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Preface

The world of commodity markets has undergone a major transformation over the past few

decades, taking a major turn toward financialization. Since the early 2000s, commodities, once the

domain of farmers, miners, and physical traders, have become increasingly important to investors,

speculators, and financial institutions. This evolution has created a dynamic and ever-changing arena

in which the various factors affecting the market are intricately intertwined.

The dawn of the 21st century brought a series of events that had a profound impact on

commodity markets. Rising international tensions, exemplified by the Cold War between the U.S.

and China, highlighted the geopolitical nature of commodity markets. Meanwhile, the sudden

and devastating outbreak of COVID-19 shocked the global economy, disrupting supply chains and

causing roller coaster-like price volatility. In addition, Russia invaded Ukraine, and uncertainty

spilled over into the markets, sending resource prices soaring.

These cataclysmic events amplified the volatility inherent in commodity markets. At the same

time, financial markets such as equities, bonds, and foreign exchange also showed volatility. The

interaction between commodity and financial markets deepened and formed a complex nexus that

came under close scrutiny from governments, corporations, and investors around the world.

This reprint delves into recent developments in the commodity markets and elucidates the

multifaceted factors that have shaped their trajectory. It examines how the interwoven dynamics

of supply and demand, geopolitics, technology, and financialization have brought about a new era in

commodity trading. By providing a comprehensive survey of these developments, we aim to provide

insights that will help stakeholders successfully navigate the challenges and opportunities presented

by this evolving landscape.

We invite you to join us on this journey as we explore recent transformations in commodity

markets and their far-reaching implications for the global economy. From the rise of renewable energy

to the impact of climate change on commodity prices, we will traverse the complex web of factors that

define this dynamic and evolving field.

Special thanks are in store for all the authors involved in the publication of this reprint. I am

also deeply grateful to Ms. Chelthy Cheng, Managing Editor of MDPI, for her help in planning this

Special Issue. Finally, I would like to thank my wife Junko and my son Takumi for their support in

my research life.

Kentaro Iwatsubo

Editor
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Markov-Regime Switches in Oil Markets: The Fear
Factor Dynamics
Hiroyuki Okawa

Graduate School of Economics, Kobe University, Kobe 657-8501, Japan; phiro.lpworld.bj@gmail.com

Abstract: This paper is an attempt to examine regime switches in the empirical relation between
return dynamics and implied volatility in energy markets. The time-varying properties of the return-
generating process are defined as a function of several risk factors, including oil market volatility
and changes in stock prices and currency rates. The empirical evidence is based on Markov-regime
switching models, which have the capacity to capture, in particular, the stochastic behavior of the
OVX oil volatility index as a benchmark for investors’ fear. The results suggest that the dynamics of
oil market returns are governed by two distinct regimes, a state driven by a negative relationship
between returns and implied volatility and another state characterized by a more pronounced
negative correlation. It is the latter regime with a stronger correlation that tends to prevail over the
sample period from 2008 to 2021, but the frequency of regime shifts also seems to increase under more
volatile oil price dynamics in association with significant events such as the COVID-19 pandemic.
Thus, the evidence of a negative correlation structure is found to be robust to changes in the estimation
period, which suggests that the oil volatility index remains a reliable gauge of market sentiment in
the energy markets.

Keywords: energy market volatility; oil price dynamics; fear index; Markov-regime switching models

1. Introduction

The dynamics of energy markets have a strong bearing not only on various aspects
of social life but also on economic activities, monetary policies, and investment decisions.
Price signals from the crude oil market, in particular, have significant effects on the behavior
of inflation expectations and, in turn, institutional investors and policymakers. It may also
be argued that the price dynamics are reflective of the aggregate impact of megatrends,
including demographic and social changes, technological innovation, natural resources,
financial globalization, rapid urbanization, and shifts in economic power, inter alia. It is
not clear how this complex web of underlying forces may affect the energy markets and,
for instance, their essential linkage with the equity and currency markets. The existence
of latent variables has the potential to create non-linear relationships that may not be
easily reflected by linear regression models. Thus, shifts in the relationship between price
variations in energy markets and equity returns, as well as currency changes between
different states of the latent variables, may be better captured by Markov-regime switching
models. It is the principal objective of the present study to examine the inter-market linkages
as well the inner dynamics of the risk-return tradeoff relationship in oil futures markets.

Conventional wisdom suggests that market perceptions of increased economic uncer-
tainty are likely to be accompanied by lower asset valuation and expectations of higher
volatility and increasing volatility. The negative relation between returns and changes in
volatility expectations in equity markets is usually assessed using model-free volatility
benchmarks such as the Chicago Board Options Exchange’s VIX index, which is regarded
as a gauge of investors’ fear. The fear factor dynamics, measured by changes in the OVX
volatility index, may constitute a significant determinant of shifts in the risk-return trade-
off in oil futures markets. The OVX volatility index is derived from the option prices
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of Exchange Traded Funds that are linked to spot WTI prices and provides a forward-
looking measure of market volatility in terms of future oil price fluctuations. The focus
on the risk-return dynamics of WTI markets is justified by the crucial role that energy
markets play in the real economy and their intrinsic relationship with financial markets.
Indeed, unlike financial markets, commodity markets, including crude oil futures, have a
tendency to exhibit price seasonality, reflecting shifting risks associated with oil produc-
tion and consumption due to changes in supply and demand functions, in addition to
geopolitical risks.

Thus, a better understanding of the dynamics of oil futures returns may shed light
on the significance of market sentiment and investors’ fear on the linkage between the
real economy and financial economy, and particularly on the impact of the compounded
healthcare and economic crises. Indeed, the COVID-19 pandemic was characterized by
expectations of heightened economic uncertainty and sharp falls in WTI futures, with
negative pricing reflecting the effects of economic lockdowns in terms of the underutiliza-
tion of production factors and disruptions to supply chains. The econometric approach
is based on Markov-regime switching models, which have the capacity to capture abrupt
changes in the correlation structure and the propensity of oil markets as well as financial
markets to behave differently during periods of lower and higher economic uncertainty.
Thus, Markov-regime switching models can indeed be useful in better understanding the
shifting behavior of energy markets and anticipating changes in the correlation structure in
response to significant events.

To the best of the author’s knowledge, this paper provides new evidence about
the prevalence of a Markov regime of stronger negative correlation under more volatile
markets. The empirical results suggest that futures returns are governed by two latent
states exhibiting significant negative correlations between WTI futures returns and OVX
daily changes. The new evidence indicates that regime shifts are more likely to occur in
association with market expectations of increasing volatility and diminishing oil returns.
Futures returns during periods of increased uncertainty tend to be governed by abrupt
switches between regimes of weaker and stronger negative correlations with OVX, reflecting
changing levels of investors’ fear. In addition, the new evidence suggests that economic
lockdowns in response to disease outbreaks have the potential to increase the likelihood of
Markov regimes with a more pronounced negative correlation between oil futures returns
and changes in volatility expectations. In contrast, periods of financial instability, such as
the U.S. credit crisis, have the potential to weaken or impair the inherent relationship of
oil futures returns with volatility expectations and instead strengthen the linkages with
currency fluctuations and equity valuation.

The remainder of the paper is organized as follows. Section 2 provides a brief review
of the literature related to the VIX model-free volatility index and the empirical evidence
about its correlation to equity returns. Another strand of the literature is related to the
OVX volatility-return inner dynamics of the WTI futures market, as well as its correlation
with other asset markets. Section 3 describes the Markov-Regime Switching modeling
of WTI return dynamics. Section 4 presents the sample data, including WTI futures, the
oil volatility index, S&P 500 stock price index, and the U.S. dollar index. It describes the
distributional properties and discusses the estimation results of Markov-regime switching
models for the full sample period. The empirical evidence is also inclusive of robustness
tests required to examine the stability of the correlation structure over time. The final
section concludes the paper.

2. Literature Review

The model-free methodology underlying the calculation of the VIX volatility index by
the Chicago Board Options Exchange (CBOE) is shared by many other volatility indices,
including the OVX index for crude oil futures markets. The volatility index provides
a forward-looking measure of market sentiment in terms of expectations about future
levels of price volatility. The VIX index reflects the volatility implicit in a hypothetical
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option on the S&P 500 index, assuming a constant time to expiration of thirty days. This
volatility index is also widely regarded as a measure of investors’ fear because of its negative
correlation with returns. There is a strong tendency for the anticipated level of volatility
to increase under bearish markets and decrease under bullish markets. Theoretically, the
sensitivity of volatility expectations to fluctuations in the price of the underlying asset is an
intrinsic feature of option pricing. Thus, perceptions of increasing economic uncertainty by
options market participation are bound to be accompanied by lower asset valuations and
expectations of higher volatility in the underlying asset market. This proposition about the
return-volatility dynamics is expected to apply with equal force in options and underlying
markets, independent of the nature of assets, including equities and commodities.

Earlier studies by Fleming et al. (1995), and Connolly et al. (2005), among others,
provided evidence of a strong negative correlation between the VIX index and stock market
returns.1 Sarwar (2012) presented further evidence of this empirical relationship based on
contemporaneous variables and suggested that a decline in equity prices is conducive to
market perceptions of increased uncertainty and, in turn, higher volatility expectations.
The original work by Whaley (2000, 2009), and more recent studies by Smales (2022),
among others, indicate that the VIX functions as a fear index for market investors. The
development of comparable volatility indices for other markets, such as the VXJ index
from the Nikkei 225 option prices by Nishina et al. (2006) for the Japanese markets and
from the Kospi 200 options for the Korean markets by Maghrebi et al. (2007) provided
additional evidence about the usefulness of the model-free implied volatility index a gauge
of investors’ fear and market sentiment. An alternative version of model-free volatility is
proposed by Fukasawa et al. (2011) based on the approximation of the expected quadratic
variations of asset prices in relation to options prices.2

Part of the empirical literature also focuses on the stochastic behavior of volatility
indices in relation to asset bubbles, financial crises, and macroeconomic shocks. For instance,
some empirical evidence is provided by Szado (2009), Nishina et al. (2012), Maghrebi et al.
(2014), and Baiardi et al. (2020), among others, with respect to credit crises and financial
instability. Earlier evidence from Giot (2003) and Maghrebi et al. (2007) sheds light on
regime switches in relation to the Asian currency crisis. More recent studies by Just and
Echaust (2020) and Grima et al. (2021) provide evidence about the behavior of volatility
expectations in association with the COVID-19 disease outbreak. Thus, many empirical
studies of the non-linear dynamics of volatility expectations in equity options markets are
based on Hamilton’s modeling of Markov-regime switches.

Another strand of the literature focuses on the relevance of commodity markets,
including crude oil, in explaining the behavior of returns in equity, bond, and foreign
exchange markets.3 Part of the reason for the focus of empirical analysis on energy markets
lies in the need to examine the effectiveness of including commodity markets for portfolio
risk diversification purposes. In this context, the study by Beckmann et al. (2020) examines
the relationship between WTI futures and exchange rates which reflects the extent of
international trade. Given their importance for the real economy and relationship with
financial markets, crude oil markets are the subject of a growing literature aimed at better
understanding the price and volatility dynamics. The OVX volatility benchmark is an index
calculated based on the CBOE’s VIX methodology, but it is rather derived from the option
prices of Exchange Traded Funds (ETFs) that are intrinsically linked to WTI option prices.
Thus, in a sense, the OVX index is an aggregation of volatility expectations by participants
in the ETFs rather than crude oil markets.

Crude oil markets are intrinsically different from equity markets. Commodity prices
exhibit seasonality and are strongly sensitive to economic activities, with risks associated
with the production and consumption functions. Crude oil is traded as a real asset, and
market prices are sensitive to a delicate balance between supply and demand, which
is influenced by geopolitical risks, among others. The literature includes many studies,
including Pindyck (2001), Hamilton (2008), and Gong and Xu (2022), among others, that
consider the dynamics and determinants of commodity markets as well as the impact of
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geopolitical risk. It is also noted that market participants tend to trade crude oil not just to
facilitate economic activities but for speculative purposes as well. Thus, it is important to
understand the nature of crude oil markets and their stochastic behavior under different
levels of economic uncertainty.

There is a rich body of literature on the nature of commodity exchanges and their
relationship with financial markets. The empirical evidence from Dupoyet and Shank (2018)
suggests that changes in the OVX index are positively related to stock market returns in
the manufacturing, energy, and utilities sectors and negatively related to those in durable
consumer goods and wholesale trade sectors. Earlier evidence from Bodie and Rosansky
(1980) suggests that it is possible to make recourse to alternative investments to hedge risk
in financial markets by focusing on the nature of commodities. More recent studies by Tang
and Xiong (2012), Silvennoinen and Thorp (2013), and Cheng and Xiong (2014) provide
evidence about a process of financialization of commodity markets reflecting the prevailing
structures of stock markets. The impact of financialization on commodity markets is
shown by Goldstein and Yang (2022) to be linked with the real economy. It is important
to understand also the impact of energy price fluctuations on the real economy and the
behavior of financial markets and institutions. As noted in Dutta (2017), the observed levels
of oil market volatility are significantly higher than price fluctuations in stock markets.
Additionally, the Federal Reserve Board (2022) argues that the volatility in commodity
markets, including energy resources and food, may pose significant risks to the stability of
the financial system. A heightened systemic risk is reflective of the sensitivity of the real
economy to unexpected variations in energy and commodity markets.

Other earlier studies by Bodie and Rosansky (1980), Cheung and Miu (2010), and Jensen
et al. (2000), among others, examined the effectiveness of risk diversification based on commodi-
ties markets. Additionally, Gorton and Rouwenhorst (2006) provide evidence that the returns on
commodity futures tend to be negatively correlated with stock market returns and bond returns
and that commodity futures are positively correlated with inflation as well as unanticipated
inflation and changes in expected inflation. Given these stylized facts about commodity futures,
further research has shed more light on the correlation structure between commodities and
other asset markets over different time periods. For instance, Lombardi and Ravazzolo (2013)
developed a Bayesian Dynamic Conditional Correlation model that can account for time-varying
correlation patterns between commodity and equity returns and show that it is possible to
obtain more accurate density forecasts. Furthermore, Baumeister and Kilian (2012, 2015) on oil
price forecasting. There is also a growing field of literature using Machine Learning and deep
learning in an attempt to obtain more accurate forecasts. The crucial importance of crude oil
markets and their linkages with alternative markets is manifest in several empirical studies,
including the work by Ferraro et al. (2015), who examine the potential to predict exchange rates
from crude oil prices.

Accordingly, there is a growing body of literature on the return dynamics of WTI
futures and their relationship with volatility expectations and other risk factors, including
fluctuations in stock prices and exchange rates. For instance, Aboura and Chevallier (2013)
found a positive correlation, or inverse leverage effects, between changes in OVX levels and
oil prices in association with the onset of the U.S. credit crisis. The evidence suggests that
the positive relationship may be reflective of consumers’ fear of higher oil prices, which
stands in sharp contrast with the nature of fear in equity markets about downside price
movements. The empirical study by Chen et al. (2015) suggests, however, that WTI futures
returns and OVX daily changes are negatively correlated over a sample period, partly
overlapping with that of the study by Aboura and Chevallier (2013). Further empirical
studies by Liu et al. (2017) and Dupoyet and Shank (2018) present similar evidence of
negative correlation or asymmetric dependence based on mixed copula and GJR-GARCH
models, respectively. The latter study also suggests that volatility expectations measured by
the OVX index have a greater influence on financial markets than oil prices themselves and
that both oil volatility and prices are significantly related to corporate bond credit spreads.
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Thus, given the mixed evidence on the dynamics of risk-return tradeoff and the
growing literature on the proposition that oil volatility expectations are also contingent
on returns in foreign exchange and financial markets, it is important to explore the non-
linear dynamics of the WTI futures returns and OVX index over more recent periods,
including the long-term effects of financial crises and disease outbreaks. The present
study uses Markov-regime switching models, which have the capacity to capture abrupt
changes in the correlation structure and the propensity of oil markets, as well as financial
markets, to behave differently during periods of lower and higher economic uncertainty. Of
particular interest is the market behavior during the COVID-19 pandemic, with heightened
volatility expectations and negative pricing of WTI futures, which are reflective of the
effects of economic lockdowns in terms of the underutilization of production factors and
disruptions to supply chains. Modeling the return dynamics of oil futures with Markov-
regime switching models can be useful in better understanding the stochastic behavior
of energy markets, which are different in nature from financial markets but may exhibit
similar regime shifts in response to significant events.

3. Markov-Regime Switching Modeling of Return Dynamics in Oil Futures Markets

The empirical analysis of the return dynamics of crude oil futures is based on the
Markov-regime switching model proposed by Hamilton (1989). Futures returns yWTI,t can
be simply expressed with a first-order autoregression

yWTI,t = ωst + αst yWTI,t−1 + εt (1)

where the disturbance terms are white noise distributed with εt ∼ i.i.d.N
(
0, σ2). The drift

term ωst and auto-regressive coefficient αst are assumed to depend on the state st prevailing
at time t. This allows for the intercept value, for instance, to change from ω1 to ω2 with an
imperfectly predictable change in the average level of the return series yWTI,t from one state
to another at time t. Similarly, the auto-regressive term αst , which reflects the degree of
mean reversion or long memory, is allowed to adapt to changes in the stochastic structure
of the return series.

Following the empirical study by Sarwar (2012) focusing on the dynamics of the S&P
500 returns as a function of contemporaneous changes in the VIX index, respectively, it is
possible to express the stochastic properties of oil futures returns yWTI,t in Equation (1) as
a function of changes in the OVX index yOVX,t as well. Additionally, given the empirical
evidence based on Markov-regime switching models estimated by Baiardi et al. (2020) that
S&P 500 returns are likely to be negatively related to oil futures returns, it is important to
account for the linkage between oil futures and equity prices. Finally, there is a need to
also examine the impact of exchange rate fluctuations given the fact that WTI futures are
denominated in U.S. dollars and in light of evidence from Beckmann et al. (2020) that oil
futures are sensitive to currency fluctuations.

Thus, it is possible to describe the dynamics of oil futures returns yWTI,t as a function
of the inner autoregressive terms, changes in the OVX index as a measure of investors’
fear in oil markets yOVX,t, as well as returns in currency and equity markets, expressed by
U.S. dollar index returns yUSD,t, and S&P 500 returns ySPX,t, according to the following
empirical model.

yWTI,t = ωst + αst yWTI,t−1 + βst yOVX,t + γst yUSD,t + δst ySPX,t + εt (2)

This model Equation (2) implies that at a given moment, the behavior of returns does
not correlate solely with its value a moment before, yWTI,t−1, but also with contempo-
raneous changes in the OVX volatility index yOVX,t, as well as returns on the US dollar
index yUSD,t, and S&P 500 index ySPX,t. As with the drift and auto-regressive parameters
in Equation (1), the regression coefficients βst , γst , and δst are assumed to depend on the
state st prevailing at time t. As expressed in Equation (3), the regimes are assumed to
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follow a first-order Markov chain in which the current state st depends solely on the state
st prevailing one period before.

Pr(st = j|st−1 = i, st−2 = k, · · · , yWTI,t−1, yWTI,t−2, · · · ) = Pr(st = j|st−1 = i) = pij (3)

The state st governing the return dynamics is a random variable that is not observed
directly but can be inferred from the observed behavior of returns. Equation (3) assumes
that the probability of regime prevalence or regime shift pij depends on past observations
only through the most recent state, st−1. It is possible to examine the Markov-regime
switches with n-states (n = 2) for the sake of easier exposition. The model Equation (2)
is available to estimate a number of unobserved states ranging from n = 2, . . . , 5 for a
full sample period, as well as the three subperiods A, B, and C. It is noted that assuming
that there is a two-state factor in the inner dynamics of WTI returns reflecting the markets’
uncertainty, which is associated with a regime of lower volatility and a regime of higher
volatility, empirical modeling sets up a two-state Markov chain to examine whether there is
a difference in the correlation between WTI and OVX in each regime based on an economic
perspective in this paper. The matrix form of the two-state Markov chain can be expressed
according to Equation (4), where all elements are non-negative, and the sums of elements
in each row are equal to unity.

Π =

[
p11 p21
p12 p22

]
(4)

With reference to Equation (2), the parameters required in describing the regime
probability are represented by the state-dependent drift ωst , auto-regressive coefficient αst

and regression coefficients associated with the explanatory variables for the volatility index
βst , equity returns γst , and dollar index returns δst . The regime probability also depends on
the variance σ2 of the Gaussian distributed error terms εt, and on the transition probabilities
p11 and p22. Thus, the probability of switch from regime s = i at time t− 1 to s = j at time
t can be expressed as pij = 1− pii. A permanent shift from one regime to another would
be reflected by a transition probability of unity but given the imperfect predictability of
regime-switching events, it is more plausible that p22 < 1.

Assuming that past observations of the return series are available at time t in the set
of information Ωt = {yt, yt−1, · · · , y1, y0 }, and given the vector of regression parameters
ϑ = (ωs, αs, σ, p11, p22)

′, it is possible to infer, at time t, the conditional probabilities ψj,t for
j = 1, 2, according to Equation (5).

