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DNA Code from Cyclic and Skew Cyclic Codes over F4rvs{xv3y

Reprinted from: Entropy 2023, 25, 239, doi:10.3390/e25020239 . . . . . . . . . . . . . . . . . . . . . 125

Isa Abdullahi Baba, Usa Wannasingha Humphries and Fathalla A. Rihan
A Well-Posed Fractional Order Cholera Model with Saturated Incidence Rate
Reprinted from: Entropy 2023, 25, 360, doi:10.3390/e25020360 . . . . . . . . . . . . . . . . . . . . . 137

Hosam Alhakami, Muhammad Umar, Muhammad Sulaiman, Wajdi Alhakami and Abdullah
Baz
A Numerical Study of the Dynamics of Vector-Born Viral Plant Disorders Using a Hybrid
Artificial Neural Network Approach
Reprinted from: Entropy 2022, 24, 1511, doi:10.3390/e24111511 . . . . . . . . . . . . . . . . . . . . 153

Samaneh Gholami and Silvana Ilie
Quantifying Parameter Interdependence in Stochastic Discrete Models of Biochemical Systems
Reprinted from: Entropy 2023, 25, 1168, doi:10.3390/e25081168 . . . . . . . . . . . . . . . . . . . . 172

v



Christopher Parker, Erik Nelson and Tongli Zhang
VeVaPy, a Python Platform for Efficient Verification and Validation of Systems Biology Models
with Demonstrations Using Hypothalamic-Pituitary-Adrenal Axis Models
Reprinted from: Entropy 2022, 24, 1747, doi:10.3390/e24121747 . . . . . . . . . . . . . . . . . . . . 194

vi



About the Editor

Pavel Kraikivski

Pavel Kraikivski is a Collegiate Associate Professor in the Academy of Integrated Science,

Division of Systems Biology at Virginia Tech. Dr. Kraikivski has more than 15 years of experience

in developing mathematical models to study the dynamic behavior of complex biological systems,

especially to investigate molecular mechanisms regulating intracellular transport, cell growth,

division, and cell death. He also teaches Integrated Science and Biology Systems courses at Virginia

Tech. He teaches students to apply interdisciplinary approaches by giving them problem-oriented

exercises that can be successfully attacked only with a high level of creativity and analytical thought.

vii





Citation: Kraikivski, P. Mathematical

Modeling in Systems Biology.

Entropy 2023, 25, 1380. https://

doi.org/10.3390/e25101380

Received: 12 September 2023

Accepted: 21 September 2023

Published: 25 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Editorial

Mathematical Modeling in Systems Biology
Pavel Kraikivski

Academy of Integrated Science, Division of Systems Biology, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA; pavelkr@vt.edu

Mathematical modeling is a key tool used in the field of systems biology to determine
the mechanisms with which the elements of biological systems interact to produce complex
dynamic behavior. It has become increasingly evident that the complex dynamic behavior of
biological systems cannot be understood by intuitive reasoning alone. However, valuable
insights with regard to the mechanisms governing the dynamic behavior of biological
systems can be revealed through computational experiments by simulating these systems
with mathematical models. The eleven contributions of this Special Issue demonstrate
how computational and mathematical approaches can simultaneously be used to reveal
important aspects of various biological problems.

Ute Deichmann presents a comprehensive analysis of the historical background of
pattern formation models that are applied to describe morphogenesis and embryological
structure development [1]. The analysis tracks the development of physical–chemical and
genome-based pattern formation models and subsequently compares Alan Turing’s 1952
reaction–diffusion-based models with more recent models that integrate gene regulatory
networks with physical–chemical processes. The article concludes that Turing’s models
alone are not able to rigorously explain pattern generation in morphogenesis, but that math-
ematical models combining physical–chemical principles with gene regulatory networks,
which govern embryological development, are the most successful in explaining pattern
formation in organisms.

An information-based approach to quantify geometrical order in biological organizations
using varying levels of information is introduced in the article by Juan Lopez-Sauceda et al. [2].
The approach employs Shannon entropy to measure the quantity of information in ge-
ometrical meshes of biological systems. The authors apply their approach to quantify
spatial heterogeneity in thirty-five biological and non-biological geometric aggregates and
conclude that the differential entropy of geometrical organizations is an essential source of
information in biological systems.

Steven Frank uses reservoir computing techniques to study how a biological system
with an internal, randomly connected network receiving environmental inputs evolves
to generate predictive responses [3]. The environmental inputs are generated using a
mathematical model that exhibits chaotic dynamics. The biological system that interacts
with the environment is represented by a random network reservoir that retains the mem-
ory of past inputs. The study quantifies the degree of effectiveness and accuracy with
which the biological system predicts future input values, using the internal reservoir states
as predictors.

The article by Yolocuauhtli Salazar et al. presents a mathematical model of biomass
growth, glucose consumption, and ethanol production by K. marxianus yeast strains [4]. The
model consists of three coupled, nonlinear first-order ordinary differential equations and
ten parameters that can be well-constrained by experimental data. The model is successful
in explaining the time-course data of alcoholic fermentation in batch culture for 17 different
K. marxianus strains, and can be used to accurately predict the evolution of both biomass
and ethanol in the system.

The review article by Madhumita Srinivasan, Robert Clarke, and Pavel Kraikivski
presents mathematical models of different cell death execution mechanisms that have been
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published over a period of twenty-two years [5]. The authors put forward a hypothesis that
cell death can be controlled by a singular, highly integrated cell death decision network that
enables cells to choose alternative cell death execution pathways within a single control
network of cell death.

Francesco Cordoni’s work presents a macroscopic deterministic approximation of
microscopic systems, which is represented by a stochastic model for radiation-induced
DNA damage kinetics and repair [6]. The approximation is used to compute the distribution
of the number of DNA damages that result in cell death. It concludes that the distribution
deviates from the Poisson law due to the clustering of the DNA damage.

The study conducted by Om Prakash et al. is related to DNA-based computing, which
relies on error control coding techniques [7]. Coding theory is applied to construct a
large set of DNA strings that satisfy certain combinatorial constraints. The authors study
reversible DNA codes, as well as those of length n, and obtain new DNA codes with
improved parameters.

Two articles in this Special Issue focus on the modeling of infection transmission
dynamics. The article by Isa Abdullahi Baba et al. presents a fractional-order cholera
model that is an extension of the Susceptible–Infected–Recovered epidemic model [8]. The
model incorporates the saturated incidence rate to accurately represent the transmission
dynamics of the disease. The article by Hosam Alhakami et al. uses a deterministic
mathematical model of vector-borne viral plant disease dynamics to train a feed-forward
neural network using Levenberg–Marquardt backpropagation algorithm [9]. The neural
network is then used to study the implication of fluctuations on natural plant mortality
and vector mortality rates.

Mathematical models of biological systems usually describe many interacting com-
ponents and involve many parameters. Furthermore, it is common that only limited
experimental data are available to calibrate the models. Therefore, reliable mathematical
models of biological systems can only be developed with rigorous parameter estimation
and model validation techniques. Samaneh Gholami and Silvana Ilie propose a parameter
estimation method for stochastic discrete models of biochemical networks [10]. The method
utilizes finite-difference approximations of the parameter sensitivities and the singular
value decomposition of the sensitivity matrix. Several models of biochemical systems are
used to demonstrate the advantages of the proposed method.

The article by Christopher Parker, Erik Nelson, and Tongli Zhang presents a computa-
tional framework named VeVaPy, which is designed to verify and validate mathematical
models comprising many interacting components and parameters [11]. VeVaPy is a publicly
available Python library that can help determine which model from the literature is the best
for fitting new experimental data. The authors use several hypothalamic–pituitary–adrenal
(HPA) axis models from the literature to demonstrate the way in which VeVaPy can help to
verify and validate these models against new data: VeVaPy runs the differential evolution
parameter optimization algorithm on each model against several novel datasets and ranks
the models based on their average cost function value. In their demonstration, two out of
five HPA models performed the best in elucidating the novel datasets. Overall, the model
validation process is able to operate with significantly less effort when using VeVaPy.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Review

Self-Organization and Genomic Causality in Models
of Morphogenesis
Ute Deichmann

The Jacques Loeb Centre for the History and Philosophy of the Life Sciences, Ben-Gurion University of the Negev,
Beer Sheva 84105, Israel; uted@post.bgu.ac.il

Abstract: The debate about what causes the generation of form and structure in embryological
development goes back to antiquity. Most recently, it has focused on the divergent views as to
whether the generation of patterns and form in development is a largely self-organized process or is
mainly determined by the genome, in particular, complex developmental gene regulatory processes.
This paper presents and analyzes pertinent models of pattern formation and form generation in
a developing organism in the past and the present, with a special emphasis on Alan Turing’s
1952 reaction–diffusion model. I first draw attention to the fact that Turing’s paper remained, at
first, without a noticeable impact on the community of biologists because purely physical–chemical
models were unable to explain embryological development and often also simple repetitive patterns.
I then show that from the year 2000 and onwards, Turing’s 1952 paper was increasingly cited also by
biologists. The model was updated to include gene products and now seemed able to account for
the generation of biological patterns, though discrepancies between models and biological reality
remained. I then point out Eric Davidson’s successful theory of early embryogenesis based on
gene-regulatory network analysis and its mathematical modeling that not only was able to provide
a mechanistic and causal explanation for gene regulatory events controlling developmental cell
fate specification but, unlike reaction–diffusion models, also addressed the effects of evolution and
organisms’ longstanding developmental and species stability. The paper concludes with an outlook
on further developments of the gene regulatory network model.

Keywords: reaction–diffusion models in morphogenesis; pattern formation; developmental gene
regulatory networks; Alan Turing; Eric Davidson

1. Introduction

Self-organization as the spontaneous emergence of spatio-temporal patterns through
physical or chemical processes has been described in many different systems, for example,
in non-living reaction–diffusion systems, such as the Belousov–Zhabotinsky reaction. It was
used for an explanation of morphogenesis by Alan Turing in 1952 [1] More recently, it came
to prominence in embryology with the use of stem cells and their in vitro differentiation
into various tissues, and self-organization has become a fashionable topic in studies of the
development of patterns and form.

The idea of self-organization—in various forms and terms—has a long history, and
the question of the generation of shapes and structures in embryological development, in
general, has occupied and fascinated philosophers and scientists for centuries, inducing
them to adopt opposing views: the belief that the structures of adults were existent in
miniature in the germ cells or programmed in the genes or genome, contrasted with the
conviction that new forms and structures were newly created in the embryo.

This debate about what causes form and structure formation in the growing embryo
goes back to antiquity. On the one hand, there was the idea of material continuity between
generations that were expressed, for example, in the theories of pangenesis, according to
which all organs of the body of a parent produce invisible “seeds” that were transmitted
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during sexual intercourse, or in the theory of preformation, according to which the struc-
ture of an adult organism was already preformed in the germ cells. On the other hand,
development was understood as a process of increasing complexity from an unorganized
egg that was brought about either by immaterial forces or by self-organizing matter. The
former view originated in the School of Hippocrates, while the most prominent protagonist
of the latter one (that in the 17th century was termed epigenesis) was Aristotle.

With the advent of experimental biology and particularly the enormous progress in cy-
tology in the late 19th century, a new debate arose about self-organization in development.
In the early 20th century, cytologists, such as Theodor Boveri in Germany and Edmund
Wilson in the United States, provided ample experimental evidence for the central role
of the cell nucleus, chromosomes, and genes in development [2]. However, the notion of
a prominent role of the nucleus in development was strongly opposed by experimental
embryologists, in particular the influential school of Hans Spemann in Germany. According
to Spemann, the cytoplasm was the causal agent of development, not the nucleus; develop-
mental steps were connected by a complicated web and determined by cytoplasmic factors
as a kind of self-organized process.

In the 21st century, the debate continued between protagonists of the notion that
regulation by genomic genes is the primary cause for the generation of form in embryonic
development and those who believed that development is largely self-organized and that
it is not genetically determined or regulated. The most prominent representative of the
former view was Eric Davidson, who believed that the analysis of complex, hierarchical,
multigene developmental gene regulatory networks offers an understanding of the precise
spatial and temporal pattern of gene expression of an entire developmental process [3,4].
The latter view is held by embryologists and computational biologists who use modified
reaction–diffusion models to simulate pattern formation in embryogenesis. An example
is the group of Patrick Müller, according to which “embryonic development is a largely
self-organizing process” and who have extended the reaction–diffusion theory to “realistic
multi-component networks” [5].

In this paper, I present and examine (1) pertinent physical–chemical and genome-
based models of pattern formation and morphogenesis in the past and present, with
a special emphasis on Alan Turing’s reaction–diffusion model and its reception in the
community of biologists, and (2) recent attempts to combine physical–chemical models
with models of gene regulation. By showing the insufficiency of purely physical–chemical
models for the explanation of embryological development and often also of organisms’
repetitive patterns, I claim the relevance to models of development of Brenner’s dictum that
“Biological systems are information-processing machines, and this must be an essential part
of any theory we may construct” [6]. I point out Eric Davidson’s successful model of early
embryogenesis based on gene-regulatory network analysis and its further development by
Ellen Rothenberg and James Briscoe, who also address some of the model’s shortcomings,
such as a lack of consideration of tissue mechanics and quantitation.

2. Prominent Models of Self-Organization in Morphogenesis and Their Critics
2.1. D’Arcy Thompson: Mathematical Modeling of Organisms’ Growth and Form

While Mendel’s mathematical modeling of hybridization in plants was one of the
earliest and most fruitful models in the study of heredity and biology in general, British zool-
ogist Wentworth D’Arcy Thompson was one of the early theoreticians of self-organization
based on the laws of mathematics and physics. His major work, On Growth and Form
(1942) [7], has often been commented on, and I review his major theses here only briefly
because of their influence on Alan Turing. Like Mendel, Thompson perceived mathematics
not only as a tool for representation and explanation but as an expression of biological
reality. According to him, “the mathematical definition of a ‘form’ has a quality of precision
which was quite lacking in our earlier stage of mere description”; this brings us “in touch
with Galileo’s aphorism that ‘the Book of Nature is written in characters of Geometry’” [7].
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Similarly, Plato’s primacy of form over matter and Kant’s dictum that the criterion of true
science lay in its relation to mathematics played a major role in Thompson’s reasoning.

In his widely read book, On Growth and Form, first published in 1917 [7], Thompson
combined morphology with simple mathematics and Greek philosophy to find unifying
principles in life’s forms. According to him, the organic form was a diagram of forces
predetermined by the physical organization of the system in which it developed. His
“theory of transformations” aimed at showing how the differences between forms of related
species, in particular fish, could be represented geometrically so that one form could be
transformed into another one with the help of a simple equation. As an anti-materialist,
he rejected theories that attributed specific properties to particles of the protoplasm, such
as chromosomes. In his opinion, such an attribution would mean committing the “error
of attributing to matter what is due to energy and is manifested in force: or more strictly
speaking, of attributing to material particles individually what is due to the energy of
their collocation.” To him, August Weismann’s term of a “hereditary substance” could only
mean “that that particular portion of matter is the essential vehicle of a particular charge or
distribution of energy, in which is involved the capability of producing motion, or of doing
work” [7] (p. 288). Thompson also rejected Darwin’s idea of gradual evolution through
natural selection because, according to the Platonic idea of pure form (idea), mathematical
shapes cannot be transformed through gradations, and organic forms are fashioned by the
direct action of physical force, not by selection.

Thompson emphasized the importance of osmotic models of morphogenesis, for
example, the work by physical chemist Stéphane Leduc, who claimed to have created
artificial life by simulating phenomena such as karyokinesis and organisms’ forms with the
help of osmotic growth processes (ibid., pp. 324, 501). Leduc did not search for a causal
explanation of these phenomena, and he called into question the validity of the generally
accepted cell theory of Remak and Virchow of the 1850s, according to which cells arise only
through the division of existing cells [8].

Thompson’s view contradicted the convictions of prominent biologists at the time
who had begun to examine the specificity of basic life processes and organisms’ ability to
regulate them. Examples are Jacques Loeb, according to whom the artificial creation of life
was not only a physical process but had to involve the synthesis of specific molecules, in
particular, self-replicating DNA (at the time referred to as nuclein) [9], and Hans Driesch,
who held that these osmotic patterns and shapes lack the reproducible specificity of organic
forms and the capacity to self-regulate [10].

Thompson’s book has been widely admired and praised by a number of renowned
scientists, but it had little direct scientific impact on research and never contributed to main-
stream experimental biology at any time. However, there is a recently renewed appreciation
for the mathematical and physical approaches of Thompson and his predecessors, such as
Wilhelm His: morphologists have begun to combine the old, largely metaphoric approach
of Thompson and others with insights from molecular biology, such as gene regulation and
signaling molecules [11]. Molecular embryologists James Briscoe and Anna Kicheva [12]
believe that Thompson’s notion “that physical laws constrain biological systems has far
reaching consequences”. Thompson’s book inspired many mathematicians and theoretical
biologists to mathematically simulate pattern formation, and it pointed to the insufficiency
of neo-Darwinian evolutionary theory, inspiring Stephen J. Gould’s criticism of gradualism
and adaptationism [13,14]. However, Briscoe’s and Kicheva’s reminder that mathematical
constructions “do not in themselves provide a causal explanation for biological form. This
requires molecular, genetic, or mechanical insight into the processes”, is relevant not only
to D’Arcy Thompson’s models but also to all subsequent models of morphogenesis.

2.2. Alan Turing’s Mathematical-Chemical Model of Self-Organization in Morphogenesis and
Its Reception

The paper “The Chemical Basis of Morphogenesis” by mathematician and computer
scientist Alan Turing [1] has played a central role in the discussion about self-organization
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in morphogenesis. This paper has been more frequently cited than the rest of his work
taken together [15], though, interestingly, a citation analysis in the Web of Knowledge
shows that a noteworthy increase in the number of citations per year only occurred in
the early 2000s (see Section 3). It has recently inspired embryologists and computational
biologists to generate models of pattern formation in development. As Peter Saunders [15]
has pointed out, the title of the paper and the term “morphogen”—form producer—are not
quite correct because the paper mostly dealt with the formation of patterns, not form.

In the introduction to his paper, Turing [1] suggested “that a system of chemical
substances, called morphogens, reacting together and diffusing through a tissue, is adequate
to account for the main phenomena of morphogenesis”. His emphasis that “the theory
does not make any new hypotheses; it merely suggests that certain well-known physical
laws are sufficient to account for many of the facts”, indicates the influence Turing received
from D’Arcy Thompson.

Turing aimed to demonstrate that patterns can be created spontaneously in an orig-
inally homogeneous cell. To explain how this can happen, that is, how spatial patterns
in an egg can form autonomously, he introduced reaction–diffusion equations into the
modeling of development. He succeeded in showing mathematically that in a system of
two or more diffusing reagents, a pattern of high and low concentrations can spontaneously
emerge from an initially uniform distribution [1]. The idea was that two homogeneously
distributed substances within a certain space, one “locally activated” and the other ca-
pable of “long-range inhibition”, can produce novel shapes and gradients. The results
of these substance interactions are dependent on just four variables per substance—the
rate of production, the rate of degradation, the rate of diffusion, and the strength of their
activating/inhibiting interactions.

Turing began to work on morphogenesis in the context of his work on the design
of thinking machines, which raised his curiosity about the design of brain development.
According to his biographer Alan Hodges [16] (pp. 541–542, cited in [17] p. 89), “There
were two possibilities: either a brain learnt to think by dint of interaction with the world,
or else it had something written in it at birth—which must be programmed, in a looser
sense, by the genes. Brains were too complicated to consider at first. But how did anything
know how to grow? There lay the question”. Turing became fascinated with embryology,
the taking shape of an animal from the sphere of a cell, and the fact that, as he believed,
nobody had thought about what determined this growth (ibid.).

Another reason for Turing to become interested in biology was his desire to “defeat
the argument from design” as proof of the existence of God. This argument was still
widespread, although Darwin’s materialistic theory of evolution was widely accepted at
the time [15]. Therefore, Turing followed Thompson, who had urged biologists to attempt
to explain forms in the same way physicists do, namely by reference to mechanical forces
(ibid.), though, unlike Thompson, Turing focused on the generation of patterns, not of forms.
It is surprising—and has been noticed by many commentators—that Turing approached
the task he set himself mostly on his own, without consulting colleagues from biology or
taking notice of what other modelers in biology did. There are only very few references
in his paper; they include Thompson’s On Growth and Form. According to Saunders [15],
this reflected Turing’s way of working, i.e., to determine what was important and not to be
diverted from his view by what others did.

This attitude may, in part, explain the contradictions in the paper’s premises and
the grave shortcomings regarding the state of the art in biological research. Turing’s
“mathematical model of the growing embryo” was indeed, as intended, simple and elegant.
However, to consider the embryo as a state function and eliminate growth is in direct
contradiction to his stated goal. While diffusion and osmotic pressures are widely dealt
with, the “chemical reactions” are not related to any particular type of molecules or their
specificities, though at the time, biological specificity was largely related to proteins. Most
importantly, the concepts of gene and cell were unclear, and the “genes as enzymes” theory
that Turing advocated was long obsolete. In Turing’s words: the genes may “be considered
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to be morphogens”; “it would be more accurate (...) to regard them as radicals of the giant
molecules known as chromosomes; . . . the function of genes is presumed to be purely
catalytic. They catalyze the production of other morphogens, which in turn may only be
catalysts” [1].

The gene-as-enzyme hypothesis that was proposed by Richard Goldschmidt in 1927
soon proved to be untenable for various reasons [18]. Since the 1930s, several developmental
geneticists have studied the cooperation of genes and their biochemical effects. In 1941,
based on X-ray studies of mutants in the mold Neurospora, the American geneticists
George Beadle and Edward Tatum found that each gene governed the production of one
specific enzyme—the “one gene-one enzyme” concept. This means that the characteristic
function of the gene was to supervise the formation of a particular enzyme. The authors
determined that all biochemical reactions in an organism were controlled by specific genes,
work for which they shared, with Joshua Lederberg, the 1958 Nobel Prize in Physiology and
Medicine. Apart from overlooking this important advance in the chemistry of development,
Turing disregarded the fact that the assumption of enzymes catalyzing the production of
other enzymes (catalysts), etc., would lead to an infinite regress, an observation which,
a few years later, led Francis Crick to conclude that the synthesis of enzymes must be
radically different from the synthesis of other molecules and that the existence of a template
seemed the only logical solution to this dilemma [19].

This disregard for biological knowledge and logic supports Evelyn Fox Keller’s as-
sessment that Turing was more interested in “mathematical fruitfulness and accessibility”
than in the correspondence of his hypothetical reactions to real reactions in the cell [17].
Biologists, on the other hand, were not interested in whether the interactions could build
patterns the way Turing suggested but whether they really do. Additionally, for a long
period of time, there was no evidence of it. For this reason, the model was hardly cited by
biologists for decades (a detailed historical analysis of Turing’s model is in [17]. One of the
few biologists interested in the model was Conrad Waddington, but he, too, in a letter to Tur-
ing in 1952, raised “several concerns about the applicability of Turing’s reaction-diffusion
model to biological developmental systems, questioning its limitation to reproduce some
observed behaviors in embryonic development such as pattern scaling with tissue size
or the generation of a spatial pattern of discrete cell types” [20]. Waddington believed
that the model might apply to the formation of patterns such as spots and stripes but
not to morphogenesis.

In the 1970s, Ilya Prigogine and his school of the irreversible thermodynamics of
complex systems made the model popular for some time. The number of reaction–diffusion
studies increased, particularly pattern formation in butterfly wings and animal coats.
Scientists applied updated versions of Turing’s model and other mathematical models to
simulate pattern formation in a variety of different animal systems, such as the generation
of periodic seashell patterns and body segmentation in Drosophila. These early studies of
pattern formation, for example, the work by Hans Meinhardt and Alfred Gierer, have been
described and analyzed in detail by Siegfried Roth [10].

However, for a variety of reasons, many of these simulation models did not reflect real-
ity. One of the reasons is that, like Turing, their authors disregarded genes not only as causal
factors for morphogenesis and development as a whole but also for many biochemical
pathways for pattern formation. They disregarded the fact that the unfertilized egg, as was
shown by Christiane Nüsslein-Volhard, was not a homogeneous sphere but rather a highly
organized structure containing, among other things, a spatial pattern of information carry-
ing mRNA and proteins [17] (p. 111). Additionally, many of these models also disregarded
the difference between pattern formation and the complex processes of embryogenesis,
a problem that, as Francis Crick remembered, may have been perceived even by Turing
himself: At a meeting on mathematical models of development in 1972, Crick, one of
the skeptics regarding the validity of Turing’s model for development, quoted Turing’s
remark about the zebra: “Well, the stripes are easy but what about the horse part?” [21].
Pattern formation can be modeled elegantly and relatively simply, but morphogenesis and
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development would require modeling of the zebra itself, its body architecture, organs, etc.,
in a very complex way that would also have to take into consideration developmental
constancy and evolution.

Evolutionary developmental biologist Michael Akam, who has studied the generation
of the repeating stripes along the antero–posterior axis of Drosophila for many years, in
1989, wrote a widely discussed paper with the title “Making Stripes Inelegantly” [22], in
which he discussed two possible ways of generating the exact periodicity of the stripes:
An “elegant mechanism” that was favored by model builders such as Meinhardt [23] or
Lacalli et al. [24], and that would “use an intrinsically periodic pattern-generating system,
comprising the pair-rule genes [a class of segmentation genes] and their products.” It
only needed to be triggered by local stimuli from the gap genes that control the early
cascade of the segmentation pathway. The alternative was that “unique instructions could
be generated by the gap-gene proteins to define the position of each pair-rule stripe”.
His analysis of the interaction between the different kinds of genes (gap and pair-rule
genes) showed that the less elegant “specific instruction” process was more likely to
take place in the organism and that “the apparent simplicity of the repeating segment
pattern” was deceptive. He concluded that spontaneous pattern-generating mechanisms
might contribute to “sharpen the boundaries between stripes” but that they do not define
periodicity.

Akam’s paper [22] has been continuously cited since its publication, with a significantly
higher average number of citations since 2005 (Figure 1). Most of the citing papers appeared
in journals of developmental biology and computational biology and, more recently, also
in physical and mathematical journals.
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Among the citing authors are J. Sharpe and A. Economou (whose work is briefly
presented in Section 3). More than 30 years later, Akam and his collaborators proposed
a new mechanism for the segmentation of Drosophila and other arthropods, in which
conserved gene regulatory networks play decisive roles, concluding that “over the past
four decades, arthropod segmentation has contributed enormously to our understanding
of developmental gene networks and their evolution” [25].

The strongest critic of mathematical simulation models that are not based on experi-
mental perturbation was Eric Davidson. According to him, “one of the worst fallacies [in
the field of modeling in biology] is the assumption that if you can make a model, which
simulates a process, then the model must represent how it works. The great example is
Meinhardt’s explanation of Drosophila stripes in terms of reaction-diffusion equations. He

9



Entropy 2023, 25, 873

explained it perfectly, except it doesn’t happen to be how it works. [...] And what showed
us how it works, of course, was taking the DNA out and experimentally finding out how
it works” [26]. Davidson’s successful attempt to causally explain the molecular events of
early development in sea urchins with the help of his theory of gene regulatory networks
and to generate a Boolean model for it is briefly discussed in Section 4.

3. The Recent Revival of Turing’s Theory of Morphogenesis and Other Theories of
Self-Organization in Biology; Merging with Genomic Models

Taken alone, methods based on Turing’s model and updated reaction–diffusion models
by others so far have been unable to explain the complex developmental program that
is brought about by multiple genetic and molecular pathways; they even cannot account
for many of the simpler patterns, such as stripes. However, according to Marcon and
Sharpe [27], Turing-type reaction–diffusion models and other models of self-organization
have recently started to be taken more seriously and applied to a variety of patterning
processes by biologists and not only by mathematicians.

Citation analysis in the Web of Science shows that the number of citations of Turing’s
paper has drastically increased after 2000, especially since 2020 (Figure 2). Of the 214 citing
papers since 2020, ca. 62 covered biological topics. Thirty-four of them dealt with topics of
pattern formation and morphogenesis, several of them including gene regulatory networks
in the title, and twenty-eight papers dealt with other biological topics, such as ecology,
evolution, and neural networks.
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Multi-component Turing networks that do not require differential diffusivity have been
proposed by Patrick Müller and his group; the authors believe that embryonic development
is largely a self-organizing process [5]. Most of their simulation models have not been
experimentally tested.

Self-organization has also been argued to be responsible for symmetry breaking (i.e.,
the acquisition of asymmetry along an axis) in the early mammalian embryo [28]. The
authors hold that symmetry can be broken through stochastic variations in the cytoskele-
ton structure, but they perceive a difference between experiments conducted in vivo and
in vitro. In in vivo studies, it is maternal and/or extraembryonic tissues that are instrumen-
tal in the establishment of an anterior–posterior axis through asymmetric signaling activity,
whereas, in studies using in vitro cultures of blastocysts or stem cell aggregates, this does
not seem to be necessary for symmetry breaking. According to Stas Shvartsman [29],
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genomic controls guide the self-organizing processes, selecting specific outcomes from
many different possibilities.

Eric Karsenti [30] believes that the whole cell cycle in eukaryotes “can be seen as
being based on the principle of self-organization by reaction-diffusion, both temporally
and spatially. But he made it clear that though microtubule patterns appear self-organized,
mutated cells (in the Ser-Thr protein kinase Orb6) have a different shape and microtubules
cannot organize in long bundles. This means that genes are required for the self-organizing
process. He also thinks it important to realize that none of these processes are true Turing
patterns”, because “the symmetry is not broken by spontaneous instabilities, but rather by
deterministic effects”, such as cyclin synthesis for the oscillator and stereospecific targeting
of a small G-protein exchange factor to chromatin for nuclear and spindle assembly.

Tom Misteli [31] views the genome as a self-organizing system because this perception
makes it possible to understand the conflicting aspects of genome organization, namely the
stability of the transcriptional program of a given cell on the one hand and the dynamic
and stochastic nature of gene expression on the other. According to Misteli, the available
data support the notion that the major features of higher-order genome architecture are
emergent properties in a self-organizing system that is driven by the functional status of
the genome. He defines self-organization as “the inherent tendency for systems to form
coherent patterns solely based on the dynamic interaction of its components,” in the case of
the genome, “the physical interactions of proteins with chromatin and of chromatin with
chromatin” [32].

Misteli is of the opinion that “the architectural properties of the genome are driven by
the sum of activities [such as gene activity] that occur along the genome”, most of which are
affected by DNA sequence. According to him, “the DNA sequence is a major contributor
to determining these activities”, although “most DNA-binding proteins bind far more
promiscuously than we have previously thought”. He believes that chromatin remodeling
complexes promiscuously bind to chromatin and remodel it. The DNA sequence-specific
proteins are important during the short period of time in which chromatin is open. All
of this suggests that the term self-organization in Misteli’s definition only applies to the
genome after the activities along the genome have already been established, most of them
by DNA sequence-specific events. From this, it can be concluded that: the genome is self-
organized this self-organization is mainly based on previous DNA sequence-specific events.

Perspectives on the promiscuity of DNA binding proteins and remodeling events
differ among different researchers. According to James Briscoe [33], promiscuity in the
binding of chromatin remodeling complexes exists, but the modifying factors are guided by
transcription factors and other regulatory factors that are specific to a DNA sequence. As
an example, he mentioned that the starting point of polycomb group regulatory proteins is
determined by DNA sequence [34].

Ellen Rothenberg thinks that the difference between sequence-specific transcription
factors and chromatin remodeling factors is that the sequence-specific factors require
interaction with some more-or-less specific DNA sequence in order to bind, whereas the
chromatin remodelers and modifiers do not. She points to the highly complex nature of
the binding of the factors: “For each transcription factor, there is still a range of variants
of the preferred DNA sequence that are bound with different strengths. So, while all of
these sequences (“motifs”) are non-random and statistically far different from background
DNA, they are not equivalently good targets for the transcription factor’s binding and can
be bound conditionally, for example, better if the chromatin is open than when it is closed”
so that the binding is not 100% certain [35] (see also Section 4).

Some recent research has begun to study various cases of pattern formation in animals
by combining reaction–diffusion models or other physical–chemical mechanisms with
genome-based mechanisms. Examples are Sharpe et al.’s [36] work on the control of
digit patterning by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients
and Economou et al.’s [37] perturbation analysis of a Turing-like reaction–diffusion stripe
patterning system. Sharpe et al. showed how digit patterning appears to be controlled
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by a Turing network implemented by gene products. The problem with this study is that
though the findings are based on experimental data, some assumptions are speculative,
derived from purely mathematical reasoning [38].

The perturbation analysis of a Turing-like reaction–diffusion stripe patterning system—of
ridges in the mammalian palate—and the regulatory interactions involved in this process
by Economou et al. is another attempt to integrate physical and genomic models. The study
shows the cooperation of growth factor ligand proteins, their receptors, genes, and other
factors, and it also reveals still existing discrepancies between the results of mathematical
modeling and biological reality: the patterning of the palate uses five pathways in the
organism, though only two would be required by mathematical modeling. Moreover, to
my knowledge, none of these models or other mathematical models have addressed the
questions of how models can account for the species specificity of the patterns and their
stability in geological time.

Some authors attempt to establish a connection between the metaphor of “epigenetic
landscape” that embryologist Conrad Waddington proposed in 1940 and physicists’ notion
of an “epigenetic state”, a system-level stable state that arises from the interactions of genes
as Waddington had envisioned. They regard Waddington’s vision as a major contribution
to the current convergence of molecular and physico-chemical approaches [39,40].

In their review of recent large-scale mathematical analyses of Turing patterns in biology
that have attempted to narrow down potential design principles, Sean T. Vittadello et al. [41]
showed that despite progress in many areas, the original problems related to the use of
Turing models in the context of biology have not yet been fully resolved. One of them
was the contradiction between “the beauty of mathematical models” and “the ugly truth
of reality”. They discuss an aspect of model development in biology that they consider
essential for confronting this problem, namely “the extent to which the assumptions
underlying our models are robust and in line with what we see in nature”, describing the
“caveats that need to be considered in designing a synthetic Turing-patterning mechanism
that is viable in vivo”.

4. Models Based on the Concept of Genomic Causality in Development
4.1. Eric Davidson’s Model of a Complex Developmental Regulatory Gene Network (GRN)

The most successful model of the description and causal explanation of the early
development of a complex organism, the sea urchin, is Eric Davidson’s model of devel-
opmental gene regulatory networks (GRNs). Based on decades-long molecular biological
research into how cell-type specific gene expression patterns appeared, Davidson adopted
a systems approach that included almost all regulatory genes as soon as DNA sequencing
was available [42]. However, “experimental perturbation and predictive challenge of the
system” remained essential to reveal the underlying causal mechanisms [43].

Davidson created the concept of developmental GRNs in the early 2000s. Basic
knowledge of genetic regulation in the development of higher organisms had already been
obtained from Drosophila by Christiane Nüsslein-Volhard and Eric Wieschaus, who also
demonstrated the hierarchy of maternal genes in the embryo that played an important
role in Davidson’s GRN. The early models of the temporal dynamics of already known
gene networks in development included only a few genes [17] (pp. 250–251). Davidson
was the first to achieve an almost complete model of a regulatory gene network for the
development of a particular phenotype (endomesoderm specification) and to construct a
mathematical model to account for observation in a complex biological object. Using big
sequencing and expression data, he made a large quantitative step from a few regulatory
genes to networks of hundreds of genes.

These developmental GRNs contain, as crucial elements, specific cis-regulatory mod-
ules (DNA regions binding the transcriptional machinery in the vicinity of the genes they
regulate) that direct the expression of developmental transcription factors and signaling
molecules. Cis-regulatory modules are causality-inferred regulatory regions of genes that
are identified experimentally [44].
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A world leader in molecular embryology, Davidson demonstrated that, at least in
sea urchins, early development is entirely regulated by the genome. This was, to him, a
logical necessity and requirement for evolution because without such a genomic regulatory
program, it cannot be ensured that within each species, the outcome of development
is extremely reproducible. Davidson’s and his collaborators’ attempts to explain gene
regulation in development beyond the study of individual genes started in 1969 [45]. It not
only led to the experimental construction of hierarchical GRNs for development and later
to their mathematical modeling but also to the proposition that changes in the architecture
of GRNs through changes in genomic sequences may be the engine of evolutionary changes
in animal body architectures and other major characteristics.

Davidson was one of only a few scholars who, together with Douglas Erwin, not only
proposed hypotheses for a causal mechanistic explanation of evolutionary change but also
of evolutionary stasis based on the stability of developmental outcomes [46]. The extreme
conservation of certain morphological features over immense geological periods gave
rise to the question of how these parts of the GRN structure could be stabilized through
deep time, questions that found a partial answer in the organizational hierarchy of these
structures—the effect of changes differs fundamentally according to where in the network
they occur. Small changes continuously occur at the periphery of networks, where effector
genes code for proteins, while stasis of network patterning can be found in other parts.

Early on, Davidson joined forces with physicists and computer scientists to integrate
computer-generated big data into a systems approach that was based on experiments and
aimed at elucidating mechanisms and causal relationships. In 2006, he introduced the
term “regulatory genome” for the interactions between regulatory genes and their products
during development [3]. This concept was conceived and developed through decades-long,
painstaking experimental research by Davidson and his collaborators. They systemati-
cally examined the cell-type-specific gene expression patterns before moving on from the
“gene-by-gene characterization of the sea urchin embryo to full comprehensiveness” [42].
This systems approach was made possible when sequencing data of the whole sea urchin
genome became available. Observations and descriptions were crucial as a starting point.
A perturbation analysis was essential because “only by deliberate experimental perturba-
tion and predictive challenge of the system can the mechanisms by which it operates be
revealed” [43].

Davidson’s first mathematical models in the 1990s not only contained logic functions
(AND, OR, NOT) between the input of different regulatory proteins (transcription factors)
but also assumed that they were quantitatively modulated; thus, he and his collaborators
created systems of differential equations with continuously variable inputs and outputs [47]
(see the overview by Ellen Rothenberg [42]). However, because the key rate constants and
concentrations needed to render these models predictive did not exist, Davidson envisaged
that a Boolean model, in which the status of each gene is assumed to be either “on” or “off”,
might be sufficient as a predictive systems model of development. Together with Isabelle
Peter, Davidson converted the whole GRN system into a Boolean model, a “grueling effort
lasting many months of concentrated work” [4] (p. 309). This model contained all current
data for the logic of transcriptional inputs at each gene (cis-regulatory) system and for the
location of each cell at each time point of development [48].

The first results of the Boolean modeling showed that there were only a few incon-
sistencies between model predictions and measured in vivo gene expression. This meant
not only that the key regulatory elements of the GRN and their interactions were almost
complete but also that other factors, such as changes in chromatin structure, did not appear
to be relevant at this early developmental stage. The model was based on experiments that
proposed linkages based on perturbations, not only correlations. It provided a means for
experimentally testing the relevance and consistency of the GRN concept, thus fundamen-
tally contrasting with models that merely simulated phenomenological features without
analyzing their mechanisms and causes.
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Davidson’s GRN model underlines the relevance of three principles that are relevant
for the explanation of complex biological systems, namely, informational hierarchy, genomic
causality, and biological specificity (see [49]).

4.2. Assessments and Further Developments of Davidson’s Developmental GRN Model

Davidson’s developmental GRN model has been successfully used to explain as-
pects of development in a wide range of different organisms. Like any other model, it
has been challenged by new research and is being transformed accordingly. Thus, the
original proposal of deep evolutionary conservation of network kernels does not seem
to be maintainable—as Douglas Erwin [50] has shown, there is an extensive rewiring of
GRN sub-circuits. Despite these changes in the original network concept, the ideas of the
central role of GRNs for embryological development and developmental constancy, their
hierarchical organization, at least concerning genetic information, and the causal role of
genes, have been confirmed in numerous different studies and have remained fruitful.

Ellen Rothenberg emphasized the general importance that Davidson’s and his collabo-
rators’ work on developmental GRNs has had for many different systems. According to her,
it is now widely recognized that GRN analysis is a major step to advancing from a descrip-
tive to a mechanistic understanding of biological systems [51], and she showed how much
researchers in her own field, hematopoiesis, have benefitted from the pioneering work of
Davidson on network control in sea urchins. At the same time, she points to differences be-
tween the network models for nonvertebrate embryogenesis and for hematopoietic systems
in mammals, particularly regarding dose dependence and timing: in contrast to a rapidly
unfolding cascade of transcriptional change guided by transcription factors (TFs) in em-
bryological development, the development of lymphocytes from stem cells in mammals is
slow, cell fate choices have a strong stochastic component, and timing is highly variable [52].
Another difference is that though TFs that read regulatory sequences in the genome to initi-
ate changes in the expression of specific genes in development as well as in physiological
processes, their actions in the latter are constrained by slow-changing chromatin states and
by interactions with other TFs. She uses the development of T lymphocytes to show how
binding specificity and dynamics, TF cooperativity, and chromatin state changes impact the
regulatory functions of key TFs (ibid). An example is Runx transcription factors. They are
always binding specific Runx motifs but choose a different ~10,000 sites out of the possible
~1 million to bind in early T cells than the ones they choose in B cells, stem cells, or even
in later T cells [53]. This shows that though this binding is not promiscuous, it is also not
predictively deterministic. The action of the Runx factors depends on the different contexts
at different DNA sites, such as other regulatory proteins in different pathways [54]. There
are also cell type-specific factors that affect the modification of the site choice within the
constraints of the sequence motif-specific binding, an area that is currently being explored.

Rothenberg also broadened the view on the role of TFs in developmental processes.
They not only bind to regulatory sequences, but certain TFs in the T cell specification
network model also play an important role in opening chromatin, displacing nucleosomes,
and initiating activating histone modifications [55]. She thus echoes the view that was
already brought forward by Gary Felsenfeld [56] that histone modification is preceded by a
DNA sequence-specific event. Closely examining the collaboration of TFs in their system,
Shin and Rothenberg [57] show how “transcription factors collaborate to initiate, stabilize,
synergize, oppose, or silence gene expression programs”.

James Briscoe considers the theory of GRN by Davidson and colleagues to be a
logical and formal framework in which to describe the transcriptional programs that
have to be activated at the right time and place during development, programs that are
encoded in the genome. Because the functional output of a developmental GRN is the
“organized expression of genes”, the “analysis of the architecture and dynamics of these
networks offers an understanding and a rationale for the precise spatial and temporal
pattern of expression of the thousands of genes necessary for tissue patterning” [33].
Referring to the example of Davidson’s “rigorous and comprehensive dissection of sea
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urchin endomesoderm development”, he concluded that this work illustrates the “potential
of the GRN approach to provide a mechanistic and causal explanation to a complex set
of gene regulatory events controlling development cell fate specification” (ibid.). He
also points to the importance of GRNs that have been reconstructed from other species
and tissues.

Briscoe also demonstrated some limitations of the GRN approach, in particular, its lack
of quantitation and its emphasis on structure and topology, that is, connections between
genes and transcription factors. According to him, this “underplays the dynamics and
quantitative aspects of a system, which is crucial when feedback and nonlinearity are
involved” [33]. Briscoe made it clear that Davidson, in his last years, became increasingly
interested in getting these quantitative data, and he is of the opinion that advances in
experimental techniques now make it possible to collect and analyze more high-resolution
and quantitative data [34]. Briscoe believes that the combination of GRN analysis and
dynamic systems approaches also serves to overcome some of the limitations of the GRN
approach. According to him, dynamic systems and complexity theory help explain and
predict behavior that is not easy to understand otherwise, such as sudden changes in behav-
ior in a deterministic dynamical system, known as bifurcation. Briscoe uses a framework
based on Catastrophe theory in order to generate quantitative geometric models of cell
differentiation [58].Dynamic systems theory is used as a framework to describe specific
developmental mechanisms, define simplifying abstractions, and explain principles. Thus,
the interactions within the GRN serve as an example of multilevel behavior that explains
how tissue patterns of gene expression arise from the molecular interactions of transcription
factors in individual cells [33]. However, many questions still remain open, such as how
stochastic fluctuations that are inherent to gene regulation affect performance and are
propagated through a gene regulatory network or the role of cell and tissue mechanics in
pattern formation.

5. Conclusions

Until now, updated Turing models by themselves do not appear to be able to explain
either robust morphogenesis or pattern generation in development. A combination of
theoretical and experimental approaches and the integration of gene products into models
of self-organization or other mathematical models appears most promising for a causal
explanation of morphogenesis and pattern formation in organisms. In many cases, however,
empirical confirmation is still missing, and the old problem of the discrepancy between
model prediction and biological reality has not been solved in most cases. The models
usually disregard the effect of evolution and do not address longstanding developmental
and species stability. The GRN approach based on a complex set of gene regulatory
events has proved most successful in controlling developmental cell fate specification and
in providing an explanation for developmental constancy and evolutionary change and
stability. However, it also has some limitations, such as its focus on gene regulation and
disregard of cell tissue mechanics in morphogenesis [33].

The metaphor of “genetic program” as a molecular genetic concept was introduced
by Francois Jacob and Jacques Monod in the context of their work on gene regulation in
bacteria [59]. Despite the fact that the analogy to a computer program, which this term
may suggest, has been strongly criticized, in particular by historians and philosophers of
science, the metaphor has remained influential in biology as a succession of steps, not the
equivalent of a computer program [60]. Some years later, Jacob [61] used the metaphor to
suggest a modern vision of development that combines the ancient idea of preformation,
which for him was the genetic program, and epigenesis that he understood, for example,
as feedback regulation of enzyme activities. We may extend this view of epigenesis by
including other events that are not directly controlled by the genome, such as the mechanics
of cells, adhesion processes between molecules, and geometric constraints of development.

In 2016, Eric Davidson took a similar philosophical stand when he distinguished
between two types of experimentally supported causal explanations in his field, animal
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developmental biology and also in the evolutionary biology of the animal body plan. He
described them as “rooted” and “unrooted” explanations. In his words, “rooted causal
explanation provides logical links to and from the genomic regulatory code, extending
right into the genomic sequences that control regulatory gene expression”; “Unrooted
explanations” are those “in which the only causality is to be located within a process
considered, for example within a synthesis pathway (without reference to why the enzymes
are expressed where they are in the first place), or within a signaling event (without
reference to why the signal is expressed in the sending cells, or what it does to gene
activation in the receiving cells)” [43]. The many cases of the spontaneous emergence of
patterns or forms in biology that seem to be driven by physical or chemical forces and
that are therefore labeled self-organized are good candidates for other examples of Jacob’s
“epigenesis” and Davidson’s “unrooted explanations”. The concept of self-organization
in development as modern epigenesis seems to be most fruitful when it is included in the
frame of genomic causality, and models of genomic causality have to integrate physical–
chemical models to be complete.
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Abstract: Considering both biological and non-biological polygonal shape organizations, in this
paper we introduce a quantitative method which is able to determine informational entropy as
spatial differences between heterogeneity of internal areas from simulation and experimental sam-
ples. According to these data (i.e., heterogeneity), we are able to establish levels of informational
entropy using statistical insights of spatial orders using discrete and continuous values. Given a
particular state of entropy, we establish levels of information as a novel approach which can unveil
general principles of biological organization. Thirty-five geometric aggregates are tested (biological,
non-biological, and polygonal simulations) in order to obtain the theoretical and experimental results
of their spatial heterogeneity. Geometrical aggregates (meshes) include a spectrum of organizations
ranging from cell meshes to ecological patterns. Experimental results for discrete entropy using a
bin width of 0.5 show that a particular range of informational entropy (0.08 to 0.27 bits) is intrin-
sically associated with low rates of heterogeneity, which indicates a high degree of uncertainty in
finding non-homogeneous configurations. In contrast, differential entropy (continuous) results reflect
negative entropy within a particular range (−0.4 to −0.9) for all bin widths. We conclude that the
differential entropy of geometrical organizations is an important source of neglected information in
biological systems.

Keywords: differential entropy; discrete entropy; geometrical information; heterogeneity;
information theory

1. Introduction

In the context of shapes and forms in biology, there has been an historical effort to
find the source of some patterns and the fundamental nature of their seemingly steady
basic arrangement. Traditionally, the bottom-up logic of biological developed structures
as dynamical time-space expression processes has been extensively approached either by
Neo-Darwinism (e.g., genetic blueprint or functional viewpoints) or by biological struc-
turalism (e.g., fractal biologic patterns from chaos theory). In fact, these approaches are
supported by epistemological conceptions defining traditions of research work, such as
positioning whole organisms as being made of atomic and separate parts (i.e., systematics)
or the holistic dynamical system approach of the structuralist point of view (e.g., Turing
patterns). In contrast, our perspective employs Shannon entropy to understand biological
organizations as a geometric whole whose configurations defining their steady state result
from an inherent and specific level of information. One important example of steady states
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is derived from a prevailing and well stereotyped distribution of cellular polygons in
metazoans tissues (epithelium). The question concerning whether patterns and shapes
are an active source of geometrical information, stability, and variability during develop-
mental processes and evolution represents an intriguing issue that requires further study.
Although that “geometrical information” sounds very similar to the interdisciplinary field
of Information geometry is important to say that they are different approaches with some
important convergences that will be treated briefly at discussion.

In this work, the geometric properties of individual discrete elements in forms are
not simple intrinsic features biologically exposed as outcomes. Instead, we understand
them as both independent spaces in a larger whole and as units defining interacting
properties inside of a larger whole of geometric information. In this line of reasoning,
our main methodological question about shapes arises: Is there a way to quantify ge-
ometrical order in biological organizations using levels of information? This question
has been tackled from other perspectives. There is an important amount of work related
to quantifying information at different complexity levels in biological networks [1–4],
ecosystems [5–9], molecular entropy [10], and cellular entropy [11], to name a few ap-
proaches. Furthermore, the characterization of ecological landscape heterogeneity (e.g.,
urban, sociological, and economical properties at multiple scales associated with them)
have been approached [12–14] using spatial entropy and complexity tools. However, in
the context of pure biology, the underlying informational order behind the geometry of
general biological organizations is still not quite clear. However, there are some intu-
itions regarding quantitative values for biology and architecture [15]. Nevertheless, the
limits defining quantitative parameters of order according to entropy, as a generic value
for biological organizations, is still an issue which has yet to be solved. We maintain
that an important aspect of our research is the selection of a set of biological forms to
work on.

The core idea of measuring spatial heterogeneity to determine the geometrical en-
tropy of a particular biological form is derived from a previous analysis of geometrical
constrictions in five-fold morphologies (polygonal random disc organizations) [16]. In
that work, it was found that spatial organization of five-fold morphologies is statistically
lower than all other planar disc organizations (three to ten-fold morphologies) in terms of
spatial heterogeneity (unequal distribution of space inside polygons). In fact, the authors
found a statistical basis corresponding to the most frequent morphologies in biological disc
organizations (three, four, five, and six disk partitions are typically found in flowers, fruits,
and other biological organizations) [16]. While we found a statistical value to approach the
key idea of low heterogeneity for related morphologies in nature, the authors were unable
to capture quantitatively the geometrical limits of biological organizations within a formal
framework of reference.

Much work has been carried out regarding the larger geometrical context of cells
and the physical causalities of interactions into cell aggregates using meshes [17–23],
which notably enforces our background. This work derives from physical parameters
and describes geometrical properties while not strictly determining levels of geometric
information. The characterization of ‘self-assembled 2D patterns with Voronoi entropy’
represents a certain approach for achieving geometry as a source of organization, employing
levels of spatial heterogeneity at different scales [24,25]. However, the main results of this
kind of work provide some insight about entropy in the context of matter organization
and ecological dynamics, even stirring research on material sciences and cellular aspects
(including topics such as the informational limits of generic order in biology). Living
systems show an important reduction of entropy, reaching very low values along self-
organization as an ostensibly consistent rule [1,3,6,10,13,16,24–28]. Such behavior has been
associated with biological and physical constraints [29,30], with some proposals linking it to
pure geometry [26–28,31,32]. The hypothesis we will try to verify in this work is as follows:
the more self-organized a system, the less entropic is its behavior. Hence, we expect that this
information is related with the ordering of geometric parts throughout biological structures.

20



Entropy 2022, 24, 1390

Accordingly, Shannon entropy shall indicate the amount of information considered (besides
being a proxy of geometrical heterogeneity). In addition, Shannon entropy is the average
of a variable’s uncertainty that reflects how much information is associated with the
probability of a given event. In this paper, we propose that its range [i.e., heterogeneity,
non-heterogeneity] can be translated into bits of information between 0 and 1.

The set of organizations that we choose is based on looking for strictly biological sam-
ples made of polygons at two size levels (cellular and ecological), simulations of biological
samples, and experimental controls (random simulations and poisson tessellations). The
main idea was to generate a proper collection of biological samples to detect particular
levels of informational entropy using the unique simplicity of polygons as a general feature
for a data source. Those polygons have levels of heterogeneity which will be our source of
data used to establish levels of entropy in order to identify biological particularities.

To develop this idea, this paper is organized as follows. First, there is an exposition
of the collecting method and features and categorization of biological images samples
and non-biological mesh simulations in Section 2. These data will define the material to
work on besides random polygons with different numbers of sides (Appendix A). The
mathematical framework and the statistical motivation to work on these polygons and
the main background used to define heterogeneity in spatial organization of polygonal
shapes and meshes are given in the ‘Methods’ section. The procedure used to measure the
quantity of information in geometrical meshes of biological and non-biological systems
using Shannon entropy and the associated statistical distributions of internal partitioning
in shapes is shown in Section 3. Finally, Sections 4 and 5 correspond to discussion and
conclusions, respectively.

2. Materials and Methods
2.1. Materials

The outline of an area or figure is a shape that can be a determined configuration of
discrete elements, which sometimes can be understood as a population of geometric parts
which serve as constitutive elements. Our approach here is to determine levels of geo-
metric information using Shannon entropy as the main theoretical framework. Therefore,
informational entropy would allow for the quantification of order and disorder levels from
discrete and continuous geometric variables. Continuous approaches which are able to
characterize chemical, physical, and biological patterns, based on the continuous measure
of symmetry, were introduced [33–38]. Suitably, the first focus of our research is on extract
basic discrete and continuous geometric principles of polygons immersed into larger whole
organizations (called polygonally shaped patterns, or PSP) in order to standardize levels of
biological information given several amounts of heterogeneity (i.e., unequal distribution of
space inside a given area). Rather than just looking at polygons and their aggregates as
mathematical outcomes derived from computing simulations, in this paper we developed
a statistical process to detect levels of information from them. Our method points out
to spatial heterogeneity of polygons as a free scale informational substrate that can be
approached on a wide range of biological size scales (which also can be easily translated
into an informational entropy metric description). Hence, the material of our work will
be the areas (polygons) and their associated sub-areas (triangles) defining levels of hetero-
geneity. Our procedure satisfies the fact that we may work with sets of polygonal shapes
as an informational substrate upon we can discern levels of geometrical heterogeneity
getting a width spectrum of numerical data. This metric was tested into meshes (biological,
non-biological, and random polygonal arrangements) and simulated random discs with
different number of sides. Finally, we will retrieve the informational limits of biological
structures whose geometry would potentially be biologically representative in terms of
their closeness with nature images due to the informational entropy associated.

The first step was the establishment of a collection of biological images and sample
data to work on. Several biological cell organizations have been used as models to define
geometric parameters. In that sense, an important number of studies have analyzed the
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topological properties of many cell organizations [18–22,26–28,32,39–44]. Also, a lot of
epithelium models have extensively used anatomical parts, developmental stages, and
tissue variations images. In fact, there is a prevailing and well stereotyped distribution of
cellular polygons (SDCP) conserved in proliferating metazoans tissues with a polygonal
frequency of 29% of 5-sided polygons, 49% of 6-sided polygons, and 20% of 7-sided
polygons [20,40,41]. In that context, some other images of biological cell organizations are
available online, such as histological samples derived from different human tissues [20,42].
Currently, it is widely accepted that although variation in those organizations exists, there
is just a narrow range of variations of cellular polygonal distributions [20,40]. In this
regard, samples of polygonal meshes are directly comparable even if some of them are
from different origin or scale due to all of them are PSP [45,46], including biological natural
images, biological simulations, non-biological simulations (such as random meshes and
Poisson-Voronoi tessellations), and random polygons. Therefore, levels of Shannon entropy
in polygonal meshes and sets of random polygons turn into a window of universal and
comparable information if we approach them from a pure geometric perspective.

Collecting Samples

We collected samples of images (online) looking for a broad and representative set
of biological organizations in order to support our main hypothesis (i.e., that geometric
information defined by the Shannon entropy of spatial polygonal heterogeneity is a proper
parameter able to define the limits of a generic biological organizational value using PSP).
Thus, the establishment of a measure of spatial organization able to determine the geo-
metrical entropy of order for biological forms must be analyzed measuring biological and
non-biological organizations (Figure 1). At the tissue level, we used images from prolif-
erating drosophila prepupal wing discs (dWP) [20,41,43], middle third instar wing discs
(dWL) [41,43], normal human biceps (BCA) [20], muscular dystrophy from skeletal muscles
(MD) [42], and pseudo stratified drosophila wing disk epithelium (PSD) [40]. Also, at the
ecological level polygonal meshes derived from Namibia fairy circles (ecological patterns
associated with SDCP convergences) images were integrated into the analysis (NFC) and
ecological oak patterns (EOP) [45–48]. The global tag to encompass MD, dWP, dWL, BCA,
PSD, and NFC is called BIO. The non-biological meshes were different diagrams resulting
from different vertex model simulations. Those simulations were based on quantified dis-
tances from SDCP, which is traditionally used as reference in epithelial studies [49–51]. The
closeness with SDCP can be defined through an optimal paths approach using iterations of
Lloyd’s algorithm and other cellular biophysical conditions in order to investigate the ef-
fects of cell divisions on topology [20]. In contrast, other work reached equilibrium states by
seeking minimal potential energy [50]. Given this, there were epithelium simulations which
we defined as control simulations (CS) [20,32], simulation out of equilibrium (SOE) [20,32],
simulation at equilibrium (SAE) [20,32], atrophy simulation (AS) [20], and Poisson–Voronoi
tessellation (PT) [20]. We consider CS, SOE, SAE, AS, and PT altogether as non-biological
meshes (non BIO), since they were derived from algorithms and not from actual biological
samples. In addition, in order to have a reference to contrast numerical values of nature
typical arrangements we also include planar discrete areas (PDA; Section 2.2.1). Finally, we
incorporated an algorithmic routine [45] to develop random arrangements (RA) into the
global analysis as a control. Therefore, the analysis will include three PSP mesh categories,
BIO, non BIO, RA, and data from PDA (Table 1; summary of category, abbreviation, name
and number of samples).

2.2. Methods
2.2.1. Mathematical Description of Shapes Γ and Heterogeneity of Spatial Organization

The establishment of a measure of heterogeneity able to determine the geometrical en-
tropy of biological organizations is derived from a previous analysis of spatial constrictions
in five-fold morphologies [16]. The algorithm to simulate partitions and shapes Γ-PDA
(planar discrete areas inside a disc; Box 1) is extensively supported in Appendix A. Here,
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our main methodology goes beyond, focused on statistical measurements of geometrical
heterogeneity onto biological and non-biological PSP, associating levels of entropy to them
using fundamentals features of shapes Γ.

Figure 1. Three general types of schematic mosaics were analyzed. Left: random arrangements
(RA). Center: natural images (BIO, schemes of aggregates of cells and ecological polygonal meshes)
extracted from the web; muscular dystrophy (MD), drosophila prepupal wing discs (dWP), middle
third instar wing discs (dWL), normal human biceps (BCA), pseudo-stratified drosophila wing
disk epithelium (PSD), and ecological patterns (NFC and EOP). Right: processed non biological
images (non BIO) extracted from the web which we named, control simulation (CS), simulation
at equilibrium (SAE), atrophy simulation (AS), simulation out of equilibrium (SOE), and Poisson–
Voronoi tessellation (PT).

Table 1. Summary of category, abbreviation, particular name, and number of samples.

Mesh Categories Abbreviation Name and Number of Samples

- PSP Polygonal shape pattern (total number of samples 38)
- Γ-PDA Planar discrete areas (8)

Bio dWP Drosophila prepupal wing discs (3)
Bio dWL Middle third instar wing discs (4)
Bio BCA Normal human biceps (2)
Bio MD Muscular dystrophy from skeletal muscles (1)
Bio PSD Pseudo stratified Drosophila disk epithelium (4)
Bio NFC Namibia fairy circles (2)
Bio EOP Ecological Oak Patterns (3)

Non-Bio CS Control simulations (5)
Non-Bio SOE Simulation out of equilibrium (1)
Non-Bio SAE Simulation at equilibrium (2)
Non-Bio AS Atrophy simulation (2)
Non-Bio PT Poisson–Voronoi tessellation (1)

RA RA Random arrangements (50)

A former statistical analysis is derived from the study of partitions (areas) and their sub-
localities (sub-areas) arising from computational constructions named Γ shapes. Generically,
a shape Γ is a set of numerical values able to be analyzed statistically which is composed
of sub-localities which are areas inside a partition Pi (Box 1). Therefore, there are two
particular cases of Γ shapes. Tthe first particular case of shape Γ can be a set of sub-areas
derived from a partition Pi being a disc simulation with a given number Ni of sub-localities
(Γ-PDA). The second one is a regular or irregular polygon with any number of sides. In
that sense, each shape Γ can be achieved as a set of numerical sub-areas that can be subject
to be statistically analyzed. The main idea used to establish the generic name of shape Γ is
that it is useful to name either geometric objects (e.g., irregular and regular polygons or
PDA) or areas (numeric values inside discs simulations or Γ-PDA) associated with either
discs or any 2D simulated or not simulated polygonal shape derived from meshes.
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Box 1. Partition number.

Figure a–c shows the process of partitioning using, as an example, five sub-localities. The concentric
scheme at figure d shows three levels of variability (shadow zones limited by 1, 4, and 8) according
to the scale given by the first circle radius. These shadow restricted zones are areas whose random
points define sub-localities according to a particular partition number (figure a–c). This methodology
is applied to partition number Pi using discs with 3, 4, 5, 6, 7, 8, 9, and 10 sub-localities. The second
concentric circle limits the variation of area once that Voronoi algorithm is running in order to limit
as much as possible the area variability.

