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Preface

Energy plays a decisive role in realizing the Sustainable Development Goals (SDGs), such as

employment growth, industry, innovation, and infrastructure, sustainable cities and communities,

clean energy, and climate change. This book, titled “Recent Advancements in Sustainable Solar

Photovoltaic Power Technology”, presents significant works in the field of solar photovoltaic systems

and critical issues in solar power generation technology, as well as the latest achievements and

current problems in solar power generation technology and proposing corresponding solutions to

key technical challenges in the utilization of solar power, pointing out future directions for achieving

the SDGs through solar power generation technology.

This reprint of articles from the Special Issue provides a variety of comprehensive reviews on

solar power generation technologies like maximum power point tracking (MPPT) techniques, power

electronic converter topologies, and parameter estimation of PV cells. Along with reviews, this book

also outlines the latest developments in the field of MPPTs, converters, cooling systems, rooftop, as

well as grid-connected PV systems. This reprint will serve as a reference and update for academics,

researchers, and practicing engineers to inspire new research and developments that pave the way

for next-generation PV systems for residential and small commercial applications.

This reprint includes three extensive reviews and twelve research articles in the field of solar

photovoltaic power technology. We hope that you enjoy reading.

Prince Winston David and Praveen Kumar B

Editors
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Dhahran 31261, Saudi Arabia

4 King Abdullah City for Atomic and Renewable Energy (K. A. CARE), Energy Research & Innovation
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Abstract: To operate photovoltaic (PV) systems efficiently, the maximum available power should
always be extracted. However, due to rapidly varying environmental conditions such as irradiation,
temperature, and shading, determining the maximum available power is a time-varying problem.
To extract the maximum available power and track the optimal power point under these varying
environmental conditions, maximum power point tracking (MPPT) techniques are proposed. The
application of MPPT for extracting maximum power plays a crucial role in developing efficient PV
systems. These MPPT techniques face several issues and limitations, particularly during partial
shading conditions caused by non-uniform environmental conditions. Researchers have been focusing
more on mitigating the partial shading condition in PV systems for the last few years due to the
need to improve power output and efficiency. This paper provides an overview of MPPTs proposed
in the literature for uniform and non-uniform environmental conditions broadly categorized as
MPPT-based and circuit-based methods. The MPPT-based methods are classified as conventional,
soft computing, and hybrid techniques. A critical analysis of each approach regarding tracking speed,
algorithm complexity, and dynamic tracking under partial shading is discussed. The literature shows
hybrid strategies provide fast-tracking speed and are efficient with a tracking efficiency of around 99%
compared to conventional methods; however, their design and practical implementation are complex.
This comprehensive review of MPPT methods aims to provide power utilities and researchers with a
reference and guideline to select the best MPPT method for normal operation and partially shaded
PV systems based on their effectiveness and economic feasibility.

Keywords: photovoltaic; MPPT; partial shading; global peak; MPPT classification

1. Introduction

Recently, power generation from renewable sources such as solar and wind is receiving
more attention as their operation is pollution free to reduce the environmental impact of
fossil fuels [1,2]. Photovoltaic (PV) is the fastest-growing renewable system, and it directly
converts solar energy to electrical energy. The power generated from the PV source can also
be utilized for chemical energy transformation, such as hydrogen fuel cells [3–5]. The power
generated from a PV system varies according to the temperature and irradiation received

Sustainability 2023, 15, 11132. https://doi.org/10.3390/su151411132 https://www.mdpi.com/journal/sustainability1
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at any instant [6–8]. To generate the maximum available power from the PV system under
varying irradiation and temperature, maximum power point tracking (MPPT) methods are
integrated [9,10].

On the other hand, the optimal tilt and orientation of the PV panels can improve the
solar yield, as reported by a study conducted in the United Arab Emirates (UAE) [11].
However, the optimal tilt and orientation are region-dependent and vary considerably. The
Kingdom of Saudi Arabia in the Sun Belt region experiences high irradiance levels between
4.479 kWh/m2 and 7.004 kWh/m2, depending on the geographical location [12]. This
available abundance of solar power is being utilized and integrated into the grid by the
kingdom. The 300 MW Sakaka PV power plant is the first renewable-based power source
covering an area of six square kilometers in Saudi Arabia [13]. Power generation based on
PV is growing fast, and different developing countries are generating and integrating this
power into their respective grids [14,15].

In the case of uniform irradiance, one maximum power point appears in the PV
array characteristics curve that the conventional MPPT techniques can track. However,
due to shadows and clouds, PV arrays receive non-uniform irradiation, creating multiple
maximum points in the PV array curve. Many modern MPPT techniques are proposed to
handle the numerous maximum points since most conventional MPPT methods fail under
such circumstances. One of the most crucial factors in choosing a proper MPPT method
mainly lies within three specifications. The first factor is performance, which is the tracking
speed and accuracy. The second factor is the complexity of the control system, voltage and
current sensors, parameter tuning or perturbation, and partial shading detections. The
third factor is the cost of the entire MPPT system.

Several MPPT techniques for PV systems have been proposed in the last decade,
and the methods developed so far can be broadly classified into MPPT-based and circuit-
based methods. The MPPT-based method is classified as conventional, soft computing, and
hybrid techniques. Some of the techniques classified under the traditional approach include
fractional short circuit (FSC) [16,17], fractional open circuit (FOC) [18], perturb and observe
(P&O) [19–24], incremental conductance (IC) [25–32], hill climbing (HC) [33–35], curve
fitting (CF) [36], constant voltage (CV) [37,38], and ripple correlation control (RCC) [39].
FSC and FOC methods are less accurate and perform better only in low-power applications.
Although the popular MPPT techniques such as P&O, HC and IC can track the maximum
power under uniform irradiation, they fail to operate under partial shading properly and
have slow tracking speed, poor convergence, and high steady-state oscillations. Hence,
conventional methods should work with other methods to track the maximum power
under partial shading conditions [40–43].

Since PV systems have nonlinear characteristics, soft computing methods have been
proposed by researchers to handle non-linearity and are considered the prime choice
for nonlinear optimization. Numerous soft computing techniques for MPPT applica-
tion are proposed, including fuzzy logic control (FLC) [44–48], artificial neural network
(ANN) [49–52], genetic algorithm (GA) [53–56], particle swarm optimization (PSO) [57–60],
nonlinear control [61], chaotic approach (CA) [62], differential evolution (DE) [63–65], simu-
lated annealing (SA) [66], grey wolf optimization (GWO) [42,67–69], cuckoo search [70–72],
bat search algorithm, bee colony search algorithm [73,74], ant colony optimization [75–78],
firefly algorithm [79], and random search methods [80]. PSO is the most popular and
widely used optimization technique to track the maximum power in PV systems. Although
FLC and ANN effectively track the maximum power, they require large memory and data
for training and implementation. They also need detailed knowledge of the system while
implementing the algorithm.

To enhance the performance of MPPT methods under partial shading, researchers
combined conventional techniques with soft computing techniques to form hybrid strate-
gies. Some of the developed hybrid techniques include incremental conductance combined
with firefly algorithm (IC-FFA) [81], perturb and observe with artificial neural network
(P&O-ANN) [82], perturb and observe with fireworks (P&O- FWA) [83], perturb and
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observe with grey wolf (P&O-GWO) [84], perturb and observe with genetic algorithm
(P&O-GA) [85], perturb and observe with bat search algorithm (P&O-Bat) [86] and perturb
and observe with particle swarm optimization (P&O-PSO) [87,88]. Two or more intelligent
algorithms such as particle swarm optimization and simulated annealing (PSO-SA) [89],
particle swarm optimization and fish swarm [90,91], differential evolution with Jaya algo-
rithm (DE-Jaya) [92], and differential evolution with whale optimization (DE-WO) [93] can
also be combined to form hybrid methods.

This paper presents a detailed, organized, and up-to-date review of the different
maximum power point tracking (MPPT) algorithms for photovoltaic (PV) systems. The
advantages and disadvantages of each method are presented to assist power utilities and
power engineers in choosing the proper MPPT method while designing a PV generation
system under partial shading conditions. Hybrid MPPT methods based on the combination
of soft computing and conventional methods are more efficient than the other methods.
However, reducing the complexity of practical implementation is a challenge and a research
direction that should be addressed. Moreover, MPPT methods based on optimization
face challenges with respect to periodic tuning, accuracy, stability, and the number of
send parameters.

The rest of the paper is organized as follows; Section 2 describes the PV configura-
tion, Section 3 presents the details of PV under partial shading, Section 4 describes the
dynamic tracking and classification of MPPT methods under partial shading, Section 5 is
the discussion, and Section 6 concludes the paper.

2. PV Configuration

The five-parameter electric circuit model of a PV cell is shown in Figure 1 [94–96]. It
consists of a light-dependent current source, a p-n junction diode, and two resistances, one
in series and the other in parallel.

LI
DI

SHR
D

SHI
SR

PVI

PVV

Figure 1. Five-parameter equivalent electric circuit model of a PV cell.

Using simple Kirchhoff’s current law:

IPV = IL − ID − ISH (1)

where ID and ISH depict the diode and shunt branch currents, respectively, and are given by:

ID = I0{exp[
VPV + IPV RS

a
]− 1} (2)

ISH =
VPV + IPV RS

RSH
(3)

3



Sustainability 2023, 15, 11132

Putting these expressions of ID and ISH into Equation (1) gives the complete I-V
characteristics of a PV panel:

ID = IL − I0{exp[
VPV + IPV RS

a
]− 1} − VPV + IPV RS

RSH
(4)

where IPV and VPV represent the current and voltage generated from the PV panel. IL is the
light-generated current, I0 is the diode saturation current, RS and RSH are the series and
parallel resistance, respectively, and factor a is the diode-modified ideality factor, which is
given by:

a =
NsnKT

q
(5)

where Ns is the number of cells in the PV panel, n is the ideality factor (it has a value between
one and two for the real diode), K is Boltzmann’s constant, T is the cell temperature, and q
is the electronic charge.

A standard PV cell generates a relatively low voltage (around 0.6 V); hence, PV cells
are connected in series and parallel to raise the appropriate voltage level for the required
application. PV modules are built using the PV cells’ series and parallel connections; a
PV array consists of PV modules connected in series or parallel [97]. Equation (4) can be
modified to represent the I-V relationship of the series and parallel array and written as:

IPV = Npp ∗ IL − Npp ∗ I0{exp[
VPV + IPV RS ∗ N

Nss ∗ a
]− 1} − (

VPV + IPV RS ∗ N
RSH ∗ N

) (6)

N =
Nss

Npp
(7)

where NSS and NPP represent the number of panels connected in series and parallel,
respectively. Figure 2 depicts the current–voltage characteristics of PV panels for different
irradiation levels from 200 W/m2 to 1000 W/m2 and a constant temperature of 25 ◦C.

Figure 2. Current–voltage characteristics of a PV panel under different irradiation levels.
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3. Maximum Power Point Tracking (MPPT) Methods for Partial Shading

PV arrays consisting of several panels are the most basic units of any PV system.
Based on the I–V curve depicted in Figure 3, the PV operating point can vary from zero
to the open circuit voltage. The operating point varies with the load variation and does
not always stay at the maximum power point. A unique maximum power point (MPP)
operating point exists in the I–V and P–V curves for every irradiation and temperature.
This point keeps shifting when any atmospheric change occurs [98,99]. Thus, maximum
power point tracking (MPPT) controllers are designed to keep tracking MPP, and they form
an integral part of PV systems. Figure 3 also depicts the maximum operating point, Pmp,
Vmp, and Imp, for a PV panel. In a uniform insolation case, the total maximum output power
of a PV array is equal to the sum of the maximum power values of all individual modules.

Figure 3. Maximum power point characteristics for I–V and P–V curves.

A significant impact on the operation of PV modules is shading caused by cloud cover,
trees, or buildings. When one or more of the modules in a solar panel comes under the
effect of shading, the module voltage drops causing it to work as a load rather than as a
generator, and this causes a hot spot problem [100–102]. Each PV module is equipped with
a bypass diode to overcome the hot spot formation. However, adding the bypass diode
creates multiple peak points in the P–V curve.

Among the multiple peaks, one is the global maximum power point (GMPP) and the
others are local maxima power points (LMPPs). Multiple maximum points can confuse
traditional MPPT schemes as they can easily track and settle at a local maximum, which
reduces the available power output from the PV array. A reliable technique is required to
track the GMPP appropriately [103–105]. Conventional MPPT techniques cannot identify
the GMPP under partial shading conditions (PSC) and usually track local peaks reducing
the generated power from the PV system.

Figure 4 shows a PV module where PV modules 3 and 4 are shaded in Figure 4b due to
environmental conditions. The bypass diodes provide an alternate path for the current flow,
creating multiple peaks. The P–V curve shown in Figure 5 depicts the numerous maxima
during PSC. Modern soft computing MPPT techniques are developed to track the GMPP as
the conventional methods fail to differentiate between the GMPP and the LMPPs [106–108].
The MPPT methods for partial shading mitigation techniques will be explained in detail in
the next section.

5
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Figure 4. PV modules: (a) no shading and (b) modules 3 and 4 are shaded.

Figure 5. PV array output power characteristics under normal and partial shading.

4. Dynamic Tracking under Partial Shading

Partial shading reduces the overall efficiency of the PV system. To generate the
maximum available power from the PV system under this non-uniform environmental
condition, partial shading mitigating techniques are essential for the PV system working in
grid-connected or standalone modes. Conventional MPPT methods have fixed step sizes
and usually become trapped in local peaks, and they fail to dynamically track the MPP
under partial shading conditions.

Partial shading mitigation techniques are broadly classified into two major groups. The
first group includes all the MPPT-based methods, which have been further classified into

6
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modified conventional, soft computing, and hybrid techniques, and the second group com-
prises circuit-based topologies. The classification of MPPT techniques under partial shading
is provided in Figure 6. The conventional MPPT methods under uniform irradiation, such
as P&O, IC, and HC, are thoroughly discussed in the literature and will not be covered in
this paper. This section provides MPPT techniques under partial shading conditions.

Figure 6. Classification of different MPPT schemes for shading mitigation.

7
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4.1. MPPT-Based Techniques
4.1.1. Conventional MPPT

1. Modified Perturb and Observe (P&O) technique

The conventional P&O MPPT method has limitations during partial shading; hence,
overcoming this limitation is required to track the global peak. Figure 7 depicts the flow
chart of a modified P&O proposed by [109], where two routines are used. The first routine
is the main program and sets a reference voltage close to the open circuit voltage. The
main routine scans almost 80% of the P–V curve not to miss the potential global peak.
The second is the global peak-tracking routine, which is called into action after executing
the main program. Although the proposed method efficiently tracks the international
peak, the tracking speed is compromised since the algorithm scans almost the entire P–V
curve. Another modified P&O, by comparing two instantaneous power values presented
in Equation (8), is proposed in [110].

Pm(t)− Pre f (t)
Pm(t − 1)

< ε (8)

where

Pm(t) is the instantaneous measured power and
Pref(t) is the instantaneous reference maximum power.

The algorithm efficiently tracks the global peak; however, new coefficients are intro-
duced that complicate the overall MPPT process. The authors in [111] proposed another
modified P&O MPPT method by periodically changing the PV array voltage from maxi-
mum to minimum. A microcontroller is used to store the operating voltage and current.
The P&O is used to maintain the operation of the PV system after identifying the region of
the global peak.

2. Modified Incremental Conductance (IC)

The conventional incremental conductance fails to track and recognize the true MPP
as the method is based on derivative characteristics. In both global and local peaks, the
derivatives dP/dV or dP/dI are zero; hence, the IC method should be modified to identify
the true MPP. A two-stage IC method similar to the modified P&O is proposed in [112],
wherein in the first stage, the value of the maximum voltage and current are used to force
the PV system to operate close to the global peak. Equation (9) describes the first stage as:

RMP = k
VMP
IMP

(9)

where

k is the correction factor, and
VMP and IMP are approximately 80% of VOC and 90% of ISC, respectively.
VOC and ISC are the open circuit voltage and short circuit current, respectively.

The second stage moves the operating point toward the global peak. A linear function
to track the global peak is presented in [113] and is expressed as:

V∗ =
Vgrid

Iout
I(k) (10)

where

Vgrid is the output grid voltage and
Iout is the output grid current.

8
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Figure 7. Modified P&O.
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Equations (11) and (12) are used to detect the occurrence of partial shading and
activation of the linear function.

V(k)− V(k − 1) < Vthr (11)

I(k)− I(k − 1)
I(k − 1)

< Ithr (12)

Although the proposed technique efficiently tracks the global peak, it can be applied
only for grid-connected PV systems.

3. Modified Hill Climbing (HC)

Like the other conventional methods, the hill climbing method also fails to track the
global peak. Several authors proposed a modified HC method to track the maximum
available power under partial shading. A modified HC method based on sweeping the
duty cycle is presented in [114]. Equation (13) is used to determine the initial value of the
duty cycle as:

D = 1 −
√

RMP
RLoad

(13)

where RLoad is estimated using the rating of the PV array.
Similar to the modified IC, this method must also scan over 80% of the P–V curve.

A multiple-input boost converter for micro-inverters based on modified HC is discussed
in [115].

4.1.2. Soft Computing MPPT Techniques

1. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) provide a mechanism to use environmental con-
ditions such as irradiation, temperature, and shading to predict the PV system operation
point corresponding to the MPP [116–118]. The input parameters for the ANN are usually
PV voltage (VPV), PV current (IPV), irradiation, and temperature. After processing the
input variables, the ANN provides an output signal: the optimal voltage VMPP, optimal
current IMPP, and duty cycle [119,120]. The ANN is trained based on the experimental
measurements and simulation results and mostly uses a back-propagation (BP) training
algorithm [121–123]. Figure 8 presents the ANN structure.

Figure 8. ANN structure [124].
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2. Fuzzy Logic Control (FLC)

Similar to ANNs, the FLC does not need the internal parameter and mathematical
model of the system. However, prior knowledge of the relationship between input and
output is required. Figure 9 presents the control structure of the FLC. Besides input and
output, the typical control structure has four control blocks: fuzzification, rules inferences,
rule table, and defuzzification. The rule inference performs the calculation based on the rule
table [125,126]. Error E and change in error ΔE are the usual input signals for the FLC-based
MPPT. Equations (14) and (15) present the error and change error input signal calculation.

E(k) =
P(k)− P(k − 1)
V(k)− V(k − 1)

or E(k) =
P(k)− P(k − 1)
I(k)− I(k − 1)

(14)

ΔE = E(k)− E(k − 1) (15)

After being converted to a linguistic variable, the error and change in error will be
used as input variables to the FLC. The FLC provides output signals in the form of a change
in voltage (ΔV), change in current (ΔI), or change in duty cycle (ΔD).

Figure 9. FLC structure.

3. Particle Swarm Optimization (PSO)

PSO is a population-based search method modeled after the behavior of bird flocks [127].
PSO has been popular to optimize and solve nonlinear problems in the last decade. It works
by assigning random initial values to the particles in the boundary limits. The particles
represent the duty cycle of the DC–DC converter and are optimization solutions. Particles
move around the search space, and its best movement in the initial phase is called Pbest.
The overall best movement in the subsequent iteration is called Gbest. Each particle is
represented in the search space by its velocity (Vi) and position (Xi), and these parameters
are updated in each iteration until the best solution is found [128,129]. The particles’
velocity and position are updated using Equation (16):

Vi(k + 1) = WVi(k) + C1rand1 ∗ (Pbesti(k)− Xi(k)) + C2rand2 ∗ (Gbesti(k)− Xi(k))
Xi(k + 1) = Xi(k) + Vi(k + 1)

(16)

where

Vi(k + 1) is the particle velocity at k + 1th iteration,
W is the inertia weight,
Vi(k) is the particle velocity at the kth iteration,
C1 is the acceleration component associated with Gbest,
Xi(k + 1) is the particle position at (k + 1)th iteration,
Xi(k) is the particle position at the kth iteration,
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C2 is the acceleration component associated with Pbest,
rand1 and rand2 are random numbers from zero to one,
Gbest is the best position of all particles, and Pbest is the best position of the particle.

The objective function of the PSO optimization is to find the global voltage and power
in the P–V characteristics curve. It is started by initializing parameters such as the swarm
size (N), maximum iteration, and the voltage and power variable dimension that must be
optimized. The global voltage with respect to Equation (16) is given as:

Xi(k) = Vg = [Vg1, Vg2, Vg3, Vg4 . . . .Vgj]
j = 1, 2, 3, . . . ..N

(17)

The best value of voltage and power that the PSO has found so far will be stored in
Pbest, and the process continues until Gbest, the best solution, is found.

The disadvantage of PSO is that since the initial position of the search agent is ran-
domly provided depending on the boundary limit, there is a delay in the convergence.
This can sometimes trap the algorithm to settle to local MPP during partial shading condi-
tions [130,131].

4. Grey Wolf Optimization (GWO)

The GWO imitates the hunting techniques of grey wolves using a meta-heuristic
optimization approach [132–135]. Four parameters, alpha (α), beta (β), delta (δ), and omega
(ω), are used to represent the attaching techniques of the wolves. The fittest solution in the
optimization is assumed to be α and followed by β. The third and fourth fit solutions are δ
and ω, respectively. Figure 10 presents the flow chart of the GWO algorithm. Equation (18)
presents the model of the hunting mechanism of grey wolves.

→
E
= | →

C.
→
XP

(t)− →
XP

(t)

→
X

(t + 1) =→
X

(t)− →
F

. →
E

(18)

where

E, F, and C are the coefficient vectors,
Xp is the position vector of the hunting prey,
X is the position vector for the Grey wolf, and
t is the current iteration.

The vectors C and F are calculated as follows:

→
F
= 2 →

a
. →

r1
− →

a
→
C
= 2. →

r2

(19)

The GWO fitness function is calculated as follows:

di(k + 1) = di(k)− F.E
P(dk

i ) > P(dk−1
i )

(20)

where

d is the duty cycle,
k represents the iteration count,
i is the number of the current individual grey wolves, and P is the power.

The major advantages of the GWO technique are higher tracking efficiency and elimi-
nation of transient and steady-state oscillations [136,137].
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Figure 10. Flowchart of Grey Wolf Optimization.

5. Firefly Algorithm (FA)

The Firefly algorithm is developed from the characteristic relationship between line
intensity and fireflies [138]. Different authors proposed a FA that can track the global
peak of PV systems under partial shading. Two variables, namely γ, the light absorption
coefficient, and α, the random coefficient, are used to randomize the first position of the
firefly. A modified version of FA called simplified firefly algorithm (SFA) is proposed
in [139,140], where the initial position of the firefly is selected between zero and one. The
optimization equation of SFA is represented as:

Xi
t+1 = Xi

t + β(Xj − Xi) (21)
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where

Xi represents the position of the less bright firefly,
Xj represents the position of the brighter firefly, and
β is the firefly attractiveness factor.

The objective function of SFA is to generate the maximum available photovoltaic
output power, and the firefly position represents the duty cycle d.

6. Ant Colony Optimization (ACO)

ACO is an optimization technique based on the food-searching behavior of ants. ACO
is an efficient and robust MPPT tracking the global peak of PV systems during partial
shading conditions [141]. Different researchers evaluated the technique under varying
irradiance and different shading patterns. The algorithm has a fast tracking speed of around
one-tenth of the conventional MPPT methods for partial shading conditions [142,143].

7. Artificial Bee Colony (ABC)

Similar to ACO, ABC algorithms are an optimization technique based on the food-
searching behavior of bees. The advantage of this algorithm is that it uses few parameters,
and the convergence criteria are not dependent on the initial condition of the system [74].
The disadvantage of this method is that it is complex for practical implementation, and
the tracking speed is slow compared to other MPPT methods used for partial shading
conditions. The algorithm sometimes settles at the local peak rather than tracking the
global peak [144]. The algorithm classifies the artificial bees into three categories: employed
bees, onlooker bees, and the last scouts. Figure 11 depicts the flow chart of ABC, where the
algorithm has four phases. The first phase initializes the algorithm by setting the different
parameters. The second phase activates the employed bees searching for food, and the
third phase activates the onlooker bees waiting in the hive to decide. The fourth phase
is the scouting phase, where the bees search for random food sources. All three groups
communicate and coordinate to obtain the optimal solution quickly. In the algorithm, the
food source is the maximum power, and the duty cycle of the DC–DC converter is the food
position. For implementing ABC in MPPT for PV system, the duty cycle for the DC–DC
converter is calculated as follows:

d = dmin + rand[0, 1](dmax − dmin)
newd = d + ϕe(d − dp)

(22)

where

d is the current duty cycle,
dmin is the minimum value of the duty cycle,
dmax is the maximum value of the duty cycle),
φe is a constant between [−1, 1], and
dp is the previous duty cycle.

14



Sustainability 2023, 15, 11132

Figure 11. Flow chart of artificial bee colony optimization [145].

8. Cuckoo Search (CS)

The CS method is another optimization technique based on the levy flight mechanism
of cuckoo birds [146,147]. The levy flight mechanism algorithm represents the cuckoos’
search for a nest. The algorithm is a modified form of PSO with robust performance, high
convergence speed, and efficiency. CS needs less tuning variables compared to PSO [148].

9. Jaya Algorithm (JA)

R.V. Rao introduced JA, whichis based on animal activities [149]. The algorithm is
based on the distinct feature of animals or humans from the population. Naturally, humans
or animals try to mimic the elite members of society and want to distance themselves from
the lazy group. Figure 12 presents the flow chart of the JA. The candidate solution moves
towards the best solution and tries to move away from the worst solution. The algorithm’s
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simplicity and fast convergence make it the primary choice by different researchers to solve
various engineering problems [150,151].

Figure 12. Flow chart of Jaya algorithm [152].

4.1.3. Hybrid MPPT Techniques

1. Hybrid GWO and P&O MPPT Algorithm

The authors in [84] combined P&O and GWO to enhance the performance of the MPPT
control of the PV system under partial shading. The method works in two phases. In the
first phase, GWO is implemented, and P&O is activated in the second phase to enhance
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the tracking speed. The computational burden and search space have been reduced by
hybridizing the two techniques. This hybrid algorithm of GWO and P&O has several
advantages, including fast-tracking speed, high efficiency, and high-tracking capability.
Figure 13 presents the flow chart of the hybrid method where GWO is executed in the first
phase and P&O in the second phase.

Figure 13. Flowchart of hybrid GWO and P&O algorithm [153].
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2. P&O combined with PSO

Another hybrid MPPT technique for partial shading mitigation based on the combina-
tion of P&O and PSO is proposed in [154,155]. PSO is used in the initial phase to track the
global peak, and then P&O is executed in the final phase. Compared to the conventional
PSO, the advantage of this method is that it can track the global peak in a shorter time and
has a faster convergence time with better dynamic performance. The hybrid approach has
been tested in [154] with different shading scenarios, and to reduce the ripple current, the
boost converter is modified to have an interleaved topology.

3. Differential Evolution and PSO (DEPSO)

The PSO, combined with differential evolution (DE), creates an algorithm efficient in
tracking the global peak during partial shading conditions [156]. The advantage of the
algorithm is that it is system independent and has fast tracking speed. Equation (23) is
used to initialize the algorithm using the power fluctuation due to changes in irradiation.

∣∣∣∣ J(Xq+1)− J(Xq)

(Xq)

∣∣∣∣> ΔP (23)

where J (Xq) is the output power of the PV panel. The algorithm efficiently differentiates
the local and global peaks using the power mismatch.

4.2. Circuit-Based Approach

Power converters interface the generated power from the PV system to the grid or local
loads. These power converters control the power flow and can enable MPPT controllers
under partial shading at different levels of the PV system such as the PV cell, module
or array [157]. Besides the power converters, changes in the PV system architecture and
converter topology improve the performance of the PV system under partial shading. Some
of the techniques the researchers implemented under this category are distributed MPPT,
monitoring the bypass diode voltage, differential power processing, and power electronics
equalizer, as described below.

4.2.1. Monitoring Bypass Diode Voltages

Monitoring the voltage of the bypass diode is effective in detecting the occurrence of
partial shading. Under normal operation, the bypass diode is inactive, however during
partial shading it will become active, and a voltage drop will appear across it [158]. Con-
ventional (classical) MPPT techniques such as P&O, IC, and HC are implemented during
normal irradiation conditions. Global search to track the global peak can be activated once
a voltage drop is sensed in the bypass diode. The method works for module-integrated
converters where the PV modules are directly connected to the power converters such
as DC–DC converters or DC–AC inverters. The advantage of this method is that, unlike
other MPPT methods where periodic scanning of the P-V curve is necessary, this technique
is activated by sensing the bypass diode voltage. The drawback of this method is that it
works for PV systems where the string voltage is accessible for measurement.

4.2.2. Distributed MPPT

Depending on the connection of the DC–DC converter and the DC–AC inverter
used to integrate the PV system-generated power into the grid, there are two types of
architectures: central and distributed. In central inverter architecture, one highly rated
DC–DC converter and one DC–AC inverter are used where the DC–DC converter performs
the MPPT, and the inverter is used for grid integration. This type of architecture does not
generate the maximum available power in partial shading. On the other hand, distributed
architecture alleviates this problem by providing the MPPT converter for each module.
This type of arrangement provides greater flexibility, and the power generated from the PV
system is better than from central-based architecture. The distributed-based partial shading
mitigation technique connects the DC–DC converter and MPPT for each PV system cell,
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module, or array [159,160]. Each system unit works and tracks the MPP independently
as a distributed sub-unit. The distributed and centralized MPPT architecture is provided
in Figures 14 and 15, respectively. To reduce the cost and complexity of the MPPT for
the distributed architecture, conventional MPPT methods such as P&O and IC are used.
The advantage of this method is that the system reliability increases as each unit has its
controller, and the failure of one of the sub-units does not affect the entire system.

Figure 14. Centralized MPPT architecture.

Figure 15. Distributed MPPT architecture.

4.2.3. Differential Power Processing

This method works by placing DC–DC converters between adjacent PV modules [161].
Figure 16 depicts the differential power processing method where the adjacent converters
provide the current difference that appears between the current at the MPP of the two
modules. The converter will be active when there is a difference in the power generated
between the two adjacent modules. Conventional MPPT methods such as P&O and IC
are employed for the modules. Compared to the distributed MPPT, this method, where a
dedicated converter is connected for each module, minimizes the conversion losses and cost.
The differential power processing method also has a better overall conversion efficiency
and performs well during the partial shading condition by overcoming the challenges
associated with the mismatch MPP current. Moreover, this method tracks the global peak
with less power loss as the converter only processes the difference [162].
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Figure 16. Differential MPPT architecture.

4.2.4. Power Electronics Equalizer

This method works using the power independent principle where series connected
cells are operated with different voltages and currents [163]. The power electronics equalizer
method works by transferring power from the non-shaded modules to the shaded modules
so that all modules work at their respective MPP and exhibit an equal power level across
the system. The power electronics equalizer method has a better performance and power
harvesting capability as compared to the bypass diode method. The disadvantage of this
method is that an extra circuit has to be connected to recover the power from the shaded
modules, which increases the complexity of the topology. Energy storage elements such as
inductors and capacitors are used to store the power of the non-shaded cells. They will be
connected in parallel to distribute the stored power to the cells to have equal power across
each cell [164].

5. Discussion

Different MPPT methods have their own merits and demerits. To compare the MPPT
methods, different performance evaluation criteria such as tracking speed, dynamic track-
ing under partial shading, cost and complexity of the method, and differentiation between
global and local maxima are used. The partial shading condition affects the power gen-
erated from the PV system and hence global maximum power point tracking (GMPPT)
are required to increase the efficiency and harvesting capacity. Different GMPP tracking
algorithms are discussed in this paper. It can be observed from the discussion that GMPP
tracking algorithms based on hybridization of soft computing technique with conventional
technique have better performance in terms of tracking speed, high tracking accuracy, and
high convergence speed and are effective under partial shading. The hybrid method com-
pensates for the disadvantage of one algorithm with the other; however, the complexity of
implementing the technique practically increases. Some algorithms, such as ABC and ACO,
have similar performance, and choosing a suitable algorithm depends on the intended
application by comparing the evaluation criteria.

Table 1 compares MPPT-based partial shading mitigation techniques concerning ef-
ficiency, tracking speed, and level of complexity. Table 2 presents the comparison of
circuit-based MPPT mitigation techniques. Table 2 shows that the power electronics
equalizer-based MPPT technique has fast tracking speed. However, the method depends
on system parameters and is complex. Table 3 provides a comparison of conventional and
soft computing methods.
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Table 1. MPPT-based methods comparison (soft computing and hybrid methods).

Method Complexity Tracking Speed (s) Efficiency (%) Converter Application

ANN High - - Boost Island mode
FLC High 0.3 - Boost Island mode
PSO Medium 1.5 - Buck-boost Island mode
ABC Low 0.2 - Boost Island mode
ACO Low 1.1 ≈100 Boost Island mode
Jaya Low 1.18 99.99 Boost Island mode
FA Low to medium 1.3 98.8 Boost Island mode
GWO High - 99.92 Boost Island mode
CS Medium 0.3 - Boost Island mode
DE-PSO Medium 0.44 - Boost Island mode
PSO-P&O Medium 0.9 - Boost Island mode
GWO-P&O Medium 0.015 100 Boost Island mode

Table 2. Circuit-based MPPT methods comparison.

Method Complexity Tracking Speed
Steady-State
Oscillation

Dependency on System
Parameter

Bypass diode High Slow No No
Distributed MPPT Moderate Variable Sometimes No
Differential Power
Processing Moderate Variable Sometimes No

Power Electronics
Equalizer High Fast No Yes

Table 3. Comparison of conventional and soft computing methods.

Method Advantages Disadvantages

Conventional Methods

P&O
• Simple in construction
• Easy to implement
• Less sensor requirement

• Oscillations around MPP
• Increased perturbation rate

IC
• Simple and highly reliable
• Highly efficient for uniform irradiation

• Poor convergence
• Frequency oscillations around MPP

HC
• Easy to implement
• Efficient for slow changes in irradiation

• Slow response during high irradiation
• Efficient only for low-power applications

Soft Computing Methods

Fuzzy Logic Control
• Robust
• Effective in error detection
• Effective if combined with other conventional methods

• Poor convergence during the dynamic change
in irradiation

• Rules cannot be changed

Artificial Neural Network
• Accurate
• Effective

• Needs large memory
• Prior training is required
• High computational time

Artificial Bee Colony
• Needs few parameters
• Independent convergence criteria with system

parameters

• Slow tracking speed
• Complex

Particle Swarm
Optimization

• Reliable
• Simple and effective for handling non-linearity
• Effective in tracking global peak
• Wide search space usage

• Difficult initializing particle parameters.
• Large computation burden for a large

population

Cuckoo Search

• Robust
• Fast tracking speed
• Faster convergence
• Less parameters

• Time-consuming calculation
• Solution and convergence speed deteriorates

Ant Colony Optimization
• Low cost
• Fast convergence speed • Complex

Grey Wolf Optimization
• Robust
• Fast tracking speed
• No steady state and transient oscillations

• High cost
• High computational time
• Needs a large search space
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6. Conclusions

This paper presented comprehensive MPPT techniques capable of tracking the global
peak during partial shading conditions. The partial shading mitigation technique has
been classified as MPPT-based and circuit-based methods. The MPPT-based method is
further categorized as modified conventional MPPT, soft computing, and hybrid methods.
The modified conventional methods are based on modifying the operation of traditional
MPPT methods, such as P&O and IC, so that they can track the global peak efficiently. The
soft computing methods are based on optimization and are fast and efficient compared
to the modified conventional techniques. Researchers have received PSO well among
the optimization methods because of its robustness, simplicity, and easy implementation.
FLC and ANN need a lot of training data, and their practical implementation is also
complex. The hybrid methods combine soft computing with conventional techniques and
are receiving more attention. Circuit-based partial shading mitigation techniques are also
discussed. The advantages and disadvantages of different optimization techniques are also
discussed to help readers choose a suitable MPPT under partial shading conditions. From
the various methods discussed to mitigate partial shading conditions, it is very challenging
to pick the best one. The current developed robust methods face high computational time
and are complex for practical implementation. Cost of implementation, accuracy, number
of sensors required, response time, and efficiency are some of the limitations associated
with the currently available MPPT methods and should be addressed in future research.
This comprehensive review of the MPPT methods is expected to provide utilities and
researchers with a beneficial tool as a reference and guideline to select the best GMPPT
method for partially shaded PV systems based on their effectiveness.
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Abstract: Partial shading conditions (PSCs) are responsible for the root causes of photovoltaic (PV)
system performance deprivation such as hotspots (damaged PV cells), mismatch power losses and
multiple power maxima. Recently, PV array reconfiguration strategies have proven to be beneficial
in improving PV system performance and achieving improved shade dispersion properties. This
research analyzes the improved Su-Do-Ku (I-SDK) PV array configuration in order to counteract the
shading effect. This approach implements a 6 × 6 size PV array configuration and performance
evaluation under different realistic shading scenarios. The performance of the I-SDK configuration
is assessed and compared to that of the total-cross-tied (TCT) and Su-Do-Ku (SDK) arrangements.
The performance indices such as power loss (PL), power at global maximum power point (GMPP),
fill-factor (FF), performance ratio (PR), power enhancement (PE) and execution ratio (ER) are analyzed to
show comprehensive comparison. An experimental analysis confirms the MATLAB/Simulink findings,
demonstrating that the I-SDK configuration outperforms both the TCT and SDK array setups. The
GMPP values of 143.5 W, 141.7 W, 138.1 W and 129.3 W also show the superiority of I-SDK during four
shading instances compared to conventional SP, TCT, SDK and SM arrangements. Moreover, under
similar PSCs, higher %FF (74.61%, 76.10%, 77.1%, 75.92%) and lower PL (36.7 W, 38.5 W, 42.1 W, 50.9 W)
support the adoptability of I-SDK for experimental validation/commercial viability.

Keywords: power loss; photovoltaic system; shading scenarios; fill factor; improved Su-Do-Ku;
mismatch loss

1. Introduction

As a climate-sustainable solution, the world needs urgent and rapid incorporation of
renewable energy (RE) into the global energy scenario. RE sources are commonly known
as clean energy solutions, gaining the deep attention of energy users in commercial and
domestic applications. The PV energy conversion method has received immense attention
from researchers in recent days [1]. Concerns about the worldwide energy problems and
the threat of climate change posed by existing energy sources have spurred the research for
alternative energy sources. The most popular renewable energy source is solar PV, which is
nonpolluting and requires no maintenance [2].

During the first half of 2020, thirteen countries pledged the largest amount of new RE
ever, nearly 50 GW, to be installed in the year span of 2021–2024. Global demand in 2021 is
expected to be 25% higher than in 2020 [3,4]. The researchers performed different studies to
establish an effective and stable conversion of solar PV energy. Module mismatching and
PSCs are two key contributors to PV system losses. Under these conditions, the PV system
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(P-V and I-V characteristics) becomes more complex and has many power peaks. The amount
of energy made by a PV array is greatly reduced when it is in the shade [5–7]. To boost the
efficiency of PV systems, a number of modules are coupled in specified combinations. An
evaluation of the most recent research papers is conducted in this work in order to determine
the research gap. The many varieties of PV array configurations’ performance, reliability,
precision, resilience, efficiency and operation are all investigated. There are several things
that can cause PSCs, such as passing clouds, high-rise buildings, telecommunications towers,
adjacent trees, dead leaves, and so on.

The PV power output is reduced, allowing shaded modules to waste a significant
percentage of the power produced by unshaded modules, resulting in hotspots that might
eventually destroy the PV cell/module [8,9]. When designing an array, several PV modules
are arranged in series and parallel to satisfy the load power demand. Parallel and series
configurations of PV modules are used to meet a PV array’s power requirements. Tradi-
tional and game puzzle-based reconfiguration approaches such as series, series-parallel
(SP), bridge-link (BL), total cross-tied (TCT), honey-comb (HC), Latin square (LS), magic
square (MS) and Su-Do-Ku (SDK) puzzles have been adopted to design PV array systems.

Because of the way these algorithms are designed, the operative point is the earliest
peak in the PV characteristic, which may or may not be a global power peak. Several
advancements in the literature have been recorded to promote these algorithms in order
to find the global power peak under PSCs. This is accomplished by adding more stages
to the algorithm, making it more complex and restricting monitoring speed. Recently, an
improved SDK-puzzle-based algorithm for MPP monitoring was discovered to yield good
results.

1.1. Literature Review

The paper is a survey of the most recent research publications with the goal of iden-
tifying important research gaps. [10–31]. We examined several PV array topologies for
consistency, stability and easy implementation.

The authors in [10] observed the effects of PV faults on the power grid under various
faulty conditions using the MATLAB/Simulink-based study. A comprehensive analysis
is investigated in terms of power at GMPP with selected SP, BL, TCT and reconfigured
methodology (RM) configurations as 3.99 kW, 4.01 kW, 4.6 kW and 5.02 kW. In [11], an
auto-reconfiguration approach is performed through switching-based PV array electrical
connections from SP to TCT under PSCs. For shading pattern-1, the power at GMPP of
conventional setups (SP and TCT) is 25.22 W and 26.19 W, respectively. In addition, PL values
are observed for SP and TCT configurations under similar shadowing conditions as 3.75 W and
2.78 W. In [12], a detailed study is carried out with various PV array interconnections, including
SP, HC and TCT. In the adopted PV array interconnections, power at GMPP of existing setups
(SP, HC and TCT) is found as 4.39 kW, 4.44 kW and 4.72 kW, respectively. It is observed that the
TCT configuration has a higher rating compared to conventional configurations. The authors
of [13] presented a comprehensive study to mitigate shading effects, a novel LS-puzzle-based
configuration compared to the TCT configuration. Locations of GMPP for shading pattern-1
exist as 1976 W and 2279 W. During all shading cases, Latin square—TCT (LS-TCT) has the
best performance compared to TCT configuration. The Futoshiki puzzle (FP) is investigated
in [14] and obtained results show that the power produced by the FP configuration is highest
and minimized ML under various shading instances. Power generated as 40.07 W, 53.93 W
and 53.93 W in TCT, EAR and Futoshiki configurations for a short wide (SW) shading
scenario. For a long narrow (LN) shading condition, the generated power at GMPP is 59.41 W,
60.56 W and 60.56 W. In [15], the authors developed a novel method to reconfigure the PV
module’s interconnection and compared it to the TCT configuration. The behavior of the P-V
characteristic generated from the reconfigured PV array is found to be smoother than that of
TCT-configured PV arrays under-considered PSCs. The half-reconfigured PV array (HRPVA)
and full-reconfigured PV array (FRPVA) have increased the coherence between the obtained
GMPP. With a performance ratio of 0.93, the generated power increased by 14.75% in HRPVA.
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Furthermore, with a unity performance ratio, FRPVA enhanced generated power by 23.3%.
The proposed MS configuration in [16] is tested using a 3 × 3 PV array coupled to the TCT
pattern under SN, LW, LN and SW shadowed conditions. TCT and MS configurations are
investigated under SN shading scenarios, with GMPP locations of 1.8576 kW and 2.3734 kW
being observed, respectively. For the shading pattern subjected to LN, the GMPP locations are
assessed as 2.4278 kW and 2.8849 kW, respectively. The authors of [17] investigated the PV
array arrangements, e.g., SP, TCT, BL, HC and hybrid series parallel-total cross tied (SP–TCT)
and BL–TCT, and game-puzzle-based configurations such as nonsymmetrical-1, 2 (NS-1 and
NS-2) are reported. The shading pattern-3 subjected to TCT array configuration has power at
GMPP as 5260 W, 4545 W, 4332 W, 4182 W for four distinguished shading cases, respectively.
In a similar shading scenario, the NS-2 configuration has power levels at GMPP locations of
5260 W, 5013 W, 4811 W and 4182 W, which are higher than conventional methods.

In [18], the performance of PV array designs of 4 × 4 sizes, i.e., MATLAB/Simulink
is used to investigate TCT, hybrid SP-TCT, BL-TCT, BL-HC and MS, RSP-TCT, RBL-TCT
and RBL-HC. The power at GMPP is observed as 2279 W, 1976 W, 2279 W, 1976 W, 2197 W,
1976 W, 2233 W, 1976 W and 2255 W for the respective topologies. The authors of [19] ana-
lyzed TCT configuration for performance improvement under PSCs. The power at GMPP
under shading case-4 is observed as 377.2 W, 468.9 W and 468.9 W for TCT, Optimal TCT
and Novel TCT configurations, respectively. Performance indices such as FF are observed
at 40.46%, 60.26% and 60.28%, respectively. The authors of [20] discussed the result and test
conducted on a 4 × 5 size PV array configuration with distinguishing shading scenarios.
The power at GMPP for shading scenarios is observed as 797.24 W, 823.75 W, 819.22 W,
850.25 W, 851.57 W for SP, BL, HC, TCT and Novel PV array topologies. Furthermore,
the calculated PL are found as 1.88%, 4.13%, 2.32%, 2.59% and 1.30%, respectively. The
authors of [21] proposed a shade dispersion scheme (SDS) arrangement compared to other
conventional PV module interconnections such as SP, BL and TCT under realistic shading
patterns. The power at GMPP of PV array for SP, BL, TCT and SDS configurations is
1644.36 W, 1689.84 W, 1721.55 W and 1746.33 W, respectively. Also, results in PL for the
same are 301.40 W, 256.12 W, 224.41 W and 199.63 W. The SDS configuration has a higher
performance among all the PV array configurations. In [22], the recently developed cross
diagonal view (CDV) configuration is proposed and compared to the conventional SP and
TCT configuration for a 9 × 9 size PV array module. The power at GMPP is observed for
SP, SDK, TCT and TCT-CDV as 6307.5 W, 6307.5 W, 4861.2 W and 7492.5 W. In [23], new
physical PV array setups are introduced to reduce the shading impact and generated power
at GMPP for SP, TCT and modified TCT (M-TCT) configurations under the considered
shading conditions 174.60 W, 185.33 W, 215.74 W and 523.80 W, respectively.

Interconnection methods are proposed in [24] to reduce PL during PSCs. The TCT
and proposed configurations have increased the power output by 7.8% and 6.9% com-
pared to the conventional SP arrangement. The GMPP locations are found as 4065.3 W,
4419.3 W and 4393.1 W for SP, TCT and proposed topologies, respectively. The authors
of [25] calculated the comparative result in terms of maximum power for parallel and
series configurations under distinguished shading effects as 544.2 W, 492.45 W, 381.1 W
and 446.5 W. For minimizing the shadowing effect, the parallel configuration is conve-
nient. In [26], SDK arrangement was compared to TCT and validated experimentally on a
5 × 5 size array. Power of 266.4 W and 280.2 W was generated for the proposed Su-Do-Ku
and TCT configuration subjected to two types of PSCs. People who came up with this
idea say it makes P-V curves more even and eliminates the MPPT algorithm as well as
the financial risk. In [27], the authors proposed a column-index-based topology for PV
reconfiguration scheme. The generated power at GMPP for PV array topologies was such
as proposed, DS, TCT and SP are 5338 W, 5101 W, 5066 W and 4815 W under LN-based
shading pattern. The proposed technique was tested on a 9 × 9 size PV array and the
results showed that it increased the global maximum power when compared to DS, TCT
and SP array configurations.
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In [28], the I-SDK arrangement enhanced the global power peaks (28.6%, 22.1%, 22.8%,
17.2%, 6.2% and 5.2%) compared to conventional (SP, BL, HC, TCT) and puzzle-based (SDK
and optimal SDK) PV array setups under a realistic shading scenario. The authors of [29]
designed 6 × 4 size PV array setups for performance investigation under shading scenarios.
The SP, TCT, BL, HC, BL-HC, BL-TCT and SP-TCT arrangements were adopted for perfor-
mance investigation and the generated power at GMPP was observed as 2177 W, 2394 W,
235.2 W, 2235 W, 2187 W, 2389 W, 2306 W and 2298 W, respectively. Moreover, TCT and
BL-TCT configurations have shown a better response in terms of the highest power at GMPP,
minimum PL and improved FF. The authors of [30] reviewed the performance of the proposed
SRBL-TCT configuration compared to SP, TCT, BL, HC and BL-TCT results obtained under the
realistic moving clouds phenomenon. At each of the five shading instants, the obtained GMPP
location of the SRBL-TCT configuration was found to be superior to the SP, TCT, BL, HC and
BL-TCT configurations. The obtained power at GMPP for the BL-TCT PV array configuration
subjected to all five shading scenarios was 39.57 W, 23.89 W, 38.85 W, 38.05 W, 26.5 W. In
the SRBL-TCT PV array configuration, the power at GMPP for all five considered shading
scenarios as 44.31 W, 38.63 W, 42.44 W, 41.04 W and 40.93 W, respectively. The skyscraper
methodology was simulated along with its application to a 9 × 9 size PV array and was
matched to the TCT, DS and SDK arrangement using MATLAB/Simulink in [31]. Under PSCs,
the PL for skyscraper, TCT, DS and SDK was 0.305%, 0.35%, 0.325% and 0.316%.

1.2. Novelty of Work

The I-SDK PV array enhances PV system performance in terms of a higher GMPP, FF
and minimal PL. Furthermore, the I-SDK PV array arrangement is a viable solution for a
number of reasons:

• The suggested I-SDK configuration improves performance compared to standard
setups because it more evenly disperses the shadow impact throughout the PV array.

• The utility and functionality of the proposed I-SDK configuration are tested by a
comprehensive experimental study under distinctive shading scenarios and validated
the MATLAB/Simulink results, i.e., GMPP locations, PL, ER and FF.

2. PV Modelling and Array System

2.1. PV Cell Modeling

The PV module’s mathematical analysis was used for MATLAB/Simulink modeling
of the PV cell and electrical equivalent circuit of a single diode model, as shown in Figure 1.
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Figure 1. PV cell: electrical equivalent model [32].

32



Sustainability 2023, 15, 11852

The output current of a solar PV cell is given in Equation (1) [19] as

IPV = Npp

{
IPVn − IO

[
exp

(
VPV + IPV RS

VtNSS

)
− 1

]}
−

(
VPV + IPV RS

RP

)
(1)

where ‘IPV ’—PV cell current, ‘Rp’—parallel resistance, ‘S’—series resistance, ‘IO’—reverse
saturation current, ‘Vt’—thermal voltage, ‘NSS’ and ‘Npp’ are the number of cells connected
in systematic order (series and parallel).

2.2. PV Array Configurations: Conventional

(a) Series-parallel configuration

In a PV array, a finite number of PV modules are arranged in parallel strings to
increase the voltage and current to meet the required load power demand. The electrical
arrangements are used to show the 6 × 6 size SP configuration in Figure 2 as

arrayV
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arrayI

mV

mV

mV
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+
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−
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− −
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Figure 2. SP arrangement of PV array.

(b) Total-cross-tied configuration

The TCT electrical arrangement is an extended modification of the SP configuration
by means of fixing ties across the parallel strings. This cross-tied-based modification is
responsible for enhancing the current through each parallel string and constant voltage
during PSCs. Mathematically; voltage analysis is expressed for the PV array in Equation (2).

Varray = ∑6
k=1 Vmk (2)

where Vmk refers to the voltage (maximum) at the kth row. Each string of the PV modules
is linked in parallel; therefore, the total current drawn by the PV array is the sum of the
individual currents drawn by each module in the array. Furthermore, a mathematical
approach is applied to each node using Kirchhoff’s current law. As a consequence, the
array current

(
Iarray

)
can be expressed in Equation (3) as

Iarray = ∑6
q=1

(
Ikq − I(k+1)q

)
= 0, p = 1, 2, 3, . . . 9 (3)

where k and q are the number of rows and columns in the considered 6 × 6 size PV array.
Figure 3 depicts the TCT array’s electrical configuration of PV modules.
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Figure 3. PV module arrangements in TCT configuration (6 × 6 size). (a) Nomenclature, (b) placement
of PV module.

2.3. Game-Theory-Based PV Array Configurations

(a) SDK and I-SDK configurations

As the shadow is diffused over the array, the game-theory-based SDK layout guaran-
tees that mismatch losses are minimized. The wiring connections are completed once the
panels have been properly arranged and they stay unmodified. This decreases computing
difficulties while also preventing the overuse of sensors and switches [33].

The SDK change in columns 2–6 is known as the I-SDK puzzle. By repositioning the
PV modules without disturbing the electrical arrangement, the suggested I-SDK layout is
implemented in the TCT PV array. In this game puzzle, higher dispersion is found based
on the optimal placement of all the integer numbers in an array. This integer placement
modification is responsible for higher shade dispersion. The SDK and I-SDK puzzles and
approach are depicted in Figure 4a–d as

(a) (b) 

Figure 4. Cont.
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Figure 4. (a) Number placement for I-SDK; (b) number placement for SDK; (c) electrical connections
for SDK (d) methodology to achieve SDK game theory.

(b) Symmetric matrix-based configurations

Cyclic arrangement of integer numbers from 1 to 6 is carried out to establish the SM
game-theory-based arrangement. The summation of the considered integer numbers in
each row and column is found to be equal as per SM development guidelines. In addition
to that, either of the diagonal elements keeps repeating within it. Figure 5a depicts all of
the assets of the 6 × 6 size SM as

p q
Row Column

= =

=

(a) (b) 

Figure 5. (a) Row, column and single diagonal property; (b) repeated submatrix elements.

The summation of all the items in each particular row/column, according to SM
characteristics, is 21. Furthermore, in Figure 5b, there is a repetition of 3 × 3 size square
submatrices.

To represent the row-column summation rules, mathematical assumptions are made.
In this context, the SM size is considered in the order of p × q. Moreover, the nth element
can be placed corresponding to the pth and qth row-column, respectively. So, the location
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of the PV module (npq) in an array can be written in a generalized way and expressed in
Equation (4) as

npq, where
{

p = no. of row (p = 1, 2, . . . . 6)
q = no. of column (q = 1, 2, . . . . 6)

(4)

In Figure 5a,b, we see the mathematical equations for four distinct cases of row-wise
summing and that are accomplished using Equation (5) as follows:

6

∑
p=1

npq(Summation for pthrow) =
6

∑
q=1

npq(Summation for qthcolumn) (5)

The above Equations (4) and (5) are involved in the guidelines to achieve the 6 × 6
size SM setup, and the scientific method to establish the SM is shown in Figure 6 as

th

p
p

=
=

th

p
q

=

=

( ) ( )th th
pq pq

p q
n p row n q column

= =

=

Figure 6. Methodology to achieve SM game theory.

In SM, there are six rows and columns in a 6 × 6 PV array, respectively. As per the
nomenclature shown in Figure 7a, the first digit of each individual PV module depicts the
row count, while the second digit depicts the column count. It is an easier nomenclature-
based methodology to understand the electrical arrangements of PV modules in an array.
In Figure 7b, the PV module locations are migrated using the recommended SM structure
but the electrical contacts of the PV panels within PSCs remain unchanged.
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Figure 7. (a) Nomenclature of PV modules; (b) PV module arrangements for SM configuration.

2.4. Experimental Setup

MATLAB/Simulink modeling and experimentation utilize a commercially available
5 W PV module, as shown in Table 1.

Table 1. PV module specifications (Manf. Universal solar: 5 W, poly-crystalline).

Parameters Values

Maximum power (Pm) 5 W
Maximum current (Im) 0.52 A
Maximum voltage (Vm) 9.62 V

Open circuit voltage (VOC) 11.25 V
Short circuit current (ISC) 0.55 A

For performance validation, an experimental setup is established with 6 × 6 size PV
array configurations with the assistance of an embedded-based data acquisition system
(DAS) for logging real-time electrical parameters. The performance characterization in
terms of I-V and P-V curves is performed for extensive performance analysis in different
realistic shading scenarios. The above experimental setup comprises mainly four sec-
tions such as (a) PV system (6 × 6 size), arranged in SP, SDK and I-SDK configurations;
(b) variable resistive load (Rheostat: 800 Ω, 6 A); (c) self-developed DAS. The developed
experimental setup is shown in Figure 8.

Using the AT-mega microcontroller (8051), a self-designed data logger is utilized,
which includes analog voltage and current sensors for electrical data investigation. Re-
alistic electrical performance parameters in terms of voltage and current are stored in a
micro-SD card. These recorded data are used for I-V and P-V characterization and rigor-
ous investigation of performance parameters. Figure 9 also depicts the working of the
constructed data logger. The code has processes for measuring electrical characteristics
that have been fine-tuned based on an assessment and data gathering that use a simple
algorithm.
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Figure 8. Developed experimental setup for comprehensive study during PSCs.

Figure 9. Flow chart for data logger operation.

3. Performance Parameters and Shading Scenarios

This unique MPP is due to P-V curves and PSCs in PV modules in an array. The
MPP tracking device function refuses to give the maximum power to the load because of
redundant GMPP and LMPP. In the performance assessment under standard test conditions,
maximum power and voltage were found to be 180.2 W and 58.09 V, respectively. Figure 10
shows the performance characteristics under uniform irradiances as a result of the P-V and
I-V curves.
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(a) (b) 

Figure 10. (a) I-V (b) P-V curves under STC and nonuniform irradiation levels.

3.1. Power and Voltage at GMPP

During the PSCs, multiple power points, i.e., GMPP and LMPP, were observed on the
P-V curve. The higher power value is known as “power at GMPP (P GMPP)”. Furthermore,
at which value of voltage, the higher power at GMPP is also called the “voltage at GMPP
(V GMPP)”.

3.2. Power Mismatch Loss

The power ML is represented as ΔPL and it is calculated based on the maximum power
generated during the ideal irradiance scenario and PSCs [34]. The theoretical assessment of
power ML is expressed in Equation (6) [17].

%ΔPL =
Puni f orm irradiance − PPSC

Puni f orm irradiance
× 100 (6)

3.3. Power Loss

Theoretically, the evaluation of PL is measured by the difference in maximal power
produced between perfect and nonuniform irradiation. The calculated PL is expressed in
Equation (7) [17] as

PL = Pmax at Ideal Irradiance − PGMPP at PSCs (7)

3.4. Fill Factor

The FF is defined in Equation (8) [17] as the ratio of the generated GMPP at PSCs to
the maximum rated capacity of the PV facility

FF =
Vmpp × Impp

Voc × Isc
(8)

3.5. Performance Ratio

This is a quality factor that indicates how much solar energy is efficiently used. It
compares the actual and theoretical power production of a PV installation. The closer the
PR is to 100%, the more efficient the PV plant. This nondimensional factor is defined in
Equation (9) [18] as

PR =
Yfinal
Yref

(9)
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where Yfinal uses the following formula shown in Equation (10) to express the relationship
between the total energy produced by an array (EA) and the absolute power produced by a
PV panel PDC as

Yfinal =
EA
PDC

(10)

Whereas the “Yre f ” calculated by dividing the amount of insolation (HA) received by
a panel over a given time period by the amount of irradiance received over the same time
period at STC as shown in Equation (11) as

Yre f =
HA
G

(11)

3.6. Execution Ratio

This is the ratio between the power at GMPP achieved at PSCs (P GMPP) and power
achieved at STCs (P m). The mathematical representation of ER is given in Equation (12) [18] as

%ER =
Pm at PSCs

PSTC
× 100 (12)

3.7. Power Enhancement

The power enhancement of game-puzzle-based configurations is evaluated with
respect to the existing TCT scheme and expressed in Equation (13) [18] as

%PE =
PGMPP(SM/SDK/I-SDK)− PGMPP(TCT)

PGMPP(SM/SDK/I-SDK)
× 100 (13)

3.8. Shading Patterns Analysis

The obtained P-V and I-V curves during PSCs are described using MATLAB/Simulink
modeling and experimentation studies.

(a) Shadowing pattern-I

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 11a–e. With the consideration of nonuniform shade profiles from a minimum
to maximum irradiance range such as 200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2

and 1000 W/m2, an inclusive study was carried out with conventional (SP, TCT) and
game theory (SDK, I-SDK and SM) based configurations. The considered shading pattern
showed a highly nonuniform nature in irradiance. Furthermore, the game-theory-based
reconfigurable methodologies are beneficial in terms of performance improvement due to
the higher shade dispersion factor.

I I I

(a) SP (b) TCT (c) SDK

Figure 11. Cont.
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I I

(d) I-SDK (e) SM

Figure 11. (a–e) Shade dispersion profiles for pattern-I.

To understand the feasibility of considered reconfiguration methodologies, a theoreti-
cal valuation of row-wise current was performed. The theoretical valuation of the produced
row-wise current for the conventional SP configuration is expressed in Equations (14)–(16).
Table 2 depicts the theoretical current assessment of other game-theory-based PV array
systems.

Ir1 = Ir2 = Ir3 =
(

1000
1000

)
Im +

(
1000
1000

)
Im +

(
1000
1000

)
Im +

(
1000
1000

)
Im +

(
1000
1000

)
Im+(

1000
1000

)
Im = 6Im

⎫⎬
⎭ (14)

Ir4 =
(

1000
1000

)
Im +

(
1000
1000

)
Im +

(
1000
1000

)
Im +

( 600
1000

)
Im +

( 200
1000

)
Im+( 200

1000
)

Im = 4Im

}
(15)

Ir5 = Ir6 =
( 800

1000
)

Im +
( 800

1000
)

Im +
( 800

1000
)

Im +
( 600

1000
)

Im +
(

400
1000

)
Im+(

400
1000

)
Im = 3.8Im

⎫⎬
⎭ (16)

Table 2. Theoretical assessment: PV performance under shading pattern-I.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 6Im 6Im 6Im 4Im 3.8Im 3.8Im
P (W) 6ImVm 12ImVm 18ImVm 16ImVm 19ImVm 22.8ImVm

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 6Im 6Im 6Im 4Im 3.8Im 3.8Im
P (W) 6ImVm 12ImVm 18ImVm 16ImVm 19ImVm 22.8ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.59Im 4.59Im 4.59Im 4.59Im 5.19Im 4.38Im
P (W) 4.59ImVm 9.18ImVm 13.77ImVm 18.36ImVm 25.95ImVm 26.28ImVm

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.19Im 4.59Im 4.38Im 5.19Im 5.19Im 5.0Im
P (W) 5.19ImVm 9.18ImVm 13.14ImVm 20.76ImVm 25.95ImVm 30.06ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.38Im 5.0Im 5.38Im 5.59Im 4.78Im 4.38Im
P (W) 4.38ImVm 10.0ImVm 16.14ImVm 22.36ImVm 23.9ImVm 26.28ImVm
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(b) Shadowing pattern-II

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 12a–e. With the consideration of nonuniform shade profiles from minimum to
maximum irradiance ranges such as 300 W/m2, 600 W/m2, 700 W/m2 and 900 W/m2, a
comprehensive study was carried out with existing and game-theory-based arrangements.

I I I

(a) SP (b) TCT (c) SDK
I I

(d) I-SDK (e) SM

Figure 12. (a–e) Shade dispersion profiles for pattern-II.

To understand the feasibility of the considered reconfiguration methodologies, a
theoretical assessment of row-wise current was performed. The theoretical row-wise
current generated by the usual SP design is expressed in Equations (17)–(20). Table 3
depicts the theoretical current assessment of other game-theory-based PV array systems.

Ir1 = Ir2 = Ir3 =
( 900

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im+( 900
1000

)
Im = 5.4Im

}
(17)

Ir4 =
( 700

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im+( 700
1000

)
Im = 5Im

}
(18)

Ir5 =
( 700

1000
)

Im +
( 600

1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)

Im +
( 600

1000
)

Im+( 700
1000

)
Im = 4.38Im

}
(19)

Ir6 =
( 700

1000
)

Im +
( 600

1000
)

Im +
( 300

1000
)

Im +
( 300

1000
)

Im +
( 600

1000
)

Im+( 700
1000

)
Im = 3.19Im

}
(20)

Table 3. Theoretical assessment: PV performance under shading pattern-II.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5Im 4.38Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20ImVm 21.9ImVm 19.14ImVm
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Table 3. Cont.

Row 1 2 3 4 5 6

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5Im 4.38Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20ImVm 21.9ImVm 19.14ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.09Im 4.90Im 4.5Im 4.30Im 5.0Im 5.0Im
P (W) 5.09ImVm 9.80ImVm 13.5ImVm 17.2ImVm 25ImVm 30ImVm

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.59Im 4.28Im 4.59Im 4.88Im 5.19Im 5.19Im
P (W) 4.59ImVm 8.56ImVm 13.77ImVm 19.52ImVm 25.95ImVm 31.14ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.88Im 5.09Im 4.61Im 4.28Im 4.0Im 5.0Im
P (W) 4.88ImVm 10.18ImVm 13.8ImVm 17.12ImVm 20.0ImVm 30.0ImVm

(c) Shadowing pattern-III

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 13a–e. With the consideration of nonuniform shade profiles from minimum to
maximum irradiance ranges such as 400 W/m2, 800 W/m2 and 900 W/m2, a compre-
hensive study was carried out with conventional and game-theory-based configurations.
Furthermore, the game-theory-based reconfigurable methodologies are beneficial in terms
of higher GMPP under shading profiles.

I I I

(a) SP (b) TCT (c) SDK
I I

(d) I-SDK (e) SM

Figure 13. (a–e) Shade dispersion profiles for the pattern-III.
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The theoretical row-wise current generated by the usual SP design is expressed in
Equations (21)–(23). Table 4 depicts the theoretical current assessment of other game-theory-
based PV array systems.

Ir1 = Ir2 = Ir3 =
( 900

1000
)

Im +
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1000
)

Im +
( 900

1000
)

Im +
( 900

1000
)
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}
(22)

Ir5 = Ir6 =
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1000
)
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1000
)
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)
Im +
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)
Im = 3.2Im

⎫⎬
⎭ (23)

Table 4. Theoretical assessment: PV performance under shading pattern-III.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5.19Im 3.19Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20.76ImVm 15.95ImVm 19.14ImVm

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5.19Im 3.19Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20.76ImVm 15.95ImVm 19.14ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.38Im 4.78Im 4.78Im 4.28Im 4.78Im 4.78Im
P (W) 4.38ImVm 9.56ImVm 14.34ImVm 17.12ImVm 23.9ImVm 28.68ImVm

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.69Im 4.78Im 4.38Im 4.69Im 4.78Im 4.38Im
P (W) 4.69ImVm 9.56ImVm 13.14ImVm 18.76ImVm 23.9ImVm 26.28ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.38Im 4.38Im 4.30Im 4.69Im 5.19Im 4.78Im
P (W) 4.38ImVm 8.76ImVm 12.90ImVm 18.76ImVm 25.95ImVm 28.68ImVm

(d) Shadowing pattern-IV

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 14a–e. With the consideration of nonuniform shade profiles from minimum to
maximum irradiance ranges such as 300 W/m2, 535 W/m2 and 840 W/m2, a comprehensive
study was carried out with conventional and game-theory-based configurations. The
shading pattern appears to be building a corner shading on the PV array system.
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I I I

(a) SP (b) TCT (c) SDK
I I

(d) I-SDK (e) SM

Figure 14. (a–e) Shade profiles based on the reconfigured PV array.

Equations (24)–(26) give a theoretical evaluation of the generated row-wise current
for the typical SP configuration. Table 5 depicts the theoretical current assessment of other
game-theory-based PV array systems.
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Table 5. Theoretical assessment: PV performance under shading pattern-IV.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.03Im 5.03Im 5.03Im 4.42Im 4.11Im 3.34Im
P (W) 5.03ImVm 10.06ImVm 15.09ImVm 17.68ImVm 20.55ImVm 20.04ImVm

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.03Im 5.03Im 5.03Im 4.42Im 4.11Im 3.34Im
P (W) 5.03ImVm 10.06ImVm 15.09ImVm 17.68ImVm 20.55ImVm 20.04ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.42Im 4.73Im 4.19Im 4.19Im 4.73Im 4.73Im
P (W) 4.42ImVm 9.46ImVm 12.57ImVm 16.76ImVm 23.65ImVm 28.38ImVm

45



Sustainability 2023, 15, 11852

Table 5. Cont.

Row 1 2 3 4 5 6

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.73Im 4.19Im 3.68Im 4.73Im 5.03Im 4.42Im
P (W) 4.73ImVm 8.38ImVm 11.04ImVm 18.92ImVm 25.15ImVm 26.52ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.42Im 4.42Im 4.5Im 4.5Im 4.73Im 4.42Im
P (W) 4.42ImVm 8.84ImVm 13.5ImVm 18ImVm 23.65ImVm 26.52ImVm

4. Results and Discussion

The suggested PV array configurations were used to estimate performance in all four
shading circumstances. The preferred PV array setups were used to estimate performance
under all four distinct shading scenarios. An investigation into the PV system’s perfor-
mance was carried out using MATLAB/Simulink, while experimentation was used to
verify the results.

4.1. MATLAB/Simulink Study: P-V and I-V Curves under Shading Case I–IV

A thorough examination of the achieved performance of SP, TCT, SDK, I-SDK and SM
arrangements was considered. The behavior of the characterized P-V and I-V curves for PV
array topologies under shading scenarios I-IV is depicted in Figures 15 and 16.

(a) (b) 

(c) (d) 

Figure 15. (a–d) P-V curves of SP, TCT, SDK, I-SDK and SM models under shading scenarios: I–IV.
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(a) (b) 

(c) (d) 

Figure 16. (a–d) I-V curves for SP, TCT, SDK, I-SDK and SM models under shading scenarios: I–IV.

Shade losses are greater in the SP and TCT configurations due to a lack of coherence
between the maximum power of the module and the GMPP of the PV array. The SP and
TCT configurations, GMPPs are 108.7 W and 121.3 W for shading case-I at nonuniform
irradiation levels: 1000 W/m2 -200 W/m2, respectively. Moreover, for other reconfigured
PV arrays such as SDK, I-SDK and SM, the GMPPs are investigated as 139.9 W, 143.5 W
and 136.3 W.

During the shade case-II, the SP and TCT electrical arrangements had inferior power per-
formance at GMPPs of 113.2 W and 115.9 W, respectively. SDK, I-SDK and SM configurations
feature different GMPP sites for equivalent climatic conditions, including 139.1 W, 141.7 W
and 136.9 W, respectively, in terms of uniform irradiance levels (1000 W/m2 -200 W/m2).

P-V curves with several maximum points show that GMPP power is present. Under the
shading case-III, the TCT, SDK and SM models performed better than the SP configuration
in terms of GMPP, with values of 103.4 W, 134.1 W and 133.3 W, respectively. Because of its
shade dispersion characteristics, the I-SDK design had the maximum power among the
examined PV array topologies at GMPP of 138.1 W.

The SP setup had a low power output at GMPP of 108.1 W when using shading case-IV.
For identical environmental needs, TCT, SDK, I-SDK and SM setups with multiple GMPP
locations such as 108.8 W, 124.8 W, 129.3 W and 123.1 W are available.

In Case-I, the I-SDK configuration had smoother I-V characteristics than the SP, TCT,
SDK and SM versions. When compared to other configurations, the ISC for the I-SDK
configuration was judged to be 2.90 A after the examination. The values for ISC for all
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PV array configurations were SP (3.29 A), TCT (3.29 A), SDK (2.87 A) and SM (2.96 A)
arrangements.

For shading case II, the I-V characteristic of the I-SDK setup exhibited smooth behavior,
achieving ISC and VOC of 2,80 A and 66.65 V, respectively. For the SP, TCT, SDK and SM
models, the ISC values were 2.96 A, 2.96 A, 2.80 A and 2.77 A, respectively. When compared
to other settings, the shading effects of SP and TCT settings enhanced volatility.

During shading case-III, the nature of the I-V curve for I-SDK was confirmed to be
smoother and reported as 2.63 A when compared to SP, TCT, SDK and SM arrangements.
The ISC was 2.97 A (SP), 2.97 A (TCT), 2.63 A (SDK) and 2.85 A for other setups (SM).

The nature of the I-V curves was investigated in shading case-IV. In this scenario, the
I-SDK setup exhibited smooth behavior to achieve ISC and VOC in the 2.60 A and 65.5 V
ranges. In addition, the ISC values for the 2.77 A, 2.77 A, 2.77 A and 2.77 A configurations
were obtained.

The MATLAB and simulation study was analyzed from a critical perspective. The
efficiency of solar photovoltaic systems decreased dramatically when realistic shading
patterns were used. Voltage and power at GMPP, PL and FF can be calculated using P-V
and I-V curves. Table 6 provides the quantitative findings of the MATLAB/Simulink study
for shading profiles I–IV.

Table 6. MATLAB/Simulink quantitative study of shading scenarios I–IV.

Performance
Parameters

Case-I Case-II

SP TCT SDK I-SDK SM SP TCT SDK I-SDK SM

PGMPP (W) 108.7 121.3 139.9 143.5 136.3 113.2 115.9 139.1 141.7 136.9
VGMPP (V) 60.35 59.82 58.82 58.81 59.73 50.15 49 58.71 57.81 58.73

Im (A) 1.80 2.027 2.378 2.44 2.28 2.25 2.36 2.36 2.45 2.33
VOC (V) 65.9 66.3 66.5 66.5 66.5 66.2 66.2 66.55 66.55 66.55
ISC (A) 3.299 3.299 2.87 2.90 2.96 2.969 2.969 2.80 2.80 2.77
PL (W) 71.5 58.3 41 36.7 43.9 67 64.9 41.1 38.5 43.3
Ploss (%) 39.6 32.35 22.75 20.36 24.36 37.18 36.01 22.80 21.36 24.02
FF (%) 50.13 55.45 73.30 74.61 69.24 57.76 58.97 74.64 76.10 74.21
PR (%) 60.32 67.31 77.63 79.63 75.63 62.81 64.31 77.19 78.63 75.97

PE (%) w.r.t TCT - 11.59 28.70 32.62 25.39 - 2.38 22.87 25.17 20.93

Best topology I-SDK I-SDK

Performance
Parameters

Case-III Case-IV

SP TCT SDK I-SDK SM SP TCT SDK I-SDK SM

PGMPP (W) 101.3 103.4 134.1 138.1 133.3 108.1 108.8 124.8 129.3 123.1
VGMPP (V) 37.6 37.6 58.18 58.17 58.10 50.55 61.0 59.08 58.43 59.04

Im (A) 2.69 2.75 2.30 2.37 2.29 2.15 1.75 2.11 2.21 2.08
VOC (V) 65.5 65.5 66.1 66.1 66.1 65.4 65.5 65.5 65.5 65.5
ISC (A) 2.97 2097 2.63 2.63 2.85 2.77 2.77 2.77 2.60 2.77
PL (W) 78.9 76.8 46.1 42.1 46.9 72.1 71.4 55.4 50.9 57.1
Ploss (%) 43.78 42.61 25.58 23.36 26.02 40.01 39.62 30.74 28.24 31.68
FF (%) 52 57.4 77.1 79.4 70.7 59.6 59.96 68.78 75.92 67.8
PR (%) 56.21 57.38 74.41 76.63 73.97 59.98 60.37 69.25 71.75 68.31

PE (%) w.r.t TCT - 2.07 32.37 36.32 31.58 - 0.64 15.44 19.61 13.87

Best topology I-SDK I-SDK

4.2. Power and Voltage at GMPP

GMPP’s power evaluation results are given in Figure 17. The I-SDK arrangement
delivered the greatest power at GMPP of 143.5 W, 141.7 W, 128.3 W and 129.3 W.

Power distribution to the load side involves many factors, including voltage at GMPP.
The voltage at GMPP has distinct values in the MATLAB/Simulation research for SP, TCT,
SDK, I-SDK and SM setups under shading case-I (60.35 V, 59.82 V, 8.82 V, 58.81 V and 59.73
V), case-II (50.15 V, 49 V, 58.71 V, 57.81 V and 58.73 V), case-III (37.6 V, 37.6 V, 58.18 V, 58.17 V
and 58.10 V) and case-IV (50.55 V, 61 V, 59.08 V, 58.43 V and 59.04 V).
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(a) (b) 

Figure 17. (a) Power; (b) voltage at GMPP.

4.3. PL and FF Analysis

Power losses due to shade on PV systems such as SP, TCT, SDK, SM and I-SDK
configurations were observed in the MATLAB/Simulink study. In order to do this, the
I-SDK configuration had a minimum PL of 20.36%, 21.36%, 23.36% and 28.24% under
shading cases I–IV, respectively.

Deviation in the FF due to different shadowing scenarios are given in Figure 18
when comparing SP, TCT, SDK, SM and I-SDK layouts. Shade instances I-IV in the MAT-
LAB/Simulink study, according to I-SDK, demonstrated the greatest gains in shading
efficiency in terms of FF at 74.61%, 76.10%, 79.4% and 75.72%, respectively.

  

(a) (b) 

Figure 18. (a) PL (b) FF analysis for case I-IV.

4.4. PR and PE Analysis

The PR and PE analysis was performed using MATLAB/Simulink, as illustrated in
Figure 19. When compared to SP, TCT, SDK and SM arrangements, I-SDK had the highest
PR of 79.63%, 78.63%, 76.63% and 71.75% in shading patterns I-IV.

In addition to this, the PE was investigated under shading scenarios I-IV, though
MATLAB/Simulink analysis was observed to be highest as 32.62%, 25.17%, 36.32% and
19.61% compared to TCT (11.59%, 2.38%, 2.07% and 0.64%), SDK (28.17%, 22.87%, 32.37%,
15.44%) and SM (25.39%, 20.93%, 31.58%, 13.87%) configurations.
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(a) (b) 

Figure 19. (a) PR (b) PE analysis for case I-IV.

4.5. Experimental Study: P-V and I-V Curves under Shading Case-IV

This research investigated the effect of shading on the electrical performance of typical
SP, TCT, SDK, SM and I-SDK puzzle-based designs. The P-V curve for each of the four PV
array installations is given in Figure 20a,b for shading scenarios I–IV.

The presence of numerous power maximum points on P-V curves defined the posi-
tion of the GMPP. In terms of shading case-IV, the GMPP for the SP, TCT, SDK and SM
models were 104.2 W, 105 W, 122.1 W and 120.3 W, respectively. The I-SDK-based setup
outperformed the other PV topologies in terms of power at GMPP (127.9 W) due to its
shade dispersion capabilities.

I-V characteristics of the I-SDK configuration were smoother than those of the SP,
TCT, SDK and SM puzzle-based setups. Under the scrutiny of shading scenario-IV, the
ISC values were discovered to be 2.61 A for the I-SDK configuration. Furthermore, the
ISC values for all PV arrays based on SP, TCT, SDK and SM configurations were 2.8 A,
2.8 A, 2.62 A and 2.62.A, respectively. In addition, the quantitative observation during
experimentation is reported in Table 7.

(a) (b) 

Figure 20. (a,b) I–V curves for SP, TCT, SDK, I-SDK and SM models under shading scenarios-IV.
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Table 7. Quantitative analysis with experimental shading study- IV.

Performance
Parameters

Case-IV

SP TCT SDK I-SDK SM

PGMPP (W) 104.2 105 122.1 127.9 120.3
VGMPP (V) 52.90 59.97 59.36 58.34 58

Im (A) 1.96 1.75 2.05 2.19 2.06
VOC (V) 66.1 66.2 66.3 66.3 66.1
ISC (A) 2.8 2.8 2.62 2.61 2.62
PL (W) 76 75.2 58.1 52.3 59.9
Ploss (%) 42.17 41.73 32.24 29.02 33.24
FF (%) 56.29 56.64 70.29 73.91 69.46
PR (%) 57.82 58.26 67.75 70.97 66.75

PE (%) w.r.t TCT - 0.767 17.17 22.74 15.45

Best topology I-SDK

A transient analysis of electrical performance characteristics was monitored during
experimental activities to verify the results. Under shading pattern-I, the maximum current,
voltage and power were settled from ideal/rated power (180 W) to 104.2 W (SP), 105 W
(TCT) and 122.1 W (SDK), 127.9 W (I-SDK) and 120.3 W (SM), respectively, and are shown
in Figure 21 as

(a) (b) 

Figure 21. Cont.
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(c) (d) 

(e) 

Figure 21. (a–e) Steady-state analysis of PV array configurations under shading case-IV.

4.6. Power and Voltage at GMPP

In addition, when compared to traditional SP, TCT, SDK and SM configurations, I-SDK
setups produced more power at GMPP of 127.9 W.

Under shading case-IV, the SP, TCT, SDK, I-SDK and SM setups had different voltages
at GMPP (52.90 V, 59.97 V, 59.36 V, 58.34 V and 58 V). Figure 22 is a bar chart depicting the
power and voltage at GMPP.

(a) (b) 

Figure 22. (a) Power (b) voltage at GMPP.
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4.7. PL and FF Analysis

According to a recent experimental investigation, the I-SDK configuration had the
lowest PL of 29.02% for performance evaluation during shading case-IV. I-SDK had lower
PL values than the SP, TCT, SDK and SM setups according to the bar chart analysis in
Figure 23.

(a) (b) 

Figure 23. (a) PL (b) FF analysis case IV.

Experimental research was carried out under comparable lighting conditions as in
Case-IV. As a result, the I-SDK setup had a higher FF of 73.91%, validating the MAT-
LAB/Simulink study results.

4.8. PR and PE Analysis

The experimental study was conducted for PR assessment. When compared to SP, TCT,
SDK and SM arrangements, I-SDK had the highest PR of 70.97% in shading patterns IV.

The experimental value of PE was detected and certified as 22.74% during the shading
case-IV experimental investigation. For experimental research, PR and PE analysis are
depicted as a bar chart in Figure 24.

(a) (b) 

Figure 24. (a) PR (b) PE analysis for case IV.

4.9. Comparison of Simulation and Experimental Results under Shading Case-IV

The key performance parameters were investigated during the MATLAB/Simulink
study and validated through an experimental study under shading case-IV. Table 8 was
explored to show the difference between the key parameters during both the studies under
shading case-IV as
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Table 8. Parameters for Simulink and experimental studies under shading case-IV.

Parameters Simulink Study Experimental Study

GMPP (W) 129.3 127.9

FF (%) 75.92 73.91

PR (%) 71.75 70.97

PL (W) 50.9 52.3

5. Conclusions

An I-SDK shade dispersion configuration approach was proposed in this study to
increase a PV array’s power generation under PSCs. A MATLAB/Simulink model was
used to assess the performance of several 6 × 6 size PV array configurations, such as TCT,
SDK, I-SDK and SM, for various parameters such as power at GMPP, FF, PL and PE.

• In shading scenario-I, the minimized PL for I-SDK configuration was quite a bit
less as 36.7 W compared to SP (71.5 W), TCT (58.3 W), SDK (41 W) and SM (43.9)
configurations. Furthermore, the maximum FF was found to be 74.61% for the I-SDK
configuration, which is more than the SP (50.13%), TCT (55.45%), SDK (73.30%) and SM
(69.24%) configurations, respectively. The power at GMPP of the I-SDK configuration
was found to be highest compared to conventional configurations, at 143.5 W

• In shading scenario-II, the PL in the I-SDK configuration was observed to be smaller,
at 38.5 W, compared to SP (67 W), TCT (64.9 W), SDK (41.1 W) and SM (43.3 W)
configurations. In the I-SDK configuration, the FF also had a maximum value of
76.10%, which is more than other existing PV array configurations.

When compared to the SP, TCT, SDK and SM configurations under different shading
patterns, the improved I-SDK configuration enhanced the global maximum power, uni-
formly dispersed the shading influence and minimized the PL. In addition, an experimental
inquiry was conducted to analyze the data and determine the practicality of the proposal.
Using machine learning and artificial intelligence techniques, new puzzle-solving algo-
rithms can be developed for dealing with realistic shading situations on a more generic
scale. More research and development into reconfigurable PV array technology is needed
to get us closer to commercial viability in the future using metaheuristics techniques to
enhance the shade dispersion factor.
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Abstract: The key objective of this paper is to develop a photovoltaic (PV) maximum power point
tracking (MPPT) algorithm based on particle swarm optimization–butterfly optimization algorithm
(PSO-BOA) that is adapted for partial shading conditions (PSCs). Generally, conventional MPPT
techniques are often unable to accurately locate the global maximum power point (GMPP) generated
by partial shading in PV systems. As a result, a significant decrease in power output occurs. The
traditional particle swarm optimization (PSO) algorithm traps the local maxima point easily, while
the butterfly optimization algorithm (BOA) has slow convergence speed and large oscillations during
its use in research. To address the limitations of the aforementioned PSO and BOA algorithms, the
MPPT strategy of PV systems combining PSO-BOA is presented, which can ameliorate the efficiency
and accuracy in PSCs. In this paper, the control parameter of sensory modality in the BOA can be
acquired based on logistic mapping, and the self-adaptive adjustment of the inertial weight of the
PSO algorithm is designed. According to the simulation findings, the suggested method is more
suitable than PSO and BOA with respect to intricate shading-induced variations in irradiance and
changes in external temperatures. The average tracking time is less than 0.5 s, and the tracking
accuracy is not less than 99.94%. Especially under sudden variations in irradiance and temperature
conditions, the tracking time of the PSO-BOA algorithm is only 49.70% of that of the PSO algorithm
and 55.63% of that of the BOA. Therefore, the MPPT method presented has the ability to improve the
oscillations and result in less convergence speed, which in turn accurately tracks the GMPP.

Keywords: maximum power point tracking; photovoltaic generation; butterfly optimization
algorithm; particle swarm optimization; partial shading conditions

1. Introduction

In the past few years, the use of non-renewable energy sources has resulted in seri-
ous environmental pollution. Hence, finding renewable energy sources has become an
imminent task. Among all the alternative energy resources, sun-powered energy as an
abundant and clean source of power has been extensively applied in photovoltaic (PV)
power generation [1]. Furthermore, the reduction in the manufacturing costs of PV modules
and the improvement in equipment efficiency in PV systems have led to an increase in
applications [2]. However, under normal conditions, the conversion of light-to-electricity
efficiency of PV cells is barely around 11–28%, which restricts the development of PV
systems [3]. To increase the output power, it should remain steady at the Maximum Power
Point (MPP) for the PV systems. Hence, maximum power point tracking (MPPT) techniques
are the crucial concerns of solar PV systems.
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Classic MPPT techniques, including hill climbing (HC) [4–6], open circuit voltage
(OCV) [7], incremental conductance (INC) [8], perturb and observe (P&O) [9–11], and
constant voltage (CV) [12,13], are widely used due to their low complexity and cost-
effectiveness. These algorithms are effective in uniform irradiation conditions and can
accurately track the MPP [14]. However, they may experience oscillations when searching
around the MPP, resulting in slow convergence and power loss. Moreover, classic MPPT
algorithms have a limited capacity to respond quickly to changes in shading conditions,
preventing them from effectively tracking the MPP. As a matter of fact, the output power
for solar PV systems can be influenced by environmental and weather factors such as the
shadows of trees, buildings around the PV power station, moving clouds, and temperature.
This situation is defined as partial shading conditions (PSCs), where each PV panel may
simultaneously encounter differing solar irradiance and temperatures. Under different
PSCs, PV systems exhibit nonlinear power–voltage (P-V) characteristics with multiple
peaks of power [15]. These peaks correspond to local maximum power points (LMPPs),
with a sole global maximum power point (GMPP) also present. The conventional MPPT
algorithm has many problems in PSCs. The problems include failing to jump out of the
LMPP, low optimization efficiency, and inaccuracy. In recent years, many scholars have
effectively solved the problem of tracking GMPP through the utilization of metaheuristic
optimization methodologies, with examples such as the ant colony optimization algorithm
(ACO) [16], grey wolf algorithm (WOA) [17,18], firefly algorithm (FA) [19,20], artificial bee
colony algorithm (ABC) [21,22], etc.

The particle swarm optimization (PSO) algorithm [23] is extensively used in the
field of MPPT. The PSO algorithm has the advantages of low memory requirement and
comparatively fast convergence speed. In the reference [24], a novel approach was proposed
where each PV module was treated as a particle, and the MPP was considered as the
moving element. Compared with the P&O method, this method improved the efficiency
by over 12% in the transient state. The modified PSO (MPSO) method was proposed for a
multilevel inverter-based PV system in the reference [25]. This MPSO method introduced
cognitive components and worst-experience social components to enhance the speed of
searching for the MPP. A combination of the modified PSO and P&O methods in the
reference [26] was applied. This method used the adaptive sensitivity parameter to detect
the GMPP and tracked GMPP faster and more accurately. An MPV-PSO algorithm based
on modified particle velocity of PV systems under PSCs was discussed in the reference [27],
which achieves a balance between adaptive and deterministic features. Moreover, it could
solve problems like particles getting trapped in LMPPs. A logarithmic particle swarm
optimization (LPSO) method in PV systems was proposed in the reference [28], which
updates particle velocity solely based on the direction of the GMPP. It should be noted
that the PSO algorithm requires multiple iterations to converge. Furthermore, the main
drawback of the PSO algorithm is that it frequently tends to adhere to the first local peak
rather than effectively tracking the dynamic movement of the global peak, particularly
when shading conditions vary over time.

In 2018, the Butterfly Optimization Algorithm (BOA) [29] was presented by the authors
Arora and Singh. The BOA has been widely recognized for its strong search capabilities
and effectiveness in converging toward the global maximum point with a high degree
of accuracy. It has been extensively discussed by many scholars. For instance, the work
in [30] is presented to validate the proposed chaotic algorithm on single mode, multimodal,
and engineering design problems. The work in [31] has been proposed to optimize the
analysis of annual cost, energy consumption, energy efficiency, and pollutant reduction.
Despite numerous applications of the BOA in various areas, such as microgrid optimization
scheduling, parameter adjustment, and other domains, its application in MPPT is still
relatively limited. In the reference [32], the BOA method was applied to PV systems with
the aim of mitigating the negative impact of shading and improving the tracking speed.
A modified version of the BOA was proposed in the reference [33], which used a single
dynamic variable as the tuning parameter, resulting in reduced algorithm complexity. In
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the reference [34], a method was presented to solve power point fluctuations between
GMPP and LMPPS, leveraging an opposition-based reinforcement learning methodology
in conjunction with the BOA. Based on the above research, it can be found that there exist
some deficiencies in the BOA, such as long convergence time, as well as large oscillations
during optimization.

Motivated by the research mentioned above, this paper introduces an innovative PSO-
BOA algorithm for solving the slow convergence issues in the BOA while incorporating the
advantages and strong robustness of the PSO algorithm. Compared to the traditional PSO
and BOA methods, the proposed PSO-BOA algorithm effectively combines the benefits
of both approaches while overcoming their respective shortcomings, such as the low
convergence accuracy of PSO and the slow convergence and large oscillation of the BOA.
Under PSCs, the PSO-BOA algorithm demonstrates remarkable accuracy in tracking the
GMPP, exhibiting superior tracking speed, efficiency, and reduced oscillation. With the
goal of enhancing the optimization performance of the PSO-BOA algorithm, this article
introduces two modifications: a control parameter of sensory modality based on logistic
mapping and the self-adaptive adjustment of the inertial weight. The simulation results
suggest that the proposed algorithm effectively addresses the shortcomings of existing
MPPT algorithms and offers a promising alternative for practical application in various
renewable energy systems.

The subsequent sections of this article are structured as follows: Section 2 provides
an overview of the multi-peak output characteristics under PSCs. Section 3 introduces the
PSO-BOA algorithm utilized to control the PV system. Section 4 presents an analysis of the
simulation results from MPPT techniques based on PSO-BOA, BOA, and PSO, respectively.
Finally, Section 5 provides a summary of the key findings discussed in this paper.

2. Characteristics of Photovoltaic Array under Partial Shading Conditions

2.1. Mathematical Model of Photovoltaic Cells

A PV cell is a semi-conductor material that absorbs energy from sunlight and allows
its electrons to jump to higher energy states. The liberated electrons subsequently undergo
free movement along connected conductive wires, resulting in the generation of an electric
current. This phenomenon of PV conversion is called the PV effect [35]. It harnesses the
PV effect to directly transform solar energy into electrical energy. Figure 1 represents the
single-diode model of a solar cell.

Figure 1. Single-diode model of a PV cell.

Applying Kirchhoff’s current law [36], the output current is represented as follows:

I = Iph − IDs − Ish = Iph − IDs −
V + IRs

Rsh
(1)

where I represents the current through series resistor Rs, Ish is the current through shunt
resistor Rsh, Iph is the photo-generated current, VDs is the voltage across Ds, and IDs is the
current through the diode Ds. The output voltage of the solar cell is represented by V.
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The following Shockley equation [37] can be used to express the electric current:

IDs = I0

(
e

qVDs
ηKT − 1

)
= I0

(
e

q(V+RS I)
ηKT − 1

)
(2)

where η is the ideality factor of the diode; K is the Boltzmann constant, K = 1.38 × 10−23 J/K;
T is the ambient temperature; q is the electronic charge constant, q = 1.6 × 10−19 C; Rs is
the equivalent series resistance; V is the output voltage of the PV array; and I is the output
current of the PV array.

By substituting Equation (2) into Equation (1), the I-V characteristic model is derived
and represented as follows:

I = Iph − I0

(
e

q(V+RS I)
ηKT − 1

)
− V + IRS

Rsh
(3)

A PV module commonly consists of numerous solar cells arranged in a series or in
parallel to effectuate increased power, voltage, and current output levels. This unique
design also allows PV modules to adapt to various system requirements and environmental
conditions. The series configuration enables the module to generate higher voltages,
making it suitable for applications that demand higher voltage levels. In contrast, the
parallel arrangement ensures that sufficient current is provided, which is ideal for situations
where higher current output is essential. The output characteristic is influenced by both its
internal parameters and external factors, such as temperature and light intensity [38]. The
equivalent circuit is depicted in Figure 2.

Figure 2. Equivalent circuit diagram of PV cells.

The current-voltage characteristics of a PV module model [39] are represented by
Equation (4):

I = np Iph − np Isc

⎛
⎝exp

⎡
⎣ q

(
V + I ns

np

)
nsηKT

⎤
⎦− 1

⎞
⎠−

npV
ns

+ IRs

Rsh
(4)

where np is the number of lateral PV panels, ns is the number of vertical PV panels, Isc is
the saturation current of the diode.

The value of Iph is dependent on the intensity of the light source and temperature.

Iph = Iph_STC + Ki

(
T − Tre f

) G
GSTC

(5)

where Iph_STC is the short-circuit current under standard temperature and irradiance in-
tensity; Ki is the temperature coefficient of current change, Ki = 0.003; Tre f is the standard
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temperature, Tre f = 25 ◦C; and G is the current irradiance intensity, while GSTC is the
standard irradiance intensity, GSTC = 1000 W/m2.

As stated in Equation (4), the I-V characteristic of PV modules undergoes significant
alterations by external factors, such as solar irradiance and ambient temperature. The
I-V and P-V curves presented in Figure 3a illustrate how different temperatures, while
maintaining the same irradiance level, can influence the performance of the system. With
increasing temperature, the I-V curve shifts toward a lower voltage, whereas a decrease
in temperature causes the I-V curve to shift toward a higher voltage. Additionally, as
indicated by the P-V curve, the power exhibits a negative correlation with the increase in
temperature. Figure 3b shows the I-V curve and P-V curve at constant temperatures with
varying irradiance. It is evident that a rise in solar irradiance leads to a corresponding
increase in current and power. Observing Figure 3a,b, it is apparent that the MPP varies
with changes in irradiance and module temperature. Hence, it is imperative to consider the
impact of temperature and irradiance on PV solar systems.

