by changing the following factors: the supply of labor
force in the agricultural sector, the budget line of rural residents, and the scale of crop
farming and planting structure; among them, the income and scale factor plays the major
role. However, there is a difference in the indirect total effect between two provinces
according to our regional heterogeneity analysis.

We attempt to propose some policy implications from the studies above. The intrinsic
driving force of rural labor force migration lies in the surplus of labor force and the gap
between urban and rural development. Its flow trend will continue, but the rural environ-
mental protection should also not be ignored. From the study, we already know that with
the transfer of rural population, the income, and living conditions of rural residents have
been improved (mainly from family members who emigrated to the city), and the per-capita
farming scale has also increased, which will not only increase the application of chemical
fertilizer but also promote the extensive management in the agricultural production process,
resulting in more air pollution. Therefore, increasing the investment and promotion of
green agricultural production technology and providing more technical training for the
remaining farmers should be put on the agenda to alleviate the air pollution caused by
agricultural production.

5.2. Discussion

The potential theoretical contributions of this paper are as follows. First, we applied
the PCA method and used a wider catalogue to calculate a more comprehensive index to
evaluate agricultural air pollution rather than focus on a certain agricultural sector or a
specific pollutant (such as nitrogen oxides and ammonia). Furthermore, the existing studies
have focused on exploring the factors influencing agricultural air pollution from a specific
and ecological perspective, but there has been an absence of mechanism studies about
sociological and economic factors behind the countryside and agricultural activities. This
paper could be a necessary supplement to this field.

This paper also has some study limitations. The data collected from Hubei and Hunan
provinces are still insufficient to comprehensively measure the air pollution of agricultural
production, so are the relevant pollution calculating coefficients and index. Further research
is needed in these aspects. In addition, the mediating effect model we used in this paper is
still an imperfect method for this research. The causal steps approach model is the most
commonly used and convenient method compared with other mediating effect models,
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but there must be a situation in which the direct and indirect effects are similar or have
opposite symbols and even affect the overall relationship between dependent variables
and independent variables. Therefore, the stepwise test method may miss some actual
intermediary effects.
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Abstract: This study investigates the environmental Kuznets curve (EKC) for haze in 31 cities and
provinces across China using the spatial data for a period of 15 years, from 2000 to 2014. We
utilized the geographically weighted regression (GWR) model to consider the spatial non-stationary
characteristics of the air quality in a vast territory. This approach allowed us to verify the region-
specific characteristics, while the global model estimated the average relationship across the entire
nation. Although the EKC for haze was statistically significant in the global models, the results
only confirmed the existence of an EKC between the overall air quality and economic performance.
Thus, it was difficult to determine the regional differences in an EKC. The results of the GWR model
found the spatial variability of each variable and showed significant spatial heterogeneity in the EKC
across regions. Although six regions—Beijing, Gansu, Heilongjiang, Jiangxi, Jilin, Liaoning, Shanghai,
Tianjin, Xinjiang, and Zhejiang—showed inverted U-shaped EKCs, these were only statistically
significant in three big cities—Beijing, Tianjin, and Shanghai. The results demonstrated no EKCs
in the other 25 provinces and cities. These results provide strong empirical evidence that there is
significant spatial heterogeneity in the EKC of China. Thus, a more regionally specialized air pollution
control policy is required to create an effective policy for balanced economic growth in China.

Keywords: China; environmental Kuznets curve; geographically weighted regression; haze; spatial
heterogeneity

1. Introduction

China has emerged as one of the largest and most robust economies in the world.
The ruling Chinese Communist Party made the decision to open up the country for trade
and investment, as well as adopting a limited number of capitalist strategies. This is a
natural progression toward a better model for regional trade and local growth [1]; however,
regional discrepancies in sustainable development in China are among the barriers to future
success [2].

The rapid industrialization in China has caused side effects, with the leading issue
being environmental challenges. Currently, the most prominent environmental issue is
air pollution. The haze phenomenon has significantly and negatively affected economic
performance and contributes to environmental pollution in China. Haze is defined as the
introduction of particulate matter (PM), biological molecules, and other contaminants into
the atmosphere. The presence of excess suspended matter in the atmosphere can disrupt
the daily life of humans. These contaminants usually negatively affect the health of humans
and other living organisms. Furthermore, they damage crops, natural environments, and
built environments [3,4]. It can also affect the economic performance of a region by causing
declining employee performance, haze-related illnesses, slower crop growth, low visibility,
and other issues [4].

Atmosphere 2022, 13, 806. https://doi.org/10.3390/atmos13050806 https://www.mdpi.com/journal/atmosphere
257



Atmosphere 2022, 13, 806

In recent years, large cities in China have frequently experienced severe fog and haze
episodes that disrupt visibility. There have been rapid changes in the patterns of haze and
fog occurrence in these areas over the past several decades. For example, in research about
the occurrence of haze and fog in the North China Plain, the occurrence of haze and fog
was quite low from the 1950s to the 1980s but reached a peak from 1981 to 1998 [4,5]. Since
2000, haze pollution has shown a rapid increase; one of the reasons for this is that China’s
policy of opening up stimulates the evolution of industries. The haze problem became
more noticeable in the mid-2000s, when environmentalists observed that the haze was not
associated with the changing of the seasons. Instead, these particles remained in the air
perpetually. In 2013, the Chinese Academy of Sciences documented the occurrence of a
severe episode of haze, which affected northern and eastern China.

One of the most affected places was Beijing, which is the administrative, economic,
and cultural center of China, meaning that the negative effects there far outweighed those in
other regions. Beijing’s high population density means that the people affected outnumber
those affected anywhere else in the country. In Beijing, air pollution index (API) values of
900 have been recorded, making the environment toxic to its local residents (an API of 0–50
is considered good, 50–100 is moderate, 101–200 is unhealthy, 201–300 is very unhealthy,
and anything above 300 is classified as hazardous). In terms of economic losses, Beijing
lost approximately 254 million USD, which was about 0.008% of the total gross domestic
product (GDP) of Beijing in 2013 [6]. Previous studies have examined the effects of haze
on China’s economy and most found that haze reduces economic performance as well as
human resources [7–10].

Previous studies have tried to investigate the existence of an environmental Kuznets
curve (EKC) in China to show the relationship between economic development and envi-
ronmental performance and understand the current pollution status [11–19]. Scholars have
analyzed the EKC for haze using data regarding the concentrations of PM, carbon dioxide
(CO2), sulfur dioxide (SO2), and nitrous oxide in the atmosphere [20–23]. (PM is classified
into different sizes, the most commonly measured of which are PM10 and PM2.5. There
has been a significant debate between researchers as to which is the better measurement
system, but measuring PM2.5 appears to be the preferred method in China as it has been
found to be the dominant polluting agent). To investigate the heterogeneity of the EKC
across regions in China, some studies have considered the spatial differences in the EKC
and found significant spatial heterogeneity [16,20–25]. However, most studies focused on a
certain pollutant, such as SO2 or PM; thus, it was difficult to discover the EKC between
overall air quality and economic performance.

Scholars have also attempted to identify the determinants of haze [7–10,26,27]. The
energy structure is one of the crucial factors affecting haze. Scholars have suggested that
the heavy usage of coal, renewable energy, and energy consumption have an influence on
haze; however, the empirical evidence is still controversial [27–29]. Other socio-economic
factors, such as income, human capital, trade openness, transportation, and population
density, have also been considered as determinants of haze [16–19]. Moreover, if we widen
the perspective, we should not overlook the impact of meteorology and stable atmospheric
conditions on atmospheric pollution. For example, the amount of rainfall and temperature
have been regarded as factors that influence the haze problem [25].

This study seeks to determine which economic factors influence haze and which re-
gions have an EKC and turning point. Considering the spatial heterogeneity of economic
growth and the haze phenomenon, this study applies the geographically weighted regres-
sion (GWR) model to investigate the EKC between haze and economic determinants for 31
Chinese cities. The overall air-quality data API and factors including the gross regional
product (GRP), trade openness, and population density are used for analysis. After deter-
mining that the EKC has an inverted U, we verify and calculate the turning point, i.e., the
decline in pollutants in line with increased economic performance [30]. The results from the
GWR approach, which is suitable for considering the spatial non-stationary characteristics
in vast territories, can provide a better understanding of the spatial heterogeneity of the
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haze problem in provinces in China with visual evidence. Moreover, the estimation of the
turning points of the EKCs using the GWR estimations can be used to identify trends in
sustainable development after the analysis periods. Through these processes, this study de-
termines whether any stronger measures should be undertaken by the Chinese government
to curb the haze issue, as it may affect the livelihood of the nation.

2. Materials and Methods

In this study, we utilized an EKC model to study the haze in China using a database
of 31 cities and provinces across China from the period 2000 to 2014. To verify whether
there was a significant difference in the regional economic capacity or innovation ability
during the same period, we first applied global regression models to grasp the overall EKC
of the entire country. We adopted the EKC model, as modified by Kang et al., to study
the relationships among CO2 emissions in China [31]. Interestingly, this study adopted
the API, which is an overall measure of pollution that encompasses particles of all sizes,
to determine the level of haze for each region, unlike previous studies, which used data
regarding each pollutant. The API has been recommended as a sustainable indicator in
air-quality assessment since it can overcome difficulties in interpretation of research results
and problems of subjective classification of air quality [32].

In addition to the EKC analysis of haze in the form of API readings, we included
the possible determinants of the environmental elements of haze—per capita GRP, trade
openness, and population density—-in the analysis. To verify the inverted U shape, per
capita GRP and its square were included in the model. Trade openness represents the
degree of economic openness, which reflects economic competitiveness and the flow of
goods and services. Previous research insisted that the opening up of the economy by
the Chinese government affected the degree of pollution [33]. This study also considers
population density as the indirect measure of active economic activities [25]. Data regarding
the GRP, trade openness, and population density were taken from the China Compendium
of Statistics for the period 2000–2014 and the China Statistical Yearbook [34]. The API levels
for all 31 cities in China were obtained from China’s Environmental Agency.

The EKC model used in this study is given as follows:

ln(Yit) = αit + β1 ln(PGRPit) + β2 ln(PGRPit)
2 + β3 ln(TRit) + β4 ln(PDit) + εit (1)

where Yit is the haze level measured in API per capita, PGRP stands for per capita GRP, TR
is the trade openness expressed as ratio of the gross export and import value to the GRP,
and PD represents the population density in each of the 31 cities in China. i and t represent
the region- and time-specific data.

The following models can be utilized for analysis to consider autocorrelation within
panels and cross-sectional correlation and heteroskedasticity across panels: the pooled
ordinary least squares (OLS) model, the fixed- and random-effects models, and the gen-
eralized least squares (GLS) model. This is because there can be subtle or no changes in
a geographical area over time, which can cause homogeneity in the parameters of each
spatial unit. An F-test, a Breush–Pagan Lagrange multiplier (LM) test, and a Hausman
diagnostic test were conducted to determine which model provided the best fit for the data.
Pesaran’s test was also conducted to determine cross-sectional dependence.

Next, considering the spatial heterogeneity of each city and province, we performed a
local linear regression using the GWR model. The GWR model has been used in earlier
studies, such as in the Hedonic Pricing Model. The GWR model is also known as the local
model and shows regression coefficients that vary across space, showing the spatial varia-
tions and relationships between the environmental determinants and their environmental
factors via a local estimation done. The results allow us to understand how the regional
determinants at a provincial level affect EKCs [2,21].

According to Wheeler [35], the GWR model is based on the linear regression model
and assumes that the regression coefficient is a function of the observation point location.
The GWR model focuses on the local geography, making it locally weighted. Thus, its

259



Atmosphere 2022, 13, 806

performance from the perspective of spatial econometrics can be illustrated by using spatial
heterogeneity. For the GWR model, we followed Fotheringham et al.’s approach [36] to
consider regions expressed differently from the global models. This model expands the
global model as follows:

Yi = β0(ui, vi) + ∑ βk(ui, vi)Xik + εi (2)

where Yi and Xik are the dependent and independent variables, respectively. (ui, vi) repre-
sents the location i of the observation and εi is the error term. The estimation for the GWR
model is given as follows:

β′ =
[
XTW(ui, vi)X

]−1
XTW(ui, vi)Y. (3)

where W(ui, vi) is the square matrix of the weight assigned to a location (ui, vi). X and Y
are the geographically weighted matrices of the values of the independent and dependent
variables. The matrix of the geographical weights, W(ui, vi), is as follows:

W(ui, vi) =

⎡
⎣ W1(u1, v1) 0 0

0 · · · 0
0 0 Wn(u1, v1)

⎤
⎦ (4)

The GWR model estimates the coefficients for each region, assuming that a closer
observation has a greater effect on the parameters than a more distant observation. Based
on the equations above, the specific model for the EKC can be expressed as follows:

Yit = αit + β1(ui, vi) ln(PGRPit) + β2(ui, vi) ln(PGRPit)
2 + β3(ui, vi) ln(TRit) + β4(ui, vi) ln(PDit) + εit (5)

where Yit is the per capita volume of the API in province or city i for the year t. (ui, vi)
denotes the location i’s longitude and latitude coordinates. PGRP and PGRPSQ denote the
provincial gross regional product per capita and its squared term. TR is the trade openness
expressed as the ratio of gross export and import value to the GRP. PD is population density
(in people/m2). This study utilized STATA for the global models, GWR 4 software for the
spatial models, and QGIS for the mapping process. Table 1 presents the descriptive statistics.

Table 1. Descriptive Statistics of Variables.

Variable Unit Obs. Mean Median Maximum Minimum Std. Dev.

API Index 465 294.518 307.000 365.000 168.000 48.783

PGRP 100 million
CNY 465 25,076.280 19,580.230 103,671.300 2742.070 19,679.650

TR % 465 13.929 3.600 100.220 0.001 22.425
PD Person/m2 465 414.479 263.000 4349.000 2.000 621.088

Note: The data observations for each region for 15 years are consistent with the calculation of 15 years multiplied
by 31 regions, which equals 465.

The determinant with the largest standard deviation is the PGRP, which indicates how
varied the per capita income is for different regions in China. This is also seen in the trade
openness variable, where some regions have almost no trade whatsoever and other regions
trade almost all of their products. There is also a surprisingly significant difference in the
population density across the regions, which can be attributed to the fact that China has
a large land area and some places have a more inhospitable topography, which makes it
difficult to farm and earn a living. Most of China’s population is concentrated along coastal
cities, with lower population density further inland.
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3. Results

3.1. Subsection Results of Global Models

In this study, first, we tested the global models using the EKC formulas to understand
the determinants of haze. Table 2 shows the results of the global models and the verifications
of their fitness. The results demonstrate that the F-test value rejects the null hypothesis
with a value of 210.19 with high statistical significance, and the Breush–Pagan LM test
value also rejects the null hypothesis with a value of 2727.87 with a p-value of 0.000.
Thus, both the fixed- and the random-effects model showed a better fit than the simple
OLS model. However, the results of the Pesaran’s test for the cross-sectional dependence
show cross-sectional dependence in the models. In this regard, this study applied the
GLS model to consider the autocorrelation within panels, cross-sectional correlation, and
heteroskedasticity across panels.

Table 2. Estimation Results of Global Models.

Variable Pool OLS FE RE GLS

Intercept 5.518 ***
(1.167)

6.356 ***
(0.539)

5.938 ***
(0.376)

5.675 ***
(0.165)

ln(PGRPit)
0.156

(0.236)
−0.008
(0.078)

0.032
(0.069)

0.122 ***
(0.034)

ln(PGRPit)2 −0.013
(0.007094)

−0.003
(0.004)

−0.005
(0.004)

−0.011 ***
(0.002)

ln(TRit)
0.014 *
(0.007)

0.001
(0.004)

0.001
(0.004)

0.013 ***
(0.001)

ln(PDit)
−0.012
(0.009)

−0.059
(0.046)

−0.013
(0.019)

−0.011 ***
(0.001)

R2 0.168 0.090 0.150

F-test/Breush–Pagan LM test 210.19 *** 2727.87 ***

Pesaran’s test 4.041 *** 4.948 ***

Note: ***, and * indicate significance at the 1% and 10% levels, respectively.

The results from the GLS model confirm the existence of an EKC in overall cities and
provinces across China for the period 2000–2014. The PGRP variable shows a positive
coefficient of 0.122, while the PGRP square’s coefficient is negative, and both variables are
statistically significant. These results indicate that significant EKCs have inverted U-shapes.
Moreover, the positive value of the PGDP coefficient indicates that production activities
contribute to haze concentrations; this finding supports those of previous studies, which
suggested that production activities are the main contributors to haze concentrations [25,37].
This result shows the necessity of balanced environmental regulation, even if China’s
internal policy still prioritizes economic growth.

The trade openness has a positive coefficient at the 1% confidence level. The empirical
evidence reveals that increasing trade openness results in an increase in API across China.
This result is in line with previous research, which found a negative impact of the opening-
up policy in China on haze pollution [33]. The population density variable has a negative
coefficient at the 1% confidence level. The population density result shows that increases in
population density cause a drop in API. This was an unexpected result, since population
density is one of the indirect measures of active economic activity, which contributes to the
increase in industrial emissions, including the haze phenomenon [25].

Even though the GLM model found the existence of the EKC for haze pollution, the
global model only confirmed the existence of an EKC between overall air quality and
economic performance in China. Thus, it is difficult to grasp the regional differences in
the EKC [2,21,25]. Considering the possibility of significant spatial heterogeneity in the
economic status of regions in China, it is necessary to investigate the heterogeneity of the
EKC for each region.

261



Atmosphere 2022, 13, 806

3.2. Results of Geographical Weighted Regression Models

To verify the necessity of the spatial approach, we tested the spatial variability. Table 3
presents the results of the test for the spatial variability of the GWR coefficients. The
differential criterion values are negative and highly significant, meaning that the variance
of the regression values across the different provinces in China are also extremely high.
These results demonstrate that there is significant spatial variability in terms of the model’s
selection criteria.

Table 3. Spatial Variability Test.

Variable F Diff of Criterion

Intercept 68,192.880 *** −3960.470
ln(PGRPit) 250.132 *** −1049.020
ln(PGRPit)2 1473.370 *** −1915.418

ln(TRit) 54.240 *** −379.452
ln(PDit) 1516.960 *** −1548.354

Note: Positive value of diff-criterion indicates that there is no spatial variability in terms of model selection criteria.
*** indicates significance at the 1% level.

The spatial variability test results provide strong evidence that the EKCs are not always
constant but, instead, vary among provinces or cities in China. The main contributors to the
PM2.5 in haze are coal and fossil-fuel burning, especially from vehicles and energy-intensive
industries, and they are thus likely to be linked to the different levels of economic activity
in a certain city [38]. However, the previous global OLS models could not capture these
spatial differences, since the global model estimates the average relationships among all
the provinces or cities in China to be in line with the findings of previous studies [21,25].

Table 4 presents the estimation results of the GWR model. The GWR parameter
estimates for the independent variables show the distribution of the coefficients across
regions that vary widely over space. The Akaike information criterion (AIC) value of the
GWR model is also lower, at −1461.025, than the OLS value, of −324.234. Thus, the GWR
model is superior to the global model.

Table 4. Estimation Results of GWR Model.

Variable Min LQ Med UQ Max

Intercept 0.196 4.240 7.348 9.667 16.167
ln(PGRPit) −1.585 −0.726 −0.206 0.443 1.120
ln(PGRPit)2 −0.053 −0.026 0.008 0.032 0.079

ln(TRit) 0.031 −1.099 −0.074 0.013 0.622
ln(PDit) −1.099 −0.325 0.016 0.047 0.147

N 465
Adjusted R2 0.939

AIC −1461.025

The GWR model results confirm the spatial variability and indicate that there is
significant spatial heterogeneity in the EKCs. In this regard, we investigated the existence
of the EKC between the economic performance and the haze using the local coefficients
from the GWR model for each of the 31 regions. One of the advantages of the GWR model is
that the estimated results are spatially displayed, based on the resolution of the data used in
the study. Since, in this this study, we conducted province- or city-level local regression, it
is possible to display all the results using a provincial or municipal map of China generated
by QGIS. Figure 1 presents the illustrated spatial variations in the EKC for haze in China.
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Figure 1. EKC for the haze in China.

Figure 1 shows the significant spatial heterogeneity of the EKC for haze in China. We
colored the regions based on the significance and shape of their EKC (i.e., the symbols β1
and β2 in Equation (5)), which was calculated by the GWR estimation results. We verified
the EKCs based on the sign and significance of the coefficients of the PGRP and the squared
term of the PGRP variables. There were four cases based on the statistical significance and
sign of the coefficients. Specifically, if the coefficient of β1 had a plus sign and that of β2 had
a minus sign, the EKC had an inverted U-shape. Moreover, if β1 and β2 were statistically
significant, it was possible to confirm the existence of EKCs in certain regions.

Six regions—Beijing, Gansu, Heilongjiang, Jiangxi, Jilin, Liaoning, Shanghai, Tian-
jin, Xinjiang, and Zhejiang—show inverted U-shaped EKCs. However, only three big
cities (dark green colored regions in Figure 1)—Beijing, Tianjin, and Shanghai—show a
statistically significant inverted U-shape between air quality and economic performance.
According to the results, there are no EKCs in the other 25 provinces and cities, and only
three regions—Anhui, Jiangsu, and Ningxia—are statistically significant. These findings
support the necessity of balanced environmental regulation, even if China’s internal policy
still prioritizes economic growth. When considering these spatial analysis results, it is
important to note that the initial control policies are currently working in certain big cities,
such as, Beijing, Shanghai, and Tianjin, albeit to a lesser degree of effectiveness. However, it
is necessary to perform a long-term analysis of the EKCs for haze, especially in statistically
non-significant regions.
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3.3. Estimation of the Turning Points of the EKCs for Haze

Based on the empirical results from the GWR analyses, it was possible to calculate the
turning points of the EKCs for the haze in China. We used local coefficients of the three
regions that showed a significant EKC for haze. Table 5 presents the ratio of the actual
GRP per population in 2017 to the calculated turning point based on the analytical results
regarding the EKC for each province or city.

Table 5. Calculated Turning Points of EKC; unit: 100 million CNY.

Region 2017 PGRP Ln (2017 PGRP) Turning Point Ratio

Beijing 128,994 11.768 2.944 1.334
Tianjin 118,944 11.686 2.735 1.306

Shanghai 126,634 11.749 1.205 1.114
Note: The turning point is the calculated inflection point of EKCs from the GWR results. The ratio is calculated by
equation: 1 + (PCGRP2017 − Turning point)/Turning point. The ratio 1.000 means that the PGRP in 2017 reached
the turning point. The turning point is calculated only for the regions with significant EKCs—Beijing, Tianjin, and
Shanghai—that show a statistically significant inverted U-shape.

From these estimates, it is possible to simulate the trend in sustainable development
after the analysis periods. Specifically, a ratio over 1.00 indicates that the GRP per popula-
tion reached a calculated turning point. The pollutants start to decrease after this point,
along with economic growth; therefore, it is possible to understand the condition of pol-
lutants on the EKC of each province or city. Since the GWR results indicate significant
spatial heterogeneity, only three big cities—Beijing, Tianjin, and Shanghai—passed their
turning points. Their ratios were 1.334, 1.306, and 1.114, respectively. In these developed
cities, significant political efforts and investment were made to improve the environmental
quality. Consequently, these cities are more likely to achieve sustainable development than
other regions.

In light of these findings, it is still difficult to define the relationship between economic
growth and haze for other provinces or cities. It is possible that there are different shapes,
not only for EKCs, but also for other relationships, such as linear relationships. Thus, a
long-term analysis is needed for these provinces or cities, in order to capture the graph
shapes of the relationship between economic growth and environmental pollutants.

4. Conclusions and Policy Recommendation

This study examined the EKC in China, focusing on both average relationships and
spatial heterogeneity. The study applied the global models and the GWR model using the
data regarding the haze in about 31 provinces or cities in China from 2000 to 2014. Using
the GWR model, we explored the non-stationary spatial characteristics, since this model
can be fitted to each data point and weighs all the observations as functions of distance
from the regression point. As a result, it was possible to obtain local coefficients that varied
spatially [20–25]. Based on the results of the GWR model, this study verified the existence
of the EKC among regions and calculated the turning point by applying the real 2017 GRP
per population data.

This study provided convincing evidence that the GWR model is valid for explaining
the spatial heterogeneity of the EKC in China more effectively than the global models.
The spatial variability test also confirmed that all the variables used in this study have
spatial variability. The GWR model could determine the existence of an EKC for the haze
and its spatial variations in China. Based on the empirical results from the GWR analysis,
this study visualized the local coefficients and estimated the turning points of the EKCs.
The results provided empirical evidence that only the three most developed regions in
China—Beijing, Tianjin, and Shanghai—have statistically significant EKCs. Furthermore,
the estimated turning points of the EKCs show that Beijing, Tianjin, and Shanghai have
already passed their turning points. However, it was difficult to find an EKC for the
remaining 28 provinces and cities. Moreover, the results indicated that there was no EKC
for the haze in the three regions—Anhui, Jiangsu, and Ningxia.
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The empirical results from the research period show that although three developed
cities—Beijing, Tianjin, and Shanghai—showed a positive relationship between economic
and environmental performance, while other regions were still suffering from the vicious
cycle of air pollution. To achieve harmony between t environmental and economic de-
velopment, it is necessary to find an effective way to achieve balanced economic growth
by considering the spatial heterogeneity of the levels of development and pollution. The
Chinese authorities are trying to find a way to balance productivity with pressing environ-
mental issues through their policies and subsequent economic plans, in order to ensure the
sustainability of China’s economy. For example, there are environmental regulations re-
garding air pollution in China, such as the Two-Control Zone policy, which was established
in 1998 to define acid rain control zones in the southern regions and SO2 control zones in the
north-eastern regions in China. Moreover, the Chinese government announced regulations
on environmental protection, such as the Taxation Law on Environmental Protection and
the Law on the Prevention and Treatment of Water Pollution to consider environmental
degradation [39].

The empirical results of the current study show that the policies and laws regarding
the prevention and control of atmospheric pollution need to be improved. Stronger macroe-
conomic regulations and control measures to promote the transformation of enterprise
development can be effective. This study found significant spatial heterogeneity, confirm-
ing the EKC relationship between air quality and economic growth only in three big cities.
In other words, most regions in China are still far from achieving sustainable development.
From these findings, region-specific policies should be established to consider regional
differences. For example, it would be effective for policymakers to tighten environmental
regulations on air pollution, especially in statistically significant no EKC regions, such as
Anhui, Jiangsu, and Ningxia. Additionally, monitoring and evaluation systems, including
the management of haze indexes, are needed to ensure long-term effectiveness. Enhancing
financial support and updating haze indexes in a timely manner can be also effective
methods to improve air quality.

In addition, the Chinese government is trying to shift the development focus to
balanced economic growth by converting the country’s energy structure [40]. As part of
these efforts, renewable energy laws and policies were established by the National Energy
Administration to improve China’s energy consumption structure. The Renewable Energy
Law is an example of these efforts [41]. Since one of the main sources of haze is coal
consumption, reforming the old pattern of long-term economic transformation from a
“high-carbon” to a “low-carbon” economy will be effective [28]. To change the original
energy consumption structure, active step-by-step actions must be taken to explore new
low-pollution energy sources to reduce the consumption of fossil fuels [42].

Although this study provides empirical evidence for the spatial heterogeneity of the
EKC for the haze in China, there is still room for improvement. This study applied the haze
levels measured in API per capita in one representative station of each region. Estimation
using API microdata in specific monitoring stations can be more effective for grasping
the spatial heterogeneity of the EKC in China. Moreover, the factors that affect haze were
not comprehensively evaluated in this study. For example, energy structure, industrial
structure, capital intensity, and environmental management capacities can be considered.
These factors were not evaluated mostly due to the existence of multicollinearity and data
availability. Thus, it may be necessary to investigate more socio-economic factors and spec-
ify them both theoretically and statistically to design effective policies to achieve balanced
economic growth in China. Furthermore, further studies could investigate the relationship
between environmental quality and economic performance with more advanced models
and data, such as through the use of the Distance between Indices of Simulation and
Observation, which is a new comprehensive index presenting the overall performances of
different models [43,44]. A comprehensive approach to determining regional trends and
the current state of pollution will help to inform future policy on sustainable development
in China.
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Abstract: Global warming and human activities have intensified the duration, frequency, and extent
of climatic extremes. The projected rise in global mean annual temperature of 1.5 ◦C/2 ◦C is thought
to have severe impacts on the population exposed to droughts. Although these impacts on humans
have been widely explored, the impacts associated with the cropland exposed to droughts have not
been widely investigated. Here, we have examined the spatiotemporal pattern of China’s drought
conditions and cropland exposure to droughts under global warming of 1.5 ◦C and 2 ◦C, along with
the avoided impacts (as evaluated by the cropland exposure to droughts) when limiting the global
warming to 1.5 ◦C instead of 2 ◦C. Results suggest that compared to the reference period (1995–2014),
drought conditions will be alleviated when the projected rise in mean global temperature is limited
to 1.5 ◦C rather than 2.0 ◦C. Although severe droughts tend to be mainly distributed in northwestern
China, drought severities are increasing in southern China, especially in the southeastern region. In
addition, the total cropland exposure to droughts across China exhibits an increasing trend in response
to the 0.5 ◦C of additional global warming, especially in northwestern China and Huang−Huai−Hai
region. If global warming could be limited to 1.5 ◦C, the avoided impact will exceed 30%, especially
in northwestern China, southwestern China, and the Huang−Huai−Hai Plain. Furthermore, the
rising cropland exposure to droughts under the 2 ◦C global warming is likely to be triggered by the
rising frequencies of moderate and extreme droughts. Therefore, climate mitigation strategies are
urgently needed to keep the global temperature rise below 1.5 ◦C, for the future sustainability of
China’s cropland.

Keywords: drought; cropland; CMIP6; exposure; scPDSI; China

1. Introduction

A 1.09 ◦C increase in global surface temperature was observed in 2011–2020, as
compared to 1850–1900 [1]. The rate of global warming is believed to exceed the bounds of
natural variability [2]. Substantial changes brought by this unprecedented rate of global
warming are happening in the climatic extremes (e.g., droughts, floods, and typhoon) [1,3].
For example, the widespread occurrences of droughts around the world in the 21st century
due to occasional anomalies in climatic variables, as well as non−climatic factors, are
becoming increasingly disastrous to mankind (e.g., causing damage to crops and raising
serious concerns about agricultural production) [4,5]. These high drought risks accelerated
by rapid global warming around the world are consequently challenging water and food
security, especially in those regions with dense populations [6]. This concern is not only
limited to historical observations but also to future projections. The latest CMIP6 models
projections reaffirm the increase of up to 200% in the widespread drying and severe drought
over most of the world under moderate–high emissions scenarios [7]. Meanwhile, according
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to several model projections, greenhouse gas−induced global warming may lead to more
severe and widespread drought conditions [8,9].

As a complex phenomenon, drought can be influenced by a variety of factors and may
occur almost anywhere in the world. Due to the complex terrain and climate characteristics,
China has been frequently threatened by drought events on multiple timescales [10–12].
Yu, et al. [13] reported that the drought severity in China had been aggravating since the
late 1990s, and the dry areas have been expanding. Zhou, et al. [14] found that more
frequent recurrence of extreme droughts in large geographical regions of China has gravely
affected the livelihoods of farming communities by severing agricultural yields. In the
context of global warming, the frequency and duration of severe droughts are increasing
not only in dry regions, but also in humid and sub−humid regions. For example, in the
spring of 2011, the middle and lower reaches of the Yangtze River experienced the worst
drought since 1954, causing serious damage to local agriculture [15]. In 2011–2012, Yunnan
suffered from the most severe drought, which lasted for almost three years and resulted
in huge economic losses [16]. The frequent occurrence and intensification of droughts
are increasingly threatening food security and the ecological environment, as well as the
development of the economy in our country. Therefore, a comprehensive assessment of
climate change-induced droughts is urgently needed for providing reliable information for
policymakers in climate mitigation and adaptation [17].

However, until recently, not much potentially reliable information on drought miti-
gation and adaptation has been suggested to combat the damage of drought to China’s
agriculture. Some scholars developed drought indices to explore the mechanism and
factors of drought occurrence and evolution in China in order to provide more accurate
and comparable information on spatiotemporal variations in droughts for the farming
communities [10,18–20]. A drought index is a necessary tool for drought assessment, for
its importance in defining drought parameters and quantifying drought on different time
scales. Until now, hundreds of drought indices have been proposed in the world [21].
Among the numerous drought indices, the Palmer Drought Severity Index (PDSI), the
Standardized Precipitation Index (SPI), and the Standardized Precipitation Evapotran-
spiration Index (SPEI) can precisely reflect the meteorological drought and evaluate the
agricultural drought [22–24]. The SPI, as a single variable index, is easy to compute and has
a variety of time scales, which allows it to monitor both short−term drought and long-term
drought [22,25]. However, it is also hard for the SPI to identify diverse categories of drought
because it only considers the P and runoff (RO) [26]. The SPEI has been broadly used for
characterizing multi-category drought for drought monitoring and projection, however,
there are still some limitations for SPEI applications in different climate regions [27]. An
improvement on SPI, SPEI measures drought severity mainly in terms of the P and PET,
but research indicates that variation exists in the relations between P and PET in different
climate regions [28]. Although PET plays an essential role in detecting water deficit, merely
relying on it for detailing droughts can lead to biases in water-limited regions [29]. The
PDSI has always been one of the most prominent indices for its ability of considering
multiple surface water variants and precisely quantifying long-term changes in drought
and aridity in the world [21,22,30]. Unlike the simple water balance represented in SPEI,
PDSI adopts a two-layer bucket model to quantify the cumulative moisture departure in
estimating the surface water–energy balance. Further, Dai, et al. [31] showed that the PDSI
values are significantly correlated with measured soil moisture. Most importantly, actual
evaporation is often determined, to a large degree, by the availability of soil moisture, not
by PET. However, the original PDSI index still has some shortcomings. For example, it has
strong dependence on data calibration and limitations in spatial comparability [32–34]. To
overcome these deficiencies, the self-calibrating PDSI (scPDSI) was created in 2004 [34].
In comparison to the original PDSI, scPDSI can calibrate the PDSI by using local condi-
tions. The scPDSI’s superiority of reducing value range has already been proved on a
global scale since 2011 [30], and it was found to perform better than the original PDSI in
Europe and North America [35,36]. Moreover, by comparing seven drought indices in
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China, Yang, et al. [37] found the scPDSI was the best at capturing the droughts in China.
Therefore, in this study, we chose the scPDSI to detect the drought conditions.

Drought has multiple eco-hydrological and socioeconomic impacts on human society,
such as increasing wildfire risks, water scarcity, loss of crops and livestock, and raising
food prices [38]. Meanwhile, with the acceleration of population growth and urbanization,
human settlements and livelihoods are expected to be more frequently exposed to droughts
than any time in the past [39]. Exposure to droughts is not only restricted to people
but also affects the entire ecosystem, for example, environmental resources, economic,
social, and cultural assets that could be adversely affected [40]. However, more attention
from previous studies has been paid to drought and its impacts on population [17,41,42].
Although droughts are causing severe impacts on agriculture in the 21st century, cropland
exposure to droughts in China is far less studied. The cropland affected by drought was
larger than 200 thousand km2 per year and the annual direct economic loss was larger
than 34 billion yuan during 1984–2018 [43]. Food security will continue to be a global
concern in the future, given crop yield failure as well as increasing water scarcity [44,45].
Some of the drought-prone regions of China where livelihoods are highly dependent on
rain-fed agriculture would directly face challenges of water and food security [46]. Thus,
investigating the cropland exposure to droughts in such drought-prone areas in China is
potentially significant to ensure the future food security.

Global warming has become an increasing concern in recent years. Previous studies
showed that climate change would have a significant impact on global food production
and water resources, extreme weather and climate events, as well as on human health,
when global warming reached 1–2 ◦C [17]. Moreover, under the global warming of 2.0 ◦C,
extreme heat will frequently reach the tolerance thresholds of human health and agriculture
production, posing widespread and serious threats to human livelihoods as well as to the
ecological environment [6]. To reduce the climate risks, the Paris Agreement proposed
to hold the global temperature rise well below 2.0 ◦C above preindustrial levels and to
pursue efforts to limit the warming to 1.5 ◦C [47]. To meet this commitment, there have
been multiple efforts devoted to investigate the variations in climatic extremes under the
1.5 ◦C and 2.0 ◦C global warming scenarios in recent years [48–50]. The Coupled Model
Intercomparison Project (CMIP), organized by the World Climate Research Programme’s
(WCRP) Working Group on Coupled Modelling (WGCM) 20 years ago [51], is aimed at
better understanding the past, present, and future climate change rising from natural,
unforced variability or in response to changes in radiative forcings in a multi-model
context [52]. Compared with Coupled Model Intercomparison Project Phase 5 (CMIP5),
models involved in Coupled Model Intercomparison Project Phase 6 (CMIP6) additionally
considered socioeconomic factors, i.e., the shared socioeconomic pathways (SSPs). Instead
of the single representative concentration pathways (RCPs) in CMIP5, the SSPs work in
harmony with RCPs in CMIP6 under shared policy assumptions, making future scenarios
more reasonable [19,53]. Moreover, the great improvements and suitability of CMIP6
models in simulating temperature and precipitation have already been proven in China [54].
Therefore, the recently released and designed CMIP6 models are reliable sources to reveal
future climate changes in China.

In this study, we focused on three objectives: (1) to figure out the spatiotemporal
variations in droughts in China under global warming of 1.5 ◦C and 2.0 ◦C; (2) to explore
the impacts of droughts on cropland in a warmer world, namely, the variation in cropland
exposure to droughts in a 1.5 ◦C/2.0 ◦C warmer climate; and (3) to what extent the cropland
exposure to droughts could be avoided if the global warming target is limited to 1.5 ◦C
instead of 2.0 ◦C. Addressing these critical issues is useful for understanding droughts
and their long-term impacts on China’s cropland. It would further help policymakers to
develop adaptation and mitigation strategies and to strengthen societal resilience to future
drought-induced emergencies.
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2. Data and Methods

2.1. Datasets
2.1.1. Climate Observations

We obtained the monthly gridded climate variables from the National Climate Centre
of China Meteorological Administration (available from: http://data.cma.cn/ (accessed
on 1 September 2020)). These variables include temperature, precipitation, wind speed,
relative humidity, and shortwave radiation. This dataset is interpolated from more than
2400 ground-based observations, featuring a spatial resolution of 0.5◦ and spanning from
the period 1961 to 2014.

2.1.2. CMIP6 Model Simulations

Climate simulations are downloaded from the World Research Programmer’s (WCRP)
Coupled Model Intercomparison Project Phase 6 (CMIP6) (available from: https://esgf-
node.llnl.gov/projects/cmip6/ (accessed on 1 September 2020)). This involves historical
simulations for 1961–2014 and future simulations for 2015–2100 under different SSPs−RCPs.
In this study, we selected three scenarios, i.e., SSP1−2.6 (denoting a green/low-gas-emission
pathway in a sustainable world), SSP2−4.5 (denoting an intermediate−gas−emission
pathway in a moderate world), and SSP5−8.5 (denoting a high−gas−emission pathway
in a rapid−fossil fuel−evolution world) [55,56]. Here, model outputs include monthly
precipitation, temperature, wind speed, downward shortwave radiation, and relative
humidity (as listed in Table 1). Considering the availability of the required variables
and climate change scenarios, four models (CanESM5, IPSL−CM6A−LR, MIROC6, and
MRI−ESM2−0) under SSP1−2.6, SSP2−4.5, and SSP5−8.5 were applied in this research
(as listed in Table 2). CMIP6 outputs will be bias-corrected against observational data by
applying the equidistant cumulative distribution function (EDCDF, refer to Section 2.2.1 for
more detail) method and resampled to a regular 0.5◦ spatial resolution through a spatial
disaggregation method [4,57,58].

Table 1. Detailed information of parameters in climatic datasets.

Period Parameter Unit

History (1961–2014) Monthly temperature ◦C
Monthly precipitation mm
Monthly wind speed m/s

Future (2015–2100) Monthly downward
shortwave radiation W/m2

Monthly relative humidity %

Table 2. Detailed information on CMIP6 models.

Model Name Modeling Group Original Resolution

CanESM5 Centre for Climate Modeling and
Analysis, Canada 2.8125◦ × 2.7906◦

IPSL−CM6A−LR Institute Pierre Simon Laplace, France 2.5◦ × 1.2676◦

MIROC6 Atmosphere and Ocean Research
Institute, Japan 1.4063◦ × 1.4008◦

MRI-ESM2-0 Planck Meteorological Institute, Germany 1.125◦ × 1.1215◦

2.1.3. Historical and Future Land Use

The land use map of 2010 from the Data Centre of Resources and Environment, Chi-
nese Academy of Sciences (CAS) was used to represent the historical land use conditions
during the reference period (1995–2014) (available at: https://www.resdc.cn/ (accessed
on 1 September 2020)), and its spatial resolution is 1 km. The harmonized set of scenarios
developed by the Land−Use Harmonization project 2 (LUH2) was also applied to indicate
future land use (available at: https://luh.umd.edu/index.shtml (accessed on 1 September
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2020)). This dataset aims to estimate the fractional land-use patterns and land-use transi-
tions and the key agricultural management information from the year 850 to 2100 at 0.25◦
resolution [59]. The land−use type of the LUH2 dataset could be divided into five main
classes: primary vegetation (never impacted by human activities) and secondary vegetation
(recovering from human disturbance), urban land, croplands, and pastures; the cropland
includes all five crop types (e.g., C3 annual and perennial, C4 annual and perennial, and C3
nitrogen−fixing) [59]. As mentioned earlier, to spatially match the land use data with the
climate datasets, we resampled the land use data to 0.5◦ spatial resolution.

2.2. Methods
2.2.1. Bias Correction

In this study, the systematic bias between climate simulations and climate observations
is corrected by the Equidistant Cumulative Distribution Functions (EDCDF) method [57].
The EDCDF method can be written as:

xcorrected = x + F−1
oc (Fms(x))− F−1

mc (Fms(x)) (1)

Here, x is the climate variable, F is the cumulative distribution (CDF), oc denotes
observations in the training period, mc denotes model outputs in the training period, and
ms denotes model outputs in a correction period.

GCM outputs are downscaled to a common resolution of 0.5◦ by the Spatial Disag-
gregation (SD) method [4,58]. In this study, the bilinear interpolation method was applied
to interpolate the observational variables over China to GCM coarse resolution. Anomaly
fields of temperature between observational data and bias-corrected model outputs are
defined as the difference between them. For precipitation, wind speed, relative humidity,
and shortwave radiation, the anomaly field is the ratio of GCM output to observational
data. After the above process, the downscaled GCM simulations are obtained eventually.

2.2.2. The Self-Calibrating Palmer Drought Severity Index

Similar to PDSI, the computation of scPDSI involves four surface water fluxes (i.e.,
evapotranspiration, soil recharge, runoff, and water loss to the soil) [24]. Discrepancies
between the PDSI and scPDSI are the empirical constants and the duration factors. In con-
trast to PDSI, these values of the scPDSI are generated automatically based on the historical
climate information of a location, and thus have better spatial comparability. In addition,
according to previous studies, biases in the estimation of PET can lead to an overestimation
of drying trends [60,61]. Due to the strong recommendation for drought analysis in China,
we used the Penman–Monteith method to evaluate the potential evapotranspiration (PET)
in this study. More details about the computational procedures of scPDSI and PET based
on the Penman–Monteith method can refer to Wells et al. [34] and Burke et al. [8]. The
drought severity calculated by scPDSI can be categorized into four groups: near-normal
dry (−1.99 to 0), moderately dry (−2.99 to −2), severely dry (−3.99 to −3.0), and extremely
dry conditions (≤−4.0) [24]. It is universally accepted that the scPDSI ≤ −2 denotes a
drought event. Meanwhile, the drought area in this study is extracted as the ratio of the
sum of pixels where the scPDSI ≤ −2 to total pixels. The drought frequency is defined as
the ratio of the dry months (monthly scPDSI ≤ −2) to the total months [41,62].