Partitions Pi are sets of areas where each partition is constituted by a subset of a given
number Ni of sub-localities, Si1, Si2, . . . , SiNi such that Pi = ∪Ni

j=1Sij, where Pi is a spatial
region which could be either a set of areas as numerical values or any convex polygon in
R2. In order to start with a statistical description, let Aij be the area of each sub-locality. If
Aij = Aik∀ j, k, then we said that Pi is non heterogeneous. In contrast, if exists some j 6= k
such that Aij 6= Aik then we say that Pi is heterogeneous. Therefore, let Ai = ∑Ni

j=1 Aij be
the sum of all of the associated areas of a partition; this set determines a shape Γ = {Ai}.
We consider a polygon as a first example of a particular shape Γ with a set of sub-areas
which are considered in numerical terms. In that example, the numerical values correspond
to triangle areas from a hexagon representing a particular case of a shape Γ (Figure 2).
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Figure 2. Schematic properties of two different examples of a particular shape Γ. (a) A regular
hexagon is a partition associated with six sub-areas from six sub-localities S1, S2, . . . , S6 which are all
equal. Then it is non heterogeneous. (b) A shape Γ with a six-fold heterogeneous partition such that
the areas defined by sub-localities S1 and S5 are smaller than those of S2, S3, S4, and S6, then this
is heterogeneous.

Therefore, the area average of a partition Pi is:

Ai =
1
Ni

Ni

∑
j=1

Aij (1)

and

σi =

√√√√ 1
Ni − 1

Ni

∑
j=1

(
Aij − Ai

)2 (2)

is the standard deviation of each partition. Notice that if σi = 0 ⇒ Aij = Aik ∀ j, k . There-
fore, that partition is non heterogeneous.

Equation (3) reflects the amount of heterogeneity in a given shape Γ and is inside
a scale from 0 to ~1. Generalization for equations defining heterogeneity of polygons is
written xi, where sub-index i reflects the number of sides of each polygon.

xi = σi/Ai (3)

The main objective of our research here is the establishment of a measure of spa-
tial organization which is able to determine the geometrical entropy for biological and
non-biological organizations. Therefore, we must relate (3) with a proper collection of
shapes Γ reflecting numerical data of spatial heterogeneity in PSP, quantifying indexes
of heterogeneity in all of our samples (those from Section 2.2.1). Before defining entropy
in mosaics of cells we have to develop a proper methodology to get the coordinates of
individual polygons. As mentioned in Section 2.2.1, we used biological (natural) and
non-biological processed images (from web sites and references) to define the coordinates
of polygons using the centroid of each polygon as the origin of polygonal coordinates. The
heterogeneity of each polygon in mosaics was derived with (1), (2), and (3), see Figure 3.
With this data and the statistical description of polygons as Γ shapes, we get frequency
distributions of heterogeneities for each mesh.

We relate (3) with a proper collection of data reflecting rates of spatial heterogeneity,
then quantifying indexes of heterogeneity in all of our theoretical samples. Consequently,
our results will be the standard deviation of heterogeneity derived from levels of variability
in a collection of shapes Γ from a set of PSP samples. In order to define the standard
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deviation of heterogeneity we have to determine first the average of PSP heterogeneity for
all samples with (4),

x =
1

Ns
∑Ns

s=1 xis (4)

now, the first subscript i of xis correspond to the number of sub-areas, s is the index of a
shape, and Ns is the total of shapes Γ in a mesh of polygons. The standard deviation can be
obtained with (5),

σ =

√
1

Ns − 1 ∑Ns
s=1(xis − x)2 (5)

Equation (5) reflects a global statistical value aiming to determine area variability and
the informational entropy.

Figure 3. Symbology of equations for individual polygons extracted from a mesh. The expression
given by (3) is used in order to obtain individual polygon heterogeneity. Also, the distribution of
spatial heterogeneity derived from frequencies levels of heterogeneity in meshes of polygons of BIO,
Non-BIO, and RA was defined using the values given by their heterogeneity.

3. Results
3.1. Continuous Distribution of Heterogeneity for Shapes Γ-PDA

An important question is whether the variable side number of polygonal shapes in the
context of heterogeneity might lead to a continual progression in terms of informational
amount or not (that is, entropy as a function of polygonal side number). Since sampled
meshes (PSP) are sets of mixed polygons with different number of sides this question must
be approached using frequency distributions of heterogeneity in the first case of shapes
Γ using planar discrete areas inside a disc (Γ-PDA) with a fixed number of sides as the
independent variable (algorithm and methodology are provided in Appendix A). The main
aim for all of these data is whether statistical variations of spatial distributions in polygons
have particular attributes to obtain some clues of biological configurations. Initially, we
have discrete distributions for heterogeneity data extracted from shapes Γ-PDA, which will
be transformed into continuous ones applying the probability density function algorithm
(Wolfram Mathematica 9.0; Champaign, IL 61820-7237, USA. Figure 4).

In order to start with a continuous approach to infer levels of entropy, we decided to
use a Kolmogorov-Smirnov test between normal distribution of a Gaussian random variable
of heterogeneity and the remaining ones to detect distribution differences. For continuous
distributions, the maximum entropy corresponds to normal distribution, since a Gaussian
random variable has the largest entropy amongst all random variables [52,53]. Therefore,
we consider that Kolmogorov–Smirnov test will give us a good proxy of closeness with
normal distribution as a first hint of high entropy. According to Figure 5, the Log base 10 of
p-values of a Kolmogorov–Smirnov test is applied in Wolfram Mathematica 9.0, resulting
in a proper comparative of entropy in continuous terms. Frequency distributions of three,
four, five, and six Γ-PDA are the four lowest values which is an indicative of low entropy
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and dissimilarity with normal distribution. In that sense, p-value is positively related
to entropy, low p-values indicate low entropy, high p-values indicate high entropy and
normality. Kolmogorov–Smirnov test performs the Kolmogorov–Smirnov goodness-of-
fit test with null hypothesis H0 that data was drawn from a population with a normal
distribution and alternative hypothesis Ha that it was not (Wolfram Mathematica software
9.0). Also, as an initial experiment one BIO sample (PSD) [40] and one random sample are
included, showing that BIO sample has an important contrast with random sample in terms
of Kolmogorov–Smirnov test results. The BIO sample reach a value of −38.54 while the
random value is −1.23. The two local minima (four-side and BIO samples) are indicative of
small p-values which reflect that both configurations come from samples with low entropy
that is hypothetically frequent in biological arrangements [1].

Figure 4. Probability density function for distributions of Γ-PDA applied to transform histograms
with discrete values (modified from [16]) into continuous graphics. The horizontal axis shows
heterogeneity levels derived from Equation (3).

Figure 5. Contrasting continuous distributions of frequencies using heterogeneity data. In order to
start with a continuous approach to detect levels of entropy we use Kolmogorov–Smirnov test as a
parameter to detect distribution differences between normal distributions and the remaining ones.
Heterogeneity values of random sample have the closest value to normal distribution. According to
the Log base 10 Kolmogorov–Smirnov test values, partition number four has the lowest values of
entropy in continuous terms.
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3.2. Bin Categorizations for Measuring Discrete and Continuous Entropy Using Polygons

The Shannon entropy is a parameter indicating a degree of information approaching a
resolution of uncertainty. Our description model satisfies the fact that we may work either
with frequencies of numerical variables which are sub-areas of polygonal shapes in the
context of PSP or with areas using Γ-PDA. Shannon elucidates the convenience of the use
of a logarithmic function in the definition of entropy, mainly due to the fact that it is more
suitable mathematically since many operations in terms of the logarithm are simpler than in
terms of the statistical behavior (the number of possibilities or frequency). In fact, one of our
main source ideas is the finding of a practical procedure to retrieve PSP given a geometric
informational entropy value. The average surprise of a variable X, which has a distribution
p(X), is called the entropy of p(X) and is represented as H(X). For convenience, we often
speak of the entropy of the variable X even though (strictly speaking) entropy refers to the
distribution p(X) of X [53]. Thus, the entropy of the heterogeneity variable xi from (3) can
be derived from the general formula for discrete values:

H(X) ≈ 1
Nj

∑
Nj
j=1 log

1
p(xi)j

(6)

where the subscript j represents the variable number.
The choice of a logarithmic base regards for a proper election of a unit for measuring

information. In consonance with this last idea, we consider frequency values of heterogene-
ity in a range of bin width. The entropy values using different bin widths (0.1, 0.2, 0.25,
0.33, and 0.5) show that this variable gives an important difference in terms of the decrease
of values (Figure 6a from black to green) even in terms of a statistical correlation with raw
heterogeneity data (Table 1; for discrete and differential entropy). Regarding differential
entropy as a continuous technique, we can consider a formal approximation using:

Hdi f

(
X∆
)
≈
[
∑i Pilog

1
Pi

]
− log

1
∆x

(7)

where i is a subscript referring for the ith bin and ∆x is the bin width. The count of the
ith bin is ni whose area is ai = ni × ∆x. The total area is A = ∑i ai, and the proportion
Pi = ai/A. Equation (7) derives from:

Hdi f (X) =
∫ ∞

x=−∞
p(x)log

1
p(x)

dx (8)

which is a measure of entropy called differential entropy (continuous entropy) of a variable.
Equation (8) can be suited to ignore infinity, so (7) can be derived from (8). For completeness,
we measure differential entropy with the data of each sub-areas number considering the
five bin width values for discrete Γ-PDA datasets, see Figure 6b (from black to green). Even
though each value of a continuous variable can, in principle, convey infinite information, the
amount of information it conveys in practice depends on the accuracy of our measurements.
In effect, measurement noise divides up the range of a continuous variable into a finite
number of discrete intervals; the number of intervals increases as the measurement noise
decreases. Therefore, bin width 0.5 represents the noisiest interval of our samples and bin
width 0.1 the least of all [53]. Finally, the total standard deviation for discrete entropy
values is 0.109905 and for differential entropy is 0.083602. In addition, the total range
for discrete entropy goes from 0 to 3, in contrast with differential entropy which reach
−1.2 from 0.
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Figure 6. Entropy for Γ-PDA datasets. (a) Partitioning number and their associated entropy can be
derived from different bin statistical discrete categorization. Graphic shows five bin widths and their
associated entropy. Bin width 0.5 has the lowest values of entropy for every partitioning number,
meanwhile bin 0.1 statistical categorization has an approximately linear incremental behavior in
contrast with the remaining categorizations. In addition, this graphic also shows that there is a similar
pattern between discrete and standard deviation of variability (c) in terms of the distance from zero
using Bin 0.5. (b) The associated differential entropy of a partitioning number was derived from
Equation (8). Differential entropy datasets show that negative entropy goes from −0.0181 to −1.2309.
(c) The graphic shows the standard deviation of raw heterogeneity for Γ -PDA using the logarithm
base 10, using Equations (4) and (5).

3.3. Statistical Frequency Distributions of Internal Partition in Γ-PDA and Binary Localities in
Bio, Non-Bio, and RA Samples

In order to start with a proper analysis of entropy, we must consider the correlation
values of Table 2. Higher correlation values imply a first hint for bin correlation. In
spite to seem a weak statistical argument to detect both, the closest bin category and
the right mathematical variable to use (either discrete or continuous); this correlation
remains variable considering all bin categories. According to partition number the statistical
frequency distribution of heterogeneity of Γ-PDA is showed in Figure 7. The bar area
determines levels of heterogeneity conforming the binary categorization xil and xih as
a first pragmatic approach. The green area shows levels of high heterogeneity where
0.5 ≤ xi < 1⇒ Xi = xih . On the other side, low levels of heterogeneity correspond to the
grey area where 0 ≤ xi < 0.5⇒ Xi = xil , with xil values derived from Equation (3).
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Table 2. Correlation values between discrete and differential entropy with standard deviation of
heterogeneity raw data.

Bin Width r between
Dis_E and STD_HRD

r between
Dif_E and STD_HRD

0.1 0.7215 0.7405
0.2 0.8129 0.8191

0.25 0.8161 0.8221
0.333 0.8642 0.8667

0.5 0.9311 0.9308
Dif_E = differential entropy; Dis_E = discrete entropy; r = correlation; STD_HRD = standard deviation of
heterogeneity raw data.

Figure 7. Levels of heterogeneity according to the binary categorization xil and xih. Grey zones are
frequency values associated to xil and the green ones are associated with xih. The highest level of
homogeneity is for partition number five (grey area), even though, three, four, and six have similar
levels. The highest level of heterogeneity is for partitioning number ten.

In order to link entropy and raw geometrical information, our evidence suggests
that five-folding organization depicts a sort of spatial organization with low values of
information (besides three, four, and six folding organizations, which are also frequent
in nature). In fact, this sort of arrangement shows the highest correlation with raw low
spatial heterogeneity data for both, differential and discrete entropy (Table 2). As we
were pointing out before we consider that binarity must give us some clues in order
to understand heterogeneity and discrete entropy (Figure 7) from a simple perspective.
The fact that five-fold partitions reflect the most equal distribution of internal space in
contrast with other partitions, it is a non-trivial result since this is not a function de-
rived from the polygonal number of sides (Figure 6a,b). According to Figure 8, such as
five-fold arrangement, biological organizations of cell aggregates that were derived directly
from natural images, or even biological simulations, have a constant high proportion of
low heterogeneity in terms of spatial distribution. That implies a clear high degree of
homogeneity lying on that proportion of low heterogeneity that is found in all samples
derived from biological approximations.
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Figure 8. Twenty-eight samples of biological and non-biological simulations of organizations of cells
aggregates have a constant high proportion of homogeneity in terms of spatial distribution of inner
areas (for name samples and nomenclature of BIO and non-BIO see Table 1). Data from columns
BioNFC (Namibia fairy circles), EOP wild (non-disturbed ecological oak pattern) and EOPdist
(disturbed ecological oak pattern) shows that at ecological level a wild zone has less heterogeneity
polygons that a disturbed zone. The last four samples are biological simulations [20]. The first three
simulations result with an entropy of 0. All of these samples result from a dynamical configuration
derived from a fine tuning of biophysical parameter variation (line tension and tension values). Even
this is happening just when the impairment of the cell division when tension value threshold reaches
a 40 percentage with cell proliferation and heterogeneous reduction of line tension among the tissue
cells the informational entropy increases up to 0.132065 (BIO CS sample). The first column represents
a Poisson–Voronoi tessellation which was used as control.

This last result shows the simplicity of approaching the geometry of biological or-
ganizations focusing on the binarization data in order to (may) see the main facts of the
organizational nature of biological geometries that are often found. In addition, Figure 8
indicates that binarizations works well as an indicator to realize heterogeneity levels in
complex meshes of polygonal arrangements since we can see the statistical behavior of data,
a high degree of low heterogeneity (homogeneity) and a very low degree of heterogeneity.
Random samples are used as a control experiment to visualize contrast in terms of those
distributions in Figure 9.

3.4. Discrete Entropy for Shapes Γ from Bio, Non-Bio, and RA Samples Using Binarization

In terms of discrete entropy, there are an important number of simulations extracted
from the open access figures that are excluded from the BIO zone despite of being consid-
ered as simulations of biological samples (Figure 10). All of those collected simulations
were based on quantified distances from SDCP conserved in proliferating metazoans tis-
sues with a polygonal frequency of 49% six-sided polygons, 29% five-sided polygons, and
20% seven-sided polygons, which is traditionally used as reference in epithelial studies.
Control simulation (CS), simulation at equilibrium (SAE), atrophy simulation (AS), and
simulation out of equilibrium (SOE) were computational simulations of cells aggregates
assuming variations as metric distances from Lewis’s Law values or holders of another
kind of biological or physical properties. The Shannon entropy associated with biological
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simulations, such as CS reaches levels of zero entropy, which implies null information
which is not the case for either Γ-PDA associated with hypothetical biological morphologies
or samples constricted to the BIO zone. However, there was a sample that increase their
entropy according to some simulation conditions (Figure 10). Certainly, Poisson–Voronoi
tessellation (PT) was used as control since we assumed that its arrangement would be far
away from the order zone. Hence, the geometry between BIO and non-BIO arrangements
of internal space are underlying important differences whose consequences and effects
would define particular behavior in actual biological organizations.

Figure 9. Random arrangements of cells and their heterogeneity frequency. Data shows that random
aggregates have an average of an almost half proportion of low heterogeneity (blue) of spatial
distribution on internal areas in polygons, and a half of spatial high heterogeneity (grey).

Figure 10. The entropy of cell aggregates groups: biological collected images (BIO; descriptions in
Table 1) and processed images which we named non BIO extracted directly from online open access
figures; control simulation (CS), simulation at equilibrium (1 and 2) following four interactions of
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Lloyd’s algorithm (SAE), atrophy simulation (AS), simulation out of equilibrium (SOE), muscular
dystrophy (BioMD), and Poisson–Voronoi tessellation (PT). The most abundant area (ellipse) includes
BIO data, which is close in terms of entropy with AS, SAE, and SOE. BioNFC (Namibia fairy circles)
and EOPwild (ecological oak pattern wild) are also defined by a low degree of entropy. That is not the
case for EOPdist (ecological oak pattern disturbed). Control simulation of biological organizations
reaches a 0 entropy value. That value can change when biophysical manipulation of parameters is
included [20].

As we can see at Figure 10 the BIO zone includes images that are not being simulated,
such as dWP, dWL, and BCA (Table 1). However, simulations that have some kind of
manipulation can increase their heterogeneity resulting in highest entropy than control
simulations without parameter variation. One interesting point comes from the ecological
oak patterns which are disturbed and non disturbed oak zones [48]. The level of entropy
increases whether the zone is a perturbed ecosystem or not.

The Shannon entropy associated with RA frequency distribution (Figure 9) is an
expected result, whose discrete entropy values are around 1 (Figure 11).

Figure 11. The discrete entropy of random samples (dataset derived from Figure 9). The entropy
values are almost constantly in line with maximum entropy.

3.5. Continuous Entropy for Shapes Γ from Bio, Non-Bio, and RA Samples

To estimate the entropy of any variable, it is necessary to know the probability associ-
ated with each of its possible values [53]. As we point out (Section 3.1) probability density
function is a well-accepted starting reference to estimate a continuous distribution from
discrete possible values. In fact, it has been an important mathematical trouble that has
been solved arriving to Equation (8). In addition, Equation (8) can be useful even with
discrete values using bin areas ai. In order to establish a panoramic view of continuous
entropy values we consider getting the values from Bio, non-Bio (SOE, AS, and SAE) and
RA samples. According to Figure 12 there are two negative intervals for all bin categories.

Despite being working with the same data we have an important gap among discrete
entropy and differential entropy (Figure 6a,b) given that the first results are positive and
the second negative. Regarding this last point, we will develop some more hypotheses at a
later time.
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Figure 12. Differential entropy for total datasets. The continuous approach reflects that entropy
values are negative in 21 Bio samples and the results are related Bio, non-Bio (SOE, SAE, and AS) and
RA samples.

4. Discussion

We may see that three, four, five, and six-fold Γ shapes as planar discrete areas (Γ-PDA)
behave as almost egalitarians in terms of raw spatial inner heterogeneity (Figure 6c) which
we consider as a first reference of geometrical constraint in biological organizations. Beside
this last fact, we consider as an important issue to be the differential entropy derived from
the geometry of polygonal shape patterns (PSP) samples whose values remain close to
those of Γ-PDA (Figure 6b). In addition, both partitioning number of shapes Γ-PDA and
their associated entropy and the differential entropy derived from the geometry of PSP
can be derived from different bin statistical discrete categorization. Figure 6a,b show five
bin categorizations and their associated entropy (bin width 0.1, 0.2, 0.25, 0.33, and 0.5)
for discrete and continuous values. Given that bin width 0.5 has the highest correlation
with raw spatial heterogeneity for both values of entropy (Table 1), we decided to use it as
the main dataset to observe discrete entropy at Section 3.3. On the other side, bin width
0.1 statistical categorization has a linear incremental behavior in contrast with the remaining
categorizations. According to the elected binary system, where low heterogeneity is in
the range 0 < = Xil < 0.5 and high heterogeneity is in the range of 0.5 < = Xih < = 1,
biotypical arrangements distributes internal space in a very egalitarian statistical way.
For discrete values an interval of entropy values emerges, clustering arrangements from
biological samples (around 0.08 and 0.27 bits of entropy; Figure 10). Section 3.3 shows
the methodology to analyze discrete entropy using three types of mosaics (PSP): Random
arrangements (RA), natural images extracted from the web (BIO), and processed images also
extracted from the web (Non-BIO): which we named control simulation (CS), simulation
at equilibrium (SAE), atrophy simulation (AS), simulation out of equilibrium (SOE), and
Poisson-Voronoi tessellation (PT). Spatial heterogeneity in mosaics of polygons was derived
using (3) for each polygon and discrete entropy using (6). Random arrangements of cells
and their heterogeneity frequency shows that random polygonal aggregates representing
cell aggregates have an average of an almost half proportion of heterogeneity of spatial
distribution on internal areas in polygons with a nearby equal half of spatial homogeneity
(Figure 9). In fact, this result explains by itself how is that highly heterogeneous partitions
gives a highly entropic result.

Biological simulations (which we have included both as part of non BIO samples)
of organizations of cells aggregates have a constant high proportion of homogeneity in
terms of spatial distribution of inner areas. Some other approaches have found similar
results, such as that analyzing avian photoreceptor patterns representing a disordered
hyperuniform solution to a multiscale packing problem [54]. In fact, the penultimate three
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samples (CS) areas in biological simulations assuming Lewis’s Law have a 100% degree of
homogeneity (Figure 8). Then, a high degree of homogeneity in a computational simulation
following some algorithmic instructions could derive in a beautiful representation follow-
ing the SDCP of a real biological sample but a considerable lack of substantive geometric
information. Thus, levels of intrinsic disorder (heterogeneity) emerging from the actual bio-
logical forms are necessary to have a proper simulation. A typical statistical approach using
just statistical differences between different polygonal organizations shall not integrate this
last key issue. Despite found statistical variations between BIO and Non-BIO organizations
for PSP in terms of discrete entropy, differential entropy shows a better resolution (with an
σ of 0.115982 in contrast with σ of 0.187632 for discrete values) resulting in an interesting
gap for all bin categorizations (X = −0.61872). To finish with the discussion about the
continuous subject, we shall remark that this research is not inside the interdisciplinary
field of information geometry. Despite this, there are some interesting methodological
convergences that can be visited at [55,56]. In addition, we considered that the main conver-
gence lay on a very interesting epistemological subject, geometry as a source of information.
On the other hand, regarding discrete entropy, BIO group is between 0.08 and 0.27 bits
which is a range for entropy values including three, four, five, and six folding partitions
which are very common in nature. Also, in Figures 8 and 10 the first value represents a
Poisson–Voronoi tessellation (PT) which was used as a control since this mesh is derived
from a well know non-ordered organization of points. Even this sort of organization is not
biological it seems not be inside the gap of random organizations for discrete entropy. The
most abundant grey area of Figure 10 is considered as the BIO zone, which also include
AS (that is a non-Bio sample). Hence, the atrophy of some simulations increases their
heterogeneity degree which finally derives in a biological-like outcome. Regarding the
differential entropy the Bio zone is a clear interval showed at Figure 12 which remains
with a notable distance from random differential entropy. In that sense, considering the
continuous approach where the inclusion of Non-Bio into BIO group seems clear is not an
unexpected result since computational simulations representing algorithmic instructions
are perturbed in a way that could easily derive in a biological entropy position. It does
not happen with control simulations since heterogeneity does not appear at all. Hence,
the algorithmic constructions showed on this paper are following hidden mathematical
prescriptions reveling high levels of homogeneity beside another fundamental nature of the
BIO group, a lightly bias disruption of order. In fact, five control simulation group whose
main feature has been the closeness with SDCP (CS right side) have values of zero entropy
(Figures 8 and 10).

On the other hand, MD seems to be a close object to BIO realm. However, it is not
inside the limits. We consider that it is an important find since our parametric measure of
geometric information can give us some clues about pathological routes in a very simple
way, that important finding agrees with [43]. At the level of ecological scales, we include
just two image samples that were very representative. Namibia fairy circles are one of the
most interesting results since we confirmed some previous hypothesis about the potential
of free scale approaches to understand biological organizations [46].

5. Conclusions

The main goal of this research lies on the intriguing question whether geometry is an
actual source of information defining biological arrangements. The Shannon information of
an outcome is also called surprisal since it reflects the amount of surprise when that outcome
is observed [53]. In the context of information theory, the fact of being surprised requires
knowing which outcomes are more surprising and which are less surprising. According to
this last idea, we have specific statistical distribution of spatial heterogeneity frequencies for
Bio, Non-Bio, RA, and Γ-PDA using collections of individual polygons and disc simulations.
All of these outcome frequencies are treated as outcome probabilities that are giving us
particular levels of discrete and differential entropy for biological organizations using
pure geometry. High levels of heterogeneity imply an intrinsic amount of surprise in
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contrast with a high degree of heterogeneity using the binarization approach. Therefore,
our results reflect that there is a potential informational limit for biological organizations
in terms of discrete and differential entropy. Despite of the value of this result there is
still a broad distance to conclude that the differential entropy interval represents a unique
range since it is not the same for discrete entropy. A deep mathematical and computational
research is still lacking in order to define the limits of biological geometric information
of polygonal aggregates. However, biological organizations are complex spatial systems
which should be constrained into a narrow window of variability depending on levels of
heterogeneity that can be translated into informational entropy. Paradoxically, we can see a
myriad of morphological variations in nature. We conclude that the statistical properties of
biological architectures can be manifested into an overwhelming number of morphologies
since all of them are singular possibilities in a realm of pure organization with particular
geometrical attributes (such as heterogeneity). In that sense, shape is a constant dynamical
composition of arrangements and an opening infinite possibility of configurations with
spatial confined attributes as a consequence of its essential organization which depends on
their own informational limits. According to our results, we consider that homogeneity
with very low levels of heterogeneity in biological systems is a fundamental factor for
biological organizations (e.g., network theory calls it sparsity). Hypothetically, in the context
of complex adaptive systems spatial heterogeneity could be associated with a source of
variation (or noise) and degrees of freedom, which is notably a different perspective from
the pure blueprint genetic approach, whose information lies exclusively onto molecular
and ontogenetical basis. With this in mind, we consider that the value and limits of
informational entropy for geometrical systems in biology is a novelty approach with a
potentially width domain of impact.
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Appendix A. A Numerical Approach Using Partitions of Shapes Γ-PDA (Planar
Discrete Areas)

A complete view of a wide spectrum of planar discrete areas (PDA) is obtained if we
design a numerical model. Our geometrical design has as a first condition, namely the fact
that shapes Γ-PDA with different number of sub-localities remains with a constant area
during the experiment in preparation for obtaining normalized data. In order to establish
variability inside a constant area, we consider two conditions for shapes Γ-PDA: (a) they
must remain with an almost constant area during the experiment where partition Pi range
from 3 to 10 sub-localities (eight categories); and (b) also each partition Pi must include
10 levels of variability. Therefore, each partition Pi with a particular constant area has
10 levels of variability during the experiment. We must be aware that shapes Γ-PDA is a
particular case of a partition Pi.
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For this purpose, we use Voronoi diagrams to model space of shapes Γ-PDA with dif-
ferent number of parts (from 3 to 10) where two variables are studied, namely partitioning
number (pn) and partition variability (pv), which are defined as follows:

a. The partitioning number (pn) defines the number of partitions inside a disc (ranging
from 3 to 10): Each partition Pi is constituted by a subset of a given number Ni of
sub-localities, Si1, Si2, . . . , SiNi such that Pi = ∪Ni

j=1Sij, where Pi is a spatial region

which could be any Γ -PDA in R2.
b. Partition variability (pv) determines multiple levels of variability (10) inside each pn

by using random points, which in turn will define the Voronoi diagrams.

The algorithm to build pn and pv is described in the next seven steps as follows:

1. Features of the external disc: the boundaries of the external limit are defined by
24 fixed points generated as follows: The radius of the external disk is set to r = 1 and
consecutive points are separated by an angle θ/24 (where θ corresponds to 2π). Point
1 is aligned with axis y (Figure A1).

2. Features of the internal disc: the boundaries of the internal limit are defined by
24 fixed points generated as follows: The radius of the internal disk is initially set
to r = 0.53 ± 0.4 with 24 points consecutively separated by an angle θ/24. Point 1 is
aligned with axis y. (Figure A1).

3. Partitioning number (pn): once the number of partitions is defined, say n (where
3 ≤ n ≤ 10 and n ∈ Z), points are located in the disk at angles 2π/n ± 0.069 radians
but at different radius. These radius values will define the pv, as described in the
next item.

4. Partition variability (pv). For each angular region defined above, 10 points are located
at radius (between r = 0 and r = 10) at different positions to define different degrees of
variability (diagonal points of internal disc at Figure A1). The first point (first level of
variability) is at r = 1. After the second point, all of them are located at random radius
between 1 to 10. Hence, each level of variability (10) is given by radii ranges except
1 which is fixed at 1 (diagonal points of internal disc); (a) 0 to 1, (b) 0 to 2, (c) 0 to 3,
(d) 0 to 4, (e) 0 to 5, (f) 0 to 6, (g) 0 to 7, (h) 0 to 8, (i) 0 to 9 and (j) 0 to 10.

5. Voronoi tessellations: the partition variability will define the broad spectrum of
possibilities for area distribution inside discs without losing partitioning number
using Voronoi tessellations.

6. Area average: according to Equation (1), the average of areas requires a summation of
sub-localities areas (Aij) which were derived from pn with a changing variability pv.

7. Data mining: once the partition areas (Aij) inside discs were obtained and (1) was
solved, (2) is used to obtain standard deviations (σi) of variability for each disc. In
order to normalize the level of variability for each pn, an index dividing the standard
deviation of partitions and the particular area average of each partition was obtained
(variability average; Figure A2). There are eight particular area averages of partitions
since we have a sample of 8 discs with different pn (from 3 to 10). These particular
area averages are derived from a value n/(≈108.5 ± 1.5) which are n values obtained
from the first level of variability (pv) at r = 1. It is important to say that the radius of
the external disc (1) and the radius of the internal disc (r = 0.53 ± 0.4) was modified
in order to get the particular area averages. However, despite the modification, the
index between external discs and the internal ones remains constant. A sample of
20 discs to get 20 standard deviations was generated for each pn, and for each level of
pv (10) giving a sample of 200 discs for each pn. An average of standard deviations
(σi; variability average) was derived for each level of variability.

8. Standard deviation. Finally, a standard deviation of all variability averages is obtained
for each pn.
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Figure A1. Defining partitioning number and partition variability. A disc is constructed to get
Voronoi diagrams with constant area despite variability. The magnitude of the radius defines ten
levels of partition variability: (a) 1, (b) 1-2, (c) 1-3, (d) 1-4, (e) 1-5, (f) 1-6, (g) 1-7, (h) 1-8, (i) 1-9, and
(j) 1-10. Each level of variability is given by radii ranges except (a) which is fixed at 1.

Figure A2. Partitioning number and partition variation of planar discs. A sample of 40 planar discs
shows how partitioning number (vertical left side) determines segmentation of an almost constant
area (≈108.5 ± 1.5) into a particular number of sub-localities. Partition variability (bottom horizontal
numbers) installs levels of variability giving 10 constant and subtle increases of area to generate
random segmentations using Voronoi tessellations.

Table A1 shows the area at internal disc, and the area average, for particular parti-
tion numbers.
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Table A1. Level of variability and area average according to the partition number.

Partition Number Area at Internal Disc (Level of
Variability Pv1) Particular Area Average

3 107.2 35.7354
4 108.7 27.1963
5 109.5 21.9155
6 109.9 18.3248
7 110.1 15.74
8 110.32 13.7959
9 110.51 12.2794
10 110.605 11.0605
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Abstract: Organisms perceive their environment and respond. The origin of perception–response
traits presents a puzzle. Perception provides no value without response. Response requires perception.
Recent advances in machine learning may provide a solution. A randomly connected network creates
a reservoir of perceptive information about the recent history of environmental states. In each time
step, a relatively small number of inputs drives the dynamics of the relatively large network. Over
time, the internal network states retain a memory of past inputs. To achieve a functional response to
past states or to predict future states, a system must learn only how to match states of the reservoir to
the target response. In the same way, a random biochemical or neural network of an organism can
provide an initial perceptive basis. With a solution for one side of the two-step perception–response
challenge, evolving an adaptive response may not be so difficult. Two broader themes emerge. First,
organisms may often achieve precise traits from sloppy components. Second, evolutionary puzzles
often follow the same outlines as the challenges of machine learning. In each case, the basic problem
is how to learn, either by artificial computational methods or by natural selection.

Keywords: evolutionary origins; critical learning period; machine learning; liquid state machine;
reservoir computing; echo state network

1. Introduction

Response to an environmental signal requires two steps. First, the signal must be
perceived. Second, a response must follow. The evolutionary origin of two-part traits
presents a puzzle. Perception without response provides no benefit. Response without
perception cannot happen.

Pre-existing perceptions or responses may be modified. With a partial step on one
side, an evolutionary path opens to solve the new challenge. The modification of prior
adaptive traits may be a common pathway.

This article poses an alternative solution. In essence, a purely random pre-existing
biochemical or neural network within the organism can provide the initial perceptive basis
for the evolution of precise responsiveness. If so, then we gain an understanding of how
organisms may acquire truly novel responsiveness.

In addition, we may begin to understand one of the great puzzles in life. How do
organisms acquire a wide array of relatively precise traits given that biological components
are inherently stochastic and often unreliable? How does precision arise from sloppiness?

Consider perception. We require that external signals induce an internal change in
state. To analyze how random systems can acquire and store information, the computational
literature has recently built on the idea of liquid state machines.

Think of the smooth surface of a liquid in a container. Drop a pebble on the surface.
Waves move across the surface. Drop another pebble, and then another. At any point in time,
the pattern of surface waves contains a reservoir of information about the temporal history.

Randomly connected networks act similarly. External inputs enter via sensor nodes.
Those signals propagate through the network based on the random patterns of internal
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connectivity and rules for updating. At any point in time, the network contains information
about the temporal history of inputs. The network functions as a dimensional expansion
reservoir, transforming time into extent.

A random biochemical or neural network may act as a perceptive internal reservoir.
The two-step challenge of perception and response reduces to the much easier problem of
evolving an internal response to the perceptive reservoir. It may be possible to achieve an
adaptively responsive trait arising from sloppy underlying components.

The remainder of this article provides details. The next subsection gives additional
background and references to the computational and biological literature. The follow-
ing analysis develops a model to illustrate how random networks store information
about environmental inputs, creating the basis to predict future environmental states
and respond accordingly.

A following subsection speculates that critical learning periods allow individuals to
adjust their responses to their unique internal wiring and pattern of reservoir information.
The Conclusions consider some possible tests of the ideas and some future directions.

Background and Literature

Maass et al. [1] introduced the liquid state machine. The concept, outlined in the
introduction, describes a general way in which large dynamical systems retain a memory
of their past inputs. At any point in time, that memory encoded in the current state of the
system can be used to compute responses. The responses may achieve particular goals or
predict future inputs.

Computationally, liquid state machines have a recurrent architecture. Roughly speak-
ing, recurrence means feedback loops between internal states [2]. For example, a recurrent
computational neural network updates internal states sequentially. External inputs modify
the first layer of the network. The first layer then modifies the second layer, which may
then modify the third layer, and so on. Recurrent connections flow updates backwards,
from a later layer to an earlier layer. Recurrence greatly enhances the computational power
of neural networks, in part by storing an internal memory of past inputs.

Recurrent neural networks led to many of the great recent advances in artificial
intelligence. However, it can be very difficult to tune the particular connections and
dynamic update rules in a network to achieve a particular function.

To solve the tuning problem, one may separate the accumulation of environmental
information and memory from the computation of a response to that information. In the
simplest application, one can use a randomly connected dynamic system as a reservoir of
information and memory about inputs. One can then use a relatively simple computational
learning or optimization method to match the current internal state of the reservoir to the
desired goal. Often, basic regression methods such as ridge regression are sufficient.

This two-step solution has led to many developments in the computational literature,
typically under the topics of reservoir computing or echo state networks [3–5]. Reservoir
computing has also grown into a common approach in neuroscience modeling [6], with
additional applications using biochemical networks as reservoirs [7,8]. In both computa-
tional and neuroscience models, reservoir connectivity patterns other than purely random
patterns often arise [5,9–11]. For nonrandom reservoirs, the idea is that particular kinds of
information may be better retained by particular architectures. Typically, the architectures
are not optimized for each application. Instead, a few broad architectural varieties are
explored in relation to a particular challenge.

Two articles have noted the potential of reservoirs to help in the understanding of
various evolutionary problems [12,13]. My own focus is also evolutionary but limited here
to two particular questions. First, can random reservoirs be a potential solution to the
puzzle of jointly evolving perception and response? Second, can we place the perception–
response problem within the broader frame of precise traits from sloppy components?
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2. Materials and Methods
2.1. Perception and Response

The joint evolution of perception and response may be easier if an initially random
reservoir can solve the perception side of the puzzle. If random reservoirs provide informa-
tion that can be the basis for perception, then the evolutionary path to a perception–response
system may not be so difficult. In essence, a random system provides sufficient perception
to get started and so, initially, only the single response trait must improve evolutionarily to
make a workable system. The origin of a workable system provides the opportunity for
further evolutionary refinement.

In this article, I limit the analysis to illustrating how random reservoirs provide the
capacity for perception and the basis for developing a predictive response. The model
brings the key ideas into the evolutionary literature within the context of a simple but
important evolutionary puzzle.

The model has three parts. First, environmental inputs come from a chaotic dynamical
system. A single parameter of the chaotic system describes the difficulty of predicting
future input values. Second, the chaotic environmental inputs feed into a random network
that acts as the reservoir. Third, an optimized regression model predicts future input
values by using the internal reservoir states as predictors. The quality of the predictions
is measured by evaluating additional input data and reservoir dynamics not used in the
regression fitting procedure.

2.2. Chaotic Dynamics

I use the classic Lorenz–96 model for chaotic dynamics [14–16], which is

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F (1)

for i = 1, . . . , N, with x−k = xN−k and xN+k = xk, and F as the single parameter that
describes a constant forcing input. The symmetry of the model means that the long-run
trajectories for each dimension have similar properties. I use N = 5 for all analyses in
this article.

The system tends to be more chaotic as F rises above 8 (Figure 1). Chaos means that
a small perturbation at a particular time causes the future system trajectory to diverge
from the trajectory of an unperturbed system. The greater the rate of divergence, the less
predictable the system.

Typically, one quantifies the rate of divergence by the dominant Lyapunov exponent,
λ. Similarly, the system predictability can be quantified by the doubling time of the distance
between divergent trajectories, which is dbl = log 2/λ, with dbl denoting a variable. A
faster doubling time means that future values of the trajectory are harder to predict. I
calculated the dynamics of Equation (1) and the Lyapunov exponent with the Julia package
DynamicalSystems [17]. The system becomes increasingly chaotic as F rises above 8, which
means that λ increases and dbl (predictability) declines.
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Figure 1. Estimate for the relative speed of chaotic divergence in the dynamics of the Lorenz–96
equations given in Equation (1), with N = 5. Here, the Lyapunov exponent, λ, estimates the
relative divergence rate. The analysis in this article focuses on the doubling time for divergence,
dbl = log 2/λ, in which a lower doubling time means that future values of the trajectory are harder to
predict. For a few limited regions of smaller F values, the estimated Lyapunov exponent drops below
the trend. Those deviations may arise from numerical limitations or a complex pattern of nearly
stable periodicity. Sufficiently complex periodicity poses a significant challenge for prediction. The
analyses in this article avoid those erratic regions.

2.3. Random Reservoir

I computed the random reservoir state using the Julia package ReservoirComput-
ing [18]. The reservoir takes the N inputs from Equation (1) and updates its size internal
states. The cited documentation gives the details of the reservoir dynamics architecture
and calculations. The outcome arises from the common principles of liquid state machines.

A particular run starts with random initial conditions for the input dynamics and a
randomly structured reservoir. Then, over the T time units of a run, the inputs are fed
into the reservoir every 0.01 time units, which triggers an update to the reservoir states.
For each of the T/0.01 time steps, the reservoir has size different state values. Those state
values can be used to predict future values of the inputs.

3. Results
3.1. Predicting Future Inputs

Briefly, a random reservoir provides sufficient information for the system to predict
future inputs of the chaotic environmental dynamics. The more strongly chaotic the
system, the shorter the divergence doubling time, dbl, and the shorter the time forward for
successful predictions. Larger random reservoirs improve the system’s ability to predict
future input values. Supporting details follow.

I first calculated the external inputs from Equation (1) at each of the T/0.01 time steps,
with T = 20,000 for all analyses. I then split the time periods into a training set for the
first 0.7T = 14,000 of the time units and a test set for the remaining 0.3T = 6000 time units.
Time units are arbitrary. Predictions provide value if the time extent of predictive success
corresponds to a biologically valuable foresight.

Figure 2a shows an example run of the model predictions. The blue curve is the
external input value for the first dimension of the Lorenz–96 system, x1, in Equation (1).
The plotted value is rescaled so that the range over the training set is [−1, 1]. The plot
shows the final 20 time units of the test set, the time period 19,980–20,000.
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Figure 2. Temporal dynamics of environmental state (blue) and system prediction for the environmen-
tal state (gold). At each time point, the internal system uses the information in its reservoir to predict
the environmental state shift time units into the future. The gold prediction curve is shifted to the right
by shift time units, so that the closeness of the match between the two curves describes the quality of
the predictions. Above each panel, the parameters N and F describe the environmental dynamics
in Equation (1); dbl gives the doubling time for the deviation distance of a small perturbation to the
dynamics; res is the reservoir size; and R2_tr and R2_ts are the R-squared values that describe the
percentage of the variation in the blue dynamics curve captured by the gold prediction curve for the
training and test periods, respectively, as described in the text. The panels (a–c) have corresponding
labels on the curves in Figure 3a. Time units are nondimensional and can be chosen to match the
scaling of the environmental process under study. Here, the plots show the 20 time units at the end of
the test period of the machine learning procedure used to generate the curves. The abbreviations
res, shift, size, dbl, R2_tr, and R2_ts denote variables. Execution times for the parameters in (b) with
reservoir sizes (res) of 25, 50, and 100 are approximately 58 s, 118 s, and 253 s. Timing was carried out
on Apple Mac Studio M1 Ultra with Julia 1.9.1, source code git commit a7f74f1. The code was not
optimized for execution speed.
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Figure 3. Prediction of future environmental state based on the information in a random reservoir
network. Figure 2 shows the environmental dynamics and the prediction challenge. In this figure, the
y-axis measures the percentage of the total variance (R-squared) in the environmental state explained
by the predictions generated from the internal reservoir, reflecting the potential for adaptive response.
The x-axis shows the intrinsic predictability of the environment, measured by the time required to
double a small initial perturbation to the dynamic trajectory. The different colored lines describe the
time shift into the future at which predictions are compared to actual future dynamics. The res_size
parameter in each panel gives the size of the random reservoir. The a, b, and c labels in panel (a) match
the corresponding panels in Figure 2. Each line connects the outcomes at the following 11 approximate
doubling times: 0.52, 0.54, 0.58, 0.64, 0.70, 0.77, 0.86, 0.90, 0.99, 1.15, and 1.43. Panels (a–c) show three
different reservoir sizes denoted by the res_size parameter labels.
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The gold curve shows the system’s prediction for future values of the external chaotic
input, x1. For a time point, t, the system predicts x1 at time t + shift. To compare the
predicted input value to the actual input value, I shifted the gold curve by shift time units
to the right. Thus, each time point on the plot shows the system’s observed and predicted
value for time t.

I calculated the predicted values by fitting a Bayesian ridge regression model to the
training set of observed x1 values based on the size predictors from the internal reservoir
states. In Figure 2, size = 25 for all three panels. I obtained the fitted model by the
BayesRidge function of the Python scikit-learn 1.2.0 package [19]. I accessed the Python
code via the Julia machine learning package MLJ [20].

In Figure 2, I show the actual input values and predicted input values over the test set
of observations. Those test data were not used during the fitting of the ridge regression
model and so describe how well the model predictions fit additional observations from the
chaotic inputs. I measured the quality of the predictions by the R-squared value, which is
the fraction of the variance in the actual input values of the blue curves explained by the
predicted input values of the gold curves. For example, the R-squared value for Figure 2a
is 82%, a close fit.

To avoid overfitting the ridge regression model, I used MLJ’s TunedModel function to
optimize the BayesRidge hyperparameters for the training period data. That procedure
shuffled the data provided for fitting in a way that minimized overfitting. To test for
overfitting on the training data, above each panel in Figure 2 I show the R-squared values
for the training period (R2_tr) and the test period (R2_ts). The close match of those values
demonstrates that the model was not overfitted to the training data.

In Figure 3a, the different colored curves show the quality of the predictions for
different shift time values into the future. The prediction quality on the y-axis is given
by the R-squared values of the test period. Shorter time shifts into the future provide
better predictions, as expected. The x-axis shows the doubling time, dbl, for trajectory
divergence. Greater doubling times correspond to weaker chaotic dynamics and greater
predictability. The a, b, and c labels on the curves in Figure 3a match the three panels of
Figure 2. The different panels of Figure 3 show that increasing the reservoir size leads to
better predictions.

I calculated the test R-squared value R2_ts for each parameter combination from one
replicate. In Figure 3, the consistency of the trends across different doubling times and
reservoir sizes implies that the variability within a parameter combination is low. If that
were not true, then the trends would be much noisier than observed.

To check the actual variability among replicates for a parameter combination, I calcu-
lated R2_ts for a sample of 20 independent runs for each reservoir size of 25, 50, and 100,
using for the other parameters N = 5, as in all reported results; F = 8.75, corresponding to a
doubling time of about 1.0; and a shift value of 1.0.

For any given reservoir size, the variation among samples is small. Reporting results
as (minimum, median, maximum) for each set of 20 replicates, the results for reservoir size
25 are (56.0, 57.8, 58.9), for size 50 are (60.0, 61.4, 62.7), and for size 100 are (66.0, 67.1, 68.3).

Figure 4 shows that increasing the reservoir size improves the prediction of the future
environmental state.
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Figure 4. Increasing reservoir size provides better predictions for future environmental state. The
analysis follows the methods used in Figure 3. Here, dbl_lo denotes a doubling time of approximately
0.52, and dbl_hi denotes a doubling time of approximately 1.42. The value of shift_lo denotes a
prediction into the future over 1.0 time units, and shift_hi denotes a prediction into the future over
2.0 time units. The six different reservoir sizes used in the computer runs are shown as labels for the
tick marks along the x-axis.

3.2. Critical Learning Period

The wiring of internal reservoirs may be fixed. For example, the parameters of a
simple biochemical network within a cell may be determined primarily by DNA sequence.
The network may be random in the sense that it was not shaped by natural selection to
capture specific information. But such a random network may be relatively consistent from
one individual to another. If so, then the readout of the network to achieve a function may
also be fixed among individuals.

Simple neural networks may also be relatively consistent from one individual to
another. However, larger networks likely have some stochasticity in wiring. Stochasticity
means that random reservoirs of perceptual information may vary from one individual to
another. If so, then the way in which individuals read their reservoirs to achieve a function
may have to be partially learned.

The demand for such learning may impose the need for a primitive kind of critical
learning period in which individuals associate their particular internal reservoir state with
successful actions. Such learning periods would be simpler than the kinds of learning
that are sometimes observed in the advanced neural systems of vertebrates. Although
speculative, the logic for such kinds of critical learning seems compelling.

3.3. Other Ideas for Future Study

Comments arising in the review process for this manuscript raised three interesting
ideas for future study. First, heritable variation in network size and wiring architecture
may provide the opportunity for selection to improve environmental perception. The com-
putational literature on reservoir computing provides insight into how different reservoir
networks perform with respect to different kinds of environmental challenges [5,18].

Second, environmental change often requires organisms to modify some aspect of their
perception or response. In the reservoir model, a change in response means a modification
of the readout from the perceptional information stored in the reservoir. This sort of
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tuning may happen relatively quickly within an individual’s lifetime, as in the critical
learning period. Alternatively, the readout may be altered over evolutionary time by typical
variation and selection processes. The puzzles concern how this happens physiologically
and genetically.

Third, larger networks improve performance. Larger networks also tend to have
greater redundancy with regard to storing information about the environment. Redundancy
enhances robustness, provides opportunity for greater complexity, and alters evolutionary
dynamics in many interesting ways [21]. This perspective raises many interesting questions
about the origin and evolution of perception.

4. Conclusions

Random perceptual networks may solve the puzzle of how two-step perception–
response traits evolve. If a response can build on a random perceptual reservoir, then
the initial evolutionary path requires adaptation only on the response side. Subsequent
refinement may modify the perceptual side, changing random aspects of the initial network
into more highly structured forms.

Studying the origin of traits can be difficult because we rarely observe such origins
directly. Synthetic biology may provide a way to gain some insight and to test specific
hypotheses. If technology advances sufficiently, it may be possible to create various types
of biochemical networks that have random properties with respect to specific adaptive
functions [22]. One could then use experimental evolution to analyze the conditions under
which cells can improve their ability to read the information in the random biochemical
reservoir to achieve those specific functions.

Comparative biology could provide insight into the historical pathways and modifica-
tions of perception–response pairs. But it is not clear how easily one could find traces of
evolutionary historical sequence among extant organisms. The great variety of single-cell
microbial life is both promising and challenging.
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Abstract: This paper presents results concerning mechanistic modeling to describe the dynamics and
interactions between biomass growth, glucose consumption and ethanol production in batch culture
fermentation by Kluyveromyces marxianus (K. marxianus). The mathematical model was formulated
based on the biological assumptions underlying each variable and is given by a set of three coupled
nonlinear first-order Ordinary Differential Equations. The model has ten parameters, and their
values were fitted from the experimental data of 17 K. marxianus strains by means of a computational
algorithm design in Matlab. The latter allowed us to determine that seven of these parameters
share the same value among all the strains, while three parameters concerning biomass maximum
growth rate, and ethanol production due to biomass and glucose had specific values for each strain.
These values are presented with their corresponding standard error and 95% confidence interval.
The goodness of fit of our system was evaluated both qualitatively by in silico experimentation
and quantitative by means of the coefficient of determination and the Akaike Information Criterion.
Results regarding the fitting capabilities were compared with the classic model given by the logistic,
Pirt, and Luedeking–Piret Equations. Further, nonlinear theories were applied to investigate local
and global dynamics of the system, the Localization of Compact Invariant Sets Method was applied
to determine the so-called localizing domain, i.e., lower and upper bounds for each variable; whilst
Lyapunov’s stability theories allowed to establish sufficient conditions to ensure asymptotic stability
in the nonnegative octant, i.e., R3

+,0. Finally, the predictive ability of our mechanistic model was
explored through several numerical simulations with expected results according to microbiology
literature on batch fermentation.

Keywords: asymptotic stability; batch fermentation; in silico experimentation; Kluyveromyces marxianus;
nonlinear data fitting; nonlinear mechanistic model

1. Introduction

Alcoholic fermentation is an anaerobic process that transforms sugars like glucose
or fructose into ethanol and carbon dioxide. Several yeast species are used commonly in
this process, e.g., Kloeckera, Hanseniaspora, Candida, Pichia, Kluyveromyces, and Saccharomyces
among others. The growth rate of these microorganisms has an ultimate effect on the
sensorial characteristics of the final product, which can be positive or negative depending
on the yeast used [1].

Overall, yeasts are indispensable for biotechnological processes such as wine and
beer production [2]. In this research, we focus on investigating glucose consumption and
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ethanol production from several strains of Kluyveromyces marxianus (K. marxianus). This
yeast has a great potential for alcoholic fermentation due to its intraspecific characteristics
such as higher specific growth rates, the ability to grow on various substrates, and tolerance
to high temperatures [3–5]. Further, Kluyveromyces sp. produces aromatic compounds such
as fruity esters, carboxylic acids, ketones, furans, and other alcohols in liquid fermentation
such as 2-phenyl ethanol whose sensorial characteristics can influence the quality of wine,
distilled drinks, and fermented foods [6]; refer to Fonseca et al. for an extensive review on
the biotechnological potentials of K. marxianus [4,6].

Concerning industrial applications, fermentation is commonly performed in batch
culture, which brings certain advantages such as the reduction of contamination risk, in
addition to the fact that a large capital investment is not necessary since high-priced pro-
duction equipment is not required compared to a continuous culture process [7]. Batch
process implies that yeasts are incubated in a closed container under controlled conditions
with a culture medium composed of the necessary nutrients [8]. Hence, biomass cannot
grow indefinitely and four phases have been identified in its dynamics, i.e., lag phase,
exponential growth, stationary state, and death phase. While this process is carried out, the
substrate is consumed and converted into the product, e.g., ethanol produced by sugars
such as glucose [9]. Therefore, properly identifying the time interval of these phases as well
as predicting the maximum product concentration that could be produced from the initial
concentrations of both substrate and biomass may help to optimize production costs on
the resulting product of several applications. The latter may be achieved by mechanistic
modeling through predictive microbiology, which can be considered a powerful tool to
investigate and summarize the overall effects of varying conditions and environmental
factors within food formulation and processing [10]. Further, mathematical models could
aid in gaining insights concerning microbial food safety and quality assurance of increas-
ingly complex food products [11,12], as well as estimating shelf life and forecasting food
spoilage [13,14].

Mathematical models in predictive microbiology can be classified according to differ-
ent criteria, uses, and functionalities that are not mutually exclusive. Based on the type
and number of variables, models are classified into primary, secondary, and tertiary; they
can also be differentiated on the basis of their mathematical background as mechanistic or
empirical [15], and they can be categorized into structured and unstructured conforming
to the complexity of the chemical compounds of the biomass [16]. Primary models are
those that represent biomass growth dynamics as a function of time, the main equations in
the literature are the exponential functions of Gompertz [17] and Vazquez-Murado [18],
the logarithmic function of Baranyi et al. [19] and the cubic model of Garcia et al. [20].
All models are described by parameters such as maximum growth rate [µmax], lag time
[L], and both initial [X0] and maximum biomass [Xmax] Concentrations, while secondary
models relate to the latter with environmental conditions such as temperature and pH,
and other variables such as substrate and product concentrations over time, e.g., equations
of Monod [21], Teisser [22], Haldane [23], and Moser [24], which aim to describe biomass
growth dynamics as a function of substrate concentration and have been widely used to
investigate bacterial growth [25]. Tertiary models are the result of combining primary
and secondary models through the use of computer tools that allow predictions regarding
the growth or death of microorganisms in food when different environmental conditions
are combined [26]. Concerning the second classification mentioned, mechanistic models
are formulated by means of theoretical bases and provide an interpretation of microbial
growth in terms of known processes and empirical models are usually composed of poly-
nomials of the first or second degree and pragmatically describe the data with convenient
mathematical relationships, this does not usually give information on precise responses
of microorganisms, because they do not take into account known processes [27]. Finally,
according to the third category described, unstructured models consider biomass only
as a chemical compound in a culture and its dynamics is described by simple models,
while structured models also take into account changes in the internal cellular structure of
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biomass in terms such as the content of RNA, enzymes, reagents, metabolism and prod-
ucts [28]. The Gompertz, Vazquez-Murado, Baranyi and Garcia models, mentioned above,
are also classified as unstructured models since biomass is considered a variable described
only by its concentration. Mathematical models used by Sansonetti [29], Lei [30], and
Steinmeyer [31] are classified as structured because they describe the growth of biomass
considering the intracellular reactions produced by its metabolism.

Thus, it is important to highlight that in a batch fermentation process, multiple re-
actions occur, so the adaptability and evolution of microorganisms in short periods and
changes in environmental conditions usually characterize this type of process, consequently,
the modeling of these systems is complex due to time-varying characteristics of biological
systems, resulting in nonlinear systems dynamics [28]. Hence, a mathematical model
formulated from a system of nonlinear differential equations will allow the application
of nonlinear systems control methods to optimize the process so that the characteristics
of the final product can be predicted when the environmental conditions of the culture
are controlled and the initial conditions of biomass, substrate, and product values are
known. It is worth mentioning that most of the models found in the literature focus on
the yeast Saccharomyces cerevisiae since it is one of the most used in the industry; however,
biotechnological opportunities have been found in non-Saccharomyces yeasts because
they have metabolic characteristics that lead to the production of compounds of interest.
Therefore, it is important to model the growth of K. marxianus because of the great potential
in the production of esters compounds of industrial importance [32]. Thus, in this paper,
we applied mechanistic and computational modeling to formulate a system of three cou-
pled nonlinear first-order Ordinary Differential Equations (ODEs) that describe dynamics
between biomass, glucose (substrate), and ethanol (product) concentrations over time.
Mechanistic modeling allowed us to provide both qualitative and quantitative descrip-
tions concerning the relationships of biomass growth, glucose consumption, and ethanol
production from 17 strains of K. marxianus, while computational modeling was used to
fit experimental data from these three variables and establish numerical values for each
parameter of the mathematical model. Further, nonlinear theories such as the Localization
of Compact Invariant Sets (LCIS) method and Lyapunov’s Stability Theory were applied to
provide a complete analysis of the local and global dynamics of our proposed biological
system [33].

2. Materials and Methods

This section provides all the information concerning the experimental data of biomass
growth, substrate consumption and ethanol production, i.e., karyotypes of the K. marxianus
strains with identifiable chromosomal differences among them, environmental conditions,
chemical characteristics of the medium, lab equipment used for measurements, and periods
for each measurement, then the mathematical model is formulated and each equation as
well as values and units of parameters are described. This section concludes by describing
the procedure to approximate the experimental data and to fit the numerical values of each
parameter by designing an algorithm in Matlab.

2.1. Experimental Data: Culture Medium and Analytical Techniques

Experimental data was obtained from alcoholic fermentation in batch culture by
K. marxianus, 17 strains with different genetic profiles were incubated in 20 g/L of yeast
extract peptone dextrose agar at 30 ◦C in order to study their kinetic growth, glucose
consumption and ethanol production. Codification and origin of studied karyotypes of
K. marxianus are identified by Páez et al. in [34], where 15 strains were obtained from
different places of México, and they were isolated from agave fermentation for mezcal
production, in addition to 2 reference strains that were isolated from pozol (CBS6556) in
México, and from yoghurt (CBS397) in Netherlands.

Characteristics of the chemically defined medium are given as follows: glucose 20 g/L,
KH2PO4 3 g/L, (NH4)2SO4 3 g/L, Na2HPO4 1.49 g/L, glutamic acid 1 g/L, MgCl2 heptahy-
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drate 0.41 g/L, ZnCl2 0.0192 g/L, CuCl2 0.0006 g/L, MnCl2 0.044 g/L, CoCl2 0.0005 g/L,
CaCl 0.0117 g/L, FeCl2 0.011 g/L, (NH4)6Mo7O24 0.004 g/L, H3BO4 0.0030 g/L, aminoben-
zoic acid 0.0010 g/L, myo-inositol 0.1250 g/L, nicotinic acid 0.0050 g/L, pantothenic acid
0.005 g/L, pyridoxine 0.0050 g/L, thiamin HCl 0.005 g/L, biotin 0.000024 g/L [35]. This
medium was used to culture the strains for biomass development with agitation, for the
conservation of the strains, plates with the same medium with 20% agar were used and
stored at 4 ◦C.

Biomass concentration was measured with a spectrophotometer UV-VIS DR 6000
(HACH, Loveland, CO, USA) by optical density at 600 nm, values in g/L were obtained
relating optical density with a calibration curve of the dry weight of K. marxianus. For glu-
cose consumption and ethanol production by High-Performance Liquid Chromatography
(HPLC series 1200, Agilent Technology, Palo Alto, CA, USA), a BIORAD HP-87H+(8%) ion
exchange column was used, in an AGILENT® 1200 series equipment, with H2SO4 0.005
N as mobile phase, at a flow of 0.5 mL/min, the column temperature was 60 ◦C, and the
Refractive Index detector temperature was 60 ◦C. The injection volume of 5 µL, calibration
curves were made with glucose and ethanol Sigma Aldrich at 99% purity or higher, and a
determination coefficient higher than 0.99 for each compound [36,37].

Fermentation was made in duplicate for every strain and samples were taken each
hour for 13 consecutive hours. Two samples were taken every hour for each variable in the
time interval of the process where t goes from 0 to 13, then the average value of the two
measurements was computed. Therefore, each variable, i.e., biomass [x(t)], glucose [y(t)],
and ethanol [z(t)], has 14 observations with a total of 42 experimental data points (n) for
each K. marxianus strain.

2.2. The KM Mechanistic Model

The KM mechanistic model is proposed to describe the dynamics of alcoholic fermen-
tation. This is a biochemical process carried out by yeasts (also known as biomass), to
transform sugars such as glucose into ethyl alcohol, otherwise known as ethanol (main
product) and other byproducts. In this case, the alcoholic fermentation is taken in a batch
fermentation process with established laboratory conditions of temperature and known ini-
tial glucose concentrations (substrate). Our mathematical model describes the relationships
between biomass concentration [x(t)], glucose consumption [y(t)], and ethanol production
[z(t)] over time. The set of three first-order ODEs is presented below

ẋ =
ρ1xy

ρ2 + y
− ρ3xz− ρ4x, (1)

ẏ = −ρ5xy− ρ6yz− ρ7y, (2)

ż = ρ8xz + ρ9yz− ρ10z, (3)

where each state variable x(t), y(t) and z(t) are measured in g/L, and the time unit is given
in hours. Now, by considering results from Leenheer and Aeyels (see Section II.A in [38]),
all solutions with nonnegative initial conditions [x(0), y(0), z(0) ≥ 0, ] will be located in
the nonnegative octant as indicated below

R3
+,0 = {x(t), y(t), z(t) ≥ 0},

i.e., each positive half trajectory of the system will be positively forward invariant in R3
+,0.

The latter also considers the biological sense of each variable as there is no meaning for
negative values of biomass, glucose or ethanol in the scope of the KM system (1)–(3). It is
important to mention that variables cannot grow exponentially indefinitely, and they must
have biologically feasible limits which will be discussed in the next section. Values and
units of each parameter of the KM system (1)–(3) are given in Table 1.

55



Entropy 2023, 25, 497

Table 1. Description, values, and units of variables and parameters for the KM mechanistic model.