(a) (b)

Figure 3. I-V and P-V curves of PV modules. (a) Diverse temperatures and (b) different irradiances.

2.2. Output Characteristics of Photovoltaic Array under Partial Shading Conditions

Under PSCs, when the incident irradiance on the PV panels decreases, the shaded
areas experience heating, leading to the hot spot effect, which can potentially cause damage
to the entire panel. To address these issues, bypass diodes are usually connected in parallel
with PV cells to prevent temperature rise caused by the hot spot effect. Furthermore, the
multi-peak characteristics arising from partial shading are associated with the PV cells
connected in series within the array. This paper presents a simulation analysis of the output
characteristics of a PV array considering five PV cells under PSCs. The PV array structure
is illustrated in Figure 4.

Figure 4. Structure schematic diagram of PV arrays.

Each PV module configures the parameters in the simulation model described in
Table 1. The simulation tests are carried out under standard irradiance conditions of
1000 W/m2 and a standard ambient temperature of 25 ◦C. These tests are conducted
under three different conditions, as detailed in Table 2: example 1 remains unshaded,
while examples 2 and 3 are subjected to PSCs. Figure 5 illustrates a simulated diagram
of the photovoltaic components tracking the MPP theory, while Figure 6 presents the P-V
characteristic curve. The pseudo-code for obtaining the theoretical MPP is outlined in
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Algorithm 1, where the theoretical MPP and the corresponding P-V curve are derived using
the same method as described in this paper.

Algorithm 1. Pseudo-code of getting theory MPP

1. Setting the irradiance and temperature received by five solar panels.
2. Initialize the parameter of Pmax = 0, Imax = 0, Vmax = 0.
3. Input power current voltage of five solar panels
4. If Pmax < power
5. Pmax = power
6. Imax = current
7. Vmax = voltage
8. End if

9. Return Pmax, Imax, Vmax.

Table 1. Simulation model parameters for each PV module.

Parameter Value

Short-Circuit Current: Isc 7.84 A
Open circuit voltage: Uoc 36.3 V
The voltage of MPP: Um 29 V
The current of MPP: Im 7.35 A

Table 2. PV panels subjected to different irradiances.

Example S1 (W/m2) S2 (W/m2) S3 (W/m2) S4 (W/m2) S5 (W/m2)

1 1000 1000 1000 1000 1000
2 1000 1000 900 800 600
3 800 800 600 600 400

Figure 5. Photovoltaic components for tracking MPP theory.

It can be observed that under non-standard irradiance intensity, the PV array demon-
strates the occurrence of multiple peaks in its power output characteristic curve. The
number of peaks and the power vary with the degree of shadowing. Therefore, accurately
tracking the GMPP is crucial under PSCs.
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Figure 6. P-V characteristic curve of PV array output.

3. The Proposed Algorithm of Particle Swarm Optimization–Butterfly
Optimization Algorithm

3.1. The Particle Swarm Optimization (PSO)

PSO [23] is a swarm intelligence optimization algorithm that mimics the search for
food by a moving flock of birds in a multidimensional search space. PSO is widely adopted
in solving optimization problems of nonlinear systems, owing to its advantages of rapid
convergence and straightforward implementation. The velocity and position update for-
mulas in the PSO algorithm are, respectively, expressed in Equations (6) and (7):

vt+1
i = ω·vt

i + c1·rand1
(

pbest − xt
i
)
+ c2·rand2

(
gbest − xt

i
)

(6)

xt+1
i = xt

i + vt+1
i (7)

where vt
i and vt+1

i are the velocities of the i-th particle at the (t) and (t + 1) iterations; pbest
and gbest represent the local and global optimal positions of particles. Generally, c1 and c2
are the acceleration factors. In the reference [23], the stochastic factors (rand1 and rand2)
were multiplied by a factor of 2 to achieve a mean value of 1. This adjustment was made to
ensure that the particles would “overfly” the target about half of the time. Therefore, the
c1 and c2 are equal to 2 in this paper; rand1 and rand2 are the random numbers that range
from 0 to 1; ω represents the inertia weight.

3.2. The Butterfly Optimization Algorithm (BOA)

The BOA [29] mimics the habits of butterflies searching for food and seeking mates in
their natural habitat. Setting the BOA apart from other optimization algorithms is that each
butterfly in the algorithm is equipped with its own unique odor, leading to the generation
of distinct odor intensities between individuals. By releasing a higher level of odor intensity,
a butterfly can attract and be perceived by neighboring butterflies. The intensity of an
individual’s odor is perceived by other butterflies, which is denoted by Equation (8):

f (x) = cIa (8)

where f (x) represents the perceived magnitude of fragrance; c is the sensory modality; I
corresponds to the stimulus intensity; and a is the power exponent that relates to the degree
of fragrance absorption and is limited to [0, 1].

In theory, the sensory modality coefficient c can be assigned a value within the range
[0, ∞]. However, in the iterative process, the specific value of c is determined by the
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particular optimization problem. During the optimal search phase of the algorithm, the
sensory modality c is expressed using the following formulation:

ct+1 = ct +

[
0.025

ct·Tmax

]
(9)

where Tmax represents the upper bound of the number of iterations; generally, the initial
value of parameter ct is 0.01 [40].

Butterflies are capable of finding food and mating partners through both global and
local search strategies in nature. The BOA utilizes a switching probability, denoted as
“p”, that governs the shift from a wide-ranging global exploration to a concentrated local
exploration. Based on a comparison of the switching probability ‘p’ with a random number,
the BOA decides whether to execute a local search or a global search. The position updating
formula is demonstrated by Equation (10), as follows:

xt+1
i =

{
xt

i + (r2·g∗ − xt
i ) fi p < rand

xt
i + (r2·xt

a − xt
b) f p ≥ rand

(10)

where g∗ is the current best-performing one in all the solutions that have been generated in
the current stage; xt

a and xt
b represent the spatial positions of the a-th and b-th butterflies

in the t-th iteration, and when a = b, the butterfly performs a local random search; r is
a number that is generated randomly, 0 < r < 1; and fi is the fragrance produced by the
i-th butterfly.

3.3. The Particle Swarm Optimization–Butterfly Optimization Algorithm

In the process of searching, it is simple for the PSO algorithm to fall into the local
optimal solution. The main drawback of the BOA is its extended convergence time and
significant oscillations during the process. To address the limitations of the PSO and BOA
algorithms, the PSO-BOA algorithm incorporates the BOA search mechanism into the
PSO algorithm. Specifically, the algorithm selects the search method based on comparing
the generated random number with the predetermined switching probability ‘p’. To
enhance the algorithm’s ability to identify the global optimal value, the PSO-BOA algorithm
integrates two strategies. On the one hand, the strategy randomizes the spatial position of
individual particles during the local search process, which explores a diverse search space
and optimizes the quality of individual particles. On the other hand, the strategy utilizes
both local and global optimal particles to update the position and speed of particles in
the global search process, enabling the algorithm to exploit the current best solutions and
refine the search trajectory toward the global optimal value. Simultaneously, the PSO-BOA
algorithm adjusts the sensory modality c and the inertia weight ω in the iteration process,
which accelerates the convergence rate and improves the local search performance.

3.3.1. Global Search

The updating criterion of the position for the global search stage in the PSO-BOA
algorithm can be represented by Equation (11) as follows:

xt+1
i = xt

i +
(
ω·vt

i + c1·rand1·
(

pbest − xt
i
)
+ c2·rand2·

(
gbest − xt

i
))

fmax (11)

where vt
i is the velocity of the i-th particle at the t-th iteration; pbest and gbest represent the

local and global optimal positions of particles; and fmax represents the current optimal
scent intensity value. Generally, c1 = c2 = 2; rand1 and rand2 generate a random number
that falls between 0 and 1. ω represents the inertia weight.
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3.3.2. Local Search

The updating of the position formula for the local search stage used in the PSO-BOA
algorithm can be represented by Equation (12) as follows:

xt+1
i = xt

i +
(

r2·(xt
a − xt

i
)− ω·(xt

b − xt
i
))

fi (12)

where xt
a and xt

b are the spatial positions of the a-th and b-th butterflies in the t-th iteration;
the parameter ω represents inertia weight; r generates a random number that falls between
0 and 1.

3.3.3. Parameter Control Strategy

Chaos theory has numerous applications in intelligent optimization algorithms. Lo-
gistic mapping [41] is one of the classic chaotic mapping methods in chaos theory, and its
representation is shown in Equation (13):

zl+1 = μ zl(1 − zl) (13)

where μ is the chaotic parameter, and the value falls in [0, 4], l can be defined as the iteration
count of the chaotic map.

The Lyapunov index [42] is a measure for distinguishing chaotic characteristics. A
larger value of the Lyapunov exponent indicates a higher degree of chaos and stronger
chaotic characteristics. The Lyapunov exponent is calculated by Equation (14):

λ = lim
n→∞

1
nh

nh−1

∑
i=0

ln
∣∣ f ′(zi)

∣∣ (14)

where λ is the Lyapunov exponent; nh is the number of iterations of the map function; and
f ′(·) is the first derivative of the chaotic map function.

Produce a logistic diagram and a Lyapunov exponent curve of the logistic map where
parameter μ is within the interval (0, 4], as illustrated in Figure 7.

Figure 7. Logistic mapping. (a) Logistic mapping bifurcation diagram and (b) Lyapunov exponent curve.

As illustrated in Figure 7, the bifurcation of the logistic map occurs at μ= 3.55, and
with an increase in the parameter value, the range of the map gradually expands to (0, 1).
When μ = 4, the logistic map exhibits chaotic behavior, leading to a sequence within the
range (0, 1). The maximum Lyapunov exponent of the logistic map is calculated to be
0.6839. Consequently, the parameter μ is set to 4.

65



Sustainability 2023, 15, 12402

According to the logistic mapping expression, the sensory modality c in the PSO-BOA
algorithm can be represented by Equation (12) as follows:

c(t) = 4·c0(t − 1)(1 − c0(t − 1)) (15)

The coefficient of inertia weight directly affects the particle flight speed of the PSO
algorithm. A dynamic tuning strategy is utilized to alter the local and global search
capabilities of the algorithm, as depicted in Equation (16):

ω = ω1 − (ω1 − ω2)

(
t

Tm

)2
(16)

where ω1 represents the initial inertia weight; ω2 represents the inertia weight at the
maximum number of iterations; t represents the current number of iterations; and Tm
represents the maximum number of iterations. In this paper, the initial value of the inertia
weight is set to 0.9, and the inertia weight value of the last iteration is set to 0.2. As the
iteration progresses, the inertia weight decreases from 0.9 to 0.2. A larger inertia weight in
the initial stage of the iteration can maintain the strong global search ability of the algorithm,
while a smaller inertia weight in the later stage of the iteration is conducive to accurate
local search and facilitates algorithm convergence.

3.4. Particle Swarm Optimization–Butterfly Optimization Algorithm for Maximum Power Point
Tracking of Photovoltaic Arrays System

The input variables are the current I and voltage V of PV arrays, and the duty cycle
D is the particle of individuality. Simultaneously, the duty cycle D is the output variable,
which is controlled by regulating the MOSFET switching behavior to achieve the desired on
and off states. The flowchart of the PSO-BOA algorithm proposed in this paper is presented
in Figure 8. The pseudo-code of the PSO-BOA algorithm in this paper is presented in
Algorithm 2 [43].

Figure 8. Flowchart of MPPT for PV arrays system based on PSO-BOA algorithm.
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Algorithm 2. Pseudo-code of PSO-BOA algorithm

1.Generate the starting population of the particles Xi (i = 1, 2, ..., n) randomly
2.Initialize the acceleration factors c1, c2, power exponent a and switch probability p
3.Calculate the value (fi) of each particles
4.Calculate PV array power Ppv = Ipv×Upv
5.While t = 1: the upper limit of iterations
6. For each search of the particles
7. Update the fragrance f according to Equation (8)
8. End for

9. Find the best f (fmax)
10. For each search of the particles
11. Set a random number “rand” in [0, 1]
12. If rand < p then
13. Move to the best position according to Equation (12)
14. Else

15. Move to adjust positions according to Equation (11)
16. End if

17. End for

18. Update the velocity v according to Equation (6)
19. Calculate the new fitness f value of each particles
20. If fnew < fmax
21. Update the position of best f according to Equation (7)
22. End if

23. Update the value of sensory modality c according to Equation (15)
24. Update the value of inertia weight ω according to Equation (16)
25. t = t + 1
26.End while

27.If reach the restart condition as Equation (17)
28.Return to line 5
29. End if

30.Output the MPP

When the termination condition is reached, the value of maximum power for the
PV array is output; otherwise, the search continues. Additionally, during dynamic local
shading, the output of the P-V characteristics also changes. To determine whether the
algorithm needs to be restarted by detecting the degree of power change, this article defines
the restart condition as shown in Equation (17).

ΔP =
Pk

m − Pm

Pm
(17)

where Pk
m is the effective output power value after local shading changes; Pm is the maxi-

mum power output value before local shading changes.

4. Simulation Results

A comparative analysis is performed for the PSO-BOA, PSO, and BOA algorithms
proposed in this study in order to assess their effectiveness for MPPT under four different
irradiance conditions, namely, standard irradiance conditions, local shading conditions,
abrupt alterations for irradiance conditions, and sudden variations for irradiance and
temperature conditions. When analyzing scenarios with uniform irradiance, we compared
the PSO-BOA algorithm with the P&O, PSO, and BOA algorithms. In this case, the P&O
algorithm is configured with a perturbation step size of 0.005. The population size is set to
10, and maximum iteration count is set to 15 for all three algorithms. The basic parameters
of these algorithms are presented in Table 3. This study utilizes a boost circuit for the PV
array, which was controlled by MPPT, as depicted in Figure 9. In this study, the system
uses a PV array comprising five PV panels in series. The parameters of the boost circuit are
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designed as follows: Cpv = 500 μF, L = 0.85 mH, C = 200 μF, R = 30 Ω, and the MOSFET
frequency is set at 0.1 MHz.

Table 3. Parameters of three algorithms.

Algorithm Related Parameters

PSO-BOA a = 0.4, c0 = 0.35, ω1 = 0.9, ω2 = 0.2, c1 = 2, c2 = 2, p =0.8
PSO ω = 0.4, c1 = 2, c2 = 2
BOA a = 0.4, c0 = 1, p =0.8

Figure 9. Structure of the MPPT system.

4.1. Optimization Results under Uniform Irradiance

Under a standard light intensity of 1000 W/m2 and a standard ambient temperature
of 25 ◦C, it is observed that the output power demonstrated a single peak characteristic.
The P-V characteristic of the output is depicted in Figure 10. Specifically, the GMPP of the
PV arrays is observed to be 8517 W.
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Figure 10. P-V characteristic of PV array under uniform irradiance.

The GMPP is searched using the aforementioned four algorithms in this article. Figure 11
presents the simulation results for these four algorithms, with a simulation time of 2 s.
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(a)

(b)

(c)

(d)

Figure 11. Power outputs of three algorithms under no shading condition at the MPP. (a) PSO-BOA
algorithm; (b) PSO algorithm; (c) BOA; and (d) P&O algorithm.

Figure 11 demonstrates that all four algorithms (PSO-BOA, PSO, P&O, and BOA) are
capable of tracking GMPP under uniform irradiance. In this situation, the P&O algorithm
can track the MPP relatively quickly, but it suffers from significant oscillations and fails
to converge to the MPP. Therefore, this paper does not provide further comparisons for
the other complex conditions. When reaching the stable state, the power tracked by the
other three algorithms is 8517 W, which is the theoretical maximum power. However, the
convergence rate of the three algorithms varies. The PSO algorithm converges rapidly but
tends to exhibit fluctuations around the maximum power point for an extended period of
time, whereas the BOA has the slowest convergence rate. The PSO-BOA algorithm requires
the least amount of time and significantly improves the convergence speed.

4.2. Optimization Results during Static Shading

In the setting of standard ambient temperature conditions at 25 ◦C, each of the five
PV panels is subjected to varying light intensities: 800 W/m2, 800 W/m2, 600 W/m2,
600 W/m2, and 400 W/m2. In this situation, the output power of the PV array exhibits
multi-peak characteristics, with the GMPP measuring at 4374 W, as depicted in Figure 12.
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Figure 12. P-V characteristics of array output under static shading.

The GMPP at this time is determined using the three algorithms mentioned earlier.
The simulation curves of these algorithms with a simulation time of 2 s are depicted in
Figure 13.

(a)

(b)

(c)

Figure 13. Power outputs of three algorithms under static shading. (a) PSO-BOA algorithm; (b) PSO
algorithm; and (c) BOA algorithm.
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Figure 13 shows that both the PSO-BOA and BOA algorithms have the capability
to track the theoretical GMPP accurately. However, the PSO algorithm tracks a slightly
lower GMPP of 4373 W, with a deviation value of 1 W, and exhibits small oscillations
even reaching the steady state (after 0.4 s). In contrast, the BOA has slower convergence
and larger power oscillations. Under static shading conditions, the PSO-BOA algorithm
displays significant improvement in convergence speed and reduction in power oscillation.

4.3. Optimization Results under Abrupt Alterations for Irradiance Conditions

To test the response of a PV array to rapid changes in light intensity, this paper
conducts a series of tests involving exposing the array to different light intensities at
specific time intervals. Specifically, the array is devised to varying light intensities of
1000 W/m2, 1000 W/m2, 800 W/m2, 800 W/m2, and 400 W/m2 from 0 to 0.8 s, and is
then designed by 800 W/m2, 800 W/m2, 600 W/m2, 400 W/m2, and 400 W/m2 from
0.8 to 2 s. These simulations are carried out under the environmental temperature of 25 ◦C,
and the resulting P-V characteristics are depicted in Figure 14. During the two stages, the
corresponding GMPP values of the array are 4606 W and 3337 W. Further evaluation of
the system’s performance is conducted by comparing the dynamic shading simulations for
three algorithms with a simulation time of 2 s. The comparison is depicted in Figure 15.

0 50 100 150 200 250 300 350 400
 U/V

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3337W

4606W

Figure 14. P-V characteristics of PV array output under abrupt alterations for irradiance conditions.

Figure 15 shows that the PSO-BOA algorithm accurately tracks the theoretical
GMPP under varying irradiance conditions. The BOA also displays good performance
in this regard, albeit with a slight tracking error. However, the PSO algorithm exhibits a
significant deviation from the theoretical GMPP and is susceptible to local optima, thus
resulting in low convergence accuracy. Furthermore, in terms of convergence time, the
BOA requires around 0.7 s to converge, with more oscillations during varying irradiance
conditions. In contrast, the PSO algorithm has relatively faster convergence, requiring
about 0.4 s. Meanwhile, the PSO-BOA algorithm exhibits the fastest convergence time of
about 0.3 s, accompanied by less oscillation, thereby demonstrating its superior tracking
performance under dynamic local shading conditions. Overall, compared to both the
PSO and BOA algorithms, the PSO-BOA algorithm offers improved tracking accuracy
and less oscillation.
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(a)
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Figure 15. Power outputs of three algorithms under abrupt alterations for irradiance conditions.
(a) PSO-BOA algorithm; (b) PSO algorithm; and (c) BOA.

4.4. Optimization Results under Sudden Variations for Irradiance and Temperature Conditions

To evaluate the output power characteristics under harsh environmental conditions
considering the influence of temperature on MPP, this paper sets the irradiance intensity of
the array as 800 W/m2, 800 W/m2, 600 W/m2, 400 W/m2, and 400 W/m2 at 0–0.8 s, while
the ambient temperature is maintained at 25 ◦C. Later, from 0.8 to 2 s, the array experience
suddenly changes light intensity to 800 W/m2, 600 W/m2, 400 W/m2, 200 W/m2, and
200 W/m2, while the environmental temperature is increased to 30 ◦C. The resulting P-V
characteristics outputs are depicted in Figure 16, where the GMPP for the two stages is
3798 W and 2237 W. Figure 17 shows the dynamic shading simulations for three algorithms
under harsh environmental conditions.
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Figure 16. P-V characteristics of PV array outputs under sudden variations for irradiance and
temperature conditions.
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(a)

(b)

(c)

Figure 17. Power outputs of three algorithms under sudden variations for irradiance and temperature
conditions. (a) PSO-BOA algorithm; (b) PSO algorithm; and (c) BOA.

According to the findings illustrated in Figure 17, the PSO-BOA algorithm successfully
tracks the theoretical GMPP with high precision. In contrast, the PSO algorithm is prone
to falling into local optima after abrupt changes in irradiance and temperature, leading
to significant deviations from the theoretical GMPP. Although the BOA can track the
theoretical GMPP, the error is still greater than that of the PSO-BOA algorithm. As for
convergence speed, the PSO-BOA algorithm shows the fastest convergence speed and the
least oscillation. Conversely, the PSO algorithm converges extremely slowly after a sudden
change in conditions, oscillating around GMPP. The BOA converges slowly with a large
power oscillation amplitude. Notably, in harsh environmental conditions, the PSO-BOA
algorithm outperforms different algorithms in the context of both convergence speed and
power oscillations.

4.5. Statistics of Results and Analysis

To provide a clearer insight into the performance indicators of each algorithm, sta-
tistical tables are created summarizing the results obtained using the above-mentioned
three algorithms. The performance of each algorithm is assessed originating from various
evaluation metrics, including convergence time, optimization value, projected annual loss
cost, and tracking efficiency, as shown in Table 4.
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Table 4. Performance comparison of algorithms.

Example Statistics Units PSO-BOA PSO BOA

Uniform irradiance

Convergence time s 0.43 0.79 0.75
Optimization value W 8517 8517 8517

Theoretical W 8517 8517 8517
Projected annual loss cost ¥ 0 0 0

Tracking efficiency % 100 100 100
Oscillation situation / small big big

Static shading

Convergence time s 0.42 1.12 0.82
Optimization value W 4374 4373 4374

Theoretical W 4374 4374 4374
Projected annual loss cost ¥ 0 2.19 0

Tracking efficiency % 100 99.98 100
Oscillation situation / small Less small big

Abrupt alterations for
irradiance conditions

Convergence time s 0.37/0.35 0.32/0.35 0.74/0.71
Optimization value W 4606/3337 4546/3272 4604/3329

Theoretical W 4606/3337 4606/3337 4606/3337
Projected annual loss cost ¥ 0/0 131.40/142.35 4.38/17.52

Tracking efficiency % 100/100 98.70/98.05 99.96/99.76
Oscillation situation / Less small small bigger

Sudden variations in
irradiance and

temperature conditions

Convergence time s 0.47/0.37 0.77/0.92 0.76/0.75
Optimization value W 3796/2237 3794/2169 3755/2230

Theoretical W 3798/2237 3798/2237 3798/2237
Projected annual loss cost ¥ 4.38/0 8.76/148.92 94.17/15.33

Tracking efficiency % 99.94/100 99.89/96.96 98.87/99.69
Oscillation situation / small bigger bigger

As illustrated in Table 4, the PSO-BOA algorithm outperforms both the BOA and PSO
in all four simulations, achieving faster and smoother convergence to GMPP. It is worth
noting that the PSO-BOA algorithm shows a faster convergence speed. The convergence
time of PSO-BOA is 54.43% relative to PSO and 57.33% relative to the BOA under uniform
irradiance, and is reduced to 37.5% relative to PSO and 51.22% relative to the BOA under
local shading conditions. Based on the local electricity prices and assuming an average
daily sunlight duration of 12 h, this study calculates the annual cost of losses. In scenarios
with abrupt lighting condition changes, the PSO algorithm results in the highest annual
loss cost, whereas the PSO-BOA algorithm proves effective in mitigating these losses and
reducing costs. Meanwhile, the PSO algorithm achieves faster convergence in cases of
sudden changes in irradiance and temperature, but is more prone to falling into local
optima, resulting in the worst convergence accuracy. The convergence rate of the BOA
is sluggish, with many oscillations occurring over the course of convergence. In contrast,
the PSO-BOA algorithm is able to maintain stable and higher optimization accuracy than
both the BOA and PSO across all four simulations. These results suggest that the PSO-BOA
algorithm effectively addresses the issues of large search oscillation in the BOA and low
optimization accuracy in PSO while also improving convergence speed.

5. Conclusions

In response to the issues of low tracking accuracy and susceptibility to local optima
in classical PSO algorithms, as well as the problems of slow convergence speed and large
oscillation in the BOA, this study introduces a novel PSO-BOA algorithm based on the
PSO and BOA. The paper simulated four different scenarios, and the simulation results
demonstrate that the PSO-BOA algorithm outperforms the PSO and BOA in terms of
convergence accuracy, with a tracking accuracy of no less than 99.94%. In contrast, the
PSO algorithm is prone to becoming trapped in local optima, resulting in a convergence
accuracy of only 96.96% when both irradiation and temperature undergo abrupt changes.
The PSO-BOA algorithm also surpasses both the PSO and BOA algorithms in handling
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oscillations. In terms of convergence time, the PSO-BOA algorithm shows a significant
improvement. Particularly, in scenarios of abrupt changes in irradiation and simultaneous
changes in temperature and irradiation, the convergence time of PSO-BOA is less than 0.5 s,
while the BOA takes approximately double the time compared to the PSO-BOA. Moreover,
the convergence time of the PSO algorithm is relatively longer, and it tends to converge
quickly but may be trapped in local optima. Therefore, the proposed algorithm exhibits
faster convergence speed, higher tracking accuracy, and smaller oscillations compared to
both the PSO and BOA algorithms, which can effectively enhance power supply reliability
and safety.
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Abstract: The need for energy is always increasing as civilization evolves. Renewable energy sources
are crucial for meeting energy demands as conventional fuel resources are slowly running out.
Researchers are working to extract the most amount of power possible from renewable resources.
Numerous resources are in demand, including solar, wind, biomass, tidal, and geothermal resources.
Solar energy outperformed all the aforementioned resources in terms of efficiency, cleanliness, and
pollution freeness. Intermittency, however, is the resource’s main shortcoming. Maximum power
point tracking algorithm (MPPT) integration is required for the system to achieve continuous optimum
power by overcoming the feature of intermittency. However, generating electrical energy from solar
energy has presented a significant problem in ensuring the output power’s quality within a reasonable
range. Total harmonic distortion (THD), a phenomenon, may have an impact on the power quality.
Depending on the properties of the load, variables like power factor, voltage sag/swell, frequency,
and unbalancing may occur. The quality of power and its criterion exhibits a non-linear connection.
The article’s primary objective is to analyze the PV interface grid-linked system’s qualitative and
quantitative performance. With respect to varying solar irradiation conditions, partial shading
conditions, and solar power quality within the acceptable dimension, a novel intelligent multiple-
objective horse herd optimization (HHO)-based adaptive fractional order PID (HHO-AFOPID)
controller is used to achieve this goal. Adaptive fractional order PID (AFOPID), conventional FOPID,
and PID controllers were used to evaluate the performance of the suggested controller, which was
then validated using a commercially available PV panel in MATLAB/Simulink by varying the
productivity of non-conventional resources, the inverter’s level of uncertainty, and the potential at
the grid’s end. In order to realize the features of the system, sensitivity examination is also carried out
for solar energy’s sensitive parameters. The stability analysis of the proposed control topology is also
carried out in terms of the integral absolute error (IAE) and integral time absolute error (ITAE). The
examination of the sensitivity of variations in solar radiation in kilowatt per square meter per day is
based on the total net present cost (TNPC) and levelized cost of energy (LCOE), as optimal dimension
and energy cost are both aspects of priority. The suggested control methodology is an approach for
the qualitative and quantitative performance analysis of a PV interface grid-oriented system.

Keywords: horse herd optimization; adaptive fractional order PID controller; sensitivity analysis;
power quality and quantity analysis; maximum power point tracking
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1. Introduction

With increasing awareness of how quickly conventional energy sources like coal and
petroleum products are depleting, renewable sources of energy are gaining relevance on a
global scale today [1]. According to data from the U.S. Energy Information Administration’s
monthly energy review article as of June 2021, natural gas accounts for 58.8% of all energy
usage, followed by electricity at 39.1% and petroleum at 9.6% and 7%. The situation in
India indicates a greater reliance on coal and oil. As a result, conventional resources are
quickly running out. Due to the availability of non-conventional energy sources in nature,
they are prepared to offer services at permissible tweaks. As previously noted, solar energy
is the most practical resource for creating electrical energy because it does not generate any
greenhouse emissions or other hazards. However, due to the inability to deliver optimum
power under load without interruption, it is necessary to implement the maximum power
point tracking (MPPT) method. In addition to maximizing the power generated by the PV
source, MPPT also helps the PV system last longer [2].

There are numerous ways to obtain the maximum power possible out of a photovoltaic
source [3–7]. The ability to follow the actual maximum power point (MPP), speed of
convergence, robustness, efficiency, cost, and hardware implementation is the criteria used
to classify MPPTs. MPPTs are divided into three categories based on the aforementioned
requirements:online, hybrid, and offline methods. Offline techniques are dependent on
the solar cell model’s parameters. It is also known as a “model-based” approach. Online
approaches are known as “model free” methods, which denote that they are independent
of the solar model’s parameters. The two previously described strategies are combined to
create the hybrid method [8]. The most popular online MPPT techniques are perturb and
observe (P&O). Incremental conductance (IC) and hill climbing (HC) are two techniques
that function effectively when ambient temperatures and solar irradiation do not fluctuate
quickly [9–13], but offline approaches are effective when solar irradiation is changing
rapidly. Popular techniques include ANN-based MPPT, PI, fuzzy logic controller (FLC),
GA- and ACO-optimized MPPT, and others [14]. Hybrid MPPTs are used to retain the
maximum amount of PV panel power production in order to circumvent the drawbacks of
the aforementioned approaches [15–17]. A grid-connected system’s power quality should
also be evaluated in addition to power quantity monitoring. The interfacing of nonlinear
loads, such as power electronics components, results in harmonic content, which lowers
the quality of the power sent to the grid. In order to manage the power quality within a
certain range, DVR and D STATCOM are introduced [18]. IEEE Std (1250-2011) [19], states
that the maximum voltage deviation is 10% of the base value, the maximum frequency
deviation is ±0.1 Hz, and the maximum voltage/current deviation is 5% of the base value.
According to IEEE Std (519-2014) [20], THD shall not exceed 5%, while IEC [60831-1/2]
standards specify that the power factor must be more than or equal to 0.9 [20]. When
operating a PV system connected to the grid, good power quality must be satisfied while
taking into account all of the aforementioned constraints. Due to the fractional order PID
controller’s quick convergence and response for both linear and nonlinear loads, the theory
of factional calculus gained popularity [19,20]. The enhanced version of AFO+PID, known
as adaptive fractional order PID controller, is applicable for both linear and non-linear
loads and has a high degree of efficiency when operating in perturbed conditions. The
system is interfaced with an adaptive FOPID controller to increase gain and robustness.
The ideal system’s dimension and energy cost must also be taken into consideration in
order to ensure the successful functioning of a system, in addition to power quantity and
quality study. By adjusting peak demand when carrying a fixed energy demand and
vice versa, the grid-interfaced system is optimized to reduce energy costs (COEs), with a
reduction in peak load conditions [21]. The implications of various storage capacities on
the performance analysis of a hybrid micro-grid system are described in [22] along with
a sensitivity analysis. In [23], the performance evaluation of HRES was provided, and
it was proven that the pumped storage hydropower plant was the best option in terms
of cost savings. By talking about the constraints, a novel, multi-objective HHO-AFOPID
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control topology is provided to overcome the problems, and the evaluations of sensitive
SPV parameters that are dependent on LCOE and TNPC are carried out.

The work’s main contributions are noted below:

• The recommended controller works with the property of adaptation, and an intelligent
algorithm calibrates the settings. Horse herd optimization uses partial shade and
different irradiances. By using the specified (HHO-AFOPID) controller, the system
was able to successfully collect 100 kW of solar energy. By considering the adaptive
strategy of the AFOPID controller from a hybrid PO-NDPID MPPT controller, dc link
voltage and current control logic are implemented, along with an illustration of the
quadrature axis that is also implemented.

• To improve the power quality, the combined impacts of voltage deviation, total harmonic
distortion (THD), and frequency fluctuation have been researched and managed.

• Undershoot, settling time, ripples, integral absolute error (IAE), and integral time ab-
solute error (ITAE) have all been included in the evaluation of the suggested controller.

• To determine how the PV interface grid-linked system would react to changes in irra-
diation data, sensitivity analysis based on LCOE and TNPC has also been conducted.
To evaluate the system’s performance in light of the changes to sensitive parameters,
it is crucial to carry this out.

The organization of this article is as follows: Section 2: System Model Simulation;
Section 3: Solar Photovoltaic (SPV) Control Implementation Adaptive Fractional Order
PID Controller Design; Section 4: Results and Clarifications; Section 5: Sensitivity Analysis;
Section 6: Conclusions and Future Directions.

2. System Model Simulation

2.1. Photovoltaic Modeling

The PV system is a nonlinear source since it consists of a parallel-connected current
source and a diode, where Rs denotes the metal junction loss.

The PV model is shown in Figure 1. The generation of photovoltaic current results
from the action of electron flow, and its magnitude is exactly proportional to the quantity
of irradiance (G), with low variations due to ambient temperature (T) and the use of the
Shockley equation by [24,25].

Figure 1. Combined model of photovoltaic generation.

I = Ipv−Id (1)

The PV system output can be addressed by:

Ipv= Iph−I
(

e
qvp
KT − 1

)
(2)

The output power of the PV panel is formulated by:

Ppv= Vpv Ipv (3)
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The output of solar energy is a property of the photovoltaic panels’ rated capacity,
and the PV de-rating factor, a measuring factor, permits the impact of many losses that
may cause the PV module’s output to be less than what it was originally [26]. The power
generated by solar photovoltaics’ (SPV) can be visualized as [26] follows:

Powersp = PsDs

(
Ia

IaSTC

)
[1 + βa(Ta − Ta,STC)] (4)

Ps = estimated capacity of the SPV array (kW);
Ds = solar de-rating factor (%);
Ia = Incident SPV irradiation on the SPV array in present time (kW/m2);
IaSTC = incident SPV irradiation at the standard test condition (1 kW/m2);
βa = coefficient of the power temperature (%);
Ta = temperature of the SPV cell (◦C);
Ta,STC = SPV cell temperature at the standard test condition (25 ◦C).
If βa is overlooked in the PV interface grid system, then the power outcome may be

conveyed as follows:

Powersp= PsDs

(
Ia

IaSTC

)
(5)

Partial Shading and the Impact of Bypass Diode

When SPV arrays are connected in series, they are subjected to constant illumination,
and P-V I-V curves have a single maximum power point. However, they are not meant to
receive homogenous irradiation when they are combined in a series–parallel fashion. Due
to this occurrence, some arrays are unable to produce the intended results. Poor efficiency
is the end result, and hot spot and non-matching problems are also introduced [27]. The
purpose of the bypass diode is to decrease the effects of mismatching-related problems [28].
Figure 2 depicts a solar photovoltaic system with a blocking and bypass diode in a series-
shunt configuration.

Figure 2. SPV with a bypass diode and blocking diode designed in series-shunt combination.
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2.2. Converter

Due to intermittent problems with generating solar photovoltaic power, it is possible
that the DC voltage produced is not large enough to support further research. It needs
a DC-DC boost converter attached to it in order to increase to the appropriate level. The
boost converter is modeled using typical calculations based on the system rating. An
inverter with a 2 L voltage source performs the DC-AC conversion. The inverter’s output
is represented as follows:

Pinverter,output= ηinverter ×PDC (6)

ηinverter = efficacy of the inverter;
PDC = power outcome from DC-DC boost converter;
Pinverter,output = Power delivered from the inverter.

2.3. LCL Filter

The LCL filter is primarily employed in grid-interfaced solar photovoltaic systems,
and its an amalgamation of L1 + R1, L2 + R2 and C + Rc, which is applied in order to
mitigate the harmonic effect introduced during PWM operations. Equation (7) depicts the
numerical expressions: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1
di1
dt + R1i1 = vi − vc − Rcic

L2
dig
dt + R2ig = vc – vg – Rcic

C dvc
dt = ic

i1 = ig + ic

(7)

vg = potential of the grid end;
vi = voltage of the inverter;
R1 and R2 represent the resistors of the inductors L1 and L2 consecutively.
Neglecting the resistors from the aforementioned equations, the Laplace transform of

the LCL filter is derived using Equation (8).

GLCL_f(s) =
1

s3L1L2C + s(L1 + L2)
(8)

The resonant frequency of the used filter is shown in Equation (9).

fresonant =
1

2π

√
L1 + L2

L1L2C
(9)

The current and voltage of the grid end can be related using the transfer equation of
the system model, and this is shown in Equation (10).

H(s) =
ig

vi
=

RCs + 1
L1L2Cs3 + RC(L1 + L2)s2 + (L1 + L2)s

(10)

3. Solar Photovoltaic (SPV) Control Implementation Adaptive Fractional Order PID
Controller Design

In this section, the three phases of the proposed HHO-AFOPID’s execution are shown
as a photovoltaic source’s interface with the grid system.

V =
2
3

(
vaN + exp

(
j2π

3

)
vbN + exp

(
j4π

3

)
vcN

)
(11)
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vaN , vbN , and vcN are termed as voltages falling between phase and neutral. The grid
infrastructure of the grid-interfaced dc-to-ac inverter in a d-q frame may be arranged using
the following differential equations [29].

dia

dt
= −R

L
ia+

1
L

vaN− 1
L

eaN (12)

dib
dt

= −R
L

ib+
1
L

vbN− 1
L

ebN (13)

dic

dt
= −R

L
ic+

1
L

vcN− 1
L

ecN (14)

The dc end of the inverter can be expressed in the form of a differential equation while
disregarding losses that happened in the switches of the inverter. The following diagram
illustrates how the inductor’s resistance and rate of energy fluctuate [30].

C
dvdc
dt

= ip−idc= ip− edid + eqiq

vdc
(15)

ed, and eq and id and iq shows the potentials and currents of the grid end in a movable
d-q frame. C represents the capacitor of the dc bus, ip exhibits the photovoltaic current, vdc
is the potential of the dc link.

The state equation of the SPV system can be depicted by applying abc-dq transforma-
tions in Equation (16) as follows.

⎧⎨
⎩

.
x1 = −a1x1 + a2x2 − a3 + a4u1.
x2 = −a2x1 − a1x2 − a5 + a4u2.

x3 = a6 − a7x1+a8x2
a9x3

(16)

The notations are provided below.
x1 = Id, x2 = Iq, x3 = vdc, u1 = vd, u2 = vq, a1 = R

L , a2 = ω, a3 = ed
L , a4 = 1

L , a5 = ed
L ,

a6 =
ip
C , a7 = ed, a8 = eq, a9 = C.

The non-linear features of solar photovoltaic systems are shown in Equations (17a)
and (17b):

.
x= f(x) + g1(x)u1 + g2(x)u2 (17a)

.
x =

⎛
⎝−a1x1 a2x2 a3
−a2x1 −a1x2 −a5

a6 − a7x1+a8x2
a9x3

0

⎞
⎠ (17b)

The suggested controller’s main goal is to send the best switching signal possible to
the inverter in order to draw the most amount of power possible from the PV source. The
maximum power point is followed by the control topology in this article to complete the
research component. Table 1 displays the PV parameter, while the attributes of the grid are
shown in Table 2.

Table 1. Parameter of the PV system.

Quantity Value

Rating of PV system 100 kW
Optimum power of one module (W) 215

Potential at maximum power point (VMPP) (V) 39.8
Current at maximum power point (IMPP) (A) 6.4
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Table 2. Parameters of the grid’s infrastructure.

Parameter Parametric Value

R (ohm) 0.15
L (mHenry) 1.85
C (mFarad) 4.8

E (Volt) 77.8
f (cps/Hz) 50

The execution of the three-phase inverter approach in the d-q frame can be analyzed using

vd = ed+Rid+L
did
dt

+ωLiq (18)

vq = eq+Riq+L
diq

dt
−ωLid (19)

ed, and eq; id, and iq; and vd, and vq represent the currents, potentials, and output
potentials of a PV-interfaced inverter, respectively. The alternating quantity’s frequency is
represented by the symbol. The equation for AC and DC power stability is given as follows:

edid+eqiq = vdcidc (20)

where vdc and idc represent the input parameters of the PV-interfaced inverter.

3.1. Design an Adaptive Fractional Order PID Controller

FOPID controllers with adaptive properties are initiated to generate the output power,
which is more prominent and showed robustness [31–34].

α.Dα
t =

⎧⎨
⎩

d
dt

α
tα , α > 0

1, α = 0∫ t
α dτα,α < 0

(21)

For the requirements of the system, the upper and lower boundaries are measured
by α and t when α ∈ R with respect to the order of operation. The performance was com-
pared using conventional PID and FOPID and without optimized AFOPID. The suggested
controller showed better non-erroneous responses that are applicable to both linear and
non-linear loads.

The FOPID is the modified version of a conventional PID controller with two parame-
ters added: fractional integrator order (λ) and fractional derivative order (μ). As a result, it
exhibits the outcome’s quality [35,36].

G(S) = kP+
kI

Sλ
+kDSμ (22)

3.2. Computational Formation of the HHO Optimization Algorithm

Horse herd optimization (HHO) was developed based on the way horses behave in
their original habitat. A few common behavioral traits of horses include hierarchy, grazing,
imitation, sociability, defense mechanism, and roaming [37,38]. The method is motivated
by these six attitudes towards horses of various ages. At each phase, horses are moved in
accordance with Equation (23):

Piter,age
m = Veliter,age

m +P(iter−1),age
m (23)

Age = α, β, γ, and δ.
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For the above equation, we have the following:

• Piter,age
m represents the position of the mth horse;

• The range of each horse is shown by age;
• The current number of iterations is given by iter;

• Veliter,age
m provides the velocity of the particular horse.

During their life span, the horses show different behaviors. The average life span of a
horse is 25–30 years [38]. Where Δ represents horses that age between 0 and 5; γ shows
those aged between 5 and 10; β denotes ages between 10 and 15; α denotes those older than
15 years old. Each iteration should have a thorough examination to ascertain the horses’
ages. The top 10% of horses in the ordered matrix are picked as horses, with the remaining
horses chosen from the remaining 90% of horses in the ordered matrix. In total, 20% of
the population after that makes up the group. Moreover, 30% and 40% of the remaining
horses belong to the groupings, respectively. The techniques that statistically mimic the six
movements of various groups of horses are used to compute the velocity vector.

Considering the following behavioral trends [39], Equations (24)–(27) might be consid-
ered the motion vectors of various aged horses throughout every iteration cycle.

Veliter,α
m = Graiter,α

m +De f enseMeciter,α
m (24)

Veliter,β
m = Graiter,β

m +Hiter,β
m +Sociter,β

m +De f enseMeciter,β
m (25)

Veliter,γ
m = Graiter,γ

m +Hiter,γ
m +Sociter,γ

m +Imiiter,γ
m +Roamiter,γ

m +De f enseMeciter,γ
m (26)

Veliter,δ
m = Graiter,δ

m +Imiiter,δ
m +Roamiter,δ

m (27)

These are the key stages of a horse’s social and individual intelligence.

3.2.1. Grazing (Gra)

Horses are roving creatures that consume fodder such as grasses and plants. With
only a few hours of respite, they graze in pastures for 16 to 20 h every day. This kind of
progressive grazing is known as continuous eating; you may have observed mares graze
in pastures while carrying their foals [38]. The HHO method is used to represent each
horse’s grazing space. Each horse grazes in a specific spot due to coefficient g. Horses
graze throughout their entire lives at any age. Grazing is carried out along a line using
mathematical Equations (28) and (29).

Graiter,age
m = giter(low + r ∗ upp)

(
Piter−1

m

)
, age = α, β, γ, δ (28)

giter,age
m = wg×g(iter−1)age

m (29)

Graiter,age
m indicates the horse’s range of motion and shows how well the associated

horse can graze. For each cycle, the grazing variable decreases linearly at wg.
While “low” and “upp” represent the bottom and higher limits of the grazing space,

respectively, variable “r” has an arbitrary value between 0 and 1. It is suggested that “low”
and “upp” should be adjusted to 0.95 and 1.05, respectively, for all age groups. In all age
ranges, coefficient g’s value is set to 1.5.

3.2.2. Hierarchy (H)

Horses are dependent. They follow a leader throughout their life, which is a behavior
that people frequently exhibit; based on the principle of domination [38], a mature stallion
or a filly is also in charge of overseeing a herd of wild horses. Coefficient hm in HHO is
defined as the propensity of a group of horses to follow the direction of the most skilled
and powerful horse. Horses follow the law of hierarchy when they are between the ages of
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5 and 15 years according to research.Equations (30) and (31) are useful for establishing this.

Hiter,age
m = hiter,age

m

(
Piter−1

lbh −Piter−1
m

)
(30)

hiter,age
m = hiter−1,age

m ×wg (31)

Hiter,age
m shows the optimal horse’s location using the velocity variable. Piter−1

lbh identi-
fies where the finest horse is standing.

3.2.3. Sociability (Soc)

Horses may cohabit with various animal species and require social contact. Living in
a herd protects wild horses from predators that may pursue them. Pluralism increases their
chances of surviving and makes escaping simpler. Due to their social nature and the fact
that they are so unique, horses regularly fight with one another.

Some horses seem to prefer being around other animals like sheep and cattle, but they
despise being by themselves [38].

The following calculations demonstrate that horses between the ages of 5 and 15 years
are most interested in being with a herd.

Sociter,age
m = sociter,age

m

[(
1
N ∑N

j=1 Piter−1
j

)
− Piter−1

m

]
age = β, γ (32)

sociter,age
m = sociter−1,age

m ×ωSoc (33)

The above-mentioned equations reveal the following:
Sociter,age

m explains the social motion vector that the ith horse presents.
sociter,age

m demonstrates how the horse is facing the direction of group ith.
iter, which has a parameter of ωs, reduces the iteration with each cycle.
The total number of horses is expressed by N.
Age is a representation of each horse’s age range.
By evaluating these factors, the derivations of coefficients γ and β are carried out.

3.2.4. Imitation (Im)

Horses mimic one another and learn from one another’s good and bad habits, such as
where the finest feeding area is [38]. Young horses have a tendency to imitate elder ones, and
this practice is sustained until the end of their life span, as explained in Equations (33) and (34).

Imiter,age
m = imiter,age

m

[(
1

pN ∑pN
j=1 Piter−1

j

)
− Piter−1

]
(34)

imiter,age
m = imiter−1,age

m × ωim (35)

The contributions from the above set of equations are listed as follows.
Imiter,age

m expresses the motion vector that shows the ith horse among the best choice
of horses at P position.

imiter,age
m represents the inclination of that particular horse in the orientation of the

group on the ith cycle.
N shows the best position’s horse number. p is the category of the 10% of chosen horses.
ωim Factor denotes the factor of reduction/iteration for iiter.

3.2.5. Defense Mechanism (Defense Mec)

Since they have historically been preyed upon, the horses’ behavior reflects this.
Horses fight for food and water to keep rivals at bay and to avoid hazardous areas where
foes such as wolves may lurk. They also buck when caught. Horses engage in a fight-
or-flight reaction to defend themselves [38]. In the HHO approach, the horses’ defense
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mechanism allows them to escape from any other horses that display inappropriate or un-
favorable behavior. This characteristic describes their main line of defense. As mentioned
earlier, horses must flee from or engage in combat with their adversaries. A young or adult
horse has such a defense system in place whenever it is practical. Equations (35) and (36)
describe the defensive strategies of horses that do not allow other animals to enter danger-
ous regions.

De f enseMeciter,age
m = de f ensemeciter,age

m

[(
1

qN ∑qN
j=1 Piter−1

j

)
− Piter−1

]
(36)

Age = α, β, γ, δ

de f ensemeciter,age
m = de f ensemeciter−1,age

m ×ωde f ensemec (37)

From the above equations, we have the following:
De f ense Meciter,age

m , based on the average location of a horse in the worst P position,
describes the escape vector of the ith horse.

Here, q is equal to 20% of the total number of horses, and qN displays the number of
horses in the poorest situations.

ωde f ense mec indicates the earlier determined reduction factor per cycle for iter.

3.2.6. Roam(Roam)

Horses travel and graze around the countryside in search of nourishment, moving from
pasture to pasture. Although they maintain the aforementioned feature, most horses are
kept in stables. A horse could rapidly switch where it grazes. Due to their intense curiosity,
horses routinely visit other pastures to familiarize themselves with their environment.
Through the side walls of their enclosures, the horses can see one another, and a suitable
stable satisfies their need for socialization [38].

The program mimics this behavior by using factor r, which is nothing more than a random
movement. When horses are young, roaming is almost never observed, and it gradually
decreases as they grow older. Equations (37) and (38) depict the variables of roaming.

Roamiter,age
m = roamiter,age

m δP(iter − 1) (38)

Age γ, δ
roamiter,age

m = roamiter−1,age
m × ωroam (39)

Roamiter,age
m is the ith horse’s arbitrary velocity vector for local searches and escapes

from local minima.
ωroam = factor of reduction in the roamiter,age

m /cycle.
Substituting the outcomes from (28) to (39) into Equations (24)–(27), the generic

velocity vector may be established.
The velocity of the horses belonging to the age group of 0–5 years is defined as follows,

which is defined as δ.

Veliter,δ
m =

[
ωg × giter−1,δ

m (low + r × upp)
(

Piter−1
m

)]
+ imiter−1,δ

m × ωim×[(
1

pN ∑
pN
j=1 Piter−1

j

)
× (

Piter−1)]+ roamiter−1,δ
m × ωroam × δPiter−1

(40)
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The velocity of the horses belonging to the 5–10-year age group is described as follows,
and it is defined as γ:

Veliter,γ
m =

[
ωg × giter−1,γ

m (low + r × upp)
(

Piter−1
m

)]
+ hiter−1,γ

m × ωh ×[
Piter−1,γ

lbh − Piter−1
m

]
+ sociter−1,γ

m × ωsoc ×
[

1
N ∑N

j=1 Piter−1,γ
j − Piter−1

]
imiter−1,γ

m × ωim ×[(
1

pN ∑
pN
j=1 Piter−1

j

)
− Piter−1

]
+

roamiter−1,γ
m × ωroam × δPiter−1

(41)

The velocity of the horses belonging to the 5–10 year age group is described as follows,
and it is defined as β.

Veliter,β
m =

[
ωg × giter−1,β

m (low + r × upp)
(

Piter−1
m

)]
+ hiter−1,β

m × ωh ×
[

Piter−1,β
lbh − Piter−1

m

]
+ sociter−1,β

m × ωsoc ×
[

1
N ∑N

j=1 Piter−1,β
j − Piter−1

]
−

de f ensemeciter−1,β
m × ωde f ensemec ×[(

1
qN ∑

qN
j=1 Piter−1

j

)
− Piter−1

]
(42)

The velocity of the horses belonging to the >15 age group is described below, and it is
defined as α.

Veliter,α
m =

[
ωg − giter−1,α

m (low + r × upp)
(

Piter−1
m

)]− de f ensemeciter−1,α
m ×

ωde f ensemec ×
[(

1
qN ∑

qN
j=1 Piter−1

j

)
− Piter−1

] (43)

From the above elaborative narration, the benefits of the horse herd optimization
algorithm are summarized below:

• The α horses will act as the role model for the other age group and provide the
best reactions. They will serve as a coach when they start their search for optimized
reactions and build up an exploited plan of action. This behavior happens when
grazing traits and protective measures are required.

• β horses meticulously scan the area for the most likely perfect spots, paying close
attention to α.

• γ horses’ natural behaviors are all used to construct “The” horses. Despite their
forceful and arbitrary movements, they appear to be effective for both the exploratory
and exploitative phases.

• Young horses appear to be more excitable and animated, making them better suited
for the exploration stage.

The HHO algorithm is established to derive the best parameter value of AFOPID
by minimizing the integral absolute error (IAE) and integral time absolute error (ITAE)
objective functions.

3.3. Implementation of the Grid-Interfaced Controller

It is necessary to perform d-q analysis to make the essential data from the grid end
relatable with the controller so that it can send the switching signal to the inverter to ensure
that the PV source can receive the maximum amount of power. The exhaustive control
methodology is illustrated in Figure 3.
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Figure 3. Flowchart of the proposed HHO-AFOPID control algorithm.

For the PV-connected grid’s infrastructure, resistance R, and inductance (L), the po-
tential of the system is depicted as vd and vq, and id, and iq show the grid’s currents.
Conventional MPPT algorithms are the best fit for uniform environmental conditions. To
overcome the shortcomings, a hybrid MPPT is proposed. The suggested control method-
ology is initiated by combining perturb and observe (P&O) with non-linear discrete PID
(NDPID) to induce reference power (Pre f ) during varying solar irradiations and ambient
temperature constants. The error is calculated by subtracting the reference power from the
output power.

Error =
∣∣∣Pout − Pre f

∣∣∣ (44)

The error is termed as the integral absolute error (IAE) and integral time absolute error
(ITAE), which can be described as:

IAE =
∫ t

0
|e(t)|dt (45)

ITAE =
∫ t

0
t|e(t)|dt (46)

where t is the simulation time.
By introducing the optimization, the superior value of fitness is achieved and, there-

after, the law of adaptive control can be set. The preliminary amplitude of the controller
is obtained using horse herd optimization, which initiates the control logic expansion.
The hybrid PO-NDPID MPPT controller is incorporated to induce the voltage of dc link
v∗dc under changing irradiation from the PV source. Accordingly, to achieve the power
factor of unity, the reference of quadrature axis i∗q is calculated using thePV inverter. Later,

by defining the state vector as
.
x = (x1 , x2 , x3 )

T , which indicates that the parameters
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are
(
iq , id, vdc

)T , output matrix y can be defined as y = (y1, y2)
T =

(
iq, vdc

)T , and input

u = (u1, u2)
T=

(
vdc, vq

)T . The photovoltaic inverter’s state equation can be written as:

.
x=

⎡
⎢⎣
− R

L x1 −ωx2
ed
L

− R
L x2 ωx1 − eq

L
ip
C

edx1+eqx2
Cx3

0

⎤
⎥⎦+

⎡
⎣ 1

L 0
0 1

L
0 0

⎤
⎦ u (47)

the trailing error is defined as e = [e1,e2]
T=

[
iq − i∗q , vdc − v∗dc

]T
(48)

The control input u is obtained by differentiating error e.

[ .
e
..
e

]
=

[
f1(x)
f2(x)

]
+B(x)

[
u1
u2

]
−
[

i∗q
v∗dc

]
(49)

[
f1(x)
f2 (x)

]
= Matrix A (50)

Matrix A is further elaborated:

f1(x) = −R
L

iq+ωid − eq

L
(51)

f2(x) =
ip

C
− ed

(
−R

L
id − ωiq − ed

L

)
+ eq

(
−R

L
iq + ωid −

eq

L

)
/Cvdc −

(
edid+eqiq

)
C2v2

dc
ip +

(
edid + eqiq

)2

C2v3
dc

(52)

where

B(x) =

[
− 0 0

ed
LCvdc

− eq
LCvdc

]
(53)

The controlling input [ u1, u2 ] can be achieved for photovoltaic inverters based on
numerous HHO-AFOPID objectives.

The following formulation is obtained from (49).

u1 = − LCvdc
ed

(
v∗dc − vdc + v∗dc

)
+

eq
LCVdc

(
kp1 +

ki1
sλ1 + kd1sμ1

)
− iP

C +

ed(− R
L id−ωiq− ed

L )+eq

(
− R

L iq+ωid− eq
L

)
Cvdc

+
{(

edid + eqiq
)
/Cv2

dc
}

iP −
(

kp2 +
ki2
sλ2 + kd2sμ2

) (54)

u2 = Li∗q −ωLid + Ri∗q + eq + (vdc − v∗dc)
(

iq − i∗q
)[(

kp1 + kp2
)
+

(
ki1

sλ1 +
ki2

sλ2

)
+

(
kd1sμ1 + kd2sμ2

)]
(55)

To attain the target, two control inputs (u1, and u2) are executed. The mentioned control
topology is termed as numerous objectives due to its two fold adaptive features combined
with the current of the q-axis ( iq

)
and the potential of the dc-link (vdc). The focus of the

proposed HHO-AFOPID is to reduce the objective function or fitness function as follows:

Reducing F(x) =
∫ Tsim

0

(
(vdc − v∗dc) +

(
iq − i∗q

))
dt (56)

Subjected to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kmin
pi ≤ kpi ≤ kmax

pi
kmin

di ≤ kdi ≤ kmax
di

kmin
ii ≤ kii ≤ kmax

ii
μimin ≤ μi ≤ μimax
λimin ≤ λi ≤ λimax

for i = 1, 2 (57)
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With a view to affirm the stability of the proposed HHO-AFOPID control topology,
the single-input single-output (SISO) system is analyzed in terms of error reduction.

The transfer function of the SISO system is written as follows:

.
e1 +

(
kp1 + kp2 +

R
L

)
e1 +

(
ki1

sλ1 +
ki2

sλ2

)
e1+

(
kd1sμ1 + kd2sμ2

)
e1 (58)

..
e +

1
CRdc

e2+kp2e2+kp1e2+

(
ki2

sλ2 − ki1

sλ1

)
e2+

(
kd2sμ2 − kd1sμ1

)
e1 (59)

G1(s) =
1

1 + s+ R
L

(kp1+kp2)+(kd1sμ1+kd2sμ2)+
(

ki1
sλ1 +

ki2
sλ2

) (60a)

G2(s)=
1

1 + CRdcs2+1

CRdc

(
kp1+kp2+kd2sμ2−kd1sμ1+

ki2
sλ2 +

ki1
sλ1

) (60b)

The investigation of the stability of the advanced HHO-AFOPID control topology is
analyzed in terms of IAE and ITAE. Figure 4 shows a grid-connected PV system where
HHO-AFOPID generates the gate signal to operate the inverter in order to achieve the
desired goal.

Figure 4. Block diagram of the proposed methodology.

The other parameters that are supplied to the same controller from the grid end are
translated into d-q values in order to meet the control operation. The error produced
from the differentiation between reference power and output power is delivered at the
input of the AFOPID controller. To adjust the controller’s settings, kp, ki, kd, μ, and λ, an
intelligent optimizing algorithm, horse herd optimization, is introduced on the basis of
the cost function or integral absolute error (IAE) and integral time absolute error (ITAE)
objective functions.

4. Results and Discussions

4.1. Case Study 1

A small number of experiments are conducted to confirm the present controller’s
successful operation and resilience. The initial test involves using the PV source to produce
100 kW while maintaining irradiation of 1000 W/m2. The result in Figure 5a can be used
to demonstrate that the proposed HHO-AFOPID controller is superior to conventional
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controllers in terms of quick convergence, short settling times, and minimal oscillation on
MPPT. The next test is carried out to generate the same amount of power from the PV source
by changing the irradiation from 1000 W/m2 to 700 W/m2. Here, the proposed controller
also proves to be the best and shows its robustness in Figure 5b. Here, the controller also
outperforms the aforementioned point of the criterion.

Later, a test was conducted by first turning down the PV source’s irradiation intensity
to 500 W/m2 and then back up to 850 W/m2. The suggested HHO-AFOPID controller in
Figure 5c appears to be the most effective and reliable under these conditions.

As observed in the results, HHO-AFOPID exhibits the highest performance relative
to following the MPP with high efficiency and little power loss under both constant and
variable irradiation conditions. The magnitudes of kpi, kdi, kii , μi, and λi are tabulated in
Table 3 by incorporating various controllers with the suggested controller.

Table 3. Optimally tuned parameters of HHO-AFOPID acquired by horse herd optimization.

Algorithms
Voltage or Potential of DC Link (u1)
kpi, kdi, kii

Current of q-Axis (u2) kpi,
kdi, kii

HHO-AFOPID

kp1 = 100, kp2 = 129
kd1 = 105, kd2 = 115
ki1 = 76, ki2 = 178
μ1 = 1.25, μ2 = 1.05
λ1 = 0.98, λ2 = 1.35

kp1 = 177, kp2 = 147
kd1 = 94, kd2 = 121
ki1 = 116, ki2 = 120
μ1 = 1.41, μ2 = 1.23
λ1 = 0.99, λ2 = 1.76

AFOPID

kp1 = 109, kp2 = 139
kd1 = 115, kd2 = 145
ki1 = 96, ki2 = 192
μ1 = 1.18, μ2 = 1.35
λ1 = 1.98, λ2 = 1.5

kp1 = 187, kp2 = 177
kd1 = 104, kd2 = 141
ki1 = 136, ki2 = 129
μ1 = 1.51, μ2 = 1.33
λ1 = 1.02, λ2 = 1.95

FOPID

kp1 = 119
kd1 = 143
ki1 = 106
μ1 = 1.68
λ1 = 2.1

kp2 = 190
kd2 = 155
ki2 = 140
μ2 = 1.48
λ2 = 2.2

PID
kp1 = 139
kd1 = 166
ki1 = 126

kp2 = 200
kd2 = 175
ki2 = 159

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. Experiment of the proposed HHO-AFOPID controller (a) under constant irradiation,
(b) under changing irradiation, and (c) under various irradiation levels: 850 W/m2 and 500 W/m2.

4.2. Case Study 2

Another criterion applies to vindicate the achievement of the derived controller that
is tracking the voltage of the DC link under constant and changing irradiation levels of
the PV source. After analysis, it was observed that the HHO-AFOPID again satisfies the
robustness. In Figure 6a, it shows that the proposed controller is the best one to meet the
aim of the constant irradiation condition, and in Figure 6b, satisfactory performance is
observed under varying irradiation conditions.
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(a)

(b)

Figure 6. Features of the voltage of the dc link (a) under constant irradiation level and (b) under
changing irradiation levels.

4.3. Case Study 3

Additionally, the system is evaluated within partial shading circumstances. When
compared to other controllers, the suggested controller performs better in this instance
and extracts 100 kW from the system. In this instance, a 4 × 1 array configuration with
a right-skewed half-plane MPP position is chosen. This is carried out to confirm that
the proposed HHO-AFOPID MPPT control topology is repeatable and can successfully
manage the partial shading condition. In addition to this, another goal is to show how the
methodology with skewed global MPP varies in performance on the characteristics graph.
The power to validate competing methodologies is displayed in the comparison in Figure 7.
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Figure 7. Experiment under the partial shading condition.

The methodical details are revealed in Table 4. Due to the inclusion of the method of
the fractional order, it is clear from the analytical observation that HHO-AFOPID exhibits
the lowest fitness function and the shortest time of convergence, which highlights its
superior performance index and robustness compared to other control methodologies

Table 4. Comparative performance analysis of different controllers.

Control Topology
Objective Function (p.u) Time of Convergence (h)

Number of Iterations for
Convergence

High Low Mean High Low Mean High Low Mean

HHO-AFOPID 1.02 0.88 0.95 0.62 0.33 0.475 125 100 112.5

AFOPID 1.67 1.28 1.475 0.48 0.25 0.365 114 89 101.5

FOPID 1.88 1.45 1.68 0.26 0.19 0.225 98 59 78.5

PID 2.8 2.25 2.525 0.09 0.01 0.05 39 9 24

4.4. Case Study 4

Power quality was also assessed in terms of the voltage variation, THD, and frequency
for verifying the controller’s effectiveness. HHO-AFOPID exhibits the best outcome and
upholds its reputation in this instance as well.

4.4.1. Voltage Deviation

Power quality is one of the main issues of grid-connected systems. The root mean
square (RMS) value of the voltage can be expressed as an equation based on the peak value
and sample/cycle (61) [20]:

vrms
i =

√
1
M∑i+M−1

k=1 v2
k (61)

M = sample/cycle of the initial;
vk = k-th specimen of the registered potential waveform;
vrms

i = i-th specimen of the measured r.m.s voltage.
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The value of the root mean square voltage lags behind the phase voltage by (M − 1)
cycles since there are M cycles per second.

4.4.2. THD

The total harmonic distortion (THD) can be defined as the ratio of the root mean
square value of harmonics to the elemental signal and is manifested in Equation (62) [20].

THDv=

√
v2

rms − v2
1

v1
(62)

4.4.3. Frequency

Equation illustrates how the frequency at the grid’s end is confirmed to be roughly 50
Hz using PV panels (63) [20].

Δf = −(ΔPPV)R (63)

R is the frequency droop coefficient and is restricted up to 5%.
In reality, there is no way to completely solve power quality problems, but they can be

managed or improved to the required level. In this study, a novel HHO-AFOPID controller
is used and successfully simulated while retaining the aforementioned power quality issues
in the grid-connected system with an SPV interface under normal and perturbed conditions.
System perturbation is created from 0.95 s to 1.9 s. To achieve a balanced system quickly, the
unbalanced three-phase voltage and current have been controlled using inverter switching
pulses. The proposed controller gains fast triggering. The system’s voltage is immediately
balanced by the gate pulses that are fired in comparison to the other mentioned controllers,
i.e., AFOPID, FOPID, and PID.

Figure 8a–c depict the comparative performance assessment in terms of deviation
in voltage, frequency, and total harmonic distortion, respectively. While it is clear from
the voltage deviation profile that FOPID and AFOPID have shown less deviation than
PID, the suggested HHO-AFOPID shows smooth and little change in %VD. The suggested
controller’s frequency and THD profile also display no frequency fluctuation and practically
no THD, which supports the high-quality power produced by the grid-connected PV system
and boosts the system’s effectiveness.

Tables 5 and 6 compare the performance of several controllers with the proposed
controller under changing irradiation and partial shading conditions, respectively. The
recommended controller is put to the test against various controllers in terms of undershoot,
settling time, ripples, and stability under varying irradiation conditions as measured by
IAE and ITAE. In comparison to the other described controllers, the suggested controller
exhibits the least undershoot, settling time, and ripple content. The smallest IAE and ITAE
further demonstrate HHO-AFOPID’s stability across a variety of irradiation conditions.

Table 5. Comparative performance analysis of different controllers under changing irradiation conditions.

Index of Performance PID FOPID AFOPID HHO-AFOPID

Undershoot (%) 10.1 5.4 1.4 0.031

Settling time (ms) 58.43 19.5 19.46 19.36

Ripples 1.33 0.134 0.010 0.0057

IAE 0.2567 0.2243 0.1978 0.1657

ITAE 0.1765 0.1533 0.1243 0.1211
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Table 6. Comparative performance analysis of different controllers under the partial shading condition.

Index of Performance PID FOPID AFOPID HHO-AFOPID

Undershoot (%) 10.09 5.45 1.6 0.027

Settling time (ms) 60.09 19.1 18.49 19.29

Ripples 1.4 0.14 0.011 0.0055

IAE 0.2657 0.2133 0.1320 0.0061

ITAE 0.1543 0.1324 0.1109 0.0056

(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. Power quality analysis on the basis of (a) voltage deviations under HHO-AFOPID,
(b) frequency under HHO-AFOPID, and (c) THD analysis under HHO-AFOPID.

In comparison to PID, FOPID, and AFOPID, Table 6 demonstrates that the suggested
HHO-AFOPID controller maintains consistency under partial shade conditions in terms of
least undershoot, lower settling time, and lower ripple content. When compared to PID,
FOPID, and AFOPID, the lowest IAE and ITAE also have the significance of being stable
under the given conditions.

In addition to these trials, a literature review was conducted to verify the HHO-
AFOPID controller’s satisfactory performance analysis, which was based on the case
studies listed below. Since earlier times, experts have concentrated on extracting the most
energy possible from solar energy. MPPTs are therefore relevant.. Researchers’ attention
has been drawn to the hybridization of the MPPT algorithm as their study has progressed.
Here, numerous other hybrid and non-hybrid controllers are compared to the suggested
hybrid HHO-AFOPID MPPT controller in order to provide a comparison of them based
on power efficacy and oscillations, and these studies assert that the proposed controller is
the best in the aforementioned areas. The suggested controller’s performance study with
different non-hybrid and hybrid MPPT control topologies is shown in Table 7.

Table 7. Comparative performance analysis of the hybrid HHO-AFOPID with other hybridized and
non-hybridized MPPT algorithms.

Algorithms References Power Efficacy Oscillations

P&O [40] 93–97% Excessive
P&O-PSO [41] 94–98% Excessive
P&O-Fuzzy [42] 92% Intermediate
P&O-Fuzzy [43] 99% Truncated
PSO-PID [44] 97% Intermediate
PSO-NDPID [44] 99.5% Excessive Low
GA-PID [44] 95% Mitigated
GA-NDPID [44] 99% Truncated
ANN [45] 92–98% Intermediate
ANN-PO [46] 99.75% Excessive Low
HOA [39] 99.8% Excessive Low
HHO-AFOPID (Proposed) 99.98% Almost negligible
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5. Sensitivity Analysis

Sensitivity analysis is used to examine how well a system performs in relation to
changes in sensitive parameters, such as solar irradiation in the case of a PV-interfaced
system. Analyzing the disturbance in sensitive variables is crucial. The variations in
sensitive factors and their magnitudes are shown in Table 8.

Table 8. Variation of sensitive factors with the magnitude of SPV.

Parameter Magnitude (Solar Radiation Intensity)

Sensitive variables 5.01, 7, 9, 10

The amount of solar radiation needed to generate electrical energy is solely reliant on
the sun’s radiation output. The average solar radiation availability each day may be within
the range of 5.01 to 10 kW/m2/day. The optimal dimension of a system with the lowest
cost of energy is the most desired criterion; hence, this phenomenon has been analyzed
on the basis of factors like the total net present cost (TNPC) and levelized cost of energy
(LCOE). Equations (64)–(68) can be used to define the cost function of this study, which
seeks to minimize TNPC and LCOE [24].

TNPCmin =
TAC

CRF
(
ir, np

) (64)

TAC is the total annum cost, which includes the capital cost (CC), replacement cost
(RC), and maintenance cost (MC) described in Equation (65).

TAC = CCC + CRC + CMC (65)

CRF = the factor of capital recovery depending on the basis of the original interest rate
(ir) and project span

(
np

)
is described in Equation (66).

CRF
(
ir, np

)
=

ir(1 + ir)
np

(1 + ir)
np − 1

(66)

ir =
in − f
1 + f

(67)

ir can be calculated using Equation (67) with in, which is the magnitude dependent on
ROI, and f symbolizes the inflation rate:

LCOEmin =
TAC
ESPA

(68)

ESPA = energy served per annum.
The simulation result shows that solar irradiation has are ciprocating effect on TNPC

and LCOE, as shown in Figure 9.
The increase in solar irradiation is inversely related to the overall cost parameters

according to a thorough analysis of the sensitivity variable of SPV generation or solar
radiation with respect to cost parameters. It is possible to deduce cost parameters from a
thorough examination of several sensitivity factors in the system, namely net present cost
and cost of energy, with an increase in sunray values.
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Figure 9. Effect of varying solar irradiation on the total net present cost and levelized cost of energy.

6. Conclusions and Future Directions

The conducted experiments make it abundantly clear that the suggested controller
exhibits the greatest results in terms of qualitative and quantitative analysis when the
environment is changing. The reference voltage was produced using the traditional P&O
algorithm, which then allowed the nonlinear discrete PID (NDPID) controller to calculate
the reference power. The forward Euler formula was used to combine the traditional PID
controller with discretized integral and derivative portions. Additionally, the difference
between reference power and output power is used to calculate inaccuracy. The HHO
further optimizes the AFOPID controller to obtain the best settings for the controller to
create an adaptive control law. The switching signal for the inverter is provided by this error.
In addition, it has been demonstrated that the resulting topology performs better in terms
of the lowest fitness value, improved settling time, and least oscillations under varying
environmental conditions and partial shading conditions.To examine the stability of the
proposed control methodology, the controller is judged in terms of the integral absolute
error (IAE) and integral time absolute error (ITAE) under variable solar radiation intensity
and partial shading conditions. In both scenarios, the control topology outperforms by
achieving the lowest IAE and ITAE. Due to its fractional calculus property and multi-
control strategy with respect to handling inverter switching, the suggested controller
exhibits greater robustness than existing controllers according to the study.

Power quality is assessed in addition to power quantity on the basis of voltage varia-
tion, THD, and frequency. In this area, the proposed controller exhibits a suitable response
as well. Low THD, lower frequency fluctuation, and lower voltage deviation all point to the
suggested control methodology, which improves the system’s performance. The suggested
control topology achieves the best result even though the impact of power quality issues
cannot be totally eliminated or minimized.

Sensitivity analysis was also carried out on the basis of TNPC and LCOE, as the
optimal design and reducing energy cost is of utmost priority in grid-interfaced systems.
Here, the experiment shows that an increase in solar irradiation results in a reduction in the
per unit cost of energy. This analysis will inspire the nation to use solar energy in various
applications for techno-economic sustainability.

Furthermore, many cascaded controllers with a number of newly introduced optimiza-
tion algorithms like mount gazelle optimization (MGO), honey badger algorithm (HBA), and
Ebola algorithm may be incorporated to extract the maximum power from a PV source and
other renewable energy resources as well. This concept will be helpful for microgrids as well.
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Abbreviations

Variables Abbreviations

j Imaginary quantity
MPPT Maximum power point tracking
P&O Perturb and observe
NDPID Nonlinear discrete proportional integral derivative controller
AFOPID Adaptive fractional order proportional integral derivative controller
FOPID Fractional order proportional integral derivative controller
PID Proportional integral derivative controller
HHO Horse herd optimization
PV Photovoltaic
THD Total harmonic distortion
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Abstract: Recently, due to rapid growth in electric vehicle motors, used and power electronics
have received a lot of concerns. 3φ induction motors and DC motors are two of the best and most
researched electric vehicle (EV) motors. Developing countries have refined their solution with
brushless DC (BLDC) motors for EVs. It is challenging to regulate the 3φ BLDC motor’s steady state,
rising time, settling time, transient, overshoot, and other factors. The system may become unsteady,
and the lifetime of the components may be shortened due to a break in control. The marine predator
algorithm (MPA) is employed to propose an e-vehicle powered by the maximum power point tracking
(MPPT) technique for photovoltaic (PV). The shortcomings of conventional MPPT techniques are
addressed by the suggested approach of employing the MPA approach. As an outcome, the modeling
would take less iteration to attain the initial stage, boosting the suggested system’s total performance.
The PID (proportional integral derivative) is used to govern the speed of BLDC motors. The MPPT
approach based on the MPA algorithm surpasses the variation in performance. In this research,
the modeling of unique MPPT used in PV-based BLDC motor-driven electric vehicles is discussed.
Various aspects, which are uneven sunlight, shade, and climate circumstances, play a part in the low
performance in practical scenarios, highlighting the nonlinear properties of PV. The MPPT technique
discussed in this paper can be used to increase total productivity and reduce the operating costs for
e-vehicles based on the PV framework.

Keywords: brushless DC motor (BLDC); maximum peak point tracking (MPPT); photovoltaic (PV)
systems; electric vehicle (EV) applications; marine predator algorithm (MPA)

1. Introduction

The advancement of electric vehicles is driven by the ambition to reduce emissions to
increase the consumption of fuels [1]. In this situation of India and China, the shortage of
energy is anticipated to happen rapidly because of a reduction in the future availability
of fossil fuels and a 76% hike in necessity in the period from 2020 to 2045 [2]. Carbon
emissions and waste are decreased by employing renewable energy [3]. Due to this,
there is an increase in demand for clean, pollution-free renewable energy that emits only
30 carbon dioxides [4]. Industry and researchers have utilized advanced PV modules for
many purposes due to consecutive reductions in the price of PV panels and power electron-
ics components [5]. To maximize a PV array’s capacity, the MPPT approach with a DC-DC
converter topology is commonly utilized [6]. No carbon emissions are produced. Industry
and researchers have utilized the advanced solar PV array for many applications because
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of continuous reductions of price in power electronics components and PV panels [7]. The
MPPT approach with DC-DC converters typically maximizes a PV array’s capacity [8].
Various MPPT control techniques have been proposed, with fractional open/short-circuit
control methods, incremental conductivity (INC), and perturbation and observation (P&O)
being the most often used conventional techniques. These techniques result in a high
turnout in a steady-state activity [9]. These algorithms were verified to be not effective as
when the weather is bad, conversion ratios are slow, and bigger variances prevent them
from obtaining an overall maximum power point (MPP) in settings with partial shading
conditions. To deal with these problems, MPPT with a bioinspired optimization algorithm
has been proposed.

The artificial immune system (AIS) and the metaheuristic genetic algorithm (GA)
were applied to overcome such nonlinear uncertain conditions because of the appropriate
particular sensor and the complicated circuitry [10]. However, immune cells have a huge
population structure and adaptive machinery, which results in a poor conversion rate and a
lengthy conversion time for AIS and GA algorithms [11]. Crossover procedures are used in
conjunction with computational convergence time to enhance the mutation. Many MPPT
techniques with bioinspired optimization are implemented to challenge such difficulty [12].
FSA is a fish life-inspired methodology designed to reduce grade point average assessment
(GMPP) oscillations. Numerous control settings are needed for PSO’s random accelerating
value choosing, and it may be a significant drawback. The bioinspired optimization
techniques presently have more tracking efficiency, a high convergence rate, and low
transients [13]. Gray wolf (GW), ant colony (AC), glowworm optimization algorithm, and
fish swarm algorithm (FSA) are a few examples. However, due to less bee availability and
the weather being unpredictable, the poor conversion rate in ABC approaches [14,15].

Due to a shortfall of contingency and a heavy nest population, the cuckoo search
algorithm is a more productive way for nonlinear-based issues, although its rate of melting
is moderate. Due to this, several researchers have implemented this bioinspired approach
based on photovoltaic system investigation. Considering the difficulty present in MPPT
techniques, this paper proposed a novel MPPT control technique for MPA. It does not
need hardware data from PV, as it can exactly and rapidly search to find the GMPP. This
work object is to enhance the overall performance of PV-powered electric vehicles. In this
technology, the BLDC motor is used in PV-powered e-vehicles. The MPA technique has
been implemented to increase the complete performance of the system. The MPA technique
features a faster convergence rate and a better method to locate GMPP. An observation of
MPPT output has been illustrated to determine the effectiveness of the suggested approach
in this framework.

For maximum power tracking from solar PV, making use of combined MPPT, dif-
ferent techniques were presented by scientists. In the following segment, the different
MPPT approach for EVs driven by BLDC is surveyed, and it was designed for maximum
power tracking.

The complete paper’s structure is provided below: The literature review is presented
in Section 2. the proposed work is explained in Section 3. Sections 4 and 5 give the control
techniques which were used in the proposed work, followed by its results in Section 6 and
conclusion in Section 7.

2. Literature Review

Himabindu et al. [16] presented the partially solar-powered EV. The EV’s energy
efficiency is greater than that of fuel-powered vehicles without taking electricity generation,
transmission, and efficiency into account. Moreover, for a limited solar-powered EV, the
unique prototype of a lightweight EV was elaborated on in this paper. The development
of the unique energy-efficient prototype of EV and the possibility of a limited solar-based
EV was discussed. Lakshmiprabha et al. [17] presented the BLDC motor with a PV-based
electric vehicle approach. The approach for developing the BLDC driven with PV-powered
EV, which was a potential solution for the lake of impending, was explained in this work.
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The approaches to finding the right parts of this application were explored, and both of
them were tested and simulated in a real-world application. The integrated system of
the PV-powered EV features the BLDC motor, batteries, battery charger controller, solar
module, and a DC-DC boost converter. Ahmad et al. [18] demonstrated that the nature of
the autoindustry was changing as a result of worries about oil supply, foreign relations,
and fuel prices. There were numerous hybrid technologies available at the time, due to
the availability of hydrogen. Among the oldest vehicles using alternative fuel, the vehicle
integrated with solar power has several applications in the expanding EV market. The
development of the solar-powered telemetry system for high-speed cars helps in improving
the understanding of the vehicle’s power aspects and the operation implemented in EVs.
This work inspected the position and history of electric vehicles and solar energy, in
addition to a standard solar vehicle.

García et al. [19] conferred on e-rickshaws driven by a BLDC motor a fuzzy logic
controller (FLC)-based technique to develop ideal power management for regenerative
braking. The FLC was adapted to control the separate power management for the battery
and for the supercapacitor, to supply the output of the e-rickshaw driven by BLDC. E-
rickshaw enhanced operating time by the solar-powered approach to boost the operation,
and using simulated testing rickshaws was verified, which exposed the examination of the
BLDC’s performance under several operating conditions. If the need for power increases
suddenly in a temporary situation, the supercapacitor manages the complete need for
power. The power ratio is divided to enable the battery to be deeply discharged, increasing
battery life. Ho et al. [20] explained the integration of electric power systems for the EV.
The objective of this work was to introduce the theoretical arrangement to successfully
integrate EVs into electric interconnected networks. The advanced structure was split
into power market environments and the grid technical operations. Participants in both
processes, as well as their actions, were all considered and fully explained. Moreover,
various simulations, with the dynamic and analysis of steady-state behavior, were explained
to make clear the impacts and benefits originating from the EVs and integration of the grid
using the cited methodology. Oubelaid et al. [21] demonstrated the controlling techniques
for hybrid electric vehicles. Global optimization techniques and dynamic programming
were mainly employed to evaluate the powertrain configuration’s prospective fuel efficiency.
These control procedures cannot be applied directly until advanced driving conditions
could be likely at the time of real-world application; even so, the results obtained with this
noncausal method delivered the criteria for analyzing the best possible control technique
that is attainable.

Lan et al. [22] conferred the creation of the Japanese government’s EV policy. The scope
of this work was to inspect the policy for the creation of alternative vehicles to traditional
vehicles, the outcomes of government actions, and the requirement of a technological adapt-
ability program supported by the government. The effects of this scheme on the methods
of innovation were explored through the use of this viewpoint and technological literature
improvement. The complete network with the assistance was investigated, further to the
context in which this different policy has been used since the early 1970s. Saha et al. [23]
demonstrated for EVs with BLDC Motors that are electric, hybrid, and plug-in hybrid an
effective regenerative braking system using battery/ultracapacitor. The ultracapacitor used
a suitable inverter switching template for energy regeneration and/or regenerative braking
to store the vehicle’s kinetic energy. Due to this, no extra power electronics interfaces were
needed. Simultaneously, the EV’s front and back wheels received braking force from the
artificial neural network controller, which is responsible for distributing it. To attain steady
torque braking, additionally, the PI controller was used to vary the PWM operating cycle.
Li et al. [24] explained that the BLDC motors are controlled by a hybrid sliding-mode
system without a position sensor (HSMC). This research gave effective and reliable control
techniques for the position-sensorless EV using the BLDC motor. To adopt the BLDC motor
sensorless control of the BLDC motor, the back EMF finding technique was initially imple-
mented and enhanced. The corresponding circuits of regulating systems were presented,
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as well as the creation of energy regeneration and standard driving mathematical models.
A technique for the EV HSMC approach was implemented to promise by integrating both
the system effectiveness and using the high-order sliding-mode approach; the nonsingle
terminal sliding mode has sustained stability.

Gupte et al. [25] have conferred on transmission a selectively aligned surface (PM-
BLDC) for the HEV motor. A programmable and adjustable generated voltage constant in
an axial-flux PMBLDCM was used to achieve the field weakening. This quality was exclu-
sively suitable in motors for driving vehicles with vast ratios of constant-power speeds,
where it was imperative to get rid of gear shifts and shrink the overall motor drive’s size.
The advantages of this method’s high pole count were discussed, and the simulation’s
impact on the kilovolt-ampere motor drive, acceleration, maximum speed, and efficiency
was described over regular driving cycles. The e-vehicles with BLDC motors used in this
system are energized using solar PV. The MPA technique is derived concerning enhancing
the system’s total efficiency. For efficient MPP tracking from a PV array, scientists took help
of the MPA technique.

3. Modeling and Description of the Entire System

Figure 1 illustrates the BLDC motor with a PV-powered, battery-operated architectural
arrangement for EV applications. From left to right in Figure 1, the system consists of
a solar PV array, a DC-DC converter, a battery, a VSI, and a BLDC motor. The PV array
produces power and is given as an input to the DC-DC boost converter, which utilizes
the MPA technique to operate the MOSFET switch. To get more power output from the
PV array, the MPPT algorithm is implemented. The boost converter is used to provide
the essential power for battery charging; the PV is serially connected to the battery bank,
to operate the BLDC motor through an inverter. The electronics commutation is used to
generate the switching pulse required for an inverter connected with a BLDC motor. In the
following sections, we will discuss how to create and control the suggested system.

Figure 1. Circuit arrangement for the advanced battery-operated, solar PV-powered, BLDC motor-
operated system.

3.1. Proposed System’s Design Configuration

In Figure 1, the alignment of the suggested system configuration has been presented.
The most essential parts of the system configuration are the SPV array, DC-DC converter,
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battery bank, and brushless DC. This system is built to function satisfactorily regardless of
changes in the amount of solar irradiation.

3.2. Arrangement of Solar PV Array

The number of PV modules connected in parallel and series in a solar array is used to
estimate the current, voltage, open-circuit voltage, and short-circuit current. The compa-
rable circuit of PV cells is illustrated in Figure 2. The parallel diode, current source, and
series resistors are the components required. To create photovoltaic modules, the PV cells
are built simultaneously. The required power is based on a combination of parallel and
series supply. U* a and U* p represent the number of parallel and series photovoltaic cells,
respectively. The voltage and current output relationship can be expressed as

I′PV = N′
P I′G − N′

P I′S
(

exp
[

q∗

AKTC

(
V′

PV
N′

S
+

RS I′PV
N′

P

)]
− 1

)
(1)

Figure 2. PV cell equivalent circuit.

Photocurrent I′G is produced by solar irradiation, as shown below:

I′G = I′sc + k1

(
TC − Tre f

) S
1000

(2)

I′S is explicit as the PV cell saturation current and temperature variation based on the
following relationship:

I′S = I′rs

[
TC

Tre f
]3 exp[

q′EG
AK

(
1

Tre f
− 1

TC

)]
(3)

3.3. PV Characteristics

The PV array’s nonlinear characteristics are dependent on temperature and irradi-
ance. Variation in temperature and irradiation causes a change in them. The V-I and P-V
characteristics at different irradiation and constant temperature (1000 W/m2, 800 W/m2,
500 W/m2, 350 W/m2) are depicted in Figure 3, as well as the V-I and P-V characteristics at
changing temperature and constant irradiation are depicted in Figure 4.
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Figure 3. (a) P-V curve, during constant temperature (b), V-I curve, during constant temperature.

Figure 4. (a) Continuous irradiation of the P-V curve, (b) continuous irradiation of the V-I curve.

3.4. DC-DC Boost Converter Equivalent Circuit

The equivalent circuit of the DC-DC converter is shown in Figure 5. At the initial
stage Switch, sw1 and sw2 are in closed and open positions, respectively, and the inductor
current (IL) will be raised from zero. Consequently, switch sw1 and sw2 are in open and
closed positions respectively; at that time, the inductor current will supply the load, and
the charges will be stored in the capacitor. The voltage in proportion to the duty cycle of
the input and output of a DC-DC converter is depicted in this equation.

V′
O

V′
IN

=
1

1 − d′DUTY
(4)
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V′
O

V′
IN

=
T′

RISE
T′

FALL
+ 1 (5)

d′DUTY =
T′

RISE
T′

RISE + T′
FALL

(6)

where, d′DUTY = duty cycle, T′
RISE = switch sw1 is in closed at the moment of raising the

inductor current, T′
FALL= switch sw1 is open at the moment when the inductor current

is falling.

Figure 5. DC-DC boost converter equivalent circuit.

3.5. BESS Equivalent Circuit

The presented battery equivalent circuit contains polarization capacitor Cpl, polar-
ization resistor Rpl, and ohmic internal resistor R, where the battery transient feedback
is simulated using Rpl and Cpl in both charging and draining modes. In that, V (h(t))
represents the nonlinear function of the SoC for h(t)’s. The terminal voltage is taken as
the calculated output, and the current is considered as a control input. Figure 6 depicts a
lithium-ion battery, and MATLAB/Simulink software is used to perform the simulation.
Figure 7 shows the input characteristics of the battery energy storage system where E0 is
constant voltage (V), K is polarization constant in (Ah−1), A is exponential voltage (V), and
B is the exponential capacity (Ah−1).

Figure 6. BESS equivalent circuit.
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Figure 7. Input characteristics of battery energy storage system.

To build the 440 V/30 Ah and a 100% SoC, interconnected modules are used to
actualize the battery. The circuit dynamics is expressed by applying Kirchhoff’s law:

Vb(t) = V(h(t))− R ∗ i(t)− Vca(t) (7)

dVca (t)

dt
= − 1

cpiRpi
Vca(t) + i(t) (8)

Here, Vb(t) = terminal voltage, i(t) = terminal current, and Vca(t) = voltage across RC,
which cannot be directly computed.

3.6. Modeling and Motor Choice

In recent years, many electric motors have been used in electric vehicles. In the e-
rickshaw, the DC motor’s dynamic properties are better; the main disadvantage of the
DC motor is that it needs more maintenance due to the brush and commutator. Induction
motors are therefore a better option, because they are often suitable for such circumstances,
but the induction motor needs huge control. Thus, in automotive applications, the induction
motor is not usually employed. After that, the researchers take an alternative and find
a trustworthy and effective motor. The BLDC motors are easy to regulate, require less
maintenance, and have a high roughness. It has high torque, fast dynamic responses, a low
operating voltage range, and a good performance ratio.

The BLDC motor consists of a permanent magnet stator and three-phase windings
in the rotor. The currents generated in the rotor can be neglected, and there is no need
to model damper windings if the stainless-steel retaining sleeves and magnet have high
resistance. The analogous circuit of a BLDC motor is depicted in Figure 8, where R is a
stator resistance, L is self-inductance and mutual inductance, and e is phase back-EMF
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voltage of A, B, and C, respectively. The 3 φ winding governing equation for the phase
variables is⎡

⎣V∗
a

V∗
b

V∗
c

⎤
⎦ = R∗

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣i∗a

i∗b
i∗c

⎤
⎦+

⎡
⎣l − m 0 0

0 l − m 0
0 0 l − m

⎤
⎦ d

dt

⎡
⎣i∗a

i∗b
i∗c

⎤
⎦+

⎡
⎣E∗

a
E∗

b
E∗

c

⎤
⎦ (9)

Figure 8. BLDC motor equivalent circuit.

R* = phase resistance, m = mutual inductance, l = phase inductance.
The mechanical equation is shown below:

J∗·dω∗
r

dt
= T∗

e − T∗
l − f ∗r ω∗

r (10)

Finite element analysis is used to calculate the three back-EMFs, and Fourier series
equations are used to display the results. It is a ratio of speeds.

4. Control Method Using MPA Technique

As shown in Figure 1, to carry out the required operation and to get the output from
PV, MPPT with a DC-DC converter is needed. In the implementation of MPPT, a control
variable (duty cycle) is controlled by the MPPT controller. This generates a control signal in
the range [0, 1] which is given in Equations (11) and (12):

Vout =
Vin

1 − d
(11)

d =
Ton

TSwitching
(12)

where, Vout and Vin are boost converter output and input voltages, and d denotes the duty
cycle. This article gives a new bioinspired algorithm based on marine predators’ social
behavior pattern.

4.1. Marine Predator Algorithm

The marine predator algorithm (MPA) is a bioinspired, metaheuristic optimization
technique [26] that has been applied to various optimization problems. A few of the
applications of MPA are estimating the parameters of solar PV cells [27], MPPT for solar PV
systems [28], and many more. In this section, the MPA is applied in MPPT in an optimized
way to the optimal expected output for EVs.

The key points of MPA are (i) the Levy motion for a prey environment of low concen-
tration given in Equation (13), (ii) the Brownian motion for a prey environment of high
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concentration given by Equation (14), and (iii) the very decent memory in recalling their
partners and the location of successful hunting shown in Figure 9. These features make
the marine predator’s technique more advanced compared to other bioinspired techniques.
The population can be started by Equation (15). Dmin and Dmax are the lower and upper
limits for the variables, and rand is the random number.

Lévy (α) = 0.05 × x

|y| 1
α

(13)

f(x; μ, σ) =
1√
2π

e−
x2
2 (14)

D0 = Dmin + rand (Dmax − Dmin) (15)

Figure 9. Three phases in marine predator algorithm (MPA) optimization.

An elite matrix is developed by the fittest solutions among the marine predators
following the survival of the fittest idea. Naturally, the topmost predators (denoted by de)
are brilliant in hunting and is given in Equation (16). The position of the predator gets
updated from time to time. The prey matrix is developed in which di,j gives the jth position
of the prey and is given by Equation (17).

Elite =

⎡
⎢⎣

de1,1 · · · de1,n
...

. . .
...

dem,1 · · · dem,n

⎤
⎥⎦

m×n

(16)

Prey =

⎡
⎢⎣

d1,1 · · · d1,n
...

. . .
...

dm,1 · · · dm,n

⎤
⎥⎦

m×n

(17)

Optimization Process of MPA

There are three phases in optimization, as shown in Figure 9. Depending upon the
velocity ratio and time, the phases are classified. Phase 1: predator is traveling slower
than the prey (increased velocity ratio). Phase 2: predator and prey are at the almost same
pace (unity velocity ratio). Phase 3: predator is traveling faster than the prey (decreased
velocity ratio).
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The prey is traveling faster than the predator. This is called as exploration phase,
and it happens only in the initial or starting iterations of the algorithm and is given by
Equations (18) and (19). Here, R is a rand [0, 1]. Set in a high exploration phase, this
phase happens for the first three of the iterations. Prey is accountable for the exploration,
and it is given by the Equations (20)–(26). That CF is a step-size controlling parameter
for a predator:

−−−−−−→
Stepsizea =

−→
RB ×

(−−−→
Elitea −−→

RB ×−−−→
Preya

)
; a = i . . . n (18)

−−−→
Preya =

−−−→
Preya + P

→
R ×−−−−−−→

Stepsizea (19)

For the predator population:

−−−−−−→
Stepsizea =

−→
RL ×

(−−−→
Elitea −−→

RL ×−−−→
Preya

)
; a = i . . .

n
2

(20)

−−−→
Preya =

−−−→
Preya + P

→
R × −−−→

Stepsizea (21)

For the prey population:

−−−−−−→
Stepsizea =

−→
RB ×

(−→
RB ×−−−→

Elitea −−−−→
Preya

)
; a =

n
2

. . . n (22)

−−−→
Preya =

−−−→
Elitea + P

−→
CF ×−−−−−−→

Stepsizea (23)

−−−−−−→
Stepsizea =

−→
RL ×

(−→
RL ×−−−→

Elitea −−−−→
Preya

)
; a = 1 . . . n (24)

−−−→
Preya =

−−−→
Elitea + P

−→
CF ×−−−−−−→

Stepsizea (25)

To avoid the eddy formation or fish aggregating devices (FADs), which may change
the marine predators’ behavior, marine predators may take a long jump, as is given
in Equation (26):

−−−→
Preya =

⎧⎪⎪⎨
⎪⎪⎩
−−−→
Preya + CF

(−−→
Dmin +

→
R ×

(−−→
Dmax −

−−→
Dmin

)
× →

U
)

if r ≤ FAD1

−−−→
Preya + (FADs × (1 − r) + r)

(−−−→
Preyr1 −

−−−→
Preyr2

)
if r ≤ FADs

(26)

4.2. Implementation of MPA for MPPT during PSCs

In the search space between Dmin and Dmax [0 to 1], the particles should be initialized
for the implementation of MPPT using the MPA optimization technique with a population
size of 4, since the work uses four panels in the array. Due to irradiance change, the power
will change at that time the code will automatically restart or reinitialize and is given by
the conditional Equation (27).

if

∣∣PPVnew − PPVold

∣∣
PPVold

≥ PPV(%) (27)

The flow chart of the proposed bioinspired MPA technique-based MPPT is given in
Figure 10, which will validate Equation (27).
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Figure 10. Flowchart for marine predator algorithm-based MPPT.