2.2.3. The Cropland Exposure to Droughts

Cropland exposure to droughts is defined as the cropland area exposed to moderate,
severe, and extreme droughts, respectively (i.e., the frequencies of these droughts multiplied
by drought-affected cropland area, as described by various authors) [41,63]. In this study,
we compared the changes in cropland exposure to drought under 1.5 ◦C and 2 ◦C global
warming levels with the reference period (1995–2014).

273



Atmosphere 2022, 13, 1035

2.2.4. Avoided Impacts of Cropland Exposure to Droughts

The impact of cropland exposure to droughts that are avoided under a 1.5 ◦C global
warming period compared with a 2 ◦C global warming period is defined as AI [41], which
is estimated as below:

AI = C2.0−C1.5
C2.0

× 100% (2)

where AI is the avoided impact and C1.5 and C2.0 are the changes under 1.5 ◦C and 2 ◦C
global warming levels, respectively, compared with the reference period (1995–2014).

3. Results

3.1. Bias Correction of CMIP6 Models

As a result of the proven advantage of comparing different model data in previous
studies [64,65], the Taylor diagram was applied in this study to evaluate the performance
of the bias-corrected CMIP6 data against the climate observation data.

After the bias correction, annual mean temperature and annual total precipitation de-
rived from CMIP6 models are relatively consistent with climate observation data (Figure 1),
with correlation coefficients above 0.9 and a RMS (Root Mean Square) error of less than
0.4. A better simulation accuracy in both annual mean temperature and the annual to-
tal precipitation was achieved by Multi−Model Ensemble (MME) based on four CMIP6
models (Figure 1a,b). We also compared monthly mean temperature and monthly total
precipitation over 1961–2014, derived from climate observations, with climate simulations
(Figure S1). Results show that the method of MME could capture monthly variations in
temperature and precipitation quite well.

Figure 1. Taylor diagram of (a) annual mean temperature and (b) annual total precipitation for
CMIP6 outputs, muti-model ensembles, and climate observations (1961–2014) in China.

3.2. Variations and Projections of Temperature and Precipitation from 1995 to 2100 in China

Results show that the annual mean temperature of China during 1995–2014 increased
at a rate of 0.39 ◦C/10a (Figure 2a). Meanwhile, the annual total precipitation slightly
increased at a rate of 5.52 mm/10a, from 554 mm to 563 mm (Figure 2b). Projections
in future temperature and precipitation show different results under the three scenarios.
To be specific, under SSP1−2.6, the annual mean temperature is projected to rise at a
relatively higher rate (0.23 ◦C/10a) in 2015–2070 than in 2071–2100 (0.15 ◦C/10a) (Figure 2a).
Under SSP2−4.5, the annual mean temperature is projected to rise faster than that under
SSP1−2.6 (0.30 ◦C/10a for 2015–2100 (Figure 2a). A continuously amplified warming trend
is monitored with an ongoing warming rate of 0.75 ◦C/10a in 2015–2100 under SSP5−8.5
(Figure 2a). During the same period, the annual total precipitation is also projected to
increase at a rate of 6.34 mm/10a, 9.73 mm/10a, and 19.02 mm/10a, respectively under
SSP1−2.6, SSP2−4.5, and SSP5−8.5 (Figure 2b). Overall, both annual mean temperature
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and annual total precipitation are detected to increase in China during the reference period
(1995–2014) and thereafter, especially under SSP5−8.5.

Figure 2. Variations and projections in (a) annual mean temperature and (b) annual total precipitation
from 1995 to 2100 in China. Both annual mean temperature and annual total precipitation are detected
to increase in China during 1995–2100, especially under SSP5−8.5.

3.3. Variations and Projections of Drought Conditions from 1995 to 2100 in China

According to CMIP6 model simulations, a stable increase of 1.5 ◦C (2.0 ◦C) global
average temperature (above the preindustrial level) will occur in the years of 2025 (2056),
2026 (2043), and 2024 (2038) under SSP1−2.6, SSP2−4.5, and SSP5−8.5, respectively [66].
Both drought severity (scPDSI ≤ −2) in dry regions and drought areas in China are
identified by scPDSI for the reference period (1995–2014) and the 1.5 ◦C/2.0 ◦C global
warming periods under SSP1−2.6, SSP2−4.5, and SSP5−8.5, respectively (Figure 3).

Relative to the reference period (when the drought severity was estimated to be
−2.9), the general drought severity in the 1.5 ◦C global warming period will be alleviated,
albeit there were some differences in the result under SSP1−2.6, SSP2−4.5, and SSP5−8.5
(Figure 3a). The average drought severity of all three scenarios in the 1.5 ◦C global warming
period was −2.8, which is slightly lower than the drought severity in the reference period.
However, the drought severity during the 2 ◦C global warming period is higher than the
general drought severity during the 1.5 ◦C global warming period (as the averaged drought
severity of the three scenarios during the 2 ◦C global warming period was estimated to be
−2.86). Therefore, the overall drought situation in China will become worse in the global
warming period of 2.0 ◦C compared with the global warming period of 1.5 ◦C.

Changes in drought area in China (Figure 3b) are consistent with the variations in
drought severity. The drought area is projected to shrink in the global warming period
of 1.5 ◦C (as the averaged drought area of the three scenarios was estimated to be 19.6%)
and then slightly increase in the global warming period of 2.0 ◦C (as the averaged drought
area of the three scenarios was estimated to be 20.2%). The percentages of the drought
area in the 1.5 ◦C and 2.0 ◦C global warming periods are slightly lower than the reference
period (as the drought area was estimated to be 21.2%). In addition, compared with the
global warming period of 1.5 ◦C, the drought area is detected to expand in the global
warming period of 2.0 ◦C under both SSP1−2.6 and SSP2−4.5, yet the change in drought
area between the 1.5 ◦C and 2.0 ◦C global warming periods under SSP5−8.5 is not obvious.
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Figure 3. Drought severity (a) and drought area (b) in China for the reference period (1995–2014) and
the 1.5 ◦C/2.0 ◦C global warming periods under SSP1−2.6, SSP2−4.5, and SSP5−8.5.

Severe droughts (scPDSI ≤ −3) were found to be mainly distributed in northwestern
China during the reference period (1995–2014) (Figure 4a). The spatial distributions of dry
regions (defined as regions with scPDSI ≤ −2) was found to differ from each other under
the three SSPs−RCPs and two global warming periods. In the 1.5 ◦C global warming period
(Figure 4b–d), the drought severity tends to become slightly increased in northeastern China
under SSP1-2.6, but under SSP2−4.5 and SSP5−8.5, the drought severities tend to increase
more in most regions of southern China, relative to the reference period. In the 2 ◦C
global warming period (Figure 4e–g), a slight increase in drought severity is detected in
northeastern China under SSP1−2.6, relative to the reference period. Note that compared to
the reference period and the 1.5 ◦C global warming period, drought severities in the 2.0 ◦C
global warming period under SSP2−4.5 and SSP5−8.5 will be maintained in southern
China, especially in southeastern China.

Figure 5 shows the spatial distribution of drought frequency during different global
warming periods. In general, the drought frequencies will both be enhanced in northwest-
ern China in the 1.5 ◦C (Figure 5a–c) and 2 ◦C (Figure 5d–f) global warming periods, relative
to the reference period. Compared with the 1.5 ◦C global warming period, the drought
frequency will increase more in the 2 ◦C global warming period, especially in northwest-
ern China (e.g., Xinjiang, Qinghai, and Inner Mongolia). In terms of different scenarios,
under SSP1−2.6 and SSP2−4.5, the drought frequency in the northwest, southwest, and
Huang−Huai−Hai Plain will increase significantly as a whole. Under SSP5−8.5, compared
with the 1.5 ◦C global warming period, the drought frequencies in parts of northwestern
China (e.g., Inner Mongolia and Qinghai) will decrease, while the drought frequencies in
southwestern China and the Yellow River Basin will increase more.
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Figure 4. Spatial patterns of drought severity during (a) the reference period (1995–2014), (b–d) the
1.5 ◦C global warming period, and (e–g) the 2.0 ◦C global warming period.

3.4. Changes in Cropland Exposure to Droughts

Figure 6a shows the cropland exposure to droughts in the reference period (1995–2014),
and Figure 6b–g show the changes in cropland exposure to droughts during global warming
periods of 1.5 ◦C and 2.0 ◦C, relative to the reference period. Higher cropland exposure
to droughts is generally observed in northwestern and southwestern China during the
reference period. In addition, in comparison to the reference period, enhanced cropland
exposure to droughts during the two global warming periods is detected, especially during
the 2.0 ◦C global warming period. To be specific, compared to SSP1−2.6, the cropland
exposure to droughts under SSP2−4.5 will greatly increase in northwestern China under
1.5 ◦C global warming. Such an increasing trend will be amplified in northwestern China
and the Yellow River Basin under SSP5−8.5. The spatial distribution of the cropland
exposure to droughts under global warming conditions of 2.0 ◦C is similar to the situation
under global warming conditions of 1.5 ◦C, but with a more significant increasing trend,
especially under SSP2−4.5. It should be noted that the future cropland exposure will
also increase more in the Huang−Huai−Hai Plain, especially during the 2.0 ◦C global
warming period.

The total cropland exposure to droughts in the reference period is 25,347 km2 (Figure 7a).
Under global warming of 1.5 ◦C, the cropland exposure to droughts under SSP1−2.6,
SSP2−4.5, and SSP5-8.5 is 23,789 km2, 26,617 km2, and 23,256 km2, respectively (Figure 7a).
However, under the global warming of 2 ◦C, the cropland exposure to droughts decreased
to 23,141 km2 under SSP1−2.6, but increased to 32,854 km2 under SSP2−4.5 and 24,888 km2

under SSP5−8.5 (Figure 7a). In comparison to the reference period, the cropland exposure
to droughts will decrease under SSP1−2.6 and SSP5−8.5, but increase under SSP2−4.5
in both 1.5 ◦C and 2.0 ◦C global warming periods. Furthermore, if the rise in global
mean temperature is limited to 1.5 ◦C instead of 2 ◦C, the avoided impact will exceed
30%, especially in northwestern China, southwestern China, and the Huang−Huai−Hai
region (Figure 7b). In addition, Figure 7c shows the cropland exposure to different kinds of
droughts. We also found that the projected increase in cropland exposure mostly resulted
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from the moderate drought, which accounts for nearly 83.2% in the 1.5 ◦C global warming
period and 81.8% in the 2 ◦C global warming period. The projected cropland exposure to
extreme droughts only accounts for about 1.6% in the 1.5 ◦C global warming period and
2.3% in the 2 ◦C global warming period. That means, compared with the reference period
(80.6% cropland exposure to moderate drought and 1.4% cropland exposure to extreme
drought), the cropland exposure to moderate droughts and extreme droughts will increase
in both the 1.5 ◦C and 2 ◦C global warming periods.

Figure 5. Spatial patterns of drought frequency change. (a–c) The 1.5 ◦C global warming period
relative to the reference period (1995–2014), (d–f) the 2.0 ◦C global warming period relative to the
reference period (1995–2014), and (g–i) the 2.0 ◦C global warming period relative to the 1.5 ◦C global
warming period. Unit: %.
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Figure 6. Spatial distributions of the cropland exposure to droughts in the reference period (a), the
1.5 ◦C global warming period (b–d), and the 2.0 ◦C global warming period (e–g). Units: km2.

Figure 7. (a) Cropland exposure to droughts in reference period and the 1.5/2.0 ◦C global warming
periods, unit: km2; (b) Spatial distributions of the avoided impacts (the potential reduction in the
cropland exposure to droughts) in China due to 0.5 ◦C less warming (limiting the global warming to
1.5 ◦C instead of 2.0 ◦C), unit: %; (c) Cropland exposure to moderate, severe, and extreme droughts
in China in reference period and the 1.5/2.0 ◦C global warming periods, unit: %.
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4. Discussion

Most CMIP6 models suggest that there will be a rise of 1.5 ◦C and 2 ◦C in global mean
annual temperature by 2030 and 2050, respectively [66,67]. As the time is approaching, it is
urgent to determine future drought conditions and their potential impacts on agricultural
land. Our results indicate that both temperature and precipitation will increase rapidly in
the mid−to−late 21st century, especially under the moderate–high emissions scenarios.
Compared with 1.5 ◦C global warming, the overall drought severity and drought area in
China will increase more in 2 ◦C global warming, especially under SSP2−4.5 and SSP5−8.5.
This conclusion is in line with Su et al. [4] and Chen and Sun [17]. Our results also
demonstrated that droughts will still be severe in northwestern China during 1.5 ◦C and
2 ◦C global warming periods. Qin et al. [68] reached a similar conclusion, that moderate
and severe droughts will dominate in most of northwestern China during 2015–2100. This
is mainly due to the rise in temperature in northern China [67]. We, therefore, should pay
more attention to the occurrence of drought and its impacts on agricultural production
particularly in northwestern China [69]. Moreover, southern China (especially southeastern
China) is projected to witness even worse droughts during 1.5 ◦C and 2 ◦C global warming
periods, especially under the SSP2−4.5 and SSP5−8.5. This is also consistent with the
finding of Su et al. [19], which mentioned that increased changes in drought intensity
were also found in humid regions (e.g., southeastern China). As a primary component
of the water cycle, the evapotranspiration may influence the severe drought in a warmer
context, to a large extent [70]. In addition, Su et al. [4] found that the evapotranspiration
increased significantly in southern China during the 2 ◦C global warming period. Therefore,
a possible explanation is that the growth of evapotranspiration in southern China exceed
the increase in precipitation under the 2 ◦C global warming, although precipitation is
projected to increase rapidly in the global warming world [19]. It should also be noted that
the drought severity in southwestern China will also escalate in global warming periods of
1.5 ◦C and 2 ◦C. Considering the negative impact of the 2009–2012 extreme drought events
in southwestern China on the local ecosystem [71] as well as our projections, China needs
to preplan to combat the impacts posed by droughts in this region.

Agriculture is one of the most valuable fields among economic sectors, but climate
change is altering the weather and, thus, it has a direct, biophysical effect on agricultural
productivity [72]. To determine the potential impacts of drought on cropland, we calculated
the cropland exposure to drought during global warming periods of 1.5 ◦C and 2 ◦C. Similar
to the study of Spinoni et al. [73], our study also suggested that the cropland exposure to
droughts will overall increase in the global warming period of 2.0 ◦C compared with the
global warming period of 1.5 ◦C. A possible explanation is the increase in drought frequen-
cies in the 2 ◦C global warming period, especially in northwestern China. In addition, we
found that the spatial patterns of drought severities are distinct from those of cropland
exposure to droughts in global warming periods of 1.5 ◦C and 2 ◦C. The overall cropland
exposure to droughts exhibits an increasing pattern, especially in northwestern China,
southwestern China, and the Huang−Huai−Hai region, while the drought severities are
projected to increase noticeably in southwestern China and southeastern China. This may
be related to the fact that drought severities are projected to increase more in southeastern
China while drought frequencies are projected to be relatively lower. Considering there is
no apparent difference in cropland area between the future and reference period (Figure S2),
the increased cropland exposure to droughts in northwestern China, southwestern China,
and the Huang-Huai-Hai region is probably due to the increasing drought frequencies.

We also found that the projected increase in cropland exposure in the 1.5 ◦C and 2 ◦C
global warming periods mostly resulted from the moderate and extreme droughts, which is
probably rooted in the increase in drought frequencies of moderate and extreme droughts.
Considering the high incidence of moderate droughts in China and the destructive effects
brought about by extreme droughts, China urgently needs to limit the adverse impacts
on agriculture and develop strong measures to minimize the occurrences of droughts. In
addition, if the rise in global mean temperature is limited to 1.5 ◦C, instead of 2 ◦C, the
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avoided impact will exceed 30%, especially in northwestern China, southwestern China,
and Huang−Huai−Hai plain. From this perspective, the mitigation of warming by 0.5 ◦C
is crucial to reduce cropland exposure, especially exposure to extreme droughts.

5. Conclusions

Taking advantage of the bias-corrected CMIP6 model simulations and the land-use
datasets, we examined the spatiotemporal variations in drought conditions and cropland
exposure to droughts in China under 1.5 ◦C/2 ◦C global warming scenarios. Results show
that both the overall drought severity and frequency are projected to increase during the
global warming period of 2 ◦C, compared with the global warming period of 1.5 ◦C. In
terms of the distribution, the projected droughts will still dominate in northwestern China
during global warming periods of 1.5 ◦C and 2 ◦C. Interestingly, a sudden increase in the
drought severity is projected in humid, southeastern China, especially under SSP2−4.5
and SSP5−8.5, which may be related to the growth of evapotranspiration and the increase
in precipitation in southern China under the 2 ◦C global warming condition. Meanwhile,
cropland exposure to droughts exhibits an increasing trend in northwestern China, south-
western China, and the Huang−Huai−Hai region, in response to the 0.5 ◦C additional
warming. We also found that the growing cropland exposure to droughts in the 2 ◦C global
warming period is probably induced by the increased frequencies of moderate and extreme
droughts. In addition, if the rise in global mean temperature is limited to 1.5 ◦C, instead of
2 ◦C, the avoided impact (the potential reduction in the cropland exposure to droughts)
will exceed 30% in most areas in China. This study also proves the importance of mitigating
global warming by 0.5 ◦C, which is crucial for climate adaptation policies and strategies in
the 21st century.
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period (e–g).
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Abstract: The implementation of a reasonable and effective environmental regulation policy can
compensate for the dual externalities of green technology innovation and improve green innovation
efficiency. Therefore, environmental regulation policy has gradually become an effective means of
solving ecological environment problems and achieving green industrial transformation. This paper
measures the green innovation efficiency of 30 provinces in China from 2009 to 2019 using the SBM
(slacks-based measure) of super-efficiency based on the undesirable output. The dynamic panel
regression model is established to explore the impact of different environmental regulations on green
innovation efficiency and regional differences. The results reveal that the green innovation efficiency
of the 30 provinces shows a fluctuating upward trend, but that differences among provinces are
relatively significant. There is a nonlinear relationship between environmental regulation and green
innovation efficiency. The impact of command-control and market incentive environmental regula-
tions on green innovation efficiency shows inverted N-shaped and U-shaped patterns, respectively.
In different regions, the impact of environmental regulation on green innovation efficiency is also
different. In order to ensure that environmental regulation promotes green innovation efficiency,
some recommendations are proposed for the government, enterprises, and three regions, respectively.

Keywords: environmental regulation; green innovation efficiency; SBM of super-efficiency; system
GMM estimation

1. Introduction

The public nature of environmental resources and the externalities of ecological dam-
age have long made it difficult to solve the problem of sustainable economic development
solely by market mechanisms. However, green innovation technology can effectively allevi-
ate increasingly severe ecological and environmental problems, reduce pollution emissions,
and save energy consumption. It has become an essential means to promote sustainable and
green economic development in China. Green innovation efficiency is used as a measure
of green innovation technology. It is characterized by positive knowledge spillover exter-
nalities and negative environmental externalities. However, the effect is minimal, relying
only on the autonomous allocation of regional innovation resources. The implementation
of a reasonable and effective environmental regulation policy can compensate for the dual
externalities of green technology innovation and improve green innovation efficiency [1].
Therefore, environmental regulation policy has gradually become an effective means of
solving ecological environment problems and achieving green industrial transformation.

The impact mechanism of environmental regulation on green innovation efficiency is
shown in Figure 1. In order to maintain a good state of the local environment, the govern-
ment needs to adopt some environmental regulation policies, such as limiting emission
standards and technical standards for enterprises. Suppose the intensity of environmental
regulation is relatively low; in that case, the requirement of pollutant restrictions is not high,
and the increased cost of pollutant discharge may be less than the cost of technological
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innovation. Therefore, enterprises will choose to increase pollution control expenditure to
cope with environmental regulations, which will occupy the funds initially planned for
innovation, to the detriment of the efficiency of green innovation. In the meantime, some
enterprises from areas with high environmental regulation intensity or foreign enterprises
may be attracted to move in. These enterprises will compete with existing enterprises,
reducing the share of green innovation investment of local enterprises. Moreover, the
excessive concentration of enterprises will generate additional undesirable outputs and
cause a so-called “pollution paradise”, which is not conducive to green development.

 
Figure 1. The impact mechanism of environmental regulation on green innovation efficiency.

Technological innovation is a better choice if the emission standards are set high in
the long run. By improving their production processes, enterprises can, on the one hand,
reduce the consumption of resources and the emission of pollutants and meet the emis-
sion standards required by the government, and, on the other hand, improve production
efficiency, promote upgrading industrial structure, and enhance competitiveness, which
is conducive to the sustainable development of enterprises and the development of local
green innovation in the long run. Nevertheless, higher intensity of environmental regu-
lation may not continue to promote green innovation efficiency, but rather, lead to some
unintended consequences. The government must grasp the intensity of environmental reg-
ulations based on local conditions, which can promote green innovation efficiency without
damaging the interests of local enterprises.

2. Literature Review

2.1. Review of Green Innovation Efficiency

Research on green innovation efficiency mainly takes the form of measurements of
green innovation efficiency and analyses of influencing factors. For the measurement meth-
ods of green innovation efficiency, there are mainly data envelopment analyses (DEA) [2–4],
stochastic frontier analyses [5,6], and multivariate statistical analyses [7]. Most of the
literature measuring China’s green innovation efficiency shows that the overall efficiency
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value is gradually increasing, but that there are significant differences among regions [8,9].
There are influencing factors to positively promote green innovation efficiency, such as
government scientific research sponsorship [10], public participation [11], and industrial
agglomeration [12]. Since the process of green innovation will produce both desirable and
undesirable outputs, this paper chooses the SBM of super-efficiency based on undesirable
outputs to measure green innovation efficiency.

2.2. Review of Environmental Regulation

Environmental regulation means that the government standardizes the behavior
of enterprises with a view to protect the environment. Environmental regulation can
encourage enterprises to reform and innovate pollution control technology at a micro
level. Environmental regulation can also guide enterprises to restructure and promote
the upgrading of industrial structure at a macro level. At present, there are three types of
environmental regulation policies in China, including command-control, market incentive,
and public voluntary. The first two types of environmental regulations are called formal
environmental regulations, and the last one is called informal environmental regulations.
There are no unified indicators for measuring the intensity of environmental regulation.
Scholars generally develop the indicators of environmental regulation intensity according
to research issues and data availability. The main types of measurement are as follows:
(a) the proportion of the cost of pollution control in industry added value [13] or GDP [14];
(b) indexes of the removal rate of pollutants, such as the standard discharge rate of industrial
wastewater and the removal rate of sulfur dioxide [15], or the weighted composite index
of various removal rate index of pollutants [16]; (c) pollutant emissions per unit output
value [17,18]; (d) the ratio of pollution treatment investment to pollutant emissions [19,20].

Studies have shown that various environmental regulations can significantly affect en-
ergy saving and emission reduction [21]. Moreover, environmental regulation can promote
technological and green innovation, thus boosting regional economic development [22–24].
The joint development of command-control environmental regulations and market incen-
tive environmental regulations can play a better role [25]. Most of the literature analyses
environmental regulation using only a single means without considering the differences
in the effects of different environmental regulation means. This paper selects two signifi-
cant environmental regulation policies, namely command-control and market incentive
environmental regulation, to analyze the difference in effect.

2.3. Research on Impact of Environmental Regulation on Green Innovation Efficiency

Research on the impact of environmental regulation on green innovation efficiency
can be divided into the following three perspectives:

(1) Scholars who support the “Porter hypothesis” believe that environmental regula-
tion will encourage enterprises to embrace technological innovation, which, in turn,
improves the green innovation efficiency of society as a whole. Brunnermeier and
Cohen found that for every $1 increase in environmental governance costs, green
innovation efficiency would increase by 0.4% on average [26]. Castellacci and Lie
found that mandatory environmental regulations had a potent positive effect on green
innovation efficiency [27]. Singh et al. found that environmental regulation policies in
Japan drove green innovation efficiency for society as a whole [28]. Zhang and Wang
found that both environmental regulation policies and government financial support
have a positive effect on green innovation efficiency, but that the former has a greater
impact [29]. Wang and Zhang (2018) argued that different environmental regulation
policies would positively promote green innovation efficiency, and command-control
environmental regulation has a more significant promoting effect [30]. Wang and He
(2022) believed that environmental regulation could promote green innovation, and
green innovation can promote the upgrading of industrial structures [31].

(2) Other scholars argue that environmental regulations are not conducive to green inno-
vation efficiency because strict restrictions on environmental emissions may increase
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the costs of enterprises. Domazlicky and Weber argued that the benefits of technologi-
cal change brought about by environmental regulations could not compensate for the
increased costs to the enterprises [32]. Sinn proposed the “green paradox”, arguing
that environmental regulations increased the expenditure of enterprises on emission
reduction and reduced the efficiency of green innovation [33]. Li and Bi believed that
environmental regulation is not conducive to the technological progress of enterprises
and green innovation [34].

(3) Another view is that the impact of environmental regulation on green innovation
efficiency is uncertain. Kneller and Manderson argued that mandatory environmental
regulation policies would increase the costs of pollutant reduction and R&D (Research
and Development) in the UK while having little impact on the total capital accu-
mulation [35]. Peuckert pointed out that environmental regulation would squeeze
expenditure, inhibit technological innovation in the short run, and promote develop-
ment in the long run [36]. Peng et al. found that formal and informal environmental
regulation policies showed a U-shaped and inverted U-shaped relationship with green
innovation efficiency, respectively [37]. Luo and Chen found that environmental reg-
ulations have a non-linear relationship with green efficiency through the threshold
regression model [38]. Gao and Xiao believed that autonomous environmental reg-
ulations have a U-shaped impact on improving the green innovation efficiency of
industrial enterprises [39].

Based on the above analysis, existing studies have stated that environmental regula-
tions have positive, negative, and uncertain effects on green innovation efficiency. This
effect is considered from a national perspective, with little consideration for inter-regional
heterogeneity. This paper constructs a dynamic panel system GMM model to analyze the
impact of different types of environmental regulations on green innovation efficiency. A
regression model was established for the eastern, central, and western regions to analyze
the regional differences.

3. Research Method

3.1. SBM of Super-Efficiency

The traditional models of Data Envelopment Analysis (DEA) are radial measures of
efficiency, requiring that the input and output change in the same proportion. However,
it is not easy to meet this condition in actual production. Based on the traditional DEA
model, Tone proposed a slacks-based measure of efficiency (SBM), which is non-radial and
deals with input/output slacks directly [40]. Tone proposed the SBM of super-efficiency,
an evolutionary form of SBM in the following year, which can further evaluate Decision
Making Units (DMUs) with an efficiency value greater than 1 to obtain more accurate
efficiency results [41]. This paper uses the SBM of super-efficiency to measure the green
innovation efficiency of provinces in China. The model is as follows.
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∑
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λj ≥ 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n; r = 1, 2, . . . , s1; q = 1, 2, . . . , s2

(1)

where ρ∗ is the efficiency of green innovation, whereby the higher the efficiency value, the
higher the level of green innovation; x, yd, and yu represent the necessary elements in the
input matrix, the desirable output matrix, and the undesirable output matrix, respectively;
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and n represents the number of DMU, namely the number of provinces in this paper
(n = 30). Each DMU has m inputs, s1 desirable outputs, and s2 undesirable outputs. λ is
the weight vector.

3.2. Kernel Density Estimation

The Kernel Density Estimation (KDE) method, first proposed by Parzen, is a non-
parametric test method for solving the probability density function of random variables [42].
It can analyze the dynamic evolution characteristics of the sample distribution according to
the sample data. Compared with the parameter estimation method, the functional form of
the kernel density can be set flexibly with few restrictions on the data, which is one of the
common methods to study the unbalanced distribution. The expression of kernel density
estimation is as follows.

fh(x) =
1

nh

n

∑
i−1

K
(

x − xi
h

)
(2)

In Formula (2), f (x) represents the density function of green innovation efficiency. n
is the number of observed provinces. h represents the bandwidth, and its value affects
the shape and smoothness of the KDE curve. The smaller the bandwidth, the higher the
estimation accuracy. xi represents the green innovation efficiency of i province, and x
represents the mean value of the green innovation efficiency. K(·) is the kernel function.
The Gaussian kernel function is uesde in this paper to estimate the dynamic evolution of
the distribution of green innovation efficiency, as shown in Formula (3).

K(x) =
1√
2π

exp(− x2

2
) (3)

3.3. System-GMM

This paper adopts the dynamic GMM (Generalized Method of Moments) model
to measure the impact of environmental regulation on green innovation efficiency. The
dynamic GMM model can effectively overcome the biased regression results caused by
autocorrelation in the regression process. GMM estimation mainly includes the difference
GMM and the system GMM. In contrast, the system GMM reduces some omission errors
caused by the difference GMM, effectively improving the estimation efficiency [43]. In
empirical research, the system GMM method is preferred for estimates. From the above
analysis, it can be seen that there is not only a linear relationship between environmental
regulation and green innovation efficiency; in order to verify whether there is a more com-
plex linear relationship between environmental regulation and green innovation efficiency,
a cubic term of environmental regulation intensity is introduced. The production process of
green innovation is a process of continuous accumulation and dynamic adjustment, which
may be affected by the previous period of green technology innovation. It is necessary to
introduce the lag term of green innovation efficiency. Therefore, the dynamic panel GMM
model is established as follows.

GIi,t = α0 + α1GIi,t−1 + β1ERi,t + β2ER2
i,t + β3ER3

i,t + γmKi,t + ui + εi,t (4)

where GIi,t represents the green innovation efficiency of i province in t year; GIi,t−1 is the
first-order lag term of green innovation efficiency; α0 is a constant term; ER represents the
intensity of environmental regulation, which is the core explanatory variable; β1, β2, and
β3 are the coefficient terms of the core explanatory variables; Ki,t is the control variable and
γm is the coefficient term of the control variable; finally, ui represents the individual effect
and εi,t represents the random error term. Different β coefficient values lead to different
trend characteristics of regression curve, as shown in Table 1.
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Table 1. Characteristics of some common regression curve.

Coefficient Value
Shape of

Regression Curve
Indication

β2 = β3 = 0, β1 �= 0 Monotonically increasing or decreasing The intensity of environmental regulation promotes
or inhibits green innovation efficiency.

β3 = 0, β2 > 0, β1 < 0 U-shaped
The green innovation efficiency first decreases and
then increases with the increase of the intensity of

environmental regulation.

β3 = 0, β2 < 0, β1 > 0 Inverted U-shaped
The green innovation efficiency first increases and
then decreases with the increase of the intensity of

environmental regulation.

Δ = 4β2
2 − 12β1β3 > 0,

β1 > 0, β2 < 0, β3 > 0
N-shaped

The green innovation efficiency first increases,
decreases to a certain level, and finally increases

again with the increase of the intensity of
environmental regulation.

Δ = 4β2
2 − 12β1β3 > 0,

β1 < 0, β2 > 0, β3 < 0
Inverted N-shaped

The green innovation efficiency first decreases,
increases to a certain level, and finally decreases

again with the increase of the intensity of
environmental regulation.

3.4. Indicator Selection and Variable Description
3.4.1. Construction of Green Innovation Efficiency System

Based on relevant literature [7,8], this paper comprehensively considers the entire
input and output process of green innovation and constructs the system of green innovation
efficiency from the perspectives of input, desirable output, and undesirable output, as
shown in Table 2.

Table 2. Input-output system of green innovation efficiency.

Type Indicator Definition Source

Input

Green input Energy consumption
(ten thousand tons of standard coal) China Energy Statistical Yearbook

Innovation
input

Full-time equivalent of R&D personnel
(ten thousand man-years)

China Statistical Yearbook on Science
and Technology

Internal expenditure of R&D funds
(ten thousand yuan)

China Statistical Yearbook on Science
and Technology

Output

Innovation desirable
output

New product sales revenue
(ten thousand yuan)

China Statistical Yearbook on Science
and Technology

Regional GDP (billion yuan) China Statistical Yearbook
Number of domestic patent applications

accepted (piece)
China Statistical Yearbook on Science

and Technology

Green
undesirable output

Total industrial sulfur dioxide emissions (ton) China Statistics Yearbook on
Environment

Organic matter content in industrial
wastewater (ton)

China Statistics Yearbook on
Environment

3.4.2. Measurement of Environmental Regulation Intensity

There are currently three main types of environmental regulation policies in China. The
two most important types concern command-control and market incentives. The third type
is the public-voluntary environmental regulation policy which lacks data. Therefore, this
paper selects the first two types of environmental regulation policies as the research objects
and measures the intensity of the two environmental regulation policies, respectively.

Command-control environmental regulation refers to the use of mandatory measures
by the government on enterprises to achieve a specific environmental goal and the formu-
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lation of a series of standards to regulate the behavior of enterprises, including emission
standards, technical standards, etc. Based on emission standards, this paper looks for
indicators to measure the intensity of command-control environmental regulation [17,18].
According to the current situation of pollutant discharge in China and the availability of
data, the comprehensive index of three types of pollutant is measured as the intensity
of command-controlled environmental regulation, including industrial soot emissions,
industrial sulfur dioxide emissions, and industrial wastewater emissions. The data source
for the three types of pollutant is China Statistics Yearbook on Environment. The calculation
formulas are as follows.

Rs
ij =

Rij − minRj

maxRj − minRj
(5)

Wj = Rij/Rj (6)

ER1 =
1
3

3

∑
j=1

Wj × Rs
ij (7)

In Formula (5), Rij represents the emission of the pollutant j in province i, and Rs
ij rep-

resents the standardized result; minRj and maxRj represent the maximum and maximum
value of the emissions of the pollutant j in all provinces, respectively. In Formula (6), Wj

represents the weight of the pollutants j, and Rj represents the average emission of the pol-
lutants j in all provinces. In Formula (7), ER1 represents the intensity of command-control
environmental regulation, which is the weighted average of the three pollutants.

Market incentive environmental regulation encourages enterprises to find technolo-
gies and methods to reduce pollutant emissions through economic means in order to
minimize the degree of environmental pollution. Currently, the measures include levying
an emissions tax on enterprises and establishing a system of emission rights trading and
emission fee. The systems of emissions tax and emission rights have not played a good
role in China, but the pollutant discharge fee system was implemented earlier. Therefore,
the intensity of market-incentive environmental regulation (ER2) is measured by the pro-
portion of pollutant discharge fees (PF) to regional GDP (GDP), as shown in Formula (8).
The data on pollutant discharge fees and regional GDP respectively come from the China
Environmental Statistical Yearbook and the China Statistical Yearbook.

ER2 =
PF

GDP
(8)

3.4.3. Variable Description

This paper selects the panel data of 30 provinces from 2009 to 2019 to construct the
dynamic GMM model. The variable description is shown in Table 3. The data of control
variables came from the China Statistical Yearbook, China Statistical Yearbook on Science
and Technology, and China Industrial Economy Statistical Yearbook.
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Table 3. Variable Description.

Type Variable Name Definition

Explained
variable Green innovation efficiency (GI ) Efficiency measured by the SBM of super-efficiency

Explanatory variable Environmental Regulation Intensity (ER )
Intensity of command-control environmental regulation

(ER1) and market incentive environmental
regulation (ER2)

Control
variable

Government support (GS) Proportion of local fiscal expenditure in regional GDP
Urbanization (UR) Urbanization rate

Technical progress (TP) Turnover of technology market
Openness (OP) Ratio of total import and export trade to GDP

Human capital (HC) Full-time equivalent of R&D personnel
Foreign direct investment (FDI) Total amount of foreign investment actually used

Optimization of industrial structure (IS) Proportion of tertiary industry value in regional GDP

4. Analysis of Empirical Results

4.1. Measurement and Analysis of Green Innovation Efficiency in China
4.1.1. Evolution of Green Innovation Efficiency

This paper uses MATLAB to measure the green innovation efficiency of 30 provinces.
The results are shown in Appendix A, Table A1. In order to more intuitively see the
evolution of green innovation efficiency in 30 provinces, a spatial distribution map of green
innovation efficiency was drawn for 30 provinces in 2009 and 2019 by ArcGIS, as shown in
Figure 2.

The evolution of green innovation efficiency from 2009 to 2019 shows that the value of
efficiency is gradually improving in China. The number of provinces with low green inno-
vation efficiency is gradually decreasing. In 2009, the number of provinces with low green
innovation efficiency was 12, but only six remained in 2019. There are 12 provinces whose
average value of green innovation efficiency is greater than one over the ten years. Most
provinces are developed coastal provinces and key provinces supported by the government
with a better natural environment. The green innovation efficiency of developed provinces
is higher because they have better development opportunities, attract more talents, and
produce more creative output. Beijing has the highest average green innovation efficiency
at 1.9873. Research institutes in Beijing, with the largest number, attract many talents every
year. Beijing enjoys excellent development conditions, and its innovation level is at the
forefront in China. Beijing is also the first province to implement an environmental policy
in China. It was better to control pollution discharge as a pilot of pollution discharge
rights. Some remote provinces with a beautiful environment may not have much input in
innovation but enjoy more government support policies. Their values of green innovation
efficiency are relatively high due to the low green undesirable output. The average value
of green innovation efficiency in Xinjiang ranks second at 1.2849. The green innovation
efficiency increased the most in Qinghai, from 0.2332 in 2009 to 1.0104 in 2019, increasing
more than four times.

From the perspective of various regions, the green innovation efficiency of eastern
provinces is higher than that of other regions, especially some coastal provinces, such as
Jiangsu, Zhejiang, and Guangdong, whose green innovation efficiency stays at a high level.
The green innovation efficiency of provinces in central China is at a middle level, but there
are still some provinces with low green innovation efficiency. For example, the average
innovation efficiency in Heilongjiang is the lowest, mainly because the traditional industry
is relatively developed in the early years, causing sizeable environmental pollution, and the
transformation process to the new technology industry is still slow. Although the economy
in western China is less developed, the green innovation efficiency is not at a low level,
especially the green innovation efficiency in Xinjiang is at the forefront of the country.
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(a) 

 
(b) 

Figure 2. Spatial evolution of green innovation efficiency in China from 2009 to 2019. (a) 2009;
(b) 2019.

4.1.2. Dynamic Evolution of Green Innovation Efficiency

This paper uses the KDE method to analyze the dynamic distribution situation of
green innovation efficiency for 30 provinces in China. The years 2010, 2013, 2016, and 2019
were selected as observation time points to draw Kernel density curves for the four years,
as shown in Figure 3.
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Figure 3. Kernel density distribution of green innovation efficiency in China.

As shown in Figure 3, the center of the green innovation efficiency distribution curve
in China has shifted significantly to the right, indicating that the green innovation efficiency
of each province has gradually improved over time. In terms of distribution shape, the
four curves show a broad distribution, and the right tails tend to be elongated, indicating
that there are significant differences in the green innovation efficiency among provinces.
The kernel density curve in 2013 shows a unimodal distribution, while the curves in 2016
and 2019 are characterized by a clear bimodal distribution, indicating a trend toward
polarization of the green innovation efficiency in China. As there are many provinces
with green innovation efficiency of around 1, the main peak of the four curves increases
significantly, while the height of the small peak in the right tail tends to decline slowly. The
difference between provinces with low green innovation efficiency is expanding, while
the difference between provinces with high green innovation efficiency is narrowing. The
evolution of green innovation efficiency in China is not coordinated among different regions.
The four curves are right-skewed distribution. The vertical height of the peak increases,
and the horizontal width decreases over time. Although there are regional differences in
green innovation efficiency in China, such differences are gradually narrowing and have
the characteristics of dynamic convergence.

4.2. Impact of Environmental Regulation on Green Innovation Efficiency
4.2.1. Empirical Analysis of the Impact Effect of Different Environmental Regulations

This paper adopts the dynamic panel system GMM model for regression analysis to
analyze the impact of different environmental regulations on green innovation efficiency.
In order to prevent heteroscedasticity, non-proportional indicators were logarithmically
treated. Stata was used to obtain regression results, as shown in Table 4. First of all,
the rationality of variables and regression model selection is analyzed. ADF tests are
performed on the variables, all of which are stationary. The p-value of AR(2) of the two
models is greater than 0.05, indicating that there was no serial correlation, which proved
the rationality of the model selection. The p-value of Sargan’s test is greater than 0.05,
which makes it difficult to reject the null hypothesis that all instrumental variables are
valid, indicating that the instrumental variables selected by the system GMM model
are reasonable.
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Table 4. Regression results of impact of environmental regulation on green innovation efficiency.

Variable

Dynamic Panel System GMM Model

(1) Command-Control
Environmental Regulation

(2) Market Incentive
Environmental Regulation

L.GI
0.3888 *** 0.3239 ***

(7.22) (5.93)

ER
−1.0215 ** −0.2415 ***

(−2.33) (−3.56)

ER2 1.3781 ** 0.0969 **
(2.3) (2.48)

ER3 −0.4908 ** -
(−2.2) -

GS
1.6306 * 2.5172 **
(1.89) (2.42)

UR
1.2206 *** 0.7418 ***

(4.92) (2.92)

LNTP
0.1426 *** 0.1067 ***

(3.3) (−2.72)

LNOP
0.1292 *** 0.1143 ***

(3.59) (2.76)

LNHC
−0.1953 *** −0.1955 ***

(−14.06) (−10.41)

LNFDI
0.025 0.0538 **
(1.39) (2.41)

IS
0.5402 * 0.4316 *
(1.68) (1.67)

Cons
−0.8971 −0.2862
(−1.39) (−0.6)

Curve type Inverted N-shaped U-shaped

Inflection point 0.5071
1.3677 1.2461

AR(1) −3.8475 −4.0413
p-value 0.0001 0.0001
AR(2) −1.7165 −1.7925

p-value 0.0861 0.0731
Sargan 24.4225 24.8043
p-value 0.4951 0.4734

Note: * a significance level of 10%, ** a significance level of 5%, *** a significance level of 1%. The values of
Z-statistic are in parentheses.

To verify the effect of time variation in green innovation efficiency on the accuracy of
the regression model, a static panel regression model is also constructed and compared
with the dynamic panel regression model in this paper. A new index (DISO, distance
between indices of simulation and observation) can comprehensively describe the overall
performance of different models, with smaller values of DISO indicating higher model
prediction accuracy. See Hu et al. and Zhou et al. for the calculation method of DISO [44,45].
The DISO values for the static panel models of command-control and market incentive
environ-mental regulation are 0.93 and 0.96, respectively. The DISO values for the dy-
namic panel regression models of command-control and market incentive environ-mental
regulation are 0.57 and 0.54, respectively. The comparison results show that the dynamic
panel model outperforms the static panel model for both the command-control and market
incentive environmental regulation. Adding time-varying factors of dependent variables
can indeed improve model prediction accuracy. As can be seen from Table 4, the lag term
L.GI of green innovation efficiency passes the significance test, indicating that the green
innovation efficiency of the previous period has a very significant promoting effect on the
current period. The green innovation activity is a continuous and dynamic accumulation
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process. The technological progress and innovation activity in the previous period will
influence green innovation in the subsequent period.