ψj,t = Pr(st = j |Ω t; ϑ) (5)

The inferred probabilities can be estimated, following Hamilton (1989, 1994), as the
by-product of an iterative process, similar to a Kalman filter algorithm which predicts
future states based on input from past estimators using ψi,t−1 = Pr

(
st−1 = i |Ω t−1; ϑ

)
for

i = 1, 2. The iterative process is based on the density functions φjt , which can be expressed
for the two-state Markov chain according to the following Equation (6).

φjt = f (yWTI,t|st = j; Ωt−1; ϑ) =
1

σ
√

2π
exp

{
− (yWTI,t − ŷWTI,t)

2

2σ2

}
(6)

where ŷWTI,t = ωst + αst yWTI,t−1 + βst yOVX,t + γst yUSD,t + δst ySPX,t and the quadratic
terms (yWTI,t − ŷWTI,t)

2 represent the squared errors ε2
t . Equation (7) expresses the condi-

tional density function of return observation yWTI at time t, which can be estimated from
the joint density of returns and state variable:

f
(
yWTI,t |Ω t−1; ϑ

)
= ∑

i
∑

j
pijψi,t−1φjt (7)
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Following Hamilton (1989), the unknown vector of the regression model parameters
ϑ̂ can be obtained using the maximum likelihood estimates of the transition probabilities
according to Equation (8):

p̂ij =
∑t=2 Pr

(
st = j, st−1 = i |Ω T ; ϑ̂

)

∑t=2 Pr
(
st−1 = i |Ω T ; ϑ̂

) (8)

Given the starting values of the vector of parameters ϑ̂0, the iterative process generates
new sets of coefficients for the drift, autoregressive terms, and explanatory variables,
as well as new estimates of the residual variance and transition probabilities. Under
the assumption that the Markov chain is ergodic, it is possible to use the unconditional
probabilities of Equation (5) expressed as ψi,0 = Pr(s0 = i) =

(
1− pjj

)
/
(
2− pii − pjj

)
.

The maximization of the sample conditional log likelihood, expressed in Equation (9) by
numerical optimization, with iterative computations resulting in convergence toward the
Maximum Likelihood (ML) estimates.

log f (yWTI,1, yWTI,2, · · · , yWTI,T |yWTI,0; ϑ) =
T

∑
t=1

log f
(
yWTI,t |Ω t−1; ϑ

)
(9)

Finally, it is noted that there is a growing body of literature that addresses several
issues in the ML estimation of Markov-regime switching models. For instance, Diebold
et al. (1994) and Filardo (1994) examine regime-switching models where the transition
probabilities are not constant as in the Hamilton study (1989) but time-varying in order
to allow for the underlying fundamentals and exogenous variables to be included in the
mechanism of transition between states. Additionally, Harris (1999) proposes a Bayesian
Markov Chain Monte Carlo estimation of regime-switching vector autoregressions. An
endogenous Markov regime-switching model was proposed by Kim et al. (2008) by relaxing
the assumption that the state variable governing regime shifts is exogenous. A more recent
study by Pouzo et al. (2022) examines the consistency of ML estimation with covariate-
dependent transition probabilities. Thus, given the extensive interest in econometric
models capable of capturing abrupt changes in economic cycles and financial time series,
the estimation of standard Markov-regime switching models for the WTI futures returns
may shed some light on random breaks in the inner dynamics of WTI futures returns and
non-linear relationship with volatility expectations as well as equity and currency returns.

4. Empirical Evidence
4.1. Data Description and Distributional Properties

The empirical analysis is, as noted above, based on the daily time-series data for the
WTI oil futures market, its related OVX volatility index, the U.S. dollar index, and the S&P
500 equity index. The sample observations obtained from the Thomson Reuters database
span the time period from July 2008 to December 2021. The empirical analysis is based on
the available database of the time series. The starting date of the sample period coincides
with the CBOE’s official release of the OVX index in 2008. It also established December 2021
as the end date of the sample period because of a different event, the progression of Ukraine
by Russia, starting in 2022. It partially covers significant periods of economic uncertainty
caused by the U.S. credit crisis in 2007–09, as well as the ongoing economic and healthcare
crises starting in late 2019. The focus is placed in particular on the implications of the
COVID-19 healthcare crisis for the inner dynamics and correlation structure changes of the
WTI futures markets; therefore, the sample observations are divided into subperiod A from
January 2018 to December 2019 and subperiod B from January 2020 to December 2021. The
reason for using January 2020 as the point of departure is based on the WHO report that a
novel coronavirus was identified in late 2019, and an emergency system was put in place to
deal with a pandemic that occurred in January 2020. Additionally, the subperiod C from
July 2008 to June 2010 in order to examine the impact of the U.S. government bailout, the
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Federal Reserve’s Quantitative Easing announcement in response to the worsening credit
crisis, and historical losses in the equity market.

It appears from the upper-left side of Figure 1 that the WTI futures prices precipitously
dropped at the end of 2008 in association with the U.S. financial crisis, but the successive
rebounds over the entire sample period in 2009, 2016, and 2020 have failed to regain the pre-
crisis levels. Of particular interest is the historic fall on 20 April 2020 of futures prices into
negative territory and significant negative returns in response to perceptions of heightened
economic uncertainty stemming from the disease outbreak. The historical futures prices are
also associated with a significant jump in expected volatility, as exhibited in the upper-right
side of Figure 1. Judging from the typically lower scales of returns on the U.S. dollar index
and S&P 500 index reported in the lower-left and right sides of Figure 1, respectively, it
appears that the currency and financial markets are relatively less volatile than the energy
markets. Both return series tend to exhibit more fluctuations in the earlier part of the
sample period and a sudden surge in association with negative pricing of crude oil futures
in 2020, but there is a clear tendency for both indices to increase in more recent years.
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Figure 1. The behavior of price levels and returns in WTI futures, OVX, dollar index, and equity 
markets. 
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other variables. The daily changes in the OVX index tend to be positive, as volatile as the 
associated futures returns, and skewed to the right. In contrast, the returns on both the 
dollar index and S&P 500 index are found to be skewed to the left and positive on average. 
All time series are also found to exhibit excessive kurtosis, which is indicative of heavy-
tailed distributions. Judging from the ADF test statistics, the time series are all found to 
be rejected stationary over the total sample period. 

  

Figure 1. The behavior of price levels and returns in WTI futures, OVX, dollar index, and
equity markets.

Table 1 summarizes the distributional properties of these stochastic variables. The
WTI futures returns are found to be negative on average and possess more volatility than
other variables. The daily changes in the OVX index tend to be positive, as volatile as
the associated futures returns, and skewed to the right. In contrast, the returns on both
the dollar index and S&P 500 index are found to be skewed to the left and positive on
average. All time series are also found to exhibit excessive kurtosis, which is indicative
of heavy-tailed distributions. Judging from the ADF test statistics, the time series are all
found to be rejected stationary over the total sample period.

4.2. Model Estimation Results

The estimation results of Equation (2) with a two-state Markov chain for the full sample
period are reported in Table 2. It is noted that the estimated drift term ω1 in Markov-regime
1 is found to be statistically insignificant. It is also associated with an insignificant but
negative autoregressive coefficient α1, which suggests a tendency for mean reversion. The
crude oil futures returns are also governed by a strong negative correlation with changes in
the OVX volatility index. With significance at the one-percent level, the negative sign of the
regression coefficient β1 implies that an increase in expected volatility is associated with
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diminishing oil futures returns. Given the significantly negative regression coefficients γ1
and δ1, the dynamics of futures returns are also found to be sensitive to changes in the U.S.
dollar index and equity valuation.

Table 1. Distributional Properties.

Distributional
Moments Mean Std.

Dev. Skewness Kurtosis Jarque
Bera ADF Test

WTI returns −0.0007 0.062728 −33.5240 1569.688 3.61 × 108 −43.544 ***b
OVX daily

changes 0.00174 0.063033 4.9582 87.09921 1,052,944.0 −61.760 ***a

Dollar index
daily changes 0.00009 0.004761 −0.0492 5.870737 1211.493 −58.464 ***b

S&P 500 returns 0.00045 0.012766 −0.2904 17.14844 29,442.39 −68.718 ***a
Notes: The sample period of daily observation runs from 1 July 2008, to 31 December 2021. Significance at the 1%
level is denoted by asterisks *** under MacKinnon (1996)’s one-sided probability values. The stationarity of time
series is estimated with the Augmented Dickey–Fuller methodology using the intercept only and with neither
intercept nor trend terms as denoted by superscripts a and b respectively. Jarque–Bera statistics for normal tests
are distributed as χ2 on the null.

Table 2. Markov-regime switching model results (Full estimated period).

Model Parameters
Full Period (July 2008–December 2021)

Markov-Regime 1 Markov-Regime 2

ω
−0.0001
(0.6697)

0.0174
(0.2269)

α
−0.0196
(0.1708)

0.1592 ***
(0.0045)

β
−0.1452 ***

(0.0000)
−0.9643 ***

(0.0000)

γ
−0.8659 ***

(0.0000)
−1.4004
(0.4340)

δ
0.3820 ***
(0.0000)

−0.6599
(0.2359)

Log(σ) −4.1048 ***
(0.0000)

−1.6497 ***
(0.0000)

Log likelihood 9124.611

AIC −4.9880

Hypothesis Tests

ω1 = ω2
1.4408

(0.2300)

α1 = α2
9.5865 ***
(0.0020)

β1 = β2
76.7273 ***

(0.0000)

γ1 = γ2
0.0259

(0.8723)

δ1 = δ2
3.2807 *
(0.0701)

Notes: The estimated Markov-regime Switching model is represented by equation: yWTI,t = ωst + αst yWTI,t−1 +
βst yOVX,t +γst yUSD,t + δst ySPX,t + εt. The sample period of daily observation runs from 1 July 2008 to 31 December
2021. Significance at 1 and 10% level is denoted by *** and *, respectively. The hypothesis tests for equal coefficients
are based on the Wald test following the χ2 distribution. Figures in round brackets represent probability values.

In contrast, returns governed by the Markov-regime 2 are characterized by positive but
insignificant drift ω2, positive autoregressive coefficient α2 that implies long memory rather
than mean reversion, and a negative correlation with changes in volatility expectations.

9
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However, it seems that the return dynamics are not sensitive to contemporaneous variations
in the U.S. dollar index or stock prices. It is also noted that both regimes are associated with
significant volatility estimates, though Regime 2 seems to exhibit a relatively higher level of
fluctuations. The χ2-distributed Wald tests of hypothesis for equal regression parameters
indicate that it is possible to distinguish regimes based on different autoregressive terms,
as well as the structure of return correlation with changes in volatility index and equity
returns. Indeed, despite the opposite signs, the null hypothesis of equal drifts cannot be
rejected as both drifts are found to be insignificantly different across regimes despite the
opposite signs. Conversely, the oil futures returns are characterized by mean reversion in
Regime 1; they tend to exhibit long memory in Regime 2. The Wald test results indicate that
it is difficult to distinguish between regimes on the basis of the relationship between returns
on oil futures and the U.S. dollar index. However, the difference between the regression
coefficients associated with equity returns is found to be significant only at the ten-percent
level. It is the extent to which the correlation with changes in the OVX index seems to be
most prominent in distinguishing between regimes. Thus, a transition from a regime of
lower volatility to one of higher volatility, i.e., from Regime 1 to Regime 2, is accompanied
by an increase in the significance of negative correlation with volatility expectations. This
new evidence sheds light on the shifting expectations of market participants about future
levels of uncertainty and the need to consider the dynamics of investors’ fear as a significant
determinant of the return-generating process.

It is possible to examine the frequency of switches between the latent states based
on the probability of Regime 1, which is shown in Figure 2, together with the time series
of daily WTI futures prices. It is clear that it is Regime 1 of lower volatility that tends to
dominate over long durations, but there are frequent shifts to Regime 2 at the beginning of
the total sample period from August 2008 to April 2009 and in association with periods of
persistent price falls from January 2016 to May 2016 as well as with the precipitous decrease
in futures prices in April 2020 from March 2020 to June 2020. This evidence is partly
consistent with the Chow test of a structural break in the same model Equation (2), which
indicates the existence of a single break dated 25 December 2019, at the 5% significance level
(F-Statistic 173.992, Bai–Perron critical value 18.23). This result seems to be consistent with
the empirical evidence from the estimated Markov-regime switching model, which suggests
frequent regime shifts in relation to the onset of the disease outbreak in December 2019, as
well as the subsequent government responses and market reactions over the crisis period
from March 2020 to June 2020. Thus, it seems that the dynamics of oil futures returns are
responsive to the policy responses of the U.S. government to the onset of the credit crisis, as
well as to the heightened levels of uncertainty about the global economy in association with
the disease outbreak. Market perceptions of higher economic uncertainty in association with
major events are conducive to abrupt shifts from a regime characterized by long memory
rather than mean reversion and stronger rather than the weaker negative correlation with
the forward-looking measure of oil volatility. Indeed, the higher the perceived levels of
uncertainty in the crude oil markets, the stronger the negative correlation between WTI
futures returns and changes in volatility expectations.

Thus, the graphical evidence from Figure 2 suggests that regime shifts are more likely
to occur frequently during periods of decreasing WTI futures prices and higher economic
uncertainty. In order to examine the non-linear dynamics prior to and during the disease
outbreak, the model Equation (2) with a two-state Markov chain is estimated for both
subperiod A from January 2018 to December 2019 and subperiod B from January 2020 to
December 2021. Judging by the results reported in Table 3 for subperiod A, it appears that
futures returns are governed by two distinct regimes characterized by different levels of
volatility. Regime 1 is associated with a statistically insignificant drift and autoregressive
term, as well as an insignificant relationship with equity returns, but with negative cor-
relations with changes in the OVX volatility index and in the dollar index. Though the
latter is significant only at the ten-percent level, it is found to be insignificant under the
alternative regime. Indeed, futures returns are characterized, under Regime 2, by positive
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drift and positive correlation with equity returns, albeit significant only at the ten-percent
and five-percent levels, respectively.

Table 3. Results of Subperiod A and B estimated with Markov-regime switching modeling.

Model
Parameters

Subperiod A
(January 2018–December 2019)

Subperiod B
(January 2020–December 2021)

Regime 1 Regime 2 Regime 1 Regime 2

ω
−0.0009
(0.2648)

0.0056 *
(0.0811)

0.0014 *
(0.0835)

0.0135
(0.7792)

α
0.0145

(0.7738)
−2.4246 **

(0.0153)
0.0014

(0.9667)
0.1383

(0.1553)

β
−0.2205 ***

(0.0000)
0.2100 ***
(0.0000)

−0.1802 ***
(0.0000)

−1.2691 ***
(0.0000)

γ
−0.4526 *
(0.0671)

−0.1772
(0.8440)

−0.5188 **
(0.0379)

−2.3555
(0.7371)

δ
0.0913

(0.3084)
0.8216 **
(0.0488)

0.2888 ***
(0.0003)

−1.9662
(0.1892)

Log(σ) −4.3179 ***
(0.0000)

−3.7329 ***
(0.0000)

−4.1164 **
(0.0000)

−1.1437 ***
(0.0000)

Log Likelihood 1403.674 1219.407

AIC −5.324421 −4.609587

Hypothesis tests

ω1 = ω2
3.4875 *
(0.0618)

0.0636
(0.8009)

α1 = α2
4.3483 **
(0.0370)

1.7564
(0.1851)

β1 = β2
84.6471 ***

(0.0000)
38.8884 ***

(0.0000)

γ1 = γ2
0.0783

(0.7796)
0.0684

(0.7936)

δ1 = δ2
2.6231

(0.1053)
2.2305

(0.1353)
Notes: The estimated Markov-regime Switching model is represented by the equation: yWTI,t = ωst + αst yWTI,t−1 +
βst yOVX,t + γst yUSD,t + δst ySPX,t + εt. The sample period of daily observation runs from 1 January 2018 to 31
December 2021. Significance at the 1, 5, and 10% levels is denoted by ***, **, and *, respectively. The hypothesis
tests for equal coefficients are based on the Wald test following the χ2 distribution. Figures in round brackets
represent probability values.

There is also evidence that Regime 2 implies mean reversion and a positive correlation
with changes in the OVX index. In contrast to Regime 1 and to both regimes for the
full sample period, the significance of the β2 coefficient suggests that futures returns
tend instead to rise in association with increasing uncertainty. This is consistent with the
evidence from Aboura and Chevallier (2013), who found a positive correlation between
changes in OVX levels and oil prices in association with the onset of the U.S. credit crisis.
Judging from the tests of null hypotheses for equal regression coefficients, it appears that
the Markov regimes can be distinguished not so much on the basis of differences in the
correlations with currency and equity returns as differences between autoregressive terms
and correlation with volatility expectations.
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Figure 2. Probability of Regime 1 (Full sample period July 2008–December 2021). 
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Figure 2. Probability of Regime 1 (Full sample period July 2008–December 2021).

With respect to the estimation results for subperiod B, also reported in Table 3,
there is clear evidence that the behavior of oil futures returns is likely to be governed
by two Markov regimes that tend to differ only on the basis of weaker and stronger correla-
tion with changes in the OVX index. Indeed, the drift terms for both regimes are associated
with positive signs but statistically significant only for Regime 1 at the ten-percent level.
Additionally, the autoregressive terms are found to be statistically insignificant for both
regimes. The relationship of futures returns with the dollar index returns is found to be
negative at the five-percent level for Regime 1 but insignificant for Regime 2. Similarly,
the regression coefficient δs reflecting the sensitivity of futures returns to changes in equity
valuation is found to be positive under Regime 1 but insignificant under the alternative
regime. It is clear that only the regression coefficients βs are found to be negative and
significant at the one-percent level under both regimes. Thus, a shift from Regime 1 is likely
to be accompanied by a strong increase in sensitivity to changes in volatility expectations
under Regime 2.

Judging by the estimated probability values reported in Figure 3, it is Regime 1 that
seems to predominate over subperiod A. The regime switches are not likely to take place
as the decrease in the likelihood of Regime 1 remains above the fifty-percent threshold
probability value. Thus, it is the Regime with a strong negative correlation with volatility
expectations that is more likely to prevail. Similarly, the evidence from Figure 4, which
reports the Regime 1 probability for subperiod B, suggests that there are frequent regime
shifts in association with the precipitous fall in futures prices below zero. A shift toward
Regime 2 implies that future returns are governed by a stronger negative correlation with
changes in the OVX index. This suggests that higher levels of volatility expectations are
conducive to even lower futures returns. Apart from the short period of negative future
pricing, it is Regime 1 that tends to prevail with a weaker but still significantly negative
correlation with volatility expectations.
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Figure 4. Probability of Regime 1 (Subperiod B—January 2020–December 2021). 
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In order to further examine the robustness of two-state Markov-regime switching
models to changes in the sample period, the focus is made on subperiod C from July 2008
to June 2010, which may be in part reflective of the effects of the U.S. credit crisis on the
inner dynamics of oil futures returns and their relationship with volatility expectations and
alternative asset markets. The evidence from Table 4, which reports the estimation of the
regime-switching model with a two-state Markov chain, indicates that both regimes are
characterized by statistically insignificant drifts ωs and autoregressive terms αs. However,
futures returns are likely to be governed by strong negative correlation with dollar index
returns γs and positive correlations with equity returns δs under both regimes. In contrast,
a shift from Regime 1 to Regime 2 is likely to result in a strong negative correlation between
futures returns and volatility expectations fading away. However, the aggregate evidence
from Wald tests of the null hypothesis of equal coefficients suggests that it is difficult to
distinguish between these Markov regimes and that, given their similar properties, it is more
likely that the two regimes collapse into a single one with significantly negative sensitivity
to dollar index returns γ < 0, positive sensitivity to δ > 0, and a more likely negative
correlation with changes in the OVX index β ≤ 0. Thus, it is clear from the estimation results
for subperiod C that periods of financial instability can weaken the correlation of futures
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returns with volatility expectations. Under higher levels of uncertainty, an increase in oil
volatility expectations may not be conducive to diminishing futures returns. It is rather
the linkage between oil futures returns and financial markets that gains more significance.
Increasing oil futures returns are more likely to result from lower dollar valuation and
higher equity.

Table 4. Markov-regime switching model results (Subperiod C estimated period).

Model Parameters
Subperiod C (July 2008–June 2010)

Markov-Regime 1 Markov-Regime 2

ω
0.0006

(0.4797)
−0.0008
(0.8519)

α
0.0621

(0.1126)
−0.0018
(0.8062)

β
−0.1402 ***

(0.0000)
−0.0958
(0.1062)

γ
−1.7029 ***

(0.0000)
−1.1439 **

(0.0169)

δ
0.3553 ***
(0.0000)

0.4894 ***
(0.0006)

Log(σ) −4.1663 ***
(0.0000)

−2.9762 ***
(0.0000)

Log likelihood 1220.131

AIC −4.6212

Hypothesis Tests

ω1 = ω2
0.1054

(0.7454)

α1 = α2
0.8807

(0.3480)

β1 = β2
0.3969

(0.5287)

γ1 = γ2
1.0965

(0.2950)

δ1 = δ2
0.5650

(0.4523)
Notes: The estimated Markov-regime Switching model is represented by the equation: yWTI,t = ωst + αst yWTI,t−1 +
βst yOVX,t +γst yUSD,t + δst ySPX,t + εt. The sample period of daily observation runs from 1 July 2008 to 30 June 2010.
Significance at the 1 and 5% levels is denoted by *** and **, respectively. The hypothesis tests for equal coefficients
are based on the Wald test following the χ2 distribution. Figures in round brackets represent probability values.