Variables/
Parameters Description Values Units

x(t) Biomass concentration − g/L

y(t) Glucose concentration − g/L

z(t) Ethanol concentration − g/L

ρ1 Biomass maximum growth rate [289.385, 381.419]× 10−3 h−1

ρ2 Affinity with substrate constant 2.281 g/L

ρ3
Inhibition rate of biomass growth
due to product accumulation 1.066× 10−3 L/(g × h)

ρ4 Biomass death rate 7.275× 10−3 h−1

ρ5 Consumption rate for biomass growth 56.893× 10−3 L/(g × h)

ρ6 Consumption rate for ethanol production 71.842× 10−3 L/(g × h)

ρ7 Glucose spontaneous decomposition rate 824.233× 10−9 h−1

ρ8
Ethanol production associated
with the biomass growth rate [19.088, 49.816]× 10−3 L/(g × h)

ρ9 Glucose converted in ethanol [46.352, 70.349]× 10−3 L/(g × h)

ρ10 Ethanol degradation rate 149.899× 10−3 h−1

Now, let us describe our mechanistic model based on the experimental data described
in the previous section and the following biological assumptions. Biomass growth dynamics
is described by Equation (1), where the first term uses the classical Monod form for the
growth of microorganisms [21], where ρ1 is the biomass maximum growth rate (also
found in the literature as µmax), and ρ2 is the affinity or half-velocity constant for glucose
consumption. The second term describes biomass death due to ethanol accumulation
toxicity by the law of mass action (see Section 2.3 in [39]) with a rate ρ3. This term is
negative because ethanol accumulation increases the membrane fluidity and negatively
affects the membrane protein’s function, which can lead to cell growth inhibition or even
death [40,41]. The third term represents the natural yeast death rate [ρ4] mainly due to
environmental resources depletion [42]. Glucose dynamics is formulated in Equation (2)
as a decrescent function where the law of mass action gives the first two terms. The first
one represents glucose consumption to support biomass growth. In contrast, the second
term accounts for the glucose consumption used for ethanol production, with rates ρ5
and ρ6, respectively. The third term represents the spontaneous decomposition rate of
glucose [ρ7] [43]. The latter stems from the fact that the culture medium is placed in a sealed
container in batch fermentation, and no other nutrients (primarily glucose) are supplied
into the system. Ethanol dynamics is described in Equation (3). The first term represents
ethanol production associated with biomass growth. It is due to ethanol being recognized as
a primary metabolite, a product obtained from reactions required or cellular growth [44,45].
The second term represents the glucose conversion to ethanol not directly linked to cellular
growth, attributed to the need for Gibbs’s free energy for cellular maintenance [44,46]. In
both cases, terms are formulated by the law of mass action with respective rates ρ8 and ρ9.
Finally, the third term represents ethanol degradation with a rate ρ10. The flow diagram
shown in Figure 1 was constructed to illustrate the dynamics of the system.
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Figure 1. Flow diagram describing interactions between each variable and their corresponding
relationship with each parameter.

It should be noted that fixed parameters values were estimated for the 17 K. marxianus
strains, particularly for ρ2, ρ3, ρ4, ρ5, ρ6, ρ7 and ρ10. Further, concerning the death rate
of biomass [ρ4], spontaneous decomposition rate of glucose [ρ7], and degradation rate of
ethanol [ρ10], one can see that they are in a different order of magnitude and the following
constraint is formulated for these three parameters:

ρ10 > ρ4 > ρ7. (4)

Now, concerning the equilibrium points of the KM system, Equations (1)–(3) have a
unique biologically meaningful equilibrium point in the domain R3

+,0 given by

(x∗0 , y∗0 , z∗0) = (0, 0, 0). (5)

Another set of five equilibria with at least one negative value is shown in Appendix A;
therefore, these equilibrium points are discarded from the biologically meaningful dynam-
ics of the system. Further, from the biological characteristics of each variable the following
can be stated with respect to each solution as time increases

lim
t→∞

x(t) = lim
t→∞

y(t) = lim
t→∞

z(t) = 0,

due to the eventual death of microorganisms, glucose consumption and ethanol degrada-
tion [47], asymptotic stability of trajectories is discussed in the next section.

2.3. Parameter Value Estimation

First, let us compute the glucose decomposition rate [ρ7] by assuming a first-order
kinetics [48] for glucose dynamics, and considering a half-life [t1/2] of 96 years [43]. Then,
ρ7 can be computed from the next equation

y(t) = y0e−ρ7t,

as follows y0

2
= y0e−ρ7t1/2 ,

where y0 is the glucose initial concentration, i.e., y(0); hence

ρ7 =
ln 2
t1/2

= 824.233× 10−9 h−1.

Now, in order to determine the numerical values of parameters ρi, i = 1, 2, 3, 4, 5, 6, 8, 9,
10; the computational model of Equations (1)–(3) was formulated as follows
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xi+1 = xi +

(
ρ1xiyi
ρ2 + yi

− ρ3xizi − ρ4xi

)
∆t, (6)

yi+1 = yi + (−ρ5xiyi − ρ6yizi − ρ7yi)∆t, (7)

zi+1 = zi + (ρ8xizi + ρ9yizi − ρ10zi)∆t, (8)

by applying Euler’s method (see Section 1.7 in [49]) where ∆t was set to 1× 10−5. Then, an
algorithm was formulated in Matlab 2022b with the lsqcurvefit function from the optimiza-
tion toolbox as its core [50] (initial points were set as 1× 10−1 for each parameter [ρ1, ρ8, ρ9],
i.e., x0 = [1× 10−1; 1× 10−1; 1× 10−1], and optimotions of the function were set as follows:
Max Function Evaluations = 1× 103, Max Iterations = 1× 103, and Function Tolerance
= 1× 10−9). This allowed us to establish a fixed value for parameters ρj, j = 2, 3, 4, 5, 6, 10;
by averaging the corresponding values for each of the 17 strains, these results are shown
in Table 1. However, this procedure was not applicable for parameters ρ1, ρ8 and ρ9, as it
was expected that each strain of K. marxianus will have its own biomass growth rate [ρ1],
and its corresponding ethanol production rates (ρ8 and ρ9), this is directly linked to the
chromosomal differences among the strains affecting their growth kinetics. Hence, the
main algorithm was redesigned to fit these three parameters and consider the others as
fixed constants. Overall results are shown in Table 2 with their corresponding standard
error (SE), and 95% confidence interval (CI). These two statistics allow us to establish that
estimates for parameters ρ1, ρ8, and ρ9 in the 17 strains are statistically significant. The
latter follows from the fact that each SE(ρk) < ρk/2, k = 1, 8, 9; i.e., the value of the SE is
less than half of the value fitted for each parameter, thus, the null hypothesis [ρk = 0] can
be rejected (see Section 5.2.8 from Koutsoyiannis [51]). Furthermore, both the lower and
upper limit of the 95% CI of all fitted values are positive, hence, as there is no change in the
sign of the bounds, this implies that the value of the null hypothesis is excluded, and one
can conclude that all P-values are less than 0.05 (see Chapter 17 from Motulsky [52]).

Table 2. Fitted values, their standard error [SE(ρk)], and 95% confidence intervals [CI(ρk)] for the
biomass growth rate [ρ1], and ethanol production rates [ρ8, ρ9], where all values are written with a
magnitude of 10−3. Thus, it is possible to identify both lower and upper bounds for the values of the
three fitted parameters as follows ρ1 ∈ [289.385, 381.419]× 10−3, ρ8 ∈ [19.088, 49.816]× 10−3, and
ρ9 ∈ [46.352, 70.349]× 10−3.

Strain ρ1 SE (ρ1) 95% CI (ρ1) ρ8 SE (ρ8) 95% CI (ρ8) ρ9 SE (ρ9) 95% CI (ρ9)

1 312.378 14.457 (283.137, 341.620) 31.563 3.669 (24.140, 38.985) 60.706 1.151 (58.378, 63.033)

2 320.848 8.407 (303.842, 337.853) 40.073 2.395 (35.228, 44.919) 51.253 0.650 (49.937, 52.569)

3 315.502 9.267 (296.756, 334.247) 42.560 2.657 (37.186, 47.935) 52.146 0.797 (50.533, 53.759)

4 319.364 8.448 (302.276, 336.453) 38.795 2.368 (34.005, 43.585) 54.576 0.763 (53.032, 56.119)

5 312.618 13.016 (286.291, 338.945) 30.025 3.939 (22.056, 37.993) 57.305 1.125 (55.030, 59.580)

6 318.556 12.204 (293.870, 343.242) 25.252 3.360 (18.456, 32.048) 60.595 1.126 (58.316, 62.874)

7 336.119 7.376 (321.200, 351.038) 29.110 1.793 (25.483, 32.737) 56.806 0.627 (55.538, 58.075)

8 326.840 11.939 (302.691, 350.989) 25.102 2.794 (19.450, 30.754) 64.465 1.004 (62.434, 66.497)

9 322.375 17.757 (286.457, 358.293) 29.314 4.383 (20.448, 38.180) 61.948 1.570 (58.771, 65.125)

10 381.419 15.931 (349.195, 413.642) 19.088 3.051 (12.915, 25.260) 69.068 1.414 (66.208, 71.928)

11 307.816 9.485 (288.631, 327.002) 48.803 3.070 (42.593, 55.014) 46.352 0.810 (44.714, 47.990)

12 289.385 10.222 (268.709, 310.060) 49.816 3.380 (42.978, 56.654) 48.047 0.887 (46.252, 49.841)
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Table 2. Cont.

Strain ρ1 SE (ρ1) 95% CI (ρ1) ρ8 SE (ρ8) 95% CI (ρ8) ρ9 SE (ρ9) 95% CI (ρ9)

13 309.540 17.851 (273.434, 345.647) 28.475 4.498 (19.376, 37.574) 62.432 1.481 (59.436, 65.428)

14 312.244 12.998 (285.953, 338.536) 25.011 3.442 (18.050, 31.973) 61.883 1.121 (59.615, 64.151)

15 298.551 11.822 (274.638, 322.464) 37.245 3.440 (30.287, 44.202) 57.670 1.036 (55.574, 59.766)

16 335.425 16.486 (302.078, 368.773) 20.480 3.266 (13.873, 27.088) 70.349 1.295 (67.728, 72.969)

17 310.122 9.556 (290.793, 329.451) 44.563 2.980 (38.534, 50.592) 50.780 0.755 (49.252, 52.307)

Finally, it should be noted that the in silico experimentation performed in this research
was done on a high-end desktop computer with a Ryzen 9 5950X CPU, 128 GB of RAM
DDR4 CL18, a 12 GB GPU NVIDIA GeForce RTX 3080, and 1 TB Samsung 980 Pro Gen
4 NVMe M.2. The complete algorithm that was designed to fit the numerical values of
parameters [ρ1, ρ8, ρ9], and to determine results concerning the statistics and goodness of
fit can be found in the Supplementary Materials.

3. Results

In this section, the in silico experimentation is performed by means of several numeri-
cal simulations, and results relating to the nonlinear analysis of the system are derived, i.e.,
bounds for the localizing domain, asymptotic stability, and existence and uniqueness for
all solutions of our model in the nonnegative octant R3

+,0.

3.1. In Silico Experimentation and Goodness of Fit

First, qualitative results are illustrated by means of numerical simulations. For the
sake of simplicity, the strains were clustered in groups of four from strain 1 to the 16
(see Figures 2–5, respectively), and results concerning only for the strain 17 are shown
in Figure 6. In all panels, the × green marker represents the average value for the two
experimental data measurements for each variable, i.e., biomass [x(t)], glucose [y(t)], and
ethanol [z(t)], whilst the blue continuous line represents the approximated value given by
the KM system (1)–(3) when is solved by means of Equations (6)–(8) with ∆t = 1× 10−5.
The time units are given in hours and the concentration for each variable is measured in g/L
as indicated in each axis. Values for all ten parameters corresponding to each strain are
shown in Tables 1 and 2.

Now, let us provide a quantitative measure of the fitting capabilities of the KM
mechanistic model (1)–(3), thus, the coefficient of determination

[
R2] is calculated for each

variable with results shown in Table 3.
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Strain 17

Figure 6. Experimental data (×green marker), and approximated values obtained with the KM
system (continuous blue line) for strain 17; the top panel shows results for biomass [x(t)], the panel
row for glucose [y(t)], and the lower panel for ethanol [z(t)]. The × green marker represents the
average value calculated from the two measurements that were made for each variable in every strain.

Table 3. The R2 provides a measure of how well the experimental data are replicated by the KM
mathematical model (1)–(3) for each strain. This coefficient was computed independently for each
variable, i.e., biomass [x(t)], glucose [y(t)], and ethanol [z(t)]. One can see that the values for
R2 ranges between 0.902 to 0.997 which allows us to conclude an overall well goodness of fit for
the model.

Strain Biomass Glucose Ethanol

1 0.980 0.979 0.923

2 0.983 0.994 0.974

3 0.983 0.990 0.967

4 0.996 0.990 0.974
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Table 3. Cont.

Strain Biomass Glucose Ethanol

5 0.989 0.979 0.926

6 0.995 0.979 0.940

7 0.982 0.997 0.960

8 0.990 0.985 0.951

9 0.953 0.950 0.918

10 0.979 0.972 0.905

11 0.992 0.988 0.974

12 0.985 0.988 0.967

13 0.960 0.962 0.942

14 0.986 0.979 0.947

15 0.992 0.983 0.945

16 0.902 0.974 0.940

17 0.965 0.991 0.973

Further, the Akaike Information Criterion (AIC) [53–55] was computed by considering
a small sample relative to the number of parameters (n/K < 40) with a bias correction as
indicated below

AIC = n ln

(
∑n

i=1[ fe(i)− fa(i)]
2

n

)
+ 2K +

2K(K + 1)
n− K− 1

,

where n is the total number of experimental data points; fe the experimental data and fa the
approximated value for the residual sum of squares (RSS); and K the number of parameters
of the system; therefore, n/K = (3× 14)/10 = 4.2. Results, including RSS, AIC and R2, for
the complete trajectory of the system, i.e., φ(x, y, z) for the total of 42 experimental points
(14 for each variable) are summarized in Table 4.

Table 4. In order to provide overall measures for the fitting capabilities of our mathematical model,
i.e., the KM system (1)–(3), values were calculated for the RSS, the AIC, and the R2 to estimate and
describe the dynamics between the three variables φ(x, y, z), where x(t), y(t) and z(t) represent,
respectively, the evolution of biomass, glucose, and ethanol.

Strain RSS AIC R2

1 28.375 +10.626 0.976

2 9.233 −36.530 0.993

3 13.679 −20.020 0.989

4 12.267 −24.596 0.990

5 26.471 +7.709 0.979

6 24.403 +4.292 0.980

7 7.825 −43.478 0.994

8 19.638 −4.832 0.983

9 48.551 +33.184 0.954

10 37.663 +22.520 0.966
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Table 4. Cont.

Strain RSS AIC R2

11 13.978 −19.111 0.989

12 16.201 −12.912 0.988

13 43.020 +28.105 0.966

14 24.183 +3.912 0.980

15 21.902 −0.248 0.983

16 30.653 +13.869 0.972

17 13.047 −22.005 0.990

The AIC yields a value that relates the amount of information that our model loses
when approximating the experimental data. Hence, one can compare the capabilities of
the model to estimate the concentrations over time of biomass [x(t)], glucose [y(t)], and
ethanol [z(t)] among the 17 K. marxianus strains while providing a statistical measured for
the quality of the KM system (1)–(3).

3.2. Nonlinear Analysis: Localizing Domain, Asymptotic Stability, Existence and Uniqueness

The localizing domain can be determined by computing the upper bounds for all
variables of the KM mechanistic model (1)–(3), the lower bounds are given by the boundary
of the domain R3

+,0, i.e., {xinf = 0, yinf = 0, zinf = 0}. The latter is achieved by means
of integration and the LCIS method [56]. Within the localizing domain, one may find
all biologically meaningful dynamics of the system, i.e., compact invariant sets such as
equilibrium points, periodic orbits, limit cycles and chaotic attractors (see Section 3 in [57]),
among others.

First, in order to find the upper bound for the glucose concentration [y(t)], Equation (2)
is integrated as follows ∫ dy

y
= −

∫ t

0
f (x, z)dt,

where
f (x, z) = ρ5x + ρ6z + ρ7 > 0,

by considering ρ7 > 0 and x(t), z(t) ≥ 0 from the domain R3
+,0. Then,

y(t) = y(0) exp
[
−
∫ t

0
f (x, z)dt

]
,

with y(0) ∈ R+,0. Therefore, all solutions with nonnegative initial conditions will be
bounded as indicated below

Ky =
{

0 ≤ y(t) ≤ ysup = y(0)
}

,

hence, any upper bound for x(t) and z(t) depending on Ky will be directly related to the
glucose initial concentration [y(0)], which is expected as biomass and ethanol production
over time is directly related to glucose dynamics.

Now, let us provide the mathematical background that allows us to compute a localiz-
ing domain where all compact invariant sets of a nonlinear dynamical system are located.
The General Theorem concerning the LCIS method was formalized by Krishchenko and
Starkov (see Section 2 in [58]) and it states the following: Each compact invariant set Γ of
ẋ = f (x) is contained in the localizing domain:

K(h) =
{

hinf ≤ h(x) ≤ hsup
}

.
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From the latter f (x) is a C∞−differentiable vector function where x ∈ Rn is the state
vector. h(x) : Rn → R is a C∞−differentiable function called localizing function, h|S
denotes the restriction of h(x) on a set S ⊂ Rn with S(h) =

{
x ∈ Rn | L f h(x) = 0

}
, and

L f h(x) = (∂h/∂x) f (x) is the Lie derivative of f (x). Hence, one can define
hinf = inf{h(x) | x ∈ S(h)} and hsup = sup{h(x) | x ∈ S(h)}. Furthermore, if all compact
invariant sets are contained in the set K(hi) and in the set K

(
hj
)

then they are contained in
K(hi) ∩K

(
hj
)

as well. The nonexistence of compact invariant sets can be considered for a
given set Λ ⊂ Rn if Λ ∩ K(h) = ∅, then the system ẋ = f (x) has no compact invariant sets
located in Λ.

Following the LCIS method, one can explore the next localizing function

h1 = x + αy; α > 0,

then, the Lie derivative may be written as follows

L f h1 = −ρ4x− αρ7y− αρ5y + αρ2ρ5 − ρ1

ρ2 + y
xy− ρ3xz− αρ6yz,

and the set S(h1) =
{

L f h1 = 0
}

is given by

S(h1) =

{
ρ4x = −αρ7y− αρ5y + αρ2ρ5 − ρ1

ρ2 + y
xy− ρ3xz− αρ6yz

}
,

where x = h1 − αy, therefore set S(h1) is rewritten as indicated below

S(h1) =

{
h1 =

α(ρ4 − ρ7)

ρ4
y− αρ5y + αρ2ρ5 − ρ1

ρ4(ρ2 + y)
xy− ρ3

ρ4
xz− αρ6

ρ4
yz
}

,

and the next two conditions are formulated

ρ4 − ρ7 > 0, (9)

α >
ρ1

ρ2ρ5
, (10)

where (9) is directly fulfilled by (4). Now, let us apply the Iterative Theorem in order to
find an upper bound for the localizing function

S(h1) ∩ Ky ⊂
{

h1 ≤
α(ρ4 − ρ7)

ρ4
ysup

}
,

then

K(h1) =

{
x(t) + αy(t) ≤ α(ρ4 − ρ7)

ρ4
ysup

}
,

from the latter, the upper bound for the biomass concentration [x(t)] may be written in
terms of the parameters and the initial glucose concentration [y(0)] as follows

Kx =

{
0 ≤ x(t) ≤ xsup =

α(ρ4 − ρ7)

ρ4
ysup

}
.

Now, an upper bound for the ethanol concentration [z(t)] can be determined by the
following localizing function

h2 = β1x + β2y + z; β1, β2 > 0,

whose Lie derivative is computed as indicated below
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L f h2 = −β1ρ4x− β2ρ7y− ρ10z− β2ρ5y + β2ρ2ρ5 − β1ρ1

ρ2 + y
xy− (β1ρ3 − ρ8)xz− (β2ρ6 − ρ9)yz,

and at this step, the following conditions are formulated

β1 >
ρ8

ρ3
, (11)

β2 > max
{

ρ9

ρ6
,

β1ρ1

ρ2ρ5

}
, (12)

then, set S(h2) =
{

L f h2 = 0
}

, can be written as follows

S(h2) =

{
ρ10z = −β1ρ4x− β2ρ7y− β2ρ5y + β2ρ2ρ5 − β1ρ1

ρ2 + y
xy− (β1ρ3 − ρ8)xz− (β2ρ6 − ρ9)yz

}
,

hence, as z = h2 − β1x− β2y, then set S(h2) is rewritten as indicated below

S(h2) =

{
h2 =

β1(ρ10 − ρ4)

ρ10
x +

β2(ρ10 − ρ7)

ρ10
y− β2ρ5y + β2ρ2ρ5 − β1ρ1

ρ2 + y
xy− (β1ρ3 − ρ8)xz− (β2ρ6 − ρ9)yz

}
,

where the next condition is formulated

ρ10 > max{ρ4, ρ7}, (13)

and it holds by (4). Then, the Iterative Theorem is applied to get the following result

S(h2) ∩ Kx ∩ Ky ⊂
{

h2 ≤
β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
,

then, the upper bound for the localizing function h2 is derived as follows

K(h2) =

{
β1x(t) + β2y(t) + z(t) ≤ β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
,

now, from the latter one can get the upper bound for ethanol concentration [z(t)] over time
in terms of the parameters, the initial glucose concentration [y(0)] and the upper bound of
biomass

[
xsup

]
as given below

Kz =

{
0 ≤ z(t) ≤ zsup =

β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
.

Results shown above allow us to conclude the following regarding the boundedness
of the KM system (1)–(3) solutions:

Theorem 1. Localizing domain. If conditions (9)–(13) are fulfilled, then all compact invariant
sets of the KM mechanistic model (1)–(3) are located either at the boundaries or within the following
domain

KΓ = Kx ∩ Ky ∩ Kz,

where KΓ ⊂ R3
+,0, and the ultimate bounds for biomass [x(t)], glucose [y(t)], and ethanol [z(t)]

concentrations over time are given below

Kx =

{
0 ≤ x(t) ≤ xsup =

α(ρ4 − ρ7)

ρ4
ysup

}
,

Ky =
{

0 ≤ y(t) ≤ ysup = y(0)
}

,

Kz =

{
0 ≤ z(t) ≤ zsup =

β1(ρ10 − ρ4)

ρ10
xsup +

β2(ρ10 − ρ7)

ρ10
ysup

}
.
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Now, let us briefly provide the mathematical background concerning the stabil-
ity theory in the sense of Lyapunov, particularly the direct method where it is neces-
sary to formulate a Lyapunov candidate function, which is usually denoted as V(x) :
Rn → R, a continuously differentiable function whose temporal derivative is given by
V̇(x) = (∂V/∂x) f (x). This function must be positive definite, i.e., V(0) = 0 and V(x) > 0
for x 6= 0, whilst a negative definite function is also V(0) = 0 but V(x) < 0 for x 6= 0.
Further, function V(x) is said to be radially unbounded if V(x) → ∞ as ‖x‖ → ∞. The
latter allows the formulation of the Global Asymptotic Stability Theorem (see Chapter 4
in [59] and Chapter 2 in [60]) which states the following: The equilibrium point x∗ is globally
asymptotically stable if there exists a function V(x) positive definite, radially unbounded and
decrescent such that its temporal derivative V̇(x) is negative definite. A function V(x) satisfying
properties of this theorem is called Lyapunov function.

Following the latter, let us explore the next Lyapunov candidate function

V(x, y, z) = γ1x + γ2y + z,

with
γ1, γ2 > 0,

then, the time derivative is computed as shown below

V̇(x, y, z) = γ1

(
ρ1xy

ρ2 + y
− ρ3xz− ρ4x

)
− γ2(ρ5xy + ρ6yz + ρ7y) + ρ8xz + ρ9yz− ρ10z,

which can be rewritten as follows

V̇(x, y, z) = −γ1ρ4x− γ2ρ7y− ρ10z− (γ1ρ3 − ρ8)xz− (γ2ρ6 − ρ9)yz− yγ2ρ5 + γ2ρ2ρ5 − γ1ρ1

ρ2 + y
xy,

where it is evident that V̇(0, 0, 0) = 0, therefore the following constraints on coefficients γ1
and γ2 are formulated to ensure V̇(x, y, z) < 0

γ1 >
ρ8

ρ3
, (14)

γ2 > max
{

ρ9

ρ6
,

γ1ρ1

ρ2ρ5

}
, (15)

thus, as parameters ρi, i = 1, 2, 3, 5, 6, 8, 9; in both conditions are different for each term,
then it is possible to assume that there exists a set of solutions that satisfies (14) and (15).
Hence, the following result can be concluded:

Theorem 2. Asymptotic stability. If conditions (14) and (15) are fulfilled, then the KM mech-
anistic model (1)–(3) is asymptotically stable and all trajectories will go to the equilibrium point
(x∗0 , y∗0 , z∗0) = (0, 0, 0).

The latter implies that any given trajectory [φ(x(t), y(t), z(t))] with nonnegative initial
conditions [x(0), y(0), z(0) ≥ 0] passing through any point (x(t), y(t), z(t))T in R3

+,0 its
ω−limit set is not empty and it is a compact invariant set, i.e.,

lim
t→∞

φ(x(t), y(t), z(t)) = (0, 0, 0)T ,

see Lemma 4.1 by Khalil in [59] at Section 4.2 and Theorem 1 by Perko in [61] at Section 3.2.
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Concerning the existence and uniqueness of solutions for the KM system (1)–(3), let us
introduce the following notations for the sake of simplicity

f1(t, x, y, z) =
ρ1xy

ρ2 + y
− ρ3xz− ρ4x,

f2(t, x, y, z) = −ρ5xy− ρ6yz− ρ7y,

f3(t, x, y, z) = ρ8xz + ρ9yz− ρ10z,

and compute the Jacobian matrix [∂ f /∂u](t, u) (see [49] at Section 7.4) with results shown
below for fi(t, u), i = 1, 2, 3; and u = [x, y, z]T

J =




ρ1y
ρ2 + y

− ρ3z− ρ4
ρ1ρ2x

(ρ2 + y)2 −ρ3x

−ρ5y −ρ5x− ρ6z− ρ7 −ρ6y
ρ8z ρ9z ρ8x + ρ9y− ρ10


, (16)

and it is evident that fi(t, u) and [∂ f /∂u](t, u) are continuous and exist on the domain
Ω =

[
t0, t f

]
× KΓ with

[
t0, t f

]
∈ [t0, ∞] and KΓ ⊂ R3

+,0 [33]. Hence, the latter implies that
fi(t, u) is locally Lipschitz in u on Ω (see Lemma 3.2 by Khalil in [59] at Section 3.1). Further,
each element of (16) is bounded by Theorem 1. Thus, the following can be concluded:

Theorem 3. Existence and uniqueness. There is a Lipschitz constant ` ≥ 0 such that
‖[∂ f /∂u](t, u)‖ ≤ ` on Ω. Then, fi(t, u) satisfies the Lipschitz condition

‖ f (t, u1)− f (t, u2)‖ ≤ `‖u1 − u2‖,

and there exists some δ > 0 such that the KM mechanistic model (1)–(3), given as u̇ = fi(t, u)
with u(t0) = u0, has a unique solution over [t0, t0 + δ].

Although conditions for asymptotic stability of the equilibrium point (x∗0 , y∗0 , z∗0) = (0, 0, 0)
in R3

+,0 were established in Theorem 2, it is straightforward to demonstrate its local asymp-
totic stability by evaluating (5) in (16) as follows

J(0,0,0) =



−ρ4 0 0

0 −ρ7 0
0 0 −ρ10


,

where the eigenvalues [λi, i = 1, 2, 3] are given by each element of the diagonal. Thus,
λ1 = −ρ4, λ2 = −ρ7, and λ3 = −ρ10. Therefore, Theorem 4.7 by Khalil in [59] allows us to
conclude the next additional result to Theorem 2:

Corollary 1. Local stability. The equilibrium point (x∗0 , y∗0 , z∗0) = (0, 0, 0) of the KM mechanis-
tic model (1)–(3) is locally asymptotically stable in R3

+,0.

4. Discussion

The KM mechanistic model (1)–(3) was formulated by considering the biological rela-
tionships between each variable in a controlled batch fermentation where concentrations
in g/L were measured for biomass [x(t)], glucose [y(t)], and ethanol [z(t)] over 13 con-
secutive hours. Then, by means of the lsqcurvefit function, an algorithm was developed in
Matlab to approximate the experimental data from the 17 K. marxianus strains discussed at
Section 2; both qualitative (see Figures 2–6) and quantitative (see Tables 3 and 4) results
were shown in Section 3. The in silico experimentation illustrates the capabilities of the
system to approximate the experimental data of each strain, whilst both the R2 and the
AIC provide a value for the goodness of fit of the model to each set of data. In Table 4, one
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can see that R2 values range from 0.955 to 0.994, and AIC from −43.478 to 33.184, these
values are for strains 7 and 9, respectively.

Now, it should be noted that the dynamics between biomass growth, substrate con-
sumption and product generation have been modeled before by means of the logistic
growth law [62], the Pirt Equation [63], and Luedeking–Piret Equation [64] as indicated
below in Equations (17)–(19), respectively:

Ẋ = µmaxX
(

1− X
Xmax

)
, (17)

Ṡ = − 1
YX/S

Ẋ−mX, (18)

Ṗ = αẊ + βX, (19)

where µmax is the biomass maximum growth rate, this parameter is equivalent to ρ1 in our
mathematical model; Xmax the maximum concentration value of biomass in the experimen-
tal data set for the time-interval of the process being observed; YX/S the biomass/substrate
yield; m is the maintenance coefficient; α is the growth-associated coefficient for the product;
and β is the non-growth-associated coefficient for the product. Our algorithm was applied
to approximate the experimental data of the 17 K. marxianus strains with overall results
shown in Table 5.

Table 5. The logistic, Pir, and Luedeking–Piret Equations (17)–(19) provides valuable information
concerning biomass growth [µmax], biomass/substrate yield [YX/S], and product generation [α];
estimated numerical values are given in their respective columns. Concerning the goodness of fit,
results regarding the RSS, AIC, and R2 are provided in the following columns.

Strain µmax
[×10−3] YX/S

[×10−3] α RSS AIC R2

1 442.669 159.066 2.648 35.905 +7.815 0.970

2 451.284 150.295 2.551 19.641 −17.523 0.984

3 437.516 158.265 1.903 23.501 −9.987 0.982

4 428.145 164.594 2.185 25.859 −5.971 0.979

5 417.879 166.067 2.296 50.863 +22.441 0.960

6 434.735 169.347 2.253 48.715 +20.629 0.959

7 482.158 168.159 2.248 21.992 −12.774 0.982

8 463.808 165.934 2.505 47.813 +19.844 0.959

9 455.745 163.157 2.530 40.974 +13.362 0.961

10 544.441 175.477 2.344 55.484 +26.094 0.950

11 422.190 158.260 2.120 23.199 −10.530 0.981

12 394.033 151.888 2.241 34.084 +5.629 0.974

13 433.945 165.334 2.562 83.294 +43.158 0.935

14 437.632 161.878 2.422 52.732 +23.957 0.956

15 394.825 151.920 2.692 42.685 +15.079 0.966

16 523.096 162.308 2.643 41.717 +14.116 0.962

17 421.708 150.435 2.352 28.825 −1.411 0.978

The main comparison between the KM system (1)–(3) and Equations (17)–(19) is
performed with respect to the biomass maximum growth rate, given by ρ1 and µmax, respec-
tively. Tables 2 and 5 show that estimated values of ρ1 are on average ∼0.717 smaller than
those estimated for µmax. The latter is a direct consequence of the biological assumptions
on which each mechanistic model was formulated. The KM system (1)–(3) was constructed
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by considering interactions between the three variables as illustrated in the flow diagram of
Figure 1, whilst the logistic, Pirt, and Luedeking–Piret Equations (17)–(19) are constructed
by only assuming a logistic growth for biomass without taking into account the overall
effect of ethanol production over the entire system as well as the death rate of biomass
[x(t)], decomposition rate of glucose [y(t)], and degradation of ethanol [z(t)]. Further, the
in silico experimentation concerning Equations (17)–(19) illustrated in Figures A1–A5 at
Appendix B shows that approximated values for substrate [S(t)], i.e., glucose, becomes
negative as time increases, which is not biologically possible for this variable. Further,
one can see from the experimental data that ethanol production does not follow a smooth
sigmoidal growth, the data even illustrates degradation among some strains, which is
better approximated by our model as it is shown in the lower panels of Figures 2–6.

When comparing the goodness of fit by computing the AIC and R2, it is evident that
the KM system (1)–(3) had overall better results than the logistic, Pirt, and Luedeking–Piret
Equations (17)–(19). Although the latter has fewer parameters than ours (six and ten,
respectively) and the AIC penalizes a model with more parameters to be fitted, results for
the RSS were lower for the KM system which ultimately worked in our favor. Further, the
capabilities of the KM mechanistic model may extend beyond its ability to approximate
experimental data and estimate the biomass maximum growth rate, in Appendix C the in
silico experimentation illustrates the dynamics for t ∈ [0, 39], i.e., three times the period for
the experimental data. Figures A6–A10 show that as time increases and the substrate is no
longer added into the system, then the death of biomass and degradation of ethanol begins
to take over the system. The latter was expected from the asymptotic stability results of
Section 3, particularly Theorem 2 and Corollary 1, as these state that the concentration of all
variables will eventually be zero, i.e., both biomass [x(t)] and ethanol [z(t)] concentrations
are going to be depleted. Additionally, it is important to note that all solutions of the KM
system are bounded from above, which is consistent with the localizing domain results of
Theorem 1.

Regarding the values of parameters m and β, our algorithm yielded results in the
magnitude of 10−14 for m in all strains; in fact, setting m to zero does not affect the
ultimate results for the other parameters [µmax, YX/S, α, and β] which may allow us to
completely disregard this term [−mX] from Equations (17)–(19). Concerning β, values for
12 strains were in the same order of magnitude

[
10−14], however, the following results

were determined for strains 3, 4, 11, 12, and 17: 87.633× 10−3, 38.660× 10−3, 51.050× 10−3,
53.813× 10−3, 37.702× 10−3, respectively. Hence, the non-growth-associated coefficient for
the product may influence the dynamics in some karyotypes of K. marxianus.

5. Conclusions

Mechanistic modeling has proven to be a powerful tool capable of describing the
relationships between different variables in the dynamics of biological systems when
considering assumptions based on scientific principles underlying the phenomenon being
modeled. In this work, a set of three coupled first-order ODEs was formulated which can
approximate experimental changes over time of alcoholic fermentation in batch culture by
17 different strains of K. marxianus.

The KM mechanistic model (1)–(3) describes biomass growth [x(t)], glucose consump-
tion [y(t)], and ethanol production [z(t)] in concentrations of g/L per hour. The parameter
values of the system were estimated through a nonlinear curve-fitting algorithm in Matlab
with the experimental data of each batch culture fermentation described in Section 2. The
latter allowed us to conclude that seven parameters have the same numerical value for the
dynamics observed in the 17 strains, particularly the affinity with substrate constant [ρ2],
inhibition rate of biomass growth due to product accumulation [ρ3], biomass death rate
[ρ4], consumption rates for biomass growth and ethanol production [ρ5 and ρ6], glucose
spontaneous decomposition rate [ρ7], and ethanol degradation rate [ρ10]; these values are
shown in Table 1. However, the biomass maximum growth rate [ρ1], ethanol production
associated with biomass growth [ρ8], and glucose converted in ethanol [ρ9] parameters
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have specific values for each strain, results are shown in Table 2 with a 95% confidence
interval that gives us the margin of error for each parameter value estimation.

As predictive microbiology establishes, mathematical models must be simplified until
measurable parameters can be obtained, the KM mechanistic model successfully achieves
this with ρ1, ρ8, and ρ9 as the main parameters that describe the overall dynamics of the
batch fermentation process under study in this research. The biomass growth rate is a
very specific value for each strain that must be as high as possible. Ethanol production
with respect to biomass growth represents the fermentative capacity of each strain, and the
concentration of glucose converted to ethanol is directly related to these rates. It should be
noted that in batch culture the latter requires high sugar concentrations to achieve alcoholic
fermentation.

Further, the in silico experimentation illustrates that our model may be able to accu-
rately predict the concentration of each variable as it is shown in Appendix C; nonetheless,
further experimental data are needed to properly validate this assessment. One can see in
Figures A6–A10 that when no more substrate is added to the culture, then biomass growth
goes into the death phase, and ethanol degradation begins to happen in the system. This
behavior is to be expected as the nonlinear analysis of the system allowed us to conclude
that all concentrations will eventually go to zero in the absence of glucose, i.e., the asymp-
totic stability of the equilibrium (5) [(x∗0 , y∗0 , z∗0) = (0, 0, 0)] by Theorem 2 and Corollary 1;
further, concentrations over time of all variables are bounded by the Localizing Domain
Theorem 1. The latter is illustrated in all panels for the predictions of biomass growth [x(t)],
glucose consumption [y(t)], and ethanol production [z(t)].

Finally, the KM mechanistic model may be useful in the field of predictive microbiology,
particularly in alcoholic fermentation through yeast and sugar, such as K. marxianus and
glucose as only three parameters of our system needs to be fitted for different strains.
Furthermore, when comparing the results of the biomass maximum growth rate of our
model with the classic logistic, Pirt, and Luedeking–Piret Equations (17)–(19), our values
are on average 71.7% smaller as the KM system (1)–(3) takes into account the effect of both
substrate and product concentrations in the batch culture over the biomass growth phases.
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Appendix A. Equilibria

In order to further discuss the nonlinear mathematical analysis of Section 3, all equilib-
rium points of the system are calculated and it becomes evident that the origin is the only
biologically meaningful result. The set of equilibria of the KM system (1)–(3) is determined
by solving the next system of equations

f1(t, x, y, z) = x
(

ρ1y
ρ2 + y

− ρ3z− ρ4

)
= 0,

f2(t, x, y, z) = −y(ρ5x + ρ6z + ρ7) = 0,

f3(t, x, y, z) = z(ρ8x + ρ9y− ρ10) = 0,

from which one can compute the following

(x∗0 , y∗0 , z∗0) = (0, 0, 0),

(x∗1 , y∗1 , z∗1) =

(
0,

ρ10

ρ9
,−ρ7

ρ6

)
,

(x∗2 , y∗2 , z∗2) =

(
ρ10

ρ8
, 0,−ρ4

ρ3

)
,

(x∗3 , y∗3 , z∗3) =

(
−ρ7

ρ5
,

ρ2ρ4

ρ1 − ρ4
, 0
)

,

and

(x∗4 , y∗4 , z∗4),

(x∗5 , y∗5 , z∗5),

where

x∗4 =
−ρ1ρ6ρ8 + ρ3ρ5ρ10 − ρ3ρ7ρ8 + ρ4ρ6ρ8 + ρ2ρ3ρ5ρ9 −√ρ

2ρ3ρ5ρ8
,

y∗4 =
ρ1ρ6ρ8 + ρ3ρ5ρ10 + ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 +

√
ρ

2ρ3ρ5ρ9
,

z∗4 =
ρ1ρ6ρ8 − ρ3ρ5ρ10 − ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 +

√
ρ

2ρ3ρ6ρ8
,
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x∗5 =
−ρ1ρ6ρ8 + ρ3ρ5ρ10 − ρ3ρ7ρ8 + ρ4ρ6ρ8 + ρ2ρ3ρ5ρ9 +

√
ρ

2ρ3ρ5ρ8
,

y∗5 =
ρ1ρ6ρ8 + ρ3ρ5ρ10 + ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 −√ρ

2ρ3ρ5ρ9
,

z∗5 =
ρ1ρ6ρ8 − ρ3ρ5ρ10 − ρ3ρ7ρ8 − ρ4ρ6ρ8 − ρ2ρ3ρ5ρ9 −√ρ

2ρ3ρ6ρ8
,

with

ρ = (ρ3ρ7ρ8 + ρ1ρ6ρ8 − ρ4ρ6ρ8 − ρ3ρ5ρ10 − ρ2ρ3ρ5ρ9)
2 + 4ρ3ρ5ρ8(ρ1ρ6ρ10 + (ρ10 + ρ2ρ9)(ρ3ρ7 − ρ4ρ6)).

Now, it is evident that the equilibrium points
(
x∗i , y∗i , z∗i

)
, i = 1, 2, 3; have at least one

negative term. However, although is not straightforward, the same can be concluded
regarding equilibriums

(
x∗4 , y∗4 , z∗4

)
and (x∗5 , y∗5 , z∗5), as these are computed by disregarding

the common term in each equation as follows

ρ1y
ρ2 + y

− ρ3z− ρ4 = 0,

ρ5x + ρ6z + ρ7 = 0,

ρ8x + ρ9y− ρ10 = 0,

and equality ρ5x + ρ6z + ρ7 = 0 can only be fulfilled when either x∗j or z∗j , j = 4, 5; are
negative. Therefore, the KM mechanistic model (1)–(3) has unique biologically meaningful
equilibrium given by

(x∗0 , y∗0 , z∗0) = (0, 0, 0).

Appendix B. Logistic, Pirt, and Luedeking–Piret Equations

This appendix presents results concerning the in silico experimentation when fit-
ting the experimental data to the logistic, Pirt, and Luedeking–Piret Equations (17)–(19).
Figures A1–A5 are aiming to qualitative compare the proposed mathematical model with
the classic model of biomass-substrate-product. Further, a quantitative comparison is
carried out through the coefficient of determination and the Akaike Information Criterion
at Section 4, see Tables 2, 4, and 5.
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Figure A5. Observed data (×green marker), and approximated values (continuous red line) for
strain 17 with the Logistic, Pirt, and Luedeking–Piret Equations (17)–(19).

Appendix C. Predictive Ability of the KM Mechanistic Model

This appendix presents results concerning the in silico experimentation when solving
the KM mechanistic model (1)–(3) for a time interval of t ∈ [0, 39] in order to illustrate its
ability to predict the dynamics of the three variables, i.e., the concentration in g/L over time
between biomass [x(t)], glucose [y(t)], and ethanol [z(t)], after the last experimental data
point without further substrate addition into the batch. It should be noted that at this stage
of the research there is not available data to validate if the model is be able to accurately
predict the evolution of both biomass and ethanol in the system, further experimental
data points could be helpful to better fit the values of biomass death rate [ρ4], and ethanol
degradation rate [ρ10]. However, Figures A6–A10 allow us to illustrate results concerning
Theorem 2 and Corollary 1 from the asymptotic stability analysis.
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Strain 17

Figure A10. Dynamics prediction for strain 17 with the KM system (1)–(3). Observed data are given
by the × green marker, and approximated values by the continuous blue line.
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Abstract: This review provides an overview of the progress made by computational and systems
biologists in characterizing different cell death regulatory mechanisms that constitute the cell death
network. We define the cell death network as a comprehensive decision-making mechanism that
controls multiple death execution molecular circuits. This network involves multiple feedback and
feed-forward loops and crosstalk among different cell death-regulating pathways. While substantial
progress has been made in characterizing individual cell death execution pathways, the cell death
decision network is poorly defined and understood. Certainly, understanding the dynamic behavior
of such complex regulatory mechanisms can be only achieved by applying mathematical modeling
and system-oriented approaches. Here, we provide an overview of mathematical models that have
been developed to characterize different cell death mechanisms and intend to identify future research
directions in this field.

Keywords: cell death; apoptosis; necroptosis; ferroptosis; pyroptosis; immunogenic cell death;
regulatory networks; death execution pathways; mathematical models; computational analysis

1. Introduction

Mathematical modeling is a powerful tool that allows one to connect molecular biology
to cell physiology by associating the qualitative and quantitative features of dynamical
molecular networks with signal–response curves measured by cell biologists [1]. Mathe-
matical and systems-oriented approaches have been successfully applied to describe the
dynamics of complex molecular networks that control cell cycle [2,3], nutrient signaling [4],
checkpoints [5], signaling dysregulation in cancer [6], and cell death [7–13]. Systems-
oriented mathematical approaches are especially useful for analyzing complex systems that
cannot be understood by intuitive reasoning. Undoubtedly, cell death regulation is one such
molecular mechanism that cannot be fully understood without mathematical modeling.
Here, we provide an overview of mathematical models that have been successfully applied
to quantitatively characterize death signaling networks.

Cell death mechanisms are directly involved in regulations of tissue homeostasis,
inflammation, immunity, development and other physiological processes [14]. Charac-
terization of new genes and molecular components, involved in signaling pathways by
regulating cell death, continues to progress. A detailed characterization of cell death
regulation can help identify novel targets and develop effective therapeutic protocols to
strike acquired drug resistance in cancer cells. Accurate predictive mechanistic models
of complex molecular networks regulating cell death can be used to test the effects of
new drugs on the system, and to search for synergistic drug combinations and effective
treatment protocols. Different modeling approaches have been already successfully ap-
plied to model extensive cell death molecular networks. Ordinary differential equations
(ODEs), Boolean logic, pharmacokinetic-pharmacodynamic (PK-PD), Petri nets, agent-
based modeling (ABM), cellular automata and hybrid approaches are the common choices
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available to model molecular mechanisms involved in cell death control, decisions and
execution [6,12,13,15–19].

Cell death execution is an all-or-none, irreversible process [20]. Mathematically the
activation of irreversible cell death can be described by an irreversible bistable switch with
a stable survival steady state, a stable death steady state, and a third unstable steady state
separating the survival and death states [21–24]. A pro-death signal can induce cell death by
driving the bistable system from the survival to the death state. The transition occurs when
the pro-death signal reaches a threshold that corresponds to the limit point bifurcation.
Transition in the reverse direction, from death to survival, is impossible because the second
limit point bifurcation, where the death steady state vanishes, occurs in the biologically
irrelevant negative signal values (i.e., the concentration of a death-inducing ligand or
stressor cannot be negative). Therefore, the activation of the cell death execution in such a
bistable system cannot be reversed, even if the initial cell death trigger is removed. This
mathematical description of the cell death activation is consistent with a threshold mecha-
nism for cell death induction [25] and an all-or-none death decision [22,26,27]. Importantly,
understanding how cells control the cell death/survival switch can help to identify targets
that can force cancer cells to flip the switch to activate the irreversible cell death execution.

Complexity of cell death regulatory networks, a requirement to account for all impor-
tant regulating molecular details and pathways, availability of merely small sets of sparse
data for model calibration, as well as under- and over-fitting of the model are issues that
must be routinely solved in order to develop a predictive model of cell death [6,15]. This re-
view describes mathematical models that have been successfully applied to quantitatively
characterize such cell death control mechanisms as apoptosis, necroptosis, ferroptosis,
pyroptosis and immunogenic cell death.

2. Apoptosis

Apoptosis is one of the most well-studied and characterized programmed cell death
mechanisms. The detailed characterization of molecular interactions involved in apopto-
sis, and the growing amount of related quantitative data, has encouraged computational
and systems biologists to develop mathematical models of apoptosis [12,13,17]. Over the
last twenty years, several dozen mathematical models of apoptosis regulation have been
described. These apoptosis models aim to explain different data or effects of different
treatments on cell death. While the core molecular components regulating apoptosis are
shared by all models, variations in molecular circuit designs, components, data, mathe-
matical approaches, and study goals make each model a unique tool to study apoptosis.
Most often, molecular mechanisms of apoptosis are mathematically represented using
ODEs [7,21,22,25–33], Boolean logics [34–36], and Petri nets [16]; other computational
approaches have also been applied [18,37,38].

The execution core of apoptosis regulation involves a family of proteases termed
caspases. Caspases can be separated into the following two groups: effector or executioner
caspases (caspase-3, -6, -7), and active initiator caspases (e.g., caspases-8, -9). Activation
of the caspases initiates the cleavage of several important cellular proteins, such as actin
and nuclear lamins, which results in cell body and nuclear shrinkage and cell death [39].
Apoptosis can be processed through mitochondria-dependent (intrinsic apoptosis) and
mitochondria-independent (extrinsic apoptosis) caspase-3 activation pathways [14]. The
core components involved in these two pathways are commonly included in all math-
ematical models of apoptosis and can be found in the earliest mathematical models of
apoptosis [7].

Extrinsic apoptosis is characterized by high amounts of active caspase-8 that activates
the downstream effectors caspase-3, caspase-6, and caspase-7. The activation of caspase-8
is receptor-mediated, which occurs upon receipt of a death signal that is processed by a
surface death receptor such as FAS (a member of the tumor necrosis factor gene superfam-
ily) [14]. Therefore, extrinsic apoptosis is a receptor-mediated cell death mechanism, as
shown in Figure 1 (left). By contrast, intrinsic apoptosis can be executed even in cells with
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lower levels of active caspase-8 but requires an additional amplification that involves activa-
tion of the pro-apoptotic functions of the mitochondria. For example, stress-related factors
(e.g., DNA damage) can induce activation of the executioner caspases via a mitochondria-
dependent pathway in the absence of an external death signal [40] (Figure 1, right panel).
The mitochondria-dependent pathway begins with the cleavage of anti-apoptotic Bcl-2
family members, which causes the aggregation of pro-apoptotic proteins such as Bax and
Bak. Aggregation of pro-apoptotic proteins is followed by the release of cytochrome c from
the mitochondria, which induces the formation of a large protein complex known as the
apoptosome. The apoptosome recruits and activates caspase-9, allowing it to cleave the
downstream effectors pro-caspase-3, pro-caspase-6, and pro-caspase-7. Notably, the expres-
sion of anti-apoptotic Bcl-2 family members can block the intrinsic apoptosis signaling in
cells. By contrast, extrinsic apoptosis cannot be blocked by the expression of high levels of
Bcl-2 proteins because large amounts of caspase-8 are already generated.
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The earliest mathematical models of apoptosis described both mitochondria-dependent
and independent death activation pathways. In early 2000, Fussenegger et al. published
a mechanistic ODE-based mathematical model of apoptosis that describes both receptor-
mediated and stress-induced caspase activation mechanisms [7]. The receptor-mediated
feature of the model describes the FAS surface receptor that activates procaspase-8. Acti-
vation of apoptosis initiator caspases involves the following reactions: the binding of an
extracellular death ligand to the FAS receptor, the binding of FAS-associated death domain
(FADD) protein to the FAS death domain, and the binding of caspase-8 to a domain on
FADD that enables caspase-8 activation by proteolytic cleavage. Each binding process is
described by a specific rate parameter in the model. Simulation results show that about
50% of procaspase-8 is activated within two hours after the death signal is received. After
procaspase-8 activation, the executioner caspase is activated within minutes, and then the
initiation of procaspase-9 occurs with the lag time ~20–30 min. The activation curves have
a sigmoidal shape indicating, that the transition between the inactive to the active state
is characterized by a threshold. If the binding between FADD and clustered FAS death
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domains is disrupted, then only <0.1% of active caspase-8 is observed upon receipt of the
death signal, which is consistent with experimental observations [41].

Fussenegger’s model of stress-mediated apoptosis regulation describes the activation
of procaspase-9 by cytosolic cytochrome c, and the apoptotic protease-activating factor
1 (Apaf-1) complex. Activated caspase-9 then activates apoptosis executioner caspases
at some specific rate. Formation of the Apaf-1–cytochrome c complex is inhibited by
antiapoptotic Bcl-2 family members such as Bcl-xL. Proapoptotic Bcl-2 family members
(e.g., Bax, Bak) can bind to antiapoptotic family members and remove their inhibitory
effect. The ratio of anti- versus pro-apoptotic Bcl-2 family members is controlled by
the p53 transcription factor that is activated in cells under stress conditions. Simulation
results of stress-induced caspase activation dynamics were consistent with experimental
observations [42]. Specifically, the model shows that cytochrome c is released within 10 min
after a stress death signal is received, which results in procaspase-9 activation, 35–40% of
the executioner caspase being active within 1 h, and 70% of the executioner caspase being
active at 2 h. In addition, simulations revealed that the active fraction of both initiator
and executioner caspases is reduced in p53 mutant cells as compared to wild-type cells.
Overexpression of antiapoptotic Bcl-2 family members is predicted to block the activation
of procaspase-9. The model also confirms that the ratio of anti- versus pro-apoptotic Bcl-2
family members determines whether or not executioner caspases will be activated. The
model was then used to predict the effects of combined therapies based on simultaneous
receptor- and stress-induced caspase activation.

The model developed by Fussenegger et al. was successful in explaining qualita-
tive experimental observations. However, more quantitative data would be required to
complete the model calibration. Quantitative information on reaction rates and molecular
concentrations is required to perform reliable mathematical simulations of signal trans-
duction in the apoptosis regulatory network. In 2004, Eissing et al. developed a reduced
receptor-induced apoptosis, using parameter values from the literature to evaluate the
system behavior within a wide range of parameters [21]. The model revealed that caspase
activity remains low for a time that is inversely proportional to the stimulus strength,
followed by a steep rise in activity when the input exceeds the threshold; caspase activity
then ceases at some maximum level. Bifurcation analysis of the model confirmed that
the apoptosis regulation system exhibits a bistable behavior. The same year, Bentele et al.
developed a data-based model of receptor-induced apoptosis with parameters estimated
on the basis of quantitative experimental data [25]. The time series data for concentra-
tions of 15 different molecules after activation of FAS receptors were used to calibrate
the core model of the FAS-induced apoptosis. In addition, data from distinct apoptosis
activation scenarios in response to different initial values of ligand concentration were used
to improve the estimation of model parameters. The model predicted that apoptosis is
not executed when a ligand–receptor concentration ratio is below a critical value, which
was also confirmed by experimental observations. In conclusion, Bentele et al. proposed a
threshold mechanism for induction of receptor-induced apoptosis. A year later, Hua et al.
published a FAS-induced apoptosis model to investigate the effects of altering the level of
Bcl-2 on the kinetics of caspase-3 activation [43]. The model predicts that Bcl-2 blocks the
mitochondrial pathway by binding to proapoptotic Bax, Bak, and tBid proteins. Further,
the model predicts that apoptosis signaling flow can be switched between mitochondria-
dependent and mitochondria-independent pathways by varying molecular component
levels without changing network structure.

In 2006, Legewie et al. developed a quantitative kinetic model of intrinsic (stress-
induced) apoptosis, which displays an all-or-none behavior of caspase activation in re-
sponse to an apoptotic stimulus [22]. The model helped to identify the positive feedback
mechanism that allows cells to achieve ultrasensitivity and bistability in cell death decision
making. The pathway molecular regulators that control the apoptotic threshold stimulus
and integrate multiple inputs into an all-or-none caspase output were also determined.
Time-course simulation results agreed with experimental observations that the induction
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of maximal caspase-3 cleavage after exogenous addition of cytochrome c occurs within
~15–60 min. Furthermore, cytochrome c-induced activation of caspase-3 was observed
to be bistable and irreversible. The bistable and irreversible caspase-3 activation arises
in the system due to XIAP-mediated feedback that cooperates with caspase-9 cleavage
by caspase-3. X-linked inhibitor of apoptosis (XIAP) inhibits the catalytic activities of
caspase-9 and caspase-3 through reversible binding. The feedback cleavage of caspase-9 by
caspase-3 leads to autoamplification of the apoptotic signal. Simulation results show that
XIAP-mediated feedback is observed only if caspase-9 and caspase-3 compete for binding to
XIAP. Depletion and re-addition experiments using different Apaf-1, caspase-3, caspase-9,
and/or XIAP concentrations were proposed to test the all-or-none caspase activation.

Also in 2006, Rehm et al. published a computational model of apoptosome-dependent
caspase activation based on biochemical data from HeLa cells [26]. The model predicts that
the all-or-none apoptotic response depends on caspase-3-dependent feedback signaling
and XIAP, which was then verified quantitatively using single-cell experiments with a
caspase fluorescence resonance energy transfer substrate. A concentration threshold of
XIAP between 0.15 and 0.30 µM, controlling the substrate cleavage by effector caspases,
was identified. The model suggested that high levels of XIAP may promote apoptosis
resistance and sublethal caspase activation. This result agrees with a computational analysis
that was performed earlier, which also suggested that the inhibitor of apoptosis plays an
important role in both the induction and prevention of apoptosis [44]. Conversely, Bagci
et al. proposed a mathematical model of mitochondria-dependent apoptosis to study both
the role of Bax and Bcl-2 synthesis, degradation rates and the number of mitochondrial
permeability transition pores involved in the cell response to a death signal [23]. The
main finding was that the transition from bistable to monostable (survival) cell behavior is
controlled by the synthesis and degradation rates of Bax and Bcl-2 and by the number of
mitochondrial permeability transition pores. Also, the model results suggested that cooper-
ative apoptosome formation is a much more robust mechanism to induce bistability than
feedback mechanisms involving, for example, the inhibition of caspase-3 by the inhibitor of
apoptosis. Later, Chen and Cui et al. analyzed the robustness of Bax and Bcl-2 apoptotic
switches using both deterministic and stochastic models [38,45,46]. These mechanisms
were confirmed to be bistable and robust to noise and wide ranges of parameter variation.

Albeck et al. developed a mathematical model of extrinsic, receptor-induced apoptosis
to explain the molecular mechanism of the variable-delay, snap-action switch function
that determines the cell choice between life and death [27]. The model was calibrated by
experimental data collected from live-cell imaging, flow cytometry, and immunoblotting
of cells perturbed by protein depletion and overexpression. The model was then used
to reveal the mechanism by which a steady and gradual increase in caspase-8 activity is
converted into a snap-action downstream signal. Permeabilization of the mitochondrial
membrane and relocalization of proteins are the key factors in the extrinsic apoptosis
network by which a graded signal that activates caspase-8 and promotes the formation of
pores in the mitochondrial membrane is transformed into an all-or-none death decision.
Importantly, such snap-action behavior at the level of the mitochondrial outer membrane
permeabilization occurs independently of caspase-dependent feedback mechanisms. The
formation of pores in the mitochondrial membrane involves the pore-forming proteins
Bax and Bak that can self-assemble into transmembrane pores, which are antagonized
by anti-apoptotic Bcl-2 proteins [47]. Cytochrome c is released into the cytosol when the
level of active pore-forming proteins exceeds the threshold set by anti-apoptotic Bcl-2
proteins. Using experimental and modeling techniques, Spencer et al. demonstrated that
cell-to-cell variability in time-to-death significantly depends on the activation rate of the
tBid protein that activates the pore-forming proteins, Bax and Bak [33]. Therefore, in
the case of receptor-mediated apoptosis, the timing and probability of death relies on the
differences in the protein levels that can be caused, for example, by noise in gene expression.
Furthermore, the stochastic protein turnover in a receptor-mediated apoptosis model can
result in fractional killing [48].
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Later models were developed to investigate crosstalk between apoptosis regulation
and NF-κB pathways [32], the estrogen signaling network [31], endoplasmic pathways [28],
and autophagy regulation [29]. Neumann et al. described a model of the crosstalk between
receptor-mediated apoptosis regulation and NF-κB signaling that are activated by the same
receptor in parallel to the apoptotic signaling and on a similar time scale [32]. Model and
experimental analysis suggested that the balance between apoptotic and NF-κB signaling is
shaped by the proteins that regulate the assembly dynamics of the death-inducing signaling
complex (DISC). Therefore, the assembly of DISC acts as a signal processor, determining
life/death decisions in a nonlinear manner. Tyson et al. provided a roadmap for a detailed
mathematical model that would allow researchers to characterize the crosstalk among
the estrogen signaling network, apoptosis, autophagy, and cell cycle regulations in breast
epithelial cells [31]. Later, the same research lab published a detailed mathematical model to
examine the decision process that moves a cell from autophagy to apoptosis [29]. The model
was successful in explaining quantitative time-course data of autophagy and apoptosis
under cisplatin treatment. Further, the model allows for characterization of the prosurvival
and prodeath cell responses to cytotoxic stress. Also, in 2012, Hong et al. published
a model of cisplatin-induced apoptosis that integrates the death receptor pathway, and
mitochondrial and endoplasmic reticulum stress response mechanisms [28]. The model
predicts the relative contribution of each signaling pathway to apoptosis. Simulation results
revealed that the mitochondrial and death receptor pathways as well as crosstalk among
pathways make the greatest contribution to the level of apoptosis, whereas the contribution
of the endoplasmic reticulum stress pathway is negligible.

The Role of p53 in Apoptosis

The tumor suppressor gene p53 (TP53) has been reported as an upregulated modulator
of apoptosis and as a driver of cell fate transition from cell cycle arrest to apoptosis [49].
Mathematical models that characterize the p53 contribution to apoptosis have been devel-
oped by several groups [7,23,28,30,50]. p53 targets many genes regulating cell apoptosis,
including BCL2 and BAX genes [51]. Computational study of apoptosis regulation shows
that the balance between anti- and proapoptotic Bcl-2 family members is altered in p53
mutant cells [7]. Also, the active fraction of both initiator and executioner caspases is
reduced in p53 mutant cells as compared with wild-type cells. The mathematical model
also predicts that overexpression of the death ligand and the FAS receptor can be used
to initiate executioner caspase activation in p53 mutant cells [7]. Bagci et al. have shown
that apoptosis is not sensitive to caspase-3 activation when p53 expression is low, and that
bistability to apoptotic stimuli is observed when p53 level is high [23]. Predictions from this
apoptosis model agree with experimental data [52]. Another study reported that inhibition
of p53 protects against cisplatin-induced apoptosis [28]. Cisplatin induces DNA damage
that results in the phosphorylation and activation of p53. There, the activation of Bax
by p53 induces mitochondrial membrane permeabilization and apoptosis [53]. Also, p53
mediates caspase-2 activation and the mitochondrial release of apoptosis-inducing factor.
The model predicts time courses for p53, caspase-2, Bax activation, apoptosis-inducing
factor release and apoptosis activation. Simulation results agree with experimental data
that p53 inhibition prevents the mitochondrial release of apoptosis-inducing factor and
cisplatin-induced apoptosis [54]. Overexpression of p53 results in caspase-2 activation and
also the mitochondrial release of apoptosis-inducing factors [54].