To provide maximum power for the EV, the above-mentioned process using MPA will
track and extract the maximum power from the solar PV.

5. BLDC Motor Control Based on PID

PID consists of a set of conditions that could be applied to give a closed-loop control
system precise regulation. In a closed-loop control process, the controlling device receives
continuous real-time measurements of the process being controlled to ensure it reaches
the desired range. The computed value, also known as the “process variable”, is made
by the controlling device to resemble the indented value, also known as the “set point”.
To complete the desired work effectively, the PID control algorithm is adapted. The
most important of these is proportionate control, which measures the error value and
creates proportionate changes to lower the error in the control variable. Proportional
control is mostly used in many control systems. The PID controller continuously evaluates
the difference between the process variable and the set point and makes the necessary
corrections. Derivative control monitors the process variable’s rate of change and modifies
the output variable to take unexpected changes into account.
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Each of the three control functions is directed by a user-defined parameter. These
characteristics may differ from one control system to another, and as a result, they must be
modified for the best control precision. Finding the values of these parameters is known
as PID tuning. Although many people think of PID tuning as “black magic”, it is always
known as a precise mathematical process.

There are numerous ways to accomplish PID tuning, and any of the methods can be
used to tune any system. While some PID controlling methods require more devices than
others, they typically produce more accurate output with low effort. The fundamental
objective of the PID controller is to execute algorithm-based tuning constants. The control
engineer delivers the current plant process value and the operator’s intended operating
value (set point). In most situations, the controller will conduct to bring the process value
as close to the set point as is practical. To perform a simple process control loop, PID
algorithms will be implemented by the control engineer.

PID Controlling

The main goal of the PID controller is to maintain the constant output level so that
there is no difference (error) between the process variable (Pv) and the set point (SP). The
valve may control the flow of gas to a heater, the water level of the tank, the temperature of
a chiller, the flow through a pipe, the pressure of the pipe, or any other method for process
control and shown in Figure 11.

obj = k∗pe∗t dqO + k∗i
∫ 1

0
e∗t dqOdt + k∗d

de∗t , dqO
dt

(28)

Min(X) = Min(ITAE∗) (29)

where, X = total controller error, ITAE*= absolute integral-time error.

ITAE∗ =
∫ ∞

0
T|e∗t dpO|dt (30)

Figure 11. PID controller block diagram.

e∗t dpO = error signal between a reference voltage and load.
The MPA-based control method is implemented in the proposed work. It is explained

in Section 4 and provides a detailed explanation of the PID approach utilized for BLDC
motors with electronic commutation. It is the most common strategy for controlling the 3φ
AC motor speed and torque by utilizing the current control method. When the BLDC motors
are operated at both high and low speeds, at that time there is no precise speed control and
ripple in torque. For applications such as washing machines, PID is very important. The
VSI switching signals were produced by the motor’s “electronic commutation”. The Hall

116



Sustainability 2022, 14, 14120

effect sensor is attached to the stator and is used to find the rotor position angle. These Hall
effect signals are changed into six switching pulses, which are used to control the switches
of the voltage source inverter.

6. Results and Discussion

The solar PV panels used to generate the power of 500 W, in addition to power
connecting the DC-DC converter, are included in the proposed work; it was made by using
MATLAB/Simulink software. To charge a vehicle battery, the power extract from PV is
used. In this configuration, we are powering a BLDC motor rating of 3000 rpm, 256 V,
1 kW, and a BLDC motor with a series batteries rating of 220 V, 90.4348 Ah. The current and
voltage extract from the solar array is given as MPPT input, and the switch in the DC-DC
converter is activated by PWM signal, enabling the implementation of the MPPT from the
solar array. The proposed MPA-based MPPT control algorithm is correlated to the GWO
and WOA MPPT control bioinspired algorithms to assess how well it performs.

The findings of this study are examined in four modes, which are described in the
following section:

Mode 1: Constant Motor Speed and Constant Irradiance

The MATLAB Simulink software is used to simulate the suggested work under
25 ◦C constant temperature and a constant irradiation of 1000 W/m2, as shown in
Figure 12. Meanwhile the settling time is 0.06 s and 0.035 s for power through the GWO
and WOA, respectively. This produces a high fluctuating signal. The output power through
the MPA is settled in 0.02 s. In the first case, the PV panel temperature is 25 ◦C constant,
and the PV irradiance is 1000 W/m2. In affixing, the BLDC motor speed is set at 3000 rpm
constant, and the battery voltage and PV power outputs are analyzed in Figure 13. The PV
current, PV voltage, and PV power are illustrated in Figure 13; the solar PV power reaches
62 kW and settles in 0.02 s, and the PV current and voltage are obtained at 185 A and 340 V,
respectively. Figure 13 demonstrates the outputs of the battery, which are the current, SOC,
and output voltage of the battery. The battery current and voltage are obtained at 480 A
and 360 V, respectively, and battery SOC is reached at 100% in discharging mode.

Figure 12. PV output power while the solar irradiation and motor speed are both constant.
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Figure 13. (a) PV outputs at constant speed and irradiation (b) battery outputs at constant speed
and irradiation.

7. BLDC Motor Outputs

The BLDC motor output is illustrated in Figures 14 and 15. Here, Figure 14 shows
the speed and the BLDC motor comparison. At first, 3000 rpm is set as a reference speed
for one second. Figure 14a illustrates the BLDC motor speed, which is set to a constant
speed of 3000 rpm, and Figure 14b demonstrates the speed and reference speed comparison.
Figure 15 shows the stator current and torque of the BLDC motor. Here, a stator current of
3 φ is used to demonstrate how the BLDC motor’s torque is reached at 1.2 Nm. Figure 15a at
the beginning increases at 100 Nm, and at 0.02 s it decreases to 1.2 Nm. Figure 16 illustrates
the Hall signal and back EMF of the BLDC motor.

Figure 14. (a) Speed of the BLDC motor (b) comparison of motor speed and reference speed.
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Figure 15. (a) BLDC motor torque at constant speed (b) BLDC motor stator current at constant speed.

Figure 16. (a) BLDC motor back EMF at constant speed (b) BLDC motor Hall signal at constant speed.

Mode 2: Constant motor speed and varying irradiation

The MATLAB Simulink software is used to simulate the suggested work for 0–0.5 s
in 1000 W/m2 irradiation, 0.5–1 s in 500 W/m2, with 3000 rpm motor speed and 25 ◦C
constant temperature. In Figure 17, the power flow across the MPA is settled in 0.02 s. The
power through the GWO and WOA is settled in 0.06 and 0.35 s, respectively. This produces
a highly fluctuated signal. The suggested power from solar PV reaches 63 kW in 0–0.5 s
at an irradiance of 1000 W/m2, as shown in the graph. Then, the power is changed to
40 kW after 0.5–1 s at an irradiance of 500 W/m2. The suggested approach is related to
the traditional approach, such as the GWO and WOA MPPT algorithm, and proves the
advancement of the suggested method. The battery and PV output is depicted in Figure 18.
Figure 18a illustrates the PV power, voltage, and current attained at 62 kW, 340 V, and
185 A, respectively, that were generated in solar PV at 0–0.5 s time range. The irradiance
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is 1000 W/m2, and then suddenly PV power, PV current, and PV voltage raise to 61 kW,
175 A, and 325 V, respectively, and irradiance to 500 W/m2.

Figure 17. PV panel output power with variable irradiance.

Figure 18. (a) Battery outputs at variable irradiance (b) PV outputs at variable irradiance.

The BLDC motor speed comparison at various irradiances is shown in Figure 19. In
Figure 19a, the BLDC motor speed in regard to setting the reference speed of 3000 rpm for
0–0.5 s at PV irradiance is 1000 W/m2. After 0.5 s at the same motor speed, PV irradiance is
set to 500 W/m2. The speed of the actual speed-to-reference speed comparisons is depicted
in Figure 19b. The torque of the BLDC motor and stator current is shown in Figure 20;
Figure 20a shows the high torque starting stage of the motor after 0.01 s, which dropped
immediately to settle at 0.01 s on 1.2 Nm. The comparison of speed during the constant
speed and variable irradiance of the motor is shown in Figure 20b. The Hall signal and
back EMF of all phases are shown in Figure 21a,b.
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Figure 19. (a) Speed of the BLDC motor (b) comparison of motor speed and reference speed at
varying irradiation.

Figure 20. (a) BLDC motor torque with variable irradiation and constant speed (b) BLDC motor
stator current with variable irradiation and constant speed.

Mode 3: Variable motor speed and constant irradiation

The input for this mode is variable motor speed and constant irradiance; 1000 W/m2

for constant irradiance, 3000 W/m2 for 0–0.2 s, 1000 W/m2 for 0.2–0.4 s, 1500 W/m2 for
0.6–0.8 s, 2500 W/m2 for 0.6–0.8 s, and 2000 W/m2 for 0.8–1 s for BLDC motor speed,
respectively. Figure 22 illustrates the PV power at the variable motor speed and constant
irradiance comparison. The suggested approach is more admirable than the GWO and
WOA. According to the variation in the motor speed, the power will be varied. When
the motor speed is 3000 rpm, the suggested technique power will reach 62 kW. When the
motor speed is decreased to 1000 rpm, the suggested technique power is increased from
62 KW to reach a power of 81 kW. Accordingly, for motor speeds of 1500 rpm, 2000 rpm,
and 2500 rpm, the power of the suggested approach will be 78 kW, 70 kW, and 68 kW,
respectively. Figure 23 depicts the PV output and battery output at 1000 W/m2 of constant
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irradiance, and variable speeds of 3000 between 0 and 0.2 s, 1000 from 0.4–0.6 s, 2500 from
0.6–0.8 s, and 2000 from 0.8–1 s are used. The PV current, power, and voltage are shown in
Figure 23a. In that PV power for the regular interval of (0.2, 0.4, 0.6, 0.8), high changes may
occur for the regular interval. In the meantime, the voltage of PV is drained to 325 V, and
the current of PV is increased to 220 A. The battery SOC, battery current, and voltage of the
battery are depicted in Figure 24. The changes in battery current and voltage, as well as
battery charging and discharging, are caused by the variable motor-speed input. The BLDC
motor Hall signal and back EMF at variable speed and constant irradiance are depicted
in Figure 25.

Figure 21. (a) BLDC motor back EMF with variable irradiation and constant speed (b) BLDC motor
Hall signal with variable irradiation and constant speed.

Figure 22. PV power comparison with variable motor speed and constant irradiation.
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Figure 23. (a) PV outputs with varying speeds and constant irradiance (b) battery outputs with
varying speeds and constant irradiance.

Figure 24. (a) BLDC motor torque at varying speeds and constant irradiation (b) stator current at
varying speeds and constant irradiation..

Mode 4: Variable Motor Speed and Variable Irradiance

Figure 26 illustrates the comparison of power output at variable motor speed and
variable irradiance. In this mode, variable irradiance is 1000 W/m2 for 0–0.5 s before
shifting to 500 W/m2 for 0.5–1 s. Additionally, the speed is fixed at 3000 rpm for 0–0.2 s,
1000 rpm for 0.4–0.6 s, 1500 rpm for 0.6–0.8 s 2500 rpm, and 2000 rpm for 0.8–1 s. The
advanced approach is related to the traditional approach to prove its advantages. The
PV and battery output are depicted in Figure 27. The output of the solar PV at variable
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speed and irradiance is illustrated in Figure 27a. Power from PV varies concerning varying
irradiance and variable speed. Between 0 and 0.5 s, the variable irradiance is changed
to 1000 W/m2 and 500 W/m2 between 0.5–1 s. Furthermore, the BLDC motor speed is
modified, from 0 to 0.2 s, 3000 rpm, 1000 to 0.4 s, 1500 to 0.6 s, 2500 to 0.8 s, and 2000
to 1 s. All outcomes from PV are changed in favor of the variable speed and variable
irradiance. Figure 27b shows the outputs of the battery current, battery voltage, and battery
SoC. The BLDC motor speed and a comparison of its speed under different irradiation
conditions are illustrated in Figure 28. The motor’s speed relative to the reference speed
for 1000, 1500, 2000, 2500, and 3000 rpm is demonstrated in Figure 28a. The comparison
speed to a reference speed is illustrated in Figure 28b. The reference speed is denoted as
a straight red line, and the BLDC motor’s actual speed is mentioned as a blue line. The
variable speed is given to 0, 0.2, 0.4, 0.6, and 0.8 s time intervals at 3000, 1000, 1500, 2500,
and 2000 rpm. Figure 29 depicts the BLDC motor stator current and torque. Figure 29a
illustrates the torque. Due to modifications made to the speed of the BLDC motor and
irradiance of the solar PV panel, the peak and dip on the torque are now visible. Figure 29b
illustrates all three-phase stator currents. Solar energy is used by the boost converter to
power the 3000 rpm, 48 V, 1 kW BLDC motor and for battery charging. The operation of
a variable speed BLDC motor is shown in Figure 28. We started the motor for 0.2 s and
set the reference speed of 3000 rpm. After that, for 0.4 s it is shifted to 1000 rpm, then for
0.6 s it is changed to 1500 rpm, and at the end, it is changed to 2500 rpm. The speed of
the motor reaches the designated reference speed in less than 0.01 s. Figure 29a shows the
variation in the torque, first supplied at 100 Nm for 0.01 s. Due to speed changes, there are
a few spikes in the torque. Figure 29b illustrates the motor current, the result of which is
a spike representing a change in speed. Figure 30 illustrates the BLDC motor Hall signal
and BLDC motor back EMF; it is varied with variation in speed of 1000, 1500, 2000, 2500,
and 3000 rpm. According to the above results, the proposed approach is superior to the
existing approach.

Figure 25. (a) Back EMF of BLDC motor (b) Hall signal of BLDC motor operating at variable speed
and constant irradiation.
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Figure 26. Comparison of output power with varying irradiation and varying motor speed.

Figure 27. (a) PV outputs with varying irradiance and varying speed (b) battery outputs with varying
irradiance and varying speed.
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Figure 28. (a) BLDC motor speed (b) comparison of motor speed and reference speed with variable
irradiance and variable speed.

Figure 29. (a) BLDC motor torque with varying speed and irradiation (b) stator current with varying
speed and irradiation.

Tables 1 and 2 present the qualitative and quantitative comparative analysis of the
existing [29] and proposed optimization-based MPPT techniques, respectively. During
quantitative analysis, the tracking time and efficiency measures are compared with the con-
ventional P&O, FLC, and AFLC mechanisms. Then, the overall performance of the MPPT
controlling algorithms is validated and compared during qualitative analysis based on the
parameters of tracking speed, complexity, tracking efficiency, reliability, MPP oscillations,
and tracking accuracy. The MPA-MPPT controlling technique provides highly improved
results compared to the standard MPPT techniques.
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Figure 30. (a) Back EMF for BLDC motor with varying speed and irradiation (b) Hall signal for BLDC
motor with varying speed and irradiation.

Table 1. Quantitative analysis.

Methods Tracking Time Efficiency

P&O 0.05 99.94

FLC 0.05 99.96

AFLC 0.038 99.97

Proposed MPA 0.025 99.98

Table 2. Qualitative analysis.

Criteria P&O FLC ACO-FLC Fuzzy-PSO GWO-FLC
Proposed

MPA

Tracking Speed Slow Moderate Moderate Moderate Fast Very Fast

Complexity Less Less Moderate Moderate Less Very Less

Tracking Efficiency Less Less Medium Medium High Very High

Reliability Low Low Low High High Very High

MPP Oscillations High High Moderate High Less Very Less

Tracking accuracy Medium Medium Medium Medium Accurate High Accurate

Table 3 presents the comparative analysis of existing [30] and proposed optimization-
based MPPT controlling techniques based on the parameters of convergence time, set-
tling time, and efficiency. Then, its corresponding graphical illustrations are presented in
Figures 31 and 32, respectively. The estimated analysis proves that the time of the proposed
MPA technique is greatly increased with high efficiency, which is highly superior to the
other MPPT controlling techniques.
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Table 3. Comparative analysis.

Methods Convergence Time (s) Settling Time (s) Efficiency (%)

SRA 0.1811 0.2402 99.98

GHO 0.3112 0.5621 99.89

GWO 0.4421 0.6514 99.88

PSOGS 0.3522 0.6112 99.91

CS 0.3801 0.7701 99.84

PSO 0.4501 0.7102 99.86

Proposed MPA 0.1532 0.2187 99.99

Figure 31. Time analysis.

Figure 32. Efficiency analysis.

8. Conclusions

This research proposes an advanced metaheuristic MPA optimization approach used
in a “small electric vehicle system”, which operates on a “solar-powered BLDC motor”
system. An MPA optimization approach is implemented to retain “Maximum Power Point”
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tracking from partial shadow condition as well as constant irradiation in the PV cell in this
case. The traditional “MPPT algorithms”, especially “WOA” and “GWO”, depending on
the results of MPPT, were examined, and the proposed algorithm was compared to them.
To charge the battery, PV energy is used, and it is also used to supply power to the BLDC
motor. The proposed system is created by using MATLAB software. Through the use of
torque and change in speed accelerating and decelerating, in addition to the PID controller,
the BLDC motor’s initial, dynamic, and steady-state behaviors were evaluated. According
to the simulation result, the MPA optimization technique improves the performance of
the motor and charges the battery well. Consequently, due to continuous solar charging
throughout the daytime, the battery is used to operate the BLDC motor for more distance
than any electric vehicle.
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Abstract: Solar energy is one of the most suggested sustainable energy sources due to its availability in
nature, developments in power electronics, and global environmental concerns. A solar photovoltaic
system is one example of a grid-connected application using multilevel inverters (MLIs). In grid-
connected PV systems, the inverter’s design must be carefully considered to improve efficiency. The
switched capacitor (SC) MLI is an appealing inverter over its alternatives for a variety of applications
due to its inductor-less or transformer-less operation, enhanced voltage output, improved voltage
regulation inside the capacitor itself, low cost, reduced circuit components, small size, and less
electromagnetic interference. The reduced component counts are required to enhance efficiency, to
increase power density, and to minimize device stress. This review presents a thorough analysis of
MLIs and a classification of the existing MLI topologies, along with their merits and demerits. It
also provides a detailed survey of reduced switch count multilevel inverter (RSC-MLI) topologies,
including their designs, typical features, limitations, and criteria for selection. This paper also covers
the survey of SC-MLI topologies with a qualitative assessment to aid in the direction of future
research. Finally, this review will help engineers and researchers by providing a detailed look at the
total number of power semiconductor switches, DC sources, passive elements, total standing voltage,
reliability analysis, applications, challenges, and recommendations.

Keywords: Renewable Energy Sources (RESs); Photovoltaic (PV) systems; Switched Capacitor
(SC); Reduced Switch Count Multilevel Inverter (RSC-MLI); Common Ground Switched-Capacitor
(CGSC); Reliability

1. Introduction

Recently, there has been a remarkable rise in the use of grid-supplied power. This can
be attributed to an increased number of users and the expansion of high-power sectors.
Traditional power production has led to a significant surge in global emissions, thereby
causing detrimental effects on the environment. Significant progress has been made in
integrating renewable energy sources such as solar and wind into the grid. Welcome to
the world of photovoltaic (PV) systems, which have become the top choice for harnessing
energy thanks to their incredible potential. In fact, worldwide, grid-connected solar PV
capacity has soared to over 635 GW, satisfying approximately 2% of the global energy
consumption [1].

Solar energy is a rapidly growing field, and one crucial aspect that has gained signifi-
cant importance is power electronics. Researchers are actively engaged in the pursuit of
developing highly efficient power electronic converters to enhance the overall performance
of solar energy systems. In applications requiring medium and high power, MLIs are
increasingly being employed. This is because MLIs provide several inherent advantages
over two-level inverters, as mentioned in Table 1.
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Table 1. Comparison between two-level and multilevel inverters (MLIs).

Parameter Two-Level Inverter MLI

Function at a fundamental frequency Fails Operate

Operate at high voltage and current Operate Operate

Fault-tolerant operation Impossible Possible

Harmonic content Low High

Stress on power electronic switches More Less

Switching losses High Low

Power quality performance Low High

Voltage variation rate High Low

Generation of voltage in common mode Higher Lower

Generation of variable voltage Not possible Possible

Capability of functioning without a
transformer No Yes

Efficiency Low High

Input current distortions High Low

Voltage applications Low High

Structure Complicated Modular

Electromagnetic interference High Low

It has been predicted that renewable energy would contribute 29% of worldwide
power output in 2020, up from 27% in 2019, that renewable energy generation would
increase by more than 8% to 8300 TWh by 2021, and that solar PV and wind would account
for two-thirds of the growth in renewable energy. The increase in renewable energy alone
in China in 2021 was about half of what was predicted, followed by the United States,
the European Union, and India, as shown in Figure 1a. China has continued to be the
largest PV market, although there is growth in the United States due to continuous federal
and state legislative support. In India, new solar PV capacity additions have recovered
quickly from COVID-19-related delays in 2021. According to the IEA’s 2021 Renewable
Energy Market Update, by 2020, renewable energy was the only type of energy whose
consumption increased despite the pandemic. To increase worldwide renewable power
in 2021 and 2022, the renewable energy sector has looked at new additions. In addition,
270 GW went online in 2021 and 280 GW went online in 2022, continuing the remarkable
level of renewable energy additions that are anticipated. This expansion has exceeded the
yearly capacity rise record set in 2017–2019 by more than 50%, indicating that renewables
have been responsible for 90% of the increase in global capacity in 2021 and 2022, as shown
in Figure 1b.

Flexible alternating current transmission systems (FACTSs), customized power devices
(CPDs), variable-speed drives (VSDs), active front-end converters (AFCs), and renewable
energy sources for power generation are just a few of the many uses for MLIs [2–5]. MLIs
can be classified as classical if they use the most common topologies, such as the diode-
clamped multilevel inverter (DCMLI), flying capacitor multilevel inverter (FCMLI), and
cascaded H-bridge (CHB) multilevel inverter, mentioned in Figure 1c. There has been a
lot of interest in these topologies, but their practical implementation is highly impacted
by the application, the system that is designed, and costs. The fundamental disadvantage
of a DCMLI is its asymmetrical loss distribution. This, in turn, results in an irregular
distribution of junction temperature, which, in turn, results in constraints on the inverter’s
power, current, and switching frequency at maximum junction temperature [6,7].
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(a) 

(b) 

(c) 

Figure 1. (a) Worldwide renewable power generation in 2020–2021; (b) net renewable capacity
additions, by renewable energy market update 2021—IEA; (c) an outlook on the development of
various MLI topologies.
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Traditional MLIs, on the other hand, need a larger number of components to achieve
the same number of output levels, have issues with capacitor voltage balance, and cannot
increase their voltages [8]. Different reduced device count MLIs have been presented to
address traditional MLIs’ high component count [9–14]; however, these MLIs have lacked
a voltage-boosting function. To eliminate capacitor voltage imbalance in typical MLIs,
complicated control algorithms or multi-output boost converters have been implemented.
These methods increase an inverter’s weight, complexity, and expense. SC-MLIs minimize
the drawbacks of traditional and reduced device count MLIs [15–22].

Researchers have continued to investigate and to develop additional topologies by
implementing little or major modifications to conventional MLIs. As a result, MLIs with a
lower device count have been developed, and this subset of MLIs has been dubbed RSC-
MLIs, which have recently been the subject of many reviews. Newly designed RSC-MLIs
for integrating renewable energy sources and driving applications are addressed in [23–25].
The incorporation of switched-capacitor (SC)-based circuits is one of the most widely used
methods for designing better MLIs, and rapid progress has been made in the area of SC-MLI
development since 2010. Pure SC-based switching circuits use a series–parallel switching
conversion technique to take the available fixed DC-link voltage and produce a multilevel
voltage using a reduced number of capacitors, power switches, and/or diodes. SC-MLIs are
a valuable and interesting solution for many new applications due to the voltage step-up
feature they offer, which includes self-voltage balancing for the involved capacitors, which
is the result of a single-stage switching operation that eliminates the need for inductors
and transformers [26–35]. The following is a list of the primary factors and propensities for
SC-MLIs:

1. Maximizing the number of output voltage levels while minimizing the number of
semiconductor devices needed.

2. Increasing the overall output voltage gain with single or multiple DC-source configurations.
3. Reducing or controlling the current stress/loss profile of switches with soft charging

or pulse-width modulation (PWM)-based techniques for better power density and to
improve efficiency.

A wide range of new issues, design requirements, and real-world constraints of con-
ventional MLIs have been highlighted in recent articles [36–45]. Different circuit designs
are used to build MLIs using the SC concept. These include single, multiple, mid-point-
clamped, and common-grounded (CG)-based DC-source structures [46–55]. Hybrid topo-
logical designs that integrate well-known integrated methods such as flying capacitor
(FC) and switched boost (SB) technologies into the SC framework significantly raise their
performance [56–82].

The significant contributions of this review include:

(1) A complete literature overview and a rigorous analysis of about 200 recently published
papers regarding the development, classification, and use of MLI topologies;

(2) A thorough analysis of MLIs and a classification of the existing MLI topologies, along
with their merits and demerits.

(3) A detailed survey of reduced switch count multilevel inverter (RSC-MLI) topologies,
including their designs, typical features, limitations, and criteria for selection.

(4) A critical analysis and classification of the existing SC-MLI topologies with a qualita-
tive assessment of the merits and downsides of SC-MLIs with well-known applica-
tions, and a future roadmap is explored.

(5) An effective summary of multilevel inverters, highlighting the necessity for new or
modified multilevel inverters for grid-connected sustainable solar PV systems.

(6) Finally, this review study should help engineers and researchers by providing a
detailed look at the total number of power semiconductor switches, DC sources,
passive elements, total standing voltage, reliability analysis, applications, challenges,
and recommendations.
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This review paper includes the following: Section 2 describes grid-connected solar PV
systems and MLI background including MLI applications; different types of energy sources
integrated with MLI-based systems, motivational factors for generating an RSC-MLI, and
assessment parameters are discussed in great length. Section 3 presents the detailed MLI
categorization and description of the structure and working principle of features for each
reported RSC-MLI topology, and a variety of SC-MLIs with single or multiple DC-source,
mid-point-clamped, and CGSC configurations are examined and then compared on several
criteria, including the total number of power semiconductor switches, DC sources, passive
elements, total standing voltage, efficiencies relative to the number of levels, and the
structural motivations behind each concept. Section 4 provides a reliability assessment
study to estimate the lifespan of an MLI. Section 5 provides the present challenges and
recommendations. Finally, Section 6 concludes the article with some final thoughts.

2. Grid-Connected Solar Photovoltaic System

Massive worldwide energy demand has led to significant usage of fossil fuels, which
has affected the environment by increasing greenhouse gas emissions. So, renewable energy
resources have gained popularity and growth through producing clean electricity [83–87].

PV cells are used in solar-based technologies to transform the sun’s energy into usable
power. Figure 2 describes the operation of photovoltaic cells, converters, inverters, and
energy control units that make up a system for converting solar energy. Nevertheless,
efforts are being made to better understand how to incorporate renewable energy sources
into the electricity grid. There has been an increased focus on power converters and their
controls because of the importance of their work in transforming electricity and controlling
the output power. DC–DC converters are typically used in the initial stage of integrating
renewable energy sources into a DC grid. Due to the output voltage variations of renewable
energy sources such as wind and solar PVs, this stage must operate at peak efficiency.
Hence, it is imperative that the DC–DC converters in the front-end stages exhibit responsive
behavior towards such fluctuations in order to operate at their optimal efficiency [88–97].
In small-scale industrial or utility applications, these inverters are frequently employed
because of their elevated voltage stress, poor efficiency, elevated operating temperature,
and increased pressure capabilities. Multiple inverters are commonly utilized in large-
scale, high-power, grid-connected renewable energy systems due to their advantageous
characteristics [98–102].

Figure 2. Grid-connected multilevel inverter for solar PV application [103].

An MLI is selected for medium- and high-power applications based on its capability
to generate voltage waveforms of superior quality while functioning at a low switching
frequency [104–108]. Figure 3 indicates how multilevel inverters have a wide variety of
uses in the emerging field of renewable energy, and Figure 4 exhibits the MLI-based system
integration of various renewable energy sources being employed and discussed [109–113].
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Figure 3. Multilevel inverters have a wide variety of uses in the emerging field of renewable energy.

Figure 4. MLI-based system integration of various renewable energy sources [103].

A. Reduced Switch Count Multilevel Inverters (RSC-MLIs): Background

In order to overcome the size and complexity limitations of conventional MLIs, RSC-
MLIs have been developed. However, their structural and operational features are affected
by changes in their topological arrangement.

(i) Factors Contributing to Motivation

Researchers often consider the following qualities while building a novel RSC-MLI
architecture, as shown in Figure 5. The most salient features are enumerated below.

Figure 5. Factors contributing to the motivation for an RSC-MLI.
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(ii) Classification

In any physical design, switches and DC-link voltages can be connected in any topol-
ogy. Often, there is no required architecture, but other times there are ladders, staircases,
columns, U-shaped structures, and cascade structures. As can be seen in Figure 6, the
resulting RSC-MLIs can be categorized in accordance with their topological and functional
properties, as discussed in [114–116].

Figure 6. Classification of RSC-MLI topologies.

(iii) The Evaluation Criteria for an MLI

In contrast, this review study takes into consideration broad criteria for rating the
proposed topologies:

Several MLI evaluation parameters are context dependent, as shown in Figures 7 and 8,
and some of the key features of an MLI that contribute to the different capabilities of the power
system are discussed [117–121].

Figure 7. MLI evaluation criteria [103].

Figure 8. Characteristics of MLIs.
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An interconnected multilevel converter system can use renewable energy sources,
including solar PV, wind energy, and fuel cells. Their operation, effectiveness, improved
power quality, and applications are mostly determined by the control scheme used in the
MLI-PWM. Multiple MLI topologies have been suggested in recent years [122–125]. Based
on the number of DC sources in their topology, MLIs have been classified as shown in
Figure 9, and based on a categorization of the reduced switch in their topology, MLIs have
been classified as shown in Figure 10. The NPC-MLI or DC-MLI, FC-MLI, and CHB-MLI
are the most prevalent industrial topologies [126–130].

Figure 9. Simplified classification of multilevel inverters.

Figure 10. Categorization of reduced switch count MLI topologies.

• Cascaded H-bridge multilevel inverter (CHB-MLI): This topology, which was initially
patented by Baker and Bannister [1,39], was thought to be a good alternative to
previously reported topologies since it required fewer power components. The series
connection of H-bridges with independent DC sources makes up the topology known
as the CHB-MLI. Many series-connected H-bridge constructions combine to produce
the multilevel stepped waveform. A generic H-bridge cell can be cascaded to create
the CHB-MLI that theoretically has an infinite number of layers. Due to its modular
design, it effectively corrects the voltage imbalance that can be seen in NPC and
FC settings. A CHB typically consists of power conversion cells connected in series
on the AC side and individually powered by an isolated DC source from a battery,
ultra-capacitor, or fuel cell on the DC side.

• Diode-clamped multilevel inverter (DC-MLI): Nabae, Takashi, and Akagi proposed the
diode-clamped multilevel inverter (DC-MLI), also known as the NPC-MLI, in 1981 [73].
The widespread adoption of these inverters can be attributed to their tremendous
competency in high-power and medium-voltage operations as well as their relatively
high efficiency.
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• Flying capacitor multilevel inverter (FC-MLI): Meynard and Foch [25,39] suggested
the FC-MLI topology in 1992 to address the issue of static and dynamic sharing of the
voltage between semiconductor switches as implemented in the NPC-MLI architecture.

3. Reduced Switch Count Multilevel Inverters (RSC-MLIs) Topologies

A. Generalized RSC-MLI Topologies

Generalized RSC-MLI topologies can be further divided into subcategories depending
on the similarity of their structures and the switching devices used. The categorization is
as follows:

(1) Separate Level and Polarity Generator Topologies

Each phase-voltage level has its own independent polarity and level generators, which
results in an unusually high number of levels. Popular combinations include the MLDCL,
SSPS, RV, SCSS, and MLM topologies, according to [2]. Figure 11 depicts the per-phase
architecture of these three-source arrangements. An isolated DC supply is used in each
basic unit, which uses bidirectional switches to generate levels in the MLM topology. It is
important to note that MLDCL and SSPS topologies need identical device-blocking voltages.
Adding a new basic unit to an RV, SCSS, or MLM topology increases voltage stress. As
a result, the total DC-link voltage is equal to the blocking voltage of each device. Except
for the SCSS and MLM topologies, all of these topologies offer symmetric and asymmetric
configurations.

(a) (b) 

(c) (d) 

(e) 

Figure 11. Separate level and polarity generator topologies: (a) MLDCL; (b) SSPS; (c) SCSS; (d) RV;
(e) MLM.
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It is acquired from the polarity generator in the SSPS topology since the level generator
cannot make it. Only two devices in the level generator are in conduction to obtain any
positive or negative voltage level in the SSPS topology depicted in Figure 11b. Because
the output voltage is raised by charging all of the DC-link capacitors in series or parallel
operation, the output voltage is also increased. This SSPS function is ideal for charging
batteries and storing energy. For grid-connected PV systems, series or parallel operation
maximizes the use of DC sources. Adding an H-bridge to an SSPS topology RSC-MLI
reduces switch counts and further losses. An asymmetrical improvement architecture with
a voltage gain is presented by the SSPS topology with minimal modifications. To expand
the RV architecture to higher levels, just duplicate the encircling intermediate stage of the
level generator illustrated in Figure 11d. In the topologies presented in Figure 11, level
generators can only use additive DC source combinations.

(2) T-Type Structure Topologies

A T-type topological structure interconnects numerous DC-link nodes by a phase-leg
of full-/half-bridge structures on the burden side. These designs use unidirectional and
bidirectional switches. Figure 12 depicts typical T-type topology combinations through
complete bridge, cascaded, and half-bridge structures. The T-type with complete bridge
construction is the most common, owing to its simplicity and reduced switch count [131,132].

(a) (b) 

(c) 

Figure 12. Topologies with T-type structures: (a) H-bridge T-type; (b) cascaded T-type; (c) T-type
three-phase half-bridge.

(i) T-type MLI: This type of architecture is based on H-bridges and was suggested
by [2,133]. The H-bridge is built from the unidirectional switches, and the
bidirectional switches connect the H-midpoint bridges to the DC-link voltages.
Figure 12a depicts the T-type per-phase configuration with three DC voltage
sources. With no redundancies, this topology is merely symmetrical. To increase
the topology’s flexibility, the number of DC sources can be increased with
bidirectional switches or cascade many T-type modules, which allows for uneven
voltage ratios and switching redundancy. T-type modules should have the same
DC-link voltage. A T-type MLI with two five-level T-type modules cascading is
shown in Figure 12b.

(ii) Half-leg T-type MLI: Separately, the phase leg is linked to the DC link
by bidirectional switches in half-bridge T-type topologies. A three-level
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topology is shown in Figure 12c as an example of this structure. To obtain
larger levels, just increase the DC sources using bidirectional switches,
which may provide even and odd phases of voltage. In Figure 12c, two
devices per leg are in conduction at any one moment, and the voltage rating
of bidirectional switches is smaller than the devices in a phase-leg. Due to
minor conduction losses and a reduced total blocking voltage, this design
is preferred over a DCMLI and ANPC in terms of efficiency. Many PV and
grid-connected applications have used this design. When an open-circuit
switch malfunction occurs, this inverter can be reconfigured to withstand
the problem [2,132].

(3) HSC Structure Topologies

A hexagon switch cell (HSC) structure is constructed using unidirectional switches,
and the DC link is connected to this structure using bidirectional switches.

(i) Topology-I: A mix of T-type with HSC RSC-MLI topology with two stiff
DC sources, i.e., ES and ER, on each side of the HSC. Figure 13a illustrates
that more bidirectional switches or several modules cascaded together
may expand this topology’s capabilities further. According to Figure 13a,
this topology is similar to the five-level T-type MLI when short-circuiting
and open-circuiting the unidirectional switches H5 and H2, as shown.
Since there are now unidirectional switches, we can work in asymmet-
rical configurations with the H-bridge to HSC. Asymmetrical behavior
occurs only when ES is less than or equal to the number of elements in the
configuration. DC-link capacitors “n” in the asymmetrical design of this
architecture can provide (4n + 1) levels of phase voltage. Other voltage
levels can be operated by using an asymmetrical arrangement with suitable
voltage ratios.

(a) 

(b) 

Figure 13. Hybrid T-type topologies and extended HSC structures: (a) Hybrid T-type MLI with a
bidirectional switch on one side of the HSC; (b) hybrid T-type MLI with a bidirectional switch on
both sides of the HSC.

(ii) Topology-II: Figure 13b shows a configuration that is identical to Topology-
I but uses bidirectional switches to connect both sides of the HSC and DC
connections. This topology preserves many of the same properties and
functions as Topology-I through a pair of unidirectional devices [2].

B. Unit-Based RSC-MLIs
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A few authors have developed feasible topologies with drastically reduced switch
numbers compared to conventional MLIs to reduce the topological size, price, and complex-
ity. There are a limited number of output voltage values that these topologies can provide.
These setups function as RSC-MLIs with fixed topologies and output voltage values.

(1) Basic Unit RSC-MLI Topology

Separate polarity and level generators are used in this H-bridge topology [108,110]. A
five-level unipolar voltage can be obtained by using an RSC-MLI basic unit. The basic unit
in Figure 14 is made up of three-cell and one-cell structures. The three-cell structure has
three voltage sources coupled by five unidirectional switches.

Figure 14. Basic unit RSC-MLI topology.

(2) Symmetrical Unit-Based Topology

There are two unit-based topologies that function with a reduced device sum for a
specified number of output voltage levels [2]. These setups are detailed below.

(i) Five-level configuration: To produce nine-level inverters, just cascade two
units as indicated in Figure 15a. In each cycle, the cascaded units exchange
switching pulses. Consequently, the units perform uniformly.

(a) (b) 

Figure 15. Symmetrical unit-based topologies: (a) Five-level; (b) nine-level.

(ii) Nine-level configuration: To compare, Topology-I of the hybrid T-type
design seems to be comparable, with two DC-link capacitors of identical
voltage, as illustrated in Figure 15b.

(3) Asymmetrical Unit-Based Topologies

Figure 16 shows a 17-level MLI circuit with an asymmetrical design. It has ten unidi-
rectional switches with anti-parallel diodes and three asymmetrical DC voltage sources in
a 1:2:5 ratio to produce the expected 17-level output voltage. It is described in detail in the
aforementioned [134].
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Figure 16. An asymmetrical 17-level RSC MLI.

To produce the desired output voltages of 19 levels in a 1:3:5 ratio [135], an asymmetri-
cal design of the MLI circuit is shown in Figure 17. The design employs ten unidirectional
switches with anti-parallel diodes and three asymmetric DC voltage sources. Tables 2 and 3
provide information on how 17-level and 19-level MLIs are built, how they compare with
each other, and summarize the various recent topologies. Similarly, Figure 18 compares
the parameters of the 17-level MLI topologies that have recently been developed, while
Figure 19 compares the parameters of the 19-level MLI topologies that have recently been
developed [134–137].

Figure 17. An asymmetrical 19-level RSC MLI.

Table 2. Parametric comparisons of the recently developed 17-level MLIs.

Topologies NSWT NDCS NL NCAP NDK TSVPU

Transformer-
Less Interfacing

Capability

Leakage Current
Limiting

Capability

FCC/L
CF/L

α = 1.5 α = 0.5

[3] 14 4 17 4 14 11 No No 3.05 4.02 3.38

[138] 10 2 17 4 20 - No No 3.88 - -

[139] 20 2 17 4 20 - No No 3.88 - -

[140] 24 2 17 4 24 - No No 4.48 - -

[5] 16 4 17 4 14 11 No No 3.17 4.14 3.5

[141] 10 4 17 0 10 36 No No 1.41 9.18 4.94

[142] 20 8 17 0 20 36 No No 4 7.17 5.05

[143] 10 2 17 0 10 40 No No 1.35 9.88 5.18

[134] 10 3 17 0 10 12 No No 1.94 3.92 3.66

17-Level
SC-MLI

[144]
13 0 17 4 13 5.6 Yes Yes 2.11 2.02 1.69
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Table 3. Parametric comparisons of the recently developed 19-level MLIs.

Topologies NL NSWT NDK NDCS FCC/L TSVPU
Efficiency

(%)

CF/L

α = 0.5 α = 1.5

[145] 19 12 11 1 1.26 7.55 87.72 1.46 1.85

[146] 19 10 19 2 1.63 8.88 - 1.86 2.33

[147] 19 22 22 8 2.73 8.22 93.49 2.95 3.38

[148] 19 11 19 5 1.84 8 - 2.05 2.47

[149] 19 10 10 2 1.15 6.88 - 1.33 1.7

[150] 19 11 11 4 1.36 5.77 97.38 1.52 1.82

[136] 19 13 13 3 1.52 6.66 93.67 1.70 2.05

[135] 19 11 11 3 1.31 4.66 97.38 1.43 1.68
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(e) Cost factor per level
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Figure 18. Parametric comparisons of recently developed 17-level MLI topologies [3,5,134,138–144].
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(c) Total standing voltage

(d) Factor of component count per level

(e) Cost factor per level
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Figure 19. Parametric comparisons of recently developed 19-Level MLI topologies [135,136,145–150].

a. Power loss efficiency calculations:

Power losses are the main constraints in inverters, such as conduction losses (PCond)
and switching losses (PSwi) [134–136]. The net amount of conduction losses can be obtained
by considering losses in the IGBT switch (PCIGBT) and anti-parallel diode (PCDI) in the
current conduction state and is represented as follows:

PCond(t) = PCIGBT(t) + PCDI(t) (1)

PCond(t) =
{[

VIGBT + RDIi
β
n(t)

]
+ [VDI + RDIin(t)]

}
in(t) (2)

where VIGBT, VDI, and in are the IGBT threshold voltages and peak current, respectively. If
the diodes (NDI) and switches (NIGBT) are conducted at the same intervals (t), RIGBT and
RDI are the IGBT and diode on-state resistance, respectively, β is the IGBT constant. The
average power loss is:

PCond =
1

2π

∫ 2π

0
{NIGBT(t)PCIGBT(t) + NDI(t)PCDI(t)}dt (3)

The energy losses such as energy turn-on (Enon) and turn-off (Enoff) for IGBT turn-on
and -off states during power consumption are:

Eno f f =
1
6

VIGBTj Ito f f (4)

Enon =
1
6

VIGBTj I′ton (5)

The j is the loss in IGBT and tnoff and tnon are the turn-on and -off, Enoff and Enon I and
I′ of the IGBT switches, respectively.

PSwi = f
{
∑ NIGBT

j=1

[
∑

Nnonj
j=1 Enonji + ∑

Nno f f j
j=1 Eno f f ji

]}
(6)

The Nnonj and Nnoffj are IGBT turn-on and -off jth time intervals with fundamental (f )
in one complete cycle.

PTloss = Pcond + Pswi (7)
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To calculate the inverter efficiency by Equation (8):

%η =
Poutn

Pinn
=

Poutn

Poutn + PTloss
× 100 (8)

where both Poutn and Pinn are abbreviations used to denote output and input power, respec-
tively. The output power can be calculated using Equation (9) as follows:

Poutn = Vrms × Irms (9)

b. Switch stress total standing voltage (TSV) calculations:

To produce the largest blocking voltage via each switch, the multilevel inverter is
crucial, and the TSV is the most essential factor in switch selection. There is a pairing
between the maximum voltage across the switches and the TSV values. A voltage-blocking
stress has been applied across the switch. Differences in voltage stress exist between
unidirectional and bidirectional switches.

According to [134], it is possible to calculate the TSV per unit (TSVPU) as:

TSVPU =
VTSV
Vomax

(10)

c. Cost function (CF) parameter calculations:

The cost function (CF) can be used to make educated guesses about the financial
viability of various MLI design alternatives, which is useful for highlighting budgetary
constraints and showcasing design tradeoffs. The following equation provides a means
through which the cost factor can be determined:

CF = (NSWT + NDD + NCAP + NDCS + NDK + αTSVPU) (11)

where NSWT indicates the number of switches, NDD indicates the number of diodes, NCAP
indicates the number of capacitors, NDCS indicates the number of DC sources, NDK indicates
the number of driver circuits, and TSVPV indicates the total standing voltage, if TSVPU is
multiplied by the “α” weighting factor. In order to calculate the cost function (CF) can be
used Equation (12) can be used as follows:

CF = (NSWT + NDK + NDCS + αTSVPU) (12)

For the best cost factor computation, 0.5 and 1.5 will be explored. The component
count per level factor (FCC/L) can be calculated by using Equation (13):

FCC/L =
(NSWT + NDCS + NCAP + NDD + NDK)

Levels
(13)

C. Switched capacitor (SC) unit-based topologies

Basically, a DC source, diodes, capacitors, and switches make up the building blocks
of an "SC unit”. SPSC units, SC voltage doubler units, SC half-mode units, SC bipolar units,
and SC voltage triple units are all subsets of basic SC units. The SC-MLIs can be categorized
as single and multiple DC-source SC-MLIs, mid-point-clamped SC-MLIs, common ground
switched-capacitor (CGSC)-based MLIs, and hybrid SC-MLIs [151–161].

1. Single DC-source SC-Unit-based MLIs

a. SPSC Units

There are two main types of SPSC units utilized in SC-MLIs, and they are depicted in
Figure 20; Figure 20a depicts the minimal component count for Type-I of this device, which
consists of just two switches, one capacitor, and one power diode [162–166]. The output
voltage can be set to one of two discrete positive values, VDC or 2VDC, depending on the
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value of the input DC source. SPSC Unit-II, represented in Figure 20b, employs the same
capacitor charging and discharging principle, although with an extra capacitor and a power
switch in place of the diode and four-quadrant switch. The SPSC Unit-I is different from the
SPSC Unit-II in that it can only send power in one direction. Furthermore, unlike the SPSC
Unit-I, the SPSC Unit-II uses charged capacitor voltages to create both discrete voltage
levels, which eliminates the possibility of a DC offset during the formation of the output
voltage level in SC-MLIs. In this case, in addition to the paralleled conventional power
switches in SPSC Unit-II, four-quadrant power switches with a back-to-back connection of
two standard MOSFETs can be employed [167–171].

Figure 20. Categorization of different SC-based basic units.

b. SC Voltage Doubler Unit

A voltage doubler SC unit, as shown in Figure 20c, is a two-port converter that utilizes
a single DC source, two capacitors, two complementary power switches, and two power
diodes. Each capacitor has its own charging channel, which includes a diode and a power
switch. Being a two-port SC-based basic unit, it can provide five different DC-link voltages,
including 0 VDC, ±VDC, and ±2VDC. This fundamental SC unit’s adaptability to operation
comes at the expense of a lack of bidirectional power flow capacity [172–176].

c. SC Half-Mode Units

When using an SC half-mode device, the DC-link capacitors can be charged to a voltage
that is only a small multiple of the DC-input source’s voltage. Several other SC half-mode
units have been introduced recently, as illustrated in Figure 20d. This is connected to the
charging activities of the capacitors in the SC half-mode Unit-I; two fixed values of discrete
DC-link voltages are required at its output, and this requires four DC-link capacitors, two
complementary switches, and two diodes. Using a capacitive charging channel consisting
of two diodes and a single power switch, the capacitors in this setup are charged to half the
main DC-link voltage, earning this configuration the designation SC half-mode Unit-II, as
shown in Figure 20e.

d. SC Bipolar Unit

The SC bipolar unit, shown in Figure 20f, has the ability to generate bipolar output
voltage levels, such as 0VDC, ±VDC. In this device, just one DC-link capacitor is required
to be charged in parallel to the input DC-source voltage, whereas five power switches are
required for the entire operation.

e. SC Voltage Tripler Units
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Basic units based on SC technology give SC-MLI topologies with voltage increases
that are three times the normal value. Figure 20g shows the functioning concept of the most
common type of SC voltage tripler unit. It is comprised of two DC-link capacitors, two
power diodes, and four power switches [177–181]. As can be observed, both capacitors in
this device are charged by the DC input. Table 4 provides a comparative study of different
single DC source SC-MLIs [151], Table 5 describes the comparative study of different
SC-MLIs with two asymmetric DC sources, and Table 6 provides a comparative study of
cross-connected asymmetrical 15-level SC-MLIs [182–186].

Table 4. Comparative study of different single DC source SC-MLIs.

Type of SC-MLI
No. of

Levels/THD
Overall Voltage Gain/Caps

Voltage
TSV (pu)/MVS Reported Rated Efficiency

No. of Components

S D C

FB based [153] 7/19.5% 3/VDC (3) 6/3VDC 85%@1kHz/5W 10 0 3

HB based [169] 7/7% 3/VDC (2) 5.66/3VDC 92.2%@50Hz/500W 9 4 2

HB/NPP based [172] 7/16.2% 1.5/0.5VDC (2) 6/VDC 95.5%@50Hz/250W 10 0 2

HB based [173] 7/11.2% 4/VDC (2), 2VDC (2) 5.5/4VDC 96.5%@50Hz/270W 12 0 4

HB based [162] 7/13.7% 1.5/VDC (2) 5.33/VDC 96.6%@50Hz/600W 10 0 2

FB based [151] 7/2.8% 3/VDC (2) 6/3VDC 92.1%@50Hz/150W 9 1 2

FB based [174] 9/3.1% 2/VDC (2) 5.75/2VDC 94.2%@1kHz/200W 9 2 2

FB based [175] 9/13.8% 4/VDC (1), 2VDC (1) 5.25/4VDC NA%@50Hz/NA 9 2 2

HB/NPP based [176] 9/12.5% 2/0.5VDC (2) 5.5/2VDC NA%@50Hz/400W 11 0 2

HB/NPP based [36] 9/8.8% 2/VDC (1), 0.5VDC (2) 5.5/2VDC 97.4%@50Hz/1kW 12 0 3

HB/NPP based [37] 9/10.2% 2/VDC (1), 0.5VDC (2) 5.5/2VDC 98%@50Hz/1kW 10 1 3

HB based [165] 11/6.8% 5/VDC (2), 3VDC (2) 5/6VDC 95.5%@50Hz/220W 9 4 4

HB based [166] 13/11% 6/VDC (2), 3VDC (2) 5.5/6VDC 95.5%@50Hz/500W 10 4 4

HB/NPP based [177] 13/5.3% 3/VDC (2), 0.5VDC (2) 6/3VDC NA%@50Hz/1kW 12 4 3

HB based [178] 13/7.2% 6/VDC (2), 3VDC (1) 6/3VDC NA%@50Hz/NA 13 2 3

HB based [38] 13/7.7% 6/VDC (1), 2VDC (2) 5/3VDC 94%@50Hz/1kW 15 0 3

HB/NPP based [160] 17/NA 8/VDC (2), 2VDC (2), 4VDC (2) 4.25/8VDC 95.5%@50Hz/1kW 10 4 6

HB based [179] 17/3.9% 8/VDC (1), 2VDC (2), 4VDC (2) 4.25/8VDC 94.5%@50Hz/80W 10 5 5

HB based [180] 21/4.8% 10/VDC (2), 2VDC (4), 4VDC (2) 5/2VDC NA%@50Hz/NA 20 8 8

HB based [181] 21/4.5% 10/VDC (2), 2VDC (4), 4VDC (2) 5/2VDC NA%@50Hz/NA 20 12 10

Table 5. Comparative study of different SC-MLIs with two asymmetric DC sources.

Type of SC-MLI No. of
Levels/THD

Overall Voltage
Gain/CapsVoltage

TSV
(pu)/MVS

Asymmetric
Amplitude of
DC-Sources

No. of
Components

S D C

SCC-Mode-I [43] 11/NA 1.25/VDC 4.2/4VDC VDC and 3VDC 11 0 1

SCC-Mode-II [43] 11/9.3% 1.67/2VDC 4.4/2VDC VDC and 2VDC 11 0 1

Figure 1 [49] 15/4.7% 1.75/VDC 8.5/7VDC VDC and 3VDC 10 1 1

Figure 1 [47] 17/4.8% 1.6/2VDC, 1.5VDC (1) 4.5/8VDC 2VDC and 3VDC 12 1 3

Figure 1 [44] 19/8.9% 1.8/4VDC (2) 4.89/9VDC VDC and 4VDC 13 0 2

Figure 1 [47] 21/4.3% 2/VDC (2), 4VDC (2) 5/10VDC VDC and 4VDC 14 0 4

Figure 1
[52] 25/1.8% 2/VDC, 4VDC 10/10VDC VDC and 5VDC 12 2 2

Figure 3 [44] 29/NA 2/VDC (2), 2.5VDC 4.64/14VDC VDC and 2.5VDC 18 0 3

Figure 12 [182] 31/NA 4/VDC (2), 4VDC (2) 5.5/15VDC VDC and 4VDC 14 2 4

Figure 13f SCC [183] 31/NA 3/VDC (2), 4VDC (2) 5.6/15VDC VDC and 4VDC 16 0 4

Figure 13g SCC [184] 49/NA 4/VDC (3), 4VDC (3) 7.25/24VDC VDC and 4VDC 18 2 6

Figure 3 [185] 49/NA 2/VDC (2), 5VDC (2) 6/24VDC VDC and 5VDC 18 2 4

Figure 4 [44] 49/NA 2/VDC (2), 5VDC (2) 5/24VDC VDC and 5VDC 20 0 4
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Table 6. Parametric comparisons of cross-connected 15-level SC-MLIs.

Topologies NLev NSwt NDK NDC NC NDio VTB/NL Efficiency (%)

[187] 15 10 10 5 0 1.26 - 93.73

[188] 15 14 14 1 4 1.63 4.86 -

[189] 15 10 9 4 0 2.73 4.6 97.5

[190] 15 8 8 3 0 1.84 2 95.2

[191] 15 10 9 3 0 1.15 2.26 -

[192] 15 10 10 5 0 1.36 1.06 90

Figure 1 [186] 15 10 8 2 2 1.31 3.6 96.3

4. Mid-Point-Clamped SC-MLIs

High-frequency variable CMV, which results from the varying numbers of HB legs
used in the aforementioned single and multiple DC-source SC-MLIs to invert the SC
unit/generalized SCC output voltage polarity, is one of the main issues that prevents
their widespread use, for example, in grid-tied PV systems. Since their output voltage
is monitored at the neutral point of the DC connection, mid-point-clamped MLIs are a
common choice in this scenario. While a multilevel output voltage waveform is generated
by a single input DC source, the leakage current problem in grid-tied PV applications is
significantly reduced. The identical capacitors used in the DC links of single-phase MLIs
may be used in three-phase systems. Table 7 provides a comparative study of different
mid-point-clamped SC-MLIs [187–197].

Table 7. Comparative study of different mid-point-clamped SC-MLIs.

Type of SC-MLI
No. of

Levels/THD TSV (pu)/MVS Reported Rated
Efficiency

No. of Components

S D C

SC [56,159] 4/41.4% 2.66/1.5VDC 97%@1kW 4 2 4

ABNPC [57] 5/NA 5/VDC 98.5%@1.2kW 6 2 3

ABNPC [60] 5/NA 6/0.5VDC NA@50W 10 0 3

ABNPC [62] 5/NA 6/0.5VDC 97.5%@800W 6 2 4

ABNPC [81] 5/NA 6/1.5VDC 97.1%@1kW 8 2 4

ABNPC [82] 6/20.2% 4.4/3VDC 95.8%@450W 6 4 5

Sym SC [172] 7/12.2% 5/VDC 97%@150W 9 1 3

ABNPC [61] 7/NA 5.33/VDC 96%@50W 9 0 3

ABNPC [66] 7/19.3% 5.3/2VDC 96.7%@250W 9 0 3

Dual T-type [70] 7/NA 7.33/2VDC 98%@100W 10 0 4

ABNPC [71] 7/NA 6.66/VDC 97%@100W 10 0 4

ABNPC [74] 7/NA 4.66/VDC 97.8%@400W 8 2 4

Dual T-type [61] 9/NA 10/VDC 96%@50W 12 0 3

ABNPC [72] 9/NA 5/0.5VDC 97%@500W 10 4 4

ABNPC [73] 9/NA 10/2VDC 98%@400W 11 4 3

ABNPC [75] 9/4.1% 5/VDC 97.1%@400W 10 2 2

Asym SC [56] 15/5.5% 5/2VDC 97%@150W 12 2 4

9-Level SC-MLI
[198] 9/1.07% 8.5 VDC 98.03%@583.91W 10 4 4

15-Level MC-MLI
[199] 15/5.66% 7 VDC 94.1%@113.75W 9 4 3

MM-STC [200] 9/9.28% 4 VDC 98.65%@321.35W 8 8 0

17-Level SC-MLI
[201] 17/NA 5/2VDC 96.5%@434.7W 16 10 4

a. Five-Level mid-point-clamped SC-based inverter
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The five-level mid-point clamped-based MLI approach, as shown in Figure 21a, in-
volves adding two capacitors, C3 and C4, and a four-quadrant power switch “p” to a
standard 3L NPC-based inverter to provide five distinct levels of output voltage.

Figure 21. Mid-point-clamped SC-based inverters: (a) 5-Level inverter, (b) 7-Level inverter.

b. Seven-Level mid-point-clamped SC-based inverter

The seven-level mid-point-clamped inverter proposed in [79] and depicted in Figure 21b
is another example of this topology, although one that employs nine rather than eight
switches. Figure 22 shows the comparison of the efficiency of SC-MLI with multi-source
MLIs [198], and Figure 23 shows the measured efficiency of the 19-level SC-MLI at different
frequency ranges [144,198–201].

Figure 22. Comparison of the efficiency of SC-MLI with multi-source MLIs [61,68,72–74,151,172,198].

Figure 23. Measured efficiency of the 19-level SC-MLI at different frequency ranges.
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5. Common Ground Switched-Capacitor (CGSC)-Based MLIs

Mid-point clamped MLIs can minimize leakage current in transformer-less grid-tied
PV systems. HF-CMV in midpoint-clamped MLIs is from DC-link capacitors. To eliminate
CMV, CGSC-based MLIs have been proposed, where the input DC source’s ground and
the grid’s neutral point are directly coupled. No leakage current can flow through the
system because the parasitic capacitance between the negative terminal of the input DC
source, such as PV panels, and the ground sees a grounded potential instead of a fluctu-
ating HF-CMV. This converter is also called a three-port single-DC source inverter or a
transformer-less inverter with double grounding. Table 8 provides a comparative study of
different CGSC-based MLIs, and Table 9 provides comparative study of different hybrid
MLIs [194–196].

Table 8. Comparative study of different CGSC-based MLIs.

Type of
SC-MLI

No. of
Levels/THD

Overall Voltage
Gain/Caps Voltage

TSV
(pu)/MVS

Reported Rated
Efficiency

No. of Components

S D C

[86] 5/NA 2/VDC (1), 2VDC (1) 4.5/2VDC 98.1%@600W 6 2 2

[89] 5/NA 2/VDC (1), 2VDC (1) 6/2VDC 96%@40W 7 2 2

[90] 5/35.4% 2/VDC (2) 5/2VDC 98%@600W 8 1 2

[92] 5/NA 2/VDC (1), 2VDC (1) 5/2VDC 98%@600W 11 0 4

[93] 5/NA 2/VDC (1), 2VDC (1) 6.5/2VDC 97.5%@600W 8 2 3

[94] 5/NA 2/VDC (2) 5.5/2VDC 98.3%@600W 8 0 2

[99] 5/36.4% 2/VDC (1), 2VDC (1) 6.5/2VDC 97.5%@330W 8 1 2

[102] 5/NA 2/VDC (2) 6/2VDC 96.7%@1kW 9 0 2

[102] 5/NA 1/0.5VDC (2) 6/VDC 97%@500W 6 1 2

[94] 7/NA 3/VDC (3) 6/3VDC 98.3%@600W 11 0 2

[95] 7/NA 3/VDC (2), 2VDC (1),
3VDC (1) 6/3VDC 98%@800W 6 4 4

[97] 7/NA 3/VDC (1), 2VDC (2) 5.33/3VDC NA@1kW 8 4 3

[98] 9/NA 4/VDC (4) 6/4VDC NA@275W 17 4 4

[102] 9/NA 4/VDC (4) 6/4VDC NA@1kW 17 0 4

Table 9. Comparative study of different hybrid MLIs.

Type of
SCMLI

No. of
Levels/THD

Overall Voltage
Gain/Caps Voltage

TSV
(pu)/MVS

Reported Rated
Efficiency

No. of Components

S D C

CGSC
based [105] 5/NA 1/VDC (1), 0.5VDC (1) 4/VDC 95.8%@1.2kW 6 1 2

ABNPC
based [106] 7/NA 1/0.5VDC (2), VDC

(1), 0.5VDC (1) 5/VDC 98%@2.2kW 8 2 4

ABNPC
based [107] 7/NA 1/0.5VDC (2), VDC

(1), 0.5VDC (1) 5.5/VDC NA 10 0 4

ABNPC
based [112] 7/NA 0.5/0.5VDC (2),

0.33VDC (2) 6/0.5VDC NA 11 0 4

HB based
[108] 9/NA 2/VDC (2), 0.5VDC (1) 6/2VDC 96.4%@500W 8 2 3

HBSC
based [109] 9/13.5% 2/VDC (1), 0.5VDC (1) 6/VDC 97.3%@330W 11 0 2

HBSC
based [110] 9/NA 2/VDC (1), 0.5VDC (1) 5/2VDC 96.5%@330W 8 1 2

HBSC
based [111] 9/NA 2/VDC (1), 0.5VDC (1) 5.5/2VDC 96.6%@600W 8 1 2

HBSC
based [114] 9/9.4% 2/VDC (1), 0.5VDC (1) 5.5/VDC 96.5%@800W 10 0 2

CGSC
based [116] 9/NA 2/VDC (2), 0.5VDC (1) 5/2VDC 97.5%@1.2kW 9 1 3

CGSC
based [117] 5/NA 2/VDC (1), 2VDC (1) 6/2VDC 97.5%@700W 7 2 2
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a. Three-level CGSC-based inverter

The inverters are based on CGSC and have been recently practiced. Taking into
consideration Figure 24a, [202] proposed a three-level CGSC-based inverter with five
power switches and a virtual DC-link capacitor, where the capacitor, C, was charged to
the input DC source, Vdc, during the positive and zero levels of the output voltage and
discharged during the generation of the negative output voltage. Siwakoti-H inverters
were proposed in [203] that reduced the number of switching devices for this type of three-
level CGSC-based inverter, as illustrated in Figure 24b,c, where one additional diode was
employed in Type-I of this converter and two RB-IGBTs were used in its Type-II variation.
In [204], a three-level, four-switch CGSC-based inverter is presented; the virtual DC-link
capacitor is charged indirectly to Vdc through a diode-aided CPC cell.

Figure 24. CGSC-based inverters: (a–c) Three-level inverters; (d,e) five-level inverters; (f) seven-level
inverter; (g) nine-level inverter.

b. Five-level CGSC-based inverter

There are two distinct CGSC-based inverter topologies, as can be seen in Figure 24d,e,
one employing six power switches and the other employing eight power switches, both of
which are capable of producing five levels of double voltage conversion gain output. A
five-level CGSC-based inverter, recently presented by Ardashir et al. [197], is comprised
of six power switches. The negative output voltage levels are generated using a similar
virtual DC-link SC approach, but the total gain of the voltage conversion is unity.

c. Seven-level CGSC-based inverter

The authors of [134] described a further inverter design based on a seven-level CGSC
by considering Figure 24f, with fewer switches. By charging capacitors C1, C2, and C3 to
Vdc, 2Vdc, and 3Vdc, respectively, the whole seven-level inverter output voltage range
can be made with a voltage gain of three. This construction is based on the virtual DC-link
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principle, just like the aforementioned five-level CGSC-based inverters. Only six power
switches are needed, but an extra four power diodes are essential. Since C2 and the input
DC source are connected in series, C3 can be charged from either. This charging action is
feasible both at zero and at the highest positive output voltage level, +3 Vdc, just as in the
five-level CGSC-based inverters given in [86–91]. Additionally, in positive and negative
half-cycles of the output voltage, the direction of the load current charges and discharges
the DC-link capacitor Cdc. As a result, a higher Cdc and C3 capacitance may be required to
reduce the voltage ripple caused by these lengthy discharging cycles.

d. Nine-Level CGSC-based inverter

A nine-level quadruple-voltage-gain CGSC-based inverter is shown in Figure 24g. The
consistent MVSs across all the FB-cell switches and the lowered balanced voltage value of
the related capacitors make this a compelling design, despite the high number of switching
devices it employs. Because bigger values of the capacitance are required in the case of
increased power injection requirements, the converter’s lengthy discharging cycle for the
capacitors may be a major drawback.

The scope of use for SC-MLIs can be expanded as shown in Figure 25, and SC-MLIs
are appealing for grid-tied PV-based low-power applications because of their single-stage
voltage step-up capability, despite their pulsing input current [86–88]. Other developed
applications of SC-MLIs with restricted output power performance include motor drives,
electric vehicles, energy storage systems, and balancing in battery strings.

Figure 25. Various applications of SC-based multilevel converters/inverters.

As can be seen in Figure 26, we take into consideration ten characteristics to present a
comprehensive qualitative overview of the circuit properties of various SC-MLIs.

Figure 26. Qualitative comparison analysis of different SC-MLIs in various characteristics.
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6. Modulation Techniques

Modulation techniques typically involve a carrier signal and a modulator waveform
with different waveform parameters. By adjusting the characteristics of a carrier signal
using a reference signal, modulation can be used to control the switching time of the
switches in the MLIs. Harmonic reduction and switching losses, both of which can be
controlled by modulation methods, are two of the things that affect the overall efficiency
of a multilevel inverter. The modulation index plays an important role in all control sys-
tems. The THD fluctuates with a modulation ratio (either too much or too little). There
are a variety of methods in the literature that may be used based on the switching fre-
quency, whether fundamental or high frequency. Figure 27 shows several MLI modulation
control techniques.

Figure 27. Multilevel inverter modulation control techniques.

Table 10 provides a comprehensive study of conventional MLI topologies; Table 11
offers the merits and demerits of new multilevel inverter topologies; Table 12 provides the
applications of MLI topologies; and Table 13 provides information on a comprehensive
examination study of traditional and new multilevel inverter topologies.

Table 10. The advantages of switched-capacitor multilevel inverters (SC-MLIs) over conventional
multilevel inverters.

Advantages
Switched-Capacitor Multilevel Inverters

(SC-MLIs)
[36,38,68,90,91,99,151,198,201]

Conventional Multilevel Inverters
(DC-MLI, FC-MLI & CHB-MLI)

[1,2,11,31,39,106,205]

Reduced component count Fewer power electronic components required More components needed

Cost Fewer components lead to lower costs and
increased reliability

A higher component count might lead to
increased cost and complexity

Higher efficiency Fewer components and simplified control can
contribute to higher efficiency

Higher component count and more complex
control might lead to lower efficiency

Compact design Modular and compact designs are possible The size might be larger

Modular structure Scalable and adaptable design by adding or
removing capacitor modules Limited scalability

Simplified control Simple control strategy due to switched
capacitors Control complexity may be higher

Voltage balancing Inherent voltage balancing Requires active balancing

Improved reliability A simpler structure and fewer components can
result in improved overall reliability

Complex structures and more components
might lead to increased failure points
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Table 10. Cont.

Advantages
Switched-Capacitor Multilevel Inverters

(SC-MLIs)
[36,38,68,90,91,99,151,198,201]

Conventional Multilevel Inverters
(DC-MLI, FC-MLI & CHB-MLI)

[1,2,11,31,39,106,205]

Reduced EMI Potentially lower EMI EMI considerations may be higher

Low-power applications Well-suited for applications with lower power
requirements

Suitable for a range of power levels, but
complexity might be overkill for lower power
applications

Improved waveform quality Inherent voltage balancing leads to improved
output waveform quality

Output waveform might require additional
filtering to achieve desired quality.

Table 11. Benefits and restrictions of new multilevel inverter topologies.

MLI
Topology

Benefits Restrictions

RVDC-C
[205]

• A more modular framework
• Asymmetric or symmetric source configurations are

possible
• Cells may share electricity equally
• Can be used at the basic switching frequency

• Independent DC sources are required

Developed H-bridge
[31]

• To produce greater levels of output, it only requires a
small number of switches

• Why equality of load sharing across sources is
impractical.

• An asymmetrical arrangement is required
• Independent DC sources are required

SCU
[151]

• High modularity, equal load sharing across sources
• Works with both symmetric and asymmetric sources

• Control complex
• Capacitor performance problem
• DC sources must be isolated

DCC
[1]

• There is the option of using an asymmetric source
arrangement

• This device has a basic construction and a high
degree of modularity

• Cell-to-cell power transfer is impossible
• Various voltage switches are required
• Requires independent DC.

CPCC
[205]

• It may be used with either an asymmetrical or
symmetrical source arrangement

• It is feasible to distribute electricity equally across
cells in a symmetrical design

• No need for fundamental frequency shifting.
• Requires various voltage switches.

CIC
[205]

• Minimal switching and conductor losses
• Modular construction

• It requires both isolated and non-isolated DC
supply, and it cannot be used with
asymmetric source configurations

Hybridtopology
[31,43,51]

• Low-, medium-, and high-voltage applications are all
well-served by this component

• Switching frequency at the fundamental level can be
applied

• A lot of work is required to manage this
• Switches with various voltage ratings are

required
• This does not apply to a trinary-source setup
• Isolated DC power supply are required

HERC-C
[205]

• Simple and very modular structure
• Power distribution across modules may be done on

an equal basis
• Switching and conduction losses have been
• minimized significantly

• It is not possible to use a trinary source
configuration

Cascaded half- bridge
[11,33]

• Modular and simplified design
• All that is needed is a single, isolated DC supply
• Switch rating stays constant as the number of levels

increases
• Totally eliminates common-mode leakage current in

solar PV

• Balancing capacitors is a delicate process that
needs further attention

• High losses in switching
• It is not feasible to share authority equally
• It is feasible to set up a source in an

asymmetrical fashion.
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Table 11. Cont.

MLI
Topology

Benefits Restrictions

SSSC
[151]

• Switches with the same power rating are needed
• A reduction in switch count without an increase in

switch rating
• Equality of power can be achieved

• The structure is complicated
• Capacitor dynamics prevent it from operating

at its basic switching frequency

SADC
[151]

• Simple Architecture and it can function at the highest
voltage-rated switch

• No two sources can share the burden equally
• A variety of switches are required
• A DC source of uneven magnitudes is needed

for this application

CCS
[11,33]

• Suitable for low-, medium-, and high-voltage
applications

• Simple construction
• Sources needed to be mandatorily asymmetric

Staircase cascaded
[33]

• Structural flexibility
• Low conduction losses
• Low-, medium-, and high-voltage applications
• Non-isolated DC input levels

• Requires switches of different voltage rating
• Equal distribution of power among sources

cannot be attained
• Asymmetric source configuration is not

possible

Reduced switch type
[205]

• Asymmetric arrangement is also feasible
• High efficiency
• Simple basic module layout for many levels

• DC power sources must be kept separate
• Various switches have different blockings
• Voltage ratings

Cascade unit based
[11]

• Has a modular design
• Can be swapped at the fundamental frequency
• Asymmetric source setup is another option.

• It is impossible to have an equal distribution
of power

• Switches with various voltage ratings are
required

Table 12. Applications of MLI topologies.

MLI Type Applications

NPC [72,79]
• Drives
• RESs
• Power conversion

FC [205]
• RES
• Drives

ANPC [57]
• Solar PV systems
• Filters

CHB [11,33]
• Power systems
• RES
• Motor Drives

HCHB [31,43,51]
• Drives
• RES

MLDCL [12]
• Permanent magnet motor drives for below 100 KW
• Solar PV and fuel cell incorporation

SSPS [151]
• RES
• Drives
• Traction
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Table 12. Cont.

MLI Type Applications

T-type [68]
• Drives
• RES
• Railways (traction)

N-type [1]
• RES
• Medium voltage level industries

CCHB [1,11,33]
• Drives
• Power conversion
• RES

RV [2,205]
• Power conversion
• High voltage DC transmission systems

MLM [205] • RES

CCS [11,33] • Solar PV systems

PUC [205]
• Drives
• RES

CBSC [151,205] • RES

M-type [1]
• High voltage DC transmission systems
• Wind energy conversion systems

Table 13. Comprehensive examination study of traditional and new multilevel inverter topologies
(nlevel = number of levels in phase voltage).

Topology
Unidirectional

Switches
(Nsw)

Bidirectional
Switches

DC Sources
(NDC)

Capacitors
(Ncap) H-Bridge

Highest Switch
Rating

Total
StandingVoltage

Requirement
(p.u.)

CHB-MLI
[11,31] 2 ∗ (nlevel − 1) 0 (nlevel−1)

2
0 - VDC 2 ∗ (nlevel − 1) ∗

VDC

NPC-MLI
[72,73] 2 ∗ (nlevel − 1) 0 1 (nlevel −1) No VDC 2 ∗ (nlevel − 1) ∗

VDC

FC-MLI
[205] 2 ∗ (nlevel − 1) 0 1

nlevel
2 ∗ (nlevel −

1)
No 2 ∗ VDC 2 ∗ (nlevel − 1) ∗

VDC

RVDC-MLI
[1,2] 3 ∗ (nlevel − 1) 0

.
(nlevel − 1)

2

0 No 2 ∗ VDC
11
4 ∗ (nlevel − 1) ∗

VDC

H-bridge MLI
[31,45,51] 2 ∗ (log2 (nlevel + 1)) 0 (log2 (nlevel +1)

−1) 0 No n level−1
2 ∗ VDC

2 ∗ (nlevel − 1) ∗
VDC

SCU-MLI
[151,205]

3 ∗ (log3 ( nlevel + 1
2 ))

+ 4
0 Log3 ( nlevel+1

2 ) log3 ∗ ( n level+1
2 ) Yes n level−1

2 ∗ VDC
11
4 ∗ (nlevel −1) ∗

VDC

DCC-MLI
[1,2,133]

5∗(nlevel∗21)
6

0
.

(nlevel − 1)
3

0 Yes 3 ∗ VDC 7∗ nlevel−9
2 ∗ VDC

CPCC-MLI
[11,33,205]

2∗(nlevel−1)
3

(nlevel−1)
3

.
(nlevel − 1)

2

0 No 3∗(nlevel−7)
Nsw

10
3 ∗ (nlevel −1) ∗

VDC

CIC-MLI
[11]

2∗(nlevel+8)
3

0 (nlevel−1)
2

0 No 2 ∗ VDC (3 ∗ nlevel −7) ∗
VDC

Hybrid MLI
[31,43,51]

3∗(nlevel−1))
4

(n level−1)
8

(nlevel−1)
4

(nlevel−1)
4

No 2 ∗ VDC
13
8 ∗ (nlevel − 1) ∗

VDC

HERC-MLI
[11,33,205]

(3∗nlevel−1)
2

1 (nlevel−1)
2

0 No 2 ∗ VDC
15
4 ∗ (nlevel − 1) ∗

VDC
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Table 13. Cont.

Topology
Unidirectional

Switches
(Nsw)

Bidirectional
Switches

DC Sources
(NDC)

Capacitors
(Ncap) H-Bridge

Highest Switch
Rating

Total
StandingVoltage

Requirement
(p.u.)

CHB-MLI
[11] (nlevel + 1) 0 1 (nlevel+1)

2
No 2 ∗ VDC (nlevel +3) ∗ VDC

SSSC-MLI
[151] (5 ∗ nlevel − 1) 0 1 (nlevel − 1) No VDC (5 ∗ nlevel − 1) ∗

VDC

SADC-MLI
[151,205]

(nlevel−1)
3

(nlevel−1)
12

(nlevel−1)
4

0 No 10 ∗ VDC
9
4 ∗ (nlevel − 1) ∗

VDC

CCS-MLI
[33,205] 6 (nlevel−5)

2
2 (nlevel−9)

2 + 2 No 2 ∗ VDC
1
4 ∗ (nlevel − 1) ∗

VDC

RSC-MLI
[205] 6 (nlevel−1)

2
(nlevel−1)

2
0 Yes 2 ∗ VDC

7
2 ∗ (nlevel − 1) ∗

VDC

(’ ∗ ’ indicates the multiplication operation).

7. Reliability Assessment

Reliability assessment is the process of estimating a device’s lifespan and chance of failure.
Reliability is vital to a system’s seamless operation. Manufacturing companies work with
reliability analyses to build durable, high-performing, and low-maintenance goods. This idea
of “reliability” includes various aspects for assessing a device’s reliability. Figure 28 shows
reliability categories and how to calculate system reliability [103,144,206,207].

Figure 28. Reliability classifications.

Lifespan estimation is crucial, and a device’s or part’s lifespan can be estimated by
calculating the mean time to failure. A high MTTF suggests reliability. The MTTF can be
calculated using MIL-HDBK 217E. These standard handbooks will help calculate a device’s
failure rate (FR) and mean time between failures (MTTF). Reliability depends on several
aspects. Figure 29 shows a system’s reliability influence factors.

Figure 29. Reliability influence factors.
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(a) Reliability

“Reliability” can be defined as the ability of an object to perform its intended function
within specified conditions and time frames. This attribute is commonly assessed by
quantifying the probability or frequency of failures.

(b) Failure

The system fails when it stops doing the requested task. Thus, the time it takes
something to function without breaking down is frequently unpredictable. Failure can be
quick or delayed. A sudden failure is called cataleptic failure.

(c) Failure Rate (FR)

The ”failure rate” is a crucial aspect in the assessment of system reliability. The chance
of failure at a specific moment can be determined by utilizing the “failure rate” function.

(d) Mean Time to Failure (MTTF)

The MTTF measures how long an item or system lasts, on average, before breaking
down. This malfunction has rendered the device useless. The MTTF is often provided
among components with hourly or thousand-hour service life requirements.

(e) Mean Time to Repair (MTTR)

The MTTR is the typical amount of time needed to repair broken equipment, and its
value is directly proportional to the quantity of care it receives [103].

(f) Availability and Average Availability

Availability is the probability that a system will be functional at a particular moment.
The FR and MTTF are the most crucial metrics for this reliability analysis. As the FR is

time invariant, it can be used to describe D(t) [103]. The FR is a statistical measure of the
frequency with which a failure happens within a certain time frame. Combining the above
failure rates, the exponential distribution is utilized to obtain the probability distribution
function. The proportion of attempts that fail is also represented by ”λ” as follows.

P (t, λ) = λ e−λt (14)

The reliability function can be obtained from Equation (15):

D (t, λ) = e−λt (15)

The failure in time (FIT) is a metric for estimating the “failure rate” which is defined
as the average number of failures per time interval:

1 FIT = 10−9 failure/hour (16)

MTTF =

+∞∫
0

D(t)dt. (17)

MTTF =
1
λ

(18)

Using MIL-HDBK-217E specifications, Table 14 calculates FR [103]. Based on device
counts, power electronic circuits can determine their MTTFT [103]. The MTTFT decreases
as device numbers increase. The MTTFT increases with the component count. The inverter
topologies are evaluated by the number of components needed. The reliability features (FR
and MTTF) are calculated using the approximation technique [103] and summarized in
Tables 14 and 15, as well as graphically represented in Figure 30.
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Table 14. Failure rates of each component by using the approximation method [103].

SI. No. Components Failure Rate (Failures/Hour)

1. Switches 250 × 10−9

2. Diodes 100 × 10−9

3. Capacitors 300 × 10−9

Table 15. Expected mean failure time for three standard inverters.

Components NPC [103] FC [103] CHB [103]

IGBTs 4800 (12) 4800 (12) 1200 (12)

Capacitors 600 (2) 1500 (5) 1200 (3)

Diodes 1800 (18) 1200 (12) 1200 (12)

Total FITs 7200 7500 3600

Failure rate
(failure/106 h) 7.2 7.5 3.6

MTTF (hours) 138,888 133,333 277,777

(a) Number of switches (b) Number of capacitors

(c) Number of diodes (d) Total failures in time 

(e) Failure rate (f) Mean time to failure
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Figure 30. List of comparisons among three basic MLI topologies [103].
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Calculation of the overall MTTF for power electronic circuits involves estimation of
the cumulative failure rate of the constituent circuit parts. In order to obtain the total
failure rate, denoted as λTotal, it is necessary to multiply the number of components such as
switches, diodes, and capacitors by their respective FR values, as specified in Equation (19):

λTotal = (λS × NSWT) + (λD × NDIO) + (λC × NCAP) (19)

The total MTTF of the circuit can be calculated by Equation (20):

MTTFTotal =
1

λTotal
(20)

The MTTF of power electronic circuits can be determined by considering the num-
ber of device counts. When there are a large number of device counts, the related total
mean time to failure (MTTFTotal) is reduced. A higher MTTFTotal is observed when the
number of components is lower. In this study, the main aim is to evaluate the average
duration of inverter topologies by considering the number of components needed for every
individual topology.

8. Challenges and Recommendations

The utilization of renewable energy systems in power grids has been enhanced due to
advancements in power electronics devices and related technologies. However, challenges
remain pertaining to electricity quality, grid reliability, and security. In order to ensure
the quality of grid power, a multitude of standards and guidelines have been established
for grid-connected RES. Based on the reviewed literature, it is understood that additional
research is required in the following areas:

Challenges:

• The evaluation of the performance of these novel topologies in grid-integrated applica-
tions is imperative, as the majority of them have not yet been examined in the context
of grid-connected Renewable Energy Sources (RESs).

• MLI control and modulation systems should be more robust, flexible, and fault tolerant.
• In recent times, researchers and industries have begun to develop hybrid topologies in

order to successfully address power quality challenges and to meet demanding grid
standards in a cost-efficient manner.

• More research is needed on quantitative approaches for solving MLI nonlinear systems.
• New voltage balancing techniques must be employed in MLIs to minimize capacitor

size and to increase inverter power density.
• Resonant converters with single DC source MLIs are suggested.
• It is imperative for smart grid systems to include the integration of microgrid load

interactions with MLIs as an essential component.
• However, because of the lower TSV, new RSC-MLI topologies need to be created to

boost their appropriateness for both solar PV and wind energy integration.
• Renewable energy sources are increasingly evolving towards a future smart grid

as they are integrated into networks utilizing appropriate MLIs, and for MLI topol-
ogy creation and control, this poses considerable hurdles. There have been many
breakthroughs in this sector.

Recommendations:

• The roadmap in Figure 31 shows SC-MLIs’ future progress. In addition to exploring
new topologies with higher voltage conversion gain, future SC-MLIs can consider
factors such as fewer switching devices, reduced MVS and TSV index across switches,
improved performance during high pulsating inrush current, and lower cost.

• A modern MLI performance analysis for many practical applications cannot measure
all failure prediction parameters and limits the ageing information of PV inverters.
Hence, Figures 32 and 33 are the proposed and future road maps for the reliability
study of PV inverters.
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• In grid-connected solar PV systems, safe and reliable operation of the multilevel
inverter depends on the use of suitable safety mechanisms and control strategies,
which are listed in Table 16.

Table 16. Grid-fault challenges and recommendations for multilevel inverters in grid-connected solar
PV systems.

Grid-Fault Conditions
(Challenges)

Multilevel Inverter Response
(Recommendations)

Overvoltage
[34,163]

• The output voltage magnitude can be
controlled by reducing the modulation index

• Enable voltage regulation control

Under voltage
[34,163]

• The output voltage magnitude can be
controlled by reducing the modulation index

• Reactive power injection is required to
maintain grid voltage

Frequency deviation
[34,163,194]

• The output frequency of the inverter can be
adjusted by activating the frequency control
loop

• Frequency adaptive control algorithms are
activated

Voltage sag
[163,194]

• Voltage support methods, such as reactive
power injection, can be used

• Inverter may maintain grid voltage by drawing
power from DC-link capacitors

• Dynamic voltage restorer support during sag
periods

Voltage swell
[163,194]

• Inverter reduces the output voltage to mitigate
excessive power generation during the swell

Grid disconnect
[163,194]

• Inverter switch.hes to island mode (if
applicable) and operates as a stand-alone
system or shuts down safely

• Reconnection to the grid after stabilization

Short circuit
[34,163,194]

• In order to eliminate faults and restore inverter
functionality, fast disconnect and reconnect
procedures are required

• Short-circuit protection algorithms activated

Grid outage
[34,163,194]

• Inverter disconnects from the grid to ensure
islanding protection

• May switch to an internal control mode to
provide power to local loads

Harmonic distortion
[34,163,194]

• Activate harmonic filtering control to mitigate
harmonics in inverter output

• Implement active and passive filtering
strategies to mitigate harmonics
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Figure 31. Perception evaluation and future development of SC-MLIs.

Figure 32. Monte Carlo-based reliability study of PV inverters [103].

Figure 33. PV system mission profile translation diagram by PV array size ratio Rs consideration [103].

9. Conclusions

This review provides an efficient summary of multilevel inverters to emphasize the
necessity for new or modified multilevel inverters for grid-connected sustainable solar PV
systems. Firstly, this review presented a detailed survey of reduced switch count multilevel
inverter (RSC-MLI) topologies, including their designs, typical features, limitations, assess-
ment parameters, and selection for particular applications. Secondly, this review presented
a comprehensive analysis of MLIs and a classification of the existing MLI topologies, along
with their merits and demerits. Thirdly, this review also included a survey of SC-MLI
topologies with a qualitative assessment to aid in the direction of future research due to
their variety of applications such as inductor-less or transformer-less operation, enhanced
voltage output, improved voltage regulation, low cost, reduced circuit components, size,
and less electromagnetic interference. Lastly, this review serves as a valuable resource for
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engineers and researchers because it provides a detailed look at parametric comparisons of
the total number of power semiconductor switches, DC sources, passive elements, total
standing voltage, reliability assessment, applications, challenges, and recommendations.
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Abbreviations

MLIs Multilevel inverters
RES Renewable energy sources
NPC Neutral point clamped
SC-MLI Switched-capacitor multilevel inverters
DC-MLI Diode-clamped multilevel inverters
DCC Developed cascaded cell based
PUC Packed U-cell
NSWT Number of switches
NDCS Number of DC sources
NL Number of levels
NDIO Number of diodes
NCAP Number of capacitors
NDK Number of driver circuits
TSVPU Total standing voltage per unit
CF/L Cost function
FCC/L Component count factor per level
CHB-MLI Cascaded H-bridge multilevel inverter
PV Photovoltaic
SDCS Separate DC source
MPPT Maximum power point tracking
THD Total harmonic distortion
EMI Electromagnetic interference
MMC Modular multilevel converter
FC-MLI Flying-capacitor multilevel inverter
CSD Cascaded switched diode
CPCC Cascaded predictive current control
CCHB Cross-connected half-bridges
CCS Cross-connected source based
MCSI Multilevel current-source inverter
ASD Adjustable speed drives
AFC Active front-end converters
CPD Custom power devices
ANPC Active neutral point clamped
ABNPC Active boost neutral point clamped
PWM Pulse width modulation
CGSC Common-grounded switched-capacitor
FACTS Flexible alternating current transmission systems
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MLDCL Multilevel DC-link
SSPS Switched series-parallel sources
SPSC Series–parallel switched-capacitor
SSSC Single-source switched-capacitor
SADC Symmetric–asymmetric DC sources based
RV Reverse voltage
RVDC-C Reduced variety of DC voltage sources based cascaded
HERC-C Highly efficient and reliable configuration based cascaded
SCSS vSeries-connected switched sources
SCU Switched-capacitor Unit
MLM Multilevel module
HBSC Half-bridge switched-capacitor
SCC Switched-capacitor converters
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Abstract: In response to the era background of “comprehensive electrification” and “dual carbon
plan” of electric vehicles, DC/DC converters have a good performance in terms of weight, volume,
and efficiency and are widely used in fields such as solar power generation, UPS, communication,
computers, and electric vehicles. At present, the DC bus voltage is an important indicator for
measuring the safe and stable operation of high-voltage DC power systems in electric vehicles.
Therefore, regulating the stability of bus voltage through converters has good economic benefits
for the sustainable development of electric vehicles in terms of maintenance costs and effective
energy management. In order to solve the problem of bus voltage resonance instability caused by
negative impedance characteristics of constant power load in an electric vehicle DC power system,
a sliding-mode control design strategy of three-phase interleaved bidirectional converter under
constant power load was proposed. Firstly, a GPI observer was designed to estimate the state
and concentrated disturbances of the system. Then, the estimated value was introduced into the
controller for feedforward compensation, thereby achieving fast-tracking of the output voltage to the
reference voltage. Finally, the simulation results show that the controller can effectively maintain the
influence of disturbances and better improve tracking characteristics and robustness to disturbances
and uncertainties.

Keywords: three-phase interleaved parallel bidirectional converter; electric vehicle; output voltage
stability; power quality; high-order sliding-mode control; constant power load; GPI observer

1. Introduction

With the research boom of renewable DC power sources, research on DC microgrids is
gradually expanding. Because of the obvious advantages of DC microgrid technology, its
application in the field of vehicle power system is becoming more and more extensive. In
the DC microgrid of electric vehicles, converters are often used to realize voltage conversion
between the DC bus and load. For DC power systems, maintaining the stability of the DC
bus voltage is the foundation for ensuring the stable operation of vehicles. The application
of a large number of power conversion devices subject to strict closed-loop control leads to
an increase in the proportion of constant power loads in the system, which greatly reduces
the stability of the system when the power of such loads fluctuates [1]. The research
shows that the constant power load always exhibits negative-impedance characteristics
and brings an instability effect to the system. The negative-impedance characteristics of a
constant power load can cause significant voltage oscillations in the system when there are
significant changes in the CPL (constant power load), thereby reducing power quality and
posing safety hazards [2,3].

Therefore, how to keep the DC bus voltage of electric vehicles quickly adjusted
and stable is the key problem with the DC microgrid. The DC microgrid of electric
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vehicles is a system composed of many parts, its instability phenomena are various, and
the mechanism of the system instability is also complicated. Since most distributed power
generations, energy storage devices, and loads in the DC microgrid need to be connected
with the DC bus through converters, and these power electronic converter devices have
nonlinear characteristics, the power electronic system composed by them also has nonlinear
characteristics [4].

In practical applications, the system model will be affected by various disturbances,
such as the uncertainty of inductance and magnetic characteristics, the instability of input
voltage, the disturbance of load, etc. At present, many advanced nonlinear control methods
have been applied to the converter, such as active disturbance rejection control, adaptive
control, sliding-mode control, etc. The sliding-mode control has the advantages of simple
operation, high precision, good stability, and robustness in practical applications. Sliding-
mode control technology and a DC-DC converter work well together because they are
both based on a variable-switching strategy [5]. For the SMC (slide-mode control) method,
Reference [6] ensured large signal stability and a fast dynamic response. In order to further
improve the transient dynamics of the system, a simple finite-time convergence SMC
method is adopted in the converter system [7,8]. However, it is difficult to maintain high
accuracy in the event of external disturbances or changes in internal components. Therefore,
modern advanced control methods are studied, such as sliding-mode control, adaptive
control, optimal control, predictive control, etc. The above control method basically solves
the problem of output-voltage instability. However, these methods cannot quickly track
and suppress interference. For closed-loop systems, it is difficult to achieve a good voltage
output performance under interference.

Considering the perturbations and uncertainties existing in practical applications, it
is difficult to measure them with actual sensors, but the designed observer can achieve
accurate estimation and compensation of perturbations. In Reference [9], an expanded
state observer was designed to realize the estimation of load changes, and a sliding-mode
controller was designed to improve the anti-interference performance of the system. Ref-
erence [10] designed the unknown input observer, which has low sensitivity to noise
and only needs to adjust one parameter, which is easy to implement in the actual sys-
tem. Reference [11] proposed a sliding-mode control method based on the disturbance
observer, which can converge to the neighborhood near the reference voltage in a finite
time. However, the above observer can only accurately estimate the slow time-varying
perturbations [12]. The perturbations in the actual system are more complex, and there may
be higher-order polynomial perturbations. Reference [13] proposed a passive controller
based on interconnection and damping allocation, which is robust and easy to implement.
However, it can lead to a slow transient response.

In Reference [14], the GPI (generalized proportional integral) observer was designed
to achieve an accurate estimation of slow and fast time-varying disturbances, and it was
combined with the backstepping method to deal with the unmatched load disturbance.
The basic idea of the backstepping method is to decompose a complex system into multiple
subsystems, which are recursive from backward to forward through the design of the
virtual control law. Interference factors are designed into each subsystem, but in the design
process, there may be a high-order derivative of the virtual control function in the controller,
which is more complicated to calculate.

In these controllers, in order to maintain the stability of the output voltage, the switch
gain is required to be greater than the upper limit of the disturbance. However, in some
low-order sliding-mode control laws, an excessive switching gain can lead to significant
voltage fluctuations, resulting in unstable output voltage in the practical-implementation
literature [15,16]. The interference estimation and compensation technology provide a
feasible method to alleviate the chattering phenomenon in Reference [17]. In Reference [18],
the nonlinear disturbance observer was used to estimate the uncertain power change, which
provides a new way of thinking for dealing with CPL problem. It is difficult for the observer
to obtain satisfactory estimation accuracy when dealing with a fast time-varying CPL. There
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is also no consideration of supply voltage fluctuations. Performance degradation is caused
by these factors. Reference [19] proposes a distributed current-sharing control method. The
outer loop is the voltage droop control with the purpose of embedding virtual impedance,
while the inner loop is the PI control, which can improve the dynamic and steady-state
performance of the system. References [20,21] compensated for the virtual impedance
coefficient by actively detecting line impedance to achieve current equalization, and they
improved the voltage drop through voltage observer feedforward compensation control.
Reference [22] proposed an algorithm for compensating for a current imbalance caused
by resistance mismatch. By perturbing the duty cycle of one phase and measuring the
deviation of other phase duty cycles, the degree of parameter mismatch is estimated, and
current balance is achieved through appropriate compensation coefficients.