4.3. Robustness Checks

This paper assumes that there is two-state, lower volatility under bullish markets and
higher volatility under bearish markets, in the WTI futures market that reflects market
uncertainty and conducts an empirical analysis using the Markov-regime switching model
(a non-linear model) to determine whether the correlation between WTI returns and OVX
daily change performs with a two-state view of the market depending on the fluctuation
of markets. Furthermore, it is possible to consider empirical analysis from a different
perspective without taking into account the inner market states. The approach uses a
linear model to analyze the correlation between WTI returns and OVX daily fluctuations
before and after the structural change date, respectively. Thus, in this section, it is used
the autoregressive distributed lag (ARDL) model, one of the linear models, to test whether
the empirical analysis demonstrated in this paper is robust. This section also examines
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whether especially WTI and OVX have a cointegration relationship in each period before
and after the structural change using the bounds-testing approach of Pesaran et al. (2001).

In the first place, an explanation of the empirical model used in the linear model
estimation is provided. Equation (10) is based on the general ARDL model and incorporates
variables similar to those in Equation (2) used in this paper.

yWTI,t = ω +
m

∑
k=1

αkyWTI,t−k +
m

∑
k=0

βkyOVX,t−k +
m

∑
k=0

γkyUSD,t−k +
m

∑
k=0

δkySPX,t−k + εt (10)

where the disturbance terms are white noise distributed with εt ∼ i.i.d.N
(
0, σ2). m is

lag up to 1, 2, . . . , 8, where m is selected as the optimal lag length by the AIC. Then, in
order to estimate whether all variables, WTI returns, OVX daily changes, dollar index daily
changes, and S&P 500 index returns, have a long-run relationship, an extension is made
from Equation (10) to Equation (11), following the method derived by Pesaran et al. (2001).
Equation (11) can be expressed as follows:

∆yWTI,t = a0+
m
∑

i=1
a1,i∆yWTI,t−i +

m
∑

i=0
a2,i∆yOVX,t−i +

m
∑

i=0
a3,i∆yUSD,t−i +

m
∑

i=0
a4,i∆ySPX,t−i + a5yWTI,t−1 + a6yOVX,t−1

+a7yUSD,t−1 + a8ySPX,t−1 + εt

(11)

where ∆ is the first difference operator, a0, a1, a2, . . . , a7, and a8 are parameters, m is the
optimal lag length to be used for estimation selected by AIC. The bounds-testing approach
is based on the F-Statistic and is the first of the ARDL cointegration methods. The null
hypothesis test of no cointegration, (H0 : a5 = a6 = a7 = a8 = 0), will be performed by
Equation (11). Following Pesaran et al. (2001), it is computed two sets of critical values
for a given significance level. One set assumes that all variables are I(0), and the other set
assumes all variables are I(1). There are three cases that will be obtained. In case one, if the
estimated F-Statistic exceeds the upper critical value, the null hypothesis is rejected. In case
two, if the estimated F-Statistic is between the upper critical value and lower critical value,
then the testing becomes inconclusive. In case three, if the estimated F-Statistic is below the
lower critical value, it suggests no cointegration among all variables.

As noted in Section 4.2, the result from the Chow test for structural breaks indicates
that the date on which the existence of structural break is 25 December 2019, and it can
be regarded as approximately equal to the base point of dividing subperiods A and B.
Therefore, it is performed estimation using Equations (10) and (11) in sub-periods A and B
to verify the change in the correlation between WTI returns and OVX daily changes before
and after a structural change and to test whether there is a long-run relationship between
all variables.

Table 5 summarizes the results estimated in subperiod A using Equation (10), which
reflects the optimal lag length selected by AIC, and the results of the bounds test for exam-
ining the long-run relationship between all variables using Equation (11). The estimated
result with Equation (10) for subperiod A indicates that contemporaneous to three peri-
ods earlier, OVX daily changes are weakly negatively correlated with WTI returns. The
absolute value of the t-value is the largest for the contemporaneous OVX daily change,
suggesting that the contemporaneous period of OVX daily changes is more influential
than the other lags to WTI returns where time t. Additionally, the results of the bounds
testing with Equation (11) indicate that the estimated F-Statistic exceeds the upper critical
value, which means that it has rejected the no levels of relationship at the 1% significance
level (F-Statistic), suggesting there is a cointegration relationship between all variables in
subperiod A.

15



J. Risk Financial Manag. 2023, 16, 67

Table 5. Results of Subperiod A estimated with ARDL modeling and the bounds test.

Model Parameters
[ARDL (5,3,2,0)]

Subperiod A (January 2018–December 2019)

Coefficient t-Statistic

ω 0.0007 0.8380
αt−1 −0.1567 *** −3.5950
αt−2 −0.0658 −1.4974
αt−3 −0.0814 * −1.8818
αt−4 0.0582 1.4148
αt−5 0.0733 * 1.7949

βt −0.1010 *** −6.2670
βt−1 −0.0648 *** −4.0226
βt−2 −0.0360 ** −2.2070
βt−3 −0.0317 * −1.9481
γt −0.2385 −0.9302

γt−1 −0.5504 ** −2.1447
γt−2 −0.4391 * −1.7066

δt 0.2806 *** 2.9526

Log Likelihood 1340.482
AIC −5.0823

F-Bounds Test (At the 1% significance level)

F-Statistic I(0) I(1)

29.9258 3.65 4.66
Notes: The estimated ARDL model is represented by Equation (10): yWTI,t = ω + ∑m

k=1 αkyWTI,t−k +
∑m

k=0 βkyOVX,t−k + ∑m
k=0 γkyUSD,t−k + ∑m

k=0 δkySPX,t−k + εt. The sample period of daily observation runs from 1
January 2018 to 31 December 2019. Significance at the 1, 5, and 10% levels is denoted by ***, **, and *, respec-
tively. The hypothesis test of cointegration for all variables is based on the bounds testing with Equation (11):
∆yWTI,t = a0 + ∑m

i=1 a1,i∆yWTI,t−i + ∑m
i=0 a2,i∆yOVX,t−i + ∑m

i=0 a3,i∆yUSD,t−i + ∑m
i=0 a4,i∆ySPX,t−i + a5yWTI,t−1 +

a6yOVX,t−1 + a7yUSD,t−1 + a8ySPX,t−1 + εt.

On the other hand, Table 6, which reports the results estimated in subperiod B using
Equation (10) reflecting the optimal lag length selected by AIC, shows that only the contem-
poraneous OVX daily change is strongly negatively correlated with the WTI return, and the
absolute value of the t value is larger than the other variables, the dollar index daily change
and S&P 500 returns, suggesting that the contemporaneous period of OVX daily changes
is more influential than the other lags and variables to WTI returns where time t. Table 6
also reports the results of the bound test with Equation (11). As in subperiod A, the result
indicates that the estimated F-Statistic exceeds the upper critical value, which means that it
has rejected the no levels of relationship at the 1% significance level (F-Statistic), suggesting
there is also a cointegration relationship between all variables in subperiod B.

From the estimation results for subperiods A and B using the linear ARDL model, it can
be observed that the correlation between WTI returns and OVX daily changes changed with
the occurrence of COVID-19, which is consistent with the empirical results in this paper. In
addition, the fact that a cointegration relationship is established in both subperiods from
the results of using Pesaran et al.’s (2001) bounds test suggests that even with structural
changes, there is the long-run relationship, which is an important point in the crude oil
market. Thus, the empirical results of this paper can be regarded as robust because the
change in the correlation between WTI returns and OVX daily changes before and after
the structural change can also be observed in the estimation using the linear model and is
consistent with the results of this paper.
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Table 6. Results of Subperiod B estimated with ARDL modeling and the bounds test.

Model Parameters
[ARDL (4,0,4,1)]

Subperiod B (January 2020–December 2021)

Coefficient t-Statistic

ω 0.0037 0.7861
αt−1 0.2494 *** 7.2207
αt−2 −0.1279 *** −3.6187
αt−3 0.0400 1.1396
αt−4 0.0577 * 1.7318

βt −0.8823 *** −18.6752
γt −1.2195 −0.9081

γt−1 0.5592 0.4318
γt−2 −1.5832 −1.2145
γt−3 −3.7311 *** −2.8466
γt−4 3.2288 ** 2.4446

δt −1.4937 *** −4.2291
δt−1 −1.5759 *** −4.5938

Log Likelihood 426.7656
AIC −1.5823

F-Bounds Test (At the 1% significance level)

F-Statistic I(0) I(1)

109.6350 3.65 4.66
Notes: The estimated ARDL model is represented by Equation (10): yWTI,t = ω + ∑m

k=1 αkyWTI,t−k +
∑m

k=0 βkyOVX,t−k + ∑m
k=0 γkyUSD,t−k + ∑m

k=0 δkySPX,t−k + εt. The sample period of daily observation runs from 1
January 2020 to 31 December 2020. Significance at the 1, 5, and 10% levels is denoted by ***, **, and *, respec-
tively. The hypothesis test of cointegration for all variables is based on the bounds testing with Equation (11):
∆yWTI,t = a0 + ∑m

i=1 a1,i∆yWTI,t−i + ∑m
i=0 a2,i∆yOVX,t−i + ∑m

i=0 a3,i∆yUSD,t−i + ∑m
i=0 a4,i∆ySPX,t−i + a5yWTI,t−1 +

a6yOVX,t−1 + a7yUSD,t−1 + a8ySPX,t−1 + εt.

5. Conclusions

The present study provides new empirical evidence on the stochastic behavior of
energy futures returns based on the estimation of Markov-regime switching models. Given
the nature of energy markets, the demand and supply functions are intrinsically linked with
the real economy and perceptions of economic uncertainty, but there is growing literature
about stronger linkages with the financial economy as well. The focus of this paper is
placed on the empirical issue of whether the inner dynamics and correlation structures of oil
futures with alternative asset markets are governed by different regimes that reflect changes
in the underlying demographic, macroeconomic and social conditions. The empirical
evidence suggests that oil futures returns tend to be governed by different Markov regimes,
which invariably exhibit a negative correlation with volatility expectations which reflect the
shifting fear factor dynamics. Thus, market perceptions of heightened economic uncertainty
reflected by increased volatility expectations are conducive to diminishing futures returns,
irrespective of the prevailing regime.

The non-linear dynamics of oil futures returns can be altered, however, by significant
events such as the onset of financial crises and disease outbreaks, as well as government
policy responses. There is, indeed, evidence that the economic lockdowns in response to
the disease outbreak have the potential to increase the likelihood of Markov regimes with a
more pronounced negative correlation of futures returns with changes in expected volatility.
Additionally, periods of financial instability, such as the U.S. credit crisis, may sever the
relationship of oil futures returns with volatility expectations and strengthen their linkages
with currency fluctuations and equity valuation. Thus, Markov-regime switching models
have the capacity to capture changes in the underlying fundamentals and provide some
insights into the changing inner dynamics, such as the propensity for mean reversion and a
long memory for economic shocks that tend to decay over a longer time. Regrettably, this
paper’s shortcomings include the fact that the Markov-regime switching model does not
resolve the issues of strict simultaneity and endogeneity between WTI and OVX, which is an
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issue for future research. Further research may shed light on the non-linear dynamics with
time-varying transition probabilities, simultaneity, and jump-diffusion processes which
may better account for the stochastic properties of energy prices.
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Notes
1 It is noted that the study by Fleming et al. (1995) was performed with a volatility index based on the S&P 100 stock market index,

formerly known as VIX index.
2 The focus is also placed, as in Mencia and Sentana (2013), on the valuation of VIX derivatives, where the volatility index serves as

the underlying asset for derivatives contracts.
3 See for instance, Kim et al. (2019), Wang and Xie (2012), Choi and Hammoudeh (2010), Mensi et al. (2013), Raza et al. (2016) and

Creti et al. (2013), inter alia.
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Abstract: Arbitrage and liquidity are interrelated. Liquidity facilitates arbitrageurs’ trading on
deviations from the law of one price. However, whether arbitrage opportunity leads to an increase
or decrease in liquidity depends on the cause of the deviation. A demand shock leads to greater
liquidity, while asymmetric information is toxic to liquidity. We examine how arbitrage and liquidity
influence each other in the world’s largest platinum futures markets on exchanges in New York and
Tokyo. The markets provide an interesting institutional setting because the futures are based on an
identical underlying commodity but exhibit different liquidity characteristics both intraday and over
their lifespans. Using intraday data, we find that deviation in currency-adjusted futures prices leads,
on average, to an immediate increase in liquidity, suggesting that demand shocks are the dominant
driver of arbitrage opportunities. Less actively traded futures experience a greater liquidity effect.
Arbitrageurs improve liquidity in both New York and Tokyo by acting as discretionary liquidity
traders and cross-sectional market-makers.

Keywords: arbitrage; efficiency; futures; liquidity; market integration; platinum

JEL Classification: G13; G14; G15; Q02

1. Introduction

The law of one price (LOOP) suggests that the prices of futures on an identical under-
lying commodity that are traded on different exchanges should be the same, taking into
account the currency of denomination and differences in contract specifications. Deviation
in such prices gives rise to an arbitrage opportunity that, in competitive and efficient
markets, would lead to prices equalizing across exchanges.

Liquidity has long been thought to influence the ability of market participants to
conduct arbitrage in financial markets. High levels of market liquidity allow arbitrageurs
to exploit price differences across markets that trade homogeneous, similar or closely
linked securities. Low liquidity limits arbitrage, as traders who attempt to profit on the
convergence of prices are exposed to higher transactions costs and a greater risk that prices
move against their trades. Although in theory arbitrage refers to a riskless opportunity to
profit from a pricing discrepancy, in practice, such opportunities are rare. Limits to arbitrage
include fundamental risk, noise trader risk and implementation costs. Low liquidity or
differences in liquidity between markets may enhance limits to arbitrage.

Recent research has examined how arbitrage may affect liquidity. Theory suggests
that arbitrage profit opportunities may either lead to an improvement or a deterioration in
liquidity, depending on the nature of the shock that led to the deviation in prices between
markets. Arbitrage opportunities that arise due to non-fundamental demand shocks are
liquidity-enhancing, as arbitrageurs enter both markets to transact against the direction of
the shock (Gromb and Vayanos 2010; Holden 1995). Arbitrage trades are likely to be spread
over time to minimise price impact, which would bring about autocorrelated orders and a
persistent liquidity effect (Kyle 1985; Roll et al. 2007). Arbitragers trade against prevailing
demand to provide liquidity to other market participants in exchange for a premium and,
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in doing so, improve market integration (Rösch 2021). Under these circumstances, arbitrage
profit opportunities would be expected to lead to an increase in liquidity.

Alternatively, arbitrage opportunities that arise due to information asymmetry may
reduce liquidity due to adverse selection (Foucault et al. 2017; Kumar and Seppi 1994).
So-called toxic arbitrage opportunities occur when new information is incorporated in
one market’s price, leading to a short-lived price deviation with respect to the other
market (Johannsen 2017). Foucault et al.’s (2017) model suggests dealers respond to toxic
arbitrage by widening bid–ask spreads to slow their trading and compensate for the risk
of transacting at stale prices. Toxic arbitrage opportunities lead to a decrease in liquidity.
Furthermore, limits to arbitrage may dissuade arbitrageurs from taking advantage of price
deviations. For instance, arbitrageurs may avoid arbitrage trades with high idiosyncratic
volatility that would expose them to losses or the need to liquidate the arbitrage trade
(Shleifer and Vishny 1997).

These different strands of the literature raise several empirical questions. What is
the direction of causality between arbitrage and liquidity? Are arbitrage opportunities
generally associated with lower or higher liquidity? Does the sign and magnitude of the
relationship between arbitrage and liquidity change when a futures contract is in a more or
less actively traded phase of its lifespan?

Researchers have examined the empirical relationship between arbitrage and liq-
uidity for similar or related securities in equity, currency and fixed-income markets.
Roll et al. (2007) find bidirectional relationships between liquidity on the New York Stock
Exchange (NYSE) and arbitrage opportunities in the futures cash basis associated with
the NYSE composite index futures contract. Schultz and Shive (2010) show that arbitrage
opportunities between dual-class shares, which are typically driven by the more liquid
share, lead to increased trade volumes, with trades within one or the other share class
being relatively more important in closing the price gap than matched trades across the
dual-share classes. Marshall et al. (2013a) examines arbitrage opportunities in similar
highly liquid exchange traded funds (ETFs) that track the S&P500 index. Their results
suggest that a fall in liquidity combined with an increase in liquidity risk contribute to
arbitrage opportunities, which are rapidly eliminated with buyer (seller)-initiated trades
in the underpriced (overpriced) ETF that is most prevalent. Ghadhab (2018) find that
arbitrage opportunities in cross-listed stocks lead to greater liquidity. Rösch (2021) examine
the arbitrage and liquidity relationships between the American Depositary Receipt (ADR)
market and home market shares and find that a positive shock to arbitrage decreased
the price deviations and bid–ask spreads. Rappoport and Tuzun (2020) find bidirectional
Granger causality between liquidity and arbitrage opportunity between ETFs and their
constituents in both equity and bond markets, but the effect of arbitrage on liquidity and
vice versa is larger for bond than equity markets, as bond ETF constituents are generally
less actively traded. Foucault et al. (2017) examine triangular arbitrage in foreign exchange
markets and find a positive relationship between illiquidity and both the fraction of toxic
arbitrage opportunities and arbitrageurs’ relative speed in trading.

Several recently published articles analyze commodity futures, including the plat-
inum contract traded in New York. Ludwig (2019) investigate the relationship between
speculative activity and liquidity, while Bohl et al. (2021) consider speculative activity and
informational efficiency. Lauter and Prokopczuk (2022) identify low-frequency proxies for
commodity futures market quality. Boos and Grob (2022) investigate the trading strategies
of managed futures funds, Sakkas and Tessaromatis (2020) evaluate factor-based commod-
ity futures investment, and Kwon et al. (2020) evaluate model momentum. Sun et al. (2023)
examine the price impact of traders on commodity futures. Tokyo platinum contracts also
feature in recent published research. Boubaker et al. (2021) evaluate the performance of
momentum based on functional data analysis. Iwatsubo and Watkins (2020) present evi-
dence on which traders influence the efficient prices of commodity futures traded in Tokyo.
Iwatsubo et al. (2018) examine the intraday seasonality of the microstructure characteristics
in the platinum and gold futures contracts traded in New York and Tokyo.
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To our knowledge, there is no published research on the potentially bidirectional causal
relationship between arbitrage and liquidity in commodity futures markets. However,
the arbitrage–liquidity relationship is particularly relevant for commodity futures, given
their institutional environment. It is now common for multiple futures exchanges to list
contracts based on the same underlying commodity traded in concurrent or overlapping
sessions in different countries. Exchanges use day and night trading sessions to facilitate
market access by participants in different time zones around the world, arguably to boost
liquidity and promote efficient price discovery. Arbitrageurs can trade on LOOP violations
between exchanges around the clock. With sufficient liquidity, arbitrage activity between
the exchanges is expected to encourage a single world price for futures based on an
identical underlying commodity, consistent with the LOOP after adjusting for contract
specifications and exchange rates. Hence, understanding the potentially bidirectional
relationship between arbitrage and liquidity, and particularly whether arbitrage is beneficial
or harmful for liquidity, is of practical importance in commodity futures markets. Our
research contributes toward filling this gap in the literature.

In this paper, we examine the relationship between arbitrage and liquidity in the
platinum futures markets on the New York Mercantile Exchange (NYMEX) and the Tokyo
Commodity Exchange (TOCOM), taking into account both potential directions of causality.
We use intraday price and volume data for one contract on each exchange with a common
expiry month. The platinum futures markets in New York and Tokyo provide an interesting
environment to examine the interaction of arbitrage and liquidity. The exchanges are the
primary global derivative venues for hedging and speculation in platinum. Both exchanges
trade futures based on the same grade of the underlying commodity, while the contract
specifications and currency of denomination differ.

The liquidity patterns for the contracts in New York and Tokyo are distinct both intra-
day and over their contract lifespans. This provides an interesting institutional setting to
examine the relationship between arbitrage and liquidity. Intraday liquidity on each market
is greatest during the respective exchange’s daytime trading session (Iwatsubo et al. 2018).
Prices may deviate from the parity implied by the LOOP due to the different intraday
liquidity patterns if there are enhanced limits to arbitrage in the relatively illiquid market.
As the relative liquidity conditions adjust over the trading day, arbitrageurs have the
opportunity to exploit any deviation from the LOOP. Trading activity differs substantially
over the two contracts’ lifespans. Near contracts are most actively traded in New York,
while far contracts are most actively traded in Tokyo. In this paper, we focus on analyzing
the differences in lifespan trading activity by dividing our data into subsamples that reflect
the trading activity in New York and Tokyo.

Our analysis shows bidirectional Granger causality between arbitrage and liquidity.
We find that deviation in currency-adjusted futures prices leads, on average, to an im-
mediate increase in liquidity, suggesting that demand shocks are the dominant driver of
arbitrage opportunities. The liquidity effect is relatively large when a contract is in a less
actively traded phase of its lifespan compared with when the contract is more actively
traded. A negative shock to liquidity in one market leads to room for arbitrage between
the markets. Liquidity in the other market responds in the same direction, consistent with
liquidity commonality.