Ballweg et al. developed a mathematical model that integrates p53 signaling, cisplatin-
induced events, and apoptosis regulation that was used to study the dynamics of fractional
killing induced by cytotoxic drugs [30]. Many drugs activate not only apoptosis execution
signaling but also expression of anti-apoptotic genes, which results only in fractional killing
amongst a population of treated cells [55]. Thus, fractional killing may occur due to crosstalk
between the apoptosis and survival pathways [56]. The model predicts that the probability
of apoptosis depends on the dynamics of p53 and the rate of p53 activation determines
the cell fate [30]. Slow activation of p53 results in cell survival, whereas fast p53 activation
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induces cell death. This result also agrees with the experimental observation showing that
apoptotic cells accumulate p53 much earlier than cells that survive the treatment [55]. In
the model, activation of Bax and subsequent execution of apoptosis occur when the level
of p53 exceeds a threshold value. However, the apoptosis initiation threshold depends on
the inhibitor of apoptosis, cIAP. Cells with an elevated level of cIAP require a higher level
of p53 to induce apoptosis. Because the level of apoptosis regulator cIAP increases with
time, the rate of p53 activation plays an important role in the determination of cell fate.
Cell-to-cell variability due to stochastic gene expression and environmental noise can also
set different apoptosis initiation thresholds in different cells, resulting in fractional killing.

Up to this point, we have reviewed mathematical models of apoptosis that use ODEs to
describe the mechanism of cell death (apoptosis) regulation. However, other mathematical
approaches have been also used to study apoptosis regulation [16,18,34–37]. Several apopto-
sis models have been developed using a Boolean (logical) approach that can analyze exten-
sive regulatory networks with many molecular components and their interactions [34–36].
Schlatter et al. developed an apoptosis regulation model that comprises 86 nodes and
125 interactions [34]. Mai et al. developed a model that describes 37 internal states of
signaling molecules involved in apoptosis regulation, 2 extracellular signal inputs, and
the DNA damage event as an output [35]. Calzone et al. developed a model to study
crosstalk between receptor-mediated apoptosis regulation, NFκB pro-survival pathways,
and RIP1-dependent necroptosis regulation [36]. These models were used to characterize
feedback loops in the apoptosis regulation network structure.

While Boolean models are excellent tools to reproduce the qualitative behavior of a
regulatory network, they are weak at addressing detailed quantitative questions about
molecular mechanisms [19]. Petri nets have been applied to analyze and validate a qualita-
tive model of extensive apoptosis regulation [16]. Agent-based modeling turned out to be a
more appropriate approach for modeling the death-inducing signaling complex assembly
than an ODE-based model that must describe a large number of intermediate products
involved in DISC assembly [37]. A cellular automata approach has been applied to study
apoptosis blocking in the immunological response of T cells by varying the inhibitor actions
such as FLIP and IAP [18]. The model predicts that only joint suppression of both FLIP and
IAP apoptosis inhibitors can effectively act to kill cancer cells through apoptosis.

In conclusion, comprehensive data and extensive experimental characterization of
apoptosis allowed computational and systems biologists to develop several mathematical
models of apoptosis regulation. These models not only increase our understanding of mech-
anisms of apoptosis execution induced by stress or signals, but also predict perturbations
that can prevent or enhance apoptosis. An accurate mathematical model of apoptosis can
help find novel combinations of existing therapies that can induce the death of cancer cells
using low doses. Further studies that integrate apoptosis with other cell death regulations
will help to understand the cell death decision mechanism that determines the execution of
a specific cell death fate.

3. Necroptosis

Necroptosis is a regulated cell death that can be initiated by changes in extracellular
or intracellular homeostasis, detected by specific death receptors [14]. Triggering necrop-
tosis primarily involves the receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed
lineage kinase domain-like protein (MLKL). Necroptosis can be induced by the binding
of tumor necrosis factor (TNF) or other ligands to cell surface receptors that trigger the
sequential phosphorylation of receptor-interacting protein kinases. At a cell physiology
level, necroptosis results in cell volume expansion, cell membrane rupture, and intracel-
lular material overflow that leads to a local inflammatory reaction and immune response
activation. Necroptosis-inhibiting drugs can be used to treat inflammatory diseases [57].
Necroptosis-promoting drugs are potential anticancer therapies [58]. Studies of necrop-
tosis regulation can help to identify molecular targets that can be used to reprogram the
necroptosis execution in a desired direction. While many molecular components involved
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in necroptosis regulation are known, the precise interaction network, signaling spread,
dynamic behavior of necroptotic regulation, and the decision-making processes within the
molecular network, remain poorly understood. Several mathematical models have been
developed recently to characterize the dynamics of necroptosis regulation [8,59].

Xu et al. have developed a computational model of the cellular necroptosis signaling
network [8], to study the necroptosis signaling dynamics that lead to cell death in the form
of oscillation-induced trigger waves. The study focused on the core cellular necroptosis
signaling module that includes four components: TRADD, RIP1, caspase-8, and RIP3. The
activities of key components are regulated either by phosphorylation, dephosphorylation,
or cleavage. The corresponding mathematical model described 4 variables and involved
10 interaction terms. Xu et al. used a Latin hypercube sampling method to randomly
scan the model network parameters and evaluate the stable oscillation behavior of the
cellular necroptosis signaling circuit. Bifurcation analysis and potential landscape theory
were applied to explore oscillation modes in different cellular necroptosis signaling circuits.
The results indicate that the cellular necroptosis signaling circuit more likely produces
oscillations when the total amount of RIP1 or caspase-8 is high, while fluctuations in the
value of RIP3 have no significant effects on the oscillation probability. Also, oscillations are
often obtained when the activation of caspase-8 by RIP1 is fast, while RIP3 phosphorylation
by RIP1 is relatively slow. Further, oscillations are more robust when the reaction rate
constants that describe RIP1 activation by RIP3 are stronger than rate constants describ-
ing other interactions. Overall, oscillation robustness analysis revealed three regulatory
feedback loops formed by RIP1, caspase-8, and RIP3 interactions. These loops comprise
a negative feedback loop: RIP3 activates RIP1, which activates caspase-8, that inhibits
RIP3; a positive feedback loop: RIP1 activates RIP3, which inhibits caspase-8, that inhibits
RIP1; and an incoherent feedforward loop: RIP1 activates both caspase-8 and RIP3, and
caspase-8 inhibits RIP3. Importantly, for oscillations to be robust, the reactions in the posi-
tive feedback loop must be slower than reaction rates in the negative feedback loop. Also, a
stochastic parameter analysis indicated that the incoherent feedforward loop is the essential
molecular mechanism that allows the necroptosis signaling system to generate oscillations.

Xu et al. classified oscillations that occur in cellular necroptosis signaling circuits
into four groups according to amplitude and oscillation period. About 50% of observed
oscillations had a high-amplitude (above the median value of all the counted amplitudes)
and fast period (>100 min based on the oscillation period of NF-κB [60,61]), about 37% of
oscillations had a low-amplitude and fast period, ~12% of oscillations had high-amplitude
and slow period, and ~1% of oscillations had a slow and low-amplitude period. Further
analysis revealed that the inhibition rates of RIP1 and RIP3 by caspase-8 play an important
role in determining the amplitude behavior of fast oscillations. In addition, bifurcation
analysis revealed that the dynamic behavior of the system can be switched from slow
high-amplitude oscillations to slow low-amplitude oscillations by tuning the parameters
that describe the activation of caspase-8 by RIP1. However, the transition from fast to slow
oscillation behavior cannot be achieved by changing any single reaction rate constant. Also,
the system changes dynamics from slow high-amplitude oscillations to fast low- or high-
amplitude oscillations when two parameters that describe RIP1 inhibition with caspase-8
and RIP1 phosphorylation with RIP3 are simultaneously tuned. Robustness analysis
revealed that the period of fast oscillations was more robust to parameter perturbations
than the period of slow oscillations. The amplitude of slow low-amplitude oscillations was
robust to parameter perturbations, while the robustness of amplitude of fast high-amplitude
oscillations was the weakest. Overall, the study provides a quantitative characterization
for the mechanism of oscillation mode-switching behavior in the necroptosis signaling
network. Xu et al. proposed that MLKL can decode the information according to the
amplitude and period of RIP3, which can be an important mechanism that allows cells to
generate different responses in various stressful conditions.

A more recent detailed computational model of tumor necrosis factor (TNF)-induced
necroptosis has been developed by Ildefonso et al. [59]. The model was derived from
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the literature-curated molecular mechanisms of necroptosis regulation, which involves
14 proteins, 37 biochemical species, and 40 reactions. The simplified molecular mechanism
that shows key species involved in necroptosis execution is shown in Figure 2. Dynamics
of species were described by a set of ordinary differential equations where all reactions
were described by the mass action law. The model was calibrated and validated using
experimental protein time-course data from a well-established necroptosis-executing cell
line. Simulations then confirmed that the model is successful in explaining the dynamics of
necroptosis reporter, phosphorylated mixed lineage kinase domain-like protein (pMLKL).
Furthermore, four distinct necroptosis execution modes were identified by using a dynami-
cal systems analysis and a spectral clustering algorithm. While the temporal dynamics of
pMLKL were similar in each mode of necroptosis execution, the sequences of molecular
events that led to MLKL phosphorylation and subsequent necroptotic cell death were dif-
ferent. The modes primarily differed in the values of rate constants across the necroptosis
execution pathway. For example, the rate constant for binding of A20 to ubiquitinated RIP1
was significantly smaller in mode 4 than in the other modes, and also smaller in mode
2 relative to modes 1 and 3. Also, mode 4 has a significantly larger activation rate and
smaller deactivation rate constant for caspase-8 in complex II. The activation/deactivation
of caspase-8 in complex II is a critical step in the pathway for determining whether the
cell will progress to necroptosis. Differences in rate constant values create the difference in
the action of A20 and CYLD enzymes across four modes that are then able to effectively
operate as an inhibitor or activator of necroptosis.
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Taken together, the computational analysis helped to resolve the controversy in ex-
perimental observations by showing that CYLD- and A20-driven deubiquitination of RIP1
may act as pro- and anti-necroptotic in different cell types. According to Ildefonso et al.’s
model, knocking out A20 decreases the probability of necroptosis execution (necroptosis
sensitivity) in mode 1, and increases the sensitivity to necroptosis in mode 2 [59]. Con-
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versely, knocking out CYLD increases the sensitivity to necroptosis in modes 1 and 4, and
decreases the sensitivity to necroptosis in mode 2. Knocking out CYLD or A20 has no effect
in mode 3. Also, A20 knockout has no effect in mode 4. These results have been compared
to cell phenotype observations in A20 and CYLD knockdown experiments in different cell
types. For example, it has been reported that RIP1 is deubiquitinated by both A20 and
CYLD in mouse fibrosarcoma cells, but inhibition of CYLD protects cells from necroptosis,
while A20 depletion can sensitize cells to death by necroptosis [62]. Thus, A20 and CYLD
depletion experiments in mouse fibrosarcoma cells are consistent with the model results
obtained for A20 and CYLD knockouts in mode 2.

TNF, TNFR, and MLKL are three common protein modulators of necroptosis across
the four modes of necroptosis execution. Furthermore, rate constants that control the
association of TNF to TNFR, ubiquitination of RIP1 by cIAP in complex I, and association
of LUBAC to complex I can be used to efficiently modulate necroptosis execution across the
four modes. Therefore, targeting these modulators can be used to induce or prevent necrop-
tosis, potentially useful for both cancer therapy and treatment of inflammatory diseases.

Apoptosis and necroptosis regulation networks share common nodes and edges and
may suppress each other [63]. Either apoptosis or necroptosis can be induced by TNF and
the cell death decision depends on the cell state. Complex II can recruit RIP3 to form a
necrosome or recruit caspase-8 to stabilize its active conformation, resulting in the release
of an activated caspase 8 homodimer that then can induce apoptosis [64]. Li et al. [65] per-
formed a quantitative study of crosstalk between the apoptosis and necroptosis pathways.
Specifically, mathematical modeling was used to investigate three possible mechanisms
of caspase-8 activation by (i) TRADD, (ii) RIP1, and (iii) TRADD and RIP1 together. The
law of mass action was used to convert the proposed molecular mechanisms into a system
of ODEs. Simulations of each mechanism were compared with data obtained using the
sequential window acquisition of all theoretical fragment ion spectra mass spectrometry
methods. All three mechanisms reproduced the amounts of major components in TNFR1,
RIP1, and RIP3 complexes. However, only mechanism (ii) could explain a negative regula-
tion of RIP3 phosphorylation by the increase in RIP1 levels. This result was also supported
by a sensitivity analysis showing that the most robust negative regulation of RIP3 phos-
phorylation by RIP1 is achieved when mechanism (ii) is used in the model. To test this
prediction, Li et al. experimentally knocked down RIP1 to three different expression levels
by using RIP1-specific short hairpin RNA and measured the increase in TNF-induced
phosphorylation of RIP3 and MLKL. Deletion of RIP1 completely blocks TNF-induced RIP3
phosphorylation [65]. In addition, simulation results show that pro-caspase-8 activity is
necessary for the up-regulation of RIP3 phosphorylation by decreasing RIP1 expression.
The mechanism was further refined to make it in agreement with the observation that
TNF induces quick caspase-8 activation and apoptosis in RIP1 KO cells [62]. Specifically,
TRADD-dependent caspase-8 activation was added to the mechanism (ii). The final model
successfully explained both RIP1′s biphasic roles in necroptosis, where RIP1 promotes
necroptosis within an extremely low-level range (<∼2% of wildtype) and inhibits necropto-
sis at higher levels, and the activation level of caspase-8 in RIP1 KO cells. Also, the response
of pro-caspase-8 to RIP1 level is linear, whereas RIP3 phosphorylation is determined by the
nonlinear (ultrasensitive) threshold pattern.

Overall, a quantitative approach has been applied successfully to describe the roles of
RIP1 in cell death determination. In conclusion, Li et al. proposed a “speed competition”
decision mechanism in which cells decide to execute apoptosis or necroptosis by the
pathway that reaches the final destination first. Interestingly, simultaneous execution of
necroptosis and apoptosis has been observed in some individual cells [65].

4. Pyroptosis

The regulated cell death that is associated with the formation of plasma membrane
pores by members of the gasdermin protein family is called pyroptosis [14]. The induction
of pyroptosis may occur as a consequence of inflammatory caspase activation that can
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be triggered by pathogen invasion such as Gram-negative bacteria. The critical role of
caspase-driven pyroptosis for innate immune responses against invading bacteria has been
confirmed in experiments with mice carrying gene mutations that disrupt normal activity
of caspase proteins [66]. By killing the host cell, pyroptosis removes the replication com-
partment of intracellular pathogens and thus prevents their spreading. Hence, pyroptosis
has an important role in innate immunity against intracellular pathogens.

Pyroptosis induced by inflammatory caspases is driven by the gasdermin protein
GSDMD. Caspases activate GSDMD that then translocates to the plasma membrane where
GSDMD induces pore formation and thus rapid plasma membrane permeabilization. The
simplified molecular mechanism of the pyroptosis induced by inflammatory caspases is
shown in Figure 3. In this scheme, pyroptosis relies on caspase-1 activation.
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Beyond inflammatory settings, pyroptotic cell death can be induced by TNF, various
DNA-damaging agents, and infection with vesicular stomatitis virus [67,68]. In these cases,
pyroptosis is driven by other members of the gasdermin family, specifically GSDME. This
form of pyroptosis releases fewer inflammatory cytokines than is observed when pyropto-
sis is induced by inflammatory caspases. Pyroptotic signaling relies on the activation of
caspase-3 that catalyzes proteolytic cleavage of GSDME. The identification of other gasder-
min family members that execute pyroptosis in conditions that are beyond inflammatory
settings has been significantly expanded [14].

A computational study of the crosstalk between caspase-1- and caspase-3-driven
pyroptosis pathways was performed by Zhu et al. [9]. The molecular regulatory network
that executes pyroptosis via activation of GSDMD and GSDME is shown in Figure 3. The
crosstalk between caspase-1- and caspase-3-driven pyroptosis pathways is realized through
tBid, caspase-9, and caspase-8 components. Zhu et al. developed a mathematical model
that describes the dynamics of seven molecular components and the dynamics of the cell
population governed by cell proliferation and death processes. The model consists of
eight coupled ODEs and 83 parameters. Hill functions were used to describe activation
and inactivation reactions for molecular components. The values of 44 parameters were
estimated from sources available in the literature and 39 parameters were estimated using
138 time-course data points that were measured for eight variables (the death rate and
seven molecular components) in wild-type cells and cells with single, double, and triple
knockouts of the molecular components.

The pyroptosis decision mechanism was analyzed using bifurcation and sensitivity
analysis methods. Bifurcation analysis revealed that the change in expression levels of
caspase-1, caspase-3, and GSDMD can switch between GSDMD- and GSDME-executed
pyroptosis death modes. Furthermore, the transition between pyroptosis death modes
could not be efficiently controlled by varying the expression levels of caspase-8, caspase-9,
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tBid, or GSDME. According to the model, GSDMD-driven pyroptosis is more likely when
the caspase-1 total expression level is below∼1.5 nM and GSDME-driven pyroptosis occurs
when the caspase-1 level is above 14 nM. For caspase-1 levels ranging from 1.5–14 nm,
bistability is observed when either GSDMD- or GSDME-driven pyroptosis may occur.
Similarly, when GSDMD level is lower than 88 nM, GSDME-driven pyroptosis is induced,
whereas cells can selectively execute either pyroptosis mode when the level of GSDMD
is between 88 nM and 165 nM. GSDMD-driven pyroptosis occurs when GSDMD level is
higher than 165 nM. Also, cells execute GSDMD-driven pyroptosis when caspase-3 level is
lower than 250 nM, and selectively induce either GSDMD- or GSDME-executed pyroptosis
with higher levels of caspase-3.

Sensitivity analysis confirmed that the expression levels of GSDMD and caspase-1
can efficiently change the pyroptosis death modes. This result agrees with experimental
observations [69,70]. In addition, bifurcation analysis predicts that the expression level of
caspase-3 can also change the pyroptosis death mode between caspase-1- and caspase-3-
driven pyroptosis. Overall, the model predicted 3 molecular components and 12 reactions
that can be targeted to control the switch between modes of pyroptosis execution. Drugs
that can switch between pyroptosis death modes can help to improve treatment protocols
for cancer and inflammasome-mediated diseases. For example, GSDME-induced pyroptosis
can act as a tumor suppressor [71,72] and also releases fewer inflammatory cytokines when
compared to pyroptosis that is executed by GSDMD.

Li et al. extended the GSDMD-induced pyroptosis model by adding apoptosis regula-
tion [73]. The model allows one to study the crosstalk between pyroptosis and apoptosis
and inflammasome-induced cell death under different perturbation conditions. Simulation
results reproduce the dynamics of cell death executioners in multiple knockout cells. Py-
roptosis and apoptosis events are determined by the level of cleaved GSDMD and cleaved
caspase-3, respectively. Sensitivity analysis was performed to determine the molecular
components that can significantly affect the occurrence of pyroptosis and apoptosis. The
model predicted that caspase-1 and GSDMD are key molecular regulators directing the sig-
nal flow that can switch cell death modes between pyroptosis and apoptosis. Decreases in
caspase-1 or GSDMD gradually inhibit pyroptosis and enhance apoptosis induction. These
model predictions were validated by caspase-1 and GSDMD-knocked down experiments.
Furthermore, the model results helped to suggest the death signal propagation pathways,
resulting in pyroptosis or apoptosis in cells expressing different levels of caspase-1 or
GSDMD. To understand the roles of caspase-1 and GSDMD in triggering the cell death
modes, Li et al. employed a potential landscape approach. The cell death landscape was
represented by potential wells corresponding to pyroptosis and apoptosis death modes.
In the double-well potential landscape, the system evolved into one of the two wells from
any initial condition. Caspase-1 or GSDMD could change the potential landscape from
monostable to bistable. A monostable landscape corresponding to pyroptosis is obtained in
cells with a high expression level of caspase-1 or GSDMD; the potential landscape changes
to bistable and then to an apoptotic monostable as the expression level of caspase-1 or
GSDMD decreases. Overall, the model helps to understand the inflammasome-induced cell
death, crosstalk between pyroptosis and apoptosis, and may be used to determine potential
molecular targets for driving cells into a desired death execution mode.

5. Ferroptosis

Ferroptosis is another regulated cell death mechanism that involves iron-catalyzed
lipid damage [14,74,75]. Cell death occurring by ferroptosis correlates with the accumula-
tion of markers of lipid peroxidation and can be suppressed by iron chelators, inhibitors of
lipid peroxidation, and lipophilic antioxidants [75]. Ferroptotic cell death can be modu-
lated pharmacologically and genetically by perturbing lipid repair systems that involve
glutathione and glutathione peroxidase 4 (GPX4) that convert toxic lipid hydroperoxides (L-
OOH) into non-toxic lipid alcohols (L-OH) [76]. Depletion or inactivation of GPX4 results in
overwhelming lipid peroxidation that causes cell death. Ferroptosis also depends on a set of
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enzymatic reactions that regulate the biosynthesis of membrane polyunsaturated fatty acids
(PUFA)-containing phospholipids, which are the substrates of pro-ferroptotic lipid peroxi-
dation products [75]. Also, the formation of coenzyme-A-derivatives of PUFAs (PUFA-CoA)
and their insertion into phospholipids are necessary for the induction of a ferroptotic death
signal. Two enzymes, ACSL4 and LPCAT3 are involved in the biosynthesis and remodeling
of PUFAs [75,77]. Depletion of PUFAs can suppress the occurrence of ferroptosis, and loss
of ACSL4 and LPCAT3 gene products increases resistance to ferroptosis [75].

Iron induces the accumulation of lipid peroxides and thus is important for the exe-
cution of ferroptosis. Intracellular iron levels depend on the iron efflux pump ferroportin
and the iron importer TFR1 and other proteins that regulate iron import, export, and
storage [78–80]. Also, for ferroptosis to start, phospholipid molecules containing polyun-
saturated fatty acids (LH-P) are formed from PUFA-CoA, which are then oxidized into
lipid hydroperoxides (L-OOH) and eventually into lipid radicals (LO*). LH-P generation
is regulated by LPCAT3 and inhibited by monounsaturated fatty acids (MUFAs). Pro-
duction of MUFAs depends on desaturation of the saturated fatty acids (SFAs) which is
catalyzed by the desaturase SCD1 [81]. Formation of lipid radicals LO* is promoted by
reactive oxygen species (ROSs) and lipid peroxidation enzymes including ALOX15 [74,82].
The generation of endogenous lipid radicals initiates ferroptosis. In addition, ferroptotic
cell-death responses can be modulated by p53 activity [83]. For example, induction of SAT1,
a transcription target of p53, is correlated with the expression levels of ALOX15 [83]. The
influence diagram that reflects the molecular mechanism of ferroptosis is shown in Figure 4.
Overall, ferroptosis is morphologically and mechanistically different from all other types of
regulated cell death. Regulation of ferroptosis has great potential for cancer therapy, and
molecular targets that promote ferroptosis are being actively explored [84].
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Konstorum et al. developed a stochastic, multistate, discrete mathematical model of
ferroptosis regulation [10]. The model describes states of eleven variables that represent
ALOX15, GPX4, L-HP, LIP, LO*, L-OOH, LPCAT3, MUFA, PUFA-CoA, ROS, and SLC7A11.
Each variable can take on three values that respectively represent low, medium, and high
molecular species activity or expression level. Variables are updated using updating rules
and an asynchronous update scheme at each discrete time step. Five external inputs
representing ACSL4, ferroportin, p53, SCD1, and TFRC, which do not change during
the course of the simulation, are used to study the sensitivity of ferroptosis induction to
different signaling and perturbation conditions.

Konstorum et al. used a system-level analysis to study how different input conditions
and parameters alter ferroptosis sensitivity. They found that ferroptosis sensitivity depends
on PUFA synthesis and PUFA incorporation into the phospholipid membrane, as well as the
balance between levels of pro-oxidant species (ROS, lipoxygenases) and antioxidant factors
(GPX4). Ferroptosis sensitivity can be reduced by altering parameters that minimize the
production of L-OOH species. High ACSL4 and low SCD1 levels result in high ferroptosis
sensitivity. The model also predicted that a high level of SCD1 can inhibit ferroptotic
induction even when levels of ACSL4 are high. These model predictions were validated
using an in vitro experimental system of an ovarian cancer stem cell culture [10]. Overall,
the model allows us to better understand the crosstalk between pathways transmitting
signals from different inputs that induce the execution of ferroptosis.

6. Immunogenic Cell Death

Immunogenic cell death (ICD) is a regulated cell death mechanism that induces an
immune response in the hosts [14]. Basically, ICD is an immunostimulatory form of apop-
tosis that is characterized by the ability of dying cells to generate robust adaptive immune
responses [85]. The immune response is promoted by damage-associated molecular pat-
terns (DAMPs), which are released by dying cells [86]. DAMPS communicate a state of
danger to the organism by activating pattern recognition receptors (PRRs) that are present
on the surface of innate immune cells such as monocytes, macrophages, and dendritic cells
(DCs) [87]. Activated macrophages and dendritic cells can migrate to the lymph node and
pass the antigens to CD8+ and CD4+ T lymphocytes, which results in an adaptive immune
response. Tumor cell systems are often used to study ICD regulation and dynamics [88].
The immune responses against cancer- or pathogen-driven antigens that induce ICD are
well characterized [85]. Importantly, over the past years, developments of ICD-related
cancer immunotherapy approaches are gaining great momentum [89].

To study the ICD dynamics of cancer cells, Checcoli et al. developed a mathematical
model that integrates intracellular mechanisms involved in ICD and intercellular interac-
tions among cancer cells, DCs, CD8+, and CD4+ T cells [11]. The modeling approach is
based on a continuous time Boolean Kinetic Monte-Carlo formalism that was successfully
applied to model different complex molecular mechanisms [90]. The aim of the mathemati-
cal characterization of ICD processes was to identify the regulatory molecular targets and
combinations of pharmacological compounds that can increase anticancer immunity. The
model can predict the time-dependent size of different cell populations involved in ICD
that is induced by a treatment exposure.

To determine the role of each of the main cell types involved in ICD, Checcoli et al.
first simulated a core ICD mechanism that is merely sufficient to reproduce ICD events
observed experimentally [11]. The core regulatory mechanism describes the release of
CALR, ATP, and HMGB1 molecules from dying tumor cells, and inner-state activation
or evolution of immature DC, activated DC, migrating DC, lymph node DC, T cell, and
cytotoxic T lymphocyte cell types. As shown in Figure 5, also included are two processes:
tumor cell division, which is inhibited by T cells, and death, which is promoted by cytotoxic
T lymphocytes. The states of molecules and cells are described by Boolean variables that
can take two values: 1 for active or present and 0 for inactive or absent. The system state is
described by a vector of Boolean values that represent each molecule, process, and cell type
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in the system. In the probabilistic description, the probability is assigned to each system
state, such that the sum of probabilities over all possible system states is equal to 1. Then,
to determine the number of cells in a given system state, the system state probability is
multiplied by the overall size of the cell population.
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and inhibition (bar head) influences. A-DC, M-DC, and L-DC represent activated DC, migrating DC,
and lymph node DC cell types, respectively.

The core model can reproduce the series of events following an ICD-inducing inter-
vention. The release of CALR, ATP, and HMGB1 molecules by dying cancer cells occurs
within hours, a slow increase in T cells begins after 100 h, which peaks at 200 h, and the
tumor cells are eliminated in about 220 h when a rapid increase in cytotoxic T lymphocyte
cell population begins. When the clonal expansion of the cytotoxic T lymphocytes was
blocked in the model, tumor cell clearance became less efficient and depended mostly on
the direct cytotoxicity of the treatment.

To improve the predictive power of the model, Checcoli et al. extended their core
model by including more cell types and molecular components as well as the ligand–
receptor dynamics that determines intercellular communication. The extended model
describes 57 entities and provides more detailed representations of the series of events that
were explored by the core model. Simulation results of the extended model also reproduce
the succession of events resulting in ICD. Simulations were performed starting with 80% of
tumor cells, 10% of dendritic cells, and 5% of inactive CD4+ and CD8+ cells. The population
of tumor cells rapidly decays starting from 250 h when cytotoxic T lymphocytes are engaged
to eliminate tumor cells.

To assess the extended model robustness to parameter changes, Checcoli et al. per-
formed a sensitivity analysis measuring the variations in sizes of tumor cell populations
within the 220 h and 280 h time frame when the tumor cell population decreases in the
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standard conditions (WT) of the extended model [11]. The decrease in size of the tumor
cell population was seen to be delayed only for a few parameter changes when compared
with the WT condition. Changes in parameters that control the number of DCs gave the
strongest effect. A lower amount of DCs delayed the time of death, whereas a higher
amount enhanced the death process. Changes in parameters controlling the rate of T cell
clonal expansion give a similar effect on the cell death process. Sensitivity analysis also
suggested the points of intervention that had the strongest effect on ICD. For example, a
complete knockout of CD28 or CD80 (costimulatory molecules for T cell activation) resulted
in a failure of the ICD-inducing treatment (80% of the tumor cell population persists at
t = 280 h). By contrast, an external treatment that increases Interleukin-2 (IL-2) could kill
the tumor cells faster, at t = 200 h.

The Boolean approach does not provide quantitative details and different regimens
of drug treatments. Nevertheless, the model characterizes ICD events and dynamics in
cancer cells and predicts molecular targets that could increase tumor clearance. For future
directions, Checcoli et al. suggested to include specific in vitro and in vivo experiments
to identify parameter values that will agree with experimentally observed timing of the
different events leading to tumor clearance [11]. Further extension of the model including
effects of IFNγ or TGFβ on the immune cells, and major signaling pathways inside each
cell type, will allow the model to predict more feasible pharmacological interventions that
can boost ICD for killing tumor cells.

7. Discussion

The significant progress that has been made in the mathematical characterization of
different cell death execution pathways offers quantitative insight into cell death control
and mechanistically explains why and how a living cell may die. Table 3 summarizes cell
death mathematical model development over a 22-year period. We include the modeled
cell death mechanism, methods, a mathematical description of the cell death event used
in each model, and the main modeling results obtained in each work. ODE and Boolean
logic-based approaches are the most common mathematical techniques used to model
cell death mechanisms. However, a physical description based on the potential landscape
theory has been recently applied to study stochastic dynamics and global stability of cell
death signaling pathways [8,73]. In this approach, the steady state probability distribution
of a system Pss and a dimensionless potential function E are related via Boltzmann relation:
E = −ln(Pss) [91]. The physical description allows one to employ thermodynamics to
analyze cell death regulatory circuits. Conversely, entropy-based approaches have been
applied to analyze biological networks [92] and a cell fate selection process [93,94], they
have not been yet applied to characterize cell death decision mechanisms. Therefore, one
promising future direction is to describe cell death networks using physical approaches
that could help to reveal new functional system states and unknown properties of cell
death regulatory mechanisms.

Table 1. Summary of cell death mechanism models.

Authors, Year, Cell Death Mechanism
Modeled Methods. Death Rule (DR) Results

Fussenegger et al., 2000 [7], receptor- and
stress-induced apoptosis

ODE approach. DR: the ratio of
executioner caspase to free Bcl-xL is

greater than a threshold value

Qualitative explanation of observed
caspase activation dynamics

Eissing et al., 2004 [21], receptor-induced
apoptosis

ODE approach, stability and bifurcation
analysis methods. DR: The bistable
system is in apoptotic steady state

Bistable behavior of caspase-3 activation

Bentele et al., 2004 [25], receptor-induced
apoptosis

ODE approach, sensitivity analysis. DR:
receptor–ligand ratio is greater than a

threshold value

A threshold mechanism for induction of
receptor-induced apoptosis
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Table 2. Cont.

Authors, Year, Cell Death Mechanism
Modeled Methods. Death Rule (DR) Results

Hua et al., 2005 [43], receptor-induced
apoptosis

ODE approach, sensitivity analysis. DR:
caspase-3 activation

Bcl-2 blocks the mitochondrial apoptosis
pathway by binding to proapoptotic

proteins

Legewie et al., 2006 [22], intrinsic
apoptosis

ODE approach, stability and bifurcation
analysis methods. DR: irreversible

caspase-3 activation

Bistable and irreversible caspase-3
activation arises in the system due to

XIAP-mediated feedback

Rehm et al., 2006 [26], intrinsic apoptosis
ODE approach, sensitivity analysis. DR:
complete caspase-dependent substrate

cleavage

All-or-none apoptotic response depends
on caspase-3-dependent feedback

signaling and XIAP

Bagci et al., 2006 [23],
mitochondria-dependent apoptosis

ODE approach. DR: caspase-3 activation
is above a threshold that depends on Bax

degradation and expression rates.

The transition from bistable to
monostable (survival) cell behavior is

controlled by the number of
mitochondrial permeability transition

pores

Chen and Cui et al., 2007, 2008 [38,45,46],
intrinsic apoptosis

Deterministic and stochastic approaches,
robustness analysis. DR: one-way
bistable switch of Bax-activation

Apoptotic switches are bistable and
robust to noise

Albeck et al., 2008 [27], extrinsic
apoptosis

ODE approach, compartmental modeling.
DR: mitochondria-to-cytosol cytochrome
c and Smac translocation in an all-or-none

manner

Permeabilization of the mitochondrial
membrane and relocalization of proteins
are the key factors in all-or-none death

decision

Spencer et al., 2009 [33], extrinsic
apoptosis

ODE approach. DR: levels of activated
tBid, Bax, and Bak exceed a threshold set

by inhibitory Bcl-2 proteins

Cell-to-cell variability in time-to-death
depends on activation of the

pore-forming proteins Bax and Bak

Neumann et al., 2010 [32], crosstalk
between receptor-mediated apoptosis

and NF-κB signaling

ODE approach, sensitivity analysis. DR:
the maximum level of active caspase-8 is

used as a readout for apoptosis

Assembly of DISC acts as a signal
processor determining life/death
decisions in a nonlinear manner

Hong et al., 2012 [28], crosstalk between
apoptosis and ER stress response

mechanisms

ODE approach, sensitivity analysis. DR:
the level of apoptosis is determined by an

ODE that depends on caspases-2,3,9,8
and apoptosis-inducing factor

Crosstalks among the mitochondrial,
death receptor and ER stress response

pathways contribute to the level of
apoptosis

Tavassoly et al., 2015 [29], crosstalk
between autophagy and apoptosis

ODE approach. DR: apoptosis occurs as
soon as proapoptotic BH3 exceeds

antiapoptotic Bcl2 protein

Time courses of the relative level of
autophagy for different levels of stressor

and percentage of apoptotic cells

Ballweg et al., 2017 [30], crosstalk
between p53 signaling and apoptosis

ODE approach, dynamical analysis. DR:
the level of p53 is elevated higher than a

threshold that depends on cIAP level

The probability of apoptosis depends on
the dynamics of p53

Schlatter et al., 2009 [34], apoptosis Boolean logic and multi-value logic
approach

High connectivity, crosstalks, and
feedback loops in apoptosis regulatory

network are significant and essential for
apoptosis signaling

Mai et al., 2009 [35], intrinsic and
extrinsic apoptosis

Boolean logic approach. DR: the “DNA
Damage Event” node has remained in the

ON state for 20 successive steps

The feedback loops directly involving the
caspase 3

are essential for maintaining
irreversibility of apoptosis

Calzone et al., 2010 [36], apoptosis and
non-apoptotic cell death (necroptosis)

Boolean logic approach. DR: “Apoptosis”
node or “NonACD” node is in ON state

Transient activation of key proteins in
necroptosis and mutual inhibitory

crosstalks among apoptosis, survival and
necroptosis pathways
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Table 3. Cont.

Authors, Year, Cell Death Mechanism
Modeled Methods. Death Rule (DR) Results

Xu et al., 2021 [8], cellular necroptosis
signaling circuits

ODE approach, sensitivity analysis,
bifurcation and potential landscape

methods.

The structure and distribution
characteristics of all parameters are

essential for stable oscillation behavior of
necroptosis circuits

Ildefonso et al., 2022 [59], necroptosis
regulation

ODE approach, DREAM parameter
estimation method, sensitivity analysis.
DR: phosphorylated MLKL exceeds a

hard threshold of 2772 molecules

Four distinct necroptosis execution
modes

Li et al., 2021 [65], crosstalk between
apoptosis and necroptosis regulatory

networks.

ODE approach. DR: apoptosis occurs
when RIP1 level < ∼1000 molecules/cell,

co-occurrence of
apoptosis and necroptosis when ∼46,000

mpc< RIP1 > ∼1000 mpc,
necroptosis alone when RIP1 >∼46,000

mpc

Characterization of RIP1’s biphasic roles
in necroptosis

Zhu et al. [9], crosstalk between caspase-1
and caspase-3 driven pyroptosis

pathways

ODE approach, bifurcation and
sensitivity analysis methods. DR: Cell
death rate is defined using a ratio of

dying cell population to the initial cell
population

The change in expression levels of
caspase-1, caspase-3, and GSDMD can

switch between GSDMD- and
GSDME-executed pyroptosis death

modes

Li et al., 2022 [73], crosstalk between
pyroptosis and apoptosis regulations

ODE and potential energy landscape
approaches. DR: by levels of cleaved

GSDMD (pyroptosis) and cleaved
caspase-3 (apoptosis)

Caspase-1 and GSDMD are key proteins
that regulate the switching between

pyroptosis and apoptosis

Konstorum et al., 2020 [10], ferroptosis
regulation

Stochastic, multistate, discrete
mathematical approach. DR:

intermediate and high levels of the lipid
radical LO*

Ferroptosis sensitivity depends on PUFA
synthesis, PUFA incorporation into the

phospholipid membrane, and the balance
between levels of pro-oxidant species and

antioxidant factors

Checcoli et al., 2020 [11], immunogenic
cell death (ICD) mechanism

Boolean Kinetic Monte-Carlo approach.
DR: Death node is at 1

The succession of events resulting in ICD.
Points of intervention that had the

strongest effect on ICD

Importantly, many different cell death pathways share common molecular compo-
nents, and thus all these pathways can interact together at any time to form a complex
mechanism. Therefore, we hypothesize that cell death can be controlled by a singular,
highly integrated cell death decision network, see Figure 6. This network enables cells
to alter the signal flow through the shared nodes but with different edges and so select
alternative cell death execution pathways within a single control network of cell death.
A stress death signal can thus initiate multiple death mechanisms but not all reach an
execution threshold. Currently, the molecular mechanism that regulates the selection of
each specific death execution pathway remains elusive. In addition, mathematical models
developed to study crosstalk between necroptosis and apoptosis [65], pyroptosis and apop-
tosis [73], autophagy and apoptosis [29] support the hypothesis that signals propagating
through different cell death pathways are integrated to process the execution of specific
cell death. We are developing a mathematical model of the cell death decision network to
predict the molecular species and interactions that direct the signal flow towards a specific
irreversible cell death fate. Such a model will provide new insights into the integrated
control of cell death. Model predictions will help develop new approaches to either block
or initiate irreversible cell death and identify which cell death pathways are blocked and
which pathways remain accessible to execute cell death. Thus, model predictions will
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suggest alternative interventions to overcome a block in cell death activation that can occur
in cancer cells that acquire drug resistance.
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Abstract: In this paper, we study the system size expansion of a stochastic model for radiation-
induced DNA damage kinetics and repair. In particular, we characterize both the macroscopic
deterministic limit and the fluctuation around it. We further show that such fluctuations are Gaussian-
distributed. In deriving such results, we provide further insights into the relationship between
stochastic and deterministic mathematical models for radiation-induced DNA damage repair. Specifi-
cally, we demonstrate how the governing deterministic equations commonly employed in the field
arise naturally within the stochastic framework as a macroscopic limit. Additionally, by examining
the fluctuations around this macroscopic limit, we uncover deviations from a Poissonian behavior
driven by interactions and clustering among DNA damages. Although such behaviors have been
empirically observed, our derived results represent the first rigorous derivation that incorporates
these deviations from a Poissonian distribution within a mathematical model, eliminating the need
for specific ad hoc corrections.

Keywords: biophysical modeling; radiation-induced DNA damage; system size expansion; DNA
damage repair

1. Introduction

Radiotherapy is one of the most effective and used cancer treatment modalities [1].
Traditionally, radiotherapy relies on photons; however, in recent decades, there has been
a growing interest in advanced radiotherapy using ion beams. Ion beams offer several
advantages over photons [2], particularly their ability to release energy in a highly localized
manner within tissues, potentially leading to a more effective biological response with
reduced collateral effects in healthy tissues. Extensive research of the scientific community
has focused on studying the effects of radiation on biological tissue, with DNA being iden-
tified as the most vulnerable target for radiation-induced damage leading to cell death [3].
Despite the theoretical advantages of using ion beams, further research is necessary to
integrate this treatment modality into clinical practice fully. One significant challenge in the
widespread adoption of ion beams lies in accurately determining their biological effects, as
this is crucial for prescribing the most suitable treatment. Over the years, mathematical
models have been developed to understand and predict the biological impact of ions on tis-
sue, particularly in relation to DNA Double Strand Breaks (DSB) [4–10]. These mathematical
approaches aim to describe the formation, progression, and clustering of DSBs, ultimately
striving to predict the cell survival probability following radiation exposure.

Despite the inherently stochastic nature of biological pathways, most existing mathe-
matical models, until now, have relied on deterministic frameworks with a priori assump-
tions about the Poisson distribution and disregarded the stochastic fluctuations in energy
deposition. These fluctuations occur from cell to cell, particularly in complex radiation
environments. In particular, the Microdosimetric Kinetic Model (MKM) [5,11], together with
the Local Effect Model (LEM) [12,13], is one of the only two mechanistic models used in
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clinical treatment planning, which describes the temporal evolution of the average number
of DNA damages in a single cell nucleus to obtain a linear–quadratic survival probability
starting from energy deposition at the micron scale, in the order of the cell nucleus. A
funding assumption of the linear–quadratic relation between dose and the corresponding
survival probability is the Poissonian distribution for DNA damage. Evidence has emerged
that in certain situations, such as for heavy ions or at high doses, the Poissonian assumption
does not hold. Therefore, in recent years, the community tried to overcome this assumption
with some ad hoc correction terms related to intercellular damage interaction [4,11,14–17].
Though attempts have been made to address the limitations of the Poissonian assumption,
a stochastic representation that encompasses the spatial and temporal aspects of dose
deposition was lacking in the description of radiation-induced DNA damage formation
and dynamics.

Recently, a series of papers addressed these issues, and the Generalized Stochastic
Microdosimetric Model (GSM2 ) [10,18–21] has been introduced. GSM2 is a probabilistic
model able to describe the time evolution of the DNA damage in a cell nucleus based
on a differential equation governing the time evolution of the probability distribution of
the number of DNA damages. Among the most relevant GSM2 strengths, there is the
capability to efficiently treat the several levels of spatiotemporal stochasticity happening
during protracted irradiation without relying on the typically used Poissonian assumption
on the number of DNA damages induced by radiation [19]. It is further described in [10,18]
how different parameters, initial DNA damage distribution, or irradiation conditions can
lead naturally to several possible probability distributions that can be significantly different
from the typically assumed Poissonian law.

The main master equation governing the time evolution of the probability distribution
of the number of DNA damages derived in [10] is non-linear due to the presence of a
quadratic term that accounts for DNA clustering, which has been recognized as one of
the main factors that leads to cell inactivation in radiobiology [7]. On the one side, this
quadratic term plays a crucial role in the emergence of non-Poissonian behaviors; on the
other side, it makes it difficult to obtain an explicit solution for the probability distribution
of the number of DNA damages.

In this study, we present a system size expansion of the GSM2 master equation based
on the pioneering work [22]. The approximation that will be carried out in the present
work is usually referred to in the literature as system size expansion [22,23], and it is widely
used in the physics community to provide an appropriate macroscopic approximation of
microscopic systems. As for all formal expansions, a suitable parameter is needed, around
which the approximation is performed. In concrete applications, the domain size usually
provides a suitable parameter to carry out a formal approximation, so that an asymptotic
expansion of the main GSM2 master equation will be carried out as the system size increases.
It must be stressed that the approximation is generally valid as the number of lesions
increases [23], so that the approximation derived in the present work provides a relevant
description for high-dose irradiation, where the number of lesions even in small domains is
high. Such a case is of particular relevance, since most of the existing models fail to give a
precise description of the cell survival probability at high doses [4], and suitable correction
terms are needed to match experimental data.

We will derive an asymptotic expansion for the GSM2 master equation computing
both the macroscopic limit and the fluctuation around such a macroscopic limit. Besides
allowing us to calculate an approximate distribution for the number of DNA damage,
the expansion derived in the present work provides further insights into the relationship
between stochastic and deterministic mathematical models, already highlighted in previous
works [18,19]. Having in mind the above-mentioned regimes of validity for the proposed
expansion, we will further strengthen the connection between GSM2 and the MKM, show-
ing that as the system size increases, the master equation derived in [10] converges toward
the main deterministic kinetic equations of the MKM [4,5]. This emphasizes how determin-
istic macroscopic behavior emerges from stochastic microscopic fluctuations. We will go a
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step further so that we will also prove a suitable central limit theorem, in the sense that we
will characterize the stochastic fluctuations around the macroscopic average value. These
fluctuations are usually assumed to be Poissonian. By contrast, we will show that such
fluctuation described by the macroscopic approximation of GSM2 are Gaussian-distributed,
as described by a linear Fokker–Planck equation (FPE) [23]. Recalling that for large mean
value λ, a Poisson random variable of mean λ is approximated in a probabilistic sense by a
Gaussian random variable with mean and variance λ, we will show that the derived limit-
ing model can be seen as a correction around a Poisson distribution due to the clustering
of lesions. In this sense, the present work shows how typical non-Poissonian correction
terms of the MKM that have been proposed over the years naturally emerge in the fully
probabilistic description of the GSM2 . Lastly, it is worth stressing that the present paper
sheds light on another possible future connection to existing radiobiological models. In fact,
in the literature, some models have been derived that attempt to describe DNA damage
at high doses using a Gaussian formulation of a multi-hit model (MHM) [24,25]. It has
already been shown in [19] that GSM2 is closely connected to some multi-hit models [26,27],
so the results derived in the present paper further connect GSM2 to the multi-hit models
derived in the literature.

The main contributions of the present paper are:

(i) to derive a system size expansion for the master equation governing GSM2 studying
both the macroscopic limit and the fluctuations around the average;

(ii) to show how the nonlinear terms accounting for DNA clustering give rise to a non-
Poissonian behavior;

(iii) to shed light on another insightful connection between existing radiobiological models.

The present work is structured as follows: Section 2.1 recalls the basic facts of GSM2 .
Section 3.1 contains the main result of the present research, with the formal asymptotic
expansion and a rigorous description of the stochastic fluctuations around the macroscopic
average value. Section 4 provides some numerical results on the derived approximation.

2. Material and Methods
2.1. The Generalized Stochastic Microdosimetric Model and the Microdosimetric Kinetic Model

GSM2 [10] is a stochastic model that provides a probabilistic description of DNA
damage formation and evolution, with particular attention to the link to DNA damage
formation and energy deposition. The final goal of the model is to overcome existing
models mainly based on the Poissonian assumption of energy deposition to provide a better
characterization of some relevant biological endpoints such as the cell survival fraction.

GSM2 considers two types of DNA damage, called sub-lethal and lethal lesions. Lethal
lesions Y represent damage that cannot be repaired, leading to cell inactivation. By contrast,
sublethal lesions X can be repaired at rate r or become a lethal lesion either by direct
death at rate a or interacting with another sublethal lesion at rate b. This latter term b
accounts for the clustering of DNA damage and gives rise to a nonlinearity in the governing
master equation.

Denoted by (Y(t), X(t)) is the state of the system at time t, where X and Y are two
N−valued random variables counting the number of the lethal and sub-lethal lesion, re-
spectively. In the following, we will consider a standard complete filtered probability space(
Ω,F , (Ft)t≥0,P

)
satisfying usual assumptions, namely right-continuity and saturation by

P-null sets.
The above reasoning can be represented by the following pathways:

X r−→ ∅ ,

X a−→ Y ,

X + X b−→ Y ,

for three positive constant rates, r, a, and b.
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In what follows, we denote by:

pt0,y0,x0(t, y, x) := p(t, y, x|t0, y0, x0) = P( (Y(t), X(t)) = (y, x)|(Y(t0), X(t0)) = (y0, x0)) .

If no confusion is possible, we will avoid stating the initial time and state, writing for short
p(t, y, x).

Following [10], the microdosimetric master equation (MME) can be derived:

∂

∂t
p(t, y, x) = −[(a + r)x + bx(x− 1)]p(t, y, x) + (x + 1)rp(t, y, x + 1)+

+ (x + 1)ap(t, y− 1, x + 1) + (x + 2)(x + 1)bp(t, y− 1, x + 2) .
(1)

The MME (1) can be written for short as:

∂

∂t
p(t, y, x) =

(
E−1,2 − 1

)
[x(x− 1)bp(t, y, x)] +

(
E−1,1 − 1

)
[xap(t, y, x)]+

+
(

E0,1 − 1
)
[xrp(t, y, x)] =

= E−1,2[x(x− 1)bp(t, y, x)] + E−1,1[xap(t, y, x)] + E0,1[xrp(t, y, x)] ,

(2)

where above we have denoted the creation operators as:

E i,j[ f (y, x)] :=
(

Ei,j − 1
)
[ f (y, x)] := f (y + i, x + j)− f (y, x) .

The above MME (2) is coupled with an initial distribution:

p0(y, x) := p(0, y, x) ,

as described in [10,18].

Remark 1. The above choice is made to closely follow the existing literature on the topic. However,
other choices for the pathways r, a, and b can be made. For instance, it could be assumed that the
death rate a is logistic, including an increment in the death as the number of lesions becomes bigger.
In such a case, the MME would become:

∂

∂t
p(t, y, x) = E−1,2[x(x− 1)bp(t, y, x)] + E−1,1[x(a + āx)p(t, y, x)] + E0,1[xrp(t, y, x)] . (3)

It has been shown in [10] that GSM2 is closely connected to the MKM, where, in fact,
the former represents a stochastic reformulation of the latter. The MKM postulates the
same assumptions of GSM2 with two key additions. First, the MKM considers the time
evolution for the average number of lethal lesions ȳ and sublethal lesions x̄, and second, ȳ
is assumed to be Poissonian-distributed.

In particular, the MKM assumes the ȳ and x̄ follows the set of coupled ODE:
{

d
dt ȳ(t) = ax̄(t) + bx̄2(t) ,
d
dt x̄(t) = −(a + r)x̄(t)− 2bx̄2(t) .

(4)

Typically, it is further assumed that (a + r)x >> 2bx2, so that Equation (4) reduces to:
{

d
dt ȳ(t) = ax̄(t) + bx̄2(t) ,
d
dt x̄(t) = −(a + r)x̄(t) .

(5)

The connection between the MME (2) and the system of ODE (4) has already been
shown in [10,18], and this connection will be further deepened in the present paper.
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3. Theory and Calculations

3.1. Macroscopic Description for the GSM2

In the present Section, we will derive a rigorous expansion that provides a macroscopic
linear approximation counter-part of the master equation derived in [10]. The following
expansion is at the basis of a macroscopic deterministic description of a microscopic
stochastic system.

In the following, we will assume that the coefficients of the master Equation (2) depend
on a parameter K in a suitable manner; namely, they are of order O(1) with respect to the
parameter K; under this assumption, we are able to characterize the limit for the master
Equation (2) as K → ∞. As mentioned in the introduction, the typical approach is to
consider K as the system size, from which the name system size expansion is derived.

We will prove both the convergence of the microscopic system towards a macroscopic
mean value, which corresponds to the law of large numbers, and also provide a description
for the fluctuations of the system around such a mean value. This description of the
fluctuations allows us to describe the system in terms of an FPE so that we will show that
the order of the fluctuation is not Poissonian, as typically assumed in most of the existing
literature on the subject. In this sense, the current research highlights how GSM2 provides
a rigorous non-Poissonian correction to the MKM.

In the following, in order to carry out the expansion, we assume that the parameter b
depends on the K as b̃K := b

K . Therefore, the MME (2) now becomes:

∂

∂t
p(t, y, x) = E−1,2[x(x− 1)b̃K p(t, y, x)

]
+ E−1,1[xap(t, y, x)] + E0,1[xrp(t, y, x)] . (6)

The main idea that will be carried out in the current section is to let K→ ∞ in order to
approximate the master equation by a continuous equation. The first-order approximation
will satisfy a linear FPE, whose marginals, under some specific initial distribution to be
better specified in later sections, can be shown to be Gaussian-distributed. The derived
Gaussian approximation for the lesion distribution will be shown to provide better insights
than the classical Poissonian hypothesis regarding lethal damage.

In order to prove the expansion, we set:

X(t) = Kx̄(t) +
√

Kξ(t) ,

Y(t) = Kȳ(t) +
√

Kυ(t) ,
(7)

with (ξ(t))t≥0 and (υ(t))t≥0 being two stochastic processes, so that for any t ≥ 0, ξ(t) and
υ(t) are two centered random variables, i.e., with null mean value, whereas x̄(t) and ȳ(t)
are two suitable deterministic functions to be derived later. Heuristically speaking, x̄ and ȳ
will play the role of the macroscopic deterministic behavior, which we will show to agree
with the differential equations governing the MKM, as given in (4). Therefore, the above
assumptions can be interpreted intuitively as an expansion of variables x and y around
the macroscopic behavior, whereas the terms ξ and υ represent the fluctuations around the
mean value.

It is worth noting that the following holds true:

E[X(t)] = Kx̄(t) +
√

KE[ξ(t)] ,

E[Y(t)] = Kȳ(t) +
√

KE[υ(t)] ,

Var[X(t)] = KVar[ξ(t)] ,

Var[Y(t)] = KVar[υ(t)] .

(8)

Define the new distribution with respect to the new variables as:

p(t, y, x) = p
(

t, Kx̄ +
√

Kξ, Kȳ +
√

Kυ
)
= P(t, υ, ξ) .
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The standard chain rule applied to P(t, υ, ξ) yields:

∂

∂t
p(t, y, x) =

∂

∂t
P(t, υ, ξ)

(
1 +

∂

∂t
υ +

∂

∂t
ξ

)
,

so that inverting transformation (7) for υ and ξ gives:

∂

∂t
p(t, y, x) =

∂

∂t
P(t, υ, ξ)−

√
K

d
dt

ȳ
∂

∂υ
P(t, υ, ξ)−

√
K

d
dt

x̄
∂

∂ξ
P(t, υ, ξ) .

Regarding the step operators appearing in the MME (6), it can be shown that the
following holds true:

E i,j =
1√
K

(
i

∂

∂υ
+ j

∂

∂ξ

)
+

1
2

1
K

(
i

∂

∂υ
+ j

∂

∂ξ

)2
.

The above computations substituted into Equation (6) yields:

∂

∂t
P(t, υ, ξ) =

√
K

d
dt

ȳ
∂

∂υ
P(t, υ, ξ) +

√
K

d
dt

x̄
∂

∂ξ
P(t, υ, ξ)+

+
b
K

[
1√
K

(
2

∂

∂ξ
− ∂

∂υ

)](
Kx̄ +

√
Kξ
)(

Kx̄ +
√

Kξ − 1
)

P(t, υ, ξ)+

+
b
K

[
1
2

1
K

(
2

∂

∂ξ
− ∂

∂υ

)2
](

Kx̄ +
√

Kξ
)(

Kx̄ +
√

Kξ − 1
)

P(t, υ, ξ)+

+ a

[
1√
K

(
∂

∂ξ
− ∂

∂υ

)
+

1
2

1
K

(
∂

∂ξ
− ∂

∂υ

)2
](

Kx̄ +
√

Kξ
)

P(t, υ, ξ)+

+ r

[
1√
K

∂

∂ξ
+

1
2

1
K

∂2

∂2
ξ

](
Kx̄ +

√
Kξ
)

P(t, υ, ξ) .

(9)

Grouping the terms of order
√

K, we obtain:

∼
√

K :
d
dt

ȳ
∂

∂υ
P(t, υ, ξ) +

d
dt

x̄
∂

∂ξ
P(t, υ, ξ) + a

(
∂

∂ξ
− ∂

∂υ

)
x̄P(t, υ, ξ)+

+ r
∂

∂ξ
x̄P(t, υ, ξ) + 2bx̄2 ∂

∂ξ
P(t, υ, ξ)− bx̄2 ∂

∂υ
P(t, υ, ξ) .

(10)

In order to compensate for the terms of order
√

K, we set the macroscopic system as:
{

d
dt ȳ = ax̄ + bx̄2

d
dt x̄ = −(a + r)x̄− 2bx̄2 ,

(11)

so that all terms or order
√

K in Equation (10) vanishes. Therefore, we have shown that the
macroscopic limit of GSM2 MME coincides with the main deterministic governing equation
of the MKM (4).

Explicit solutions to system (11) can be derived with the further property that they are
globally stable and converging to a stationary solution [19]. Consider first:

d
dt

x̄(t) = −(a + r)x̄(t)− 2bx̄2(t) , x̄(0) = x0 . (12)

Such an equation (12) is known as the Bernoulli equation. Applying the transformation
u = 1

x̄ leads to the following differential equation:

d
dt

u(t) = (a + r)u(t) + 2b .
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This last equation is a linear equation in u, so the explicit solution is given by:

u(t) = ce(a+r)t − 2b
a + r

.

Coming back to the original equation, we obtain:

x̄(t) =
a + r

ce(a+r)t − 2b
,

with
c :=

a + r
x0

+ 2b .

We can, therefore, substitute x̄ into Equation (11) to obtain:

ȳ(t) = y0 +
a + r

4b− 2cet(a+r)
+

r
2b

(
(a + r)t− log

[∣∣∣2b− cet(a+r)
∣∣∣
])

.

We can eventually calculate the long-time convergence toward the stationary solution
of the above equations to be:

lim
t→∞

x̄(t) =: x̄∞ = 0 ,

lim
t→∞

ȳ(t) =: ȳ∞ = y0 −
r

2b
log
(

a + r
x0

+ 2b
)

.

Remark 2. It is worth remarking that, for low-dose and sparsely ionizing radiation, such as X-rays
or high-energy protons, the following assumption typically holds true, (a + r)x >> 2bx2; therefore,
the above calculations simplify so that the explicit solution to Equation (11) is given by [5,28]:

{
ȳ(t) = y0 + ax0

(
1−e−(a+r)t

a+r

)
+ bx2

0

(
1−e−2(a+r)t

a+r

)

x̄(t) = x0e−(a+r)t .
(13)

In particular, Equation (13) converges as t→ ∞ towards:

lim
t→∞

ȳ(t) = y0 + x0

(
a

a + r
+ x0

b
a + r

)
, lim

t→∞
x̄(t) = 0 .

3.2. The Linear Noise Approximation and Moments Estimates

Having cancelled out terms of order
√

K, taking the limit as K→ ∞, all terms contain-
ing K vanish and only the zero−th order terms remain, yielding:

∂

∂t
P(t, υ, ξ) = 2b

(
2

∂

∂ξ
− ∂

∂υ

)
[x̄ξP(t, υ, ξ)] +

1
2

b
(

2
∂

∂ξ
− ∂

∂υ

)2[
x̄2P(t, υ, ξ)

]
+

+ a
(

∂

∂ξ
− ∂

∂υ

)
[ξP(t, υ, ξ)] + r

∂

∂ξ
[ξP(t, υ, ξ)]+

+
1
2

a
(

∂

∂ξ
− ∂

∂υ

)2

[x̄P(t, υ, ξ)] +
1
2

r
∂2

∂2
ξ

[x̄P(t, υ, ξ)]+

=
∂

∂ξ
[ξP(t, υ, ξ)](4bx̄ + a + r)− ∂

∂υ
[ξP(t, υ, ξ)](2bx̄ + a)+

− ∂ξυP(t, υ, ξ)
(

2bx̄2 + ax̄
)
+

+
1
2

∂2

∂2
ξ

P(t, υ, ξ)
(
(a + r)x̄ + 4bx̄2

)
+

1
2

∂2

∂2
υ

P(t, υ, ξ)
(

ax̄ + bx̄2
)

.

(14)

Equation (14) is a linear Fokker–Planck equation of dimension 2 that describes the
fluctuations of the system around the average values x̄(t) and ȳ(t). The solution to the
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linear FP Equation (14), under suitable initial conditions that will be specified later, can be
shown to be the bi-dimensional Gaussian density.

Until now, we have avoided explicitly considering the initial condition both for the
original MME (6) and for the approximating linear FPE (14).

As shown in [18], much of the stochasticity regarding lesion formation lies in the
initial condition, in the sense that the distribution of initial lethal and sub-lethal damage
deeply affects the subsequent time evolution of the probability density function. We will
avoid an extensive treatment of such a topic in the present paper and focus more on the
stochasticities inherent to the kinetics of the interaction of DNA damages, considering
instead two simple and yet relevant cases for the initial damage distribution.

Let us start by assuming that the initial number of lesions is deterministic and is given
by (y0, x0). We, therefore, equip the MME (6) with a deterministic initial condition given by:

p(0, y, x) = δ(x− x0)δ(y− y0) ,

with δ(x − x0) and δ(y − y0) being the Dirac delta centered at x0 and y0, respectively.
It can be shown that [23,29] the solution to the linear FPE (14) is given by a bivariate
Gaussian distribution:

P(t, υ, ξ) =
1

2π

1√
detC

exp
{
−1

2
(υ− ῡ, ξ − ξ̄)TC−1(υ− ῡ, ξ − ξ̄)

}
,

where ῡ and ξ̄ are the mean values and C is the covariance matrix with entries:

C =

(
cυυ cξυ

cξυ cξξ

)
,

where cυυ, resp. cξυ, and resp. cξξ are the variance of υ, resp. covariance of ξ and υ, and resp.
variance of ξ. It is worth stressing that, given the properties of the multivariate Gaussian
distributions, ξ and υ are univariate Gaussian random variables.

Upon the multiplication of Equation (14) by ξ and υ, it follows after integrating by
parts that the first moment of ξ and υ satisfies:

d
dt

ῡ = (2bx̄ + a)ξ̄ , ῡ(0) = 0 ,

d
dt

ξ̄ = −(4bx̄ + a + r)ξ̄ , ξ̄(0) = 0 .
(15)

It immediately follows from Equation (15) that:

ξ̄(t) = ῡ(t) ≡ 0 .