The two types of environmental regulation intensity have different effects on green
innovation efficiency. Specifically, the regression curve between the intensity of command-
control environmental regulation and the green innovation efficiency shows an inverted
N-shaped pattern, with a downward-upward-downward trend. In the first stage, before
reaching the inflection point of 0.5071, the increase in pollution control costs drains the
funds for technological innovation. The green innovation efficiency decreases with the
increase of environmental regulation intensity. When the intensity of command-control
environmental regulation exceeds 0.5071, the second stage is reached. At this stage, most
enterprises begin to choose to carry out technological innovation, and command-control
environmental regulation plays a role in promoting green innovation efficiency. When
the intensity of command-control environmental regulation reaches the second inflection
point 1.3677, the green innovation efficiency decreases again. The possible reason is that
when the intensity of environmental regulations is too high, some enterprises fail to meet
the standards or turn to operate in areas with less stringent environmental regulations.
In this case, the green innovation efficiency will decline. In other words, if command-
control environmental regulation is to promote green innovation efficiency, the intensity of
environmental regulation should be controlled between the two inflection points.

The regression curve between market incentive environmental regulation intensity
and green innovation efficiency shows a U-shaped pattern. When the intensity of market
incentive environmental regulation does not reach the inflection point 1.2461, the cost of
enterprises to pollutant discharge is low. Therefore, most enterprises do not choose to carry
out technological innovation. As the intensity of environmental regulation increases, the
cost of pollutant discharge increases, while the fund for technological innovation and the
green innovation efficiency decreases. When the environmental regulation intensity index
rises again, reaching 1.2461, the cost of pollutant discharge is already very high. Most
enterprises tend to innovate to reduce pollution at the source. On the right side of the
inflection point, green innovation efficiency increases with the increase of environmental
regulation intensity.

Government support, urbanization, technological progress, openness, and industrial
structure optimization positively affect green innovation efficiency. Government support
has the greatest impact. Innovation is inseparable from high-tech development industries,
for which government support is vital. A place with a high level of urbanization will have
better conditions for innovation and development, attracting more high-tech industries
to promote the development of green innovation efficiency. There is no doubt that tech-
nological progress can contribute to green innovation efficiency and enable enterprises
to produce more output with less input. The impact of openness on green innovation
efficiency is significantly positive. Places with a high degree of openness to trade are likely
to attract capital and talent inflows, which lead to technological innovation and promote
green efficiency development. Industrial structure optimization refers to the transforma-
tion of knowledge-intensive industries, which is conducive to improving energy efficiency,
reducing the impact on the ecological environment, and promoting green innovation effi-
ciency. Human capital has a negative impact on green innovation efficiency, indicating that
the negative effect of pollution brought by human input is higher than the positive effect
of innovation.

4.2.2. Regional Model Estimation

The economic development and resource endowments of 30 provinces in China are
not uniform. It would be inappropriate to formulate the same policies on environmental
regulation according to the national situation. In order to explore whether there are
differences in the impact of environmental regulation on green innovation efficiency in
different regions, 30 provinces are divided into three regions (eastern, central, and western
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regions). The regressions were conducted separately for the three regions, and the estimated
results for the core explanatory variables are shown in Table 5.

Table 5. Regional regression results.

Variable
Dynamic Panel System GMM Model

Eastern Central Western

ER1
0.2102 *** - −0.1654 ***

(7.64) - (14.9)

ER12 −0.0964 *** - 0.0922 ***
(3.87) - (8.07)

Curve type Inverted U-shaped - U-shaped
Inflection point 1.619 - 0.8970

ER2
1.8050 *** −0.1112 ** −0.1043 ***

(7.22) (−2.16) (−3.76)

ER22 - 0.0735 *** 0.063 ***
- (7.56) (8.32)

Curve type Straight line U-shaped U-shaped
Inflection point - 0.7565 0.6020

Note: ** a significance level of 5%, *** a significance level of 1%. The values of Z-statistic are in parentheses.

As shown in Table 5, the impacts of environmental regulations on green innovation
efficiency among the eastern, central, and western regions are different. The regression
curve between the intensity of command-control environmental regulation and green
innovation efficiency in eastern China shows an inverted U-shaped pattern. When the
intensity of environmental regulation does not exceed inflection point 1.619, improving
the intensity of command-control environmental regulation can positively promote green
innovation efficiency. If the intensity of environmental regulation is set too high, it will
cause great pressure on some enterprises and reduce their profits. Some enterprises will
choose to move to places with less stringent environmental regulations, which is not
conducive to the development of local green innovation efficiency. Market incentive
environmental regulation plays a direct role in promoting green innovation efficiency, which
is related to the sufficient capital and talent reserve in eastern China. When the intensity
of market incentive environmental regulation increases, there are more opportunities to
enhance technological innovation in eastern China to promote the improvement of green
innovation efficiency.

The intensity of command-control environmental regulation has no significant impact
on green innovation efficiency in central China. The relationship between market incentive
environmental regulation intensity and green innovation efficiency is U-shaped. When the
intensity of market incentive environmental regulation reaches 0.7565, the improvement of
green innovation efficiency can be promoted.

There is a U-shaped relationship between green innovation efficiency and environmen-
tal regulation in western China, whether command-control or market incentive. When the
intensity of environmental regulation is relatively low, most enterprises choose to increase
pollution discharge fees for waste treatment, which takes up the cost of technological
innovation and is not conducive to the development of green innovation efficiency. When
the intensity of environmental regulation reaches a certain value, enterprises will increase
pollution discharge fees. By contrast, it is more cost-effective to use technological innova-
tion to tackle pollution at the source. As technological innovation improves, so will green
innovation efficiency.

5. Conclusions and Recommendations

5.1. Conclusions

This paper uses the SBM of a super-efficiency model based on the undesirable output
to measure green innovation efficiency, and establishes the dynamic panel system GMM
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model to analyze the impact of environmental regulation intensity thereon. The main
conclusions of the study are as follows:

(1) The green innovation efficiency in China is showing a rising trend over time and is
at a high level overall. However, it varies greatly among different regions in China.
The green innovation efficiency in eastern China is higher than the national average,
while that in central and western China is lower than the national average.

(2) The impact of command-control environmental regulation on green innovation effi-
ciency follows an inverted N-shaped pattern, with the trend of downward-upward-
downward. The market incentive environmental regulation has a U-shaped influence
on green innovation efficiency, with a downward-upward trend. The intensity of
command-control environmental regulation in most provinces of China is in a range
that can effectively promote the improvement of green innovation efficiency. How-
ever, the intensity of market incentive environmental regulation in most provinces
has not reached the threshold that can effectively promote the improvement of green
innovation efficiency.

(3) The impact of environmental regulations on green innovation efficiency also varies
across regions. Command-control environmental regulation has an inverted U-shaped
impact on green innovation efficiency in eastern China. Additionally, market incentive
environmental regulations have a direct positive impact on green innovation efficiency.
The impact of market incentive environmental regulations on green innovation ef-
ficiency follows a U-shaped pattern in central China. Both types of environmental
regulation have a U-shaped effect on green innovation efficiency in western China.

5.2. Recommendations

Recommendations are made for different subjects, aiming to protect the ecological envi-
ronment and promote the efficiency of green innovation through environmental regulation.

(1) For environmental regulation to contribute to green innovation efficiency, the govern-
ment must ensure that the intensity of environmental regulation reaches the threshold
for technological innovation. However, command-control environmental regulations
should not be so severe that enterprises are pressured to close or move out. Therefore,
the government should control the pollution discharge standard so that the pollution
discharge fee is close to or even greater than the cost of enterprises to prevent and con-
trol pollution. Encourage enterprises to carry out technological innovation, improve
the industrial structure and prevent pollution from the source. The market incentive
environmental regulation policies in most provinces of China have not worked well.
The government should provide better guidance regarding market-incentive envi-
ronmental regulations and make them work hand in hand with command-control
environmental regulations to jointly achieve good policy effects. Additionally, the
government can adopt a combination of incentives and mandatory measures to man-
age enterprises. Enterprises that do a good job in terms of discharging pollutants
should be given some incentive subsidies or appropriate tax reductions. For some
heavily polluting enterprises, compulsory policies can be adopted. The government
should urge them to rectify the situation and force them to optimize their industrial
structure. Additionally, the government should better guide enterprises which are
seeking to engage in technological innovation and focus on environmental protection.

(2) The contribution of technological innovation to green innovation is significant. As
the primary creators in innovation activities, enterprises have the responsibility to
promote the innovation of the whole industry. The role of enterprises is crucial. First
of all, enterprises should fully understand the government’s environmental regulation
policies and implement pollution prevention and control policies. Secondly, enter-
prises choose the most appropriate way to control pollution according to the needs
of their development and based on maximizing their benefits. Enterprises should
adjust their industrial structure and use more environmentally friendly raw materials
for production. The concept of green production runs through the whole production
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process, and enterprises try to minimize the pollution from the source. Finally, enter-
prises should reduce investment in industries that produce more pollutants, develop
green industries, and play the role of sustainable incentive for green industries.

(3) Environmental regulation policies in different regions have different impacts on the
efficiency of green innovation. The government should improve the environmental
regulation policy system and formulate policies according to the development needs
and the resource endowment of different regions and the conditions for policy imple-
mentation. The previous development strategy can be continued in eastern China to
attract talents for technological innovation and promote regional innovation while de-
veloping the economy. More incentive policies and measures should be implemented
to accelerate green innovation efficiency. The implementation of command-control
environmental regulation policies should not be too strict to prevent the emergence of
a “pollution paradise”. The intensity of environmental regulation should be increased,
and policies should be actively implemented so that the intensity of environmental
regulation reaches a threshold in central and western China. The government should
force enterprises to meet emission standards through innovation, thereby promoting
green innovation and efficiency.
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Appendix A

Table A1. Green innovation efficiency in China from 2009 to 2019.

Region Province 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Eastern

Beijing/BJ 1.9572 1.8197 1.8218 1.8959 1.9637 1.9703 2.0041 1.8847 2.151 2.2307 2.1611
Tianjin/TJ 1.0432 1.008 1.0156 1.115 1.1118 1.0916 1.043 1.0827 1.0102 0.574 1.0248

Liaoning/LN 0.5077 1.0265 0.5523 0.4831 0.5506 0.4076 0.4659 0.4505 0.4091 0.4399 0.4404
Shanghai/SH 0.5847 0.4837 1.0068 0.7096 0.6054 0.5692 0.5518 0.595 0.603 1.0022 0.6007

Jiangsu/JS 1.0617 1.0995 1.1009 1.22 1.2307 1.0745 1.0469 1.0983 1.1237 0.6883 0.608
Zhejiang/ZJ 1.1632 1.0811 1.0977 1.0869 1.0618 1.0534 1.0184 1.0993 1.0229 1.0031 0.5523

Fujian/FJ 0.6163 0.4626 0.6567 1.0642 0.701 0.5996 0.651 0.636 0.5627 0.5023 0.5155
Shandong/SD 1.0479 0.5871 0.7005 0.6813 0.6519 0.59 0.5697 0.5338 0.5505 0.6339 0.7032

Guangdong/GD 0.4596 1.4324 1.1643 1.1879 1.3403 1.3958 1.0932 1.1078 1.2896 1.1453 1.148
Hainan/HI 1.1198 1.1249 1.1264 1.1027 1.0944 1.0981 1.1044 1.1002 1.0971 1.0823 1.1544
Hebei/HE 0.4378 0.4232 0.3995 0.6433 0.4287 0.4405 0.4087 0.4184 0.4435 1.0415 1.1192

Central

Shanxi/SX 1.0017 1.0974 1.0077 0.6922 1.0091 1.0398 1.0821 0.3565 0.4801 1.0197 1.0025
Neimenggu/NM 1.0847 1.1426 1.1865 1.1151 1.1107 1.0925 1.0759 0.5613 1.15 1.0586 1.0264

Jilin/JL 0.6162 1.0332 0.4285 0.569 1.0155 0.6002 0.7803 0.6009 0.4933 0.5547 0.756
Heilongjiang/HL 0.1885 0.1397 0.2617 0.4167 0.2475 0.2729 0.2434 0.3059 0.2439 0.4226 0.6098

Anhui/AH 1.0859 1.0897 1.0444 1.1056 1.1103 1.0775 1.0504 1.055 1.0403 1.0271 0.6167
Jiangxi/JX 0.4168 0.4401 0.5707 1.0217 1.0151 0.7156 0.5694 1.0113 0.6394 0.5451 1.0252

Henan/HA 0.7061 0.8123 1.0163 1.0445 1.239 1.2112 1.226 1.1861 1.1764 1.2795 1.1949
Hubei/HB 0.5823 0.5631 0.5178 0.5573 0.5369 0.6268 0.6499 0.6433 0.681 0.6611 0.576

Hunan/HN 0.6415 0.8124 0.7734 1.0348 1.0281 0.7775 0.6548 0.7115 0.5935 0.5653 0.6473
Guangxi/GX 1.0241 1.0362 1.0101 1.0437 1.1224 1.1462 1.1995 1.2687 1.2829 1.2648 1.4608

Western

Chongqin/CQ 1.06 1.0481 1.3738 1.0802 1.0465 1.135 1.1728 1.0117 1.052 0.6824 0.6914
Sichuan/SC 0.5509 0.3274 1.075 0.7411 0.7185 0.7345 0.7533 0.6367 0.6462 0.6376 0.5428

Guizhou/GZ 1.0632 0.2046 0.2731 0.3017 0.2446 0.2774 0.3156 1.0167 1.028 1.0386 1.0411
Yunnan/YN 1.108 1.0577 1.0106 0.7998 1.006 1.0201 0.6446 1.0406 1.0604 1.0505 1.049
Shaanxi/SN 0.296 0.4182 0.4339 0.4051 0.3303 0.4254 0.3213 0.3975 0.403 0.3707 0.4159
Gansu/GS 0.4665 0.4478 0.6368 0.7601 0.6596 0.6091 0.718 0.589 0.557 0.543 1.0143

Qinghai/QH 0.2332 1.0174 1.3932 1.0073 0.1332 1.0246 1.0395 1.0925 1.005 1.0188 1.0104
Ningxia/NX 0.465 0.3801 0.4091 0.4048 0.4001 0.379 0.3727 0.3537 0.2703 0.4079 1.0145
Xinjiang/XJ 1.4049 1.1558 1.0418 1.5436 1.4918 1.4577 1.1934 1.3076 1.064 1.1919 1.2816
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Abstract: Nitrogen (N) has a unique place in agricultural systems with large requirements. To achieve
optimal nitrogen management that meets the needs of agricultural systems without causing potential
environmental risks, it is of great significance to increase N use efficiency (NUE) in agricultural
systems. A chlorophyll meter, for example, the SPAD-502, can provide a simple, nondestructive,
and quick method for monitoring leaf N status and NUE. However, the SPAD-based crop leaf’s N
status varies greatly due to environmental factors such as CO2 concentration ([CO2]) or temperature
variations. In this study, we conducted [CO2] (ambient and enriched up to 500 μmol moL1) and
temperature (ambient and increased by 1.5~2.0 ◦C) controlled experiments from 2015 to 2017 and in
2020 in two Free-Air CO2 Enrichment (FACE) sites. Leaf characters (SPAD readings, chlorophyll a
+ b, N content, etc.) of seven rice cultivars were measured in this four year experiment. Here, we
provide evidence that SPAD readings are significantly linearly correlated with rice leaf chlorophyll a
+ b content (chl a + b) and N content, while the relationships are profoundly affected by elevated
[CO2] and warming. Under elevated [CO2] treatment (E), the relationship between chl a + b content
and N content remains unchanged, but SPAD readings and chl a + b content show a significant
difference to those under ambient (A) treatment, which distorts the SPAD-based N monitoring. Under
warming (T), and combined elevated [CO2] and warming (ET) treatments, both of the relationships
between SPAD and leaf a + b content and between leaf a + b content and N content show a significant
difference to those under A treatment. To deal with this issue under the background of global climate
change dominated by warming and elevated [CO2] in the future, we need to increase the SPAD
reading’s threshold value by at least 5% to adjust for applying N fertilizer within the rice cropping
system by mid-century.

Keywords: elevated [CO2]; warming; SPAD; leaf nitrogen monitoring; nitrogen management

1. Introduction

Due to its critical role in plants’ metabolic activities and heavy losses associated with
soil–plant systems, nitrogen (N) is an essential element in plant metabolic functions [1].
Insufficient nitrogen application will result in rice production remaining below its poten-
tial [2,3]. Consequently, there is an urgent need to balance N input and rice production.
Nitrogen (N) has a unique place in agricultural systems with significant requirements for
cropping systems’ efficient N management and NUE. Great efforts have been made to
enhance the NUE of crops using soil-based or plant-based strategies for identifying appro-
priate time-splitting applications and optimizing fertilizer deposition methods [4–7]. Based
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on monitoring the N status of rice by measuring chlorophyll content per leaf area, plant-
based strategies can improve NUE significantly [8,9]. Due to the incongruence between N
supply and crop demand, soil-based strategies have rarely been employed.

Currently, several methods can measure chlorophyll content in crops’ leaves, which
can be divided into destructive and nondestructive methods. The destructive methods
estimate chlorophyll using solvents and spectrophotometer. These methods can be labori-
ous and time-consuming [10]. To determine chlorophyll content near-instantly, hand-held
chlorophyll meters (SPAD-502, Konica Minolta Sensing, Inc., Sakai, Osaka, Japan) have
been used to estimate relative chlorophyll content on the same leaf over time. Based on
the difference in chlorophyll absorption of two wavelengths of light (650 nm, which is
absorbed by chlorophyll; 940 nm, in which no chlorophyll absorption occurs), this method
can provide a quick, and nondestructive method for estimating leaf chlorophyll content [11].
SPAD is widely used in scientific experiments and agricultural production to rapidly ob-
tain chlorophyll content and the health status of different kinds of crops and to guide N
fertilizer management [9,12–15]. For rice, numerous studies have shown that SPAD-based
nitrogen management can improve agronomic N use efficiency (the increase in grain yield
per unit of N applied) by 200–276% [8,16,17]. However, other studies have found that
SPAD, chlorophyll content, and leaf N status were substantially affected by environmental
factors such as crops’ growing temperature, CO2 concentration, etc. [18,19]. No obvious
effect of elevated [CO2] or temperature elevation on leaf SPAD was detected in the early
and middle growth stages [16,20–22]. However, a decrease in leaf N content was often
found in elevated [CO2] studies [23,24], and the combination of E and T treatment further
enhances the decreased magnitude [25]. In view of the fact that SPAD, chlorophyll, and
leaf nitrogen have changed differently in elevated [CO2] or temperature, their relationship
is bound to change and needs to be reassessed.

According to the latest IPCC AR6 report, [CO2] will continue to increase during
this century, reaching 600–1000 ppm by 2100; the global surface temperature will also
continue to increase, and global warming of 1.5 ◦C and 2 ◦C will be exceeded during
the twenty-first century unless there are deep reductions in CO2 and other greenhouse
gas emissions [26,27]. This rapid increase in [CO2] and temperature alters several basic
biological functions in plants. Changes in leaf morphology, including thickness and density,
can, in turn, impact the optical path of the SPAD device and then the SPAD value. Overall,
these results suggest that the relationship between SPAD readings and chlorophyll leaf
content will be altered as [CO2] and temperature continue to increase. Elevated [CO2] has
also been shown in multiple studies to reduce leaf N concentration [19,28–33]. Since SPAD
determines the relative value of leaf chlorophyll content, many studies have sought to
establish critical SPAD threshold values below which rice corresponds to N fertilization
deficiency. Generally, SPAD readings below 35 units were defined as a critical value
of the need for N fertilization in rice [8,34–36]. However, the variations in relationship
between SPAD readings and nitrogen content under elevated [CO2] and warming remain
unexplored, and it is unclear whether the current critical value can still work for N fertilizer
management in the future. Thus, in this work, at two Free-Air CO2 Enrichment (FACE)
facilities, we explored the variations in rice leaf SPAD readings, chl a + b content and N
content and the relationship between each of them under elevated [CO2] and warming
treatments. Specifically, we aim to address the following questions: (1) how does the
relationship between rice leaf SPAD readings and N content vary under elevated [CO2]
and warming treatments? (2) What is the reason for the variations in their relationships?
(3) Finally, how can we deal with this issue in the future?

2. Materials and Methods

2.1. Experimental Site and Growth Condition

We conducted CO2 and temperature-controlled field experiments in 2020 in the FACE
1 system located in Kangbo village (31◦30′ N, 120◦33′ E), Changsu Municipality, Jiangsu
Province, China. As a further verification and supplement, we also include CO2-controlled
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experimental data from 2015 to 2017 in the FACE 2 system in our study. FACE2 is located
in Zongcun village (32◦35′′ N, 119◦42′′ E), Jiangdu District, Jiangsu Province in China, and
both are typical rice growing regions (Figure 1).

Figure 1. (a) Location of the experimental site in Jiangsu Province in the east of China and the ESA Climate Change Initiative
(CCI) land cover map of the study site in 2010 at 300 m spatial resolution. Additionally, included are the on-site photos of
the study site of FACE2 (b) and FACE1 (c).

The region of the FACE1 system has a subtropical monsoon climate with a rice growing
season average temperature of 24 ◦C in 2020. The soil is classified as a gleyic stagnic
anthrosol. Properties of the topsoil at a depth of 15 cm are as follows: soil pH 7.0, soil
organic carbon 1.6%, and total nitrogen 1.9 g kg−1. The region of the FACE 2 system is
typical of a northern subtropical monsoon climate. The soil is classified as a Shajiang-Aquic
Cambiosol. Soil properties at a depth of 15 cm are as follows: bulk density 1.16 g cm−3,
soil organic carbon 18.4 g kg−1, total nitrogen 1.45 g kg−1, total phosphorous 0.63 g kg−1,
total potassium14.0 g kg−1, available phosphorous 10.1 mg kg−1, available potassium
70.5 mg kg−1, and pH 6.8.

The operation and control systems for both FACE facilities were the same as those
used at the Japan FACE site [37,38]. Each FACE plot was encircled with a ring (8 m diameter
for FACE1 and 14 m diameter for FACE2 system) with emission tubes that injected pure
CO2 at around 30 cm above the plant canopy controlled by Li-820 CO2 sensors (LI-COR
Inc., Lincoln, NE, USA). The rings were raised as the canopy grew to maintain the CO2 set
point. Ambient control plots did not receive any supplemental CO2. The CO2 set value in
FACE plots was ~200 μmol moL−1 above that of ambient control plots. CO2 release was
controlled by a program with an algorithm based on the speed and direction of the wind to
maintain the target CO2 concentration ([CO2]).

In the FACE1 system, 12 octagonal plots were located in uniform paddy fields with
similar soils and agronomic histories [39], and the facility also included 12 infrared heaters
(detailed information can be found in Cai et al., 2016). The canopy warming magnitude
under the controlled plot in 2020 was +1.6~1.7 ◦C as compared with ambient plot. In the
FACE2 system, three rectangular and uniform paddy fields were established. A FACE
treatment was paired with an ambient plot within each area, and plot centers were 90 m
apart to avoid additional CO2 diffusion.

2.2. Sampling and Measurements

In the FACE1 system, four rice (Oryza sativa L.) varieties including cvs. Xiangliangyou
143, Changyou 5, Wuyungeng 23 and Yangdao 6 were planted. Seeds of each line were
sown on 27 May 2020 and transplanted on 22 June 2020. The basal nitrogen (N) and two
top-dressed N were applied at 69, 60, and 52 kg·ha−1, respectively. For FACE2 experiments,
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five rice (Oryza sativa L.) varieties including cvs. Yangdao 6 (YD6), Y Liangyou 900 (Y900),
Wuyungeng 23 (WYG23), Wuyungeng 27 (WYG27), Nangeng 9108 (NG9108) were chosen
(YD6, WYG23, NG9108 for 2015; YD6, Y900, WYG23, NG9108 for 2016; YD6, Y900, WYG23,
WYG27 for 2017). Seeds of each line were sown on 20 May 2015 and 2016, 22 May 2017,
and transplanted on 20 June, 17 June and 21 June in 2015, 2016 and 2017, respectively. The
spacing of the hills was 16.7 cm × 25 cm (equivalent to 24 hills·m−2). A fertilizer dose of
225:90:90 kg ha−1 nitrogen (N)–phosphorus (P)–potassium (K) was applied to all plots over
the season; 40% of the N and whole of the P and K was applied as the basal starter dose,
while residual N was equally split at middle tillering and the panicle initiation stage.

SPAD readings and leaf samples were collected on 15 August, 6 September, and
25 September in 2020, respectively, in FACE1. In FACE2 system, SPAD readings and leaf
samples were collected on September 1, 8, and 23 in 2015. In 2016 and 2017, SPAD readings
and leaf samples were collected every ten days from 10 August to 23 September and from
3 August to 5 September, respectively. SPAD measurements were conducted on the newest
fully expanded leaf (flag leaf during grain fill following full expansion). Measurements
occurred between 07:00 a.m. and 09:00 a.m. to minimize the potential effects of light
intensity on SPAD readings [40]. Four to eight SPAD readings were taken from around
the midpoint of each leaf blade, and both sides of the midrib for each leaf. In FACE1
system, four leaves were selected in each plot and the SPAD values of each leaf were
recorded. Then, these four leaves were kept separately in liquid nitrogen tank. In the lab,
a hole punch was used to remove a fixed area of the middle third of leaves to determine
chlorophyll content, and the remaining middle third of leaves was measured for leaf area
and N content (mg cm−2). In the FACE2 system, ten leaves were selected in each plot,
and then the SPAD readings were averaged. After SPAD readings were recorded, these
leaves were collected. Half of the leaves were randomly selected and put into a portable
tank with liquid nitrogen for back up, while the remaining leaves were photographed
on a graduated scale on a white background and processed with Image J software (The
National Institutes of Health) to obtain the leaf area. Then, photographed leaves were used
for determination of N. Chlorophyll concentration, measurements were conducted using
a spectrophotometer (UV2102, Unico, NJ, America) and 95% (v/v) alcohol extracts of leaf
tissue [41]. The samples for leaf N measurement were oven-dried at 80 ◦C to constant
weight and digested using the micro-Kjeldahl method, after which the N concentration
was measured with a discrete wet chemistry analyzer. The concentration of leaf N was
calculated as area-based (N weight per unit leaf area).

2.3. Data Analysis

To better compare the variations of SPAD, chl a + b content, and nitrogen content, we
calculated their normalized values using minimum–maximum value-based normalization
method as follows [42]

Y′ = Y − Ymin
Ymax − Ymin

(1)

where Y′ denotes the normalized SPAD/chl a + b content/N content; Y is the original
SPAD/chl a + b content/N content values; Ymax and Ymin are, respectively, the maximum
or minimum values of the original SPAD/chl a + b/N content values. ANOVA was used
to determine differences between treatment means. All results reported as significant had
a p < 0.05 unless stated otherwise. To show the distributions of all measured leaf SPAD, chl
a + b content, and N content under different controls, violin plot is employed here. The
violin plot synergistically combines the box plot and density trace into a single display that
can reveal structure found within the data [43].

3. Results

3.1. Variations of Rice Leaf SPAD Readings and N Content under Different Treatments

We analyzed the measured rice leaf SPAD readings and N content to assess its vari-
ations under different controls (A, E, T, and ET) in the FACE1 system. Figure 2 shows
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that leaf SPAD and N content decrease under elevated [CO2] (E), warming (T), and ele-
vated [CO2] and warming (ET) controls compared to ambient (A) conditions with different
magnitudes. For rice leaf N content (Figure 2b), the average N content under ambient
conditions is 15.63 mg cm−2. Under E and T controls, the average N content shows a small
decrease of 15.24 and 15.09 mg cm−2, respectively. When rice is grown under ET control,
the average N content is 13.49 mg cm−2, which is −13.69% smaller than that under A. The
decreasing magnitudes for leaf SPAD (Figure 2a) under controlled conditions (E, T, and ET)
show desynchronized variations with N content. The average SPAD readings under E, T,
and ET conditions are 43.17, 42.77, and 42.63 units, which is −0.16%, −1.09%, and −1.41%,
respectively, smaller than under the A condition (43.24 unit). The linear fit results of the nor-
malized parameters also indicate a similar conclusion (insert plot in Figure 2a,b). The slope
of the linear fit of normalized SPAD readings for A, E, T, and ET is −0.01, and the slope of
normalized N content is −0.04. The linear fit results of normalized parameters indicate that
under E and T controls, leaf N content shows a larger decrease magnitude than that of leaf
SPAD readings. Under ET control, leaf SPAD readings and N content all indicate the largest
decrease as compared with A, E, and T treatments. To assess the influence of rice subspecies
on the SPAD and nitrogen content response to different controls, we also analyzed the
indica varieties (including cvs Xiangliangyou 143 and Yangdao 6, Figure S1) and japonica
varieties (including cvs Changyou 5 and Wuyungeng 23, Figure S2) of rice leaf SPAD
readings and N content under A, E, T, and ET in the FACE1 system. Indica and Japonica
rice indicate similar results. Under controlled conditions, the decreasing magnitude of
SPAD readings is smaller than that of N content. The slopes of normalized SPAD readings
of indica and japonica rice are −0.01 (r = −0.37) and −0.02 (r = −0.67), respectively; the
values for N content are −0.02 (r = −0.49) and −0.03 (r = −0.74), respectively.

3.2. Relationship between Rice Leaf SPAD Readings and N Content Per Leaf Area under
Different Treatments

To further analyze the influence of the discrepancy among the variations of SPAD
readings and N content under different treatments, Figure 3 shows the scatter plots and
linear fit results between SPAD readings and N content under A, E, T, and ET treatments in
the FACE1 system. Under both A and controlled treatments, SPAD readings significantly
correlate with N content (R2 under A: 0.56, R2 under E: 0.58, R2 under T: 0.60, R2 under
ET: 0.58, all p < 0.01). Nonetheless, the slope and intercept of the regression lines between
SAPD readings and N content vary significantly under different treatments (insert plot
in Figure 3). Under the A condition, the slope is 1.07 (±0.16) mg cm−2, and slope values
increase substantially under controlled treatments (E, T, and ET), with the largest values
under ET. The initial intercept value under A is −31.49 (±1.07), and, under E, T, and
ET controls, the intercept value is 21%, 25%, and 30% smaller than that under the A
treatment, respectively.

The scatter plot results between SPAD and N content under A and E treatments in the
FACE2 experiment also indicate similar trends as the FACE1 experiment (Figure 4). Under
both A and E treatments, SPAD shows a middle strong correlation with N content (R2

under A: 0.42, R2 under E: 0.51, both p < 0.01). The slope value increases significantly from
0.59 (±0.07) to 0.668 (±0.07) from A to E treatments. For intercept values, the intercept
under E treatment is 51% smaller than that under the A treatment.

3.3. Variations of Rice Leaf N Content Corresponding to Rice N Demand SPAD Value

In the paddy field SPAD-based nitrogen treatment, nitrogen was top-dressed when
rice leaf SPAD readings fell below 35 [8,34–36]. We then estimated and compared N content
corresponding to SPAD = 35 under A, E, T, and ET treatments in the FACE1 experiment
(Figure 5). According to linear fit regression results in Figure 3, when rice SPAD = 35, N
content under A treatment is 5.96 (±0.46) mg cm−2. The estimated N content under E and
T treatment, respectively, is 14.8% and 15.8% smaller than that under A, with a significant
difference. Under ET treatments, the estimated N content is 3.73 (±0.63) mg cm−2, the
decreased magnitude is near twice as many as E and T (37.4% smaller than that under
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A). Overall, the results indicate that the estimated N content corresponding to SPAD = 35
under controlled treatments is smaller than under A treatment.

Figure 2. Violin plots of the rice leaf SPAD values (a) and nitrogen content (b) in different controls
(A: ambient, E: elevated [CO2], T: warming, and ET: elevated [CO2] and warming). The violin plot
is a box plot with the width of the box proportional to the estimated density of the observed SPAD
readings and N content. The maximum density of the group-specific data distribution is indicated
by the largest width of the violins. The white dot in the violin plot is the median, the thick vertical
bar indicates the interquartile range, and the thin vertical bar indicates 95% confidence intervals. A
linear fit between normalized SPAD readings, N content and different controls is presented in insert.
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Figure 3. Scatter plots and linear fit results between rice leaf SPAD values and nitrogen content within different controls
in FACE1 system. The estimated slope and intercept of the linear fit are presented in the inserted bar plot. ** in the plot
indicates p < 0.01.

Figure 4. Scatter plots and linear fit results between rice leaf SPAD values and nitrogen content under ambient and elevated
[CO2] conditions in FACE2 system. The estimated slope and intercept of the linear fit are presented in the inserted bar plot.
** in the plot indicates p < 0.01.
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Figure 5. Estimated rice leaf N content per leaf area corresponding to SPAD = 35 using the linear fit
results of Figure 3 in different controls. The horizontal lines indicate the change percent of N content
of E, T, and ET controls as compared with the values under A.

3.4. Attributions of the Discrepancy between Rice Leaf SPAD Readings and N Content under
Different Treatments

To determine the reason for the discrepancy in SPAD reading responses to N content
by changes in [CO2] and temperature, we analyzed variations in the chl a + b content and
relationships with SPAD under different treatments in the FACE1 experiment site. The
average chl a + b content under E, T, and ET controls are −0.06%, −3.5%, and −4.64%
smaller than under A treatment (64.25 μg cm−2), respectively. However, the decreasing
trends of chl a + b content from A to controlled treatments are smaller than that of N
content as indicated by Figure 6a. The slope of normalized chl a + b content is −0.02, which
is also smaller than the value of normalized N content (−0.04). Results from the indica and
japonica indicate similar trends (Figures S3 and S4). The decreasing trends in both indica
and japonica rice leaf chl a + b content are smaller than that of N content.

As indicated by Figure 6b, under all of the treatments (A, E, T, and ET), SPAD shows
a strong correlation with chl a + b content. The slope of the linear fit results indicates
increasing trends from A to controlled treatments, and the intercept indicates decreasing
trends, which are similar to the trends of N content. For the indica and japonica subspecies,
both of the leaf SPAD readings of these two subspecies show a strong correlation with chl
a + b and N content, and the slope and intercept values indicate increasing and decreasing
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trends as a result for all samples (Figures S5 and S6). Based on the linear fit results, the
chl a + b content corresponding to SPAD = 35 under A, E, T, and ET treatments was
calculated (Figure 6c). Under A treatment, chl a + b content is 47.55 (±2.24) μg cm−2, and
the values under E, T, and ET controls are 9.2%, 10%, and 17.6% smaller than that under
A treatment, respectively. Thus, although chl a + b content shows similar trends with N
content, the decreasing magnitude of chl a + b is smaller than that of N content from A to
controlled treatments.

Figure 6. (a) Variations in rice leaf chl a + b content under different controls at FACE1 experiment
site. (b) Scatter plots and linear fit results between rice leaf SPAD values and chl a + b content under
different conditions at FACE1 experiment site. (c) Estimated rice leaf chl a + b content per leaf area
corresponding to SPAD = 35 using the linear fit results of Figure 3 under different controls at FACE1
experiment site. ** in the plot indicates p < 0.01.

Figure 7 indicates that under E treatment, the normalized slope and intercept between
SPAD readings and N content and SPAD readings and chl a + b content vary significantly,
while the relationship between chl a + b and N content remains unchanged compared with
A. Under T treatment, the slope between normalized SPAD and N content increases from
0.81 (A) to 1.16 (T), and the intercept decreases from 0.1 (A) to −0.07 (T). The response of
normalized SPAD to chl a + b content and normalized chl a + b content to nitrogen content
show similar trends; both of the normalized slope values show increasing trends and
normalized intercept values show decreasing trends. Under ET control (Figure 8), the slope
between normalized SPAD and nitrogen content increases by 43%, and the normalized
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intercept decreases by −250% compared with values under A treatment. For the variations
in normalized SPAD and chl a + b content and chl a + b content and nitrogen content, the
slope values under ET increase by 43% and 11%, respectively, and the intercept values
decrease by −85% and −550%, respectively.

Figure 7. Wind rose diagram of (a) normalized slope and (b) normalized intercept under different controls. The normalized
slope and intercept is the linear fit result of normalized SPAD, chl a + b content, and nitrogen content.

Figure 8. Regression lines based on linear fit results of Figure 3 at FACE1 site under A and ET conditions. The transparent
red area indicates 95% confidence bands. The vertical dark blue dotted line (vb) is at the position of SPAD = 35; the
horizontal dark blue dotted line (hb) is the estimated rice leaf N content using regression result under A condition. The
vertical green dotted line (vg) is the SPAD value corresponding to the estimated N content of hb using regression result
under ET condition.
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4. Discussion

Under E or T treatments, rice leaf N content after heading decreases compared with
that under A treatment, and the combination of E and T treatment further enhances
the decreased magnitude (Figure 2). The decrease in rice leaf N content under E and T
treatments has been found in many previous studies. For example, Cai et.al. reported
that rice leaf N content decreased 16.7% under E control and 33.3% under ET control,
respectively, after the heading stage in a field experiment [25]. This decrease is generally
considered to be the dilution effect of increased biomass due to elevated [CO2] [23,24].
Additionally, some studies suggested that a decrease in transpiration rate due to restricted
stomatal opening under E control results in poorer N absorption capacity [20,44]. After
anthesis, warming, elevated [CO2], or both might accelerate leaf senescence [25]. Faster
leaf senescence is often accompanied by faster N remobilization from green leaves to grains
in cereal crops [45,46].

The average SPAD readings only decrease 0.6 units under ET control (decrease of
1.41% compared with the value under A treatment), which is far smaller than the decreased
magnitude of leaf N content (−14% compared with the value under A treatment, Figure 2).
The variations in this decline result in the distortion of the relationship between SPAD
readings and leaf N content under controlled treatments (E, T, and ET). This is confirmed
by another result from the meta-analysis of FACE experiments; nitrogen reported on an
area basis was reduced by 12% in plants under E treatment, while there was no significant
change in chlorophyll content per leaf area [47].

Compared with the relationship between SPAD readings and leaf N content under
A treatment, the relationships under all three controls indicate a higher slope and lower
intercept (Figures 3 and 4). This means that if the relationships between SPAD and leaf
N content under A treatment continue to be employed to estimate leaf N status under
E and T treatments in the future, rice leaf N status may be under/overestimated under
relatively high/low leaf N statuses, respectively. Previous studies have already reported
that SPAD-based estimations of rice leaf N status are influenced by multiple environmental
factors; leaf’s N status may be under/overestimated by SPAD readings due to changes in
environmental factors [18].

To analyze the attributions of distortion of the SPAD-based leaf N content estimation
under different treatments, we investigated the relationship between SPAD and chl a +
b content per leaf area and chl a + b content and N content under three controls (E, T,
and ET, Figure 7). Under E control, there is no significant difference compared with A
treatment for the relationship between chl a + b content and N content, while there is
a significant difference between SPAD readings and chl a + b content. Under T and ET
controls, both relationships between SPAD readings and chl a + b content and chl a + b and
N content show significant differences to those under A treatment. This result indicates
that the discrepancies between SPAD and leaf N status under E control mainly result from
the difference between chl a + b and leaf N status, while for the T and ET controls, both
significant differences in the relationship between SPAD and chl a + b content and chl a + b
content and N content with that under A, lead to the significant discrepancy in SPAD and
N status.

The SPAD value in SPAD-based N management could be absolute or relative SPAD [48],
and the absolute value was used in the present study. The relative SPAD value calculated by
multiple indicators is more advanced in evaluating leaf nitrogen content and the N fertilizer
management [49], but it increases the workload in field determination, which is contrary
to the rapid measurement and restricts its application. On the other side, by mid-century,
global [CO2] and warming magnitude are predicted to increase by 200 μmol mol−1 and
2 ◦C under the high emissions RCP8.5 scenario [50]. Here, we monitored similarly elevated
[CO2] and warming scenes in the FACE site, and our results indicate that not only do
these indicators change differently but also the relationship between SPAD readings and
leaf N content varies greatly under E and T controls, which means that this may cause
great potential risk to SPAD-based N management, especially when leaves are of low leaf
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N status in future. The key factor in SPAD-based N management is the SPAD threshold
readings for N application. For example, when SPAD = 35 is considered as the threshold
value for applying N fertilization in rice, the leaf N content estimated by relationship under
ET control is 37.4% lower than the value based on the relationship under the current A
treatment. The lower leaf N status of the same SPAD readings means that if the threshold
of the current condition continues to be employed in future elevated [CO2] and warming
environments, it will delay the application of N fertilization, which may result in a great
potential risk of yield reduction. The present study is the first reminder of the risk of
insufficient nitrogen supply that may be hidden under unchanged performance (SPAD-
based). Certainly, such results are not enough to complete the correction of SPAD-based N
management in climate change. The SPAD threshold and the amount of fertilization need
to be determined according to specific rice cultivars, environmental factors, etc. [51], and
this requires more experimental studies.

Although the application of N fertilizer plays an important role in global food se-
curity, excessive nitrogen fertilizer use in agriculture production can also have negative
environmental effects such as increased greenhouse gas (GHG) emissions [52,53], soil acid-
ification [54], and eutrophication of groundwater [55]. Compared with the possible yield
loss, the additional cost is tolerable with the relatively low nitrogen fertilizer price [56],
which is the main reason for the excessive nitrogen input. It is undeniable that a rising ni-
trogen fertilizer price will encourage farmers to use nitrogen more cautiously [56]. Multiple
studies have documented that expediting the development of optimal nitrogen manage-
ment is an effective technique to confront the challenges of food security and environmental
sustainability [15,16,35]. The aim of SPAD-based nitrogen management is to achieve higher
nitrogen use efficiency by greatly reducing nitrogen fertilizer with no yield loss rather than
achieving higher yield. Maintaining the balance between nitrogen input and crops’ needs
will drastically reduce nitrogen loss during agricultural production.

5. Conclusions

Chlorophyll meters, for example, the SPAD-502, can provide a simple, nondestructive
and quick method for monitoring leaf N status in agricultural systems.

In this study, we provide evidence that under E and T controls, current SPAD-based
monitoring of rice leaf N status can be overestimated under relatively low leaf N status,
which may cause great potential risk to fertilization management and rice yield decline. The
distortion of the SPAD-based N monitoring under E control is caused by the discrepancy of
the relationship between leaf chl a + b figure and N content; under T and ET controls, the
distortions are caused by the discrepancy of the relationships between SPAD and leaf chl
a + b content and leaf chl a + b and N content. To deal with this issue under the background
of global climate change dominated by warming and elevated [CO2] by mid-century, we
need to increase the threshold SPAD readings by at least 5% to adjust N management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12121571/s1, Figure S1: Violin plots of the indica rice leaf SPAD values (a) and nitrogen
content (b) in different controls (A: ambient, E: elevated [CO2], T: warming and ET: elevated [CO2] &
warming). Figure S2: Violin plots of the japonica rice leaf SPAD values (a) and nitrogen content (b) in
different controls (A: ambient, E: elevated [CO2], T: warming and ET: elevated [CO2] & warming).
Figure S3: Violin plots of the indica rice leaf chlorophyll a+b content in different controls (A: ambient,
E: elevated [CO2], T: warming and ET: elevated [CO2] & warming). Figure S4: Violin plots of the
japonica rice leaf chlorophyll a+b content in different controls (A: ambient, E: elevated [CO2], T:
warming and ET: elevated [CO2] & warming). Figure S5: Scatter plots and linear fit results between
indica rice leaf (a) SPAD values & chlorophyll a+b content and (b) SPAD values & nitrogen content
within different controls. Figure S6: Scatter plots and linear fit results between japonica rice leaf (a)
SPAD values & chlorophyll a+b content and (b) SPAD values & nitrogen content within different
controls. The estimated slope and intercept of the linear fit is presented in the inserted bar plot. ** in
the plot indicates p < 0.01. Figure S7: The relationship between the changes of SPAD and leaf Ndw
(blue dots, N concentration by unit dry weight), Na (orange dots, N concentration by unit leaf area)
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in E relative to A of 2016 and 2017. The orange and blue regression lines represent the regression of
Na and Ndw with SPAD, respectively.
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Abstract: The impact of air pollution on human health is becoming increasingly severe, and economic
losses are a significant impediment to economic and social development. This paper investigates the
impact of air pollutants on the respiratory system and its action mechanism by using information
on inpatients with respiratory diseases from two IIIA (highest) hospitals in Wuhan from 2015 to
2019, information on air pollutants, and meteorological data, as well as relevant demographic and
economic data in China. This paper describes the specific conditions of air pollutant concentrations
and respiratory diseases, quantifies the degree of correlation between the two, and then provides a
more comprehensive assessment of the economic losses using descriptive statistical methods, the gen-
eralized additive model (GAM), cost of illness approach (COI), and scenario analysis. According
to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2, and CO exposure are USD
103.17 million, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million, for
a total of USD 454.46 billion, or approximately 0.20% of Wuhan’s GDP in 2019. If the government
tightens control of major air pollutants and meets the WHO-recommended criterion values, the
annual evitable economic losses would be approximately USD 69.4 million or approximately 0.03%
of Wuhan’s GDP in 2019. As a result, the relevant government departments must strengthen air
pollution control to mitigate the impact of air pollution on population health and the associated
economic losses.