Our research contributes to the small-but-growing literature that analyzes the bidi-
rectional relationship between arbitrage and liquidity for similar securities that trade on
different exchanges. Our paper extends this research to include commodity futures, an asset
class in which the situation of multiple exchanges in different countries listing contracts
based on an identical underlying commodity with overlapping trading sessions is common.

This article proceeds as follows. We explain the institutional details of the platinum
markets, the data and variable construction in Section 2. We describe our empirical method-
ology in Section 3. In Section 4, we discuss our empirical results and their interpretation.
Section 5 concludes the paper.
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2. Platinum Futures Market Details and Data
2.1. Market Institutional Details

The platinum futures markets on NYMEX and TOCOM are the world’s largest.1 Dur-
ing the period of this study, NYMEX was the bigger market both in terms of the weight of
metal represented by the futures traded as well as the number of contracts traded. However,
TOCOM has long been an important market for hedging and speculating on platinum in
futures, and it was by far the largest market in the early 2000s. Both exchanges are major
venues for hedging by firms involved in producing or consuming platinum. Automobile
catalytic converters constitute the largest use of platinum at around 40% of global demand,
followed by jewelery at 30% (Johnson Matthey 2016; McDonald and Hunt 1982). Platinum
is also used in the chemical, electronics, glass, medical and petroleum industries. South
Africa is the largest producer of platinum, constituting over 70% of the global supply, while
Russia produces around 12% (Johnson Matthey 2016). Platinum derivatives have long
been used by professional investors to take exposure to the market, and the introduction
of platinum ETFs since 2010 has provided access at a lower cost, particularly for smaller
investors (Vigne et al. 2017).

The physical commodities underlying the contracts on NYMEX and TOCOM are
identical at a minimum of 99.95 percent pure platinum, but the contract units differ in
terms of the weight of the metal. The NYMEX contract is based on 50 troy ounces, while
the TOCOM standard contract is for 500 g, equivalent to 16.08 troy ounces.2

The exchanges have different contract listing schedules. NYMEX lists monthly con-
tracts for the nearest three consecutive months and contracts expiring in January, April,
July and October for the nearest 15 months. TOCOM lists the nearest six contract months
with expiries in February, April, June, August, October and December. The most actively
traded contracts also differ between the exchanges. Contracts for the nearest four months to
expiry after the spot month are the most actively traded on NYMEX, while the farthest and
second-farthest listed contracts are most active on TOCOM. Position limit rules constrain
trading in the spot or expiry month on both exchanges.3

Figure 1 shows the daily prices for the April 2016 expiration of New York and Tokyo
platinum futures in the units in which each contract is denominated. The contracts listed
on NYMEX are in US dollars per troy ounce, while those on TOCOM are in Japanese yen
per gram. Platinum prices trend down from May 2015 to January 2016, with industry
analysts observing factors including a declining production deficit, greater investment
demand offset by higher South African mine production and lower jewelery demand. From
February to May 2016, prices increase with market expectations of a larger production
deficit in 2016 on lower South African mining output, greater demand for autocatalysts
in Europe, a recovery in jewelery demand and continued investment demand from Japan
(Johnson Matthey 2016; Wilson 2015).

2.2. Data and Sample

Our raw data consists of 1 min best bid and ask quotes and traded volumes for the
April 2016 expiration platinum futures contracts traded on NYMEX and TOCOM. Data
for the NYMEX contract were obtained from Thomson Reuters (now Refinitiv), and those
for the TOCOM contract were obtained directly from the exchange. The data begin at 9:00
a.m. Japan Standard Time (JST) on 7 May 2015 and end at 4:00 a.m. JST on 23 April 2016,
containing 264 trading days and 223,650 1 min observations.

At the time of the April 2016 contracts, the TOCOM daytime trading session was
scheduled to begin at 9:00 a.m. JST and end at 3:15 p.m. JST. After a break, the night session
began at 4:30 p.m. JST and ended at 4:00 a.m. JST the next morning.4 For the purpose of
this study, we define the trading day to be 19 continuous hours long based on the TOCOM
day and night trading sessions. This covers the daily period for which the NYMEX and
TOCOM platinum trading sessions overlap for our sample period.
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Figure 1. Daily prices for the April 2016 futures on TOCOM and NYMEX. (Note: The figure shows
the daily April 2016 futures prices for platinum on NYMEX and TOCOM in US dollars per troy ounce
on the RHS axis and Japanese yen per kilogram on the LHS axis).

We convert the NYMEX prices from US dollars per troy ounce to yen per gram
using the troy ounce to gram conversion factor and 1 min USD/JPY forward exchange
rates calculated from the 1 min spot USD/JPY exchange rate and daily US dollar and
Japanese yen LIBOR rates.5 The foreign exchange and interest rate data were obtained
from Bloomberg.

To take advantage of the differences between the trading activity over the lifespan of
the New York and Tokyo contracts, we divide our data into five subsamples as described
in Table 1. Subsample 1, running from 7 May to 2 July 2015, reflects the period in which
the Tokyo future is the farthest contract and the most traded TOCOM contract. Subsample
2 covers the period 6 July to 4 September 2015, when the Tokyo future is the second-
farthest contract. Trade in the New York future is relatively low but increasing over time
during subsamples 1 and 2. Subsample 3, from 9 September to 30 November 2015, reflects
the period in which there is consistent trade in both the New York and Tokyo contracts,
but neither is the most traded contract on its respective exchange. Subsample 4, from
1 December 2015 to 31 March 2016, covers the period in which the New York contract is
most actively traded (i.e., when the NYMEX contract was within the nearest four months to
expiry). During this period, the Tokyo contract continues to be traded, albeit at a relatively
low level compared with subsample 1. Subsample 5 represents the expiration month for
both contracts and runs from 1 to 23 April 2016. We omit this period from our modeling
because the exchanges impose position limits that may have influenced our results.

Table 1. The April 2016 futures contracts on NYMEX and TOCOM and the subsamples.

2015 2016

Exchange May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr.

TOCOM Farthest 2nd Farthest 3rd Farthest 3rd Nearest 2nd Nearest Nearest
NYMEX 11 10 9 8 7 6 5 4 3 2 1 Expiry

Subsamples 1 2 3 4 5
Notes: The TOCOM contract is denoted using the nearest and farthest nomenclature. The NYMEX contract is
labeled in terms of months before the expiration month. The shaded regions indicate the five subsamples.

2.3. Variable Construction

To analyze the relationships between arbitrage and liquidity across the platinum
futures markets in Tokyo and New York, measures of the arbitrage profit opportunity and
liquidity are required. We calculate arbitrage profit (PROF) at time t, PROFt, based on an
arbitrage transaction between the April 2016 platinum futures on NYMEX and TOCOM in
Equation (1). PROF is defined as the supremum of buying the NYMEX contract and selling
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the TOCOM contract, selling the NYMEX contract and buying the TOCOM contract or zero
in the case that neither trade provides a positive arbitrage profit. PROF is expressed relative
to Tokyo’s mid-price. This profit measure has the advantage of being a directly tradeable
arbitrage strategy. PROF can only take positive or zero values. A positive value for PROF
indicates the violation of the LOOP and a possible arbitrage opportunity if the deviation in
price is enough to offset the costs and risk of transacting. A PROF of zero indicates that no
arbitrage opportunity exists. PROF is defined as

PROFt = sup

[
BidTO

t −AskNY
t × FXt

MidTO
t

,
BidNY

t × FXt −AskTO
t

MidTO
t

, 0

]
(1)

where Bidi
t and Aski

t are the bid and ask quotes and Midi
t is the mid-prices at time t on

platinum market i = {NY, TO}, representing NYMEX and TOCOM, respectively. The
mid-prices are calculated as Midi

t = (Bidi
t+Aski

t)/2. FXt refers to the USD/JPY forward
exchange rate at time t.

The relative quoted bid–ask spread is used to measure the market liquidity of each
exchange. The higher the relative quoted spread, the less liquid the market is. The spread
SPi

t is defined as

SPi
t =

(
Aski

t − Bidi
t

Midi
t

)
(2)

In the modeling that follows, we denote the spread on NYMEX as SPNY and that on
TOCOM as SPTO. To reduce the impact of microstructure noise, we convert the data to a
5 min frequency by taking the mean of PROF, SPNY and SPTO for each 5 min interval. This
leaves us with 41,322 observations for the full sample. Figure 2 shows the 5 min data for
PROF, SPTO and SPNY in panels (a), (b) and (c), respectively. The shaded regions indicate
the five subsamples.

Table 2 shows the summary statistics for PROF, SPNY and SPTO for the full sample
and each subsample. PROF is relatively high in subsample 2 followed by subsample 3 when
the Tokyo contract is not the farthest and the New York contract is not within the nearest
4 months to expiration. PROF is lower and less variable in subsample 4 when the New York
contract is actively traded compared with subsample 1, when the Tokyo contract is actively
traded. The bid–ask spread on TOCOM increases and is more variable over successive
subsamples, while the spread on NYMEX declines and becomes less variable, as would be
expected given that the far contract is the most traded in Tokyo, while the near-expiration
contracts are the most traded in New York. All variables are stationary for the full sample
and in all subsamples. As the subsamples are formed on the basis of when the contracts are
most actively traded in each market, the number of observations differs.

Figure 3 shows the number of platinum futures traded during each 5 min period
over the full sample for TOCOM (VOLTO) and NYMEX (VOLNY) in panels (a) and (b),
respectively. Panel (c) provides a cumulative sum of the trading volume in the April 2016
contract on each exchange. This shows the different pattern in trading volume over the
lifespan of the contracts on each exchange. The TOCOM April 2016 contract is most actively
traded when it is the far contract, while the NYMEX contract is most active when it is
within the nearest four contracts.

Table 3 provides a summary of the statistics for the 5 min aggregate trade volumes
on each exchange. The different trading activity patterns between New York and Tokyo
over the respective contract lifespans can be observed in the mean and maximum number
of contracts traded in each 5 min interval and in the sum of all contracts traded over
each subsample. The mean, maximum and standard deviation of volumes decreases over
subsamples 1–4 for TOCOM and increases for NYMEX. The minimum of the 5 min volumes
is zero for each subsample on both exchanges (not shown in the table). The volume data
series are highly leptokurtic.
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(a) Arbitrage profit (PROF)

(b) TOCOM bid–ask spread (SPTO)

(c) NYMEX bid–ask spread (SPNY)

Figure 2. Arbitrage profit and liquidity variables. (Note: The figure shows the 5 min of average
arbitrage profit (PROF) and the relative bid–ask spreads for the NYMEX (SPNY) and TOCOM (SPTO)
contracts calculated from 1 min data for 264 trading days starting at 9:00 a.m. Japan Standard Time
(JST) on 7 May 2015 and ending at 4:00 a.m. JST on 23 April 2016 in basis points in panels (a–c),
respectively. The shaded regions indicate the five subsamples).
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Table 2. Summary statistics for the arbitrage and liquidity variables.

Full Sample Subsample 1 Subsample 2

PROF SPTO SPNY PROF SPTO SPNY PROF SPTO SPNY

Mean 0.0040 0.0009 0.0020 0.0024 0.0004 0.0066 0.0077 0.0007 0.0020
Median 0.0043 0.0009 0.0007 0.0021 0.0004 0.0061 0.0077 0.0007 0.0014

Minimum 0.0000 0.0002 0.0001 0.0000 0.0002 0.0008 0.0047 0.0002 0.0003
Maximum 0.0110 0.0030 0.0127 0.0108 0.0009 0.0127 0.0110 0.0013 0.0047

St. Dev. 0.0031 0.0004 0.0025 0.0025 0.0001 0.0021 0.0009 0.0001 0.0011
Skewness −0.03 0.56 1.83 0.66 0.38 0.12 0.18 0.53 0.75

Ex. Kurtosis −1.46 0.81 2.32 −0.73 0.84 −1.19 1.75 1.51 −1.00
Unit Root −5.66 −61.13 −10.09 −12.76 −54.53 −16.92 −7.23 −58.49 −8.05
P-value 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Observations 41,322 41,322 41,322 7455 7455 7455 8946 8946 8946

Subsample 3 Subsample 4 Subsample 5

PROF SPTO SPNY PROF SPTO SPNY PROF SPTO SPNY

Mean 0.0055 0.0010 0.0007 0.0015 0.0012 0.0005 0.0007 0.0011 0.0010
Median 0.0057 0.0010 0.0006 0.0005 0.0012 0.0005 0.0006 0.0010 0.0010

Minimum 0.0001 0.0003 0.0002 0.0000 0.0003 0.0001 0.0000 0.0003 0.0004
Maximum 0.0095 0.0023 0.0034 0.0076 0.0030 0.0013 0.0036 0.0025 0.0017

St. Dev. 0.0016 0.0002 0.0004 0.0019 0.0003 0.0001 0.0006 0.0003 0.0002
Skewness −0.33 0.49 2.01 1.17 1.22 0.83 0.68 1.31 0.55

Ex. Kurtosis −0.29 0.63 4.02 −0.09 3.51 1.04 −0.28 2.64 0.37
Unit Root -3.91 −34.24 −22.98 −5.12 −30.88 -60.67 −7.24 −13.37 −24.26
P-value 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Observations 10,437 10,437 10,437 14,484 14,484 14,484 3408 3408 3408

Notes: PROF represents arbitrage profit. SPNY and SPTO are the relative bid–ask spreads for the April 2016
platinum futures contracts traded on NYMEX and TOCOM, respectively. Each variable is constructed using 1 min
data, and the result is averaged over 5 min periods. The table shows summary statistics for the full sample and
each subsample calculated from the 5 min data. Unit Root and P-value represent the Phillips–Perron test statistic
and its associated p-value for a 5% level of significance.

Table 3. Summary statistics for trading volume during each 5 min interval for each sample.

Full Sample Subsample 1 Subsample 2

VOLTO VOLNY VOLTO VOLNY VOLTO VOLNY

Mean 11.08 16.75 46.02 0.00 10.51 0.10
St. Dev. 39.65 58.04 77.36 0.10 29.96 1.59

Skewness 10.90 10.32 5.57 31.34 15.89 36.71
Ex. Kurtosis 202.98 215.55 50.81 1150.56 501.97 1885.75
Maximum 1464 2471 1464 5 1323 99

Sum 457,723 692,167 343,072 30 94,006 904

Subsample 3 Subsample 4 Subsample 5

VOLTO VOLNY VOLTO VOLNY VOLTO VOLNY

Mean 1.03 1.33 0.69 46.77 1.56 0.19
St. Dev. 6.48 7.83 3.47 90.43 6.98 2.07

Skewness 29.02 15.88 11.36 6.76 13.71 21.45
Ex. Kurtosis 1403.95 340.72 189.45 93.15 292.49 526.09
Maximum 388 230 102 2471 209 62

Sum 10,713 13,833 9932 677,400 5321 632

Notes: VOLTO and VOLNY represent the aggregate 5 min trading volumes in the April 2016 platinum futures
contracts traded on TOCOM and NYMEX, respectively. Maximum indicates the largest number of contracts
traded within the 5 min time intervals. The minimum for all subsamples is zero contracts for both exchanges
and is not shown in the table. Sum provides the total number of contracts traded during each subsample for
each exchange.
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(a) TOCOM trading volume (VOLTO)

(b) NYMEX trading volume (VOLNY)

(c) Cumulative volume on each exchange

Figure 3. Platinum futures contract volumes on TOCOM and NYMEX (Notes: Panels (a,b) show
the 5-min aggregate trading volumes for the TOCOM (VOLTO) and NYMEX (VOLNY) April 2016
platinum futures contracts over 264 trading days starting at 9:00 a.m. Japan Standard Time (JST)
on 7 May 2015 and ending at 4:00 a.m. JST on 23 April 2016, respectively. Panel (c) provides the
cumulative total trading volume for the April 2016 contract on each exchange over the sample period.
The shaded regions indicate the five subsamples).
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3. Methodology

We estimated a vector autoregression (VAR) of three variables—SPNY, SPTO and
PROF—as follows:

yt = A1yt−1 + . . . Apyt−p + CD + et (3)

where yt = [SPNYt, SPTOt, PROFt]
′, a constant and deterministic trend are included with

D = [CONST, TREND]′, A represents the coefficients of the lagged variables and C contains
the coefficients of the constant and deterministic trend terms.

The model is estimated efficiently using ordinary least squares for each of subsamples
1–4. We select the number lags to include in each model using the Schwarz Information
Criterion. The number of lags included in the models for subsamples 1–4 are 6, 5, 9 and
8, respectively. We order the variables as SPNY, SPTO and PROF. The ordering of the
variables in the VAR can influence the orthogonalized impulse responses, and if this
happens, the variables should be ordered from the most to least exogenous. However,
given that we view both arbitrage and liquidity as endogenous, it is difficult to determine
an appropriate variable ordering. Accordingly, we calculate generalized impulse response
functions (GIRFs) using the method suggested by Pesaran and Shin (1998), which are not
influenced by the order of the variables in the VAR.

4. Empirical Results

Granger causality tests based on the estimated VAR models suggest a bidirectional
relationship between the arbitrage profits and liquidity (see Table 4). The null of no Granger
causality is rejected at the 1-percent level for all tests, except PROF does not Granger cause
SPNY or SPTO in subsample 2, being rejected at the 5-percent level, and SPNY does not
Granger cause SPTO or PROF, being rejected at the 10-percent level.

Table 4. Granger causality F-statistics.

Null Hypothesis Subsample 1 Subsample 2 Subsample 3 Subsample 4

PROF does not Granger cause SPNY or SPTO 5.40 *** 2.12 ** 2.32 *** 3.70 ***
SPTO does not Granger cause SPNY or PROF 5.55 *** 16.89 *** 6.73 *** 6.21 ***
SPNY does not Granger cause SPTO or PROF 6.48 *** 1.63 * 4.14 *** 11.63 ***

Notes: PROF represents arbitrage profit. SPNY and SPTO are the relative bid–ask spreads for the April 2016 plat-
inum futures contracts traded on NYMEX and TOCOM, respectively. The table shows the Granger causality
F-statistic. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

Plots of the GIRFs derived from the VAR model are presented in Figures 4–9, orga-
nized as single impulse response pairs shown for each of subsamples 1–4 in panels (a–d),
respectively. The GIRFs are shown for 200 steps ahead with 90-percent confidence intervals
bootstrapped using 200 iterations. Note that 50 steps ahead represents just over 4 hours of
trading time.

Figures 4 and 5 indicate that a one standard deviation shock in PROF is associated
with an immediate and generally short-lived negative response in the relative bid–ask
spreads of both New York and Tokyo. This suggests that, in the short term, liquidity
improves in both markets following an arbitrage profit opportunity, as arbitragers act as
“cross-sectional market makers” as described by Holden (1995). Accordingly, we conclude
that the deviations from the LOOP that lead to arbitrage opportunities in platinum futures
are generally due to non-fundamental demand shocks.

Furthermore, the immediate liquidity-enhancing effect of an arbitrage profit shock
is greater when the futures contract is less actively traded. The size of the immediate
liquidity response is greatest for SPNY in subsample 1, as shown in Figure 4a, which is
when the New York contract is least actively traded. The opposite is true for SPTO in that
the liquidity response is greatest in subsample 4, as shown in Figure 5d, at the time when
the Tokyo contract is least actively traded. The peak of the immediate liquidity response in
New York decreases monotonically over subsamples 1–4, while it increases in Tokyo. The
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liquidity-enhancing effect of arbitrage profit opportunities is not only greater but also more
persistent when a market is less actively traded, consistent with the findings of Rappoport
and Tuzun (2020) for equity and bond markets.

Figure 4. Response of SPNY to a shock in PROF. (Notes: The solid lines represent the 200-step-ahead
GIRFs. The dashed lines show 90-percent confidence intervals bootstrapped using 200 iterations).

Figure 5. Response of SPTO to a shock in PROF. (Notes: The solid lines represent the 200-step-ahead
GIRFs. The dashed lines show 90-percent confidence intervals bootstrapped using 200 iterations).
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An interesting feature of the GIRFs when the contract in each market is most actively
traded, which is in subsample 4 for New York shown in Figure 4d and in subsample 1
for Tokyo shown in Figure 5a, is the small but persistent positive marginal spreads that
began within 50 steps following the PROF shock. This may seem inconsistent with our
non-fundamental demand shock explanation. Does this delayed decrease in liquidity
suggest the arbitrage opportunity is first mistaken for a non-fundamental demand shock
and shortly after recognized to be the result of asymmetric information? Given that we
observe this effect only when the respective contract is most actively traded, we favor an
alternative and more plausible interpretation. In response to a demand shock, the resulting
highly liquid market can lead to a deterioration in liquidity, as predicted by Admati and
Pfleiderer (1988). Discretionary liquidity traders prefer to trade when they have little
impact on prices to minimize their losses to informed traders. Greater liquidity trading
encourages more informed trading at the same time, but competition between informed
traders reduces their total profit. This benefits liquidity traders and encourages their further
participation. Liquidity will eventually deteriorate when the concentration of informed
traders increases the cost of adverse selection. Thus, for highly liquid markets, arbitrage
associated with a non-fundamental demand shock may lead to an immediate increase in
liquidity, followed by a persistent decrease in liquidity relative to before the shock.