This result is in agreement with the fact that ξ and υ are centered random variables.
Multiplying Equation (14) by ξ2, ξυ, and υ2, we obtain, again after integration by parts,

that the variance and covariance satisfy the following set of coupled ODEs:





d
dt cυυ = 2(2bx̄ + a)cξυ + ax̄ + bx̄2 ,
d
dt cξυ = (2bx̄ + a)cξξ − (4bx̄ + a + r)cξυ −

(
2bx̄2 + ax̄

)
,

d
dt cξξ = −2(4bx̄ + a + r)cξξ + (a + r)x̄ + 4bx̄2 ,

(16)
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with the initial condition cυυ(0) = cξυ(0) = cξξ(0) = 0. The last two equations in (16) can
be computed to be:




cξξ(t) =
e2t(a+r)((a+r)(−4b2et(−a−r)−4bct(a+r)+c2et(a+r))+c(a+r)(4b2−c2)+ac)

(cet(a+r)−2b)
4 ,

cξυ(t) =
et(a+r)

(
− cet(a+r)(2a2(2brt+b)+ar(−4b(b−2rt−1)+c2−1)+r2(2b(−2b+2rt+1)+c2))

2b(a+r)(cet(a+r)−2b)

)

(cet(a+r)−2b)
2 +

+

et(a+r)


 c2e2t(a+r)(−4ab2+4bt(a+r)2+ac2−a−4b2r+c2r)

4b(cet(a+r)−2b)
2 +2bret(−a−r)−t(a+r)(ac−r)+cξυ




(cet(a+r)−2b)
2 ,

(17)

with cξυ a suitable constant to ensure the initial condition. It can be seen that it holds:

lim
t→∞

cξξ(t) = lim
t→∞

cξυ(t) = 0 .

In particular, we are mostly concerned with the term cυυ and with its stationary
solution, as we aim to show that the distribution of lethal lesions differs from a Poisson
distribution, as it is typically assumed in radiobiological models. It can, thus, be noticed
that, integrating the third equation in (16), we obtain:

cυυ(t) =
∫ t

0

[
2(2bx̄(s) + a)cξυ(s) + ax̄(s) + bx̄2(s)

]
ds =

= ȳ(t) +
∫ t

0
2(2bx̄(s) + a)cξυ(s)ds = ȳ(t)− δ(t) ,

(18)

with ȳ(t) being the mean value for lethal lesions, as computed in Equation (11), and:

δ(t) := −
∫ t

0
2(2bx̄(s) + a)cξυ(s)ds .

The negative sign in δ is used to emphasize that the covariance is, in fact, negative, since a
decrease in sublethal lesions correlates with an increase in lethal lesions.

The long time behaviour for cυυ can be explicitly computed using Equation (18) to be:

lim
t→∞

cυυ(t) =: ȳ∞ − δ∞ , (19)

with ȳ∞ being the long-time solution to the macroscopic average value ȳ(t).
Recalling that for a large mean value, a Poisson distribution can be approximated by a

Gaussian random variable with equal mean and variance, in order to infer that the lethal
lesion distribution obeys a Poisson random variable, we must obtain limt→∞ cυυ(t) = ȳ∞.
By contrast, the above calculations show that the variance is given by the average value
corrected by a term given by the covariance of two types of lesions. In particular, as
there is a negative correlation between the two variables, we can infer that the lethal
lesion distribution is almost a Poisson random variable, where the variance is adjusted by
subtracting a term due to pairwise interactions.

Moments Estimates for a Stochastic Initial Condition

In general, we cannot expect the initial number of lesions to be deterministic, so
previous arguments must be slightly modified.

To explicitly compute the marginal distribution for the solution to the linear Fokker–
Planck Equation (14), we assume the initial distribution for the MME to be normally
distributed with mean (y0, x0) and variance Σ. It is worth remarking that such an as-
sumption is not restrictive, as the standard assumption for the initial condition is to be a
Poisson random variable, which, as mentioned above, under certain assumptions, can be
approximated by a Gaussian random variable.
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In particular, we assume that the initial number of lethal and sublethal lesions follows
a Gaussian random variable with mean and variance given by x0 and y0:

p(0, y, x) =
1

2π

1√
detΣ

exp
{
−1

2
(y− y0, x− x0)

TΣ−1(y− y0, x− x0)

}
, (20)

with

Σ =

(
x0 0
0 y0

)
.

Similar arguments as above imply that the initial condition for the linear FPE (14),
under Equation (20), becomes a centered Gaussian random variable:

P(0, υ, ξ) =
1

2π

1√
detΣ

exp
{
−1

2
(υ, ξ)TΣ−1(υ, ξ)

}
.

Therefore, the initial fluctuations around the mean value are Gaussian-distributed with a
null average.

Therefore, all calculations above follow alike, implying that, again, the solution to the
linear Fokker-Planck Equation (14) is given by:

P(t, υ, ξ) =
1

2π

1√
detC

exp
{
−1

2
(υ, ξ)TC−1(υ, ξ)

}
,

where now the covariance matrix incorporates the initial stochastic condition so that its
entries satisfy the following set of differential equations:





∂
∂t cυυ = 2(2bx̄ + a)cξυ + ax̄ + bx̄2 , cυυ(0) = y0 ,
∂
∂t cξυ = (2bx̄ + a)cξξ − (4bx̄ + a + r)cξυ − 2

(
4bx̄2 + 2ax̄

)
, cξυ(0) = 0 ,

∂
∂t cξξ = −2(4bx̄ + a + r)cξξ + (a + r)x̄ + 2bx̄2 , cξξ(0) = x0 .

(21)

Analogously to what is shown at the end of Section 3.2, the variance of lethal lesion
obeys:

cυυ(t) = ȳ(t)− δ(t) ,

with ȳ(t) the average deterministic value and:

δ(t) = −
∫ t

0
2(2bx̄(s) + a)cξυ(s)ds ,

so that, again, the variance for the lethal lesion is given by the macroscopic mean corrected
by a covariance term.

Remark 3. The solution to the linear FPE (14) can be shown [29] to be the probability density
function of the time-dependent Ornstein–Uhlenbeck (OU) process, defined as:

dZ(t) = −A(t)Z(t)dt + Q(t)dW(t) , Z(0) = z0 , (22)

with W a bidimensional standard Brownian motion, Z = (υ, ξ), and z0 a bivariate Gaussian
random variable with mean (x0, y0) and variance:

Σ =

(
x0 0
0 y0

)
.
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Additionally:

A(t) =
(

0 −2bx̄(t)− a
0 4bx̄(t) + a + r

)
,

Q(t) =



√

ax̄(t) + bx̄2(t) + (ax̄(t)+bx̄2(t))2

(a+r)x̄(t)+4bx̄2(t) − ax̄(t)+bx̄2(t)√
(a+r)x̄(t)+4bx̄2(t)

0
√
(a + r)x̄(t) + 4bx̄2(t) .




By simulating various trajectories of the OU process described in Equation (22), we can
effectively estimate the solution to the FPE given by Equation (14). Furthermore, it is important to
note that the boundary x = 0 acts as an absorbing boundary in the original GSM2 . This implies
that once the number of sublethal lesions reaches zero, it remains at zero. Therefore, to guarantee
the positivity of the solution to the FPE defined in Equation (14), it is necessary to impose a similar
boundary condition on the OU process in Equation (22). This ensures that the number of lethal
lesions remains positive and is absorbed at zero upon reaching the boundary.

Remark 4. It has been shown in [23,30] that a different and yet related Fokker–Planck equation
can be obtained without any truncation at first order. In fact, if the above assumption on b holds
true, then the master Equation (2), following [23] (Chapter 7.5), can be expanded as:

∂

∂t
p(t, y, x) = −∑

n
∑
(i,j)

((i, j) · ∇)n

n!

[
C(i,j)p(t, y, x)

]
,

for a suitable term C(i,j).
Truncating at the second order, we obtain the following Fokker–Planck equation:

∂

∂t
p(t, y, x) = − ∑

w=x,y

∂

∂w

[
∑
i,j
(i, j) · C(i,j)p(t, y, x)

]
+

1
2 ∑

w,q=x,y

∂

∂w

∂

∂q

[
ijC(i,j)p(t, y, x)

]
=

= − ∑
w=x,y

∂

∂w
[B(x)p(t, y, x)] +

1
2 ∑

q=x,y
∑

w=x,y

∂

∂w

∂

∂q
[Q(x)p(t, y, x)] ,

(23)

where the above coefficients in Equation (23) are given explicitly by:

B(x) =
(

x(x− 1)b + xa
−2x(x− 1)b− x(a + r)

)
,

Q(x) =
(

x(x− 1)b + xa −2x(x− 1)b− xa
−2x(x− 1)b− xa 4x(x− 1)b + x(a + r)

)
.

The connection between Equations (14) and (23) can be made rigorous by introducing the new
variables:

x̄ :=
x
K

, ȳ :=
y
K

,

into Equation (23), to obtain:

∂

∂t
p(t, ȳ, x̄) = − ∑

w=ȳ,x̄

∂

∂w

[
B̃(x̄)p(t, ȳ, x̄)

]
+

1
2K ∑

w,q=ȳ,x̄

∂

∂w

∂

∂q

[
Q̃(x̄)p(t, ȳ, x̄)

]
. (24)

Performing a small-noise expansion [23,31,32], we can expand Equation (24) around ε := 1
K ,

so that, using the new variables:

ξ =
√

K(x̄− x̄(t)) , υ =
√

K(ȳ− ȳ(t)) ,

we can see that the small noise expansion to the lowest order does coincide with the linear FP
Equation (14).
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The two expansions have different advantages and disadvantages. In fact, on the one side,
considering the full expansion as described above, the nonlinearity of the system is preserved.
However, on the other side, given the nonlinear diffusion term, the simulation of Equation (23) is
more complicated. Further, since Equation (14) is linear, its solution can be computed analytically,
showing that the process follows a Gaussian distribution.

4. Results

The present Section reports the implementation of the results derived in Section 3.
Figure 1 shows a comparison between the distribution of sublethal lesions (top row) and
lethal lesions (bottom row) for the solution to the MME (2) (histogram) and the solution
to the FPE (14) (yellow line). Different columns refer to different times: the left column
reports time 0.5 [a.u.], the central column reports time 0.7 [a.u], and the right column
reports time 0.9 [a.u.]. The solution of the FPE has been centered around the average values
x̄ and ȳ, whereas the MME (2) is solved via the stochastic simulation algorithms (SSA) [33]
(Chapter 13). A deterministic initial value of x0 = 100 and y0 = 0 has been prescribed.
Further, GSM2 parameters have been chosen to be r = 4, a = 0.1, b̃K = 0.01; these
parameters are in agreement with the parameters typically used [20]. A good agreement
can be seen between the system size approximation and the original solution to the MME,
particularly for lethal lesions. The approximation, as expected, shows a small discrepancy
in the case of sublethal lesions at higher times, since the solution is closer to 0.
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Figure 1. Sublethal lesion density evolution (top row) and lethal lesion density evolution
(bottom row) as predicted by GSM2 (histogram) and the linear noise approximation (yellow line).
The left column reports time equal to 0.5 [a.u.], the central column reports time equal to 0.7 [a.u], and
the right column reports time equal to 0.9 [a.u.].

Figure 2 shows the time evolution for the moments Equations (11)–(16): in yellow is
the solution to the average number of sublethal lesions x̄, whereas in blue is the average
number of lethal lesions ȳ. In black is depicted the covariance between lethal and sublethal
lesions cξυ, in purple the variance of lethal lesions cξξ , and in red the variance of lethal
lesions cυυ. Both the average and variance of lethal lesions converge to 0 for a long time. By
contrast, the average and the variance of lethal lesions converge toward a strictly positive
value, with the latter being strictly lower than the former. Additionally, the covariance is
strictly negative and converges to 0 at long times.
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Figure 2. Time evolution for the average number and variance of sublethal lesions (yellow and
purple), the average number and variance of lethal lesions (blue and red), and the covariance of lethal
and sublethal lesions (black).

Figure 3 shows a comparison of 10 path solutions of the average values (black), original
GSM2 formulation (yellow), and linear noise approximation (blue) for sublethal lesions
(left panel) and lethal lesions (right panel). It can be seen how the approximation and the
original GSM2 formulation produce similar patterns, with the average values being in the
middle of the stochastic solutions.
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Figure 3. Comparison between path solutions to the GSM2 (yellow), the linear noise approximation
(blue), and the average value (black) of sublethal lesions (left panel) and lethal lesions (right panel).

5. Discussion

In the present paper, we presented a linear noise approximation of a stochastic model
for radiation-induced DNA damage repair and kinetics [10]. Such approximation is carried
out by expanding around the system size so that that it holds true for a high number
of particles, which can be approximated as a continuum. The fluctuations, for the num-
ber of particles sufficiently far from the origin, are predicted to be Gaussian-distributed.
The importance of the result is twofold: (i) it allows for the fast computation and sim-
ulation of GSM2 as certain, and (ii) it theoretically shows that the number of lethal le-
sions deviates from a Poisson distribution, as typically assumed in the vast majority of
radiobiological models.

The results show a good agreement between the solution to the MME (2) and the
linear noise approximation (14). This is particularly true when the number of lesions is far
from the origin. In fact, in this situation, the description of GSM2 as a continuum of lesions
is not valid and discrepancies between the two representations emerge. This is, however,
mitigated by equipping the linear FPE with a suitable boundary condition, preserving the
positivity of the solution. Further, the main interest in the long-time distribution lies in the
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distribution of lethal lesions, which could allow characterizing several relevant biological
endpoints such as cell survival and cell killing. This implies that such approximation can
be effectively used in several concrete applications even if it is typically difficult to estimate
the experimental range in which the approximation proposed is valid.

The numerical solutions to the moments Equations (11)–(16) confirm the theoretical
analysis performed in Section 3. In particular, the variance of the lethal lesions is strictly
lower than the average; this, together with the Gaussianity of the distribution, implies a
divergence from the Poissonianity of the number of lethal lesions. This is one of the first
theoretically grounded results showing that a model can predict lethal lesions with non-
Poisson distribution. Additionally, the covariance is strictly negative, since an increase in the
number of lethal lesions can only be caused by a decrease in the number of sublethal lesions.

Finally, it is worth remarking that this paper furthers the investigation and compari-
son of diverse existing radiobiology models, revealing the underlying commonalities and
shared perspectives among these approaches. The present paper shows the connections
of GSM2 to two other models proposed in the literature. Firstly, the main equations of the
MKM arise formally within the context of GSM2 , with, however, an extremely relevant
difference in the fluctuations around the average values. This has been already noted in
previous research [10,19]. Secondly, the incorporation of a Gaussian distribution, previously
employed in radiobiology studies [24,25], emerges as a deviation from a Poisson distri-
bution. As a result, the proposed model establishes a remarkably insightful link between
two seemingly different radiobiological models: the MKM and the Gaussian formulation
of a multi-hit model. Recognizing the significance of this subject, future research will be
dedicated to further exploring the interconnections among diverse radiobiological models.

6. Conclusions

The present research continues the investigation of how the stochastic nature of energy
deposition affects DNA damage evolution and how this is, in turn, related to the overall
probability distribution of the number of lethal and sublethal lesions. In [10], a master
equation for the probability distribution of DNA damage has been derived. However,
due to the non-linear terms, besides some cases such as the computation of the survival
probability [18], its analytical solution is unfeasible. In the present work, we have shown
how a proper expansion can be applied to the MME derived in [10]. Such expansion
highlights, on one side, how the GSM2 is connected to the MKM and, on the other side,
how non-Poissonian effects naturally emerge with no need for ad hoc corrections.

Funding: This work was partially supported by INFN CSN5 projects MICROBE-IT and FRIDA.

Data Availability Statement: No new data have been created.

Acknowledgments: I would like to thank M. Missiaggia for several fruitful discussions that helped
significantly improve the results presented in this research.

Conflicts of Interest: The authors declare no conflict of interest

References
1. Thariat, J.; Hannoun-Levi, J.M.; Sun Myint, A.; Vuong, T.; Gérard, J.P. Past, present, and future of radiotherapy for the benefit of

patients. Nat. Rev. Clin. Oncol. 2013, 10, 52–60. [CrossRef] [PubMed]
2. Durante, M.; Paganetti, H. Nuclear physics in particle therapy: A review. Rep. Prog. Phys. 2016, 79, 096702. [CrossRef]
3. Durante, M.; Loeffler, J.S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol. 2010, 7, 37–43. [CrossRef] [PubMed]
4. Bellinzona, V.; Cordoni, F.; Missiaggia, M.; Tommasino, F.; Scifoni, E.; La Tessa, C.; Attili, A. Linking Microdosimetric Measure-

ments to Biological Effectiveness in Ion Beam Therapy: A review of theoretical aspects of MKM and other models. Front. Phys.
2021, 8, 578492. [CrossRef]

5. Hawkins, R.B. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat. Res. 1994, 140, 366–374.
[CrossRef]

6. Hawkins, R.B.; Inaniwa, T. A microdosimetric-kinetic model for cell killing by protracted continuous irradiation including
dependence on LET I: Repair in cultured mammalian cells. Radiat. Res. 2013, 180, 584–594. [CrossRef]

123



Entropy 2023, 25, 1322

7. Kellerer, A.M.; Rossi, H.H. The theory of dual radiation action. In Current Topics in Radiation Research Quarterly; North-Holland
Publishing Company: Amsterdam, The Netherlands, 1974; pp. 85–158. Available online: https://www.osti.gov/biblio/4611340
(accessed on 13 June 2023).

8. Herr, L.; Friedrich, T.; Durante, M.; Scholz, M. A comparison of kinetic photon cell survival models. Radiat. Res. 2015, 184, 494–508.
[CrossRef]

9. Pfuhl, T.; Friedrich, T.; Scholz, M. Prediction of cell survival after exposure to mixed radiation fields with the local effect model.
Radiat. Res. 2020, 193, 130–142. [CrossRef]

10. Cordoni, F.; Missiaggia, M.; Attili, A.; Welford, S.; Scifoni, E.; La Tessa, C. Generalized stochastic microdosimetric model: The
main formulation. Phys. Rev. E 2021, 103, 012412. [CrossRef]

11. Hawkins, R.B. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE
with LET. Radiat. Res. 2003, 160, 61–69. [CrossRef]

12. Scholz, M.; Kellerer, A.; Kraft-Weyrather, W.; Kraft, G. Computation of cell survival in heavy ion beams for therapy. Radiat.
Environ. Biophys. 1997, 36, 59–66. [CrossRef]

13. Friedrich, T.; Scholz, U.; Elsässer, T.; Durante, M.; Scholz, M. Calculation of the biological effects of ion beams based on the
microscopic spatial damage distribution pattern. Int. J. Radiat. Biol. 2012, 88, 103–107. [CrossRef]

14. Hawkins, R.B. A microdosimetric-kinetic model of cell killing by irradiation from permanently incorporated radionuclides.
Radiat. Res. 2018, 189, 104–116. [CrossRef]

15. Inaniwa, T.; Suzuki, M.; Furukawa, T.; Kase, Y.; Kanematsu, N.; Shirai, T.; Hawkins, R.B. Effects of dose-delivery time structure
on biological effectiveness for therapeutic carbon-ion beams evaluated with microdosimetric kinetic model. Radiat. Res. 2013,
180, 44–59. [CrossRef]

16. Sato, T.; Furusawa, Y. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific
energies using improved microdosimetric kinetic models. Radiat. Res. 2012, 178, 341–356. [CrossRef]

17. Kase, Y.; Kanai, T.; Matsumoto, Y.; Furusawa, Y.; Okamoto, H.; Asaba, T.; Sakama, M.; Shinoda, H. Microdosimetric measurements
and estimation of human cell survival for heavy-ion beams. Radiat. Res. 2006, 166, 629–638. [CrossRef]

18. Cordoni, F.G.; Missiaggia, M.; Scifoni, E.; La Tessa, C. Cell Survival Computation via the Generalized Stochastic Microdosimetric
Model (GSM2); Part I: The Theoretical Framework. Radiat. Res. 2022, 197, 218–232. [CrossRef]

19. Cordoni, F.G.; Missiaggia, M.; La Tessa, C.; Scifoni, E. Multiple levels of stochasticity accounted for in different radiation
biophysical models: From physics to biology. Int. J. Radiat. Biol. 2022, 99, 807–822. [CrossRef] [PubMed]

20. Missiaggia, M.; Cordoni, F.G.; Scifoni, E.; La Tessa, C. Cell Survival Computation via the Generalized Stochastic Microdosimetric
Model (GSM2)-Part II: Numerical results. Radiat. Res. 2022, submitted.

21. Cordoni, F.G. A spatial measure-valued model for radiation-induced DNA damage kinetics and repair under protracted
irradiation condition. arXiv 2023, arXiv:2303.14784.

22. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 1.
23. Gardiner, C.W. Handbook of Stochastic Methods; Springer: Berlin/Heidelberg, Germany, 1985; Volume 3.
24. Zhao, L.; Mi, D.; Sun, Y. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution. J. Theor.

Biol. 2017, 420, 135–143. [CrossRef] [PubMed]
25. Rossi, H.H.; Zaider, M. Saturation in dual radiation action. In Quantitative Mathematical Models in Radiation Biology; Springer:

Berlin/Heidelberg, Germany, 1988; pp. 111–118.
26. Rossi, H.H.; Zaider, M. Microdosimetry and its Applications; Springer: Berlin/Heidelberg, Germany, 1996.
27. Vassiliev, O.N. Formulation of the multi-hit model with a non-Poisson distribution of hits. Int. J. Radiat. Oncol. Biol. Phys. 2012,

83, 1311–1316. [CrossRef]
28. Manganaro, L.; Russo, G.; Cirio, R.; Dalmasso, F.; Giordanengo, S.; Monaco, V.; Muraro, S.; Sacchi, R.; Vignati, A.; Attili, A. A

Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy
with application in treatment planning simulations. Med. Phys. 2017, 44, 1577–1589. [CrossRef] [PubMed]

29. Karatzas, I.; Shreve, S.E. Brownian motion. In Brownian Motion and Stochastic Calculus; Springer: Berlin/Heidelberg, Germany,
1998; pp. 47–127.

30. Gillespie, D.T. The chemical Langevin equation. J. Chem. Phys. 2000, 113, 297–306. [CrossRef]
31. Albeverio, S.; Cordoni, F.; Di Persio, L.; Pellegrini, G. Asymptotic expansion for some local volatility models arising in finance.

Decis. Econ. Financ. 2019, 42, 527–573. [CrossRef]
32. Cordoni, F.; Di Persio, L. Small noise expansion for the Lévy perturbed Vasicek model. Int. J. Pure Appl. Math. 2015, 98, 291–301.

[CrossRef]
33. Weinan, E.; Li, T.; Vanden-Eijnden, E. Applied Stochastic Analysis; American Mathematical Society: Providence, RI, USA, 2019;

Volume 199.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

124



Citation: Prakash, O.; Singh, A.;

Verma, R.K.; Solé, P.; Cheng, W. DNA

Code from Cyclic and Skew Cyclic

Codes over F4[v]/〈v3〉. Entropy 2023,

25, 239. https://doi.org/10.3390/

e25020239

Academic Editor: Pavel Kraikivski

Received: 31 December 2022

Revised: 16 January 2023

Accepted: 19 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

DNA Code from Cyclic and Skew Cyclic Codes over F4[v]/〈v3〉
Om Prakash 1 , Ashutosh Singh 1 , Ram Krishna Verma 2 , Patrick Solé 3,* and Wei Cheng 4,5

1 Department of Mathematics, Indian Institute of Technology Patna, Bihar 801106, India
2 Department of Mathematics, SRM Institute of Science and Technology, Delhi-NCR Campus,

Ghaziabad 201204, India
3 I2M, (CNRS, Aix-Marseille University, Centrale Marseille), 13009 Marseilles, France
4 LTCI, Télécom Paris (IP Paris), 19 Place Marguerite Perey, 91120 Palaiseau, France
5 Secure-IC S.A.S., 104 Boulevard du Montparnasse, 75014 Paris, France
* Correspondence: patrick.sole@telecom-paris.fr

Abstract: The main motivation of this work is to study and obtain some reversible and DNA codes
of length n with better parameters. Here, we first investigate the structure of cyclic and skew cyclic
codes over the chain ring R := F4[v]/〈v3〉. We show an association between the codons and the
elements ofR using a Gray map. Under this Gray map, we study reversible and DNA codes of length
n. Finally, several new DNA codes are obtained that have improved parameters than previously
known codes. We also determine the Hamming and the Edit distances of these codes.

Keywords: reversible code; gray map; DNA codes

1. Introduction

DNA is a nucleic acid used for carrying genetic information in living organisms.
It is a double-strand molecule formed from two possible nitrogenous bases—Purines
(Adenine and Guanine) and Pyrimidines (Cytosine—and Thymine) and two chemically
polar ends, namely, 5′ and 3′. The Watson–Crick complementary (WCC) relation, which
is characterized as Ac = T, Gc = C, and vice versa, is used to bind the bases of DNA. In
1994, Adleman [1] discussed the Hamiltonian path problem using DNA molecules. This
(NP-complete) problem is solved by encoding a small graph in DNA molecules where all
the operations were carried out using standard protocols such as the WCC relation. Due
to massive parallelism, DNA computing emerged as a powerful tool among researchers
to solve computationally difficult problems. Further, the experiments are performed on
synthesized DNA and RNA molecules to control their combinatorial constraints such as
constant GC-content and Hamming distance.

Linear codes over finite fields have been explored for almost three decades, but this
research area experienced an astonishing rate after the remarkable work of Hammons
et al. [2] when they established a relation between linear codes over Z4 with other non-
linear binary codes. Afterward, many authors [3–6] considered alphabets endowed with a
ring structure and found many good linear codes over finite fields via specific Gray maps.
Within the class of linear codes, cyclic codes are the pivotal and the most studied codes due
to their theoretical richness and practical implementation. Recently, many authors [7–13]
constructed DNA codes using cyclic codes over rings. For instance, Bayram et al. [7] and
Yildiz and Siap [13] explored DNA codes over the rings F4 + vF4, v2 = v and F2[v]/〈v4− 1〉,
respectively. In 2019, Mostafanasab and Darani [12] discussed the structure of cyclic DNA
codes over the chain ring F2 + uF2 + u2F2. Liu et al. [14] worked on cyclic DNA codes of an
odd length over F4[u]/〈u3〉. On the other hand, Boucher et al. [15] introduced skew cyclic
codes and discovered many new linear codes. Further, in [16,17], more properties of these
codes over chain rings have been established. Recently, Gursoy et al. [18] studied reversible
DNA codes by using skew cyclic codes. Later on, Cengellenmis et al. [19] studied DNA
codes from skew cyclic codes over the rings F2[u, v, w], where u2 = v2 + v = w2 + w =
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uv + vu = uw + wu = vw + wv = 0. Motivated by the above works, we consider cyclic as
well as skew cyclic codes over the finite chain ringR = F4[v]/〈v3〉 to construct DNA codes
of arbitrary lengths. Hamming and edit distances are also calculated for the obtained codes.
Interestingly, we obtain several new codes with better parameters than known codes [14].

The article is structured as follows: The Gray map, together with the correspondence
of the codons and the other basic results of cyclic codes, are in Section 2. Reversible cyclic
codes over the ring R are covered in Section 3, whereas the reversible skew cyclic codes
are studied in Section 4. Some results related to the complement and reverse complement
of obtained codes are presented in Section 5. Based on our established results from the
previous Sections and magma computer algebra system [20], we provide a few examples of
DNA codes of arbitrary lengths in Section 6. In the end, we conclude our work in Section 7.

2. Preliminaries

Let F4 = {0, 1, t, t2}, where t2 = t+ 1 be a finite field. Then R := F4[v]/〈v3〉 is a
finite chain ring with characteristic 2 and every element r of R can be represented as
r = b1 + b2v + b3v2 where bi ∈ F4, for i = 0, 1, 2 and v3 = 0. It is easy to show that R is
a principal ideal ring with unique maximal ideal 〈vs.〉 and R/〈vs.〉 is isomorphic to F4.
Recall that the ringR has 48 invertible elements of the form r = b1 + b2v + b3v2, where b1
is invertible in F4.

A linear code C of length n and alphabets from R is a submodule of an R-module
Rn. The elements of C are called the codewords. The Hamming weight of an element
b = (b0, b1, . . . , bn) ∈ C is defined as wH(b)= |{i | bi 6= 0}| and Hamming distance dH(b, k)
between any two elements b = (b0, b1, . . . , bn) and k = (k0, k1, . . . , kn) in C is defined as
dH(b, k) = wH(b− k). Additionally, the lowest value in the set {dH(b, k) | b 6= k, ∀ b, k ∈ C}
is considered as the the Hamming distance dH(C) of the code C .

Now, we describe a Gray map Φ : R −→ F3
4 as:

Φ(b0 + b1v + b2v2) = (b0 + b1 + b2, b1 + b2, b2), (1)

where bi ∈ F4 for i = 0, 1, 2. It is easy to see that the function Φ is a distance-preserving
map and is extendable to Rn component-wise. In Table 1, we establish the connection
between the ring elements and the codons by using the Gray map (1).

Definition 1. For a given polynomial g(z) = g0 + g1z + . . . + gmzm ∈ F4[z], the reciprocal
polynomial is denoted by g∗(z) and defined as g∗(z) = ∑m

i=0 gm−izi. A polynomial g(z) is said to
be self-reciprocal if and only if g∗(z) = bg(z) for some non-zero element b in F4.

Now, we present some useful lemmas that appeared in [8,14].

Lemma 1. Let g(z) and h(z) be polynomials over R of degrees r and s, respectively, with r ≥ s.
Then:

1. [g(z)h(z)]∗ = g∗(z)h∗(z)
2. [g(z) + h(z)]∗ = g∗(z) + z(r−s)h∗(z).

Lemma 2. Let f(z), g(z), and h(z) be polynomials overR of degrees r, s, and t, respectively, where
r ≥ s, t. Then:

1. [f(z)g(z)h(z)]∗ = f∗(z)g∗(z)h∗(z)
2. [f(z) + g(z) + h(z)]∗ = f∗(z) + z(r−s)g∗(z) + z(r−t)h∗(z).

Using the Watson–Crick complementary relation, we define the reverse (R) and the re-
verse complement (RC) of a DNA codeword b = (b0, b1, . . . , bn−1) by br = (bn−1, . . . , b1, b0)
and brc = (bc

n−1, . . . , bc
1, bc

0), respectively. For example, given b = ATCCGT, we obtain
br = TGCCTA and brc = ACGGAT.

We have the following observations based on the Gray map provided in Equation (1).
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Table 1. Codons correspondence with the elements ofR.

0 AAA v2 TTT tv2 GGG t2v2 CCC

1 TAA v2 + 1 ATT tv2 + 1 CGG t2v2 + 1 GCC

t GAA v2 + t CTT tv2 + t AGG t2v2 + t TCC

t2 CAA v2 + t2 GTT tv2 + t2 TGG t2v2 + t2 ACC

v TTA v2 + v AAT tv2 + v CCG t2v2 + v GGC

v + 1 ATA v2 + v + 1 TAT tv2 + v + 1 GCG t2v2 + v + t AGC

v + t CTA v2 + v + t GAT tv2 + v + t TCG t2v2 + v + 1 CGC

v + t2 GTA v2 + v + t2 CAT tv2 + v + t2 ACG t2v2 + v + t2 TGC

tv GGA v2 + tv CCT tv2 + tv AAG t2v2 + tv TTC

tv + 1 CGA v2 + tv + 1 GCT tv2 + tv + 1 TAG t2v2 + tv + 1 ATC

tv + t AGA v2 + tv + t TCT tv2 + tv + t GAG t2v2 + tv + t CTC

tv + t2 TGA v2 + tv + t2 ACT tv2 + tv + t2 CAG t2v2 + tv + t2 GTC

t2v CCA v2 + t2v GGT tv2 + t2v TTG t2v2 + t2v AAC

t2v + 1 GCA v2 + t2v + 1 CGT tv2 + t2v + 1 ATG t2v2 + t2v + 1 TAC

t2v + t TCA v2 + t2v + t AGT tv2 + t2v + t CTG t2v2 + t2v + t GAC

t2v + t2 ACA v2 + t2v + t2 TGT tv2 + t2v + t2 GTG t2v2 + t2v + t2 CAC

Lemma 3. 1. For any a = (b0 + b1v + b2v2) ∈ R, we have
Φ(b0 + b1v + b2v2)

r
= b1 + b0v + (b0 + b1 + b2)v2, where b0, b1, b2 ∈ F4.

2. Φ(b0 + b1)
r = Φ(b0)

r + Φ(b1)
r, where b0, b1 ∈ F4.

3. Reversible Cyclic Codes over R
In the present section, we investigate the structure of cyclic codes and prove reversible

conditions on these codes. The cyclic codes of odd lengths are provided in [14] and a
detailed discussion on cyclic codes of arbitrary length with alphabets from Z2[u]/〈v3〉 is
explored in [6]. Now, in the subsequent theorems, we describe the structure of the cyclic
code. We omit the proof due to its similarity to the proof provided in [6].

Theorem 1. Let C be a cyclic code of length n overR. Then the code C is provided by:

C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + v2 p(z), v2a2(z)〉

where a2(z)|a1(z)|g0(z)|(zn− 1) overF4, a1(z)|g1(z)( zn−1
g0(z)

), a2(z)|p(z)( zn−1
a1(z)

), and a2(z)|g2(z)

( zn−1
g0(z)

)( zn−1
a1(z)

) over F4. Moreover, deg(g2(z)) < deg(a2(z)), deg(p(z)) < deg(a2(z)), and
deg(g1(z)) < deg(a1(z)).

Corollary 1. If the length of a cyclic code C is odd and g1(z) = g2(z) = p(z) = 0, then
C = 〈g0(z), va1(z), v2a2(z)〉 = 〈g0(z) + va1(z) + v2a2(z)〉.

A similar result is also possible when n is not odd. In this case, we assume that
gcd( zn−1

a2(z)
, g0(z)) = 1 and consequently obtain the following result.

Corollary 2. If a cyclic code C is of even length n and gcd( zn−1
a2(z)

, g0(z)) = 1, then g1(z) =

g2(z) = p(z) = 0.
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When a2(z) = g0(z), then a2(z) = a1(z) = g0(z) and C as a subset of 〈g0(z) + vg1(z) +
v2g2(z)〉. Since the other containment is true by the definition of C, we, therefore, obtain
the following corollary.

Corollary 3. For a cyclic code C = 〈g0(z)+ vg1(z)+ v2g2(z), va1 + v2 p(z), v2a2(z)〉, if a2(z) =
g0(z), then C = 〈g0(z) + vg1(z) + v2g2(z)〉.

Definition 2. Given a code C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + v2 p(z), v2a2(z)〉 over
R, we define Cv2 by {q(z) ∈ F4[z] | v2q(z) ∈ C}. Particularly, since a2(z)|a1(z)|g0(z),
Cv2 = 〈a2(z)〉.

In the next result, we determine the Hamming distance of the code C by using the
above definition in terms of the Hamming distance of Cv2 .

Theorem 2. Let C be a code provided by C = 〈g(z)+ vg1(z)+ v2g2(z), va1(z)+ v2 p(z), v2a2(z)〉.
Then Hamming distance of C and Cv2 are equal, i.e., dH(C) = dH(Cv2).

Proof. It can be obtained from [4].

Remark 1. For the sake of brevity, we use b for polynomial b(z) whenever b(z) belongs to the
field F4.

Lemma 4. Let g0(z), g1(z) and g2(z) ∈ F4[z] of degrees r, s and t, respectively. Then (g0(z) +
vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗2(z) + v2zr−tg∗2(z).

Theorem 3. Let C = 〈g0(z) + vg1(z) + v2g2(z)〉 be a cyclic code of even length over R with
monic polynomials g0(z), g1(z) and g2(z) of degrees r, s and t, respectively. Then the code C is
reversible if and only if:

(1) g0(z) is a self-reciprocal polynomial;
(2) zr−sg∗1(z) = b0g1(z) + b1g0(z) and zr−sg∗2(z) = b0g2(z) + b1g1(z) + b2g0(z), where

b0 ∈ F4 \ {0} and b1, b2 ∈ F4.

Proof. Let C be a reversible cyclic code. Then

(g0(z) + vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗2(z) + v2zr−tg∗2(z) and

(g0(z) + vg1(z) + v2g2(z))∗ = b(z)(g0(z) + vg1(z) + v2g2(z)) ∈ C
= (b0(z) + vb1(z) + v2b2(z))(g0(z) + vg1(z) + v2g2(z))

= b0(z)g0(z) + v(b0(z)g1(z) + b1(z)g0(z))

+ v2(b0(z)g2(z) + b1(z)g1(z) + b2(z)g0(z)).

Comparing right side of the two equations, we obtain g∗0(z) = b0(z)g0(z), zr−sg∗1(z) =
b0(z)g1(z) + b1(z)g0(z) and zr−tg∗2(z) = b0(z)g2(z) + b1(z)g1(z) + b2(z)g0(z). Now, using
deg f∗(z) ≤ deg f(z), we obtain b0(z) 6= 0 in F4 and this implies that the polynomial g0(z) is
self-reciprocal. Therefore, zr−sg∗1(z) = b0g1(z) + b1(z)g0(z) where b0 = b0(z) is a non-zero
element in F4. Now comparing the degrees of both sides, we obtain a constant polynomial
b1(z) ∈ F4, say, b1. We have zr−tg∗2(z) = b0g2(z) + b1g1(z) + b2(z)g0(z). Again, comparing
the degrees of both sides, we obtain b2(z) in F4, say b2. Thus, zr−sg∗1(z) = b0g1(z) + b1g0(z)
and zr−tg∗2(z) = b0g2 + b1g1(z) + b2g0(z) where b0 ∈ F4 \ {0} and b1, b2 ∈ F4.
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Conversely, assume (1) and (2) hold. Then

(g0(z) + vg1(z) + v2g2(z))∗ =g∗0(z) + vzr−sg∗1(z) + v2zr−tg∗2(z)

=b0g0(z) + vb0g1(z) + vb1g0(z) + v2b0g2(z)

+ v2b1g1(z) + v2b2g0(z)

=b0(g0(z) + vg1(z) + v2g2(z)) + b1(vg0 + v2g1)

+ b2(v2g0(z)) ∈ C

Thus, the code C is reversible.

Theorem 4. Let C = 〈g0(z) + vg1(z) + v2g2(z), v2a2(z)〉 be a cyclic code of even length n over
R with polynomials g0(z), g1(z), and g2(z) of degrees r, s, and t, respectively, and r > max{s, t}.
Furthermore, assume that a2(z)|g0(z)|(zn − 1). Then the code C is reversible if and only if:

(1) g0(z) and a2(z) are self-reversible;
(2) zr−sg∗1(z) = b0g1(z) + b1g0(z), and a2(z)|(zr−tg∗2(z) + b0g2(z) + b1g1(z), where b0 ∈

F4 \ {0} and b1 ∈ F4.

Proof. Let C be a reversible code. Then

(g0(z) + vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗1(z) + v2zr−tg∗2(z).

Furthermore,

(g0(z) + vg1(z) + v2g2(z))∗ = b(z)(g0(z) + vg1(z) + v2g2(z)) + v2c(z)a2(z)

= (b0(z) + vb1(z) + v2b2(z))(g0(z) + vg1(z)+

v2g2(z)) + v2c(z)a2(z) where bi(z), c(z) ∈ F4[z]

= b0(z)g0(z) + v(b0(z)g1(z) + b1(z)g0(z)) + v2

(b0(z)g2(z) + b1(z)g1(z) + b2(z)g0(z) + c(z)a2(z)).

Comparing both equations, we obtain b0(z) ∈ F4 \ {0}, say b0, this implies that g0(z) is self-
reciprocal. Therefore, zr−sg∗1(z) = b0g1(z) + b1g0(z) and zr−tg∗2(z) = b0g2(z) + b1g1(z) +
b2(z)g0(z) + c(z)a2(z); this implies that a2(z) divides zr−tg∗2(z) + b0g2(z) + b1g1(z).
Again, v2a∗2(z) ∈ C and hence a2(z)|g0(z) implies that a2(z) is self-reversible.

Conversely, suppose conditions (1) and (2) hold. Then

(g0(z) + vg1(z) + v2g2(z))∗ = g∗0(z) + vzr−sg∗1(z) + v2zr−tg∗2(z)

= b0g0(z) + v(b0g1(z) + b1g0(z)) + v2(b0g2(z)

+ b1g1(z) + c(z)a2(z)) f or some c(z) ∈ F4[z]

= b0(g0(z) + vg1(z) + v2g2(z)) + vb1(g0(z)

+ vg1(z) + v2g2(z)) + c(z)v2a2(z) ∈ C.

Therefore, C is reversible.

The following theorem states the reversible condition of odd length codes or a code
satisfying Corollary 2.

Theorem 5. Let C = 〈g0(z), va1(z), v2a2(z)〉 be a cyclic code overR with a2(z)|a1(z)|g0(z)|(zn

−1). Then code C is reversible if and only if polynomials g0(z), a1(z) and a2(z) are self-reversible.

Proof. Let C be a reversible code. Then for some polynomials b0(z), b1(z) and b2(z) in
F4[z], we have (g0(z))∗ = b0(z)g0(z) + vb1(z)a1(z) + v2b2(z)a2(z).
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Comparing both sides, we obtain b0(z) ∈ F4 \ {0}, say b0, since degf∗(z) ≤ degf(z),
then g0(z) is self-reciprocal. Similarly, a1(z) and a2(z) are self-reciprocal polynomials.

Conversely, let the polynomials g0(z), a1(z), and a2(z) be self-reciprocal. Then, ele-
ments of C are provided by the polynomial b0(z)g0(z) + vb1(z)a1(z) + v2b2(z)a2(z), there-
fore by Lemma 4, we have

(b0(z)g0(z) + vb1(z)a1(z) + v2b2(z)a2(z))∗ = (b0(z)g0(z))∗ + v(b1(z)a1(z))∗zr−s

+ v2(b2(z)a2(z))∗zr−t.

= b∗0(z)g
∗
0(z) + vzr−sb∗1(z)a∗1(z)

+ v2zr−tb∗2(z)a∗2(z) ∈ C.

Thus, C is reversible.

Now, in the following result, we determine the rank of a code C. The proof is followed
by similar arguments as in Theorem 3 of [6].

Theorem 6. Let C be a cyclic code of length n overR such that

C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + vp(z), v2a2(z)〉,

where g0(z), g1(z), g2(z), and a2(z) are polynomials in F4[z] and deg(g0(z) + vg1(z) + v2g2(z))
= r, deg(a1(z)) = s and deg(a2(z)) = t. Then C is a free module and rank(C) = n− t. Moreover,
the basis of C is provided by the set S, where

S ={(g0(z) + vg1(z) + v2g2(z)), x(g0(z) + vg1(z) + v2g2(z)), . . . , zn−r−1(g0(z) + vg1(z)

+ v2g2(z)), (va1(z) + v2 p(z)), x(va1(z) + v2 p(z)), . . . , zr−s−1(va1(z) + v2 p(z)),

v2a2(z), v2xa2(z), . . . , v2zs−t−1a2(z))}.

4. Reversible Skew Cyclic Codes over R
In this part, we focus on the structure of skew cyclic codes over R and establish a

necessary and sufficient condition for these codes to be reversible. We first define the skew
polynomial ring overR and provide some definitions that will be used in this section.

Let θ ∈ Aut(F4) be defined by θ(a) = a2. Now, consider a map σ : R −→ R
defined by:

σ(a0 + a1v + a2v2) = θ(a0) + θ(a1)v + θ(a2)v2,

where a0, a1, a2 ∈ F4. Since σ is an extension of θ, σ is an automorphism of R. Let us
consider the set:

R[z; σ] = {a0 + a1z + . . . + anzn | ai ∈ R ∀ i, n ∈ N}.

Define the addition on R[z; σ] as the usual addition of polynomials and multiplication
under the rule (aizi)(ajzj) = aiσ

i(aj)zi+j. Then, it is easy to show thatR[z; σ] forms a ring
under the above binary operations, known as a skew polynomial ring. Here, (aizi)(ajzj) 6=
(ajzj)(aizi) unless σ is identity automorphism.

Definition 3. Let τσ : Rn −→ Rn be a skew cyclic shift operator defined by:

τσ(a0, a1, . . . , an−1) = (σ(an−1), σ(a0), . . . , σ(an−2)), ∀ (a0, a1, . . . , an−1) ∈ Rn.

, a linear code C of length n over R is said to be skew cyclic code if for any codeword c ∈ C, their
skew cyclic shift τσ(c) belongs to C, that is, τσ(C) = C.
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Definition 4. For skew polynomials, a(z) and b(z) 6= 0, the polynomial b(z) is said to be rightly
divided by a(z) if and only if there exists a skew polynomial q(z) such that a(z) = q(z)b(z) and
we denote it by b(z)|ra(z).

Using similar arguments as in the commutative case, we provide the structure of the
skew cyclic codes overR for automorphism σ.

Theorem 7. Let C be a skew cyclic code in R[z;σ]
〈zn−1〉 . Then, C = 〈g0(z)+ vg1(z)+ v2g2(z), va1(z)+

v2 p(z), v2a2(z)〉 with a2(z)|ra1(z)|rg0(z)|r(zn − 1) in F4[z; θ], a1(z)|rg1(z)( zn−1
g0(z)

) and a2(z)

right divides p(z)( zn−1
a1(z)

), and g2(z)( zn−1
g0(z)

)( zn−1
a1(z)

).

Proof. Consider the ring R′ = F4[v]
〈v2〉 and σ

′ ∈ Aut(R′). For a skew cyclic code C over R,

define a map ψ1 : R → R′ by ψ1(a + bv + cv2) = a + bv where a, b, c ∈ F. Then, ψ1 is a
ring homomorphism that can be extended to a homomorphism φ : C → R′ [z;σ′ ]

〈zn−1〉 defined by

φ(c0 + c1z + . . . + cn−1zn−1) = ψ1(c0) + ψ1(c1)z + . . . + ψ1(cn−1)zn−1.

Then ker(φ) = {v2r(z) : r(z) ∈ F4[z; θ]/〈zn − 1〉}.
In order to determine the generators of cyclic code inRn = R[z, σ]/〈zn − 1〉, we need

to know the image of φ which is a skew cyclic code inR′n = R′[z, σ2]/〈zn − 1〉.
Let D be a cyclic code in R′n. Now, define a map ψ2 : R′ → F4 by ψ2(a + ub) = a2.

Then ψ2 is a ring homomorphism. We extend ψ2 to a ring homomorphism ϕ : D →
F4[z; θ]/〈zn − 1〉 defined by

ϕ(d0 + d1z + . . . + dn−1zn−1) = ψ2(d0) + ψ2(d1)z + . . . + ψ2(dn−1)zn−1.

Then,

ker(ϕ) = {vr′(z) : r′(z) is a skew polynomial in F4[z; θ]/〈zn − 1〉}
= 〈va1(z)〉 with a1(z)|r(zn − 1).

Since the set image(ϕ) is also an ideal and hence a skew cyclic code generated by g0(z),
where g0(z) right divides (zn − 1). Therefore, D = 〈g0(z) + vg1(z), va1(z)〉 where
a1(z)|rg0(z) and a1(z)|r(g1(z) zn−1

g0(z)
).

Similarly, the set image(φ) is an ideal overR′. Therefore, skew cyclic code C overR
is provided by C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) + v2 p(z), v2a2(z)〉 with a2(z)|ra1(z)|r
g0(z)|r(zn − 1) and a1(z)|r(g1(z) zn−1

g0(z)
), a2(z)|r(g1(z) zn−1

g0(z)
).

Definition 5. Let g(z) = g0 + g1z + . . . + gmzm be a polynomial in F4[z, θ]. Then, g(z) is
said to be a palindromic polynomial if gi = gm−i and θ-palindromic if gi = θ(gm−i) where
i ∈ {1, 2, . . . , m}.

Note that if the length of the code C is odd, then the skew cyclic codes and cyclic codes
are equivalent (Theorem 8 in [17]). Now, we provide two lemmas to check the reversibility
of the even length skew cyclic codes over the field F4.

Lemma 5. Let C be a skew cyclic code of even length generated by a monic polynomial f(z) =
1 + f1z + . . . + fm−1zm−1 + zm of even degree, where f(z)|r(zn − 1) in F4[z, θ]. Then, the code C
is reversible if and only if skew polynomial f(z) is θ-palindromic.

Proof. Let C be a skew cyclic code of even length generated by the θ-palindromic polyno-
mial f(z) of even degree m over the ring F4. Then, the elements of the generated code are pro-
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vided by ∑k−1
i=0 αizif(z). From the repetitive use of Lemma 3, for c = φ(∑k−1

i=0 αizif(z)) ∈ C,
we obtain:

(φ(
k−1

∑
i=0

αizif(z)))r = φ(
k−1

∑
i=0

αizk−i−1f(z)) ∈ C.

where α ∈ F4 and k = n−m. Since cr belongs to the code C, C is a reversible code.
Conversely, let C be a reversible code generated by f(z) = 1+ f1z+ . . .+ fm−1zm−1 + zm.

Then, because n−m− 1 is odd:

zn−m−1f(z) = zn−m−1 + θ(f1)zn−m + . . . + θ(fm−1)zn−2 + zn−1.

Since C is a skew cyclic and reversible code,

[zn−m−1f(z)]r = 1 + θ(fm−1)z + θ(fm−2)z2 + . . . + θ(f1)zm−1 + zm ∈ C.

Further, we obtain deg(f(z)− [zn−m−1f(z)]r) < m, which contradicts the fact that f(z) is a
minimal degree polynomial in C implies f(z)− [zn−m−1f(z)]r = 0. Comparing coefficients,
we obtain:

[fi − θ(fm−i)] = 0

for i = 1, . . . , m− 1. Thus, fi = θ(fm−i) and the polynomial f(z) is θ-palindromic.

Lemma 6. Let C be a skew cyclic code of even length generated by a monic polynomial f(z) =
1 + f1z + . . . + fm−1zm−1 + zm of odd degree, where f(z)|r(zn − 1) in F4[z, θ]. Then, the code C
is reversible if and only if the skew polynomial f(z) is palindromic.

Proof. Let C be a skew cyclic code of even length generated by a palindromic polynomial
f(z) of odd degree m over the ring F4. Then, elements of the generated code are provided by
∑k−1

j=0 αjzjf(z). From the repetitive use of Lemma 3 and using the property of the palindromic

polynomial, for C = φ(∑k−1
j=0 αjzjf(z)) ∈ C, we obtain:

(φ(
k−1

∑
j=0

αjzjf(z)))r = φ(
k−1

∑
j=0

αjzk−j−1f(z)) ∈ C.

where α ∈ F4 and k = n−m. Since the reverse of C belongs to C, the code C is reversible.
Conversely, let C be a reversible code generated by f(z) = 1 + f1z + . . . + fm−1zm−1 + zm.
Since n−m− 1 is even:

zn−m−1f(z) = zn−m−1 + f1zn−m + . . . + fm−1zn−2 + zn−1.

Furthermore, the code C is a skew cyclic as well as reversible code; therefore, [zn−m−1f(z)]r

∈ C and:
[zn−m−1f(z)]r = [1 + fm−1z + fm−2z2 + . . . + f1zm−1 + zm] ∈ C.

This implies that deg(f(z)− [zn−m−1f(z)]r) < m, which contradicts the fact that f(z) is a
minimal degree polynomial in C. Hence, f(z) − [zn−m−1f(z)]r = 0. By comparing the
coefficients, we obtain

[fi − fm−i] = 0 and fi = fm−i,

for i = 1, . . . , m− 1. Thus, the given polynomial f(z) is palindromic.

Now, in the next theorem, we provide necessary and sufficient conditions for a skew
cyclic code C to be reversible in terms of palindromic and θ-palindromic polynomials.
These conditions depend on the degree of generator polynomials of C.
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Theorem 8. Let C = 〈g0(z), vg1(z), v2g2(z)〉 be a skew cyclic code of even length, where gi(z)
right divides (zn − 1) in F4[z, θ] and deg(gi(z)) is even (odd), for i = 0, 1, 2. Then, the code C is
reversible if and only if skew polynomials gi(z) are θ-palindromic (palindromic) for i = 0, 1, 2.

5. DNA Codes over R
In this section, we discuss the complementary condition of the codes obtained from

previous sections to obtain DNA codes. For a DNA code, the reversible and complement
conditions are essential [21].

Definition 6. Let C be a code of length n over R. If Φ(C)rc ∈ Φ(C) for all c ∈ C, then C or
equivalently Φ(C) is called a DNA code.

In the following lemma, we provide some relations on ring elements and their comple-
ment using the Gray map provided in Equation (1).

Lemma 7. For the given cyclic code in Section 3, the following conditions hold:

(1) For any r ∈ R, r + rc = v2.
(2) For any r1, r2 ∈ R, rc

1 + rc
2 = (r1 + r2)

c + v2.

Proof. This lemma can easily be proved by observing Table 1.

Remark 2. We identify i(z) by the polynomial 1 + z + z2 + · · ·+ zn−1.

Theorem 9. Given a polynomial a(z) inR[z]. We have a(z)rc = a(z)r + v2i(z).

Proof. Let C be a reversible-complement code. Then, by definition, C is reversible and
0 ∈ C implies that (0 + 0z + . . . + 0zn−1)c ∈ C. That is, C is reversible and v2 + v2z + . . . +
v2zn−1 ∈ C.

Conversely, let a(z) = a0 + a1z + . . . + an−1zn−1 + anzn be a polynomial inR[z]. Then:

a(z)rc = ac
n + ac

n−1z + . . . + ac
1zn−1 + ac

0zn

= an + v2 + (an−1 + v2)z + (an−2 + v2)z2 + . . .

+ (a1 + v2)zn−1 + (a0 + v2)zn

= v2i(z) + a(z)r ∈ C.

Thus, cyclic code C is a reversible-complement code.

Corollary 4. Let C be a cyclic code of even length overR. Then, C is a DNA code if and only if C
is reversible and v2i(z) is in C.

Proof. It is obvious from above theorem.

6. Computational Results

Now, we provide some examples of DNA codes satisfying the above-mentioned
constraints. We consider DNA code of any length (even or odd). All the computational
works are performed by using Magma software [20].

Example 1. In F4[z], we have:

z6 − 1 = (z + 1)2(z + t)2(z + t2)2.

Let C be a cyclic code of length n = 6 overR provided by:

C = 〈z4 + z2 + 1, v(z4 + z2 + 1), v2(z4 + z2 + 1)〉.
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Then, using Theorem 2, we obtain d(C) = 3. Furthermore, (x− 1) does not divide (z4 + z2 + 1)
and polynomial (z4 + z2 + 1) is self reciprocal. Thus, we obtain a DNA code C of parameters
(18, 46, 3).

In the next example, we provide some DNA codes of arbitrary lengths that are gener-
ated from cyclic codes overR.

Example 2. Suppose C is a cyclic code of the form C = 〈g0(z) + vg1(z) + v2g2(z), va1(z) +
v2 p(z), v2a2(z)〉, where gcd( zn−1

a2(z)
, g0(z)) = 1. If g0(z) = a1(z) = a2(z), then we list several

DNA codes in Table 2 that are obtained from cyclic code C. Since g0(z), a1(z), and a2(z) are equal,
therefore, in Table 2, we mention only g0(z). For brevity, polynomial z2 + b1z + b0 is represented
as b0b11.

Table 2. DNA codes of different lengths.

Length g0(z) Type of Code Gray Image

5 1t1 (5, 3, 3) (15, 49, 3)
5 11111 (5, 1, 5) (15, 43, 5)
6 10101 (6, 2, 3) (18, 46, 3)

10 101010101 (10, 2, 5) (30, 46, 5)
13 1t0(1 + t)0t1 (13, 7, 5) (39, 421, 5)
14 1010101010101 (14, 2, 7) (42, 46, 7)
17 11t11 (17, 13, 4) (51, 439, 4)
17 1(1 + t)11t11(1 + t)1 (17, 9, 7) (51, 427, 7)
29 1t0t(1 + t)1(1 + t)t(1 + t)1(1 + t)t0t1 (10, 1, 5) (30, 43, 5)

Example 3. Consider a cyclic code C of length n = 9 over ringR. In F4[z], we have:

z9 − 1 = (z + 1)(z + t)(z + t2)(z3 + t)(z3 + t2).

To write briefly, we identify factors by g1, g2, g3, g4, and g5, respectively. The codes for n = 9 are
provided in Table 3. All the codes are better than the codes that appeared in [14].

Example 4. Consider a cyclic code C of length n = 15 over ringR. In F4[z], we have

z15 − 1 =(z + 1)(z + t)(z + t2)(z2 + z + t)(z2 + z + t2)(z2 + tz + 1)

(z2 + tz + t)(z2 + t2z + 1)(z2 + t2z + t2).

For brevity, we identify the factors by g1, g2, g3, g5, g6, g7, g8, and g9, respectively. DNA codes for
n = 15 are provided in Table 4. All the obtained DNA codes are better than the codes provided
in [14].

In particular, if C = 〈g2g3g4g5g6g7g8g9, vg2g3g4g5g6g7g8g9, v2g2g3g4g5g6g7g8g9〉, then
we obtain a DNA code with parameters [45, 43, 15]. Further, we list all the DNA codewords of the
obtained DNA code in Table 5. Furthermore, the edit distance of the obtained DNA code is 2, given
by the codewords “TCCTCCTCCTCCTCCTCCTCCTCCTCC" and “CTCCTCCTCCTCCTCCTC-
CTCCTCCTC".

Table 3. Codes of length 27.

Sr No Generator of Code Type of Code Gray Image DNA Code [14]

1 〈g2g3, vg2g3, v2g2g3〉 (9, 7, 2) (27, 421, 2) (27, 414, 2)
2 〈g4g5, vg4g5, v2g4g5〉 (9, 3, 3) (27, 49, 3) (27, 46, 3)
3 〈g2g3g4g5, vg2g3g4g5, v2g2g3g4g5〉 (9, 1, 9) (27, 43, 9) (27, 42, 9)
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Table 4. Codes of length 45.

Code Type of Code Gray Image DNA Code [14]

〈g2g3, vg2g3, v2g2g3〉 (15, 13, 2) (45, 439, 2) (45, 426, 2)
〈g2g3g6, vg2g3g6, v2g2g3g6〉 (15, 11, 4) (45, 433, 4) (45, 424, 3)
〈g4g8g9, vg4g8g9, v2g4g8g9〉 (15, 9, 5) (45, 427, 5) (45, 418, 5)

〈g2g3g5g6g7, vg2g3g5g6g7, v2g2g3g5g6g7〉 (15, 7, 7) (45, 421, 7) (45, 414, 7)
〈g2g3g4g5g6g7g9, vg2g3g4g5g6g7g9, v2g2g3g4g5g6g7g9〉 (15, 3, 9) (45, 49, 9) (45, 46, 9)

Table 5. Codewords of length 45 and dimension 3.

AAAAAAAAAAAAAAAAAAAAAAAAAAA TAATAATAATAATAATAATAATAATAA
GAAGAAGAAGAAGAAGAAGAAGAAGAA CAACAACAACAACAACAACAACAACAA

TTATTATTATTATTATTATTATTATTA ATAATAATAATAATAATAATAATAATA
CTACTACTACTACTACTACTACTACTA GTAGTAGTAGTAGTAGTAGTAGTAGTA

GGAGGAGGAGGAGGAGGAGGAGGAGGA CGACGACGACGACGACGACGACGACGA
AGAAGAAGAAGAAGAAGAAGAAGAAGA TGATGATGATGATGATGATGATGATGA

CCACCACCACCACCACCACCACCACCA GCAGCAGCAGCAGCAGCAGCAGCAGCA
TCATCATCATCATCATCATCATCATCA ACAACAACAACAACAACAACAACAACA

TTTTTTTTTTTTTTTTTTTTTTTTTTT ATTATTATTATTATTATTATTATTATT
CTTCTTCTTCTTCTTCTTCTTCTTCTT GTTGTTGTTGTTGTTGTTGTTGTTGTT

AATAATAATAATAATAATAATAATAAT TATTATTATTATTATTATTATTATTAT
GATGATGATGATGATGATGATGATGAT CATCATCATCATCATCATCATCATCAT
CCTCCTCCTCCTCCTCCTCCTCCTCCT GCTGCTGCTGCTGCTGCTGCTGCTGCT
TCTTCTTCTTCTTCTTCTTCTTCTTCT ACTACTACTACTACTACTACTACTACT

GGTGGTGGTGGTGGTGGTGGTGGTGGT CGTCGTCGTCGTCGTCGTCGTCGTCGT
AGTAGTAGTAGTAGTAGTAGTAGTAGT TGTTGTTGTTGTTGTTGTTGTTGTTGT

GGGGGGGGGGGGGGGGGGGGGGGGGGG CGGCGGCGGCGGCGGCGGCGGCGGCGG
AGGAGGAGGAGGAGGAGGAGGAGGAGG TGGTGGTGGTGGTGGTGGTGGTGGTGG

CCGCCGCCGCCGCCGCCGCCGCCGCCG GCGGCGGCGGCGGCGGCGGCGGCGGCG
TCGTCGTCGTCGTCGTCGTCGTCGTCG ACGACGACGACGACGACGACGACGACG

AAGAAGAAGAAGAAGAAGAAGAAGAAG TAGTAGTAGTAGTAGTAGTAGTAGTAG
GAGGAGGAGGAGGAGGAGGAGGAGGAG CAGCAGCAGCAGCAGCAGCAGCAGCAG

TTGTTGTTGTTGTTGTTGTTGTTGTTG ATGATGATGATGATGATGATGATGATG
CTGCTGCTGCTGCTGCTGCTGCTGCTG GTGGTGGTGGTGGTGGTGGTGGTGGTG
CCCCCCCCCCCCCCCCCCCCCCCCCCC GCCGCCGCCGCCGCCGCCGCCGCCGCC
TCCTCCTCCTCCTCCTCCTCCTCCTCC ACCACCACCACCACCACCACCACCACC

GGCGGCGGCGGCGGCGGCGGCGGCGGC AGCAGCAGCAGCAGCAGCAGCAGCAGC
CGCCGCCGCCGCCGCCGCCGCCGCCGC TGCTGCTGCTGCTGCTGCTGCTGCTGC

TTCTTCTTCTTCTTCTTCTTCTTCTTC ATCATCATCATCATCATCATCATCATC
CTCCTCCTCCTCCTCCTCCTCCTCCTC GTCGTCGTCGTCGTCGTCGTCGTCGTC

AACAACAACAACAACAACAACAACAAC CACCACCACCACCACCACCACCACCAC
TACTACTACTACTACTACTACTACTAC GACGACGACGACGACGACGACGACGAC

7. Conclusions

In this paper, we have studied reversible and DNA codes using the chain ring R =
F4[v]/〈v3〉. We have defined a Gray map on R and found codons corresponding to the
elements of R. In this way, we have obtained good DNA and reversible codes with the
Hamming distances. In the future, one can work on DNA codes over a generalized structure
ofR as well as DNA codes by using skew polynomial rings.
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Abstract: A fractional-order cholera model in the Caputo sense is constructed. The model is an
extension of the Susceptible–Infected–Recovered (SIR) epidemic model. The transmission dynamics
of the disease are studied by incorporating the saturated incidence rate into the model. This is
particularly important since assuming that the increase in incidence for a large number of infected
individualsis equivalent to a small number of infected individualsdoes not make much sense. The
positivity, boundedness, existence, and uniqueness of the solution of the model are also studied.
Equilibrium solutions are computed, and their stability analyses are shown to depend on a threshold
quantity, the basic reproduction ratio (R0). It is clearly shown that if R0 < 1, the disease-free
equilibrium is locally asymptotically stable, whereas if R0 > 1, the endemic equilibrium exists and is
locally asymptotically stable. Numerical simulations are carried out to support the analytic results
and to show the significance of the fractional order from the biological point of view. Furthermore,
the significance of awareness is studied in the numerical section.