Keywords: air pollution; respiratory disease; generalized additive model; scenario analysis; assess-
ment of economic losses

1. Introduction

Air pollution, also known as atmospheric pollution, is defined by the International
Standardization Organization (ISO) as the entry of certain substances into the atmosphere
as a result of human activities or natural processes that present a sufficient concentration
for a sufficient period and, thus, endanger human comfort, health, and welfare and the en-
vironment. The primary sources of air pollutants are industrial production, home furnaces,
heating boilers, transportation, and smoke from forest fires. The six common categories of
pollutants are fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur
dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO). These six
significant pollutants are known as “criteria pollutants”. National ambient air quality
standards have been set. Air quality is often evaluated using the Air Quality Index (AQI), a
dimensionless index describing the overall condition of urban ambient air quality. The AQI
takes into account the pollution levels of the six air pollutants, namely, PM2.5, PM10, SO2,
NO2, O3, and CO, as specified in the “Technical Regulation on Ambient Air Quality Index

Atmosphere 2021, 12, 1628. https://doi.org/10.3390/atmos12121628 https://www.mdpi.com/journal/atmosphere
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(on trial) (HJ633-2012)” [1], with larger AQI values indicating heavier pollution levels. In
recent years, health problems caused by air pollution have become increasingly severe and
seriously endanger public health, with the burden of disease caused by it rising every year,
especially in low-income and middle-income countries. It is estimated that outdoor air
pollution exposure caused approximately 4.9 million deaths worldwide in 2017, an increase
of 5.8% compared to 2007 [2]. Among the effects on human health, the correlation between
air pollution and respiratory diseases is the strongest, with numerous epidemiological
and toxicological findings showing that short-term exposure to lowly concentrated air
pollutants, continuous exposure to lowly concentrated air pollutants, and acute exposure
to highly concentrated air pollutants can cause damage to the respiratory system [3–6].

Respiratory disease is a common and frequently occurring disease mainly in the
trachea, bronchi, lungs, and thorax, with coughing, chest pain, and affected breathing in
mild cases and respiratory distress, hypoxia, and even respiratory failure in severe cases.
According to a study conducted by the University of Washington’s Institute for Health
Metrics and Evaluation (IHME), an estimated 545 million people worldwide suffered
from chronic respiratory disease in 2017, a 39.8% increase from 1900, and approximately
3,914,200 people died as a result of chronic respiratory diseases. Chronic respiratory
diseases accounted for 7.0% of all deaths worldwide, ranking third after cardiovascular
diseases (31.8%) and tumors (17.1%) [5]. According to the analysis of disease burden, the
global growth rate of disability-adjusted life years (DALYs) due to chronic respiratory
diseases was 14.5% from 2007 to 2017, with 112 million DALYs in 2017, with chronic
obstructive pulmonary disease (COPD) as one of the top five leading causes of DALYs
worldwide, rising from eighth place in 2007 to fifth place in 2017 [6]. According to data from
the China Statistical Yearbook (2021), the mortality rate from respiratory diseases ranked
fourth among the major disease mortality rates for both urban and rural residents in China
in 2020, at 55.36 per 100,000 residents and 63.64 per 100,000 residents, respectively [7].

Previous studies have demonstrated a strong association between air pollutant expo-
sure and respiratory disease, with air pollutant exposure leading to an increased incidence
of respiratory disease and mortality. Studies have demonstrated an increased risk of respi-
ratory disease hospital visits when air concentrations of PM2.5, PM10, SO2, NO2, and CO
are elevated [8], and a significant increase in hospital admissions for respiratory disease in
children (0–14 years) [9]. Air pollutants have also been associated with respiratory disease
deaths, with 25,600, 252,000, 22,300, 57,300, 31,600, and 45,700 deaths attributable to PM2.5,
PM2.5-10, SO2, NO2, CO, and O3, respectively, in China [10], and other countries, such as
Mexico [11], India [12], and South Korea [13], have also found a link between air pollution
and deaths from respiratory diseases. In terms of specific diseases, the more affected respi-
ratory diseases include COPD, asthma, pulmonary infections, and pulmonary tuberculosis.
Long-term inhalation of air pollutants reduces pulmonary function in COPD patients,
leading to disease progression, more hospital admissions, and higher mortality [14]. For
every 10 μg/m3 rise in PM2.5 concentration, years of life lost (YLLs) in COPD increase
by 0.91 person-years [15]. Furthermore, COPD visits increased when PM2.5 and PM2.5-10
concentrations increased [16], and there was a substantial positive association between
COPD hospital admissions and SO2, NO2, O3, and CO concentrations in the air [17,18].
Air pollution is one of the most important factors contributing to the exacerbation of child-
hood asthma, especially in Europe and the Caribbean, where the prevalence of asthma is
high [19,20]. A prospective cohort study carried out in ten European cities found a link
between the onset of asthma symptoms and short-term PM2.5 and PM10 exposure [21].
A strong positive relationship has also been shown between airborne CO concentrations
and the number of asthma outpatient visits [22], and NO2 and O3 exposure can influence
asthma development and increase the likelihood of hospitalization for asthma [23,24].
When PM2.5 and PM2.5-10 concentrations increased by 10 μg/m3, the excess relative risk
(ERR) for upper respiratory infections (URI) and pneumonia increased by 5.40% and 6.37%,
respectively, according to a study conducted in China [16]. Most bronchiectasis exacer-
bations are assumed to be caused by pathogenic infections. However, pathogens can be
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challenging to identify, and studies have shown that air pollution is a substantial risk
factor for bronchiectasis. A study of 432 patients with a clinical diagnosis of bronchiectasis
after high-resolution computed tomography (HRCT) found that when PM10 and NO2
concentrations increased by 10 μg/m3, the chance of exacerbation increased by 4.5% and
3.2%, respectively [25]; when CO concentrations increased, the number of outpatient visits
for bronchiectasis increased [22]; and when SO2 concentrations increased, it caused an
increase in hospital admissions for bronchiectasis [26]. There is also a correlation between
air quality and the pathogenesis of pulmonary tuberculosis, with studies linking PM2.5,
PM10, NO2, and SO2 exposure to the likelihood of acquiring active pulmonary tuberculo-
sis [27,28], and Korean research found a 1.20-fold rise in tuberculosis detection rates with a
substantial delayed effect when PM10 concentrations increased by one standard deviation
(5.63 μg/m3) [29].

The available literature has primarily concentrated on studies of air pollution’s health
effects on the respiratory system (e.g., mortality, morbidity, and hospital admissions),
with little research on air pollution’s economic losses. Therefore, we take the strong
association between air pollutant exposure and respiratory disease recognized by the
literature mentioned above as the hypothesis of this research. Considering geographical,
air pollutant, and climatic characteristics of Wuhan city, based on data from monitoring
sites of six major air pollutants and inpatients with respiratory diseases from two IIIA
(highest) hospitals in Wuhan, this study assesses the health effects and economic losses
attributable to PM2.5, PM10, SO2, NO2, O3, and CO in the population. The study provides
a reference for the future assessment of the health effects of air pollution and cost–benefit
evaluation for the development of environmental management policies.

2. Materials and Methods

2.1. Sampling Sites and Sample Collection

The city of Wuhan is chosen as the study area in this paper. Wuhan is the largest and
only sub-provincial city in central China and the capital of Hubei Province. It has an area of
8494 square kilometers and is located in the eastern half of the Jianghan Plain at longitude
113◦41′115◦05′ E and latitude 29◦58′31◦22′ N. With the rapid growth of the economy in
recent years, the Wuhan industry scale has expanded, and industrial production not only
consumes energy but also emits a large number of pollutants, including particulate matter
(PM), sulfur oxides (SO), nitrogen oxides (NO), carbon monoxide (CO), and hydrocarbons;
combined with a large number of vehicle emissions, air pollution in Wuhan is more severe
and has caused adverse effects on the population’s health.

Three types of data are used in this study to examine the impact of air pollution on
the number of hospital admissions for respiratory diseases. The first type is data from
the Hospital Information System (HIS) on hospital admissions for respiratory diseases;
the second type is data from ambient air pollutant monitoring; and the third type is some
meteorological data.

The hospitalization data for respiratory diseases are obtained from the HIS of two IIIA
(highest) hospitals in Wuhan, China. This study gathers inpatient cases with respiratory
disease between 1 January 2015 and 31 December 2019. The inpatient’s gender, age, date of
admission, date of discharge, disease diagnosis, length of stay, and inpatient expenditure
are all included in the case information. According to the 10th edition of the International
Classification of Diseases (ICD-10), ICD-10 codes for respiratory diseases are J00~J99,
J12~J18 for pneumonia, and J40~J99 for chronic obstructive pulmonary disease (COPD).
Furthermore, the research object is divided into three age groups: 0–14 years, 15–64 years,
and 65+ years, and the cold and warm seasons were divided based on the month of
inpatient admission, with the warm season lasting from April to October and the cold
season lasting from November to March [30].

The Department of Ecology and Environment of Hubei Province provides data on
air pollutant concentrations [31]. This paper collects data on air pollution monitoring in
Wuhan City from 1 January 2015 to 31 December 2019, including the concentrations of
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six major air pollutants: PM2.5, PM10, SO2, NO2, O3, and CO. Except O3, which has a
daily maximum 8 h average concentration, PM2.5, PM10, SO2, NO2, and CO are all 24 h
average concentrations.

Meteorological information is obtained from the China Meteorological Data web-
site [32]. This article collects data on Wuhan’s average temperature (◦C) and relative
humidity (%) from 1 January 2015 to 31 December 2019.

2.2. Sample Analysis
2.2.1. Statistical Descriptive Analysis

From 1 January 2015 to 31 December 2019, the daily number of hospital admissions for
respiratory diseases, inpatient expenditure, length of stay, and air pollutant concentrations
are presented as X ± S; extremum and the percentile are statistically described for the pneu-
mology department of these two IIIA (highest) hospitals. Furthermore, hospital admissions
for respiratory diseases are statistically described using frequencies and percentages based
on disease subgroups, gender groups, age groups, and season groups.

2.2.2. Time Series Analysis

The data for each period in the time series are the combined result of multiple elements.
In this study, the additive model in the time series decomposition method is used to analyze
the daily hospital admissions for respiratory diseases and each air pollutant concentration
from 1 January 2015 to 31 December 2019, including the long-term trend and seasonal
trend and random fluctuation elements. The long-term trend element represents the long-
term trend characteristics of the time series, which can be characterized as a continuous
upward, continuous downward, or smooth trend during the study period. The seasonal
trend element is a cyclical fluctuation influenced by seasonal changes, characterized as a
recurring cyclical change every year during the study period; random events usually cause
the random fluctuation, and its changes are generally irregular. The expression is shown in
Equation (1):

Yt = Tt + St + Rt, t = 1, 2, · · · , n (1)

In Equation (1), Yt is the time series, Tt represents the long-term trend, St is the
seasonal trend, and Rt is the random fluctuation.

2.2.3. Generalized Additive Model

The generalized additive model (GAM) extends the generalized linear model (GLM)
and explains the complex non-linear correlation between the independent and dependent
variables. GAM is widely used in environmental epidemiology to explore the correlation
between air pollutant exposure and disease mortality or morbidity. The occurrence of
hospital admission for respiratory disease is a small probability event for the total number of
people in an area, and its distribution approximately follows the Poisson distribution. Since
the daily hospital admissions for respiratory diseases are tested to have overdispersion,
a GAM based on a quasi-Poisson distribution is developed to analyze the effect of six
major air pollutants—PM2.5, PM10, SO2, NO2, O3, and CO—on changes in the number
of hospital admissions for respiratory diseases. Assuming a log-linear distribution of
pollutants and diseases, we use the number of daily hospitalization events as the outcome
and the daily average pollutant concentration as the predictor, and we smooth the time
trend and meteorological elements, correcting for the weekend effect and the holiday effect.
The model is shown in Equation (2):

log(Ei) = βi(Ci) + ns(Time, d f ) + ns(MT, d f ) + ns(RH, d f ) + DOW + Holiday + α (2)

In Equation (2), Ei represents the expected value of the number of hospital admissions
for respiratory diseases on the i-th day, and Ci represents the average concentration of
air pollutants on the i-th day. The regression coefficient βi is calculated using the model.
Time is the date variable; MT is the daily mean temperature; RH is the daily mean relative
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humidity; DOW is the weekend effect (0 = working day, 1 = weekend); and Holiday is
the holiday effect (0 = non-statutory holiday and 1 = statutory holiday, both of which are
incorporated as factor variables into the model). ns is the natural smooth spline function,
and df is its degree of freedom, which was selected to be 4 for the Time variable [17] and 3
for the MT and RH variables [33]. α is the intercept.

Previous research has shown that there is a considerable hysteresis effect of ambient
air pollutant exposure on population health, which means that daily air pollutant exposure
may still impact population health after several days. As a result, the effect on the admission
day (Lag0) and the hysteresis effects on the first day (Lag1), second day (Lag2), third day
(Lag3), fourth day (Lag4), fifth day (Lag5), sixth day (Lag6), and seventh day (Lag7) are
examined. In addition, separate models are developed based on gender groups, age groups
(0–14 year group, 15–64 year group, and 65+ year group), season groups (cold season,
warm season), and disease subgroups (pneumonia, COPD) to examine the associations
between each air pollutant and the number of hospital admissions for respiratory diseases
on the admission day and lag days.

The following Equation (3) is used to calculate the percentage change (PC) in the
number of hospital admissions for respiratory diseases and its 95% confidence interval (CI)
for each 10 g/m3 increment in air pollutant concentration:

PC =[exp(βi × 10)− 1]× 100 (3)

In Equation (3), βi refers to the regression coefficient of each air pollutant derived
from Equation (2).

2.3. Methodology of Economic Loss Assessment—Attributable Risk and Cost of Illness Approach

Attributable fraction (AF) and attributable number (AN) are the fundamental indica-
tors of attributable risk (AR). In this study, AN represents the number of excessive hospital
admissions due to air pollutant exposure; AF represents the proportion of excessive hospi-
tal admissions due to air pollutant exposure to the total number of hospital admissions.
It may alternatively be understood as the proportion of the equivalent reduction in hospital
admissions to the overall number of hospital admissions if the population is exposed to air
pollution concentrations below a health-affecting threshold level [7]. Both are computed
using past research, as indicated in Equations (4) and (5).

AF =
n

∑
i=0

{
1 − 1

exp[βi × (Ci − C0)]

}
(4)

In Equation (4), AF refers to attributable fraction; βi is the regression coefficient of
each air pollutant derived from Equation (2); Ci is the average concentration of each
air pollutant on the i-th day; C0 refers to a threshold concentration of each air pollutant.
Existing studies do not provide evidence for a defined threshold concentration in the
exposure–response relationship between air pollutant concentrations and health effects [9].
Threshold concentrations for the acute health effects of O3, PM10, SO2, and NO2 exposure
have also not been determined. As a result, a threshold concentration of 0 is used for each
air pollutant in this investigation.

AN = AF ×
n

∑
j=1

(
Popj × Proj

)
(5)

In Equation (5), AN refers to the attributable number; Popj is the annual resident pop-
ulation in Wuhan from 2015 to 2019, which is 10,607,700, 10,767,200, 10,892,900, 11,081,100,
and 12,210,000, respectively. Proj refers to the hospital admission rate for respiratory
diseases. Because the data particular to Wuhan are unavailable, the 2017 hospital ad-
mission rate for respiratory diseases in China is utilized universally, which is 810.22 per
100,000 people [10].
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According to Kennelly and Zhang’s relevant research [34,35], the cost of illness (COI)
approach is used to assess the economic losses of hospital admission for respiratory diseases
caused by air pollutant exposure. COI considers the direct inpatient expenditure for
hospital admissions (the direct cost of the illness) and the losses of productivity caused
by hospital admissions (indirect cost of the illness). Daily per capita gross domestic
product (PGDP) is utilized in Wuhan instead of the daily per capita productivity losses [35].
Economic losses are calculated using Equations (6) and (7):

ECOloss = Costmean + Daymean × PGDPday (6)

TECOloss = AN × ECOloss (7)

In Equation (6), ECOloss is the economic losses of an individual inpatient with respira-
tory disease. The term Costmean refers to the average inpatient expenditure for respiratory
disease. The term PGDPday refers to the daily GDP per capita of Wuhan city. The daily
GDP per capita in Wuhan in 2015, 2016, 2017, 2018, and 2019 is USD 56.61, USD 53.51, USD
55.24, USD 59.18, USD 57.46, respectively, using the 2019 Gross Domestic Product (GDP)
index as the base period and deflating the daily GDP per capita from 2015 to 2018 (see
Table 1). In Equation (7), TECOloss is the overall economic losses, and AN is the attributable
number of inpatients.

Table 1. GDP indicator and GDP deflator in China for 2015–2019.

Year GDP Indicator (1978 = 100) GDP Deflator *

2015 3035.9 1.294
2016 3243.5 1.211
2017 3468.8 1.133
2018 3703.0 1.061
2019 3929.2 1.000

Note: * The 2019 GDP indicator is used as the basic period.

The GDP indicator is a relative number reflecting the trend and extent of changes
in GDP over a certain period of time. The GDP indicator is calculated at constant prices,
and this paper uses 1978 as the basic period to calculate the GDP indicator for 2015–2019.
Based on the GDP indicator, we calculate the GDP deflator for 2015–2019 with 2019 as the
price basic period and adjust nominal GDP to real GDP for the corresponding year, which
eliminates the effect of price volatility on GDP per capita.

Furthermore, it is assumed that air pollutant concentrations could be kept reasonably
low during the research period, and the evitable economic losses are calculated using
Equations (4)–(7).

3. Results

3.1. Statistical Description of Admission Data for Respiratory Diseases and Air Pollution
Concentrations

A total of 45,699 inpatients with respiratory diseases were included in the study, that
is, 27,725 male inpatients (60.67%) and 17,974 female inpatients (39.33%). According to
the analysis of the number of respiratory inpatients in different age groups, nearly half
of the inpatients were aged 65 and above, accounting for 44.42% (20,285 cases), while
the inpatients in the 0–14 years old and 15–64 years old groups accounted for 18.26%
(8340 cases) and 37.39% (17,074 cases), respectively. In the patients with respiratory diseases,
pneumonia and chronic obstructive pulmonary disease (COPD) were the majority, among
which 10,724 patients with pneumonia (23.47%) and 11,517 patients with COPD (25.20%)
were hospitalized. The total proportion of the two was 48.67%. Table 2 shows the results.
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Table 2. Basic information for inpatients with respiratory diseases.

Variable n (%)

Gender
Male 27,725 (60.67)

Female 17,974 (39.33)
Age (years)

0~14 8340 (18.26)
15~64 17,074 (37.39)

65+ 20,285 (44.42)
Disease subgroups

Pneumonia 10,724 (23.47)
COPD 11,517 (25.20)

Other diseases 23,458 (51.33)

According to the gender and age distribution of inpatient hospital admissions with
respiratory diseases, the findings of this paper show that males predominate among inpa-
tients with pneumonia and COPD, accounting for 56.13% and 70.83%, respectively; when
the age groups are examined, more inpatients with pneumonia are aged 0–14 years and 65+
years, accounting for 32.94% and 39.08%, respectively. See Table 3 for further information.

Table 3. Gender and age distribution of inpatients with respiratory diseases.

Variable

Pneumonia (n = 10,724) COPD (n = 11,517) Others (n = 23,458)

Cases
Percentage

(%)
Cases

Percentage
(%)

Cases
Percentage

(%)

Gender
Male 6019 56.13 8154 70.80 13,552 57.77

Female 4705 43.87 3363 29.20 9906 42.23
Age (years)

0~14 3532 32.94 0 0.00 4808 20.50
15~64 3001 27.98 3138 27.25 10,935 46.62

65+ 4191 39.08 8379 72.75 7715 32.89

3.1.1. Characteristics of Numbers of Hospital Admissions for Respiratory Diseases

An analysis of the daily number of hospital admissions for respiratory diseases in this
article indicates that the average daily number of hospital admissions is 25.05 people; when
particular types of diseases are examined, the average daily number of hospital admissions
is 5.87 people for pneumonia and 6.31 people for COPD. Males have a greater average
daily number of hospital admissions than females, with 15.18 people for the former and
9.84 people for the latter. The average daily number of hospital admissions rises with
age. The 65+ age group has the greatest average daily number of hospital admissions
(11.11 people), followed by the 15–64 age group (9.41 people) and the 0–14 age group
(4.62 people). According to a season analysis, the average daily hospital admissions in the
warm and cold seasons are 25.58 and 24.52, respectively. Table 4 shows the results.

A time series decomposition analysis of hospital admissions from 2015 to 2019 indi-
cates an increasing tendency in the number of day-to-day hospital admissions for respira-
tory diseases, with significant seasonal fluctuations, with more admissions in winter and
spring and fewer in summer and fall. Long-term trends and seasonal fluctuations in the
number of daily hospital admissions for pneumonia and COPD are broadly consistent with
the patterns observed in the disease-specific analysis for all respiratory diseases.

3.1.2. Characteristics of Inpatient Expenditure for Respiratory Diseases

In order to eliminate the impact of price fluctuations on the inpatient expenditures
of respiratory diseases, the price deflator is applied to the inpatient expenditures from
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2015 to 2018 based on the Consumer Price Index (CPI) published on the official website of
the National Bureau of Statistics [36], using the CPI of 2019 as the base period. The CPI
deflators for 2015–2019 are calculated to be 1.089, 1.067, 1.051, 1.029, and 1.000, respectively.

Table 4. Basic information for the period of 2015–2019 on the number of daily hospital admissions
for respiratory diseases.

Variable X ± S Min 1 P25
2 P50

3 P75
4 Max 5

All inpatients 25.05 ± 12.07 0 16 24 33 77
Disease subgroups

Pneumonia 5.87 ± 3.87 0 3 5 8 23
COPD 6.31 ± 3.57 0 4 6 8 30
Gender

Male 15.18 ± 7.84 0 10 15 20 49
Female 9.84 ± 5.29 0 6 9 13 36

Age (years)
0~14 4.62 ± 3.13 0 2 4 6 20

15~64 9.41 ± 5.34 0 5 8 13 32
65+ 11.11 ± 6.08 0 7 10 15 53

Season
Cold season 24.52 ± 13.28 0 15 24 33 77

Warm season 25.58 ± 10.74 0 18 25 32 67
1 Minimum; 2 25th percentile; 3 50th percentile (median); 4 75th percentile; 5 maximum.

This study looked at the inpatient expenditures for respiratory diseases and discov-
ered that the median of inpatient expenditures is USD 1334.18. When particular disease
categories were examined, inpatient expenditures for pneumonia were lower than those for
COPD, with the former having a median of USD 1131.18 and the latter having a median of
USD 1486.65. Males had greater inpatient expenditures than that of females, with a median
of USD 1488 and USD 1162.77, respectively. The higher the age, the higher the inpatient
expenditures. The 65+ age group had the greatest inpatient expenditures, with a median
of USD 1843.32, followed by the 15–64 age group, with a median of USD 1296.84, and the
0–14 age group, with a median of USD 622.33. The examination of inpatient expenditures
by season revealed that the median was greater for inpatients in the cold season than for
those in the warm season, with the former costing USD 2200.55 and the latter costing USD
1613.34. See Table 5 for further information.

Table 5. Basic information for the period of 2015–2019 on the inpatient expenditure for respiratory diseases (unit: USD).

Variable X ± S Min 1 P25
2 P50

3 P75
4 Max 5

All inpatients 2370.76 ± 967.37 1.29 774.49 1334.18 2489.42 142,717.11
Disease subgroups

Pneumonia 2286 ± 2230.45 12.04 705.73 1131.18 2258.07 98,337.68
COPD 2390.32 ± 1492.43 1.86 1045.09 1486.65 2538.34 79,745.31
Gender

Male 2655.08 ± 1374.98 1.29 825.82 1488.00 2818.49 142,717.11
Female 1930.95 ± 1261.26 1.29 723.32 1162.77 2019.55 93,152.57

Age (years)
0~14 680.03 ± 417.34 11.19 514.12 622.33 789.19 10,817.72

15~64 2121.07 ± 1560.15 1.86 830.85 1296.84 2173.50 92,695.38
65+ 3234.6 ± 1912.49 1.29 1163.24 1843.32 3715.42 142,717.11

Season
Cold season 2364.84 ± 1024.72 2.48 1719.98 2200.55 2786.48 98,337.68

Warm season 1711.03 ± 929.33 1.29 1043.22 1613.34 2248.95 142,717.11
1 Minimum; 2 25th percentile; 3 50th percentile (median); 4 75th percentile; 5 maximum.
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An examination of inpatient expenditures by year from 2015 to 2019 reveals an upward
trend for inpatients with respiratory diseases, with the greatest inpatient expenditure in
2019 at a median of USD 1451.05 and the lowest inpatient expenditure in 2015 at a median
of USD 1277.43. Analysis of specific diseases revealed an upward trend in inpatient
expenditures for inpatients suffering from pneumonia and COPD, with the median for
pneumonia inpatients rising from USD 989.86 in 2015 to USD 1281.29 in 2019, and the
median for COPD inpatients rising from USD 1439.08 in 2015 to USD 1523.13 in 2019.
Figure 1 shows one example of this.
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Figure 1. Trends in inpatient expenditure for respiratory diseases for 2015–2019.

We analyze inpatient expenditure trends by gender from 2015 to 2019 and reveal
an upward tendency for both male and female inpatients. Male inpatients’ median of
inpatient expenditure trend grows from USD 1413.52 in 2015 to USD 1648.57 in 2019;
female inpatients’ median of inpatient expenditure increases from USD 1119.02 in 2015 to
USD 1263.08 in 2019. Figure 2 shows an example of this.
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Figure 2. Trends in inpatient expenditure for different genders for respiratory diseases for 2015–2019.

The analysis of the trend of inpatient expenditures by age from 2015 to 2019 revealed
that the trend of inpatient expenditure for the 0–14 year group is insignificant during the
study period; inpatient expenditure for the 15–64 year group shows an increasing trend,
with the median expenditure increasing from USD 1242.28 in 2015 to USD 1392.6 in 2019.
In contrast, expenditure for the 65+ age group varies, the median remains continuously
over USD 1500, reaching a low of USD 1765.87 in 2015 and climbing to USD 1829.59 and
USD 1949.25 in 2018 and 2019, respectively. Figure 3 shows an example of this.
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Figure 3. Trends in inpatient expenditure for different ages for respiratory diseases for 2015–2019.

3.1.3. Characteristics of Length of Stay for Respiratory Diseases

A study of the length of stay in hospital of inpatients with respiratory illnesses reveals
a median of 9 days. In the disease-specific study, COPD patients have a greater median
number of hospital days (10 days) than that of pneumonia inpatients (8 days). Males spend
more time in the hospital than females, with a median stay of 9 days for the former and
8 days for the latter. The median number of hospital days increases with age, with the 65+
age group having the most, with a median of 11 days, and the 15–64 and 0–14 age groups
having a median of 8 days and 5 days, respectively. According to an analysis of the length
of stay by season, the median number of length of stay for inpatients hospitalized in both
the cold and hot seasons is 9 days. Table 6 shows the detailed information.

Table 6. Basic information for the period of 2015–2019 for the length of stay for respiratory diseases.

Variable X ± S Min 1 P25
2 P50

3 P75
4 Max 5

All inpatients 9.31 ± 2.27 1 8 9 10 350
Disease subgroups

Pneumonia 8.68 ± 4.99 1 7 8 10 180
COPD 10.17 ± 3.57 1 8 10 12 130
Gender

Male 9.79 ± 3.17 1 8 9 11 76
Female 8.52 ± 2.73 1 7 8 10 39

Age (years)
0~14 4.63 ± 2.08 1 4 5 6 39

15~64 8.50 ± 4.63 1 7 8 9 350
65+ 11.53 ± 3.39 1 10 11 13 197

Season
Cold season 9.38 ± 2.54 1 8 9 10 350

Warm season 9.26 ± 1.93 1 8 9 10 191
1 Minimum; 2 25th percentile; 3 50th percentile (median); 4 75th percentile; 5 maximum.

3.1.4. Characteristics of Changes in Air Pollutants

The average concentrations of pollutants in Wuhan from 2015 to 2019 are as fol-
lows: PM2.5, 54.07 μg/m3; PM10, 87.32 μg/m3; SO2, 11.24 μg/m3; NO2, 44.97 μg/m3; O3,
92.83 μg/m3; and CO, 1.020 mg/m3, with SO2, O3, and CO meeting the national level
one standard (the annual average concentration of SO2: 15 μg/m3; the maximum daily
8 h average concentration of O3: 100 μg/m3; and the 24 h average concentration of CO:
4 mg/m3), while PM2.5, PM10, and NO2 exceeded the national level two standard (annual
average concentration of PM2.5: 35 μg/m3; the annual average concentration of PM10:
70 μg/m3; the annual average concentration of NO2: 40 μg/m3) (see Table 7). The country
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has set corresponding ambient air quality standards for these six categories of air pollutants.
According to the revised Ambient Air Quality Standards (GB3095-2012) in 2012, the annual
average values of the primary air quality standards for PM2.5, PM10, SO2, NO2, O3, and
CO, are 15 μg/m3, 40 μg/m3, 20 μg/m3, 40 μg/m3, 100 μg/m3, and 4 mg/m3, respectively,
where higher levels indicate higher pollution levels as shown in Table 8. The number
of days in Wuhan when the daily average concentration of pollutants did not meet the
national level one standard accounted for 65.93% for PM2.5, 77.60% for PM10, 5.70% for
NO2, and 35.21% for O3, and the number of days when the daily average concentration of
pollutants did not meet the national level two standard accounted for 19.82% for PM2.5,
9.20% for PM10, 5.70% for NO2, 13.53% for O3 of the total.

Table 7. Basic Information for the period of 2015–2019 for air pollutants in Wuhan.

Air Pollutants X ± S Min 1 P25
2 P50

3 P75
4 Max 5

PM2.5 (μg/m3) 54.07 ± 34.99 4 30 46 67 281
PM10 (μg/m3) 87.32 ± 47.75 3 53 81 112 618
SO2 (μg/m3) 11.24 ± 7.66 2 6 9 14 74
NO2 (μg/m3) 44.97 ± 18.94 11 30 42 56 119
O3 (μg/m3) 92.83 ± 53.51 4 53 85 122 281

CO (mg/m3) 1.020 ± 0.301 0.416 0.810 0.990 1.170 2.672
1 Minimum; 2 25th percentile; 3 50th percentile (median); 4 75th percentile; 5 maximum.

Table 8. Ambient Air Quality Standards (GB 3095-2012) concentration value.

Pollutants Average Time
Concentration Value

Concentration Unit
Level One Level Two

PM2.5
Annual average 15 35

μg/m3

Daily average 35 75

PM10
Annual average 40 70
Daily average 50 150

SO2
Annual average 20 60
Daily average 50 150

NO2
Annual average 40 40
Daily average 80 80

O3 Eight hour average 100 160

CO Daily average 4 4 mg/m3

3.2. Quantitative Analysis of the Impact of Air Pollutants on Hospital Admissions for
Respiratory Diseases

In this study, a generalized additive model (GAM) is developed for each air pollutant
and the number of hospital admissions for respiratory diseases. Except for O3, the results
show that the daily average concentrations of PM2.5, PM10, SO2, NO2, and CO have an
association with hospital admissions for respiratory disease, with PM2.5, PM10, SO2, and
CO all having the strongest hysteresis effect on the seventh day (Lag7), while NO2 has the
strongest hysteresis effect at Lag6. For PM2.5, PM10, SO2, and CO concentration rises by
10 μg/m3, the number of hospital admissions for respiratory disease increases by 0.90%
(95% CI: 0.47, 1.32), 0.60% (0.18, 1.02), 0.49% (0.07, 0.90), 0.47% (0.05, 0.88), 0.98% (0.56,
1.39), and 1.71% (1.29, 2.12).

PM10 only has a hysteresis effect on hospital admissions for respiratory disease at Lag7.
This shows that hospital admissions with an increase of 0.71% (0.45, 0.97) are associated
with each 10 μg/m3 increment of PM10 concentration. With each 10 μg/m3 increment
of SO2 concentration at Lag1, Lag2, Lag3, Lag4, Lag6, and Lag7, hospital admissions
for respiratory diseases increase by 5.80% (3.33, 8.33), 6.86% (4.39, 9.40), and 7.80% (5.30,
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10.36). At Lag6 and Lag7, NO2 and CO have a hysteresis effect on the number of hospital
admissions for respiratory disease. This shows that hospital admissions with an increase
of 0.76% (0.13, 1.40) and 0.74% (0.10, 1.39) are associated with each 10 μg/m3 increment
of NO2 concentration, and hospital admissions with an increase of 0.07% (0.08, 0.19) and
0.13% (0.08, 0.19) are associated with each 10 μg/m3 increment of CO concentration.

Inpatients are divided into two groups based on whether they have pneumonia or
COPD, and there is a difference in the association of hospitalization due to air pollutants
between the two groups. Inpatients with pneumonia are more susceptible to PM2.5, PM10,
SO2, NO2, and O3, in addition to CO. The average daily concentrations of PM2.5, PM10,
SO2, NO2, and O3 have a correlation with pneumonia hospital admissions, with PM2.5
having an influence on pneumonia hospital admissions at Lag1, Lag2, Lag5, Lag6, and
Lag7, with the biggest hysteresis effect at Lag7.

With each 10 μg/m3 increment of PM2.5 concentration, hospital admission increases
by 2.11% (1.23, 2.98). SO2 influences pneumonia hospital admissions at Lag1, Lag3, Lag4,
Lag6, and Lag7, with the biggest hysteresis effect at Lag7. With each 10 μg/m3 increment
of SO2 concentration, hospital admission increases by 13.33% (7.78, 19.16). NO2 influences
the pneumonia hospital admissions at Lag6 and Lag7, with the biggest hysteresis effect at
Lag6. With each 10 μg/m3 increment of NO2 concentration, hospital admissions increase
by 2.0% (0.69, 3.33). PM10 and O3 only have a hysteresis effect on pneumonia hospital
admissions at a single lag day. With each 10 μg/m3 increment of PM10 concentration at
Lag7, hospital admissions increase by 0.82% (0.30, 1.35). With each 10 μg/m3 increment of
O3 concentration at Lag1, hospital admissions increase by 0.78% (0.04, 1.52). The analysis
result of COPD shows that only the average daily concentrations of PM2.5, SO2, and
CO have a relationship with COPD hospital admissions. PM2.5 influences the COPD
hospital admissions at Lag1 and Lag7, with the biggest hysteresis effect at Lag7. With
each 10 μg/m3 increment of PM2.5 concentration, hospital admission increases by 1.9%
(1.12, 2.69). SO2 influences the COPD hospital admissions at Lag1, Lag2, and Lag7, with
the biggest hysteresis effect at Lag1. With each 10 μg/m3 increment of SO2 concentration,
hospital admission increases by 6.50% (1.93, 11.27). CO only influences the COPD hospital
admissions at Lag7. With each 10 μg/m3 increment of CO concentration, hospital admission
increases by 0.19% (0.08, 0.30).

Similar to the categorization of disease type, this research develops the GAM of each
air pollutant and the number of hospital admission for respiratory disease by gender, age,
and season. The analysis results reveal gender disparities in the risk of hospital admissions
for respiratory disease due to air pollutants, with males bearing a more significant effect;
i.e., the percentage change in the number of hospital admissions for respiratory disease
due to air pollution is more significant for males. There were age differences in the risk of
hospital admissions for respiratory diseases caused by air pollutants, with PM2.5, PM10,
SO2, and NO2 having a more significant effect on people aged 0–14 years, while O3 and
CO had a more significant effect on people aged 65+ years. The risk of hospitalization for
respiratory diseases caused by air pollution was seasonally related, with PM2.5, PM10, O3,
and CO having a sizable effect during the summer.

3.3. Assessment of Economic Losses
3.3.1. Analysis Results of Attributable Risk

To make the results easier to understand, attributable analysis is applied for each
air pollutant to determine the lag day with the greatest hysteresis effect (i.e., the biggest
regression coefficient calculated by the GAM) on hospital admissions for respiratory disease.
Table 9 shows the lag days with the greatest hysteresis effect of each air pollutant, as well
as their regression coefficients (β). Lag1–Lag7 in the table represent the hysteresis effects of
each air pollutant on the first day (Lag1), second day (Lag2), third day (Lag3), fourth day
(Lag4), fifth day (Lag5), sixth day (Lag6), and seventh day (Lag7) of hospital admissions.
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Table 9. The lag days with the greatest hysteresis effect of each air pollutant and regression coefficients (β).

Variable PM2.5 PM10 SO2 NO2 O3 CO

All inpatients Lag7 (0.0017) Lag7 (0.0007) Lag7 (0.0080) Lag6 (0.0008) - Lag7 (0.0001)
Disease Subgroups

Pneumonia Lag7 (0.0021) Lag7 (0.0008) Lag7 (0.0125) Lag6 (0.0020) Lag1 (0.0008) -
COPD Lag7 (0.0019) - Lag1 (0.0063) - - Lag7 (0.0002)
Gender

Male Lag7 (0.0020) Lag7 (0.0009) Lag7 (0.0100) Lag7 (0.0011) Lag6 (0.0005) Lag7 (0.0001)
Female Lag7 (0.0013) Lag7 (0.0005) Lag2 (0.0069) - - Lag7 (0.0001)

Age (years)
0~14 Lag7 (0.0026) Lag7 (0.0009) Lag7 (0.0163) Lag6 (0.0018) - -
15~64 Lag7 (0.0015) Lag7 (0.0006) Lag3 (0.0086) - - Lag7 (0.0001)

65+ Lag7 (0.0014) Lag7 (0.0008) Lag7 (0.0074) Lag7 (0.0011) Lag4 (0.0006) Lag7 (0.0002)

Air pollutant exposure has a negative impact on the population’s respiratory health.
Our research shows the attributable fractions, which represent the proportion of excessive
hospital admissions due to air pollutant (PM2.5, PM10, SO2, NO2, and CO) exposure to
the total number of hospital admissions, are 8.50%, 5.81%, 8.80%, 3.33%, and 11.73%,
respectively. Based on the attributable fraction, further estimation shows that the number
of hospital admissions for respiratory diseases attributable to PM2.5, PM10, SO2, NO2, and
CO exposure is 37,600, 25,700, 35,700, 14,700, and 51,800, respectively. The attributable
risk differed by disease subgroups, gender groups, and age groups; for example, more
males than females are hospitalized for respiratory disease due to PM2.5, 22,800 for the
former and 14,800 for the latter with attributable fractions of 9.70% and 6.50%, respectively.
The number of hospital admissions for respiratory diseases due to PM10 rose with age,
with 5700 cases (ages 0–14), 7500 cases (15–64), and 12,600 cases (65+) with attributable
fractions of 6.98%, 4.55%, and 6.40%, respectively. SO2 caused more hospital admissions
for pneumonia (12,300 cases) than COPD (7600 cases), with attributable fractions of 11.84%
and 6.81%, respectively. See Table 10 for details.

Table 10. Attributable analysis results of hospital admissions for respiratory diseases due to air pollutants.

Variable PM2.5 PM10 SO2 NO2 O3 CO

Attributable Fraction (%, 95% CI)
All inpatients 8.50 (6.54, 10.40) 5.81 (3.73, 7.82) 8.80 (5.80, 10.27) 3.33 (0.57, 6.00) - 11.73 (3.42, 19.27)

Disease Subgroups
Pneumonia 10.19 (6.18, 13.97) 6.60 (2.47, 10.51) 11.84 (7.35, 16.04) 8.35 (3.01, 13.34) 6.29 (0.34, 11.76) -

COPD 9.91 (6.05, 13.55) - 6.81 (2.15, 11.15) - - 16.05 (8.01, 23.33)
Gender

Male 9.70 (7.24, 12.07) 7.10 (4.51, 9.60) 9.95 (7.13, 12.66) 4.83 (1.32, 8.20) 4.29 (0.59, 7.80) 12.76 (7.40, 17.79)
Female 6.50 (3.22, 9.62) 4.05 (0.59, 7.36) 7.10 (3.36, 10.63) - - 8.78 (1.68, 15.32)

Age (years)
0~14 12.11 (7.79, 16.16) 6.98 (2.34, 11.34) 15.18 (10.22, 19.77) 7.64 (1.47, 13.36) - -

15~64 7.53 (4.21, 10.70) 4.55 (0.99, 7.95) 8.74 (4.94, 12.34) - - 12.99 (6.05, 19.38)
65+ 7.42 (4.40, 10.32) 6.40 (3.27, 9.41) 7.75 (4.32, 11.01) 4.82 (0.68, 8.76) 4.95 (0.71, 8.94) 9.79 (3.28, 15.83)

Attributable Number (1000 cases, 95% CI)
All inpatients 37.6 (28.9, 46.) 25.7 (16.5, 34.6) 35.7 (25.7, 45.4) 14.7 (2.5, 26.5) - 51.8 (15.1, 85.2)

Disease Subgroups
Pneumonia 8.8 (6.4, 14.5) 6.8 (2.6, 10.9) 12.3 (7.6, 16.6) 8.7 (3.1, 13.8) 6.5 (0.4, 12.2) -

COPD 9.5 (6.7, 15.1) - 7.6 (2.4, 12.4) - - 17.9 (8.9, 26.0)
Gender

Male 22.8 (19.4, 32.4) 19.0 (12.1, 25.8) 26.7 (19.1, 33.9) 13.0 (3.5, 22.) 11.5 (1.6, 20.9) 34.2 (19.8, 47.7)
Female 14.8 (5.6, 16.7) 7.0 (1, 12.8) 12.3 (5.8, 18.5) - - 15.3 (2.9, 26.6)

Age (years)
0~14 6.9 (6.4, 13.2) 5.7 (1.9, 9.2) 12.4 (8.3, 16.1) 6.2 (1.2, 10.9) - -

15~64 14.0 (6.9, 17.6) 7.5 (1.6, 13.1) 14.4 (8.1, 20.2) - - 21.3 (9.9, 31.8)
65+ 16.7 (8.6, 20.2) 12.6 (6.4, 18.5) 15.2 (8.5, 21.6) 9.5 (1.3, 17.2) 9.7 (1.4, 17.5) 19.2 (6.4, 31.1)
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3.3.2. Results of Economic Loss Assessment

Hospital admission for respiratory diseases due to air pollutant exposure causes eco-
nomic losses to both society and individuals. According to the analysis in this paper, the per
capita economic losses of inpatient expenditure is approximately USD 2746.35, and the eco-
nomic losses attributable to PM2.5, PM10, SO2, NO2, and CO exposure are USD 103.17 mil-
lion, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million,
respectively, accounting for approximately 0.20% of Wuhan’s GDP in 2019. As demon-
strated in Table 11, the economic losses from hospital admissions due to air pollution
differed by disease subgroups, gender groups, and age groups.