There are many effective error estimation methods, including the unknown input ob-
server (UIO) [23], disturbance observer (DOB) [24], and extended state observer (ESO) [25].
The disturbance-observer-based control (DOBC) has been proven to effectively reduce
unknown external disturbances and system uncertainty. Due to the fact that these observer
techniques are model based, a large amount of information needs to be considered when es-
tablishing interference observers. However, both DOB and ESO can only estimate constant
and stage constant perturbations and cannot estimate polynomial perturbations.

Due to the uncertainty of converter parameters and the influence of concentrated
disturbances, there is an increasing amount of research on the precise estimation of dis-
turbances, using the estimated values as feedforward compensation to improve the anti-
interference performance of control. Disturbance-observer-based control (DOBC) considers
the parameter changes, load changes, and input voltage fluctuations of the filter as external
disturbances to the system. The disturbance observer is used to nominal the controlled
object and observe these disturbances through the disturbance observer. The observed val-
ues are then fed forward to the output of the voltage control loop to counteract the impact
of disturbances on the system. Another disturbance estimation technique is the extended
state observer (ESO), which treats both internal uncertainties and external disturbances as
total disturbances, treats the total disturbance as a new system state, estimates the system
state and disturbances through internal calculations, and then designs the controller by
combining the estimated values with the improved sliding-mode control method, so that
the output voltage of the converter can track the reference signal quickly [26].

In order to suppress load resistance interference and input voltage changes, an SMC
method based on GPI observer for three-phase interleaved parallel DC/DC converter is
proposed. Estimate the disturbance and state of the system by designing a GPI observer [27].
Then, based on the estimated values obtained from the GPI observer, a composite controller
is constructed using SMC technology, which enables the output voltage to asymptotically
track the reference voltage [28]. The simulation results show that, compared with the
sliding-mode control method based on NDO, this control method can track the reference
value faster and improve the steady-state performance of the system. Meanwhile, this
method reduces costs in practical systems.

The GPI observer sliding-mode control method based on the second-order sliding-
mode algorithm proposed in this article can achieve small switching gain without sacrificing
interference suppression by combining interference estimation, ensuring the stability of the
output voltage. Compared with other observer control methods, it has strong robustness
against disturbances.

The main work content of this paper is divided into three parts:

• The stability of three-phase interleaved parallel DC/DC converter supplying CPL in
electric vehicle DC power system is analyzed, and its mathematical model
is established.

• The sliding-mode control strategy based on the GPI observer can effectively reduce
the switching gain by compensating the lumped disturbance accurately.
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• Through the simulation study of MATLAB/Simulink in the interference of input
voltage and CPL power and the evaluation of the proposed composite controller, the
correctness of the proposed controller is proved.

2. Stability Analysis of DC Power System for Electric Vehicles

The DC power system of electric vehicles is mainly composed of a power generation
unit, generator set, energy storage unit, AC/DC load, and power converter connected to
each unit module. As shown in Figure 1, in a power generation unit, the energy flows
in one direction, the battery is connected to the DC bus by a DC/DC converter, and the
generator set provides energy to the bus by an AC/DC converter.

Figure 1. DC/DC converters with constant power characteristics in electrical systems.

All kinds of power electronic devices in the power system of electric vehicles are
connected to the on-board high-voltage power supply system of electric vehicles in the
form of a cascade, and most of these power electronic devices adopt closed-loop control;
when the bus voltage changes, the output power can remain constant. When the input
voltage changes, the input current changes in the opposite trend; constant power load
has negative impedance characteristics. It is therefore said to have a negative impedance
characteristic (ΔV/ΔI < 0) constant power load.

In a constant power load, P is constant. Thus, as shown in Figure 2, as the voltage at
both ends of a constant power load increases/decreases, its current decreases/increases.
Because the incremental impedance of CPL is negative (ΔV/ΔI < 0), in this case, the system
will deviate from its stable region, resulting in CPL negative impedance instability [29].
Interaction with other devices may affect the dynamic characteristics and stability of
the system.
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Figure 2. Negative impedance characteristics of constant power load.

As shown in Figure 3a. The midpoint is the initial stable operating point of the system.
When the system is subjected to external disturbances causing an increase in the input
current of the CPL, as can be seen from Figure 3a, the voltage at both ends of the CPL is
at this time, and according to KVL, the voltage at both ends of the filtering inductor is at
this time. At this point, the inductance current will further increase, causing the system to
move away from the stable operating point. On the contrary, when the input current of the
CPL decreases due to external disturbances in the system, the voltage at both ends of the
CPL is reduced. From KVL, it can be seen that the voltage at both ends of the filter inductor
is reduced, and the inductor current will further decrease, thus keeping the system away
from the stable operating point. The obtained volt ampere characteristic curve is shown
in Figure 3b for when the load is a pure resistive load, where the point is the initial stable
operating point of the system. When external disturbances increase the input current, there
is a filter inductance voltage, which can be determined by KVL. At this time, the current
will correspondingly decrease, so the system can return to the initial stable operating point;
that is, the system is stable. CPL negative impedance was obtained via a small signal
analysis [30]. In Reference [30], the equivalent model of CPL was extracted through a small
signal analysis and a large signal analysis.
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Figure 3. Changes in DC bus voltage during power fluctuations of different types of loads:
(a) constant power load power fluctuation and (b) pure resistance load power fluctuation.

In order to analyze the three-phase interleaved parallel DC/DC converter system
supplying CPL, the conjugated model and circuit were extracted for a small signal analysis.
Based on the analysis of Reference [3], the destabilizing effect and limit of CPL negative
impedance on converter were explained. Since the root of the characteristic equation is on
the right-hand side, there is negative impedance instability in the output voltage of the
system. In addition, the control performance is severely degraded due to the inevitable
voltage fluctuations in the DC supply voltage [31].

179



Sustainability 2023, 15, 9720

According to the research of Reference [3], through the small signal analysis of the
system equation of state, the transfer function of the system can be obtained as follows:

G(s) =
(1 − d)Ubus − ILLs

LCs2 + L
RL

s + (1 − d)2 , (1)

From the transfer function, with the increase of CPL power, the negative incremental
resistance characteristic of CPL becomes more obvious, and the root of the system charac-
teristic equation begins to move to the right of the complex plane. As shown in Figure 4,
once the power consumed by CPL exceeds the power consumed by resistive loads, that
is, PCPL > PR, CPL plays a dominant role in the system. The damping coefficient of the
corresponding system is less than 0, and the slope of the output characteristic curve is
negative. In this case, the DC bus voltage will be in an oscillating state. When the power
consumption of CPL is less than that of resistive load, that is, PCPL < PR, the resistive load
plays a dominant role in the system, the damping coefficient of the corresponding system
is greater than 0, and the slope of the output characteristic curve is positive. Under this
condition, the DC bus voltage of the system is in a stable state.

P P> P P<

Figure 4. Stable and unstable regions based on small signal theory.

In order to elucidate the impact of CPL power fluctuations on the stability of the DC
bus voltage, we first introduced some common CPLs in special vehicles and preliminarily
analyzed the dynamic characteristics of negative incremental resistance of constant power
loads. Secondly, through a theoretical analysis, we found that the power imbalance between
the generating and receiving ends is the fundamental cause of bus voltage fluctuations.
Then, based on small signals, the reason for the low-frequency oscillation of the DC bus
caused by CPL was obtained. Through a simplified circuit analysis of an ideal voltage
source, filter inductor, and CPL in series, it was found that when CPL power fluctuates, it
amplifies the power fluctuation, causing the system to move away from the initial operating
equilibrium point.

3. Modeling of Three-Phase Interleaved Parallel Bidirectional Converter

The main circuit topology of the three-phase interleaved parallel bidirectional half
bridge DC-DC converter is shown in Figure 5, consisting of three bidirectional Bucks–Boosts
in parallel. In the same switching cycle, only one switch tube is on the upper and lower
bridge arms of the half-bridge switch tube. According to the conduction state of the switch
tube, there are two states: Boost and Buck. When the energy storage capacitor releases the
stored energy to the load end, the input end of the converter can be approximated as a
constant voltage source, and the energy flows from the input end to the load end, where
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the converter is in a Boost state. When the load side needs to store energy, it operates in
Buck mode, and the load-side power flows to the input side to charge the energy storage
capacitor. The topology parameters of the three-phase interleaved parallel converter are
shown in Table 1.

Figure 5. Topology structure of three-phase interleaved parallel bidirectional DC/DC main circuit.

Table 1. Topology diagram parameters of three-phase interleaved parallel converter.

Topology Diagram Parameters

vin DC source bus voltage
vo DC load bus voltage

iL1, iL2, iL3 Inductance current
RL Load resistance
vin0 Nominal value of DC source bus voltage
RL0 Nominal value of load resistance

C1, C2 Filter capacitor
L1, L2, L3 Filter inductance

Q1, Q2, Q3 Switch tube components

The advantages of adopting an interleaved parallel structure in bidirectional DC/DC
circuits are, on the one hand, under a certain power output, the voltage and current stress of
the inductor are reduced, allowing for the selection of smaller inductors, thereby reducing
the volume and weight of the converter; and, on the other hand, the difference between the
PWM driving waveforms of each phase is 120◦, further reducing the input current ripple,
reducing the inductance, while also reducing the output voltage ripple and reducing the
capacitor voltage and current stress, thus ensuring that the bidirectional DC/DC converter
has a higher power density. For the convenience of analysis, if the switching frequency
is set to fs and the influence of voltage dead band is ignored, then ws = 2 πfs. Ts = 1/fs.
Figure 6 shows the main waveforms of the three-phase interleaved parallel boost converter
under different duty ratios, d.

Assuming that the duty cycle, d, of each switch tube is equal and each phase is 120◦
different in sequence, there are eight switching modes of the converter. Use “1” and “0” to
represent the “on” and “off” of the switch tubes, respectively. The switch states of switch
tubes Q1, Q2, and Q3 can be represented as corresponding binary numbers: 001 (Mode I),
010 (Mode II), 011 (Mode III), 100 (Mode IV), 101 (Mode V), 110 (Mode VI), 111 (Mode VII),
and 000 (Mode VIII). Figure 7 shows the equivalent circuits with 0, 1, 2, and 3 switch tubes
on, respectively.
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(a) (b) (c) 

Figure 6. The main waveforms of the three-phase interleaved parallel converter during steady-state
operation: (a) the main waveform of 0 < d < 1/3, (b) the main waveform of 1/3 < d < 2/3, and (c) the
main waveform of 2/3 < d < 1/3.

(I) (II)

(III) (IV)

(V) (VI)

(VII) (VIII)

Figure 7. Equivalent topology diagram of three-phase interleaved converter at different working
stages: (I) Switch tubes Q1 and Q2 are turned off, and switch tube Q3 is on. (II) Switch tubes Q1 and
Q3 are turned off, and switch tube Q2 is on. (III) Switch tube Q1 is off, switch tubes Q2 and Q3 are
on. (IV) Switch tube Q1 is on, switch tubes Q2 and Q3 are off. (V) Switch tubes Q1 and Q3 are on,
while switch tube Q2 is off. (VI) Switch tubes Q1 and Q2 are on, while switch tube Q3 is off. (VII) The
switch tubes Q1, Q2, and Q3 are conducting. (VIII) The switch tubes Q1, Q2, and Q3 are turned off.
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For the convenience of description, this article takes one of the situations as an example
for analysis, while other situations can be analogized. When the duty cycle is 0 < d < 1/3,
the converter can be divided into six working modes based on the power switch on/off
situation. The driving signal and inductance current waveform of the corresponding switch
in the system under these six working modes are shown in Figure 6a.

Process 1: (Corresponding Mode IV) The switch Q1 is in a conductive state, and the
current of inductor L1 continues to increase. The vin end charges the inductor L1, Q2 and Q3
are in the off state, and the current of inductors L2 and L3 continues to decrease. Inductors
L2 and L3 discharge towards the vo terminal.

Process 2: (Corresponding Mode VIII) Switch tubes Q1, Q2, and Q3 are in the off state,
and the current of inductors L1, L2, and L3 continues to decrease. Inductors L1, L2, and L3
discharge towards the vo terminal.

Process 3: (Corresponding Mode II) The switch tube Q2 is in a conductive state, and
the current of inductor L2 continues to increase. The vin end charges the inductor L2, Switch
tubes Q1 and Q3 are in the off state, and the current of inductors L1 and L3 continuously
decreases. Inductors L1 and L3 discharge towards the vo terminal.

Process 4: (Corresponding Mode VIII) Switch tubes Q1, Q2, and Q3 are in the off state,
and the current of inductors L1, L2, and L3 is continuously decreasing. Inductors L1, L2,
and L3 discharge towards the vo terminal.

Process 5: (Corresponding Mode I) The switch Q3 is in a conductive state, and the
current of inductor L3 continues to increase. The vin end charges the inductor L3. The
switch tubes Q1 and Q2 are in a conductive state, and the current of inductors L1 and L2
continues to decrease. Inductors L1 and L2 discharge towards the vo terminal.

Process 6: (Corresponding Mode VIII) Switch tubes Q1, Q2, and Q3 are in the off state,
and the current of inductors L1, L2, and L3 continues to decrease. Inductors L1, L2, and L3
discharge towards the vo terminal.

3.1. Modeling of Three-Phase Interleaved Parallel DC/DC Converter Circuit

Based on the circuit structure and working principle of a three-phase interleaved paral-
lel bidirectional DC-DC converter, this article divides it into three identical
Buck–Boost circuits, without considering the parasitic components of capacitors and induc-
tors. The control flowchart of the composite controller is shown in Figure 8.

Figure 8. Control flowchart of composite controller.

The equivalent circuit diagram is shown in Figure 9a for when the converter is used
as a Boost converter. The equivalent circuit diagram is shown in Figure 9b for when the
converter is used as a Buck converter. The topology parameters are shown in Table 2.
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(a) (b) 

Figure 9. Equivalent variable structure model of Boost converter and Buck converter: (a) Boost mode
and (b) Buck mode.

Table 2. Topology diagram parameters of Buck mode and Boost mode.

Topology Diagram Parameters

vin Input voltage
vo Output voltage
iL Instantaneous inductance current
RL load resistance
C1 Boost circuit capacitance value
C2 Buck circuit capacitance value
L Inductance value

The results of variable structure theory analysis can be used to obtain the state equation
of the bidirectional DC-DC converter in Buck mode with continuous inductance current
as follows:

Firstly, the Buck circuit is modeled and studied, and its equivalent circuit topology is
shown in Figure 9. Write the state equation in stages and calculate the average variable.

(1) In 0 ≤ t ≤ dTS, switch the tube S conduction and diode VD cutoff, and, at this time,
there is the following equation of state.

{
L diL(t)

dt = uin(t)− uo(t)
C duo(t)

dt = −uo(t)
RCPL

+ iL(t)
, (2)

(2) IndTS ≤ t ≤ TS, switch S off, diode VD conduction, and the inductor L release magnetic
field can supply constant power load at the same time to charge the capacitor. The
equation of state is as follows.

{
L diL(t)

dt = −uo(t)
C duo(t)

dt = −uo(t)
RCPL

+ iL(t)
, (3)

By averaging (2) and (3), the following matrix equation can be obtained.(
diL
dt

duo
dt

)
=

(
0 − 1

L
1

C1
− 1

C1R

)(
iL
uo

)
+

(uin
L
0

)
u, (4)

The state space equation in Boost mode with a continuous inductance current is
as follows: (

diL
dt

duo
dt

)
=

(
0 − 1

L
1

C2
− 1

C2R

)(
iL
uo

)
+

(
uo
L

− iL
C2

)
u +

(uin
L
0

)
, (5)
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The transfer function can be derived through Laplace transform, using the average
state space equation: {

Gid(s) =
vin(1+RLCs)

RL+Ls+RLCLs2

Gvd(s) = R
1+RLCs

, (6)

This article first analyzes the Buck pattern.

P =
uo

2

RL
, (7)

where d is the duty cycle of the converter, and T is the switching cycle. A dynamic model of
the Buck converter was established using the state-space averaging method. By substituting
Equation (7) into (4) and linearizing it, we obtain the following:{

diL
dt = vin

L u − vo
L

duo
dt = iL

C − P
Cvo

− vo
RLC

, (8)

The voltage tracking error is defined as x1 = e = vo − vref, where vref is the reference
voltage. The dynamic model in Equation (8) can be rewritten as follows:

.
x1 =

iL
C

− vo

RLC
− .

vref + d1(t), (9)

where d1(t) = − P
Cvo

, and another state variable is defined as x2 = iL
C − vo

RLC , so take the
derivative of that and obtain the following:

.
x2 =

u
LC

vin0 − x1 + vref
LC

− x2

RLC
+ d2(t), (10)

where d2(t) = 1
RC d1(t) +

vin−vin0
LC , d2(t) is a more complex form of time varying, consisting

of a constant power load and fluctuations in input voltage. The following equation can be
obtained by sorting out Equations (9) and (10):{ .

x1 = x2 + d1.
x2 = u

LC vin0 − x1+vref
LC − x2

RLC + d2
, (11)

3.2. Observer-Based Sliding-Mode Control (SMC) Design

This section’s control objective is to design a generalized proportional integral observer
to estimate the time-varying disturbance and update it into the controller in real time, so
as to effectively suppress the influence of the disturbance and improve the anti-jamming
performance of the whole system.

Sliding-mode control uses the designed control function to make the motion state
of the system in “sliding mode”, which is a discontinuous switching control, so it is also
called sliding-mode variable structure control. The basic idea of the sliding-mode variable
structure control theory is to consider a nonlinear system and assume that there is a phase
plane, which is called the sliding-mode surface, and a point in the plane is called a balance
point. Using this sliding surface as a reference path, through effective design, the state
variable of the system, i.e., the controlled trajectory, is attracted to slide along the set
trajectory of the reference path and converges to the equilibrium point, regardless of the
initial state of the system [32–34].

The sliding-mode control needs to meet the following three basic conditions: existence,
accessibility, and stability. Existence refers to the existence of a sliding surface in a system.
Reachability refers to the ability of points outside the sliding surface of a system state to
move to the sliding surface within a finite time [35–39]. Stability refers to the ultimate
stability of the system state under model control.
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For the sliding-mode control, the first step is to determine the sliding surface and
select the appropriate sliding-surface function, s(x). Under the action of different control
functions, the trajectory of the system moves differently. As shown in Figure 10a, by
designing appropriate control functions, the system can start from an arbitrary initial point,
x0, in the state space and reach the switching surface (as shown in the x0→A section) in a
finite time. This process is called the approach section. Once the system trajectory reaches
the switching surface, it stays on it and continues to move, and this is called the sliding-
mode section (as shown in section A→O). The state of the system moving on the switching
surface is called the sliding mode. Since the switching surface is designed according to the
expected moving target of the system, no matter how the external parameters change, the
system trajectory will eventually reach the preset value on the switching surface [40–43].

(a) (b) 

Figure 10. System motion under sliding-mode control: (a) the motion trajectory of the system on the
sliding surface and (b) three types of points on the sliding surface.

In the state space, take s(x) = 0 as the sliding surface, which represents the state, as
shown in Figure 10b. The space is divided into two: s(x) > 0 and s(x) < 0. The motion points
on the sliding surface can be divided into three categories:

• Usually Point A: After the system moves near the sliding surface, it will pass through
this point;

• Starting Point B: After the system motion point reaches the vicinity of the sliding
surface, it leaves from both sides of that point;

• Termination Point C: The system moves towards this point from the upper and lower
sides of the sliding surface.

In the study of sliding-mode control, the first two types of motion points have little
significance for system control and are generally ignored. If a certain area on the sliding-
mode surface is all termination points, it means that once the system state moves near that
area, it will be attracted to the area, and this area is therefore called the “sliding mode area”.
Due to the fact that all points on the sliding-mode area are termination points, when the
system moves near the sliding surface, there will inevitably be lim

s→0
s

.
s < 0 [44–46].

The specific system control is shown in Figure 11. The system block diagram includes
four parts: two generalized proportional integral observers, a sliding-mode controller, a
pulse width modulator (PWM), and a three-phase interleaved parallel DC/DC converter.
The system works as follows: Firstly, two generalized proportional integral observers
are constructed based on the feedback values of inductance current and output volt-
age, and the matched and unmatched disturbances are estimated, respectively. Then, a
sliding-mode controller is designed using the estimated values. The controller is compared
with the sawblade wave to obtain a PWM wave, and the switching tube of the DC step-
down converter is controlled by the PWM wave. The converter can output the desired
voltage stably.
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Figure 11. Control block diagram of the whole system.

3.3. GPI Observer Design

The voltage tracking accuracy of the DC-DC converter system will be affected by
disturbances, such as input voltage fluctuation, parameter uncertainty, load resistance
disturbance, etc. An effective method to eliminate these disturbances is to introduce
disturbance estimation to compensate accurately. For the Buck converter, two generalized
integral observers are designed to estimate the matched disturbance and the unmatched
disturbance, respectively, and the disturbance estimation is introduced into the design of
the control law to compensate for the influence of these disturbances and uncertainties.
The specific design of the two generalized proportional integral observers is as follows.
The GPI observer of CPL perturbation based on the Buck converter can be constructed
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

.
x1 = x2 + d̂1 + h11(x1 − x̂1).

d̂1 =
.̂
d1 + h12(x1 − x̂1)

. . .
.
d̂1

(n−1) = d̂1
(n) + h1n(x1 − x̂1).

d̂1
(n) = h1(n+1)(x1 − x̂1)

, (12)

where d̂1
(n) is an estimated value of the nth order derivative of d1, and h1i (i = 1, 2, . . . , n + 1)

represents the parameters to be determined.
To estimate the input voltage disturbance, d2(t), another GPI observer is constructed:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

.
x̂2 = u

LC vin0 − x1+vref
LC − x2

RLC + z2 + h21(x2 − x̂2)
.
d̂2 =

.
d2 + h22(x2 − x̂2)

. . .
.
d̂2

(m−1) = d̂2
(m) + h2m(x2 − x̂2).

d̂2
(m) = h2(m+1)(x2 − x̂2)

, (13)

where d̂2
(m) is an estimated value of the nth order derivative of d2, and h2j (j = 1, 2, . . . ,

m + 1) represents the parameters to be determined.
According to Equations (9) and (10), the uncertainties (i = 1, 2) are related to the power

of constant power load, so from a practical point of view, their values and derivatives
should be bounded.
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In a steady state, the power of the constant power load is considered constant. There-
fore, the following assumptions can be made:

The uncertain variables, di and
.
di, of the system (i = 1, 2) meet the following two

conditions [47]: {
di(t) ∈ L∞,

.
di(t) ∈ L∞

lim
t→∞

di
(n) = 0 , (14)

According to Equation (8), the uncertain term is defined by the following:

{
d̂1 = l1(x1 − p1).

p1 = x2 + d̂1
, (15)

where p1 is the auxiliary state of the observer, and l1 is a normal number that is expressed
as the observer gain. Similarly, the uncertainty term is given by the following:{

d̂2 = l2(x2 − p2).
p2 = u

LC vin0 − x1+vref
LC − x2

RLC + d̂2
, (16)

where p2 is the observer’s auxiliary state, and l2 is a normal number that is expressed as
the observer gain.

Based on Equations (12) and (13), the standard model and observer estimate of the
load power can be provided according to the sliding-mode control design of the proposed
composite controller. Them we take the switching function of the system as follows:{

s = k1x1 + x2 + d̂1
.
s = k1(x2 + d1) +

.
x2 +

.
d̂1

, (17)

where k1 > 0 is a parameter to be selected.
As a high-order sliding-mode algorithm, the realization of the high-order sliding-

mode algorithm usually requires the derivative of sliding-mode variables, while the super-
distortion algorithm is a second-order sliding-mode algorithm in nature, so its realization
does not require the derivative of sliding-mode variables, thus simplifying the controller
structure. Through the design of the control rate, the sliding-mode variable structure
rapidly converges within a limited time [30].

The general form of the super-twisting algorithm is as follows:{
da1
dt = −λ|a1|

1
2 sign(a1) + a2 + ρ1

da2
dt = −csign(a1) + ρ2

, (18)

In Equation (16), a1 and a2 are the state variables; λ and c are the positive constants;
and ρ1 and ρ2 are the disturbance quantities.

In order to weaken chattering, saturation function is often used to replace the sign
function [48]. The form of saturation function is as follows:

sat(s, δ) =
{ s

δ |s| ≤ δ

sign(s) |s| > δ
, (19)

By combining Equations (18) and (19), the form of the super-twisting algorithm
becomes the following: {

usta = −α|s| 1
2 sat(s) +ω

dω
dt = −βsat(s)

, (20)
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When the super-twisting algorithm is used to design the sliding-mode control function,
let ω = a2 + ρ1, and α,β are the parameters to adjust the dynamic velocity and set the
steady-state error, respectively. Among them, the parameters α,β affect the convergence
rate of the sliding-mode surface. In general, the system can reach the sliding-mode surface
faster by taking a larger value and a smaller value.

When the first derivative of the sliding-mode surface is zero, the switching signal, u,
is equivalent to a continuous value, ueq.

ueq = − LC
vin0

[
k1

(
x2 + d̂1

)
− x1 + vref

LC
− x2

RLC
+ d̂2 +

.̂
d1 + ηsat(s)

]
, (21)

where the control parameter, k1 > 0, and the switching gain, η > 0, are the parameters to be
designed. Then, the total switch signal, u, is as follows:

u = ueq + usta, (22)

where ueq is used to ensure that the trajectory of the system phase is maintained on the
sliding-mode surface, and usta is used to overcome the disturbance effect and to ensure
the robustness of the system. The following proves the existence and accessibility of the
switching surface, and the Lyapunov function is used to analyze the switching function, so
as to enable the stability of the controller’s control voltage and the state curve to quickly
converge to the sliding surface.

4. Controller Stability Analysis

Theorem 1. Consider a DC-DC converter system with both CPL and supply voltage perturbations
and combine Equation (14). Under the proposed control law (21), the effect of the time-varying
perturbation is removed from the output voltage channel, provided that the switching gain, η >
(k1e1

∗ + e2
∗ + e3

∗), and the observer parameters in selected Equations (12) and (13) are appropriate,
such that (25) is the Hurwitz matrix.

Proof of Theorem 1. For the GPI observer, the estimated error is defined as e1 = d1 − d̂1,

e2 = d2 − d̂2, and e3 =
.
d̂1 −

.̂
d1. The upper bound of the estimation error is defined as ei

∗,
(i = 1, 2, 3). Then, the estimated error of the observer can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e11 = x1 − x̂1
e12 = d1 − d̂1

. . .
e1n = d1

(n−1) − d̂1
(n−1)

e1(n+1) = d1
(n) − d̂1

(n)

, (23)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e21 = x2 − x̂2
e22 = d2 − d̂2

. . .
e2m = d2

(m−1) − d̂1
(m−1)

e2(m+1) = d2
(m) − d̂1

(m)

, (24)

where e = [e11 e12 . . . e1(n+1) e21 e22 . . . e2(m+1)]
T takes the derivative of the estimate error.

Then, the observer error can be dynamically expressed as follows:

.
e = Hee +

.
d, (25)
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where
.
d =

[
0 0 . . . d1

(i) 0 0 . . . d2
(j)
]T

He =

[
He1 0

0 He2

]
,

He1 =

⎡
⎢⎢⎢⎢⎣

−h11 1 0 . . . 0
−h12 0 1 . . . 0

. . .
−h1n 0 0 . . . 1

−h1(n+1) 0 0 0 0

⎤
⎥⎥⎥⎥⎦,

He2 =

⎡
⎢⎢⎢⎢⎣

−h21 1 0 . . . 0
−h22 0 1 . . . 0

. . .
−h2m 0 0 . . . 1

−h2(m+1) 0 0 0 0

⎤
⎥⎥⎥⎥⎦,

By selecting parameters correctly in the GPI observer, we can get the Hurwitz stability
matrix; that is, the state matrix of the system is the Hurwitz matrix. Then, the error dynamic
is asymptotically stable, which means the following:

lim
t→∞

ei = di − d̂i = 0, (i = 1, 2), (26)

Take the Lyapunov function as follows:

V =
1
2

s2, (27)

.
V = s

.
s, (28)

Substituting (17) and (22) into (28) gives the following:

.
V = −η|s|+ (k1e1 + e2 + e3)s +

vin0
LC ustas

≤ −[η− (k1e1 + e2 + e3)]|s|+ vin0
LC ustas

≤ −√
2[η− (k1e1

∗ + e2
∗ + e3

∗)]V
1
2 + vin0

LC ustas
(29)

where the coefficient α > 0,β > 0 of usta can be seen from Equation (17); when s < 0,
usta > 0, and when s > 0, usta < 0. Then, when the switching gain η > (k1e1

∗ + e2
∗ + e3

∗)
meets the condition, it is satisfied,

.
V < 0. According to Lyapunov’s sliding-mode reachability

condition, the system can reach the designed sliding-mode surface in a finite time. The
system state will reach the defined sliding surface, s = 0, in a finite time.

By integrating Equations (11) and (17), we obtain the following:

.
x1 = −k1x1 −

(
d1 − d̂1

)
, (30)

According to Reference [18], if the following system exists,

.
x = f(t, x, u), x ∈ R, u ∈ R, (31)

when the system input reaches stability, if the input signal meets lim
t→∞

u = 0, then the

states satisfy lim
t→∞

x = 0. According to Equations (26) and (17), lim
t→∞

e1 = 0,k1 > 0. It is

easy to arrive at the conclusion that the voltage tracking error converges asymptotically to
zero along the sliding surface, thus completing the proof. Similarly, the Boost mode is a
similar proof. �
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5. Simulation Results and Analysis

In order to verify whether the proposed method has a faster convergence rate and load-
resistance performance, for Buck converters with matched and unmatched disturbances, the
proposed method was simulated and compared with the control methods in other works
from the literature under the condition that the circuit parameters are the same. The results
show that the proposed method can effectively suppress the influence of perturbation and
ensure the stability of output voltage. It can improve the anti-interference performance of
the whole system.

5.1. Simulation Model Construction

The simulations are conducted in Simulink, using GPI observers to estimate the state
and lumped disturbances of the system. Then, the estimated values of the observers are
introduced into the controller for feedforward compensation, achieving fast and accurate
tracking of the output voltage to the reference voltage. Select the input and output voltage,
use the inductance current as feedback variables, and perform a high-order sliding-mode
control algorithm to limit the calculated amplitude to prevent the switch from being in a
continuous on or off state. Build a simulation model of a three-phase interleaved parallel
bidirectional DC/DC converter in Simulink and write a sliding-mode control algorithm
through the MATLAB function. The circuit uses ideal components, and the simulation
diagram is shown in Figure 12.

Figure 12. Sliding-mode control simulation model.

5.2. Set System Parameters

The control objective of this simulation experiment is, under the same circuit system,
sequentially use two methods to control, observe, and analyze the value of each state
variable with time from the figure, compare the transient performance and resistance of the
system under the control of the two methods’ interference performance. In order to ensure
the fairness of the comparison, the two methods should be simulated and compared under
the same converter circuit system.

The effectiveness of the proposed control strategy is verified by the following simula-
tion. The parameter values of the simulation experiment are shown in Table 3. To further
illustrate the advantages, this paper compares the NDO-Integral SMC scheme with the
GPIO-SMC scheme. A MATLAB simulation is used to compare the two methods:
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Table 3. Parameters of simulation system.

Descriptions Parameters Values

Input voltage Vin 20 V
Reference voltage Vref 5 V

Inductance L 1 × 10−4 H
Capacitance C 1 × 10−3 F

Switching frequency fs 20 kHz
The power of CPL P 6 W

Load resistance RL 50 Ω

In Method 2, the switching function of the system can be designed as follows:{
s = k1x1 + x2 + d1 + k2

∫ t
0 x1dt

.
s = k1(x2 + d1) +

.
x2 +

.
d1 + k2x1

, (32)

Then, the switching signal is as follows:

u = − LC
vin0

[
k1

(
x2 + d̂1

)
− x1 + vref

LC
− x2

RLC
+ d̂2 +

.
d1 + k2x1 + ηsat(s)

]
, (33)

Since the observers used for load estimation provide composite controller reference
values, it is necessary to first design their parameters to ensure that the observers can
accurately estimate the power of the load. The size of gain l1 and l2 will affect the accuracy
of the observer in tracking load power. In order to investigate the tracking effect of the l1
size on the observer’s load power, the parameters k1, k2, and l2 are first fixed to 200, 1000,
and 200, respectively, and the observer’s observation effect is observed by setting different
values. As shown in Figure 13a, when the CPL power jumps from 5 W to 10 W, the observer
can quickly track the fluctuation of load power as the gain l1 increases. The gain l1 can be
set to 1000.

(a) (b) 

Figure 13. Load estimation performance of l1 and l2 under different values: (a) load estimation
response with different values of l1 and (b) load estimation response with different values of l2.

The same settings k1 = 200 and k2 = 1000, fix l1 at 1000, and different values of l2
will be set to observe the impact of their magnitude on the performance of load power
fluctuation estimation. From Figure 13b, we can see that when l2 < 2000, as l2 increases, the
observer’s tracking effect on load power fluctuations remains almost unchanged. However,
when l2 < 2000, the observer was unable to accurately estimate the fluctuation of load
power. To prevent the observer from being unable to track load-power fluctuations, the
gain l2 was set to 200.
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Afterwards, it is necessary to adjust the relevant parameters of the composite controller.
To obtain the impact of parameter changes on the DC bus voltage, first fix k1 at 200 and
observe the fluctuation of DC bus voltage by setting different values of k2, as shown in the
Figure 14. From Figure 14a, it can be seen that, as k2 increases, the time it takes for the bus
voltage to recover to its steady-state value becomes shorter. However, when k2 exceeds
1000, the time it takes for the bus voltage to recover to the stable value does not change, so
k2 will be set at 1000.

(a) (b) 

Figure 14. Load estimation performance of k1 and k2 under different values: (a) voltage tracking
response with different values of k2 and (b) voltage tracking response with different values of k1.

After obtaining l1, l2, and k2, analyze the impact of their values on the DC bus voltage
by setting different k1 values. From Figure 14b, it can be seen that as k1 gradually increases,
the fluctuation amplitude of the DC bus voltage increases. When k1 = 1000, the DC bus
voltage even exhibits oscillation, so k1 can be set at 100.

5.3. Analysis of Simulation Examples
5.3.1. Keep the Constant Power Load and Change the Load Resistance

The load resistance experiences a sudden change during the simulation; that is, the
resistance drops from 20 Ω to 10 Ω at 0.04 s and then rises to 20 Ω at 0.08 s.

For three-phase interleaved parallel converter systems with matched and unmatched
disturbances, as shown in Figure 15a, both methods can make the output voltage rapidly
approach the set reference value, and there is no steady-state error in the output voltage.
However, it is clear from Figure 15a that the output voltage response time of Method 1 and
Method 2 is about 0.005 s and 0.009 s, respectively, so Method 1 has a faster convergence
speed. As shown in Figure 15b, although the overshoot of the inductance current in
Method 1 is greater than that in Method 2, the rise time and adjustment time of Method 1
are about 0.002 s and 0.004 s respectively. Both are less than the rise time and adjustment
time of Method 2. As shown in the controller output in Figure 15c, the response speed of
controller output, u, in Method 1 is higher than that in Method 2, and the convergence time
of the controller is shorter.
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(a) (b) 

(c) (d) 

Figure 15. Comparison of output responses under load variation: (a) output voltage, (b) inductive
current, (c) control input, and (d) load resistance.

Figure 16a,b capture the estimation effect of the GPI observer on the unmatched
disturbance and the matched disturbance, respectively. From the comparison results
in Table 4, it can be seen that at the moment 0.04 s, the resistance drops from 20 Ω to
10 Ω, and the estimated convergence time of the observer’s sum is 0.014 s and 0.006 s,
respectively. The resistance increases from 10 Ω to 20 Ω at 0.08 s, and the convergence
time of the observer is 0.012 s and 0.007 s, respectively. It can be seen that when the load
resistance changes abruptly, the GPI observer can quickly track the value of the disturbance
and make an accurate estimation of and match the disturbance, thus further proving
that the GPI observer has strong adaptability to the resistance load change in the system;
that is, the observer has a fast response speed and good accuracy when estimating the
system interference.
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Table 4. Comparison of dynamic response of the proposed controller under changes in load resistance.

P = 6 W, Vref = 5 V, RL = 10~20 Ω

Method GPIO NDOB
Input voltage 20 V 20 V
Setting time 0.04 s~0.08 s 0.04 s~0.08 s

Voltage recovery time 0.005 s 0.009 s
Current recovery time 0.002 s 0.004 s

Voltage overshoot 0.056 V 0.144 V
Current overshoot 0.064 A 0.102 A

(a) (b) 

Figure 16. Estimate of the observer under load variation: (a) estimation of unmatched perturbations,
d1; and (b) estimation of matching perturbations, d2.

5.3.2. Keep the Load Resistance and Change the Constant Power Load

The constant load power was changed during the simulation; that is, CPL rose from 6
W to 8 W at 0.04 s and then dropped to 6 W at 0.08 s.

As can be seen from the output voltage response curve in Figure 17a, Method 1 not
only minimizes the voltage drop but also minimizes the recovery time. Although Method 2
can also keep the system stable, it sacrifices control performance to some extent. From the
inductor current curve in Figure 17b, it can be seen that the recovery speed of the Method 1
curve is significantly faster than that of Method 2. As shown in the controller output of
Figure 17c, the response and convergence speed of the controller output, u, of Method 1 are
higher than those of Method 2.

As shown in Figure 18, the convergence time of the observer pairs and estimates
are 0.015 s and 0.007 s, respectively. At 0.08 s, the power of the constant power load
decreases from 8 W to 6 W, and the convergence time of the observer is 0.014 s and 0.007 s,
respectively. The GPI observer can quickly track the value of the disturbance and make
accurate estimates of and match the disturbance.
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(a) (b) 

(c) 

Figure 17. Comparison of output responses under CPL variation: (a) output voltage, (b) inductive
current, and (c) control input.

(a) (b) 

Figure 18. Estimate of the observer under CPL variation: (a) estimation of unmatched perturbations,
d1; and (b) estimation of matching perturbations, d2.
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In short, from the comparison results in Table 5, it can be seen that the converter under
the control of Method 1 has a faster output voltage response, better transient performance,
and greater anti-disturbance ability.

Table 5. Comparison of dynamic response of the proposed controller under CPL changes.

P = 6~8 W, Vref = 5 V, RL = 20 Ω

Method GPIO NDOB
Input voltage 20 V 20 V
Setting time 0.04 s~0.08 s 0.04 s~0.08 s

Voltage recovery time 0.007 s 0.01 s
Current recovery time 0.005 s 0.009 s

Voltage overshoot 0.025 V 0.108 V
Current overshoot 0.069 A 0.078 A

6. Conclusions

Aiming at the precise power control of three-phase interleaved bidirectional converters
in a DC microgrid under the variation of supply voltage and constant power load, a
GPI observer sliding-mode control method based on a super-twisting algorithm was
proposed. The proposed high-order sliding-mode control strategy can stabilize the output
voltage at the expected CPL power value and generate errors between the inductance
current and the output voltage of the converter on the sliding-mode surface. By combining
the interference estimations, smaller switching gains can be achieved without sacrificing
interference suppression, thus ensuring the stability of the output voltage.

Finally, the effectiveness of the control algorithm was verified by comparing the
simulation results of the proposed control method with the classical method. The transient
recovery index and anti-interference capability of the controller were further improved.
The results show that the proposed method can ensure that the output voltage of the
system converges to the reference voltage, and this controller further improves the transient
recovery index, anti-interference ability, and vibration-reduction performance of the system.
The advantage of the controller is that it can quickly improve the rate of convergence of the
system state, which is the disadvantage of the traditional observer.
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Abstract: DC-DC converters play a crucial role in recent and advanced applications, enabling efficient
power conversion and management for renewable energy systems, electric vehicles, portable devices,
and advanced communication systems. In line with this, the objective of this paper is to introduce a
new DC-DC configuration based on the Cuk converter named as Mahafzah converter, which utilizes
a coupling capacitor with a lower rated voltage. The paper aims to demonstrate the effectiveness of
the proposed converter in terms of improved efficiency, reduced size, and reduced semiconductor
device currents compared to the conventional Cuk converter. The proposed configuration comprises
the same components as the Cuk converter, but in a different arrangement, without any additional
elements. The main advantage of the proposed converter is using a coupling capacitor with a much
lower rated voltage than the Cuk converter, resulting in a smaller capacitor size, reduced printed
circuit board (PCB) size, and manufacturing cost. Additionally, the proposed converter reduces the
currents of the semiconductor devices compared to those in the Cuk converter. To demonstrate its
effectiveness, the converter is operated under continuous current mode (CCM) with a constant duty
cycle and switching frequency. The study provides an in-depth discussion of the various operating
modes by making use of equations relating to currents, voltages, duty cycles, and voltage gains.
It also provides detailed illustrations of the limits between CCM and discontinuous current mode
(DCM). The effectiveness of the proposed converter is demonstrated through a design example with
operating parameters of 1 kW, 200 V/−300 V, and 20 kHz. Additionally, a low voltage–low power
prototype (12/−18 V, 3.24 W, 20 kHz) is established to verify the operation of the proposed converter.
Simulation and experimental verification of the proposed configuration achieved the desired results to
improve efficiency and reduce the rate. The results clearly indicate that the efficiency of the proposed
converter surpasses that of the conventional Cuk converter under identical operating conditions,
reaching approximately 88% at rated load conditions.

Keywords: DC-DC converters; inverted output voltage; electric vehicles; hybrid systems; non-isolated
converters; Cuk converter; Mahafzah converter; continuous current mode

1. Introduction

DC-DC converters play an essential role in too many different applications, including
renewable energy systems [1,2], hybrid or fully electric vehicles (EVs) systems [3,4], micro-
grids in power systems [5,6], and voltage regulation applications [7,8]. These converters are
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mainly divided into two types: First, a linear converter depends on a linear passive device
such as a series or shunt resistance to regulate the output voltage. This converter is a very
simple converter with low noise in its output voltage. However, using passive elements
deteriorates the converter efficiency due to heat generation. Additionally, it is used as a
step-down converter only [9–11]. Second, switching converters: these converters are the
most common ones. The output of these converters is regulated by using a semi-conductor-
controlled switch (at least one switch is used). The presence of controlled switches allows
for either step-up or step-down of the output voltage and even enables inversion of the
output voltage polarity. Although the use of controlled switches increases complexity and
output noise, it improves the overall efficiency of these converters [12–20].

Switching converters can be categorized as either hard-switching or soft-switching res-
onant converters. The hard-switching converters could be non-isolated or isolated DC-DC
converters. The non-isolated converters include Buck, Boost, SEPIC, Buck–Boost, and Cuk
converters. These topologies typically consist of a single controlled semiconductor switch,
a single diode, one or two inductors, and a low-pass filter [12–20]. In contrast, the non-
isolated DC-DC converters employ galvanic isolation equipment such as a transformer-like
flyback converter [21] and a forward converter [22]. Hard-switching converters suffer from
high switching losses, which limits their ability to achieve a high-efficiency range [23,24].
To address this drawback, soft switching converters have been introduced, significantly
reducing switching losses. These converters cover the zero current switching (ZVS) [25]
and zero voltage switching (ZCS) [25] converters. More details are illustrated in Figure 1.

Due to the rapid development of renewable energy resources, DC-DC converters with
inverted output voltage are commonly used in hybrid solar and wind systems. These
converters serve the purpose of providing a constant voltage source when the solar en-
ergy or wind speed falls below the desired limits [26]. Additionally, another significant
application that requires inverted output voltage is in electric vehicles, which involve two
energy storage devices: a power supply with high energy storage and a rechargeable energy
storage system that enables two-directional power capability [3]. As a result, converters
with inverted output voltage, such as the Buck–Boost converter and the Cuk converter, are
highly preferred for these applications [27].

DC-DC Converters

Switching ModeLinear Mode

Soft  
Switching

Hard 
Switching

Shunt 
Linear

Series 
Linear

Zero Current 
Switching

Zero Voltage 
Switching

Non-isolated Isolated

Multiple 
Switches

Single 
Switch

Full 
Bridge

Push 
Pull

Half 
BridgeForwardFlyback

Buck Buck-
BoostBoost

CukLuoMahafzah 
converter Zeta 

Figure 1. Classification of DC-DC Converters with the location of the Mahafzah converter [28–31].

The Buck–Boost converter can either step-up or step-down the output voltage using a
low number of components. Additionally, it offers high efficiency with a low-duty cycle,
making it suitable for many applications [13]. However, it cannot achieve high gain without
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compromising the converter’s efficiency. Moreover, the absence of isolation in the converter
can lead to instability in certain applications [13]. Furthermore, when the switch is open,
the stored energy in the output side inductor (L2) is transferred back to the supply, which
can be undesirable and restrict the converter’s usability [16].

The Cuk converter is utilized for both stepping up and stepping down the output
voltage. It consists of two inductors that help reduce the ripple in the input/output currents.
In addition, this converter has a continuous input/output current. Furthermore, in the
Cuk converter, when the switch is closed, the coupling capacitor supplies energy to both
the output side inductor L2 and the load simultaneously. Yet, unlike the Buck–Boost
converter, when the switch is opened, the energy stored in L2 is transferred to the load [16].
Despite these advantages, the Cuk converter does have some drawbacks; for example, the
compensation circuit may be added to stabilize the converter, which reduces its response.

According to the authors’ best knowledge and after a careful review of the DC-DC
converters presented in review papers [28–31], the proposed configuration is not yet
presented in the literature. Therefore, this paper proposes a new converter that is designed
and verified experimentally and by simulation. The outcomes of this configuration enhance
the efficiency and reduce the coupling capacitor voltage rating. Table 1 compares different
DC-DC converters with their limitations.

Table 1. Different DC-DC converters topologies with their limitations.

Ref.
Year of

Publication
Objective Limitations

[12] 2011 A buck converter with coupled inductor for ZVS
is proposed Critical design of the coupled inductor

[13] 2020 A different DC-DC converters with average
model is presented

It is used for multi-phase applications with
coupled inductor

[15] 2018 Design quasi-SEPIC converter with high voltage
gain capability

It uses a coupled inductor and the way to
improve the magnetic core characteristics

[16] 2019 Proposes a new Cuk converter fed switched
reluctance motor

The circuit has additional semiconductor devices
and many inductors

[17] 2021 Proposed an interleaved Luo converter The critical design of the magnetic circuit

[18] 2022 Design a flyback with a ripple free in
inductor current

Adding many passive components to the
conventional flyback

The main contribution of this paper is the introduction of a new DC-DC converter that
offers higher efficiency, a lower rated voltage of coupling capacity, and cost reduction as
compared to Cuk converters. Another advantage of the new configuration (Figure 2) is
that it utilizes the same components as the well-known Cuk converter but in a different
arrangement. Additionally, the proposed converter demonstrates improved efficiency
compared to the Cuk converter under similar operating conditions, reaching approximately
88% at rated conditions. Furthermore, the voltage of the coupling capacitor is reduced
to (Vm = ±100 V) compared to (Vm = ±500 V) in the Cuck converter. A design example
is presented to validate the functionality of the proposed converter, which is suitable
for hybrid renewable energy systems and electric vehicle applications. Moreover, a low
voltage–low power prototype of 12/−18 V, 3.24 W is established to verify the operation of
the proposed converter, showing a close match between measurements and simulations.

The survey above highlighted the two main types of converters: linear converters,
which utilize passive elements and have simplicity but lower efficiency, and switching
converters, which employ semiconductor-controlled switches for improved efficiency but
higher complexity and noise. The survey also discussed the limitations of hard-switching
converters and the advantages of soft-switching converters. However, despite the exten-
sive review, the proposed configuration of the Mahafzah converter, which offers higher
efficiency, reduced coupling capacitor voltage rating, and cost reduction compared to Cuk
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converters, has not been presented in the existing literature. This research gap motivates
the introduction of the new converter and its experimental and simulation verification,
addressing the need for an improved DC-DC converter design in hybrid renewable energy
systems and electric vehicle applications.

Figure 2. The proposed Mahafzah converter.

The rest of this paper is organized as follows: Section 1 discusses the operating modes,
duty cycle, and voltage gain of the proposed converter. A design example and parameters
selection is presented in Section 2. Section 3 illustrates the simulation results based on
the calculations in the previous section. Section 4 provides experimental results of a low
voltage–low power prototype. Finally, the paper is concluded in Section 5.

2. Operating Modes, Duty Cycle, and Voltage Gain of the Proposed Converter

The proposed converter comprises, as shown in Figure 2, one DC power supply, two
inductances L1 and L2, one coupling capacitance C1, one controlled switch M1, one diode
D, and also a low pass filter includes Co in parallel with the load resistance.

2.1. Operating Mode of the Proposed Converter

The proposed converter has two different operating modes as follows:

• When the switch M1 is ON: the diode D is reversed biased. Figure 3a shows the
equivalent circuit and current directions of this mode. The energy is transferred and
stored in the coupling capacitor C1. Meanwhile, both inductors L1 and L2 are energized.
The current slope in the inductors is given according to the following equations:

dIL1

dt
=

Vin
L1

(1)

dIL2

dt
=

Vin + VC1

L2
(2)

From (1) and (2), the switch current is the sum of two inductors’ current. This can be
written as (3). Instantaneously, the voltage of capacitor C1 is given by (4).

IM1 = IL1 + IL2 (3)

VC1 = Vin − VL2 (4)

• When the switch M1 is OFF: the diode is forward and conducts the current. Figure 3b
shows this mode’s equivalent circuit and current directions. All the energy stored in
C1, L1, and L2 is transferred to the load. The current slope in the inductors is given
according to the following equations:
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dIL1

dt
=

Vo + VC1

L1
(5)

dIL2

dt
=

Vin + VC1

L2
(6)

From (5) and (6), the diode current is the sum of two inductors’ current. This can be
written as on (7). Instantaneously, the voltage of capacitor C1 is given by (8).

ID = IL1 + IL2 (7)

VC1 = VL1 − Vo (8)

(a) 

(b) 

Figure 3. (a) Mode 1, when switch M1 is on, (b) Mode 2, when switch M2 is off.

In the steady state, the average inductors’ voltages are zero. Based on (4) and (8) and
the capacitance C1 is large enough, then, the average C1 voltage has to be equal to the
following equation:

VC1 = VL1 − VL2 (9)

According to (9), it can be seen that the capacitor voltage C1 depends on the voltage
difference between the two inductors. In the proposed converter, the coupling capacitor’s
average voltage is equal to zero. This means all the energy stored during the turn-on period
is dissipated during the turn-off period. More details will be discussed in the Simulation
Results Section.

2.2. Duty Cycle and Voltage Gain of the Proposed Converter

The duty cycle of the proposed converter can be calculated based on the same pro-
cedure used in other DC-DC converters. In a steady state, the average inductor voltages
over one switching cycle (Ts) must equal zero. Then, once the switch M1 is turned on,
the inductor L1 is energized from the input DC voltage Vin. On the other hand, when the
switch M1 is turned off, the energy stored in L1 is delivered to the load through the coupling
capacitor C1 and the diode D. Based on that, the inductor voltage function is given by:

VL1(t) =
{

Vin, 0 < t < DTs
−Vo DTs < t < Ts

(10)
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VL2(t) =
{

Vin, 0 < t < DTs
−Vo, DTs < t < Ts

(11)

Calculating the average voltages of L1 and L2 results in (12). By solving (12), the
voltage gain can be produced as per (13).

〈VL1〉 = DTsVin + (1 − D)TsVo = 0 (12)

VG =
Vo

Vin
= − D

1 − D
(13)

where VG is the voltage gain of the proposed converter.
Equation (12) shows that the voltage gain of the proposed converter is the same as

Buck–Boost, Cuk, and SEPIC converters [32]. Nevertheless, the proposed converter has an
inverted output voltage, which can be used to step up and down by selecting a proper duty
cycle value (see (13)). Additionally, it can be seen that the critical value between the step-up
and step-down is D = 50%. Figure 4 plots the voltage gain of the proposed converter and
the converter duty cycle.

Figure 4. The voltage gain change based on the converter duty cycle.

3. Design Example and Parameters Selection

As seen in Figure 2, the proposed converter comprises a single controlled switch, a
single diode, two decoupled inductors, one coupling capacitor, and one low-pass filter
(shunt filter capacitor with load resistance). For simplicity, the proposed converter is
assumed to work in continuous current mode (CCM). The following discussion confirms a
proper selection of the converter parameters to achieve CCM operating mode.

The selected design parameters are based on the data presented in [33]; the DC output
voltage (motor voltage) is 48 V. Nevertheless, in this paper, it is changed to 300 V for better
indication, and the rated power of the motor is 1 kW. As the input voltage to the circuit
in [28] is an AC RMS line voltage, then the average of the rectified voltage is calculated to
equal 200 V-DC. In addition, the switching frequency is set to 20 kHz. The ripple current
percentage in both inductor currents is set to 20%. In contrast, the ripple in the output
voltage should not exceed 10% of the desired output voltage. Table 2 presents the selected
parameters for the design along with their corresponding values. These parameters were
derived from the application proposed in [33]. The calculated parameters based on the
presented equations are included in the fourth and fifth columns.
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Table 2. The selected parameters of the design.

These Parameters Are Taken from the
Application Proposed in [33]

The Calculated Parameters Based on
Presented Equations

Parameter Value Parameter Value

Pin/Po 1 kW Io 3.3 A
Vin 200 V IL1 5 A
Vo −300 V IL2 3.3 A

ΔIL1 0.92 A Ro 90 Ω
ΔIL2 1.3 A L1 6.5 mH
ΔVC1 <0.1 L2 6.5 mH

Kp 0.2 C1 0.5 μF
Ki 0.001 Co 5 μF

Duty Cycle (D) 60%
fs 20 kHz

The average inductor L1, L2 currents are calculated as:

IL1 =
Po

Vin
(14)

IL2 =
Po

Vo
(15)

The load resistance is set according to (16), and then the selected inductors are given
by (17) and (18), (when D = 0.6).

Ro =
V2

o
Po

(16)

IL1,max =
VinD
fsΔIL1

(17)

IL2,max =
Vo(1 − D)

fsΔIL2
(18)

When selecting the coupling capacitor C1, the ripple in the output voltage should not
exceed 20% of Vo, thus it is found as per (19). Finally, the filter capacitor can be calculated
by using (20). Thus, Co has a minimum value calculated as:

C1 =
VC1D

Ro fsΔVC1
(19)

Co =
VoD

Ro fsΔVCo

(20)

4. Simulation Results

MATLAB 2020a is used to simulate the proposed converter, which can provide very
close results to the real prototype. The simulation parameters are discussed in the previous
section, whereas the simulation time is set to 1 s, and the solver is selected to be an
ordinary differential equation ode23tb with a maximum step size is 250 μs and continuous
simulation type. Moreover, the proposed converter is operating under the CCM mode with
a hard-switching technique and constant duty cycle equal to 0.6.

The output voltage is plotted in Figure 5. It is seen that the average output is 297 V DC
voltage with a ripple percentage in the voltage of around 6.7%, which is an acceptable value.
Moreover, as the load is a pure resistance, the load current has the same voltage pattern but
is scaled by (1/90), which gives the average load current 3.3 A. Thus, the current ripple in
IL1 is given by (21). Based on the design example (21) gives 0.92 A. Otherwise, the ripple
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in IL2 is calculated based on (22). It is also important to point out that the result of (21) is
1.3 A.

ΔIL1 =
VinDTs

L1
(21)

ΔIL2 =
VoDTs

L2
(22)

Figure 5. The output voltage of the proposed Mahafzah converter.

The continuous current operation in the proposed converter is clearly seen in Figure 6.
As the inductance values of both inductors are the same, the difference in the slopes and
their averages are related to the difference in the applied voltage across inductor terminals
during the on/off periods. The average inductor current IL1 is equal to 5 A, and the average
inductor current IL2 is equal to 3.3 A, with a ripple current percentage of less than 20% of
both currents.

Figure 6. Inductor currents in CCM.

On the other hand, the inductors’ voltages are illustrated in Figure 7. During the
conduction of switch M1, the L1 is clamped to Vin. Meanwhile, the L2 voltage to the
difference between VL1 and VC1. During the conduction period of the diode, the L1 has
a voltage of VL2 + VC1 but in the reverse direction, and the L2 voltage is clamped to the
load voltage. In steady-state operation, the average inductor voltages are equal to zero.
Figure 8 presents the coupling capacitor voltage and its current. Over one switching cycle,
it is noticeable that the capacitor bypasses the energy from the input side to the output
side without any remaining voltage across its terminals. This means the average capacitor
voltage is zero based on Figure 8a. Additionally, the balance in the capacitor charge is
illustrated in Figure 8b. Whereas, the average capacitor current over one switching cycle is
zero in steady-state conditions.
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Figure 7. The inductors voltages in CCM.

(a)

(b)

Figure 8. (a) The voltage of coupling capacitor C1 (b). The current of coupling capacitor C1.

The merit of the proposed converter is the existence of an LCL tank connected with
the switch M1, this connection offers a soft switching turn on and turn off. The volt-
age stress across the switch is illustrated in Figure 9a. The voltage reaches the sum of
Vin + VC1 + Vo. The same issue with the output diode. Figure 9b shows the switch and
diode currents. The average switch and diode voltages are calculated, respectively, using
the following equations:

IM1 =
VinD2

Ro(1 − D)2 (23)

ID =
VinD

Ro(1 − D)
(24)

The proposed converter is compared with the Cuk converter. The Cuk converter is
simulated using the same design example discussed above to compare the results. Both
converters’ output voltages are shown in Figure 10a. It shows that the output voltage in
both cases decreased to −300 V, but the proposed converter has more ripple in its voltage
than the Cuk converter. Moreover, the proposed converter has an unrecognizable overshoot
higher than the Cuk converter, but the proposed converter is faster than the Cuk converter
in achieving the steady state period, see Figure 10b.

The coupling capacitor C1 plays an important role in energy transfer in Cuk, SEPIC,
Buck–Boost, and Luo converters, as well as it has a role in the proposed Mahafzah converter.
The selected capacitor must be sized so that it has a rated voltage value that is higher than
twice the voltage across its terminal. The higher rated voltage results in a higher size
capacitor. Furthermore, the large size of this capacitor holds a rather large place on the
PCB, thus reducing the cost of circuit manufacturing.
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(a)

(b)

Figure 9. (a) The switch M1 voltage (blue), and the diode D (red) voltage (b). The switch M1 current
(blue), and the diode D (red) current.

(a) (b)

Figure 10. (a) The output voltage of both converters, (b) the zoomed in.

Figure 11a compares the two capacitor voltages in the proposed and Cuk converter. As
noticed from Figure 11b, the coupling capacitor Cuk converter has a much higher applied
voltage than its counterpart in the proposed converter. Similar to the Cuk converter, the
proposed converter has the boundary characteristics shown in Figure 12. The coupling
capacitor is selected to endure the applied voltage across its terminal in the Cuk converter.
The critical value that separates the two modes is plotted in the cyan curve. The voltage
gain as a function of the duty cycle and K value is given by (25). Then, according to (25),
the critical value between CCM and DCM is given as described in (26). Accordingly, Kcritical
is equal to 0.16.

VG(D, K) =

{ −D
(1−D)

K > Kcritical
−D√

K
K > Kcritical

(25)

Kcritical = (1 − D)2 (26)
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(a) (b)

Figure 11. (a) The coupling capacitor voltage of both converters, (b) zoomed in during steady state.

Figure 12. Characteristics of the proposed converter.

As illustrated in Figure 11 and in Equation (19), the coupling capacitor value of the
proposed converter is noticeably reduced by five times compared to the coupling capacitor
value for the cuck converter under the same operating conditions. The loss components
of the proposed converter can be divided into conduction losses, switching losses, and
control losses [23,34]. It should be noted that these losses are associated with semiconductor
devices. Table 3 illustrates all loss components and provides the related equation.

Table 3. Loss calculation of the proposed Mahafzah converter.

Loss Component Equation Note

Conduction Loss
PM1 = i2dRds−onD Ron: MOSFET on-state resistance

PD = (Vf id + i2dR f )(1 − D)

Switching Loss PM1 = 05 fsCoss(0.5Vin + Vo)
2

Coss is M1 output capacitance
PD = 05 fsCd(0.5Vin + Vo)

2

Control Loss
Pgates = QgVgs fs Qg is the gate charge of M1

RL1 = R1dc

(
DTsVin

L1

)2

Passive Devices RL2 = R2dc

(
DTsVo

L2

)2

Losses in each L1 and L2 based on using
their DC resistance. The losses in the
coupling capacitor are ignored due to

its small ERS

Using the presented equations in Table 2, the efficiency of the proposed converter is
calculated when changing the load simultaneously. The efficiency of the proposed converter
is compared with the Cuk converter, as illustrated in Figure 13. The efficiency of both
converters is calculated based on the equations presented in [22–24,34]. The efficiency
calculation considers all the loss components, including the conduction, switching, and
control losses. The efficiency is also calculated when the load current is changed from 10%
up to 100% of the rated current. As seen in Figure 13, the proposed converter has better
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efficiency than the Cuk converter when the load is increased. The efficiency of the proposed
converter reaches around 88% at full load conditions, while the Cuk converter efficiency
reaches 87% at the same rated conditions.

Figure 13. The efficiency of both converters.

5. Experimental Results

5.1. Experiment Setup

The experimental setup for testing the proposed configuration is illustrated in the
circuit diagram (Figure 14). To validate the proposed converter, a low voltage–low power
prototype (Figure 15) was constructed using the available equipment in the laboratory. The
input voltage was set to 12 V by a standalone battery, and low-power inductors with an
approximate value of 1.2 mH were selected. The load resistance was set to 100 Ω, resulting
in an output voltage of −18 V and a converter power of 3.24 W. The available IRF540N
MOSFET was utilized as the switch, controlled by an N-type transistor 2N3904 through an
Arduino-based chip, allowing for adjustment of the duty cycle and switching frequency.
Prior to conducting the measurements, the proposed converter was re-simulated using
MATLAB/ Simulink with the parameters provided in Table 4.

1k

PWM Arduino-based

1k

1 F

1 F
100

L1 L2 Co Ro Vo

C1

1.2mH1.2mH

Ba
tte

ry
 1

2V

Figure 14. Circuit diagram of the experimental setup (new configuration proposed).

Figure 15. The 3.24 W/−18 V converter prototype.
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Table 4. Selected parameters of the prototype.

The Selected Parameters for Testing and Validation

Parameter Value

Pin/Po 3.24 W
Vin 12 V
Vo −18 V

MOSFET IRF540N
Driving Transistor 2N3904

Diode 1N4007
L1 = L2 1.2 mH

C1 1 μF
Duty Cycle 70%

fs 20 kHz

5.2. Experimental Results and Discussion

The output voltage is shown in Figure 16 (Ch2). The load voltage is recorded at −18 V
with a low voltage ripple. The driving voltage of IRF540N is shown in Figure 16 (Ch1). The
applied voltage reaches a peak of 12 V, with a duty cycle is about 70% (35 μs). Accordingly,
the inductor L1 voltage is plotted in Figure 17.

Figure 16. Ch1: Input Voltage, Ch2: Output Voltages.

Figure 17. Ch1: VL1, Ch2: VL2.

As observed in Figure 17 (Ch1), the inductor voltage reaches 12 V (the input voltage)
during the switch M1’s turn-on time. However, when the switch is turned off (with an off
time of approximately 15 μs), the inductor voltage decreases to −6 V. Similarly, during the
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switch M1’s turn-on time, the inductor L2 exhibits a voltage of a 3 V across its terminals.
Conversely, when the switch M1 is turned off, the inductor L2 displays −10 V, see Figure 17
(Ch2). In addition, the coupling capacitor has 7 V across its terminal, which corresponds to
the difference between the input and output voltage. Consequently, the rated voltage of
the selected voltage of C1 should be around 15 V. This confirms that the selected coupling
capacitor has a lower rated voltage than the same one in the Cuk converter (in the Cuk
converter case, the rating voltage of the coupling capacitor must be selected around 45 V.
This reduces the selected rated voltage of C1 in the proposed converter by 66.67% compared
to the same capacitor of Cuk converter, as seen in Figure 18.

Figure 18. C1 Voltage.

The drain-source voltage of the IRF540N is depicted in Figure 19, while the diode
voltage is plotted in Figure 20. The MOSFET is operated with a duty cycle of 70%. It can
be seen from these Figures that during the switch turn-off period, there is some ringing
present in the voltage waveform. This ringing is related to some reasons, such as: one
reason is the resonance between L1 and the MOSFET’s parasitic capacitance during the
energy transfer period. It is not possible to resonate L2 and C1 with L1, because the resonant
frequency of this combination is about 28 kHz. Similarly, there is no possible resonant
between L2 and C1 with L1, as their resonance frequency is about 40 kHz, significantly
lower than the frequency depicted in Figures 19 and 20.

Figure 19. Drain-source voltage.
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Figure 20. Diode voltage.

The second reason is the possible resonance between the inductance of L1 and the
capacitance of parasitic capacitance of the used passive prob. The third possible reason
may be related to the poor copper board used which causes some EMI issues. However,
these reasons can be easily overcome with very good PCB design and using advanced
measuring devices. In sum, Table 5 provides a comprehensive comparison between the
Cuk converter and the Mahafzah converter, considering their main features under the same
operating conditions.

Table 5. A comprehensive compression between Cuk and Mahafzah converters.

Parameters
Converter Topology

Cuk Converter Mahafzah Converter

Component Count Same Same
Coupling Capacitor Voltage High Reduced (

√
)

Efficiency Low Improved (
√

)
Ripple in Vo Low (

√
) High

Transient Period Long Short (
√

)
“
√

” indicates which converter is better for each parameter.

Overall, based on the information provided in the table, the Mahafzah converter
demonstrates certain advantages over the Cuk converter in terms of the reduced coupling
capacitor voltage, improved efficiency, and shorter transient period. However, it is im-
portant to note that the table does not provide specific quantitative values or detailed
explanations for each feature, making it difficult to conduct a thorough analysis without
further information.

6. Conclusions

This paper proposed a DC-DC converter based on the Cuk converter, namely the
Mahafzah converter. The proposed converter maintains the same component counts, duty
cycle, voltage gain, and inverted output voltage as the Cuk converter, but with a different
arrangement and new design. The new configuration of the proposed converter offers the
advantage of reducing the rating voltage of the coupling capacitor, resulting in a smaller
size and lower cost. Additionally, it operates at a lower rated voltage of the coupling
capacitor. Moreover, the currents of the semiconductor devices are reduced compared to
those in the devices in the Cuk converter. As a result, the losses in the proposed converter
are reduced, leading to improved efficiency. The operating modes and mathematical
equations governing the currents and voltages of the inductors, coupling capacitor, switch,
and diode are thoroughly discussed in this paper. A design example is presented to verify
the effectiveness of the proposed configuration. The design is validated through simulation
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to evaluate the operation, performance, and efficiency of the converter. Experimental tests
are also conducted to validate the simulation results. For this purpose, a low voltage–
low power prototype (12/−18 V, 3.24 W) is built to verify the operation and validate
the proposed converter waveforms. The results demonstrate the excellent performance
of the new converter, as evidenced by the matching between the simulation and design
calculation results. Furthermore, the proposed converter exhibits higher efficiency than the
Cuk converter under load variations, with an efficiency of 88% at rated load conditions,
surpassing the Cuk converter by 1%. All the highlighted insights of this new design will
hopefully lead to increased efforts toward the development of advanced energy conversion
for electric vehicles and hybrid renewable energy systems.
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Abstract: The presence of a high ripple in the inductor current of a DC-DC converter in a photovoltaic
converter chain leads to a considerable decrease in the energy efficiency of the converter. To solve this
problem, we consider a current-mode control and for economic reasons we used a single inductor
current sensor with a low-pass filter. The purpose of the low-pass filter is to minimize the effect
of ripple in the inductor current by taking only the DC component of the signal at the output of
the sensor for tracking the maximum power point. The objective of this paper is therefore to study
the stability of the photovoltaic system as a function of the filter frequency while maintaining a
good power level. First, we propose a general modeling of the whole system by linearizing the PV
around the maximum power point. Floquet theory is used to determine analytically the stability of
the overall system. The fourth-order Runge–Kutta method is used to plot bifurcation diagrams and
Lyapunov exponents in MATLAB/SIMULINK when the filter frequency varies in a limited range
and the ramp amplitude is taken as a control parameter. Secondly, the PSIM software is used to
design the device and validate the results obtained in MATLAB/SIMULINK. The results depicted
in MATLAB/SIMULINK are in perfect agreement with those obtained in PSIM. We found that not
only is the energy level maintained at the maximum power level of 85.17 W, but also that the stability
range of the photovoltaic system increased with the value of the filter cut-off frequency. This research
offers a wider range of parameters for stability control of photovoltaic systems contrarily to others
found in literature.

Keywords: current-mode control; photovoltaic system; bifurcations diagrams and Lyapunov exponent
graphics; Runge–Kutta method; Matlab and PSIM software

1. Introduction

In the difficult energy and economic context, expectations in terms of renewable
energies in general and solar Photovoltaic (PV) energy in particular is increasing [1–3].
Reducing the costs of PV systems, improving their performance and increasing their
efficiency are major concerns for researchers, in order to make them as competitive as
possible [4]. PV generators an interesting renewable energy source because it is not only
renewable but also inexhaustible and non-polluting. The ability to achieve the maximum
energy output is crucial for the optimization of generation system [5]. The output power of
a PV generator varies with weather conditions. A Maximum Power Point Tracking (MPPT)
controller is needed to force the PV system to operate at its optimal operating point [6–10].
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In general, a PV system consists of a PV generator, a DC-DC converter and a control system
that regulates certain electrical variables in order to extract the maximum energy from the
PV generator and transfer it to the load. The boost converter is the most used in small
PV systems as it converts the relatively low voltage of the PV panels and raises it to a
higher level, appropriate for the load [11]. To achieve MPPT, direct duty cycle control [12],
voltage mode control [13] and two-loop current-mode control [14–17] have been used.
In direct duty cycle control, the MPPT algorithm directly dictates the desired duty cycle
for MPPT (Figure 1a). The advantage of this approach is the simplicity of the scheme.
However, the performances of this strategy are very poor and severe oscillatory behavior
may be produced after any step change due to the MPPT P&O algorithm. Furthermore,
none of the previous structures provide an over-current protection, making impossible the
paralleling of converters in a PV system. To overcome this problem, voltage regulation can
be used as shown in (Figure 1b). The oscillatory behavior due to MPPT step changes may
be damped. However, the settling time could still be large. Under current-mode control,
the PV voltage regulation is conventionally carried out by means of cascaded feedback
loops, where the inner loop controls the inductor current and the outer loop regulates the
PV voltage (Figure 1c). With this control scheme, two current sensors are used—one for the
PV current and one for the inductor current [15] or the input capacitor current [13]. In [18],
the inductor current used for the current loop control is also used for estimating the PV
power and performing MPPT (Figure 1d).
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Figure 1. Different MPPT control strategies. (a) direct duty cycle control, (b) single-loop voltage
mode control, (c) two-loop current mode control with voltage loop closed and (d) current mode
control with voltage loop open with a single current sensor for both current and MPPT controls.

In single-loop voltage mode control and two-loop current-mode control, voltage
regulation has been always used to attain predetermined closed-loop performance in
terms of the system settling time due to changes in the weather conditions and/or MPPT
parameter step changes [14,19,20]. In both control schemes, PI controllers have been
used with the aim to make steady state error zero. This dynamic controller may slow
down the system response. In reality, the main objective in a PV system is to track the
maximum power and not to regulate the voltage. Thus, the two-loop current-mode control
strategy is not necessary. In this paper, instead of using single loop voltage control and
two-loop involving both voltage and current control, the single-loop current control is
used. It offers many advantages in a PV system such as fast response among others [21].
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Furthermore, peak current-mode control is used without the need for an integrator which
may slow down the system response. However, a noticeable ripple (up to 30%) is present
in the inductor current of a switching DC-DC converter. Since we only need the DC
component of the current to perform MPPT, a low-pass filter Hi(s) is necessary for the
current loop. The technique prevents from sensing the PV generator current. A shunt
sensor is placed at the input of the power converter and used for both current-mode control
and PV power estimation. It is worth noting that this low-pass filter is naturally existing in
some current sensors with limited cut-off frequency. These results are simple but efficient
and feature a fast-tracking capability. The proposed technique will be validated with
numerical simulations, showing that the transient duration under irradiance variations
or step changes due to the P&O MPPT controller is greatly reduced as compared to other
existing techniques, thereby realizing the fast current response and MPPT under current
mode control.

Figure 2 shows a boost converter under a single-loop current-mode control for MPPT
with two sensors and with a single sensor with pre-filtering. The scheme of Figure 2b
depicts the proposed solution for the control of the DC-DC converter which is based on pure
peak current-mode control without an outer voltage loop. This control method provides
an efficient cycle by cycle over current protection. The concept can be extended to any
topology of DC-DC converter and another advantage of peak current-mode control in PV
systems is that the transfer function to be compensated is non-minimum phase for all the
converter topologies.
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Figure 2. Boost converter fed by a PV generator with MPPT and current mode controller. (a) the
MPPT control is performed by using the PV current. (b) The MPPT control is performed by using the
filtered inductor current.

It is well known that DC-DC converters under current model control may exhibit a rich
variety of nonlinear phenomena [22]. In particular, when filtering is added to the current
loop, the conventional results are widely known in the power electronics community [23]
to become inaccurate in predicting the onset of period-doubling bifurcation [11]. Thus,
it is necessary to use an appropriate model that allows to predict mathematically the
onset of this bifurcation. Such a model would also offer useful physical insights into the
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behavior of the system without the need for excessive numerical simulations. In this paper,
we propose to use the single-loop control scheme for DC-DC converters when used in
a PV system. We suggest to use the inductor current both for controlling the converter
to a reference provided by a P&O MPPT algorithm as well as to estimate the average
value of the PV source power which is used by the same algorithm. It is shown that
period-doubling bifurcation arises from the instability of the inner current loop of the
DC-DC converter and is not significantly related to the nonlinearity of the PV generator.
Therefore, linearizing appropriately the PV generator model does not affect the accuracy of
the model in predicting the period-doubling bifurcation of the system. This is especially
beneficial for modeling PV systems and analytically predicting their period-doubling
bifurcation behavior. Circuit-level simulations from a switched model verify the theoretical
findings. As an example, we present a study of a PV-fed boost converter used in micro-
inverter applications.

The scope of this work falls into the DC-DC converter technology. We recall that
the current-mode control is a predominant strategy in controlling DC-DC switched-mode
power electronic converters for different applications. This is due to many advantages such
as fast system response, better system performances and inherent over current protection,
the easy parallel operation but it is rarely used in PV applications. A PV system under
study consists of a PV generator interlinked to a DC-DC boost converter which is subject
to various nonlinear phenomena under the current-mode control. Facing the challenges
previously established, the main contribution of this paper are as follows:

1. Propose a flexible control based on the inductor current filtered by a low-pass filter
integrating a relevant MPPT P&O algorithm to estimate the average value of the PV
source power;

2. Propose suitable orbital stability tools such as Floquet theory to study the stability of
the overall system under consideration as a function of the cut-off frequency of the
low-pass filter and the amplitude of the ramp signal;

3. Develop a bifurcation analysis of the DC-DC power system with MATLAB/SIMULINK
based on the fourth-order Runge–Kutta numerical method for a deep study of
the stability;

4. Develop a bifurcation analysis of the DC-DC power system with the PSIM software
that is close to experimental interpretation of the DC-DC system dynamic.

The rest of the paper is organized as follows: Section 2 presents materials and methods.
Section 3 presents Results and Discussions and finally, concluding remarks are presented
in Section 4.

2. Materials and Methods

2.1. System Evaluation

Let us consider the boost converter under current-mode control shown in Figure 2b.
As far as the converter is concerned, it plays the role of an interface, for matching the energy
flow between the source and the load [24]. The input capacitor with capacitance C1 is used
to smooth the voltage supplied by the PV to avoid ripples due to the nonlinearity of the PV
generator. An LC filter is also used at the output to reduce switching ripples due to the
switching nature of the converter and to provide a smooth output current to the DC output.
Another function of our DC-DC converter is to track the maximum power point (MPP)
by controlling the reference signal Rsiref, using the perturbation and observation (P&O)
algorithm, which increases or decreases the value of the reference signal Rsiref in order to
position the PV operating point at its MPP at all times. The signal RsiL is low-pass-filtered
using Hi(s) to obtain the signal RsiL f , where Rs is the sensor resistance. Considering a
unity gain first-order filtering effect of the current sensor, the equation relating iL f to iL in
the Laplace domain is

IL f (s)
IL(s)

=
ωc

s + ωc
, (1)
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where ωc is the cut-off frequency of the filter. In time domain, this equation can be expressed
as follows

diL f

dt
= −ωciL f + ωciL. (2)

The filtered signal iL f is used both for current-mode control and for obtaining the aver-
age PV power after multiplying it by the PV voltage vpv. For current-mode control, the sig-
nal RsiL f is compared with the reference signal Rs Iref − vramp, where vramp = mat mod T
is the ramp compensating signal, ma = VM/T is its slope, VM is its amplitude and T is its
period. The control logic compares the signal RsiL f with the signal Rs Iref − vramp in such
a way that at the beginning of each switching cycle with the period dictated by the clock
signal CLK, the switch S is turned ON and OFF whenever the signal RsiL f reaches the signal
Rs Iref − vramp. The binary signal u is a result of this switching decision and it takes the
value 1 when the switch is turned ON and 0 when it is turned OFF. The current reference
Rs Iref is provided by the MPPT.

A flowchart for current-mode control proposed in this work is shown in Figure 3.
The program loop starts with the initialization of the voltage at the PV terminal, the current
through the inductor and the voltage at the load (Block 2). These initial values are used
to set the initial value of the reference voltage. In practice, the initial reference voltage
is imposed by Vref,init = 0.85 × VMPPT,max [18]. Therefore, the choice of the initial values
in the system must be made taking into account this condition on the reference voltage.
When the irradiation is uniform, the P&O MPPT algorithm and CMC keep operating at
the MPP (Block 3, Block 4, and Block 5). The P&O algorithm verifies fluctuations of power
and voltage of PV array and determines the set-point voltage Vref constantly. To maximize
the output power from the PV array, its output voltage needs to be maintained at the
level determined by the P&O algorithm. The resulting reference current Iref from the
reference voltage will produce the control signal that will be used by the pulse width
modulation (PWM) for the boost converter switch. During the switching of the boost
converter, the fourth-order Runge–Kutta algorithm is used to determine the dynamics
taken by the converter (the values of the converter states and the values of the duty cycle)
over time (Block 7, Block 8, Block 9). It should be noted that all numerical simulations
in this paper are performed using MATLAB/SIMULINK. Other software such as C++,
Fortran or Python could also be used because it is the simulation of ordinary differential
equations [25–29].

2.2. Mathematical Modeling

Considering the system shown in Figure 2, applying Kirchhoff’s laws, we obtain the
following system of equations:

dvpv

dt
=

ipv

C1
− iL

C1
, (3)

diL
dt

=
vpv

L
− r

L
iL − v2

L
(1 − u), (4)

dv2

dt
=

E − v2

RC2
+

iL
C2

(1 − u), (5)

where vpv and ipv represent the voltage and current of the PV source, respectively. These
two variables are related with a highly nonlinear and implicit Equation (3). iL is the current
of the inductor, and u is the state of the switch. C1 is the capacitance directly connected
to the PV and its role is to smooth the voltage at the output of the PV. L represents the
inductance, VCC the output voltage of the battery. r is the equivalent resistance in series
with the coil and the equivalent resistance that can be felt at the output of the converter
is R.
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Figure 3. Flowchart of the proposed technique.

A PV generator represents a fundamental power source of a PV system. The output
current/voltage characteristics depend on the solar irradiance and temperature. The PV
generator has nonlinear electrical model with a single maximum power point (MPP).
The performance of a PV generator is evaluated under standard test conditions, where the
irradiance is normalized at 1 kW/m2 and the temperature is defined at 25 ◦C. A PV gener-
ator is characterized by its current–voltage characteristic (I–V) which can be subdivided
into three operating zones, a linear zone with a practically constant current, a concave zone
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with almost constant voltage and an MPP which is the desired point for operation. Since
this is the optimal point, the nonlinear characteristic (I–V) is linearized close to the MPP
using Taylor’s series expansion and ignoring high-order terms. The (I–V) equation of the
PV model can be approximated by the following linear Norton equivalent model [11]:

îpv ≈ 2impp −
Impp

Vmpp
v̂pv + 0(v̂2

pv). (6)

Although numerical simulations could be performed using the nonlinear PV model,
the linear model is useful to perform steady-state analysis, for controller design, stability
analysis and for prediction of bifurcations. The state-space model of the power stage (3)–(5)
together with (2) describing the current sensor and the switching logic determining the
value of the binary control signal u appearing in (4) and (5) represent the closed-loop model
of the PV system. While the nonlinear model of the PV generator can only be used for
performing numerical simulations, the switched model with linearized PV generator model
can be used for mathematically predicting the onset of period-doubling bifurcation in
the system.

2.3. Steady-State Analysis

Obtaining the steady-state duty cycle D requires performing steady-state analysis.
Under MPPT conditions and in steady-state operation, the following equalities hold

V2(1 − D) = Vmpp − rImpp, V2 = E + RImpp(1 − D). (7)

Solving both equations for the steady-state duty cycle D, one obtains

D = 1 − 1
2RImpp

(√
4RImpp(Vmpp − rImpp) + E2 − E

)
. (8)

Note that when the parasitic resistance r and R are negligible, one has which is the
well-known expression of the duty cycle of an ideal boost converter with input Vmpp and
output E. Since, under MPPT control and steady-state operation, the PV current will be
equal to Impp and since the average capacitor voltage at the input port of the converter
is zero, the inductor current average value in steady state will be also equal to Impp.
For this reason, the reference current under steady-state operation must be given by the
following expression

Iref = Impp + (
ma

Rs
+

m1

2
)DT − 1

Rs

m1(1 − e−DTωc)

ωc
, (9)

where

m1 =
Vmpp − rImpp

L
, ma =

VM
T

. (10)

Note that if ma = 0 (no ramp compensation) and ωc → ∞ (ideal current sensor),
the previous expression becomes

iref = Impp +
m1

2
DT = Impp + ΔiL, (11)

where ΔiL = m1DT/2 is the ripple amplitude of the inductor current. Since iref is the peak
value under the previous conditions, this guarantees that the average value of the inductor
current will coincide with Impp in steady state and will also ensure the PV current in the
sense of the average steady-state input capacitor current is zero.

Figure 4 shows the evolution of the reference current ire f in terms of the ramp ampli-
tude VM and for two values of the output voltage E.
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(a) (b)

Figure 4. The evolution of the current reference ire f in terms of the ramp amplitude VM according
to (9). (a) E = 60 V. (b) E = 48 V.

We notice from the above tables, that, whatever the value of ωc, the reference current
increases with the amplitude of the ramp VM. Moreover, as ωc increases, the curves ire f in
terms of VM tend to be confused.

It is good to note that to maintain the same average inductor current and to make it
equal to the MPP current, the current reference in the peak of the current loop control has
been adapted according to (9).

2.4. Floquet Theory
2.4.1. The Piecewise Linear State-Space Switched Model Close to the Maximum
Power Point

The periodic equation to be considered for our purposes will be expressed in the
state-space representation (or matrix representation). This form lends itself well to the
calculation of the solution of a differential equation system. The dynamics will be expressed
as a function of a vector of variables, which we will call the state vector. Assuming that our
subsystem is linear and time-invariant, the evolution of each subsystem is defined by:

ẋ = A1x + B1W if u = 1,
ẋ = A0x + B0W if u = 0.

(12)

where x = (x1x2x3x4)
T , A1, B1, A0, B0 are the state and input matrices correspond-

ing to the different switch states and the external input parameters vector are given by:

A1 =

⎛
⎜⎜⎜⎝

− 1
RpNC1

− 1
C1

0 0
1
L − 1

L r 0 0
0 0 − 1

RC2
0

0 wckp 0 −wc

⎞
⎟⎟⎟⎠, (13)

A0 =

⎛
⎜⎜⎜⎝

− 1
RpNC1

− 1
C1

0 0
1
L − 1

L r − 1
L 0

0 1
C2

− 1
RC2

0
0 wckp 0 −wc

⎞
⎟⎟⎟⎠, (14)
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B1 =

⎛
⎜⎜⎜⎝

2
C1

0
0 0
0 1

RC2
0 0

⎞
⎟⎟⎟⎠, (15)

B0 =

⎛
⎜⎜⎜⎝

2
C1

0
0 0
0 1

RC2
0 0

⎞
⎟⎟⎟⎠, (16)

W =

(
impp

E

)
. (17)

The switching condition in Figure 2 is given by:

h(x, t) = Rs

(
ire f − Kx

)
− VM

T
t, (18)

with VM
T t = Vramp, the vector K is given by:

K =

⎛
⎜⎜⎝

0
0
0
−1

⎞
⎟⎟⎠

T

. (19)

2.4.2. Stability Analysis Using Floquet Theory

The differential equations describing the dynamics of switching converters are time-
periodic with the switching period T determining the periodicity of solutions at the fast
switching scale. Floquet theory has been widely used in the analysis of the stability of
dynamical systems [30] in general and in switching converters in particular [11,31,32].
For DC-DC converters, the stability dynamics at the fast switching cycle can be accurately
predicted by analyzing the stability of the fixed points of the Poincare map of the system
using its Jacobian matrix or using Floquet theory combined with the Filippov method
which leads to the same results as the Poincare map [33]. The main tool for studying the
stability of periodic orbits using Floquet theory is the principal fundamental matrix or the
monodromy matrix M. This matrix plays a key role in the accurate stability analysis of
switching systems [34–36]. The dynamics in the vicinity of a quasi-static periodic orbit can
be expressed in the monodromy matrix as follows:

x̂(t + T) = Mx̂(t) ∀t, (20)

where the overhat stands for small signal variations. Its eigenvalues are called the charac-
teristic multipliers or Floquet multipliers and it can be seen that they determine the amount
of contraction or expansion near a periodic orbit and hence they determine the stability of
these periodic orbits. It can be obtained by computing the state transition matrices before
and after each switch and the saltation matrix that describes the behaviors of the solution 7
switching [24] which are described in the following.

Let X(DT) = (I − Φ)−1Ψ be the steady-state value of X at time instant DT, where
Φ = Φ1Φ0, Φ1 = eA1DT , Φ0 = eA0(1−D)T ,

Ψ = eA1DT A0
−1

(
eA0(1−D)T − I

)
B0W + A1

−1
(

eA1DT − I
)

B1W. (21)

The monodromy matrix use [11] can be expressed as follows P = Φ0 S Φ1

P = Φ0 S Φ1, (22)
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where S is saltation matrix and is given by:

S = I +
(A0X(DT)− A1X(DT)) KT

KT (A1X(DT) + B1W) + ma
. (23)

Equations (22) and (23) will allow us to determine the Floquet multipliers. According
to Floquet’s theory, if only one multiplier has a value equal to −1, then the dynamics of
the system presents period doubling bifurcation. In general, the occurrence of the critical
point of this bifurcation has two regions: a region of subharmonic oscillation and a region
of periodic oscillation of period-1. The second region described above is the stability region
in power systems [24].

3. Results and Discussions

3.1. Floquet Theory on the Stability
3.1.1. Simulations Results in MATLAB/SIMULINK Software

The monodromy matrix is explained in Equation (23). Using a code developed in
the MATLAB software, we find the eigenvalues noted as λ of this monodromy matrix.
These eigenvalues are solutions of equation det(P − λI) = 0. Figure 5 is the representation
in the complex plane of the Floquet multipliers when the amplitude VM varies from 0.0
to 3, for three values of the cut frequency fc = fs

2 , fc = fs, fc = 2 fs with fs = 50kHz and
for two values of the output voltage (E = 60 VandE= 48 V). It should be noted that the
period-1 orbit will lose stability and bifurcate into period-2 (sub-harmonic oscillation) if
the system has the phenomenon of smooth period-doubling when a control parameter
varies. Moreover, at this value of the control parameter, period-1 is destroyed and period-2
is created. Indeed, one of the Floquet multipliers is approximately equal to 1, which allows
us to say that at this value of the amplitude VM the period-1 orbit destabilizes and gives
way to a sub-harmonic oscillation of period 2. In Figure 5, the followings remarks can
be noticed:

Remark 1. We find that for several values of the gain VM, the moduli of the Floquet multipliers are
located in the circle of unit radius synonymous with the stability of the period-1 orbit. In addition,
for other ranks of the parameter VM, the Floquet multipliers are located outside the circle of unit
radius, which is synonymous with destabilization of the periodic orbit of period-1.

Remark 2. We observe that when for E = 60 V, E = 48 V, fc is increasing, i.e.,
(

fc =
fs
2

)
<

( fc = fs) < ( fc = 2 fs), the critical values VM (allowing us to set the boundary between period-1
oscillations and subharmonic oscillations) evolve in a decreasing manner, i.e., VM fs

2

> VMfs
>

VM2 fs
. We can conclude that the stability zone increases with the cut-off frequency, this conclusion

justifies once again the bifurcation diagrams in Figure 6.

3.1.2. Simulations Results in PSIM Software

Figure 7 shows the results of the stability study of our system in the PSIM software.
The PSIM software is a power electronics simulation software. We notice a similarity
between the results obtained with PSIM and those obtained with MATLAB/SIMULINK.
In the following, we will use the bifurcation diagrams for a more detailed study.
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Figure 5. MATLAB simulation of evolution of the Floquet multipliers of the PV system by taking
the amplitude of the carrier signal amplitude VM as a bifurcation parameter for different values
of the current sensor bandwidth ωc and DC output voltage E. The critical values of VM at which
period doubling bifurcation takes place are indicated. (a) fc =

fs
2 , E = 60 V; (b) fc = fs, E = 60 V;

(c) fc = 2 fs, E = 60 V; (d) fc =
fs
2 , E = 48 V; (e) fc = fs, E = 48 V; (f) fc = 2 fs, E = 48 V.

(a) (b) (c)

(d) (e) (f)

Figure 6. Bifurcation diagrams in MATLAB software by taking the amplitude of the carrier signal
amplitude VM as a bifurcation parameter for different values of the current sensor bandwidth ωc and
DC output voltage E. (a) fc =

fs
2 , E = 60 V. (b) fc = fs, E = 60 V. (c) fc = 2 fs, E = 60 V. (d) fc =

fs
2 ,

E = 48 V. (e) fc = fs, E = 48 V. (f) fc = 2 fs, E = 48 V.
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Figure 7. PSIM software simulation of Evolution of the Floquet multipliers of the PV system by taking
the amplitude of the carrier signal amplitude VM as a bifurcation parameter for different values
of the current sensor bandwidth ωc and DC output voltage E. The critical values of VM at which
period doubling bifurcation takes place are indicated. (a) fc =

fs
2 , E = 60 V. (b) fc = fs, E = 60 V.

(c) fc = 2 fs, E = 60 V. (d) fc =
fs
2 , E = 48 V. (e) fc = fs, E = 48 V. (f) fc = 2 fs, E = 48 V.

3.2. Bifurcation Behavior from the Nonlinear Circuit-Level Switched Model with the Linear Model
of the PV Generator from MATLAB/SIMULINK Software

Bifurcation diagrams constitute appropriate means of recapitulating different tran-
sitions to chaos in the system in terms of different parameter values. The maximum
Lyapunov exponent is complementary with bifurcation diagram, it is the tool that allows
us to conclude if the system is chaotic or not and there are computed following the well-
known Wolf algorithm [37]. In this section, the numerically dynamics behavior of our
system is performed in MATLAB/SIMULINK software by integrating system (3) using
the most frequent fourth-order Runge–Kutta scheme [38] adapted to DC-DC converters
which offers a better accuracy for solving single-step differential equations unlike the dis-
cretization method developed in the literature. First, the system has been carefully studied
through simulations using the linear model of the PV generator in MATLAB software. We
used a fixed time step equal to h = 5 × 10−8, a total number of iterations N = 106 and
a transient phase-cut to N′ = 8 × 105 The bifurcation diagram and graphs of maximal
Lyapunov exponents presented below are obtained for three values of the cut-off frequency,
i.e., fc = fs

2 , fc = fs, fc = 2 fswith fs = 50 kHz , and for two values of DC output voltage
(E = 60 V and E= 48 V), we use ramp amplitude VM as a bifurcation parameter. The local
maximas of the duty cycle and the local maximas of the output power of the generator
made it possible to plot bifurcation diagrams. The dynamics of the MPPT algorithm is
neglected because it is usually much slower than the converter dynamics. The values of the
parameters used for this study are shown in Tables 1 and 2.
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Table 1. Boost converter parameters.

Parameters Values

C1 10 μF
L 200 μH
r 100 mΩ
E 48 V and 60 V
R2 200 mΩ
Rs 1 Ω
C2 47 μF
iref updated according to (9)
fs 50 kHz
fc variable

VM Variable

Table 2. Parameter of the PV generator (BP 585 module).

Parameters Values

Maximum power Pmpp 85.17 W
Voltage at maximum power Vmpp 18.28 V
Current at maximum power Vmpp 4.66 A

Maximum power Pmax 85.17 W
Short-circuit current Isc 5 A
Open-circuit voltage Voc 21.1 V

Figure 6 shows the bifurcation diagrams when the VM parameter varies for different val-
ues of cut-off frequency and output voltage. For E = 60 V and

(
fc =

fs
2 , fc = fs, fc = 2 fs

)
,

we can observe in Figure 6a–c inverse period-doubling phenomena from chaos to period-
1 chaos → period − 8 → period − 4 → period − 2 → period − 1 and when the ordinate
axis is a representation of the local maxima of the duty cycle. For a representation of the
local maxima of the power output of pv on the ordinate axis of the same figure Figure 3
(a1, b1, c1) show that we start directly from chaos in period-1, we also remark that the
system stabilizes at the maximum power point, which shows that our MPPT controller
used is good. In the same figure, we can see that when the cut-off frequency increases, i.e.,(

fc =
fs
2

)
< ( fc = fs) < ( fc = 2 fs) the critical value VM represents the boundary between

the periodic oscillations of period-1 and the subharmonic oscillations decrease. In other
words, when the cut-off frequency increases, the system tends to lose its subharmonic
behaviour. Thus, the cut-off frequency increases with the stability range, which is inter-
esting for this study since the desired behavior for a pv energy conversion chain is the
periodic behavior.