Keywords: mathematical model; fractional order; Caputo; cholera; well-posedness; saturated
incidence rate

1. Introduction

Cholera is a prolific diarrheal disease that leads to death in a short period of time
if treatment measures are not taken. The disease is estimated to cause about 21,000 to
143,000 deaths from the 1,300,000 to 4,000,000 cholera cases annually. This represents about
1.62% to 3.58% of the reported cases [1]. People who live in slums and refugee camps due
to natural disasters, social conflicts, climate change, and economic meltdowns are the most
affected. The camps often possess poor drinking water, which serves as a cholera-causing
factor [2]. Many of the symptoms of cholera include vomiting, profuse rice–water stool,
sunken eyes, cramps, shock, and severe dehydration. Vibrio cholerae carriers are those
people that are exposed to an incomplete cholera-causing dose, therefore, the disease may
not manifest any symptoms in their body [3]. Acute cholera leads to death in a short period
that varies from hours up to three days. Exposed individuals have only half a chance of
being infected with the disease if the concentration of Vibrio cholerae is 105 cells per milliliter.
A minimum of 1 liter per day is the least daily consumption of untreated water that may
cause the disease [4].

Up to 75% of Vibrio cholerae carriers do not show any symptoms of the disease, po-
tentially spreading it through their feces [5]. This causes a big risk of cholera disease and
outbreaks. The cholera infection falls into one of three classes: asymptomatic, mild, or
severe. In a population of infected individuals, 80% have mild or moderate symptoms and
only 20% develop severe watery diarrhea [6].
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Mathematical models help in studying the dynamics of a given infectious disease [7–9].
The investigation of cholera models using the SIR epidemic model introduced in 1927 [10]
provides a cavernous understanding of the transmission mechanisms of the disease, while
other models use time-dependent coefficients [11]. This is why many researchers put more
effort into constructing and analyzing mathematical models of a cholera epidemic. Cholera
dynamical models involve the study of the disease transmission among humans and
V. cholerae concentration in contaminated water. Most of the time, the direct and indirect
pathway transmission of cholera gives rise to a basic framework for investigating the
dynamics of the disease [12–18].

Due to their hereditary properties and memory description abilities, many researchers
prefer to use fractional order derivatives and integrals as tools in the study of mathematical
modeling. Nowadays, a fractional differential equation is used to study biological phenom-
enaby developing related mathematical models [19,20]. This is due to the fact that fractional
calculus can be used to explain the retention and heritage properties of many materials more
accurately compared to its corresponding integer-order analog [21,22]. In this paper, we use
the Caputo fractional order to model the dynamics of cholera in a homogeneous setting.

The mechanism of transmission of any transmissible disease is controlled by a certain
function that depends on the subpopulations of infected individuals called the incidence
rate. In epidemic models, the most frequently used incidence rates are the standard
incidence rate βSI

N and the bilinear incidence rate βSI, where β is the contact rate, S stands
for the susceptible population, I stands for the infected population, and N is the total
population. Assuming the increase in incidence for a large number of infected individualsis
equivalent to a small number of infected individuals does not make much sense, hence,
there is a need for a more realistic incidence rate of the form g(I)S [23] where g tends to
a saturation level, as it is a nonnegative function, such that g(0) = 0. To incorporate the
effect of the behavioral changes of the susceptible individuals, a more general incidence
rate of the form βSIm

1+δIn , where m and n are positive constants and δ is a nonnegative term,
was proposed [24]. These types of incidence rates that allow for the possibility of the
introduction of psychological effects are called saturated incidence rates; δ and 1 + δIn

determine the amount of psychological effect and the inhibition effect, respectively. As the
number of infective individuals increases, the rate of infection spread may decrease due to
public awareness, potentially leading to contact reduction [25].

Many mathematical models of cholera transmission exist in the literature, and they
study the dynamics of the disease. For example, Leo [26] developed an ML reference cholera
model that can be used to overcome the existing complexities of modeling the disease.
His results indicate, at an average of 87%, that the developed measures can integrate a
large number of datasets, including environmental factors, for the timely prediction of
cholera epidemics in Tanzania. Daudel et al. [27] constructed and studied a compartmental
malaria model. Their results show that the higher implementation of strategies combining
awareness programs and therapeutic treatments increases the efficacy of control measures.
In [28], a stochastic norovirus epidemic model with a time delay and random perturbations
was explored. In [29], a mathematical model for cholera considering vaccination effects
was proposed. In [30], Capasso and Paveri-Fontana suggested a mathematical model for
the 1973 cholera epidemic in the European Mediterranean region. In 2017, the transmission
dynamics of cholera in Yemen were investigated by Nishiura et al. [31]. Lastly, a model
containing optimal intervention strategies for cholera control was formulated in [32].

Luchko and Yamamoto [33] proposed a new differential operator with a general kernel
function. Due to the existence of flexibility in choosing the kernel, they provide a basis
for a broad range of applications [34]. Changing the kernel in the general derivative
leads to the discovery of various asymptotic behaviors. Hence, the hidden features of
real-world systems are more accurately observed than in the classical sense. However, both
properties and applications regarding this operator must be studied in practical situations.
There is also the need to state and prove some theorems in order to study models using
this operator.
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For cholera, the saturated incidence rate is more reasonable than the bilinear incidence
rate. This is because it includes the behavioral change and crowding effect of the cholera-
infective individuals and prevents the unboundedness of the contact rate by choosing
suitable parameters. Motivated by the above discussions, we construct a novel mathe-
matical model that studies the transmission dynamics of cholera in the Caputosense. The
model is novel because, to the best of our knowledge, no previous study has analyzed
a mathematical model with a saturated incidence rate and fractional derivative for the
cholera disease in detail. The main contributions of this research and the new achievements
obtained within this manuscript are summarized as follows:

• This paper addresses a new mathematical model of cholera disease which involves
the Caputo fractional derivative.

• The fundamental characteristics of the new model are discussed in detail.
• A numerical scheme is developed to carry out numerical simulations.
• The effect of awareness is studied.
• Comparative results in this research show an obvious linkage between the mathemati-

cal and biological mechanisms.

Hence, in this paper, we study a fractional-order cholera model with a saturated
incidence rate. The main contribution of the paper is the introduction of a more reasonable
incidence rate of the form βSIm

1+δIn , which makes more sense when considering that assuming
the increase in incidence for a large number of infected individualsis equivalent to a small
number of infected individualsdoes not make much sense. It is also the aim of the paper
to consider the effect of awareness in the control of cholera and study all the properties of
well-posedness.

The paper is arranged as follows: Section 1 gives an introduction, Section 2 gives
important definitions and preliminaries, Section 3 gives model formulation, Section 4 gives
the well-posedness properties of the model, and Section 5 gives the numerical simulation
results to support the analytic results. In Section 6, a discussion and conclusion are given.

2. Preliminary Definitions and Theorems

Definition 1 [35]. The Caputo fractional derivative of order α ∈ (n− 1, n] of f (x) is defined as,

C
a Dα

x f (x) =
1

Γ(n− α)

∫ x

a
(x− t)n−α−1 f n(t)dt, n = [α] + 1.

Definition 2 [36]. The linearity of the fractional derivative.

Let f , g be continuous and b, c be scalars, then

RL
a Dα

x[b f (x) + dg(x)] = bRL
a Dα

x f (x) + dRL
a Dα

xg(x),

C
a Dα

x[b f (x) + dg(x)] = bC
a Dα

x f (x) + dC
a Dα

xg(x).

Definition 3 [37]. Contraction.

An operator f : X → X that maps a metric space onto itself is said to be contractive if
for 0 < q < 1.

d( f (x), f (y)) = qd(x, y), ∀ x, y ∈ X.

Theorem 1 [37]. Picard–Banach fixed point.
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Any contractive operator that maps a metric space onto itself has a unique fixed point.
Furthermore, if f : X → X is a contractive operator that maps a metric space onto itself
and a is its fixed point: f (a) = a; then for any iterative sequence

x0, x1 = f (x0), x2 = f (x1), . . . , xn+1 = f (xn), . . .

converges to a.
In other words, a is a solution or equilibrium for a continuous dynamical system and

a fixed point for a discrete dynamical system.

Theorem 2 [36]. The equilibrium solutions x∗ of a system of fractional order differential equation
is locally asymptotically stable if all the eigenvalues λi of the Jacobian matrix ∂ f

∂xi
evaluated at the

equilibrium points satisfy

|arg(λi)| >
απ

2
, 0 < α < 1.

Theorem 3 [36]. Let x(t) ∈ R+ be a continuous and derivable function. Then, for any time instant
t ≥ t0 and α ∈ (0, 1)

C
0 Dα

t [x(t)− x∗ − x∗ ln
(

x(t)
x∗

)
] ≤

(
1− x(t)

x∗

)
C
0 Dα

t x(t), x∗ ∈ R+.

3. Model Formulation

The model consists of the following classes: susceptible S, latently infected individuals
E, infectious individuals I, and those that recovered from the infection R. We also define
N(t) = S(t) + E(t) + I(t) + R(t). Assuming homogeneous mixing of the population, the
model is given as:

C
0 Dα

t S(t) = Λα − βα(1−kα)S(t)I(t)
f (I) + γαE(t) + ξα I(t)− µαS(t),

C
0 Dα

t E(t) = p βα(1−kα)S(t)I(t)
f (I) − (γα + ηα + φα + µα)E(t),

C
0 Dα

t I(t) = (1− p) βα(1−kα)S(t)I(t)
f (I) + ηαE(t)− (ξα + δα + qα + µα)I(t),

C
0 Dα

t R(t) = δα I(t)− µαR(t),

(1)

subject to the initial conditions;

S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.

where the function f (I) is given as;

f (I) = 1 + I2.

We then modify the fractional operator via an auxiliary parameter Y > 0 to avoid
dimensional mismatching [38] to obtain

Yα−1C
0 Dα

t S(t) = Λα − βα(1−kα)S(t)I(t)
f (I) + γαE(t) + ξα I(t)− µαS(t),

Yα−1C
0 Dα

t E(t) = p βα(1−kα)S(t)I(t)
f (I) − (γα + ηα + φα + µα)E(t),

Yα−1C
0 Dα

t I(t) = (1− p) βα(1−kα)S(t)I(t)
f (I) + ηαE(t)− (ξα + δα + qα + µα)I(t),

Yα−1C
0 Dα

t R(t) = δα I(t)− µαR(t),

(2)

subject to the initial conditions;

S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.
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The meaning of the parameters in the model are given in Table 1 as follows.

Table 1. Meaning of parameters.

Parameter Meaning

Λ Birthrate
β Disease contact rate
µ Natural death rate

φ
Disease-induced death rate in the Exposed

class
γ Rate at which the Exposed become Susceptible

ξ
Rate at which the Infectious become

Susceptible
η Rate at which the Exposed become Infectious

d Disease-induced death rate in the Infectious
class

δ Rate of recovery
k Awareness parameter

p Fraction of individuals joining the Exposed
class

4. Well-Posednessof the Model

In this section, the mathematical properties of the model are explored. This con-
sists of the positivity and boundedness, the existence and uniqueness, the computa-
tion of equilibrium solutions and basic reproduction ratio, and the stability analysis of
the solutions.

4.1. Positivity and Boundedness

The positivity of solutions means that the population thrives, while boundedness
means that the population growth is restricted naturally due to limited resources.

To show positivity, consider Equation (1),

C
0 Dα

t S(t)|S=0 = Λα + γαE(t) + ξα I(t) > 0,
C
0 Dα

t E(t)|E=0 = p βα(1−kα)S(t)I(t)
f (I) ≥ 0,

C
0 Dα

t I(t)|I=0 = ηαE(t) ≥ 0,
C
0 Dα

t R(t)|R=0 = δα I(t) ≥ 0.

Hence, we can observe that the solution of (1) is non-negative.
For the boundedness, observe that,

N(t) = S(t) + E(t) + I(t) + R(t).

Then, by Definition 3, we have

C
0 Dα

t N(t) = C
0 Dα

t S(t) + C
0 Dα

t E(t) + C
0 Dα

t I(t) + C
0 Dα

t R(t).

Then,
C
0 Dα

t N(t) = Λα − µαN(t)− (φαE(t) + qα I(t)),
C
0 Dα

t N(t) ≤ Λα − µαN(t).

We apply the Laplace transform method to solve the Gronwall’s like inequality with
initial condition N(t0) ≥ 0 to find

L
{

CF
0 Dα

t N(t) + µαN
}
≤ L{Λα}.
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By the linearity of the Laplace transform, we obtain

L
{

CF
0 Dα

t N(t)
}
+ µαL{N(t)

}
≤ L{Λα},

we find,

SαL{N(t)} −
n−1

∑
k=0

Sα−k−1Nk(t0) + µαL{N(t)} ≤ Λα

S
.

Simplifying, we obtain

L{N(t)} ≤ Λα


 1

S
− 1

S
1(

1 + µα

Sα

)


+

n−1

∑
k=0

1
Sk+1

1

(1 + µα

Sα )
Nk(t0).

Using the Taylor series expansion, we have

1(
1 + µα

Sα

) =
∞

∑
n=0

(−µα

Sα

)n
.

Therefore,

L{N(t)} ≤ Λα

(
1
S
− 1

S

∞

∑
n=0

(−µα

Sα

)n
)
+

n−1

∑
k=0

1
Sk+1 Nk(t0)

∞

∑
n=0

(−µα

Sα

)n
.

Taking the Laplace inverse, we find

N(t) ≤ Yα −Λα
∞

∑
n=0

−(µαtα)n

Γ(αn + 1)
+

n−1

∑
k=0

∞

∑
n=0

−(µαtα)n

Γ(αn + k + 1)
tk Nk(t0).

Substituting the Mittag–Leffler function, we have

N(t) ≤ Λα[1− E1(−µαtα)] +
n−1

∑
k=0

Ek+1(−µαtα)tk Nk(t0).

where E1(−µαtα), Ek+1(−µαtα) are the series of the Mittag–Leffler function which con-
verges for any argument, hence, we say that the solution to the model is bounded.

Thus, we define,

ω =

{
(S(t), E(t), I(t), R(t)) ∈ R4

+ : S(t), E(t), I(t), R(t) ≤ Λα[1− E1(−µαtα)] +
n−1

∑
k=0

Ek+1(−µαtα)tk Nk(t0)

}

hence, all solutions of (1) commencing in ω stays in ω for all t ≥ 0.

4.2. Existence and Uniqueness

In this section, we study the existence and uniqueness properties of the solution of
Equation (1). First, we consider the following theorem to show Lipschitz continuity.

Theorem 4. The kernels of Equation (1) satisfy the Lipschitz continuity for Li ≥ 0, i = 1, 2, . . . , 4.
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Proof. Let the kernel be defined as,

g1(t, S) = Λα − βα(1−kα)S(t)I(t)
f (I) + γαE(t) + ξα I(t)− µαS(t),

g2(t, E) = p βα(1−kα)S(t)I(t)
f (I) − (γα + ηα + φα + µα)E(t),

g3(t, I) = (1− p) βα(1−kα)S(t)I(t)
f (I) + ηαE(t)− (ξα + δα + qα + µα)I(t),

g4(t, R) = δα I(t)− µαR(t).

(3)

Now,
|g1(t, S)− g1(t, S∗)| =

∣∣∣
(

βα(1−kα)I(t)
f (I) + µα

)
(S− S∗)

∣∣∣
≤
(
|µα|+

∣∣∣ βα(1−kα)I(t)
f (I)

∣∣∣
)
‖S− S∗‖

≤
(
|µα|+ βα(1− kα) max

t∈[0, h∗ ]

∣∣∣ (1−kα)I(t)
f (I)

∣∣∣
)
‖S− S∗‖

≤ L1‖S− S∗‖, L1 = |µα|+ βα(1− kα) max
t∈[0, h∗ ]

∣∣∣ I(t)
f (I)

∣∣∣.

Hence,
|g1(t, S)− g1(t, S∗)| ≤ L1‖S− S∗‖. (4)

In a similar way, we obtain

|g2(t, E)− g2(t, E∗)| ≤ L2‖E− E∗‖,
|g3(t, I)− g3(t, I∗)| ≤ L3‖I − I∗‖,
|g4(t, R)− g4(t, R∗)| ≤ L4‖R− R∗‖.

(5)

where

L2 = |γα + ηα + φα + µα|, L3 = |ξα + δα + qα + µα|+ βα(1− kα)(1− p) max
t∈[0, h∗ ]

∣∣∣∣
I(t)
f (I)

∣∣∣∣,

and L4 = |µα|. �

The following Lemma converts the system to Volterra integral equations.

Lemma 1. The continuous system (1) can be transformed to equivalent Volterra integral equations.

Proof. Consider
C
0 Dα

t S(t) = g1(t, S(t)).

On integrating fractionally, we find

C
0 I α

t
[C

0 Dα
t S(t)

]
= C

0 I α
t [g1(t, S(t))]

S(t)− S(0) = 1
Γ(α)

∫ t
0 (t− τ)α−1g1(τ, S(τ))dt

S(t) = S(0) + 1
Γ(α)

∫ t
0 (t− τ)α−1g1(τ, S(τ))dt.

(6)

Similarly,
E(t) = E(0) + 1

Γ(α)

∫ t
0 (t− τ)α−1g2(τ, E(τ))dt,

I(t) = I(0) + 1
Γ(α)

∫ t
0 (t− τ)α−1g3(τ, I(τ))dt,

R(t) = R(0) + 1
Γ(α)

∫ t
0 (t− τ)α−1g4(τ, R(τ))dt. �

(7)

The following theorem provides the existence of the unique solution.

Theorem 5. Let 0 < α < 1, I = [0, h∗] ⊆ R and J = |S(t)− S(0)| ≤ k1.
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Let g1 : I× J → R be continuous bounded function, that is ∃!M > 0 such that
|g1(t, S)| ≤ M1.

Assume that g1 satisfies the Lipschitz conditions. If L1k1 < M1, then there exist unique

S ∈ C[0, h∗], where h∗ = min[h,
(

k1Γ(α+1)
M1

)
1
α

]
that holds the equation.

Proof.
Let T = {S ∈ C[0, h∗] : ‖S(t)− S(0)‖ ≤ k1}.

Since T ⊆ R and its closed set, then T is a complete metric space.
Recall that,

S(t) = S(0) +
1

Γ(α)

∫ t

0
(t− τ)α−1g1(τ, S(τ))dt. (8)

Define operator F in T by,

F(S(t)) = S(0) +
1

Γ(α)

∫ t

0
(t− τ)α−1g1(τ, S(τ))dt. (9)

To show that (6) satisfies Theorem 1, we have

|F(S(t))− S(0)| =
∣∣∣ 1

Γ(α)

∫ t
0 (t− τ)α−1g1(τ, S(τ))dt

∣∣∣
≤ 1

Γ(α)

∫ t
0 (t− τ)α−1|g1(τ, S(τ))|dt

≤ 1
Γ(α)

∫ t
0 (t− τ)α−1M1dt

= M1
Γ(α+1) tα

= M1
Γ(α+1) (h

∗)α

≤ M1
Γ(α+1)

k1Γ(α+1)
M1

= k1.

Hence,
|F(S(t))− S(0)| ≤ k1. (10)

Similarly,
|F(E(t))− E(0)| ≤ k2,
|F(I(t))− I(0)| ≤ k3,
|F(R(t))− R(0)| ≤ k4.

(11)

Therefore F maps T onto itself.
Secondly, to show that T is a contraction, we have

F(S)− F(S∗) = S(0)− S∗(0) +
1

Γ(α)

∫ t

0
(t− τ)α−1[g1(τ, S(τ))− g1(τ, S∗(τ))]dτ.
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Since S(0) = S∗(0)

|F(S)− F(S∗)| =
∣∣∣ 1

Γ(α)

∫ t
0 (t− τ)α−1[g1(τ, S(τ))− g1(τ, S∗(τ))]dτ

∣∣∣
≤ 1

Γ(α)

∫ t
0 (t− τ)α−1|g1(τ, S(τ))− g1(τ, S∗(τ))|dτ.

≤ 1
Γ(α)

∫ t
0 (t− τ)α−1L1‖S− S‖dτ

= L1
Γ(α)‖S− S‖

∫ t
0 (t− τ)α−1τ0dτ

= L1
Γ(α)‖S− S∗‖ Γ(α)

Γ(α+1) tα

= L1
Γ(α+1)‖S− S∗‖tα

≤ L1
Γ(α+1)‖S− S∗‖(h∗)α

≤ L1
Γ(α+1)‖S− S∗‖ k1Γ(α+1)

M1
.

Hence,

‖FS− FS∗‖ ≤ L1k1

M1
‖S− S∗‖. (12)

Since, by hypothesis L1k1
M1

< 1, T is contractive and has a unique fixed point.
In a similar way, we obtain

‖F(E)− F(E∗)‖ ≤ L2k2
M2
‖E− E∗‖,

‖F(I)− F(I∗)‖ ≤ L3k3
M3
‖I − I∗‖,

‖F(R)− F(R∗)‖ ≤ L4k4
M4
‖R− R∗‖.

(13)

Thus, Equation (1) has a unique solution. �

4.3. Existence of Equilibrium Solutions

Since R = N − (S + E + I), we can consider the first three equations in Equation (1)
for this analysis.

Setting the first three equations in Equation (1) to zero and solving simultaneously, we
find the following equilibrium solutions;

I. Disease-free equilibrium (E0) is given as;

E0 =
(

S0, 0, 0
)
=

(
Λα

µα
, 0, 0

)
.

II. Endemic equilibrium (E1) is given as;

E1 =
(

S1, E1, I1
)

,

where
S1 = A1 A2 f (I)

βα(1−kα)[(1−p)A1+ηα p] ,

E1 = pA2 I1

βα(1−kα)[(1−p)A1+ηα p] ,

and I1 can be obtained by solving,

Λα − βα(1− kα)SI
f (I)

− µαS + γαE + ξα I = 0,

where
A1 = γα + ηα + φα + µα, and A2 = ξα + δα + qα + µα.
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Simplifying, we find

G(I) = Λα − I
[

A1 A2

(1− p)A1 + ηα p
−
(

γα pA2

(1− p)A1 + ηα p
+ ξα

)]
− A1 A2 f (I)

βα(1− kα)[(1− p)A1 + ηα p]
= 0.

Since,

A1 A2

(1− p)A1 + ηα p
−
(

γα pA2

(1− p)A1 + ηα p
+ ξα

)
> 0, and f ′ ≥ 0,

then G is an increasing function.
In addition,

G(I) < Λα − I
[

A1 A2

(1− p)A1 + ηα p
−
(

γα pA2

(1− p)A1 + ηα p
+ ξα

)]
,

then,
lim
t→∞

G(I) = −∞.

If f (0) = 1, clearly

G(0) = Λα − A1 A2
βα(1−kα)[(1−p)A1+ηα p]

= Λα
[
1−

(
µα A1 A2

ηα pβα(1−kα)Λα + µα A2
(1−p)βα(1−kα)Λα

)]
.

Thus, a unique positive solution for G exists i f f G(0) > 0, i.e., if

µα A1 A2

ηα pβα(1− kα)Λα
+

µα A2

(1− p)βα(1− kα)Λα
> 1.

We shall establish,

µα A1 A2

ηα pβα(1− kα)Λα
+

µα A2

(1− p)βα(1− kα)Λα
= R0,

in the subsequent section where R0 is the basic reproduction ratio.

4.4. Basic Reproduction Ratio

This is defined as the number of secondary cases caused by a single infected individual
in a population of Susceptible [37]. Here we use the idea of the next-generation matrix as
in [39].

Let,

Entropy 2023, 25, x FOR PEER REVIEW 11 of 17 
 

 

4.4. Basic Reproduction Ratio 

This is defined as the number of secondary cases caused by a single infected indi-

vidual in a population of Susceptible [37]. Here we use the idea of the next-generation 

matrix as in [39]. 

Let, 

Ƴ represents new infection and Ƶ represents the remaining terms in Equation (1). 

Then, 

Ƴ =

[
 
 
 
 𝑝

𝛽𝛼(1 − 𝑘𝛼)𝑆(𝑡)𝐼(𝑡)

𝑓(𝐼)

(1 − 𝑝)
𝛽𝛼(1 − 𝑘𝛼)𝑆(𝑡)𝐼(𝑡)

𝑓(𝐼) ]
 
 
 
 

,   𝑎𝑛𝑑  Ƶ = [
𝐴1𝐸

−𝜂𝛼𝐸 + 𝐴2𝐼
].  

Then, 

𝑌(𝐸0) = [
0 𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆0

0 (1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝑆0] , 𝑎𝑛𝑑 𝑍(𝐸0) = [
𝐴1 0

−𝜂𝛼 𝐴2
],  

where 𝑌(𝐸0) is the Jacobian of Ƴ at 𝐸0and 𝑍(𝐸0) is the Jacobian at Ƶ at 𝐸0. 

Therefore, 

𝑋 = 𝑌(𝐸0)(𝑍(𝐸0)
−1) = [

𝜂𝛼𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆0 𝐴1𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆0

𝜂𝛼(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝑆0 𝐴1(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝑆0].  

Note: 𝑋 is the next generation matrix and the dominant eigenvalue of 𝑋 is the basic 

reproduction ratio (𝑅0). 

Here,  

𝑅0 =
µ𝛼𝐴1𝐴2

𝜂𝛼𝑝𝛽𝛼(1 − 𝑘𝛼)𝛬𝛼
+

µ𝛼𝐴2

(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝛬𝛼
.  

4.5. Stability Analysis of the Equilibria 

In this section, we carry out a local stability analysis of both disease-free and en-

demic equilibrium points. 

First, consider the following Jacobian matrix from Equation (1); 

𝐽 =

[
 
 
 
 
 
 −

𝛽𝛼(1 − 𝑘𝛼)𝐼

𝑓(𝐼)
− µ𝛼 𝛾𝛼 −

𝛽𝛼(1 − 𝑘𝛼)𝑆

𝑓(𝐼)
(1 −

𝐼𝑓′(𝐼)

𝑓(𝐼)
) + 𝜉𝛼

𝑝𝛽𝛼(1 − 𝑘𝛼)𝐼

𝑓(𝐼)
−𝐴1

𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆

𝑓(𝐼)
(1 −

𝐼𝑓′(𝐼)

𝑓(𝐼)
)

(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝐼

𝑓(𝐼)
𝜂𝛼

(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝑆

𝑓(𝐼)
(1 −

𝐼𝑓′(𝐼)

𝑓(𝐼)
) − 𝐴2

]
 
 
 
 
 
 

.   (14) 

Theorem 6.The disease-free equilibrium (𝐸0) is locally asymptotically stable if 𝑅0 < 1. 

Proof. Consider Equation (14) at 𝐸0, then we have 

𝐽(𝐸0) = [
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Therefore, 

𝑋 = 𝑌(𝐸0)(𝑍(𝐸0)
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Note: 𝑋 is the next generation matrix and the dominant eigenvalue of 𝑋 is the basic 

reproduction ratio (𝑅0). 

Here,  

𝑅0 =
µ𝛼𝐴1𝐴2

𝜂𝛼𝑝𝛽𝛼(1 − 𝑘𝛼)𝛬𝛼
+

µ𝛼𝐴2

(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝛬𝛼
.  

4.5. Stability Analysis of the Equilibria 

In this section, we carry out a local stability analysis of both disease-free and en-

demic equilibrium points. 

First, consider the following Jacobian matrix from Equation (1); 

𝐽 =

[
 
 
 
 
 
 −

𝛽𝛼(1 − 𝑘𝛼)𝐼

𝑓(𝐼)
− µ𝛼 𝛾𝛼 −

𝛽𝛼(1 − 𝑘𝛼)𝑆

𝑓(𝐼)
(1 −

𝐼𝑓′(𝐼)

𝑓(𝐼)
) + 𝜉𝛼

𝑝𝛽𝛼(1 − 𝑘𝛼)𝐼

𝑓(𝐼)
−𝐴1

𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆

𝑓(𝐼)
(1 −
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𝑓(𝐼)
) − 𝐴2

]
 
 
 
 
 
 

.   (14) 

Theorem 6.The disease-free equilibrium (𝐸0) is locally asymptotically stable if 𝑅0 < 1. 

Proof. Consider Equation (14) at 𝐸0, then we have 

𝐽(𝐸0) = [

−µ𝛼 𝛾𝛼 𝛽𝛼(1 − 𝑘𝛼)𝑆0 + 𝜉𝛼

0 −𝐴1 𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆0

0 𝜂𝛼 (1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝑆0 − 𝐴2

].  

In echelon form, we find 
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0 𝜂𝛼 𝐴1(1 − 𝑝)𝛽𝛼(1 − 𝑘𝛼)𝑆0 − 𝐴1𝐴2 + 𝜂𝛼𝑝𝛽𝛼(1 − 𝑘𝛼)𝑆0

].  (15) 

=


 p βα(1−kα)S(t)I(t)

f (I)

(1− p) βα(1−kα)S(t)I(t)
f (I)


, and
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.   (14) 

Theorem 6.The disease-free equilibrium (𝐸0) is locally asymptotically stable if 𝑅0 < 1. 

Proof. Consider Equation (14) at 𝐸0, then we have 

𝐽(𝐸0) = [
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].  

In echelon form, we find 

𝐽(𝐸0) = [
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].  (15) 

=

[
A1E

−ηαE + A2 I

]
.

Then,

Y(E0) =

[
0 pβα(1− kα)S0

0 (1− p)βα(1− kα)S0

]
, and Z(E0) =

[
A1 0
−ηα A2

]
,

where Y(E0) is the Jacobian of
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at E0.
Therefore,

X = Y(E0)(Z(E0)
−1) =

[
ηα pβα(1− kα)S0 A1 pβα(1− kα)S0

ηα(1− p)βα(1− kα)S0 A1(1− p)βα(1− kα)S0

]
.
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Note: X is the next generation matrix and the dominant eigenvalue of X is the basic
reproduction ratio (R0).

Here,

R0 =
µα A1 A2

ηα pβα(1− kα)Λα
+

µα A2

(1− p)βα(1− kα)Λα
.

4.5. Stability Analysis of the Equilibria

In this section, we carry out a local stability analysis of both disease-free and endemic
equilibrium points.

First, consider the following Jacobian matrix from Equation (1);

J =




− βα(1−kα)I
f (I) − µα γα − βα(1−kα)S

f (I)

(
1− I f ′(I)

f (I)

)
+ ξα

pβα(1−kα)I
f (I) −A1

pβα(1−kα)S
f (I)

(
1− I f ′(I)

f (I)

)

(1−p)βα(1−kα)I
f (I) ηα (1−p)βα(1−kα)S

f (I)

(
1− I f ′(I)

f (I)

)
− A2


. (14)

Theorem 6. The disease-free equilibrium (E0) is locally asymptotically stable if R0 < 1.

Proof. Consider Equation (14) at E0, then we have

J(E0) =



−µα γα βα(1− kα)S0 + ξα

0 −A1 pβα(1− kα)S0

0 ηα (1− p)βα(1− kα)S0 − A2


.

In echelon form, we find

J(E0) =



−µα γα βα(1− kα)S0 + ξα

0 −A1 pβα(1− kα)S0

0 ηα A1(1− p)βα(1− kα)S0 − A1 A2 + ηα pβα(1− kα)S0


. (15)

The eigenvalues of Equation (15) are:

λ1 = −µα < 0, λ2 = −A1, and λ3 = −A1 A2(R0 − 1) < 0 i f R0 < 1.

Hence, E0 is locally asymptotically stable if R0 < 1. �

Theorem 7. The endemic equilibrium (E1) is locally asymptotically stable if R0 > 1.

Proof. Consider Equation (14) at E1, then we find

J(E1)

=




− βα(1−kα)I1

f (I) − µα γα − βα(1−kα)S1

f (I)

(
1− I1 f ′(I)

f (I)

)
+ ξα

pβα(1−kα)I1

f (I) −A1
pβα(1−kα)S1

f (I)

(
1− I1 f ′(I)

f (I)

)

(1−p)βα(1−kα)I1

f (I) ηα (1−p)βα(1−kα)S1

f (I)

(
1− I1 f ′(I)

f (I)

)
− A2


.

After computing the echelon form,

trace(J(E1)) = −(µα A1 + p(µα + φα))
βα(1−kα)I

f (I) I((1− p)A1 + pηα)

− (1−p)βα(1−kα)I
f (I) (µα + qα + δα)I

−A2µα
[
((1− p)A1 + pηα)− (1− p)A1 A2

(
1− I f ′(I)

f (I)

)]
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and

det(J(E1)) =
(

µα A1 +
pβα(1−kα)(µα+φα)I

f (I)

)[
(µα + qα + δα)(1− p) βα(1−kα)I

f (I)

+A2µα((1− p)A1 + pηα)− µα(1− p)A1 A2

(
1− I f ′(I)

f (I)

)]

+(µα(1− p) + µα)




βαµα A1 A2

(
1− I f ′(I)

f (I)

)
(1−kα)I1

((1−p)A1+pηα)+ f (I)p(µα+qα+δα)
I


.

Clearly, trace(J(E1)) < 0 and det(J(E1)) > 0 if ((1− p)A1 + pηα) − µα(1− p)
A1 A2

(
1− I f ′(I)

f (I)

)
> 0. This is equivalent to R0 > 1. �

5. Numerical Simulations

This section is devoted to testing the performance of the proposed fractional-order
model (1) under the Caputo differential operator while using a numerical explicit technique
called the Adams–Bashforth–Moulton technique, also known as the fractional predictor-
corrector method introduced and analyzed for its convergence and error bounds in [40,41];
s = min(1 + α, 2) is the order of accuracy for the numerical technique. It is also worth
mentioning that, unlike newly established numerical techniques for classical initial value
problems, the present literature is not rich enough with numerical techniques for fractional
order differential equations.

In this research, the parameter values used are from [28]; Λ = 6, β = 10, µ = 0.02,
γ = 0.01, ξ = 0.02, φ = 0.01, q = 0.02, η = 0.2, δ = 0.1, p ∈ [0, 1], k = 0.2, and α ∈ (0, 1].
Consider an equi-spaced mesh ti = i∆t, i = 0, 1, . . . , M, where M is a positive integer and
∆t = T

M , where T is the upper limit of the closed interval of integration [0, T]. This setting
leads to the following structure for the predictor part required by the numerical technique
under consideration:

Ss
i+1 = S(0) +

n
∑

i=1
bα,i,n+1g1(ti, Si, Ei, Ii, Ri),

Es
i+1 = E(0) +

n
∑

i=1
bα,i,n+1g2(ti, Si, Ei, Ii, Ri),

Is
i+1 = I(0) +

n
∑

i=1
bα,i,n+1g3(ti, Si, Ei, Ii, Ri),

Rs
i+1 = R(0) +

n
∑

i=1
bα,i,n+1g4(ti, Si, Ei, Ii, Ri).

(16)

Similarly, for the corrector, we have

Su
i+1 = S(0) + aα,n+1,n+1g1(ti, Si

s, Ei
s, Ii

s, Ri
s) +

n
∑

i=1
aα,i,n+1g1(ti, Si, Ei, Ii, Ri),

Eu
i+1 = E(0) + aα,n+1,n+1g2(ti, Si

s, Ei
s, Ii

s, Ri
s) +

n
∑

i=1
aα,i,n+1g2(ti, Si, Ei, Ii, Ri),

Iu
i+1 = I(0) + aα,n+1,n+1g3(ti, Si

s, Ei
s, Ii

s, Ri
s) +

n
∑

i=1
aα,i,n+1g3(ti, Si, Ei, Ii, Ri),

Ru
i+1 = R(0) + aα,n+1,n+1g4(ti, Si

s, Ei
s, Ii

s, Ri
s) +

n
∑

i=1
aα,i,n+1g4(ti, Si, Ei, Ii, Ri).

(17)

where

aα,i,n+1 =
(∆t)α

Γ(α + 2)
, and bα,i,n+1 =

1
Γ(α + 2)

[
(n− i + 1)α − (n− i)α].

and s denote the predictor and u represent the corrector.
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Additionally,





nα+1 − (n− α)(n + 1)α, i = 0
(n− i + 2)α − 2(n− i + 1)α+1 + (n− 1)α+1, 1 ≤ i ≤ n

1, i = n + 1.

The behavior of the Susceptible S(t), Exposed E(t), Infected I(t), and Recovered R(t)
population can be seen in Figure 1a–d where the required simulations have been carried
out for T = 100 days while varying the values of the fractional order parameter α. For the
Susceptible population, it is observed that the population decays at a faster rate for higher
values of the fractional-order parameter. On the contrary, the higher values of fractional-order
parameter α lead to an increase in the Exposed, Infected, and Recovered populations.
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Figure 1. (a) The dynamics of the Susceptible population for varying fractional order α. (b) The
dynamics of the Exposed population for varying fractional order α. (c) The dynamics of the Infected
population for varying fractional order α. (d) The dynamics of the Recovered population for varying
fractional order α.

The behavior of the Exposed E(t) and Infected I(t) classes can be seen in Figure 2a,b
where the required simulations have been carried out for T = 100 days while varying the
values of the awareness parameter k. For both the Exposed and Infected classes, it can be
observed that a higher value of awareness parameter k leads to a decrease in the Exposed
and Infected populations.
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Figure 2. (a) The dynamics of the Exposed classes by increasing awareness parameter k.
(b) The dynamics of the Infected classes by increasing awareness parameter k.

6. Summary and Conclusions

In this paper, a fractional order cholera model in the Caputo sense is constructed. The
transmission dynamics of the disease are studied by incorporating the saturated incidence
rate into the model. Various well-posedness properties such as positivity, boundedness,
existence, and uniqueness of the solution are also studied. Equilibrium solutions were
computed, and their stability analysis was shown to depend on a threshold quantity,
the basic reproduction ratio (R0). It was clearly shown that if R0 < 1, the disease-free
equilibrium is locally asymptotically stable, whereas if R0 > 1, endemic equilibrium
exists and is locally asymptotically stable. The model is found to be well-posed and more
realistic than many related models in the literature due to the consideration of the saturated
incidence rate.

Numerical simulations were carried out to support the analytic result and to show
the significance of the fractional order from the biological point of view as well as show
the significance of awareness programs in curtailing the spread of cholera in a population.
From the result obtained, it is observed that the Susceptible population decay at a faster
rate for higher values of the fractional-order parameter. On the contrary, the higher values
of fractional-order parameter α lead to an increase in the Exposed, Infected, and Recovered
populations. In addition, it is observed that for both the Exposed and Infected classes,
the increase in the value of awareness parameter k leads to a decrease in the Exposed and
Infected populations, respectively.

In conclusion, this paper studied a fractional order model in the Caputo sense with a
saturated incidence rate. The entire well-posedness properties of the model were studied
in detail. The awareness contribution in controlling cholera was studied numerically. From
the findings of this research, one can see there is a need for the consideration of a saturated
incidence rate in studying epidemic diseases such as cholera. Additionally, there is a need
for studying well-posedness properties before making deductions on any mathematical
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model. From the findings of this model in particular, there is a need for relevant agencies to
mount awareness programs in order to curtail the spread of cholera in a given population.
Using a fractional-order to construct a mathematical model is also of paramount importance
due to its hereditary properties and memory description ability. The limitation of this work
is that there is a need to consider the agent-based approach of the model proposed in this
paper which will help in providing more decision-making tools for the effective prevention
and control of cholera and public health interventions.
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Abstract: Most plant viral infections are vector-borne. There is a latent period of disease inside the
vector after obtaining the virus from the infected plant. Thus, after interacting with an infected vector,
the plant demonstrates an incubation time before becoming diseased. This paper analyzes a mathe-
matical model for persistent vector-borne viral plant disease dynamics. The backpropagated neural
network based on the Levenberg—Marquardt algorithm (NN-BLMA) is used to study approximate
solutions for fluctuations in natural plant mortality and vector mortality rates. A state-of-the-art
numerical technique is utilized to generate reference data for obtaining surrogate solutions for multi-
ple cases through NN-BLMA. Curve fitting, regression analysis, error histograms, and convergence
analysis are used to assess accuracy of the calculated solutions. It is evident from our simulations
that NN-BLMA is accurate and reliable.

Keywords: mathematical modeling; artificial neural networks; numerical solutions; delay differential
equations; optimization techniques; machine learning; Levenberg—Marquardt algorithm

1. Introduction

Plant disease epidemiology studies how diseases affect plant populations and how to
combat plant diseases. Using spatial and temporal plant epidemiology models can provide
useful statistical and mathematical data about disease transmission. In the mid-20th century,
plant epidemiological models became prominent [1]. Examples of actual uses of this type
of model include cassava mosaic disease [2], pine wilt disease [3], and potato late blight [4].
Later, new methods for studying nonlinear dynamics and numerical simulations helped
solve complex ecological problems [5,6]. This accelerated the creation of more realistic and
complicated plant disease models.

An essential part of the plant epidemiological system is modeling the interactions
between infected and healthy plant populations, either directly or via a vector. Infected
vectors feed on healthy plants, infecting them. Similarly, non-infected vectors become
infected by diseased plants. The vector-borne plant disease is classified as persistent,
semipersistent, or non-persistent based on the infectious agent’s residence period in the
vector [7,8]. The vector ingests viruses while feeding on infected plant sap in persistent
transmission. The salivary glands then release the viruses into the plant tissue as they
penetrate the digestive system. The persistent mode of transmission differs from the
other two because it takes a long time for a vector to become infected with the virus and
become infectious [7,9]. In the case of vectors, this time lag is referred to as the latent phase
of infection.
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The latent period in plants is similar to the time it takes for a healthy plant to become
infected following infection [10]. The incubation period (or incubation time) is the time it
takes for symptoms to manifest following infection [1]. Depending on the plant species,
the incubation period varies [11]. Incubation durations for beet mosaic virus (BMV),
African cassava mosaic virus (ACMV), tobacco mosaic virus (TMV) and bean golden mosaic
virus (BGMV) are 7–15 days [12], 3–5 weeks [13], 5 h [14], and 5–6 days [15], respectively.
The incubation and latent periods in plants are distinct. However, the expression of disease
symptoms correlates with disease transmission [16]. Furthermore, determining the latent
period is challenging, whereas observing disease signs is straightforward. So our model
development analysis considers the incubation period.

Among the most frequent vector-borne viral diseases affecting crops, leaf curl disease
and mosaic disease are two of the most common. The whitefly (Bemisia sp.), which transmits
several viral infections to Jatropha, cassava, tomato, tobacco, cotton, and other plants, is a
hemipteran vector. Most of the disease is systematically spread by whiteflies, meaning that
a latent period is frequently observed [17]. Unfortunately, information on the latent and
incubation time of infection for various persistently transmitted diseases is lacking in the
literature. Due to the variety of viral agents and host plant species, both delay methods
have varying effects on disease severity. It also differs between whitefly species and host
plants. These delays may vary due to genetic complexity, climate fluctuation, phenotypic
heterogeneity, and plasticity [18]. The plant incubation period is usually longer than the
latent period in vectors. For example, ACMV has a 6-hour latent period and a 3–5 week
incubation period [13].

Ordinary differential equations (ODEs) models cannot account for the incubation
or latent period. However, models based on delay differential equations (DDEs) allow
system integration. It can represent a system’s dynamics when its evolution depends
on prior events. When time lag responses exist, delays are one of the most powerful
mathematical modeling tools [19]. DDE models are more sophisticated than ODE models
but more realistic. Prey–predator mathematical models with delay differential equations are
commonly employed [20,21]. Delay can teach us dynamic phenomena, such as instability,
oscillations, and bifurcation.

Van der Plank [1] used DDE to delay plant epidemics. Cooke [22] proposed a model
with an incubation time state variable for vector-borne diseases. Wang et al. [23] discussed
wheat starch and gluten’s thermal characteristics and interactions. Zhang [24] added the
plant incubation period to a Meng and Li [25] plant disease model, causing modifications
in the model’s dynamics. Munyasya et al. [26] proposed an integrated on-site and off-
site rainwater-harvesting system that enhances rainfed maize output for better climate
change adaption. Buonomo and Cerasuolo [27] presented and analyzed a soil-borne plant
disease dynamics model. Miao [28] suggested an accuracy of space-for-time substitution
for predicting vegetation status after shrub restoration.

An ODE model of the impact of replanting and roguing on eliminating plant disease
latency comprises a compartment for latently diseased plant populations [29]. The model
does not consider any vector compartment, but it includes classes of latently infected,
healthy, post-infection, and infectious plants. Holt et al. [2] proposed a model with infected
plants, healthy vectors, and susceptible vectors but no delays. The vector-borne plant
disease model [30] was modified by Jackson and Chen [31] by delaying plant incubation
and vector latent periods. The threshold value for delay-induced destabilization was
determined by observing changes in system solution dynamics. Li et al. used an updated
model [31] to analyze Hopf bifurcation, which included incubation and latent period
characteristics [32].

Banerjee and Takeuchi [33] identified several critical elements of the dynamics that
could lead to false findings. A long wait can stabilize or cure a system Buonomo, and Cera-
suolo [27]. Transcritical bifurcations, periodic oscillations, and stability switches can be
revealed if the vector-borne plant disease models’ parameters change [2,27,34]. The unde-
layed model analysis cannot be ignored [31,32]. A mathematical model (1) with parameters
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given in Table 1 [2,35], which was previously analyzed by Basir et al. [35] for persistent
vector-borne viral plant disease dynamics for the effect of both latent period and incuba-
tion delay of the dynamics of the deceased. This model is numerically analyzed using
a gradient-based numerical technique. Numerous studies claimed that gradient-based
techniques, such as RK-4, take up much more computer time than soft computing methods
with comparable accuracy and that it is difficult to produce accurate global estimates of
the truncation error [36,37]. For instance, at each step of the RK-4 method, the derivative
must be evaluated n times. Here, ’n’ is the order of accuracy of the RK-4 method, which
is a significant drawback of gradient-based algorithms [38]. Moreover, RK-4 suffers from
divergence for complex systems [39]. Failure in the case of singularity is another hurdle in
using these gradient-based numerical techniques. Keeping these disadvantages in mind,
the authors of this paper aimed to suggest an alternative gradient-free approach that can
handle problems, such as model (1), with accuracy and reliability. The key features of this
study are outlined as follows:

• In this paper, we analyzed an established mathematical model (1) for persistent
vector-borne viral plant disease dynamics, which is presented in Section 2. The set of
parameters substituted in the model is for the case of cassava mosaic disease.

• A gradient-free intelligent design of a two-layer artificial neural network architecture
and the Levenberg—Marquardt algorithm is utilized to formulate surrogate solu-
tions. A state-of-the-art numerical method is used to calculate reference solutions for
establishing the accuracy, validity, and reliability of NN-BLMA; see Section 3.

• The impact of variations in parameters, such as plant mortality and vector mortality
rate, on the model of persistent vector-borne viral plant disease dynamics is observed
through the surrogate solutions formulated by the designed NN-BLMA; see Section 4.
Graphical analysis for the convergence of NN-BLMA is carried out based on mean
square error, regression analysis plots, and error histograms. Moreover, statistical
values are tabulated to show the accuracy and reliability of the designed technique.

Table 1. Parameters’ description and their numerical values.

Parameters Description Values Unit

r Net growth rate of plants 0.3 time−1

K Carrying capacity 1 m−2

λ Infected vector to healthy plant disease transmission rate 0.025 vector−1time−1

µ Plants natural mortality rate 0.1 time−1

m1 Mortality of infected plants 0.01 time−1

Π Vector population’s overall growth rate due to immigration or births 40 time−1

β Transmission rate between diseased vector and healthy plant 0.03 plant−1time−1

d Vector mortality rate 0.1 time−1

2. Problem Formulation

This section develops a mathematical model for persistent vector-borne viral plant
disease dynamics. The model considers plant and vector populations without explicitly
including the mosaic virus. H(t) signifies healthy plants, while the infected plants are
represented by I(t), Q(t) represents uninfected, and W(t) represents the infected white-
flies population.

Due to restricted plantation space and natural resources, logistic growth r and carrying
capacity K are considered for healthy plants [2]. A healthy plant becomes infected when it
comes into contact with an infected vector. When an infected vector and a susceptible plant
are present, λ is the transmission rate, and λHW is the number of sensitive individuals
moving from the susceptible compartment to the infected compartment.

An insect pest, such as a whitefly, shifts its host in response to changing biological
and environmental conditions. They generally move between fields of crops [40,41]. They
breed in the fields. The Holling type III survival curve describes their life course because
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of the high death rate they experience early on [41]. Whiteflies (adults and nymphs) can
transmit illness.

Crops are typically planted and reaped at specific times of the year. Most crops are
reaped a few months after they are produced. A few vectors travel from close or distant
patches and reproduce in the vegetation. Vectors grow by migrating from another patch
because of reproducing in the same patch or vegetative area. For the same reason, seasonal
fluctuations in vector populations are ignored [35].

An open system is considered in this model. Assume Π is the rate of vector birth
and migration into the system. No vertical virus transmission is allowed, and a vector
cannot infect another vector. Viruses do not destroy or defend vectors. The vector retains
the virus and does not recover. However, the infective insects do not get sick from the
virus [31]. Let the mortality rate of plants and vectors be represented by µ and d, respectively.
Infection-related plant death is expected to be higher than average plant mortality. m1 is
the infection-related mortality of infected plants. Thus, the overall plant mortality rate is
m = µ + m1. Consider β to be the conversion between uninfected vectors (i.e., Q) and the
infected plant (i.e., I). So, βQI signifies entering the number of uninfected vectors Q into
the infected vectors W compartment.

In truth, both plant and vector infection takes time. Let τ1 ∈ R+ be the healthy
plant’s incubation time following successful infection. At time t, the disease transmission is
given by the expression λe−mτ1 H(t− τ1)W(t− τ1), where the positive constants described
previously are λ and µ. The term e−mτ1 denotes the chance of a healthy plant surviving
through the incubation time [t− τ1, t], i.e., the number of susceptible plants that came into
touch with an infected vector at time t− τ1 and lived up to time t to become infected plants.

Again the latent period in a vector is τ2 ∈ R+. At time t, the expression βe−dτ2 Q(t− τ2)
I(t− τ2) describes the transmission of infection, where e−dτ2 reflects the vector’s survival
probability across the latent time [t − τ2, t]. The number of uninfected vectors met an
infected vector at time t− τ2 and survived until time t to become infected [35]. Based on
the given assumptions, the mathematical model is

dH
dt

= rH
[

1− H + I
K

]
− λHW,

dI
dt

= λe−mτ1 H(t− τ1)W(t− τ1)−mI,

dQ
dt

= Π− βQI − dQ,

dW
dt

= βe−dτ2 Q(t− τ2)I(t− τ2)− dW,

(1)

The initial biological conditions are
H(t) > 0, I(t) > 0, Q(t) > 0, W(t) > 0; t ∈ [−τ, 0], τ = max[τ1, τ2],

The parameters used in the model (1) assigned some numerical values for solving the
model numerically, and Table 1 shows its description and numerical values.

3. Design Methodology

This section examines artificial neural networks (ANN) using a novel approach
to machine learning by focusing on the supervised neuronal learning mechanisms of
these networks to utilize the study of the model for persistent vector-borne viral plant
disease dynamics.

3.1. Artificial Neural Network (ANN)

An artificial neural network is a network of interconnected core components known as
neurons that receives various inputs and generates only one output; each neuron represents
a mapping. A neuron’s output is a function of the total of its inputs produced by the
activation function.

156



Entropy 2021, 24, 1511

3.2. Activation Function

To introduce nonlinear properties, an activation function is used in an ANN. In a
neural network, (Xi, Wi) stands for inputs, weights, and f (Xi), which is the input function
that is sent to the network’s output. This output function can then be used as an input for
any additional layers or the final output [42–44].

The number of hidden units can be optimized using a multilayer perceptron (MLP).
Both the weights and biases of the connections were enhanced as well. The construction of
a standard MLP with one hidden layer is as follows:

Hj =
n

∑
i=1

WijXi + bj, (2)

Xi represents the inputs, where Wij and bj represent connection weights and biased
vectors, respectively. Here, a log–sigmoid function is used as an activation function in the
feed-forward neural network model, which is given below.

f j(x) =
1

1 + e−Hj
. (3)

The MLP, also known as the feed-forward neural network (FNN), is a type of neural
network with a hidden layer between the input and output layers. This layer is called the
“hidden layer.” The number below the hidden layer represents the number of neurons used
inside the network. Figure 1 shows an artificial neural network controller.

 

Figure 1. Architecture of an artificial neural network controller.

A backpropagated Levenberg—Marquardt method is used to train the feed-forward
neural network. Local minima can be found using the LM algorithm, which is built-in in
many applications.

Additionally, NN-BLMA is implemented in two phases. Figure 2 depicts the Algo-
rithm’s whole workflow, including all of its steps.

• For collecting the initial reference data set, we solve the model (1) numerically by
using a state-of-the-art technique. Here we use the RK− 4 method, which commonly
gave better results, in Mathematica using the “NDSolve” package. The numerical
technique generates 5001 in the range of [0, 50] with a 0.01 stepsize.

• After that, the NN-BLMA is executed by using “nftool”, a built-in MATLAB tool,
to train, validate and test the targets (reference data set). The design technique uses
60% of the targets for training and 20% each for validation and testing. The maximum
iteration is set to 1000 with a 60 number of neurons. Table 2 presents the parameters
for the design scheme execution, and Algorithm 1 is the pseudo-code of the designed
NN-BLMA.

Table 2. The NN-BLMA parameters settings for implementation.

Index Learning Methodology Training Validation Testing Hidden Neuron Max. Iteration

Description Levenberg—Marquardt 60% 20% 20% 60 1000
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Design Methodology

Phase-I

The “NDSolve” package in 

Mathematica generates a 

reference solution of 5001 for 

each problem.

Phase-II MATLAB 

setup

Working

Parameters 

Setting

The backpropagated Levenberg-

Marquardt algorithm (BLMA) is 

used to validate, test, and train 

approximate solutions of model 

1.

Training Testing Validation

60% 20% 20%

Figure 2. Working mechanism of the NN-BLMA for solving the nonlinear model of vector-borne
viral plant disease dynamics.

The novel machine learning of NN-BLMA is easy to apply, handles nonlinear problems,
and is also a gradient-free technique that converges faster than other machine learning
technique [45–48].

Algorithm 1 Pseudocode of NN-BLMA:

Starting of NN-BLMA Construction: Construct inputs and reference
data set using RK-4 method in Mathematica
Data selection: Input and target data must be selected in
non-linear format, i.e., matrices.
Startup: Taking number of neurons and distributing the
reference data set into training, testing and validation

• 60 Hidden neurons
• 60% data for training
• 20% data for testing
• 20% data for validation

Architecture: Each input is given a weight, and the input to
the transfer function is formed by adding the weights of all of
the inputs together along with the bias.
Stopping criteria: If all of the conditions listed below are
met, the previous process will end automatically.

• Mu reach to its maximum value
• Number of iteration reaches to maximum
• Performance value reaches to minimum
• Validation’s performance became less then maximum fail
• Gradient’s performance dropped below minimum gradient

The network is generalised using training data. If the outputs
are good, proceed to Saving Output; otherwise, retrain the
network.
Retraining: Change the startup parameters and train the network
again
Saving outputs: End the process by saving the results
graphically as well as numerically
Ending of NN-BLMA
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4. Numerical Experimentation and Discussion

To study the design algorithms’ performance and efficiency, we discuss various cases
of the nonlinear model of vector-borne viral plant disease dynamics. The cases are based
on variation in two parameters (i.e., plants’ natural mortality rate, µ, and vector mortality
rate, d). We set the same numerical value for both parameters in the first case. In case two,
there is a slight decrease in the µ parameter and a slight increase in the parameter d, while
in the third case, there is an increase in the parameter µ and a decrease in the d parameter
compared with the first case. Figure 3 illustrates the mathematical model and the cases
detail for vector-borne viral plant disease dynamics.

Modeling
d𝐻𝐻
d𝑡𝑡

= 𝑟𝑟𝑟𝑟 1 −
𝐻𝐻 + 𝐼𝐼
𝐾𝐾

− 𝜆𝜆𝜆𝜆𝜆𝜆
d𝐼𝐼
d𝑡𝑡

= 𝜆𝜆e−𝑚𝑚𝜏𝜏1𝐻𝐻 𝑡𝑡 − 𝜏𝜏1 𝑊𝑊 𝑡𝑡 − 𝜏𝜏1 − 𝑚𝑚𝑚𝑚
d𝑄𝑄
d𝑡𝑡

= Π − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝑑𝑑𝑑𝑑
d𝑊𝑊
d𝑡𝑡

= 𝛽𝛽e−𝑑𝑑𝜏𝜏2𝑄𝑄 𝑡𝑡 − 𝜏𝜏2 𝐼𝐼 𝑡𝑡 − 𝜏𝜏2 − 𝑑𝑑𝑑𝑑

Cases

The cases of the model are 
based on variations in 
plants’ natural mortality 
rate (i.e., μ) and vector 
mortality rate (i.e., d).

1 2 3

μ=0.1 and d=0.1 μ=0.05 and d=0.15 μ=0.15 and d=0.05

Figure 3. Vector-borne viral plant disease dynamics’ model with its different cases.

The design technique generates output data sets with probabilities of 60% of the
sample data for testing, 20% for training, and 20% for validation. The performance graph
of the design technique shows us its mean squared error (MSE). Figures 4–6 depict the
best validation performance provided by the design technique because the error is min-
imized after some epochs of training but may increase on the validation data set as the
network begins to overfit the training data. The training is halted after six consecutive
rises in the validation error, and the best performance is picked from the epoch with the
lowest validation error. The case 1 performance values are in the range of 2.9721× 10−9,
7.1129× 10−9, 3.0066× 10−8 and 2.8222× 10−5. Similarly, the case 2 and case 3 performance
values are in the range of 1.3057× 10−9, 3.6923× 10−11, 1.17878× 10−9, 1.9703× 10−4,
and 9.9788× 10−11, 3.1230× 10−9, 2.4709× 10−8, 2.7474× 10−4, respectively.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. NN-BLMA MSE for healthy and infected plants, and infected and uninfected whitefly of
case 1. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

(c) (d)

Figure 5. NN-BLMA MSE for healthy and infected plants, and infected and uninfected whitefly of
case 2. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. NN-BLMA MSE for healthy and infected plants, and infected and uninfected whitefly of
case 3. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

The statistical performance of all the cases in gradient, mu, and validation failures are
illustrated in Figures 7–9. The gradient values for the case 1 lie in between 8.2149× 10−8,
2.4163 × 10−6, 2.3721 × 10−4 and 0.2785, whereas the values for case 2 and case 3 are
9.2809× 10−8, 1.5761× 10−6, 1.4908× 10−4, 27.6472, and 1.1132× 10−8, 4.0741× 10−6,
3.0463× 10−4, 0.49652, respectively. The mu values for all the cases lie in the range 10−4 to
10−13. The network output concerning the target for the training, validation, and test sets is
shown on the regression plot. The data must fall on a 45-degree line where the network
outputs and targets are equal for a perfect match. When the data fall on a 45 degree,
the regression plot gives us a value of R = 1. This article shows the regression analysis of
all the cases in Figures 10–12. From the figures, regression values are 1 for all cases, which
perfectly matches the network and the targets.

(a) (b)

(c) (d)

Figure 7. Value of gradient, mu and validation check of NN-BLMA for case 1. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).
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(a) (b)

(c) (d)

Figure 8. Value of gradient, mu and validation check of NN-BLMA for case 2. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).

(a) (b)

(c) (d)

Figure 9. Value of gradient, mu and validation check of NN-BLMA for case 3. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).
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(a) (b)

(c) (d)

Figure 10. Analysis of regression of the design NN-BLM algorithm for case 1. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).

(a) (b)

(c) (d)

Figure 11. Analysis of regression of the design NN-BLM algorithm for case 2. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).
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(a) (b)

(c) (d)

Figure 12. Analysis of regression of the design NN-BLM algorithm for case 3. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).

The tables below provide the data information provided by the computing system.
The tables show the best performance values in training, testing, validation, etc. Table 3
displays the best performance data for case 1, while the best performance data for case 2
and case 3 are displayed in Tables 4 and 5, respectively. These tables also show the hidden
neuron count, iterations, and time spent.

Table 3. Performance values of the design NN-BLMA, and time spent by the computing system to
obtain solutions for case 1.