Table 11. Economic losses of inpatients for respiratory disease due to air pollutants (95% CI) (unit: million USD).

Variable PM2.5 PM10 SO2 NO2 O3 CO

All inpatients 103 (79, 126) 71 (45, 95) 98 (70, 125) 40 (7, 73) - 142 (41, 234)
Disease subgroups

Pneumonia 24 (18, 40) 19 (7, 30) 34 (21, 46) 24 (9, 38) 17 (1, 32) -
COPD 26 (18, 41) - 21 (7, 34) - - 50 (25, 73)
Gender

Male 63 (53, 89) 52 (33, 71) 73 (53, 93) 36 (10, 60) 35 (5, 64) 104 (60, 145)
Female 41 (15, 46) 19 (3, 35) 34 (16, 51) - - 35 (7, 61)

Age (years)
0~14 19 (17, 36) 16 (5, 25) 34 (23, 44) 17 (3, 30) - -
15~64 38 (19, 48) 21 (4, 36) 39 (22, 56) - - 59 (27, 87)

65+ 46 (24, 56) 34 (18, 51) 42 (23, 59) 26 (4, 47) 36 (5, 65) 53 (18, 85)

4. Discussion and Conclusions

The main conclusions and discussion from the study and analysis are as follows:
The frequency of respiratory hospitalizations in Wuhan has increased in recent years,

and there is a link between changes in respiratory hospitalizations and exposure to the
air pollutants PM2.5, PM10, SO2, NO2, O3, and CO, particularly in those with pneumonia,
males, and those aged 0–14 years. Furthermore, respiratory hospitalization caused by air
pollution results in certain economic losses and burdens society and individuals financially.
As a result, relevant government departments should be urged to improve air pollution
management to reduce the impact of air pollution on population health and associated
economic losses, hence improving health benefits and economic advantages.

Based on the quantitative analysis of the impact on hospital admissions for respiratory
diseases due to air pollution, this paper found that the total economic losses on hospital
admission for respiratory disease due to air pollution in Wuhan during the study period
were USD 454.46 million, accounting for approximately 0.20% of Wuhan’s GDP in 2019.
PM2.5, SO2, and CO generate far greater economic losses than PM10, NO2, and O3. As a
result, the government should step up its prevention and control measures for PM2.5, SO2,
and CO.

We may examine the essential scenario analysis of the economic losses of the impact
of air pollution on human health based on the aforementioned findings. Assuming that the
daily concentrations of PM2.5, PM10, SO2, NO2, O3, and CO are at a relatively low level
in Wuhan from 2015 to 2019, four scenarios are presented for keeping these six types of
air pollutants at relatively low levels, and the evitable economic losses under different
scenarios are further assessed. The scenario analysis findings are presented in the table
below. In the best-case scenario, assuming that PM2.5 and PM10 concentrations during the
study period are within the WHO-recommended criterion values (annual average PM2.5
concentration: 10 μg/m3, and annual average PM10 concentration: 20 μg/m3), the annual
evitable economic losses would be USD 16.88 million and USD 10.88, respectively. If the
average SO2 concentration limits are 4 μg/m3, 6 μg/m3, 8 μg/m3, and 10 μg/m3 over the
research period, the annual evitable economic losses would be USD 12.45 million, USD
8.73 million, USD 5.01 million, and USD 1.14 million, respectively. If the average NO2
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concentration limits are 10 μg/m3, 20 μg/m3, 30 μg/m3, and 40 μg/m3 over the research
period, the annual evitable economic losses would be USD 6.3 million, USD 4.44 million,
USD 2.72 million, and USD 0.86 million, respectively. The study revealed a significant
association between O3 exposure and hospital admissions for pneumonia inpatients, male
inpatients, and inpatients aged 65+ years with respiratory disease, with O3 having the
highest impact on hospital admissions for male respiratory inpatients. If the average O3
concentration limits are 20 μg/m3, 40 μg/m3, 60 μg/m3, and 80 μg/m3 over the research
period, the annual evitable economic losses would be USD 4.87 million, USD 3.43 million,
USD 2 million, and USD 0.57 million, respectively. If the average CO concentration limits
are 0.25 μg/m3, 0.50 μg/m3, 0.75 μg/m3, and 1.00 μg/m3 over the research period, the
annual evitable economic losses would be USD 21.75 million, USD 14.74 million, USD
7.58 million, and USD 0.14 million, respectively. Table 12 shows the detailed findings of
the study for the different disease subgroups, gender groups, and age groups for the four
scenarios for each pollutant.

Table 12. Scenario analysis of evitable economic losses at relatively low levels of air pollutant concentrations in Wuhan.

Air
Pollutants

Annual Average
Concentrations of

Pollutants in the Air
under Four Scenarios

Evitable Economic Losses under Different Scenarios of Decreasing Air Pollutant
Concentrations (Million USD)

All
Inpatients

Disease Subgroups Gender Groups Age Groups

Pneumonia COPD Male Female 0~14 15~64 65+

PM2.5

10 μg/m3 16.88 4.72 5.01 11.73 5.01 4.44 5.58 6.58

20 μg/m3 13.02 3.58 4.01 9.01 3.86 3.29 4.29 5.15

30 μg/m3 9.01 2.58 2.86 6.30 2.72 2.15 3.00 3.72

40 μg/m3 5.01 1.29 1.72 3.43 1.57 1.14 1.72 2.15

PM10

20 μg/m3 10.88 2.86 - 8.01 3.00 2.43 3.15 5.29

40 μg/m3 7.58 2 - 5.58 2.00 1.57 2.15 3.72

60 μg/m3 4.15 1 - 3.15 1.14 0.86 1.29 2.15

80 μg/m3 0.86 0.14 - 0.57 0.29 0.14 0.29 0.57

SO2

4 μg/m3 12.45 4.15 2.72 9.30 4.29 4.29 5.01 5.29

6 μg/m3 8.73 2.86 2 6.44 3.00 2.86 3.58 3.86

8 μg/m3 5.01 1.43 1.29 3.72 1.72 1.43 2.00 2.29

10 μg/m3 1.14 0.43 0.72 0.43 0.00 0.43 0.72

NO2

10 μg/m3 6.3 3.72 - 5.58 - 2.72 - 4.01

20 μg/m3 4.44 2.58 - 4.01 - 1.86 - 2.86

30 μg/m3 2.72 1.57 - 2.29 - 1.14 - 1.72

40 μg/m3 0.86 0.43 - 0.72 - 0.29 - 0.57

O3

20 μg/m3 4.87 2.72 - 4.87 - - - 4.15

40 μg/m3 3.43 1.86 - 3.43 - - - 2.86

60 μg/m3 2.00 1 - 2.00 - - - 1.57

80 μg/m3 0.57 0.14 - 0.57 - - - 0.43

CO

0.25 mg/m3 21.75 - 7.58 14.31 6.44 - 9.01 8.01

0.50 mg/m3 14.74 - 5.29 9.73 4.29 - 6.01 5.58

0.75 mg/m3 7.58 - 2.86 5.01 2.29 - 3.15 2.86

1.00 mg/m3 0.14 - 0.29 0.14 0.14 - 0 0.14
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Based on the preceding scenario analysis and discussion, it is evident that the health
and economic returns of improved air pollution control are considerable to some extent.

This paper’s research methodology is relatively generalizable. When examining
the influences of air pollution on human health and calculating economic losses, this
research takes Wuhan as an example. As a result, by understanding the number of hospital
admissions for respiratory diseases, inpatient expenditure, length of stay, and the general
situation and temporal trends of air pollutant concentrations in a given region, it is possible
to quantitatively assess the effects of air pollutants on the number of hospital admissions
for respiratory diseases and the associated economic losses in that region, which can serve
as a benchmark for assessing the health effects of air pollution.

The data for this study came from two IIIA (highest) hospitals in Wuhan, where the
hospital information system is well established, ensuring data accuracy. Furthermore,
in order to study the respiratory health effects of air pollutants, this study uses the COI
to estimate the economic losses associated with air pollution, making the findings more
relevant for policy guidance and providing a reference for cost–benefit analysis in formu-
lating air pollution control policies. However, there are several limitations to this research.
The study relies on air pollutant concentration data from fixed location monitoring sta-
tions rather than individual air pollutant exposure, and it excludes other personal data,
such as lifestyle, socioeconomic status, and comorbidities, which could give bias to effect
estimation. Future studies should focus on obtaining individual exposure data and in-
corporating questionnaires to obtain more personal information to assess the respiratory
impacts of air pollution more accurately. Second, data from hospitals on respiratory inpa-
tients include both unintentional and purposeful admissions. In the future, more data on
patient hospitalization should be collected, with some planned inpatients eliminated and
only the number of unintentional inpatients included for model fitting, resulting in more
scientifically valid findings.
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Abstract: With global warming and socioeconomic developments, there is a tendency toward the
emergence and spread of mountain-type zoonotic visceral leishmaniasis (MT-ZVL) in China. Timely
identification of the transmission risk and spread of MT-ZVL is, therefore, of great significance for
effectively interrupting the spread of MT-ZVL and eliminating the disease. In this study, 26 envi-
ronmental variables—namely, climatic, geographical, and 2 socioeconomic indicators were collected
from regions where MT-ZVL patients were detected during the period from 2019 to 2021, to create
10 ecological niche models. The performance of these ecological niche models was evaluated using
the area under the receiver-operating characteristic curve (AUC) and true skill statistic (TSS), and
ensemble models were created to predict the transmission risk of MT-ZVL in China. All ten ecological
niche models were effective at predicting the transmission risk of MT-ZVL in China, and there were
significant differences in the mean AUC (H = 33.311, p < 0.05) and TSS values among these ten models
(H = 26.344, p < 0.05). The random forest, maximum entropy, generalized boosted, and multivariate
adaptive regression splines showed high performance at predicting the transmission risk of MT-ZVL
(AUC > 0.95, TSS > 0.85). Ensemble models predicted a transmission risk of MT-ZVL in the provinces
of Shanxi, Shaanxi, Henan, Gansu, Sichuan, and Hebei, which was centered in Shanxi Province and
presented high spatial clustering characteristics. Multiple ensemble ecological niche models created
based on climatic and environmental variables are effective at predicting the transmission risk of
MT-ZVL in China. This risk is centered in Shanxi Province and tends towards gradual radiation
dispersion to surrounding regions. Our results provide insights into MT-ZVL surveillance in regions
at high risk of MT-ZVL.

Keywords: mountain-type zoonotic visceral leishmaniasis; climate variables; environmental variables;
ecological niche model; transmission risk prediction

1. Introduction

Visceral leishmaniasis (VL), also known as kala-azar, is a zoonotic infectious disease
caused by protozoan parasites of the genus Leishmania spp. and transmitted by the bite of
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infected Phlebotomus [1]. Currently, this zoonosis is mainly prevalent in 88 countries across
East Africa, South Asia, South America, and the Mediterranean, and it is estimated that
200,000 to 400,000 new cases are diagnosed with VL across the world each year, including
approximately 60,000 deaths due to a failure of timely treatment [2]. Globally, VL ranks
second only to malaria among all parasitic diseases in terms of mortality [3,4]. VL was
once prevalent in 650 counties across 16 provinces north of the Yangtze River in China,
and approximately 530,000 cases were diagnosed with VL in China in 1951, with the
majority reported in young and middle-aged individuals [5–7]. In China, VL is classified
into three types—anthroponotic VL (AVL), mountain-type zoonotic VL (MT-ZVL), and
desert-type zoonotic VL (DT-ZVL)—according to geographical landscapes, epidemiological
characteristics, and the species of sand fly vectors [8].

Following concerted efforts for decades, VL was almost eradicated in the eastern and
central plain regions of China in the early 1960s [9]. However, VL cases continue to be
detected in western China, including Kashgar in Xinjiang Uygur Autonomous Region,
southern Gansu Province, and northern Sichuan Province, and local clusters of VL have
been reported occasionally [10–12]. Since 2000, the exacerbation of global warming, the
implementation of the Conversion of Cropland to Forest and Grassland Program, and the af-
forestation of hillsides in central and western China have resulted in gradual improvements
in natural ecological environments and rapid increases in the population density of wild
species of Phlebotomus sinensis [13,14]. This has resulted in the re-emergence and spread
of VL in hilly regions. In particular, clusters of MT-ZVL have reemerged in the provinces
of Shanxi, Shaanxi, Henan, and Hebei [15,16]. Timely identification of the transmission
risk and spread of MT-ZVL is, therefore, of great significance to effectively interrupt the
reemergence and spread of VL and ultimately eliminate the disease.

Ecological niche models combine species occurrence data with environmental variables
to estimate the ecological conditions of species distribution, thereby predicting the true or
potential distribution [17]. Recently, ecological niche models have widely been employed to
predict the transmission risk and trends of the spread of infectious diseases by unraveling
the interplay between environmental factors and disease transmission [18,19]. Vector-borne
tropical diseases, such as schistosomiasis [20], malaria [21], and VL [22,23], are more likely to be
affected by climatic and eco-environmental variables, so ecological niche models are particularly
suited to predicting their spread. Based on the data of Oncomelania hupensis distributions,
ecological niche models were used to investigate the trends for O. hupensis spread and predict
the potential transmission risk of schistosomiasis in China [24]. Based on the data indicating
pathogen distributions, three ecological niche models were created to predict the transmission
risk of schistosomiasis in Yunnan Province [25]. In addition, three ecological niche models were
generated to predict the trends for MT-ZVL spread in the provinces of Shanxi and Henan [26].
To our knowledge, however, no previous study has predicted the potential transmission risk
of MT-ZVL nationwide in China. In this study, multiple ecological niche models were created
by using environmental variables based on updated national epidemiological data of MT-ZVL
in China. The models were used to predict the transmission risk of MT-ZVL in China and to
provide insights into VL surveillance and control in the country.

2. Materials and Methods

2.1. Study Area

Based on previous distributions of sand flies and recently reported VL cases, Gansu,
Sichuan, Shanxi, Shaanxi, Henan, Hebei, Qinghai, Ningxia, Liaoning, and Beijing were se-
lected as potential transmission foci of MT-ZVL [27,28]. This study area covers 113 cities and
1002 counties in central China, approximately one-third of the total land area of China. The area
is delimited by Jiuquan City in Gansu Province to the north (43◦43′ N, 96◦38′ E), Liangshan Yi
Autonomous Prefecture in Sichuan Province to the south (26◦24′ N, 102◦8′ E), Yushu Tibetan
Autonomous Prefecture in Qinghai Province to the west (35◦16′ N, 89◦29′ E), and Fushun City
in Liaoning Province to the east (40◦53′ N, 125◦36′ E). The study area has diverse ecological and
climatic conditions divided by the Qin Mountains and has both temperate monsoon climates
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and continental climates. The precipitation and relative humidity gradually increase from
the north to the south of the study area, and the temperature gradually increases. The sand
fly Ph. chinensis, a primary vector for transmission of MT-ZVL in China, is predominantly
identified in plains, hilly, and loess plateau regions at 30◦ N to 43◦ N and 102◦ E to 121◦ E, with
elevations of 10 to 2750 m [29]. Local cases of MT-ZVL reported during the past five years were
all concentrated in this region. Therefore, it is possible to examine the correlation between the
distribution of MT-ZVL patients and potential P. sinensis distribution in this study area.

2.2. Collection of Case Data

All epidemiological data pertaining to MT-ZVL cases were collected from the National
Notifiable Diseases Reporting System of the Chinese Center for Disease Control and Prevention.
The townships or streets where local MT-ZVL cases were reported during the 2019–2021 period
were defined as sampling sites, and the longitude and latitude coordinates were measured for
each site. Then, each sampling site was checked to ensure the accuracy of the geographical
coordinates. A total of 187 valid sampling sites were finally selected. In addition, the databases
of reported cases from 2015 to 2018 were collected and combined to describe the trends of
the disease.

2.3. Collection of Climatic and Environmental Variables

The environmental variable data pertaining to the distributions of VL and its vector
sand flies were collected and finalized based on a literature review [30,31]. Ultimately, we
included 19 climatic variables, 7 geographical variables, and 2 socioeconomic variables
(Table 1). The climatic variables were extracted from the WorldClim website. Available
online: https://www.worldclim.org/data/worldclim21.html (accessed on 25 April 2022).
Geographical variables included elevation, type of landform, type of land use, annual
normalized difference vegetation index, and type of vegetation coverage. The socioeco-
nomic variables included gross domestic product and population density, provided by the
Resource and Environment Data Center, Chinese Academy of Sciences (Beijing, China).
Available online: https://www.resdc.cn (accessed on 25 April 2022). All environmental
variable data were clipped to the study area using ArcGIS 10.2 (ESRI, Redlands, CA, USA)
and a bilinear resampling algorithm with 1 × 1 km spatial resolution.

Table 1. Environmental variables affecting the distribution of mountain-type zoonotic visceral
leishmaniasis and Ph. chinensis vectors.

Variable
Classification

Variable Name
(Units)

Definition Year

Bioclimatic Data

BIO1 (°C) Annual mean temperature

1955–2000

BIO2 (°C) Mean diurnal range
BIO3 (%) Isothermality
BIO4 (%) Standard deviation of temperature seasonality
BIO5 (°C) Max temperature of warmest month
BIO6 (°C) Min temperature of coldest month
BIO7 (°C) Temperature annual range
BIO8 (°C) Mean temperature of wettest quarter
BIO9 (°C) Mean temperature of driest quarter
BIO10 (°C) Mean temperature of warmest quarter

BIO11 (mm) Mean temperature of coldest quarter
BIO12 (mm) Annual precipitation
BIO13 (mm) Precipitation of wettest month
BIO14 (mm) Precipitation of driest month

BIO15 Coefficient of variation for precipitation seasonality
BIO16 (mm) Precipitation of wettest quarter
BIO17 (mm) Precipitation of driest quarter
BIO18 (mm) Precipitation of warmest quarter
BIO19 (mm) Precipitation of coldest quarter

Geographical Data

ElV Elevation 2000
LF Landform 2010
LU Land use 2015

NDVI Normalized difference vegetation index 2019
VEG Vegetation 2015

Socioeconomic Data GDP Gross domestic product 2015
DP Density of population 2015
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2.4. Ecological Niche Modeling

Multiple algorithms are available to create ecological niche models, and modeling
with the same data may generate different results and predictive maps [32,33]. There is no
consensus on an optimal single algorithm for ecological niche models [34,35]. Therefore,
scientists are encouraged to overcome the uncertainty using different approaches. In
our study, ten ecological niche models were generated based on four machine learning
algorithms: the surface range envelope (SRE) model, based on an environmental envelope
(threshold-based) algorithm; the generalized linear model (GLM), generalized additive
model (GAM), and multivariate adaptive regression splines (MARS), based on statistical
regression algorithms; the generalized boosted model (GBM), classification tree analysis
(CTA), and flexible discriminant analysis (FDA), based on classification algorithms; and
the maximum entropy (MaxEnt) model, artificial neural network (ANN), and random
forest (RF) model, based on machine learning algorithms. All models were created using
the BIOMOD2 package in R. As presence–absence data are required to create models,
500 absence points were randomly sampled at a ratio of 1:2 based on 186 presence points to
create two sets of presence–absence data. Each set of data was classified into 75% training
datasets and 25% validation datasets, which were input into the ten ecological niche models.
Each run was repeated ten times for a single model with the same variables.

2.5. Assessment of the Performance of Ecological Niche Models

Currently, there are threshold-free and -associated measures to assess the performance
of ecological niche models [19]. In this study, the area under the receiver-operating charac-
teristic curve (AUC), a threshold-free index, and the true skill statistic (TSS), a threshold-
related index, were employed to assess the performance of the ecological niche models.
The AUC value, ranging from 0 to 1, indicates the predictive accuracy of the ecological
niche models, and an AUC value approaching 1 indicates higher accuracy. The TSS value is
not affected by the occurrence of the distribution, but it can accurately identify the accuracy
of a model. TSS values range between −1 and 1, and a TSS value close to 1 indicates
high accuracy. A TSS value of >0.7 is generally accepted as a satisfactory prediction. Both
indices can be used to evaluate the predictive accuracy of ecological niche models. The
AUC value can be used to assess the predictive accuracy of a model regardless of the data
distribution [36], whereas the TSS measures the consistency between the prediction results
by models and sample data [37]. Therefore, the combination of these two indices more
comprehensively assesses the performance of ecological niche models.

2.6. Prediction of MT-ZVL Transmission Risk in China

Due to the uncertainty of predictions using a single ecological niche model, ensemble
models were created based on a single model to improve the accuracy and reliability of
predicting the transmission risk of MT-ZVL. Briefly, a single ecological niche model with a
poor training efficiency was removed based on an AUC value of >0.90 and a TSS value of
>0.85 to screen for ensemble models. Then, the prediction accuracy of a single ecological
niche model was normalized such that the raster data ranged from 0 to 1. Following
the definition of the weight according to TSS values, the predictive accuracy of ensemble
models was estimated using a weighted mean of probabilities (WM). Four grades were
classified based on the WM values: no-risk areas (WM, 0.5 and lower), low-risk areas (WM,
0.51 to 0.7), medium-risk areas (0.71 to 0.9), and high-risk areas (0.91 to 1). Finally, the
model prediction results were loaded into ArcGIS software to map the transmission risk of
MT-ZVL in China.

2.7. Statistical Analysis

In what follows, the AUC and TSS values are described as the mean ± standard
deviation (SD). Comparisons of the AUC and TSS values were carried out using the
Kruskal–Wallis H-test. A p-value of <0.05 was considered statistically significant.
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3. Results

3.1. Epidemiological Characteristics of MT-ZVL in China from 2015 to 2021

A total of 990 MT-ZVL cases were reported in China during the period from 2015 to
2021: specifically, 82 in 2015, 95 in 2016, 113 in 2017, 121 in 2018, 151 in 2019, 204 in 2020,
and 224 in 2021 [38–40] (Figure 1). The MT-ZVL cases were predominantly detected in four
provinces—Gansu, Sichuan, Shaanxi, and Shanxi—and the geographical distribution of
MT-ZVL cases gradually expanded over time. In 2015, MT-ZVL cases were predominantly
detected in four provinces (Gansu, Sichuan, Shaanxi, and Shanxi), whereas MT-ZVL cases
were reported in seven provinces by the end of 2021, with local cases identified in Henan
Province in 2016 and Hebei Province and Beijing Municipality in 2019.

Figure 1. Changes in number of patients with mountain-type zoonotic visceral leishmaniasis in China
from 2015 to 2021.

Since 2019, the highest number of MT-ZVL cases was reported in Shanxi Province. A
total of 299 MT-ZVL cases were detected in Shanxi Province from 2019 to 2021, consisting
of 51.64% of all cases reported in China. The number of MT-ZVL cases increased from 54 in
2019 to 141 in 2021 in Shanxi Province. The second-largest number of MT-ZVL cases was
reported in Shaanxi Province. There, 118 cases were detected from 2019 to 2021, consisting
of 20.38% of all cases reported in China. The third-largest number of MT-ZVL cases was
reported in Gansu Province, where the number of cases gradually declined from 2019 to
2021. The number of MT-ZVL cases reported in the three provinces of Shanxi, Shaanxi,
and Gansu consisted of 90.33% of all cases in China during the period from 2019 to 2021,
whereas 5.83%, 1.89%, 1.38%, and 0.52% of cases were detected in Henan, Hebei, Sichuan,
and Beijing, respectively (Figure 2).

3.2. Comparison of the MT-ZVL Transmission Risk Predicted by Using Ecological Niche Models

Based on the distributions of MT-ZVL cases and Ph. chinensis vectors, ten ecological
niche models were created to predict the transmission risk of MT-ZVL. Our data showed
that all ten ecological niche models were effective at predicting areas at risk of MT-ZVL
transmission; however, the coverage of the predicted areas varied among the models. The
ANN and MARS predicted the largest but most dispersed areas at risk of MT-ZVL trans-
mission, and CTA predicted the second-largest areas. The other seven models predicted
relatively concentrated areas at risk of MT-ZVL transmission, and the GAM and MaxEnt
models predicted the smallest areas. The CTA and SRE models predicted large areas at
risk of MT-ZVL transmission, and most areas were predicted to be at high or medium
risk. The high-, medium-, and low-risk areas predicted by the other seven models were
centered in Shanxi Province and showed a tendency to disperse to the surrounding regions,
with southern Liaoning Province to the north and the southern edge of the hilly regions in
northern Sichuan Province to the south (Figure 3).
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Figure 2. Geographical distribution of patients with mountain-type zoonotic visceral leishmaniasis
in China from 2015 to 2021.

3.3. Performance of Ecological Niche Models

Ten ecological niche models were employed to predict the transmission risk areas
of MT-ZVL in China, and the performance of the ecological niche models was evaluated.
The RF model showed the highest mean AUC and TSS, and the SRE model exhibited the
lowest mean AUC and TSS (Table 2). There were significant differences in the mean AUC
(H = 33.311, p < 0.05) and TSS values among the ten ecological niche models (H = 26.344,
p < 0.05). The results show that the RF, MaxEnt, GBM, and MARS models had the highest
relative performance at predicting the risk of MT-ZVL transmission (mean AUC > 0.95,
mean TSS > 0.85). The SRE model had the lowest performance (mean AUC < 0.8, mean
TSS < 0.8).

Table 2. Performance of ten ecological niche models.

Model AUC Value TSS Value

ANN 0.912 ± 0.033 0.777 ± 0.074
CTA 0.902 ± 0.029 0.775 ± 0.054
FDA 0.963 ± 0.014 0.829 ± 0.044
GAM 0.940 ± 0.019 0.826 ± 0.065
GBM 0.965 ± 0.016 0.854 ± 0.045
GLM 0.943 ± 0.039 0.828 ± 0.068

MARS 0.961 ± 0.018 0.854 ± 0.073
MaxEnt 0.968 ± 0.019 0.856 ± 0.046

RF 0.971 ± 0.011 0.857 ± 0.043
SRE 0.790 ± 0.022 0.581 ± 0.044

ANN, artificial neural network; CTA, classification tree analysis; FDA, flexible discriminant analysis; GAM,
generalized additive model; GBM, generalized boosted model; GLM, generalized linear model; MARS, multi-
variate adaptive regression spline; MaxEnt, maximum entropy model; RF, random forest; SRE, surface range
envelope model.
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Figure 3. Prediction of areas at risk of mountain-type zoonotic visceral leishmaniasis transmission in
China using ecological niche models based on climatic and environmental variables: (A) artificial
neural network (ANN); (B) classification tree analysis (CTA); (C) flexible discriminant analysis (FDA);
(D) generalized additive model (GAM); (E) generalized boosted model (GBM); (F) generalized linear
model (GLM); (G) multivariate adaptive regression spline (MARS); (H) maximum entropy (MaxEnt)
model; (I) random forest (RF); (J) surface range envelope (SRE) model.
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3.4. Contributions of Environmental Variables to Ecological Niche Models

The contributions of the environmental variables to the ten ecological niche models
were normalized (Table 3). The climatic variables that contributed most to the ecological
niche models included the mean temperature of the coldest quarter, precipitation during
the wettest quarter, the minimum temperature of the coldest month, and annual precip-
itation. The highest contributing geographical variables were elevation and normalized
difference vegetation index, and the socioeconomic variables that contributed most were
gross domestic product and population density.

Table 3. Contributions of environmental variables to ten ecological niche models (%).

Variable Name ANN CTA FDA GAM GBM GLM MARS MaxEnt RF SRE

bio_01 0.9 2.7 5.7 4.9 1.4 6.6 2.8 3.3 5.1 5.8
bio_02 0.2 0.0 4.4 0.8 0.1 4.1 0.0 11.6 1.6 4.2
bio_03 0.8 0.8 4.0 0.0 7.7 4.6 6.0 6.1 13.5 4.6
bio_04 2.8 0.0 7.0 0.3 0.6 5.1 4.3 0.2 2.7 2.8
bio_05 2.8 0.0 3.3 0.3 0.1 6.6 0.4 0.5 0.4 3.7
bio_06 2.0 0.0 11.5 0.7 4.9 6.3 18.3 24.1 6.8 6.7
bio_07 1.4 0.0 3.9 0.6 0.2 7.3 3.8 0.0 1.4 3.4
bio_08 1.5 0.0 6.5 6.8 2.0 4.6 3.7 5.1 7.4 4.4
bio_09 0.6 0.0 0.3 3.6 0.0 4.9 0.0 5.4 3.7 6.3
bio_10 1.2 0.0 7.2 3.7 0.3 5.5 8.6 1.5 1.2 4.4
bio_11 0.9 60.8 7.2 5.5 63.6 6.9 4.7 5.1 11.3 6.9
bio_12 17.8 6.7 10.5 7.5 3.5 3.1 14.9 7.2 2.9 5.6
bio_13 7.0 0.0 4.4 5.3 0.3 2.4 0.0 4.5 1.6 4.6
bio_14 0.2 0.7 0.2 7.4 0.0 1.0 1.8 6.5 0.0 1.2
bio_15 1.6 1.3 0.3 3.6 0.4 1.8 5.0 0.3 2.7 1.2
bio_16 11.1 20.9 10.3 5.1 3.6 5.0 11.5 6.3 3.7 5.1
bio_17 2.7 1.4 1.3 5.5 0.0 6.2 0.0 0.0 0.8 2.7
bio_18 8.7 0.0 9.5 7.5 2.1 4.5 3.7 1.6 2.5 4.8
bio_19 2.4 0.0 1.0 4.8 0.0 5.9 0.2 0.1 0.8 2.5

elv 15.1 2.9 0.4 1.4 1.5 4.6 4.5 4.8 3.1 4.7
gdp 11.0 0.0 0.0 0.9 0.2 0.5 0.5 0.1 1.9 4.0

lf 0.6 0.0 0.4 2.3 1.5 1.0 2.1 1.6 2.5 1.1
lu 0.5 0.0 0.0 5.3 0.0 0.2 0.0 0.3 0.2 1.6

ndvi 0.0 1.9 0.6 6.2 4.7 0.5 1.2 2.6 17.0 3.3
pop 5.0 0.0 0.0 4.1 0.6 0.2 0.1 0.0 2.5 4.0
veg 1.2 0.0 0.3 5.7 0.6 0.7 2.1 1.2 2.7 0.4

The full names of variable abbreviations are provided in Table 1.

In addition, the importance of each environmental variable varied in ecological niche
models that performed best at predicting the transmission risk of MT-ZVL. The five most
important contributing variables in the RF model were normalized difference vegetation
index (17%), isothermality (13.5%), mean temperature of the coldest quarter (11.3%), mean
temperature of the wettest quarter (7.4%), and the minimum temperature of the coldest
month (6.8%), with cumulative contributions of 56%. The five most important contribut-
ing variables in the MaxEnt model were the minimum temperature of the coldest month
(24.1%), mean diurnal range (11.6%), annual precipitation (7.2%), precipitation during the
driest month (6.5%), and precipitation during the wettest quarter (6.3%), with cumulative
contributions of 55.7%. The five most important contributing variables in the GBM model
were the mean temperature of the coldest quarter (63.6%), isothermality (7.7%), the mini-
mum temperature of the coldest month (4.9%), the normalized difference vegetation index
(4.7%), and precipitation during the wettest quarter (3.6%), with cumulative contributions
of 84.5% (Figure 4).
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Figure 4. Contributions of environmental variables to ten ecological niche models.

3.5. Prediction of MT-ZVL Transmission Risk in China

Ensemble models predicted the risk of MT-ZVL transmission in a majority of the
provinces of Shanxi and Shaanxi, southern Henan Province, the junction of Ningxia, south-
ern Gansu, and northern Sichuan, the border areas of Hebei and Shanxi, and the hilly
regions in northwestern Beijing. The areas at high risk of MT-ZVL transmission were con-
centrated in central and southern Shanxi, eastern Shaanxi, and northern Henan. Medium-
risk areas surrounded the high-risk areas and were predominantly detected in Shanxi,
Shaanxi, and Henan. Low-risk areas were mainly found on the border between south-
ern Gansu and Sichuan, northeastern Henan, southern Hebei, and the hilly regions in
northwestern Beijing. Overall, the areas at risk of MT-ZVL transmission were centered in
Shanxi Province and distributed to the surrounding areas, which presented a high cluster
(Figure 5).

 

Figure 5. Areas at risk of mountain-type zoonotic visceral leishmaniasis transmission in China
predicted with ensemble ecological niche models based on climatic and environmental variables.
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4. Discussion

Historically, MT-ZVL was mainly prevalent in the hilly regions of Gansu, Qinghai,
Ningxia, northern Sichuan, northern Shaanxi, Henan, Hebei, Beijing, and Liaoning—north
of the Yangtze River in China [41]. The predominant source of infection is canines. Humans
acquire infections from infected dogs, and vectors transmitting MT-ZVL are wild species of
sand flies. During the early stage of the founding of the People’s Republic of China, there
were a large number of MT-ZVL cases, and most were detected in children and young
individuals from 5 to 30 years old (74.4%), as well as in men (63%) [42]. The disease severely
damaged socioeconomic development in China. In the 1950s and 1960s, a package of VL
control measures was implemented including Ph. chinensis control, canine control, and case
management, and VL was almost eradicated in eastern, central, and northern China [43,44].
Therefore, MT-ZVL was controlled effectively, but only sporadic cases were found in Gansu
and Sichuan, in southern China [45,46]. With recent socioeconomic developments, the
living conditions and the environment have greatly improved, and the number of dogs has
increased rapidly. Due to suitable climatic conditions caused by global warming, there is
a rapid expansion in the distribution and density of P. chinensis populations, resulting in
reemerging VL or emerging natural foci of VL in Shaanxi, Shanxi, Henan, and Hebei [28].
Notably, the number of reported MT-ZVL cases has increased rapidly in Shanxi Province
during the past five years [47]. In 2016, local cases were identified in Henan Province, which
had not reported any cases since 1983 [48]. Since then, local cases of VL have been detected
in Hebei and Beijing, posing an imminent threat to local human health [40]. Therefore, it is
urgent to identify the areas at risk of MT-ZVL transmission to interrupt its transmission.

Since vectors and pathogens are greatly affected by climatic, ecological, and environ-
mental factors [49] and show temporal and spatial clustering accordingly [50], ecological
niche models show great promise at predicting the transmission risk of vector-borne dis-
eases [51]. Ecological niche models have widely been employed to predict the transmission
risk of schistosomiasis and malaria; however, there have been few reports pertaining to
the application of ecological niche models to studies of VL. In this study, we collected the
distributions of MT-ZVL cases in China and climatic, geographical, and socioeconomic vari-
ables that may affect VL transmission risk to create ten ecological niche models. Ensemble
models were then screened to predict the areas at risk of MT-ZVL transmission in China.

All ten ecological niche models were found to be effective at predicting the areas at risk
of MT-ZVL transmission, but with varying results among the models. The GAM, MaxEnt,
and GBM models predicted relatively concentrated areas at risk of MT-ZVL transmission,
while the ANN, MARS, and CTA models predicted widespread areas. The CTA and SRE
models predicted large areas at risk of MT-ZVL transmission, and most areas were predicted
to be at high or medium risk. The high-, medium-, and low-risk areas predicted by the
ecological niche models were centered in Shanxi Province and tended toward dispersion to
the surrounding regions, with southern Liaoning Province to the north and the southern
edge of the hilly regions in northern Sichuan Province to the south. We also evaluated
the performance of the ten ecological niche models: The RF, MaxEnt, GBM, and MARS
models performed best (mean AUC > 0.95 and mean TSS > 0.85). As a single ecological
niche model suffers from problems of spatial uncertainty, such as low accuracy and poor
predictive value [35], ensemble models were screened and showed higher performance and
predictive accuracy than any single ecological niche model, reducing the spatial uncertainty
of predicting MT-ZVL transmission risk [52]. To investigate the model’s performance, the
AUC and TSS values were employed. However, AUC and TSS provide the accuracy of
different aspects of models. A new system named CCHZ (C: Chen, C: Chen, H: Hu, and Z:
Zhou)-DISO (distance between indices of simulation and observation) has the advantage of
measuring the overall and comprehensive performance of different models [53–55]. It will
be used to quantify the overall performance among different models in our future study.

Our findings showed that the areas at risk of MT-ZVL transmission predicted by our
ensemble models covered the current actual distribution of MT-ZVL and extended to the
surrounding regions. High- and medium-risk areas were predicted to be concentrated in
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central and southern Shanxi, eastern Shaanxi, southern Gansu, and northern Henan. Low-
risk areas were mainly predicted in northern Sichuan, southern Hebei, and the hilly regions
in northwestern Beijing. Overall, the primary high-risk areas for MT-ZVL transmission
were centered in Shanxi Province and distributed to the surrounding regions, appearing as
a high spatial cluster. The secondary high-risk areas were mainly distributed in southern
Gansu and concentrated in several counties of Longnan City and the Gannan Tibetan
Autonomous Region. The results mostly agreed with the current distribution of MT-ZVL.
We predicted larger areas at risk of MT-ZVL transmission and larger high-risk areas in
Shanxi and Henan provinces than the previous predictions of the nine ecological niche
models. This was consistent with the current trends for MT-ZVL incidence in these two
provinces [56]. In addition, our ensemble models predicted medium- and low-risk areas for
MT-ZVL transmission in Ningxia, Henan, Hebei, and Beijing. To date, few cases of MT-ZVL
have been reported in Henan and Hebei, and no local cases have been detected in Ningxia.
Notably, local cases of MT-ZVL were identified in the suburbs of Beijing Municipality, where
VL had been almost eradicated for decades. These reports demonstrate the likelihood of
VL rebounding and reemerging in these provinces, implying the urgent need for the
surveillance of Ph. chinensis vectors.

Next, we investigated the potential causes responsible for MT-ZVL rebounding and
spreading. We identified climatic variables as the most important contributors to the ecolog-
ical niche models, and four climatic variables (the mean temperature of the coldest quarter,
precipitation during the wettest quarter, the minimum temperature of the coldest month,
and annual precipitation) and two geographical variables (elevation and the normalized
difference vegetation index) contributed the most to the models, emphasizing the rise
of the minimum temperature and increased precipitation caused by global warming. In
addition, we predicted the high-risk areas for MT-ZVL transmission to be in the Yanshan-
Taihangshan mountain deciduous broad-leaved forest ecological zone and the Fenwei
Basin Agro-ecological zone. With a temperate continental monsoon climate, these two
ecological zones are hot and rainy in summer, with a hilly and frondent environment and
a large number of wild animals. These are favorable climatic conditions for the breed-
ing, reproduction, and habitation of wild sand flies. Furthermore, our findings showed
the contribution of socioeconomic variables to ecological niche models. These variables
are associated with the living environment of local residents. Local loess cave dwellings
and architectural works made of cement, brick, and tile provide suitable habitats for Ph.
chinensis breeding [57]. More importantly, the diagnosis, screening, and management of
VL were neglected following the effective control of this disease in China, and this is
partly responsible for the rebound of local VL epidemics [58]. In the context of a gradually
increasing population density of wild species of P. chinensis, the introduction of animal
sources of infections is very likely to cause VL transmission and reemergence. This may
result in the spread of local VL to surrounding regions. With global warming, the duration
and area of Ph. chinensis activities may further expand, which will further increase the VL
transmission risk in these regions [59].

5. Conclusions

In summary, we generated ensemble ecological niche models based on environmental
variables, and these ensemble models were shown to be effective at predicting the trans-
mission risk of MT-ZVL in China. The findings by the ecological niche models agreed with
the trends for MT-ZVL incidence in China and may provide technical support for MT-ZVL
control and surveillance. Nevertheless, there are some limitations, such as the MT-ZVL
case data were collected from the National Notifiable Diseases Reporting System, missing
diagnoses or reports cannot be completely excluded, and the variable of the distribution of
Ph. chinensis was not included, which may lead to risk underestimated. Further studies to
acquire accurate distributions of MT-ZVL cases and vector species through field surveys
are needed, and more quantitative variables should be included in the training datasets
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to increase the accuracy and effectiveness of ecological niche models for predicting the
transmission risk of MT-ZVL.
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Abstract: This paper mainly focuses on the relationship between the subjective evaluation of air
quality and the quality of life (QOL) of middle-aged and elderly residents in China. The 2018
China Health and Retirement Longitudinal Study (CHARLS) project database is the key sources
of data, from which 16,736 valid samples were used in our research. Multivariate linear regression
analysis and binomial logistic regression model were applied to detect the impact of the subjective
evaluation of air quality on QOL, which was evaluated in two dimensions, which are health utility
and experienced utility, using the health utility EQ-5D score and the experienced utility of life
satisfaction score. Our results show that there is a significant positive correlation between the
subjective evaluation of air quality and the two dimensions of QOL. Age, education, marital status
and sleep status also have a relatively great impact on the QOL of residents. This worked studied
the overall QOL of middle-aged and elderly residents in China, while policy suggestions regarding
high-quality air public goods are also given in the paper.

Keywords: air quality satisfaction; quality of life; binomial logistic regression; health utility value;
experienced utility

1. Introduction

Quality of life (QOL) is a multidimensional concept that not only perceives and
evaluates people’s physical, psychological, social belonging and comprehensive conditions,
but also involves people’s living environment. Compared with the health-related QOL
in the medical field, the research on QOL in the field of social science is more extensive
in content, focusing on other non-medical indicators reflecting QOL, such as education,
employment, income, social security, living environment, etc. Therefore, the significance
of QOL research goes far beyond health itself, which largely reflects the collection of the
impact of macro-social factors on individual life quality or the QOL.

In recent years, environmental problems have become increasingly serious, and envi-
ronmental pollution has greatly threatened human physical and mental health, life and
work. People pay much more attention to public goods, such as water and air. The relevant
literature shows that there is consensus at home and abroad that air quality plays an
important role in measuring people’s QOL. There are a number of studies that targeted
scientifically measured air quality and its impact on QOL. It has been argued that there is a
significant positive correlation between air quality and QOL [1,2]. Liao Li et al. [3] have
pointed out, that the objective measurement of air quality indirectly affects residents’ life
satisfaction. Air quality also has varying degrees of impact on human (physical) health.
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Harold J. Rickenbacker et al. revealed a significant relationship between indoor particulate
matter (PM) and individual dimensions of QOL [4]; air pollution significantly reduces
the life satisfaction of Chilean residents [5]; and the increase in PM 2.5 concentration may
reduce the average life expectancy [6].

From the perspective of research content, this is mainly reflected in the research related
to the objective indicators of air quality. There are few studies on the relationship between
the subjective assessment of air quality and the QOL of residents. However, as Liao, X. et al.
studied the influencing factors of respondents’ perception of air quality, and found that
relevant indicators of air quality, such as PM2.5, PM10, SO2 and NO2 concentration, would
have a negative impact on respondents’ perception of air quality [7]. Shi, X. et al. found
that there is a high correlation between the objective air quality index and subjective air
quality perception [8]. Therefore, the air quality status of the place of residence directly
affects their subjective evaluation of the air quality. Thus, in the selection of air quality
evaluation indicators, compared with previous studies, which mainly used the objective
indicators published by the meteorological department, this study focuses on residents’
subjective perception of air quality.

Since previous studies on QOL rarely involved the subjective evaluation of air quality,
it is of great practical significance to explore the relationship between the subjective eval-
uation of air quality and residents’ QOL. Therefore, this study attempts to provide some
meaningful supplements and discussions in this field.