Figures 6 and 7 show the response of PROF to a one standard deviation positive shock
in SPNY and SPTO, respectively. The immediate response is negative in all cases, which
seems inconsistent with the notion that a decrease in liquidity should increase arbitrage
profit opportunities. However, the immediate negative response is explained by how the
widening of the relative spread affects the calculation of arbitrage profit. A positive shock
in the relative spread represents a decrease in or negative shock to liquidity and occurs
via an increase in the ask price, a decrease in the bid price or both. The change in ask or
bid prices due to the shock decreases PROF on impact, as Equation (1) suggests. As time
passes, the deviation from the LOOP increases as traders find more room for arbitrage
following the negative liquidity shock. The positive response of PROF is most apparent for
liquidity shocks originating in subsample 4 for New York (Figure 6d) and in subsample
1 for Tokyo (Figure 7a). Thus, the positive effect on arbitrage opportunity is larger when the
negative liquidity shock comes from a market in the actively traded phase of its lifespan.
The positive response is less apparent in Figure 6a–c for subsamples 1, 2 and 3, respectively,
and Figure 7b–d for subsamples 2, 3 and 4, respectively. This is because the liquidity shock
in these subsamples originates from a market with relatively few active traders and is
less likely to lead to a meaningful increase in opportunities for arbitrage between New
York and Tokyo. The magnitudes of the PROF responses to liquidity shocks from each
spread are comparable, except in Figure 6a for subsample 1, when the New York market is
relatively inactive.

Figures 8 and 9 show the response of SPTO to a shock in SPNY and the response
of SPNY to a shock in SPTO, respectively. A positive shock in the relative spread of one
market initially results in an increase in the relative spread of the other market. This reflects
liquidity commonality, defined as the co-movement in liquidity across securities or markets
that are driven by one or more common factors. Chordia et al. (2000) identified liquidity
commonality in U.S. stocks, while Marshall et al. (2013b) and Caporin et al. (2015) provided
evidence for a systematic liquidity factor in commodity futures markets. However, as time
goes on, the positive response weakens, and spreads generally narrow as traders find that
the source of the spread increase is non-fundamental. The latter liquidity-enhancing effect
dominates in all subsamples, except for subsample 1 in Figure 8a. The liquidity-enhancing
effect is of greater magnitude when the impulse market is in a more active part of its
lifespan and the response market is less active. This can be observed clearly in Figure 8d
for subsample 4 and Figure 9a for subsample 1.
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Figure 6. Response of PROF to a shock in SPNY. (Notes: The solid lines represent the 200-step-ahead
GIRFs. The dashed lines show 90-percent confidence intervals bootstrapped using 200 iterations).

Figure 7. Response of PROF to a shock in SPTO. (Notes: The solid lines represent the 200-step-ahead
GIRFs. The dashed lines show 90-percent confidence intervals bootstrapped using 200 iterations).
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Figure 8. Response of SPTO to a shock in SPNY. (Notes: The solid lines represent the 200-step-ahead
GIRFs. The dashed lines show 90-percent confidence intervals bootstrapped using 200 iterations).

Figure 9. Response of SPNY to a shock in SPTO. (Notes: The solid lines represent the 200-step-ahead
GIRFs. The dashed lines show 90-percent confidence intervals bootstrapped using 200 iterations).

5. Conclusions

Arbitrage and liquidity in markets for substitute securities are closely related. The-
ory posits reasons by which arbitrage should affect liquidity and liquidity should affect
arbitrage. Whether arbitrage opportunities are associated with enhanced or diminished
liquidity depends on the reason behind why the arbitrage opportunity has arisen. Non-
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fundamental demand shocks enhance liquidity, while asymmetric information diminishes
or is toxic to liquidity.

Arbitrage profit opportunities in futures markets trading an identical underlying grade
of platinum in New York and Tokyo generally lead to increased liquidity in both markets.
This suggests that non-fundamental demand shocks are the predominant cause of devia-
tions from the LOOP across the two markets. The liquidity improvement is larger during
periods of a contract’s lifespan in which it is less actively traded. When a contract is most
actively traded, liquidity first improves in response to an arbitrage opportunity and then de-
teriorates. This is consistent with the notion proposed by Admati and Pfleiderer (1988) that
discretionary liquidity and informed traders may concentrate their transactions following
non-fundamental demand shocks, and subsequently, liquidity declines as the risk of ad-
verse selection rises. In particular, when the contracts are in an actively traded phase of their
lifespan, a negative liquidity shock is associated with greater room for arbitrage between
the two major future markets for platinum. A degree of relative liquidity commonality was
observed across the two markets over the entirety of the contracts’ lifespans.

Our results suggest that non-fundamental demand shocks, which are the main source
of arbitrage opportunities between the New York and Tokyo markets, provide opportunities
for both hedgers and speculators to trade, facilitated by liquidity provision from market
participants performing the role of discretionary liquidity traders. Demand shocks provide
a relatively advantageous opportunity for market participants to transact even when the
contract in question is not in an actively traded phase of its lifespan.

Understanding the causal relationship between arbitrage and liquidity is important
for commodity futures markets, given that multiple exchanges list contracts based on
identical underlying commodities which are traded concurrently in overlapping day and
night trading sessions. There is a number of potential directions for extending the research
on this relationship in commodity futures markets. Although our research suggests toxic
arbitrage is not prevalent in platinum futures, a switching regime approach may be used
to better understand the circumstances around which arbitrage leads to lower market
liquidity. Panel VAR models may be used to examine a series of contracts over time for
a single underlying commodity or for multiple related commodity futures contracts at a
point in time.
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Notes
1 NYMEX is part of the CME Group, and TOCOM is part of the Japan Exchange Group.
2 The NYMEX platinum contract specifications can be found at https://www.cmegroup.com/markets/metals/precious/platinum.

contractSpecs.html (accessed on 3 May 2019).
The TOCOM platinum standard contract specifications can be found at https://www.jpx.co.jp/english/derivatives/products/
precious-metals/platinum-standard-futures/01.html (accessed on 3 May 2019).

3 Note that in addition to limits in the expiry month, TOCOM imposes looser position limits in the month before the expiry month
and the second contract month. There is also a position limit for all contract months combined.

4 TOCOM extended its trading hours after the sample period of our study. The day session now opens at 8:45 a.m. JST and closes
at 3:15 p.m. The night session runs from 4:30 p.m. to 6:00 a.m. the next day.
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5 Forward exchange rates are used for the currency conversion presuming that the arbitrage trades between the New York and
Tokyo markets are held to expiry. 12-month LIBOR rates are used when the futures have between 12 and 6 months to expiry,
6-month rates for when the contracts have between 6 and 3 months to expiry, the 2-month rates for when the contracts have
between 2 months and 1 month to expiry, 1-month rates for when the contracts have between 1 month and 1 week to expiry, and
1-week rates are used for the contracts when they have less than 1 week to expiry. One gram is equivalent to 0.03215 troy ounces.
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Abstract: The investigation of the fractal nature of financial data has been growing in the literature.
The purpose of this paper is to investigate the impact of the COVID-19 pandemic on the efficiency of
agricultural futures markets by using multifractal detrended fluctuation analysis (MF-DFA). To better
understand the relative changes in the efficiency of agriculture commodities due to the pandemic, we
split the dataset into two equal periods of seven months, i.e., 1 August 2019 to 10 March 2020 and
11 March 2020 to 25 September 2020. We used the high-frequency data at 15 min intervals of cocoa,
cotton, coffee, orange juice, soybean, and sugar. The findings reveal that the COVID-19 pandemic
has great but varying impacts on the intraday multifractal properties of the selected agricultural
future markets. In particular, the London sugar witnessed the lowest multifractality while orange
juice exhibited the highest multifractality before the pandemic declaration. Cocoa became the most
efficient while the cotton exhibited the minimum efficient pattern after the pandemic. Our findings
show that the highest improvement is found in the market efficiency of orange juice. Furthermore,
the behavior of these agriculture commodities shifted from a persistent to an antipersistent behavior
after the pandemic. The information given by the detection of multifractality can be used to support
investment and policy-making decisions.

Keywords: COVID-19; pandemic; agriculture; commodity; MF-DFA; high frequency; efficiency

1. Introduction

According to the World Health Organization (WHO), COVID-19 has led to more
than 620,000,000 confirmed infections along with more than 6,500,000 confirmed deaths.
Keeping in view the alarming levels of spread and severity, the World Health Organization
(WHO), on 11 March 2020, declared COVID-19 a pandemic. In addition to human loss,
the indirect effects through fear and uncertainty have fostered a sense of emergency and
tendency of pessimism (Barrafrem et al. 2020).

The COVID-19 pandemic has far-reaching economic implications and is becoming
an extremely serious economic event (Laing 2020). It triggered a global lockdown and
significantly impacted global mobility. Sadowski et al. (2021) investigated the connection
between the transmission of COVID-19 and human movement and discovered that “retail
and recreation areas”, “transit stations”, “workplaces”, “grocery stores”, and “pharmacies”
are the hotspots for COVID-19 dissemination. Hence, the transport and energy industries
suffered significant financial losses as a result of restricted movement. All forms of transport
were suspended, with the exception of a few emergency situations. A similar situation
prevailed in all other sectors, leading to a sharp drop in energy demand. The food business
attempted to cope with COVID-19 but supply lines from farmers to retail stores and
consumers were disrupted by the closure of many restaurants. However, grocery businesses
and supermarkets benefited reasonably well in terms of volume of sales and earnings as a
result of panic buying. Due to delays in electronic goods and industry shipments, many
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technological companies ceased operations. However, COVID-19 raised the need for
medical supplies and medication, which increased sales for pharmaceutical and healthcare
organizations. Likewise, the revenue of Internet-based companies soared due to increased
online activities such as remote office working and remote learning (Alam et al. 2021).

Global financial markets, on the other hand, also reacted strongly to this immense
outbreak (Nicola et al. 2020). Fast-growing literature is focusing on different aspects of
financial impacts caused by the COVID-19 pandemic. During the COVID-19 pandemic,
financial markets became risky (Ali et al. 2020; Barro et al. 2020), with a drastic decline
in the stock market indices (Czech et al. 2020; McKibbin and Vines 2020) and causing
enormous losses (Zhang et al. 2020). This pandemic had larger impacts on the US stock
market than other regions (Garcin et al. 2020). In comparison, Topcu and Gulal (2020)
reported a larger impact on Asian stock markets than on European ones. From a global
perspective, Aslam et al. (2020d) documented a structural change and significant changes in
the financial networks due to COVID-19. Furthermore, the market’s reaction to confirmed
cases is larger than the confirmed deaths (Ashraf 2020). Likewise, Ali et al. (2020) reported
the deterioration of financial markets when this outbreak changed from an epidemic to
a pandemic.

Since the beginning of the pandemic, we can attest to a growing number of research
studies focusing on the financial impacts of COVID-19 pandemic. Recently, different topics
had been developed, including financial networks, (Aslam et al. 2020d; Zhang et al. 2020),
stock market reactions (Aslam et al. 2020c; Zhang et al. 2020), exchange-rate fluctuation
during pandemic (Njindan Iyke 2020), oil-market reactions (Apergis and Apergis 2020;
Devpura and Narayan 2020), air-quality performance and multifractality (Ming et al.
2020; Sipra et al. 2021), insurance (Wang et al. 2020b), and gold and cryptocurrencies
(Corbet et al. 2020).

Multifractality is central to the science of complexity and it is possible to find different
applications in several essential areas of scientific activity, including physics (Muzy et al.
2008; Subramaniam et al. 2008), chemistry (Stanley and Meakin 1988; Udovichenko and
Strizhak 2002), biology (Makowiec et al. 2009; Rosas et al. 2002), hydrology (Telesca et al.
2005b), environment (Farjah 2019; Sipra et al. 2021), linguistics (Drożdż et al. 2016), physiol-
ogy (Nagy et al. 2017), psychology (Kelty-Stephen 2017), behavioral sciences (Ihlen and
Vereijken 2013), economics (Drożdż et al. 2010), or even in music (Jafari et al. 2007) and
sin markets (Aslam et al. 2021a). Particularly, multifractal detrended fluctuation analysis
(MFDFA) is a stronger tool capable of detecting long-term correlations in nonstationary time
series (Laib et al. 2018). In the context of finance, it helps to determine the efficiency ranking
of the markets under study despite revealing the extent of the inefficiency (Rizvi et al. 2014).
After the seminal works of (Mandelbrot 1967; Mandelbrot and Wallis 1969; Mandelbrot
1971, 1982, 1997), when the author introduced the concept of fractal geometry, after investi-
gating the behavior of cotton prices and finding that these commodity prices do not exhibit
a random-walk behavior, this particular method was applied to several fields with data
structures, including finance (Kumar and Deo 2009; Oh et al. 2010; Podobnik and Stanley
2008; Wang and Liu 2010).

The COVID-19 pandemic also affected the efficiency of different financial markets.
For instance, the intraday efficiency of European stock markets and exchange-rate markets
declined during the COVID-19 outbreak (Aslam et al. 2020b). Furthermore, Aslam et al.
(2020a) reported that the stock-market efficiency varies with the evolution of COVID-
19 with decreasing efficiency in February–March (2020) and a recovery in April–May
(2020). Particularly with respect to commodity markets, the experimental findings of
(Wang et al. 2020a, 2020b) indicate that the cross-correlations of multifractality between
crude oil and sugar future markets remained stronger during the pandemic. On the
other hand, the efficiency of the cryptocurrency market improved during the COVID-19
pandemic (Aslam et al. 2021b; Mnif et al. 2020).

Historically, a diverse range of techniques had been adopted to analyze the efficiency
of agricultural markets, including the cointegration test (Ali and Gupta 2011), VR test
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(Mishra 2019), and social loss index (Consuegra and Garcia-Verdugo 2017), among others.
However, few studies have investigated the efficiency of agriculture commodities by
applying econophysics techniques such as DFA (Cao and Xu 2016; Kim et al. 2011; Kim
and Venkatachalam 2011) and MF-DFA (Aslam et al. 2022a). Li and Lu (2011) applied
MF-DFA and multifractal spectrum analysis on Chinese agricultural markets and confirmed
the presence of multifractality, with highest levels in the hard winter wheat commodity
market. In a recent study, Stosic et al. (2020) examined the fractal behavior of the Brazilian
agriculture market through MF-DFA and confirmed that coffee futures showed the highest
multifractality among the other commodities.

This paper is unique and different in many ways. Unlike other financial markets, the
agricultural commodity future markets were jolted during COVID-19 through three main
channels: demand, supply, and heightened uncertainty (Sifat et al. 2021). Due to basic
exposure and market emotions, different commodity classes experienced varying degrees
of shocks. For instance, as global demand declined during the pandemic, oil prices fell to
their lowest levels since 1995, falling more steeply than other commodities and financial
markets (Aslam et al. 2022b). The futures of agricultural commodities such as soybean
and rice rose sharply, while corn and coffee remained stable, presumably as a result of
steady real demand, declining currencies, and decreasing production of edible oil. The
futures markets were established to allow economic agents to protect themselves against
price risk. However, these economic and financial shocks brought about by the pandemic
outbreak inflate a long-standing futures-related conundrum. Hence, it is essential to pay
close attention to how commodity markets futures behaved during the COVID-19 outbreak.

We make the following contributions to the recent literature on COVID-19 and its im-
pact on agricultural commodity markets. Firstly, as far as we are aware, this is the first study
to distinguish between the impacts of the COVID-19 pandemic on the efficiency of agricul-
tural futures markets in a multifractal context. To do this, we followed (Aslam et al. 2021b),
and divided the overall data into two equal periods, before the outbreak of the pandemic
(1 August 2018 to 10 March 2020) and afterwards (11 March 2020 to 25 September 2020).
Secondly, unlike other studies, we employed the 15 min high-frequency data of six agricul-
tural futures: cocoa, cotton, coffee, orange juice, soybean, and sugar. This is justified by the
fact that, compared to daily data, high-frequency data allows for a more precise calculation
of the complexity and multifractal properties in a time series (Aslam et al. 2021b, 2021c).
Thirdly, the robust fractal market-theory-based MFDFA of Kantelhardt et al. (2002) is used
in this study. Using this approach, we investigate four key questions: (1) Do agricultural
future markets have multifractal properties? (2) Do agricultural future markets’ multifractal
characteristics change before and after the declaration of the COVID-19 pandemic? (3) Does
the strength of the multifractal characteristics change before and after the declaration of
the COVID-19 pandemic? (4) Do the persistent behavior or autocorrelation characteristics
change before and after the declaration of the COVID-19 pandemic?

The rest of the paper proceeds as follows. Data and methodology are discussed in
Section 2. Section 3 presents the methodology used in this paper, while results are presented
in Section 4. The final section summarizes the key conclusions and recommendations of
the paper.

2. Data Description

Despite the fear of inciting panic or prompting some countries to flag in their efforts,
the World Health Organization (WHO) had to declare the novel coronavirus (COVID-19)
as a global pandemic on 11 March 2020 (Maier and Brockmann 2020). In a few weeks, this
pandemic shaved off nearly a third of the global market capitalization. Numerous studies
have revealed that COVID-19 primarily impacted financial markets in the second and third
quarters of 2020, which is from March 2020 to September 2020 (Aslam et al. 2021b). For
instance, Aslam et al. (2021b) quantified the self-similarity intensity of six stock markets
in Europe and Asia and investigated the quarterly variations in herding behavior using
MFDFA. They discovered that COVID-19 had a variable influence on these markets on a
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quarterly basis, but that the impact peaked in the second quarter and recovered in the third
and fourth quarters of 2020. Hence, following Aslam et al. (2021b), we restrict our period
from 1 August 2019 to 25 September 2020 and split the dataset into two equal periods
of seven months. By using the pandemic declaration date, the intraday prices ranging
from 1 August 2019 to 10 March 2020 refer to the period before the pandemic and prices
from 11 March 2020 to 25 September 2020 form the sample for the period after announcing
the pandemic. To overcome the problem of microstructure noise and duplicate values,
the high-frequency data is aggregated into a 15 min frequency, which is the highest and
best frequency and is in line with (Aslam et al. 2021b; Chen et al. 2022; Zhang and Ma
2021). Due to removal of the duplicate values and different number of trading days in
different months, we have a different number of observations for these time periods. The
list of agriculture commodities, data range, and the number of observations of both time
periods are presented in Table 1. These commodities were chosen solely on the basis of
the availability of intraday data. In Figure 1, the trend shows an instant decline in all
commodity prices after the declaration of the pandemic, except for orange Juice.

Table 1. Data description of agriculture commodities (1 August 2019 to 25 September 2020).

S. No. Commodity
Number Obs. Before
Pandemic (1 August

2019 to 10 March 2020)

Number Obs. After Pandemic
(11 March 2020 to 25

September 2020)

1 US Cocoa 8986 4704
2 US Coffee 5385 4999
3 US Cotton 10,143 9567
4 US Orange Juice 3460 3314
5 US Soybean 9414 8961
6 London Sugar 5421 5014

One of the reasons for this was an increase in the demand of orange juice across the
globe. For the return rates of the agriculture commodity futures, we used the normal
logarithm difference, i.e.,

r(t) = ln p(t)− ln p(t− 1) (1)

where p(t) is the price of a given index at time t. It is clear in Figure 2 that after the pandemic
declaration on 11 March 2020, more volatility returns can be observed in all commodities.
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3. Multifractal Detrended Fluctuation Analysis (MF-DFA)

The procedure of MF-DFA detailed by Kantelhardt et al. (2002) could be briefly
identified as follows.

Considering a time series {Zt, t=1, ..., N} with length N, the first step considers the
construction of the profile X(k), i.e.,

X(k) =
k

∑
t=1

(zt − z) (2)
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where k = 1, 2, 3 . . . , N and z is the observed mean. This profile obtained is divided in
Ns= int N

s nonoverlapping boxes with a length s. According to Kantelhardt et al. (2002),
it is possible to use a final part of the sample, when N is a nonmultiple of s, allowing
to have a total of 2Ns segments, and following the rule proposed by Peng et al. (1994),
i.e., 10 < s < Ns

5 . After this, a local trend is estimated for all 2Ns segments based on the
ordinary least squares, with

F2(s, m) =
1
s

s

∑
j=1
{X[(m− 1)s + j]− xm(j)}2 (3)

for the segments between m = 1 and m = Ns, while for the segments between m = Ns+1 and
m = 2Ns, this is given by

F2(s, m) =
1
s

s

∑
j=1
{X[N − (m− Ns)s + j]− xm(j)}2 (4)

representing xm(j) as the polynomial fit of the segments. Prior functions are averaged,
allowing to obtain the qth-order fluctuation function for any q 6= 0, given by

Fq(s) =

{
1

2Ns

2Ns

∑
ρ=1

[
F2(s, ρ)

]q/2
}1/q

(5)

and for q = 0

F0(s) = exp

{
1

4Ns

2Ns

∑
ρ=1

ln
[

F2(s, ρ)
]}

(6)

Negative values of q represent small fluctuations and positive values represent larger
fluctuations. The value at q = 2 represents the DFA exponent. The value of Fq(s) increases
with s, and performing a log–log regression allows to obtain a power law given by

Fq(s) ∼ Sh(q) (7)

The value of h(q) is the Hurst exponent, which measures the dependence levels of
financial assets (see, for example, (Domino 2011; Pleşoianu et al. 2012)). A value of h(q) = 0.5
implies that the financial market under analysis behaves like a random walk; if h(q) > 0.5
and h(q) < 0.5, that market represents, respectively, persistent and antipersistent patterns.