For E = 48 V and fc ∈
(

fs
2 , fs, 2 fs

)
, Figure 3 (d1, e1, f1), we can also observe inverse

period-doubling phenomena from chaos to period 1 and a faster loss of chaos. We can,
therefore, conclude in this part that it is desirable to choose E = 48 V as the output voltage
of the battery instead of E = 60 V because it is at this value and for different values of the
cut-off frequency that the system tends to quickly lose subharmonic behaviors since the
desire behavior for this type of application is the periodic behavior.

Figure 8 shows the Lyapunov exponent graphs complementary with the bifurcation
diagrams in Figure 6. These graphs are obtained for three values of the cut-off frequency
and for two values of the output voltage and in the VM zone between 0 ≤ VM ≤ 1,
in this area, we observe in Figure 8 negative values of the maximum Lyapunov exponent
which correspond to regular oscillations in the system and positive values corresponding
to subharmonic oscillations. We can also remark that the cut-off frequency increases with
stability, which justifies the bifurcation diagrams of Figure 8.

229



Sustainability 2023, 15, 6097

0 0.5 1 1.5 2 2.5 3

V
M

-8

-6

-4

-2

0

2

4

λ
m

ax

×10-3

(a)

0 0.5 1 1.5 2 2.5 3

V
M

-8

-6

-4

-2

0

2

4

λ
m

ax

×10-3

(b)

0 0.5 1 1.5 2 2.5 3

V
M

-8

-6

-4

-2

0

2

4

λ
m

ax

×10-3

(c)

0 0.5 1 1.5 2 2.5 3
V

M

-8

-6

-4

-2

0

2

4

λ
m

ax

×10-3

(d)

0 0.5 1 1.5 2 2.5 3
V

M

-8

-6

-4

-2

0

2

4

λ
m

ax

×10-3

(e)

0 0.5 1 1.5 2 2.5 3
V

M

-8

-6

-4

-2

0

2

4

λ
m

ax

×10-3

(f)

Figure 8. Lyapunov exponent diagrams in MATLAB/SIMULINK software by taking the amplitude
of the carrier signal amplitude VM as a bifurcation parameter for different values of the current sensor
bandwidth ωc and DC output voltage E. (a) fc =

fs
2 , E = 60 V. (b) fc = fs, E = 60 V. (c) fc = 2 fs,

E = 60 V. (d) fc =
fs
2 , E = 48 V. (e) fc = fs, E = 48 V. (f) fc = 2 fs, E = 48 V.

The bifurcation diagrams Figure 6 and Lyapunov exponent in Figure 8 show an
overlap between regular and irregular behaviors in the subharmonic oscillation zone.
In addition, the bifurcation diagrams in Figure 6 show border collision [39–41] respectively
to the critical values VM = 1.42 V, VM = 1.31 V, VM = 1.25 V (see Figure 6a–c) and
VM = 0.93 V, VM = 0.74 V, VM = 0.65 V (see Figure 6d,e,f).

Remark 3. We note that for E = 60 V, the critical values VM, Figure 6a–c, are superior to those of
E = 48 V Figure 6d–f; this means that the range of stability is greater when E = 48 V compared
with E = 60 V. Therefore, it is desirable to choose E = 48 V as the battery output voltage instead of
E = 60 V because it is at this value and for different values of the cut-off frequency that the system
tends to quickly lose the subharmonic behaviours and increases the stability range.

3.3. Bifurcation Behavior from the Nonlinear Circuit-Level Switched Model with the Nonlinear
Model of the PV Generator from PSIM Software

The circuit diagram for the current-mode-controlled boost converter is constructed
using the PSIM simulation software. The selection of component parameters is consistent
with the numerical simulation in Tables 1 and 2. In this part, nonlinear phenomena such as
bifurcations are exhibited, using the nonlinear and linear models of the PV generator, the VM
bifurcation parameter, the different values of the output voltage (E = 60 V and E= 48 V)

and the different values of the cut-off frequency fc =
fs
2 , fc = fs, fc = 2 fs with fs = 50 kHz

being equal to those used in numerical simulations in MATLAB. Comparing the simulation
bifurcation of the nonlinear model of the pv generator in Figure 9 ( PSIM simulation)
with that in Figure 6 (MATLAB simulation), it can be seen that the results are in almost
perfect agreement.

Note here that the results presented in these two figures are identical, for example, for
E = 60 and

(
fc =

fs
2

)
, the critical value obtained is the same in both cases and is equal to

VM = 1.42 V. We want to show through these two graphs that linearizing appropriately
the PV generator model does not affect the accuracy of the model in predicting the period-
doubling bifurcation of the system. The aim is to study the linear model of PV generator,
which is going to help us to study the stability of our system, as it is very difficult to study
stability with the nonlinear model of PV.
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= 1.42 V = 1.31 V = 1.25 V

= 0.93 V = 0.74 V = 0.65 V

Figure 9. Bifurcation diagrams obtained by taking the amplitude of the carrier signal amplitude VM

as a bifurcation parameter for different values of the current sensor bandwidth ωc and DC output
voltage E. The linearized model of the PV generator close to the MPP was used.

Remark 4. Figure 9 shows the bifurcation with the nonlinear model of the PV generator substituted
by its linearized model constituting a linear resistance Vmpp/Impp and a current source 2Impp. It
can be observed that the matching between these bifurcation diagrams and those obtained in Figure 6
is excellent. It is widely believed among the power electronics community that with values of steady-
state duty cycles of less than 0.5, no external ramp is needed to achieve a stable system. However,
from the previous bifurcation diagrams, it is clear that the system is still prone to period-doubling
bifurcation even for D < 0.5 if the cut-off frequency of the current sensor is relatively low. Therefore,
a ramp slope compensation is also necessary for duty cycle values less than 0.5.

3.4. Stability Boundaries in the Parameter Space

Now that the nonlinear behaviour of the PV system under peak current-mode control
is understood and the mechanisms of losing stability are known, the stability boundary for
useful practical design will be determined.

The focus of this paper is on the period-doubling bifurcation boundary. The results
helps in setting the design parameters as they show the stable region in the paramet-
ric space.

One of the ways to locate the subharmonic oscillation boundary is by using the
expression of the characteristic equation det(P − λI) = 0, imposing the period-doubling
condition in the eigenvalue λ and solving the resulting equation together with the steady-
state condition. Therefore, at the boundary of this bifurcation, the following conditions hold

det(P + I) = 0, (24a)

x(DT)− x((D + 1)T) = 0, (24b)

where 0 ∈ R
4 is a null vector. Note that the integral state variable can be determined

by (24b).
Figure 10 presents the stability study in two dimensions of the photovoltaic system

obtained in MATLAB/SIMULINK. It clearly shows the regions of stability (period-1 oscilla-
tions) and instability (subharmonic oscillations) of the system in the E-plane for three values
of the cut-off frequency: blue fc = fs/2, red fc = fs and yellow fc = 2 fs. The other system
parameters are taken as in Tables 1 and 2. We see on this map that when 20 V ≤ E ≤ 30 V,
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the system does not show period-doubling phenomenon except for fc = fs/2. In this case,
this map is not sufficient to conclude on the system stability. Moreover, for 30 V ≤ E ≤ 70 V,
the stability domain of the photovoltaic system increases with the filter cut-off frequency.
Finally, for 70 V ≤ E ≤ 90 V, the filter cut-off frequency has no influence on the stability of
the PV system. These results are more complete than the results obtained in the previous
sections, so this map will be a crucial tool in the decision-making process for engineers
in industries.

Figure 10. Stability boundaries in the plane E − VM for different values of cut-off frequency in
MATLAB/SIMULINK software. fs is fixed at fs = 50 kHz. Where: A(60v,1.42v), B(60v,1.42v),
C(60v,1.25v), D(48v,0.93v), E(48v,0.74v), and F(48v,0.65v) are the period splitting type bifurcation
occur in the system. A and D are for fc = fs/2 ; B and E are for fc = fs ; and C and E are for fc = 2fs

Figure 11a shows the critical curves in the plane D − VM for different values of fc.
The conventional boundary with ωc → ∞ is also shown. Figure 11b shows the critical
curves in the plane E − VM for different values of fc. The critical points for E = 48 and
E = 60 are indicated in the figure. The critical values of the ramp amplitude for the different
values of E and fc remarkably coincide with the critical values obtained by the bifurcation
diagrams in the previous section. For instance, for point A, one has E = 60 V and fc = fs/2
and the critical point of VM is 1.42 V agreeing with the bifurcation diagram of Figure 6a.
Above the curves, the system is stable and below it, it exhibits period-doubling bifurcation.
The critical curve in the plane D − VM passes very close to the point (0, 1

2 ) as long as
fc is relatively small. This curve becomes concave in this plane when VM is increased.
By increasing the ramp amplitude VM, the region of stability is widened for D > 1

2 and is
reduced for D < 1

2 . Furthermore, the stable region becomes wider when increasing the
cut-off frequency. These last results obtained with PSIM software are in perfect agreement
with those of Figure 10 obtained with MATLAB/SIMULINK software.
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Figure 11. Stability boundaries for different values of cut-off frequency in PSIM software: (a) in the
plane D − VM; (b) in the plane E − VM. Where: A(60v,1.42v), B(60v,1.42v), C(60v,1.25v), D(48v,0.93v),
E(48v,0.74v), and F(48v,0.65v) are the period splitting type bifurcation occur in the system. A and D
are for fc=fs/2 ; B and E are for fc = fs ; and C and E are for fc = 2fs.

4. Conclusions

This paper focuses on the nonlinear behaviour and stability of the current-mode-controlled
boost converter with the battery load. First, numerical analysis of its state equations, bifurca-
tion diagrams and Lyapunov exponent was conducted in MATLAB/SIMULINK Software
using a linear model of PV. Secondly, analogy simulations using PSIM were performed using
a nonlinear models of the PV generator. The stability of a boost converter supplied by a
PV panel was studied. To make an analytical study possible, the nonlinear PV generator
has been linearizing around its MPPT. The simulation results considered three values of the
cut-off frequency and two values of the output voltage. They showed through the bifurcation
diagrams and the Lyapunov exponent that the system presents nonlinear phenomena such
as chaos and periodic motion, which are influenced by system parameters and topological
structure. The numerical results obtained in MATLAB/SIMULINK software are remarkable
in their agreement with the analogy simulations in PSIM. We can also mention that linearizing
appropriately the PV generator model does not affect the accuracy of the model in predicting
the period-doubling bifurcation of the system. In general, we have seen that the stability
increases with the frequency of the cut which is interesting about this study since the type of
behaviour desired for a PV is the period-1.
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Abstract: The deployment of a static synchronous compensator within a microgrid can facilitate
voltage and reactive power regulation, leading to enhanced stability and reliability. Within a microgrid
setting, the effectiveness of a STATCOM in balancing the power supply is influenced by several
factors, including the system configuration, the operating conditions, and the specific requirements of
the power grid. The capacity, response time, and magnitude of system disturbances also play a role in
determining the STATCOM’s ability to balance the power supply. To ensure the successful integration
of a STATCOM within a microgrid, coordinating the control system with other distributed energy
resources (DER), especially when multiple control strategies are employed, can be a challenging
task. Therefore, a meticulously designed control system is indispensable to guarantee the microgrid’s
efficient and effective operation. The use of GA in LSTM tuning can accelerate the process of
identifying the optimal hyperparameters for a specific task, obviating the need for time-consuming
and computationally expensive grid searches or manual tuning. This method can be particularly
advantageous when handling large data sets and complex models. In this paper, an attempt has been
made to model the STATCOM to communicate with the microgrid, tuned using LSTM–GA, for the
effective calculation of real and reactive power support during grid disturbances.

Keywords: algorithm; GA; PSO; PSO–LSTM; search space

1. Introduction

A microgrid is a type of electrical system that can operate independently or in coordi-
nation with the main grid. It consists of one or more distributed energy resources (DERs),
such as solar panels, wind turbines, batteries, or generators, which are used to generate or
store electricity [1]. Microgrids are designed to provide reliable, efficient, and eco-friendly
power to local communities, businesses, and institutions, particularly in remote or off-grid
areas where access to the main grid is limited or unreliable. Additionally, they can function
as a backup source of power during emergencies, such as grid outages or natural disasters.

Voltage fluctuations are a common power quality issue in microgrids, especially those
that incorporate renewable energy sources such as solar and wind. These sources have
variable outputs, causing voltage fluctuations that can negatively impact the stability
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and performance of the microgrid [2]. Voltage fluctuation can be addressed based on
voltage regulation. Voltage regulation is the process of keeping the voltage level in an
electrical system stable and constant. This process is particularly important in microgrids,
where voltage regulation is critical to ensuring dependable and efficient system operation,
especially when intermittent renewable energy sources are present. To ensure voltage
regulation in a microgrid, voltage regulators such as automatic voltage regulators (AVRs)
or static VAR compensators (SVCs) can be used. These devices can regulate voltage levels
in real time by increasing or decreasing the reactive power output of the system.

A static synchronous compensator (STATCOM) is a power electronics device that is
frequently used for voltage regulation and reactive power compensation in electrical power
systems. It is a type of flexible AC transmission system (FACTS) device that can introduce
reactive power into the system to enhance the power quality and voltage stability. With the
capacity to supply both capacitive and inductive reactive power, the STATCOM can react
quickly to changes in system conditions, making it a versatile device that is appropriate for
various applications, including microgrids [3].

Ping He et al. [4], in their paper, present a coordinated control strategy for a PSS and
STATCOM, two critical power system devices. The goal of this approach is to enhance
power system stability and damping, particularly in the presence of disturbances such
as faults or sudden load changes. The study employs a multi-machine power system
model and simulation techniques to evaluate the effectiveness of the proposed coordinated
control strategy in various scenarios. According to the simulation outcomes, the strategy
significantly improves the power system stability and damping and outperforms other
control methods that disregard the coordination between the PSS and STATCOM.

Kaliaperumal Rukmani et al. [5] introduce a new approach to optimize the allocation
of distribution static compensators (D-STATCOMs) in distribution systems where there is
uncertainty. D-STATCOMs are crucial in enhancing the power quality and stability of distri-
bution systems by injecting reactive power. The proposed method involves a combination
of fuzzy logic and particle swarm optimization (PSO) algorithms to determine the optimal
locations and sizes of D-STATCOMs. Fuzzy logic is utilized to manage uncertainties in the
system parameters, while the PSO algorithm is utilized to locate the optimal solution.

Tariq, M. et al. [6], in their article, describe a new approach to voltage regulation and
power quality improvement using static synchronous compensators. The proposed method
involves adjusting the phase angle between the current and voltage using a simple PI
controller to control the output voltage of the STATCOM. The effectiveness of the proposed
method is evaluated through simulation studies, which show that it can successfully
regulate the voltage and improve the power quality.

Anil Bharadwaj et al. [7] propose a novel approach to tuning PI and PID controllers in
power systems equipped with various types of flexible AC transmission system devices,
including a STATCOM, SSSC, and UPFC. The proposed method aims to minimize the
damping of oscillations in the power system by adjusting the parameters of the controllers.
To evaluate the performance of the proposed tuning method, the authors use a multi-
machine power system model and conduct simulation studies. The results indicate that the
proposed method can effectively improve the damping of oscillations in the power system
and outperform other tuning methods that do not consider the presence of FACTS devices.

Sarath Perera et al. [8] present a framework for the reduction of power network
oscillations with the use of static synchronous compensators and the synthesis of H2/H∞
controllers. The framework employs an H2/H∞ synthesis technique to design the controller
and improve the stability of the power system. The paper evaluates the effectiveness of the
proposed framework through simulations using a power system model with a STATCOM,
and the results indicate that the framework can effectively reduce oscillations in the power
system and enhance its stability.

Claudia Battistelli et al. [9] suggest using the whale optimization algorithm (WOA)
to develop power system stabilizers for multi-machine power systems. The goal of this
method is to enhance the stability of the system by designing power system stabilizers that

237



Sustainability 2023, 15, 10913

minimize oscillations. The authors evaluate the proposed method by simulating it using a
multi-machine power system model, and the findings show that the WOA-based stabilizers
can effectively damp oscillations in the power system and enhance its stability [7].

Liangce He et al. [10] propose a method to optimize the economic and environmental
performance of an integrated regional energy system by incorporating an integrated de-
mand response into the environmental economic dispatch process. The proposed method
optimizes the dispatch of different energy sources to minimize the total cost and emissions
of the system while considering the impact of DR on the load demand. The effectiveness of
the proposed method is evaluated through simulations, which show that it can effectively
reduce the total cost and emissions of the system while considering the impact of DR.

D. Ranamuka et al. [11,12] propose a strategy for the control of the power flow in
distribution systems using the coordinated control of distributed solar–PV and battery
energy storage units. The objective is to enhance the stability and efficiency of the dis-
tribution systems through real-time power flow control via distributed energy resources.
The proposed method is evaluated using a distribution system model with solar–PV and
battery energy storage units, and the simulation results demonstrate its effectiveness in
improving the stability and efficiency of the distribution system [13,14].

The paper [15,16] proposes a power system stabilizer (PSS) design for the damping
of low-frequency oscillations in a multi-machine power system with the integration of
renewable power generation. The proposed PSS design is based on eigenvalue analysis
and aims to optimize the damping of low-frequency oscillations in the system. To evaluate
the effectiveness of the proposed PSS design, simulations are conducted using a multi-
machine power system model with renewable power generation. The simulation results
indicate that the proposed PSS design can effectively dampen low-frequency oscillations
and enhance the stability of the power system [17,18]. As observed in the literature review,
GA searches for a solution in the space based on probabilistic principles. Therefore, there
is no sufficient guarantee that the system will always be optimized to the global optimal
solution. Depending on the complexity of the STATCOM control problem and the specific
fitness function used, there is a risk that GA may become trapped in local optima and fail
to discover the best possible controller settings.

The performance of particle swarm optimization (PSO) in controlling STATCOMs
in power systems may be limited by multiple factors [19,20]. One of these factors is
the high sensitivity of the PSO algorithm to the initial conditions, which may lead to
suboptimal solutions or becoming stuck in local optima. A solution to this problem can
be achieved by starting with a good initial population and modifying the parameters of
the PSO algorithm [21,22]. Another limitation is the inability of the PSO STATCOM to
handle uncertainties in the power system, such as variations in renewable energy sources or
changes in load demand. This may result in suboptimal STATCOM operation and reduced
performance in controlling the power system [23,24].

Hyperparameter selection in the case of optimization is a critical challenge as it is the
hyperparameters that will determine the area of optimization. Overfitting is a common
problem in the case of data fitting, which is primarily due to the involvement of long-term
dependencies. To avoid such conditions, it is necessary to store past data in the system’s
memory for the easy analysis and prediction of situations under abnormal conditions.

PSO, inspired by swarm behavior, is a population-based optimization algorithm that
seeks optimal solutions in a problem space. In contrast, long short-term memory (LSTM) is
a type of recurrent neural network (RNN) renowned for capturing and learning temporal
dependencies in sequential data. The integration of PSO with LSTM involves utilizing
PSO as a training algorithm to optimize LSTM’s weights and biases. PSO achieves this by
iteratively updating the particle positions and velocities based on personal and global best
solutions, enabling LSTM to discover optimal parameter values for enhanced predictive
accuracy. However, empirical studies consistently demonstrate LSTM’s superiority over
PSO-based LSTM models. LSTM’s inherent capability to capture long-term dependencies
and handle sequential data empowers it in time series prediction tasks. LSTM exhibits
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stronger learning capabilities and generalization power compared to PSO, which primarily
focuses on optimization.

The combination of LSTM and genetic algorithm (GA) can have diverse applications,
including time-series prediction, anomaly detection, and optimization problems [25,26].
For time-series prediction, LSTM can be utilized to forecast future values based on historical
data, while GA can be used to optimize the hyperparameters of the LSTM model, such as
the learning rate and the number of LSTM cells. In anomaly detection, LSTM can learn the
regular patterns in data and identify any deviations from them, and GA can optimize the
threshold for the detection of anomalies [27,28]. In optimization problems, LSTM can serve
as a surrogate model for the evaluation of the objective function, and GA can search for the
optimal solution.

In this paper, an attempt has been made to design a STATCOM, particularly in a mi-
crogrid, to provide voltage and reactive power support under variations in environmental
parameters. We have analyzed various grid disturbances related to the injected current,
voltage, and harmonics when utilizing a STATCOM. These disturbances include voltage
sags and swells, which are temporary voltage decreases or increases caused by faults or
abrupt changes in load demand. The current injected by the STATCOM is carefully exam-
ined to address and stabilize the voltage levels during such disturbances. Furthermore, we
investigate the impact of harmonics on the grid, which refer to additional frequencies that
can distort the sinusoidal waveform of the power supply. Through an evaluation of the
harmonic content within the injected voltage, the effectiveness of the STATCOM in miti-
gating harmonic distortion and enhancing the power quality is assessed. By considering
these grid disturbances, the study provides valuable insights into the STATCOM’s perfor-
mance and capabilities in effectively managing voltage fluctuations and harmonics, thus
ensuring a reliable and efficient power supply. LSTM has been used to store the previous
memory and historical data of the power quality issues and the amount of reactive power
support, whereas genetic algorithm provides support for hyperparameter optimization.
The objectives of the research can be summarized as follows.

• Design of LSTM–GA mathematical modeling for STATCOM microgrid analysis. The
limitation of GA modeling in handling convex optimization can be best addressed
using this LSTM–GA model. LSTM will provide memory-level access to the past
historical data along with the lookup table.

• Modeling of the proposed system using MATLAB Simulink model and its validation
under dynamic non-linear loading conditions and PV output variation with respect to
environmental parameters.

• A detailed comparative analysis with another established benchmarking model in
terms of stability analysis; validation has been carried out with a step function.

2. STATCOM Architecture and Analysis

STATCOMs play a vital role in power systems by regulating the voltage and providing
reactive power support. These devices are built on a voltage source converter (VSC)
architecture and are connected to the grid through phase reactors and a step-up transformer.
The VSC incorporates insulated gate bipolar transistors (IGBTs) in a modular multi-level
converter (MMC) configuration.

The primary objective of a STATCOM is to control the voltage at its point of connec-
tion to the grid. It achieves this by generating or absorbing reactive power, effectively
regulating the system voltage and enhancing power system stability. Unlike conventional
reactive power compensation devices, such as capacitor banks or synchronous condensers,
STATCOMs offer the advantages of a rapid response and continuous control across a wide
range of operating conditions.

At the core of a STATCOM lies the VSC, comprising power semiconductor switches,
particularly IGBTs, which can swiftly switch on and off to produce the desired voltage
waveform. The MMC configuration within the VSC allows for high-voltage operation and
facilitates the generation of a high-quality voltage with minimal harmonic distortion. By
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converting DC power into AC power, the VSC allows the STATCOM to inject or absorb
reactive power into the grid as required.

Through the dynamic adjustment of the voltage waveform produced by the VSC,
the STATCOM actively regulates the grid voltage, compensates for reactive power im-
balances, mitigates voltage flicker, improves the power factor, and bolsters the overall
power system stability and reliability. The control system of the STATCOM continuously
monitors the system conditions and employs feedback control algorithms to adapt the
voltage output of the VSC accordingly. The presence of a step-up transformer enables the
STATCOM to connect to the high-voltage transmission grid, ensuring appropriate voltage
levels for effective power transmission and distribution. Additionally, the phase reactors
provide impedance and protection to the STATCOM system while limiting the flow of
short-circuit currents.

The diagram in Figure 1 illustrates the principle behind the controlled switching of
the IGBT valves in a single sub-module, which generates the fundamental three-level
waveform utilized by the STATCOM to control the contribution of reactive power to the
grid. However, the performance, rating, and controllability of the STATCOM can be
significantly enhanced by the connection of multiple sub-modules in series.

When these sub-modules are interconnected, it enables the construction of a voltage
waveform with an improved resolution. This means that the voltage can be precisely
controlled with finer granularity, resulting in the more accurate regulation of the reactive
power. The increased resolution enhances the overall performance of STATCOM, enabling
it to provide more efficient and precise control over reactive power compensation in the
grid. Figure 2 presents the STATCOM vector analysis under the stand-by, inductive, and
capacitive modes, respectively.

Figure 1. STATCOM. (a) Typical full-bridge sub-module, (b) output waveform.

Figure 2. STATCOM. (a) Standby mode, (b) inductive mode, (c) capacitive mode.

Furthermore, the series connection of multiple sub-modules allows for the higher
rating capability of the STATCOM. By combining the voltage outputs of each sub-module,
the overall voltage level and capacity of the STATCOM can be increased. This expanded
rating capability enables the STATCOM to handle larger reactive power demands and
provide enhanced support to the power system (Figure 3).
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Figure 3. STATCOM along with IV characteristics [8].

Two control loops are generally involved in a VSC-based STATCOM architecture. The
outer control loop will control the Vac or Vdc depending on the control requirements and
the number of variables involved in the system. The inner control loop controls the actual
response with the set values. Therefore, the current control loop becomes

Vd
c = ωgL f ig

f − (Kp − Ki
s
)(id∗

f − id
f ) + Vd

g (1)

Vq
c = −ωgL f ig

f − (Kp − Ki
s
)(iq∗

f − iq
f ) + Vq

g (2)

Equations (1) and (2) represent the direct and quadrature axis control of the voltage wave-
form in the inner current control loop.

3. Problem Formulation and Solution Methodology

The single-line multi-machine bus (SIMB) microgrid implementing a STATCOM is
shown in Figure 4.

Figure 4. SIMB architecture for microgrid.

This architecture is widely used for STATCOM performance evaluation under the
microgrid model. The model mainly consists of an infinite bus connected to a synchronous
generator at one side through a two-winding transformer; at the other side, it is connected
to a microgrid architecture supported by a STATCOM and PV source. The STATCOM under

241



Sustainability 2023, 15, 10913

investigation is a GTO-based voltage source converter (VSC). Here, the VSC will generate
a controllable voltage in accordance with leakage reactance. Then, the voltage difference
between the STATCOM terminal and bus will determine the type of power exchange, such
as active power or reactive power, between the two devices. The amount of reactive power
exchange can be controlled using the voltage and phase angle δ.

Therefore, the nonlinear equation between the STATCOM’s voltage and current becomes

I∗LO = ILoad + jILoq (3)

and
V0 = CVdc(cosθ + jSinθ) (4)

In Equation (3), ILO, ILoad and ILoq represent the STATCOM’s load current and the load
current with respect to the d-axis and q-axis, respectively. Similarly, Vdc represents DC-ref
voltage at the input of the STATCOM. Further, Equation (4) can be modified as follows:

V0 =
C2

Cdc
Vdc∠θ[ILoadCosθ + IloqSinθ] (5)

Equation (5) represents the output voltage equation of the STATCOM, designed based
on the d- and q-axis current levels. Here, “c” represents the ratio between the AC and DC
voltages. In order to calculate the virtual electrical torque, the speed deviation has been
taken into consideration, δω. Therefore, the new damping controller can be designed as a
lead–lag compensating controller.

Based on Equation (5), it is understood that the proper tuning of the STATCOM
parameters, such as θ and C, is required to minimize the damping at the injected voltage
level. Therefore, the optimization objective function can be formulated as

J = Σ
Np
i=1

∫ t

0
|δωi|tdt (6)

In Equation (6), t represents the simulation time for the model and Np represents the
size of the population in genetic algorithm. The objective is to minimize the cost function
and thereby improve the settling time and overshoot.

During cost function optimization using GA, there is a state called the fitness function
or value evaluation, which requires a probability evaluation of each chromosome pair in
the objective function. This requires an iteration to be run in order to evaluate the fitness
value. Therefore, in order to reduce the optimization time in evaluating the constraints
at each step, long short-term memory (LSTM) has been introduced. LSTM will hold the
best solution for subsequent levels of iteration and thereby reduce the optimization time
by tn−best, where tn is the total duration of the iteration, which has been reduced to tn−best
based on the best solution.

Figure 5 shows the LSTM–GA architecture for STATCOM PI controller optimization.
As observed, GA produces two sets of optimized data related to the electrical torque
reference value and C value, which is simply the ratio of the DC injected voltage to the
AC injected voltage. The LSTM encoder will hold the best-optimized value during GA
iteration, along with the time stamp. Therefore, during the decoding process, the same
time stamp can be utilized for reactive power generation and subsequent voltage support,
along with SSR damping.
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Figure 5. LSTM–GA architecture for STATCOM PI controller optimization.

In order to properly train the model, it is highly recommended to activate each
layer in the LSTM architecture using the appropriate activation function. The inputs to
the activation layer are represented by f and V, while the output of the LSTM network
provides the reactive power compensation factor in V∠δ. Generally, each layer in the
activation module evaluates the weighted sum of all its input connections and maps it to
an output, as shown in Equation (7), where λ represents the layer of the input module.

Vλj = ∑
i

V∠δλji yi f or λ ∈ { f , V, Q, P} (7)

The recurrent connection between each layer λ can be varied by changing the unit of i.
By applying the squashing function fλi on yi, the output for each layer λ can be modeled as

yλj = fλi(Vλj) f or λ ∈ { f , V, Q} (8)

In Equation (6), a cascaded inner current control loop has been implemented to
interconnect LSTM and GA with the PI control features. Each memory cell unit in LSTM
holds the previous state in the same proportion as the activation in the forget layer gate.
Therefore, the current state vector Scj updates itself based on the modulus of the activation
function at the input gate. Hence,

Scj = YψjŜcj + yijxcj (9)

Based on Equation (9), the learning rate can be made more effective by designing each
layer to track the activity flow over time. To achieve this, an eligibility trace module has
been provided to trace the most recent activity value, as presented in Equation (8).

∑ λji = Yi.....∀λ ∈ [v∠δ, θ] (10)

Similarly, the memory cell and forget gate can be modeled as

∑ Pji = Yεi ε̂Pji + YljYi (11)

To develop a robust algorithm to track the required output against the predicted
output, a time range of [0, 1] has been implemented. The cross-entropy function has
been used to quantify the error between the predicted and actual outputs of the LSTM
module. The pseudo-code for the implementable algorithm is presented in Algorithm 1.
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GA requires the appropriate encoding and representation of solutions as chromosomes. In
convex optimization (Algorithm 1), the solutions are typically represented as vectors or
matrices, and the optimization algorithms exploit the convex structure. The mapping of
these representations to the chromosome structure is used in GA.

Algorithm 1 Voltage and angle error evaluation—training pseudo-code

Require: Ver,Ider, θs
Ensure: 3 Variable state transition pattern

for Vt = 1 do
for f=-1 do

for Ver = 0 do
Evaluate Ver and θs

end for
end for

end for
Weight wi=min(δTer, δWer,θs )
θxVx = max(θx−1Vx−1, θxVx)
if (Mt0

L−1 − Mt1
L ) ≤ 0.02 then

break
else

(Mt0
L−1 − Mt1

L ) ≤ 0.02
end if

4. Result Analysis

The proposed LSTM–GA model has been designed using MATLAB Simulink as per
the architecture shown in Figure 6.

Figure 6. Simulink model for STATCOM microgrid coordinated control action using LSTM and GA.

Here, the LSTM module will process the id, iq, and v∗ values to determine the required
amount of reactive power for the grid, which the STATCOM needs to produce. LSTM will
share the hyperplane with the GA-optimized module to evaluate the agent position and
initialize the chromosome parameter with four different variables.

Table 1 shows the STATCOM model’s parameters, which have been used in the
Simulink model to perform the analysis. All the set points, especially the AC voltage
reference magnitude and DC voltage set point, are assumed to be per unit. All the AC and
DC regulator gains have been evaluated based on a genetic algorithm ensemble with the
classical Ziegler–Nicholas method.
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Table 1. STATCOM module parameters for Simulink model used in microgrid architecture.

Sr. No. Name of Parameter Rating Remarks

1 Coupling capacitor 420 micro F Storage
2 PWM frequency 2.33 kHz Under Modulation
3 Coupling TFR 210:800 Centre Tap
4 AC ref. voltage 1 pu 707 V
5 DC ref. voltage 750 V -
6 AC voltage regulator gain [0.52 0.39] ZNM
7 DC voltage regulator gain [0.03 0.27] ZNM-GA
8 Current regulator gain [0.11 0.17] GA-LSTM

As observed, the regulator gain for the AC voltage is [0.52 0.39], which was evaluated
through the Ziegler–Nicholas method (ZNM), and the corresponding DC voltage gain was
evaluated through ZNM and GA. Moreover, the current regulator gain, which is a function
of both the AC voltage and DC voltage regulation gains, has been evaluated through the
ZNM–LSTM ensemble with GA. Thus, a single hyperplane can be maintained throughout
the analysis.

Figures 7 and 8 present the LSTM–GA performance analysis for two different values of
μ, i.e., 0.11 and 0.18, respectively. As observed, the objective of LSTM–GA is to forecast the
required reactive power support for the microgrid, which is 15.58% and 12.10%, respectively,
in this case. With the increase in the chromosome size, the system is able to accurately
predict the amount of required reactive power support for the grid. In the subsequent
discussion, the performance analysis has been carried out with μ of 0.18.

Figure 7. GA performance with μ = 0.11. (a) FACTS location initialization, (b) reactive power
support range, (c) percentage of reactive power support, (d) best solution history.

Figure 9 presents the STATCOM DC link voltage for three different models (a) the
Fuzzy–PI STATCOM, (b) PSO–PI STATCOM, and (c) proposed LSTM–GA–PI STATCOM
(LGPS). As observed, the “LGPS” model produces a standard optimized DC link voltage
of 700.24 V (Figure 9c), which is 0.32% less compared to the fuzzy model (Figure 9a) and
0.23% less compared to the PSO STATCOM (Figure 9b) model. This reduction in the voltage
percentage will also reduce the voltage stress on the switch.
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Figure 8. GA performance with μ = 0.18. (a) FACTS location initialization, (b) reactive power
support range, (c) percentage of reactive power support, (d) best solution history.

Figure 9. STATCOM DC link voltage obtained from microgrid side. (a) Fuzzy PI Controller (b) PSO-PI
Controller (c) LSTM-GA-PI controller.

Figure 10 presents the STATCOM DC link current for all the models. Here, it is
observed that with the Fuzzy STATCOM model, the system exhibits sub-synchronous
resonance (SSR) between 0.002 and 0.005 s, and a similar SSR was also noticed with the
PSO STATCOM, from 0.006 to 0.008 s. However, an SSR limit of 2.8% was noticed with the
hyperplane concept using LSTM and GA. As compared to the Fuzzy and PSO STATCOM
models, the SSR has been reduced by 7.2% and 9.43% with the proposed “LGPS” model.
The SSR also reduces the voltage swell at the point of common coupling and thereby
indirectly supplies the reactive power compensation in the line.
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Figure 10. STATCOM DC link current obtained from microgrid side. (a) Fuzzy–PI STATCOM,
(b) PSO–PI STATCOM, and (c) LGPS.

Figure 11 presents the STATCOM injected current and Figure 12 presents the STAT-
COM injected voltage at the point of common coupling. As observed, the injected current
using the proposed model is 11.23 Amp. Similarly, a voltage level of 188 V has been
maintained at the PCC, against 200 V and 197 V in the case of the fuzzy and PSO-enabled
PI controllers. The THD levels of all three models for the injected current are shown in
Figure 13. With the proposed model, the THD has been reduced to 11.44%, against 15.04%
in Fuzzy–PI STATCOM and 12.39% in PSO–PI STATCOM.

Figure 11. STATCOM injected current at PCC into microgrid. (a) Fuzzy–PI STATCOM, (b) PSO–PI
STATCOM, and (c) LGPS.
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Figure 12. STATCOM injected voltage at PCC into microgrid. (a) Fuzzy–PI STATCOM, (b) PSO–PI
STATCOM, and (c) LGPS.

Figure 13. Total harmonic distortion of current waveform at the terminal of PCC.

Figure 14 presents the voltage waveform of the r-phase of the microgrid. In Figure 14a,
it is observed that the voltage is 252 V with harmonic content of 12.3% and that of for
Figure 14b, PSO-PI controller, the voltage becomes 238 V with harmonic content of 10.78%.
However, with proposed controller Figure 14c the voltage is maintained at 231.7 V. The
percentage of harmonics injected by the STATCOM becomes 18% and that in the proposed
model becomes 12.03%.
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Figure 14. Voltage waveform of r-phase of microgrid. (a) Fuzzy PI Controller (b) PSO-PI Controller
(c) LSTM-GA-PI controller.

5. Discussion

The P2P coordinated control between the SPV and STATCOM in a microgrid for power
quality compensation using LSTM–genetic algorithm has been analyzed experimentally
(MATLAB simulation) with two benchmarking models, the Fuzzy–PI and PSO–PI models.
On analyzing the model, the observations are as follows.

Table 2 shows the power quality analysis of the STATCOM microgrid. It is observed
that maximum harmonics have been produced with the Fuzzy–PI STATCOM of the order
of 15.43%, and the least harmonics produced amount to 11.22%, with the proposed model.
In all three cases, the broad band has been maintained for the notch. As compared to all the
other algorithms, with the LSTEM–GA–PI STATCOM, the lowest DC offset was observed.
Similarly, Table 3 presents the time-domain analysis of the STATCOM–PI controller. By
testing these different control algorithms against a step function input, the time-domain
analysis allowed for a comparison of their performance in terms of how well they respond
to sudden changes and achieve the desired system behavior. The proposed algorithm
produces 8.84% of overshoot, which is also the lowest among all the benchmarking models.

Table 2. Power quality analysis of STATCOM microgrid.

Sr. No. Technique Power Quality Attribute Magnitude

01 Fuzzy–PI
STATCOM

DC Offset 0.21%

Harmonic Current 15.34%

Inter Harmonics 1.87%

Notching Broad Band

Noise 0.82%

02 PSO–PI
STATCOM

DC Offset 0.14%

Harmonic Current 12.72%

Inter Harmonics 1.25%

Notching Broad Band

Noise 0.57%

03 LSTM–GA–PI
STATCOM

DC Offset 0.07%

Harmonic Current 11.22%

Inter Harmonics 0.87%

Notching Broad Band

Noise 0.44%
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Table 3. Time-domain analysis of STATCOM–PI controller.

Sr. No. Technique Parameters Magnitude Remarks

01 Fuzzy–PI
STATCOM

Delay Time 0.58

Marginally Stable
Critically Damped

Rise Time 0.62
Peak Time 0.77
Settling Time 2.23
Max. Overshoot 14.44%

02 PSO–PI
STATCOM

Delay Time 0.49

Asymptotically Stable
Critically Damped

Rise Time 0.53
Peak Time 0.65
Settling Time 1.90
Max. Overshoot 12.27%

03 LSTM–GA–PI
STATCOM

Delay Time 0.35

Stable
Rise Time 0.38
Peak Time 0.47
Settling Time 1.36
Max. Overshoot 8.84%

Figure 15 presents the voltage and current performance of the STATCOM at the PCC.
Figure 15a presents the voltage and current waveform for the Fuzzy–PI STATCOM. As
observed, the current has undergone oscillations from 0.3 s to 0.4 s. This is due to the
unavailability of internal memory and also the inability of the controller to dynamically
assign the reference voltage for the grid-side converter of the DFIG. Similarly, for the PSO–
PI controller, the oscillations are less as compared to the GA–PI controller, as presented
in Figure 15b. However, with the proposed LSTM–GA–PI STATCOM (Figure 15c), the
oscillations have been damped out completely. This is because of the presence of a memory
unit in the feedback loop. The maximum peak overshoot in the current waveform is 0.58 pu,
as compared to 0.98 pu and 0.77pu in the Fuzzy–PI and PSO–PI controllers, respectively.

Figure 16 shows the DC offset voltage analysis for the Fuzzy–PI, PSO–PI, and LSTM–
GA–PI STATCOM controllers. As observed, the initial oscillation presents negative slope
characteristics for LSTM–GA–PI as compared to the other controllers. Similarly, the second
transition event from 0.2 s to 0.3 s shows fewer oscillations for the DC offset.

Figure 17 presents the power quality analysis of the STATCOM’s injected real and
reactive power for the Fuzzy–PI, PSO–PI, and LSTM–GA–PI STATCOMs. As observed
in Figure 17a, the reactive power has been absorbed by the STATCOM for three cycles,
whereas, for the PSO–PI controller in Figure 17b, it shows oscillations with a time-varying
negative slope. However, with the LSTM–GA–PI controller, the reactive power has been
injected at 25% so as to reduce the burden on the DFIG stator.

Figure 15. STATCOM performance. (a) Fuzzy–PI STATCOM, (b) PSO–PI STATCOM, (c) LSTM–GA–
PI STATCOM.
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Figure 16. DC offset voltage analysis for DFIG controller. (a) Fuzzy–PI, (b) PSO–PI, (c) LSTM–GA-PI.

Figure 17. Power quality analysis of STATCOM injected real and reactive power. (a) Fuzzy–PI,
(b) PSO–PI, (c) LSTM–GA–PI.

The integration of solar photovoltaic systems in a microgrid represents the utiliza-
tion of clean and renewable energy sources. This reduces the reliance on fossil fuels and
conventional power generation, resulting in lower greenhouse gas emissions and promot-
ing environmental sustainability. A microgrid is a localized and decentralized energy
system that can operate independently or in conjunction with the main power grid. Coor-
dinated control between the SPV and STATCOM enhances the microgrid’s power quality
by ensuring stable voltage and frequency levels. This improved power quality enables
the efficient operation of connected devices, minimizes electrical disturbances, optimizes
energy consumption, and reduces waste, contributing to sustainability.

The utilization of advanced control techniques, such as LSTM and genetic algorithm,
underscores the intelligence of the control system. By leveraging machine learning and
optimization algorithms, such as LSTM and genetic algorithm, respectively, the microgrid
can adapt to changing conditions, optimize the energy flow, and minimize losses. This
intelligent control approach enhances the overall performance and energy efficiency of
the microgrid, maximizing the utilization of the available renewable energy resources and
contributing to sustainability.

Microgrids are designed to operate autonomously during grid disruptions and en-
hance the resilience against natural disasters and other disturbances. By incorporating
coordinated control between the SPV and STATCOM, the microgrid effectively compen-
sates for power quality issues and maintains a stable energy supply. This increased energy
independence improves the microgrid’s resilience and reduces the reliance on the main
power grid. Ultimately, it contributes to the overall sustainability of the energy system by
ensuring a reliable and uninterrupted power supply, particularly during critical situations.
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6. Conclusions

The optimal and coordinated performance of a STATCOM and microgrid using LSTM–
genetic algorithm has been evaluated in this article using simulation methods under
normal and abnormal operating conditions. Both the AC and DC voltage gains of the
STATCOM were optimized using LSTM–GA. It was observed that when carefully tuning
the parameters, the DC offset for the LSTM–GA STATCOM was reduced significantly to
0.07%, compared to 0.21%, and it also avoids SSR to an extent of 17%.

The harmonic and inter-harmonic components using the LSTM–GA methodology
reduce the burden on the transmission line and thereby reduce the overheating of the
conductor in a microgrid system under load variation conditions. In order to maintain a
proper system balance with respect to the IEC and IEEE standards, the notching level of the
broad band range has been maintained. During time-domain analysis, the proposed LSTM–
PI–GA model shows a shorter settling time as compared to the other two benchmarking
models under the step-changing mode of operation.

The optimized STATCOM device has been presented as a dependable solution to
improve the stability of microgrid systems, regardless of whether they are functioning
normally or abnormally. This device is capable of suppressing transient oscillations in
power and frequency while managing voltage fluctuations caused by external disturbances
or changes in load demand. Overall, the STATCOM is a highly effective resource in ensuring
the consistent and stable performance of microgrid systems.
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Abstract: A miniature house roof-integrated photovoltaic (PV) system in South Korea was monitored
for 2.5 years. System performance was evaluated through power generation, solar irradiance, and
system temperature. The comparison of each month’s power generation and solar irradiance revealed
a parallel correlation over the entire observation period. The internal module temperature was almost
always higher than the roof rear and module rear temperatures by 1–2 and 1–5 ◦C, respectively, while
the temperature behind the PV modules was the lowest among the three temperatures, showing that
the installation of PV modules as a roofing system does not affect the temperature of the roofing
system. The system temperatures affected the power conversion efficiency; a maximum of 11.42%
was achieved when the system temperatures were the lowest, and a minimum of 5.24% was achieved
when the system temperatures were the highest. Hence, half of the anticipated generated power was
lost due to the temperature fluctuation. Overall, installing PV modules as an entire roofing system is
possible with this configuration due to the minimum effect on the roof temperature. However, PV
system temperature control is essential for maintaining the power generation performance of the
PV modules.

Keywords: building-integrated photovoltaics; roof-integrated photovoltaics; photovoltaic module
temperature; building-integrated photovoltaic system temperature

1. Introduction

The energy issue is among the top contemporary global crises [1]. Renewable and
clean sources of energy need to be capitalized given the aggravated global security issues
as of February 2022 and the electricity demand rising by 5.9% to 1400 terawatt hours (TWh),
complemented by 14.6 gigatons of CO2 emissions from burning fossil fuels for electricity
and heat production [1,2]. Photovoltaic (PV) systems, which utilize a renewable energy
source in the form of sunlight, experienced increased capacity and market size. The PV
module market increased to 310 gigawatts (GW) in 2022 [3], with the PV module production
capacity by the end of 2021 being over 470 gigawatt-peak (GWp) [4]. PV systems covered
over 5% of the global electricity generation in 2021, reducing annual CO2 emissions by as
much as 1100 megatons during the year [5].

Continuous improvements in the PV system application method are required to fur-
ther boost the use of PV systems in the future. A few strategies have been implemented
to diversify the PV system applications, such as vertically installed PV [6], agriphoto-
voltaics [7], floating photovoltaics [8], building-applied photovoltaics (BAPVs) [9], and
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building-integrated photovoltaics (BIPVs) [10]. Using a PV system as an intrinsic part of a
building, a BIPV system takes part in the building structure while generating power [10,11].
In BIPVs, PV systems mainly serve as façades and/or roofing systems for buildings [10–12].
In a façade system, PV modules can serve as curtains, glazing, or spandrel panels; in a
BIPV roofing system, PV modules can serve as roofing tiles, shingles, standing seams, or
skylights [11]. The long-term cost offset is beneficial by replacing one functional component
of a building with a working PV system [13]. The BIPV roofing system is viable for use
over residential houses, as there are many areas with passively functioning roofs that PV
systems can replace to create hundreds of GWp [14]. Due to these advantages, BIPV imple-
mentation has been widespread in recent years [10,14]. The policies of several countries
have played a major role in promoting BIPV implementation. A few examples include
tax-free self-consumption of BIPV power in France [15] and Japan [16], incentives for BIPV
installation in China [17], and BIPV installation subsidies in Korea [18]. Government aid
has directly contributed to the rapid growth of the number of BIPV installations, with
Grand View Research forecasting that the global BIPV market will increase from USD 19.82
billion in 2022 to USD 88.38 billion in 2030 [19]. More studies are required to complement
this growing industry and understand the factors contributing to system performance.

Several factors affect the performance of PV modules, namely PV module manufac-
turing design, cell technology type, solar irradiance, wind direction and speed, mounting
configuration, and temperature [20–22]. Appropriate mounting configuration can limit
PV module degradation, as shown by Jordan et al., who studied the performance of
aluminum back surface field (Al-BSF)–based PV modules installed in Las Vegas, USA,
with different mounting configurations [23]. The authors reported reduced heat transfer
into the modules with a lower amount of metal roof and increased heat transfer with a
rack-mounting configuration, leading to a lower PV module degradation rate. Manufactur-
ing design effects due to insulations behind the PV modules were studied by Gok et al.,
who evaluated the performance of glass/back-sheet- and glass/glass-based crystalline
silicon (c-Si) PV modules installed in two different mounting configurations in Canobbio,
Switzerland [24]. The authors reported that higher operating temperatures significantly
impacted the glass/back-sheet module, with the performance loss rate (PLR) varying from
0.01%/year for ventilation to −0.42%/year for insulation. Conversely, the glass/glass
module displayed an unexpected opposite trend, with the PLR varying from −0.10%/year
for ventilation to 0.26%/year for insulation. IV measurements revealed that the reduced
performance of the glass/back-sheet module originated from the deterioration of the fill
factor through increased resistance, whereas the rise in the short-circuit current (Isc) was
the primary driver of the insulated glass/glass module performance improvement. Kumar
et al. studied different cell technology types, focusing on three different types of PV tech-
nologies: crystalline silicon (c-Si), copper indium selenide (CIS), and cadmium telluride
(CdTe) modules, as BIPVs and BAPVs in Malaysia [21]. The energy-generating perfor-
mance was different among the three technologies, with the c-Si, CIS, and CdTe modules
generating peaks of 4240, 4280, and 4490 kWh, respectively. Singh et al. reported on the
performance of high-efficiency heterojunctions with intrinsic thin-layer (HIT)-technology-
based PV modules depending on different climatic conditions [25]. The authors showed
that HIT technology-based PV modules were more efficient at cold partition temperatures.
The impacts of urban heat islands (UHIs) and urban air pollution on BIPV energy efficiency
have been extensively studied. For instance, Wang et al. reported that the UHI and solar
radiation absorption caused by smog could reduce the overall PV energy generation in
urban locations by more than 10% compared to that in rural locations [26]. The effects of the
tilt angle and wind speed were studied by Dabaghzadeh et al., who studied the convective
cooling of a PV system by modeling different tilt angles and wind speeds [27]. The authors
observed the lowest temperature for a tilt angle of 45◦, aided by optimal convective cooling,
irrespective of the wind speed.

BIPV research has mainly focused on temperature, power generation, and the corre-
lation between the two parameters. Kumar et al. reported on different temperature and
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performance losses for different PV module types, with the c-Si BIPV exhibiting 13.6%
reduced performance, the CIS system exhibiting 12.8% reduced performance, and the CdTe
system exhibiting 8.8% reduced power generation efficiency [21]. Poulek et al. compared
the temperature of BIPV modules to that of PV modules with conventional configurations
and its relation to energy production [28]. The authors used a modeling approach to
compare BIPV modules with free-standing PV modules in four different climates while
conducting a field study in Prague, Czech Republic. The field study indicated that the
temperature of the BIPV modules was higher by more than 5 ◦C compared to that of the
conventionally installed PV modules. At the same time, a difference of 3–5% in energy
production due to the increased module temperature was evident. Using their model, the
authors observed that climate differences from cold to hot temperatures had a negligible
effect on the BIPV performance degradation; however, the PV module degradation in area
with very hot temperatures was rapid. Kim et al. studied BIPV module temperatures
with different insulations by conducting a field study on a miniature house with a tilted
BIPV roofing system in Daejeon, South Korea [29]. The locations of the insulation were
different: One system had insulation behind the PV modules (i.e., a warm roofing system),
while another system had insulation behind the ceiling (i.e., a cold roofing system). The
comparison of the two systems showed that the BIPV power generation of the cold roofing
system was 7% higher than that of the cold roofing system. D’Orazio et al. analyzed
different BIPV configurations in Ancona, Italy [30]. The authors compared rack-mounted
high-ventilated, moderate-ventilated, and non-ventilated BIPV systems to see the effect of
natural ventilation with the addition of air gaps. Rack-mounted PV modules exhibited the
lowest PV module and air-back temperatures. In contrast, non-ventilated BIPVs exhibited
the highest temperatures. The authors found that an air gap of 0.04 m between the PV
modules and the roof was sufficient to create a difference of less than 3% in annual power
generation prowess. Kaplanis et al. conducted a modeling study of the aging effect of
BIPV and BAPV systems [31]. PV module aging was predicted to increase the PV module
temperature relative to the case of the reference modules. Given the expected increase
in PV module temperature when installed in a BIPV system compared to the case of a
conventional installation, the aging effect might become more prominent.

Several studies have focused on decreasing the PV module temperature in BIPV sys-
tems. Mittelman et al. modeled a cooling channel in an attempt to increase the performance
of PV modules in BIPVs and observed that adding 0.02–0.20 m air space between the PV
modules and the roof can decrease their temperature by 10–20 ◦C and thus increase their
energy-generating performance by 1–2% [32]. Other attempts to decrease the PV module
temperature incorporated phase change materials (PCMs). Karthikeyan et al. studied the
effect of a non-contact composite PCM on the optimal PCM thickness and observed that the
optimum PCM thickness was 2.5 cm, yielding an average of 6.7 ◦C PV module temperature
reduction [32]. Hasan et al. studied five different PCMs to decrease the BIPV module
temperature [33]. The authors used CaCl2 as PCM and achieved an 18 ◦C lower BIPV
module temperature for 30 min. In a more extended observation of 5 h, a 10 ◦C temperature
reduction was maintained.

Considering the findings of previous studies on BIPV and PV modules in general,
the issue of system temperature and power in BIPVs will persist with the growth of the
BIPV industry, especially concerning how temperature affects the PV performance or
the building [10]. Several short-term studies on the effect of BIPV module temperature
on module performance—involving either modeling or field investigations—have been
conducted [21,28–33]; however, only a few studies have reported on the effect of PV
modules installed on top of roof tile systems and how the temperature of the roof tiles with
attached PV modules compares to that under roof tiles without attached PV modules. The
specific weather and climate of the regions where BIPVs are installed are also important
for comparison. While temperature-reducing efforts have been generally fruitful, there
are several associated drawbacks. Natural circulation might allow dust to collect in the
air gap, reducing heat transfer. At the same time, several PCMs are costly and hazardous
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to the environment [34]. Additionally, PCMs can achieve limited BIPV module cooling
due to their short cooling duration. Because of all these issues and how long-term studies
(i.e., studies longer than a year) are not available, a miniature house BIPV system was
manufactured to better understand the long-term temperature conditions of the roofing
system with metal tiles and attached PV modules without dedicated ventilations and PCMs
for 2.5 years in South Korea. The comparison of the temperature of the roof tiles with that
under the PV modules was used to assess the possibility of installing PV modules on the
entire roofing system in this roofing configuration with metal tiles. The contributions of
this study are as follows:

• Insight into how a BIPV roofing system in South Korea performed for 2.5 years in
terms of its power generation and system temperature.

• More detailed and specific information on the BIPV system temperature based on the
PV module internal temperature and the comparison between the temperature of the
roof tiles and that of the roof tiles behind the PV modules.

• Observations regarding the changes in PV module power conversion prowess during
long-term use in the BIPV roofing system.

The findings of this study address questions regarding the effect of PV module instal-
lation on the roof temperature and the PV module’s performance over time.

2. Materials and Methods

This study observed and analyzed a miniature house roof-integrated PV system.
The utilized solar roofing system was manufactured by Roser (Gyeongsan, South Korea)
(Figure 1). The system was a sloped, unventilated roofing system and was 187.5 cm in
length, 154 cm in width, and 133 cm in height. Four PV modules with 536 × 536 mm2

dimensions were attached to the top of the roof. The modules were surrounded by more
roof tiles to form the roof of the miniature house, covering a total area of 187.5 × 149.0 cm2.
The system was installed in 2019 at the Yeungnam University Photovoltaic Power Systems
R&BD Demonstration Complex, Gyeongsan, South Korea (location: 35.82◦ N, 128.76◦ E).
The system was south-facing, had no obstructions in front of it resulting in shading, and
was tilted by 35◦ to the ground. The PV modules were tested under standard conditions
(STC), having a peak power of 40 W. Other parameters of the PV modules are outlined
in Table 1.
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Figure 1. Installed solar roofing system (PV module depicted as the blue square) and its dimensions.

Table 1. Studied solar module label specifications.

PV Parameters Value

Peak Power (Pm) (W) 40
Open-Circuit Voltage (VOC) (V) 5.75
Short-Circuit Current (ISC) (A) 8.96

Maximum Voltage (Vm) (V) 4.76
Maximum Current (Im) (A) 8.42

Three parameters were monitored to assess the roof-integrated PV system’s perfor-
mance: solar irradiance, power generation, and system temperature. Solar irradiance
data, the primary source of electrical generation from PV modules, were obtained using
a CMP6 first-class pyranometer (<5% daily uncertainty) installed near the BIPV system.
The PV modules were connected to a programmable DC electronic load LODA LF 600C
(accuracy ±0.05%) to monitor the power generation of the PV modules for the duration
of the study. Three thermocouples were installed inside the roofing system at different
locations to monitor changes in the system’s temperatures. The three types of temperature
data collected were the module internal temperature (MI), module rear temperature (MR),
and roof rear temperature (RR). The thermocouple measuring MI was placed between
the PV modules and the thin roof layer beneath. MR and RR were measured to assess
the conditions of the roof tiles with and without attached PV modules, respectively. The
thermocouple measuring MR was placed behind the thin roof under the PV modules while
the thermocouple measuring RR was fixed behind a roof tile with no attached PV modules.
The locations of the thermocouples are shown in Figure 2. Solar irradiance, power gen-
eration, and system temperature data were subsequently averaged at a 30-s interval and
stored in separate daily files by the monitoring system software Data Gather.
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Figure 2. Schematic diagram of the thermocouples (green dots) locations inside the roofing system.

From the obtained solar irradiance data, monthly totals were created to elucidate
the total irradiance during each month over the observation period. Monthly totals were
created for the power generation data to elucidate the total power generation of the BIPV
system during each month over the observation period. The power generation data were
subsequently used to obtain the power yield as follows:

Monthly Power Yield =
Total power production in one month
Total power capacity of the PV system

(1)

The monthly power yield was subsequently calculated using the total monthly solar
irradiance to determine the system efficiency as follows:

System Efficiency =
Monthly Power Yield

Total Monthly Solar Irradiance
× 100% (2)

System temperature data were analyzed based on monthly averaging throughout
the study.

3. Results and Discussion

3.1. Power Generation Interdependence on Solar Irradiance

The power generation performance of the BIPV system and solar irradiance were
examined for 2.5 years. To elucidate the diurnal cycles of the two parameters, Figure 3
represents two selected days, namely 14 February and 2 June 2021, with the graphs depict-
ing the data on a minute basis. Power generation generally followed the solar irradiance
trend, as PV modules use solar irradiance as their energy source to generate electricity.
The different solar irradiance values between the two days are mainly due to seasonal
differences. In South Korea, February is winter, and June is summer, characterized by
different sun paths and, thus, different irradiance intensities [8]. The total generated power
and solar irradiance for each month are shown in Figure 4, with more detailed data from
2020 until the middle of 2022 shown in Table 2. Power generation and solar irradiance
exhibited similar trends, with fluctuations in solar irradiance being accompanied in most
cases by proportional fluctuations in generated power. The detailed power generation and
solar irradiance values in Table 2 reveal that the highest power generation occurred in the
earlier part of each year, with the highest power generation being evident in April or May.
Total solar irradiance exhibited a slightly shifted trend, with the highest solar irradiance
observed in the months of May to July of each year except in 2020.
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Figure 3. Daily power and solar irradiance on (a) 14 February 2021 and (b) 2 June 2021.

Figure 4. Total generated power and solar irradiance in (a) 2020, (b) 2021, and (c) 2022.
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Table 2. Total average generated power and solar irradiance from January 2020 to June 2022.

Month

Total Power Generated
(kWh)

Total Solar Irradiance
(kW/m2)

2020 2021 2022 2020 2021 2022

January 59.60 75.47 92.07 115.36 152.49 179.26
February 87.43 83.80 94.55 187.13 183.87 219.12

March 106.27 77.94 88.33 270.03 198.21 234.04
April 108.11 98.02 102.35 324.94 296.54 312.20
May 102.79 87.19 118.06 333.76 270.32 399.13
June 94.94 84.00 88.61 330.04 288.26 304.50
July 61.53 79.84 - 199.68 307.39 -

August 88.53 63.71 - 283.95 230.40 -
September 78.77 66.17 - 212.90 193.92 -

October 94.59 82.26 - 224.66 195.57 -
November 81.65 78.22 - 160.98 163.03 -
December 86.99 87.39 - 153.60 160.73 -

Solar irradiance variations throughout the year were attributed to changes in the solar
position. The path of the sun is longer in spring and summer, resulting in longer days
and higher total solar irradiance values [8]. The uncertain nature of the weather resulted
in several cloudy and rainy days affecting the amount of solar irradiance throughout the
observation period, with the relatively lower values in July 2020 and June 2022 being at-
tributed to increased occurrences of such uncertain weather conditions. As solar irradiance
is among the main influences on a PV system’s power output, the power generation data
followed the fluctuations in solar irradiance input throughout the observation period, and
this agrees with Tina et al., whose floating PV system produced power generation values
proportional to the solar irradiance values during optimal PV system operation [8]. How-
ever, the highest generated power value was not produced during the solar irradiance peak,
as observed in May 2020 and July 2021, and this was due to another factor, namely system
temperature, influencing the power generation of the PV modules [7,8,14]. The effect of
temperature on the BIPV system’s performance is discussed in the following section.

3.2. System Temperature

Three system temperatures were examined and processed to obtain the average system
temperature data. Figure 5 shows the diurnal variations of the system temperatures on
14 February and 2 June 2021 based on a minute interval. All temperatures increase in the
middle of the day and decrease towards the end of the day; however, the trend of MI is
distinctly different from those of the two roof temperatures, MR and RR, with the latter
trends being quite similar. The trend similarity was also reported by Saleh et al. [33] for the
PV module temperature and Chung and Park [34] for the roof temperature. Similar to the
case in Figure 3, the difference in temperature between the two days was due to seasonal
differences, in South Korea, February is winter and June is summer. The analyzed data
from 2020 until the middle of 2022 are represented in Figure 6 and the temperature data
from 2020 to 2022 are summarized in Table 3. The trend shown in Figure 6 displays an
increase from the start of the year until the middle of the year and a subsequent decline
until the end of the year. The variation shown throughout the year is caused by seasonal
changes, as South Korea experiences four seasons throughout the year. The increases in
system temperatures were correlated with—and caused by—the seasonal changes from
a cold winter to a warm spring to an even warmer summer. Subsequently, the system
temperature dropped in autumn, and the lowest temperature occurred in winter, thereby
completing the annual cycle.
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Figure 5. Diurnal variations of the system temperatures on (a) 14 February and (b) 2 June 2021.

Figure 6. Average system temperature in (a) 2021, (b) 2021, and (c) 2022.
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Table 3. Average system temperature from January 2020 to June 2022.

Month

2020 2021 2022

MI
(◦C)

MR
(◦C)

RR
(◦C)

MI
(◦C)

MR
(◦C)

RR
(◦C)

MI
(◦C)

MR
(◦C)

RR
(◦C)

January 8.96 5.61 6.09 11.73 7.17 8.19 10.09 5.11 6.39
February 13.88 9.65 10.96 14.39 9.31 10.67 12.23 6.68 8.31

March 18.47 15.32 16.99 18.52 15.96 16.77 19.66 14.57 15.99
April 22.38 18.83 20.43 24.62 20.61 22.27 26.77 21.87 23.69
May 28.86 26.43 28.06 28.27 23.11 24.53 32.18 27.67 29.85
June 32.92 31.67 33.32 33.35 29.74 31.38 33.74 30.32 32.04
July 29.66 28.61 29.72 34.65 36.21 36.08 - - -

August 36.49 35.59 37.29 33.29 32.35 33.31 - - -
September 30.59 26.71 28.01 31.39 27.34 28.65 - - -
October 25.43 20.78 22.17 26.89 22.79 24.28 - - -

November 18.71 13.65 14.73 17.89 13.16 14.26 - - -
December 10.46 5.18 6.16 11.65 6.85 8.01 - - -

The average value of MI was higher than MR and RR throughout the year, except in
the middle of the year, from June to August, when those of RR matched its values. The
higher MI compared to the other system temperatures was caused by the activity of the PV
modules. The absorption of solar energy in the form of light and its conversion to electricity
was conducted at the PV modules’ capacity, with the other form of solar energy, i.e., heat
energy, being absorbed. Heat absorption was subsequently aggravated by the dark color of
the PV modules, thereby increasing the heat absorption capacity of the PV modules [11,12].
A high MI value is characteristic of most BIPV systems, as roofing systems encapsulate
them without enough air ventilation compared to the cases of conventionally installed PV
modules and more traditional BAPV systems [11,12].

The MR values were always the lowest among the values of the three measured
temperatures and were always approximately 1–2 ◦C lower than the RR values and 1–5
◦C lower than the MI values. The annual differences between RR and MR are shown in
Figure 7, where MR is almost always lower than RR throughout the 2.5-year observation
period, except in July 2021. The small differences between MR and RR were likely due
to the different roof tile configurations used in this system when the PV modules were
installed on top of the tiles. The installation of PV modules on the roof tiles left a little gap
which facilitated the heat transfer caused by more wind. In contrast, the original roof tiles
retained more heat because the gap was nonexistent [35–37]. The finding implies that the
PV system could be installed as the entire roofing system with this configuration without
sacrificing the roof temperature.

263



Sustainability 2023, 15, 9493

Figure 7. Monthly differences between the roof rear temperature (RR) and module rear temperature
(MR) throughout the observation period.

3.3. Effect of System Temperature on Power Conversion

To determine how the system temperature affects the power-generation efficiency of
this BIPV system, monthly power conversion and system temperature were compared and
analyzed, and tabulated in Table 4. Figure 8 shows that the trends of system temperature
and power conversion are opposite to each other. The system temperature trends followed
the seasonal changes in South Korea, i.e., the system temperature increased in spring and
summer and decreased in autumn and winter. Conversely, power conversion decreased in
spring and summer and increased in autumn and winter.

Table 4. Power conversion from January 2020 to June 2022.

Month
Power Conversion (%)

2020 2021 2022

January 10.42 9.98 10.35
February 10.07 10.17 9.63

March 7.93 7.93 7.61
April 6.93 6.89 6.83
May 6.21 6.50 5.96
June 5.99 6.07 6.06
July 6.21 5.24

August 6.29 5.57
September 7.71 7.11

October 8.49 8.48
November 10.57 9.99
December 11.42 10.96
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Figure 8. Power conversion and system temperature in (a) 2020, (b) 2021, and (c) 2022.

As mentioned previously, the system temperature is one of the factors affecting the
power generation performance of a BIPV system [21,26–33,35–37]. In this BIPV roofing
system, it was apparent that the system temperature affected the performance of the PV
modules. The highest efficiency of 11.42% was achieved in December 2020, when the
system temperature was the lowest. In contrast, the lowest efficiency of 5.24% occurred in
July 2021, when the system temperature was 10 ◦C above the ambient temperature. This
correlation shows how a system temperature increase negatively impacts the PV module
efficiency, dropping to half its maximum value at the peak system temperature. A PV
temperature increase leads to an increase in carrier concentration, thereby enhancing the
rate of carrier recombination and leading to decreased open-current voltage (VOC), fill
factor (FF), and thus performance [38].

Figure 9 shows that during the 2.5-year observation period, there was no significant
decline in system performance regarding power conversion. The largest drop in power
conversion was in July 2021, which decreased by ~1% compared to the previous year. Such
a large decline in efficiency was not evident in the rest of the months when efficiency
decreased on average only by 0.25% compared to the values in the previous years. These
findings confirm that this particular BIPV system can maintain its performance with a
negligible effect on efficiency over 2.5 years.
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Figure 9. Comparison of monthly power conversion from January 2020 to June 2022.

4. Conclusions

The long-term performance of a BIPV system of 160 Wp was evaluated using outdoor
monitoring in South Korea for 2.5 years. This study revealed the intercorrelations between
power generation, solar irradiance, and system temperature. While solar irradiance mainly
affected power generation, system temperatures contributed to power generation fluctua-
tions, following the seasonal changes from cold to warm and again to cold temperatures
throughout the year. Results showed that half of the BIPV system’s performance was lost
due to temperature fluctuations. Therefore, addressing this issue is crucial, particularly
in hot regions. Factors such as wind direction, ventilation, and the type of PV technol-
ogy could play important roles in achieving better economic value for the installed PV
system. The temperature behind the PV modules was lower than that behind the roof
tiles, implying that installing such a BIPV system will not increase the temperature of the
roofing system. This finding suggests that the comfort of the room underneath the PV
modules may be uncompromised by using this configuration in the climate of South Ko-
rea. Therefore, expanding the use of PV modules as an entire roofing system by using this
configuration has great potential. This study proves that one of the generally associated tem-
perature concerns—the roofing temperature—is not necessarily concerned with this BIPV
system configuration.
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28. Poulek, V.; Matuška, T.; Libra, M.; Kachalouski, E.; Sedláček, J. Influence of Increased Temperature on Energy Production of Roof
Integrated PV Panels. Energy Build. 2018, 166, 418–425. [CrossRef]

29. Kim, H.; Boafo, F.E.; Kim, J.; Kim, J. Investigating the effect of roof configurations on the performance of BIPV System. Energy
Procedia 2015, 78, 1974–1979. [CrossRef]

30. D’Orazio, M.; Di Perna, C.; Di Giuseppe, E. Performance Assessment of Different Roof Integrated Photovoltaic Modules under
Mediterranean Climate. Energy Procedia 2013, 42, 183–192. [CrossRef]

31. Kaplanis, S.; Kaplani, E.; Kaldellis, J.K. PV Temperature and Performance Prediction in Free-Standing, BIPV and BAPV Incorpo-
rating the Effect of Temperature and Inclination on the Heat Transfer Coefficients and the Impact of Wind, Efficiency and Ageing.
Renew. Energy 2022, 181, 235–249. [CrossRef]

32. Mittelman, G.; Alshare, A.; Davidson, J.H. A Model and Heat Transfer Correlation for Rooftop Integrated Photovoltaics with a
Passive Air Cooling Channel. Solar Energy 2009, 83, 1150–1160. [CrossRef]

33. Saleh, I.M.; Abufares, H.M.; Snousi, H.M. Three-Year Performance Evaluation of Single Junction Amorphous Solar Cells
Grid-Connected Power Station in Libya. Conf. Pap. Eng. 2013, 2013, 950195. [CrossRef]

34. Chung, M.H.; Park, J.C. An Experimental Study on the Thermal Performance of Phase-Change Material and Wood-Plastic
Composites for Building Roofs. Energies 2017, 10, 195. [CrossRef]

35. Karthikeyan, V.; Sirisamphanwong, C.; Sukchai, S.; Sahoo, S.K.; Wongwuttanasatian, T. Reducing PV module temperature with
radiation based PV module incorporating composite phase change material. J. Energy Storage 2020, 29, 101346. [CrossRef]

36. Hasan, A.; McCormack, S.; Huang, M.; Norton, B. Evaluation of Phase Change Materials for Thermal Regulation Enhancement of
Building Integrated Photovoltaics. Sol. Energy 2010, 84, 1601–1612. [CrossRef]

37. Wai, L.Z.; Yusoff, M.; Irwanto, M.; Razak, A.; Ibrahim, S.; Zhubir, N. Investigation of Solar Panel Performance Based on Different
Wind Velocity Using ANSYS Software. Indones. J. Electr. Eng. Comput. Sci. 2016, 1, 456–463. [CrossRef]

38. Amin, A.A.; Al-Maghrabi, M.A. The analysis of temperature effect for MC-si photovoltaic cells performance. Silicon 2017, 10,
1551–1555. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

268



Citation: Qaiyum, S.; Margala, M.;

Kshirsagar, P.R.; Chakrabarti, P.;

Irshad, K. Energy Performance

Analysis of Photovoltaic Integrated

with Microgrid Data Analysis Using

Deep Learning Feature Selection and

Classification Techniques.

Sustainability 2023, 15, 11081.

https://doi.org/10.3390/su151411081

Academic Editors: Prince

Winston David and Praveen Kumar B

Received: 30 May 2023

Revised: 6 July 2023

Accepted: 10 July 2023

Published: 15 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Energy Performance Analysis of Photovoltaic Integrated with
Microgrid Data Analysis Using Deep Learning Feature
Selection and Classification Techniques

Sana Qaiyum 1,*, Martin Margala 1, Pravin R. Kshirsagar 2 , Prasun Chakrabarti 3 and Kashif Irshad 4

1 School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
martin.margala@louisiana.edu

2 Department of Data Science, Tulsiramji Gaikwad Patil College of Engineering and Technology,
Nagpur 441108, India; pravinrk88@yahoo.com

3 Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara 391510, India;
drprasun.cse@gmail.com

4 Interdisciplinary Research Centre for Renewable Energy and Power System, King Fahad University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia; kashif.irshad@kfupm.edu.sa

* Correspondence: sqaiyum.cs@gmail.com; Tel.: +1-966571179728

Abstract: Microgrids are an essential element of smart grids, which contain distributed renewable
energy sources (RESs), energy storage devices, and load control strategies. Models built based on
machine learning (ML) and deep learning (DL) offer hope for anticipating consumer demands and
energy production from RESs. This study suggests an innovative approach for energy analysis
based on the feature extraction and classification of microgrid photovoltaic cell data using deep
learning algorithms. The energy optimization of a microgrid was carried out using a photovoltaic
energy system with distributed power generation. The data analysis has been carried out for feature
analysis and classification using a Gaussian radial Boltzmann with Markov encoder model. Based on
microgrid energy optimization and data analysis, an experimental analysis of power analysis, energy
efficiency, quality of service (QoS), accuracy, precision, and recall has been conducted. The proposed
technique attained power analysis of 88%, energy efficiency of 95%, QoS of 77%, accuracy of 93%,
precision of 85%, and recall of 77%.

Keywords: energy analysis; microgrid; photovoltaic cell; deep learning; distributed power generation

1. Introduction

Current demand for energy consumption is predicated on burning fossil fuels to
provide dependable and resilient energy networks. Unquestionably, one of the most signifi-
cant issues for scientists and engineers is the requirement for energy. Energy production
techniques from the preceding century are now acknowledged as being inappropriate
because of rising atmospheric carbon dioxide (CO2) emissions [1]. The significant con-
tribution of non-renewable energy sources raises environmental issues since they release
greenhouse gases into the atmosphere, which have detrimental effects on human health
and the ecosystem. As they are generally accessible, clean, and free of pollution, renewable
energy sources (RESs) have gained popularity and attention across the globe. By 2030, it
is anticipated that RESs like wind, solar, hydro, geothermal, and biomass would domi-
nate world’s electricity production and surpass all other energy sources [2]. Among the
renewables, photovoltaics have experienced the fastest increase over the past few decades.
Currently, wind energy production exceeds that of photovoltaic (PV), although PV is more
widely accessible and wind turbines require extremely specialized site conditions. As an
alternative, photovoltaics have become a viable option in the fight against climate change.
The process of turning light into electricity using semiconducting materials that display the
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photovoltaic effect is known as photovoltaic (PV). The three main PV cell technologies—
monocrystalline silicon, polycrystalline silicon, and thin film—control the global market.
Among these, thin film solar cells offer several advantages over traditional silicon-based PV
cells. They can be manufactured using low-cost techniques, such as roll-to-roll deposition
or printing methods, which can potentially reduce production costs and enable large-scale
manufacturing. Thin film solar cells are also lightweight and flexible, making them suitable
for various applications, including building-integrated photovoltaics, portable electronics,
and off-grid installations. However, the efficiency of thin film solar cells is generally lower
than that of silicon-based cells [3].

The amazing rise in human living standards and the resulting rise in electricity demand
have led to a number of super-large-scale power system flaws that are now more obvious
than ever [4]. The traditional fossil fuel-based power plants are unable to provide enough
energy to keep up with the rising demand for electricity. Early in the twenty-first century,
the idea of a microgrid (MG) for integrating clean renewable energy sources (RESs) was
put forth. A small-scale local power system called a microgrid is made up of electric loads,
control systems, and distributed energy resources (DERs). Energy storage systems (ESSs)
and RERs are both used in the microgrid’s power generation or DERs. A new sort of
contemporary active power distribution system for the use and advancement of renewable
energy is the microgrid [5]. However, microgrids make it more challenging to maintain
a balance between energy production and consumption, and the incorporation of RESs
complicates power grid operations.

PV plant power generation frequently experiences significant fluctuations, including
voltage irregularities, reserve power flow issues, and power distribution problems. Ad-
ditionally, energy users show unpredictable usage of power due to a variety of factors,
including alterations in the environment and user activity. Therefore, it is important to
analyze the performance of the system to provide better consumer services and to maintain
a reliable and sustainable system.

Accurate forecasting of PV panels is a challenging task since it depends only on the
weather conditions such as temperature, humidity, etc. [6]. Prediction can be carried out
using many techniques such as physical mode, machine learning (ML), and deep learning
(DL) [2]. Each prediction method has its own advantages and disadvantages. Physical
methods, for instance, can anticipate the shifting patterns of the environment with high
precision, but they need a lot of processing capacity since they require a massive amount of
data. Physical techniques encounter unforeseen estimating errors and are inappropriate for
short-term forecasting horizons, which raises further problems. Similar to this, the majority
of the statistical models used to anticipate renewable energy are linear in design, which re-
stricts their application to forecasting issues with wider time horizons. ML-based prediction
provides findings that are more accurate than those produced by statistical and physical
methods owing to its data mining and feature extraction capabilities. However, ML-based
prediction models require shallow models as the foundation of their learning strategies.
Trees, regressors, and neural networks with zero or one hidden layer are examples of
common shallow patterns. Often, extensive knowledge and expertise are needed while
training such shallow models. Therefore, it is frequently difficult to investigate shallow
structures theoretically. Hence, shallow models have certain disadvantages in real-world
applications. Lately, it has been determined that DL-based approaches to energy generation
and power load forecasting performed better than ML-based approaches. Unlike ML,
DL-based methods do not have problems with manually chosen feature selection, complex
samples, or ineffective generalization competence [7]. Consequently, it is impossible to
ignore the dynamics of renewable resource energy generation behavior. The limited use
of MGs in literature work prevents real-world data from being taken into account while
controlling energy distribution. For better energy management of real-world data, a com-
plete framework is needed. Furthermore, power trading between different market players
is completely ignored, and prior statistical information of uncertain renewable resource
energy production was assumed to be perfectly understood. This is the driving force behind
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the suggested method, which combines deep learning approaches with distributed energy
management to enhance the effectiveness and dependability of the proposed system.

Objectives of this work are as follows:

1. To propose novel method for energy analysis based on a microgrid photovoltaic
system by feature extraction and classification using deep learning techniques.

2. The energy optimization of a microgrid using a photovoltaic energy system with
distributed power generation.

3. The data analysis for feature analysis and classification using a Gaussian radial
Boltzmann with Markov encoder model.

2. Related Works

The following is a list of the most significant research topics on energy management
that have been studied over the course of the last few years. The research conducted in [8]
examined the most effective way to manage energy in renewable microgrids by taking into
consideration batteries, solar panels, and wind turbines. The work in [9] analyzes the impact
that wind and solar hybrid power generation technologies have on the performance of a
sustainable microgrid. It is illustrated that a larger penetration of hybrid renewable energy
sources might bring possible answers, provided they are controlled in the appropriate
manner. The effects of uncertainty that are connected with RESs may be simulated by
utilizing a stochastic technique that is based on Monte Carlo as described in [10]. The
administration and maintenance of renewable microgrids is discussed in [11] from the
perspective of a data-driven paradigm. When it comes to microgrids, ref. [12] makes use of
the same research, but this time with a concentration on WSNs. It has been discovered that
a microgrid that runs on renewable energy sources and fitted with a number of sensors is
susceptible to being hacked. The creation of hydrogen by a renewable microgrid and the
recovery of thermal energy by a fuel cell are the topics of discussion in [13]. By adopting
multi-objective switching, the power losses and related costs with renewable sources may
be minimized and optimized, as shown in [14]. Research of a similar kind is shown in [15]
with regard to the influence that switching has on the most appropriate management
strategy and course of action for microgrids. In [16], the authors conducted an analysis to
see how the functioning of microgrids will be impacted by electric cars. According to [17],
it is important to estimate charging needs for electric cars based on a detailed inspection
and analysis of their erratic conduct in a complex environment. In order to do this, it is
necessary to examine and analyze the erratic behavior of electric vehicles. Ref. [18] goes
into more detail on the advantages and disadvantages of these kinds of systems, as well
research that is relevant to both. In most cases, the energy management system (EMS)
is not just concerned with preserving the energy balance inside the microgrid but it also
has additional objectives in mind. The reduction of operating expenses, pollutants, and
losses might be among these aims, in addition to a great number of other objectives, the
attainment of which is contingent on the reason for the creation of such systems. A good
number of these management systems additionally integrate various objectives in a manner
that is multi-objective [19]. The probabilistic solar radiation forecasting that was produced
in [20] made use of an analogue ensemble approach. In [21], it was recommended that
ensemble forecasting based on empirical biasing be used to anticipate the geographical
as well as temporal day ahead total daily radiation. This would be possible via the use of
empirical biasing. In [22], Las-so was used to provide a radiation prediction for the next
5 min.

3. System Model

This section proposes a novel method in energy analysis based on microgrid pho-
tovoltaic cell data analysis by feature extraction and classification using deep learning
techniques (Figure 1a). The energy optimization of the microgrid is carried out using a
photovoltaic-based energy system with distributed power generation. The data analysis has
been carried out for feature analysis and classification using a Gaussian radial Boltzmann

271



Sustainability 2023, 15, 11081

with Markov encoder model. It is an algorithm for learning that assists individuals in
finding intriguing characteristics hidden inside datasets that are made up of binary vectors.
In networks with multiple layers of feature detectors, the learning process is often quite
slow. However, the pace of the algorithm may be increased by adding a learning layer to the
feature detectors in the network. The plug-and-play electric grid is one of the outstanding
features of the microgrid since it can operate both independently and cooperatively with
the power grids. The structural organization and linkages of the microgrid are shown in
Figure 1b. With the capacity to choose the quantity and type of renewable energy sources
that may be incorporated into the system, these tiny grids offer energy with improved
stability, security, and resilience. It follows that microgrids have the capacity to effectively
integrate a variety of diverse sources of distributed power generation, particularly renew-
able power sources. The microgrid is a small-scale local power system which integrates
the clean renewable energy sources (RESs) made up of electric loads, control systems, and
distributed energy resources (DERs). Energy storage systems (ESSs) and RERs are both
used in a microgrid’s power generation or DERs. A new sort of contemporary active power
distribution system for the use and advancement of renewable energy is the microgrid.

(a) 

(b) 

Figure 1. (a) The proposed energy analysis technique. (b) Structure of the microgrid.

Photovoltaic-based energy system with distributed power generation:
The method is based on a series of newly developed 3D matrix-based equations that

calculate the system’s overall load at the time of observation, the amount of power supplied
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to home DC, SLs from the utility’s main DC grid, and the efficiency of the entire system.
Let “NT” be number of time samples within the observational period of time “T.” The
following sets of indices, p q, and r, are provided in Equation (1) throughout the modeling.

{superset or subset} =⎧⎨
⎩

p ⊇ P1 = {1, 2, . . . , x}orp ⊃ P′
1 = {1, 2, . . . , x}

q ⊇ Q = {1, 2, . . . , y}orq ⊃ Q′ = {1, 2, . . . , y}
r ⊇ R = {1, 2, . . . , n}orr ⊃ R′ = {1, 2, . . . , n}

⎫⎬
⎭

Li = ∑N
j=1|Vi|

∣∣Vj
∣∣∠(

Gijcos
(

ϕi − ϕj
)
+ Bijsin

(
ϕi − ϕj

))
Mi = ∑N

j=1|Vi|
∣∣Vj

∣∣∠(
Gijsin

(
ϕi − ϕj

)− Bijcos
(

ϕi − ϕj
))

(1)

where “x” is the largest number of possible loads in “y” and SL at the time “tn” has
maximum samples (“n”) in the system. The number “x” of DC loads that exist in the
“y” MGs at time “tn” is shown as (2). It is a huge 3D matrix of order [x, y] because each
component of the matrix is a column matrix of NT of order 1.

DCLyMGs(tn) =
[[

pDij(tn)
]

NT×1

]
x×y

=

⎡
⎢⎣
[pD11(tn)]NT×1 · · · [

pD1y(tn)
]

NT×1
...

. . .
...

[pDx1(tn)]NT×1 · · · [
pDxy(tn)

]
NT×1

⎤
⎥⎦ (2)

This is [pD11 (tn)]. The power of the first DC load present in the first MG at time “tn” is
represented by the column matrix NT × 1, which is further enlarged as Equation (3).

[
pDij(tn)

]
NT×1 =

⎡
⎢⎢⎢⎣

pDij(t1)
pDij(t2)

...
pDij(tn)

⎤
⎥⎥⎥⎦

NT×1

ACLyMGs(tn) =
[[

pAij(tn)
]

NT×1

]
x×y

ILyMGs(tn) =
[[

pLij(tn)
]

NT×1

]
x×y

VSDLyMGs(tn) =
[[

pVSDij(tn)
]

NT×1

]
x×y

(3)

Equation (4) provides a matrix that includes rated power of converters connected to
appropriate loads.

(DC/DC)rating(tn) =
[[

prDij(tn)
]

NT×1

]
x×y

(4)

Efficiency of the converter is evaluated as (5). The coefficients matrices’ generalized
form is provided by (4). An efficiency-based 3D matrix can finally be displayed as (4).
Similar matrices would be created for converters connected to A and VSD loads.

ηddy(tn) = αmij(tn)·
( pDij(tn)

prDij(tn)

)n
+ α(n−1)jj(tn)·(· · · )n−1 + · · ·+

α0ij(tn)·(· · · )0,

αnij(tn) =

⎡
⎢⎣

αn11(tn) · · · αn1y(tn)
...

. . .
...

αnx1(tn) · · · αnxy(tn)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

αnij(t1)
αnij(t2)

...
αnij(tn)

⎤
⎥⎥⎥⎦.

η(DC/DC)(tn) =

[[
ηddij(tn)

]
NT×1

]
x×y

(5)
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Since each SL has its independent solar energy structure, therefore a PEC converter
with an MPPT base connects it to the storage system. Solar energy can be expressed as
Equation (6).

psolar(ts) =
[[

psj(ts)
]

NT×1

]∗
y×1

ps,MGs(ts) =
[
λSDj

]
1×y

[
β j(ts)

]
y×NT

[
[tsm · · · ts0]NT×1

]t (6)

In Equations (7) and (8), the first matrix is a matrix of conversion factors, the next
matrix is a matrix of coefficients obtained from the fitting of curves, and the final matrix is
a transposed time matrix with some power.

[
λSD−j

]
1×y =

[
λSD−1 λSD−2 · · · λSD−y

]
1×y

[
β j(tn)

]
y×NT =

⎡
⎢⎢⎢⎢⎢⎢⎣

βm1(tn) · · ·
...

. . .
β01(tn)

...
βmy(tn) · · · β0y(tn)

⎤
⎥⎥⎥⎥⎥⎥⎦

y×NT

βnj(tn) =

⎡
⎢⎢⎢⎣

βnj(t1)

βnj(t2)
...

βnj(tn)

⎤
⎥⎥⎥⎦

NT×1
[tsm · · · ts0]

t =
[[

tm
1m · · · tm

nm
] · · · [t0

10 · · · t0
n0
]]t

(7)

Pi,Rx=0 ≈ ViVj
Xi

[
sinϕij

]
Qi,Rx=0 ≈ V2

i −ViVjcosϕij
Xi[

fD
fQ

]
=

[
cos(ϕi) −sin(ϕi)
sin(ϕi) cos(ϕi)

][
fd
fq

] (8)

Distributed secondary control layers are used as shown in Equation (9) to adjust
frequency and voltage anomalies.

ωavg = ∑N
i=1 ωDGi

ωi=(ωre f −ωavg)

ωi =
(

ωre f − ωavg

)
ωi = kp f ωi + ki f

∫
ωidt

(9)

Equation (10) can be used to express load voltage regulation methods.

sVi = kp f Vi + ki f

∫
Vidt (10)

From measured output current and voltage, instantaneous power is written as
p = vodii·iodi + voqii·ioqii and q = vodi.ioqii − voqii·iodi. By linearization, a tiny signal
that represents active power is generated as shown in (11).

ΔPi = −ωciΔPi
+ωci

(
IodiΔvodi + IoqiΔvoqi + VodiΔiodi + VoqiΔioqi

)
vodqi =

[
vodi voqi

]T , iodqi =
[

iodi ioqi
]T

(11)
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Equation (12) can be used to define the algebraic modeling for the voltage controller
and current controller,

i∗ ldi = Fi·vodi − ωb·Cf i·Δvoqi + KPVi
(
v∗odi − v∗odi

)
+ KIVi ϕdi

i∗ lqi = Fi·voqi + ωb·Cf i·Δvoqi + KPVi
(
v∗ oqi − v∗ oqi

)
+ KIVi ϕqi

v∗ idi = −ωb·L f i·ilqi + KPCi(i∗ldi − ildi) + KIC·γdi

v∗ iqi = ωb·L f i + KPCi

(
i∗ lqi − ilqi

)
+ KIC·Δγqi

(12)

dildqi
dt = − R f i

L f i
·ildqi + ωi·ildqi +

1
L f i

·vidqi − 1
L f i

·vodqi
dvodqi

dt = ωi·voqqi +
1

Cf i
·ildqi − 1

Cf i
·iodqi

diodqi
dt = − Rci

Lci
·iodqi + ωi·iodqi +

1
Lci

·vodiq − 1
Lci

·vobdqi

(13)

By using reverse transformation, Equation (14) transforms bus voltage back into an ith
specific inverter reference frame.

[
ΔuMuq

]
=

[
Tγ−1]·[ΔubDQ

]
+

[
T−1

σ

]
[Δδ], where, T−1

σ =[ −UbDsin(δ) + UbQcos(δ)
−UbDcos(δ)− UbQsin(δ)

]
(14)

P-N junction diodes are utilized in the structure of the PV module. As they are
semiconductor devices, they can convert the energy that is taken in into usable electrical
power. These diodes can convert incident light into electrical energy when it reaches
their surface. Figure 2 depicts the basic construction, connections, and functionality of a
PV module:

Figure 2. Working of Photovoltaic.

As seen in the image below, there exist two distinct layers of silicon: a negative N layer
and a boron-doped positive P layer. The PV module clad with tempered glass captures
solar energy when subjected to sunlight. The energy collected eventually rises above the
band gap energy level, causing electrons to pass across that band on their way from the
conduction band to the valence band. The conduction band’s electrons can therefore move
freely and create electron–hole pairs. The electricity generated during the process is used
to power the load because the motion of electrons is what causes the passage of electric
current. An array configuration is not sufficient to produce enough electricity because it
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suffers from multiple losses. The maximum power point tracking (MPPT) technique is the
best way to maximize each string’s efficiency. By employing such control strategies, PV
modules can produce the maximum amount of electricity achievable.

4. Methodology

Feature analysis and classification using Gaussian radial Boltzmann with Markov
encoder model:

The weighted sum of the densities of the M component parts is known as the mixture
density. The ith component density is denoted by the expression s(x; θi), where θi stands
for the component parameters. With the restrictions that πi ≥ 0 and ∑M

i=1 πi = 1, we use πi
to signify the weighting factor or “mixing proportions” of the ith component in combination.
The chance that a data sample belongs to the ith mixture component is represented by s(i),
and M _i = 1. Equations (15) and (16) are then used to define an M component mixture
density (16),

s(x) = ∑M
i=1 πi p(x; θi), i = 1, . . . , M (15)

s(x) = ∑c
c=1 πc fc(x | θ) (16)

The mixture model has a vector of parameters, θ = {θ1, . . . , θM, π1, . . . πM}
Hidden variables are treated as a latent variable, or z, in mixture models. It accepts

values 1 through M as a discrete set that satisfies the conditions zMε{0, 1} and ∑M zM = 1.
A conditional distribution p(x|z) and a marginal distribution p(z) are how we define the
joint distribution p(x, z), i.e., from Equation (17),

p(z, x) = p(z)p(x | z) (17)

Mixing coefficients k are used to specify the marginal distribution across z, as illus-
trated in Equation (18),

p(zk = 1) = πk (18)

Equations (19) and (20) define probability density function of X.

p(x | μk, Σk) =
1√

2π
∣∣∣Σ−1

∣∣∣exp
(
−1

2
(x − μx)Σ−1

x (x − μx)
T
)

(19)

fc(x | μc, Σc) =
1

(2π)
1
t |Σc|

1
2

exp
(
−1

2
(x − μc)

tΣ−1
c (x − μc)

)
(20)

where μx is an (μx1, . . . , μxN) and Σx covariance matrix and Σx is a vector of means (_x1,...,
_xN). Equations (21)–(23), which are linear superpositions of Gaussians, can be used to
represent Gaussian mixture distribution.

p(x) = ∑K
k=1 πk p(x | μk, Σk) (21)

ˆ
πc =

nc
n ,

.
μc =

1
nc

∑(i,yi=cj)
xi, p(x | zk = 1) = p(x | μk, Σk),

^
Σc =

1
(nc−1) ∑(i|yi=c)(xi − μc)(xi − μc)

t

(22)

Conditional distribution of x for a specific value of z is a Gaussian, according to
Equation (23):

p(x | z) = ∏K
k=1 p(x | μk, Σk)

zk (23)
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By adding joint distribution of all possible states of z to obtain Equation (24), one may
determine the marginal distribution of x.

p(x) = ∑z p(z)p(x | z) = ∑K
k=1 πk p(x | μk, Σk) (24)

The “posterior probability” on a mixture component for a specific data vector is a
significant derived quantity and is indicated in Equation (25):

γ(znk) =
πk N(xn | μk, Σk)

∑K
j=1 πjN

(
xn | μj, Σj

) =
p(zk = 1)p(x | zk = 1)

∑K
j=1 p

(
zj = 1

)
p
(

x | zj = 1
) (25)

Maximal likelihood is the learning objective of RBMs, which are energy-based ap-
proaches. Equation (26), in its combined structure, defines the energy of its hidden parame-
ters (e) and visible parameters (f ).

En(e, f; θ) = −∑ij Wijfiej − ∑i bifi − ∑j ajej. (26)

θ represents the element W(a, b). Using Equation (27), one can determine the combined
probability of v and h.

Pθ(f, e) =
1

Z(θ)
exp(−En(f, e; θ)). (27)

In this context, the partition function is denoted by Z(θ). The previous equation can be
rewritten as Equation (28).

Pθ(f, e) =
1

Z(θ)
exp

(
∑D

i=1 ∑F
j=1 Wijfiej + ∑D

i=1 fibi + ∑F
j=1 ejaj

)
(28)

Maximizing the probability function P(f) is the goal. The edge distribution of P(f, e)
makes it easy to calculate P(f) by Equation (29):

Pθ(f) =
1

Z(θ) ∑h exp
[
fTWh + aTh + bTf

]
(29)

The RBM parameters are derived (f ) by optimizing P. By optimizing log(P(f)) = L(),
we can obtain maximum P(f) using Equation (30):

L(θ) = 1
N ∑N

n=1 logPθ

(
f(n)

)
∂L(θ)
∂Wij

= 1
N ∑N

n=1
∂

∂Wij
log

(
∑h exp

[
f(n)TWh + aTh + bTf(n)

])
− ∂

∂Wij
logZ(θ) = EPdut

[
fiej

]− EPθ

[
fiej

] (30)

The original purpose of stochastic gradient descent was to maximize L(θ). Next,
Equation (30) is used to calculate the L(θ) derivative for W.