This study creatively puts forward the “two-dimensional” research perspective of
QOL, which divides the QOL into two different dimensions—the health utility of the
QOL and the experienced utility of the QOL—and performed beneficial exploration and
research into these two dimensions to investigate the correlation between the subjective
evaluation of air quality and the utility value of QOL. The correlation between the EuroQol
five-dimensional questionnaire (EQ-5D) [9] score of health utility of QOL and the subjective
evaluation and individual characteristics of air quality was detected using the multi factor
linear regression analysis model. The impact of air quality on life satisfaction according
to the experienced utility is analyzed using logistic regression analysis. The two models
produced consistent results regarding a significant positive relationship between air quality
satisfaction and QOL. Additionally, other explanatory variables and their related variables
are significantly correlated with QOL.

2. Data Description and Variable Selection

2.1. Data Source

This article was based on the China Health and Retirement Longitudinal Study
(CHARLS) 2018 data [10], which cover 459 village-level units within 150 county-level
units in 28 provinces and municipalities (Tibet, Ningxia, and Hainan are excluded) in
Mainland China. Using python (version 3.8.8 Wilmington, DE, USA) and Jupyter notebook
software (version 5.7.4 New York, NY, USA) to clean the missing values and outliers of the
sample, 16,736 middle-aged and elderly people aged or above 45 years old were finally
included as samples.

2.2. Descriptive Statistics of Data

Through the literature review, it was found that the QOL of residents is affected by
many factors, such as individual characteristics, personal life perception, income level,
daily behavior patterns and so on. This paper took the utility score of residents’ QOL as
the explained variable. The explanatory variables included air quality satisfaction, health
satisfaction, marriage satisfaction, children satisfaction, age, sex, residence, marital status,
drinking, smoking, sleeping status, education background and yearly individual income.

In this paper, the resident health utility score was obtained from EQ-5D to measure
the health-related quality of life of middle-aged and elderly Chinese residents. From the
descriptive statistics (Table 1) of the full sample, it was found that the sociodemographic
characteristics of the residents are quite different. The mean value of health utility score
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of residents’ QOL (EQ-5D) was 0.7417 ± 0.2262, the minimum value was −0.149 and the
maximum value was 1. Health state index scores generally ranged from less than 0 (where
0 is a health state equivalent to death; negative values are valued as worse than death) to
1 (perfect health), with higher scores indicating higher health utility, though health state
preferences can differ between countries [9]. The standard deviation of health utility score
shows that the overall fluctuation of health utility level of residents’ QOL was relatively
small. The mean value of life satisfaction of residents’ experienced utility of life quality was
2.7519 ± 0.7963. The standard deviation of experienced utility score shows that the overall
level of residents’ life satisfaction had little fluctuation and 89% residents were satisfied
with life. This shows that the overall QOL of the middle-aged and elderly Chinese residents
interviewed was relatively good. The mean value of respondents’ satisfaction with air
quality was 2.8405 ± 0.8309. Overall, 799 residents were extremely satisfied with the air
quality of the year, 4404 respondents were very satisfied, and 8761 residents were relatively
satisfied with air quality—that is, the proportion of air quality satisfaction was 83%.

Table 1. Descriptive statistics section.

Type Variable Min Max Mean Standard Deviation

Y1 Utility Value a −0.149 1 0.74 0.23
Y2 Life Satisfaction b 1 5 2.75 0.80
X1 Air Quality Satisfaction b 1 5 2.84 0.83
X2 Sex 0 1 0.48 0.50
X3 Age (years) 45 108 61.64 9.43
X4 Residence Areas 0 1 0.74 0.44
X5 Education Background c 1 11 3.52 1.91
X6 Marital Status 1 5 1.40 1.01
X7 Smoking Status 0 1 0.04 0.19
X8 Drinking 0 1 0.35 0.48
X9 Sleeping Status (h) 0 15 6.20 1.94

X10 Individual yearly
Income ($) 0 86,870.78 2420.70 1705.87

X11 Health Satisfaction b 1 5 3.06 0.92
X12 Marital Satisfaction b 1 5 2.93 1.29
X13 Children Satisfaction b 1 5 2.42 0.81

a Scale range = −0.149 (worse than death)–1 (perfect health), where 0 is a health state equivalent to death.
b Scale range = 1 (completely satisfied)–5 (not at all satisfied.), where 1 = completely satisfied, 2 = very satisfied,
3 = somewhat satisfied, 4 = not very satisfied, 5 = not at all satisfied. c Scale range = 1 (no formal educa-
tion (illiterate))–11 (11 = doctoral degree/Ph.D.), where 2 = did not finish primary school, 3 = sishu/home
school, 4 = elementary school, 5 = middle school, 6 = high school, 7 = vocational school, 8 = two-/three-year
college/associate degree, 9 = four-year college/Bachelor’s degree, 10 = Master’s degree.

According to China’s legal retirement age, 7925 respondents were between 45 and
60 years old, indicating that among the 16,736 samples, nearly half were middle-aged and
elderly people who were on-the-job or capable of working. From the perspective of the
gender of respondents, the proportion of males (52%) and females (48%) was relatively
balanced. There was a big difference in data distribution between urban and rural areas,
with 12,529 respondents living in rural areas. It may be that the CHARLS questionnaire
collection is more focused on rural areas; in terms of the annual income level of the intervie-
wees, there were 4976 interviewees with an annual income of USD 0 and 7145 individuals
with an annual income of less than USD 144.64, while the highest annual income was
86,870.78$. The sample mean was 16,736, and the standard deviation was 11,793, indicating
that there was a large gap in the income level of the interviewees. The average educational
background of respondents was 0.3546 ± 0.4784, and the number of respondents with
junior middle school education or below was 14,580 (87%), indicating that the overall
educational level of middle-aged and elderly groups in the surveyed sample was not high.
The proportion of abnormal sleep (less than 5 h or more than 9 h) accounted for 27% of
those interviewed, indicating that nearly one-third of the middle-aged and elderly residents
surveyed had sleep problems. The number of smokers and drinkers were 5818 and 654,
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respectively, indicating that the vast majority of respondents had a relatively healthy
daily lifestyle. In other subjective perceptions, the mean value of health satisfaction was
3.0572 ± 0.9234, the mean value of marriage satisfaction was 2.9259 ± 1.2855, and the mean
value of children satisfaction was 2.4155 ± 0.8060, indicating that middle-aged and elderly
residents in China generally had high levels of satisfaction with their health, marriage
and children.

2.3. Variable Selection
2.3.1. Explained Variables

In this paper, the QOL health utility score EQ-5D (Y1) and experienced utility score
for residents’ life satisfaction (Y2) were taken as the explained variables, respectively,
and the multivariate linear regression model and binary logistic regression model were
established, respectively.

The resident health utility score was obtained from the EuroQol Group’s three-level Eu-
roQol five-dimensional questionnaire (EQ-5D−3L) to measure the health-related quality of
life of middle-aged and elderly Chinese residents. The EQ-5D−3L descriptive system com-
prises the following five dimensions, each describing a different aspect of health: mobility
(MO), self-care (SC), usual activities (UA), pain/discomfort (PD), and anxiety/depression
(AD). Each dimension is divided into three levels: no problems, some problems, extreme
problems (labelled 1–3). By convention, the EQ-5D−5L health states are presented in a
short form using five-digit numbers in which the digits represent the levels of functioning
for the dimensions in order of presentation (MO, SC, UA, PD, and AD). For example, state
11,223 indicates no problems with mobility and self-care, some problems with performing
usual activities, moderate pain or discomfort and extreme anxiety or depression, while
state 11,111 indicates no problems regarding any of the five dimensions [9]. The health
utility score (EQ-5D) of this paper is selected from CHARLS questionnaire, using “DB006:
Do you have difficulty with stooping, kneeling, or crouching?” in the consideration of the
mobility (MO) of the elderly; using “DB017: Because of health and memory problems, do
you have any difficulties with preparing hot meals?” in the consideration of the self-care
ability (SC) of the elderly; using “DB016: Because of health and memory problems, do
you have any difficulties with doing house-hold chores?” in the consideration of the usual
activities level (UA) of the elderly; using “DA041: Are you often troubled with body pains?”
in the pain/discomfort (PD) evaluation of the elderly; and using “DC011: The degree of
feeling depressed” in the consideration of anxiety/depression (AD) in the elderly [11].

In this study, the EQ-5D health utility value was calculated by using the health-related
QOL utility value integration system of Chinese residents constructed by Liu et al. 2014 [12].
The calculation formula is:

Health utility value = 1 (a constant term)—the standard coefficient corresponding to
different levels of each dimension—N3 (an additional term which should be subtracted if
extreme difficulty occurs in any dimension), i.e.,

U = 1 − (0.039+0.099|MO2 + 0.105|SC2 + 0.074|UA2 + 0.092|PD2 + 0.086|AD2+0.246|MO3
+0.208|SC3 + 0.193|UA3 + 0.236|PD3 + 0.205|AD3)− 0.022|N3

(1)

Here, MO2, SC2, UA2, PD2 and AD2 indicate that mobility, self-care ability, daily ac-
tivity ability, pain/discomfort and anxiety/depression are at level 2. MO3, SC3, UA3,
PD3 and AD3 indicate that the above dimensions are at level 3. N3 means that at
least one of the five dimensions is at level 3. For instance, the value for “33233” was
1 − (0.039 + 0.246 + 0.208 + 0.074 + 0.236 + 0.205) − 0.022= − 0.03.

The QOL experienced utility score for life satisfaction is a sequential classification
variable, with the value ranging from 1 to 5 according to the degree of satisfaction, where
1 = completely satisfied, 2 = somewhat satisfied, 4 = not very satisfied, and 5 = not at all
satisfied. Among the 16,736 surveyed residents, the proportion of extremely satisfied, very
satisfied and relatively satisfied was 88.69%, indicating that the overall life satisfaction
of Chinese residents is relatively high. Since this study adopted the discrete dependent
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variable binary logic model, the explained variables were represented by 0 and 1. During
modeling, we merged “extremely satisfied, very satisfied, relatively satisfied” into 1, and
“not very satisfied, not satisfied at all” into 0.

2.3.2. Core Explanatory Variables

This paper took residents’ subjective evaluation of air quality satisfaction (X1) as
the core variable that affects residents’ QOL in 2018. The subjective evaluation question
regarding air quality was expressed as “How satisfied are you with the air quality this
year (2018)?” The value for this was 1–5, where 1 = completely satisfied, 2 = very satisfied,
3 = somewhat satisfied, 4 = not very satisfied, 5 = not at all satisfied. The discrete distribu-
tion of air quality satisfaction, QOL health utility EQ-5D and experienced utility for life
satisfaction is shown in Figure 1. For samples with a standard normal distribution, only a
few values were outliers. There are only six outliers in the right figure of Figure 1, indicat-
ing that the distribution has almost no tail and a large degree of freedom. The outliers in
the left figure are concentrated on the side with the lower health utility value, indicating
that the distribution of air quality satisfaction and the health utility value shows a slight
leftward skew.

Figure 1. Distribution of air quality satisfaction and QOL utility data. (a) The comprehensive distribution characteristics of
air quality satisfaction and Health Utility Score (EQ-5D). (b) The comprehensive distribution characteristics of air quality
satisfaction and Life Satisfaction. (The five colors represent air quality satisfaction, respectively: completely satisfied, very
satisfied, somewhat satisfied, not very satisfied, not at all satisfied. Black dots present the outlier values).

2.3.3. Control Variables

In order to eliminate the estimation error caused by missing variables as much as
possible, other individual characteristics that may affect the health utility of residents’ QOL
were introduced as control variables—sex, residence areas, education background, marital
status, smoking status, drinking, sleeping status and individual yearly income—to control
the impact of personal characteristics and lifestyle on residents’ QOL regarding the health
utility. When taking the QOL regarding the experienced utility for life satisfaction as the
explanatory variable for logical progression, in addition to the above control variables, three
satisfaction indicators of health satisfaction, marital satisfaction and children satisfaction
were added as supplementary control variables to control the impact of residents’ subjective
evaluation indicators on residents’ life satisfaction. The value was 1–5, where 1 = completely
satisfied, 2 = very satisfied, 3 = somewhat satisfied, 4 = not very satisfied, 5 = Not at all
satisfied. The specific assignment of variables is shown in Table 2.
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Table 2. Dummy variables assignment.

Variables Assignment and Meaning

Sex (X2) Male = 0; Female = 1
Residence Areas (X4) Other = 0; Village = 1

Education Background (X5) Primary school or below = 0; Secondary school or above = 1
Marital Status (X6) Widowed/Divorced/Separated/Unmarried = 0; Married = 1

Smoking Status (X7) Non-smokers = 0; Smoking history = 1
Drinking (X8) No drinking = 0; Drinking = 1

Sleeping Status (h) (X9) Abnormal (<5 h or >9 h) = 0; Normal ([5 h,9 h]) = 1

Health Satisfaction (X11) 1 = Completely satisfied, 2 = Very satisfied, 3 = Somewhat satisfied,
4 = Not very satisfied, 5 = Not at all satisfied

Marital Satisfaction (X12) 1 = Completely satisfied, 2 = Very satisfied, 3 = Somewhat satisfied,
4 = Not very satisfied, 5 = Not at all satisfied

Children Satisfaction (X13) 1 = Completely satisfied, 2 = Very satisfied, 3 = Somewhat satisfied,
4 = Not very satisfied, 5 = Not at all satisfied

For education background, the score spanned from 1 to 11, where 1 = no formal edu-
cation (illiterate), 2 = did not finish primary school, 3 = sishu/home school, 4 = elementary
school, 5 = middle school, 6 = high school, 7 = vocational school, 8 = two-/three-year
college/associate degree, 9 = four-year college/Bachelor’s degree, 10 = Master’s degree,
11 = doctoral degree/Ph.D. In Table 2, education background (X5) ranges from 0 to 1.
As a control variable, education background did not significantly affect the size of the
regression coefficient of the explained variables in the model, which made the problem
description more concise. Therefore, it was used as a dummy variable reflecting education
level for modeling.

The frequency chart of the subjective perception of middle-aged and elderly Chinese
residents is shown in Figure 2, from which it can be seen that the subjective perception of
residents is generally normally distributed.

Figure 2. Satisfaction of various indicators of middle-aged and elderly residents in China.

Considering the actual significance of the data, the variables age (years) and yearly
individual income used the original data to participate in the regression.

3. Models and Methods

3.1. T Test and Pearson Correlation Analysis

In order to ensure the accuracy of the sample and the correctness of the model, the
t-test and the Pearson correlation coefficient test were carried out on the influencing factors
of QOL. The factors that were significant at the significance level of 5% in both tests were
included in the regression model.
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3.2. Multicollinearity Test

In order to avoid the possible multiple collinearities between explanatory variables,
this paper used the Variance Inflation Factor (VIF) method to test the possible collinearity
between variables before establishing the model. This method mainly judges whether
there is multicollinearity between variables through the size of variance inflation factor.
We took the explanatory variable Xi (i = 1, 2, . . . , 13) as the dependent variable, and the
other explanatory variables other than Xi as the independent variables and established a
linear regression model to obtain the decisive factor. The calculation formula of variance
inflation factor is as follows:

VIF =
1

1 − R2
i

(2)

where R2 is the determination coefficient of regression to other explanatory variables when
the explanatory variable Xi (i = 1, 2, . . . , 13) is the dependent variable.

The multicollinearity test showed that the value of variance expansion factor VIF
between explanatory variables was between 1.02 and 1.45, indicating that there was no
multicollinearity between explanatory variables.

3.3. Multivariate Linear Regression Model

In order to test the impact of air quality satisfaction on the EQ-5D score of the health
utility of residents’ QOL, based on the existing research experienced and available data, a
multi factor linear regression model was set:

QOLi = ui + αAQSi + βControli + εi (3)

Here, the core explanatory variable is air quality satisfaction (AQS), and the control
variables include variables related to QOL: age, residence areas, sex, marital status, drink-
ing, smoking status, sleeping status, education background and individual yearly income.
ui represents a fixed effect, εi represents a random disturbance item, and i represents the
individual respondent.

3.4. Binomial Logistic Regression Model

The binomial logistic regression model was established to carry out comprehen-
sive evaluation among various influencing factors, to analyze the influencing factors of
life satisfaction. This method can better solve the problem of interdependence among
influencing factors.

The binomial logistic regression model is as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Zi = Ln Pi
1−Pi

= ui + αAQSi + βControli + εi

g(z) = 1
1+e−Z

P(Y2 = 1|w, x) = g(z)
P(Y2 = 0|w, x) = 1 − g(z)
odds = P

1−P

(4)

where Pi is the probability of life satisfaction, the probability of life dissatisfaction is (1-pi),
Pi ∈ (0,1), and odds is the ratio of the probability of life satisfaction to the probability of
life dissatisfaction. Zi represents the explained variable residents’ life satisfaction, and
the core explanatory variable is air quality satisfaction. The control variables include
variables related to QOL: health satisfaction, marriage satisfaction, children satisfaction,
age, residence areas, sex, marital status, drinking, smoking status, sleeping status, education
background and individual yearly income. ui is a fixed effect, εi is a random disturbance
item, and i is the individual respondent.

As the subjective perception factors entering the logistic regression equation were
air quality satisfaction, health satisfaction, marriage satisfaction and child satisfaction,
the assignment of the classification level was arranged from small to large according to
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its logical meaning, which is opposite to the logical order of the dependent variable (life
satisfaction) (0 = dissatisfaction, 1 = satisfaction). Therefore, when the estimated coefficient
value of these subjective perception variables was negative in the regression model, it
indicated that the smaller the value of this variable, the greater the possibility of life
satisfaction. Among other control variables, education level, individual yearly income and
sleeping status had the same logical order with life satisfaction, indicating that the greater
the value of these variables, the greater the probability of life satisfaction.

4. Analysis of Influencing Factors of QOL

4.1. Single Factor Analysis of QOL

The results of the univariate analysis of the QOL are shown in Table 3. The results
of correlation analysis show that air quality satisfaction, sex, age (years), education back-
ground, marital status, drinking, sleeping status and individual year income were the
significant influencing factors of health utility value (EQ-5D) (p < 0.05). There was no dif-
ference between residence and health utility value in the t-test (p > 0.05), and the residence
area factor was not included in the linear regression model.

Table 3. T-test and Pearson’s correlation of influencing factors.

Variables Explained Variable: EQ-5D Score Explained Variable: Life Satisfaction

Explanatory Variables t Test t(p) Pearson’s Correlation r(p) t Test t(p) Pearson’s Correlation r(p)

Air Quality Satisfaction
(X1)

−315.101 ***
(0.0)

−0.065 ***
(3.99 × 10−17)

−284.030 ***
(0.0)

−0.155 ***
(1.87 × 10−90)

Sex (X2) 52.367 ***
(0.0)

−0.186 ***
(1.37 × 10−130)

80.315 ***
(0.0)

−0.065 ***
(4.57 × 10−17)

Age (years) (X3) −835.15 ***
(0.0)

−0.188 ***
(1.35 × 10−133)

−832.93 ***
(0.0)

0.04 ***
(2.34 × 10−7)

Residence Areas (X4) −0.275
(0.784)

−0.104 ***
(3.76 × 10−41)

34.556 ***
(1.041 × 10−256)

−0.053 ***
(7.10 × 10−12)

Education Background
(X5)

94.647 ***
(0.0)

0.234 ***
(7.76 × 10−207)

120.050 ***
(0.0)

0.058 ***
(6.45 × 10−14)

Marital Status (X6) −39.619 ***
(0.0)

−0.128 ***
(4.21 × 10−62)

5.625 ***
(1.87 × 10−8)

0.058 ***
(4.67 × 10−14)

Smoking Status (X7) 305.164 ***
(0.0)

0.022 **
(0.004)

295.453 ***
(0.0)

−0.005
(0.523)

Drinking (X8) 96.699 ***
(0.0)

0.170 ***
(3.09 × 10−108)

121.996 ***
(0.0)

0.051 ***
(2.86 × 10−11)

Sleeping Status (X9) −6.678 ***
(2.46 × 10−11)

0.245 ***
(1.02 × 10−226)

29.489 ***
(1.63 × 10−188)

0.107 ***
(1.45 × 10−43)

Individual yearly
Income (X10)

−68.389 ***
(0.0)

0.177 ***
(3.16 × 10−118)

−68.388 ***
(0.0)

0.078 ***
(1.01 × 10−23)

Health Satisfaction
(X11)

−287.616 ***
(0.0)

−0.323 ***
(0.0)

Marital Satisfaction
(X12)

−199.239 ***
(0.0)

−0.201 ***
(2.09 × 10−151)

Children Satisfaction
(X13)

−228.362 ***
(0.0)

−0.199 ***
(2.52 × 10−148)

* p < 0.05, ** p < 0.01, *** p < 0.001. Notes: p values are in parentheses. To save space, only parameters of key interest are presented, but
results of the full models are available upon request.

The fourth and fifth columns of Table 3 show the results of the t-test and Pearson
correlation analysis of life satisfaction with the 13 influencing factors. The results of
the analysis showed that air quality satisfaction was correlated with life satisfaction at
a significance level of 0.1%. Sex, age (years), residence areas, educational background,
marital status, drinking, sleeping status, individual yearly income, health satisfaction,
marital satisfaction and children satisfaction were influential factors in experiencing utility
value for life satisfaction (p < 0.05). Smoking status was not significant in Pearson’s
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correlation test (p > 0.05), and smoking status was not included in the logistic regression
model. This is inconsistent with the research results of Wang, H. et al. [13].

4.2. Multi-Factor Linear Regression Analysis of Factors Influencing Health Utility

The linear regression model was constructed by taking the significant variables of
univariate analysis, air quality satisfaction, sex, age (years), education background, marital
status, smoking status, drinking, sleeping status and individual yearly income as explana-
tory variables and the health utility value of QOL (EQ-5D) as the explained variable to
test the effect of air quality satisfaction on the health utility of residents’ QOL, and the
regression results are shown in Table 4, where Model 1 is the estimation result without
introducing control variables, while Model 2 and Model 3 are the estimation results after
introducing control variables and correcting for heteroskedasticity.

Table 4. Multiple linear regression analysis of factors influencing health utility values (n = 16,736).

Variables Health Utility EQ-5D Score

Explanatory Variables Model 1 Model 2 Model 3

Air Quality Satisfaction (X1) −0.018 *** (0.002) −0.0235 *** (0.002) −0.0235 *** (0.002)
Sex (X2) −0.0464 *** (0.004) −0.0472 *** (0.004)

Age (years) (X3) −0.0032 *** (0.000) −0.0032 *** (0.000)
Education Background (X5) 0.0403 *** (0.004) 0.0402 *** (0.004)

Marital Status (X6) 0.0262 *** (0.006) 0.0260 *** (0.006)
Smoking Status (X7) −0.0139 (0.008)

Drinking (X8) 0.0330 *** (0.004) 0.0332 *** (0.004)
Sleeping Status (X9) 0.0978 *** (0.004) 0.0977 *** (0.004)

Individual Income (X10) 9.876 × 10−7 *** (9.85 × 10−8) 9.94 × 10−7 *** (9.88 × 10−8)
Intercept 0.7919 *** (0.006) 0.8932 *** (0.017) 0.8944 *** (0.017)
Adj.R2 0.004 0.145 0.145

AIC −2321 −4862 −4863
BIC −2305 −4793 −4786

* p < 0.05, ** p < 0.01 and *** p < 0.001. Notes: Standard errors are in parentheses. To save space, only parameters of key interest are
presented, but results of the full models are available upon request.

The multi-factor linear regression model shows the significant effect of air quality
satisfaction on the health utility score of residents’ QOL at the significance level of 0.001.
From Model 2, on average, for each increase in air quality satisfaction level (the larger
the level, the lower the air quality satisfaction), the health utility value of residents’ QOL
decreases by 2.35 percentage points, when all other indicators are equal. This indicates
that poorer air quality satisfaction reduces the level of health utility of residents’ QOL,
and that there is a significant positive relationship between air quality satisfaction and
residents’ QOL.

The regression results of other explanatory variables also provide some enlightenment.
The regression coefficient of sex is significantly negative in the estimation, indicating that
the QOL health utility value of female respondents is significantly lower than that of
males, and the fluctuation of QOL health utility scores is somewhat greater than that of
males, which may be due to the fact that most Chinese women bear the dual pressures
of work and family life, and lack the ways and environment to relax. Secondly, there is a
significant negative correlation between age and the health utility value of QOL, which
decreases with age. The estimated value of the regression coefficient of education level
is significantly positive, indicating that education can improve the ability, cognitive level
and psychological resilience of residents in China, and bring about the improvement
of material living standards, thus indirectly improving the QOL. The marriage factor
is significant at the level of 0.001, indicating that there are significant differences in the
QOL between different marital status groups. From the marital status variables, it is
shown that the QOL health utility of married groups is higher, while the health utility of
divorced, widowed or single groups is lower, which may be because married people obtain
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more utility in the form of family support. The estimated linear regression coefficient of
alcohol consumption is significantly positive—a possible reason for this is that in contrast
with smoking (not significant) addiction, most middle-aged and elderly people tend to
drink alcohol in moderation, and only on important festivals or occasions, and that a
small amount of alcohol is beneficial to their health to some extent. At the same time,
the improvement of national health awareness, the increase in healthy life publicity, the
diversification of publicity forms and the development of the Internet have all made middle-
aged and elderly people pay more attention to the healthy lifestyle of avoiding smoking and
drinking. The effect of sleep status on the health effect of the QOL is significantly positive,
indicating that residents with good sleep quality are healthier than those with abnormal
sleep conditions. The estimated coefficient of personal annual income is significant in the
regression, but the regression coefficient is very small. In general, the higher the income
of residents, the more and better medical care and services they can access, and the better
their QOL. However, due to the possible “happiness paradox” phenomenon, an increase in
an individual’s annual income does not necessarily lead to an improvement in the QOL.

According to the absolute value of the estimated value of the regression coefficient,
the magnitude of the effect of each of the variables entering the regression equation on
the utility value of QOL can be ranked, in descending order, as sleep status, gender,
education, alcohol consumption, marital status, air quality satisfaction, age and annual
personal income.

4.3. Multi-Factor Logistic Regression Analysis of Influencing Factors of Experienced Utility

The significant influencing factors which were significant in the univariate analysis
include air quality satisfaction, sex, age (years), residence areas, education background,
marital status, drinking, sleeping status, individual yearly income, health satisfaction,
marital satisfaction and child satisfaction. Life satisfaction was taken as the dependent
variable to construct a multi-factor binary logistic regression model.

The regression results are shown in Table 5, where Model 3 is the estimation result
without introducing control variables, and Model 4, Model 5 and Model 6 are the estimation
results after introducing the control variables and gradually removing insignificant factors
using the backward elimination method. Exp(β) represents the estimated value of the
change multiple of the ratio of the probability of life satisfaction to the probability of life
dissatisfaction (odds) caused by the increase in one unit of the i-th explanatory variable and
reflects the magnitude of the effect of each explanatory variable on the explained variable.
The value of Exp(β) indicates that the lower the classification level of the independent
variable, the greater the probability that the resident is satisfied with his or her life.

4.3.1. Results

At the 0.1% significance level, the estimated value of the regression coefficient of air
quality satisfaction is negative—that is, it is significant. In Model 4, its Exp(β) value is
0.7225—that is, when all other indicators are equal, the air quality satisfaction increases
by one level (the higher the level, the worse the air quality satisfaction), and the ratio
of the probability of dissatisfaction life to the probability of life satisfaction (odds) is
0.7225 times the original value. This indicates that poorer air quality satisfaction can
reduce life satisfaction, which means that there is a significant positive correlation between
air quality satisfaction and the experienced utility level of residents’ QOL. This is consistent
with the research result that the objective measurement of air quality will indirectly affect
residents’ life satisfaction [3]. The estimated value of the logistic regression coefficient of the
control variable age is significantly positive. According to the actual situation in China, it is
stipulated that 45–59 years old represents early old age, 60–79 years old represents old age,
and 80 years old or older is the longevity period. (https://baike.sogou.com/, accessed on
7 October 2021) The respondents’ life satisfaction is low in early old age, which is consistent
with the fact that they are at a specific age and need to face the greatest pressures and
responsibilities in their life, such as heavy work, purchasing a house and raising children.
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Table 5. Binomial logistic regression analysis of factors influencing experienced utility (n = 16736).

Life Satisfaction

Explanatory Variables Model 3 Model 4 Model4 Exp (β) Model 5 Model 6

Air Quality Satisfaction (X1) 0.6568 ***
(0.0084)

−0.3250 ***
(0.0343) 0.7225 −0.3258 ***

(0.0343)
−0.3259 ***

(0.0343)

Sex (X2) 0.0485
(0.0593)

0.0585
(0.0644)

Age (years) (X3) 0.0301 ***
(0.0032) 1.03055 0.0304 ***

(0.0032)
0.0305 ***
(0.0032)

Residence Areas (X4) −0.1635 *
(0.0740) 0.8492 −0.1563 *

(0.0745)
−0.1562 *
(0.0745)

Education Background (X5) 0.1958 **
(0.0651) 1.2163 0.2050 **

(0.0660)
0.2043 **
(0.0661)

Marital Status (X6) −0.8260 ***
(0.1159) 0.4378 −0.8311 ***

(0.1162)
−0.8317 ***

(0.1162)

Drinking (X8) 0.0267
(0.0667)

Sleeping Status (X9) 0.3691 ***
(0.0604) 1.4464 0.3729 ***

(0.0605)
0.3729 ***
(0.0605)

Individual yearly Income
(X10)

0.0000 ***
(0.0000) 1.0 0.0000 ***

(0.0000)
0.0000 ***
(0.0000)

Health Satisfaction (X11) −0.9954 ***
(0.0330) 0.3696 −0.9972 ***

(0.0331)
−0.9962 ***

(0.0332)

Marital Satisfaction (X12) −0.4975 ***
(0.0328) 0.6080 −0.5019 ***

(0.0333)
−0.5021 ***

(0.0333)

Children Satisfaction (X13) −0.3426 ***
(0.0326) 0.7099 −0.3392 ***

(0.0329)
−0.3392 ***

(0.0329)

Intercept 7.5124 ***
(0.3326)

7.4694 ***
(0.3366)

7.4480 ***
(0.3407)

Pseudo Rˆ2 −0.131 0.226 0.226 0.226
AIC 13,357.42 9168.41 9169.75 9171.59
BIC 13,365.14 9253.39 9262.93 9272.01

* p < 0.05, ** p < 0.01, *** p < 0.001. Notes: Standard errors are in parentheses. To save space, only parameters of key interest are presented,
but results of the full models are available upon request.

Secondly, the regression coefficient of residence is significantly negative in the esti-
mation (p < 0.05), indicating that the possibility of life satisfaction of rural respondents is
greater than that of non-rural respondents. The higher the education level and the better
the sleep status, the greater the probability of life satisfaction of middle-aged and elderly
residents. The logistic regression coefficients of gender, drinking and smoking are not
significant in this estimation.

The regression coefficients of health satisfaction, marital satisfaction and child satis-
faction were significantly negative (p < 0.001), and the Exp(β) values were 0.3696, 0.6080
and 0.7099, respectively, indicating that the higher the classification level of subjective
perception factors, the more the marginal effect of life satisfaction of the residents showed
a considerable positive effect. That is, health satisfaction, marital satisfaction and children
satisfaction show significant positive correlations with life satisfaction.

According to the magnitude of Exp(β) values in Model 4, the magnitude of the effect
of each variable on life satisfaction that finally entered the logistic regression equation
can be ranked, in descending order, as sleeping status, education background, age (years),
individual yearly income, areas. air quality satisfaction, children satisfaction, marital
satisfaction, marital status, and health satisfaction.

If the probability of life satisfaction is set to p (the probability of life dissatisfaction
is (1-p), p ∈ (0,1)), and the logit transformation of p is the dependent variable, a logistic
regression model is constructed according to the logistic regression formula using direct
logistic regression coefficients:
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log(p) = 7.5124 − 0.3250 × X1 + 0.0301 × X3 − 0.1635 × X4+0.1958 × X5 − 0.8260 × X6
+0.3691 × X9 − 0.9954 × X11 − 0.4975 × X12 − 0.3426 × X13

(5)

4.3.2. Model Evaluation

To evaluate the accuracy of the model, all 16,736 samples were divided into a training
set and a test set in logistic regression—11,715 samples in the training set and 5021 samples
in the test set were evaluated using logistic regression analysis. The overall prediction
fit accuracy of the regression equation classification prediction was 0.89 (classification
truncation was taken as 0.50), and 14,895 samples out of 16,736 samples were correctly
classified. The accuracy of life satisfaction classification was 0.89.

From the Receiver Operating Characteristic curve (ROC) is shown in Figure 3, it can
be seen that the Area Under Curve (AUC) value of the optimal critical point of the area
covered by the ROC curve is 0.83, because a larger value represents a better effect of logistic
regression analysis, which means the model has a good prediction effect. The recall rate of
the number of truly positive cases predicted is 0.99, and the recall rate of the number of
truly negative cases predicted is 0.17. The overall discriminant accuracy of the estimated
samples is 88.99%—that is, the overall accuracy of the model prediction is good.

Figure 3. ROC curve of logistic regression. The red line (TPR = FPR) corresponds to the “random
guess” model, and the point on the upper left of the red line (TPR > FPR) indicates that the judgment
is generally correct.

4.4. Robustness Analysis

The regression results remain robust in the following robustness tests:

(1). The replacement of the dependent variable. The “experienced utility” life satisfaction
of QOL is used to replace the EQ-5D score of health utility for regression analysis.
After the replacement, the explanatory variable air quality satisfaction is still positive
at the significant level of 1%. The better the air quality satisfaction, the greater
the possibility of life satisfaction, which is consistent with the results of the article
findings [1,2]. This shows that the subjective evaluation of air quality is indeed
positively correlated with residents’ QOL, and the improvement of air quality helps to
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improve residents’ QOL. Additionally, other explanatory variables and their related
variables are significantly correlated with QOL.

(2). Add control variables. Considering that life satisfaction indicators of QOL expe-
rienced utility are subjective perception data, which are influenced by residents’
cognitive level and other aspects, variables such as health satisfaction, marital sat-
isfaction and child satisfaction were added as control variables. After adding the
control variables, the regression also shows that the estimated coefficients of air qual-
ity satisfaction are significantly positive, and the estimated values of the regression
coefficients of the subjective perception category control variables are all significant,
and the conclusion maintains that the higher the air quality satisfaction, the better the
QOL of the residents.

(3). The replacement model test. A multi-factor linear regression model was established
for the analysis of the correlation between air quality satisfaction and health utility
values. The multi-factor logistic regression model was used to test the relationship
between air quality satisfaction and life satisfaction, and the positive effect of air
quality satisfaction on residents’ life satisfaction passed the significance test at the
1% significance level, which was consistent with the statistical results of the multiple
linear regression model. The worse the air quality satisfaction, the lower the residents’
life satisfaction and the worse the QOL, and the regression results remain robust.

5. Conclusions and Discussion

This paper uses the 2018 China Health and Retirement Longitudinal Study (CHARLS)
database, using multi-factor linear regression and binary logistic regression methods to
examine the relationship between subjective air quality assessment and the QOL of Chinese
middle-aged and elderly residents. The two models produced consistent results regarding
a significant positive relationship between air quality satisfaction and QOL. This is con-
sistent with the finding that there is a significant positive correlation between air quality
(outdoor air-PM10) and QOL [2]. Exploring the relationship between subjective evaluation
of air quality and the QOL of residents has important practical significance. From the
government’s point of view, the local air quality reflects the government’s environmental
governance performance to a certain extent. With regard to the subjective feelings of
residents, the air quality of the place of residence will directly affect the quality of their
daily life, thereby affecting their subjective evaluation of the air quality status.

This study analyzed the impact of air quality satisfaction on the QOL from the two
dimensions of the health utility and experienced utility of the QOL and concludes that there
is a significant positive correlation between air quality satisfaction and QOL. The impact
of gender and income on the QOL of middle-aged and elderly residents is statistically
significant (p < 0.05), but this impact is indirect and limited. The influence of lifestyle
factors on the QOL cannot be ignored. The significance of the impact of the interviewee’s
residence and smoking status on the QOL and health utility needs to be further verified.

In this study, we used the CHARLS 2018 database to analyze the impact of the subjective
assessment of air quality on the QOL. We put forward the “two-dimensional” research
perspective of QOL, which divides the QOL into two different dimensions: the health utility
of the QOL and the experienced utility of the QOL and perform beneficial exploration and
research to investigate the correlation between subjective evaluation of air quality and QOL.
One of the main shortcomings of this study is that the subjective assessment of air quality is
not comprehensive enough, and there is no specific index assessment involving air quality.
Despite this shortcoming, this research better reflects the problems of environment-related
QOL, and draws several conclusions:

Firstly, China should reform the current performance assessment system and increase
the weight of environmental assessment indicators. The government should thus carry out
the air quality satisfaction assessment of urban and rural residents based on questionnaire
surveys, and take the public satisfaction assessment as one of its main data sources in
the assessment system of atmospheric environment governance, in order to improve the
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assessment method of comprehensive improvement of atmospheric environment, and thus
to improve the living standards of residents by enabling the local government to provide
more high-quality air public goods.

Secondly, since the improvement of air quality can significantly enhance residents’ air
quality and life satisfaction, the government needs to improve not only the local air quality,
but also residents’ subjective perception of air quality. The government should establish a
government-led model of air governance with the participation of stakeholders, encourage
and guide the public to participate in air quality protection actions, and actively promote
the participation of individuals and civil environmental groups in air governance actions.

Thirdly, by establishing an atmospheric environmental education system to increase
the publicity of atmospheric environmental knowledge improve the public’s attention to
air quality, the government will increase the public’s environmental awareness and enrich
environmental knowledge, as well as strengthening the publicity regarding the significance
of individual environmental behaviors. This will provide residents with the belief that
personal behavior can have a profound impact on atmospheric environmental protection.

Due to the limitations of the complexity of the factors affecting the QOL and the
availability of data, this article still has the following drawbacks: on the one hand, this
article mainly considers the influence of the subjective assessment of the overall air quality
of residents on the QOL and does not involve the evaluation of specific indicators of air
quality. On the other hand, this article lacks analysis of the correlation between other
evaluation indicators and residents’ QOL, such as the quality of the ecological environment,
drinking water, the green environment, the pollution of rivers and lakes, the degree of
soil pollution, and noise pollution. The interaction between the subjective evaluation of
ecological environment quality and the QOL also needs to be studied in the future.
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Abstract: Population agglomeration and haze pollution are two major problems that urban devel-
opment will inevitably face in the future. Population agglomeration has a spatial impact on smog
pollution through scale and intensive effects. This paper uses panel data from 236 prefecture-level
cities in China from 2001 to 2012 to verify the impact of urban population agglomeration on haze
pollution and its mechanism based on a spatial lag model. The research shows that: (1) China’s urban
haze pollution has a significant positive spatial spillover effect, and presents a spatial distribution
state of high-high and low-low agglomeration. (2) There is a significant “N-type” nonlinear relation-
ship between urban population agglomeration and haze pollution. (3) At present, the scale effect of
urban population agglomeration in China is greater than the intensification effect, and the scale effect
as well as intensification effect have opposite effects on haze pollution. This shows that urban layout
should be scientifically planned, urban population should be reasonably controlled, production effi-
ciency should be improved, and green development should be promoted to deal with haze pollution.
(4) The spillover effect of urban population agglomeration on haze pollution is significantly greater
than the direct effect, indicating that local haze pollution is more likely to be affected by spatially
related regions, indicating that strengthening regional coordination and cooperation and joint pre-
vention and control are necessary to control haze pollution.

Keywords: collective effect; haze pollution; scale effect; special spillover effect; urban population
agglomeration

1. Introduction

Haze pollution has recently emerged as a significant atmospheric environmental
hazard harming China’s economic and social development. According to data from China’s
Ministry of Environmental Protection’s (MEP) National Air Quality Report released at
the end of 2016, only 84 of the country’s 338 cities at the prefecture level and above
met the annual average air quality standards, with the majority of cities suffering from
haze pollution. As a result, China has taken steps to improve air quality and pollution
monitoring, raise the required standards for pollutants such as inhalable particulate matter
and nitrogen dioxide, control the demand for motor vehicles and industrial emissions,
adjust industrial structures, promote clean energy, and establish a medium- and long-
term pollution prevention and control mechanism. However, the primary sources of haze
pollution are pollutant concentrations, atmospheric conditions, and air humidity. Pollutant
concentration is both a required material basis for creating haze pollution and intimately
tied to human life. The demand for motor vehicles and industrial emissions is based on
population agglomeration and human activities. According to the United Nations Human
Settlements Programme’s World Cities Report (2016), published on May 18, 2016, the top
600 big cities currently house one-fifth of the world’s gross population and generate up to
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60% of global GDP. Population agglomeration has a significant impact on cities’ economic,
social, and environmental development. On 1 April 2017, The Central Committee of the
Communist Party of China (CPC) and the State Council decided to establish the Xiong’an
New Area at the national level, aiming at relieving Beijing of functions nonessential to its
role as the capital and exploring a new model of optimal development in densely populated
areas. Therefore, how to view the spatial spillover effect of urban population agglomeration
on haze pollution and reasonably plan and control the scale of urban development is a
topic worth delving into in-depth.

With rising environmental awareness, attention to urban haze pollution in China has
gradually increased, but due to data availability issues, more literature on the research
of haze pollution in China has just surfaced in the last two years. In terms of the study
topic, most haze studies in the available literature examine the socioeconomic factors that
influence the creation of haze pollution. The majority of the literature acknowledges the
importance of population size, economic expansion, energy or industrial structures, and
environmental regulation in the formation of haze pollution and focuses on one of these.
In analyzing the link between haze pollution and economic growth, Guan et al. [1] used
the environmental input–output model to suggest that economic considerations mainly
influence the increase in pollutant emissions in Chinese cities. Furthermore, in order to
investigate the existence of a non-linear relationship between economic development and
haze pollution, Ma Limei et al. [2] found that China is still in a stage where haze pollution
concentrations continue to increase with regional per capita GDP levels, based on the
results of a spatial lag model and a spatial error model. Shao Shuai et al. [3] came to a
different conclusion. They looked into it further with a dynamic spatial lag model and
discovered that local haze pollution in China has a sizeable spatial agglomeration effect.
Some scholars [4] have jointly reached consistent conclusions from two research perspec-
tives: the degree of energy price distortion and the proportion of high coal-consuming
industries’ output value in regional GDP, respectively. They jointly determined that a
high-energy-consumption energy structure would considerably contribute to regional haze
pollution. Scholars have also paid close attention to the role of environmental regulation
in haze pollution mitigation. According to Huang Shoufeng [5], the shadow economy is
an essential aspect in investigating the impact of environmental policy on haze reduction.
Furthermore, Quan Shiwen and Huang Bo [6] use Beijing’s environmental policies as exam-
ples, emphasizing that the embedding effect between environmental policies is an essential
influencing aspect when developing and evaluating environmental policies. According
to the study, pollutant concentrations were shown to be closely associated with stringent
pollution control measures. More specifically, there are studies that have also focused on
haze pollution in Beijing but only choose the period during the Olympics held in 2008.
Zhang, Wang, et al. [7] developed a system to quantify haze pollution and showed the data
they observed for the 2008 Beijing Olympics based on the outcomes of various emission
control measures quantized by ground-based and satellite monitoring.