The Renyi exponent τ(q) can be calculated by using the value of h(q) to measure the
mono- or multifractality behavior of a given series.

τ(q) = qh(q)− 1 (8)

By using the Legendre transformation, the relationship between τ(q) and f (α) can be
written as follows:

f (α) = qα− τ(q) (9)

Through Equations (8) and (9), we can obtain the multifractal spectrum f (α)

α = h(q)− qh′(q) (10)

f (α) = q(α− h(q)) + 1 (11)

with α being the Holder exponent given by

α = hq + q
γhq

γq
− τq (12)
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The degree of multifractality can be quantified by the width of spectrum ∆α and ∆h,
i.e.,

∆h = h(qmin) − h(qmax) (13)

or

∆α = α(max) − α(min) = h(−∞)− h(+∞) =
ln
( a

b
)

ln 2
(14)

A higher width of ∆α or ∆h implies a higher degree of multifractality.

4. Empirical Findings

The estimation of the MF-DFA for each commodity at each period under analysis
provides us the information given in Figure 3, in this case representing the estimations for
the cocoa. The panel (A) (top left) shows the log–log relationship between the fluctuation
function

(
Fq
)

and the time scale s from q = −30 to q = 30, which, in the case under analysis,
exhibits a well-fit straight line. In panel (B), we have the generalized Hurst exponent h(q),
which is a decreasing function of the value of q. Panel (A) has the quickest decline, which
will be consistent with the difference of the maximum and minimum values of h(q). On the
other hand, ∆h indicates the higher multifractality levels and is related with higher degrees
of inefficiency. In panel (A), we have the Renyi exponent, which is nonlinear in the case of
the existence of multifractality, and panel (D) represents the multifractal spectrum, which
identifies multifractality when it is described by a single-humped shape. In conclusion,
Figure 3 shows that there exists evidence of multifractality in cocoa both before and after
the declaration of the pandemic.
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Figure 3. MFDFA results for cocoa. (Panel A) Fluctuation functions for q = [−30,0,+30]; (Panel B)
Generalized Hurst exponent depending on q; (Panel C) Mass exponent t(q); (Panel D) Multifractal
spectrum. On the left is the information for the period before the declaration of the COVID-19
pandemic and on the right is the information for the period after the declaration of the COVID-
19 pandemic.

For the behavior of the remaining commodities, the evidence is rather similar, ex-
cepting the case of the orange juice in the period after the pandemic (see Figures 4 and 5,
showing all the other results). In that case, all the panels show differences when compared
with the other general figures. In panel (A), the log–log relationship shows some instability;
in panel (B), the Hurst exponent decreases sharply from q = −30 to q = 30, then goes up
until q = 5, and decreases again until q = 30; panel (C) is near to a linear relationship, but
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panel (D), representing the multifractal spectrum f (α), also has a single humped-shape,
indicating that the series is multifractal.
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Figure 5. MFDFA results for soybean and sugar. (Panel A) Fluctuation functions for q = [−30,0,+30];
(Panel B) Generalized Hurst exponent depending on q; (Panel C) Mass exponent t(q); (Panel D)
Multifractal spectrum. On the left is the information for the period before the declaration of the
COVID-19 pandemic and on the right is the information for the period after the declaration of the
COVID-19 pandemic.

The generalized Hurst exponents of all commodities future markets over the range
of q ∈ [−30, 30] are shown in Table 2. All the h(q) values for ‘before pandemic’ and ‘after
pandemic’ decrease with the increase of q, confirming that the generalized Hurst exponent
h(q) depends on the value of q, suggesting the presence of multifractality in these markets
for both periods.
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Table 2. Generalized Hurst exponents for the agriculture futures ranging from q = −30 to q = 30.

Q

Before COVID-19 Outbreak After COVID-19 Outbreak

Cocoa Coffee Cotton Orange
Juice Soybean Sugar Cocoa Coffee Cotton Orange

Juice Soybean Sugar

−30 0.7302 0.6568 0.6588 0.7765 0.7007 0.6219 0.6424 0.6658 0.7878 0.7983 0.7559 0.7346
−29 0.7292 0.6556 0.6578 0.7754 0.6996 0.6208 0.6414 0.6648 0.7868 0.7971 0.7547 0.7336
−28 0.7281 0.6544 0.6567 0.7741 0.6985 0.6196 0.6403 0.6636 0.7857 0.7959 0.7535 0.7324
−27 0.7269 0.653 0.6555 0.7728 0.6973 0.6184 0.6391 0.6624 0.7846 0.7945 0.7522 0.7312
−26 0.7256 0.6516 0.6543 0.7714 0.696 0.617 0.6379 0.661 0.7833 0.7931 0.7507 0.7299
−25 0.7243 0.6501 0.6529 0.7698 0.6946 0.6156 0.6366 0.6596 0.782 0.7915 0.7492 0.7285
−24 0.7228 0.6485 0.6515 0.7682 0.6931 0.6141 0.6352 0.6581 0.7805 0.7898 0.7475 0.7269
−23 0.7212 0.6467 0.6499 0.7664 0.6915 0.6124 0.6337 0.6565 0.779 0.788 0.7457 0.7253
−22 0.7195 0.6448 0.6482 0.7644 0.6898 0.6106 0.6321 0.6547 0.7773 0.786 0.7437 0.7235
−21 0.7176 0.6427 0.6464 0.7623 0.688 0.6086 0.6303 0.6528 0.7754 0.7838 0.7416 0.7216
−20 0.7155 0.6404 0.6444 0.76 0.6859 0.6065 0.6284 0.6507 0.7734 0.7814 0.7392 0.7195
−19 0.7133 0.6379 0.6422 0.7574 0.6837 0.6042 0.6264 0.6484 0.7713 0.7787 0.7366 0.7172
−18 0.7108 0.6352 0.6399 0.7546 0.6813 0.6016 0.6241 0.6459 0.7688 0.7758 0.7338 0.7147
−17 0.7081 0.6323 0.6373 0.7515 0.6786 0.5988 0.6217 0.6432 0.7662 0.7725 0.7307 0.7119
−16 0.7051 0.629 0.6344 0.748 0.6757 0.5957 0.6191 0.6401 0.7632 0.7688 0.7272 0.7089
−15 0.7017 0.6254 0.6312 0.7441 0.6724 0.5923 0.6162 0.6368 0.7599 0.7646 0.7233 0.7055
−14 0.6979 0.6214 0.6277 0.7398 0.6688 0.5886 0.613 0.6331 0.7562 0.7599 0.719 0.7017
−13 0.6937 0.6169 0.6237 0.7348 0.6648 0.5843 0.6095 0.629 0.752 0.7545 0.7141 0.6975
−12 0.6889 0.612 0.6193 0.7292 0.6603 0.5796 0.6057 0.6244 0.7472 0.7483 0.7085 0.6927
−11 0.6834 0.6064 0.6142 0.7227 0.6552 0.5743 0.6015 0.6193 0.7417 0.7411 0.7022 0.6873
−10 0.6771 0.6002 0.6085 0.7152 0.6494 0.5682 0.597 0.6135 0.7352 0.7327 0.6949 0.6811
−9 0.6699 0.5933 0.602 0.7066 0.6429 0.5615 0.592 0.607 0.7277 0.7226 0.6865 0.674
−8 0.6617 0.5857 0.5946 0.6964 0.6353 0.5538 0.5867 0.5996 0.7188 0.7107 0.6768 0.6659
−7 0.6521 0.5773 0.586 0.6844 0.6267 0.5453 0.581 0.5914 0.7081 0.6964 0.6655 0.6566
−6 0.6412 0.5682 0.576 0.6702 0.6169 0.5359 0.5753 0.5823 0.6953 0.6792 0.6524 0.6461
−5 0.629 0.5587 0.5646 0.6536 0.6056 0.5262 0.5697 0.5724 0.6797 0.6587 0.6373 0.6343
−4 0.6158 0.549 0.5517 0.6343 0.5929 0.5169 0.5649 0.562 0.661 0.635 0.6203 0.6217
−3 0.6021 0.5393 0.5373 0.6122 0.5785 0.509 0.5611 0.5517 0.6389 0.6098 0.6018 0.609
−2 0.5884 0.5298 0.5215 0.587 0.5624 0.5032 0.5586 0.5425 0.6137 0.5868 0.5826 0.5968
−1 0.5748 0.5203 0.5032 0.5572 0.5443 0.4982 0.5569 0.5346 0.5862 0.5713 0.5633 0.5852
0 0.5612 0.51 0.4807 0.5195 0.5242 0.491 0.5553 0.5275 0.5577 0.5694 0.5446 0.5736
1 0.5474 0.4976 0.4525 0.4695 0.5027 0.4796 0.5531 0.5203 0.5302 0.5842 0.528 0.5611
2 0.5332 0.4816 0.4194 0.4059 0.4804 0.4645 0.55 0.5111 0.5049 0.6079 0.5144 0.5472
3 0.519 0.462 0.3846 0.3398 0.4585 0.4468 0.5461 0.4988 0.4816 0.6268 0.5039 0.5325
4 0.5051 0.4408 0.3525 0.2855 0.438 0.4283 0.5414 0.484 0.4603 0.636 0.4952 0.5177
5 0.4917 0.4203 0.3255 0.2458 0.4198 0.4106 0.5361 0.4686 0.4412 0.6377 0.4874 0.5038
6 0.4793 0.4022 0.3036 0.2173 0.404 0.3949 0.5307 0.4543 0.4246 0.6352 0.4799 0.4913
7 0.4681 0.3867 0.2862 0.1963 0.3907 0.3814 0.5255 0.4417 0.4106 0.6306 0.4728 0.4802
8 0.4582 0.3738 0.2722 0.1804 0.3794 0.3698 0.5205 0.4308 0.3987 0.6253 0.4661 0.4706
9 0.4495 0.363 0.2609 0.1679 0.3698 0.3601 0.5158 0.4215 0.3886 0.6199 0.46 0.4622

10 0.4418 0.354 0.2515 0.1578 0.3616 0.3517 0.5115 0.4135 0.38 0.6147 0.4545 0.455
11 0.4351 0.3463 0.2437 0.1495 0.3546 0.3446 0.5076 0.4066 0.3726 0.6099 0.4495 0.4488
12 0.4293 0.3397 0.2371 0.1426 0.3486 0.3384 0.5041 0.4006 0.3662 0.6055 0.445 0.4433
13 0.4241 0.3341 0.2314 0.1367 0.3433 0.3331 0.5008 0.3954 0.3607 0.6015 0.441 0.4385
14 0.4196 0.3291 0.2265 0.1316 0.3386 0.3284 0.4979 0.3909 0.3558 0.5978 0.4374 0.4343
15 0.4155 0.3248 0.2222 0.1271 0.3345 0.3242 0.4951 0.3868 0.3515 0.5945 0.4341 0.4305
16 0.4119 0.3209 0.2184 0.1232 0.3309 0.3205 0.4926 0.3832 0.3477 0.5914 0.4312 0.4272
17 0.4086 0.3175 0.215 0.1197 0.3276 0.3172 0.4903 0.38 0.3443 0.5887 0.4285 0.4242
18 0.4057 0.3145 0.212 0.1166 0.3246 0.3143 0.4882 0.3771 0.3412 0.5862 0.4261 0.4215
19 0.4031 0.3117 0.2093 0.1138 0.3219 0.3116 0.4863 0.3745 0.3384 0.5839 0.4238 0.419
20 0.4006 0.3092 0.2069 0.1113 0.3195 0.3092 0.4845 0.3721 0.3359 0.5817 0.4218 0.4168
21 0.3984 0.3069 0.2047 0.109 0.3173 0.307 0.4828 0.3699 0.3336 0.5798 0.4199 0.4147
22 0.3964 0.3049 0.2026 0.1069 0.3152 0.305 0.4812 0.3679 0.3315 0.578 0.4181 0.4129
23 0.3945 0.303 0.2008 0.105 0.3134 0.3031 0.4798 0.3661 0.3296 0.5763 0.4165 0.4111
24 0.3928 0.3012 0.1991 0.1032 0.3116 0.3014 0.4784 0.3644 0.3278 0.5748 0.415 0.4096
25 0.3912 0.2996 0.1975 0.1016 0.3101 0.2998 0.4771 0.3629 0.3262 0.5733 0.4137 0.4081
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Table 2. Cont.

Q

Before COVID-19 Outbreak After COVID-19 Outbreak

Cocoa Coffee Cotton Orange
Juice Soybean Sugar Cocoa Coffee Cotton Orange

Juice Soybean Sugar

26 0.3897 0.2981 0.196 0.1001 0.3086 0.2984 0.476 0.3615 0.3247 0.572 0.4124 0.4067
27 0.3884 0.2967 0.1947 0.0987 0.3072 0.297 0.4748 0.3601 0.3233 0.5707 0.4112 0.4054
28 0.3871 0.2954 0.1934 0.0974 0.3059 0.2957 0.4738 0.3589 0.322 0.5696 0.41 0.4043
29 0.3859 0.2942 0.1922 0.0962 0.3047 0.2946 0.4728 0.3577 0.3207 0.5685 0.409 0.4031
30 0.3848 0.2931 0.1911 0.0951 0.3036 0.2935 0.4719 0.3566 0.3196 0.5674 0.408 0.4021

Delta
H 0.3454 0.3637 0.4677 0.6814 0.3971 0.3284 0.1705 0.3092 0.4682 0.2309 0.3479 0.3325

Delta
α

0.4087 0.4324 0.531 0.75 0.4624 0.3942 0.2291 0.3751 0.5341 0.2982 0.4136 0.3977

For instance, before the pandemic, the highest value of h(q) of London sugar, repre-
sented in Table 2, is 0.62 for q = −30, falling to 0.29 at q = 0, and with the lowest value
of 0.38 for q = 30. Likewise, after the pandemic declaration, the highest value of h(q) of
USA cocoa is 0.64 for q = −30, falling to 0.55 at q = 0, and with the lowest value of 0.47 for
q = 30. Comparable declining patterns are found in other markets for both time periods.

The width of the generalized Hurst exponents ∆h is documented in Table 2. The
value of ∆h specifies the degree of the multifractality, with a smaller width meaning lower
multifractality levels (Telesca et al. 2005a).

By comparing ∆h(q) in Table 2 in subperiod 1 of before the pandemic, the orange
juice future market shows the highest multifractality patterns, with ∆h = 0.68, followed by
cotton (∆h = 0.47), while the sugar (∆h = 0.33) and cocoa (∆h = 0.34) markets show the
lowest multifractality, respectively. After the pandemic declaration on 11 March 2020, a
significant change in the multifractality can be observed. After the pandemic declaration,
the cotton future market exhibited the highest multifractality (∆h = 0.47), followed by
soybeans (∆h = 0.35), while the cocoa market showed the lowest degree of multifractality
with multifractality (∆h = 0.17). Overall, an increase in the multifractally ∆h is confirmed
in two out of six (sugar and cotton) markets, while a decline is found in the remaining
four markets. The comparative multiple spectra of all six agriculture future markets are
presented in Figure 6.

The same conclusion can also be obtained by comparing the spectrum width ∆α in
Figure 6 and last row of Table 2. Finally, the COVID-19 pandemic significantly affected the
persistence level of commodity future markets. Before the pandemic, only the USA cocoa
future market (h(q) = 0.53) showed persistent behavior, while the remaining five markets
showed an antipersistence feature. However, all the markets (h(q) > 0.50) exhibit evidently
persistent features with a clear shape and a trace of herd behavior. Somewhat similar pat-
terns are found in the bitcoin market during the COVID-19 pandemic (Aslam et al. 2021b;
Mnif et al. 2020).

The multifractal characteristics reveal the efficiency of financial markets (Anagnostidis
et al. 2016). Consequently, based on the multifractal properties examined, USA cotton
and London sugar showed a decline level while cocoa, coffee, orange juice, and soybean
showed an efficiency improvement after the declaration of the COVID-19 pandemic. The
market efficiency of orange juice improved the most among these six commodities, as it
was the most inefficient market before the pandemic and became relatively more efficient
after the pandemic. Overall, the findings reveal that the COVID-19 pandemic has a great
but varying impact on the multifractal properties and persistence levels of agricultural
future markets.
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5. Conclusions and Discussion

Agricultural commodities are viewed as central resources for the food security and
social stability of any economy. With this background, this paper investigates why it is
critical to monitor their prices, especially during times of increased instability. Additionally,
during times of global uncertainty, commodities are increasingly seen as replacement assets
by investors seeking alternative investments for diversification purposes. Goodell (2020)
describes this pandemic as a worldwide crisis with severe economic harm that has never
been experienced before. This period of economic and social unrest, which is akin to
the GFC of 2007–2008, stands out, and much research has concentrated on analyzing the
effects of the COVID-19 pandemic on various commodity markets (Lu and Zeng 2022;
Sifat et al. 2021; Štreimikienė et al. 2022; Wang et al. 2020a). This, however, does not make
this paper any less valuable. The most significant aspect of this paper is that it splits a
14-month dataset into two equal periods from 1 August 2019 to 10 March 2020 and 11
March 2020 to 25 September 2020. The purpose of doing this is to better understand the
inner dynamics of agricultural commodity markets during an extreme crisis time, i.e.,
March 2020 to September 2020, as found by (Aslam et al. 2021b). They discovered that this
pandemic mostly affected financial markets in the second quarter of 2020, with the third
and subsequent quarters being the period of recovery. In this connection, we investigated
the intraday multifractal behavior of six agricultural futures: USA cocoa, USA cotton, USA
coffee, USA orange juice, USA soybean, and London sugar.
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The findings of this study are as follows: Firstly, all agricultural commodities are found
to have significant multifractal patterns in both periods, i.e., before and after the outbreak
of COVID-19. Secondly, a significant change in the multifractality is observed, where the
multifractality of cotton and sugar increases significantly after the pandemic, while cocoa,
orange juice, and soybean are found to be less multifractal after the pandemic. This indicates
that the market efficiency of cotton and sugar decreases significantly while the market
efficiency of cocoa, orange juice and soybean increase after the pandemic. Interestingly, the
overall results found orange juice to be highly efficient among all commodities. Thirdly,
all the markets have h(q) values greater than 0.5, indicating an increase in the strength of
positive persistence after the COVID-19 pandemic.

Furthermore, our findings are in line with previous studies (Heng et al. 2020; Umar et al.
2021; Wang et al. 2020a). For instance, Wang et al. (2020a) used multifractal detrended cross-
correlation analysis (MF-DCCA) to investigate the effects of the COVID-19 pandemic on the
cross-correlations between the crude oil and agricultural futures markets. They discovered
that, with the exception of the orange juice future market, all agricultural futures’ cross-
correlations rose following the outbreak of the COVID-19 pandemic. Similarly, Akyildirim
et al. (2022) discovered that, during pandemics, orange juice sentiments are the least
correlated with other market sentiments. The possible explanation is that orange juice
was seen as a popular commodity during the pandemic, and many consumers believed
that orange juice would keep them healthy during the worrying times of the COVID-19
pandemic. According to Heng et al. (2020), the dollar sales of orange juice at grocery stores
rose by 50.7% for the four-week period in March-April 2020 in comparison to the dollar
sales of March–April 2019. Similarly, in response to consumers’ altered purchasing patterns,
the futures price for frozen concentrated orange juice increased by 24 percent in mid-March
2020, making orange juice one of the best-performing commodities during the COVID-19
pandemic (Heng et al. (2020).

The existence of multifractality in agricultural commodities suggests that prices have
a pattern and that price volatility has clusters, demonstrating some predictability. This,
however, defies the principles of the Efficient Market Hypothesis (EMH) of Fama (1970)
and presents an exploitable opportunity for investors to outperform the market and attain
abnormal returns. Investors can therefore take this market persistence level into account
when developing their investment strategy. Numerous studies have employed multifrac-
tality and the Hurst exponent to examine the market’s inefficiency to predict changes in
financial market movements (Ali et al. 2021; Alvarez-Ramirez et al. 2008; Aslam et al. 2021a,
2022a). According to our findings, a wider multiple spectrum and a wider range of ∆h are
the signs of greater inefficiency (Cajueiro et al. 2009; Caraiani 2012). These findings also give
authorities better understanding, since multifractality brought about by market complexity
or the lesser development of these markets may cause these inefficiencies (Aslam et al.
2021a; Rizvi et al. 2014).