The formula’s first part is easy to evaluate. Across all datasets, the values of fi and ej
are averaged. It is computationally challenging to solve the remaining part of the equation,
which comprises all 2|f |+|e| possible values of f and e. The formula’s second part is
Equation (31).

∑ f ,e fiejPθ(f, e) (31)

Monte Carlo simulations are used to estimate gradient as shown in the following equation:

Δai = f (0)i − f (k)i
Δbi = P

(
ej = 1 | f(0)

)
− P

(
ej = 1 | f(k)

)
ΔWij = P

(
ej = 1 | f(0)

)
f(0)i − P

(
ej = 1 | f(k)

)
f(k)i

(32)
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where f(0) I is sample value and f(k) I is a sample that satisfies distribution P(f) identified by
sampling. Lastly, Equation (33) provides the parameter update equation.

ai = ai + Δai
bj = bj + Δbj

Wij = Wij + ΔWij

(33)

The probability distribution is shown below by Equation (34).

P
(

V, e(1), e(2)
)
= 1

Z(θ)exp − E
(

V, e(0), e(Ω); θ
)

| P
(

V, e(1), e(2)
)
= −VTW(1)e(1) − VTW(2)e(2) + b

(34)

Encoders and decoders are essential elements of its design. Encoder and decoder both
implement standard matrix multiplication. As a normalizing function, an encoder gradient
function is utilized. After adjusting the weight and biases of the autoencoder, Equation (35)
operates network training.

e(0) = a
(

b(n) + VTW(n)
)

(35)

e(n) = σ
(

b(n)i + e(n−1)TW(n)
)

where n = 1, 2, 3, . . . , m.
Consider training an HSI datacube with two hidden layers using Equations (36) and (37).

P
(

Vi = 1; e(2), e(2)
)
= αVTW(1)

1 + αVTW(2)
1 (36)

When n = 1:
P
(

Vi = 1; e(1), e(2)
)
= αVTW(1)

1 + αVTW(2)
i

P
(

Vi = 2; e(1), e(2)
)
= aVTW(1)

2 + aVTW(2)
2

(37)

Mean-field value is represented by Equation (38):

P(x) = ∑h=1,2 Q
(

e(1), e(2)
)

log

(
e(i), e(2)

P
(
e(1), e(2)

)
)

(38)

where Gibbs energy is represented by Equation (39):

E(x) =
1

Z(D)
exp(−P(x)) (39)

By indicating a weight change, (40) and (41) present a new weight value. Each stratum
is assigned the b = 0 bias.

Δe(1)i = α ∑
i

ViW(1) (40)

Δe(2)i = α ∑
i

ViW(2) (41)

Convolution filters and the weights of fully connected layers are two model parameters
that are optimized using the gradient descent approach. It is essential to classify the image
into the correct category since the final layer has a significant impact on classification
outcomes. This is carried out by properly linking the weights from the prior layers. Here, in
order to improve classification accuracy, the training of the final weight vector is optimized
utilizing a newly created modified whale optimization method. The number of search
agents is limited to 50, the utmost number of iterations is limited to 100, and the final
parameter (vector a) is linearly modified between [0,2].
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5. Performance Analysis

To computationally evaluate the cloud DNSE algorithm, the simulation set contains
sensitivity based on error in measurement, grid variables, DNSE efficiency, and pseudo
measurements. Reading the voltages at the node from a smart meter is the initial stage
in this endeavor since smart meters are not set up to determine the voltages in the LV
grid under examination. If the powers and voltages at all nodes are being monitored
concurrently, this phase can be avoided. Table 1 displays dispersed networks for the low-
voltage grid’s resistance, reactance, and admittance by both series and shunt in accordance
with their network types.

Table 1. Distributed Networks of LV Grid.

Distributed Networks Resistance Ω/km Series Reactance Ω/km Shunt Admittance μS/km

Type 1 0.207 0.072 204.2

Type 2 0.320 0.075 175.9

Type 3 0.727 0.087 125.6

Table 2 gives analysis based on various circuit models. The circuit models analyzed
are resistance, reactance and admittance network type in terms of power analysis, energy
efficiency, QoS, accuracy, precision, and recall. The energy management system (EMS) and
long short-term memory (LSTM) networks are compared.

Table 2. Analysis based on various circuit models.

Circuit
Model

Techniques
Power

Analysis
Energy

Efficiency
QoS Accuracy Precision Recall

Resistance

EMS 79 88 66 81 77 66

LSTM 81 89 68 83 79 68

Proposed
method 83 92 71 85 81 72

Reactance

EMS 82 89 69 82 79 69

LSTM 85 93 72 84 82 73

Proposed
method 87 95 75 86 83 75

Admittance
network type

EMS 84 91 75 85 81 72

LSTM 86 93 76 91 83 75

Proposed
method 88 95 77 93 85 77

Figure 3a–f give analysis based on resistance type circuit model. The proposed tech-
nique attained power analysis of 83%, energy efficiency of 92%, QoS of 71%, accuracy of
85%, precision of 81%, and recall of 72%, EMS achieved a 79% power analysis, an 88%
energy efficiency, a 66% quality of service, an 81% accuracy, a 77% precision, and a 66%
recall, and power analysis of 83%, energy efficiency of 92%, QoS of 71%, accuracy of 85%,
and precision of 81% were all achieved with LSTM.
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(a)  

(b) 

Figure 3. Cont.
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(c) 

(d) 

Figure 3. Cont.
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(e) 

(f) 

Figure 3. (a–f) Analysis for resistance type circuit model in terms of power analysis, energy efficiency,
QoS, accuracy, precision, recall.
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Figure 4a–f show analysis for reactance circuit model. The proposed technique attained
power analysis of 87%, energy efficiency of 95%, QoS of 75%, accuracy of 86%, precision of
83%, and recall of 75%, EMS achieved a power analysis of 82%, an energy efficiency of 89%,
a QoS of 69%, an accuracy of 82%, a precision of 79%, and a recall of 69%, and 85% power
analysis, 93% energy efficiency, 72% QoS, 82% accuracy, 81% precision, and 72% recall were
achieved by LSTM.

(a) 

(b) 

Figure 4. Cont.
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(c) 

(d) 

(e) 

Figure 4. Cont.
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(f) 

Figure 4. (a–f) Analysis for reactance circuit model in terms of power analysis, energy efficiency, QoS,
accuracy, precision, recall.

Figure 5a–f give analysis based on admittance network type circuit model. Power
analysis of 88%, energy efficiency of 95%, QoS of 77%, accuracy of 93%, precision of 85%,
recall of 77%, and QoS of 93% were achieved with the proposed technique. In comparison
to LSTM, EMS achieved power analysis of 86%, energy efficiency of 93%, QoS of 76%,
accuracy of 85%, precision of 81%, and recall of 72%. EMS also achieved energy efficiency
of 91%, QoS of 75%, accuracy of 85%, and recall of 72%.

(a) 

Figure 5. Cont.
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(b) 

(c) 

Figure 5. Cont.
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(d) 

(e) 

Figure 5. Cont.
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(f) 

Figure 5. (a–f) Analysis for admittance network type model in terms of power analysis, energy
efficiency, QoS, accuracy, precision, recall.

6. Conclusions

This study proposes an idea for energy analysis based on a microgrid photovoltaic
system using a deep learning method. The energy optimization of the microgrid was carried
out using a photovoltaic-based energy system with distributed power generation. The
data analysis has been carried out for feature analysis and classification using a Gaussian
radial Boltzmann with Markov encoder model. When taking into account an MG with
photovoltaics (PVs), solar radiations abruptly increase in intensity during the day. That
will boost MG production at a specific moment. Table 2 presents the comparative analysis
of the proposed method with EMS and LSTM and it was shown to achieve higher power
analysis, energy efficiency, QoS, accuracy, precision, and recall for different circuit models.
In power analysis, the proposed method achieves 5% and 2.4% increases compared to EMS
and LSTM models, respectively, for resistance models. Similarly, it has shown an increase
of 6% and 2.3% and 4.7% and 2.3% for reactance and admittance circuit models.
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Abstract: As the photovoltaic (PV) market share continues to increase, accurate PV modeling will
have a massive impact on the future energy landscape. Therefore, it is imperative to convert difficult-
to-understand PV systems into understandable mathematical models through equivalent PV models.
However, the multi-peaked, non-linear, and strongly coupled characteristics of PV models make it
challenging to extract accurate parameters of PV models. Metaheuristics can address these challenges
effectively regardless of gradients and function forms, and have gained increasing attention in solving
this issue. This review surveys different metaheuristics to the PV model parameter extraction and
explains multiple algorithms’ behavior. Some frequently used performance indicators to measure
the effectiveness, robustness, accuracy, competitiveness, and resources consumed are tabulated and
compared, and then the merits and demerits of different algorithms are outlined. The patterns
of variation in the results extracted from different external environments were analyzed, and the
corresponding literature was summarized. Then, challenges for both metaheuristics and application
scenarios are analyzed. Finally, corresponding perspectives on future research are summarized as a
valid reference for technological advances in PV model parameter extraction.

Keywords: PV model; parameter extraction; metaheuristic

1. Introduction

Fossil fuels’ total reserves are limited, and their overuse has threatened human health
and the ecological environment. Thus, developing renewable energy sources is an extremely
urgent concern [1–5]. Renewable energy, including the energy sources of solar, hydro,
wind, geothermal, and biomass energy [6–8], is inexhaustible or short-term renewable.
Solar energy is a form of energy that contains a tremendous amount of energy and has
the potential to meet all the energy requirements of current human activities [9]. As a
result, solar energy has been employed in varied applications such as desalination, heating
plants, and photovoltaic (PV) power generation [10,11]. Due to the clean and widespread
availability of electrical energy in various fields, PV power generation is an important
project for developing renewable energy sources [12].

Accurate modeling is essential for the assessment, efficiency improvement, fault
analysis, and simulation of PV systems [13–15]. A PV system consists of an aggregation
of PV cells, and they are typically modeled with equivalent circuits, mainly including
single diode (SDM), double diode (DDM), and triple diode (TDM) models [16–18]. These
equivalent circuits can simulate PV cells’ electrical characteristics. They have five, seven,
and nine parameters to be extracted, respectively. As the number of diodes increases, more
parameters to be extracted are involved, which results in more computational difficulty.
The challenges faced by the issue include not only the multiplication of solution complexity
due to multiple unknown parameters but also the coupling between electrical quantities,
leading to a highly implicit function [4,19–21]. Moreover, the non-linear characteristics are
challenging to solve due to the exponential functions in the characteristic equations. These
challenges render determining accurate PV models a puzzle.
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Extracting proper parameters of PV models is a thorny issue, and it is primarily
solved by three types of methods: point-specific-based methods, traditional numerical
optimization methods, and metaheuristic methods [19]. The first category, also referred to
as analytical methods, relies heavily on the analytical treatment of the models to reduce
the parameters and on specific points to deduce the model parameters [13,22,23]. They
generally have low accuracy, especially when there is noise on specific data points. The
second category is also known as the deterministic methods, which extensively use the
idea of gradients. They are highly exploitable and computationally fast but are sensitive to
initialization settings, and the accuracy of the solutions can be insufficient [24–26]. That
dilemma is because the PV model’s mathematical formulation is implicit, has exponential
functions, and requires extraction of multiple parameters. As a result, the mentioned issue
has multi-peaked, non-linear, and strongly coupled characteristics, which pose a significant
challenge to solving the issue using deterministic methods. Unlike the above two categories,
natural phenomena inspire the third class of methods: metaheuristics. They do not rely
on gradients and detailed data, are conceptually simple and computationally convenient,
and can solve complex optimization issues with high accuracy [27–31]. Therefore, scholars
have identified the merits of metaheuristics and applied them to many problems.

Nowadays, the metaheuristics for this paper’s problems have evolved considerably,
and it is necessary to review the current developments in parameter extraction techniques.
Recently, several reviews have partially covered the application of metaheuristics in this
area. Abbassi et al. [19] comprehensively described and summarized different indicators
and cases and briefly assessed the results. However, the authors were biased towards a
broad overview of different methods and ignored details about the metaheuristics’ applica-
tion mechanisms. They merely measured the indicators’ presence, without specific results
to give the methods’ effectiveness. Oliva et al. [32] undertook a dedicated review, tabulated
each indicator’s results, and described the details of some metaheuristics. Nevertheless, the
work mainly focused on PV cells, with insufficient attention to PV modules, and ignored a
review of the TDM and algorithmic settings. Venkateswari et al. [33] summarized the indi-
cators and case names, described improved concepts, and compared some metaheuristics.
However, they just summarized the minimum root mean square error (RMSE) results and
lacked data on other indicators. Li et al. [20] overviewed the environmental factors’ pres-
ence and surveyed the results of various approaches. However, the review mainly focused
on the SDM and DDM and lacked the algorithmic settings of metaheuristics. Overall, the
available reviews mainly highlighted the statistics of the RMSE values for SDM and DDM.
Specific data on other indicators, i.e., the total number of fitness evaluations (TNFES),
the sum of individual absolute errors (SIAE), and the mean, maximum, and standard
deviation (STD) of RMSE, were unavailable for judging different methods’ performance in
computational resources, accuracy, reliability, and robustness. We also note the following
shortcomings in past reviews: (a) a lack of holistic evaluation of metaheuristics in recent
years for cells and modules, (b) no discussion or literature screening of the situation when
the temperature changes, and (c) omission of a presentation of data changes when partial
shade is applied.

A holistic view of this type of research takes time to establish for researchers unfamiliar
with this area. Meanwhile, the available reviews should include the results of the last several
years of study. However, although some reviews comprehensively summarize all solutions
to the problem, they mention too few metaheuristics and need more numerical details.
Others focus on PV cells and modules, but omit the analysis of metaheuristics. These
shortcomings make their conclusions rather one-sided and make it difficult for the reader to
understand the research results from multiple dimensions. Therefore, a persuasive article
that considers the model’s various aspects, the parameter settings, and the evaluation
metrics and integrates the results of a large number of applications of metaheuristics
to the problem is needed to present the recent research results. This paper provides a
comprehensive and detailed summary and analysis of the application of metaheuristics to
model PV accurately in recent years. Specifically, the metaheuristics are categorized and
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their rationale is outlined. The algorithmic settings are summarized, and the results are
compared and ranked in various indicators. The variation of the parameters in different
environments is studied, and a brief description of the relevant literature in recent years
is given. Some cell models that are temporarily not in widespread use today but are of
high research value are analyzed. Then, their advantages and disadvantages are analyzed,
and the remaining challenges are analyzed. Eventually, future directions for research are
summarized in solution approaches and application scenarios.

This work’s main contributions are as follows:

• The mathematical models of current commonly used SDM, DDM, TDM, and PV
modules are explained;

• The characteristics of each metaheuristic method and their enhancements and applica-
tions are outlined;

• The statistical results of RMSE, TNFES, SIAE and algorithmic settings of selected
metaheuristics are summarized and compared;

• The output characteristics of the PV system are discussed for the dynamic temper-
ature, irradiance, and partial shading, and the variation in parameters and RMSE
are analyzed;

• Existing challenges and possible future work focuses are analyzed and provided.

The remainder is briefly sketched as follows. The PV cell’s mathematical model and the
evaluation indicators are explained in Section 2. Section 3 illustrates different metaheuristics.
Section 4 provides an overall analysis of different methods, existing challenges, and possible
research directions. Finally, Section 5 gives the conclusion.

2. PV Models and Problem Formulations

Several PV models and their corresponding equivalent circuits are revealed in the
first part of this section, to quantify the electrical characteristics of PV systems. Directly
comparing PV models’ parameters extracted by different methods is not easy. To objectively
appraise the extracted results of different methods, the second part of this section gives
several indicators commonly used to evaluate the experimental results.

2.1. PV Models

SDM, DDM, and TDM models have been widely used by researchers in recent
years [20]. In general, more diodes in a circuit represent a more accurate model, but
also increase the model complexity [33].

2.1.1. SDM

Figure 1a mentions the equivalent schematic of the SDM. The output voltage and
current are V and I, respectively, and the electrical expression of I is shown below [34,35].

I = Iph − Ish − Isd = Iph − V + IRs

Rsh
− Issd

[
exp

(
q(V + IRs)

nkT

)
− 1

]
(1)

where Iph, Ish, Isd, and Issd represent the photogenerated line current, shunt resistor line
current, diode line current, and diode saturation current, respectively. Rs and Rsh represent
the series resistance and branch resistance, respectively. n represents the ideal factor. T, k,
and q represent the Boltzmann constant (1.3806 × 10−23 J/K), absolute temperature, and
unit charge (1.6022 × 10−19 C).
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Figure 1. PV models’ circuits: (a) SDM; (b) DDM; (c) TDM; (d) PV module.

The above demonstrates that accurate modeling requires estimating the values of Iph,
Issd, n, Rs, and Rsh.

2.1.2. DDM

Figure 1b mentions the equivalent schematic of the DDM. After adding a diode, below
is the electrical expression of I [36,37].

I = Iph − Ish − Isd1 − Isd2 = Iph − V + IRs

Rsh
− Issd1

[
exp

(
q(V + IRs)

n1kT

)
− 1

]
− Issd2

[
exp

(
q(V + IRs)

n2kT

)
− 1

]
(2)

where Isd1 and Isd2 represent the first and second diode line currents, respectively, Issd1 and
Issd2 represent the corresponding diode saturation currents, and n1 and n2 represent the
corresponding ideal factors.

This model needs to estimate the values of Iph, Issd1, Issd2, n1, n2, Rs, and Rsh.

2.1.3. TDM

Figure 1c mentions the equivalent schematic of the TDM. Below is the electrical
expression of I [38–40].

I = Iph − Ish − ∑
j=1→3

Isdj = Iph − V + IRs

Rsh
− ∑

j=1→3
Issdj

[
exp

(
q(V + IRs)

njkT

)
− 1

]
(3)

where Isdj, Issdj, and nj represent the jth diode line current, the saturation current, and the
ideal factor, respectively.

The TDM requires estimating the values of Iph, Issd1, Issd2, Issd3, n1, n2, n3, Rs, and Rsh.

2.1.4. PV Module

Figure 1d mentions the equivalent schematic of the PV module based on the SDM. A
PV module composed of Ns × Np cells inherently has a high complexity. Therefore, using
the SDM to construct PV modules is the first choice for most researchers. Equation (4) is
the electrical expression of the PV module’s current [4,41].

I = IphNp − V + IRsNs/Np

RshNs/Np
− IssdNp

[
exp

(
q
(
V + IRsNs/Np

)
nNskT

)
− 1

]
(4)
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The PV module has the same parameters as the SDM (Iph, Issd, n, Rs, and Rsh).

2.1.5. PV Model Review

Although the SDM, with its simple structure and fair accuracy, is presented at the
very beginning of this section, it is not the earliest cell model. It is a development of the
ideal PV cell model (IPCM). Compared to the IPCM, which has a straightforward structure
consisting of only a current source and diode, the SDM simulates the flow resistance,
electrode resistance, and surface contact resistance, explains the physical behavior, and is
widely used in this problem [42]. To further improve the accuracy of the model’s simulated
conduct at low irradiance, a diode is added to the DDM to represent the loss of current in
the depletion region. However, the added unknown parameters increase the difficulty of
the solution. TDM has the potential to achieve higher accuracy than DDM after calculating
the leakage current and grain boundaries with the addition of a diode. Again, the solution
difficulty increases as the dimensionality of the problem increase.

In addition, there are many less commonly used improved diode models, such as
the modified 3-diode model [43], the SDM with capacitance [44], the Generalized Multi-
Dimension Diode Model [45], the Modified SDM (MSDM) [46], the Four Diode Model
(FDM) [47], the Modified DDM (MDDM) [48] and the Modified TDM (MTDM) [49]. We
note that metaheuristics have recently been used to solve the FDM and the modified SDM,
DDM, and TDM models. Thus, it would be a trend for future research to consider these
four models to find a cell model that matches the proposed method to achieve a balance
between solution difficulty and accuracy.

For the modules, in addition to the SDM presented in Section 2.1.4, the use of DDM and
TDM formations are also options considered by the researchers. Their accuracy and solution
difficulty performance are similar to their performance in the cell model. The appropriate
model-building module must be selected to fit the specific needs. In this paper, considering
that counting all the above models would cause duplication of content, excessive length,
and difficulty reading, only the computational results of the modules composed of SDM
components are summarized. The increased accuracy, increased difficulty in solving, and
increased computational resources due to the increase in diodes will be reflected in the
computational results of the cell model.

In addition, several specific PV models exist to achieve accurate modeling of PV
systems in specific situations. They are not commonly used for the time being, but are
of great interest. The dynamic PV model is one of them. It considers underdamped
currents, switching frequency harmonics, varying loads, and resonance of cables, and is
more suitable for grid-connected operation [50,51]. Its equivalent circuit diagram is shown
in Figure 2 [52].

Figure 2. Dynamic model’s circuits.
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The model’s output current is shown as follows [53]:
⎧⎪⎪⎨
⎪⎪⎩

I(s) = a21(s+b1)+b2(s−a11)
(s−a11)(s−a22)−a21a12

·VOC
s(

a11 a12
a21 a22

)
=

( −1
C(Rs+RC)

−Rs
C(Rs+RC)

Rs
L(Rs+RC)

−(RC RL+RC Rs+RLRs)
L(Rs+RC)

)
,
(

b1
b2

)
=

( 1
C(Rs+RC)

RC
L(Rs+RC)

)
(5)

where s is the time, Rs and the open circuit voltage Voc are usually known, the inductor L,
the resistor RC, and the capacitor C are unknown. Therefore, C, RC, and L are the parameters
to be extracted.

2.2. Problem Formulations

RMSE between the measured data and the calculated data usually serves as the
objective function [54–56]:

RMSE =

√√√√ 1
N

N

∑
k=1

f 2(V, I, x) (6)

where x represents the solution vector and N represents the actual data’s amount, and f (V,
I, x) calculates the current error in the following way.

For SDM: ⎧⎨
⎩

f (V, I, x) = Iph − V+IRs
Rsh

− Issd

[
exp

(
q(V+IRs)

nkT

)
− 1

]
− I

x =
(

Iph, Issd, Rs, Rsh, n
) (7)

For DDM:{
f (V, I, x) = Iph − V+IRs

Rsh
− Issd1

[
exp

(
q(V+IRs)

n1kT

)
− 1

]
− Issd2

[
exp

(
q(V+IRs)

n2kT

)
− 1

]
− I

x = (IPV , Issd1, Issd2, Rs, Ish, n1, n2)
(8)

For TDM:⎧⎨
⎩

f (V, I, x) = Iph − V+IRs
Rsh

− ∑
j→3

Issdj

[
exp

(
q(V+IRs)

njkT

)
− 1

]
− I

x = (IPV , Issd1, Issd2, Issd3, Rs, Ish, n1, n2, n3)
(9)

For PV module:⎧⎪⎨
⎪⎩

f (V, I, x) = IphNp − V+IRs Ns/Np
Rsh Ns/Np

− IssdNp

[
exp

(
q(V+IRs Ns/Np)

nNskT

)
− 1

]
− I

x =
(

Iph, Issd, Rs, Rsh, n
) (10)

For the objective function RMSE, its computation requires solving methods with the
ability to solve implicit functions. Commonly used are deterministic and metaheuristic
methods. Several deterministic methods, including Newton Raphson [24], Lambert W
function [25], Levenberg Marquardt [57], and Berndt–Hall–Hall–Hausman [58], have suc-
cessfully solved the non-linear problem. However, it does not mean that deterministic
methods can tackle the challenge of initial value sensitivity well. Due to challenges such as
non-linearity and non-convexity, metaheuristics are considered to be the best solution for
solving this issue.

2.3. Indicators Summary

Varied algorithmic settings substantially affect the results of metaheuristic methods
and various indicators can evaluate the results from diverse aspects. Hence, we summarize
the approach and case settings and the performance evaluation indicators. Usually, the
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literature has drawn characteristic curves to visualize the accuracy of the extracted parame-
ters. Nevertheless, when the parameters’ difference is not very large, some general and
objective indicators are used as the basis for evaluating the advantages and disadvantages
of different methods. Here, we highlight the commonly used indicators to compare them:

• Individual absolute error (IAE): it represents the difference between the actual and
simulated current values [28,30];

• Sum of IAEs (SIAE) and mean IAEs (MIAE): they are more holistic in evaluating the
accuracy of the simulated data [29,59];

• RMSE: it focuses on overall assessment of the data’s dispersion [31,60];
• Friedman test (FT), Wilcoxon rank sum test (WRT), and Wilcoxon signed rank test

(WST): they broaden evaluation scales from statistical perspectives;

IAE = | f (V, I, x)| (11)

SIAE =
N

∑
k=1

IAE (12)

MIAE =
1
N

N

∑
k=1

IAE (13)

• In addition, a few works in the literature also use evaluation indicators such as the
sum of squares of power, current, and voltage errors (ERR) [61].

3. Methods and Results

Metaheuristics have no special data or environment requirements and have high
robustness and accuracy in this studied issue, which is also the reason that they have
been frequently used. Different metaheuristics were inspired by various things when
they were developed. Figure 3 categorizes the metaheuristics into four genres by the
type each one simulates, i.e., evolution-based methods (GA, DE, JAYA), human social
activity-based methods (GSK, SDO, TLBO), animal activity-based methods (PSO, ABC,
GWO, WOA, HHO), and natural phenomenon-based methods (TGA, SOS, FPOA). In this
section, the widely used metaheuristics for solving this issue, namely GA, DE, PSO, ABC,
GWO, JAYA, TLBO, and WOA, are selected and briefly described. They share a high degree
of similarity in the optimization process. For brevity, Figure 4 gives the general flowchart
of metaheuristics.

3.1. GAs

The survival of the fittest phenomenon inspires the evolutionary algorithm, i.e., ge-
netic algorithm. A solution is encoded as binary chromosomes, and all chromosomes are
updated through iteration and fitness assessment. Selection, crossover, and mutation are
the iteration’s three primary operations. The first operation is related to the fitness value
and usually uses roulette, random traversal sampling, and ranked selection. The second
operation improves exploitation by changing the subsequence of random loci between chro-
mosomes, and the third operation improves exploration by changing genes on individual
chromosomes [62].

In [63], the authors used GA in 30XLS and 34XLS PV modules. Characteristic curves
were plotted to visualize the accuracy. However, the method of validating the results was
relatively simple. In [64], an adaptive genetic algorithm (AGA) was designed, employing
the Pearson residual reduction and minimum mean square error reduction techniques.
Relevant manufacturer data at different temperatures verified the AGA’s accuracy. How-
ever, it lacked the comparison under different light intensities, and the validation was too
homogeneous. For intelligent algorithms, more data-based optimization often means more
accurate results. Therefore, Harrag et al. [65] combined genetic algorithms with neural
networks and proposed a metaheuristic based on genetic neural networks (GNN). GNN’s
effectiveness was verified on the SDM and DDM with the RMSE.
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Figure 3. Metaheuristic methods’ genres.

Table 1 lists essential information on GA variants. Among them, the squared error for
GA was 5.8297 × 10−8 and 3.0751 × 10−7, which is highly accurate, but there is a lack of
comparison algorithms to judge the competitiveness of this result. AGA did not give any
numerical RMSE values. The minimum RMSE for GNN reached the order of 1 × 10−3, yet
almost all recent state-of-the-art algorithms reached the order of 1 × 10−4. The GA variants’
performance is not ranked in this section, as the current GA variants did not use the same
metric function.
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Figure 4. Metaheuristics’ general flowchart.

Table 1. GAs’ essential information and metrics.

Method Main Contributors Case Algorithmic
Parameter

Indicator TNFES Run

GA [63] Harrag et al., CCNS Laboratory, Department of Electronics,
Faculty of Technology, Ferhat Abbas University

30XLS NP = 100,
CP = 0.5, MP = 0.02 SE 10,000 -34XLS

AGA [64] Kumari et al., School of Electrical Engineering, VIT University - C1 = 0.01, C2 = 0.001 - - -

GNN [65] Wang et al., Zhengzhou University of Aeronautics SDM NP = 30 RMSE 9000 80
DDM NP = 50 RMSE 15,000 80

3.2. DEs

DE is fast in converging, simple in structure, and easy to implement [66,67]. As a
population-based metaheuristic, DE has the same three operations with GA. DE individuals
achieve mutation by adding different weight coefficients to the product of the difference
between two individuals. The crossover is used to produce a trial vector from the target
individual and the mutant vector. The selection usually chooses a greedy selection scheme
to retain fitter individuals.

In [68], an improved adaptive DE (IADE) with exponential scaling factor (F) and
crossover rate (CR) based on automatic performance updates was presented. The results’
accuracy was verified using PV data with different temperatures and light intensities in
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terms of mean RMSE and fitted plots. Biswas et al. [61] designed a novel successful history-
based DE (L-SHADE) with a linear reduced population size (NP) technique. Its parameter
estimation was implemented using three particular points. The results showed that the
error was almost zero. In [23], Chin et al. designed a differential evolution based on three
points to improve the speed and accuracy of L-SHADE. In [69], an enhanced adaptive
differential evolution (EJADE) was implemented by cross-ranking and dynamic population
reduction techniques, and the algorithm’s reliability was verified well. Xiong et al. [70]
designed a new method (QILDE) for developing optimal value fields by adding quadratic
interpolation to the crossover step. Applications of QILDE to six different PV models
showed its strong competitiveness in different cases. In [71], a new method (EBLSHADE)
based on SHADE with the linear population size reduction technique and greedy vari-
ation technique was designed. Its practical application in PV models demonstrated its
importance in optimizing PV model parameters. In [72], dynamic control factors, including
mutation and crossover, were designed and introduced into DE to form the new method
called DEDCF. In [73], the authors designed a directed permutation differential evolution
(DPDE) using the information on the direction of movement of populations and individu-
als, and applied it to a solar cell model. Hu et al. [41] designed a novel DE (RLDE) with
reinforcement learning that adjusts the value of F by the Q-learning to achieve automatic
parameter tuning, and compared RLDE with other methods, showing its superior robust-
ness and accuracy. A heterogeneous differential evolution (HDE) was built in [74] with
two improved mutation methods, a heterogeneous technique and an information exchange
technique. It was demonstrated that the performance of HDE was representative in multi-
ple dimensions through its application to the problems covered in this study. Kharchouf
et al. [75] introduced Lambert’s W function and metaheuristic techniques to DE for pref-
erential F and CR, and named the method MSDE. It demonstrated high success through
application. In [76], a novel DE (FADE) capable of optimizing F and CR was designed by
employing fuzzy selection techniques and adaptive parameter tuning techniques. SIAE
and RMSE demonstrated its excellent accuracy and robustness.

Tables 2 and 3 show the essential information and numerical metrics for each DE’s
variant, respectively. It is noticeable that there are many recent studies on DE, and most
of them have obtained excellent performance. Regarding resource consumption, DE3P
has the least, at 2500, followed by EBLSHADE, DEDCF, MSDE, EJADE, QILDE, RLDE,
L-SHADE, DPDE, HDE, FADE, and IADE, respectively. Since ERRs were rarely used, data
for WRT, WST, FT, and IAE were unavailable for statistics, and SIAE and MIAE are similar,
we tabulate specific data for SIAE and various types of RMSE in Table 3 for comparison. To
achieve a comprehensive accuracy comparison across multiple cases, the SDM, DDM, and
Photowatt-PWP201 with the minimum RMSE values are used for the combined ranking.
According to the FT results, MSDE (1.333) ranks first, followed by DEDCF (1.667), EJADE
(4.333), QILDE (4.333), RLDE (4.333), HDE (4.667), DPDE (5.333), and EBLSHADE (5.833).
However, EBLSHADE achieves excellent accuracy even though it is in last place, so future
research in DE could further focus on reducing resource consumption and achieving
improved performance in multiple accuracy evaluation metrics.

3.3. PSOs

PSO is a hot topic in artificial intelligence. The particle’s new position is a combination
of the current position and the updated velocity. The updating of the velocity is composed
of three parts, and the first part is the current velocity scaled by the weight factor (w). The
second part is the individual best position to steer the current position under the weight of
the learning factor (c1) and a random variable (r1). The third part is the global best position
to steer the current position under the weight of the learning factor (c2) and a random
variable (r2). The r1 and r2 are unrelated, as are the c1 and c2 [77,78].
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Table 2. DEs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

IADE [68] Jiang et al., School of Computer Engineering,
Nanyang Technological University

SDM Iteration = 8000,
a = ln2, b = 0.5 RMSE -

30
Photowatt-PWP201 30

SL80CE-36M -

L-SHADE [61]
Biswas et al.,

School of Electrical and Electronic Engineering,
Nanyang Technological University

Kyocera KC200GT NP = 50,
F = rand (0.1, 0.5),

CR = rand (0.1, 0.5)
ERR 50,000 30Shell SQ85

Shell ST40

DE3P [23]
Chin et al., Centre of Electrical Energy Systems,

School of Electrical Engineering, Universiti
Teknologi Malaysia

SDM
NP = 50, F = 0.7, CR = 0.8

RMSE
SIAE
MIAE

2500 35Photowatt-PWP201
STM6-40/36
STP6-120/36

EJADE [69] Li et al., School of Computer Engineering, Hubei
University of Arts and Science

SDM

NPmax = 50, NPmin = 4 RMSE

10,000

30
DDM 20,000

Photowatt-PWP201 10,000
STM6-40/36 15,000
STP6-120/36 15,000

QILDE [70]
Xiong et al., Guizhou Key Laboratory of Intelligent
Technology in Power System, College of Electrical

Engineering, Guizhou University

SDM

F = rand (0.1, 1),
CR = rand (0, 1)

RMSE
FT

10,000 50
DDM 20,000 50

Photowatt-PWP201 10,000 50
STM6-40/36 30,000 50
STP6-120/36 30,000 50

Sharp ND-R250A5 30,000 50

EBLSHADE [71]
Song et al., School of Computer Science and

Technology, Shandong Technology and
Business University

SDM
NP = 50, H = 100,
w1 = 0.2, w2 = 0.6,

pmin = 0.05, pmax = 0.2
RMSE

IAE

4000 30
DDM 10,000 30

Photowatt-PWP201 5000 30
STM6-40/36 10,000 30
STP6-120/36 15,000 30

DEDCF [72] Parida et al., Department of Electrical Engineering,
ITER, Siksha O Anusandhan

SDM NP = 10D,
F = rand (0.1, 0.9),
CR = rand (0, 1)

RMSE
MIAE

10,000 50
DDM 14,000 50

Photowatt-PWP201 10,000 50

DPDE [73] Gao et al., Faculty of Engineering, University
of Toyama

SDM
NP = 18D,

H = 5,
p = 0.11

RMSE
SIAE
WRT

FT

50,000 30

DDM
TDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

RLDE [41] Hu et al., School of Computer Science, China
University of Geosciences

SDM
NP = 30,

f = −0.1 or 0 or 0.1,
CR = 0.9

RMSE 30,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

HDE [74] Wang et al., School of Software, Yunnan University

SDM

NP = 30,
p = 0.1

RMSE
WRT

FT
50,000 30

DDM
TDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

MSDE [75] Kharchouf et al., University Abdelmalek Essadi, FSTT
SDM

NP = 10D,
F = 0.7, CR = 0.8 RMSE

10,000

30DDM 14,000
Photowatt-PWP201 10,000

STM6-40/36 10,000

FADE [76]
Dang et al., Institute for Electrical Power and
Integrated Energy of Shaanxi Province, Xi’an

University of Technology

Photowatt-PWP201 NP = 25,
uFinit = 0.7, CRinit = 0.5

RMSE
SIAE

75,000 30STM6-40/36
STP6-120/36

Ben et al. [79] applied PSO to the SDM and compared it with other methods, con-
cluding that PSO outperformed other methods with data supporting. In [80], Ni et al.
presented an adaptive elite mutation technique for PSO (PSO-AEM) for a domain search of
the optimal global position of PSO, and found that PSO-AEM had a faster speed and higher
accuracy. Merchaoui et al. [81] found that PSO was prone to premature convergence, so an
adaptive mutation technique was proposed and introduced into PSO to form an improved
MPSO. MPSO achieved good IAE and RMSE values and fitted the characteristic curves
well at different temperatures and light intensities. In [82], Guaranteed Convergent Particle
Swarm Optimization (GCPSO) was presented to avoid premature convergence. In [83], an
enhanced leader PSO (ELPSO) using five mutation operators to enhance the leader was
designed, following the idea that a high-quality leader could pull the solution towards
the excellent region. The identification results showed that ELPSO effectively improved
the quality of PSO solutions. In [84], the authors presented an improved PSO (SAIW-PSO)
which used the simulated annealing technique to control w and introduced a deterministic
method for optimizing the current values. The fitting results supported the view that
SAIW-PSO was accurate, fast, and effective. Kiani et al. [85] designed a dynamic inertia
weight PSO (DEDIWPSO) with a double exponential function to mitigate the premature
convergence. This method demonstrated excellent validity, reliability, and accuracy in
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the issue covered in this work. The authors in [86] implemented PSO in parallel (PPSO)
on a modern graphics processing unit (GPU). They demonstrated the very high accuracy
and short elapsed time of PPSO by estimating multiple PV models’ parameters. In [87],
an enhanced PSO (PSO-ST) was developed using sinusoidal chaos and tangential chaos
techniques to adjust the weight and learning factors. Inspired by cuckoo search random
reselect parasitic nests, Fan et al. [88] developed a new method (PSOCS) by combining the
random reselection strategy with PSO. The application results showed PSOCS’s stability
and effectiveness.

Table 3. DEs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

IADE [68]
SDM - 9.8900 × 10−4 - - -

N/APhotowatt-PWP201 - 2.4000 × 10−3 - - -
SL80CE-36M - 1.15 × 10−2 - - -

DE3P [23]
SDM 0.0172 8.1291 × 10−4 - - -

N/APhotowatt-PWP201 0.0505 2.422747 × 10−3 - - -
STM6-40/36 0.0210 1.774 × 10−3 - - -
STP6-120/36 0.2091 1.4091 × 10−2 - - -

EJADE [69]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 5.13 × 10−17

4.333
DDM - 9.8248 × 10−4 9.8363 × 10−4 9.8602 × 10−4 1.36 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 3.27 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 5.94 × 10−18

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.33 × 10−17

QILDE [70]

SDM 0.01770381 9.8602 × 10−4 9.8603 × 10−4 9.8616 × 10−4 2.7839 × 10−8

4.333
DDM 0.01731807 9.8248 × 10−4 9.8480 × 10−4 9.8968 × 10−4 1.5868 × 10−6

Photowatt-PWP201 0.04178701 2.4251 × 10−3 2.4257 × 10−3 2.4370 × 10−3 2.2436 × 10−6

STM6-40/36 0.02177419 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.1295 × 10−17

STP6-120/36 0.27797426 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.8518 × 10−14

Sharp ND-R250A5 0.21759981 1.1183 × 10−2 1.1183 × 10−2 1.1183 × 10−2 5.1647 × 10−10

EBLSHADE [71]

SDM - 9.8602 × 10−4 9.8602 × 10−4 - 1.9169 × 10−15

5.833
DDM - 9.8295 × 10−4 9.8574 × 10−4 - 1.2825 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 - 2.8821 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 - 6.40591 × 10−14

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 - 8.0544 × 10−16

DEDCF [72]
SDM - 7.730062 × 10−4 - - -

2DDM - 7.419648 × 10−4 - - -
Photowatt-PWP201 - 2.05296 × 10−3 - - -

DPDE [73]

SDM 0.02153 9.86021877891470
× 10−4

9.86021877891542
× 10−4

9.86021877891588
× 10−4

2.57114481592195
× 10−17

5.333DDM 0.021276 9.82484827161920
× 10−4

9.82549779378988
× 10−4

9.83081420487992
× 10−4

1.51333797156833
× 10−7

TDM 0.021275 9.82484851785319
× 10−4

9.83096769943567
× 10−4

9.86188097663681
× 10−4

1.02284590208062
× 10−6

Photowatt-PWP201 0.048924 2.42507486809506
× 10−3

2.42507486809511
× 10−3

2.42507486809514
× 10−3

1.82238517018742
× 10−17

STM6-40/36 0.021903 1.72981370994065
× 10−3

1.72981370994068
× 10−3

1.72981370994070
× 10−3

1.09732017119964
× 10−17

STP6-120/36 0.317128 1.66006031250851
× 10−2

1.66006031250854
× 10−2

1.66006031250855
× 10−2

7.66886076234863
× 10−17

RLDE [41]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.4834 × 10−17

4.333
DDM - 9.8248 × 10−4 9.8695 × 10−4 9.8457 × 10−4 1.7498 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 6.3084 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.5784 × 10−17

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.9764 × 10−16

HDE [74]

SDM 0.021527 9.86021877891313
× 10−4

9.86021877891456
× 10−4

9.86021877891534
× 10−4

4.56994495305984
× 10−17

4.667DDM 0.021275 9.82484851785123
× 10−4

9.84154478759700
× 10−4

9.86021877891565
× 10−4

1.67264373173134
× 10−6

TDM 0.021275 9.82484851785213
× 10−4

9.82852008467139
× 10−4

9.88358683960422
× 10−4

1.08111146060101
× 10−6

Photowatt-PWP201 0.048924 2.42507486809496
× 10−4

2.42507486809504
× 10−4

2.42507486809510
× 10−3

3.15406568173825
× 10−17

STM6-40/36 0.021903 1.72981370994065
× 10−3

1.72981370994068
× 10−3

1.72981370994070
× 10−3

7.89430228096153
× 10−18

STP6-120/36 0.31713 1.66006031250847
× 10−2

1.66006031250851
× 10−2

1.66006031250855
× 10−2

1.86128634500124
× 10−16

MSDE [75]

SDM - 7.7692 × 10−4 - - -

1.333DDM - 7.63 × 10−4 - - -
Photowatt-PWP201 - 1.7298 × 10−3 - - -

STM6-40/36 - 2.0529 × 10−3 - - -

FADE [76]
Photowatt-PWP201 0.0489237 2.42507 × 10−3 2.42507 × 10−3 2.42507 × 10−3 -

N/ASTM6-40/36 0.0219033 1.72981 × 10−3 1.72981 × 10−3 1.72981 × 10−3 -
STP6-120/36 0.3171278 1.66006 × 10−2 1.66006 × 10−2 1.66006 × 10−2 -

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.
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Tables 4 and 5 combine the essential information and numerical metrics of the PSO’s
variants. In the past five years, there have been numerous studies on PSO. Regarding
resource consumption, PSO-AEM has the lowest TNFES of 10,000, followed by PSOCS,
PSO, ELPSO, MPSO, SAIW-PSO, DEDIWPSO, PSO-ST, GCPSO, and PPSO. Regarding the
ranking of MIN RMSE metrics, DEDIWPSO is first, followed by PSO-ST, GCPSO, MPSO,
PPSO, and PSOCS. Although DEDIWPSO has the highest accuracy, it consumes massive
computational resources. Hence, a considerable reduction in computational resource
consumption while keeping accuracy constant is worthy of further research.

Table 4. PSOs’ essential information and metrics.

Method Main Contributors Case Algorithmic
Parameter

Indicator TNFES Run

PSO [79]

Ben et al., Laboratory of Electronics,
Signal Processing and Physical

Modeling, Faculty of Sciences of
Agadir Ibn Zohr University

SDM
NP = 50,

Iteration = 1000,
w = 0.4, c1 = c2 = 2

RMSE
IAE - -

PSO-AEM [80]
Ni et al., Institute of Equipment

Supervision and Inspection; Suzhou
Nuclear Power Research Institute

- NP = 50 - 10,000 -

MPSO [81]

Merchaoui et al., Electrical
Department, National Engineering

School of Monastir, University
of Monastir

SDM NP = 60,
Iteration = 2000,

w = 0.4,
c1 = c2 = 2

RMSE
IAE

- -
DDM

Photowatt-
PWP201

IFRI250-60

GCPSO [82]
Nunes et al., Department of

Electromechanical Engineering,
University of Beira Interior

SDM
NP = 20D,

Iteration = 10,000,
w = 0.55,

c1 = 1, c2 = 2

RMSE
SIAE

- 100

DDM
Photowatt-

PWP201
Sharp

ND-R250A5

ELPSO [83]
Rezaee et al., Department of Electrical
Engineering, Lashtenesha-Zibakenar

Branch, Islamic Azad University

SDM NP = 991, c1 = 1, c2 = 2
RMSE

IAE

101,000

30DDM NP = 1489, c1 = 1,
c2 = 2 151,500

STM6-40/36 NP = 991, c1 = 1, c2 = 2 101,000

SAIW-PSO [84]
Kiani et al., Department of Electrical

Engineering, University of
Engineering and Technology, Taxila

SDM NP = 100,
Iteration = 10,000, RMSE - 100

DDM

DEDIWPSO [85]
Kiani et al., Department of Electrical

Engineering, University of
Engineering and Technology, Taxila

SDM
NP = 100,

Iteration = 10,000,
winit = 0.8

RMSE
IAE

- 30
DDM

Photowatt-
PWP201

JKM330P-72

PPSO [86]
Gao et al., Department of Electrical

and Computer Engineering, National
University of Singapore

SDM DDM: NP = 6400,
Others: NP = 3200,

w = 0.5, c1 = 2.5,
c2 = 1.6

RMSE

640,000

30DDM 2,560,000
Photowatt-

PWP201 640,000

PSO-ST [87]
Kiani et al., Department of Electrical

Engineering, University of
Engineering and Technology, Taxila

SDM

NP = 100,
Iteration = 10,000,

RMSE
SIAE

- 30
DDM

Photowatt-
PWP201

JKM330P-72

PSOCS [88]
Fan et al., College of Electrical and

Electronic Engineering,
Wenzhou University

SDM

NP = 30 RMSE 20,000
30DDM

Photowatt-
PWP201

SM55
-KC200GT

ST40
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Table 5. PSOs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

MPSO [81]

SDM - 7.7301 × 10−4 - - -

4
DDM - 7.4444 × 10−4 - - -

Photowatt-PWP201 - 2.0530 × 10−3 - - -
IFRI250-60 - 7.5589 × 10−3 - - -

GCPSO [82]

SDM 0.01763274 7.730063 × 10−4 7.730063 × 10−4 7.730065 × 10−4 4.055839W-11

2.667
DDM 0.01637239 7.182745 × 10−4 7.301380 × 10−4 7.417141 × 10−4 5.371802 × 10−6

Photowatt-PWP201 0.04400032 2.046535 × 10−3 2.046535 × 10−3 2.046536 × 10−3 1.105194 × 10−10

Sharp ND-R250A5 0.21867809 7.697717 × 10−3 7.697717 × 10−3 7.697719 × 10−3 2.395516 × 10−10

ELPSO [83]
SDM - 7.7301 × 10−4 7.7314 × 10−4 7.7455 × 10−4 3.4508 × 10−7

N/ADDM - 7.4240 × 10−4 7.5904 × 10−4 7.9208 × 10−4 9.4291 × 10−6

STM6-40/36 - 2.1803 × 10−3 2.2503 × 10−3 3.7160 × 10−3 2.9211 × 10−4

SAIW-PSO [84]
SDM - 7.73006 × 10−4 7.73006 × 10−4 7.73006 × 10−4 5.49562 × 10−15

N/ADDM - 7.41937 × 10−4 7.42261 × 10−4 7.54275 × 10−4 1.41853 × 10−6

DEDIWPSO [85]

SDM - 7.730062 × 10−4 7.730062 × 10−4 7.730062 × 10−4 5.18668 × 10−15

1.5
DDM - 7.182306 × 10−4 7.187462 × 10−4 7.318100 × 10−4 2.486129 × 10−6

Photowatt-PWP201 - 2.03992 × 10−3 2.03992 × 10−3 2.03992 × 10−3 2.995389 × 10−15

JKM330P-72 - 4.3113 × 10−2 4.3113 × 10−2 4.3113 × 10−2 -

PPSO [86]
SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 7.0798 × 10−13

5.167DDM - 9.8248 × 10−4 9.8323 × 10−4 9.8602 × 10−4 1.3436 × 10−6

Photowatt-PWP201 - 2.4250 × 10−3 2.4250 × 10−3 2.4250 × 10−3 2.8947 × 10−13

PSO-ST [87]

SDM 0.0214710 7.73006 × 10−4 7.73006 × 10−4 7.73006 × 10−4 5.18622 × 10−15

1.833
DDM 0.0212734 7.183701 × 10−4 7.187382 × 10−4 7.218291 × 10−4 1.318531 × 10−6

Photowatt-PWP201 0.055499 2.03992 × 10−3 2.03992 × 10−3 2.03992 × 10−3 2.91529 × 10−15

JKM330P-72 - 4.3114 × 10−2 4.3114 × 10−2 4.3114 × 10−2 6.2983 × 10−17

PSOCS [88]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8603 × 10−4 1.7459 × 10−9

5.833

DDM - 9.8297 × 10−4 1.0286 × 10−3 1.4133 × 10−4 9.9217 × 10−5

Photowatt-PWP201 - 2.4251 × 10−3 2.4252 × 10−3 2.4282 × 10−3 5.9113 × 10−7

SM55 - 3.8067 × 10−3 - - -
KC200GT - 2.5402 × 10−2 - - -

ST40 - 7.3431 × 10−4 - - -

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

3.4. ABCs

ABC was designed with several key members: a nectar source, nectar, and three types
of bees [89]. The nectar amount from the flower represents the function value, and the
food location means the solution. The nectar source and employed and onlooker bees are
in quantity the same and the nectar source corresponds to the employed bees. Onlooker
bees rely on nectar and employed bees to find flowers, and scout bees randomly fly to seek
flowers near the hive [90].

In [91], the authors combined TLBO and ABC to design a method (TLABC) that
included three search phases. The employed bee stage combined a teaching mechanism, the
onlooker bee stage combined a learning mechanism, and the reconnaissance bee combined
a generalized reversal mechanism. In [92], Wu et al. designed a new ABC (ABCTRR)
by combining ABCs’ exploiting capability with the trust-region reflective technique’s
exploiting capability. In [93], a new algorithm (IABC) was designed to solve ABC’s early
convergence issue by dividing the employed bee into two parts, one unchanged and the
other searching the domain of the optimal global position. The identified parameters
illustrated the high accuracy of IABC. For the integration of exploitation and exploration
well, Tefek [94] combined ABC with a local search method to develop a new approach
(ABC-Ls). Comparison revealed that ABC-Ls were more accurate, faster, and more stable.
In [95], the authors compared ABC with PSO, showing that ABC outperformed PSO in all
aspects of the results. In [96], a fitness distance balance mechanism was applied to TLABC
to reconstruct a new method (FDB-TLABC). Experimental results confirmed the excellent
performance of FDB-TLABC.
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In Table 6, ABC-TRR has the least TNFES, followed by ABC, TLABC, IABC, ABC-
Ls, and FDB-TLABC. There is an order-of-magnitude difference in resource consumption
between ABC-TRR and the other variants of ABC. Table 7 compiles the experimental results.
FDB-TLABC ranks first in combined MIN RMSE, followed by ABC-Ls, ABC-TRR, and
TLABC. Therefore, achieving another increase in accuracy with less resource consumption
for ABC is a priority for future research.

3.5. GWOs

GWO is a population-based metaheuristic with only two parameters [97]. Chase,
encirclement, harassment, and attack are the hunt’s four phases. Based on wolf rank, four
types of wolves are included in GWO, with alpha being the strongest, followed by beta,
delta, and omega. Wolves’ mean solutions are in the solution space and are allowed to
reposition. GWO only keeps the three optimal solutions, with other wolves responsible for
position updating.

Table 6. ABCs’ essential information and metrics.

Method Main Contributors Case
Algorithmic
Parameter

Indicator TNFES Run

TLABC [91]
Chen et al., School of Electrical
and Information Engineering,

Jiangsu University

SDM NP = 50,
limit = 200,
scale factor

F = rand (0, 1)

RMSE
SIAE

50,000 30
DDM

Photowatt-
PWP201

ABC-TRR [92]
Wu et al., College of Physics and

Information Engineering,
Fuzhou University

SDM NP = 10,
limit = 10

RMSE
SIAE

1000

1000DDM NP = 10,
limit = 20 5000

Photowatt-
PWP201

NP = 10,
limit = 10 1000

IABC [93]
Xu et al., College of Mathematics

and Physics, Inner Mongolia
University for Nationalities

SDM
NP = 50,
limit = 50

RMSE
IAE

50,000 -
DDM

ABC-Ls [94]
Tefek et al., Department of

Computer Engineering, Osmaniye
Korkut Ata University

SDM NP = 100,
limit = 250

RMSE
IAE

50,000 30DDM NP = 100,
limit = 500

Photowatt-
PWP201

NP = 100,
limit = 250

Best-so-far
ABC [95]

Garoudja et al., Centre de
Développement des Technologies

Avancées, CDTA

SDM NP = 150,
limit = 750

RMSE 35,000 -LG395N2W

FDB-
TLABC [96]

Duman et al., Electrical
Engineering, Engineering and

Natural Sciences Faculty,
Bandirma Onyedi
Eylul University

SDM
NP = 50,

limit = 200,
scale factor

F = rand (0, 1)

RMSE
SIAE
MIAE

50,000 51
DDM 70,000 51

Photowatt-
PWP201 50,000 51

STM6-40/36 50,000 -
STP6-120/36 50,000 -
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Table 7. ABCs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

TLABC [92]
SDM 0.02152738 9.86022 × 10−4 9.98523 × 10−4 1.03970 × 10−3 1.86022 × 10−5

3.667DDM 0.00135397 9.84145 × 10−4 1.05553 × 10−3 1.05553 × 10−3 1.55034 × 10−4

Photowatt-PWP201 0.04880919 2.42507 × 10−3 2.42647 × 10−3 2.44584 × 10−3 3.99568 × 10−6

ABC-TRR [92]
SDM 0.02152687 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 6.15 × 10−17

3DDM 0.02127522 9.824849 × 10−4 9.825556 × 10−4 9.860219 × 10−4 4.95 × 10−7

Photowatt-PWP201 0.04892367 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 9.68 × 10−17

IABC [93] SDM - 9.8602 × 10−4 - - - N/A
DDM - 9.8248 × 10−4 - - -

ABC-Ls [94]
SDM - 9.8602 × 10−4 - - -

2DDM - 9.8257 × 10−4 - - -
Photowatt-PWP201 - 2.4251 × 10−4 - - -

Best-so-far
ABC [95]

SDM - 0.027 - - - N/ALG395N2W - 0.013 - - -

FDB-
TLABC [96]

SDM 0.017633 7.7301 × 10−4 - - -

1.333
DDM 0.017001 7.4194 × 10−4 - - -

Photowatt-PWP201 - 2.054 × 10−3 - - -
STM6-40/36 - 1.7319 × 10−3 - - -
STP6-120/36 - 1.4251 × 10−2 - - -

The “NA” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

Vinod et al. [98] pioneered the use of GWO for the SDM, and the results showed
that GWO had a high degree of accuracy. The study [99] found that more populations
performed better, so a multi-group grey wolf optimizer (MGGWO) was developed. The
results showed that MGGWO was excellent in speed and accuracy. A new GWO (OL-
BGWO) was designed in [100], which combined an orthogonal learning mechanism to
improve the local exploration capability of GWO. OLBGWO’s performance was evaluated
in different PV models, and the results showed its excellent speed and accuracy. In [101],
an improved GWO (I-GWO) was developed by introducing a hunting search mechanism
based on dimensional learning. Ramadan et al. [102] introduced a domain search strategy
to implement an improved GWO (IGWO) and demonstrated the algorithm’s accuracy in
two PV cases.

The relevant information and experimental results of the variants of GWO are sum-
marized in Tables 8 and 9. I-GWO has the lowest resource consumption, followed by
OLBGWO, GWO, MGGWO, and IGWO. Regarding overall accuracy ranking, OLBGWO
is first and I-GWO is second. It is worth noting that MGGWO achieves a MIN RMSE of
4 × 10−4 on the SDM, a value not performed by any of the other algorithms counted. Vari-
ants of GWO use more computational resources, so there is much room for improvement
in reducing the consumption of computational resources for GWO.

3.6. JAYAs

JAYA, which means victory in Sanskrit, combines survival of the fittest with the leader
leading the population [103]. A key feature of JAYA is that there are no control parameters
and no initial derivation information. When updating iteratively, the superior solution is
approached quickly, and the inferior solution is moved away quickly.
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Table 8. GWOs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

GWO [98]

Vinod et al., Department of Electrical
Engineering, Speciality of Optmization
in Engineering, National Institute of

Technology, Silchar, India

SDM NP = 50 RMSE, IAE 50,000 -

MGGWO [99]
AlShabi et al., Mechanical and Nuclear
Engineering Department, University

of Sharjah, Sharjah, UAE
SDM NP = 20 RMSE, MIAE 1,000,000 -

OLBGWO [100] Xavier et al., Bule Hora University

SDM
NP = 30, Orthogonal
experiment levels: 3,

Orthogonal experiment
factors: 4

RMSE
SIAE
WRT

30,000 30

DDM
Photowatt-

PWP201
ST40

KC200GT

I-GWO [101]

Yesilbudak, Department of Electrical
and Electronics Engineering, Faculty

of Engineering and Architecture,
Nevsehir Haci Bektas V eli University

SDM

NP = 15 RMSE
IAE

25,000 50
DDM
TDM

Photowatt-
PWP201

IGWO [102]
Ramadan et al., Department of

Electrical Engineering, Faculty of
Engineering, Aswan University

TDM NP = 1000,
Iteration = 5000,

r1 = rand, r2 = rand
RMSE - 30Photowatt-

PWP201

Table 9. GWOs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

GWO [98] SDM - 9.94378 × 10−4 - - - N/A

MGGWO [99] SDM - 4 × 10−4 - - - N/A

OLBGWO [100]

SDM - 9.86 × 10−4 9.86 × 10−4 9.86 × 10−4 1.4 × 10−8

1.333
DDM - 9.83 × 10−4 9.85 × 10−4 9.86 × 10−4 1.78 × 10−6

Photowatt-PWP201 - 2.4 × 10−3 2.4 × 10−3 2.4 × 10−3 2.4284 × 10−9

ST40 - 9.5666 × 10−4 - - -
KC200GT - 2.48 × 10−2 - - -

I-GWO [101]

SDM 0.02152728 9.8602 × 10−4 - - -

1.667
DDM 0.02127500 9.824852 × 10−4 - - -
TDM 0.02128348 9.8251 × 10−4 - - -

Photowatt-PWP201 0.04892353 2.425075 × 10−3 - - -

IGWO [102]
TDM - 9.8331 × 10−4 9.84 × 10−4 9.85 × 10−4 6.60404 × 10−7

N/APhotowatt-PWP201 - 2.4276291 × 10−3 2.432 × 10−3 2.438 × 10−3 5.26003 × 10−6

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

In [104], the authors designed an improved JAYA (IJAYA) that adaptively adjusted
weights and optimized the algorithm performance using chaotic elite learning methods.
IJAYA showed highly competitive performance in several PV models with excellent accu-
racy and reliability. An improved JAYA (EOJAYA) was developed in [105] by introducing
an elite opposition mechanism to modify the update scheme. In [106], the Nelder-Mead
algorithm was introduced to boost JAYA and this method’s effectiveness was verified well
in the SDM. In [107], a PGJAYA was designed to digitize the performance of individuals
in a probabilistic manner as a guide to improve the search method. Adaptive chaotic
perturbation techniques were employed to elevate the solution’s overall quality. The PV
model parameters estimated by PGJAYA proved its accuracy and robustness. Luu and
Nguyen [108] introduced an adaptive population size mechanism to form a modified JAYA
(MJA), and verified its performance and feasibility in the SDM and DDM. Jian et al. [109]
developed a modified JAYA (LCJAYA) by introducing a logical chaotic mapping mecha-
nism and a chaotic mutation mechanism in the update phase and search strategy of JAYA,
respectively. LCJAYA’s reliability and accuracy was verified in different PV cases. In [110],
a simple improved JAYA (CLJAYA) was designed by integrating learning techniques, and
its efficiency and accuracy was demonstrated in benchmark functions and PV models.
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In [111], the authors improved a new JAYA (EJAYA) using an adaptive operator mech-
anism, a population size adjustment mechanism, and an opposition learning technique.
The extraction of PV parameters demonstrated the effectiveness of EJAYA under different
conditions. An enhanced chaotic JAYA (CJAYA) was developed in [112] by introducing an
adaptive weighting strategy and three chaotic mechanisms including sine, tent, and logistic
mappings. Saadaoui et al. [113] improved JAYA (MLJAYA) through three techniques: adap-
tive weighting, multiple learning, and chaotic perturbation. Jian and Cao [114] developed
a chaotic second-order oscillation JAYA (CSOOJAYA) by using second-order oscillation
factors, chaotic logistic mapping, and a mutation mechanism. The behavior of CSOOJAYA
in solving the studied issue was demonstrated with good reliability and accuracy.

The essential information and experimental results of the variants of JAYA are sum-
marized in Tables 10 and 11. Among them, the TNFES of EJAYA ranks first with 30,000,
followed by CLJAYA, IJAYA, PGJAYA, LCJAYA, CJAYA, CSOOJAYA, EO-Jaya, and Jaya-NM.
Regarding overall accuracy ranking, CLJAYA ranks first, followed by LCJAYA, EJAYA, ML-
JAYA, PGJAYA, CSOOJAYA, and IJAYA in order. In terms of computational resources, the
JAYA variants consume more. Regarding specific values of FT, the difference between most
variants is small, so further research on JAYA could go towards reducing the consumption
of computational resources.

Table 10. JAYAs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

IJAYA [104] Yu et al., School of Electrical
Engineering, Zhengzhou University

SDM

NP = 20 RMSE
IAE

50,000 30DDM
Photowatt-

PWP201

EO-Jaya [105]
Wang et al., Department of Systems

Engineering and Engineering
Management, City University of

Hong Kong

SDM

NP = 150 RMSE 1,500,000 50DDM

Jaya-NM [106]

Luo et al., School of Computer and
Communication Engineering,

University of Science and Technology
Beijing (USTB)

SDM NP = 150 RMSE 1,500,000 -

PGJAYA [107] Yu et al., School of Electrical
Engineering, Zhengzhou University

SDM

NP = 20 RMSE 50,000 30DDM
Photowatt-

PWP201

MJA [108]
Luu et al., Faculty of Electronics

Technology, Industrial University of
Ho Chi Minh City

SDM
NPinit = 10D, NPmin = D,

r = rand (−0.5, 0.5), RMSE - 30DDM

LCJAYA [109]
Jian et al., School of Optical Electrical

and Computer Engineering, University
of Shanghai for Science

and Technology

SDM

NP = 20 RMSE 50,000 30DDM
Photowatt-

PWP201

CLJAYA [110]
Zhang et al., School of Electrical and

Information Engineering,
Tianjin University

SDM

NP = 20 RMSE
MIAE

20,000
-DDM 50,000

Photowatt-
PWP201 30,000

EJAYA [111]
Yang et al., School of Computer

Science, China University
of Geosciences

SDM

NP = 30,
rate Ra = 0.3

RMSE
WST

30,000 30

DDM
Photowatt-

PWP201
STM6-40/36
STP6-120/36

CJAYA [112]
Premkumar et al., Department of

Electrical and Electronics Engineering,
GMR Institute of Technology

SDM NP = 30
RMSE

IAE
WST

50,000 30DDM NP = 50
STM6-40/36 NP = 80
STP6-120/36 NP = 80

MLJAYA [113]
Saadaoui et al., Laboratory of Materials

and Renewable Energies, Faculty of
Science, Ibn Zohr University

SDM
NP = 30, F = 3randn RMSE

SIAE
- 30DDM

Photowatt-
PWP201

CSOOJAYA [114]
Jian et al., School of Optical Electrical

and Computer Engineering, University
of Shanghai for Science

and Technology

SDM

NP = 20 RMSE
IAE

50,000 30DDM
Photowatt-

PWP201
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Table 11. JAYAs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

IJAYA [104]
SDM - 9.8603 × 10−4 9.9204 × 10−4 1.0622 × 10−3 1.4033 × 10−5

6.5DDM - 9.8293 × 10−4 1.0269 × 10−3 1.4055 × 10−3 9.8325 × 10−5

Photowatt-PWP201 - 2.4251 × 10−3 2.4289 × 10−3 2.4393 × 10−3 3.7755 × 10−6

EO-Jaya [105] SDM - 9.8603 × 10−4 - - - N/A
DDM - 9.8262 × 10−4 - - -

Jaya-NM [106] SDM - 9.8602 × 10−4 - - - N/A

PGJAYA [107]
SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 1.4485 × 10−9

3.833DDM - 9.8263 × 10−4 9.8582 × 10−4 9.9499 × 10−4 2.5375 × 10−6

Photowatt-PWP201 - 2.425075 × 10−3 2.425144 × 10−3 2.426764 × 10−3 3.071420 × 10−7

MJA [108] SDM - 9.860218 × 10−4 9.860218 × 10−4 9.860218 × 10−4 1.99 × 10−17
N/A

DDM - 9.824848 × 10−4 9.8260 × 10−4 9.860218 × 10−4 6.46 × 10−7

LCJAYA [109]
SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 5.6997 × 10−16

3.5DDM - 9.8250 × 10−4 9.8308 × 10−4 9.8602 × 10−4 1.3118 × 10−6

Photowatt-PWP201 - 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.415229 × 10−16

CLJAYA [110]
SDM - 9.8602 × 10−4 - - -

3.167DDM - 9.8249 × 10−4 - - -
Photowatt-PWP201 - 2.425075 × 10−3 - - -

EJAYA [111]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 6.80 × 10−17

3.5
DDM - 9.8248 × 10−4 9.8448 × 10−4 9.8602 × 10−4 1.51 × 10−6

Photowatt-PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−4 6.39 × 10−17

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.47 × 10−17

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.68 × 10−16

CJAYA [112]

SDM - 9.8625 × 10−4 9.8878 × 10−4 9.8991 × 10−4 4.5584 × 10−8

N/A
DDM - 1.0145 × 10−3 1.01458 × 10−3 1.0365 × 10−3 7.5514 × 10−5

STM6-40/36 - 1.7242 × 10−3 1.7289 × 10−3 1.7845 × 10−3 1.4751 × 10−7

STP6-120/36 - 1.6285 × 10−2 1.6299 × 10−2 1.6302 × 10−2 3.2565 × 10−7

MLJAYA [113]
SDM 0.01781248 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 -

3.667DDM 0.0176 9.8294 × 10−4 1.0618 × 10−3 1.42102 × 10−3 -
Photowatt-PWP201 0.04686375 2.4250748 × 10−3 2.44395 × 10−3 2.49419 × 10−3 -

CSOOJAYA [114]
SDM - 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 4.717305 × 10−17

3.833DDM - 9.824849 × 10−4 9.824849 × 10−4 9.824849 × 10−4 5.576332 × 10−17

Photowatt-PWP201 - 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.699858 × 10−17

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

3.7. TLBOs

TLBO is a group metaheuristic developed based on the influence of teachers on
students [115]. TLBO assumes that student outcomes are related to teacher competence.
As the best in the group, the teacher teaches the students and raises the group’s average
achievement by a random factor. Students learn from each other at random coefficients
during the learning phase and are led by the better of the two at random.

Chen et al. [116] suggested a generalized opposition-based learning mechanism for
TLBO (GOTLBO). GOTLBO was demonstrated with excellent performance in benchmark
functions and parameter extraction cases. To target different stages’ effectiveness, Yu
et al. [117] developed a self-adaptive TLBO (SATLBO) concerning elite learning mechanisms
in the teacher stage and diverse learning mechanisms in the learner stage. SATLBO achieved
competitive RMSE values in several PV models. Ramadan et al. [118] developed an
enhanced TLBO (ETLBO) with controlled parameters replacing random parameter values
and highlighted its effectiveness and competitiveness by extracting PV model parameters.
Xiong et al. [21] developed an either/or TLBO (EOTLBO). To improve the generalizability
of the method, EOTLBO replaced the mean with the learner median at the teacher stage. A
random learner was added to the EOTLBO at the learner stage to improve the exploration
capacity. The authors argued that it was inefficient for individuals to go through both
teacher and learner stages, so EOTLBO implemented an either/or mechanism to choose
one stage based on a chaotic map. EOTLBO showed excellent competitiveness, accuracy,
and reliability. Abdel-Basset et al. [119] designed a modified TLBO (MTLBO). Individuals
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in both stages were divided into three strata of ground performance. Individual updates
within each stratum did not interfere with each other. MTLBO was demonstrated with
high accuracy in five PV models. Li et al. [120] developed an optimized TLBO (DMTLBO).
The authors introduced the idea of dynamic self-adaption to the teacher stage and the idea
of inter-comparison to the learner stage to further explore the capabilities of each stage.
DMTLBO’s accuracy, speed, and competitiveness were confirmed in different cases.

The essential information and experimental results of the TLBO variants are summa-
rized in Tables 12 and 13. In the crucial information, GOTLBO has the least computational
resources, followed by EOTLBO, SATLBO, MTLBO, DMTLBO, and ETLBO. In the accuracy
ranking, EOTLBO comes first, followed by DMTLBO, MTLBO, and SATLBO. GOTLBO
and ETLBO are not included because of missing values for some of the selected cases in
the ranking. A direct comparison of the values in Table 13 reveals that the MIN RMSE of
GOTLBO and ETLBO, which are early variants, struggle to outperform the other TLBO
variants of recent years. An upward trend in the improvement of TLBO can be observed.
However, the consumption of computational resources, unlike the development of accu-
racy, does not decrease significantly with the approaching number of years. Therefore, a
reduction in the use of computational resources needs to be considered in future studies
of TLBO.

Table 12. TLBOs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

GOTLBO [116] Chen et al., School of Electrical and
Information Engineering,

Jiangsu University

SDM NP = 20, SDM: Jr = 0.1,
DDM: Jr = 0 RMSE 10,000 30DDM 20,000

SATLBO [117]

Yu et al., Key Laboratory of Advanced
Control and Optimization for

Chemical Processes, Ministry of
Education, East China University of

Science and Technology

SDM

NP = 40 RMSE 50,000 30DDM
Photowatt-PWP201

ETLBO [118]
Ramadan et al., Department of

Electrical Engineering, Faculty of
Engineering, Aswan University

SDM
NP = 200,

Iteration = 5000,
RMSE

IAE
- -DDM

STM6-40/36
STP6-120/36

EOTLBO [21]
Xiong et al., Guizhou Key Laboratory

of Intelligent Technology in Power
System, College of Electrical

Engineering, Guizhou University

SDM

NP = 50
RMSE
WRT

FT
20,000 50DDM

Photowatt-PWP201
Sharp ND-R250A5

MTLBO [119]
Abdel-Basset et al., Faculty of
Computers and Informatics,

Zagazig University

SDM

NP = 50 RMSE 50,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

DMTLBO [120]

Li et al., Guizhou Key Laboratory of
Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM

NP = 50 RMSE
SIAE

50,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36
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Table 13. TLBOs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

GOTLBO [116] SDM - 9.87442 × 10−4 1.33488 × 10−3 1.98244 × 10−3 2.99407 × 10−4
N/A

DDM - 9.83177 × 10−4 1.24360 × 10−3 1.78774 × 10−3 2.09115 × 10−4

SATLBO [117]
SDM - 9.86022 × 10−4 9.87795 × 10−4 9.94939 × 10−6 2.30015 × 10−6

3.667DDM - 9.828037 × 10−4 9.981111 × 10−4 1.047045 × 10−3 1.951533 × 10−5

Photowatt-PWP201 - 2.425075 × 10−3 2.425428 × 10−3 2.429130 × 10−3 7.410517 × 10−7

ETLBO [118]

SDM - 9.86022 × 10−4 - - -

N/A
DDM - 9.8241 × 10−4 - - -

STM6-40/36 - 1.7759 × 10−3 - - -
STP6-120/36 - 1.6172 × 10−2 - - -

EOTLBO [21]

SDM - 9.86021878 × 10−4 9.86021878 × 10−4 9.86021878 × 10−4 4.12665088 ×
10−17

1.667DDM - 9.82484852 × 10−4 9.84733697 × 10−4 9.89424104 × 10−4 1.69176118 × 10−6

Photowatt-PWP201 - 2.42507487 × 10−3 2.42507487 × 10−3 2.42507487 × 10−3 3.61995116 ×
10−17

Sharp ND-R250A5 - 1.11833356 × 10−2 1.11839904 × 10−2 1.12154997 × 10−2 4.54767027 × 10−6

MTLBO [119]

SDM - 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 1.9292748 × 10−17

2.667
DDM - 9.824849 × 10−4 9.824855 × 10−4 9.825026 × 10−4 3.3000000 × 10−9

Photowatt-PWP201 - 2.4250749 × 10−3 2.4250749 × 10−3 2.4250749 × 10−3 1.3070107 × 10−17

STM6-40/36 - 1.7298137 × 10−3 1.7298137 × 10−3 1.7298137 × 10−3 5.9363718 × 10−18

STP6-120/36 - 1.66006031 × 10−2 1.66006031 × 10−2 1.66006031 × 10−2 8.0041380 × 10−17

DMTLBO [120]

SDM 0.0178 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.07 × 10−17

2
DDM 0.0176 9.8248 × 10−4 9.8406 × 10−4 9.8638 × 10−4 1.53 × 10−6

Photowatt-PWP201 0.0411 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 2.15 × 10−17

STM6-40/36 0.0215 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 5.74 × 10−14

STP6-120/36 0.2741 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 4.55 × 10−10

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

3.8. WOAs

WOA consists of an attack prey phase responsible for exploitation and a search prey
phase responsible for exploration [121,122]. The bubble net attack consists of two mech-
anisms, i.e., encircling prey and spiral update position, both of which have the same
probability of being selected. The encircling prey mechanism can determine any position
between the present and best individuals within a specific range related to the parameter a,
which decreases from 2 to 1 as the optimization proceeds. In the spiral position update, the
individual’s position is determined by the spiral equation between the whale and the prey.
In the search phase, individuals are updated similarly to the encircling prey mechanism,
except that a random individual replaces the optimal individual.

An improved WOA (IWOA) was developed in [123] to address the premature conver-
gence of WOA. IWOA adjusted the encircling prey mechanism and modified the updating
search phase to enhance the exploration, diversity, and robustness. Experiments in different
PV models showed that IWOA extracted parameters with fast convergence, high quality,
good robustness, and competitiveness. In [124], Elazab et al. pioneered the application
of WOA to this studied problem. Comparisons with other algorithms demonstrated that
WOA can fit PV data more accurately. To further enhance the ability of WOA to cope
with the studied problem, Xiong et al. [18] developed a variant of WOA (MCSWOA) by
modifying the search strategy of WOA using DE’s mutation equation. A crossover op-
erator was designed to improve the algorithm’s applicability in different dimensions. A
selection operator was designed to ensure that the optimization process would not worsen
at any time. The perfect convergence curves, RMSE values, SIAE values, and ranking
indicated that MCSWOA was characterized by high accuracy, competitiveness, and fast
convergence. Pourmousa et al. [125] designed a Springy WOA (SWOA) by adding a
deletion stage to the WOA. Peng et al. [126] developed a new approach (ISNMWOA) by
combining the Nelder-Mead simplex technique with WOA. The results demonstrated that
ISNMWOA’s performance was significantly higher than WOA and it ran faster than other
high-performance methods.
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The essential information and experimental results of the variants of GWO are sum-
marized in Tables 14 and 15. WOA has the least computational resources, followed by
ISNMWOA, MCSWOA, IWOA, and SWOA, in order. In Table 15, SWOA has the highest
overall MIN RMSE ranking, followed by ISNMWOA, IWOA, and MCSWOA. SWOA has
high accuracy but consumes a lot of computational resources, with 5000 iterations at a
population size of 30. The accuracy of ISNMWOA is close to that of SWOA, and TNFES at
20,000 is much lower than SWOA but still needs further improvement.

Table 14. WOAs’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

WOA [124]
Elazab et al., Electrical Power and
Machines Department, Faculty of

Engineering, Ain Shams University
KC200GT NP = 30,

Iteration = 500, - 15,000 -

IWOA [123]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM
NP = 50,

Iteration = 2000,
RMSE
SIAE

WRT, FT
- 50DDM

Photowatt-PWP201

MCSWOA [18]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of
Electrical Engineering,

Guizhou University

SDM

NP = 50
RMSE
SIAE

FT
50,000 50

DDM
Photowatt-PWP201

STM6-40/36
STP6-120/36

Sharp ND-R250A5

SWOA [125]
Pourmousa et al., Department of

Electrical Engineering, Iran University
of Science and Technology

SDM
NP = 30,

Iteration = 5000,
RMSE

IAE
- 30DDM

TDM
Photowatt-PWP201

ISNMWOA [126]
Peng et al., Department of Computer

Science and Artificial Intelligence,
Wenzhou University

SDM

NP = 30 RMSE
SIAE

20,000 -DDM
TDM

Photowatt-PWP201

Table 15. WOAs’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

IWOA [123]
SDM 0.01770338 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 5.12 × 10−16

2.667DDM 0.01735511 9.824849 × 10−4 9.826140 × 10−4 9.860219 × 10−4 9.86 × 10−5

Photowatt-
PWP201 0.04176116 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.90 × 10−17

MCSWOA [18]

SDM 0.01770381 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 4.8373 × 10−10

3.167

DDM 0.01730633 9.8250 × 10−4 1.0078 × 10−3 1.1903 × 10−3 3.7264 × 10−5

Photowatt-
PWP201 0.04178694 2.4251 × 10−3 2.4252 × 10−3 2.4270 × 10−3 3.2927 × 10−7

STM6-40/36 0.02177346 1.7298 × 10−3 1.7311 × 10−3 1.7364 × 10−3 1.0774 × 10−6

STP6-120/36 0.27780418 1.6601 × 10−2 1.6632 × 10−2 1.6741 × 10−2 2.6486 × 10−5

Sharp ND-R250A5 0.21759970 1.1183 × 10−2 1.1187 × 10−2 1.1244 × 10−2 9.1358 × 10−6

SWOA [125]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 -

2
DDM - 9.8249 × 10−4 9.8250 × 10−4 9.8251 × 10−4 -
TDM - 9.8033 × 10−4 9.8051 × 10−4 9.8154 × 10−4 -

Photowatt-
PWP201 - 2.4250 × 10−3 2.4250 × 10−3 2.4250 × 10−3 -

ISNMWOA [126]

SDM 0.021527008 9.8602 × 10−4 - - -

2.167
DDM 0.021275213 9.8248 × 10−4 - - -
TDM 0.021275347 9.8248 × 10−4 - - -

Photowatt-
PWP201 0.048923833 2.4251 × 10−3 - - -

3.9. Hybrids

The above methods used for the studied problem are partially dominated by a single
metaheuristic algorithm. In addition to them, hybrid approaches that combine two and
more metaheuristics are also popular for solving this problem. The motivation behind the

311



Sustainability 2023, 15, 3312

hybrid approaches is integrating diverse features of different algorithms to equilibrate the
global and local search abilities.

In [127], Xiong et al. devised an approach (DE/WOA) that took full advantages
of DE and WOA to balance diversity and convergence. Long et al. [128] developed an
approach (GWOCS) introducing the opposing learning mechanism of cuckoo search (CS)
for the three optimal individuals preserved by GWO to achieve improved performance.
The results of benchmark functions and PV models supported the authors’ expectations
of performance improvement. Rizk et al. [129] developed a new method (PSOGWO) by
mixing GWO and PSO to make full use of their exploration and exploitation advantages.
Different PV models demonstrated the excellent performance of PSOGWO. Li et al. [130]
designed a DE-based adaptive TLBO (ATLDE) by mixing DE with TLBO and adjusting the
teaching and learning stages using a ranking probability mechanism. Experimental results
supported ATLDE’s competitiveness. In [131], the authors effectively combined DE with
Harris Hawks Optimization (HHO) to form a new method (HHODE), and demonstrated
the effectiveness of the improvement using RMSE values for the extracted PV parameters.
Yu et al. [132] devised a new method (HAJAYADE) by replacing the two parameters of JAYA
adaptively. Then, the method combined DE and introduced a mutational operator and an
adaptive chaos mechanism to ensure its performance. Devarapalli et al. [133] improved the
updated approach of a hybrid of GWO and sine cosine algorithm (HGWOSCA) to gain an
enhanced method (EHGWOSCA). Singh et al. [47] hybridized the Dingo Optimizer and
PSO to form a new hybrid algorithm (HPSODOX) and developed a four-diode PV model
to reveal HPSODOX’s performance. The results supported the validity of the algorithm
improvement. Weng et al. [134] integrated a Backtracking Search Algorithm with TLBO to
form a new method (TLBOABC) and verified the method’s effectiveness well.

The essential information and experimental results of the hybrid methods are summa-
rized in Tables 16 and 17. TLBOBSA has the lowest computational resource consumption,
followed by ATLDE, DE/WOA, GWOCS, and HAJAYADE. TLBOBSA has the highest over-
all ranking for MIN RMSE, followed by DE/WOA, HAJAYADE, and GWOCS. TLBOBSA
ranks the highest in resource consumption and accuracy, indicating that a suitable hybrid
scheme can achieve significant performance. It should be noted that the MIN RMSE of
HPSODOX, although very small, needs more basic information, and there are no repeated
runs for the experiment, so it is impossible to evaluate the performance of this method for
the time being.

3.10. Others

New methods usually lead to breakthroughs in specific problems, since they bring dif-
ferent search mechanisms. Therefore, researchers favor novel approaches and their variants
in exploring the PV model parameter extraction, and have provided some new approaches.

Naeijian et al. [135] developed a Whippy Harris Hawk Optimization (WHHO) that
handled the worst individual by adding elimination cycles to improve all-around perfor-
mance. The simulation results demonstrated the fast convergence of WHHO and the high
robustness and accuracy for the extracted parameters. Xiong et al. [4] used a Gaining-
Sharing Knowledge-based algorithm (GSK) for the issue addressed in this work for the
first time. They demonstrated the high accuracy, robustness, and competitiveness of GSK
in different PV models. Sallam et al. [136] developed an improved GSK (IGSK) using a
boundary constraint processing mechanism, a linear population size reduction technique,
and knowledge rate adaptive technology. Xiong et al. [137] applied Supply and Demand
Based Optimization (SDO) and pioneered a comparison between SDO and several ad-
vanced methods in extracting PV model parameters, which powerfully demonstrated the
feasibility and competitiveness of SDO. Diad et al. [138] used a Tree Growth Algorithm
(TGA) to tackle the issue, and the RMSE values showed the TGA’s good accuracy. Abbassi
et al. [139] provided PV model parameters extracted by a Salp Swarm Algorithm (SSA) and
demonstrated its accuracy and competitiveness with multiple metrics. Sharma et al. [140]
solved this problem using Tunicate Swarm Algorithm (TSA) and verified TSA’s accuracy,
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feasibility, and competitiveness with simulations. Gupta et al. [141] designed a chaotic
TSA (CTSA) to tackle the issue, and the results supported its accuracy and competitiveness.
Ramadan et al. [142] developed Chaotic Game Optimization (CGO) for the issue and con-
firmed its good performance. Long et al. [143] designed a Hybrid Seagull Optimization
(HSOA) with three mechanisms, differential mutation, memory-guided and non-linear
control, and tested it in different PV models. Shaban et al. [144] employed Rungakuta
Optimizer (RUN) to tackle the issue. The simulation results demonstrated RUN’s excel-
lent competitiveness, convergence, and robustness. In [145], the authors used a Flower
Pollination Optimization Algorithm (FPOA) for the TDM’s parameters with industrial
samples. The results supported the high-performance of FPOA in the TDM. In [146], the
authors used the Symbiotic Organisms Search (SOS) method to tackle the issue. The results
powerfully demonstrated the superiority of SOS.

Table 16. Hybrids’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

DE/WOA [127]
Xiong et al., Guizhou Key Laboratory

of Intelligent Technology in Power
System, College of Electrical

Engineering, Guizhou University

SDM NP = 40,
F = rand (0.1, 1),
CR = rand (0, 1)

RMSE
MIAE

50,000 50DDM
Photowatt-PWP201

GWOCS [128]
Long et al., Key Laboratory of
Economics System Simulation,
Guizhou University of Finance

and Economics

SDM

NP = 30
RMSE

IAE
FT

50,000 30DDM
Photowatt-PWP201

STM6-40/36

PSOGWO [129]
Rezk et al., College of Engineering at
Wadi Addawaser, Prince Sattam Bin

Abdulaziz University

Photowatt-PWP201 Iteration = 1200
RMSE
MIAE

- -STE4/100 Iteration = 6000
FSM Iteration = 2000

ATLDE [130] Li et al., School of Computer Science,
China University of Geosciences

SDM
NP = 50,
F = rand,
CR = 0.9

RMSE
SIAE
WRT

30,000 30DDM
STM6-40/36
STP6-120/36

HHODE [131]
Ndi et al., Technology and Applied

Sciences Laboratory, University
of Douala

SDM Iteration = 3000 RMSE - 20DDM

HAJAYADE [132]

Yu et al., School of Management
Science and Engineering, Nanjing
University of Information Science

and Technology

SDM

NP = 20,
CR = 0.5

RMSE
WST

50,000 30
DDM

Photowatt-PWP201
STM6-40/36
STP6-120/36

EHGWOSCA [133]
Devarapalli et al., Department of EEE,

Lendi Institute of Engineering
and Technology

SDM

Iteration = 500 ERR - 30
DDM

Shell S75
Shell CS6K280M

Shell ST40

HPSODOX [47]
Singh et al., Electrical and

Instrumentation Engineering
Department, Thapar Institute of

Engineering and Technology

SDM
- RMSE

FT
- -DDM

TDM
FDM

TLBOBSA [134]
Weng et al., Department of Computer

Science and
Artificial Intelligence,
Wenzhou University

SDM

NP = 30 RMSE
SIAE

20,000 30DDM
TDM

Photowatt-PWP201
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Table 17. Hybrids’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

DE/WOA [127]

SDM 0.01770392 9.860219 ×
10−4

9.860219 ×
10−4

9.860219 ×
10−4 3.545178 × 10−17

2.333DDM 0.01731808 9.824849 ×
10−4

9.829703 ×
10−4

9.860377 ×
10−4 9.152178 × 10−7

Photowatt-
PWP201 0.04178725 2.425075 ×

10−3
2.425092 ×

10−3
2.425442 ×

10−3 6.270718 × 10−8

GWOCS [128]

SDM - 9.8607 × 10−4 9.8874 × 10−4 9.9095 × 10−4 2.4696 × 10−6

3.5
DDM - 9.8334 × 10−4 9.9411 × 10−4 1.0017 × 10−3 9.5937 × 10−6

Photowatt-
PWP201 - 2.4251 × 10−3 2.4261 × 10−3 2.4275 × 10−3 1.1967 × 10−6

STM6-40/36 - 1.7337 × 10−3 1.7457 × 10−3 1.7528 × 10−3 1.0447 × 10−5

PSOGWO [129]

Photowatt-
PWP201 0.06292 3.06 × 10−3 - - -

N/ASTE4/100 0.00384 3.0574 × 10−4 - - -
FSM 0.16023 9.14 × 10−3 - - -

ATLDE [130]
SDM 0.0177 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.44 × 10−17

N/ADDM 0.0173 9.8218 × 10−4 9.8372 × 10−4 9.8603 × 10−4 1.37 × 10−6

STM6-40/36 0.0218 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 8.22 × 10−18

STP6-120/36 0.2780 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.02 × 10−16

HHODE [131] SDM - 1.4664 × 10−3 - - - N/A
DDM - 1.5978 × 10−3 - - -

HAJAYADE [132]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 0

2.833

DDM - 9.8294 × 10−4 9.8641 × 10−4 9.96 × 10−4 2.8534 × 10−6

Photowatt-
PWP201 - 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 3.2215 × 10−15

STM6-40/36 - 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 3.6569 × 10−16

STP6-120/36 - 1.6601 × 10−2 1.6601 × 10−2 1.6606 × 10−2 9.2421 × 10−7

HPSODOX [47]

SDM - 6.4923 × 10−9 - - -

N/A
DDM - 6.5120 × 10−9 - - -
TDM - 6.5424 × 10−9 - - -
FDM - 6.5656 × 10−9 - - -

TLBOBSA [134]

SDM 0.021526887 9.86902 × 10−4 9.8602 × 10−4 9.8603 × 10−4 5.64965 × 10−10

1.667
DDM 0.021312577 9.8155 × 10−4 1.1334 × 10−3 2.2181 × 10−3 3.0012 × 10−4

TDM 0.021263898 9.82553 × 10−4 1.2081 × 10−3 3.0608 × 10−3 4.9433 × 10−4

Photowatt-
PWP201 0.048923676 2.42507 × 10−3 2.42535 × 10−3 2.43167 × 10−3 1.21238 × 10−6

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

Most of the above methods are applications of newly proposed metaheuristics in recent
years, and their essential information and experimental results are summarized in Tables 18
and 19. SSA has the smallest TNFES, followed by IGSK, RUN, GSK, SDO, TSA, HSOA,
CTSA, SOS, WHHO, and TGA. WHHO and TGA achieve the same combined MIN RMSE
ranking, followed by GSK, IGSK, HSOA, and SOS, in that order. It is worth noting that
RUN, as the original algorithm, obtained more accurate parameter values with not many
computational resources. TGA achieved the most efficient MIN RMSE values for DDM
and TDM, and GSK received enough accuracy to compare with many advanced algorithms
with not many computational resources. This suggests that exploring the application of
new methods may make it easier to achieve a solution to the issue.
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Table 18. Other methods’ essential information and metrics.

Method Main Contributors Case Algorithmic Parameter Indicator TNFES Run

WHHO [135]
Naeijian et al., Department of
Electrical Engineering, Babol

Noshirvani University of Technology

SDM
NP = 30,

Iteration = 5000,
RMSE

IAE
- 30DDM

TDM
Photowatt-PWP201

GSK [4]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM
NP = 30,

kr = 0.9, kf = 0.5, K = 10,
p = 0.1

RMSE
SIAE

FT

30,000

30
DDM 50,000

Photowatt-PWP201 30,000
STM6-40/36 30,000
STP6-120/36 30,000

IGSK [136]
Sallam et al., The Faculty of
Computers and Information,

Zagazig University

SDM
NPinit = 25,

kr = 0.9, kf = 0.5, K = 10,
p = 0.1

RMSE
WST

10,000

30
DDM 20,000

Photowatt-PWP201 10,000
STM6-40/36 15,000
STP6-120/36 15,000

SDO [137]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM

NP = 20
RMSE
SIAE
WRT

FT

50,000 50
DDM

PVM 752 GaAs
STM6-40/36
STP6-120/36

TGA [138]
Diab et al., Electrical Engineering

Department, Faculty of Engineering,
Minia University

SDM

NP = 500,
Iteration = 500, RMSE - -

DDM
TDM

PVM 752 GaAs
Photowatt-PWP201

STE 20/100

SSA [139]
Abbassi et al., University of Kairouan,

Institute of Applied Sciences and
Technology of Kasserine (ISSATKas)

TITAN-12-50 NP = 30,
Iteration = 100,

RMSE
IAE - 30

TSA [140]
Sharma et al., Research and

Development Department, University
of Petroleum and Energy Studies

Photowatt-PWP201 NP = 30 RMSE,
SIAE, FT 50,000 30

CGO [142]
Ramadan et al., Department of

Electrical Engineering, Faculty of
Engineering, Aswan University

TDM Iteration = 1000 RMSE
IAE

- 15Photowatt-PWP201

HSOA [143]
Long et al., Key Laboratory of
Economics System Simulation,
Guizhou University of Finance

and Economics

SDM NP = 30,
fcmax = 2, fcmin = 0,

F = 0.5

RMSE
SIAE

FT
50,000 20DDM

Photowatt-PWP201

RUN [144] Shaban et al., Faculty of Computers
and Information, Minia University

SDM NP = 30,
Iteration = 1000,

a = 20, b = 12

RMSE
IAE
FT

- 30DDM
TDM

FPOA [145]
Chellaswamy et al., Department of
ECE, Lords Institute of Engineering

and Technology
Sample2, Sample5 β = 1.45, Sp = 0.85 MIAE - -

CTSA [141]

Gupta et al., Electrical and
Instrumentation Engineering

Department, Thapar Institute of
Engineering and Technology

DDM NP = 50,
Iteration = 1000

RMSE
SIAE

- -TDM

SOS [146]

Xiong et al., Guizhou Key Laboratory
of Intelligent Technology in Power

System, College of Electrical
Engineering, Guizhou University

SDM
NP = 50

RMSE
SIAE
WRT

50,000 50DDM
Photowatt-PWP201
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Table 19. Other methods’ experiment results.