H(t) I(t) Q(t) W(t)

Training 1.68× 10−9 7.50× 10−9 2.29× 10−8 2.10× 10−5

Validation 2.97× 10−9 7.11× 10−9 3.01× 10−8 2.82× 10−5

Testing 1.35× 10−9 7.61× 10−9 2.67× 10−8 2.43× 10−5

Gradient 8.2149× 10−8 2.4163× 10−6 2.3721× 10−4 0.2785

Mu 1× 10−12 1× 10−8 1× 10−8 1× 10−5

Epoches 33 1000 1000 1000

Regression 1 1 1 1

Time 30 30 30 30
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Table 4. Performance values of the design NN-BLMA, and time spent by the computing system to
obtain solutions for case 2.

H(t) I(t) Q(t) W(t)

Training 1.12× 10−9 3.41× 10−11 1.15× 10−9 1.79× 10−4

Validation 1.31× 10−9 3.69× 10−11 1.18× 10−9 1.97× 10−4

Testing 3.38× 10−9 4.01× 10−11 1.18× 10−9 2.01× 10−4

Gradient 9.2809× 10−8 1.5761× 10−6 1.4908× 10−4 27.6472

Mu 1× 10−12 1× 10−11 1× 10−9 1× 10−4

Epoches 56 1000 1000 1000

Regression 1 1 1 1

Time 30 30 30 30

Table 5. Performance values of the design NN-BLMA, and time spent by the computing system to
obtain solutions for case 3.

H(t) I(t) Q(t) W(t)

Training 9.84× 10−11 2.84× 10−9 1.04× 10−8 2.53× 10−4

Validation 9.98× 10−11 3.12× 10−9 2.47× 10−8 2.75× 10−4

Testing 1.38× 10−10 3.16× 10−9 1.23× 10−8 2.69× 10−4

Gradient 1.1132× 10−8 4.0741× 10−6 3.0463× 10−4 0.49652

Mu 1× 10−12 1× 10−8 1× 10−8 1× 10−4

Epochs 50 1000 1000 1000

Regression 1 1 1 1

Time 30 30 30 30

The histogram of errors between targets and outputs after training a neural network
is shown in Figures 13–15. Different color bars show the errors in the training, validation,
and testing data. The error bars in which most of the points lie are very close to the zero
error line, which means targets and the outputs are well matched and have the fewest
errors, which shows the accuracy of our design technique. The error values for case 1 lie in
the range 10−3 to 10−4, 10−4 to 10−6, 10−4 to 10−6, and 10−2 to 10−3. For case 2 and case 3
the error values lie in the range 10−4 to 10−5, 10−5 to 10−7, 10−4 to 10−5, 10−3 to 10−4, 10−2

to 10−3, 10−4 to 10−6, 10−4 to 10−6, 10−3 to 10−5, and 10−2 to 10−3, respectively.

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. Analysis of the error histogram in terms of the target data and the approximate solutions
for case 1. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

(c) (d)

Figure 14. Analysis of the error histogram in terms of the target data and the approximate solutions
for case 2. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Analysis of the error histogram in terms of the target data and the approximate solutions
for case 3. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

Further, Figure 16 compares the numerical solution of the model obtained by the “ND-
Solve” package in Mathematica (targets) to the solution obtained by executing NN-BLMA
(outputs). The solid lines show the solution obtained by solving the model numerically by
the “NDSolve” package in Mathematica, while the circles show the solution by NN-BLMA.
In the figure, we see that the solutions obtained from NN-BLMA come exactly on the targets’
solutions lines, which shows how accurate our design technique is. These figures also
indicate the model’s variation due to some parameters in the model. It is obvious from the
figures that healthy plants and uninfected whiteflies rise when there is an increase in plant
mortality rate and a drop in vector mortality rate. In contrast, a drop in plant mortality
rate and an increase in vector mortality rate leads to a rise in infected plants and whiteflies.
The comparison of statistical data given by the ’NDSlove’ package in Mathematica with the
outputs of NN-BLMA is illustrated in the tables below. Table 6 illustrates the comparative
analysis of both the solutions for case 1, while the comparison for case 2 and case 3 are
illustrated in Tables 7 and 8, respectively.
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Figure 16. Numerical solutions’ comparison of NN-BLMA with the solution obtained with other
numerical methods. (a) Healthy plants H(t). (b) Infected plants I(t). (c) Uninfected whiteflies Q(t).
(d) Infected whiteflies W(t).
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Table 6. Comparative analysis of numerical solution with the solutions obtained from NN-BLMA for
case 1.

H(t) I(t) Q(t) W(t)

t Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA

0 0.3 0.301402499 0.1 0.100121 100 100.0008 5 4.941716

0.5 0.295659 0.295796496 0.659197 0.659184 114.0068 114.0061 4.828814 4.811659

1 0.270171 0.270148397 1.121609 1.121648 126.3683 126.3679 5.584575 5.598602

1.5 0.225534 0.225481705 1.610816 1.610781 137.0851 137.0855 9.607768 9.620728

2 0.158531 0.158487646 2.28979 2.289811 145.892 145.892 21.79219 21.80038

2.5 0.078258 0.078217137 3.113732 3.113741 152.3632 152.3629 51.27621 51.28554

3 0.020596 0.020563851 3.647005 3.646977 156.6824 156.6827 108.024 108.0293

3.5 0.002145 0.002150992 3.673769 3.673765 159.9924 159.9922 193.49 193.4844

4 6.66× 10−5 6.67153× 10−5 3.500676 3.646977 163.2073 163.2072 303.6808 303.6772

Table 7. Comparative analysis of numerical solution with the solutions obtained from NN-BLMA for
case 2.

H(t) I(t) Q(t) W(t)

t Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA

0 0.3 0.301386 0.1 0.100008961 100 100.0002874 5 4.91848547

0.5 0.2877 0.287758 1.021413 1.021411462 111.136459 111.1363243 4.74700621 4.704905202

1 0.243996 0.243941 1.778091 1.778087194 120.0058588 120.0057731 5.886795798 5.906826879

1.5 0.178663 0.178615 2.615206 2.615204348 126.6983972 126.6984875 11.85176957 11.86964906

2 0.099554 0.099532 3.721032 3.721035712 130.919435 130.9195312 29.55952416 29.56956409

2.5 0.033451 0.033442 4.748642 4.748643211 132.5695704 132.5695372 69.40014059 69.40036895

3 0.005173 0.005141 5.142219 5.142218201 132.6625165 132.6624534 137.4934921 137.5035161

3.5 0.000284 0.000276 5.084467 5.084461504 132.5157456 132.515754 231.7495915 231.7676383

4 4.2× 10−6 1.5× 10−5 4.939332 4.939329075 132.6092218 132.6092389 350.3411185 350.3583379

Table 8. Comparative analysis of numerical solution with the solutions obtained from NN-BLMA for
case 3.

H(t) I(t) Q(t) W(t)

t Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA

0 0.3 0.29984487 0.1 0.10015 100 100.0001 5 4.930092

0.5 0.300552 0.30057977 0.43618653 0.43611909 116.834648 116.8346 4.92687225 4.91208

1 0.287377 0.28740484 0.71468896 0.71462628 132.625296 132.6252 5.47558404 5.499553

1.5 0.259799 0.25980546 0.99348118 0.99348179 147.331811 147.3318 8.22851282 8.216368

2 0.21123 0.21120628 1.36866609 1.3687244 160.767638 160.7677 16.453172 16.44464

2.5 0.136805 0.13676428 1.88979607 1.88976049 172.537448 172.5374 36.7607881 36.7496

3 0.056486 0.05643249 2.38574334 2.38574809 182.351472 182.3515 79.3186069 79.29844

3.5 0.010986 0.01094595 2.54620998 2.54620843 190.689067 190.6891 150.762051 150.7577

4 0.000742 0.00072402 2.42175547 2.42176342 198.537627 198.5377 248.404668 248.4245

5. Conclusions

In this paper, we analyzed a mathematical model for persistent vector-borne viral
plant disease dynamics. The model includes equations for healthy and infected plants and
uninfected and infected whiteflies. The selected set of parameters for numerical simulation
is for the cause of the mosaic disease in cassava. To see the impact of variation in the
mortality parameters on the model, we made different cases in which we vary both plant
and vector mortality parameters. The reference data (targets) for NN-BLMA were generated
by solving the model numerically for all the cases in Mathematica. The designed technique
uses the targets to train, test, and validate the ANN and to see the impact of variation in
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plants’ natural and vectors’ mortality rates. The key points concluded from the study are
given below.

• From the study, we see an increase in the mortality rate of plants, along with a decrease
in the mortality rate of vectors, increases in healthy plants and uninfected whiteflies,
and decreases in infected plants and infected whiteflies. In contrast, a drop in the
mortality rate of plants and an increase in the mortality rate of vectors results in a
decrease in healthy plants and uninfected whiteflies and an increase in the number of
infected plants and infected whiteflies.

• Further, the accuracy of the design technique is illustrated through extensive graphical
and tabular data, which include the best performance in terms of the mean squared
error, histogram, and regression analyses.
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Nomenclature
ANN Artificial neural network
NN-BLMA Backpropagated neural network based Levenberg—Marquardt Algorithm
MLP Multilayer perceptron
FNN Feed-forward neural network
BMV Beet mosaic virus
ACMV African cassava mosaic virus
TMV Tobacco mosaic virus
BGMV Bean golden mosaic virus
DDE Delay differential equations
MSE Mean squared error
H Healthy plants
I Infected plants
Q Uninfected whiteflies
W Infected whiteflies
r Net growth rate of plants
k Carrying capacity
λ Rate of disease transmission from infected vector to healthy plant
µ Plants natural mortality rate
m1 Mortality of infected plants
Π Cumulative birth or immigration rate of vector population
β Transmission rate between diseased vector and healthy plant
d Vector mortality rate
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Abstract: Stochastic modeling of biochemical processes at the cellular level has been the subject of
intense research in recent years. The Chemical Master Equation is a broadly utilized stochastic discrete
model of such processes. Numerous important biochemical systems consist of many species subject to
many reactions. As a result, their mathematical models depend on many parameters. In applications,
some of the model parameters may be unknown, so their values need to be estimated from the
experimental data. However, the problem of parameter value inference can be quite challenging,
especially in the stochastic setting. To estimate accurately the values of a subset of parameters, the
system should be sensitive with respect to variations in each of these parameters and they should
not be correlated. In this paper, we propose a technique for detecting collinearity among models’
parameters and we apply this method for selecting subsets of parameters that can be estimated from
the available data. The analysis relies on finite-difference sensitivity estimations and the singular
value decomposition of the sensitivity matrix. We illustrated the advantages of the proposed method
by successfully testing it on several models of biochemical systems of practical interest.

Keywords: stochastic simulation algorithm; stochastic biochemical systems; sensitivity analysis;
finite-difference methods; parameter subset selection; estimability analysis

1. Introduction

Mathematical and computational modeling have become widespread in the study of
complex dynamical systems, particularly in investigating cellular processes and biochemi-
cal networks [1]. Frequently, mathematical modeling of chemical reaction systems relies
on deterministic differential equations and mass action kinetics. However, biochemical
systems in the cell are intrinsically noisy [2,3], and thus stochastic models must be em-
ployed to account for the random fluctuations observed experimentally, especially when
some species have low molecular counts [4,5]. One of the most popular stochastic discrete
models of biochemically reacting systems is the Chemical Master Equation [6,7]. This
model is utilized to describe the dynamics of systems for which molecular populations of
some species are low or noise is significant. It assumes that the system state is a Markov
process [6]. It is generally impracticable to solve this model analytically, except for very
simple systems.

Gillespie developed the Stochastic Simulation Algorithm (SSA) [8,9], a Monte Carlo
technique for simulating statistically exact realizations of the stochastic process whose
distribution is governed by the Chemical Master Equation. The random time change
representation of the stochastic process depicting the system state was introduced in [10].
Based on this representation, Rathinam et al. [11] designed an exact Monte Carlo method
for the Chemical Master Equation, the Random Time Change algorithm. Other simulation
strategies for stochastic models of biochemically reacting systems were presented in the
literature (for references see, e.g., [12–15]).

The biochemical networks arising in applications may be quite complex, involving
many reactions and/or species, which means that their mathematical models have many
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parameters. Some of the values of a model’s kinetic parameters may not be known [16,17]
and they may need to be estimated from the available data. Also, certain parameters
have a substantial influence on the system’s output. Thus, it is essential to study the
system’s behavior when these parameters are perturbed. While stochastic discrete models
of biochemical systems capture the inherent randomness observed in cellular processes,
they pose challenges with regard to their parameter estimation and identification. Hence,
developing efficient and accurate methods for identifying and estimating their parameters
would be a key advance in studying these models.

Practical identifiability (or estimability) analysis aims to establish if the parameters
can be accurately and reliably estimated from the available data [18]. In this context,
identifiable parameters are those which can be determined with high confidence from
the observed behavior of the system; otherwise, the parameters are unidentifiable. Using
practical identifiability, one can select subsets of parameters that significantly impact the
behavior of the system. If the parameters in such a subset are not interdependent, then they
are identifiable. These parameters can be accurately estimated when sufficient and quality
data is available, and their accurate estimation is crucial for building the model. Also, these
parameters may provide insight into the key underlying mechanisms of the biochemical
system. Furthermore, the identifiability analysis helps select the unidentifiable parameters,
which have a negligible impact on the model behavior and can be eliminated, thus guiding
model reduction. There exist numerous studies of identifiability analysis for deterministic
models, such as the reaction rate equations [19–26]. Nonetheless, much less work has been
dedicated to parameter estimability of stochastic models of biological processes.

One important method for practical identifiability is to utilize sensitivity analysis.
Local sensitivity analysis assesses the change in the system’s behavior caused by a small
variation in the value of a certain parameter. Insignificant changes in the system dynamics
indicate that the specific parameter is not important, and thus it is not identifiable. Also,
a parameter is not identifiable if it is correlated with other parameters, such that a variation
in its value can be compensated by suitable adjustments in other parameters. For stochastic
models, finite-difference methods can be used to estimate the sensitivity of the expected
value of the given function of the system state. In the class of finite-difference sensitivity es-
timators for the Chemical Master Equation, those employing exact Monte Carlo simulation
methods are the Coupled Finite Difference method of Anderson [27], the Common Reaction
Path scheme (based on the Random Time Change algorithm) and the Common Random
Number strategy (utilizing the SSA) of Rathinam et al. [11]. These estimators utilize cou-
pled perturbed and unperturbed trajectories to approximate sensitivities. The coupling
lowers the variance of the estimator so that the method requires fewer realizations to
achieve the same accuracy of the estimation. Due to this, the computational time of the
algorithm is reduced, for a prescribed accuracy. Of the three strategies, the Coupled Finite
Difference algorithm has the lowest variance of the estimator [28]. These schemes perform
best for non-stiff models. For stiff problems, finite-difference techniques can be applied
with various coupled tau-leaping strategies to increase the efficiency of the simulation [29].

In this work, we consider the problem of practical parameter identifiability for stochas-
tic discrete biochemical networks modeled with the Chemical Master Equation. This is a
critical problem, and a direct extension of the techniques developed for ordinary differential
equations to stochastic discrete models is not possible. Our contribution is generalizing a
method by Gábor et al. [30] to find the highest parameter identifiable sets for models of
biochemical systems, from the continuous deterministic to the stochastic discrete models of
well-stirred biochemical systems, which is a difficult task. The proposed method identifies
the subsets of parameters that are independent and significant for the model’s behavior,
based on the existing data, and thus are identifiable. We utilize local sensitivity estimations
to study parameter estimability. For approximating sensitivities, we apply finite-difference
techniques, namely the Coupled Finite Difference [27], the Common Reaction Path, and
the Common Random Number methods [11]. We make use of the normalized sensitivity
matrix to develop several identifiability metrics, which adapt existing techniques for the
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reaction rate equations [19,20] to the more challenging Chemical Master Equation model.
In addition, we apply the singular value decomposition of the non-dimensional sensitivity
matrix, to determine its rank. This analysis helps gain insight into the interrelations be-
tween parameters. Furthermore, the proposed methodology can be employed to decide
which parameters can be reliably estimated from the available data, for the Chemical Master
Equation, and may assist experimental design for more accurate parameter approximations.
It is worth noting that, in general, the expected value of the system state governed by the
Chemical Master Equation may not satisfy the deterministic reaction rate equations, when
some reactions are of second or higher order [14].

This paper is structured as follows. Section 2 is dedicated to the background on
stochastic discrete models for well-stirred biochemical networks and their simulation
methods, parametric sensitivity schemes for stochastic and deterministic models, and
practical identifiability techniques, including the new algorithm for selecting subsets of
identifiable parameters. The proposed algorithm is tested on various stochastic models
arising in applications in Section 3. Section 4 presents a summary of our results.

2. Materials and Methods
2.1. Background

Suppose a system has N biochemical species, denoted by S1, S2, . . . , SN , that undergo
M distinct chemical reactions. It is maintained at a constant temperature, in a constant
volume. Provided that the biochemical network is well-stirred, it may be represented by a
state vector,

X(t) = [X1(t), X2(t), . . . , XN(t)]T ,

where X(t) has entries Xi(t), the amount of Si molecules in the system at time t. A reaction
Rj produces a variation in the system state, which is given by the state change vector
νj ∈ RN ,

νj = [ν1j, ν2j, . . . , νNj]
T ,

where νij is the perturbation in the molecular amount of Si after the reaction fires. If one reac-
tion Rj happens during the time interval [t, t + ∆t], then the resulting state is
X(t + ∆t) = X(t) + νj. The array having νj as the j-th column is called the stoichio-
metric matrix. Also associated with the reaction Rj, we can define the propensity function
aj, by aj(x)dt = the probability that a single reaction Rj occurs between [t, t + dt), assuming
that the system state at time t is x. The form of the propensity function aj is determined by

the type of reaction. For a first-order reaction, Sm
cj−−→ products, the propensity is expressed

as aj(X(t)) = cjXm(t). For a second-order reaction, Sm + Sn
cj−−→ products, the propensity

is aj(X(t)) = cjXm(t)Xn(t), if m 6= n and aj(X(t)) = 1
2 cjXm(t)(Xm(t)− 1), if m = n.

2.1.1. Chemical Master Equation

To study the behavior of the well-stirred biochemical system, we need to determine
P(x, t|x0, t0), the probability of the system state being X(t) = x at time t, if at t0 it was
X(t0) = x0. This probability satisfies the Chemical Master Equation [6,7]

d
dt

P(x, t|x0, t0) =
M

∑
j=1

[
aj(x− νj)P(x− νj, t|x0, t0)− aj(x)P(x, t|x0, t0)

]
. (1)

This is a stochastic discrete model. It is a linear system of ordinary differential equations,
each equation describing the probability of the system being in a particular state x. The bio-
chemical system state X(t) is a discrete in space and continuous in time Markov process.
The space of all possible states is typically quite large, and in such cases the Chemical
Master Equation is of very high dimension. Therefore, it is challenging to solve it directly,
except for some simple systems.
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As an alternative to solving the Chemical Master Equation directly, it is possible to
generate correct trajectories one by one. Gillespie [8,9] proposed a Monte Carlo strategy to
compute such trajectories, which are in exact agreement with the probability distribution
associated with the discrete stochastic model (1). The strategy, also referred to as the
Stochastic Simulation Algorithm (SSA), has been broadly employed for solving stochastic
models in Systems Biology [3,14,31]. The SSA is described below.

Gillespie’s Algorithm

1. Initialize the time t← t0 and the state of the system, X(t)← x0.
2. While t < T

3. Calculate each propensity aj(X(t)) for j = 1, . . . , M and the sum a0(X(t))←
M

∑
r=1

ar(X(t))

4. Sample two uniform random variables over [0, 1], to obtain η1, η2.
5. Evaluate the time τ and the index j of the next occurring reaction, according to

(a) τ ← −(ln η1)/a0(x)

(b) j← the smallest integer fulfilling
j

∑
r=1

ar(x) > η2a0(x)

6. Update the state X(t + τ)← X(t) + νj and the time t← t + τ.
7. End while.

The Random Time Change (RTC) algorithm [11], based on the Random Time Change
representation [10], is another exact Monte Carlo simulation strategy for the Chemical
Master Equation. We refer the reader to [11] for details on this algorithm.

2.1.2. Chemical Langevin Equation

An intermediate model between the Chemical Master Equation and the reaction rate
equation is the Chemical Langevin Equation [32]. This is a system of stochastic differential
equations of size equal to the number of reacting species. The Chemical Langevin Equation
is a reduction in the Chemical Master Equation model assuming that the biochemical
system has a macroscopically infinitesimal scale in time step such that, over δt, every
reaction occurs multiple times and, at the same time, its propensity function does not vary
significantly. Under these assumptions, the system state is governed by

dX(t, c) =
M

∑
j=1

νjaj(X(t, c), c)dt +
M

∑
j=1

νj

√
aj(X(t, c), c)dWj(t) (2)

where Wj are independent Wiener processes for j = 1, . . . , M. The state X(t) may be
approximated by a Markov process continuous in space. Equation (2) represents the
Chemical Langevin Equation.

2.1.3. Reaction Rate Equation

A coarser level of resolution in modeling biochemically reacting networks is provided
by the continuous deterministic model of chemical kinetics. This model, known as the
reaction rate equations, is valid under the assumption of the thermodynamic limit. In the
thermodynamic limit, the molecular amounts for all species and the system volume tend
towards infinity, as the concentrations of species within the system remain constant. Hence,
the stochastic terms in the Chemical Langevin Equation are much smaller than the deter-
ministic terms. As a result, the Chemical Langevin Equation model reduces to the reaction
rate equations, in the thermodynamic limit. This condition is satisfied when all Si molecular
counts are very large. The reaction rate equations (RRE) are of the form

dX(t, c)
dt

=
M

∑
j=1

νjaj(X(t, c), c) . (3)
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Equation (3) is a set of ordinary differential equations, with one equation for each biochemi-
cal species. In the event that all reactions in the system are of order at most one, the reaction
rate equation can be obtained from the Chemical Master Equation (1), by considering the ex-
pected value of the system state. However, in general, the evolution of the mean trajectory
in the Chemical Master Equation model does not obey the continuous deterministic model.
Then, the RRE does not properly depict the true behavior of the biochemical network.
In fact, there are numerous cellular networks for which noise significantly influences the
system dynamics [12,31,33].

2.2. Parametric Correlations

Sensitivity analysis plays a central role in constructing models [24]. It assesses how
changes in parameters cause variations in a model’s output. If a negligible adjustment in
a parameter leads to significant alterations in the outcomes, we consider the model to be
sensitive to that specific parameter. Precise estimations are not necessary for parameters
with low sensitivity. Conversely, parameters with high associated sensitivity become key
control points for the behavior of the system. In what follows, we shall focus on the
sensitivity analysis of system outputs with respect to rate parameters.

2.2.1. Parametric Sensitivity for the Chemical Master Equation

Let f be a function of interest of the system state and c a model parameter. In the stochas-

tic setting, the local sensitivity with respect to a parameter c is defined as
∂

∂c
E[ f (X(t, c))]

where E(·) is the expected value. Popular methods for estimating local sensitivities
with respect to the model’s parameters for the Chemical Master Equation often rely
on finite-difference schemes and Monte Carlo methods for generating the perturbed
and unperturbed trajectories. By forward finite-difference schemes, one can estimate
∂

∂c
E[ f (X(t, c))] ≈ {E[ f (X(t, c + θ))]− E[ f (X(t, c))]}/θ, where θ is a small perturbation

of the parameter of interest, c. To efficiently approximate the sensitivity by Monte Carlo
methods, the trajectories for X(t, c + θ) and X(t, c) are generated using common ran-
dom numbers. Among such methods are the Common Random Number (CRN), the
Common Reaction Path (CRP) algorithms [11], and the Coupled Finite-Difference (CFD)
algorithm [27].

2.2.2. Common Random Number

The Common Random Number presented in [11] is a finite-difference numerical
method for estimating parametric sensitivities for the stochastic discrete model (1). It reuses
random numbers to generate the perturbed and unperturbed paths. In doing so, it reduces
the variance of the sensitivity estimator, and thus it has increased efficiency compared
to a strategy based on independent random numbers. For the r-th iteration, it computes
two SSA trajectories, X[r](t, c + θ) -the perturbed and X[r](t, c) -the unperturbed path, each
employing the same stream of uniform (0, 1) random numbers. Usually, the coupling of the
CRN technique is less efficient than that of the CRN and CFD schemes [27]. The sensitivity
of the r-th path is approximated by

Z[r](t, c) =
f (X[r](t, c + θ))− f (X[r](t, c))

θ
, (4)

while an estimate of the sensitivity is obtained from the sample mean (
R

∑
i=1

Z[r](t, c))/R, R

being the number of paired trajectories simulated.

2.2.3. Common Reaction Path

The Common Reaction Path technique is also a finite-difference sensitivity estimator
for the Chemical Master Equation [11]. The CRP strategy applies the RTC algorithm to sim-
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ulate sample paths. In this method, coupling of the processes involves some independent
unit-rate Poisson processes, {Yj}1≤j≤M. The coupling of the perturbed—X(·, c + θ) and
unperturbed—X(·, c) processes is achieved using the random time change representation

X(t, c) = x0 +
M

∑
j=1

νjYj

(∫ t

0
aj(X(s, c), c)ds

)

X(t, c + θ) = x0 +
M

∑
j=1

νjYj

(∫ t

0
aj(X(s, c + θ), c + θ)ds

) (5)

The r-th iteration of the CRP algorithm generates the paired trajectories X[r](t, c + θ) and
X[r](t, c) with the RTC algorithm, each using the same M independent streams of unit-rate
exponential random numbers. As before, the sensitivity of the r-th trajectory is estimated
by (4). This coupling has been shown to be typically stronger than that of the CRN method,
leading to a lower variance of the estimation [11,27].

2.2.4. Coupled Finite-Difference

Another finite-difference sensitivity estimator for the stochastic discrete model is the
Coupled Finite-Difference scheme [27]. The CFD method relies on the random time change
representation of the unperturbed and perturbed processes

X(t, c) = x0 +
M

∑
j=1

νjY
(1)
j

(∫ t

0
min(aj(X(s, c), c), aj(X(s, c + θ), c + θ))ds

)

+
M

∑
j=1

νjY
(2)
j

(∫ t

0
[aj(X(s, c), c)−min(aj(X(s, c), c), aj(X(s, c + θ), c + θ)]ds

)

X(t, c + θ) = x0 +
M

∑
j=1

νjY
(1)
j

(∫ t

0
[min(aj(X(s, c), c), aj(X(s, c + θ), c + θ)]ds

)

+
M

∑
j=1

νjY
(3)
j

(∫ t

0
[aj(X(s, c + θ), c + θ)−min(aj(X(s, c), c), aj(X(s, c + θ), c + θ)]ds

)

(6)

where {Y(1)
j }1≤j≤M, {Y(2)

j }1≤j≤M. and {Y(3)
j }1≤j≤M are independent unit-rate Poisson

processes. Furthermore, the CFD strategy uses a version of the Next Reaction Method to
compute the coupled perturbed and unperturbed trajectories, X[r](t, c + θ) and X[r](t, c),
and (4) to approximate the local sensitivity of the r-th path. Among the finite-difference
sensitivity estimators with exact underlying simulation techniques for the CME, the CFD
performs the best, followed by the CRP and the CRN [27,28]. Indeed, the CFD achieves
the smallest variance of the sensitivity estimator of the three methods described above [28].
As a consequence, for the same number of trajectories simulated, we shall consider in our
investigations the CFD sensitivity approximations to be the most accurate and reliable.

2.2.5. Parametric Sensitivity for the Chemical Langevin Equations

Glasserman [34] developed a technique for computing pathwise parametric sensi-
tivities for certain problems modeled by stochastic differential equations. This method
was applied to the Chemical Langevin Equation (CLE) model in [33]. For computing the
sensitivity of each path, we differentiate Equation (2) with respect to parameter c and obtain

d(
∂X
∂c

) =
M

∑
j=1

νj

[∂aj(X)

∂X
∂X
∂c

+
∂aj(X)

∂c

]
(t)dt

+
M

∑
j=1

νj

[ 1

2
√

aj(X)

(∂aj(X)

∂X
∂X
∂c

+
∂aj(X)

∂c

)]
(t)dWj .

(7)

Solving the coupled system of Equations (2) and (7) for (X, ∂X/∂c) will determine the path-
wise sensitivities. At time t = 0, the local sensitivities with respect to the rate parameters

177



Entropy 2023, 25, 1168

are zero. The Chemical Langevin Equation is, in general, valid when all molecular amounts
are sufficiently large. Effective simulation strategies for this model require adaptive time-
stepping methods [35,36].

2.2.6. Parametric Sensitivity for the Reaction Rate Equations

In the deterministic scenario, the behavior of the biochemical system is governed by
the reaction rate Equation (3). To find the local sensitivity for this model, the derivative
with respect to the desired kinetic parameter is applied to Equation (3), yielding

d
dt
S =

M

∑
j=1

νj

(
∂aj(X(t, c), c)

∂c
+

N

∑
i=1

∂aj(X(t, c), c)
∂Xi

Si

)
. (8)

Here, S = ∂X(t, c)/∂c is the sensitivity with respect to parameter c. The sensitivity is
computed by solving for (X,S) the system of ordinary differential Equations (3) and (8),
with the initial conditions X(0, c) = x0 and S(0) = 0. The deterministic model is applicable
when all reacting molecular populations are very large. Nonetheless, when low molecular
counts of some species exist or noise plays a significant role, this approach may fail in
accurately capturing the characteristics of the biochemical system. Then, deterministic
techniques for sensitivity-based identifiability analysis are not valid.

2.3. Practical Identifiability Analysis

When a model’s performance is investigated, it is important to evaluate the accuracy
of the parameter values. Still, poor or noisy data, interdependence of parameters, or weak
dependence of the system dynamics on certain parameters may hinder the accurate estima-
tion of parameter values. As a result, it is possible for these values to change significantly,
without influencing the model’s output. Consequently, the concept of identifiability is
essential for the analysis of a mathematical model [19,24].

Identifiability can be classified into two main categories: structural identifiability
and practical identifiability. For a structurally identifiable model, there exists a unique
parameterization for any specified output of the model (see, e.g., [21,26]). On the other
hand, practical identifiability involves detecting non-identifiable parameters by fitting the
model to data that closely resemble the available observations (see, e.g., [18,19,22,25] for
analyses of deterministic models). For this type of identifiability, it is helpful to study the
parametric sensitivity of the model. In this work, we use sensitivity-based identifiability
for the Chemical Master Equation. We determine identifiability and collinearity indexes
by generalizing methods for deterministic models [19] to the more challenging case of
stochastic discrete biochemical systems.

2.3.1. Sensitivity-Based Identifiability Analysis

Several identifiability strategies for deterministic models exist in the literature. One
such approach by Brun et al. [19] is based on local sensitivity analysis of deterministic
models. Sensitivity analysis quantifies the impact of parameter variations on the sys-
tem’s dynamics.

Below, we review some techniques for identifiability analysis of deterministic models
relying on local parametric sensitivity. These techniques can be applied to the reaction rate
Equation (3). Denote by

Sik(X, t, c) =
∂Xi(t, c)

∂ck
(9)

the local sensitivity of the molecular amount Xi(t, c) at time t, with respect to the kinetic

parameter ck. For time t, the parametric sensitivity matrix is S(X, t, c) =
∂

∂c
X(t, c) =
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{Sik(X, t, c)}1≤i≤N,1≤k≤M. In addition, the non-dimensional sensitivity coefficient corre-
sponding to the i-th species and the parameter ck at time t is

sik(t) =
ck

Xi(t, c)
∂Xi(t, c)

∂ck
. (10)

Here, c = [c1, . . . , cM] is the vector of kinetic parameters associated to reactions {Rj}1≤j≤M.
Furthermore, let t1 < t2 < · · · < tL be a sequence of time-points spanning the integration
interval [0, T]. Ideally, some of these time-points should be inside the interval correspond-
ing to the biochemical network’s transient behavior, when applicable. Also, consider
the concatenated non-dimensional sensitivity matrix, for all the time-points in the grid,
and apply the normalization (10) for each entry,

s(X, c) =




s11(t1) · · · s1M(t1)
...

. . .
...

sN1(tL) · · · sNM(tL)


 . (11)

To rank the parameters of the model, we utilize the non-dimensional sensitivity matrix
of size (NL) × M from (11). The k-th column in this matrix measures the sensitivities
with respect to ck, the rate parameter of reaction Rk. Let us calculate the norm of each
column in the sensitivity matrix (11) to obtain a parameter ranking. The norm of each
column sk(X, c) = [s1k(t1), . . . , sNk(t1), . . . , s1k(tL), . . . , sNk(tL)]

T serves as a measure of the
significance of parameter ck on the dynamics of the system. A higher norm indicates that
altering that parameter value has a substantial impact on the system state. Parameters can
be arranged in order of their significance. The following sensitivity measure is employed
for evaluating the significance of the parameters, based on the sensitivity matrix (adapted
after [19])

δ
msqr
k =

√
1
n

n

∑
i=1

s2
ik . (12)

The larger the measure δ
msqr
k , the more significant the parameter ck is (for 1 ≤ k ≤ M).

2.3.2. Parameter Collinearity

Extensive research has been conducted to examine the collinearity in various problems.
Brun et al. [19] introduces a strategy for identifying parameter relationships based on
collinearity analysis, in the deterministic framework, and presents a novel approach to
explore the connections between parameters. Note that the columns of a matrix B are
nearly linearly dependent (or near collinear) if a non-zero vector z = [z1, . . . , zM]T exists
such that Bz ≈ 0, where B has M columns. If the Bz = 0 holds and z 6= 0, the columns of B
are linearly dependent (or collinear).

Now, take the normalized sensitivity matrix S̃, having as the m-th column the vector

s̃m(X, c) =
sm(X, c)
‖sm(X, c)‖2

,

for 1 ≤ m ≤ M. It is useful to first normalize these vectors, to prevent biases due to
differences in the absolute value of local sensitivities for various parameters. A large
norm of ‖sm‖2 indicates that a small variation in parameter cm can significantly impact the
system’s behavior; thus, this parameter is important. For this parameter to be identifiable,
it should not be correlated with other parameters.

Let us consider any subsets K of k parameters (k ≤ M) from the set of parameters
{c1, c2, . . . , cM} and the corresponding sub-matrix S̃K(X, c) of the normalized sensitivity
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matrix, with columns the k sensitivity vectors. A measure of collinearity of the subset K of
parameters, with corresponding matrix S̃K, is given by

CIK =
1

min
‖z‖2=1

‖S̃Kz‖2
=

1√
λk

(13)

where λk is the minimum eigenvalue of the matrix S̃T
K S̃K and ‖ · ‖2 is the norm-2 of a vector.

The measure (13) is known as the collinearity index of the subset K [19,30]. The closest
the columns of the matrix S̃K are to a linearly dependent set of vectors, the smallest
min
‖z‖2=1

‖S̃Kz‖2 is. Thus, a large collinearity index CIK indicates a high level of collinearity

of the parameters in the set. This implies that changes in the model dynamics due to
small perturbations in one of the parameters of the almost collinear set may be prevented
by suitable variations in the other parameters of the set. As a consequence, if a set of
parameters is collinear, it is not identifiable. According to [19], a subset of parameters is
considered identifiable if the associated collinearity index satisfies CIK < 20. With this
observation, it is possible to uncover the subsets of model parameters that can be identified
as well as those that cannot be identified. The collinearity index may be computed for
all the subsets K of the parameter space, to determine the parameter subsets that are not
collinear. When a group of parameters has a high collinearity index, any set containing it
as a subset will also have a high collinearity index.

Another technique to assess the identifiability of the model parameters is to use the
singular value decomposition (SVD) of a matrix. In general, the SVD [37,38] of an n×M
matrix s is

s = UΣVT , (14)

where the U is an n× n unitary matrix, V is an M×M unitary matrix and Σ is an n×M
non-negative diagonal matrix with the diagonal entries

σ1 ≥ σ2 ≥ . . . σr > σr+1 = · · · = σM = 0 .

The values {σ2
m}1≤m≤M are the eigenvalues of the matrix sTs. The index r measures the rank

of the matrix s and it is the largest number of linearly independent columns of this matrix.
Numerically, the singular values σr+1, · · · , σM, which are below a specified small tolerance
are considered practically zero. In this work, we use the singular value decomposition of
the matrix s to determine its rank. This rank is a reliable measure of the number of rate
parameters that are not collinear. Furthermore, zero or very close to zero singular values
show that the group of all the reaction rate parameters of the model are collinear. Therefore,
there are some model parameters that cannot be estimated from the available data.

Brun et al. [20] also introduced a determinant measure

ρk = det(ST
KSK)

1/2k (15)

to find the appropriate number of parameters to estimate.
The metrics considered above can be utilized to determine the identifiability of param-

eter sets as follows. The sensitivity measure δ
msqr
k is used to evaluate the importance of

each parameter ck. On the other hand, the collinearity index measures whether the set K
of parameters are independent, whenever CIK < 20. In the case that both conditions are
satisfied, (a) the parameters in the subset K are not collinear and (b) each parameter in the
group is important, the parameters in K are identifiable. Finally, the determinant ρK can be
employed to compare the identifiability of various groups of parameters.

2.3.3. Method for Selecting Subsets of Identifiable Parameters

The practical identifiability methods presented above were developed for continuous
deterministic models [19,20], and are thus applicable for the reaction rate equation model.
However, this model may fail to faithfully represent the behavior of biochemical systems,
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which involve low molecular counts of some species. Consequently, new methodologies
are required for the parameter identifiability of stochastic discrete models of biochemical
systems. In this work, we develop novel strategies for determining sets of identifiable
parameters for the Chemical Master Equation. We generalize the work of Gábor et al. [30]
on identifying subsets of identifiable parameters in deterministic models, to address the
much more challenging case of stochastic discrete models of well-stirred biochemical
systems. This generalization is essential as stochasticity plays a significant role in accurately
modeling real-world biological systems, and our approach allows for an in-depth study of
more complex biochemical networks encountered in applications.

The measures presented above were designed for deterministic models. We aim to
adapt these measures to systems modeled by the Chemical Master Equation. For this
model, the sensitivity coefficients are computed as

Sik(E[X], t) =
∂

∂ck
E[Xi(t, c)].

Then, we shall compute the sensitivity matrix for the CME according to

S(t) =
∂E[X(t, c)]

∂c
=




∂

∂c1
E(X1(t, c)) · · · ∂

∂cM
E(X1(t, c))

...
. . .

...
∂

∂c1
E(XN(t, c)) · · · ∂

∂cM
E(XN(t, c))




. (16)

Take a sequence of time-points 0 = t1 < t2 < . . . < tL = T, relevant to the biochemical
system under consideration. The fully normalized (non-dimensional) sensitivity coefficient
of the i-th species with respect to the ck parameter at time t` is

sik(t`) =
ck

E[Xi(t`, c)]
∂

∂ck
E[Xi(t`, c)] for 1 ≤ i ≤ N, 1 ≤ k ≤ M. (17)

The concatenated non-dimensional sensitivity matrix over these discrete time-points with
entries (17) is

s(E[X], c) =




s11(t1) · · · s1M(t1)
...

. . .
...

sN1(tL) · · · sNM(tL)


 . (18)

Normalizing the `-th column of matrix (18), namely s`(E[X], c), gives

s̃`(E[X], c) =
s`(E[X], c)
‖s`(E[X], c)‖2

. (19)

Finally, the normalized sensitivity matrix S̃ has s̃`(E[X], c) as it is `-th column. For the
Chemical Master Equation, the sensitivity measure δ

msqr
k and the collinearity index CIK are

computed using (12) and (13), respectively, for the sensitivity matrix of the expected value
E[X] rather than the system state X, as was the case for the reaction rate equation.

Moreover, we will employ the finite-difference methods described above to estimate
parametric sensitivities. Recall that a finite-difference estimate of the sensitivity with respect
to parameter ck, over R coupled perturbed and unperturbed paths, is

∂

∂ck
E[X(t, c)] ≈ ZR =

1
R

R

∑
r=1

X[r](t, ck + θ)− X[r](t, ck)

θ
.

While we compute the coupled trajectories using the CFD, CRP, or CRN strategies, our
method can be applied to other finite-difference sensitivity estimators [29].
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The measure (12) can be calculated to rank parameters from most to least influential.
Small values of δmsqr correspond to parameters with a small influence on the model. We
select those parameters that show the value of δmsqr larger than 0.2 [39]. With an initial
ranked list, we compute the collinearity indices for this list. This method can be applied to
models of moderate size.

Algorithm 1 calculates the normalized sensitivity matrix, as follows. A grid with L
time-points ranging from 0 to T is selected. We choose equally distributed time steps, such
that data is collected from all important regions of the interval of integration. This depends
on the particular model. We note that an adaptive time-stepping procedure can be included
instead. Then, the sensitivity matrices S(tl) from Equation (16) are approximated with a
specific finite-difference sensitivity estimator. Afterwards, we compute the concatenated
non-dimensional sensitivity matrix s. We normalize each column of s individually to ensure
consistency and comparability. The normalization implies dividing each column sk by its
vectorial norm-2. Column normalization yields a matrix denoted by S̃. This matrix has as
its k-th column {s̃k} = sk/‖sk‖2. Also, for each parameter ck we compute the sensitivity
measure δ

msqr
k from Equation (12), using the entries of the k-th columns of the sensitivity

matrices S(t`).

Algorithm 1 Computing the Normalized Sensitivity Matrix

Initialize: Time grid: 0 = t1 < t2 < . . . < tL = T.
Input: Estimates of sensitivity matrices S(t`) from (16).
Compute the concatenated non-dimensional sensitivity matrix s from (18) with en-
tries (17)
for k = 1 to M do

normalize s̃k =
sk
‖sk‖2

where sk is the k-th column of s and ‖ · ‖2 is norm-2

end for
Compute normalized matrix S̃ = {s̃k}1≤k≤M
for k = 1 to M do

Compute sensitivity measure δ
msqr
k according to (12) for parameter ck

end for

In Algorithm 2, we introduce a method for the selection of identifiable parameter
subsets based on sensitivity measures and collinearity indices. This procedure extends
and refines a methodology by Gábor et al. [30] from the deterministic to the more difficult
case of stochastic biochemical networks. The goal of Algorithm 2 is to iteratively assess
the practical identifiability of subsets of model parameters. A threshold value is set for
the collinearity indices, which measure the level of collinearity between parameter groups.
The threshold value determines the acceptable level of collinearity. With a normalized
sensitivity matrix obtained from Algorithm 1 as input, the following steps are considered.
The parameters are ranked according to their sensitivity measure, those with a sensitivity
measure below a critical value (chosen here as 0.2) are considered unimportant and may be
discarded. If the ranked list of parameters is of moderate size, combinations of parameters
are generated. For each combination, the algorithm computes the corresponding collinearity
index. This involves calculating the collinearity indices for pairs, triples, etc. These indices
quantify the degree of collinearity between the parameters of a certain group. When the
computed collinearity index for a parameter subset is below the threshold value, that subset
of parameters is deemed identifiable. By applying this algorithm, a subset of parameters
with low collinearity and high identifiability can be selected. This allows for the reduction
in model complexity and for the accurate and reliable estimation of the most important
parameters, from the input data.
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Algorithm 2 Selecting a Subset of Identifiable Parameters

Input: Normalized sensitivity matrix;
Input: Set threshold value of collinearity index: CIcr = 20
Require: Rank parameters cj based on δ

msqr
j > 0.2

if Ranked list is of moderate size then
1: Number of all combinations: C = Length(combnk)
2: Compute collinearity indices for all combinations of the ranked list of parameters:
for k = 1 to C do

For every combination of the ranked list of parameters, calculate the collinearity
indices:

CI2 = collinearityindex(pairs), CI3 = collinearity(triples), etc.
L2 = pair combination, L3 = triple combination, etc.

end for
end if
if CIk ≤ CIcr then

The corresponding combination recorded as an identifiable set
end if

3. Results

In this section, we apply our method to select subsets of practically identifiable pa-
rameters in the Chemical Master Equation on three realistic models. We observe that the
collinearity indices play a significant role in finding the subsets of estimable parameters, us-
ing local stochastic sensitivities. The parametric sensitivities of the stochastic discrete model
of well-stirred biochemical systems are approximated by finite-difference schemes, namely
the Common Random Number, Common Reaction Path, and Coupled Finite Difference
techniques. By applying perturbation in each of these finite-difference techniques, we can
assess the sensitivity of the model outputs to changes in the model’s parameters. The choice
of perturbation size for finite-difference approximations is essential for obtaining accurate
and reliable results while minimizing computational effort. The specific perturbation sizes,
representing 5%, 1%, 2% of the parameter value, are often chosen based on a trade-off
between accuracy and numerical stability. In addition, we find the parameters with high
sensitivities. Those with low sensitivity have a reduced impact on the model outputs
and cannot be estimated accurately. In the stochastic context, we consider the SVD of the
normalized sensitivity matrix to determine its rank. This rank gives the number of model
parameters that are not collinear.

For validation of the methods introduced above, we compare the results obtained with
the Chemical Master Equation, with those derived with the Chemical Langevin Equation
and those for the reaction rate equations, on two models of biochemically reacting systems.
Still, we emphasize the importance of considering stochastic discrete models of biochemical
networks to accurately describe the dynamics of these systems, particularly when some
molecular populations are small or noise is driving the system behavior. The parametric
sensitivities estimated for the reaction rate equations or the Chemical Langevin Equations
may not yield accurate estimability results, in general. For each model, we generated
10,000 coupled trajectories to approximate the parametric sensitivities of the Chemical
Master Equation by finite-difference schemes. The CFD strategy is considered to be more
accurate and reliable than the CRN and the CRP methods [28]. The case studies tested are an
infectious disease network [40], the Michaelis–Menten system and a genetic toggle-switch
model [11].

3.1. Infectious Disease Model

An infectious disease model [40] considers two species: S1—the infected particles
and S2—the particles which can be infected. These species, which may depict molecules,
cells, or humans, participate in five reactions. The first two reactions represent the death
of species S1 and S2, respectively, while the third and fourth reactions describe the birth
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or production of particles of the S1 and S2 type. The two species interact through the fifth
reaction, in which an infected particle S1 infects a particle S2. The initial conditions are
S1(0) = 20 and S2(0) = 40. The system is studied on the time-interval [0, 10]. For our
simulations, 10,000 trajectories were generated to estimate the solution of the Chemical
Master Equation.

Table 1 provides information on the reaction channels of the biochemical system and
the values of their rate parameters. It includes the reaction channels denoted by R1, R2,
R3, R4, and R5. Each reaction is described by its reactants and products. The last column
lists the parameter values corresponding to the rates at which the reactions occur. These
parameter values are specified for the stochastic model considering molecular numbers,
rather than for the deterministic reaction rate equations expressed in terms of concentrations.
A sample trajectory of the number of the infected S1 particles and of the susceptible S2
particles as functions of time, computed using Gillepie’s algorithm, is given in Figure 1.

Table 1. Infectious disease model: the list of reactions and the corresponding rate parameter values.

Reaction Channel Rate Parameter Value

R1: S1−→∅ c1 = 2.0
R2: S2−→∅ c2 = 0.1
R3: ∅−→S1 c3 = 25
R4: ∅−→S2 c4 = 75
R5: S1 + S2−→S1 + S1 c5 = 0.05
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Figure 1. Infectious disease model: the evolution in time of the number of molecules of the species
S1—infected individuals and S2—individuals which can be infected, generated with Gillespie’s
algorithm, on the interval [0, 10].

The finite-difference sensitivity estimations are calculated with 10,000 trajectories
using the CFD, the CRN, and the CRP strategies, with a perturbation of 5% of the parameter
value. The path-wise sensitivities for the Chemical Langevin Equation are computed over
10,000 trajectories, with the Euler-Maruyama scheme applied to the Equations (2) and (7),
and are utilized to estimate the sensitivities of the expected value of the state vector.
Also, the parametric sensitivities are approximated for the reaction rate equations. These
estimations are used to calculate the collinearity indices for all parameter combinations,
for the Chemical Master Equation, the Chemical Langevin Equation, and the RRE models.
The results are presented in Tables 2–6. The sensitivity measures are reported in Table 2,
showing that c2 is the least significant among all the parameters.
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Table 2. Infectious disease model: comparison of δmsqr for a 5% perturbation.

Parameter δmsqr

of CFD Sensitivity
δmsqr

of CRP Sensitivity
δmsqr

of CRN Sensitivity
δmsqr

of RRE Sensitivity
δmsqr

Path-Wise Sensitivity

c1 0.97 0.96 0.94 0.97 0.98

c2 0.02 0.02 0.1 0.02 0.02

c3 0.26 0.29 0.26 0.26 0.26

c4 0.55 0.66 0.54 0.55 0.55

c5 0.68 0.69 0.67 0.71 0.71

Tables 3–6 reveal that the collinearity indices for the reaction rate equation and the
Chemical Langevin Equation models exhibit greater consistency with the collinearity in-
dices for the Chemical Master Equation, computed using with the CFD sensitivity estimator,
compared to the CRN and the CRP estimators. Notably, the pair subset {c1, c3} has the
highest collinearity index; however, it is relatively low for the CRP and the CRN schemes
in comparison with the other estimations. This is due to the lower accuracy of the CRP
and the CRN schemes when compared to the CFD technique. For pair sets, the subset
{c1, c3}, for the triple sets, the subset {c3, c4, c5} and among the quadruple ones, the subset
{c2, c3, c4, c5} have high value of collinearity indices in relation to the other subsets.

Table 3. Infectious disease model: collinearity indices for pair subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c4 c5 1.18 1.13 1.18 1.2 1.19

c3 c5 1.93 1.17 1.94 1.92 1.95

c3 c4 1.339 1.25 1.32 1.32 1.31

c2 c5 1.103 1.15 1.13 1.18 1.17

c2 c4 4.69 2.37 1.16 9.77 9.96

c2 c3 1.43 1.27 1.02 1.34 1.33

c1 c5 1.86 1.89 1.9 1.85 1.86

c1 c4 1.35 1.28 1.33 1.34 1.34

c1 c3 10.816 3.04 7.2 11.34 11.22

c1 c2 1.466 1.31 1.00 1.36 1.35

There is no subset with high collinearity indices (>20) in pair subsets (Table 3) but
there is a parameter subset of size 3 with collinearity index greater than 20 (Table 4). In fact,
the parameter subset {c3, c4, c5} is not identifiable with the Coupled Finite Difference
sensitivity estimator, the Chemical Langevin Equation, or the deterministic sensitivities.
However, the Common Random Number and the Common Reaction Path sensitivities
show different results. In Table 5, two parameter subsets of size 4 show a collinearity
index greater than 20 with the deterministic, stochastic continuous, and CFD sensitivity
estimations. All subsets containing the parameters {c3, c4, c5} are collinear, which is in
agreement with the results in Table 4. This indicates that these parameter subsets are
poorly identifiable. Consequently, the sensitivity-based estimability analysis performed on
the RRE, the CLE, and the CME models are in agreement, thus validating the proposed
method for the more general discrete stochastic model. The Common Random Number
and the Common Reaction Path techniques could not provide an accurate assessment of
the identifiability of various subsets, with only 10,000 realizations, being thus less reliable.
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Table 4. Infectious disease model: collinearity indices for triple subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c3 c4 c5 21.19 2.63 9.6 21.3 21.77

c2 c4 c5 5.0444 2.38 1.2 9.97 10.15

c2 c3 c5 7.7768 2.91 2.01 10.48 10.51

c2 c3 c4 4.88 2.38 1.43 9.83 10.01

c1 c4 c5 9.92 3.65 9.4 10.83 10.98

c1 c3 c5 11.07 3.12 7.2 11.68 11.73

c1 c3 c4 10.87 3.05 7.2 11.46 11.45

c1 c2 c5 7.44 4.8 2 7.87 7.95

c1 c2 c4 4.95 2.38 1.43 9.82 10.01

c1 c2 c3 11.02 3.06 7.3 11.45 11.44

Table 5. Infectious disease model: collinearity indices for quadruple subsets. The CME sensitivities
are estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c1 c2 c3 c4 11.509 3.06 7.3 11.53 11.49

c1 c2 c3 c5 11.092 4.88 7.3 13.65 13.53

c1 c2 c4 c5 10.2347 4.94 9.4 13.82 14.20

c1 c3 c4 c5 22.6313 3.87 10.54 22.19 22.49

c2 c3 c4 c5 21.4369 2.91 9.6 25.71 27.77

Table 6. Infectious disease model: collinearity indices for the set of all kinetic parameters. The CME
sensitivities are estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5%
perturbation. The singular values for the CFD, the CLE, and the RRE sensitivity estimations show
that the number of parameters that are not collinear is four.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c1 c2 c3 c4 c5 22.65 5.01 10.54 26.17 28.09

singular values 16.31, 9.48, 16.27, 10.35, 15.86, 9.28, 36.73, 21.86, 37.03, 21.76,
1.06, 0.21, 0.06 2.98, 1.79, 0.14 1.31, 1.1, 0.52 2.21, 0.48, 0.09 2.19, 0.48, 0.09

3.2. Michaelis–Menten Model

The second model we analyze is the Michaelis–Menten biochemical system, which
involves four species—a substrate S1, an enzyme S2, a complex S3 and a product S4—and
three reactions. We denote by Yi the number of molecules of the species Si. With this
notation, the initial conditions for the number of molecules are Y1(0) = [5× 10−7nAvol],
Y2(0) = [2× 10−7nAvol] and Y3(0) = Y4(0) = 0, where nA = 6.023× 1023 is Avogadro’s
number and vol = 10−15 denotes the volume of the system. The reactions and the values of
the rate parameters are included in Table 7. This model is integrated on the interval [0, 50].
Figure 2 depicts a realization of the system state, simulated with Gillespie’s algorithm.
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Figure 2. Michaelis–Menten model: the evolution in time of the number of molecules of a substrate,
an enzyme, a complex and a product, generated with Gillespie’s algorithm, on the interval [0, 50].

Table 7. Michaelis–Menten model: the list of reactions and the corresponding rate parameter values.

Reaction Channel Rate Parameter Value

R1: S1 + S2−→S3 c1 = 106/(nAvol)
R2: S3−→S1 + S2 c2 = 10−4

R3: S3−→S4 + S2 c3 = 10−1

We start by approximating the parametric sensitivities for the Chemical Master Equa-
tion. The finite-difference sensitivity estimations obtained with the CFD, the CRP, and
the CRN algorithms use a perturbation which represents 1% and 5%, respectively, of the
value of the parameter of interest. The sensitivity measures provided in Table 8 indi-
cate that c2 may not be estimated as accurately as the other parameters. The collinearity
indices obtained for the perturbation value 1% with each sensitivity estimator for pairs
of parameters are reported in Table 9, while the indices for the set of all parameters are
recorded in Table 10. For each subset, the results for the stochastic Michaelis–Menten model
demonstrate low collinearity indices, below 20. The choice of the finite-difference sensi-
tivity estimator does not significantly affect the parameter identifiability. The stochastic
discrete modeling approach to identifiability analysis yields parameter subsets that are
not collinear for the Michaelis–Menten system. Additionally, the Tables include the RRE
identifiability metrics to validate the CME estimability results. The collinearity indices for
the perturbation value of 5% can be found in the Appendix A, and they are consistent with
the results obtained using a perturbation of 1%.

Table 8. Michaelis–Menten model: comparison of δmsqr for a 1% perturbation.

Parameter δmsqr

of CFD Sensitivity
δmsqr

of CRP Sensitivity
δmsqr

of CRN Sensitivity
δmsqr

of RRE Sensitivity

c1 1.11 1.1 1.07 1.07

c2 0.002 0.01 0.003 0.002

c3 1.31 1.30 1.29 1.29
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Table 9. Michaelis–Menten model: collinearity indices for pair subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 1% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 2.9 1.35 1.47 4.85

c1 c3 2.21 2.17 2.17 2.17

c2 c3 1.56 1.21 1.2 1.87

Table 10. Michaelis–Menten model: collinearity indices for the triple subset. The CME sensitivities
are estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 1% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 c3 3.92 2.25 2.43 5.3

3.3. Genetic Toggle Switch Model

The last biochemical system investigated is the genetic toggle switch [11,28]. Multi-
stable stochastic switches arise in modeling key biological processes. The model considers
two gene pairs, whose interaction creates a bistable switch, as each gene negatively regulates
the synthesis of the other gene. Due to the presence of noise, the system can transition
between the states represented by an abundance of one species and an almost total absence
of the other. In this genetic switch system, the two species U and V take part in four
reactions. Table 11 specifies the reaction channels and their propensities. We examine the
system using the following parameter values [11]

α1 = 50, β = 2.5, α2 = 16, γ = 1 , (20)

and the initial conditions XV(0) = XU(0) = 0. Figure 3 displays a sample path for the
molecular numbers of the two species, simulated with Gillespie’s algorithm (left) along
with the standard deviation of the CFD, CRP, and CRN sensitivity estimators as functions
of time (right).
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Figure 3. Genetic toggle switch model: (Left): the evolution in time of the number of molecules of
the species U and V, generated with Gillespie’s algorithm, on the interval [0, 50]. (Right): standard
deviations of the three estimators, CFD, CRP, and CRN.
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Table 11. Genetic toggle switch model: the list of reactions and their propensity functions.

Reaction Channel Propensity Function

R1: ∅−→U a1 =
α1

1 + Xβ
V

R2: U−→∅ a2 = XU

R3: ∅−→V a3 =
α2

1 + Xγ
U

R4: V−→∅ a4 = XV

The reaction rate equation model cannot capture the stochastic transitions between
the states, and thus the deterministic tools for analyzing this system are not applicable. We
perform an estimability analysis of the Chemical Master Equation model for the genetic
toggle switch, on the interval [0, 50]. To assess how variations in the parameter values
affect the dynamics of the system, we approximate the local sensitivities with respect to the
parameters whose values are given by (20). We simulate 10,000 coupled sample paths with
the CFD, and the CRP methods. The finite-difference sensitivity estimators are applied
with a perturbation θ = 10−4 for each parameter value. The sensitivity measures are
provided in Table 12 and those calculated using the CFD method show that all parameters
have δmsqr > 0.2, being thus important enough, while the RRE sensitivity measures indicate
that the parameters β and γ are insignificant.

Table 12. Genetic toggle switch model: comparison of δmsqr.

Parameter
δmsqr

of CFD Sensitivity
δmsqr

of RRE Sensitivity

α1 2.22 0.89

β 0.6762 0

α2 4.21 0.31

γ 4.3 0

Employing the local sensitivity approximations, we compute the collinearity indices
for all the subsets of the parameter set {α1, α2, β, γ}. Tables 13–15 record the collinearity
indices for the pair, triple and quadruple subsets, respectively. No subset of parameters
exhibits collinearity based on the CFD, the CRP, and the CRN sensitivity estimations. We
conclude that all four parameters are identifiable for the stochastic discrete model. These
results are confirmed by the singular values computed with the CFD sensitivity estimator,
which are [32.21; 29; 12.18; 4]. Different values of the parameters for this model may yield
different results for estimability in the stochastic genetic toggle-switch system.

Table 13. Genetic toggle switch model: collinearity indices for pair subsets.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

α1 α2 1 1.01 1.72 2.22

γ α2 1.32 1.08 1.12 *

γ α1 1.27 1.17 1.07 *
β α2 1.01 1.1 1.56 *
β α1 1.00 1.35 2.13 *
β γ 1.19 1.25 1.1 *

The CME sensitivities with respect to parameters are estimated over 10,000 with the CFD and CRP methods and
perturbation θ = 10−4. *: Collinearity index does not exist.
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Table 14. Genetic toggle switch model: collinearity indices for triple subsets.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

β γ α1 1.38 1.37 2.46 *

β γ α2 1.42 1.25 1.80 *

β α1 α2 1.01 1.38 2.18 *

γ α1 α2 1.52 1.19 1.73 *
The CME sensitivities with respect to parameters are estimated over 10,000 with the CFD and CRP methods and
perturbation θ = 10−4. *: Collinearity index does not exist.

Table 15. Genetic toggle switch model: collinearity indices for the quadruple subset.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

β γ α1 α2 1.64 1.39 2.45 *
The CME sensitivities with respect to parameters are estimated over 10,000 with the CFD and CRP methods and
perturbation θ = 10−4. *: Collinearity index does not exist.

4. Discussion

Stochastic models of well-stirred biochemical processes provide a valuable frame-
work for capturing inherent variability at the cellular level when some molecular species
have low amounts. Chemical Master Equation is a frequently adopted stochastic discrete
model for such processes. By contrast, deterministic approaches are often not suitable
for modeling cellular systems as they fail to capture the intrinsic randomness observed
experimentally. Many models of realistic biochemical processes depend on a fairly large
number of parameters. The values of some of these parameters may be unknown and have
to be estimated. Parameter estimation is a critical step in modeling biochemical systems.
However, determining appropriate parameter values for stochastic discrete models of bio-
chemical networks poses many challenges. It is essential to determine the key parameters
which are identifiable from the experimental data, as well as those that cannot be reliably
estimated. For a subset of parameters to be practically identifiable, each parameter of
the subset should have a significant contribution to the system dynamics as well as the
parameters of the subset should not be correlated.

In this work, we propose a method for detecting collinearity in subsets of parameters
for the stochastic discrete model of the Chemical Master Equation, with the goal of finding
the parameter sets that exert the greatest influence on the biochemical system state. In ad-
dition, we introduce a technique for determining the highest parameter identifiable sets
for stochastic biochemical systems, by extending methods from deterministic models to
stochastic models. Our analysis is based on estimating the local sensitivities of the system
state with respect to the model’s parameters. This is achieved by utilizing finite-difference
approximations of the parameter sensitivities, specifically the Coupled Finite Difference,
the Common Reaction Path, and the Common Random Number schemes. Furthermore, we
examine the role of the singular value decomposition of the sensitivity matrix in identifying
parameters that are not collinear in stochastic models of biochemical systems. On one hand,
we showed that our practical identifiability method is accurate, by comparing the results
obtained in the deterministic and stochastic scenarios, on two biochemical systems of
practical importance, for which the deterministic model accurately describes the evolution
of the expected value of the stochastic system state. Excellent agreement among the various
approaches was obtained for these biochemical networks. On the other hand, we wish
to emphasize that, in general, a stochastic strategy for selecting identifiable parameter
sets should be considered, as it relies on more accurate and reliable estimations of the
parametric sensitivities for the widely applicable model of the Chemical Master Equation,
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compared to the deterministic reaction rate equations. The advantages of our approach over
the deterministic one were illustrated by the tests performed on a third model, a genetic
toggle switch system exhibiting an interesting multistable behavior. For this model, our
stochastic identifiability strategies display excellent performance, while the deterministic
techniques show their limitations, by not being able to assess the estimability of the model
parameters.