Hence, our study has different implications for investors, practitioners, managers, and
policymakers. Firstly, the multifractality caused by market complexity or by the lesser
development of these markets may cause these inefficiencies (Aslam et al. 2021a; Rizvi
et al. 2014). This raises the likelihood of herding behavior and irrational speculation,
both of which could skew the expected payoffs from underlying investment evaluation.
Consequently, these findings offer useful information for investors, practitioners, and
managers in obtaining abnormal returns. Secondly, these findings help authorities and
policymakers to implement measures that increase transparency, which will boost the
efficiency of these futures markets, particularly during moments of economic and financial
instability. Thirdly, our findings imply that investors need to be more cautious when
underestimating the risk exposure to agricultural commodities, contrarily to a prevalent
misconception that these commodities provide safe-haven benefits in crisis moments.
Finally, it is essential to use nonlinear approaches to detect and identify all the possible
patterns in the financial markets.
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Despite the findings, it is relevant to identify the possible limitations of this paper,
namely, the fact that it only examines the multifractal properties of agricultural futures
markets before and after the COVID-19 outbreak without the identification of any conclu-
sions about the causes which underlie the physical mechanism or multifractal properties.
Hence, future studies should employ various multifractal approaches to understand the
underlying sources of multifractality in these markets. This study also does not take any
grain-based commodities due to data availability constraints; hence, the inclusion of more
agricultural futures markets should be considered. Moreover, the analysis could also be
extended by examining the impact of geopolitical risk and economic-policy-uncertainty
indicators on the efficiency of these markets. Finally, the application of the rolling window
on the multifractality would also provide more insights regarding the efficiency of these
markets over time.
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Abstract: The conflict between Russia and Ukraine has been causing knock-on effects worldwide.
The supply and price of major commodity markets (oil, gas, platinum, gold, and silver) have been
greatly impacted. Due to the ongoing conflict, financial markets across the world have experienced
a strong dynamic regarding commodities prices. This effect can be considered the biggest change
since the occurrence of the financial crisis in the year 2008, which explicitly influenced the oil and
gold markets. This study attempts to investigate the impacts of the Russian invasion crisis on the
dynamic connectedness among five commodities and the G7 and BRIC (leading stock) markets. We
have applied the time-varying parameter vector autoregressive (TVP-VAR) method, which reflects
the way spillovers are shaped by various crises periods, and we found extreme connectedness among
all commodities and markets (G7 and BRIC). The findings show that gold and silver (commodities)
and the United States, Canada, China, and Brazil (stock markets) are the receivers from the rest of the
commodities/market’s transmitters of shocks during this invasion crisis. This research has policy
implications that could be beneficial to commodity and stock investors, and these implications could
guide them to make many decisions about investment in such tumultuous situations. Policymakers,
institutional investors, bankers, and international organizations are the possible beneficiaries of these
policy decisions.

Keywords: Russia and Ukraine conflict; commodities; G7 and BRIC markets; TVP-VAR; connectedness

JEL Classification: G11; G15; H12; J15

1. Introduction

The conflict between Russia and Ukraine has been causing knock-on effects worldwide.
The supply and price of major commodity markets (oil, gas, platinum, gold, and silver)
have been greatly impacted.1 Due to the ongoing conflict, financial markets across the
world have experienced a strong dynamic regarding commodities prices. This effect can be
considered the biggest change since after the occurrence of the financial crisis in the year
2008, which explicitly influenced the oil and gold markets.2 Given this effect, the price of
both Brent and West Texas Intermediate (WTI) crude oil has climbed to more than USD
100 per barrel on February 24 while facing the Russian and Ukraine conflict. This invasion
has equally changed gas prices, which augmented to USD 3.54 per gallon, and gold prices
crossed the figure of USD 1900 per ounce (Liadze et al. 2022).

Accordingly, the prices of commodities are strongly connected with the stock mar-
ket (Naeem et al. 2022). Therefore, an appropriate connectedness among the five major
commodity markets and G7, and BRIC (Brazil, Russia, India and China) markets may be
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beneficial for investors in their decision-making processes during the Russian and Ukraine
conflict. To the best of our knowledge, this is the first study to examine the rapport between
the G7 and BRIC stock and commodity markets before and during the Russia–Ukraine con-
flict. Thus, the investigation of connectedness among the major commodities and countries
will be beneficial for investors and policymakers regarding right and quick decisions for
easy investment during the Russian and Ukraine conflict as well as better outcomes by
minimizing financial losses.

However, recent studies have found connectedness between the Russia and Ukraine
conflict during the short time frame data on key global economies, such as the United States
of America, Canada, the United Kingdom, and the European Union (Liadze et al. 2022;
Yousaf et al. 2022; Mbah and Wasum 2022). Studies have found negative impacts on the
stock market, commodity price, and energy price (Yousaf et al. 2022; Berninger et al. 2022).
For example, Yousaf et al. (2022) investigated the conflict between Russia and Ukraine in
the G20 and other selected stock markets using the event study approach. They identified
that the day of invasion revealed a strong negative impact of this military action on a
majority of the stock markets, especially on the Russian market. Tosun and Eshraghi (2022)
investigated the financial market reaction to announcements of companies remaining in
Russia during the eventful two weeks following the invasion. They found a higher trading
volume and selling pressure on remainders, and it was difficult to make any effective
decision during the time of political conflict. In general, the Russia–Ukraine war created a
challenging economic impact on other countries and on the global economy. Wang et al.
(2022) revealed that the total volatility spillover increased from 35% to 85%, exceeding
the level seen during the pandemic. The role of commodities changed in both return
and volatility spillover systems. Crude oil became a net transmitter of return spillovers,
whereas wheat and soybeans became net receivers of return spillovers. Silver, gold, copper,
platinum, aluminium, and sugar became net transmitters of volatility. Geopolitical risk
Granger caused the spillover indices. High levels of return and volatility spillovers are
associated with high levels of geopolitical risk (Wang et al. 2022). The purpose of the current
study is to investigate the impacts of the Russian invasion crisis on the financial markets,
in particular to identify the main sources of energy market price changes among G7, BRIC
and the five commodity markets. According to the recent work by Balcilar et al. (2021),
Papathanasiou et al. (2021), and Zhang et al. (2021), the current approach used consists of
the time-varying parameter vector autoregressive (TVP-VAR) coming from Antonakakis
et al. (2020), which improves the classic technique of Diebold and Yilmaz (2012). Moreover,
this method will answer whether these markets’ spillovers or connections are higher during
the Russia–Ukraine war compared to normal times. We have chosen this methodology
because it overcomes restrictions of the basic methodology, as it allows for fluctuations over
time and thus provides a more robust estimate. Additionally, the gradation of every roll
window width is not an obligatory condition, as roll window analysis is not incorporated,
which preserves the use of every available information. Due to the short sample of our
paper (1 September 2021–23 February 2022) and during 24 February–24 March 2022, this
is a good advantage in case of a conflict between Russia and Ukraine. Moreover, G7
economies represent the developed part of the world and have strategic importance in
world GDP, development, trade, investments, and supply chain of commodities (as the
largest consumer of the world in PPP) (Waheeduzzaman 2011; Wei et al. 2020; Jiang et al.
2020). Conversely, BRIC markets have played a momentous role in world development,
trade, investment, and sectoral cooperation since their inception in 2001 (Iqbal 2021). As
a result, BRIC countries in light of other emerging economies (China and India) have
emerged as two leading importers (largest consumer base in terms of population) and
production hubs of the world, whereas Russia is the principal producer and exporter of
energy commodities (Huynh et al. 2020; Shahzad et al. 2019). In the last two decades, the
BRIC market group has attracted a large segment of capital inflows, where the highest
amount of FDI, FII, and strategic cross border investments are being made (Sauvant 2005;
Singhania and Saini 2018; Naeem et al. 2022). Correspondingly, in the last 15 years, the
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pace of development has slowed down in developed countries after the global financial
crisis (GFC) and the European debt crisis, while BRIC countries have emerged as an engine
of world economic growth (Radulescu et al. 2014; Siddiqui 2016).

The empirical analysis discloses that among the other nations, four major economies
including the US, Canada, China, and Brazil are the major receivers of losses among G7
and BRICS countries. Similarly, the analysis displays the fact that gold and silver are
the receivers from the rest of the commodities/market’s transmitters of shocks during
this invasion crisis. Our empirical findings will be of interest to market participants
and policymakers, as they show that among the five commodities, natural gas remains
relatively intact through retransfer mechanisms and can thus form a practical diversification
element when added to a portfolio. Similarly, the central banks from these economies
should proceed carefully regarding the management of these commodities and should
reduce any information asymmetric among the stakeholders of commodities to sustain the
market functioning.

The suggesting sections concerning this manuscript are organized as observed: Section 2
describes the review of existing and past literature on the concerned area. Section 3 contains
the data and methodology of the paper. Section 4 shows results and discussions. Section 5
concludes the study with some policy implications and limitations.

2. Literature Review

In the past, the invasion of Russia on Ukraine was also considered the most crucial
and critical geopolitical disaster, and many worldwide leaders have given their opinions
on this crisis.

The current analysis deems to pursue the resource dependency theory in the current
perspective. This theory has been utilized by previous literature to see the outcomes in
politics. For instance, the analysis of Sprout and Sprout (1957) appeared to not only explore
the physical resources, e.g., geography and metals, but also to check the effect of invasions
on mental factors including thinking capability and other human reactions. Similarly,
another analysis by Pfeffer and Salancik (2003) emphasized the relevant role of scarce and
crucial resources, while Beitz (1979) corresponded by stressing at resource fairness that may
serve as the root of peace. Advancing the discussion, the study of Reuveny and Barbieri
(2014) has explored the relevant impact of war on the utilization of natural resources and
has asserted the significant impact on minerals. Selznick (1949) examined the connection
between political affairs and enterprises and highlighted the role of political affairs even at
the international level on multiple firm-level strategies. Each country owns a specific bundle
of resources, e.g., climate, location suitability, fertile land, resources having high demand,
and excess availability of common natural resources (Davidson 1980). Given to this, the
resource dependency theory supplements a composition to deal with key questions: what
are the resources that Russia lacks in terms of quality and quantity? This theory further
provides the theoretical background regarding energy sources in Ukraine which are lacking
by Russia and urges it for invasion. What are the resources that Russia is interested in
acquiring or relocating to their own country? What will be the policy implications of the
ongoing war on available resources of Russia and the rest of the world? Hence, the theory
facilitates the geographic regions in Ukraine that can be marked as the interest in Russia to
be acquired.

The geopolitical risk (GPR) has changed the relationship between European, Russian,
and global commodities, where European markets and Russian bonds are collectively
transmitting the shocks and affecting returns and volatility in the short and long term
(Umar et al. 2022a). Geographical positions of the countries and firms to the war location
have implications of returns if countries are located within the boundary of 1000 km,
in which it has generated greater negative returns in the four-week time from the war
(Federle et al. 2022). Further, during this conflict, results are generated by negative dy-
namic conditional correlations that USD, JPY, silver, Brent, WTI, and natural gas are found
to be a safe haven compared to the Russian rouble to the as indicated (Mohamad 2022).
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Additionally, Umar et al. (2022b) found the changes in the behaviour of returns among
various financial assets due to GPR even in the normal market conditions, and it is depen-
dent upon the type of market and market situations. Diverse assets depicted different risk
patterns in terms of magnitude and timeframe. Bonds and equities have a war impact in
the long term, and cryptos have nullified in the short term, while the Swiss franc, gold,
silver, green bonds, and oil are the most shock-fighting assets (Bedowska-Sojka et al. 2022).
After the Russian invasion, oil was strongly connected with bitcoin, bonds, gold, US dollar,
and stocks. Oil also changed its status from a net receiver to a net transmitter of spillovers
(Adekoya et al. 2022)

Researchers focused on the relationship between stock markets and energy markets for
taking investment decisions and a better understanding of the price fluctuations between
the markets (Lin and Su 2020; Peng et al. 2021). The relationship between the two markets
have been changed dramatically during the world financial recession, i.e., the global
financial crisis (GFC), the great crash of the stock market (GCS), and the European debt
crisis (EDC) (Wen et al. 2019, 2020a; Aromi and Clements 2019). The COVID-19 situation
also had a significant effect on the global energy markets. In addition, Bouri et al. (2021b)
found that US stock, crude oil and gold spillovers seem to intensify during crisis periods.
Sharif et al. (2020) outlined that price of oil had a significant effect on US markets and
job security, operations of the business, and amenities of mandatory regions were directly
impacted in the period of COVID-19. Moreover, Bouri et al. (2021a) found that the dynamic
total connectedness across the five assets (gold, crude oil, world equities, currencies, and
bonds) was moderate and quite stable during early COVID. Abuzayed et al. (2021) found
that bivariate systemic risk contagion between the global stock market and each individual
stock market evolved during the sample period and intensified as COVID-19 spread
worldwide. Iqbal et al. (2022) found an intensive extreme spillover among the realized
volatility of various energy, metals, and agricultural commodities more intensive during the
COVID-19 pandemic. As a result, the investors have changed their investment decisions
and strategies in stock and energy markets (Mazur et al. 2020; Wen et al. 2020b).

Wars and other natural disasters always hamper economic growth massively. Recently,
the two major global economies of Russia and Ukraine have been in the battle and are
busy assaulting each other. Both countries are utilizing their military powers to encounter
the enemy. This fight has had huge global economic consequences all across the world,
as every country is either directly or indirectly globalized in today’s time. In addition to
such losses, it is further estimated that global GDP will reduce by 1% in the year 2023
due to the globalization effect (World Bank 2022). This loss can be estimated as a USD
1 trillion-dollar reduction in the total GDP of the world. Similarly, the conflict between
Ukraine and Russia will add almost 2% to 3% to net inflation across the world (World Bank
2022). In parallel, Ukraine and Russia are major providers of merchandise that include
wheat, titanium, corn, etc., on the global stage. Thus, the conflict between both countries
can give more to economic complexities regarding the supply of such commodities across
the world. Due to the special rebate received by suppliers, the value of such merchandise
can move beyond the approximations due to the major chunk and contribution of both
states in the global merchandises market. Similarly, this war between Russia and Ukraine
can hamper the supply of smartphones, aircraft, and other similar products and thus can
intensify the price level of such commodities.

Despite the consequences for other nations, this war can lift the inflation rate to
20 percent in Russia during this year. After COVID-19, this war can prove mounting to
more inflation in the Western region of the world. It can be expected that economic growth
in the UK can reduce from 0.8 to 4.0 percent in the year 2022 and to 0.5 percent in 2023.
Currently, the inflation rate in the UK is 7 percent, which can lower to 5.3 percent excluding
the effect of the current war (World Bank 2022). However, the February 2022 outlook
report exemplifies that this inflation can go by the rate of 2.7 percent and 2.3 percent in
2023 and 2024, respectively (European Central Bank 2022). The ongoing war between
Ukraine and Russia has intensified the other economic issues, e.g., the monetary policy
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uncertainty, hampering business confidence, and damaging of overall consumer demand,
which was already at the bottom level due to COVID-19-driven price increases. Referring
to such damages, it can be further expected that the Russia–Ukraine conflict can increase
economic damages on both sides, such as the disruption of trade flows initiates major
shortages in the complex food value chain: production, processing, packaging, storage,
transportation, and retail sales. In turn, manufacturing will result in excessive logistical
costs and high-risk premiums due to missed delivery deadlines and damaged goods (Van
Bergeijk 1995). Meanwhile, studies have investigated the connectedness between the
commodity price during the COVID-19 period and have found that commodity prices
were adversely affected (Mokni et al. 2021; Umar et al. 2021; Iqbal et al. 2022). Wang et al.
(2022) studied geopolitical risk and the systemic risk in the commodity markets under
the war in Ukraine. They found that a role of commodity changes in both return and
volatility spillover systems. Recent studies have found a negative relationship among
the global economy, stock market, energy market, commodity price, and resources due
to the Russia and Ukraine war (Liadze et al. 2022; Yousaf et al. 2022; Mbah and Wasum
2022; Berninger et al. 2022; Deng et al. 2022). Similarly, investors have an additional
penalty due to the ongoing business corporations from the Russia and Ukraine war (Tosun
and Eshraghi 2022). Lastly, the world economy is suffering a lot as a result of war crisis
(Mbah and Wasum 2022).

Theoretical Review

Even though the prevailing literature provides a sufficient indication of the relevant
impact of the Russia–Ukraine 2014 war on the economy, it is uncommon how this ongoing
war will affect the efficiency of the commodity market. The existing situation provides
credible descriptions of the ongoing conflict between Russia and Ukraine from the past,
but fresh evidence is missing. Specifically, several studies are unable to supplement the
theoretical background of such conflicts, and thus, a theoretical explanation is missing in the
literature. Thus, the current analysis argues the testable hypotheses that fully encompass
the role of energy markets and other energy resources, e.g., crude oil in the Russia–Ukraine
war. The scholarly evidence on this interesting phenomenon is missing, and the literature
has not ascertained the direct role of this conflict on energy markets in both countries
(Van de Graaf and Colgan 2017). Belyi (2016) explained some limitations of resource
measurements in his study. However, Stulberg (2017) has argued that energy markets and
energy act as a tactical curb for Russia, Ukraine, and the European Union. Lee (2017) reveals
that the conflict between Ukraine and Russia was aroused due to the historical conflict of
gas. Similarly, extracting some more understanding from the analysis of Colgan (2013), it
can be further identified that four fundamental paths are playing a fundamental role in
the ongoing Russia–Ukraine war. These resources are internal energy markets owned by
Ukraine, existing energy resources in Ukraine, Ukraine’s ability to confront the Russian
energy dominion in the EU market, transit routes of Ukraine’s gas, and the dependency of
the EU and Ukraine on Russian gas (Colgan 2013).

Moreover, recent studies found a negative impact of the Russia and Ukraine war on
the global economy, stock market, energy market, commodity price, and resources (Liadze
et al. 2022; Berninger et al. 2022; Deng et al. 2022). Tosun and Eshraghi (2022) found that
investors have imposed a significant penalty on the remaining firms following the invasion.
The review of Mbah and Wasum (2022) revealed that the global economy has begun to
feel the impact of this crisis. Inflation, which is already ravaging most global economies, is
steadily rising due to the sharp increase in oil, natural gas, and food price shown within
a few days of this crisis. Thus, the world economy is experiencing a negative impact on
household consumption, increased uncertainty, unpredictable stock swings, supply chain
disruptions, bulging utility bills, decreased investment due to political risks, and economic
growth impediments. Yousaf et al. (2022), based on a regional analysis, outlined that
the European and Asian regions are significantly and adversely affected by this event.
Chatziantoniou et al. (2022), in their research, also proved a strong impact of the 2014 war
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and other collapses in recent years; more specifically, oil and the Canadian market from G7
are transmitting strong volatility shocks.

3. Data and Methodology

To understand the spillover effects of before (1 September 2021–23 February 2022) and
during (24 February–24 March 2022)3 the Russian invasion of Ukraine, we use five major
commodity spot prices, namely crude oil (OIL), natural gas (N.GAS), platinum (XPTUSD),
silver (XAGUSD), and gold (XAUUSD), and we use the G7 (Canada, France, Germany,
Italy, Japan, UK, and US) and BRIC (Brazil, Russia, India, and China) MSCI market indices
for the period from 1 September 2021 to 24 March 2022. The chosen countries stand for
major advanced and developing economies, affecting global development with their high
degrees of commodity needs. Moreover, the data were collected from the Bloomberg
database system.

As per Table 1, all the commodities are yielding positive average returns. Except for
Canada, all other countries are experiencing a negative average return. Natural gas and
crude oil are the most volatile commodities, and Russia has shown the highest volatility
followed by the UK and Italy. Here, we may undoubtedly observe the direct impact of
the Russian invasion on commodities as well as markets4. Here, in Table 1, other than
platinum and natural gas, all other commodities including all the sample markets are
having negative skewness, which shows that the tail of the distribution is left-skewed and
longer or fatter towards the left. Gold, silver, and platinum are out of commodities, and
Brazil, the US, and Japan are nearing the standard value of Kurtosis, i.e., 3, which depicts
the mesokurtic shape of returns in this distribution. All returns series are stationary at a 1%
significance level as per the unit root test of the ADF test (Dickey and Fuller 1979), and the
Philips–Perron test (Phillips and Perron 1988).

Table 1. Summary statistics of daily returns of five commodities, G7, and BRIC markets.

Commodities and
Stock Markets Mean Std. Dev. Skewness Kurtosis JB ADF PP

Gold 0.001 0.008 −0.477 3.728 8.34 *** −26.01 *** −25.58 ***
Silver 0.001 0.016 −0.395 3.806 7.38 *** −17.34 *** −17.40 ***
Platinum 0.001 0.017 0.323 3.685 5.13 *** −16.04 *** −16.06 ***
WTI Crude Oil 0.004 0.023 −0.685 8.375 178.17 *** −19.66 *** −19.72 ***
Natural Gas 0.001 0.058 0.559 5.960 57.96 *** −16.76 *** −16.93 ***
Canada 0.001 0.010 −0.291 4.018 7.97 *** −23.75 *** −24.80 ***
France −0.001 0.014 −0.987 6.573 96.50 *** −17.83 *** −18.98 ***
Germany −0.002 0.015 −0.618 7.370 119.45 *** −19.66 *** −18.76 ***
Italy −0.002 0.024 −2.521 32.564 5209.36 *** −25.55 *** −24.57 ***
Japan −0.001 0.011 −0.325 3.326 3061.89 *** −13.04 *** −13.03 ***
UK −0.002 0.024 −5.770 58.843 18,832.04 *** −15.27 *** −16.18 ***
US −0.001 0.011 −0.258 3.168 1703.51 *** −11.49 *** −11.46 ***
Brazil −0.001 0.017 −0.308 3.173 2369.90 *** −12.32 *** −12.35 ***
Russia −0.009 0.065 −3.918 28.792 4208.21 *** −18.93 *** −18.65 ***
India −0.001 0.016 −2.902 20.200 1908.44 *** −11.29 *** −11.29 ***
China −0.002 0.019 −1.629 14.153 781.84 *** −15.21 *** −15.22 ***

Note: The above table illustrates the descriptive statistics for five commodities, G7 and BRIC markets (gold, silver,
platinum, WTI Crude Oil, natural gas, Canada, France, Germany, Italy, Japan, UK, US, Brazil, Russia, India, and
China). The period was selected daily from 1 September 2021 to 15 March 2022. Moreover, Std. Dev., JB, ADF, and
PP represent standard deviations, Jarque-Bera, Augmented Dickey and Fuller, and Phillip and Perron, respectively,
with superiors signifying *** p < 0.01.