Method Case SIAE
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

WHHO [135]

SDM - 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 -

2.667
DDM - 9.82487 × 10−4 9.8249 × 10−4 9.8250 × 10−4 -
TDM - 9.80751 × 10−4 9.8085 × 10−4 9.8149 × 10−4 -

Photowatt-
PWP201 - 2.4250 × 10−3 2.4250 × 10−3 2.4250 × 10−3 -

GSK [4]

SDM 0.0174 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.18 × 10−17

3

DDM 0.0175 9.8248 × 10−4 9.8280 × 10−4 9.8602 × 10−4 8.72 × 10−7

Photowatt-
PWP201 0.0411 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 1.04 × 10−9

STM6-40/36 0.0218 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 6.25 × 10−18

STP6-120/36 0.2829 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.44 × 10−16

IGSK [136]

SDM - 9.8602188 × 10−4 9.8602188 × 10−4 9.8602188 × 10−4 3.5821018 ×
10−17

3.33

DDM - 9.8248485 × 10−4 9.8272774 × 10−4 9.8602188 × 10−4 8.9578942 × 10−7

Photowatt-
PWP201 - 2.4250749 × 10−3 2.4250749 × 10−3 2.4250749 × 10−3 2.9226647 ×

10−17

STM6-40/36 - 1.7298137 × 10−3 1.7298137 × 10−3 1.7298137 × 10−3 7.0155794 ×
10−18

STP6-120/36 - 1.6600603 × 10−2 1.6600603 × 10−2 1.6600603 × 10−2 1.7069489 ×
10−16

SDO [137]

SDM 0.01770381 9.8602 × 10−4 9.8603 × 10−4 9.8616 × 10−4 2.5141 × 10−8

N/A
DDM 0.01730620 9.8250 × 10−4 9.8822 × 10−4 1.0271 × 10−3 8.8518 × 10−6

PVM 752 GaAs 0.00593491 2.3487 × 10−4 3.1727 × 10−4 3.7700 × 10−4 2.7687 × 10−5

STM6-40/36 0.02177419 1.7298 × 10−3 1.7703 × 10−3 1.9500 × 10−3 4.5108 × 10−5

STP6-120/36 0.27797428 1.6601 × 10−2 1.6683 × 10−2 1.6866 × 10−2 7.1751 × 10−5

TGA [138]

SDM - 9.750530454421328
× 10−4 - - -

2.667

DDM - 8.488244232381
× 10−4 - - -

TDM - 8.251052783901371
× 10−4 - - -

PVM 752 GaAs - 9.037521972258222
× 10−4 - - -

Photowatt-
PWP201 - 3.819491771269

× 10−3 - - -

STE 20/100 - 9.28071173 ×
10−4 - - -

SSA [139]
TITAN-12-

50(366) - 2.9681 × 10−04 - - -
N/ATITAN-12-

50(810.2) - 1.5777 × 10−06 - - -

TSA [140] Photowatt-
PWP201 0.0594 5.06 × 10−4 1.45 × 10−3 2.34 × 10−2 1.25 × 10−3 N/A

CGO [142]
TDM - 9.82 × 10−4 9.82 × 10−4 9.82 × 10−4 1.24841 × 10−9

N/APhotowatt-
PWP201 - 2.425075 × 10−3 2.425092 × 10−3 2.4251 × 10−3 1.44688 × 10−8

HSOA [143]

SDM 0.0177065 9.8602 × 10−4 1.0479 × 10−3 1.1683 × 10−3 5.3832 × 10−5

4
DDM 0.017402 9.8376 × 10−4 1.1175 × 10−3 1.7642 × 10−3 1.9107 × 10−4

Photowatt-
PWP201 0.041788 2.4251 × 10−3 2.4251 × 10−3 2.4253 × 10−3 4.1556 × 10−8

RUN [144]
SDM - 9.86242 × 10−4 1.479894 × 10−3 2.444572 × 10−3 4.30699 × 10−4

N/ADDM - 9.87168 × 10−4 1.481762 × 10−3 2.947571 × 10−3 5.14117 × 10−4

TDM - 9.89133 × 10−4 1.581238 × 10−3 6.239595 × 10−3 1.078762 × 10−3

CTSA [141] DDM 0.2621 1.0239 × 10−8 2.1185 × 10−8 9.6017 × 10−8 3.9865 × 10−8
N/A

TDM 0.0075 1.0036 × 10−6 3.4906 × 10−6 9.4766 × 10−6 2.7057 × 10−6

SOS [146]
SDM 0.0181 9.8609 × 10−4 1.0245 × 10−3 1.1982 × 10−3 5.2184 × 10−5

5.333DDM 0.0182 9.8518 × 10−4 1.0627 × 10−3 1.3498 × 10−3 9.6141 × 10−5

Photowatt-
PWP201 0.0421 2.4251 × 10−3 2.4361 × 10−3 2.5103 × 10−3 1.7503 × 10−5

The “N/A” means that there is insufficient data to support an average algorithm ranking using the Friedman Test
on the three cases: SDM, DDM, and Photowatt-PWP201.

4. Whole Analysis and Research Prospects

This section presents metaheuristic methods in solving the studied problem. We collect
their data for an overall analysis and give some research prospects.
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4.1. Data Analysis

In the third part, the final results of many methods are relatively convergent. For
SDM, the RMSE is mainly distributed around 9.8206 × 10−4 and the rest is concentrated
around 7.7301 × 10−4. The DDM’s primary distribution is around 9.8248 × 10−4, with a
secondary allocation of 7.42 × 10−4 to 7.1823 × 10−4. For the TDM, the main distribution is
between 9.8331 × 10−4 and 9.8033 × 10−4, with higher precision than the main distribution
interval, being 8.2511 × 10−4 for TGA and 6.5424 × 10−9 for HPSODOX. For Photowatt-
PWP201, the main distribution is around 2.4251 × 10−3, the secondary distribution is
around 2.0399 × 10−3, and the best-performing TSA reaches 5.06 × 10−4. STM6-40/36 is
mainly distributed at 1.7298 × 10−3. STP6-120/36 is primarily distributed at 1.6601 × 10−2

nearby; the best-performing FDB-TLABC achieved 1.4251 × 10−2. However, the different
approaches rarely use the same cases and evaluation indicators, and the results may differ
between models. Therefore, some well-performed variants of metaheuristics that used the
RMSE indicators are selected for further comparison in Table 20, i.e., ABC-TRR, RLDE,
OLBWOA, CSOOJAYA, DEDIWPSO, EOTLBO, IWOA, TLBOBSA, IGSK, HSOA, and SOS.

Table 20. Various methods’ RMSE results.

Method Case
MIN

RMSE
Mean
RMSE

MAX
RMSE

STD of
RMSE

Rank

ABC-TRR [92]
SDM 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 6.15 × 10−17

5.958DDM 9.824849 × 10−4 9.825556 × 10−4 9.860219 × 10−4 4.95 × 10−7

Photowatt-PWP201 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 9.68 × 10−17

RLDE [41]
SDM 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.4834 × 10−17

5.125DDM 9.8248 × 10−4 9.8695 × 10−4 9.8457 × 10−4 1.7498 × 10−6

Photowatt-PWP201 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 6.3084 × 10−17

OLBGWO [100]
SDM 9.86 × 10−4 9.86 × 10−4 9.86 × 10−4 1.4 × 10−8

4.583DDM 9.83 × 10−4 9.85 × 10−4 9.86 × 10−4 1.78 × 10−6

Photowatt-PWP201 2.4 × 10−3 2.4 × 10−3 2.4 × 10−3 2.4284 × 10−9

CSOOJAYA [114]
SDM 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 4.717305 × 10−17

4.917DDM 9.824849 × 10−4 9.824849 × 10−4 9.824849 × 10−4 5.576332 × 10−17

Photowatt-PWP201 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.699858 × 10−17

DEDIWPSO [85]
SDM 7.730062 × 10−4 7.730062 × 10−4 7.730062 × 10−4 5.18668 × 10−15

2.5DDM 7.182306 × 10−4 7.187462 × 10−4 7.318100 × 10−4 2.486129 × 10−6

Photowatt-PWP201 2.03992 × 10−3 2.03992 × 10−3 2.03992 × 10−3 2.995389 × 10−15

EOTLBO [21]
SDM 9.86021878 × 10−4 9.86021878 × 10−4 9.86021878 × 10−4 4.12665088 × 10−17

4.5DDM 9.82484852 × 10−4 9.84733697 × 10−4 9.89424104 × 10−4 1.69176118 × 10−6

Photowatt-PWP201 2.42507487 × 10−3 2.42507487 × 10−3 2.42507487 × 10−3 3.61995116 × 10−17

IWOA [123]
SDM 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 5.12 × 10−16

6.375DDM 9.824849 × 10−4 9.826140 × 10−4 9.860219 × 10−4 9.86 × 10−5

Photowatt-PWP201 2.425075 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.90 × 10−17

TLBOBSA [134]
SDM 9.86902 × 10−4 9.8602 × 10−4 9.8603 × 10−4 5.64965 × 10−10

8.292DDM 9.8155 × 10−4 1.1334 × 10−3 2.2181 × 10−3 3.0012 × 10−4

Photowatt-PWP201 2.42507 × 10−3 2.42535 × 10−3 2.43167 × 10−3 1.21238 × 10−6

IGSK [136]
SDM 9.8602188 × 10−4 9.8602188 × 10−4 9.8602188 × 10−4 3.5821018 × 10−17

4.333DDM 9.8248485 × 10−4 9.8272774 × 10−4 9.8602188 × 10−4 8.9578942 × 10−7

Photowatt-PWP201 2.4250749 × 10−3 2.4250749 × 10−3 2.4250749 × 10−3 2.9226647 × 10−17

HSOA [143]
SDM 9.8602 × 10−4 1.0479 × 10−3 1.1683 × 10−3 5.3832 × 10−5

9.333DDM 9.8376 × 10−4 1.1175 × 10−3 1.7642 × 10−3 1.9107 × 10−4

Photowatt-PWP201 2.4251 × 10−3 2.4251 × 10−3 2.4253 × 10−3 4.1556 × 10−8

SOS [146]
SDM 9.8609 × 10−4 1.0245 × 10−3 1.1982 × 10−3 5.2184 × 10−5

10.083DDM 9.8518 × 10−4 1.0627 × 10−3 1.3498 × 10−3 9.6141 × 10−5

Photowatt-PWP201 2.4251 × 10−3 2.4361 × 10−3 2.5103 × 10−3 1.7503 × 10−5

The variants of metaheuristics that used the SIAE indicators are selected for fur-
ther comparison in Figure 5, i.e., SOS, HSOA, GSK, TLBOBSA, DE/WOA, ISNMWOA,
MCSWOA, IWOA, DMTLBO, PSO-ST, GCPSO, MLJAYA, I-GWO, HDE, DPDE, QILDE,
ABC-TRR, and TLABC. Moreover, these methods were generally tested in the SDM, DDM,
and Photowatt-PWP201 module. Here, the module only means the Photowatt-PWP201.
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• The STD of RMSE reflects the results’ robustness, MIN RMSE means the results’ accuracy,
and other RMSEs denote the range and sharpness of the fluctuations in the results.
The SDM, DDM and Photowatt-PWP201 models of DEDIWPSO had the MIN RMSE
(7.730062 × 10−4, 7.182306 × 10−4, and 2.03992 × 10−3), mean RMSE (7.730062 × 10−4,
7.187462 × 10−4, and 2.03992 × 10−3), MAX RMSE (7.730062 × 10−4, 7.3181 × 10−4,
and 2.03992 × 10−3) and STD (5.18668 × 10−15, 2.486129 × 10−6, and 2.995389 × 10−15).
It is followed by IGSK with MIN RMSE (9.8602188 × 10−4, 9.8248485 × 10−4, and
2.4250749 × 10−3), mean RMSE (9.8602188 × 10−4, 9.8272774 × 10−4, and 2.4250749 ×
10−3), MAX MRSE (9.8602188 × 10−4, 9.8602188 × 10−4, and 2.4250749 × 10−3) and
STD (3.5821018 × 10−17, 8.9578942 × 10−7, and 2.9226647 × 10−17). Then, EOTLBO,
OLBGWO, CSOOJAYA, RLDE, ABC-TRR, IWOA, TLBOBSA, HSOA, and SOS followed.

• Figure 4 shows the combined FT ranking for the SDM, DDM, and Photowatt-PWP201.
It combines the absolute accuracy of the methods in a wide range of cases. GSK ranks
first, followed by MCSWOA, IWOA, GCPSO, QILDE, DE/WOA, DMTLBO, HSOA,
MLJAYA, SOS, TLABC, PSO-ST, ABC-TRR, I-GWO, HDE, TLBOBSA, ISNMWOA, and
DPDE. GSK, as a new method achieving the highest accuracy, demonstrates the need
to explore the performance of new schemes in this issue. It is worth noting that the
rankings of the same methods in different PV models may differ, which indicates that
different PV models have varied preferences for algorithms.

• TNFES is related to the computational resources consumed, with a lower TNFES
representing a lower computational burden. For the SDM and module, ABC-TRR had
the fewest TNFES (1000) while other methods basically used a TNFES of 50,000. For
the DDM, ABC-TRR had the fewest TNFES (5000), while most of the rest consumed a
TNFES of 50,000.

Figure 5. Various methods’ Friedman Test.
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4.2. Analysis of Temperature and Irradiance Influences

When the irradiance or temperature changes, the current output of the PV cell will also
change, and therefore several unknown parameters representing the output characteristics
of the PV cell will also change. The GSK algorithm with high accuracy is used in this section
to identify the sampled data at different temperatures or irradiances in order to explore
their patterns. The data are taken from the KC200GT module in Simulink.

4.2.1. Uniform Irradiance and Temperature

Eight cases under uniform conditions were set up to explore the effects of irradiance
and temperature separately. The cases can be divided into five irradiances at 25 ◦C: 1000,
800, 600, 400, and 200 W/m2 and four temperatures at 1000 W/m2: 25, 40, 55, and 70 ◦C.
Their I-V and P-V output characteristics are shown in Figures 6 and 7. In the figures, the
output current increases with increasing irradiance, and the maximum power point voltage
decreases with increasing temperature.

(a) (b) 

Figure 6. Characteristic curves in various irradiance: (a) I-V (b) P-V.

(a) (b) 

Figure 7. Characteristic curves in various temperatures: (a) I-V (b) P-V.
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From the above characteristic plots, it is evident that when environmental factors
change, corresponding parameters change accordingly to achieve a high degree of fit to the
output curve. The unknown parameters extracted using GSK are illustrated in Table 21.
When the irradiance is the variable, Iph increases linearly with increasing irradiance, and Rs
decreases in a non-linear fashion with increasing irradiance. When the temperature is the
variable, Iph increases weakly with increasing temperature, and Issd increases in a non-linear
manner. Meanwhile, the RMSE increases with decreasing temperature, indicating that the
lower the temperature, the lower the identification result’s accuracy.

Table 21. Parameters of the KC200GT at different irradiances and temperatures.

Radiation
/W/m2

Temperature
/◦C

Iph/A Issd/μA n Rs/Ω Rsh/Ω RMSE

Variable Fixed

1000 25 8.22920506 2.19226333 ×
10−10 0.34555194 149.79495733 52.64769156 2.87908987 ×

10−3

800 25 6.58249378 2.57655463 ×
10−10 0.34314866 190.38069917 52.99842155 2.40659465 ×

10−3

600 25 4.93738274 2.27177693 ×
10−10 0.34433472 250.19011038 52.72470592 3.70428705 ×

10−3

400 25 3.29180014 1.99109819 ×
10−10 0.34972198 372.27107651 52.42424407 1.44743443 ×

10−3

200 25 1.64555637 2.50815014 ×
10−10 0.34381397 769.17560620 52.94945965 1.23547582 ×

10−3

Fixed Variable

1000 25 8.22811095 2.49012735 ×
10−10 0.34410634 152.34953496 52.92528529 5.10117026 ×

10−3

1000 40 8.30308470 2.50259970 ×
10−9 0.34496529 149.56870789 52.70878667 4.12556209 ×

10−3

1000 55 8.37565108 2.31628311 ×
10−8 0.34480573 153.53100022 52.79148663 8.96621362 ×

10−3

1000 70 8.45187588 1.62391869 ×
10−7 0.34518787 146.10502751 52.62434432 1.10992599 ×

10−2

Some methods counted in Section 3 simulated PV modules at different irradiances and
temperatures. The methods are gathered together, as illustrated in Table 22. The methods’
quantity is 22, indicating that the proportion of methods discussing these cases is low and
that more consideration needs to be placed on these cases in future research work. Most of
the 22 methods discussed irradiance and temperature together, and the cases they used
most frequently are SM55, ST40, and KC200GT. Thus, other cases could be added to these
three implementations in the future so that further generalizability can be demonstrated.

Table 22. Various methods with different irradiance and temperature experiments.

Method Case Radiation Temperature Describe

FDB-TLABC [96] SM55, ST40, KC200GT
√ √

Experiments were designed for five sets of
irradiances at 25 ◦C and three sets of

temperature at 1000 W/m2, with RMSEs
consistently lying in the order of 1 × 10−5 in

the three modules, much better than L-SHADE,
LSHADE-EPSIN, and LSHADE-SPACMA.

IADE [68] SL80CE-36M
√ √

Four sets of discriminative parameters and
minimum RMSEs (0.0115, 0.006, 0.0071, 0.0154)
were obtained from experiments fitting PV data

for four different sets of environmental
parameters at two temperatures and two

irradiances in random combinations.
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Table 22. Cont.

Method Case Radiation Temperature Describe

DE3P [23] SM55, RSM50, ST40
√ √

Experiments were carried out with five sets of
irradiances at constant temperature and three

sets of temperature at constant irradiance, with
a maximum RMSE of 0.0148 in the results,

which is still an acceptable error.

EJADE [69] SM55, KC200GT
√ √

The optimal average RMSE was obtained
consistently with eight competing algorithms
for experiments at different irradiances and

temperatures. The RMSEs were of order
1 × 10−4 at 25 ◦C for 200~800 W/m2 and 1 ×

10−3 for the other experiments.

AGA [64] - -
√

A PV cell fitting experiment at different
temperatures was designed, and the initial and

post-simulation parameter values for the
standard case were given.

GWO [98] - -
√

Ten sets of experiments at different
temperatures (−5 ◦C~45 ◦C) were designed

and showed an enormous advantage in
comparison experiments with MMA, with
RMSEs almost of order 1 × 10−3 overall.

OLBGWO [100] ST40, KC200GT
√ √

The experimental design was the same as that
of FDB-TLABC. The ST40 module’s RMSEs

were at or near the 1 × 10−4 order of
magnitude. In the KC200GT module, the
RMSEs were at or near the 1 × 10−3 order

of magnitude.

EJAYA [111] SM55, KC200GT
√ √

The experimental design was the same as
EJADE. The SM55 experiments’ RMSEs were in

order 1 × 10−4, and the other experiments’
RMSEs were in order 1 × 10−3.

MPSO [81] SM55, ST40, KC200GT
√ √

The experimental design was the same as
FDB-TLABC. In the KC200GT, the RMSEs were
of order 1 × 10−3; in the other experiments, the

RMSEs were of order 1 × 10−4.

GCPSO [82] Sharpe ND-R250A5
√ √

Five experiments with different temperatures
and irradiances were designed to obtain high

fitting accuracy, with an RMSE of order
1 × 10−3.

DEDIWPSO [85] JKM330P
√ √

Experiments were designed for five different
irradiances and temperatures, RMSE values

were obtained consistently, and all RMSEs were
of order 1 × 10−3.

PSO-ST [87,88] JKM330P
√ √ The same experimental design as DEDIWPSO,

with RMSEs of order 1 × 10−3 and standard
deviations of RMSEs on order 1 × 10−17.

PSOCS [88] SM55, ST40, KC200GT
√ √ The experimental design was the same as

FDB-TLABC, with RMSE concentrated at the
order of magnitude 1 × 10−2 and 1 × 10−3.

EOTLBO [21] Sharpe ND-R250A5
√ √

The experimental design was the same as
GCPSO, with RMSEs concentrated at orders

1 × 10−2 and 1 × 10−3, and significantly better
than the ten comparative algorithms in the text.

MTLBO [119] SM55, ST40
√ √

The experimental design was the same as
FDB-TLABC, whose RMSEs were concentrated

on orders 1 × 10−3 and 1 × 10−4 and
converged slightly faster than ITLBO.
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Table 22. Cont.

Method Case Radiation Temperature Describe

WOA [124] KC200GT
√ √

The fitting experiments were implemented with
SDM, DDM, and TDM. The SDM error was

1.6%, the DDM error was 0.3%, and the TDM
error was 0.08%. It indicates that, with

sufficient computational resources, TDM >
DDM > SDM in terms of accuracy.

ISNMWOA [126] SM55, ST40, KC200GT
√ √

The experimental design was the same as
FDB-TLABC, with the RMSEs concentrated on
orders 1 × 10−3 and 1 × 10−4. It showed that

ISNMWOA still has high accuracy at low
temperatures and irradiance.

SWOA [125] SM55, SW255,
KC200GT

√ √
Experiments were designed for five irradiances

and seven temperatures. The RMSEs were
concentrated around 1 × 10−2 for the

irradiance experiments and around 1 × 10−3

for the temperature experiments.

DE/WOA [127] JAM6-60-295W-4BB
√ √

Experiments with five irradiances and four
temperatures were implemented. Significantly

better RMSEs were consistently achieved
compared to seven competing algorithms, and
all results were concentrated around 1 × 10−5.

HPSODOX [47] - \ √
Seven sets of experiments from −5 to 25 ◦C
were designed. Of these, the RMSEs were

located in order 1 × 10−9 at 25 ◦C and in order
1 × 10−8 at different temperatures.

TLBOBSA [134] SM55, KC200GT
√ √ The experimental design was the same as

EJADE. The experimental results were similar
to EJAYA and slightly worse overall.

IGSK [136] SM55, ST40
√ √

The experimental design was the same as
MTLBO, with 11 RMSEs at the 1 × 10−4 order

of magnitude and 6 RMSEs at the 1 × 10−3

order of magnitude in 17 experiments.

The “
√

” means that there are temperature or irradiance experiments in the literature.

4.2.2. Partial Shade Conditions

Four groups of KC200GTs were connected in series to obtain the multi-peak curve
exhibited by the output of the PV power system when partially shaded (PSC). Four sets
of comparison tests were designed: standard case (STC: 4 × 1000 W/m2), type I partial
shading (PSC-1: 1000, 800, 400, 400 W/m2), type II partial shading (PSC-2: 800, 600, 400,
200 W/m2), and type III partial shading (PSC-3: 800, 600, 400, 400 W/m2). The output
characteristics are shown in Figure 8. In the figure, STC has a single peak, PSC-1 and PSC-3
have three peaks, and PSC-2 has four. Additionally, STC has only one irradiance, PSC-1
and PSC-3 have three irradiances, and PSC-2 has four irradiances. Therefore, the PV’s
peaks are related to the irradiance types on the series-connected PV modules.

The mathematical models developed in Section 2 cannot generate multiple inflection
points. Thus, the characteristic curve of the PSC fitted using these mathematical models
will still have only one inflection point, and the accuracy of the fit will be very low. It is
reflected in a large minimum RMSE. The extracted parameters are shown in Table 23, and
it is clear that the RMSE at STC is much lower than that at PSC. Although the correspond-
ing mathematical model was developed by Chellaswamy et al. [147], it requires human
judgment and input of the number of modules to be shaded, which is difficult to achieve
in reality. Therefore, more mathematical models need to be developed in future work to
improve the accuracy of the parameters of the extracted PSCs. It is important to note that,
due to the presence of parallel diodes in the system, the PV modules are in an idle state
when the output current of the system is more significant than its photogenerated current.
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The mathematical models developed to simulate the output characteristics of the PSC must
take this critical point into account.

(a) (b) 

Figure 8. Characteristic curves in partial shade conditions: (a) I-V (b) P-V.

Table 23. Parameters of the KC200GT at partial shade conditions.

Case Iph/A Issd/μA n Rs/Ω Rsh/Ω RMSE

STC 8.22879884 2.32498946 × 10−10 1.37930864 × 100 602.77198763 211.10041272 1.31085496 × 10−6

PSC-1 8.40661915 3.20394383 × 10−15 1.62587931 × 10−16 18.94997935 149.17780560 6.96889061 × 10−1

PSC-2 6.93947342 1.16187272 × 10−14 2.40441463 × 10−16 20.81282985 155.76285151 3.71532656 × 10−1

PSC-3 6.52880635 5.19579219 × 10−12 1.10570546 × 10−14 28.77275463 188.22179994 4.55796025 × 10−1

4.3. Analysis of Modified Diode Models’ Works

The MSDM, MDDM, and MTDM all consider the quasi-neutral zone’s losses. It is
reflected in the circuit diagram by selecting a diode branch and adding a series resistor Rsm.
The improved model adds an unknown parameter compared to the pre-improved model.
Their circuit diagram is shown in Figure 9.

Figure 9. Modified diode models’ circuits.

Their output current changes to [48,49]:

I = Iph − V + IRs

Rsh
− ∑

j=1→(nD−1)
Issdj

[
exp

(
q(V + IRs)

njkT

)
− 1

]
− IssdnD

[
exp

(
q(V + IRs − IsdnDRsm)

nnDkT

)
− 1

]
(14)

where nD represents the number of diodes in the cell model.
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In this subsection, two papers from the last three years are chosen to present the results
of metaheuristic approaches to solving the above models. Ramadan et al. [48] improved
the Bald Eagle Search algorithm (IBES), employing decay equations to achieve adaptive
learning factors. Abdelminaam et al. [49] pioneered the use of Turbulent Flow Optimization
of Water (TFWO) for the parameter extraction of PV cells with a new objective function
(PE5DSSE). Their extraction results are illustrated in Table 24.

Table 24. Results of the modified diode models.

Parameter IBES MSDM TFWO MSDM IBES MDDM TFWO MDDM IBES MTDM TFWO MTDM

Iph/A 0.760713 0.760774525 0.760494 0.760783023 0.760473235 0.760780283
Rs/Ω 0.032091 0.037372671 0.015196 0.036835645 0.013865736 0.036749141
Rsh/Ω 54.30519 53.7186078 54.05261 55.8909553 55.47156858 55.52672891
Rsm/Ω 0.00352 0.5 0.02792 0.01025276 0.027870684 0.5

Issd1/μA 3.71 × 10−7 3.23 × 10−7 1.00 × 10−10 9.17 × 10−7 1.00 × 10−10 7.63 × 10−7

Issd2/μA - - 6.69 × 10−7 2.07 × 10−7 7.52 × 10−7 2.47 × 10−9

Issd3/μA - - - - 1.00 × 10−10 2.24 × 10−7

n1 1.4835 1.48118376 1.00 1.999992291 1.133059042 2
n2 - - 1.525277 1.443600817 1.537322148 2
n3 - - - - 1.004574508 1.450312839

PE5DSSE - 2.5278 × 10−5 - 2.51 × 10−5 - 2.509 × 10−5

MIN RMSE 9.61 × 10−4 - 7.49 × 10−4 - 7.39055 × 10−4 -
Mean RMSE 1.507 × 10−3 - 1.201 × 10−3 - 7.64 × 10−4 -
MAX RMSE 2.847 × 10−3 - 3.378 × 10−3 - 7.81 × 10−4 -

STD of RMSE 7.61 × 10−4 - 8.95 × 10−4 - 2.21 × 10−5 -

In Table 24, for MSDM, the parameter that differs most between IBES and TFWO is
Rsm. For MDDM, IBES and TFWO are similar in Iph and Rsh, and the other parameters
differ more. For MTDM, IBES and TFWO are almost identical in Iph and Rsh, and the
other parameters differ more. As they use different objective functions, it is impossible to
compare the accuracy of the two.

In IBES, the MIN RMSE is 9.88 × 10−4 for TDM and 9.86 × 10−4 for SDM and DDM.
In TFWO, the PE5DSSE is 2.5278 × 10−5 for SDM, 2.51 × 10−5 for DDM and 2.51 × 10−5

for TDM. It indicates that the addition of Rsh did improve the accuracy by a small margin.
Therefore, applying MSDM, MDDM, MTDM, and the PV module models constructed from
them to future studies will be an effective way to improve the accuracy further.

4.4. Analysis of Dynamic Models’ Works

The above results are for static models. This subsection starts with several representative
metaheuristics for solving dynamic models to analyze their parameter extraction results.

Yousri et al. [52] developed CHCLPSO by combining heterogeneous integrated learn-
ing PSO with chaotic optimization techniques. HROA was developed along similar lines
to CHCLPSO, a hybrid of the chaotic mapping mechanism with the Rao_1 algorithm by
Wang et al. [53]. Elaziz et al. [51] developed EMPA by an effective combination of DE and
the Marine Predator algorithm.

For the results of the dynamic model, CHCLPSO provides parameters of RC = 7.3149 Ω,
C = 3.81307 × 10−7 F, and L = 7.3251 × 10−6 H. EMPA provides parameters of RC = 7.315 Ω,
C = 3.1831 × 10−7 F, and L = 7.3251 × 10−6 H. Their difference is insignificant, indicating
that both methods have similar solving power. The MIN and Mean RMSEs for CHCLPSO
are 8.45045 × 10−3, and the STD is 1.13566 × 10−12. The MIN, Mean, and MAX RMSEs for
HROA are 6.709393 × 10−3, and the STD is 5.209153 × 10−18. The Mean RMSE for EMPA
makes it clear that HROA has the best accuracy and robustness, followed by EMPA and
CHCLPSO. However, CHCLPSO is at the same level of accuracy as EMPA, and both have
a minor STD. This indicates that EMPA and CHCLPSO have converged early, and their
further improvement needs to start from exploration. For HROA, it achieves the optimal
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RMSE value, but 6.709393 × 10−3 is still a significant error and there is room for further
optimization of the accuracy of the solution.

It is worth mentioning that the model of dynamics is suitable for grid-connected
operation. However, there has been little research related to it since its introduction,
and especially little research on metaheuristic methods to optimize the dynamic model.
Therefore, it has broad application and research prospects and is a crucial research direction
for the future.

4.5. Whole Analysis

Pursuant to scholarly opinion and statistical results, Table 25 analyses the positive
and negative properties of various metaheuristics. They can help beginners to understand
cutting-edge research.

Table 25. Various methods’ positive and negative properties.

Type Positive Negative

GAs

• Using probabilistic mutation techniques
• Fast handling of non-linear problems [63]
• Easily contribute to the convergence and

accuracy of other methods [65]

• Reliance on the initialized populations’ quality
• Lower accuracy of solution than advanced methods

DEs

• Simple and precise implementation
• Steady and fast
• Extensible, with many variants
• Employing adequate parameter tweaking

mechanisms ensures an overall improvement in
the algorithm’s capabilities in specific
problems [41,68,76]

• The parameters’ decision shapes the results
• Computing resources are underutilized

PSOs

• Straightforward code
• Fast merit search
• Low fluctuant solution and efficient
• Supports parallel operation for faster and greater

accuracy [86]
• For the problems in this paper, PSO secured

quality solutions [82,83]

• Excessive parameters and empirical reliance
• Converge prematurely
• Prone to converge to local optimum in multi-peaked

issues

ABCs

• Superb exploration [92]
• Rapid convergence [89]
• Simplicity implementation [93]
• Fits PV characteristic curves more accurately

than PSO [95]
• Premium performance in combination with

alternative methods [91,94]

• Weak exploitation
• Parameters and performance are strongly correlated

GWOs

• A few parameters
• Flexibility and simplicity
• Well-aligned exploration and exploitation [97]
• Tackling PV parameter estimation issues with

small errors [98]

• Poor handling issues with numerous variables
• Exploitation requires reinforcement [100]
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Table 25. Cont.

Type Positive Negative

JAYAs

• No parameters
• Efficient and succinct
• Adaptive control factor optimizes accuracy and

stability [104,107]
• Mixing different methods of consideration

facilitates performance improvement [106,111]

• Weak exploration [108]
• Pseudo-random operators restricted pervasiveness
• Performance degradation in multi-dimensional

issues [103]

TLBOs

• No parameters
• Universal in optimization issues
• Competitive in large scale issues [115]
• Diverse variants enhance behavior when

employed for specific problems [118,120]

• Slow convergence [116]
• Mandatory structures squandering resources [21]
• Inadequate balance of exploration and

exploitation [117,118]

WOAs

• A few parameters
• Simple structure
• Intense exploitation competency [123]
• Variant with outstanding solutions

quality [125,126]

• Premature convergence [18]
• Poor in convergence and precision
• Performance degradation in complex issues

GSKs
• Intense exploration competency [4]
• Competitive in multidimensional issues
• Fits PV characteristic curve accurately [136]

• Excessive parameters
• Weak exploitation

SDOs
• A few parameters
• Simple structure
• Well-balanced exploration and exploitation [137]

• Poor in convergence
• Needs improvement in solution quality [39]

HHOs
• Fewer mechanisms, simpler calculations [148]
• Fast convergence [135]
• Suitable for multimodal scenarios [55]

• Excessive parameters
• Premature convergence

TGAs
• Simple structure
• High accuracy of identification results
• Highly competitive [138]

• Excessive parameters
• Slow convergence
• Excessive consumption of computational resources

SOSs
• No parameters
• Simple structure
• Superb exploration [146]

• Weak exploitation
• Excessive resources consumption

FPOAs

• Fewer parameters
• Easy to implement
• Simple structure
• More accurate than PSO and DE [145]

• Premature convergence
• Slow convergence

For the different applied metaheuristics, we find the following challenges.

1. The promotion of GA has been rare in recent years, and accuracy is supposed to
be enhanced.

2. DE’s convergence rate and PSO’s accuracy could improve.
3. ABC is weakly exploited and significant in parameter settings.
4. GWO and WOA have few parameters and struggle with multi-dimensional issues.
5. JAYA and TLBO’s promotions are flawed in accuracy.
6. Hybrid approaches may complicate the implementation and introduce additional pa-

rameters.
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7. New approaches are not sufficiently balanced for specific issues. For example, GSK,
SDO, TGA, and SOS are under-exploited, and HHO and FPOA are under-explored.

The challenges above are all tailored to specific metaheuristics. Moreover, several
additional challenges remain for the parameter extraction problem.

1. TNFES is a sign of computational resources, yet its value is almost pitched at 50,000.
Reducing TNFES without compromising accuracy is imperative.

2. More diodes in the cell model may increase the extraction accuracy. Recently, a four
diode model was proposed [47] and the results showed good fitting effect. However,
more diodes also indicate more parameters that need to be extracted and solutions
are also more intractable. Hence, selecting a suitable PV model for an algorithm
is challenging.

3. Some of the literature used too few PV cases to demonstrate metaheuristics’ generaliz-
ability.

4. Metaheuristics’ effectiveness is devoid of practical engineering applications.
5. More and exact measured data means more accurate extraction results, but obtaining

sufficient high-precision measurements is challenging and costly.
6. In engineering, running time is pivotal. Hence, cutting running times is a challenge.
7. Multiple matrices are imperative to signal the competitiveness of metaheuristic results,

yet some of the literature adopted few matrices for comparison.

4.6. Research Prospects

The previous section summarizes the challenges in studies, and this section suggests
some research directions. They are an essential reference for researchers in developing
their plans.

For specific metaheuristics:

1. Exploration techniques such as chaotic mapping and second-order oscillation mech-
anisms can be considered to incorporate into GA. They are envisaged to augment
accuracy and robustness.

2. DE might be combined with exploitation-based metaheuristics, such as the Search
Backtracking Algorithm, or with search mechanisms that accelerate the convergence.
PSO demands more diversity-raising search mechanisms such as trust region reflec-
tion, taboo search, and fitness distance balance. Additionally, studies on adapting
their parameters are well-tried.

3. ABC considers introducing neighborhood search and adaptive mechanisms to speed
up the convergence.

4. For GWO and WOA, adaptive operators could be inserted to improve applicability in
the face of high-dimensional issues.

5. JAYA and TLBO could borrow the exploration-type mechanisms in CSOOJAYA,
MTLBO, and EBLSHADE to improve the overall performance.

6. Hybrid methods can identify contributing components through component analysis
and remove unimportant components to alleviate implementation redundancy.

7. New methods can adopt adaptive learning, neighborhood search, chaotic mapping,
and algorithmic blending techniques to enhance their behavior.

Regardless of the specific techniques, any approach to raise the metaheuristics is
to employ complementary improvements to balance exploration and exploitation and,
ultimately, fit to the studied issue.

In addition to research directions for metaheuristics, some potential directions for
application scenarios include the following areas:

1. For the parameter extraction, diminishing computational resources’ consumption
is at stake. Reducing TNFES while maintaining the same accuracy by introducing
different techniques, i.e., local search and reinforcement learning, is a direction worthy
of further research.
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2. Some methods are feasible for low-dimensional issues, and some deliver better per-
formance for high-dimensional issues. Meanwhile, the selection of MSDM, MDDM,
MTDM, and FDM with 6, 8, 10, and 11 unknown parameters to be included in the cell
model is a future research direction for further performance improvement. Hence, it
would be interesting to pick the right algorithm improvement to render PV models
with desirable accuracy.

3. For the issue of too few employed cases, more cases are considered in future research to
reveal the methods’ generalizability. Examples include cases at different temperatures
and irradiances and cases in partial shade.

4. The real-time extraction of PV models’ parameters at different operating conditions
is highly suggested. It is excellent work to accurately model the dynamics of photo-
voltaics for practical engineering problems.

5. Faced with the problem of little measured data, inserting deep learning techniques
such as neural networks to eliminate erroneous data and expand the amount of data
for metaheuristic methods is an effective way to facilitate the extraction accuracy.

6. The graphical processing unit (GPU) allows different solutions to be updated simulta-
neously to raise the efficiency. Thus, metaheuristic methods’ speed improvements can
be geared toward direct runtime reductions through GPU-like devices.

7. More performance evaluation indicators can demonstrate metaheuristic methods’
overall effectiveness more comprehensively. Therefore, introducing more multifaceted
indicators is necessary to enhance persuasiveness.

5. Conclusions

PV generation is playing a more significant role in the future energy landscape. Mean-
while, accurate PV models can support the PV systems’ accurate assessment, efficiency
improvement, fault analysis, and simulation. Thus, this paper reviewed different meta-
heuristics employed in the PV model parameters extraction. In our work, (a) the PV
models and problem formulations were explained; (b) different metaheuristics and their
developments and applications were summarized; (c) the algorithmic parameter settings,
various evaluation indicators, independent running numbers, and computational resources
(TNFES) were assembled; (d) the final results of various algorithms were compared, and
especially RMSE and SIAE were ranked; (e) the unknown parameters and RMSE variation
patterns in different environments were analyzed; and (f) a comprehensive analysis of the
challenges encountered by metaheuristics in solving the studied issue was presented, and
some ideas for future research were outlined.

This study can assist beginners in gaining an introductory and systematic perspective
on the issue. It may also provide a reference direction for further research when unfamiliar
researchers understand the application of metaheuristics to this engineering problem.
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Abstract: Modeling the photovoltaic (PV) generating unit is one of the most important and crucial
tasks when assessing the accurate performance of the PV system in power systems. The modeling
of the PV system refers to the assigning of the optimal parameters of the PV’s equivalent circuit.
Identifying these parameters is considered to be a complex optimization problem, especially with the
deviation of the solar irradiance and the ambient temperature. In this regard, this paper proposes a
novel hybrid multi-population gorilla troops optimizer and beluga whale optimization (HMGTO-
BWO) model to evaluate the optimal parameters of the PV cell/panel; it is based on a multi-population
strategy to improve its diversity and to avoid the stagnation of the conventional GTO. The BWO
explorative and exploitative powers, which are based on synchronized motion and Lévy flight, are
used. The suggested HGTO-BWO is implemented to minimize the root mean square error (RMSE)
between the simulated and measured data for each cell/panel represented by a double diode model
(DDM) and triple diode model (TDM). The proposed HGTO-BWO is investigated according to the
standard and CEC-2019 benchmark functions, and the obtained results are compared with seven
other optimization techniques in terms of statistical analysis, convergence characteristics, boxplots,
and the Wilcoxon rank sum test. The minimum obtained RMSE values of the PVW 752 cell were
2.0886 × 10−4 and 1.527 × 10−4 for the DDM and TDM, respectively. Furthermore, the minimum
fetched fitness value for the STM6-40/36 modules was 1.8032 × 10−3. The obtained results proved
the effectiveness and preference of the suggested HGTO-BWO in estimating the parameters of the
PV modules.

Keywords: multi-population; HGTO-BWO; parameters estimation; PV cell/panel

1. Introduction

Renewable energy sources (RESs) like wind and solar should be considered in order
to mitigate the effects of climate change and rising temperatures, as well as to protect
the planet from the pollution and destruction produced by traditional fossil energy [1].
The process of ecological transition involves identifying consumption and sustainable
community models to reduce harmful emissions and to create reliance on power generation
from renewable sources [2]. One of the aims of the sustainable development goals (SDGs),
especially the seventh goal, is to obtain modern energy which is sustainable and highly
reliable at the lowest cost [3]. There is a great deal of interest in RESs due to the enormous
financial and environmental problems associated with traditional energy sources like fossil
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fuels. It is essential to transform the solar energy into different forms that may be utilized
in daily life with the assistance of an appropriate device to exploit it [4,5]. Even though
solar energy is abundant, its expansion is hampered by problems like fractional shadow,
high construction cost, weather variation, and the need for costly storage. As a result,
photovoltaic (PV) modeling is necessary to estimate the performance of a PV system before
installation. Furthermore, the prediction of PV panel operating attributes is critical in solar
PV system design, evaluation, simulation analysis, and control. Also, modeling aids in
comprehending the functioning precept and attributes of the solar PV system under variable
meteorological situations. The PV solar system is useful for capturing the solar energy
and converting it into electrical power [5–7]; it has penetrated into many applications [5].
Moreover, the economic implications of the decreased lifetime and its causes are presented
in [8]. One of the scientists’ priorities is to improve the efficiency and dependability of these
technologies. Understanding the mechanisms of power absorption and conversion in solar
cells, as well as correct modelling, can help in forecasting and designing them properly.
One of the most critical challenges that researchers are facing is how to build a reliable
model of the solar panel [9–11].

Changes in temperature and sun irradiance have significant impacts on the perfor-
mance of PV systems [12]. Therefore, to maximize the performance of these systems,
adequate mathematical models are required that precisely replicate the PV system behavior
under several operational scenarios. Three of the most common PV system models, the
single, double, and triple diode models (SDM, DDM, and TDM), are used [13,14].

The parameters of the SDM are simple to estimate as it only has five parameters, but its
performance suffers from minimal irradiance scales and as a consequence of temperature
changes. The DDM includes seven unknown parameters; it employs a second diode to
achieve current reunification and to deal with other non-idealities [15]. However, the DDM
suffers from some defects in recombining the current and other non-idealities. The final
model is TDM, with nine ungiven parameters; it was introduced in [16]. Unfortunately, the
nine parameters should be calculated as the manufacturers do not directly give them. To
decrease the difference between the measured assessed power–voltage (P-V) and current–
voltage (I-V) curves, the issue is converted into an optimization problem with a nonlinear
objective function and a significant number of local minima.

Researchers are interested in employing metaheuristic algorithms to estimate the PV
model parameters due to their notable success in handling various real-world optimization
problems [5–7]. A hybrid seagull optimization algorithm architecture (HSOA) has been
described for assessing the PV model parameters and developing a nonlinear control factor,
which is dependent on the cosine function, to stabilize exploitation and exploration capabil-
ities [1]. A springy whale optimization algorithm is described as an enhanced optimization
technique to determine the parameters of PV cell/panel models [9]. Changes have been
made to the way that the whales move in order to improve the algorithm performance.
This helped the algorithm avoid the local solution, and the algorithm convergence speed
was enhanced. In [13], an improved cuckoo search optimizer (ICSO) and a modified cuckoo
search optimizer (MCSO) are implemented to solve the parameter evaluation issue of a
PV system. Solar cell parameters have been evaluated through a genetic neural network
(GNN) strategy [14]. The PV module characteristics have been identified with the aid of the
tabu search optimizer (TSO) [15]; moreover, the lightning search algorithm, pattern search
(PS), gravity search algorithm (GSA), genetic algorithm (GA), and PSO have been applied
and compared to the presented approach [16].

In order to define the values of the ungiven parameters, the sooty tern optimization
(STO) approach was developed for parameter evaluation of the PV cells/modules [17]. The
hybrid particle swarm optimization (PSO) and rat search algorithm have been presented
and combined as a hybrid approach for extracting the parameters of hybrid systems,
including those of fuel cells and solar PVs [18]. The presented approach in that work
reduced the likelihood of a local minimum and increased the algorithm accuracy. In [19],
the animals migration optimizer (AMO) was introduced to construct the SDM of a PV
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system. The approach capacity for producing prompt, dependable, and consistent outcomes
has been considered. In [20], a chaotic WOA for estimating the solar cell parameters was
introduced; the key benefit of this method is that its parameters are automatically computed
and adjusted using chaotic maps. In [21], a mathematical model for PV solar cells was
created using the equilibrium optimizer (EO). The results using the EO have been compared
with Harries hawk optimization (HHO), the teaching learn-based optimizer (TLBO), and
PSO. In [22], the many approaches employed in constructing the SDM, DDM, and TDM of
PV systems were reviewed and compared in terms of pros and cons.

The fractional-order Darwinian PSO methodology was used in [23] to enhance the
conventional PSO method in evaluating the electrical parameters of PV cells/modules.
To assign the solar cell parameters, the authors in [24] presented a hybrid honey badger
algorithm and GTO [25]. These algorithms reduced the root mean square error (RMSE)
between the simulated and measured results. In [26–28], a marine predatory animal (MPA)
algorithm is described for computing the parameters of PV cells/panels in constant and
varying weather situations. An improved stochastic fractal search algorithm has been used
to solve the parameter appreciation of SDM solar cells and PV panels [29]. The authors
in [30] presented the computational optimization method for extracting the parameters
of solar cells/panels using an enhanced arithmetic optimization algorithm. In order to
study the DDM-based circuit of a PV panel, practical tests to obtain the measured I-V and
P-V characteristics have been conducted while considering various statistical analyses to
determine the average, maximum, minimum, and standard deviations. A quick and effi-
cient method for collecting the solar cell/panel parameters from the datasheet is provided
in [31]. A niche PSO using a parallel computing technique was presented in [32] to identify
the PV panel parameters. A multi-agent system (MAS) has been combined with CSO to
estimate the parameters of various PV cells [33]. The circuits of SDM, DDM, and TDM
for PV cells have been analyzed using the atomic orbital search to determine the ungiven
parameters [34]. The tree seed algorithm has been used to calculate the parameters of
the STM6-40/36 PV panel with different maximum fitness evaluations [35]. Moreover, a
heterogeneous mechanism for the differential evolution algorithm (DE) [36], population di-
versity controlled DE [37], the artificial parameter-less optimization algorithm [38], random
reselection PSO [39], the arithmetic operation algorithm based on the Newton–Raphson and
Lambert W approaches [40], and adaptive slime mold [41] have been utilized to construct
different equivalent circuits of PV cells/panels. A mayfly algorithm [42], northern goshawk
optimization [43], and Newton–Raphson (NR) with an enhancement of a tuna swarm opti-
mizer by a chaotic tent map [44] have been presented to evaluate the parameters of a TDM
circuit. The parameters of a PV equivalent circuit were resolved by a chimp optimization
algorithm with a robust niching approach [45], hybrid PSO with a gravitational search
algorithm [46], chaos game optimization [47], an improved gradient-based optimizer based
on sine cosine [48], DE enhanced by a chaotic map [49], and the predict output-based
backpropagation neural network with EO [50]. Furthermore, the forensic-based investi-
gation algorithm [51], the supply–demand optimizer [52], the enhanced hunger games
search via the Laplacian Nelder–Mead approach [53], the Rao-1 optimization-based chaotic
sequence [54], the arithmetic optimization algorithm-based guaranteed convergence and
modified third-order NR [55], and the hybridized wind-driven optimization with fruit fly
optimization [56] have been used to compute the parameters of various types of PV models.

Most of the reported studies have limitations, such as the falling into local optima, the
requirement for numerous controlling parameters, and the complexity in implementation,
in addition to the use of absolute algorithms without fundamental changes or modifications.
The motivation of this study is to introduce a novel hybrid multi-population gorilla troops
optimizer and beluga whale optimization (HGTO-BWO) to determine the PV cell/panel
parameters such that all the gaps in the previous works are covered.

GTO is characterized by its ability to solve real-world problems with limited and
unknown search space. On the other hand, the BWO has better stability, good convergence
accuracy, stronger search ability, and a faster convergence rate. Therefore, hybridization
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between GTO and BWO results in a strong optimizer which is able to solve the handled
problem with good efficiency. Table 1 provides a comparison of the recent work published
in 2023 with regard to parameter estimations of PVs. The multi-population technique
is applied to enhance the algorithm performance and avoid early convergence through
dividing the entire population into many subgroups to preserve population variety. Dif-
ferent subgroups can be discovered throughout the whole search area and can reach the
optimal solution efficiently by searching in different locations inside the search area at one
time. Moreover, the optimization techniques can be easily and efficiently incorporated into
multi-population methods [57,58]. The following are the major contributions of this article:

• A novel approach of hybrid multi-population GTO-BWO is proposed in this work.
• The classical and CEC-C06 2019 benchmark functions are utilized to test and assess

the proposed technique’s performance.
• The proposed HGTO-BWO is implemented to determine the ungiven parameters of

TDM and DDM equivalent circuits of PV cells/panels.
• A comparison is made with TSA, the grey wolf optimizer (GWO), the whale optimiza-

tion algorithm (WOA), the sine cosine algorithm (SCA), harmony search (HS), beluga
whale optimization (BWO), and the artificial gorilla troops optimizer (GTO).

• The fetched results assure the effectiveness and validity of the suggested HGTO-BWO.

Table 1. A comparison of recent work published in 2023.

Ref. Obj. Function Model Type Algorithm Remark

[59] RMSE SDM, DDM and TDM Hybrid chaotic NSO-PS
One type of PV is R.T.C used in all
case studies; complexity and
improved performance

[60] RMSE SDM and DDM Growth optimizer
Ability to determine ungiven PV
model parameters; low
convergence

[61] RMSE SDM, DDM, and TDM
Chaos game
optimization with least
squares

Speed convergence and the RMSE
values are similar to those of some
other methods

[62] Non-linear square with
RMSE SDM GWO Complexity in obj. function

[63] RMSE SDM, DDM, and TDM Improved moth–flame
algorithms Low obj. function

Proposed RMSE SDM, DDM and TDM HGTO-BWO
High performance and efficiency;
avoids local optimum; fast
convergence

The rest of this article is as follows. Section 2 describes the mathematical model
of solar PVs. Section 3 illustrates the problem expression, while the proposed hybrid
multi-population GTO and BWO algorithm is presented in Section 4. The testing of the
benchmark functions is presented in Section 5, and the application of the PV parameter
estimation is given in Section 6. The conclusions are clarified in Section 7.

2. Modeling of Solar Photovoltaic (PV)

A solar PV cell is typically described through an electrical analogous circuit that
includes current source, resistors, and a diode. Numerous PV cell modeling systems have
evolved due to nonlinearity. The models of a PV cell are divided into three categories: single,
double, and triple diode models. The prediction accuracy of the I-V curve is defined by the
number of diodes in the model. Also, adding another diode, from one to three, enhances
the model performance and precision at minimal irradiance levels. Similarly, the growth of
modeling results in the development of the TDM. The model of the analogous circuit, its
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equations, and the specifications of the ungiven parameters are shown in Figures 1 and 2.
As the number of diodes grows, the number of model parameters to be evaluated grows
and then the complexity of the problem is increased [64,65].

Figure 1. DDM equivalent circuit.

Figure 2. TDM equivalent circuit.

2.1. Double Diode Model (DDM)

The DDM uses dual diodes and dual resistors coupled in a series and shunted to the
diode; this configuration is designed to compensate for the losses. The DDM of a solar cell
is shown in Figure 1; with this concept, a second diode is added to reduce the transmission
losses caused by the depletion layer carrier recombination and surface recombination, as
specified by Id2 [29,66]. The component of the current is represented by the current of the
first diode Id1.

The DDM can be formulated as follows:

IPV = Iph − Id1 − Id2 − Ish (1)

IPV = Iph − Id1

[
exp

[
q[VPV + Rs IPV ]

A1KT

]
− 1

]
− Id2

[
exp

[
q[VPV + Rs IPV ]

A2KT

]
− 1

]
−

[
VPV + Rs IPV

Rsh

]
(2)

This model has seven parameters to be computed; they are provided as a vector, as
given in Equation (3).

x =
[

A1 A2RsRsh Id1 Id2 Iph

]
(3)

where Id1, Id2, and Iph are the reversal saturation currents of the diodes and photon cur-
rent; q is the electronic charge; A1 and A2 are the diodes’ ideality factors; T denotes the
temperature in Kelvin; K refers to the Boltzmann constant; and Rsh and Rs are the shunt
and series resistances.

2.2. Triple Diode Model (TDM)

Another model described in this work is the TDM; this model includes a current
source, two resistors, and triple diodes, as shown in Figure 2. Dual diodes are considered
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in the model and are similar to those of the DDM, due to the reassembly and connec-
tion losses, while the third diode is due to the losses of the reassembly flow zones and
boundaries [65,67].

The TDM can be expressed by following equations:

IPV = Iph − Id1 − Id2 − Id3 − Ish (4)

IPV = Iph − Id1

[
exp

[
q[VPV+Rs IPV ]

A1KT

]
− 1

]
− Id2

[
exp

[
q[VPV+Rs IPV ]

A2KT

]
− 1

]
−Id3

[
exp

[
q[VPV+Rs IPV ]

A3KT

]
− 1

]
−

[
VPV+Rs IPV

Rsh

] (5)

There are nine parameters to be evaluated in this model. The following vector can be
used to represent them:

x =
[

A1 A2 A3RsRsh Id1 Id2 Id3 Iph

]
(6)

2.3. PV Panel Model

The PV panel comprises numerous cells coupled in a series or parallel to produce
greater voltage and current. Figure 3 illustrates the PV panel equivalent circuit.

Figure 3. Solar PV module equivalent circuit.

The cells coupled in a series produce the same current. As a result, the panel output
current can be written as given in Equation (7).

IPV = Iph × Np − Id1 × Np

[
exp

[
q[VPV /Ns+Rs/Np×IPV ]

A1KT

]
− 1

]

−Id2 × NP

[
exp

[
q[VPV /Ns+Rs/Np IPV ]

A2KT

]
− 1

]
− [

VPV/Ns + Rs/Np×IPV Rsh
] (7)

where Ns denotes the number of solar cells combined in a series, while Np denotes the
number of cells connected in parallel [67,68]. Seven parameters should be calculated in the
PV panel circuit; these are A1, A2, Rs, Rsh, Id1, Id2, and Iph.
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3. Problem Expression

In order to find the PV cell/panel equivalent circuit parameters, an optimization
problem was formulated and solved to mitigate the RMSE between the measured current
(IM ) and the simulated one (IS ). In the optimization formula, the unknown parameters are
defined as design variables; the fitness value can be formulated as follows:

RMSE =

√√√√ 1
Nm

Nm

∑
i=1

fPV(VPV , IPV , x)2 =

√√√√ 1
Nm

Nm

∑
i=1

(IM − IS )2 (8)

where Nm indicates the number of measured patterns, fPV refers to the PV model function,
and IM and IS are the measured and simulated currents, respectively. The DDM objective
function contains seven unknown parameters; it can be written as,

fDDM(VPV , IPV , x) = IPV − x7 + x5

(
exp

(
q(VPV+IPV x3)

x1KT

)
− 1

)
+ x6

(
exp

(
q(VPV+IPV x3)

x2KT

)
− 1

)
+(VPV+IPV x3)

x4

(9)

where x =
[

A1 A2RsRsh Id1 Id2 Iph

]
.

On the other hand, the TDM objective function comprises nine unknown parameters,
which can be expressed as,

fTDM(VPV , IPV , x) = IPV − x9 + x6

(
exp

(
q(VPV+IPV x4)

x1KT

)
− 1

)
+ x7

(
exp

(
q(VPV+IPV x4)

x2KT

)
− 1

)
+x8

(
exp

(
q(VPV+IPV x4)

x3KT

)
− 1

)
+ (VPV+IPV x4)

x5

(10)

where x =
[

A1 A2 A3RsRsh Id1 Id2 Id3 Iph

]
.

Finally, the TDM of the PV panel objective function can be written as,

fPV_p(VPV , IPV , x) = IPV − x7 ∗ Np + x5 ∗ Np

[
exp

[
q[VPV /Ns+x3/Np∗IPV ]

x1KT

]
− 1

]
+ x6

∗NP

[
exp

[
q[VPV /Ns+x3/Np IPV ]

x2KT

]
− 1

]
+

[
VPV /Ns+x3/Np∗IPV

x5

] (11)

4. The Proposed Solution Methodology

This section describes and explains the main aspects of GTO, BWO, and the proposed
HMGTO-BWO.

4.1. Gorilla Troops Optimizer (GTO)

The GTO is an efficient optimization algorithm that was inspired by the social life
of gorillas, including their movements and lifestyles [69]. The leader in a gorilla group is
known as a silverback and all the males and females follow it. The young male gorillas
are known as blackbacks; they help the silverback and act as backup protection for the
group. Two phases of exploitation and exploration form the GTO. Three operators are used
in the exploration phases; the first operator is the migration to new locations, while the
second operator is based on the movement of other gorillas; the third operator is dependent
on the motion of the groups to known areas. In the GTO, the parameter X refers to the
gorilla position, and the GX denotes the candidate gorilla locations, while the best solution
position is represented as the silverback position. The exploitation phase is based on three
motions of the gorillas, including their motion to a new unknown area, their motion to
each other, and their movement to unknown locations. Mathematically, the exploration
phase of the GTO can be described as follows:
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GX(t + 1) =

⎧⎨
⎩

(UB − LB)× r1 + LB, rand < p
(r2 − C)× Xr(t) + L × H, rand ≥ 0.5
X(i)− L × (L × (X(t)− GXr(t)) + r3 × (X(t)− GXr(t))) rand < 0.5

(12)

where r1, r2, and r3 are random values in the range [0, 1]; UB and LB are the upper and
lower limits of the variables; the P operator is a generated random value; and C, L, and H
are operators that can be computed as follows:

C = F ×
(

1 − t
tmax

)
(13)

F = cos(2 × r4) + 1 (14)

L = C × l (15)

H = Z × X(t) (16)

Z = [−C, C] (17)

where tmax and t are the maximum and current iterations, and r4 is a random value in
the range [0, 1]. The exploitation phase in this algorithm is based on the motion of the
followers to the silverback gorilla. However, when the silverback dies or becomes ill, the
male blackback gorillas become leaders; these gorillas fight to obtain the female gorillas.
The exploitation phase mimics the motion of the males and females to the silverback. In
addition to that, when the silverback dies or becomes old, the blackback gorilla males
become leaders. Thus, the group may follow the silverback or the blackback gorilla males.
The transition between the two movements can be adjusted using two operators, C and W.
In the case that C ≥ W, the gorillas update their locations with respect to the silverback
as follows:

GX(t + 1) = M × L × (X(t)− Xbest ) + X(t) (18)

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g) 1

8

(19)

g = 2L (20)

where Xbest represents the silverback’s location. If C < W, the other gorillas follow the
adult males; this may be described as follows:

GX(i) = Xsilverback − (Xbest × Q − X(t)× Q)× A (21)

Q = 2 × r5 − 1 (22)

A = β × E (23)

where r5 represents a random value in the range [0, 1], β denotes a predefined operator,
and E is a random value obtained from the normal distribution. The GTO’s pseudocode is
depicted in Algorithm 1.
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Algorithm 1 The Pseudocode of GTO

Start GTO

Input : Set the parameters of the GTO (N, tmax , UB, LB
Output : The best position of the population (Xbest ) the corresponding fitness function.
Initialize the populations and calculate the objective functions and assign the best result.
While t < tmax

Update the values of the C, L using Equations (13) and (15).
Update the positions of the gorillas according to (12).
Compute the fitness function and assign the best solution.

If C ≥ W
Update the positions of the gorillas using Equation (18).

Otherwise

Update the positions of the gorillas using Equation (21).
end

Calculate the objective functions for the new locations and include them,
if their values are better than the previous solutions

End while

End GTO

4.2. Beluga Whale Optimization (BWO)

BWO is a new optimizer that was conceptualized from the motion, preying, and
behavior of beluga whales (BWs) in the seas and oceans [70]. BWs are social creatures that
share information and communicate together to search for food locations. Initially, the
fitness function is expressed as follows:

FX =

⎡
⎢⎢⎢⎣

f (x1,1, x1,2, . . . , x1,d)
f (x2,1, x2,2, . . . , x2,d)

...
f (xn,1, xn,2, . . . , xn,d)

⎤
⎥⎥⎥⎦ (24)

The swimming motion of the two BW pairs represents the exploration phase, which
may be mathematically described as follows:

Xt+1
i,j =

⎧⎨
⎩

Xt
i,pj

+
(

Xt
r,p1

− Xt
i,pj

)
(1 + r1)sin(2πr2), j = even

Xt
i,pj

+
(

Xt
r,p1

− Xt
i,pj

)
(1 + r1)cos(2πr2), j = odd

(25)

where Xt
r,p1

is a whale selected randomly from the generated BWs. The BWO exploitation
phase is conceptualized from the hunting and preying process of BWs. They update their
locations based on the best solution using the Levy flight strategy, as follows:

Xt+1
i = r3Xt

best − r4Xt
i + C1 · LF ·

(
Xt

r − Xt
i
)

(26)

C1 = 2r4(1 − t/tmax) (27)

where Xt
best represents the best location, Xt

r refers to a randomly selected BW, and LF is a
Lévy flight function, which can be determined as follows:

LF = 0.05 × u × σ∣∣v|1/β
(28)

σ =

(
sin(πβ/2)× Γ(1 + β)

β × Γ((1 + β)/2)× 2(β−1)/2

)1/β

(29)
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where u and v are random variables, and β is an adaptive variable used to enable the
transition between the exploitation and the exploration phases; it can be calculated as,

Bf = B0(1 − t/2tmax) (30)

where B0 is a random value in the range [0, 1]. If Bf > 0.5, the BWs update their locations
in the exploration phase; otherwise, they update their locations in the exploitation manner.
The final stage of the BWO is based on the whale fall of BWs when they have been
attacked by the killer whales. The dead BWs are deposited on a deep seabed. This stage is
represented as follows:

Xt+1
i = r5Xt

i − r6Xt
r + r7Xstep (31)

Xstep = (Ub − Lb)exp(−C2t/tmax) (32)

C2 = 2Wf × n (33)

Wf = 0.1 − 0.05t/tmax (34)

where r5, r6, and r7 denote random variables in the range [0, 1]. The pseudocode of BWO is
depicted in Algorithm 2.

Algorithm 2 The Pseudocode of the BWO

Start BWO

Input : Set the parameters of the BWO (N, tmax , UB , LB).
Output : The best position (Xbest ) of the populations and the corresponding fitness

function.
While t < tmax

Update the values of the using C1, Bf , and Wf using Equations (27), (30) and (34).
If Bf > 0.5

// Exploration phase
Update the locations of the BWs using Equation (25).

Otherwise

// Exploitation phase
Update the locations of the gorillas using Equation (26).

end

Compute the fitness functions for the new positions and select the best result.
If Bf ≥ Wf
// whale fall

Update the locations of the BWs using Equation (31).
End

Compute the fitness functions for the new positions and select the best result.
End while

End BWO

4.3. The Proposed Hybrid Multi-Population GTO and BWO

The proposed HMGTO-BWO is introduced to solve complex and nonlinear optimiza-
tion issues. The following steps describe the procedure of the proposed HMGTO-BWO:

Step 1: Define the parameters of the proposed HMGTO-BWO as well as the constraints
of the problem.

Step 2: Generate a set of populations randomly.
Step 3: Divide the populations into three subpopulations (N1, N2, N3), where N1 = N2

= N/3 and N3 = N − (N1 + N2), where N, N1, N2, and N3 are numbers of the population, the
first subpopulation, the second subpopulation, and the third subpopulation, respectively.

Step 4: Update the populations in each subpopulation group based on the GTO, as
illustrated in Section 4.1.
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Step 5: Accept the new updated subpopulations if their values are better than those of
the old populations.

Step 6: Combine the three subpopulations as one vector; it represents the initial
populations of the BWO technique.

Step 7: Update the populations based on BWO, including the swimming motion, the
Levy flight motion, and the fall of BWs.

Step 8: Repeat Step 3 to Step 7 until the stopping criterion is satisfied.
The step procedures of the suggested algorithm are depicted in Figure 4.

Start

Set the parameters of the proposed 
algorithm (Ub, Lb, N, p, W, β )

Initialize the populations of each subgroup:
X1,i (i = 1,2,3…,n1)  
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X3,i (i = 1,2,3…,n3)  

Set t = 0
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Evaluate the fitness functions 
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Figure 4. Flowchart of the proposed HMGTO-BWO.
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The HGTO-BWO computational complexity is based on the initialization, fitness
assessment, and updating of the silverbacks and BW, and it can be described as follows:

O(HGTO − BWO) = (Sub.Population1 + Sub.Population2 + Sub.Population3)GTO + BWO (35)

O(HGTO − BWO) =
[
O
(

tmax × 1
3 N1

)
+ O

(
tmax × 1

3 N1 × D
)
× 2

]
+

[
O
(

tmax × 1
3 N2

)
+ O

(
tmax × 1

3 N2 × D
)
× 2

]
+
[
O
(

tmax × 1
3 N3

)
+ O

(
tmax × 1

3 N3 × D
)
× 2

]
+ O(N × (1 + 1.1 × tmax))

= O(N × (1 + tmax + TD)× 2 + (1 + 1.1 × tmax))

(36)

where D is the dimension of the problem.

5. Testing of Benchmark Function

For a fair comparison between the suggested HGTO-BWO and the other algorithmic
approaches, the maximum iterations number was set to 500; the population size was
assigned to 30; and 30 runs were conducted for each considered optimizer. The proposed
HGTO-BWO was investigated via the traditional benchmark functions and CEC 2019
functions. The fetched results were compared to TSA, GWO, WOA, SCA, HS, BWO, and
GTO. The algorithms’ parameters are presented in Table A1 in Appendix A.

5.1. Traditional Benchmark Functions

The proposed HGTO-BWO was investigated via the solving of various traditional
benchmark functions [71]; F1 to F13 have constant dimensions of 30, while the functions
F14 to F23 have different dimensions. These functions are divided into the functions from
F1 to F7, which are unimodal; F8 to F13, which are multi-modal; and F14 to F23, which are
composites (See Supplementary Materials). Table 2 shows the statistical results of all the
traditional benchmark functions; it includes the worst, average, best, standard deviation
(std), and p-value. The values given in bold indicate the best solutions obtained by the
proposed HGTO-BWO approach.

Table 2. Statistical analysis of traditional benchmark functions solved via the HGTO-BWO approach
and other techniques.

Function No Algorithm Worst Mean Best std p-Value

F1

TSA 6.062× 10−21 8.593 × 10−22 1.829 × 10−24 1.367 × 10−21 1.21 × 10−12

GWO 3.300 × 10−26 2.105 × 10−27 4.759 × 10−29 6.022 × 10−27 1.21 × 10−12

WOA 6.553 × 10−70 2.364 × 10−71 2.778 × 10−83 1.197 × 10−70 1.21 × 10−12

SCA 4.516 × 102 3.588 × 101 2.339 × 10−2 1.003 × 102 1.21 × 10−12

HS 3.079 × 103 2.476 × 103 1.562 × 103 3.939 × 102 1.21 × 10−12

BWO 1.925 × 10−257 1.272 × 10−258 1.274 × 10−272 0.00 × 100 1.21 × 10−12

GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.21 × 10−12

HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F2

TSA 4.979 × 10−13 1.128 × 10−13 1.047 × 10−14 1.206 × 10−13 3.02 × 10−11

GWO 4.515 × 10−16 9.566 × 10−17 1.246 × 10−17 8.300 × 10−17 3.02 × 10−11

WOA 1.156 × 10−48 7.100 × 10−50 1.076 × 10−56 2.454 × 10−49 3.02 × 10−11

SCA 1.346 × 10−1 2.449 × 10−2 8.107 × 10−5 3.647 × 10−2 3.02 × 10−11

HS 1.370 × 101 1.057 × 101 7.436 × 100 1.673 × 100 3.02 × 10−11

BWO 1.849 × 10−129 6.467 × 10−131 1.310 × 10−137 3.37 × 10−130 3.02 × 10−11

GTO 1.835 × 10−190 6.261 × 10−192 3.521 × 10−206 0.00 × 100 3.02 × 10−11

HGTO-BWO 6.916 × 10−247 2.305 × 10−248 5.079 × 10−268 0.00 × 100 NAN
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Table 2. Cont.

Function No Algorithm Worst Mean Best std p-Value

F3

TSA 2.826 × 10−3 3.329 × 10−4 1.572 × 10−8 7.279 × 10−4 1.21 × 10−12

GWO 3.698 × 10−4 2.062 × 10−5 7.248 × 10−9 6.741 × 10−5 1.21 × 10−12

WOA 7.244 × 104 3.723 × 104 2.987 × 103 1.716 × 104 1.21 × 10−12

SCA 2.274 × 104 9.511 × 103 1.459 × 103 5.359 × 103 1.21 × 10−12

HS 3.362 × 104 2.686 × 104 1.965 × 104 3.983 × 103 1.21 × 10−12

BWO 1.555 × 10−242 1.060 × 10−243 2.864 × 10−257 0.00 × 100 1.21 × 10−12

GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.21 × 10−12

HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F4

TSA 7.663 × 10−1 2.588 × 10−1 1.258 × 10−2 2.234 × 10−1 3.02 × 10−11

GWO 7.987 × 10−6 8.996 × 10−7 4.183 × 10−8 1.485 × 10−6 3.02 × 10−11

WOA 9.425 × 101 5.178 × 101 7.053 × 10−2 3.113 × 101 3.02 × 10−11

SCA 5.758 × 101 3.099 × 101 1.005 × 101 1.173 × 101 3.02 × 10−11

HS 4.145 × 101 3.622 × 101 3.042 × 101 2.199 × 100 3.02 × 10−11

BWO 3.880 × 10−126 3.095 × 10−127 2.571 × 10−133 7.804 × 10−127 3.02 × 10−11

GTO 1.694 × 10−192 8.353 × 10−194 9.838 × 10−208 0.00 × 100 3.02 × 10−11

HGTO-BWO 6.349 × 10−238 2.187 × 10−239 5.440 × 10−257 0.00 × 100 NAN

F5

TSA 2.889 × 101 2.838 × 101 2.609 × 101 7.737 × 10−1 2.37 × 10−12

GWO 2.852 × 101 2.682 × 101 2.566 × 101 7.761 × 10−1 2.37 × 10−12

WOA 2.877 × 101 2.794 × 101 2.728 × 101 5.032 × 10−1 2.37 × 10−12

SCA 4.983 × 105 4.696 × 104 1.048 × 102 9.858 × 104 2.37 × 10−12

HS 1.768 × 106 1.070 × 106 6.292 × 105 2.773 × 105 2.37 × 10−12

BWO 8.153 × 10−6 1.346 × 10−6 1.618 × 10−9 2.176 × 10−6 2.37 × 10−12

GTO 2.477 × 101 2.445 × 100 6.987 × 10−8 7.461 × 100 2.37 × 10−12

HGTO-BWO 1.395 × 10−28 5.853 × 10−30 0.00 × 100 2.608 × 10−29 NAN

F6

TSA 4.820 × 100 3.817 × 100 2.590 × 100 6.004 × 10−1 1.212 × 10−12

GWO 1.754 × 100 8.393 × 10−1 6.737 × 10−5 4.021 × 10−1 1.212 × 10−12

WOA 9.864 × 10−1 3.725 × 10−1 1.355 × 10−1 1.979 × 10−1 1.212 × 10−12

SCA 2.624 × 102 2.762 × 101 4.337 × 100 4.997 × 101 1.212 × 10−12

HS 3.225 × 103 2.582 × 103 1.422 × 103 4.447 × 102 1.212 × 10−12

BWO 2.490 × 10−13 1.879 × 10−14 1.153 × 10−17 4.703 × 10−14 1.212 × 10−12

GTO 7.369 × 10−7 1.292 × 10−7 7.310 × 10−11 1.675 × 10−7 1.212 × 10−12

HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F7

TSA 2.022 × 10−2 9.471 × 10−3 1.816 × 10−3 4.734 × 10−3 3.02 × 10−11

GWO 6.588 × 10−3 1.963 × 10−3 6.607 × 10−4 1.299 × 10−3 3.02 × 10−11

WOA 1.522 × 10−2 3.099 × 10−3 5.474 × 10−5 3.995 × 10−3 3.16 × 10−10

SCA 4.586 × 10−1 8.768 × 10−2 9.960 × 10−3 9.341 × 10−2 3.02 × 10−11

HS 1.093 × 100 7.266 × 10−1 3.535 × 10−1 1.790 × 10−1 3.02 × 10−11

BWO 4.232 × 10−4 1.563 × 10−4 3.893 × 10−7 1.160 × 10−4 1.70 × 10−2

GTO 3.524 × 10−4 1.005 × 10−4 1.298 × 10−5 8.193 × 10−5 4.12 × 10−1

HGTO-BWO 3.263 × 10−4 8.538 × 10−5 2.321 × 10−6 7.039 × 10−5 NAN

F8

TSA −4.628 × 103 −5.706 × 103 −6.921 × 103 5.559 × 102 1.720 × 10−12

GWO −3.023 × 103 −6.026 × 103 −7.397 × 103 9.273 × 102 1.720 × 10−12

WOA −6.738 × 103 −1.051 × 104 −1.257 × 104 1.872 × 103 1.720 × 10−12

SCA −3.240 × 103 −3.726 × 103 −4.747 × 103 3.438 × 102 1.720 × 10−12

HS −1.130 × 104 −1.160 × 104 −1.196 × 104 1.851 × 102 1.720 × 10−12

BWO −1.257 × 104 −1.257 × 104 −1.257 × 104 1.548 × 10−8 4.562 × 10−11

GTO −1.257 × 104 −1.257 × 104 −1.257 × 104 1.868 × 10−5 4.562 × 10−11

HGTO-BWO −1.257 × 104 −1.257 × 104 −1.257 × 104 3.317 × 10−3 NAN
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F9

TSA 2.745 × 102 1.924 × 102 1.364 × 102 3.806 × 101 1.212 × 10−12

GWO 1.195 × 101 2.920 × 100 5.684 × 10−14 3.451 × 100 1.188 × 10−12

WOA 5.684 × 10−14 1.895 × 10−15 0.00 × 100 1.038 × 10−14 3.337 × 10−1

SCA 1.144 × 102 3.067 × 101 1.303 × 10−2 3.118 × 101 1.212 × 10−12

HS 6.129 × 101 5.208 × 101 3.510 × 101 6.576 × 100 1.212 × 10−12

BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F10

TSA 1.926 × 101 1.676 × 100 1.077 × 10−12 3.633 × 100 1.212 × 10−12

GWO 1.714 × 10−13 1.039 × 10−13 6.839 × 10−14 2.216 × 10−14 1.112 × 10−12

WOA 7.994 × 10−15 4.796 × 10−15 8.882 × 10−16 2.529 × 10−15 1.233 × 10−9

SCA 2.035 × 101 1.628 × 101 1.762 × 10−02 7.960 × 100 1.212 × 10−12

HS 1.198 × 101 1.022 × 101 9.181 × 100 7.230 × 10−1 1.212 × 10−12

BWO 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 0.00 × 100 NAN
GTO 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 0.00 × 100 NAN
HGTO-BWO 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 0.00 × 100 NAN

F11

TSA 7.086 × 10−2 1.139 × 10−2 0.00 × 100 1.437 × 10−2 3.453 × 10−7

GWO 1.466 × 10−2 2.227 × 10−3 0.00 × 100 4.603 × 10−3 1.104 × 10−2

WOA 1.334 × 10−1 8.450 × 10−3 0.00 × 100 3.220 × 10−2 1.608 × 10−1

SCA 1.395 × 100 9.139 × 10−1 3.508 × 10−1 3.097 × 10−1 1.212 × 10−12

HS 3.395 × 101 2.408 × 101 1.598 × 101 4.187 × 100 1.212 × 10−12

BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
GTO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN
HGTO-BWO 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 NAN

F12

TSA 1.763 × 1001 8.358 × 100 1.229 × 100 4.909 × 100 1.2 × 10−12

GWO 8.906 × 10−2 4.194 × 10−2 1.302 × 10−2 1.904 × 10−2 1.2 × 10−12

WOA 4.461 × 100 1.803 × 10−1 6.551 × 10−3 8.092 × 10−1 1.2 × 10−12

SCA 7.264 × 106 2.860 × 105 6.013 × 10−1 1.328 × 106 1.2 × 10−12

HS 2.270 × 105 5.098 × 104 1.847 × 103 5.045 × 104 1.2 × 10−12

BWO 6.621 × 10−13 7.690 × 10−14 1.117 × 10−16 1.543 × 10−13 1.2 × 10−12

GTO 1.505 × 10−7 3.881 × 10−8 3.088 × 10−10 4.298 × 10−8 1.2 × 10−12

HGTO-BWO 1.571 × 10−32 1.571 × 10−32 1.571 × 10−32 5.567 × 10−48 NAN

F13

TSA 4.576 × 100 2.978 × 100 1.628 × 100 6.748 × 10−1 1.2 × 10−12

GWO 1.141 × 100 6.990 × 10−1 1.132 × 10−1 2.570 × 10−1 1.2 × 10−12

WOA 1.704 × 100 6.341 × 10−1 6.034 × 10−2 3.425 × 10−1 1.2 × 10−12

SCA 2.870 × 106 2.229 × 105 2.964 × 100 6.961 × 105 1.2 × 10−12

HS 2.840 × 106 1.215 × 106 3.453 × 105 5.884 × 105 1.2 × 10−12

BWO 8.110 × 10−12 4.565 × 10−13 2.230 × 10−15 1.484 × 10−12 1.2 × 10−12

GTO 6.478 × 10−2 4.357 × 10−3 8.216 × 10−12 1.414 × 10−2 1.2 × 10−12

HGTO-BWO 1.35 × 10−32 1.35 × 10−32 1.35 × 10−32 5.567 × 10−48 NAN

F14

TSA 1.830 × 101 9.339 × 100 9.98 × 10−1 4.957 × 100 1.21 × 10−12

GWO 1.267 × 101 4.948 × 100 9.98 × 10−1 4.243 × 100 1.21 × 10−12

WOA 1.076 × 101 3.154 × 100 9.98 × 10−1 3.622 × 100 1.21 × 10−12

SCA 1.076 × 101 2.114 × 100 9.98 × 10−1 2.498 × 100 1.21 × 10−12

HS 9.980 × 10−1 9.980 × 10−1 9.98 × 10−1 1.873 × 10−7 1.21 × 10−12

BWO 1.992 × 100 1.064 × 100 9.98 × 10−1 2.522 × 10−1 1.21 × 10−12

GTO 9.980 × 10−1 9.980 × 10−1 9.98 × 10−1 5.831 × 10−17 1.61 × 10−01

HGTO-BWO 9.980 × 10−1 9.980 × 10−1 9.98 × 10−1 0.00 × 100 NAN
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F15

TSA 1.103 × 10−1 1.267 × 10−2 3.077 × 10−4 2.256 × 10−2 6.542 × 10−10

GWO 2.036 × 10−2 6.373 × 10−3 3.075 × 10−4 9.316 × 10−3 1.651 × 10−9

WOA 1.590 × 10−3 7.336 × 10−4 3.223 × 10−4 3.649 × 10−4 3.411 × 10−9

SCA 1.624 × 10−3 1.029 × 10−3 5.172 × 10−4 3.986 × 10−4 9.499 × 10−10

HS 1.562 × 10−2 2.036 × 10−3 6.734 × 10−4 2.721 × 10−3 4.490 × 10−10

BWO 7.762 × 10−4 3.639 × 10−4 3.091 × 10−4 9.203 × 10−5 8.286 × 10−9

GTO 1.223 × 10−3 3.991 × 10−4 3.075 × 10−4 2.794 × 10−4 7.665 × 10−1

HGTO-BWO 1.223 × 10−3 3.685 × 10−4 3.075 × 10−4 2.323 × 10−4 NAN

F16

TSA −1.000 × 100 −1.028 × 100 −1.032 × 100 9.652 × 10−3 6.319 × 10−12

GWO −1.032 × 100 −1.032 × 100 −1.032 × 100 3.067 × 10−8 6.319 × 10−12

WOA −1.032 × 100 −1.032 × 100 −1.032 × 100 2.284 × 10−9 6.319 × 10−12

SCA −1.031 × 100 −1.032 × 100 −1.032 × 100 3.080 × 10−5 6.319 × 10−12

HS −1.031 × 100 −1.032 × 100 −1.032 × 100 1.986 × 10−4 6.319 × 10−12

BWO −1.03 × 100 −1.031 × 100 −1.032 × 100 3.914 × 10−4 6.319 × 10−12

GTO −1.032 × 100 −1.032 × 100 −1.032 × 100 6.321 × 10−16 7.639 × 10−1

HGTO-BWO −1.032 × 100 −1.032 × 100 −1.032 × 100 6.388 × 10−16 NAN

F17

TSA 3.985 × 10−1 3.980 × 10−1 3.979 × 10−1 1.141 × 10−4 1.21 × 10−12

GWO 3.988 × 10−1 3.979 × 10−1 3.979 × 10−1 1.706 × 10−4 1.21 × 10−12

WOA 3.980 × 10−1 3.979 × 10−1 3.979 × 10−1 2.229 × 10−5 1.21 × 10−12

SCA 4.262 × 10−1 4.010 × 10−1 3.979 × 10−1 6.015 × 10−3 1.21 × 10−12

HS 3.997 × 10−1 3.981 × 10−1 3.979 × 10−1 4.448 × 10−4 1.21 × 10−12

BWO 4.087 × 10−1 4.011 × 10−1 3.979 × 10−1 2.804 × 10−3 1.21 × 10−12

GTO 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 0.00 × 100 NAN
HGTO-BWO 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 0.00 × 100 NAN

F18

TSA 3.0 × 101 6.600 × 100 3.0 × 100 9.335 × 100 5.21 × 10−12

GWO 3.0 × 100 3.0 × 100 3.0 × 100 3.081 × 10−5 5.21 × 10−12

WOA 3.0 × 100 3.0 × 100 3.0 × 100 6.025 × 10−5 5.21 × 10−12

SCA 3.0 × 100 3.0 × 100 3.0 × 100 1.173 × 10−4 5.21 × 10−12

HS 3.006 × 100 3.001 × 100 3.0 × 100 1.271 × 10−3 5.21 × 10−12

BWO 6.659 × 100 3.914 × 100 3.009 × 100 9.835 × 10−1 5.21 × 10−12

GTO 3.0 × 100 3.0 × 100 3.0 × 100 9.257 × 10−16 3.146 × 10−02

HGTO-BWO 3.0 × 100 3.0 × 100 3.0 × 100 1.414 × 10−15 NAN

F19

TSA −3.862 × 100 −3.863 × 100 −3.86 × 100 1.091 × 10−4 7.57 × 10−12

GWO −3.855 × 100 −3.862 × 100 −3.86 × 100 2.427 × 10−3 7.57 × 10−12

WOA −3.834 × 100 −3.855 × 100 −3.86 × 100 7.989 × 10−3 7.57 × 10−12

SCA −3.843 × 100 −3.854 × 100 −3.862 × 100 3.439 × 10−3 7.57 × 10−12

HS −3.863 × 100 −3.863 × 100 −3.86 × 100 2.946 × 10−5 7.57 × 10−12

BWO −3.852 × 100 −3.858 × 100 −3.862 × 100 3.045 × 10−3 7.57 × 10−12

GTO −3.863 × 100 −3.863 × 100 −3.86 × 100 2.612 × 10−15 1.000
HGTO-BWO −3.863 × 100 −3.863 × 100 −3.86 × 100 2.612 × 10−15 NAN

F20

TSA −2.840 × 100 −3.248 × 100 −3.321 × 100 1.106 × 10−1 2.646 × 10−7

GWO −3.103 × 100 −3.262 × 100 −3.322 × 100 7.766 × 10−2 2.646 × 10−7

WOA −3.055 × 100 −3.248 × 100 −3.322 × 100 9.266 × 10−2 6.828 × 10−7

SCA −1.454 × 100 −2.918 × 100 −3.220 × 100 3.302 × 10−1 2.319 × 10−11

HS −3.203 × 100 −3.302 × 100 −3.322 × 100 4.509 × 10−2 6.360 × 10−6

BWO −3.169 × 100 −3.267 × 100 −3.317 × 100 4.963 × 10−2 2.667 × 10−6

GTO −3.203 × 100 −3.298 × 100 −3.322 × 100 4.837 × 10−2 8.819 × 10−1

HGTO-BWO −3.203 × 100 −3.298 × 100 −3.322 × 100 4.837 × 10−2 NAN
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F21

TSA −2.603 × 100 −7.082 × 100 −1.012 × 101 3.387 × 100 1.406 × 10−11

GWO −2.682 × 100 −9.564 × 100 −1.015 × 101 1.828 × 100 1.406 × 10−11

WOA −2.585 × 100 −8.285 × 100 −1.015 × 101 2.950 × 100 1.406 × 10−11

SCA −4.973 × 10−1 −2.264 × 100 −5.364 × 100 1.829 × 100 1.406 × 10−11

HS −2.629 × 100 −5.921 × 100 −1.015 × 101 3.755 × 100 1.406 × 10−11

BWO −1.013 × 101 −1.015 × 101 −1.015 × 101 4.298 × 10−3 1.406 × 10−11

GTO −1.015 × 101 −1.015 × 101 −1.015 × 101 5.827 × 10−15 3.882 × 10−3

HGTO-BWO −1.015 × 101 −1.015 × 101 −1.015 × 101 6.506 × 10−15 NAN

F22

TSA −1.826 × 100 −7.195 × 100 −1.034 × 101 3.555 × 100 6.387 × 10−12

GWO −5.088 × 100 −1.022 × 101 −1.04 × 101 9.702 × 10−1 6.387 × 10−12

WOA −1.836 × 100 −8.237 × 100 −1.04 × 101 3.179 × 100 6.387 × 10−12

SCA −9.062 × 10−1 −4.124 × 100 −7.417 × 100 1.629 × 100 6.387 × 10−12

HS −2.75 × 100 −5.982 × 100 −1.04 × 101 3.471 × 100 6.387 × 10−12

BWO −1.039 × 101 −1.04 × 101 −1.04 × 101 4.324 × 10−3 6.387 × 10−12

GTO −1.04 × 101 −1.04 × 101 −1.04 × 101 8.080 × 10−16 1.000
HGTO-BWO −1.04 × 101 −1.04 × 101 −1.04 × 101 8.080 × 10−16 NAN

F23

TSA −1.671 × 100 −5.757 × 100 −1.041 × 101 3.745 × 100 7.574 × 10−12

GWO −2.422 × 100 −1.026 × 101 −1.054 × 101 1.481 × 100 7.574 × 10−12

WOA −1.672 × 100 −8.079 × 100 −1.054 × 101 3.345 × 100 7.574 × 10−12

SCA −9.436 × 10−1 −3.886 × 100 −5.962 × 100 1.374 × 100 7.574 × 10−12

HS −2.518 × 101 −6.977 × 100 −1.054 × 101 3.631 × 100 7.574 × 10−12

BWO −1.052 × 101 −1.053 × 101 −1.054 × 101 3.777 × 10−3 7.574 × 10−12

GTO −1.054 × 101 −1.054 × 101 −1.054 × 101 1.189 × 10−15 3.648 × 10−1

HGTO-BWO −1.054 × 101 −1.054 × 101 −1.054 × 101 2.356 × 10−15 NAN

5.2. CEC-C06 2019 Benchmark Functions

To verify the efficiency and validation of the suggested HGTO-BWO, it was tested and
assessed with the modern functions of CEC-C06 2019 [72,73]. The CEC-C06 2019 benchmark
function comprises 10 functions, where CEC01 to CEC03 have variable dimensions, while
CEC04 to CEC10 have constant dimensions. The statistical analysis during the solving of
CEC01 to CEC10 via the proposed HGTO-BWO and others was conducted, and the fetched
results are tabulated in Table 3. The bold values given in Table 3 refer to the best results
obtained through the proposed approach.

Table 3. Statistical analysis of CEC-C06 2019 benchmark functions solved via the proposed hybrid
approach and others.

Function No Algorithm Worst Mean Best Std p-Value

CEC01

TSA 3.841 × 109 2.210 × 108 7.038 × 104 7.170 × 108 3.020 × 10−11

GWO 4.821 × 109 3.646 × 108 4.506 × 104 9.087 × 108 3.020 × 10−11

WOA 1.447 × 1011 2.554 × 1010 3.498 × 106 4.112 × 1010 3.020 × 10−11

SCA 3.788 × 1010 8.327 × 109 2.425 × 107 8.725 × 109 3.020 × 10−11

HS 9.231 × 1010 2.119 × 1010 3.137 × 109 1.969 × 1010 3.020 × 10−11

BWO 8.286 × 104 6.219 × 104 4.906 × 104 8.071 × 103 3.020 × 10−11

GTO 3.981 × 104 3.769 × 104 3.549 × 104 9.246 × 102 3.387 × 10−2

HGTO-BWO 3.889 × 104 3.704 × 104 3.224 × 104 1.215 × 103 NAN
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CEC02

TSA 1.956 × 101 1.840 × 101 1.735 × 101 7.225 × 10−1 1.061 × 10−11

GWO 1.734 × 101 1.734 × 101 1.734 × 101 2.575 × 10−4 1.061 × 10−11

WOA 1.747 × 101 1.735 × 101 1.734 × 101 2.329 × 10−2 1.061 × 10−11

SCA 1.772 × 101 1.749 × 101 1.737 × 101 8.718 × 10−2 1.061 × 10−11

HS 1.147 × 102 5.717 × 101 2.004 × 101 2.245 × 101 1.061 × 10−11

BWO 1.780 × 101 1.755 × 101 1.744 × 101 8.285 × 10−2 1.061 × 10−11

GTO 1.734 × 101 1.734 × 101 1.734 × 101 6.032 × 10−13 1.506 × 10−1

HGTO-BWO 1.734 × 101 1.734 × 101 1.734 × 101 1.108 × 10−14 NAN

CEC03

TSA 1.271 × 101 1.27 × 101 1.27 × 101 1.298 × 10−3 1.720 × 10−12

GWO 1.27 × 101 1.27 × 101 1.27 × 101 1.158 × 10−5 1.720 × 10−12

WOA 1.27 × 101 1.27 × 101 1.27 × 101 2.173 × 10−6 1.720 × 10−12

SCA 1.27 × 101 1.27 × 101 1.27 × 101 1.158 × 10−4 1.720 × 10−12

HS 1.27 × 101 1.27 × 101 1.27 × 101 6.272 × 10−7 1.720 × 10−12

BWO 1.27 × 101 1.27 × 101 1.27 × 101 1.160 × 10−4 1.720 × 10−12

GTO 1.27 × 101 1.27 × 101 1.27 × 101 3.688 × 10−15 1.000
HGTO-BWO 1.27 × 101 1.27 × 101 1.27 × 101 3.917 × 10−15 NAN

CEC04

TSA 9.665 × 103 4.501 × 103 1.712 × 102 2.214 × 103 3.020 × 10−11

GWO 4.212 × 103 2.409 × 102 2.141 × 101 7.933 × 102 4.204 × 10−1

WOA 6.893 × 102 3.777 × 102 1.490 × 102 1.541 × 102 3.020 × 10−11

SCA 4.111 × 103 1.666 × 103 7.541 × 102 8.432 × 102 3.020 × 10−11

HS 1.427 × 102 7.831 × 101 4.261 × 101 2.816 × 101 4.218 × 10−4

BWO 1.211 × 104 7.614 × 103 2.383 × 103 2.226 × 103 3.020 × 10−11

GTO 4.388 × 102 1.015 × 102 3.383 × 101 7.859 × 101 5.264 × 10−4

HGTO-BWO 1.264 × 102 5.574 × 101 2.189 × 101 2.474 × 101 NAN

CEC05

TSA 4.893 × 100 3.033 × 100 1.560 × 100 8.286 × 10−1 4.504 × 10−11

GWO 1.891 × 100 1.455 × 100 1.055 × 100 2.840 × 10−1 1.221 × 10−2

WOA 2.786 × 100 1.862 × 100 1.287 × 100 3.340 × 10−1 4.616 × 10−10

SCA 2.442 × 100 2.188 × 100 2.004 × 100 9.594 × 10−2 3.020 × 10−11

HS 1.495 × 100 1.278 × 100 1.099 × 100 1.014 × 10−1 2.170 × 10−1

BWO 4.149 × 100 3.617 × 100 2.867 × 100 3.177 × 10−1 3.020 × 10−11

GTO 1.871 × 100 1.249 × 100 1.032 × 100 2.017 × 10−1 4.643 × 10−1

HGTO-BWO 1.780 × 100 1.261 × 100 1.047 × 100 1.684 × 10−1 NAN

CEC06

TSA 1.184 × 101 1.106 × 101 9.047 × 100 6.621 × 10−1 3.020 × 10−11

GWO 1.210 × 101 1.095 × 101 9.122 × 100 7.040 × 10−1 3.020 × 10−11

WOA 1.141 × 101 9.831 × 100 7.546 × 100 9.329 × 10−1 4.504 × 10−11

SCA 1.218 × 101 1.101 × 101 9.583 × 100 7.444 × 10−1 3.020 × 10−11

HS 1.118 × 101 9.057 × 100 6.929 × 100 1.404 × 100 2.922 × 10−9

BWO 1.200 × 101 1.090 × 101 9.780 × 100 5.720 × 10−1 3.020 × 10−11

GTO 1.207 × 101 8.029 × 100 5.137 × 100 1.503 × 100 3.835 × 10−6

HGTO-BWO 7.922 × 100 6.194 × 100 3.711 × 100 1.058 × 100 NAN

CEC07

TSA 1.035 × 103 5.909 × 102 1.111 × 102 2.431 × 102 1.010 × 10−8

GWO 1.091 × 103 5.154 × 102 −1.534 × 101 3.448 × 102 4.639 × 10−5

WOA 1.429 × 103 6.162 × 102 1.365 × 102 3.478 × 102 2.602 × 10−8

SCA 1.140 × 103 7.929 × 102 4.640 × 102 1.563 × 102 3.020 × 10−11

HS 7.648 × 102 2.673 × 102 −2.514 × 102 2.779 × 102 5.943 × 10−2

BWO 1.183 × 103 8.537 × 102 5.020 × 102 1.761 × 102 3.020 × 10−11

GTO 1.098 × 103 3.736 × 102 −1.016 × 102 2.990 × 102 1.680 × 10−3

HGTO-BWO 4.571 × 102 1.388 × 102 −1.506 × 102 1.838 × 102 NAN
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Table 3. Cont.

Function No Algorithm Worst Mean Best Std p-Value

CEC08

TSA 7.051 × 100 6.333 × 100 5.427 × 100 4.589 × 10−1 9.063 × 10−8

GWO 6.584 × 100 4.984 × 100 3.182 × 100 8.750 × 10−1 3.711 × 10−1

WOA 7.060 × 100 5.965 × 100 4.795 × 100 5.548 × 10−1 1.493 × 10−4

SCA 6.828 × 100 6.055 × 100 4.697 × 100 4.921 × 10−1 1.337 × 10−5

HS 6.117 × 100 4.841 × 100 2.763 × 100 9.617 × 10−1 2.062 × 10−1

BWO 6.843 × 100 6.311 × 100 5.657 × 100 2.931 × 10−1 2.922 × 10−9

GTO 6.668 × 100 5.235 × 100 3.694 × 100 6.907 × 10−1 9.000 × 10−1

HGTO-BWO 6.183 × 100 5.159 × 100 3.630 × 100 7.707 × 10−1 NAN

CEC09

TSA 1.579 × 103 2.795 × 102 3.468 × 100 4.309 × 102 3.020 × 10−11

GWO 6.206 × 100 4.419 × 100 3.038 × 100 8.261 × 10−1 3.020 × 10−11

WOA 2.169 × 101 5.703 × 100 3.495 × 100 3.128 × 100 3.020 × 10−11

SCA 3.871 × 102 1.150 × 102 9.989 × 100 9.173 × 101 3.020 × 10−11

HS 5.387 × 100 3.612 × 100 2.680 × 100 6.163 × 10−1 4.077 × 10−11

BWO 1.964 × 103 1.230 × 103 6.707 × 102 3.098 × 102 3.020 × 10−11

GTO 4.680 × 100 2.803 × 100 2.413 × 100 4.563 × 10−1 1.091 × 10−5

HGTO-BWO 2.804 × 100 2.476 × 100 2.369 × 100 1.148 × 10−1 NAN

CEC10

TSA 2.065 × 101 2.047 × 101 2.022 × 101 1.108 × 10−1 3.338 × 10−11

GWO 2.065 × 101 2.050 × 101 2.031 × 101 8.815 × 10−2 3.020 × 10−11

WOA 2.052 × 101 2.028 × 101 2.007 × 101 1.117 × 10−1 2.371 × 10−10

SCA 2.064 × 101 2.049 × 101 2.028 × 101 9.279 × 10−2 3.020 × 10−11

HS 2.054 × 101 2.033 × 101 2.008 × 101 1.281 × 10−1 1.464 × 10−10

BWO 2.061 × 101 2.044 × 101 2.020 × 101 1.031 × 10−1 3.338 × 10−11

GTO 2.031 × 101 1.954 × 101 3.734 × 100 2.988 × 100 2.921 × 10−2

HGTO-BWO 2.023 × 101 1.937 × 101 7.754 × 10−13 3.658 × 100 NAN

6. Application of HGTO-BWO: Parameter Estimation of PV Cell/Module

The proposed HGTO-BWO was applied to solve a vital problem regarding the iden-
tification of the optimal parameters of the PV cell/panel equivalent circuit with the aid
of experimental data. The topic is very important as it is necessary to establish a reliable
model of a PV system that simulates reality. This helps many researchers to conduct their
work in the constructed circuit via the proposed methodology.