Many articles have used the difference-in-differences (DID) and propensity score
matching (PSM) models as research methodologies. Shi Qingling et al. [8], for example,
began with the extraordinary event of the “Two Sessions” held at the local level, whereas
Zhang Shengling et al. [9] investigated changes in haze pollution management in China
before and after the event, based on the outbreak of social opinion on haze. Furthermore,
some authors [10,11] employed simultaneous equations and structural equations to link
haze pollution causes and economic growth factors using industrial coal consumption as a
loop, forming closed equations. We investigate how to balance environmental conservation
and economic growth in this article. Furthermore, because of the spatial correlation of haze
pollution, the spatial econometric method has progressively received the acceptance of
many academics in recent years, but the relevant literature is still relatively small. Ma Limei
et al., for example, quantified local energy by the total output value of eight high-coal-
consumption industries as a fraction of regional GDP using a spatial Durbin model (SDM).
The relationship between local haze pollution, energy structure, and traffic patterns was
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investigated by assessing transport parameters such as vehicle pressure and congestion.
The study found that the spatial spillover effect of haze pollution is more significant at the
national level but the causes driving haze pollution vary among areas. On the other hand,
Xiang Kun and Song Deyong [12] employed the SDM to investigate the factors impacting
haze pollution at the provincial level in China and reached conclusions that are broadly
consistent with those of Ma Limei and other scholars.

2. Method

The methods section mainly explains the mechanism of the impact of population
agglomeration on haze pollution and presents the design of the spatial error model for
empirical verification. Firstly, there are two research hypotheses put forward through
literature reading and model construction: one is that there is a nonlinear relationship
between urban population agglomeration and haze pollution, and the other is that the
impact of urban population agglomeration on haze pollution in China is mainly divided
into scale effects and intensive effects. Secondly, in order to verify the above assumptions,
this paper adopts the spatial error model and refers to the STIRPAT model to select control
variables for empirical verification. In addition, we explain the data sources and present
the results of descriptive statistical analysis. Finally, the applicability of the spatial error
model is verified from the perspective of statistics and econometrics.

2.1. Analysis of Theoretical Mechanism

The action mechanism of urban population agglomeration on haze pollution is presently
divided into two main views. The first is that population agglomeration will increase pol-
lutant emissions in the atmosphere via the scale effect, making hazy weather more likely.
According to some scholars [3,13], urban population agglomeration will cause traffic con-
gestion, housing tensions, and high demand for heating and gas, which will generate a
scale effect and increase pollutants in the atmosphere, resulting in haze pollution. On
the contrary, another school of thought holds that increasing human density will lower
pollution emissions in the atmosphere via the collective effect, aiding in the regulation
of hazy weather. Although urban population agglomeration can cause a slew of issues,
cities can serve the purpose of increasing resource efficiency. The agglomeration of a large
number of people in cities allows them to take advantage of the city’s public transportation
and pollution abatement infrastructure more fully, resulting in the collective effect and,
as a result, a reduction in the emission of air pollutants, ultimately leading to a reduction
in the haze pollution problem [14]. The reason why the two viewpoints indicated above
reach different and opposing results is found in their development of two mesomeric effect
models of urban population agglomeration on haze pollution: the scale effect and the
collective effect, the routes of which are depicted in Figure 1.

Figure 1. Schematic Diagram of Two Action Mechanisms of Urban Population Agglomeration on
Haze Pollution.
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2.1.1. Scale Effect

From the economic standpoint, the scale effect of urban population agglomeration on
haze pollution is caused by externalities. The final consequence of combining the effects of
each individual’s behavioral decisions is the influence of urban population agglomeration
on haze pollution. According to a study conducted by Zeng Xiangang et al. [15], even
though more than half of Beijing residents were aware of the severe health risks that
haze would pose to themselves and their families, a sizable number of people were still
unwilling to reduce the social health risks of haze in exchange for a lower quality of life and
a higher cost of living. This study also shows that personal interests tend to take precedence
over social interests in individual behavioral choices. As a result, as a city’s population
proliferates, so do human activities and demands. At the same time, if people continue to
think in terms of their interests and do not change their lifestyle habits, for example, in
terms of travel, they will continue to drive motor vehicles, resulting in a large number of
vehicle emissions due to an excess of motor vehicles and traffic congestion. This will have
a scale effect on the haze pollution problem, with significant negative externalities for the
urban environment.

2.1.2. Collective Effect

The formation of cities comprises population urbanization and two crucial features:
non-agriculture industries and social modernization [16]. When a high population agglom-
eration leads to a city being formed, the collective effect becomes more significant. First,
the spatial agglomeration of production activities in the urban industrial sector will lead
production elements of various forms, accompanied by related industrial activities, to the
city. As a result of these, the city’s allocable resources will be more plentiful. Second, as the
urban industrial sector gradually improves its productivity, its public infrastructure will
improve. At the same time, the city’s resource allocation will become more efficient. Finally,
during urban development, distinct functional zones will be developed inside the city,
depending on the location of the land, and there will be a concentration of similar activities
within the same functional zone. Land intensification will increase, while social services
will be improved. As a result, the urban collective effect to address the problem of air
pollution prevention and control can efficiently deploy all types of plentiful resources and
increase pollution prevention and control efficiency. For example, establishing a compre-
hensive public transportation and sewage system can strengthen pollutant treatment and
prevention, establish a regional coordination management system, coordinate air pollution
prevention and treatment, and ultimately reduce pollutant per capita emission to reduce
haze pollution.

2.1.3. Reaction Mechanisms of the Two Effects

The two effects stated above result in two reaction mechanisms that influence haze
pollution caused by urban population concentration. As indicated in Figure 2, w denotes
haze concentration, and p denotes urban population density. Point A represents the
equilibrium state attained with a haze concentration of w* and a population density of p*
under the condition of urban environment carrying capacity U2. As population density
rises, two mesomeric effects emerge—the scale effect and the collective effect. (1) If only
the scale effect is taken into account, the increase in urban population density means more
discharge of production and living pollutants. As shown in Figure 2, the combination
line L of population density and haze concentration will be rotated to the right around its
intersection with the vertical axis, giving rise to the line L1. If only the scale effect is taken
into account, the environmental carrying capacity at U2 stays unaltered. Hence, the line L1
can be switched to L2 and intersect the environmental carrying capacity curve U2 at point
B. At this time, the equilibrium point moves from the initial position A to B, and the haze
concentration in the equilibrium state is w1*. w1* − w*, which is a positive value, represents
the scale effect of population density increase, and it means that the scale effect will make
the increase in urban population density lead to an increase in haze pollution concentration.
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(2) Consider the collective effect, which occurs as urban population density rises and people
rush to the city. While people thoroughly enjoy the city’s socialized services, the city’s
comprehensive public transportation system and pollution control and emission reduction
system can reduce pollution generation. This is conducive to further strengthening the
regulation and unified management of pollution caused by human activities. As a result,
the city’s environment carrying capacity grows, and the curve U2 shifts to U1, intersecting
with the combination line L1 of haze pollution and population density at point C. At this
point, the equilibrium state of haze pollution concentration is w0*. The haze concentration
has decreased, based on w1*. At this stage, the total effect of urban population density
on haze pollution is w0* − w*, indicating that an increase in urban population density
eventually increases haze pollution concentration. (3) The scale effect and the intensification
effect work together to produce a total effect, so when only the intensification effect is
considered, the impact of the increase in population density on haze pollution can be
obtained by subtracting the two, the result of which is w0* − w1*. It is a negative value,
which suggests the scale effect makes the increase in urban population density reduce
the concentration of haze pollution. Of course, Figure 2 only depicts one of the scenarios
in which urban population agglomeration influences haze pollution due to the scale and
collective combined effects. The direction and breadth of the influence of urban population
agglomeration on haze pollution would also vary depending on the scale and collective
effects. As a result, we suggest the following hypothesis:

Figure 2. Schematic Diagram of the Reaction Mechanisms of Urban Population Agglomeration
Affecting Haze Pollution. w denotes haze concentration, and p denotes urban population density. Line
L is a combination of population density and haze concentration. Curve U represents environmental
carrying capacity. Point A represents the equilibrium state attained with a haze concentration of w*
and a population density of p* under the condition of urban environment carrying capacity U2.

H1: The correlation between urban population agglomeration and haze pollution may
be non-linear.

H2: At this point, the impact of urban population agglomeration on haze pollution in
China can be split into two mesomeric effects: the scale and the collective. The ultimate
impact of human agglomeration on haze pollution is closely related to the dominant
mesomeric effect.

2.2. Model Specification and Variable Description
2.2.1. Model Specification

Haze pollution is a meteorological issue caused by a combination of natural and
human factors. Both its creation and dispersion are strongly impacted by atmospheric
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motion. The concentration of haze pollution in a region is equal to the haze produced in
this region, minus the haze that spreads to other regions, plus the haze that spreads to this
region from other regions. As a result, haze pollution seems to have a spatial correlation. If
this spatial correlation is overlooked, it is impossible to adequately evaluate the relationship
between other parameters such as urban population agglomeration and haze pollution,
and the spatial spillover effect of haze itself cannot be accurately measured. As a result, a
spatial econometric model is used for the analysis to make the estimation of the influence
of urban population agglomeration on haze pollution more effective and accurate.

Due to the relative ease of the measuring course and the prominent economic connota-
tion, the spatial lag model (SLM) and the spatial error model (SEM) have become two of
the more basic and often employed models in spatial econometrics.

The following is the specific form of the spatial lag model:

yit = δ ∑N
j=1 wijyjt + xitβ + ui + ϕt + εit (1)

In Equation (1), wij is the element of the spatial weight matrix W, ui represents spatial
fixed effects, ϕt represents time fixed effects, and εit represents the random error vector. yit
represents the explained variable, and xit represents the primary explanatory variable and
other control variables.

The following is the specific form of the spatial error model:

yit = xitβ + ui + ϕt + νit (2)

νit = λ ∑N
j=1 wijuit + εit (3)

The connotations in Equations (2) and (3) are nearly identical to those in Equation (1).
On the other hand, the spatial error model acknowledges that other elements in the spatially
related areas will have a spillover effect on the haze in the region.

The inverse distance principle is employed in this research to build the spatial weight
matrix, which means that the reciprocal of the distance between two locations is used as the
weight. The nearer the distance between the two places, the greater the weight; the further
the distance, the lesser the weight. Furthermore, for simplicity of later measurement, the
spatial weight matrix is frequently normalized by rows to equalize the influence of other
spatial regions on the local region. However, to ensure that the mutual ratio between
each element of the inverse distance spatial weight matrix remains unchanged and to
maintain the weight matrix’s economic interpretation, this paper adopts an alternative
weight matrix treatment proposed by Elhorst [17] and Kelejian et al. [18], i.e., each element
of the inverse distance spatial weight matrix is divided by its largest eigenroot to obtain the
normalized matrix.

2.2.2. Description of Primary Variables

First, in order to better control the influence of other factors on haze pollution so that
the effect of population agglomeration on haze pollution will be measured more accurately,
this study is based on the STIRPAT model widely used in the field of environmental
economy. Select variables from four factors including environment, population, wealth, and
technology are used to construct an empirical model of urban population agglomeration
and smog pollution. The specific expression form of the STIRPAT model is shown in
Equation (4):

Iit = aPb
it Ac

itT
d
ite (4)

In Equation (4), I is the environmental quality, P is the population, A is the per capita
wealth, T is the technology, e is the error term, a is the model coefficient, and b, c, and d are
the solve-for parameters. Equation (5) is produced by taking the logarithm of both sides of
Equation (4):

ln Iit = ln a + b ln Pit + c ln Ait + d ln Tit + ln e (5)
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In this work, the relevant proxy variable will be used by the four key environmental
factors in the STIRPAT model. Furthermore, in order to investigate the action mechanism
of urban population agglomeration on haze pollution further—the scale effect and the
collective effect—and to integrate various aspects of the relationship between urban popu-
lation agglomeration and haze pollution, such as influence, representativeness, and data
availability, we finally use the urban transportation sector as an example to assess and
compare the influence of urban agglomeration on haze pollution. The bus ownership per
10,000 people was chosen as a proxy variable for the collective effect, and the occupying
amount of civilian vehicles was chosen as a proxy variable for the scale effect. Table 1
displays the relevant variable descriptions:

Table 1. Description of Primary Variables.

Variables Abbreviation Connotation of the Variable Average Value Minimum Value
Maximum

Value

Haze
Concentration Lnmean Every 3 years’ moving average of PM2.5

concentration, and take the logarithm 3.7905 2.1031 4.6946

Population Density Lndenpop
The average annual population of the

municipal district divided by the built-up
area, and take the logarithm

6.6746 2.5751 9.5453

Opening-Up Level Lnfdi
The proportion of actual utilized foreign
investment in local GDP in the municipal

district, and take the logarithm
−4.1187 −8.8040 −0.8981

Economic
Development Level Lnrpgdp

After constant price treatment (base
year–2001), the per capita GDP of the

municipal district, and take the logarithm
9.9910 7.7630 12.1075

Industrial Structure Lnindgdp
The proportion of secondary industry

added value in local GDP in the municipal
district, and take the logarithm

−0.6914 −1.8163 0.9517

Fixed-Asset
Investment Lnfasset

The total fixed-assets investment of the
whole city (excluding farmers), and take

the logarithm
14.0532 9.7746 17.9906

Scientific Research-
Capability Lnsci

The proportion of scientific research
employment in the total urban

employment in the municipal district, and
take the logarithm

−4.1422 −6.3652 −2.1148

Scientific Research-
Investment Lnexp_sci

The proportion of scientific research
investment in local financial expenditure

in the municipal district, and take the
logarithm

−5.0789 −8.5620 −2.3067

Public
Transportation Lnbusp

The bus ownership per 10,000 people in
the municipal district, and take the

logarithm
1.6412 −1.1394 4.7074

Civilian Vehicles Lnvehicle The occupying amount of civilian vehicles
of the whole city, and take the logarithm 11.6146 8.6995 15.3479

2.3. Data Sources

The explanatory variable in this paper, namely PM2.5 concentration values, is obtained
from the SEDAC. In 2012, China amended the Ambient Air Quality Standard (AAQS)
(GB3095-2012) for the third time, revising the concentration limited values standard for
some detecting indicators and increasing monitoring and reporting of PM2.5 concentration
limited values. The new AAQS was trialed in 74 prefecture-level cities across China in
the same year. On 1 January 2016, the new AAQS was extended and applied across the
country. Furthermore, the PM2.5 statistics issued by China’s MEP are generated from
ground detection stations, which are more accurate but cannot accurately quantify the
average PM2.5 concentration in a specific area. It is not possible to make a long-term assess-
ment of the haze pollution condition in various regions of China based on PM2.5 statistics
published by China’s MEP in recent years. As a result, the PM2.5 concentration data in this
study are derived from the global annual average PM2.5 surface concentration data given
by SEDAC. Following the notion of Donkelaar et al. [19], the Battelle Memorial Institute
(BMI) and Columbia University transformed the annual average PM2.5 concentration data
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from aerosol concentration calculations using the relevant chemical model. Furthermore,
the aerosol concentrations utilized for measurements are provided by satellite-mounted
equipment, which improves the accuracy of the recorded data.

In terms of data processing, this research differs from other studies in that the variable
of population density does not use the “population density” indicator published in the
China Urban Statistical Yearbook for each prefecture-level city. The reason for this is that
the “population density” indicator in the China Urban Statistical Yearbook is primarily
calculated by dividing the gross population of the prefecture-level city at the end of the
year by the administrative division area (including suburbs and some rural areas). This
technique does not adequately reflect each prefecture-level city’s actual “urban population
density.” As a result, the population density data in this study are calculated by dividing
the annual average population of each prefecture-level city by the built-up area.

Other explanatory variables from CEInet Statistics Database and China City Statistics
Yearbook (1999–2013) include the actual amount of foreign investment, per capita GDP, the
proportion of secondary industry added value in the GDP, fixed-asset investment (excluding
farmers), the bus ownership per 10,000 people, development land area, land area, scientific
research employment, total urban employment, local financial expenditure, and local
financial expenditure on scientific research. The civilian vehicles occupying amount is from
China Statistical Yearbook for Regional Economic (2000–2013). The interpolation method
was used to fill in the missing data that the above methods could not fill.

In summary, due to data availability constraints, the sample of 287 prefecture-level
cities in China that underwent land withdrawal and city transformation after 1998 was
deleted. After interpolation, the sample with an interpolation value less than 0 was
removed, leaving a final sample of 2360 (236 × 10). Because the haze data were collected
from a foreign-language website, the recording method was every three years’ moving
average of the annual average PM2.5 concentration values. Therefore, the data for the other
variables were likewise taken as a three-year moving average. The time span of the overall
sample includes 10 time units over the period 2001–2012.

2.4. Descriptive Analysis
2.4.1. Analysis of the Current State of Urban Haze Pollution

The latest annual average PM2.5 concentrations from 2010 to 2012 were plotted on a
spatial distribution map (Figure 3) based on the annual average PM2.5 data provided by
Columbia University’s Socioeconomic Data and Applications Center (SEDAC), which are
the data used for the empirical analysis in the following section as well.

As shown in Figure 3, areas that tend to be black represent the increasing severity of
the haze pollution, and these areas are primarily located in the North China Plain and near
the eastern coast of China. Furthermore, the annual average haze concentrations in the
Sichuan Basin and Qinling Region area are higher, owing to the region’s topography, which
is dominated by mountains and basins, and pollutants are not easily dispersed.

2.4.2. An Analysis of the Current State of Urban Population Density

The term “population density” refers to the population density data in China City
Statistical Yearbook (2016). Because we focuse on urban population agglomeration, the
term “population density” refers to the population density (per capita/km2) of municipal
districts as reported in the China City Statistical Yearbook 2016. Figure 4 depicts China’s
population density distribution map in conjunction with the country’s administrative map.
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Figure 3. Annual Average Concentration of Haze from 2010 to 2012 in Chinese Prefecture-Level
Cities. Source: Map of Global Annual Average Surface PM2.5 Concentrations from SEDAC. https:
//sedac.ciesin.columbia.edu/ (accessed on 20 December 2021).

Figure 4. Spatial Distribution Map of Point Density in Chinese Population Density in 2015.Data
Source: China City Statistical Yearbook 2016. https://www.tongjinianjian.com/111090.html (accessed
on 20 December 2021).

Figure 4 depicts China’s population distribution, marked by a dense population in the
southeast and a sparse population in the northwest, with two unique distribution patterns
along the Heihe–Tengchong line. China’s most densely populated places are the Beijing–
Tianjin–Hebei region, the eastern coastal region, and the southeastern coastal areas. These
regions contain three main Chinese city clusters: the Beijing–Tianjin–Hebei region, the
Yangtze River Delta, and the Pearl River Delta. These locations are also primarily consistent
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with China’s higher levels of economic growth. Furthermore, Henan and Sichuan provinces
have a high population density. These locations are relatively flat and resource-rich, making
them ideal for human production and living activities.

To better compare with the annual average haze concentration in Figure 3, the popula-
tion density data of each prefecture-level city from 2010 to 2012 were also taken as annual
averages to generate the results shown in Figure 5. When comparing Figure 5 to Figure 3, it
is clear that the regions with higher population density are also the regions with higher
haze concentrations, which is especially evident in the Beijing–Tianjin–Hebei region, which
is both an exceptionally densely populated region of China and a region with higher haze
pollution levels. Furthermore, while some cities in the south are more densely populated
than others, the number of populated cities in the north is higher overall. Figure 3 depicts
the annual average haze concentration map, which shows that haze pollution is more
severe in the north than in the south.

Figure 5. Annual Average Population Density Map of Chinese Prefecture-Level Cities during 2010–
2012. Data Source: China City Statistical Yearbook (2012–2013). https://www.tongjinianjian.com/11
1090.html (accessed on 20 December 2021).

The following conclusions can be inferred from the descriptive statistics and empirical
analyses shown above: (1) In China, the distribution of haze pollution is relatively concen-
trated. The North China Plain, the eastern coastal areas, and Xinjiang Uygur Autonomous
Region are China’s most polluted hazy areas today. (2) China’s population distribution
is characterized by a high density in the southeast and a low density in the northwest.
The greater the region’s level of economic development, the greater the urban population
agglomeration. Finally, a comparison of the regional distribution maps (Figures 3 and 5)
reveals that densely populated areas are essentially identical to areas with severe haze
pollution. There is undoubtedly a spatial correlation between urban population density
and haze concentration.

2.5. Testing of Spatial Panel Models

A necessary condition for the use of spatial econometric models is that the single
variable or variables are spatially related and affect the validity of the estimated coefficients.
We estimate a spatial correlation between haze pollution and population density based on
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the following description of the regional distribution of annual average PM2.5 concentration
values and urban population density in each prefecture-level city in China. However, the
spatial relation should not be determined solely based on assumptions. Moran’s I index is
used in this article to analyze the spatial relation for the core variable in this spatial panel
data—the annual average PM2.5 concentration values. PM2.5 concentrations are moving
averages taken for every three years due to data availability limits. This section chooses
PM2.5 concentration data for three sub-samples (2001–2003, 2005–2007, and 2010–2012) and
depicts Moran’s I scatter plots, as seen in Figure 6:

Figure 6. Scatter Plots of PM2.5 in Prefecture-Level Cities in Some Years under the Geographical Prox-
imity Weight Matrix. Source: Satellite Map of Global Annual Average Surface PM2.5 Concentrations
From SEDAC. The diagonal lines mean trend line of these scatter points. (a) Moran’s I scatter plot
of PM2.5 concentration values from 2001 to 2003. (b) Moran’s I scatter plot of PM2.5 concentration
values from 2005 to 2007. (c) Moran’s I scatter plot of PM2.5 concentration values from 2010 to 2012.

Under the “chariot” contiguity principle, if two areas share a common boundary, they
are considered proximate, and the index is set to 1. In contrast, if two areas do not have a
common boundary, they are not proximate, and the index is set to 0. Based on the “chariot”
contiguity principle, a spatial weight matrix of geographical proximity is built, and the
global Moran’s I index of haze concentration is calculated. In academics, the global Moran’s
I statistic is a widely used metric for assessing global spatial auto-correlation. According
to the Moran’s I scatter plot of haze concentrations in Figure 6, the abscissa is the annual
average value of haze concentrations during the representative year period. The ordinate is
the annual average value of haze concentrations in other areas that are spatially correlated
during the representative year period. Moran’s I indexes for the annual average value of
haze concentrations in 2001, 2005, and 2010 are all bigger than 1. Furthermore, most of the
scatter plot points are clustered in the first and third quadrants. These phenomena exhibit
a spatial distribution of high-high and low-low clustering, reflecting the positive spatial
correlation of haze pollution.

If a spatial autocorrelation exists, a suitable spatial econometric model must be chosen.
This study uses the Lagrange multiplier test and a robust Lagrange multiplier test to pick a
spatial lag model and a spatial error model based on the findings of the general panel model
estimation. In addition, to determine the category of fixed effect in the spatial econometric
model, a likelihood ratio (LR) test will be performed on the entity fixed effect and the
temporal fixed effect. Table 2 displays the outcomes of the testing:
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Table 2. Moran’s I Index and Lagrange Multiplier Test Results.

Test Index Mixed Effect
Spatial Fixed

Effect
Temporal Fixed

Effect
Two-Way Fixed

Effects

LM-LAG 5465.49 *** 6412.10 *** 4380.32 *** 2008.70 ***
robust LM-LAG 811.51 *** 192.81 *** 654.34 *** 71.41 ***

LM-ERR 5662.97 *** 15,496.40 *** 4843.55 *** 1938.22 ***
robust LM-ERR 1008.98 *** 9277.11 *** 1117.57 *** 0.93

Moran I 0.25 *** 0.42 *** 0.23 *** 0.15 ***

LR Space 9337.32 ***

LR Time 1110.81 ***
Note: *** in the table represent the 1% significance levels, while LM-LAG and LM-ERR here refer to the chi-square
value and p-value derived from the Lagrangian test for the absence of spatial lag and the LM test for the absence
of spatial error, respectively.

The test results for Moran’s I index are all greater than 0 for all four effects, as shown
in Table 2, and pass the test at the 1% level of significance. These test results suggest that
the data within the spatial scope examined in this research have a substantial positive
spatial correlation. They also increase the persuasiveness of the spatial econometric model
employed for the estimate in this paper. Regardless of whether the model employs fixed
effects and what fixed effects are used, the combined likelihood ratio test results show
that the spatial and temporal fixed effects pass the test at the 1% significance level. As a
result, a two-way fixed-effects model with spatial and temporal fixed effects is preferable.
The Lagrangian multiplier lag test, the Lagrangian multiplier error test, and the robust
Lagrangian multiplier lag test all pass the significance test at the 1% level. However, the
robust Lagrangian error test does not. Furthermore, when the Lagrangian multiplier lag
test’s χ2 is compared to the Lagrangian multiplier error test’s χ2, the former is greater than
the latter. When the robust Lagrangian multiplier lag test’s χ2 is compared to the robust
Lagrangian multiplier error test’s χ2, the result is the same. As a result, the spatial lag
model is preferable to the spatial error model for analyzing this spatial panel data.

3. Results and Discussions

Next, we will assess whether there is a non-linear relationship between urban popu-
lation agglomeration and haze pollution as a whole. The spatial spillover effect of urban
population agglomeration on haze pollution will also be assessed. We will then examine
which of the two mechanisms of urban population agglomeration on haze pollution is
dominant. Namely, the scale and collective effects provide some empirical reference for
future policy formulation on urban population agglomeration and haze pollution control.

3.1. The Influence Effect of Urban Population Density on Haze Pollution

Based on the results of the Lagrange multiplier test and the likelihood ratio test
described above, the spatial error model [1] and the spatial lag model results for two-way
fixed effects were measured. However, the spatial lag model with two-way fixed effects is
still the primary basis for future study. The results of the three spatial lag models estimated
using spatial fixed effects, temporal fixed effects, and two-way fixed effects in space and
time are shown in Table 3.

Table 3 indicates that the spatial spillover effects of haze pollution are all significantly
positive and that urban population agglomeration has a considerable positive effect on haze
pollution. δ2 epresents the spillover effect of haze pollution, that is, the impact of local haze
pollution on other spatially related areas. The two-way fixed effects spatial lag model, in
particular, indicates that this spatial spillover effect leads to 0.9826. At the 1% significance
level, it also passes the estimated coefficient test. This implies that haze pollution in the
region will have a spillover effect on other spatially related areas and that the more severe
the haze pollution in the region, the more severe the haze pollution in its neighboring areas.
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Table 3. Spatial Lag Model Regression Results Under Three Fixed Effects. The first column is the
variable name, and the last three rows represent the estimation results of the three spatial lag models
under the variable space fixed effect, time fixed effect, and space and time double fixed effect.

Variable Spatial Fixed Effect Temporal Fixed Effect Two-way Fixed Effect

Lnidenpop 1.3117 ***
(2.6217)

−0.7101 ***
(−2.8983)

1.3180 ***
(2.6064)

Lnidenpop2 −0.1918 ***
(−2.7357)

0.1584 ***
(3.7865)

−0.1928 ***
(−2.7215)

Lnidenpop3 0.0093 ***
(2.8657)

−0.0088 ***
(−3.7784)

0.0093 ***
(2.8529)

Lnfdi 0.0002
(0.1203)

0.0141 **
(2.2996)

0.0000
(0.0009)

Lnrpgdp −0.0013
(−0.1630)

−0.2492 ***
(−14.9650)

0.0018
(0.2100)

Lnindgdp 0.0741 ***
(5.6274)

0.2853 ***
(8.8712)

0.0696 ***
(5.1666)

Lnfasset 0.0084 **
(2.0860)

0.0915 ***
(10.3035)

0.0116 **
(2.2569)

Lnsci −0.0027
(−0.6482)

−0.0338 ***
(−3.1389)

−0.0059
(−1.2067)

Lnexp_sci −0.0060 ***
(−2.6021)

0.0285 ***
(2.7951)

−0.0076 ***
(−2.6213)

δ2 0.9650 ***
(137.7361)

0.9870 ***
(575.3820)

0.9826 ***
(258.5835)

R2 0.9907 0.6698 0.9907
σ2 0.0029 0.0914 0.0028

Note: *** and ** in the table represent 1% and 5% significance levels, respectively.

As shown in Table 3, the results of the spatial lag model based on the two-way effect
of spatial fixed and temporal fixed effects show that the population density’s absolute
term, quadratic term, and cubic term all pass the estimated coefficient test at the 1%
significance level. The absolute term, quadratic term, and cubic term coefficients are
positive, negative, and positive, respectively. This concludes a significant non-linear
relationship with an “N-shaped” curve between urban population agglomeration and
haze pollution. According to current estimates, the inflection point values (persons/km2)
are between 490 and 2053, and the impact of urban population agglomeration on haze
pollution may be separated into three stages: First stage: The population density is relatively
low to the left of the first inflection point value, and it essentially belongs to small and
medium-sized cities in China. These cities have not invested sufficiently in constructing
various public services and supporting facilities. The majority of small and medium-
sized cities are experiencing accelerated urban economic development, with increased
investment attraction and new factories. As a result, contaminants are difficult to treat
efficiently, pollution sources are expected to persist unabated, and urbanization will likely
worsen haze pollution. Second stage: Urban population agglomeration and haze pollution
have an inverse connection between the two inflection points. This could be because
the urban population has been reduced. Public infrastructure has been improved, so
that the amount of pollution controlled and treated exceeds the amount of pollution
emitted during urban development, resulting in a virtuous cycle between population
agglomeration and the urban environment. Third stage: To the right of the second inflection
point, the urban population agglomeration and haze pollution once again have a positive
relation, but it differs from the first stage in that the city’s public facilities and services have
been improved, but the city’s continued growth in population density has caused several
problems. For example, in first-tier cities such as Beijing, Shanghai, and Shenzhen, the
permanent population is significant, and the migrant population is massive, with core urban
districts growing overcrowded and a high number of white collars commuting every day
between the city center and the suburbs. The enormous permanent population has created
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a significant demand for housing and appliances in megacities, while longer commuting
times have exacerbated traffic congestion and motor vehicle emissions. The total number
of pollutants emitted is so large that the city’s self-regulatory function is “overloaded,”
finally exceeding the carrying capacity of the urban environment and increasing the haze
pollution problem.

In conclusion, there is an “N-shaped” association between urban agglomeration and
haze pollution, and Hypothesis 1 is tested. So, are there two action mechanisms in this non-
linear relationship between urbanization and haze pollution, and what are the magnitudes
of the specific effects?

3.2. Tests of Two Effects of Urban Population Agglomeration on Haze Pollution

According to the above-mentioned theoretical mechanism analysis, the scale and
collective effects are essential in the influence of urban population agglomeration on haze
pollution. The empirical results of other socioeconomic parameters other than population
density in Table 3 can validate this tentatively.

First, the city scale effect has a significant positive impact on haze pollution.
(1) Both the secondary industry added value as a proportion of GDP and the amount
of fixed-asset investment, which reflect the industrial structure of the city, have a signifi-
cant positive effect on haze pollution, indicating that the city scale effect concentrates and
increases a large number of industrial activities, contributing to the aggravation of the haze
pollution problem. The most significant pollutants that contribute to haze pollution are
toxic pollutants produced during industrial production. This analysis also reveals that
some regions of China’s historic “three highs and one low” extensive growth model have
contributed to haze pollution. (2) The majority of urban fixed-asset investment (excluding
farmers) is spent on infrastructure and building investment, which reflects the degree
of construction investment in the city to some extent. However, dust from construction
sites is undeniably one of the major pollutants contributing to haze pollution. Too many
construction projects, widespread renovations, and blind expansions can have a scale effect,
aggravating haze pollution and potentially exacerbating the situation.

Second, the urban collective effect will exacerbate haze pollution. The urban ag-
glomeration is usually accompanied by a cluster of additional talents, technology, and
other elements that will help reduce haze pollution through knowledge spillover and
technological innovation. As demonstrated in Table 3, the proportion of scientific research
employment hurts haze pollution. However, it does not pass the significance level test. The
amount of local fiscal investment in science and technology has a considerable detrimental
impact on haze pollution. This finding suggests that, in combatting haze, the significance of
the urban intensification effect should be fully recognized and that adequate government
involvement and policy direction are also required. The proportion of science and technol-
ogy expenditure in local financial expenditure has a considerable negative effect on haze
pollution. This finding suggests that, in the process of combatting haze, the significance of
the urban collective effect should be fully recognized, along with adequate government
involvement and policy guidance. Increasing the percentage of science and technology
expenditure in local financial expenditure will give more incentives for researchers to speed
the transformation of research findings and develop strategies to eliminate haze. However,
both of the above indicators are fairly tiny, which may be because technology’s contribution
is mainly reflected in two areas: enhancing production efficiency and green emission reduc-
tion technology. The former focuses primarily on reducing industrial emissions through
technological means; however, the lower the energy consumption, the lower the costs;
thus, demand for industrial products increases rather than decreases, and total pollution
emissions do not necessarily decrease. The latter focuses primarily on reducing industrial
emissions and the treatment of pollutants emitted from industrial production, which plays
a more direct role in pollution reduction. At the same time, this outcome is consistent with
the reality that, at this level, technological factors play a minimal role in eliminating haze.
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The preceding is preliminary proof of the opposite effect of scale and collective effects
on haze pollution during the urban population agglomeration process. A more in-depth
examination will follow. Which effect dominates in urban population agglomeration due
to haze pollution? The final effect of urban agglomeration on haze pollution is connected
to the outcome. It is impossible to describe all of the components involved in the scale and
collective effects of urban agglomeration due to data availability constraints. As a result, this
article seeks to analyze one of the main viewpoints—urban traffic—while also comparing
the degrees of the scale and collective effects caused by urban population agglomeration.
Based on actual monitoring data and component analysis, the literature [20,21] discovered
that motor exhaust emissions, dust from construction sites, burning of crops such as
straw, coal firing, and other secondary products are the primary sources of pollutants (or
secondary aerosols) at this stage. This shows that the urban transportation sector was
representative and significant for the study. The number of civilian vehicles owned by each
prefecture-level city is chosen as a proxy variable for the scale effect in terms of variables’
setting. The bus ownership per 10,000 people in each prefecture-level city is chosen as a
proxy variable for the collective effect. Both are mediators in the Sobel test for the effect of
urban population agglomeration on haze pollution. This study assesses if the scale effect or
the collective impact is substantial and whether the effect dominates at this stage. Table 4
displays the outcomes of the testing:

Table 4. Mesomeric Effect of Urban Population Agglomeration on Haze. The first line is the name
of the measured index, and the last two lines represent the results of the Sobel test when Bus
Ownership per 10,000 people or Occupying Amount of Civil Vehicles are used as proxy or mediator
variables, respectively.

Index
Bus Ownership per 10,000

People
Occupying Amount of Civil

Vehicles

Sobel −0.0063 ***
(0.0018)

0.0123 ***
(0.0029)

Goodman-1(Aroian) −0.0063 ***
(0.0018)

0.0123 ***
(0.0029)

Goodman-2 −0.0063 ***
(0.0018)

0.0123 ***
(0.0029)

a coefficient 0.0926 ***
(0.0139)

0.1859 ***
(0.0167)

b coefficient −0.0677 ***
(0.0170)

0.0664 ***
(0.0142)

Indirect effect −0.0063 ***
(0.0018)

0.0123 ***
(0.0029)

Direct effect 0.2900 ***
(0.0115)

0.2772 ***
(0.0118)

Total effect 0.2837 ***
(0.0115)

0.2896 ***
(0.0115)

Mediation/total effct −0.0221 0.0426
Indirect effect/direct effect −0.0216 0.0445

Total effect/direct effect 0.9784 1.0445
Note: *** in the table denote 1% significance levels. Standard deviations are shown in parentheses.

In general, the mediator’s influence is composed of two parts: the effect of the explana-
tory variable on the mediator (Path a) and the effect of the mediator on the explanatory
variable (Path b). In addition, Path c1 refers to the overall effect of the primary explanatory
variable on the explanatory variable without taking the mediator into account. When
the mediator is taken into account, Path c2 refers to the effect of the primary explanatory
variable on the explanatory variable. According to Table 5, reviewing the specific paths
in the mesomeric model reveals that the effect of Path c2 is greater than Path c1 when
the bus ownership per 10,000 people is used as the mediator, indicating that encouraging
the public to use public transportation and improving public infrastructure services are
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integral parts of the fight against haze pollution. However, when the occupying account of
civilian vehicles is utilized as a mediator, the effect of Path c2 is substantially smaller. The
effect of the primary explanatory variable on the explanatory variable is much smaller than
the total effect once the mediator is taken into account. The increased number of civilian
vehicles will surely raise the emission of toxic gas in vehicle exhaust, “reinforcing” the
beneficial effect of urban population agglomeration on haze pollution. As a result, Hypoth-
esis 2’s prediction that two mesomeric mechanisms negatively impact haze pollution is
substantially validated.

Table 5. Direct, Indirect, and Total Effects of Different Factors on Haze Pollution.

Variable

Effect
Direct Effect Indirect Effect Total Effect

Lndenpop 1.5923 *** 62.4951 ** 64.0874 **
Lndenpop2 −0.2330 *** −9.1437 ** −9.3767 **
Lndenpop3 0.0113 *** 0.4432 *** 0.4545 ***

Lnfdi 0.0000 −0.0007 −0.0007
Lnrpgdp 0.0022 0.0880 0.0903
Lnindgdp 0.0832 *** 3.2550 *** 3.3382 ***
Lnfasset 0.0141 ** 0.5511 ** 0.5652 **

Lnsci −0.0070 −0.2727 −0.2797
Lnexp_sci −0.0091 *** −0.3554 ** −0.3644 **

Note: *** and ** in the table denote 1% and 5% significance levels, respectively.

So, which of the two mesomeric effects of urban population agglomeration on haze
pollution reigns supreme at this point? As shown in Table 5, the bus ownership per
10,000 people and the occupying amount of civilian vehicles in the city pass the mesomeric
effect test at the 1% significance level. It also demonstrates that two action mechanisms
significantly exist in the effect of urban agglomeration on haze pollution. When the bus
ownership per 10,000 persons in the city is used as the mediator, the indirect effect is
−0.0063, and the proportion of this mesomeric effect in the total effect is −0.0221. When
the occupying amount of civilian vehicles is utilized as the mediator, the indirect effect is
0.0123. The proportion of this mesomeric effect in the total effect is 0.0426. A comparison
demonstrates that the mesomeric effect in the first situation contributes much less to the
total effect than it does in the second situation. The “collective effect,” indicated by the bus
ownership per 10,000 persons in the city, is far less than the “scale effect,” expressed by
the occupying amount of civilian vehicles. This demonstrates that, at this time, the scale
effect outweighs the effect of population agglomeration on haze pollution. The findings of
this empirical study are also typically congruent with reality. With a significant number of
people congregating in China’s first- and second-tier cities, the demand for transportation,
housing, and life has skyrocketed. However, many creative technology achievements have
not been rapidly transformed and adapted to urban life, and people’s consuming habits
and attitudes have not significantly altered. Although first-tier cities such as Beijing and
Shanghai have long used traffic restrictions and a lottery for license plates to govern urban
traffic, the number of individuals buying vehicles and playing the lottery is increasing;
despite repeated national attempts to regulate and control housing prices, real estate
developers around the country are developing new construction in significant numbers.
On the contrary, due to technical progress not being fully mature, relative discomfort, and
consumer attitudes, new energy cars and electric vehicles have not been widely marketed
and used. As a result, to tackle the problem of haze pollution, we might try to consider and
design policies to suppress the scale effect caused by urban population agglomeration and
improve the collective effect.

3.3. Subdivision of the Effect of Urban Population Agglomeration on Haze Pollution

The degree of various socioeconomic factors’ effects on haze pollution is direct and
indirect. A difference will be drawn here between direct and indirect effects. Direct effects
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refer to the direct action of changes in regional socioeconomic variables, while indirect
effects are the spatial spillover effects of changes in regional socioeconomic variables. The
estimated direct effects, indirect effects, and total effects of the explanatory variables on the
core variables are shown in Table 5. The results suggest that population agglomeration has a
significant positive effect on haze pollution, both directly and indirectly, which is consistent
with our prior findings. Other factors’ effects on haze pollution’s direct and indirect effects
remain essentially consistent. Population density, the proportion of secondary industry
added value in GDP, fixed-asset investment (excluding farmers), and the proportion of
scientific research expenditure in local governmental expenditure pass the coefficient tests
with varying degrees of significance. It is also worth mentioning that the indirect effect of
all socioeconomic factors on haze pollution is substantially more significant than the direct
effect, demonstrating that haze pollution is vulnerable to the interaction of socioeconomic
factors across regions.

4. Conclusions

4.1. Conclusions

Based on the preceding analysis, the paper’s conclusions are: (1) Positive spatial
correlation is a characteristic of haze pollution. Haze pollution in the region will be
influenced by natural and artificial variables such as atmospheric movements and industrial
transfers, affecting locations geographically proximate to the region. Similarly, air pollution
in other places will impact urban air quality in the region. (2) There is a significant
“N-shaped” non-linear relationship between urban population agglomeration and haze
pollution. This suggests that, allowing for other socioeconomic factors, as urban population
density increases, haze pollution tends to increase, then drop, then increase again. The
reason for this is that at different levels of urban population agglomeration, the intensity
and efficiency (the collective effect) of investment in public infrastructure and services
and demand (the scale effect) for housing, home appliances, and motor vehicles fluctuate.
(3) In China, the scale effect of urban population agglomeration on haze pollution is
currently more significant than the collective effect. Most Chinese cities are still in the
“accelerated development stage,” with the rate of population urbanization significantly
outpacing the rate of social service urbanization. Because urban infrastructure such as
public transportation, health care, and education are still in the early stages of investment
and construction, cities cannot exploit the benefits of efficient resource allocation fully,
nor can they “regulate” and “alleviate” urban environmental issues. (4) The scale and
collective effects negatively impact haze pollution, as evidenced by disparities in the impact
of associated socioeconomic factors. The proportion of secondary industry added value
in GDP and the urban fixed-asset investment have a significant positive effect on haze
pollution in the region and a significant positive spatial spillover effect on spatially related
areas. Meanwhile, local government investment in scientific research has a considerable
impact on haze pollution prevention and control and a negative spatial spillover effect
on haze pollution. (5) The indirect effect (or spatial spillover effect) of urban population
agglomeration on haze pollution is much more significant than the direct effect. The
same can be said about the effects of other socioeconomic factors on haze pollution. This
demonstrates that other socioeconomic factors in spatially related areas are more likely to
influence local haze pollution than local socioeconomic factors.

4.2. Policy Implications

(1) Effective haze pollution prevention and management necessitates completely
using the collective effect induced by urban population agglomeration and successfully
controlling the scale effect caused by it. Specifically:

(2) City layouts should be scientifically designed, and the size of the urban population
should be reasonably regulated. The aims of city regulation should include transferring
some of the urban functions of super-large and large cities, improving the social and
economic development of small and medium-sized cities, attracting people to move to
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them, and so on. Simultaneously, a city should increase its investment in the development
in urban pollution control and emission reduction systems as well as improvements to
public infrastructure. Governments at all levels should tighten their control over the
approval criteria for urban fixed-asset investment projects while streamlining the approval
process and severely controlling duplication of urban construction projects. Governments
should also manage to increase active public engagement, stimulate the use of public
transportation, and improve resource use efficiency. They should create a sound urban
management system to assist city inhabitants in developing green travel habits by providing
subsidies, fines, and traffic restrictions.

(3) Regional cooperation should be strengthened to coordinate policies on haze pre-
vention and control. Joint prevention and control is a necessary way to combat haze.
Each region could not avoid haze pollution itself but chose to strengthen communication
and cooperation in order to complete a systematic regional coordination mechanism for
atmospheric pollution prevention and control sooner. The keys to controlling haze pol-
lution include modifying urban industrial structures, restricting high energy-consuming
enterprises, and improving emission reduction and pollution control technologies.