We expect the method to perform best on stochastic biochemical models with a mod-
erate number of reaction rate parameters. Specifying identifiable parameter subsets with
the tools provided above may be used to refine models, improve predictions, and study the
underlying biological processes under consideration.
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Appendix A

Table A1. Michaelis–Menten model: comparison of δmsqr for a 5% perturbation.

Parameter δmsqr

of CFD Sensitivity
δmsqr

of CRP Sensitivity
δmsqr

of CRN Sensitivity
δmsqr

of RRE Sensitivity

c1 1.03 1.04 1.04 1.07

c2 0.002 0.005 0.003 0.002

c3 1.22 1.23 1.23 1.29

Table A2. Michaelis-Menten model: collinearity indices for pair subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 3.43 2.18 2.59 4.85

c1 c3 2.21 2.13 2.13 2.17

c2 c3 1.67 1.48 1.49 1.87

Table A3. Michaelis–Menten model: collinearity indices for the triple subset. The CME sensitivities
are estimated over 10,000 trajectories with the CFD, CRN and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 c3 4.08 2.78 3.4 5.3
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Abstract: In order for mathematical models to make credible contributions, it is essential for them
to be verified and validated. Currently, verification and validation (V&V) of these models does
not meet the expectations of the system biology and systems pharmacology communities. Partially
as a result of this shortfall, systemic V&V of existing models currently requires a lot of time and
effort. In order to facilitate systemic V&V of chosen hypothalamic-pituitary-adrenal (HPA) axis
models, we have developed a computational framework named VeVaPy—taking care to follow the
recommended best practices regarding the development of mathematical models. VeVaPy includes
four functional modules coded in Python, and the source code is publicly available. We demonstrate
that VeVaPy can help us efficiently verify and validate the five HPA axis models we have chosen.
Supplied with new and independent data, VeVaPy outputs objective V&V benchmarks for each
model. We believe that VeVaPy will help future researchers with basic modeling and programming
experience to efficiently verify and validate mathematical models from the fields of systems biology
and systems pharmacology.

Keywords: HPA axis; Major Depressive Disorder; stress test; Python; Verification & Validation;
differential equations model

1. Introduction

The life cycle of a computational model involves development, verification, validation,
and application. Before a model can be confidently applied to help solve a problem, it
must be carefully examined and evaluated. The process of evaluating a model includes
two steps: verification and validation (V&V). According to Thacker et al. [1],

“Verification is the process of determining that a model implementation accurately repre-
sents the developer’s conceptual description of the model and its solution. Validation is
the process of determining the degree to which a model is an accurate representation of
the real world from the perspective of the intended uses of the model.”

In certain fields of mathematical modeling, such as nuclear engineering, model V&V
has been performed following well-defined procedures for decades [2,3]. In the 1980s, for
instance, the International Atomic Energy Association defined standardized benchmarks
for validation of models of reactor cores [2]. In a paper from 1993, Nakagawa applies
the benchmarks to prove the validity of their model of a reactor core [3]. The practice of
creating standardized benchmarks for V&V has persisted in nuclear engineering—as seen
in a paper by Höhne et al. from 2018 [4]. The standardization of V&V procedures is not
limited to nuclear engineering, and can be found in other fields of engineering, as well.
For instance, the American Society of Mechanical Engineers published a set of standards
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for V&V in computational solid mechanics and the American Institute of Aeronautics and
Astronautics also published a set of standards for computational fluid dynamics [5].

However, V&V practices in systems biology and systems pharmacology are still being
improved to meet significant challenges, in part due to the individual variability and
resultant complexity inherent to physiological systems [6,7]. For example, Hicks et al. [8]
present best practices for V&V of neuromusculoskeletal modeling and the basic concepts
presented are applicable for most models in systems biology and systems pharmacology.
For instance, “creation of gold standard datasets” and ensuring that efficient tools for V&V
are available are excellent goals for the physiological modeling research community, in
general. In this work, we have followed these recommendations and tailored some of the
specifics to meet the needs of HPA axis modeling.

In systems biology and systems pharmacology, the ideal model would describe a
physiological system adequately in any situation—including exposing the system to a
variety of inputs, such as stress or pharmaceuticals. In practice, it is difficult to develop a
systems biology or systems pharmacology model that is generalizable to situations even
slightly different from the original research. A practical challenge for many researchers
using mathematical models is to quickly and efficiently determine which model from the
literature is best suited to their current work—or which model could be most effectively
modified to fit their needs. Unfortunately, the lack of useful tools for V&V in the field often
means that developing a new model from the ground up is more efficient than constructing
and testing models from the literature in search of a viable candidate.

1.1. Custom Tools to Facilitate Model V&V

In order to help future researchers carry out V&V efficiently, we have developed a
Python code library, VeVaPy, with several useful modules for this purpose. The level of
difficulty of model V&V represents a significant gap in the field of HPA axis research,
one that we aim to fill with our tools and data. Currently, it requires a high level of
programming expertise to take a model from the literature and reconstruct it for V&V—the
tools available for this purpose (at least for non-stoichiometric models) are not designed
for ease of use by biologists. We concede that our V&V code still requires a degree of
programming know-how at this point, but we believe that it is a significant improvement
over the status quo.

The four modules of the code library are called dataImport (includes several HPA axis
data sets for use in model validation, with ACTH & cortisol concentration data at rest and
under acute stress), DEsolver (more streamlined differential equation solver, works with
ODE or DDE systems), optimize (easily facilitates parameter optimization), and visualize
(generates graphs based on user specifications). We use VeVaPy to demonstrate several case
studies of HPA axis model V&V—similar to the case studies presented by Hicks et al. [8].

1.2. Validation against Novel Data Collected in MDD Patients

For validation of the HPA models we present as case studies, we compare them against
new and independent data collected from Major Depressive Disorder (MDD) patients
undergoing stress tests. MDD is a mental disorder with severe implications for quality of
life. Symptoms include weight loss/gain, hypersomnia or insomnia, slowing of speech
and action, impaired concentration, depressed mood, decreased interest in work/hobbies,
low self-esteem, increased feelings of guilt, and suicidal thoughts [9]. For depression to be
considered MDD, the symptoms must last a minimum of two weeks and cause significant
difficulties functioning at work and interacting socially [9]. There are three main subtypes
of MDD with significant differences in symptoms: melancholic depression is characterized
by weight loss and insomnia, atypical depression is characterized by weight gain and
hypersomnia, and uncategorized depression does not fit neatly into either of those two
subtypes [10]. The differences between subtypes likely extend beyond symptoms, with
some authors hypothesizing that different physiological features are associated with each
subtype of MDD [10,11].
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MDD is linked to multiple types of physiological disruptions, for example, neuroimag-
ing features or sleep EEG disturbances [11]. However, we are primarily interested in
the link between MDD and dysregulation of the hypothalamic-pituitary-adrenal (HPA)
axis. There is a lack of consensus regarding whether MDD subjects generally exhibit HPA
axis dysfunction—melancholic MDD subjects, however, are more likely associated with
increased HPA axis activity and hypercortisolemia [10].

The HPA axis is a neuroendocrine system involved in the body’s stress response. On
exposure to a stressor, the paraventricular nucleus (PVN) of the hypothalamus releases
corticotropin-releasing hormone (CRH). CRH is released not into the systemic circulation,
but into the hypophyseal portal system connecting the hypothalamus directly to the anterior
pituitary [12]. The anterior pituitary releases adrenocorticotropic hormone (ACTH) into
the systemic circulation in response to increased CRH concentration. The main target
of circulating ACTH is stimulation of glucocorticoid production/secretion in the zona
fasciculata of the adrenal cortex [12]. The glucocorticoid synthesized is cortisol in humans
and corticosterone in rodents. During this process, very little CRH enters the systemic
circulation (making collection of CRH concentration data exceedingly difficult), while levels
of ACTH and cortisol are readily detectable in blood.

Cortisol acts on various tissues throughout the body by way of glucocorticoid recep-
tors (GRs)—which are nearly ubiquitous—and mineralocorticoid receptors (MRs). Both
receptor types translocate to the cell nucleus when bound to cortisol and exert their effects
through stimulation or repression of gene transcription. The stress response generated by
cortisol includes immune system suppression, increased gluconeogenesis, and increased
metabolism of fat, protein, and carbohydrates. Another important function occurs in the
hypothalamus and pituitary as cortisol-GR binding decreases the synthesis of CRH and
ACTH, respectively. In this way, cortisol exerts negative feedback on its own production.
However, GR binding in the hippocampus serves to stimulate CRH production, so the
system has both positive and negative feedback mechanisms to consider [13].

Concentrations of cortisol and ACTH normally exhibit both circadian and ultradian
oscillations. Circadian refers to the oscillations with a period of roughly 24-h. These
oscillations are largely controlled by the circadian clock in the suprachiasmatic nucleus
(SCN) of the hypothalamus. However, many peripheral tissues contain lesser circadian
clocks, including the adrenal glands [13]. The circadian oscillation of cortisol and ACTH
peaks around 8 AM, decreases until after midnight, and then increases again until the
morning peak. Ultradian oscillations have a period of 60–90 min and represent 12 to 18
episodes of cortisol/ACTH secretion throughout a day, with little to no secretion between
them [14]. Both forms of oscillation likely exist to facilitate more rapid and stronger stress
reactions at certain times of day. It has been shown that responses to noise stress are
reduced during non-secretory periods and increased during secretory periods in rats [13].

If cortisol levels are sustained at high or low levels for too long, the health conse-
quences are typically serious. Hypercortisolism is a chronic elevation of cortisol concentra-
tion, and it is implicated in the development of depression, cardiovascular disease, and
Type 2 diabetes mellitus [13]. Hypocortisolism is a chronic decrease in cortisol concentra-
tion that is associated with impaired memory formation and post-traumatic stress disorder
(PTSD) [13]. Several authors suggest that hypocortisolism is likely caused by increased
negative feedback of cortisol on the HPA axis while hypercortisolism is likely caused by
decreased negative feedback of cortisol on the HPA axis [15,16]. According to Holsboer [16],
the negative feedback caused by cortisol binding GRs is impaired in MDD, likely due to
decreased sensitivity and density of GRs.

Treatment options for MDD patients include evidence-based psychotherapies such
as cognitive behavioral therapy (CBT) and/or antidepressant medications such as selec-
tive serotonin reuptake inhibitors (SSRIs). According to Holsboer [16], in patients with
depression, elevated CRH levels lead to hypercortisolism. SSRI therapy is associated
with normalization of CRH and cortisol concentrations in these patients [16] possibly by
inducing an upregulation of MRs, which are known to inhibit HPA axis activity [17].
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If the hypothesis of Holsboer [16] holds and MDD patients (or at least melancholic
MDD patients) have decreased sensitivity and density of GRs, we should be able to detect
differences in the behavior of the HPA axis under stress when compared with healthy
controls. We would expect to see the concentration of CRH, ACTH, and cortisol rapidly
increase on exposure to a stressor—the same process we would see in a healthy subject.
However, with cortisol at a high concentration, we hypothesize that we would see a slower
return to basal concentrations in MDD patients because diminished GR activity would
result in decreased inhibition of CRH and ACTH secretion. The best way to test this
hypothesis is to take blood samples and measure ACTH and cortisol at short intervals
while MDD patients and healthy controls experience a significant amount of stress. Our
chosen method of producing a stress response in a laboratory setting is the Trier Social
Stress Test (TSST)—see Section 2.3 for a description of TSST procedures.

1.3. Model Validation against Experimental Data

A model that can accurately simulate the HPA axis during a TSST will allow us to
make predictions about differences between MDD patients and healthy controls, so our
validation procedure for the case studies presented herein is based on their ability to match
TSST data. The state of HPA axis modeling in the literature is described in the following
section, and the procedure by which we chose models to use as case studies is described
in Section 2.1. After model selection, we perform our verification procedure (described in
Section 2.2) and our validation procedure.

For validation, we begin by running a parameter optimization algorithm on each
model. This yields the optimal parameters for matching stress test data (optimal parameters
are generated for data sets from seven patients and the mean concentrations of all 58
patients). To compare model data matching objectively and quantitatively for the TSST
data, we compute a cost function for each model on each data set. The result of the cost
function is used by the parameter optimization algorithm to determine the suitability of
parameter sets, comparing many sets to each other until it finds the optimal parameters for
each model on each data set. We also use the cost function to assess the validity of models,
as it indicates how well the model has simulated the experimental situation. Furthermore,
the cost function values allow us to compare models to each other, and this allows us to
objectively determine which model fits our data sets most closely. For a discussion of how
the cost function is computed, see Section 2.4.

1.4. Mathematical Models of the HPA Axis in the Literature

There are many mathematical models of the HPA axis in healthy, MDD, and PTSD
subjects in the literature. These models are predominantly ordinary differential equation
(ODE)-based, although there are also some delay differential equation (DDE)-based mod-
els. They primarily vary in the way circadian oscillations are generated and (if they are
considered at all) how ultradian oscillations arise.

Figure 1 shows a timeline of HPA axis modeling, starting with the first ODE model of
an oscillating biological system by Goodwin in 1965 [18]. This model included a negative
feedback loop to produce oscillating solutions rather than the steady-state solutions seen in
prior models. While not specifically modeling the HPA axis, this was a direct precursor
to the modern form of HPA axis models. The first improvement was made by Veldhuis
et al. in 1989 with an HPA axis model attempting to model the ultradian rhythm of
cortisol [19]. However, this model was a convolution model rather than an ODE model.
In 1994, Gonzalez-Heydrich et al. published an ODE model including equations for CRH,
ACTH, and cortisol [20]. This was the first “modern” model of the HPA axis, and the
basic structure of models has remained largely the same since. The model by Liu et al. in
1999 was an ODE model with five equations, including CRH, ACTH, free cortisol, cortisol
binding globulin (CBG)-bound cortisol, and albumin-bound cortisol—CBG and albumin
are the two main proteins that bind and inactivate cortisol in the blood [21]. It was able to
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produce ultradian oscillations in CRH, ACTH, and cortisol concentrations, but failed to
produce circadian oscillations.
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Bairagi et al. [22], Sriram et al. [23], Andersen et al. [24], Malek et al. [25], Bangsgaard & Ottesen [26],
and Somvanshi et al. [27].

The remaining models on the timeline are the five models we reproduce for this
paper, plus the model by Andersen et al. [27] that we have included in the supplemen-
tary materials (due to a lack of valid figures for verification in the model paper). First,
in 2008, Bairagi et al. produced a DDE-based model that included delays between the
production of ACTH/cortisol and their action [22]. The model was able to produce both
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ultradian and circadian oscillations but required a pulse generator function representing
the suprachiasmatic nucleus (SCN) of the hypothalamus for the circadian oscillations. In
2012, Sriram et al. published a model with four ODEs, including CRH, ACTH, cortisol,
and GR availability/binding [23]. The inclusion of GR interactions allowed this model to
produce both circadian and ultradian oscillations without external input from the SCN. The
model by Andersen et al. in 2013 was a DDE-based model, and the authors attempted to
produce oscillations by introducing hippocampal GR/MR interactions [24]. However, this
model was unable to produce any oscillations for physiologically reasonable parameter
values. In 2015, Malek et al. published an ODE model of the HPA axis and its interactions
with inflammatory cytokines [25]. The model also ran as an HPA axis-only model by setting
the initial concentrations of the cytokines to zero and was able to produce both types of
oscillations desired, circadian and ultradian (through an external pulse generator function).
Bangsgaard & Ottesen published an ODE model in 2017 that innovated by matching ex-
perimental data from individual patients with a parameter optimization procedure [26].
This allowed the authors to determine differences in parameters between healthy control
subjects and depressed subjects. Finally, in 2020, Somvanshi et al. published another ODE
model of the HPA axis and its interactions with inflammatory cytokines [27]. Their model
differed from that of Malek et al. because it included equations for many other species,
including GRs.

2. Methods

We used several tools to ensure that VeVaPy is easily accessible, well documented,
and user-friendly, for the convenience of future researchers attempting to perform mathe-
matical modeling of the HPA axis. The code for the demonstration models was written in
Jupyter notebooks (https://www.jupyter.org, accessed 23 November 2022), which allows
for Markdown text in between code segments. This allowed us to include a Table of Con-
tents in each notebook for easy navigation, as well as well-formatted and easily readable
instructions for use of the models. These Jupyter notebooks are all publicly available on
Github (https://www.github.com/cparker-uc/VeVaPy, accessed 23 November 2022) and
can be run on any computer with internet access and a web browser through Binder (see
our Github repository for instructions; Binder homepage: https://www.mybinder.org,
accessed 23 November 2022). We present further information about these tools in the
Discussion.

2.1. Model Selection

We selected models for demonstration of VeVaPy by searching PubMed for “HPA Axis
Mathematical Model”, on 26 August 2021. This search yielded 1023 results. We selected all
papers which included language in the abstract suggesting that a mathematical model was
used to study some feature of the HPA axis, a total of 41 papers. Then, an initial screening
analysis was performed on all search results, which eliminated all papers not related to
differential equations modeling of the HPA axis—35 papers remained at this point. We
then performed a more thorough analysis of the remaining papers, and selected all which
met the following set of criteria:

• Included all necessary equations in dimensional form, 16 models selected
• Included all parameter values used for at least one figure
• Not substantially similar to an earlier model
• The model is based on the human HPA axis
• We have excluded our own models

Five models that satisfy all of these criteria are deemed to have high potential for
successful V&V and further tested in our work.

2.2. Model Verification

We modified the general VeVaPy model template for each of the five selected models,
inputting the systems of differential equations, parameter values and bounds, and initial
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conditions. To verify that the models were performing as the authors intended, we ran
simulations to recreate figures from the model papers. This process requires the most
modification of the template, because each paper includes very different figures that must
be replicated. While we have developed the visualize module of VeVaPy to create graphs
of variable concentrations over time, we are still working on expanding it to accommodate
different formats (for instance, multiple variables on the same graph, as shown in the third
figure of Malek et al. [28], see Supplementary Figures S5 and S6). The results of this process
are discussed in Section 3.4.

2.3. Data Collection

The data VeVaPy used includes new patient data locally collected and data that are
electronically collected from previous publications. For electronic collection, we used Lab-
Notes software (http://mpf.biol.vt.edu/lab_website/Labnotes.php, accessed 23 November
2022), and the filenames indicate the data sources as follows: Bangsgaard-Ottesen-2017 [26],
Bremner-2007 [28], Carroll-2007 [29], Golier-2007 [30], Yehuda-1996 [15]. These data repre-
sent basal concentrations of cortisol or both cortisol & ACTH measured at short intervals
over 24 h. The other data included in VeVaPy come from patients undergoing TSST as
described below.

The data were collected following clinical research procedures approved by the IRBs of
University of Cincinnati and Cincinnati Children’s Hospital. Briefly, subjects were initially
screened with the Structured Clinical Interview for DSM-IV (SCID) and the Inventory
of Depressive Symptoms clinician-rated version (IDS-C) by a trained clinician. A total
of 88 subjects between the ages of 18 and 65 were selected for the study, with 22 being
healthy controls and the other 66 fulfilling the following criteria: DSM-IV criteria for a
major depressive episode, either meeting the modified criteria listed in Supplementary
Tables S1 and S2 for melancholic or atypical depression, or not falling in any depressive
subtype; a score on the IDS-C of 20 or greater. Several exclusion criteria were also defined,
as listed in Supplementary Table S3. All subjects were given an opportunity to read the
informed consent document and the protocol was verbally explained at the screening visit.
This procedure was approved by IRB review.

Subjects returned at 5:00 PM on the first day of testing and stayed at the General
Clinical Research Center (GCRC) of Cincinnati Children’s Hospital until all testing was
completed at 6:00 PM on the third day. Blood samples were collected at 10-min intervals to
determine basal levels of cortisol and ACTH from 8:00 PM to 9:00 PM on day 1 and 8:00
AM to 9:00 AM on day 2. Subjects also had saliva samples taken every 20 min during these
time intervals to serve as a measure of free cortisol.

A Trier Social Stress Test (TSST) was performed on the second day starting at 5:00
PM. The test involved subjects making an oral presentation to a panel of judges (whom the
subjects were told were scientists specializing in behavior analysis), ostensibly to convince
the judges that they are the most qualified candidate for a job opportunity related to their
interests. Following the oral presentation, there was a question/answer session with the
judges and then the subjects were given a series of mental arithmetic tasks to perform for
the next five minutes. The total time for the presentation, question/answer, and mental
arithmetic tasks was 20 min. Blood samples to determine cortisol and ACTH levels were
drawn 30 min and 15 min before the TSST began, at the beginning of the TSST, 10 min and
20 min into the TSST, and then every 15 min for 90 min after the conclusion of the TSST.
Heart rate was also measured during the TSST, and saliva samples were collected at the
start of the TSST, the end of the TSST, and every 30 min for 90 min after the conclusion of
the TSST. Note that, following the TSST, all subjects were informed that the panel of judges
were not actually scientists and had been instructed to not react or offer positive feedback
during the presentation.

The subjects also underwent a combined dexamethasone-CRH (DEX/CRH) test. This
began with 1.5 mg of dexamethasone administered at 11:00 PM on day two. Saliva and
blood samples were taken at 8:00 AM on day three to determine cortisol, ACTH, and
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dexamethasone levels (dexamethasone levels to control for differences in dexamethasone
metabolism). At 2:30 PM and 3:00 PM on day three, the subjects once again had blood
drawn to determine basal levels of cortisol and ACTH before the CRH test. Then, at 3:00 PM
on day three, the subjects were administered 100 mcg ovine CRH (oCRH). Blood samples
were taken every 15 min for the first hour and every 30 min for the second and third hours
to determine cortisol and ACTH levels. Saliva samples were collected every 30 min for
three hours following dosing with oCRH. This concluded the procedure, and the subjects
were dismissed.

To facilitate matching the cortisol and ACTH concentration data, we excluded subjects
with any data points missing. There were a total of seven MDD subjects and one control
subject lacking at least one data point, so overall we had 58 subjects to use for modeling
purposes. All subjects used in our modeling for this paper underwent the TSST, and the
subjects included 43 diagnosed with MDD and 15 healthy control subjects. We have not
included any analysis of the DEX/CRH data in this paper, however, this data will be useful
for future analyses using a model modified to allow dosing with dexamethasone and
oCRH.

2.4. Model Validation

Each model was run with a parameter optimization algorithm against a subset of
the patients from the TSST data set and the mean cortisol and ACTH concentrations
between all patients. We did not perform this process against all 58 patients due to the
extreme time and computational power requirements of such an undertaking. We used
the scipy.optimize.differential_evolution package for parameter optimization. The cost
function used for parameter optimization involved creating splines between simulated
points for ACTH and cortisol and computing the mean sum of squared errors between the
splines and the data to be matched. The equation is as follows:

cost =
∑i(dACTH,i − sACTH(ti))

2 + (dCORT,i − sCORT(ti))
2

2

where dACTH,i & dCORT,i are the data points at time ti, and sACTH(ti) & sCORT(ti) are
the spline functions for the simulated ACTH and cortisol, respectively, at time ti. The
splines’ points were normalized to the mean concentration of the respective data set to be
matched, and the data sets were normalized to their mean, as well. This normalization
procedure allowed us to compare cost function values between models, even when the
models operated on different time/concentration scales.

The reason for creating splines between the simulated points when computing the
cost function is to handle a limitation in the ODE solver methods available in Python (and
MATLAB, also, because the same differential equation solver method is commonly used in
both languages). The problem is that the step size of the solver is not fixed, so we cannot
guarantee that we will have a solution at the exact time point in the data being matched.
Although we may get very close, the time steps are very often off by a small amount. The
best solution we have found is to compute splines between each point in our solution array,
and then select the points on the splines to exactly match the time points of data.

Each model was run against the concentrations averaged over all patients because
it is the best example of how we expect the concentrations to behave (starts low before
the stress test, peaks during and shortly after the test, returns quickly to baseline before
measurement period ends). To illustrate the differences observed in individual patients,
the models were also run against several individual patients (patients 1, 10, 20, 30, 40 & 50).
Of particular interest, we demonstrated the results against patient 1 as an example of the
data sets that fit into neither our understanding of how ACTH and cortisol concentrations
should interact with each other nor how they should behave after exposure to a stressor
(ACTH is decreasing over nearly the entire measurement period, yet cortisol spikes 30 min
after the TSST ends). We also illustrate the model simulation results against patient 40 as a
good example of how the concentrations should behave (with limited individual variation,
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making it distinct from the mean data set). The processes were facilitated by the ability of
VeVaPy to efficiently plug in different data and model, as described below.

We tested using alternative cost functions and optimization algorithms and chose
the mean sum of squared errors for the cost and differential evolution for the algorithm
because they outperformed the other options. The alternative cost functions we tested
involved using the maximum of the maximum distances between the ACTH & cortisol
simulation spline curves and the real-world data, or the mean of the maximum distances
between ACTH & cortisol simulation spline curves and the real-world data. These cost
functions performed slightly worse overall when compared to the mean sum of squared
errors. For alternative optimization algorithms, we tried using scipy.optimize.shgo and
scipy.optimize.basinhopping. These algorithms performed worse than differential evolu-
tion, in general. However, all of these methods can be implemented easily in VeVaPy, by
passing different arguments to the optimize module.

When choosing which parameters to optimize for each model, we considered the
authors’ intentions and tended to optimize only those parameters which were reported
to vary between patient populations, at first. However, to demonstrate the maximum
effectiveness of parameter optimization, we also ran simulations where we optimized every
parameter (simply to determine the optimal data matching from each model). However,
we did not modify the equations for any of the models used for demonstration. The
only changes made from the original model publications is the parameter values we have
optimized.

3. Results

First, we present a simplified description of how VeVaPy functions, leaving all tech-
nical information to Section 3.1. The tool contains a template that can be edited to add
information about the model to be simulated. The information required for VeVaPy to
function with a novel model includes: the system of differential equations constituting the
model, the parameter values (and reasonable bounds on those parameters for optimiza-
tion), and initial conditions for each variable (although these can also be optimized given
reasonable bounds). The tool then uses the enclosed modules to simulate the system and
optionally optimize parameters—the modules will be described in detail in the next section.
The outputs from VeVaPy include the optimized parameters, the quantitative description
of data matching suitability and graphs for visualization of the simulations. Figure 2 shows
the simplified input/output diagram of VeVaPy.
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3.1. Code Diagram and Module Descriptions of VeVaPy

See Figure 3 for a diagram of the Jupyter notebook template used for each of the five
demonstration models. The following section describes each step in the template in turn
(following the numbering seen in the left-hand block of the diagram).
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The VeVaPy template begins with Section 1. Parameter Definitions, where parameters
are defined, along with bounds on each parameter for use in optimization. In this section,
initial conditions (or bounds on initial conditions for optimization), time scale, and integra-
tion time length are also defined. Section 2. Import Real-World Data and Graph calls the
dataImport module using the time scale defined by the user. The module imports all of
the data we have gathered on the HPA axis (both basal data and TSST data) into arrays for
analysis. This makes validation more streamlined and more powerful, as one can access a
wide range of data sets without needing to scour the literature. We have also included code
in the template to plot each data set from dataImport to allow users to easily see differences
between data sets.

In Section 3. Optimization Loop, the parameter optimization is performed by the
optimize module. The user adds the system of equations for their model into the model
function (in the ode_system subfunction). Then, the user calls the run() method of the
optimize module. This sets up and runs the parameter optimization algorithm, which
repeatedly calls the model function, passing a set of parameters each time.

The model function then calls the DEsolver module using the system of equations
defined by the user and the parameter set from the optimization algorithm. DEsolver
allows for solving ODE and DDE systems in a user-friendly fashion. Currently, it is
not straightforward to solve ODE systems in Python when using any solver other than
the default (lsoda from the FORTRAN library odepack), and we are unaware of any
straightforward methods for solving DDE systems. VeVaPy makes both of these possible
for HPA axis models, requiring only a function defining the equations and a single call to
the module.

DEsolver then returns the solution of the system, which is passed by the model
function to the optimization algorithm, in turn. The algorithm then calls the cost function,
passing this solution array. The cost function then calls a cost() method of the optimize
module, depending on which cost function is desired (for instance, sum of standard errors
is SSE_cost). This method takes arrays containing simulated data and the real-world data
to use for validation and returns a single value for cost—representing the suitability of the
parameter set tested. Based on this cost value, the optimization algorithm determines the
most accurate parameter set that it can find, and then this set is saved and the loop repeats.
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After the loop has run as many times as desired, Section 4. Save Optimization Results
to File runs, and all optimized parameter sets and solution arrays are saved to an Excel
file. Finally, in Section 5. Plot Optimized Simulations Against Real-World Data, the VeVaPy
module visualize is used for creating graphs of each variable comparing the simulated
values with the data set used for validation.

Note that when performing verification, the optimization loop is replaced with a
single call to the model function, which then uses DEsolver to solve the system using the
parameter values provided. The template contains code for this purpose, with modification
necessary only to ensure that the graphs generated contain the same information as those
the model is being verified against.

Not only are these modules useful for reproducing HPA axis models from the literature,
but they can also be used for creation of new models of the HPA axis or potentially
generalized to model other systems. Given the extensive experience and knowledge
typically required to create a differential equation-based model of a physiological system,
or even to reproduce one from the literature, we have attempted to make VeVaPy as user-
friendly as possible to allow a broad audience to use it. As explained at the beginning of
Section 2, all five of the models have been written in Jupyter notebooks with thorough
documentation explaining the purpose of each code segment. Furthermore, the use of our
custom library has been demonstrated in these models, and the code for each module in the
library also includes thorough documentation. As a result, the reproduction of an HPA axis
model starting from our template Jupyter notebook will be much more easily accomplished
than starting from scratch.

3.2. Description of Collected Data

The data used for our validation demonstration are described below. As seen in
Figure 4, the mean concentrations of ACTH and cortisol from the MDD patients before,
during and after administration of a TSST follow the expected trend. Levels are steady
and comparable to basal concentrations of MDD patients during the 30 min leading up to
the test. During the 20 min that the subjects were participating in the TSST, levels sharply
increase and then decrease back to baseline over the 90 min following the end of the test.

However, there is a large amount of variation between subjects. Of the six subjects
chosen for matching, the general trend of an increase in ACTH and cortisol concentration
followed by a decrease back to baseline is observable in patients 10, 20, 30, 40, and 50—
although the degree to which concentrations increase and decrease varies widely. As an
illustration of this point, the data for patient 1 and patient 40 are shown in Figure 5A,B,
respectively. Strangely, patient 1 exhibits the largest peak in cortisol concentration at 18:20,
30 min after the conclusion of the TSST. Additionally, the ACTH concentration data for
patient 1 is decreasing over nearly the entire time frame, which does not coincide with the
increasing cortisol concentration. Therefore, it is to be expected that mathematical models
will struggle to match the data from this subject. We expect that the mean concentration
data, along with patients 10, 40, and 50 will be most successfully matched as they most
closely follow the expected trend.
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3.3. Summary of Selected HPA Axis Models

The five models selected following our search of the literature include: Bairagi
et al. [22], Bangsgaard & Ottesen [26], Malek et al. [25], Somvanshi et al. [27], and Sri-
ram et al. [23]. See Table 1 for a summary of the characteristics of each model—including
the number of equations, number of parameters and number of feedback loops (all of
which give some indication of the amount of detail included in the system). Two of the
papers were primarily interested in whether the HPA axis system itself exhibited ultradian
oscillations or whether clock inputs from the brain were necessary, two of the papers used
their models to study the interactions between the HPA axis and inflammatory cytokines,
and the final paper was interested in determining whether PTSD patients exhibited stronger
negative feedback from cortisol on the hypothalamus and pituitary than control patients.

Two of the models [23,27] replace the concentration of cortisol with the concentration
of bound GRs when computing negative feedback—which is logical because cortisol must
bind GRs to exert its negative feedback. In the model by Sriram et al. [23], this allows
for the introduction of a positive feedback loop in the receptor binding equation, which
generates bistability and therefore Hopf bifurcations in the model (which is an indication
that the model can successfully generate ultradian oscillations without needing an external
pulse generator function) [31].

Aside from the differences in handling negative feedback interactions, the other major
difference in the models is the presence or absence of a function modeling external circadian
drive from the SCN. Four of the models include a function for the SCN drive in the equation
for CRH [22,25–27] while the other model does not include any circadian drive input from
outside the HPA axis [23]. The model by Somvanshi et al. [27] also includes a function in
the equation for ACTH to describe the adrenal circadian clock drive.
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Table 1. Overview of Selected Models.

Year Authors Target Number of
Equations

Number of
Parameters

Number of
Feedback
Loops

Unique Features

2008 Bairagi, Chatterjee,
Chattopadhyay

Circadian &
Ultradian Rhythms 3 12 1 Negative Ultradian rhythm

w/o Circadian

2012
Sriram, Rodriguez-
Fernandez,
Doyle

Cortisol Levels in
PTSD 4 20 1 Negative, 1

Positive
Glucocorticoid
Receptor Binding

2015
Malek, Ebadzadeh,
Safabakhsh, Razavi,
Zaringhalam

HPA Axis
Relationship to
Inflammatory
Cytokines

5 32 0
Equations for
TNF-alpha, IL-6
and endotoxin

2017 Bangsgaard,
Ottesen

Comparing
Differences in
Optimal
Parameters
between
Individuals

3 17 1 Negative

Used Parameter
Optimization on
Model to Compare
Individuals

2020

Somvanshi, Mellon,
Yehuda, Flory,
Bierer, Makotkine,
Marmar, Jett, Doyle

Relation of HPA
Axis to
Inflammation in
Subjects with PTSD

17 92 1 Negative, 1
Positive

More Detailed
Glucocorticoid
Receptor and
Inflammatory
Cytokine Dynamics

3.4. Verification of Selected Models with VeVaPy

To verify that each model performs as the authors intended, we reproduced a figure
from each original paper. All of the model papers contain at least one figure in which
cortisol concentration over time is shown—these are the figures we have reproduced.
Figure reproductions and the original figures are included in Supplementary Figures S1–S7.

In order to generate the figures, the VeVaPy template is edited to include the system
of model equations, the parameter values and initial conditions defined in the model
publication, and the time over which to integrate. The VeVaPy module DEsolver then
solves the system and returns a solution array to visualize, which generates figures that are
comparable to the publications. The module visualize allows users to define the variables
to plot and the ranges over which to plot them. For each variable, a graph is produced
showing the concentration values over the requested time range. The graphs can contain
both simulation results and real-world data, but only one variable can currently be shown
per graph. As mentioned in Section 2.2, this cannot accommodate all figures for verification
currently (such as those in Malek et al. [28]). However, many verifications can be performed
easily.

3.5. Validation of Selected Models with VeVaPy

Our demonstration of a validation procedure using novel TSST data and models from
the literature illustrates how VeVaPy makes this process more streamlined. We started
validation with VeVaPy by using parameter values found in the original publications of the
selected models (see the model files on GitHub for details).

With the authors’ published parameters and the data from patient 40, we see in Figure 6
that the original parameter values provided in Sriram et al. and data from this patient do
not agree. When a new experimental procedure is used to collect data, it is likely that there
will be no models specifically designed to simulate the experiment. This partially explains
why the V&V process is more challenging in systems physiology. Since the data for model
construction and data for model validation are often collected in different contexts, more
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than one set of parameter values are needed for proper estimation of the model’s capacity
to explain new data.
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This ensures that when the published parameters are inaccurate for the current experi-
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zation algorithms and cost function options easily available. 
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iterations of the parameter optimization algorithm of 0.05827298.  

Figure 6. Sriram et al. [23] model without parameter optimization vs. Trier social stress test (TSST)
data from patient 40. Graphs include model simulations of corticotropin-releasing hormone (CRH)
concentration (upper left, blue), adrenocorticotropic hormone (ACTH) concentration (upper right,
blue), cortisol concentration (lower right, blue) and bound glucocorticoid receptor (GR) concentration
(lower left, blue) against ACTH concentration (upper right, orange) and cortisol concentration (lower
right, orange) from patient 40. The blue lines represent the average of 5 iterations of the parameter
optimization algorithm.

To maximize this capacity, VeVaPy includes a package for parameter optimization. This
ensures that when the published parameters are inaccurate for the current experimental
conditions, we can determine whether a change in parameters can yield a more accurate
simulation. This is easily facilitated by VeVaPy, with several parameter optimization
algorithms and cost function options easily available.

The optimized parameters for Sriram et al. improved the matching between the model
and data from patient 40, as seen in Figure 7. The model fits exceptionally well when
matching the data from patient 40, with an average cost function value over five iterations
of the parameter optimization algorithm of 0.05827298.

We see similar results when running the model by Bangsgaard et al. in VeVaPy against
the data from patient 40. The initial results using the authors’ published parameters are
shown in Figure 8, and as expected the simulation does a very poor job matching the
experimental data.
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Figure 8. Bangsgaard et al. [26] model without parameter optimization vs. Trier social stress test
(TSST) data from patient 40. Graphs include model simulations of corticotropin-releasing hormone
(CRH) concentration (left, blue), adrenocorticotropic hormone (ACTH) concentration (upper right,
blue) and cortisol concentration (lower right, blue) against ACTH concentration (upper right, orange)
and cortisol concentration (lower right, orange) from the patient 40. The blue lines represent the
average of 5 iterations of the parameter optimization algorithm.
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After running the Bangsgaard model with VeVaPy’s parameter optimization function,
we see significantly improved fit when matching the data from patient 40. As shown in
Figure 9, the model performs nearly as well as the Sriram model in this instance.

Entropy 2022, 24, x FOR PEER REVIEW 17 of 30 
 

 

Figure 8. Bangsgaard et al. [26] model without parameter optimization vs. Trier social stress test 
(TSST) data from patient 40. Graphs include model simulations of corticotropin-releasing hormone 
(CRH) concentration (left, blue), adrenocorticotropic hormone (ACTH) concentration (upper right, 
blue) and cortisol concentration (lower right, blue) against ACTH concentration (upper right, or-
ange) and cortisol concentration (lower right, orange) from the patient 40. The blue lines represent 
the average of 5 iterations of the parameter optimization algorithm. 

After running the Bangsgaard model with VeVaPy’s parameter optimization func-
tion, we see significantly improved fit when matching the data from patient 40. As shown 
in Figure 9, the model performs nearly as well as the Sriram model in this instance. 

 
Figure 9. Bangsgaard et al. [26] model vs. Trier social stress test (TSST) data from patient 40. Graphs 
include model simulations of corticotropin-releasing hormone (CRH) concentration (left, blue), 
adrenocorticotropic hormone (ACTH) concentration (upper right, blue) and cortisol concentration 
(lower right, blue) against ACTH concentration (upper right, orange) and cortisol concentration 
(lower right, orange) from the patient 40. The blue lines represent the average of 5 iterations of the 
parameter optimization algorithm. 

For the remaining three models, the results of parameter optimization are not nearly 
as positive, but optimization still yielded slight improvements in fit. Figure 10 shows the 
models with and without parameter optimization against patient 40 (as with the models 
by Sriram et al. [23] and Bangsgaard & Ottesen [26] above). This process clearly demon-
strates that even with parameter optimization, models are often not suitable for problems 
outside of their initial intended use. 

Figure 9. Bangsgaard et al. [26] model vs. Trier social stress test (TSST) data from patient 40. Graphs
include model simulations of corticotropin-releasing hormone (CRH) concentration (left, blue),
adrenocorticotropic hormone (ACTH) concentration (upper right, blue) and cortisol concentration
(lower right, blue) against ACTH concentration (upper right, orange) and cortisol concentration
(lower right, orange) from the patient 40. The blue lines represent the average of 5 iterations of the
parameter optimization algorithm.

For the remaining three models, the results of parameter optimization are not nearly
as positive, but optimization still yielded slight improvements in fit. Figure 10 shows the
models with and without parameter optimization against patient 40 (as with the models by
Sriram et al. [23] and Bangsgaard & Ottesen [26] above). This process clearly demonstrates
that even with parameter optimization, models are often not suitable for problems outside
of their initial intended use.
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Figure 10. Further examples of models with and without parameter optimization. Simulated
concentrations are in blue, patient 40 data is in orange. The left column of graphs shows the models
running simulations with the parameters from the publication, while the right column of graphs
shows the models running simulations with optimized parameters. Demonstrated models are (A)
Bairagi et al. [22], (B) Malek et al. [25], (C) Somvanshi et al. [27].

For each model, we have computed the average cost function value for five iterations
of the parameter optimization algorithm on each of the seven data sets tested. We then took
the average of these seven average cost function values to obtain a single value representing
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the overall suitability of each model when matching our TSST data. The overall average
cost function values given by VeVaPy for each model are shown in Table 2, alongside the
best cost function value on a single patient, and the cost function values of the models
without parameter optimization. It should be noted that the model by Bairagi et al. [22]
required a large amount of computational power, and as such, we were only able to run
one iteration of the parameter optimization algorithm for each data set. Each iteration of
the model ran for approximately 36 h, which was more than 10 times longer than any of
the other models we tested.

Table 2. Model Ranking Based on Cost Function Value.

Model

Overall Cost Function
Value ± Standard
Deviation (After
Parameter
Optimization)

Best Cost Function
Value for a Single
Patient (Patient ID)

Overall Cost Function
Value (Authors’
Parameters, No
Optimization)

Best Cost Function
Value for Single
Patient (Patient ID)
(Authors’ Parameters,
No Optimization)

Sriram et al. (2012) [23] 0.33 ± 0.19 0.058 (Patient 40) 26.03 ± 16.39 5.11 (Patient 50)

Bangsgaard & Ottesen
(2017) [26] 0.58 ± 0.46 0.12 (Patient 40) 3.63 ± 1.03 2.14 (Patient 10)

Somvanshi et al. (2020)
[27] 2.59 ± 0.94 1.10 (Patient 20) 6.61 ± 0.90 5.43 (Patient 20)

Malek et al. (2015) [25] 6.78 ± 7.78 1.17 (Patient 30) 11.95 ± 0.40 11.31 (Patient 20)

Bairagi et al. (2008) [22] 64.86 ± 38.85 35.84 (Patient 1) 656.26 ± 280.47 343.34 (Patient 1)

Based on the overall cost function value of each model with optimized parameters
versus the authors’ published parameters, we can clearly see that our procedure is yielding
significant improvements in data matching. Further, between the models tested, we see
widely varying levels of suitability after parameter optimization. The models by Sriram
et al. [23] and Bangsgaard et al. [26] far outperform the others. The normalization performed
when computing costs allows for comparison between models without needing to convert
time/concentration scales beforehand—we have reported results from each model without
converting all models to the same scales to demonstrate this.

3.6. VeVaPy Facilitates Efficient Validation against Individual Patients

With VeVaPy, we efficiently compared data from seven individual patient data sets
against five models with five iterations per patient, and one model with a single iteration
per patient, for a total of 182 runs of the parameter optimization. The main time-consuming
step is the repeated integration of these models necessary for parameter optimization—
especially for very complex models or those with systems of DDEs. However, VeVaPy
makes it straightforward to “plug and play” individual models and data. The results of
model validation against the MDD patient mean data set are shown for all five models in
Figure 11.
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Figure 11. Model validation figures for all five demonstration models against the mean of all MDD
patients in the Nelson TSST data. Models depicted are: (A) Bairagi et al. [22], (B) Bangsgaard &
Ottesen [26], (C) Malek et al. [25], (D) Somvanshi et al. [27], (E) Sriram et al. [23].

VeVaPy is designed to facilitate this process by requiring specification of the validation
data set in a single location. The tool then runs the algorithm and outputs the results to
an Excel file for further analysis. There is also the option in VeVaPy to loop over multiple
patients in a data set, running the parameter optimization on each individual indicated
by the user. This makes it very efficient to run many different validation tests, without
needing to make changes to the code.
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3.7. Assessing Model Generalizability

After optimizing parameters against a data set, VeVaPy can easily test the resulting
parameter set against other data sets to determine whether a model can be generalized
to other situations. The optimized parameters are loaded from the file where they were
saved when generated and the procedure for performing a simulation without optimization
is followed. In order to demonstrate this process, we have used several of the optimal
parameter sets from the model by Sriram et al. [23] to run simulations against all individual
patients from the TSST data set Figure 12 highlights some of the more interesting results
from this process.
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The results of these simulations vary widely, likely due to the variation observed 
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when matching individual patients within the same group. For instance, using parameters 
from optimization against all control patients gave an average cost function value of 6.007 
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Figure 12. Results of Using Optimized Parameters in Generalized Cases. (A) The optimized parameter
sets have some cases where they perform reasonably well (especially against patients from the same
group). (B) Some of the parameter sets match certain patients very poorly, such as the parameters
optimized against the mean of all MDD patients against patient 39 (MDD/neither subtype). (C) Many
of the simulations matched either ACTH or cortisol but did not match the other. Parameters optimized
against patient 40 (MDD/neither subtype) match the general cortisol concentration trend from patient
13 (MDD/atypical), but the simulated ACTH concentration is extremely high. (D) Similar to C, but
with simulated cortisol concentration not matching while simulated ACTH concentration follows the
correct general trend. Simulation run with parameters optimized against patient 50 (MDD/atypical),
shown with data from patient 6 (MDD/atypical).
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The results of these simulations vary widely, likely due to the variation observed
between individual patients. Some parameter sets did yield better cost function values
when matching individual patients within the same group. For instance, using parameters
from optimization against all control patients gave an average cost function value of
6.007 against control patients and a value of 9.064 against MDD patients. Likewise, using
parameters from optimization against patient 40 (MDD/neither subtype) gave an average
cost function value of 2.899 against control patients and a value of 2.380 against MDD
patients. However, using parameters from optimization against all MDD patients gave an
average cost function value of 4.195 against control patients and a value of 4.421 against
MDD patients. This demonstrates that while some optimized parameters are slightly
generalizable to other patients or group mean concentrations, the cost function values are
much higher than we would like in all of these situations. A deeper analysis of this issue
falls outside of the scope of this paper, but we intend to examine this behavior more fully
in a subsequent paper.

3.8. VeVaPy Runtimes

We have recorded the time required to run a variety of simulations with each demon-
stration model. These data are summarized in Table 3 below. Running simulations without
parameter optimization requires only milliseconds for all five models. However, optimizing
parameters for any of the models requires a significant investment in time and computing
power. The models vary widely in this regard, though, with a gap of 96.5 min between the
fastest model and slowest model.

Table 3. Simulation Runtimes with VeVaPy by Model.

Model Without Optimization
(Milliseconds)

With Optimization
(Minutes)

Bairagi et al. [22] 483 101.625

Bangsgaard & Ottesen [26] 51.1 27.170

Malek et al. [25] 57.5 26.794

Somvanshi et al. [27] 5.1 5.128

Sriram et al. [23] 1.76 7.159

The simulations performed for the average runtimes without parameter optimization
used several optimal parameter sets that were generated during the course of model
validation. We ran 100 simulations with each model, and the average runtime of these
100 simulations is reported. For the runtimes with parameter optimization, we report the
average time for a single iteration of the optimization algorithm for each model against two
data sets from the TSST data: mean of all control patients and mean of all MDD patients.
Each of these optimization runs consisted of five iterations of the differential evolution
optimization algorithm using a population size of 10. Population size determines how
many parameter sets are “evolved” and checked for improvement at each step of the
optimization, so lower population sizes will yield faster runtimes with less accuracy at
finding the minimum cost value.

One major factor increasing the runtime for the models by Malek et al. [25] and Bairagi
et al. [22] is the presence of delayed variables. This requires extra computation at each step
of integration in order to look up the value of the variable in a previous time step, which
becomes a significant time cost when it is being performed thousands of times per iteration
of the optimization algorithm. This is an area where there is likely room for improvement
in the VeVaPy framework—and one which we will be working on in the future.

4. Discussion

In this work, we have shown how we have created a Python based package, VeVaPy,
that can be used to efficiently verify and validate HPA axis models. We have thoroughly
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documented the code behind VeVaPy and published it freely on GitHub, in line with the
recommended best-practices for model publication. We hope that others will find VeVaPy
useful, and it can help future researchers spend less time and effort performing V&V when
developing their own models or checking model papers in the literature.

In order to test and demonstrate VeVaPy, we verified five HPA axis models from the
literature and validated them against novel TSST data from MDD patients. The models
were ranked based on their average cost function value when running the differential
evolution parameter optimization algorithm on each model against several TSST data
sets. All five models are included in the VeVaPy repository and ready for use—though
the validation results indicate that the models by Sriram et al. [23] and Bangsgaard &
Ottesen [26] would be the strongest candidates for repurposing to explain the TSST data.

Consistent with many others in the scientific community, we have found that verifica-
tion of published models was challenging [32–35]. As we will elaborate on below, we have
encountered two main difficulties during the course of this research: data sets not provided
alongside models, and non-standardized model development and publishing practices.

The first difficulty arises due to a lack of easily accessible data published in machine-
readable formats. While many papers in the HPA axis modeling literature use cortisol
concentration data to validate their models, they seldom include a supplementary file with
a spreadsheet of the data used. Often, the papers cited by these modeling publications
as the source of the data used do not include spreadsheets of the data either. It is often
very difficult or even impossible to reach the authors of papers with useful data, especially
when the papers are not from the last few years.

To prevent future researchers from experiencing this challenge, we have begun the
process of curating data sets from the literature and packaging them with VeVaPy. Currently,
as described in Section 2.3, we have four data sets containing cortisol data sampled at short
intervals from patients at rest over 24 h (two of the data sets also contain ACTH data over
the same time period). These data are useful for validation of models intended to describe
the HPA axis at rest. While the number of patients per data set is rather small (n = 29–47),
and the sets only contain mean concentration data, they provide a basic level of confidence
that a model is valid among various patient populations. Further, for validation of models
intended to simulate the HPA axis under stress, the TSST data contained in VeVaPy is
unique in the literature, as far as we are aware.

The second difficulty we faced—non-standardized model development and publish-
ing practices—warrants a more in-depth discussion. As mentioned briefly in Section 2.1,
there were many more models published in the literature than the five we have repro-
duced here. Unfortunately, however, the majority of differential equation based HPA
axis models published in the literature are non-reproducible for a variety of reasons. The
problem is primarily due to a lack of information, rather than dishonesty or poor model
design/performance. Very few models are published with the full code used by the authors,
and others do not include necessary basic information such as the initial conditions used
for each simulation, or a full list of parameter values used.

It is encouraging that both some grant agencies and some journals have acknowledged
this challenge. In a statement by the director of the NIH published in 2014 [36], the
root causes of the crisis (including over-emphasis on high-impact journal publications
by hiring and tenure committees or the withholding of information about experimental
procedures to retain a competitive edge) were discussed along with the steps the NIH was
considering to address the crisis (including changes to the way grants are awarded to allow
for more reproduction of published work to take place). Meanwhile, other researchers
have suggested that journals must enact and enforce reproducibility standards to solve
the crisis [37,38]. Some journals have taken steps in the right direction—notably, Science
implemented a reproducibility policy in February 2011. According to Stodden et al. [39],
the policy of Science has been successful to a degree but has not been enforced strictly
enough. The rate of data availability improved from 52% to 75%, but the rate of code
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availability only improved from 43% to 54% [39]. However, most suggestions for making
computational research more reproducible focus on individual researchers.

A survey of 1576 scientists showed favorable attitudes towards all suggested practices
for improving reproducibility included in the survey (practices such as better mentorship,
more robust experimental design, and journal checklists) [40]. A concern expressed by some
researchers surveyed was the amount of added time and effort to ensure that an experiment
is reproducible. However, as stated by Waltemath & Wolkenhauer [41], “irreproducibility
hinders researchers and the scientific community by wasting time and money.” Following
best practices for reproducibility in computational research from the start of model devel-
opment can decrease the overall amount of work required for reproducibility and in the
long term it will save the community significant time and effort.

To ensure that VeVaPy is user friendly and easily extensible, we have followed the
suggested best practices in the literature to the best of our ability—and we will review
and summarize them here. We hope that by proposing (and following ourselves) these
best practices, future computational biological scientists will not struggle with some of the
challenges we have. The Physiologically Based Kinetic (PBK) Model Reporting Template
presented by the Organisation for Economic Co-operation and Development (OECD) [32]
is a good compilation of general best practices for model reproducibility. The template is
presented in Table 4 below, and Table 5 contains our curated list of best practices suggested
in the literature by various authors [32–35,37,38,41–52].

Table 4. OECD Model Reporting Template [32].

PBK Model Reporting Template Sections

A. Name of model

B. Model author and contact details

C. Summary of model characterization, development, validation and regulatory applicability

D. Model characterization

1. Scope and purpose of the model
2. Model conceptualization (model structure, mathematical formulation)
3. Model parameterization (parameter estimation and analysis)
4. Computer implementation (solving the equations)
5. Model performance
6. Model documentation

E. Identification of uncertainties (report for each item in D.)

F. Model implementation details (software used, availability of code)

G. Peer engagement (report extent of review by peers during development)

H. Parameter tables (report all relevant inputs to the model for any simulations described)

I. References and background information

Note that the version of the OECD PBK Model Reporting Template published in [32]
includes more thorough guidance about what to include in each section. Completing this
template guarantees that a model will be published in accordance with our general best
practices (see Table 5), assuming the authors also provide the full code of their model as
the template suggests. See the Supplementary Material for complete information on the
five models covered in this paper.
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Table 5. Proposed Best Practices for Model Publication.

Proposed Best Practices Comments/Justification

All models should be published with all code
used by the authors

This is essential to ensure models can be
exactly reproduced without undue struggle

Model code must include proper
documentation

Without documentation regarding how to run
a model, such as thorough comments
throughout the code or a readme file, it is often
difficult to dissect complex code and determine
how it is meant to work

Exact scope of the model should be made clear

It is important that the audience knows when it
is appropriate to use the model, lest they form
false assumptions based on use of the model in
a context it was not designed to simulate

All input data (parameters, initial conditions,
etc.) must be provided and justified

Too often models are published without a clear
list of parameter and initial condition values,
making them non-reproducible. Other times,
the sources for parameter and initial condition
values are not provided, leaving their validity
in question.

We can categorize best practices suggestions based on which aspect of an experiment
they address. The categories include experimental design, performing experiments and
collecting data, analysis of data, and reporting data/results. The paper by Munafò et al. [45]
presents general suggestions which are applicable to many areas of science, and which
address all of the aforementioned categories. These suggestions include protecting against
cognitive bias during experimental design and data collection (e.g., using blinding), includ-
ing independent researchers with no personal stake in all steps of an experiment, study
pre-registration, improving statistical analysis training, improving the quality of reporting,
and promoting transparency and open science.

Due to the nature of computational research, the suggestions regarding experimental
design and data collection are often not relevant. As such, the literature about reproducibil-
ity in computational science mostly focuses on the last category listed above: reporting
data/results. The suggestions in this category vary in their specificity from general state-
ments (see the suggestions listed in Table 5) to specific software recommendations (e.g., use
Git for version control).

We have also made a list of suggested best practices and the software we recommend
for implementing them (see Table 6). These suggestions come from several literature sources
and our own experience with modeling software [33,41,42,46–50,52]. The following best
practices and the suggested software for implementation will be discussed: fully document
the process of model development including all simulation inputs and algorithms, share
model code and the associated documentation in public repositories like Github, ensure
that model code can be run on as many computers as possible, and make model code easy
to understand.
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Table 6. Best practices and suggested software for their implementation.

Best Practice Suggestion Software for Implementation

Fully document the process of model
development including all simulation inputs
and algorithms

• Jupyter Notebooks
(https://www.jupyter.org, accessed 23
November 2022)

• R Notebooks
(https://rmarkdown.rstudio.com,
accessed 23 November 2022)

Share model code and the associated
documentation publicly

• GitHub (https://www.github.com,
accessed 23 November 2022)

• BioModels
(https://www.ebi.ac.uk/biomodels,
accessed 23 November 2022)

Ensure that model code can be run on as many
computers as possible

• VMWare Virtual Machine
(https://www.vmware.com, accessed 23
November 2022)

• Docker (https://www.docker.com,
accessed 23 November 2022)

• Binder (https://www.mybinder.org,
accessed 23 November 2022)

Make model code easy to understand

• Systems Biology Markup Language
(SBML, https://synonym.caltech.edu,
accessed 23 November 2022)

• CellML (https://www.cellml.org,
accessed 23 November 2022)

In our experience and that of Kim et al. [42], documentation of the model development
process including all simulation inputs and algorithms is most easily accomplished using
computational notebooks and version-control systems. The code included with this paper is
written in Python using Jupyter notebooks, as explained in Section 2.2. The version-control
system we utilized is called Git, which allows for users to save all versions of a program
from its creation. This allows for easily stepping back through versions to see when a
change was made or to determine when an error was introduced. Through using these
tools in tandem, we have fully documented the development process of VeVaPy.

Using Git for version-control makes it simple to deposit model code in a public,
version-controlled repository—GitHub is a website which allows for any Git repository
to be uploaded to the Internet and (optionally) made public. This is the option that we
have chosen to use, and VeVaPy can all be found at https://www.github.com/cparker-
uc/VeVaPy (accessed 23 November 2022). However, there are also specific repositories for
various types of models. Porubsky et al. [52] recommend BioModels (https://www.ebi.ac.
uk/biomodels/, accessed 23 November 2022), a database for biological models that has a
curation process which verifies whether uploaded models are reproducible.

Due to the difficulties in ensuring that future users have all requisite software installed
in the correct versions, even when all code is included with a publication or deposited
in an open repository it can prove difficult to run—especially when the code is not from
the past couple of years. To ensure that model code can be run on as many computers as
possible, Porubsky et al. [52], Sandve et al. [46], Waltemath & Wolkenhauer [41], and Rule
et al. [49] suggest using either a virtual machine image or a web-based virtual machine
such as Docker (https://www.docker.com, accessed 23 November 2022). Using a virtual
machine, one can be sure that all necessary software, data, and model code will be available
and able to run in any computing environment. We have instead opted for Binder (https:
//www.mybinder.org, accessed 23 November 2022) which allows users to run Jupyter
notebooks in a web browser without needing to have the necessary software installed on
their local machine.
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The final suggestion we will discuss is making model code easy to understand. This
can be achieved with thorough documentation, use of compartmentalization and functional
programming, descriptive variable names, and using computational notebooks. However,
for certain forms of model, there are standardized markup languages which are widely
recommended in the literature, and which make model code easier for users to under-
stand [33,41,48,50,52]. For systems biology, these include the systems biology markup
language (SBML) and CellML. Unfortunately, as discussed in Medley et al. [38], these
languages are limited in scope and do not support all forms of systems biology modeling.
For instance, the models covered in this paper are currently unable to be adapted to SBML
or CellML. However, we felt that it was important to mention these languages as they offer
significant upsides for those models which they support.

VeVaPy followed biological modeling best practices as discussed above (Table 5), and
this has made the five models reproduced for this research and our code, VeVaPy, very
useful for many HPA axis modeling applications. To summarize, we have made the follow-
ing efforts: the code for our VeVaPy package includes thorough documentation, including
instructions for use; the demonstration models were implemented using Jupyter notebooks
for improved readability and easier documentation; we have tracked the development
process with the Git version control system and published it on GitHub, a freely accessible
code repository; and we have provided instructions for accessing VeVaPy through Binder
to facilitate its use on any Internet-connected computer.

We intend to follow up on the models used here for demonstration and to repurpose
the model by Sriram et al. [23] to specifically match data that includes acute stressors
(such as the TSST data used above). The most apparent modification to be made involves
replacing the variable for stress input to a function for stress input that can change over
the course of the simulation. This will allow for the introduction of an acute stressor (like
a TSST) and then the cessation of the stressor afterwards. Another modification that we
will test is the addition of delays between the release of ACTH and its action in the adrenal
glands and between the production of cortisol and its feedback in the hypothalamus and
pituitary. There are many possible routes that our modifications may take due to the
many physiological processes not yet accounted for in the literature models (GRs in the
hippocampus, fast vs. slow cortisol feedback, etc.). Using a model specifically designed
to simulate stress tests will allow us to better understand the behavior of the HPA axis
under acute stress—and the differences in this behavior between MDD, PTSD, and healthy
control subjects.

Although we are hopeful that future published models will be more easily reproducible
and include all data used by the authors for validation, we believe that the reproducibility
problems discussed above can be eased to a degree by the development of robust tools
for model V&V. We have begun the development of such tools in the field of HPA axis
modeling. Although VeVaPy currently requires some programming knowledge to adapt
beyond the five included models, we intend to further develop it into a graphical user
interface for easily creating systems biology and systems pharmacology models. This
will hopefully allow biologists with no experience in modeling to use our tools on many
published mathematical models and improve the reach, and therefore the power to make
an impact, of mathematical modeling in general. It is our firmly held belief that the
development of tools to facilitate V&V of mathematical models, such as VeVaPy, will speed
the pace of research and ensure that identification of valid models in the literature takes
significantly less effort.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e24121747/s1, Figure S1: Sriram Figure 3 Reproduction, Figure S2:
Sriram Figure 4 Reproduction, Figure S3: Bangsgaard Figure 5 Reproduction, Figure S4: Somvanshi
Figure 4 Reproduction, Figure S5: Malek Figure 3a Reproduction, Figure S6: Malek Figure 3b
Reproduction, Figure S7: Bairagi Figure 2 Reproduction, Figure S8: Nelson TSST Data, Figure S9:
Sriram et al. (2012) Nelson Data Comparisons, Figure S10: Bangsgaard & Ottesen (2017) Nelson Data
Comparisons, Figure S11: Andersen, Vinther & Ottesen (2013) Nelson Data Comparisons, Figure
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S12: Somvanshi et al. (2020) Nelson Data Comparisons, Figure S13: Malek et al. (2015) Nelson Data
Comparisons, Figure S14: Bairagi et al. (2008) Nelson Data Comparisons, Table S1: Revised DSM-IV
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