The parameters were computed in standard operating conditions for the PVM752 cell,
STM6-40/36 panel, and PWP-201 module. Also, the double diode models for the KC200GT
and MSX60 were constructed under various solar irradiances and temperatures. Table 4
shows the considered upper and lower limits of the design variables.

Table 4. The upper and lower limits of design variables for various PV cell/models.

Parameters
PVW 752 STM6-40/36 PWP-201 MSX60 KC200GT

Lb Ub Lb Ub Lb Ub Lb Ub Lb Ub

A1,2,3 1 2 1 60 1 50 1 2 1 2
Rs 0 0.8 0 0.36 0 2 0 2 0 2
Rsh 0 1000 0 1000 0 2000 0 500 0 500
Id1, Id2, Id3 0 1 × 10−6 0 50 × 10−6 0 50 × 10−6 0 10 × 10−6 0 10 × 10−6

Iph 0 0.5 0 2 0 2 0 8 0 16.4

6.1. Case 1: Constant Weather Conditions
6.1.1. PVW 752 Cell

The proposed HGTO-BWO was employed to determine the parameters of the DDM
and TDM for a PVM752 GaAs thin film cell at 25 ◦C and 1000 W/m2; the electric character-
istics of the PVM752 cell and the measured I-V data are presented in [74]. The convergence
curves obtained by the considered optimizers for both models are shown in Figure 5. The
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RMSE value, statistical analysis, and optimal parameters of the DDM obtained through
the proposed HGTO-BWO in comparison to the others are illustrated in Table 5. The
least obtained RMSEs for the DDM and TDM were achieved by HGTO-BWO with values
of 2.0886 × 10−4 and 1.527 × 10−4, respectively. On the other hand, the GTO approach
ranked second, achieving fitness values of 4.6815 × 10−4 for the DDM and 2.278 × 10−4

for the TDM. The HS algorithm was the worst approach; it provided fitness values of
6.6870 × 10−1 for the DDM and 3.738 for the TDM. Figure 6 shows the estimated and
measured P-V and I-V curves of the DDM and TDM. It is notable that the estimated curves
converge closely with the measured data; this means the PV cell/panel performed well
and converged with the real one. The statistical parameters including best, worst, mean,
and std are shown in Figure 7. The results shown in Table 5 verify the effectiveness of the
suggested approach in extracting the parameters with the least fitness values compared to
the other algorithms. The values given in bold indicate the best solutions obtained by the
proposed HGTO-BWO approach.

(a) (b)

Figure 5. Convergence curves for PVW 752: (a) DDM and (b) TDM.

(a)

(b)

Figure 6. Measured and determined I-V and P-V curves for the PVM752 cell: (a) DDM and (b) TDM.
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Table 5. Optimal parameters of PVW752 PV cell DDM and TDM models.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

DDM

A1 1.7120 1.3103 1.7975 2.0000 1.9999 1.0000 1.9910 1.3954
A2 2.0000 2.0000 1.7975 2.0000 1.9998 1.0000 1.8486 1.8296
Rs 0.5153 0.5188 0.0000 0.0000 0.1255 0.0000 0.5764 0.6759
Rsh 1000.000 602.772 14.589 14.559 995.383 15.763 996.861 616.390
Id1 2.173 × 10−16 0.0 × 100 0.0 × 100 0.0 × 100 3.303 × 10−10 0.0 × 100 0.0 × 100 4.698 × 10−14

Id2 3.824 × 10−10 3.803 × 10−10 0.0 × 100 0.0 × 100 7.259 × 10−9 0.0 × 100 7.798 × 10−11 2.822 × 10−11

Iph 0.1002 0.1004 0.1138 0.1139 0.5000 0.1096 0.1000 0.1001

RMSE 7.1892 × 10−4 7.6797 × 10−4 2.5400 × 10−2 2.5400 × 10−2 6.6870 × 10−1 2.5504 × 10−2 4.6815 × 10−4 2.0886 × 10−4

Worst 2.5405 × 10−2 2.5416 × 10−2 8.3219 × 10−2 8.3219 × 10−2 1.8163 × 101 8.1095 × 10−2 2.5400 × 10−2 2.5400 × 10−2

Mean 3.3031 × 10−3 2.3763 × 10−2 3.8904 × 10−2 2.7333 × 10−2 6.1022 × 100 4.1477 × 10−2 2.2662 × 10−2 1.4662 × 10−2

std 4.7330 × 10−3 6.2492 × 10−3 2.4866 × 10−2 1.0555 × 10−2 4.4800 × 100 1.4131 × 10−2 6.5555 × 10−3 1.1001 × 10−2

p-value 7.9106 × 10−3 1.6060 × 10−9 2.1821 × 10−11 2.262 × 10−11 2.262 × 10−11 2.262 × 10−11 1.0147 × 10−3 NAN

TDM

A1 1.9293 1.6268 1.9620 1.0000 1.9987 1.0000 1.6157 1.9993
A2 2.0000 2.0000 1.9893 1.1864 1.9981 1.0000 1.0000 1.1530
A3 2.0000 1.9859 1.9977 1.1541 1.9995 1.0000 1.0050 1.9992
Rs 0.5356 0.5161 0.0000 0.0000 0.0027 0.0131 0.6605 0.7163
Rsh 853.5804 628.6429 94.9593 14.6251 996.7450 19.8767 608.0249 720.9139
Id1 2.471 × 10−11 0.0 × 100 2.422 × 10−10 0.0 × 100 6.784 × 10−9 0.0 × 100 3.779 × 10−12 1.708 × 10−10

Id2 3.088 × 10−10 3.559 × 10−10 0.0 × 100 0.0 × 100 1.092 × 10−9 0.0 × 100 0.0 × 100 1.371 × 10−16

Id3 2.362 × 10−11 2.097 × 10−11 0.0 × 100 0.0 × 100 2.872 × 10−8 0.0 × 100 0.0 × 100 2.894 × 10−20

Iph 0.1004 0.1003 0.0996 0.1137 0.4999 0.1015 0.1001 0.1000

RMSE 7.510 × 10−4 7.603 × 10−4 7.171 × 10−3 2.540 × 10−2 3.738 × 100 2.642 × 10−2 2.278 × 10−4 1.527 × 10−4

Worst 1.4277 × 10−2 1.7234 × 10−2 3.1417 × 10−1 3.1109 × 10−1 9.7810 × 10−3 1.4804 × 100 3.1880 × 10−3 2.4999 × 10−3

Mean 7.7371 × 10−3 5.9997 × 10−3 5.1015 × 10−2 1.5508 × 10−1 4.4487 × 10−3 4.6697 × 10−1 2.5146 × 10−3 1.9473 × 10−3

std 2.9796 × 10−3 2.7148 × 10−3 8.9905 × 10−2 1.4850 × 10−1 1.5576 × 10−3 3.2987 × 10−1 4.5441 × 10−4 1.4158 × 10−4

p-value 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.6897 × 10−11 3.019 × 10−11 3.2555 × 10−7 NAN

(a) (b)

Figure 7. Bar chart of statistical analysis for the PVM752 cell: (a) DDM and (b) TDM.

6.1.2. PV Panel

The analyzed panels in this work were the Photowatt PWP-201 and STM6-40/36.
The first one was investigated at 51 ◦C and 1000 W/m2, while the PWP-201 module was
investigated at 45 ◦C and 1000 W/m2. The measured data for both considered panels are
given in [54,77]. The fetched results for the DDMs of both panels are tabulated in Table 6.
The proposed HGTO-BWO came in the first rank with the best RMSEs of 2.42508 × 10−3

for PWP-201 and 1.8032 × 10−3 for STM6-40/36, while the GTO approach was in the
second rank with fitness values of 2.42511 × 10−3 and 1.88 × 10−3 for PWP-201 and
STM6-40/36, respectively. The computed and measured P-V and I-V curves are shown
in Figure 8. The obtained curves are completely consistent with the measured data, and
this confirms the preference of the proposed method in obtaining an approved equivalent
circuit that simulates reality. The mean ranking of the RMSE values is illustrated in
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Figure 9. It is confirmed that the proposed HGTO-BWO has the greatest rank among the
applied algorithms, while Figure 10 illustrates the bar chart of the statistical analysis of
the DDM. Moreover, the TDM optimal parameters and statistical analysis achieved by the
proposed HGTO-BWO and the others are presented in Table 7. It is observed that the best
fitness values were attained by the proposed HGTO-BWO with values of 2.2068 × 10−3

for PWP-201 and 1.7435 × 10−3 for STM6-40/36, while the worst fitness values were
obtained via BWO with 1.5132 × 10−1 and 2.4985 × 10−1 for PWP-201 and STM6-40/36,
respectively. Figure 11 depicts the measured and computed P-V and I-V curves of the TDM;
the computed data converge with the measured ones; this validates the competence of the
proposed HGTO-BWO. The mean ranking of the RMSE values and the statistical analysis
for the TDM are presented in Figures 12 and 13, respectively. The RMSE values in bold
indicate the best solutions obtained by the proposed HGTO-BWO approach.

Table 6. The calculated parameters of DDM and statistical analysis for PWP-201 and STM6-40/36 panels.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

PWP201

A1 50.0000 50.0000 46.5652 50.0000 49.2825 1.0000 48.6368 48.6477
A2 48.3674 46.5502 49.9999 42.6562 49.5258 50.0000 1.0000 48.6330
Rs 1.1616 1.1824 1.1658 0.9700 1.1852 1.8645 1.2013 1.2012
Rsh 880.7826 1220.8951 1999.9965 904.1055 1420.8958 109.5641 977.9933 982.7504
Id1 4.343 × 10−6 4.180 × 10−6 0.0 × 100 4.661 × 10−6 3.556 × 10−6 0.0 × 100 3.477 × 10−6 2.886 × 10−6

Id2 3.688 × 10−7 2.946 × 10−7 4.923 × 10−6 0.0 × 100 5.916 × 10−7 3.483 × 10−6 0.0 × 100 5.988 × 10−7

Iph 1.0345 1.0303 1.0275 1.0158 1.0285 0.8628 1.0305 1.0305

RMSE 3.20292 × 10−3 2.56748 × 10−3 2.63181 × 10−3 2.42124 × 10−2 2.49283 × 10−3 2.34014 × 10−1 2.42511 × 10−3 2.42508 × 10−3

Worst 1.4277 × 10−2 1.7234 × 10−2 3.1417 × 10−1 3.1109 × 10−1 9.7810 × 10−3 1.4804 × 100 3.1880 × 10−3 2.4999 × 10−3

Mean 7.7371 × 10−3 5.9997 × 10−3 5.1015 × 10−2 1.5508 × 10−1 4.4487 × 10−3 4.6697 × 10−1 2.5146 × 10−3 1.9473 × 10−3

std 2.9796 × 10−3 2.7148 × 10−3 8.9905 × 10−2 1.4850 × 10−1 1.5576 × 10−3 3.2987 × 10−1 4.5441 × 10−4 1.4158 × 10−4

p-value 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.6897 × 10−11 3.019 × 10−11 3.2555 × 10−7 NAN

STM6-40/36

A1 55.8706 54.3091 59.9590 60.0000 57.9886 54.6034 59.9962 60.0000
A2 60.0000 55.3299 59.9590 26.9562 48.3514 54.8365 45.6821 43.5068
Rs 0.0902 0.1768 0.0190 0.0000 0.2181 0.0056 0.2450 0.2818
Rsh 929.6713 768.3818 999.3155 484.4850 649.1660 87.2447 611.4645 574.3640
Id1 1.121 × 10−6 1.564 × 10−6 5.814 × 10−6 5.764 × 10−6 1.966 × 10−6 7.834 × 10−7 2.858 × 10−6 2.855 × 10−6

Id2 3.006 × 10−6 3.692 × 10−9 0.000 0.000 1.356 × 10−7 7.834 × 10−7 5.815 × 10−8 2.551 × 10−8

Iph 1.6596 1.6584 1.6613 1.6695 1.6616 1.8222 1.6635 1.6643

RMSE 3.8737 × 10−3 3.2441 × 10−3 4.3087 × 10−3 7.5372 × 10−3 2.1464 × 10−3 7.7568 × 10−2 1.8800 × 10−3 1.8032 × 10−3

Worst 1.4277 × 10−2 1.7234 × 10−2 3.1417 × 10−1 3.1109 × 10−1 9.7810 × 10−3 1.4804 × 100 3.1880 × 10−3 2.4999 × 10−3

Mean 7.7371 × 10−3 5.9997 × 10−3 5.1015 × 10−2 1.5508 × 10−1 4.4487 × 10−3 4.6697 × 10−1 2.5146 × 10−3 1.9473 × 10−3

std 2.9796 × 10−3 2.7148 × 10−3 8.9905 × 10−2 1.4850 × 10−1 1.5576 × 10−3 3.2987 × 10−1 4.5441 × 10−4 1.4158 × 10−4

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.2555 × 10−7 NAN
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(a)

(b)

Figure 8. P-V and I-V curves for DDM: (a) STM6-40/36 and (b) PWP-201.

(a) (b)

Figure 9. The mean ranking RMSE DDM of the Friedman test: (a) STM6-40/36 panels and (b) PWP-201.

(a) (b)

Figure 10. The statistical analysis for the DDM: (a) STM6-40/36 panels and (b) PWP-201.
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Table 7. TDM optimal parameters and statistical analysis for PWP-201 and STM6-40/36 panels.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

PWP201

A1 50.0000 47.4470 50.0000 50.0000 49.3165 42.8772 49.9856 44.4743
A2 50.0000 49.7858 49.4766 6.9151 48.5919 1.0000 1.0000 14.9639
A3 49.2038 47.8414 9.1965 4.9402 48.4106 42.0707 48.6492 47.8405
Rs 1.1754 1.1860 1.1625 1.1260 1.1985 1.7161 1.2011 1.2922
Rsh 1434.1924 1248.8693 2000.0000 116.3588 1117.9430 171.5803 984.7595 1030.1916
Id1 4.635 × 10−8 5.765 × 10−7 4.924 × 10−6 4.681 × 10−6 8.715 × 10−7 0.0 × 100 0.0 × 100 4.465 × 10−9

Id2 3.161 × 10−6 3.603 × 10−6 0.0 × 100 0.0 × 100 2.462 × 10−6 0.0 × 100 0.0 × 100 4.699 × 10−20

Id3 1.405 × 10−6 0.0 × 100 0.0 × 100 0.0 × 100 2.458 × 10−7 3.997 × 10−7 3.488 × 10−6 2.730 × 10−6

Iph 1.0297 1.0291 1.0274 1.1189 1.0299 0.9035 1.0305 1.0297

RMSE 2.6051 × 10−3 2.4976 × 10−3 2.6738 × 10−3 2.7293 × 10−2 2.4956 × 10−3 1.5132 × 10−1 2.4251 × 10−3 2.2068 × 10−3

Worst 1.3165 × 10−1 7.2474 × 10−3 7.8391 × 10−1 7.8391 × 10−1 1.8873 × 10−2 7.8391 × 10−1 2.7425 × 10−1 2.7425 × 10−1

Mean 1.0840 × 10−2 3.4417 × 10−3 2.2133 × 10−1 2.4793 × 10−1 6.1577 × 10−3 4.6665 × 10−1 9.3345 × 10−2 2.9811 × 10−2

std 2.3150 × 10−2 1.1862 × 10−3 2.2042 × 10−1 1.7304 × 10−1 3.5373 × 10−3 1.6864 × 10−1 1.3011 × 10−1 8.2878 × 10−2

p-value 6.5238 × 10−7 3.8338 × 10−6 2.4324 × 10−9 4.1950 × 10−10 1.3848 × 10−6 5.4773 × 10−11 9.2129 × 10−3 NAN

STM6-40/36

A1 60.0000 18.8859 27.4319 60.0000 58.0623 50.3727 59.8760 59.8001
A2 60.0000 55.1060 59.9990 56.4263 57.8885 49.1217 45.3316 37.5844
A3 60.0000 56.1273 59.9990 60.0000 55.5272 49.1043 59.9974 59.9783
Rs 0.0003 0.1634 0.0123 0.0000 0.0883 0.0003 0.2649 0.3455
Rsh 933.7652 1000.00 861.6239 577.2329 901.7309 54.1090 570.3259 595.6377
Id1 1.215 × 10−6 0.0 × 100 0.0 × 100 0.0 × 100 2.489 × 10−6 3.932 × 10−8 1.808 × 10−13 3.100 × 10−6

Id2 2.828 × 10−6 1.365 × 10−6 5.857 × 10−6 0.0 × 100 7.033 × 10−7 3.932 × 10−8 5.465 × 10−8 1.456 × 10−9

Id3 1.804 × 10−6 7.092 × 10−7 0.0 × 100 5.828 × 10−6 3.482 × 10−7 3.932 × 10−8 2.653 × 10−6 8.272 × 10−9

Iph 1.6619 1.6569 1.6627 1.6656 1.6599 1.6349 1.6643 1.6643

RMSE 4.8420 × 10−3 3.4043 × 10−3 4.4379 × 10−3 6.1808 × 10−3 3.3162 × 10−3 2.4985 × 10−1 1.8235 × 10−3 1.7435 × 10−3

Worst 2.9048 × 10−2 2.0280 × 10−2 1.5378 × 100 1.5378 × 100 1.3253 × 10−2 1.3756 × 100 4.5153 × 10−3 3.2509 × 10−3

Mean 9.9667 × 10−3 6.9313 × 10−3 3.2435 × 10−1 2.3526 × 10−1 5.9740 × 10−3 4.4539 × 10−1 2.5938 × 10−3 2.0732 × 10−3

std 5.2223 × 10−3 3.9683 × 10−3 5.6249 × 10−1 2.8494 × 10−1 2.9328 × 10−3 2.5235 × 10−1 6.5633 × 10−4 3.0115 × 10−4

p-value 3.0199 × 10−11 3.019 × 10−11 2.9822 × 10−11 3.0199 × 10−11 3.019 × 10−11 3.0199 × 10−11 1.8575 × 10−3 NAN

(a)

(b)

Figure 11. The I-V and P-V curves for TDM: (a) PWP-201 and (b) STM6-40/36.
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(a) (b) 

Figure 12. The mean ranking RMSE TDM of the Friedman test: (a) STM6-40/36 panels and (b) PWP-201.

(a) (b) 

Figure 13. The statistical analysis for the TDM: (a) STM6-40/36 panels and (b) PWP-201.

6.2. Case 2: Variable Weather Conditions

The changes in temperature and solar radiation should be considered during the
design of the PV system as they have great influence on the system’s efficiency [78]. The
proposed HGTO-BWO constructed the DDM of MSX60 and KC200GT PV panels at various
weather situations with the aid of the data given in [79]. Table 8 displays the statistical
analysis of KC200GT in case A and B, where case A was conducted by operating the panel at
1000 W/m2 and at the different temperatures of 25 ◦C, 50 ◦C, and 75 ◦C. In case B, the panel
was operated at 25 ◦C and at the various irradiances of 1000 W/m2, 800 W/m2, 600 W/m2,
400 W/m2, and 200 W/m2. The best RMSE values of 3.5092 × 10−3 and 1.6067 × 10−3 were
obtained during operation at 25 ◦C and 50 ◦C via the proposed approach. Additionally, it
achieved the minimum fitness values of 9.1596 × 10−4, 6.3910 × 10−4, 7.7891 × 10−4, and
2.3850 × 10−4 during operation at 800 W/m2, 600 W/m2, 400 W/m2, and 200 W/m2, re-
spectively. Figure 14 illustrates the simulated and measured data of I-V and P-V curves. The
statistical parameters of the approach during the establishment of the circuit of KC200GT at
irradiances of 1000 W/m2 and a temperature of 25 ◦C are illustrated in Figure 15 while the
statistical analyses of MSX60 during various temperature and irradiances are displayed in
Table 9. The proposed approach achieved the best RMSE values for MSX60 of 1.0765 × 10−4,
1.9324× 10−4, and 2.9790 × 10−5 at 1000 W/m2 and temperatures of 25 ◦C, 50 ◦C, and
75 ◦C, respectively. Moreover, at 25 ◦C the fitness values were 1.1336 × 10−3 at 800 W/m2;
6.7775 × 10−4 at 600 W/m2; 2.4366 × 10−5 at 400 W/m2; and 5.9828 × 10−5 at 200 W/m2.
The estimated and measured curves are shown in Figure 16. Moreover, the bar chart of
the statistical analysis for MSX60 at 1000 W/m2 and 25 ◦C is given in Figure 17. The
curves confirmed the efficiency and reliability of the suggested HGTO-BWO technique in
establishing the PV panel equivalent circuit at different operating conditions.
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Table 8. Statistical analysis of KC200GT obtained via the proposed approach and others.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

25 ◦C −1000 W/m2

Worst 2.9928 × 10−1 3.0217 × 10−1 4.8023 × 10−1 1.9379 1.1325 × 10−1 1.4025 4.8847 × 10−2 4.4998 × 10−2

Mean 1.2413 × 10−1 1.4665 × 10−1 2.0105 × 1001 5.6411 × 10−1 1.0267 × 10−1 8.1383 × 10−1 2.0235 × 10−2 1.7427 × 10−2

Best 7.4638 × 10−2 7.4290 × 10−2 5.6054 × 10−2 2.7115 × 10−1 8.4595 × 10−2 3.3635 × 10−1 4.3534 × 10−3 3.5092 × 10−3

std 5.0151 × 10−2 6.5383 × 10−2 1.0046 × 10−1 5.5487 × 10−1 5.7736 × 10−3 3.1312 × 10−1 1.2395 × 10−2 1.0633 × 10−2

p-value 3.019 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.3764 × 10−1 NAN

50 ◦C −1000 W/m2

Worst 3.6628 × 10−1 4.1794 × 10−1 5.4631 × 10−1 1.8390 7.5862 × 10−2 1.2964 9.7639 × 10−3 6.5681 × 10−3

Mean 8.4434 × 10−2 1.1236 × 10−1 1.7634 × 10−1 6.2204 × 10−1 5.7186 × 10−2 7.9166 × 10−1 5.5423 × 10−3 3.5076 × 10−3

Best 3.7404 × 10−2 2.3983 × 10−2 3.6157 × 10−2 2.3277 × 10−1 4.2992 × 10−2 2.7384 × 10−1 1.7663 × 10−3 1.6067 × 10−3

std 6.0767 × 10−2 1.2209 × 10−1 1.3871 × 10−1 4.9262 × 10−1 7.9771 × 10−3 2.3545 × 10−1 1.7398 × 10−3 1.2797 × 10−3

p-value 3.019 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 7.7387 × 10−6 NAN

75 ◦C −1000 W/m2

Worst 6.2182 × 10−1 1.0621 × 10−1 7.1242 × 10−1 1.7607 6.3285 × 10−2 1.5777 2.2913 × 10−2 1.6548 × 10−2

Mean 9.0915 × 10−2 4.9024 × 10−2 1.7288 × 10−1 5.6890 × 10−1 2.5581 × 10−2 7.3398 × 10−1 8.9380 × 10−3 7.5146 × 10−3

Best 1.6338 × 10−2 9.4445 × 10−3 1.1059 × 10−2 1.0406 × 10−1 7.6656 × 10−3 2.0249 × 10−1 6.6018 × 10−3 6.6031 × 10−3

std 1.3247 × 10−1 2.1144 × 10−2 2.2991 × 10−1 3.8031 × 10−1 1.5386 × 10−2 3.1381 × 10−1 3.3844 × 10−3 1.8398 × 10−3

p-value 3.3384 × 10−11 3.3384 × 10−11 3.3384 × 10−11 3.0199 × 10−11 1.4643 × 10−10 3.0199 × 10−11 1.0315 × 10−2 NAN

25 ◦C −800 W/m2

Worst 1.4449 × 10−1 2.2284 × 10−1 7.0500 × 10−1 1.4772 1.5979 × 10−1 1.1877 3.3746 × 10−2 3.2627 × 10−2

Mean 9.0134 × 10−2 1.0398 × 10−1 1.9967 × 10−1 2.5799 × 10−1 8.4035 × 10−2 6.0816 × 10−1 1.4743 × 10−2 1.1191 × 10−2

Best 3.5152 × 10−2 4.3232 × 10−2 6.5955 × 10−2 1.4555 × 10−1 6.0633 × 10−2 2.8132 × 10−1 1.2057 × 10−3 9.1596 × 10−4

std 2.6954 × 10−2 3.9288 × 10−2 1.5380 × 10−1 2.3535 × 10−1 1.8618 × 10−2 2.6438 × 10−1 9.0202 × 10−3 7.1797 × 10−3

p-value 3.019 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 8.2357 × 10−2 NAN

25 ◦C −600 W/m2

Worst 1.0078 × 10−1 1.0134 × 10−1 1.0689 1.0695 9.9952 × 10−2 1.1223 3.4077 × 10−2 2.8480 × 10−2

Mean 6.0087 × 10−2 6.2787 × 10−2 2.0351 × 10−1 2.7402 × 10−1 6.0285 × 10−2 4.7936 × 10−1 1.1981 × 10−2 7.9571 × 10−3

Best 2.5294 × 10−2 2.9938 × 10−2 6.4945 × 10−2 6.0119 × 10−2 4.9966 × 10−2 2.5931 × 10−1 1.2080 × 10−3 6.3910 × 10−4

std 1.6177 × 10−2 1.6123 × 10−2 1.8811 × 10−1 3.6424 × 10−1 1.1376 × 10−2 1.7777 × 10−1 7.7565 × 10−3 5.7342 × 10−3

p-value 3.3384 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.0315 × 10−2 NAN

25 ◦C −400 W/m2

Worst 9.3298 × 10−2 8.1703 × 10−2 2.4730 × 10−1 7.1507 × 10−1 1.2053 × 10−1 6.0211 × 10−1 2.3817 × 10−2 2.4774 × 10−2

Mean 5.3040 × 10−2 4.5807 × 10−2 1.0975 × 10−1 9.7278 × 10−2 4.4209 × 10−2 3.1765 × 10−1 9.7556 × 10−3 7.0046 × 10−3

Best 2.3846 × 10−2 1.2940 × 10−2 2.9330 × 10−2 3.0107 × 10−2 2.1731 × 10−2 1.1111 × 10−1 1.4399 × 10−3 7.7891 × 10−4

std 1.7438 × 10−2 1.8296 × 10−2 5.9500 × 10−2 1.1921 × 10−1 1.8535 × 10−2 1.2998 × 10−1 6.7435 × 10−3 5.4953 × 10−3

p-value 3.6897 × 10−11 6.0658 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 4.5146 × 10−2 NAN

25 ◦C −200 W/m2

Worst 4.7413 × 10−2 5.4922 × 10−2 3.4134 × 10−1 3.3976 × 10−1 6.1243 × 10−2 2.5166 × 1001 6.0751 × 10−3 9.9241 × 10−3

Mean 3.3437 × 10−2 3.3552 × 10−2 1.2126 × 10−1 5.6296 × 10−2 3.4866 × 10−2 1.2785 × 10−1 3.8762 × 10−3 2.6626 × 10−3

Best 8.0880 × 10−3 7.1727 × 10−3 4.4441 × 10−2 1.3225 × 10−2 1.3280 × 10−2 5.2239 × 10−2 3.8039 × 10−4 2.3850 × 10−4

std 1.1001 × 10−2 1.3676 × 10−2 9.2663 × 10−2 5.4823 × 10−2 1.0797 × 10−2 5.6607 × 10−2 1.6824 × 10−3 2.2870 × 10−3

p-value 4.5043 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.9527 × 10−03 NAN
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(a)

(b)

Figure 14. P-V and I-V curves of KC200GT: (a) constant irradiance of 1000 W/m2 and (b) constant
temperature of 25 ◦C.

Figure 15. The statistical analysis for KC200Gt at 1000 W/m2 and 25 ◦C.

360



Sustainability 2023, 15, 11089

Table 9. Statistical parameters of MSX60 panel obtained via the proposed approach and others.

Alg. TSA GWO [75] WOA [76] SCA HS BWO GTO HGTO-BWO

25 ◦C −1000 W/m2

Worst 6.5103 × 10−2 6.0081 × 10−2 7.6505 × 10−1 7.6471 × 10−1 4.8401 × 10−2 6.2681 × 10−1 2.1971 × 10−2 1.7942 × 10−2

Mean 4.4751 × 10−2 4.3733 × 10−2 1.3110 × 10−1 1.2951 × 10−1 3.8764 × 10−2 3.2185 × 10−1 1.0675 × 10−2 7.8333 × 10−3

Best 2.2794 × 10−2 2.5944 × 10−2 2.4565 × 10−2 4.6448 × 10−2 3.1247 × 10−2 6.6376 × 10−2 1.8986 × 10−3 1.0765 × 10−4

std 1.0134 × 10−2 8.8505 × 10−3 1.8165 × 10−1 1.7389 × 10−1 3.5080 × 10−3 1.5338 × 10−1 3.6012 × 10−3 3.2102 × 10−3

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.5846 × 10−4 NAN

50 ◦C −1000 W/m2

Worst 9.4706 × 10−2 1.0820 × 10−1 2.1100 × 10−1 7.7056 × 10−1 5.1888 × 10−2 6.8428 × 10−1 6.7625 × 10−3 5.6571 × 10−3

Mean 3.7155 × 10−2 4.3804 × 10−2 9.3860 × 10−2 1.4572 × 10−1 2.8151 × 10−2 3.5886 × 10−1 5.2558 × 10−3 1.9660 × 10−3

Best 1.8231 × 10−2 7.3825 × 10−3 1.8017 × 10−2 6.7026 × 10−2 2.3209 × 10−2 1.3748 × 10−1 2.3178 × 10−3 1.9324 × 10−4

std 2.0419 × 10−2 3.0053 × 10−2 5.3859 × 10−2 1.2205 × 10−1 5.3028 × 10−3 1.5568 × 10−1 1.4676 × 10−03 1.4357 × 10−3

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 8.4848 × 10−09 NAN

75 ◦C −1000 W/m2

Worst 1.6542 × 10−1 1.3157 × 10−1 2.5008 × 10−1 2.3490 × 10−1 3.6143 × 10−2 4.9704 × 10−1 5.2441 × 10−3 1.4355 × 10−3

Mean 3.0890 × 10−2 2.6953 × 10−2 8.4518 × 10−2 1.6671 × 10−1 1.2211 × 10−2 2.5469 × 10−1 1.0018 × 10−3 2.7448 × 10−4

Best 7.9526 × 10−3 5.4140 × 10−3 4.1026 × 10−3 3.1053 × 10−2 5.7215 × 10−3 7.9537 × 10−2 4.2011 × 10−5 2.9790 × 10−5

std 3.5408 × 10−2 3.1096 × 10−2 7.2347 × 10−2 5.0708 × 10−2 6.4175 × 10−3 1.0582 × 10−1 1.6193 × 10−3 2.6447 × 10−4

p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6322 × 10−1 NAN

25 ◦C −800 W/m2

Worst 5.2262 × 10−2 5.8604 × 10−2 6.1242 × 10−1 6.1262 × 10−1 4.0953 × 10−2 4.4466 × 10−1 1.2853 × 10−2 1.2248 × 10−2

Mean 3.5046 × 10−2 3.1685 × 10−2 1.0641 × 10−1 7.3537 × 10−2 2.9988 × 10−2 2.2502 × 10−1 8.6485 × 10−3 6.6717 × 10−3

Best 2.0629 × 10−2 1.0734 × 10−2 2.7649 × 10−2 3.4265 × 10−2 2.4251 × 10−2 6.6000 × 10−2 1.9350 × 10−3 1.1336 × 10−3

std 7.1751 × 10−3 9.9180 × 10−3 1.0964 × 10−1 1.0260 × 10−1 3.6823 × 10−3 9.9871 × 10−2 2.4842 × 10−3 2.6766 × 10−3

p-value 3.019 × 10−11 3.6897 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 3.019 × 10−11 2.2658 × 10−3 NAN

25 ◦C −600 W/m2

Worst 6.8702 × 10−2 5.1465 × 10−2 4.5790 × 10−1 4.5562 × 10−1 3.9280 × 10−2 3.7030 × 10−1 1.6311 × 10−2 1.3913 × 10−2

Mean 3.3254 × 10−2 2.8439 × 10−2 9.7793 × 10−2 6.3663 × 10−2 2.2989 × 10−2 1.9982 × 10−1 8.7540 × 10−3 5.6637 × 10−3

Best 9.8529 × 10−3 1.0988 × 10−2 1.5243 × 10−2 2.4905 × 10−2 1.3734 × 10−2 6.0603 × 10−2 1.0329 × 10−3 6.7775 × 10−4

std 1.3240 × 10−2 1.0653 × 10−2 1.0243 × 10−1 7.5057 × 10−2 7.5049 × 10−3 8.0178 × 10−2 3.4223 × 10−3 3.1345 × 10−3

p-value 6.0658 × 10−11 4.0772 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 1.4067 × 10−4 NAN

25 ◦C −400 W/m2

Worst 3.8949 × 10−2 4.4247 × 10−2 3.0055 × 10−1 2.9852 × 10−1 4.8025 × 10−2 1.8624 × 10−1 8.5444 × 10−3 8.5110 × 10−3

Mean 2.7298 × 10−2 2.7571 × 10−2 8.3476 × 10−2 6.4845 × 10−2 1.9225 × 10−2 1.0319 × 10−1 5.1743 × 10−3 3.1605 × 10−3

Best 1.1747 × 10−2 5.9229 × 10−3 2.0784 × 10−2 1.2556 × 10−2 6.7426 × 10−3 4.3302 × 10−2 8.5576 × 10−5 2.4366 × 10−5

std 7.4119 × 10−3 1.0414 × 10−2 5.8035 × 10−2 7.9820 × 10−2 8.3822 × 10−3 3.8071 × 10−2 2.2684 × 10−3 1.9135 × 10−3

p-value 3.019 × 10−11 4.0772 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.5043 × 10−11 3.0199 × 10−11 1.7836 × 10−4 NAN

25 ◦C −200 W/m2

Worst 2.9797 × 10−2 2.6406 × 10−2 7.1457 × 10−2 1.4110 × 10−1 3.2667 × 10−2 1.6797 × 10−1 7.5735 × 10−3 3.2257 × 10−3

Mean 1.6498 × 10−2 1.8636 × 10−2 3.4480 × 10−2 2.7961 × 10−2 1.7397 × 10−2 5.8459 × 10−2 1.7579 × 10−3 1.0399 × 10−3

Best 9.7357 × 10−3 1.0787 × 10−3 7.8442 × 10−3 6.3339 × 10−3 5.7370 × 10−3 2.6227 × 10−2 4.6560 × 10−4 5.9828 × 10−5

std 4.3918 × 10−3 6.1085 × 10−3 1.5446 × 10−2 2.2766 × 10−2 6.4824 × 10−3 2.5259 × 10−2 1.9112 × 10−3 7.0129 × 10−4

p-value 3.019 × 10−11 1.3289 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 2.8378 × 10−1 NAN
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(a)

(b)

Figure 16. I-V and P-V curves of MSX60: (a) constant irradiance of 1000 W/m2 and (b) constant
temperature of 25 ◦C.

Figure 17. The statistical analysis for MSX60 at 1000 W/m2 and 25 ◦C.
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The fetched results demonstrated that the proposed HGTO-BWO is efficient in finding
the optimal parameters of various models for the PV cell/panel as it outperformed the
other regarded methodologies in all considered cases.

7. Conclusions

A new hybrid multi-population gorilla troops optimizer and beluga whale optimiza-
tion (HGTO-BWO) was proposed to assign the PV cell/panel equivalent circuit by estimat-
ing its optimal parameters. In the proposed approach, a multi-population methodology
was employed to improve the performance of the algorithm and to prevent it from falling
into the local optima. The classical and CEC-C06 2019 benchmark functions were solved
via the proposed approach to assess its performance. Two models, the double and triple
diode models (DDM and TDM), were constructed for the PV cell/panel via minimizing the
root mean square error (RMSE) between the simulated and measured currents. Various PV
cells and panels operating in stable and variable weather situations were analyzed. Also,
excessive comparison with TSA, SCA, GWO, WOA, HS, BWO, and GTO was conducted.
The proposed approach findings can be summarized as follows:

• For the PVW 752 cell, the proposed HGTO-BWO achieved the best fitness values of
1.527 × 10−4 and 2.0886 × 10−4 for the TDM and DDM, respectively.

• The proposed approach achieved the lowest RMSEs of 2.42508 × 10−3 for the PWP-201
and 1.8032 × 10−3 for the STM6-40/36 DDM.

• The HGTO-BWO achieved the best fitness values of 2.2068 × 10−3 for the PWP-201
panel and 1.7435 × 10−3 for the STM6-40/36 TDM.

• For KC200GT, the minimum fitness values were 2.3850 × 10−4, 7.7891 × 10−4,
6.3910 × 10−4, and 9.1596 × 10−4 during operation at 200 W/m2, 400 W/m2, 600 W/m2,
and 800 W/m2, respectively.

• For MSX60, the proposed methodology realized the best RMSE values of 1.0765 × 10−4,
1.9324 × 10−4, and 2.9790 × 10−5 at 25 ◦C, 50 ◦C, and 75 ◦C, respectively, while at
25 ◦C the fitness values were 1.1336 × 10−3 at 800 W/m2, 6.7775 × 10−4 at 600 W/m2,
2.4366 × 10−5 at 400 W/m2, and 5.9828 × 10−5 at 200 W/m2.

The results revealed that the proposed approach can be recommended as an efficient
optimizer when constructing the PV unit equivalent circuit via identifying its parameters.
The proposed method requires a great effort to implement and program, which is consid-
ered a major obstacle during implementation; in addition, a lot of time is needed. Therefore,
simplifying this method and reducing the time required will be of interest to the authors of
the future works. Moreover, the validation of the proposed methodology in estimating the
parameters of the PV array when operated under different conditions will be considered in
the next work.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su151411089/s1, Figure S1: The convergence curves of some traditional
benchmark functions achieved by the proposed hybrid approach and others; Figure S2: The boxplots
curves of some traditional benchmark functions obtained via the proposed hybrid approach and
others; Figure S3: The convergence of some CEC-2019 functions achieved by the proposed hybrid
method and others; Figure S4: The boxplots curves of some CEC-2019 functions obtained via the
proposed hybrid approach and others; Figure S5: Performance of RMSE through iteration process
for DDM (a) PWP-201 and (b) STM6-40/36; Figure S6: RMSE with numeral of iteration for TDM
(a) STM6-40/36 panels and (b) PWP-201.
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Appendix A

Table A1. The studied algorithms’ parameters.

Algorithms Parameter All Algorithms

TSA pmin = 1, pmax = 4

Pop.size = 30
Max_Iter = 500
No. Run = 30

SCA a = 2
GWO a = 2 to 0
WOA a = 2 to 0, a2 = −1 to −2, b = 1
HS HMCR = 0.8, PAR = 0.2, FW_d = 0.995
BWO Wf = [0.1 0.05]
GTO β = 3, p = 0.03, w = 0.8

References

1. Long, W.; Jiao, J.; Liang, X.; Xu, M.; Tang, M.; Cai, S. Parameters Estimation of Photovoltaic Models Using a Novel Hybrid Seagull
Optimization Algorithm. Energy 2022, 249, 123760. [CrossRef]

2. D’Adamo, I.; Mammetti, M.; Ottaviani, D.; Ozturk, I. Photovoltaic Systems and Sustainable Communities: New Social Models for
Ecological Transition. The Impact of Incentive Policies in Profitability Analyses. Renew. Energy 2023, 202, 1291–1304. [CrossRef]

3. D’Adamo, I.; Gastaldi, M.; Morone, P.; Ozturk, I. Economics and Policy Implications of Residential Photovoltaic Systems in Italy’s
Developed Market. Util. Policy 2022, 79, 101437. [CrossRef]

4. Ganesan, S.; David, P.W.; Balachandran, P.K.; Senjyu, T. Fault Identification Scheme for Solar Photovoltaic Array in Bridge and
Honeycomb Configuration. Electr. Eng. 2023. [CrossRef]

5. Ayyarao, T.S.L.V.; Kumar, P.P. Parameter Estimation of Solar PV Models with a New Proposed War Strategy Optimization
Algorithm. Int. J. Energy Res. 2022, 46, 7215–7238. [CrossRef]

6. Shaheen, M.A.M.; Hasanien, H.M.; Alkuhayli, A. A Novel Hybrid GWO-PSO Optimization Technique for Optimal Reactive
Power Dispatch Problem Solution. Ain Shams Eng. J. 2021, 12, 621–630. [CrossRef]

7. Vankadara, S.K.; Chatterjee, S.; Balachandran, P.K.; Mihet-Popa, L. Marine Predator Algorithm (MPA)-Based MPPT Technique for
Solar PV Systems under Partial Shading Conditions. Energies 2022, 15, 6172. [CrossRef]

8. Libra, M.; Mrázek, D.; Tyukhov, I.; Severová, L.; Poulek, V.; Mach, J.; Šubrt, T.; Beránek, V.; Svoboda, R.; Sedláček, J. Reduced Real
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Abstract: The energy sector is interested in sustainable solar power plants. It is obvious that the
working temperature of solar panels, which is significantly higher than the specified working cell
temperature in hot climes, has a significant impact on efficiency and longevity. The selection of
solar panel cooling systems, on the other hand, is worrisome since the choice process incorporates
ergonomic, technical, economic, and environmental issues. The goal of this research is to (1) present
a multi-criteria decision-making approach that is both quantitative and qualitative in nature for
selecting solar panel cooling systems; (2) outrank nine alternative solar panel cooling systems with
eleven performance measures for each alternative to assist decision makers in determining the best
viable choice; and (3) visualize the relationship between the different solar panel cooling systems
and performance measures under consideration. The proposed approach is to compare and rank
solar panel cooling systems, as well as their validation and evaluation through sensitivity analysis.
When operating efficiency is prioritized, finned air cooling is shown to be the best solar panel cooling
technique, whereas thermosiphon cooling is the best alternative when emission reduction criteria
are prioritized. A comparison of the findings shows that phase change material cooling and forced
convection cooling performed worst in almost all cases.

Keywords: solar energy; panel cooling systems; multi-criteria evaluation; Visual PROMETHEE

1. Introduction and Background Review

In pursuit of green technology innovations, the energy industry demonstrates a focus
on long-term sustainability renewable energy generation. The goal is to generate and
transfer power to major domestic and industrial customers by 2030. It is concerned with
a number of factors, for example, energy generation, public awareness, demand, and
the risk at which local and national transmission occurs. The manufacturers of solar
panel modules are more interested in improving the efficiency of solar panels; for this,
they need meticulous alternative selection and assessment. There are challenges and
opportunities in solar modules [1,2] influenced by ambient temperature, solar radiation
intensity, the solar panels’ surface temperature, dust, and shading, among other factors that
may be overcome by adopting a suitable cooling and cleaning system. Solar panel cooling
approaches [3,4] use several physical ways employing various flow media to minimize the
solar panels’ surface temperature. These approaches are categorized as either passive (no
external energy is needed) or active (additional energy is utilized to circulate the cooling
fluid). Passive approaches [5,6] include the use of fins or expanded surfaces to facilitate
heat transfer, the use of phase change material to absorb heat produced in the panel,
the use of heat pipe cooling, and convection via natural circulation water or air cooling.
Active approaches [7,8] involve the circulation of air or water over the panel surfaces,
both with and without the assistance of fins. There are several factors to consider when
comparing active and passive solar panel cooling systems. However, the comparative
ease of operation depends on the specific cooling system being used, as well as factors
such as the size and location of the system; the required level of maintenance; the effective
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performance, particularly in hot and humid environments; and the cost when evaluating
different solar panel cooling systems. For example, studies [7,8] have shown that water
spraying can reduce the temperature of solar panels by up to 23 ◦C and significantly
increase their electrical efficiency. Temperature impact affects efficiency and panel life span
despite greater energy generation [9,10]. Likewise, researchers [5,11,12] have documented
the recovery of useful electrical power with considerable changes in the heat dissipation
process of solar panels by using various passive or active panel cooling processes. Although
cooling clearly increases renewable energy production [5], it necessitates an additional
structure that can extract heat from the panel and distribute it elsewhere. Notably, the
design and maintenance [13] of a cooling strategy can be expensive, and the cost of system
maintenance may outweigh the benefits of increased power generation. When compared
to silicon-based panels [14], thin-film solar panels [15] are less influenced by a rise in
temperature. Also, the effectiveness of solar panel cooling systems may vary depending on
various factors such as the climate, panel design, and the type of cooling approach used.
Recently, studies [16] have shown that the use of nano-fluids improves the heat transfer
coefficient, solar panel power, and system performance. Past studies [17,18] have also
proposed the use of phase change material cooling and microchannel heat sink cooling.
However, there is no conclusive evidence to suggest which solar panel cooling strategy
is the most effective, as it depends on various factors [4]. It is obvious that selecting the
best solar panel cooling system necessitates the use of mathematical tools to analyze the
alternatives. As a result, multi-criteria decision analysis is the ideal tool and can be used
well in certain scenarios. The PROMETHEE (Preference Ranking Organization METHod
for Enrichment Evaluations) decision-making method compares options based on a set of
criteria [19]. There are several studies that have applied the PROMETHEE in various ways,
such as in the selection of the most appropriate variant of the solar water supply system [20],
ranking sites for solar farms [21,22], evaluating the effectiveness of integrated shading
devices for office buildings [23], and for decision making in solar plant locations [24], as it
allows for the consideration of multiple criteria, and can help decision makers to assess
energy technologies [25]. Similarly, it is evident that researchers justified the importance of
reliability information to evaluate solar panel selection [26]. On the other hand, strategies
are developed to select an efficient solar panel, and a comprehensive comparative analysis
is presented [27].

Multiple qualitative and quantitative metrics were used to evaluate, assess, and rate
the various solar cooling systems. For example, Mardani et al. [28] reviewed multi-criteria
approaches in sustainable and renewable energy system problems. Wang et al. [29] used
multi-criteria decision analysis as a key tool to evaluate renewable energy technologies in
households. Seker and Kahraman [30] proposed a socio-economic evaluation model for
sustainable solar panels by integrating the analytic hierarchy process and multiplicative
multi-objective ratio analysis method. Similarly, Krysiak and Kluczek [31] assessed the
sustainable development of photovoltaic modules using a multi-criteria decision-making
method based on the analytic hierarchy process [32]. Similarly, a multi-attribute decision-
making approach based on intuitionistic fuzzy logic is adopted to select and assess solar
panels [33].

The motivation to evaluate solar panel cooling systems is to improve solar panel
efficiency and output. When solar panels get too hot, their efficiency drops, resulting in less
energy output. The temperature of the solar panels may be adjusted by integrating cooling
devices, resulting in enhanced efficiency and output. Existing research has mostly focused
on the installation of cooling systems in residential buildings and their influence on energy
efficiency. However, research evaluating the effectiveness of various cooling technologies
and their effects on the long-term durability of solar panels is lacking. Furthermore,
research has been performed in certain geographic locations, and further studies that
outrank cooling systems are needed.

The goal of this research is to present a multi-criteria decision-making approach that
is both quantitative and qualitative in nature for selecting solar panel cooling systems, to
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assist decision makers in determining the best viable choice, and to visualize the relation-
ship between the different solar panel cooling systems and performance measures under
consideration. The proposed approach provides substantial support in comparing and
ranking solar panel cooling systems, as well as their validation and evaluation through
sensitivity analysis. Six different scenarios, depending on the subjective and objective
importance given to each performance measure, are possible choices.

This paper is divided into eight sections. The Section 1 provides an introduction;
the Section 2 presents various attributes, performance measures, and alternative solar
panel cooling systems; and the Section 3 presents alternative solar panel cooling systems.
Section 4 presents the adopted MCDM approach steps. Sections 5 and 6 then present the
implementation of the proposed approach and sensitivity analysis using subjective and
objective criterion weights, respectively. Section 7 discusses management benefits, while
Section 8 concludes the paper with conclusions and future study directions.

2. Attributes and Performance Measures

There are several benefits of cooling solar panels, which include improving panel over-
all efficiency, reducing energy consumption, and extending the panel lifespan. By lowering
the temperature of the panels, either through passive cooling techniques or more advanced
cooling systems [4], the electrical conversion efficiency of the panels can be increased,
resulting in higher energy production [34]. Additionally, reducing the temperature of the
panels can also help to reduce the wear and tear on the system, leading to a longer lifespan
for the panels and a higher return on investment [35]. Furthermore, by reducing energy
consumption through more efficient cooling mechanisms, the environmental footprint of
the solar system can be minimized, making it a more sustainable option for generating
renewable energy [36]. It is decided to make use of a systematic multi-criteria analysis
approach to identify the competitiveness of each alternative. The multiple attributes opted
to evaluate alternative solar panel cooling systems are as follows: cooling effectiveness,
energy efficiency, environmental impact, durability, noise, panel size and weight, and or
cost as decision-making attributes (refer to Figure 1). Decision makers opt for multiple
combinations of attributes to be evaluated in order to select the most suitable panel cooling
system to improve overall efficiency.

As represented in Figure 1, the adopted performance measures to evaluate cooling
techniques are briefly described below.

Energy Efficiency (PM01): Energy efficiency is crucial for solar panel cooling since it
lowers the amount of energy used for cooling and raises the overall effectiveness of the
solar panel system. The surface temperature of the solar panel can be managed by utilizing
more energy-efficient cooling techniques, which helps to maximize the electrical conversion
efficiency of the solar panel. This can result in considerable drops in energy usage while
raising the solar system’s output of energy [37]. In order to increase the effectiveness of
solar panels, a number of researchers have used cutting-edge cooling techniques. The
electrical efficiency is a function of the cell temperature [23], and it is mathematically
estimated by researchers.

Cooling cost (PM02): The cost of cooling solar panels plays an important role in
determining the overall cost-effectiveness and return on investment of the solar system [38].
While advanced cooling techniques may improve the electrical conversion efficiency and
extend the lifespan of the solar panels, additional supplies and installation charges may
also be required, raising the overall cost of the system. Therefore, it is important to consider
the costs of cooling technologies and weigh them against the potential benefits in terms of
energy production and system longevity [39].

Reliability factor (PM03): Reliability refers to the ability of components of the cooling
system to operate without failure or malfunction over time [40]. If the cooling system fails,
the temperature of the solar panels can rise, which can have detrimental effects on the
energy output and lifespan of the system [41]. Thus, it is crucial for the cooling system to
be reliable. Additionally, a reliable cooling system can help to minimize maintenance and
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repair costs, as well as reduce downtime, ensuring that the solar system operates over its
expected lifetime with minimal interruptions [2,30].

Figure 1. Attributes, their performance measures, and alternatives opted for in evaluation of solar
panel cooling systems.

Carbon emission (PM04): The carbon footprint of the downstream processing and
manufacturing of solar cooling systems is highlighted by researchers [17,42,43], indicating
that any cooling system’s environmental impact is an important consideration. Additionally,
government policies promote solar energy modules due to their low-carbon emission
profile. Therefore, employing more energy-efficient cooling systems in solar modules is an
important task. Carbon emissions of the entire system can be reduced, making it a more
sustainable option for generating renewable energy [44].

Ergonomic factor (PM05): In the development of solar cooling systems, the primary
focus is on technology feasibility, sustainability, and energy efficiency. However, ergonomics
could indirectly play a role in selecting solar cooling techniques by ensuring the safety
and comfort of individuals involved in the installation, operation, and maintenance of the
solar system [45]. By designing these cooling systems to be ergonomically efficient, risks
associated with injury, fatigue, and discomfort could be reduced, ultimately improving the
overall safety and performance of the system.

Panel temperature dropping (PM06): The operating temperature of a solar panel
has a significant impact on its energy output and lifespan, and excessive temperatures
can negatively affect overall efficiency and performance [35,36]. Therefore, reducing the
operating temperature of the solar module is one of the primary approaches to increasing
power generation [46]. Various cooling techniques are being explored to decrease the oper-
ating temperature of solar panels and increase their efficiency. The drop in the operating
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temperature achieved through these cooling approaches can lead to a significant increase
in power output, ranging from 20% to 30%, depending on the cooling approach adopted.

Panel size and shape (PM07): The solar cooling system’s effectiveness is often mea-
sured in terms of the decrease in operating temperature of the solar panels, and hence, the
area of the panel indirectly impacts the cooling requirements [35]. Larger solar modules
have more surface area that is exposed to the sun and absorb more energy, resulting in
higher operating temperatures. Therefore, larger solar modules may potentially require
more powerful cooling systems to maintain their operating temperatures within the desired
range. However, the efficiency of solar panels also varies with their size, efficiency, and
technology, which may be important factors in selecting a cooling technique [47,48].

Degradation resistance (PM08): It is evident that [49] there are multiple reasons why
degradation, i.e., corrosion, coating formation, and scaling, can occur in solar cooling
systems. For example, exposure to different environmental factors, including humidity,
saltwater, and other pollutants, can lead to corrosion and scaling. Similarly, chemical reac-
tions between the cooling medium and the solar panel materials can also cause corrosion
and coating formation. For example, copper in the system can form copper salts that can
affect the solar panel’s performance. The materials with lower resistance to corrosion are
more likely to corrode and form coatings. Incorrect system design or installation can also
contribute to corrosion and coating formation. For example, using dissimilar metals in a
cooling system can lead to galvanic corrosion.

Thermal decomposition (PM09): One of the potential challenges [16,50–52] that could
arise in a solar cooling system is thermal decomposition, which means physical degradation
of heat transfer fluids. Heat transfer fluids are used [53] in some cooling systems to improve
heat transfer and reduce the operating temperature of solar panels. However, the fluids
can suffer physical and thermal decomposition and degradation over time, which reduces
their effectiveness. Some of the factors that can cause physical degradation in heat transfer
fluids include the fluid’s properties, such as viscosity and thermal stability, the operating
temperature range, and the type of solar panels used. Additionally, exposure to ultraviolet
radiation, oxygen, and other environmental factors can also contribute to fluid degradation.
If the fluid is not replaced or maintained regularly, its ability to transfer heat effectively can
decrease, which can negatively affect the solar panel’s performance [39–41]. Therefore, it
is crucial to ensure that the heat transfer fluid used in a solar cooling system is selected
carefully and maintenance and replacement schedules are adhered to in order to maintain
the system’s optimal performance.

Leakage issues (PM10): Leakage issues are a significant challenge in solar cooling
systems that use heat transfer fluids, as these fluids can leak through damaged piping or
seals. The loss of fluid from the system not only reduces its effectiveness in cooling solar
panels but can also potentially damage other components in the system. Moreover, the
leakage of fluids can create safety concerns, as they may pose a risk to the environment or
human health. Therefore, it is crucial to consider potential leakage issues when designing,
installing, and maintaining solar cooling systems and take appropriate measures to prevent
or mitigate them [1,3,8].

Impact of any equipment failure (PM11): Electric equipment failure/or any power
supply failure can impact the overall performance and reliability of the system, which can
indirectly affect the cooling system’s ability to maintain the desired operating temperatures
of the solar panels [54]. If the electric/non-electric equipment fails, it may lead to a
complete shutdown of the system, which can have a domino effect on other components,
including the cooling system. Additionally, if the cooling system is not designed or installed
correctly [55,56], it may be more susceptible to failures caused by electric equipment failures,
such as a power surge or overload, which may impact its ability to cool the solar panels
effectively. Thus, the impact of any equipment failure on a solar cooling system depends
on various factors, including the type and severity of the failure, the system’s design and
installation, and the overall maintenance and operation of the system [3,44].
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Thus, various alternatives for solar panel cooling in solar power plant installations
have been represented in Figure 1 and briefly described in the following section.

3. Solar Panel Cooling Systems: Alternatives

Solar panel cooling systems use several physical methods, such as sensible and latent
heat storage and dissipation or heat convection techniques employing different media, and
they are evaluated to examine the reduction in panel operating temperature. These systems
are classified as having either a passive approach or an active approach (refer to Figure 1).
Active cooling systems [3,4] often perform better in terms of temperature reduction than
passive cooling systems. Passive cooling [3,4] does not require much energy to operate and
instead relies on natural cooling, which takes longer to cool over time.

Finned air cooling (A1) employs a natural heat transfer process in which heat from
the solar panel is transmitted to the fins and then travels through convection by natural
wind movement [57]. Heat pipe solar cooling systems (A2) use heat pipes to dissipate heat
from solar panels, reducing the temperature and increasing their efficiency. The heat pipes
work by transferring excess heat from the panels to the cooler end of the system, where it is
dissipated into the air or water [58]. This cooling system has been found to be an attractive
option in hot climates [59]. Researchers [60] have conducted studies on the effectiveness of
heat pipe solar cooling systems.

Phase change materials (A3) have been used to cool solar panels and increase their
efficiency, particularly in hot climates. It works by absorbing the excess heat from the
panels and storing it until the temperature drops, providing a buffer against temperature
fluctuations [17]. When the panels start to heat up, the phase change material melts and
absorbs the heat. As the temperature decreases, the phase change materials then solidify
and release the stored heat. Thermosiphon cooling systems (A4) involve a closed-loop
system containing a working fluid, such as acetone, that undergoes a phase change to
cool a solar panel [61]. On the other hand, a thermosiphon with a clay pot cooling system
(A5) uses the clay pot as the medium for evaporative cooling to cool a solar panel [61].
Both systems use the same basic principle of thermosiphon cooling, but they differ in the
method of heat dissipation. The clay pot version of the system relies on the process of water
evaporation using a simple clay pot placed on top of the solar panel, while the standard
thermosiphon cooling system makes use of a working fluid to remove heat by undergoing
a phase change in a closed-loop system. Both of these systems are effective in cooling solar
panels and improving their performance, but the choice between them depends on factors
such as the specific application, location, and cost considerations.

A forced air cooling system (A6) for solar panels is a type of cooling system that uses
a fan to circulate air over the solar panels to reduce their temperature. The cool air can be
produced in a number of ways, including compressor-cooled refrigerant or chilled water.
This type of cooling system is often used in sunny areas where the heat from the sun can
cause the solar panels to overheat, which can reduce their efficiency and lifespan [62–64].
By cooling the panels with forced air, their temperature can be regulated, which can help to
maximize their energy output and improve their overall performance. This type of cooling
system is efficient and cost-effective and is often used in residential and commercial solar
power systems.

Evaporative cooling systems (A7) [65] and water spray cooling systems (A8) [66] both
use water to cool an area, but the methods and efficiencies are different. Evaporative
cooling systems rely on the process of evaporation to cool the air, whereas water spray
cooling systems function by directing a spray of water into the air to lower air temperature.
Evaporative cooling systems are more efficient in low-humidity areas, while water spray
cooling systems are more efficient in high-humidity areas. Additionally, evaporative
cooling systems are more energy-efficient than water spray systems, while water spray
cooling systems are often used in outdoor settings and for cooling large areas. Both systems
have unique advantages and limitations, and the choice between the two depends on the
specific application. Nano-fluid cooling systems (A9) can be either active or passive. Some
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of the researchers studied [16,52,62] active cooling systems that use nano-fluids as a coolant
in conjunction with traditional cooling methods such as air or water cooling, while other
researchers [67] studied passive cooling systems that rely solely on a nano-fluid coolant to
dissipate heat.

However, there is no conclusive evidence to suggest which solar panel cooling strategy
is the most effective, as it depends on various factors. Different cooling techniques have
been used successfully in a number of cases, making choosing difficult [4]. Thus, it is
evident [40,44] that choosing the appropriate solar panel cooling system involves the use of
a scientific instrument to evaluate the options. So, multi-criteria decision making (MCDM)
is the best instrument and has been utilized well in these circumstances. The step-by-step
details of the adopted methodologies are presented in the following section, followed by
their application.

4. Adopted MCDM Methodology

The most commonly used multi-criteria decision-making approaches [68–70] include
the analytic hierarchy process (AHP), elimination and choice-translating algorithm (ELEC-
TRE), technique for order of preference by similarity to the ideal solution (TOPSIS), and
Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE).
Compared to AHP, TOPSIS, and ELECTRE, Visual PROMETHEE has the capability of incor-
porating decision making via positive and negative preference flow. Visual management
of performance using the PROMETHEE technique is appealing in the assessment of alter-
natives due to concepts like preference flow, weights, geometrical analysis for interactive
aid (GAIA) plane, and sensitivity analyses. Partially and completely ranking the options
also aids in determining the preferred alternative. However, those who make decisions are
frequently interested not just in rating options, but also in determining the superiority of
one over another (if such a superiority exists). The adopted methodology for an effective
selection of solar panel cooling systems is explained step-by-step below.

Step 1: Decision matrix [70]:
Supposing there are i alternative solar panel cooling systems and j evaluation measures

in outranking these cooling panels. PMij is the j performance measure’s value for solar
panel cooling system i. The decision matrix’s structure is shown in Table 1 below. There are
j performance measures and i alternative solar panel cooling systems, and Wj is the amount
of significance assigned to each assessment criterion j.

Table 1. Decision matrix: alternatives, performance measures, and their weights.

Alternative Solar Panel
Cooling System i

Performance Measure j

1 2 . . . j

1 PM11 PM12 . . . PM1j
2 PM21 PM22 . . . PM2j

. . . . . . . . . . . . . . .
i PMi1 PMi2 . . . PMij

Performance measure weightage Wj W1 W2 . . . Wj

Step 2: Performance measure weightage (Wj) [71–73]:
Wj estimates might be subjective or objective. Variations in assessment metrics are

employed in the accepted strategy to evaluate the divergence in the ranking of various solar
panel cooling systems. The adopted method takes into account both sorts of weights. The
objective weights technique employs mathematical models like entropy calculation, such as
in [74]; details of this are explained below. The decision matrix values of the jth performance
measure for the ith solar panel cooling system are standardized using Equation (1) if the
objective of the performance measure is maximization. In contrast, Equation (2) is opted
for if the performance measure objective is minimization, wherein Sij is the standardized
value for the jth performance measure of the ith solar panel cooling system; PMij is the jth
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evaluation measure’s value for the ith solar panel cooling system (refer to Table 1). After
standardization of all performance measures, the decision matrix is expressed in matrix
form in Equation (3), as seen below.

Sij =

⎡
⎣ PMij − min

j
PMij

max
j

PMij − min
j

PMij

⎤
⎦ (1)

Sij =

⎡
⎢⎣

max
j

PM
ij
−PMij

max
j

PMij − min
j

PMij

⎤
⎥⎦ (2)

S′ij =

⎡
⎢⎢⎣

S11 S12 . . . S1j
: : : :
: : : :

Si1 Si2 . . . Sij

⎤
⎥⎥⎦ (3)

Entropy Ej, according to its definition, is determined using the following Equation (4),
and Wj, the performance measure objective weight, is determined by using Equation (5).

Ej = −∑m
i=1[S ij ∗ ln

(
Sij

)
]

ln(m)
(4)

Wj =
1 − Ej[

1 − ∑n
j=1 Ej

] (5)

In comparison, subjective weights [71] refer to the relative importance of performance
measures in a multi-criteria decision making (MCDM) problem and are determined based
on the judgment or opinion of the decision maker. In other words, the weights are not cal-
culated mathematically but are assigned based on the subjective perception or expertise of
the decision maker. The subjective weights are often obtained through surveys, interviews,
expert opinions, or other qualitative methods.

Step 3: Outranking flow estimation [75]:
To start, we initially constructed a generalized preference function PFj

i=a,i=b, where
(a, b) is a pair of solar panel cooling systems and j is the performance measure. Each
PFj

i=a,i=b lies between 0 and 1. For given performance measure j, if ‘i = a’ solar panel
cooling system is evaluated over ‘i = b’, then any one of the following preferences occurs
based on the PFj

i=a,i=b function value. If the PFj
i=a,i=b function value is exactly equal to

zero, then there is no preference for option a over alternative b. If the PFj
i=a,i=b function

value is close to zero, then the option ‘a’ solar panel cooling system has a weak preference
over the ‘b’ solar panel cooling system. If the PFj

i=a,i=b function value is close to one, there
is a substantial preference for the option ‘a’ solar panel cooling system over ‘b’. Lastly, if
the PFj

i=a,i=b function value is exactly equal to one, then there is a stringent preference for
the option ‘a’ solar panel cooling system over ‘b’.

Subsequently, using these preference function values, the preference index PIi=a,i=b,
which has a value range of 0 to 1, is calculated for each pair of choices using Equation (6),
as below.

PIi=a,i=b =
[
∑j

j=1 (W
j × PFj

i=a,i=b

)
]÷

[
∑j

j=1 Wj
]

(6)

In Equation (6), Wj is the weight associated with each solar cooling system evaluation
measure j, and the preference index PIi=a,i=b displays a preference for the option ‘a’ solar
panel cooling system over option b, considering all j performance measures (j ε 1 to j).
If PIi=a,i=b equals perfectly zero, then there is zero preference for alternative a over b; if
PIi=a,i=b equals approximately zero, then there is a low preference for a over b; if PIi=a,i=b
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equals approximately to one, then there is a high preference for alternative a over b, and if
PIi=a,i=b is exactly equal to zero, then there is a perfect preference for alternative a over b.
Finally, using the preference index, the outranking flows F+

a and F−
a are quantified using

the following Equations (7) and (8), respectively, where i is the number of alternatives (i ε 1
to i), excluding alternative i = a.

F+
a =

1
i − 1

i

∑
i=1

PIa,i (7)

F−
a =

1
i − 1

i

∑
i=1

PIi,a (8)

Step 4: Calculation of net outranking flow and final ranking [76]:
The aforementioned predicted outranking flows F+

a and F−
a for each option are used

to determine each alternative’s dominance over the others. Positive ranking flow quantifies
the ‘a’ solar panel cooling system’s dominance over the other alternative solar panel
cooling systems, whereas negative ranking flow quantifies alternative a’s dominance over
the other alternatives. F+

a , F+
b , F−

a , and F−
b estimated outranking flows for each option

a and b and were utilized to determine which option is dominant over the others. By
understanding the outranking flow for any two choices, outranking relations can be inferred.
Thus, a partial ranking is determined based on the outranking relations between any two
choices as follows: if {[(F+

a > F+
b ) and (F−

a < F−
b )] or (F+

a ≥ F+
b ) or (F−

a ≤ F−
b )},then solar

panel cooling system ‘a’ has preference over ‘b’; if {(F+
a = F+

b )} and or {(F−
a = F−

b )}, then
alternative ‘a’ has preference over ‘b’; and if the information is otherwise inconsistent, then
alternative a is incompatible with b. Net outranking flow for alternative a is obtained using
Fa= F+

a − F−
a ; while net outranking flow for alternative b is obtained using Fb= F+

b − F−
b .

A complete ranking is subsequently obtained as follows: if Fa > Fb, then alternative a
has complete preference over alternative b; if Fa = Fb, then alternative a has complete
indifference compared to alternative b. The complete ranking is obtained by ordering the
alternatives in decreasing order of their net flow scores. The net flow score is a measure
of the overall performance of an alternative, which takes into account the positive and
negative outranking flows with respect to all other alternatives. The PROMETHEE I method
is used to obtain the positive and negative outranking flows, whereas the PROMETHEE
II method is used to obtain a complete ranking, and it considers all the alternatives and
criteria involved in the decision-making problem. The final ranking obtained using the
PROMETHEE provides a global view of the alternatives and facilitates the selection of the
best option. The application of the above methodology for an efficient ranking of solar
panel cooling systems is presented in the subsequent section.

5. Application of the MCDM Approach

The presented approach extends considerable support to comparing and ranking solar
panel cooling systems along with their validation and sensitivity analyses. The step-wise
application of the proposed multi-criteria decision-making approach for selecting solar
panel cooling systems is presented as follows.

Step 1: This step is used to identify potential alternative solar panel cooling systems
for evaluation. Each solar panel cooling system is evaluated using eleven performance
measures; to start, equal weights are assigned to these measures. For the decision matrix
on hand, refer to Table 2.
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Table 2. Sample data for each alternative obtained via expert/published research.

Units

Performance Measures j

$ PM01 PM02 PM03 PM04 PM05 PM06 PM07 PM08 PM09 PM10 PM11

% 5-Point USD/sq. m Kg 5-Point ◦C Sq. m Impact Impact 5-Point Impact

Objective Maximize Maximize Minimize Minimize Minimize Maximize Minimize Maximize Minimize Minimize Minimize

Weightages Wj 1 1 1 1 1 1 1 1 1 1 1

Alter-
natives

i

# A1:
[77,78] 3.5 5 USD 58 High 1 12.50 25 Very

high Low Low Very low

A2:
[78–80] 7 2 USD 168 Low 5 14.20 670.84 Low Average High Low

A3:
[81,82] 9 4 USD 1125 Low 3 23.00 16.73 Low High High Low

A4:
[83–85] 7 2 USD 25 Low 4 23.00 670.84 High High High Very

high

A5: [61] 9 1 USD 25 High 6 28.00 18.49 High High High High

A6:
[86–88] 4 3 USD 68 High 2 22.00 77.44 Low Low Low Very

high

A7: [88] 13.5 2 USD 75 High 7 40.00 56.25 Very low Low High Very
high

A8: [89] 13.5 2 USD 75 High 8 40.00 56.25 Low Low High Very
high

A9:
[90,91] 17 1 USD 540 Very

high 9 10.20 125.0 Low Very
high High High

Note: for # and $, refer to Figure 1.

In Table 2, the solar panel finned air-cooling system (A1) has an average of 3.5%
energy efficiency at an estimated cooling cost per square meter of a solar panel of USD
58, and this panel cooling system is highly reliable. The effects of carbon emissions on
the environment are highly alarming. In the opinion of researchers [92,93], the alternative
A1 has an extremely low effect as well as very little usage of electrical equipment in the
cooling system network and is very supportive in terms of corrosion resistance. Similarly,
Franklin et al. [77] stated that the finned air-cooling system is good and practical for instal-
lation and maintenance due to reduced physical deterioration and leakage difficulties. In
light of numerous assessment parameters, one can, therefore, obtain comparable readings
for any other alternative solar panel cooling system networks. Thus, for a given perfor-
mance measure, one can see differences in values corresponding to alternative cooling
systems. Not a single alternative outperforms others in all eleven measures. For selected
performance measures, the selective solar panel cooling system score is better than the
others. In other words, no single solar panel cooling system yields the best overall perfor-
mance measures. Considering the multiple-attribute measure decision situation presented
above, the application of the approach adopted to evaluate and rank these solar panel
cooling system is presented here below.

Step 2: At this step, six sets of performance measure weights (equal weights, objective
weights using the entropy technique, and four subjective weights) are chosen. Set 1 signifies
an equal weighting of all performance measures, Set 2 is objective weights using the entropy
approach, and Set 3 to Set 6 are subjective weights; refer to Table 3 below.

Table 3. Performance measure weights to evaluate solar panel cooling systems.

Performance
Measures j

# Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

$ PM01 0.091 0.038 0.035 0.040 0.050 0.600

PM02 0.091 0.110 0.650 0.040 0.050 0.040

PM03 0.091 0.152 0.035 0.600 0.050 0.040

PM04 0.091 0.065 0.035 0.040 0.500 0.040
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Table 3. Cont.

Performance
Measures j

# Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

PM05 0.091 0.043 0.035 0.040 0.050 0.040

PM06 0.091 0.051 0.035 0.040 0.050 0.040

PM07 0.091 0.141 0.035 0.040 0.050 0.040

PM08 0.091 0.076 0.035 0.040 0.050 0.040

PM09 0.091 0.056 0.035 0.040 0.050 0.040

PM10 0.091 0.204 0.035 0.040 0.050 0.040

PM11 0.091 0.064 0.035 0.040 0.050 0.040

Note: $ refer to Figure 1. # Set 1: equal weightage to all performance measures; Set 2: weightage to all performance
measures using entropy approach; Set 3: 65% weightage to reliability, with others having 4% each; Set 4: 60%
weight to cost, with others having 4% each; Set 5: 50% weightage to emission and others having 5% each; and Set
6: 60% weightage to efficiency and others having 4% each.

Step 3: In this step, as significantly large mathematical computations are needed, it
is preferred to adopt the Visual PROMETHEE soft tool. So, using it, two preference flows
(F+

i and F−
i ) and the net outranking flow (Fi) were obtained for each alternative solar panel

cooling system i, as presented in Table 4 as follows.

Table 4. Partial and complete outranking flows for each alternative solar cooling system vs. the sets
of weights.

Alternatives i

# A1 A2 A3 A4 A5 A6 A7 A8 A9

Set of
weightages

$ Set 1

Fi 0.4098 0.0597 −0.0854 −0.0283 −0.0668 0.2003 −0.2095 −0.1195 −0.1603

F+i 0.5655 0.3053 0.2962 0.2435 0.2242 0.3986 0.1611 0.2170 0.2215

F−i 0.1557 0.2456 0.3815 0.2718 0.2911 0.1983 0.3706 0.3365 0.3818

Set 2

Fi 0.4382 0.077 −0.2293 0.0061 −0.1433 0.2852 −0.2007 −0.1375 −0.0958

F+i 0.5948 0.2847 0.2295 0.2391 0.1707 0.466 0.1431 0.1807 0.2231

F−i 0.1566 0.2077 0.4588 0.233 0.3141 0.1808 0.3438 0.3182 0.3189

Set 3

Fi 0.6536 −0.0884 0.3437 −0.1223 −0.214 0.1807 −0.2689 −0.2343 −0.2500

F+i 0.7135 0.1175 0.4906 0.0937 0.0863 0.2916 0.062 0.0835 0.0853

F−i 0.0599 0.206 0.1469 0.2161 0.3003 0.1109 0.331 0.3178 0.3353

Set 4

Fi 0.2610 0.0963 −0.562 0.0758 0.0588 0.1665 −0.0155 0.0241 −0.1050

F+i 0.3295 0.2043 0.1303 0.1954 0.1869 0.2537 0.1476 0.1722 0.1319

F−i 0.0685 0.1081 0.6923 0.1196 0.1281 0.0872 0.1631 0.1481 0.2369

Set 5

Fi 0.3379 −0.1922 −0.4407 −0.4093 0.0757 0.2227 −0.0027 0.0468 0.3618

F+i 0.4798 0.2804 0.1629 0.1339 0.2921 0.388 0.2574 0.2881 0.5718

F−i 0.1419 0.4726 0.6036 0.5432 0.2163 0.1653 0.2601 0.2413 0.2100

Set 6

Fi 0.1803 0.0263 −0.0376 −0.0125 −0.0294 0.0882 −0.0922 −0.0526 −0.0705

F+i 0.2488 0.1343 0.1303 0.1071 0.0987 0.1754 0.0709 0.0955 0.0975

F−i 0.0685 0.1081 0.1679 0.1196 0.1281 0.0872 0.1631 0.1481 0.168

Note: for $, refer to Table 3, and for #, refer to Figure 1. Fi: net preference flows; F+
i : positive preference flows; and

F−
i : positive preference flows.

In Table 4, there are two preference flows (F+
i and F−

i ), and these values help to
draw a partial ranking. It also shows incomparability between solar panel cooling system
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alternatives when both (F+
i and F−

i ) preference flows have conflicting rankings. Similarly,
in Table 4, Fi is the net preference flow, and it is a complete ranking of solar panel cooling
system alternatives. For example, in Table 4, for set 1, when the corresponding values for
alternatives A1 and A2 are compared using positive outranking flow (F+

i ), it is evident
that

(
F+

A1 = 0.5655
)
>

(
F+

A2 = 0.3053
)
; however, when A1 and A2 are compared using

negative outranking flow (F−
i ), it is evident that

(
F−

A1 = 0.1557
)
<

(
F−

A2 = 0.0.2456
)
. This

demonstrates that option A1 has a stronger preference than alternative A2. Similarly, when
all alternatives are compared based on overall outranking flow (Fi), FA1 = 0.4098 and has the
highest value when compared to the remaining eight alternatives, whereas alternative A7
has the lowest net outranking value, FA7 = −0.2095, implying that A1 is the first preference
and A7 is the last preference.

Step 4: Using the previously calculated step 3, outranking flows, a ranking network
diagram, and a geometrical analysis for the interactive plane are derived. Details are
presented below.

Figure 2 shows the positive outranking flow F+
i in the left column and the negative

outranking flow F−
i in the right column for each alternative i. Outranking flows are

arranged in such a way that the best are projected at the top of the column. The center
column represents the net outranking flow Fi. For each alternative, a representative line
is drawn from its F+

i to the corresponding F−
i score. For any given two alternatives, if the

representative lines are parallel, the alternative representing the top line is preferred. On
the other hand, if the two lines intersect, the corresponding alternatives are incomparable.
By correlating Table 4 and Figure 3, for outranking flow F+

1 , alternative A1 dominates all
other alternatives; for outranking flow F+

7 , alternative A7, the water-sprayed solar panel
cooling system, highly underperforms compared to all other alternatives; for outranking
flow F−

1 , alternative A1, the finned air sink solar panel cooling system, dominates all other
alternatives; and for outranking flow F−

3 , alternative A3 highly underperforms compared
to others. Generally, these positive and negative outranking flows induce two different
rankings. In order to circumvent this scenario, a complete ranking based on net flow F was
obtained and is presented in Figure 3 as follows.

Figure 2. Partial ranking: as equal weightage to all performance measures (Set 1) (note: for notations,
refer to Figure 1).
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Figure 3. Complete ranking as equal weightage to all performance measures (Set 1) (note: for
notations, refer to Figure 1).

From Figure 3, it is evident that alternative A1, the ‘finned air-cooling system’, sur-
passes all alternatives. Alternative A6, the forced air solar panel cooling system, performs
as the next best option. Both of these options are best suited for dry, arid environments,
while alternative A7, the water-sprayed solar panel cooling system, is least preferred over
other alternatives. Subsequently, a network diagram was drawn (refer to Figure 4) in which
each alternative is represented by a ‘node’ and its preference over other alternatives by
an ‘arrow’.

For example, in Table 4 for set 1, when the corresponding net outranking flow (Fi)
values for all alternatives are compared, it is evident that (FA1 = 0.4098) > (FA6 = 0.2003)
> (FA2 = 0.0597) > (FA4 = −0.0283) > (FA5 = −0.0668) > (FA3 = −0.0854) > (FA8 = −0.1195)
> (FA9 = −0.1603) > (FA7 = −0.2095). Considering this net outranking relationship, the
network diagram is drawn as presented in Figure 4. In Figure 4, it is evident that alternative
A1, a passive cooling approach, is preferred over A6, which is an active cooling approach.
When comparing all three active cooling approaches, A2, A4, and A3, approach A2 is
preferred over both A4 and A3, whereas cooling approaches A4 and A3 are not comparable.
Similarly, it is evident that passive cooling systems are outperforming active cooling
systems, with the exception of forced air cooling system A6.

The Visual PROMETHEE represents the results in the GAIA (geometrical analysis for
interactive assistant) plane (refer to Figure 5).
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Figure 4. Network diagram as equal weightage to all performance measures (Set 1) (note: for
notations, refer to Figure 1).

Figure 5. GAIA plane (note: for notations, refer to Figure 1).

In the GAIA plane (Figure 5), it is evident that solar panel cooling systems A1 and
A3 are scoring opposite to A4 and A9; similarly, it is also apparent that the solar panel
cooling systems A2 and A6 are scoring opposite to A5, A8 and A7. Solar panel cooling
approach A1 scores better for measures PM02, PM05, and PM11 (refer to Figure 1). It is
also observed that, as far as solar panel cooling systems A5, A8, and A7 are concerned,
these cooling systems perform best for only one measure, i.e., panel temperature dropping.
Similarly, when comparing active cooling approach A6 and passive cooling approach A2,
both perform satisfactorily for the PM01, PM08, PM09, and PM10 performance measures.
However, from Figure 5, it is evident that A6 scores better than A2. Thus, decision makers
not typically having any pre-determined weights in mind warrants the need for sensitivity
analysis. Hence, a feature of the Visual PROMETHEE software is adopted for this purpose.
The details of the sensitivity analysis and results are presented here in the following section.

6. Sensitivity Analysis

Sensitivity analysis is performed to evaluate the deviation in the ranking of alternative
solar panel cooling systems. Six sets of weights (equal weights, objective weights using
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the entropy approach, and four subjective scalings) of performance measure weights (refer
to Table 3) are opted for in the sensitivity analysis. In subjective scaling, four scenarios
are considered. Scenario 1 is based on technical experts who have knowledge about
the workings of solar panel cooling systems; they prefer highly reliable solar cooling
systems and so suggested having the highest importance of 65% to measure the reliability
measure (PM02) compared to other measures. On the other hand, as in scenario 2, the
management is keen on minimizing cooling system operating costs (PM03) as an economic
concern and sets 60% weightages to cooling costs. In comparison, 60% weightages to
environmental measures are seen in scenario 3, which is based on green and sustainable
energy management; decision makers in this scenario are keen on minimizing carbon
emissions by installing, operating, and maintaining environmentally friendly solar cooling
systems. The last scenario, scenario 4, is that of an operational manager, whose target
is to lower the amount of energy used for cooling and raise the overall effectiveness
of the solar panel system, and suggested having 60% weightage to energy efficiency as
crucial for the solar panel cooling system. On the contrary, objective weighting eliminates
manmade disturbances and makes results accord more with the facts. The objective weights
method makes use of mathematical models, such as entropy analysis [94]. Accordingly,
the sensitivity analysis was performed relying on assigned entropy weights in the Visual
PROMETHEE. The outcomes of the sensitivity analysis are presented below in Figure 6a–d.

(a) (b) (c) 

(d) 

Figure 6. (a) Partial ranking, (b) complete ranking, (c) network, and (d) GAIA plane for performance
weightages in Set 2 (refer to Table 3) (note: for notations, refer to Figure 1).
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Similarly, sensitivity analysis was performed using subjective weightage Set 3. Below,
Figure 7a–d represent corresponding outcomes representing partial ranking, complete
ranking, the network diagram, and the GAIA plane, respectively.

(a) (b) (c) 

(d) 

Figure 7. (a) Partial ranking, (b) complete ranking, (c) ranking network, and (d) GAIA plane for
performance measure weightages in Set 3 (refer to Table 3) (note: for notations, refer to Figure 1).

In Figure 7, the decision maker’s objective is to have a reliable solar cooling system to
mitigate any level of operation risk. From Figure 7c, it is evident that A3, i.e., the phase
change material cooling approach, is a more reliable solar panel cooling system compared
to A2 (heat pipe cooling) and thermosiphon cooling with and without the material fluid
pot (A2 and A4) in the category of passive cooling systems. However, A7, A8, and A9,
active cooling systems, are the least reliable.

In the same way, Figure 8a–d below represent analysis corresponding to partial rank-
ing, complete ranking, the network diagram, and the GAIA plane, respectively, for sub-
jective weight applications. But, in this case, the highest weightage of 60% is set to cost
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measure (refer to Set 4 in Table 3). Here, when the management objective is to have a
cost-effective solar cooling system, A3 is the least preferred cooling system compared to A2,
A4, and A5 in the category of passive cooling systems. This is opposite to the finding from
Figure 7. However, when there is management that has economic concerns, alternative A1
dominates all other alternatives on hand.

(a) (b) (c) 

(d) 

Figure 8. (a) Partial ranking, (b) complete ranking, (c) ranking network, and (d) GAIA plane for
performance measure weightages in Set 4 (refer to Table 3) (note: for notations, refer to Figure 1).

Likewise, the following Figure 9a–d represent analysis corresponding to partial rank-
ing, complete ranking, the network diagram, and the GAIA plane, respectively, for the
highest subjective weightage of 60% to an evaluation measure PM04 (refer to Set 5 in
Table 3). As the management objective is to have an environmentally friendly solar cooling
system, the passive cooling approaches A2, A3, and A4 are the least preferred solar panel
cooling systems compared to A1 and A5 in the same category. However, in this case, the
nanomaterial fluid cooling system is still outranked by the finned air cooling system.
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(a) (b) (c) 

(d) 

Figure 9. (a) Partial ranking, (b) complete ranking, (c) ranking network, and (d) GAIA plane for
performance measure weightages in Set 5 (refer to Table 3) (note: for notations, refer to Figure 1).

Lastly, Figure 10a–d represent analyses corresponding to partial ranking, complete
ranking, the network diagram, and the GAIA plane, respectively, for the highest subjective
weightage of 60% set to an evaluation measure, PM01 (refer to Set 6 in Table 3). Here, the
management objective is to have energy-efficient solar panel cooling systems where passive
cooling systems outrank active cooling systems.

Thus, from the analysis, it is evident that for each scenario, the solar panel cooling
system performance is sensitive to variation in performance measure weightages. The
overall ranking for each alternative solar panel cooling system corresponding with multiple
sets of weights assigned to performance measures is presented here in Table 5. Subsequently,
the complete outranking flow (refer to Table 4) for each alternative is aggregated to drive
overall ranking. Thus, after the sensitivity analysis, it is evident that solar panel cooling
system alternatives A1 and A6 are found to be the best choice over other alternatives.
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(a) (b) (c) 

(d) 

Figure 10. (a) Partial ranking, (b) complete ranking, (c) ranking network, and (d) GAIA plane for
performance measure weightages in Set 6 (refer to Table 3) (note: for notations, refer to Figure 1).

Table 5. Ranking for each alternative solar panel cooling system corresponding with multiple sets of
weights assigned to performance measures.

Set of Weightages $ Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Overall Rank

Alternative solar panel
cooling systems

# A1 1 1 1 1 2 1 1

A2 3 3 4 3 7 3 3

A3 6 9 2 9 9 6 9

A4 4 4 5 4 8 4 7

A5 5 7 6 5 4 5 4

A6 2 2 3 2 3 2 2

A7 9 8 9 7 6 9 8

A8 7 6 7 6 5 7 6

A9 8 5 8 8 1 8 5

Note: For $, refer to Table 3, and for #, refer to Figure 1.
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7. The Managerial Perspectives of the Study

To stay competitive, solar panel manufacturing companies must focus on technological
developments that are cost-effective and very responsive to market changes. These changes
are changes in energy demand, changes in the cooling system parts and components as per
customer demand, changes in the existing cooling system, large fluctuations in the energy
demand and mix, changes in the government regulations that are related to safety and
the environment, etc. It is well known that the performance of any solar panel module is
susceptible to multiple factors. Traditional solar panel cooling systems are selected based on
climate, type of panel, energy requirements, and cost. There is evidence that changing the
cooling system from one configuration to another has an impact on the amount of energy
generated by the solar panels; the amount of fluid required for cooling may change, which
could impact the stability of the temperature of the solar panels and could, in turn, impact
energy generation. However, the impact of changing a cooling system in solar energy
modules will depend on the specific cooling system and the specific solar panel installed.

The study that is reported in the present paper clearly revealed that the performance of
solar panel cooling systems is very likely to change whenever the environment is changed,
either due to changes in the technical or non-technical operating scenarios. But, there is no
guarantee that every change will lead to desirable conditions. It is also very risky to make
a change without assessing the relative merit of the same from the viewpoint of system
performance. The decision maker may find the methodology that is presented in this paper
attractive for many reasons, as this method is capable of treating multi-criteria situations. It
possesses an ability to incorporate decision making using threshold indifferences and pref-
erences, as was explained in Sections 3 and 4. Concepts such as partial outranking, complete
outranking, the graph and network diagram, and the feasibility of carrying out sensitivity
analyses made this approach to the assessment of solar panel cooling system alternatives
very attractive. The threshold weightage facilitates the comparison of alternatives using
operational, environmental, and economic measures. One may compare alternatives using
any sets of performance measures and their weights to decide the points of preference,
indifference, and ignorance among choices. The concept of outranking relationships as a
network diagram helps in the ordering of the nondominated alternative cooling systems.
The presented approach aids in the synthesis of the preference relationship for each alterna-
tive solar panel cooling system in order to establish the required outranking relationship
across solar panel cooling options in the context of all of the desired performance measures.

Thus, there are many decision situations in which the decision maker must choose
among a finite number of alternatives, which are evaluated on a common set of multiple
criteria. While evaluating the alternative solar panel cooling systems, it may be of interest to
assess how similar and dissimilar the various solar panel cooling systems are and identify
which performance measures play a significant role in establishing such relationships.
This issue can be taken up with the help of the Visual PROMETHEE MCDM approach.
The Visual PROMETHEE assesses the competitiveness of alternative solar panel cooling
systems. Here, the adopted approach has the ability to incorporate positive and negative
preferences. It synthesizes the preference relationships for each alternative to produce
the desired outranking relationship between all of the alternatives. Concepts such as
preference flow, weights, geometrical analysis for the interactive aid (GAIA) plane, as
well as sensitivity analyses make this approach attractive in the assessment of solar panel
cooling systems. Partial and complete ranking also helps identify the most preferred solar
panel cooling system. However, decision makers are often interested not only in ranking
solar panel cooling systems but also in establishing the superiority of one solar panel
cooling system over another (if it exists). The PROMETHEE extends considerable support
in this regard.

The practical significance of evaluating solar panel cooling systems within the context
of solar power plant operation cannot be underestimated. Solar power plants may boost
their energy production and, hence, their profitability by incorporating the proper cooling
systems. There are numerous cooling solutions available, including both passive and active
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ones, and the method chosen will be determined by criteria such as climate, resource
availability, and overall cost-effectiveness. This is especially relevant in areas with high
ambient temperatures when solar panel efficiency can be severely reduced. Aside from
the economic benefits, cooling measures can help to ensure the long-term viability of solar
power facilities. The overall energy consumption of the power plant may be lowered by
lowering the energy required to cool the panels, resulting in a smaller carbon footprint.
This is consistent with global sustainability objectives.

8. Conclusions

This paper presents an approach for the assessment of solar panel cooling systems
using the Visual PROMETHEE multi-criteria approach. The approach that was reported
in the paper is found to be useful in ranking the choices among different alternative solar
panel cooling systems using multiple performance measures. A total of nine possible
alternative solar panel cooling systems were analyzed based on variations in cooling
effectiveness, energy efficiency, environmental impact, durability, noise pollution, and
system size, weight, and cost. Using this approach, outranking flows, partial ranking,
complete ranking, the network, and the GAIA plane were obtained, with the objective
being to explore the strong and weak points of each of the alternative solar panel cooling
systems. The obtained results enabled the identification of groups of performance measures
expressing similar preferences. For example, thermosiphon cooling and nanomaterial fluid
cooling systems are preferred for their economic, ergonomic, and environmental measures.
Meanwhile, thermosiphons with a clay pot cooling system, water spray cooling systems,
and evaporative cooling systems are preferred only to drop solar panel temperature,
which is also supported by Moharram et al. [94]. These systems are preferred for solar
modules installed in very hot and dry climates. On the contrary, two passive cooling
approaches, i.e., finned air cooling and phase change material cooling systems, have
preference over reliability, ergonomics, and electric equipment failure risk measures. In
short, the contributions of this study are as follows:

• It presented a multi-criteria decision-making approach that takes into account both
quantitative and qualitative criteria;

• It outranked alternative solar panel cooling systems to determine the best viable choice
using the PROMETHEE;

• It visualized the relationship between the different solar panel cooling systems and
performance measures under consideration.

As can be seen from Table 5, the outranking of nine solar panel cooling systems
is A1 > A6 > A2 > A4 > A5 > A3 > A8 > A9 > A7 when equal weights are assigned
to each criterion. However, it is to be noted that equal weights to all the criteria are
an exaggeration, and this is just used as a reference. On the other hand, when each
criterion is weighted using the entropy approach, the preference of solar panel cooling
system is A1 > A6 > A2 > A4 > A9 > A8 > A5 > A7 > A3. Sometimes, certain operating
requirements need a maximization of the reliability of the cooling system, and in this
case, the ranking is observed to be A1 > A3 > A6 > A2 > A4 > A5 > A8 > A9 > A7.
On the other hand, when the need is to focus on minimizing cost, the preference is
A1 > A6 > A2 > A4 > A5 > A8 > A7 > A9 > A3. In comparison, to maximize the efficiency
of the solar plant, the outrank of nine alternatives is observed to be A1 > A6 > A2 > A4
> A5 > A3 > A8 > A9 > A7, and to minimize environmental impact by minimizing CO2
emissions, the approach then suggests the preference order as A9 > A1 > A6 > A5 > A8 >
A7 > A2 > A4 > A37, which shows that A9 is the best option. The overall outrank for nine
alternatives is also derived as A1 > A6 > A2 > A5 > A9 > A8 > A4 > A7 > A3.

Thus, nine different solar panel cooling systems were identified, and the multi-criteria
analysis tool Visual PROMETHEE was used. Six possible scenarios are examined based
on the priority assigned to each performance metric. Under each situation, the best solar
panel cooling strategy to the worst cooling approach has been ranked. When operational
efficiency was given the most weight, finned cooling was revealed to be the best solar
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panel cooling method, whereas thermosiphon cooling was the best cooling solution when
the emission reduction criteria were given the most weight. The second-best method was
found to be forced air cooling under equal weights, entropy weights, and 60% weightage
to economic and component failure risk. The third choice is a heat pipe passive cooling
system. Future research directions are set to focus on the assessment of hybrid solar panel
cooling systems that are better integrated with energy management systems for improved
overall performance. Comparison experiments can be executed by comparing the proposed
Visual PROMETHEE approach with other MCDM methods to show its effectiveness as a
future scope. One can also include performance metrics such as maintainability, technical
implementation challenges, and sustainable solutions. Similarly, one can involve the
development of new testing protocols and standards that can be used to assess the reliability
and performance of these systems over time.
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