(4) It is important to increase production efficiency, encourage green development and
increase source and process management. We will raise awareness of “green production”
and “green consumption” on both the supply and demand through policy advice and
political assistance. We will strengthen the power of innovation and research in energy con-
servation and emission reduction and the ability to transform scientific and technological
achievements, raise environmental awareness among manufacturing enterprises and the
general public, and bring the market’s role in regulating urban production and lifestyle
into play.
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Abstract: It is of great practical significance to analyze the hot issues, research frontiers, and trends
concerning the relationship between air pollution and public health and to adopt reasonable strategies
to control air pollution and prevent health hazards for follow-up research in this field. Unlike tradi-
tional literature reviews, this paper adopts a visual, flexible, and scientifically systematic approach to
the analysis, which makes these analysis results more intuitive and comprehensive. Based on the
core collection of the Web of Science and CNKI databases, this paper uses CiteSpace software to
draw and comment on the maps of Chinese and English keywords, publishing time, author, country,
and research institutions in this field. The results show the following: (1) The number of studies
on the relationship between air pollution and health has increased year by year; researchers have
formed sub cooperation networks, and the trend of cooperation and exchange has become more
and more obvious in recent years; the impact of air pollution on health is a hot topic in the world.
(2) Research hot topics mainly focus on the selection of air pollutants, health economic consequences
of air pollution and the global burden of disease it causes, health indicators, research samples, which
are gradually being refined, the synergistic governance of air pollution, and climate change. (3) The
analysis of research frontiers and trends reveals that, first, the study of air pollutants in the English
literature has undergone a refinement from nitrogen dioxide to fine particulate matter, and the sources
of air pollutants in the Chinese literature have undergone changes in the petrochemical industry,
indoor formaldehyde pollution, and haze. Second, atmospheric pollution has a significant negative
impact on health, increasing the incidence of respiratory and cardiovascular diseases, and even
causing death. Third, sustained exposure to pollution then causes greater damage to health and will
be a key direction for future research. Fourth, the literature not only studies the correlation but also
emphasizes the causal inference between air pollution and health and measures the economic costs
associated with health. Finally, air pollution and climate change need to be governed synergistically.
The article points out that the three areas of sustained pollution exposure, indirect consequences of
negative health effects of air pollution, and air pollution and climate change may be the future focus
of the field.

Keywords: air pollutants; sustained exposure to pollution; respiratory and cardiovascular diseases;
CiteSpace; co-occurrence keywords; burst words

1. Introduction

Air pollution is a growing hazard to human health. It causes respiratory and other
diseases, and is an important cause of morbidity and mortality. The London smog incident
in December 1952, an air pollution disaster, caused more than 12,000 people to die of
respiratory-related diseases [1]. The environmental disaster and a subsequent series of air
pollution events have gradually attracted the attention of academia, world leaders, and the
public on the relationship between air pollution and health.
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Since the 1980s, the rapid urbanization and industrialization of developed countries
have led to an increase in air pollutant emissions, which has intensified the urgency of
studying and solving this problem. Based on a large random sample of data from developed
countries, studies found that people living in cities with a high degree of urbanization and
industrialization had significantly higher rates of respiratory cancer, atherosclerosis, and
ischemic heart disease than in other areas, and that these risks increased over time [2–5].
In addition, air pollution also significantly increases infant mortality [6,7]. The above
conclusions are drawn from the research based on the samples of developed countries such
as the United States and Europe.

Developing countries, especially those that rely heavily on manufacturing and fossil
energy for their development, are facing serious pollution challenges as their level of
industrialization and urbanization increases. Some scholars have conducted a series of
studies based on data from developing countries, considering that the health effects of
air pollution in developing countries may differ in many ways from those in developed
countries, such as differences in regulatory environment, public health services, education
level, and initial level of pollution and health [8,9]. The OECD estimates that nearly
1.5 million people die each year from exposure to particulate matter, more than from
malaria or water pollution. As pollution levels rise, the organization claims that this figure
may exceed 3.5 million people per year by 2050, with most of deaths occurring in rapidly
industrialized countries such as India and China.

China is typical in terms of air pollution research. There are three reasons for this.
First, in recent years, China has experienced a significant decline in environmental quality
with its high economic growth, which provides a direct case study for the field. At the same
time, the Chinese government has taken various measures to increase its efforts to combat
air pollution, and pollution concentrations have declined significantly, which provides
scholars with good conditions for quasi-experimental research. In addition, the accuracy,
availability and accessibility of pollution data in China have been qualitatively improved,
which provides scholars with a good research basis. Considering that pollution levels and
environmental policies in China vary greatly in space and time, as well as that the quality
of pollution data has increased significantly, scholars have continued to pay attention to
this issue, producing a large number of relevant representative studies. In view of this,
this paper summarizes relevant research on CNKI in order to find the different impacts of
air pollution on health in different periods and the research progress of the relationship
between air pollution and health. At the same time, in view of the comprehensiveness and
universality of the global research on the relationship between air pollution and health,
this paper summarizes and compares the research results of air pollution and health in the
web of science database and makes a more comprehensive analysis and supplement to the
research on the relationship between air pollution and health. However, faced with a large
number of studies, it is difficult to systematically and scientifically sort out and summarize
the research results by simply reading and summarizing the literature. Based on this,
this paper uses CiteSpace software to conduct atlas quantitative research on the literature
related to the relationship between the two so as to master the research hot topics, frontiers
and overall trends in this field. Unlike traditional literature reviews, the contribution of
this paper is to identify the main areas of research activity on the relationship between air
pollution and health, and the stages of evolution of the research topics involved, in a visual,
flexible and scientifically systematic way, making the results of the analysis more intuitive
and comprehensive.

The structure of the rest of this paper is arranged as follows: the second part shows
the data and methods, the third part discusses the general overview of air pollution and
health research, the fourth part includes the analysis of research progress in the field of air
pollution and health, the fifth part is the conclusions draw from our research, and the sixth
part represents a discussion of our findings.
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2. Data, Methods and Descriptions of Indicators

2.1. Data Sources

This paper takes the Chinese core journals in CNKI and the core collection of Science
Citation retrieval Web of Science as the data source to conduct general measurement and
statistics on the research on the relationship between air pollution and public health; we
visualize and analyze the dataset with CiteSpace. Since there are few relevant documents
in each year before 1991, which has little statistical significance, the retrieval time area
of Chinese and English studies are uniformly set from 1991 to 2021. In the CNKI core
journal database, the search strategy is set as the theme “atmosphere pollution” or “air
pollution” and “health”. The search condition of the Web of Science core collection is
TS = (air pollution and health). A total of 1111 Chinese documents and 29,422 English
documents meet the search strategy.

2.2. Research Methods and Descriptions of Indicators

This paper uses CiteSpace visualization software for bibliometric analysis and litera-
ture knowledge mapping. The CiteSpace software was developed by Dr. Chaomei Chen,
which combines social network analysis, association rule analysis and other methods to
analyze the development dynamics of research fields through knowledge mapping, and
explore the evolution trends, research hot topics, and research frontiers of research fields.

Based on the bibliometric method, 1111 Chinese studies and 29,422 English studies
were retrieved as the research database of the relationship between air pollution and
health, and the literature database was imported into CiteSpace software for the analysis of
publication time, authors, issuing institutions, issuing countries, research hot topics, and
research frontiers. Among them, the selection of evaluation indexes about research hot
topics and research frontiers are explained as follows.

First, there is the issue of research hot topics. Keywords are a high condensation of
the research content of the literature, and high-frequency keyword co-occurrence analysis,
keyword clustering analysis, keyword centrality, and research content of highly cited litera-
ture can be used as the analysis indicators of research hot topics. Keyword co-occurrence
analysis is a bibliometric method to identify research hot topics in the field by revealing or
expressing how frequently keywords at the core of the literature appear in that research
field. Based on the co-occurrence keyword spectrum, it can be found that the keyword
co-occurrence network clusters into irregular regions, each of which corresponds to a
label. The order is from zero to large, and the smaller the number, the more keywords
are contained in the clusters; each cluster is composed of multiple closely related words.
Centrality indicates the amount of information flow between keywords and the degree of
control over the literature network, which can reflect the importance and connectivity of
the relative position of the keyword nodes in a research field and is used to test whether
the high-frequency keywords are in the core position and reflect the position of the nodes
in the overall network. In addition, this paper also selects the highly cited literature in this
field in both the English and Chinese literature as an auxiliary analysis, and the highly
cited literature can also reflect the research hot topics in this field.

Second, there is the issue of research frontiers. The identification and tracking of
research frontiers can provide the evolutionary dynamics of the research field, identify
the research progress in each stage of the field and predict the development trend, mainly
through the analysis results of the burst keywords for judgment. Among them, burst
keywords are keywords with a sudden increase in frequency in a certain time period,
emphasizing sudden change, which can reflect the research hot topics and trends in a
specific time period. By identifying and tracking research frontiers, we can detect the
sudden growth of research interest in a certain subject area and can predict the development
trend of the field and identify the direction of further development.
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3. General Situation of Air Pollution and Health Research

3.1. Chronological Distribution

The publication of the research on the relationship between air pollution and health
published in Chinese core journals is shown in Figure 1. The overall number of published
papers shows an upward trend. The number of papers published before 2002 was less
than 20, and the number began to increase significantly after 2002. The number of papers
published in 2018 reached 99. The impact of air pollution on health has attracted extensive
attention in the academic community.

Figure 1. The number of Chinese studies with time.

According to the statistical analysis results of 29,422 English documents received in
the core collection of Web of Science, the number of documents on the relationship between
air pollution and public health is on the rise, especially after 1999, from 212 in 1999 to 4061
in 2021, as shown in Figure 2.

Figure 2. The number of English studies with time.

3.2. Analysis of Author Collaboration Network

Figures 3 and 4 show the author collaboration network of the Chinese and English
literature. The number of nodes, the number of links and the network density of the
network can be seen by the parameters in the upper left corner. The number of nodes
is the number of authors in the graph, and the number of links is the number of author
collaborations; as long as the authors have appeared in the same document, there will be a
link between them. The network density measures whether the authors collaborate closely
with each other. In addition, the size of the circles of the nodes in the graph represents the
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number of articles published by the authors, and the more articles published, the larger the
circles. The color of the line corresponds to the color bar at the top of the graph. If the color
of the line corresponds to the brown color on the left side of the color bar, it means that the
authors collaborated a long time ago, and if the color of the line corresponds to the green
color on the right side, it means that the authors collaborated recently.

Figure 3. Chinese literature author cooperative network.

Figure 4. English literature author cooperative network.

The author network mapping shows some of the major authors generated based on
the Chinese literature, where the number of nodes is 805, the number of connections is 1366,
and the density is 0.0042. This small density value indicates that the network of the whole
mapping is more fragmented. As can be seen from Figure 3, the scholars with a larger
number of nodes are Haidong Kan, Dongqun Xu, Bingheng Chen, Xiaochuan Pan, Xinbiao
Guo, Tiantian Li, Renjie Chen, Shuzhu Wu and Xin Zhang, and larger nodes indicate more
publications. In addition, the mapping shows several author sub-networks, implying that
scholars communicate and cooperate with each other, and the sub-collaboration networks
centered on teachers such as Xiaochuan Pan, Dongqun Xu, and Yinlong Jin are more
obvious. The color of the connecting line corresponds to the color bar at the top of the
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figure. If the color of the connecting line corresponds to the brown color on the left side of
the color bar, it means that the authors collaborated many years ago, and the green color
on the right side means that the authors collaborated in recent years. It can be seen that the
color of the collaboration network line of Xiaochuan Pan and Dongqun Xu is yellow and
green, which indicates that the teachers have maintained their research in this field and
contacted and cooperated with many other scholars for a long time, while several teachers,
such as Haidong Kan, Bingheng Chen and Renjie Chen, who have also published more
articles, have formed a mutual collaboration network, but have less communication with
other scholars in comparison. The color of Shuzhu Wu’s collaborative network line shows
that the time of publication and collaboration has been very early.

The number of nodes in the network map of English literature authors is 1451, the
number of connections is 2502, and the density is 0.0024. This small density value indicates
that the network of the whole mapping is more fragmented. As can be seen from Figure 4,
the scholars with larger nodes are Joel Schwartz, Haidong Kan, Yuming Guo, Yang Liu,
Petros Koutrakis, Aaron van Donkelaar and Michael Brauer. From the point of view of node
color, these scholars have been researching for a long time and continue to plow deeply in
this field. It is worth mentioning that Prof. Haidong Kan’s English posting volume is very
high, but his cooperation network is not large compared with other scholars with a large
amount of writing, combined with the previous Chinese literature analysis. Prof. Haidong
Kan is a world leader in the number of Chinese and English publications in this field. In
addition, the cooperation networks are mostly green and yellow, indicating that with the
development of time, scholars pay more and more attention to mutual communication
and cooperation; the cooperation has increased in recent years; and that there are many
cooperative papers among various scholars.

3.3. Analysis of Research Institutions

The research institutions that published Chinese research in this field of the relation-
ship between air pollution and health are shown in Figure 5. Three institutions—Peking
University, CDC, and Fudan University—lead other institutions in China in terms of the
number of Chinese publications, with Peking University having the highest number of
publications, and all of the above institutions have more than 60 publications. Figure 6
shows the number of publications in English by research institution, where the top five
institutions in terms of the number of publications are the University of California System,
Harvard University, Chinese Academy of Sciences, Harvard T H Chan School of Public
Health, and Peking University. As we can see, Peking University is still on the list, with a
large number of publications in both English and Chinese, and has accomplished much in
this field.

Figure 5. Chinese publication institutions of air pollution and health research.
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Figure 6. English publication institutions of air pollution and health research.

3.4. Country Analysis

According to the map of national co-occurrence knowledge drawn by the Web of
Science database (Figure 7), the USA ranked first in node size and number of connections,
indicating that the United States not only published the most papers in this field but also
had the most extensive foreign exchanges and cooperation. The United States, China,
the United Kingdom, Canada, Italy, Germany, India, and Spain are the countries with
the highest number of publications, indicating that these countries have strong scientific
research capacity in the field of the relationship between air pollution and health. On
the one hand, it can be seen from the analysis results of the above research institutions
that many universities in these countries have strong scientific research and academic
strength. On the other hand, most of these countries are mature industrialized developed
countries, which have accumulated rich experience in the impact of air pollution on health.
It can also be seen that the study of the impact of air pollution on health has become a hot
issue worldwide.

Figure 7. Co-occurrence knowledge mapping of the issuing countries.
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4. Research Progress

4.1. Analysis of Research Hot Topics

The article analyzes research hot topics through high-frequency keyword co-occurrence
analysis, keyword clustering analysis, keyword centrality, and highly cited literature, of
which the keyword co-occurrence graph, keyword clustering graph, centrality, and highly
cited literature tables are shown in Figures 8 and 9, Tables 1–3.

Among them, keyword co-occurrence analysis is a bibliometric method to determine
the research hot topics in the field by judging the frequency of keywords appearing in that
research field. Keyword clustering is based on the co-occurrence keyword spectrum for
analysis, which can be found in the keyword co-occurrence network clustered into irregular
regions, where each region corresponds to a label. The order is from small to large, and
the smaller the number, the more keywords are contained in the clusters; each cluster is
composed of multiple closely related words. In addition, centrality indicates the amount of
information flow between keywords and the degree of control over the literature network,
which can reflect the importance and connectivity of the relative position of the subject
term nodes in a research field and is used to test whether high-frequency keywords are in a
central position and reflect the position of the nodes in the overall network.

Figure 8. Chinese keyword clustering view.

Figure 9. Co-occurring knowledge map of English literature keywords.
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Table 1. Highly cited Chinese literature.

Subject Literature Main Content Cited Frequency

Health effects, health
economic losses

[10] Exposure response relationships for health effects of
particulate matter 275

[11] PM10 and economic losses to health 306

[12] PM2.5 and premature death, respiratory disease 402

[13] PM10, PM2.5 and daily mortality 243

[14] A comprehensive review of the health effects of haze 338

[15] A review of the health effects of TSP, PM10, and PM2.5 200

[16] Haze pollution causes, solutions 243

Economic losses from
environmental pollution

[17] Estimation of economic losses from environmental pollution 230

[18] Estimation of economic losses from environmental pollution 207

Climate change [19] Air pollution and climate change 196

Table 2. Main research hot topics in this field in English literature.

Number Keyword Frequency Year Centrality

1 Air Pollution 92,062 1991 0.3
2 Health 4072 1991 0.07
3 Exposure 3505 1991 0.11
4 Particulate Matter 3350 1994 0.15
5 Mortality 2580 1991 0.05
6 Pollution 2252 1991 0.07
7 Association 1803 1992 0.13
8 Impact 1533 2006 0
9 PM2.5 1392 2007 0.03

10 Particle 1348 1994 0.04
11 Risk 1319 2001 0
12 Emission 1301 1992 0.15
13 Disease 1011 1991 0.08

14 Children 829 1991 0.21
15 Quality 825 2009 0
16 Particulate Air Pollution 823 1994 0.04
17 Air Quality 770 2016 0

Table 3. Highly cited English literature.

Literature Published Journals and Years Main Content Cited Frequency

[20] LANCET 2017 Global burden of disease due to ambient air pollution 2432

[21] LANCET 2012 Global burden of disease 6961

[22] LANCET 2015 Global burden of disease 1690

[23] LANCET 2018 Global burden of disease 1666

[24] LANCET 2020 Global burden of disease 1414

[25] NATURE 2015 Outdoor Air Pollution and Premature Mortality 2564

[26] NATURE 2014 Secondary Aerosol and Particulate Pollution 2581

CiteSpace software provides two metrics, Modularity Q (Q value) and Mean Silhouette
(S value), as a basis for judging the effectiveness of mapping based on network structure
and the clarity of clustering. In general, the Q value is generally in the interval [0,1), the
structure of the delineated associations is significant for Q value > 0.3, the clustering is
reasonable for S value > 0.5, and the clustering is efficient and convincing for S value > 0.7.
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4.1.1. Research Hot Topics in Chinese Literature
Analysis of Chinese Literature Keyword

The clustering view of Chinese literature keywords is shown in Figure 8. The param-
eters in the upper left corner show that the Modularity Q value is 0.6846 and the Mean
Silhouette value is 0.8782, indicating that both parameter values are within the ideal range,
indicating that the mapping effect is good and the clustering effect is significant. The
keyword co-occurrence network in the figure is clustered into many irregular regions,
where each region has its own clustering label; the smaller the clustering number, the more
keywords contained in the clusters. Figure 8 shows part of the clustering labels.

As shown in Figure 8, in addition to the subject terms of air pollution and health
studied in this paper, the hot topics of the Chinese literature related to the study of the
relationship between the two are mainly respiratory system, health risks and benefits,
particulate matter, health effects and effects, air quality, human health, children’s health,
spatial layout, hypertension, diffusion simulation, and lung cancer incidence. These high-
frequency and high-centrality keywords represent, to some extent, the hot issues of research
concerns on the relationship between air pollution and health in the Chinese literature
during 1991–2021. Based on these words, the hot topics are summarized as follows. First,
the types of air pollutants with health effects; second, the health effects of air pollution,
which are found by the clustering results that the health effects of air pollution are mainly
focused on making the public suffer from respiratory and cardiovascular diseases; third, the
study groups are more all-age samples, as many articles focus on their effects on children’s
health; fourth, what the spatial layout of air pollution is and the simulation of pollutant
dispersion; and fifth, the causal effects of air pollution on health, and the assessment of
health risks and benefits.

Analysis of Chinese Highly Cited Literature

The Chinese highly cited literature covers three main topics: first, the health effects of
air pollution, including health risks and health economic losses; second, the economic losses
due to environmental pollution; and third, the synergistic management of air pollution and
meteorological changes.

Kan et al. (2002) [10] established an exposure–response relationship for particulate
matter–health effects in China based on Chinese air pollution and health data, establishing
the relative risk of occurrence of adverse health effects in the population for each unit
increase in atmospheric particulate matter concentration at each health effect endpoint
from morbidity to mortality. This literature has been cited many times and has been used
by many scholars to evaluate the health risks of atmospheric particulate matter pollution
and the health economic losses in China.

Chen et al. (2010) [11] roughly estimated the related health economic losses based
on the annual average PM10 concentration and health data in China in 2006, and the arti-
cle found that the health losses caused by PM10 pollution were mainly premature death,
respiratory diseases, and cardiovascular diseases, and based on the outpatient and hospi-
talization costs incurred in dealing with these health problems, the health economic losses
were calculated to be CNY 341.403 billion. Among them, the loss caused by premature
death accounts for the largest percentage. High PM2.5 exposure resulted in a significant
increase in acute population health risk in Beijing during the study period, with a significant
increase in sudden deaths, hospitalizations for respiratory diseases, hospitalizations for
cardiovascular diseases, pediatric outpatient visits, and internal medicine outpatient visits.
The article measured the economic loss of health of the population based on the population
risk evaluation [12]. Based on the data from Shanghai, the same conclusion was obtained
that PM10 and PM2.5 pollution significantly cause health risks and have potential health
hazards for the acute population [13]. Bai (2004), Wang (2005), and Wang (2014) [14–16],
on the other hand, conducted a review of the literature on the health effects of haze and
particulate matter.
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In the discussion of economic losses of environmental pollution, the losses involved
mainly include economic losses caused by air pollution, water pollution, solid waste, and
other pollution, among which economic losses caused by air pollution are further divided
into economic losses of human health, industrial production, household cleaning and
corrosion of construction materials, so economic losses of health caused by air pollution
are only a part of the environmental pollution losses [17,18].

Another highly cited paper on climate change and air pollution points out that global
climate change is mainly caused by increasing greenhouse gas emissions, while air pollution
is mainly caused by aerosol particles, and the causes of both are largely common, mainly
caused by emissions from fossil fuel combustion. Since the two problems (air pollution
and climate change), not only coexist but also have the same causes to a large extent, it
is necessary to formulate a synergistic or coupled management strategy to address both
problems from the same source [19].

4.1.2. Research Hot Topics in English Literature
Analysis of English Literature Keyword

Figure 9 shows the results of co-occurrence keyword analysis in the English literature.
In this figure, each node represents a keyword, the size of the node indicates the frequency
of the keyword, and the connection between the nodes is the co-occurrence relationship
between the keywords. Table 2 shows the keyword centrality, which indicates the amount
of information flow between keywords and the degree of control over the literature network.
The larger the centrality, the more important the node is in the network. The larger the
circle of nodes, the greater the centrality of the keyword, and the more it can represent the
research hot topic in the research field.

In Figure 9 and Table 2, excluding the article’s subject word “air pollution” and
“health”, the key words that appear more frequently in the field of air pollution-health
relationship research are mainly “exposure”, “association”, “mortality”, “particulate matter
”, “particulate air pollution”, “pollutant”, “disease”, “emission”, “children”, “asthma”,
“PM2.5”, “risk”. From Table 2, the keywords with high centrality are mainly “air pol-
lution”, “children”, “particulate matter”, “emission”, “association”, “exposure”. These
high-frequency and high-centered keywords represent, to some extent, the hot issues in
the field of air pollution and health that generally concerned the international academic
community during 1991–2021. Based on these words, this paper classifies the hot topics
into four categories: types of air pollutants that have health effects, ways of air pollutants
affecting health, health consequences caused by air pollution, and groups affected by
air pollution.

Combining the relevant literature and the analysis of the above results, firstly, from
some high-frequency keywords—“particulate matter”, “particulate air pollution”, “pollu-
tant”, and “PM2.5”—we can see that the field focuses on the exploration of the types of air
pollutants that affect health, and particulate matter is the main source of pollution affecting
health. The WHO reported that atmospheric particulate matter can have harmful effects on
public health in both developed and developing countries [27]. Second, keywords such as
“exposure” and “emission” reflect the pathways through which air pollutants affect health.
Much of the research studies the dispersion and emission of pollutants. The typical sources
of air pollution such as outdoor motor vehicle emissions, coal combustion emissions and
heavy industrial pollutant emissions, and indoor emissions of pollutant gases caused by
smoking, cooking, and formaldehyde emissions from interior decoration, all lead to higher
levels of human exposure to pollutants. One of the research components of the health
effects of air pollution is to determine the exposure–response relationship of pollutants,
where either short-term or long-term exposure to pollutants can have adverse health effects
on humans [28], which also involves the third research hot topic attributed above—the
health consequences caused by air pollution. Third, the adverse health effects of air pol-
lution are mainly reflected in the positive correlation between the concentration levels
of air pollutants and the incidence of respiratory diseases as well as other diseases and
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human mortality. Fourth, atmospheric pollution can cause damage to the health of people
at different ages, and the academic community has focused more on choosing children as a
group as a research sample [29,30].

Analysis of English Highly Cited Literature

Exposure to ambient air pollution increases morbidity and mortality and is one of the
major contributors to the global burden of disease [20], so it is necessary to cite articles that
study the topic of disease burden when conducting research on the relationship between air
pollution and health. Most of the highly cited research in the English-language literature
focuses on studies of the global burden of disease, where the contribution of different
risk factors to the burden of disease often changes significantly and where the health
effects of the burden of disease are both general and more geographically specific, so that
new studies are regularly updated with improved methods, new combinations of risks
and risk effects, and new data on the association between risk exposure levels and risk
outcomes assessments to report on the details and underlying causes of population health,
thereby helping policymakers identify successes in disease control that can be emulated
and opportunities for improvement [21–24].

As research progresses, we gain an increasingly detailed understanding of trends in
exposure and each risk, and also gain insight into the magnitude of health losses attributable
to the risk and how changes in exposure have contributed to health trends.

In terms of research on air pollution as one of the risk factors in the global burden
of disease, one study quantified the global burden of disease due to air pollution based
on the global range of pollution exposure and estimated the relative risk of death from
cardiovascular and respiratory diseases using a combined exposure–response function
for each cause of death, which found that air pollution contributed significantly to the
global burden of disease in 2015, with PM2.5 as the fifth-ranked risk factor for mortality,
and exposure resulting in 4.2 million deaths and 103.1 million disability-adjusted life years
(DALYs) in 2015, accounting for 7.6% of total global deaths and 4.2% of global DALYs, while
reducing exposure has the potential to provide significant health benefits [20]. Lelieveld
J et al. (2015) [25] studied the global contribution of outdoor air pollution sources to
premature mortality, and the article used a global atmospheric chemistry model to study
the association between premature mortality and seven air pollution emission source
categories, calculating that outdoor air pollution, mainly PM2.5, contributes to 3.3 million
premature deaths per year worldwide. In addition, one of the highly cited articles is a study
on air pollution in China, which found that secondary aerosols contribute significantly
to particulate pollution in Chinese haze weather, and that severe haze pollution events
are largely secondary aerosol driven, with contributions of 30–77% and 44–71% to PM2.5
and organic aerosols, respectively. Therefore, reducing emissions of secondary aerosol
precursors from fossil fuel combustion and biomass burning, in addition to mitigating
primary particulate emissions, may be important for controlling PM2.5 levels and reducing
the environmental, economic, and health impacts of particulate pollution in China [26].

4.2. Research Frontier and Trend Analysis

Research frontiers are theoretical trends and new topics that are emerging in a given
time period. CiteSpace software uses a burst detection algorithm to extract burst keywords
from articles in order to detect sudden growth in research interest in a subject area and to
identify and track the research frontiers and trends in the subject area. The burst keywords
strength can reflect the influential research topics over a period of time. In Figures 10
and 11, the red line segment indicates the time period of the keyword burst, which is a
visual representation of the begin and end years. In this paper, the analysis of research
frontiers is based on the analysis of burst keywords, and, combined with the analysis of
the literature where the burst words are located, we make a comprehensive judgment,
generalization, and discussion.
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Figure 10. Chinese literature keyword bursts.

Figure 11. English literature keyword bursts.

4.2.1. Research Trends in Chinese Literature

The burst keywords map of Chinese literature related to this paper is shown in
Figure 10, and a total of 16 burst keywords were obtained. For example, it can be seen that
the burst keywords during 1991–2002 are “research progress”, “instrumental variables”,
“definite group research”, “intelligent algorithm”, “petrochemical industry”. Most of the
keywords with large burst strength are atmospheric pollutants. It is worth noting that
phrases such as “climate change”, “premature death”, and “regression discontinuity” have
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burst in recent years and continue to be used today, so they can be regarded as the main
research trends in this field in China at present. The Chinese research frontier can be
broadly summarized into three stages of evolution: early research frontier, middle research
frontier, and latest research frontier.

The early research frontier (1991–2005) reflected the research themes of “instrumental
variables”, “definite group research”, “intelligent algorithms”, “petrochemical industry”,
“human health” and “evaluation research”, which were mostly focused on the selection of
research methods at this time, while it can be seen that most of the air pollutant emissions
from crude heavy industries during this period came, and the petrochemical industry
was a key concern at that time. For example, PAHs released from petrochemical areas
are carcinogenic to humans, and Xia (2014) [31] explored the health risks caused by PAHs
through the respiratory route and studied their effects on residents’ exposure.

The research themes in the mid-term research frontier (2005–2013) mainly focused
on indoor pollution and human health hazards, with the burst keywords “indoor” and
“formaldehyde”. At that time, due to the lack of supervision, inadequate laws and regu-
lations, and low quality of products, the industry failed to develop with high quality in
parallel with economic development, resulting in serious threats to human health caused
by indoor air pollution, which became a research hot topic in the field, and poor-quality
interior decoration led to formaldehyde pollution, which in turn affected the health of the
public’s eyes and respiratory system [32].

The latest research frontiers (2013–2021) are “PM2.5”, “haze”, “air pollution”, “climate
change”, “premature death” and “regression discontinuity”, which can be summarized
into three aspects. Firstly, air pollution was focused on the public view in that period, and
the research of major pollutants mostly focused on haze, PM2.5 and other particulate matter,
which is due to the fact that, at that stage, haze events were frequent in China, and PM2.5
pollution was its root cause, and such air pollution was prone to causing human respiratory,
cardiovascular, neurological and other diseases, and even lead to cancer [33]. The serious
health consequences have caused great concern in society.

Secondly, premature human deaths caused by air pollution are also another key
direction of academic concern. Air pollutant emissions lead to premature human deaths,
which in turn cause health economic losses. At this stage, the country has implemented
several environmental policies to control air pollution to avoid premature death of the
population and save health economic losses, thereby increasing health benefits. Therefore,
many scholars in this field also evaluate the causal effects of environmental policies on air
quality and health [34,35].

Thirdly, studies have found that the causes of climate change are largely the same
as those caused by air pollution; climate change is due to the increase in greenhouse gas
concentrations, which are mostly caused by the combustion emissions of fossil fuels. This
is consistent with the causes of air pollution, so the actions and strategies taken in the two
works on air pollution control and greenhouse gas emission control are also consistent [19].
In addition, some studies have estimated the effects of air pollution by exploring climate
change, such as wind and thermal inversion as IV [8,36], and wind can disperse pollutants
and have a spillover effect on health. Thermal inversion occurs when warm air settles on
the cold air and, in turn, atmospheric pollution becomes trapped and cannot be dispersed,
greatly increasing air pollution concentrations.

Fourthly, Figure 10 shows that compared with the research methods in the early re-
search frontier period, the research methods of the latest studies mostly use causal inference
methods, such as regression discontinuity. Thistlethwaite first proposed regression discon-
tinuity in 1960, which is a quasi-natural experiment, and Angrist used the method to study
the effect of class size on achievement [37]. In recent years, the method has become one of
the most widely used methods in causal inference and policy evaluation mostly applied
in the fields of education economics, labor economics, environmental health economics
and regional economics. The use of regression discontinuity for research on the effect of
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atmospheric pollution on health mostly focused on mental health, population well-being,
population migration, and health insurance needs [38–41].

4.2.2. Research Trends in English Literature

The keyword burst graph of the English literature shows 25 burst keywords (Figure 11).
Unlike the visualization results of burst keywords in the Chinese literature, the overall
results of the English literature do not seem to present obvious phase characteristics,
so this section will analyze the contents of the figure from a broader perspective and
summarize the characteristics of research frontiers in the English literature. From different
evaluation indicators, first, the keywords with high burst strength are “particulate air
pollution”, “global burden”, “respiratory health”, “asthma”, “hospital admission”, “daily
mortality”, “nitrogen dioxide”, “symptom”, “heavy metal”, and “united states”. This
represents that these words are influential research topics during their burst cycle. Second,
many of the hot words have a longer burst time, and the keywords with a longer burst
cycle include: “respiratory symptom”, “symptom”, “lung function”, “daily mortality”,
“children”, “ultrafine particle”, “pulmonary function”, “united states”, “nitrogen dioxide”,
and “asthma”. Third, keywords with burst end dates between 2010 and 2021 represent
the more frontier research themes of recent years, mainly including: “nitrogen dioxide”,
“asthma”, “particulate air pollution”, “ultrafine particle”, “fine”, “united states”, “hospital
admission”, “aerosol”, “indoor air pollution”, “time series”, “cardiovascular disease”,
“matter”, “climate change”, “long term exposure”, “ambient air pollution”, “global burden”,
“heavy metal”, and “fine particulate matter”. Fourth, the keywords that have suddenly
broken out in recent years and have been hot until now represent the latest frontier research
themes in the field, which mainly include “climate change”, “long term exposure”, “ambient
air pollution”, “global burden”, “heavy metal”, and “fine particulate matter”. According to
the above analysis, this paper will discuss the key research frontiers and the development
stages of research frontiers combined with relevant literature based on two perspectives:
the strength of keyword burst and the evolution of burst keywords over time.

Key Research Frontiers in English Literature

If the keywords have a high burst strength and a long burst period, they can represent
the core research hot topics of the field in a certain period of time, and the keywords
that meet this characteristic include “asthma”, “daily mortality”, “symptom” and “united
states”. Among them, the impact cycle of “asthma” is from 1996 to 2015, the impact
cycle of “daily mortality” is from 1994 to 2008. The impact cycle of “asthma” is from
1991 to 2007, and the impact cycle of “united states” is from 2008 to 2018. The keywords
“asthma”, “daily mortality” and “symptom” represent the health consequences caused by
air pollution, and air pollutants can cause health damage to the human respiratory system,
triggering respiratory diseases and presenting symptoms of asthma, cough, bronchitis, and
even leading to an increase in mortality among the population. It is worth noting that air
pollution in the United States has been a key concern for a long time, since the United States
is a highly developed industrial country that has experienced severe pollution during its
rapid industrial development. Based on this background, the U.S. decided to establish the
Clean Air Act, which not only helped the U.S. to improve air quality effectively, but also
thus became a model for many countries in the world to learn from in the construction
of the Clean Air Act. Many scholars have studied the health hazards of environmental
pollution and evaluated the effects of environmental policies based on the U.S. sample.

Research Development Stage in English Literature

From an overall perspective, the research frontiers embodied by the burst keywords
can be mainly categorized into three major categories, namely, types of air pollutants and
pollution modes, health effects of air pollution, and synergistic management of air pollution.
With the passage of time, there are stage characteristics for each topic category, as shown in
Table 4.
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Table 4. Evolution of research frontiers in English literature.

Topic Stage Burst Keyword Begin-End Burst Period Strength

Air pollution

Early stage

Nitrogen dioxide 1991–2010 20 69.5
Particulate air pollution 1999–2014 16 117.86
Ultrafine particle 2003–2015 13 86.15
Fine 2004–2010 7 40.65

Mid-term stage Indoor air pollution 2011–2013 3 50.13
Matter 2014–2015 2 33.95

Latest stage
Long term exposure 2017–2021 5 48.84
Heavy metal 2018–2021 4 65.76
Fine particulate matter 2018–2021 4 57.04

Health effect

Early stage

Symptom 1997–2007 11 67.75
Respiratory symptom 1991–2008 8 57.07
Pulmonary function 1991–2003 3 55.22
Respiratory health 1993–2007 5 85.56
Lung function 1993–2008 6 44.9
Daily mortality 1994–2008 5 77.01
Asthma 1996–2015 20 84.47

Mid-term stage Hospital admission 2009–2016 8 78.2
Cardiovascular disease 2012–2017 6 45.3

Latest stage Global burden 2018–2021 4 90.65

Collaborative
Governance

Aerosol 2010–2011 2 31.39
Climate change 2016–2021 6 38.26

(1) Types of atmospheric pollutants and pollution modes. Scholars have mostly
researched atmospheric pollutants such as NO2, atmospheric particulate matter, and heavy
metal pollution, and the research hot topics about the types of atmospheric pollutants
have gradually evolved and refined. First, the early air pollutants that have been paid
attention to include nitrogen dioxide, particulate air pollution, ultrafine particles, and fine
particles, and these air pollutants have been paid attention to for a long time. Second, after
2010, indoor air pollution and matter began to be widely studied, but the impact cycle of
these two key words is only two years. Third, the latest research frontiers of atmospheric
pollutants are long-term exposure, heavy metal, and fine particulate matter. In recent
years, haze pollution has received great attention, and fine particulate matter (PM2.5) is the
primary pollutant causing haze pollution, which has the characteristics of fine particles
and large specific surface area, and it easily adsorbs more pollutants, especially for heavy
metals with strong adsorption, resulting in secondary aerosol, which makes the heavy
metal pollutants in fine particulate matter enter the human body through the respiratory
exposure pathway and then cause health hazards [42,43]. Due to the more serious health
hazards caused by heavy metal and fine particulate matter, they have gradually become a
research hot topic in recent years. Of course, long-term exposure is a way for air pollution to
affect health, and compared to short-term pollution exposure, long-term pollution exposure
will be considered to cause greater damage to human health [44,45], and therefore is also
the focus of regulation.

(2) The impact of atmospheric pollution on human health is mainly reflected in causing
respiratory disease, cardiovascular disease, and death, so health indicators are mostly used
for respiratory disease, cardiovascular disease, and hospitalization rate and daily mortality
rate, and the health hazards caused by atmospheric pollution have created a serious global
disease burden. In addition, Figure 11 shows that the burst interval of “children” is
1994–2006, and the early studies mostly focus on the effects of air pollution on children’s
health, while the later samples are no longer limited to children.

Table 4 shows that, first, in the 1991–2008 period, scholars mostly explored the health
consequences of mortality and respiratory disease; second, in the 2009–2017 period, hospital
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admission and cardiovascular disease began to be used as indicators of human health;
third, in the 2018–2021 period, the burst keyword is global burden.

Numerous epidemiological studies have shown that air pollutants can produce long-
term [46,47] or short-term [48,49] health damage to the human respiratory system, trig-
gering respiratory diseases and presenting symptoms of asthma, cough, and bronchitis;
moreover, exposure to air pollution is significantly associated with increased mortality in
the population, and the effects on mortality from cardiovascular and respiratory diseases
are even more significant [50–52]. In addition, as mentioned in the previous analysis of
research hot topics, the health loss caused by air pollution contributes significantly to the
global burden of disease.

(3) Synergistic governance. As with the Chinese literature, the English literature also
focuses on the relationship between air pollution and climate change, and aerosols are one
of the topics of interest in this field since atmospheric aerosols are the main cause of air
pollution, greenhouse gas emissions cause climate change, and the formation of aerosols
is consistent with the increase in greenhouse gas emissions (both caused by fossil fuel
combustion emissions). Therefore, atmospheric pollution and climate change need to be
managed synergistically.

In addition, scholars usually use changes in meteorological conditions to address
the endogeneity of air quality, such as wind and thermal inversion [8,36]. Wind can
disperse pollutants and thus may produce spillover effects of air pollution, and the increase
in pollution levels can have significant negative health effects downwind in the short
term; thermal inversion occurs when warm air settles over cold air, and when it occurs,
atmospheric pollutants are trapped and cannot be dispersed, thus greatly increasing ground-
level air pollution concentrations. Therefore, thermal inversion is another commonly used
air pollution research instrumental variable for air pollution studies.

5. Conclusions

In this paper, we use Chinese core journals in the CNKI and Web of Science core
collection as data sources and use the CiteSpace software to visualize and analyze the
basic situation, research hot topics, and research frontiers of the relationship between air
pollution and health, and objectively explain the basic development trend of research
results in this field in recent years, and we believe that the research results will become
richer and more in-depth in the future.

(1) Through the overall study of the health effects of air pollution, it is found that: firstly,
the number of relevant Chinese and English studies has gradually increased with
time, indicating that this field has attracted widespread attention from the academic
community. Secondly, through the analysis of the author co-occurrence knowledge
map, it can be seen that Prof. Haidong Kan is highly accomplished in this field,
and the number of articles published in both Chinese and English is far ahead. In
addition, several sub-collaborative networks of authors have been formed throughout
the network map, and English-language publishers have increasingly focused on
collaborative exchanges in recent years. Thirdly, the research institution with the
highest number of Chinese publications is Peking University, which has published
more articles in both English and Chinese in this field, and the institution with the
highest number of English publications is University of California System. In addition,
the United States not only has the largest number of articles but is also the country
with the most extensive foreign exchange and cooperation.

(2) Keyword co-occurrence analysis, clustering analysis, and analysis of highly cited
literature were used to explore the research hot topics in this field. First, the results of
keyword co-occurrence and clustering show that the research hot topics in the Chinese
and English literature are generally similar. They mainly focus on four aspects: the
types of air pollutants that affect health, the pathways through which air pollutants
affect health, the health and economic consequences caused by air pollution, and the
groups affected by air pollution. Second, the analysis of the highly cited literature
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showed that scientists often explored the themes of quantifying the global burden of
disease due to air pollution, health risks and health economic losses from air pollution,
and synergistic management of air pollution and climate changes.

(3) The frontiers and trends of the Chinese and English literature are summarized through
the analysis of burst keywords. The Chinese literature has obvious stage research
characteristics, and this paper divides its evolution process into three stages: the early
research frontier (1991–2005) stage has more burst keywords focusing on the choice
of research methods, and other burst keywords show that the industries causing air
pollution are also mainly focused on the petrochemical industry. The medium-term
research frontier (2005–2013) focuses on the impact of indoor pollution on human
health. The research themes of the latest research frontier (2013–2021) are mainly
focused on air pollution caused by haze, the relationship between climate change and
air pollution, and premature death caused by air pollution. The research frontiers
in the English literature can be summarized into three main categories: types of
atmospheric pollutants and pollution patterns, health economic effects of atmospheric
pollution, and synergistic governance of atmospheric pollution and climate change.
Here, each category has a significant stage evolution.

6. Discussion

This article provides a broad overview of existing research results studying the rela-
tionship between air pollution and health, which provide strong evidence that air pollution
around the world has significant health effects, deepen our understanding of environmental
issues, and serve as a cautionary tale for newly industrializing countries in the prevention
of air pollution. Some of the findings have already begun to have policy implications,
and we anticipate that research in this area is likely to make an increasing contribution to
environmental policymaking in the relevant countries covered in the article.

Combining the above analysis in this paper and the related literature, we believe that
several possible important directions for future research on the relationship between air
pollution and health are still worth further deepening and expanding. First, studying
the health consequences of sustained pollution exposure is one of the most important
research topics for the future. How to collect credible evidence of the long-term effects
of air pollution, how to break through the difficulty of identifying exogenous changes in
long-term pollution exposure, and breakthroughs in research methods may have to be
continued in depth in future studies.

Second, the negative impacts of air pollution are not only an issue in terms of direct
physical health damage, but air pollution affects long-term human capital acquisition,
human cognition, and productivity by affecting physical health in turn. Given this, the
economic loss of health based on direct health consequence measures is greatly under-
estimated, and therefore the negative health impacts of air pollution should be further
explored fully in future studies.

Third, through this paper, we can clearly find that PM2.5, PM10, and NO2 air pollu-
tants still seriously affect public health, and we have to continue to make efforts for air
pollution control. For example, we can continue to research the sources and control of
air pollutants, air pollution policy formulation and policy evaluation, and air pollution
synergistic governance. Among them, the synergistic management of air pollution and
climate change is one of the latest research frontiers in this field. The common emission
sources imply that there are many links between air pollution and climate change, and the
implementation of climate policies can also reduce air pollution and thus benefit health,
so the question concerning whether there is an optimal combination of air pollution and
climate change policies is also worth further exploration by scientists.
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