Further, from Figure 1, clear spikes are detected at the end of February and March
during the invasion time. Here, all the commodities are presenting positive peaks, while
gold, platinum, and crude oil have experienced a greater intensity of volatility (Dodd
et al. 2022; Costola and Lorusso 2022). Conversely, all the markets exhibit a downfall, i.e.,
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negative volatility has greater impacts than positive shocks supported by many past studies
(Dimitriou et al. 2013; Boungou and Yatié 2022; Boubaker et al. 2022).
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To examine the return spillovers between the five major commodities, G7 and BRIC
markets in a time-varying manner, we utilized the TVP-VAR method of Koop and Korobilis
(2014) and integrated it using the connectedness method of Diebold and Yilmaz (2014). This
particular system enables the variations to differ in time through a Kalman filter evaluation,
which depends on the decay elements. By doing this, the TVP-VAR method eliminates the
concern of the frequently randomly selected rolling window size, which might cause quite
unpredictable or squashed parameters and a lack of important observations (Antonakakis
et al. 2018, 2020; Gabauer and Gupta 2018; Korobilis and Yilmaz 2018). This version
also provides unique qualities to acknowledge prospective structural breaks and offers
considerable factors to acknowledge the connection amongst the factors.

Based upon the Bayesian information criterion (BIC), an autoregressive parameter
vector method with time-varying (TVP-VAR) by Antonakakis et al. (2020) is built on the
subsequent formula:

yt = AtZt−1 + εt εt ∼ N(0, Σt) (1)

vec (At) = vec (At−1) + ξt ξt ∼ N(0, Ξt) (2)

where yt, Zt−1 and εt are the K× 1 dimensional vector, and At and Σt are the K× K dimen-
sional matrices. vec (At) and ξt are K2 × 1 dimensional vectors, whereas Ξt is a K2 × K2

dimensional matrix. As the dynamic connectedness approach of Diebold and Yilmaz
(2012, 2014) rests on the Generalised Forecast Error Variance Decomposition (GFEVD) of
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(Koop et al. 1996; Pesaran and Shin 1998), it is required to transform the TVP-VAR to its
TVP-VMA representation by the Wold representation theorem:

yt =
∞

∑
h=0

Ah,t, εt−i where A0 = IK.

The H-step ahead GFEVD models the impact a shock in series j has on series i. This
can be formulated as follows:

θ
g
ij,t(H) =

∑H−1
h=0

(
e′i AhtΣtej

)2

(e′jΣtej)∑H−1
h=0 (ei AtSt A′tei)

(3)

θ̃
g
ij,t(H) =

θ
g
ij,t(H)

∑K
k=1 θ

g
ij,t(H)

(4)

where ei is a the K× 1 dimensional zero vector with unity on its ith position. As θ
g
ij,t(H)

stands for the unscaled GFEVD (∑K
j=1 ζ

g
ij,t(H) 6= 1), Diebold and Yilmaz (2009, 2012,

2014) suggested to normalize it by dividing θ
g
ij,t(H) by the row sums to obtain the scaled

GFEVD, θ̃
g
ij,t(H).

The scalable GFEVD is at the core of the connectivity approach and facilitates calculat-
ing the total directional connectivity to (from) all indexes from (to) index i. While the total
directional connectivity TO describes the effect that index i has on all the others, the total
directional connectivity OT describes the impact that all indexes have on index i. These
connectivity steps can be calculated by:

Cg
i→j,t(H) =

K

∑
j=1,i 6=j

θ̃
g
ji,t(H) (5)

Cg
i←j,t(H) =

K

∑
j=1,i 6=j

θ̃
g
ij,t(H) (6)

Computing the difference between the TO and the FROM total directional connected-
ness results in the net total directional connectedness of series i:

Cg
i,t(H) = Cg

i→j,t (H)− Cg
i←j,t (H) (7)

4. Results and Discussion

This study was conducted on five commodities, G7, and BRIC countries before and
during the Russia–Ukraine war. During the invasion crisis, a drastic rise in the prices of
commodities, a dramatic fall in the prices of securities, and a huge setback in trade and
cross-border investments, more specifically in G-7 and BRIC economies (Wang et al. 2022;
Saâdaoui et al. 2022; Orhan 2022) has occurred. This has led to high volatility around the
world, especially from the invasion crisis (February 2022-on going). We used daily prices
and yield data for five commodities and twelve markets (most developed and developing
economies across the world). The data were collected from the Bloomberg database, by
applying the formula: ri,t = ln(pi,t)− ln(pi,t−1), daily return was calculated.

4.1. The Connectedness Network Spillovers

This Russia–Ukraine war has shattered economic activities, trade patterns, market
returns and commodities supply chains. We applied the network connectedness of the
TVP-VAR method suggested by Koop and Korobilis (2014), which is an advanced version
of the traditional Diebold and Yilmaz (2012, 2014) method and estimate for the return
spillovers amongst the sample commodities and markets for the period 1 September 2021
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to 24 March 2022. Invasion effects can be observed from the results of the invasion on the
returns connectedness on commodities and on all sample markets.

From Figure 2a, it can be asserted that prior to the occurrence of the invasion crisis,
platinum and natural gas were net recipients of spillovers, and the remaining commodities
were net transmitters. It is evident that there is strong connectedness between gold and
silver, as both commodities massively influence each other. This description relating to gold
and silver has also been stated by (Balli et al. 2019; Naeem et al. 2022; Mbah and Wasum
2022) in their studies. Conversely, the US, China, Japan, and Brazil are the net transmitters
with comparatively low intensity, and the rest are recipients. It is quite apparent in the
case of capital markets that the UK and other European markets are the most connected
markets due to a member of regional economic integration (EU) in the sample countries
transmitting the risk/return to each other among European countries. Canada is one of the
largest transmitters in the network and is connected to the US, UK, Italy, Germany, and
France. The UK is the largest receiver of the spillovers due to major EU countries in the
sample data. Before the crisis, Russia, the US, India, China, Japan, and Brazil reflected a
lesser connectedness pattern.

Subsequently, an opposite picture is displayed in Figure 2b, where a nest of connections
has been presented not only among commodities and capital markets but also within each
other, which reflect the consequent effects of the crisis already proven by (Wen et al. 2020a;
Bouri et al. 2021a, 2021b; Umar et al. 2022a) in the past, such that commodities were also
treated as an alternative investment, more particularly gold and silver. During the invasion
crisis, gold and silver are net transmitters, and crude oil, platinum, and natural gas are
net recipients. Conversely, most of the capital markets are net transmitters, as they are
most affected by the crisis, but only the US, Brazil, China, and Canada are the recipient(s).
Conclusively, the ongoing invasion has enormous consequences for sample countries, and it
has affected the overall economic positioning of all the sample markets. From the literature,
the studies of (Mazur et al. 2020; Bedowska-Sojka et al. 2022; Federle et al. 2022) have also
asserted similar effects in the past.

Additionally, a nest is formed among the commodities and markets reflecting high
intensity of volatility spillover because risk is being transmitted among them during this
GPC. During war, gold and silver among commodities and Japan from markets changed
their status from net transmitters to net receivers (Wang et al. 2022). Conversely, natural gas,
platinum, and Canada turns net transmitters during the Russian invasion. An interesting
observation can be seen that commodities were hardly connected with markets during
pre-war time, but huge spillover connectedness is detected during the war (Wen et al. 2020a;
Bouri et al. 2021a; Umar et al. 2022a).
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Figure 2. Network connectedness spillovers between the five commodities, G7, and BRIC markets.
Additionally, within the network, the size of the node indicates the magnitude of the contribution of
every index to the connectivity of the system, while the colour indicates the origin of the connectivity.
The size of the node indicates the level of overflow, and the colour determines whether the market is a
net sender (green) or a recipient (pink) of spillover. The finite directional layout algorithm determines
the position of the vertices, with the number of vectors determining the route of the vertices. The
width of the arrow indicates the strength of the multiple gradients, and the colour determines the
direction of the gradient from the strongest (red) to the weakest (black). Note: The outcomes are
constructed on a first-order TVP-VAR model with a first-order delay length and a 20-level generalized
forecast error variance within the estimates. (a) Pre-Russian invasion of Ukraine. (b) During Russian
invasion of Ukraine.
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4.2. Averaged Total Returns Spillovers

To clarify the effect of ongoing GPC, we have also presented the total time-varying
(averaged total returns) spillovers between the five commodities and all the sample coun-
tries. In Figure 3, it is shown that before the start of war, the spread of COVID-19 was
settling down. The spillover effect was decreasing from its peak level of 86% during the
second wave of COVID-19 in the month of September 2021 to around 57% in the month
of January 2022. However, this spillover augmented in February due to the sudden start
of border tensions between the two companion counterparts. After this, a strong spike
in spillover effect was observed that crossed the level of 65%. However, this increasing
level stopped and settled at 60%, as the war force was limited and peace talks between the
two countries were opened. This again supports the findings of (Adams et al. 2015), which
suggest that return spillover collectively increased among all the commodities and markets
during war crises (Boungou and Yatié 2022; Chatziantoniou et al. 2022; Umar et al. 2022b).
In the process of such uncertain events, even limited diversification opportunities were
available due to a high degree of spillovers among all markets and commodities (Wen et al.
2020a; Jiang et al. 2020; Naeem et al. 2022).
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Figure 2.

4.3. Net Total, “To”, and “From” Return Spillovers

To better understand the spillovers, more specifically during critical periods, we
analysed the time-varying behaviour of interconnectedness between commodities and
stock markets. Consequently, we also applied the total return spillovers (TO, FROM, NET)
as exhibited in Figures 4–6 from all commodities and markets to each commodity and
market, respectively. In Figures 4 and 5, total dynamic spillovers to/from each series are
displayed and are bidirectional.

Figure 4 shows the spillover transferred to other commodities and markets, where
except for natural gas, all other commodities showed a substantial return spillover to other
commodities and markets. Platinum, silver, and gold have shown strong spillover variation
during the months of February and March even before the invasion started because Russia
is one of the largest exporters of these commodities in the world markets 5. Conversely,
almost every market has transmitted return spillover to other markets, and some have
reflected spillover effects before the war as well, but post-war peaked spikes can be seen in
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each market. Canada seems to be exceptional, as it shows a continuously rising spillover
effect since September 2021 due to a slowdown in the economy, but the spillover was
further aggravated during the event (Sher 2020). Another important observation is that G7
(except Canada) markets were largely impacted by this war (Federle et al. 2022; Umar et al.
2022b). The US, India, China, and Japan are the largest transmitters to commodities and
other markets of the study. This is proven because the US and Japan are one of the largest
economies, while India and China are the principal emerging economies in the world.

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 12 of 20 
 

 

have reflected spillover effects before the war as well, but post-war peaked spikes can be 

seen in each market. Canada seems to be exceptional, as it shows a continuously rising 

spillover effect since September 2021 due to a slowdown in the economy, but the spillover 

was further aggravated during the event (Sher 2020). Another important observation is 

that G7 (except Canada) markets were largely impacted by this war (Federle et al. 2022; 

Umar et al. 2022b). The US, India, China, and Japan are the largest transmitters to com-

modities and other markets of the study. This is proven because the US and Japan are one 

of the largest economies, while India and China are the principal emerging economies in 

the world. 

 
Figure 4. Total return spillovers “TO” others. Note: See Figure 2. 

From Figure 5, quite a different image is observed, as WTI crude oil is a prominent 

recipient of return spillover because EU countries are consuming almost 40% crude oil 

from Russia (Schiffling and Valantasis Kanellos 2022). Next, platinum, gold, silver, and 

natural gas (less intensity) are also receiving return spillover from other commodities and 

markets, but gold and natural gas are experiencing comparatively less spillover effects. In 

the case of capital markets, other than Canada, all other markets show huge spikes of re-

turn spillover from other commodities and markets. Importantly, all European countries 

were experiencing (receiving) spillover effects not only before the war but also during the 

war, as they have strong trade ties with both warring countries (Jiang et al. 2020; Berninger 

et al. 2022; Adekoya et al. 2022). Regarding the BRIC countries, Russia, China, and India 

are the key players in return spillovers from the commodities and capital markets. 

Figure 4. Total return spillovers “TO” others. Note: See Figure 2.

From Figure 5, quite a different image is observed, as WTI crude oil is a prominent
recipient of return spillover because EU countries are consuming almost 40% crude oil
from Russia (Schiffling and Valantasis Kanellos 2022). Next, platinum, gold, silver, and
natural gas (less intensity) are also receiving return spillover from other commodities and
markets, but gold and natural gas are experiencing comparatively less spillover effects.
In the case of capital markets, other than Canada, all other markets show huge spikes of
return spillover from other commodities and markets. Importantly, all European countries
were experiencing (receiving) spillover effects not only before the war but also during the
war, as they have strong trade ties with both warring countries (Jiang et al. 2020; Berninger
et al. 2022; Adekoya et al. 2022). Regarding the BRIC countries, Russia, China, and India
are the key players in return spillovers from the commodities and capital markets.
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Additionally, it is observed from Figure 6 that all the commodities are net recipients
of return spillovers throughout the sample period, but the quantum is less in the case of
natural gas. Crude oil and gold are the most impacted commodities from this invasion crisis,
and it is supported by the outcomes from past studies (Billah et al. 2021; Chatziantoniou
et al. 2022). Contrariwise, except for the US, China, Japan, and Brazil, all the remaining
countries are net transmitters of return spillovers; here, France, Germany, the UK, Italy, and
India show rocket spikes. Similar findings were proven by (Adams et al. 2015; Boungou
and Yatié 2022; Yousaf et al. 2022; Chatziantoniou et al. 2022) during the war and pandemic
crisis situations. All markets are either net recipients or transmitters post-wartime, but
India is the only country that was initially a net transmitter and at the end of March, it
turned into a net recipient market. This is because the Indian market recovered from the
shock nearly to its pre-war level. It is evidently important for the investors, hedgers, and
diversifiers from the world to capitalize on this finding on the line of (Mirzaei et al. 2021;
Bedowska-Sojka et al. 2022; Mohamad 2022) for international investment diversification.

In past studies, (Yoon et al. 2019; Mensi et al. 2022) have suggested that crisis situations
place more emphasis on spillovers, which is somehow matched with this research outcome,
i.e., the commodities are total positive transmitters, and at the same time, net total spillover
is negative. Hence, all the commodities are net recipients from other commodities and
markets. Conversely, our empirical results clearly proved that from the sample G7 and
BRIC markets, the US, China, Japan, and Brazil are the net recipients, and the remaining
markets have transmitted their losses to other markets and commodities. Thus, special
attention should be given to France, Germany, UK, Italy, and India, who have shown rocket
spikes (Zhang et al. 2020; Cepoi 2020; Boungou and Yatié 2022; Yousaf et al. 2022), which
has proven to be similar to findings in the research of past crisis situations.
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4.4. Robustness Checks

In this particular section, we performed a few robustness analyses. Along with the
TVP-VAR-based connectedness outcomes, we provide 50-day rolling-window VAR and
quantile VAR (QVAR) results. Various window sizes happened to be utilized; nevertheless,
the 50-observation rolling window revealed close correlations with the TVP-VAR results
and is also utilized as a benchmark model in Diebold and Yilmaz (2009, 2012). Given that a
VAR model could be determined as an equation-by-equation ordinary least squares (OLS)
style, it is a provisional mean-based method and thus is vulnerable to outliers. Suppose
we choose each formula by a quantile regression (or the slightest absolute deviation (LAD)
regression), in such a case, we concentrate on the conditional median-based computation
and can thus probably eliminate the outlier sensitivity issue of the VAR model. Although the
dynamics of all three models appear quite comparable, a deeper look discloses that the TVP-
VAR model readjusts quicker than its other options, as stressed in Antonakakis et al. (2020)
and Korobilis and Yilmaz (2018). This is essential for the forecast of the interconnectedness
and thus the risk of the analysed system. This time delay is not too problematic if we only
want to track the evolution during the crises. Nevertheless, the outlier sensitivity issue of
the VAR model causes inaccurate results, which are more apparent in the Russia–Ukraine
war regime.

Figure 7 explains two various sensitivity analyses. Panel A shows the variations in
the dynamic total connectedness by readjusting the forecast horizon. We observed that
after January 2022, the variations in the measurement enhanced significantly. This could be
discussed because the network was more consistent during the Russia–Ukraine war, which
showed a boost in its efficiency. Additionally, the variations in the dynamics appeared
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to smooth out until the completion of the period, which might lead to the switch of the
sample markets back to standard time.

Lastly, Panel B shows the variant of the dynamic connectedness when we enabled
the decay factor of the variance–covariance to presume various values. Thus, the decay
factor of the VAR coefficient was kept constant at 0.99 because it was unconvincing that the
connection throughout variables transforms from one day to another by more than 1%. We
discovered that the dot grey area showing the variant of the dynamic connectedness by
determining various TVP-VAR requirements did not consist of the dynamic connectedness
of the VAR and QVAR values. This marks the time delay issue of the rolling-window
models again. The VAR model acted significantly dissimilar to the other two models after
January 2022, while the QVAR and the TVP-VAR model shared comparable co-movements.
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Our robustness results are also consistent, where we found that after January 2022, the
variations in the measurement enhanced significantly and the network was more consistent
during the Russia–Ukraine war, which shows a boost in its efficiency. Furthermore, the
variations in the dynamics appeared to smooth out until the completion of the period,
which might lead to the switch of the sample markets back to standard time. The decay
factor of the VAR coefficient was kept constant at 0.99 because it was unconvincing that the
connection throughout the variables transforms from one day to another by more than 1%.
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5. Conclusions, Policy Implications, and Limitations of the Study

This research investigated the effects of the Russian invasion crisis on the dynamic
connectedness between five commodities, G7, and BRIC (leading stock) markets. This study
contributed many dimensions to the literature on the spillovers of returns and volatility
among sample commodities and markets during GPC caused by the Russian attack on
Ukraine. More specifically, return spillovers and volatility behaviour were dissimilar in
neighbouring markets (EU) and non-neighbouring markets. This study found that due to
this invasion crisis, a very strong connectedness among all commodities and markets (G7
and BRIC) exists. Furthermore, the findings display that gold and silver are the receivers
from the rest of the commodities and all the sample markets, whereas platinum, natural gas,
silver, and crude oil are the transmitters of shocks during this invasion crisis. Except for the
US, Canada, China, and Brazil (recipient), all other countries are net transmitters, where
European countries have shown large intensity. Some recent studies found in the literature
have also supported the current conclusions of this study, such as (Zhang et al. 2020; Cepoi
2020; Boungou and Yatié 2022; Wang et al. 2022; Yousaf et al. 2022; Chatziantoniou et al.
2022). These studies unveil the phenomenon regarding high market contagion in phases of
financial crises in the wake of a huge gain in connectedness in several commodities and
financial markets. Particularly, during such a war crisis, global uncertainty has increased
and influenced the time-varying connectedness patterns between the commodities and
capital markets.

Furthermore, the time-varying net connectedness results express strong responsive-
ness behaviours among all commodities and capital markets, more specifically among
EU markets. This study has policy implications that could be beneficial to commodities
and stock investor decisions about investments and hedging in such tumultuous situa-
tions. Policymakers, institutional investors, bankers, and international organizations are
the potential users to make policy decisions. Geopolitical risk level and connectedness
amongst sample commodities and markets could be the guiding force for policymakers to
understand the level of systematic risk, in light of these links between commodities and
their effect on financial markets, and they could be utilized to prepare strategies to diminish
the effects of return spillovers between commodities and stock markets in such crises.

This study was conducted in during a specific period and concluded in a short time,
which carries some limitations and will set the path for future research. Due to the paucity
of time and dynamicity of the environment, this study has some limitations. First, from
the BRICS combination, this study drops South Africa because BRIC countries are the
top GDP contributor countries among these major emerging economies, while the South
African economy (market) is the least integrated with the rest of the world in terms of
trade, investments, markets, and commodities flow6 (Waheeduzzaman 2011; Wei et al. 2020;
Billah et al. 2021). Second, this study also left out Ukraine and Gulf markets which are the
main sources of the commodities, more specifically oil and natural gas. Future research
can target these research gaps to give a more robust understanding of this geopolitical
crisis. Moreover, further studies can be conducted on sectoral indexes for a wide-ranging
investigation of the dynamics of sectoral changes and their risk and returns. However, this
study was conducted immediately after the start of the war, and the results are showing
short-term consequences; future research might be conducted by taking long-term data sets
post-war, which will be useful for diversifiers and hedgers post-war.
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Notes
1 Read more: https://www.reuters.com/business/energy/is-war-ukraine-impacting-russian-gas-supplies-europe-2022-03-07/

(accessed on 20 June 2022) and https://www.eia.gov/todayinenergy/detail.php?id=51498 (accessed on 20 June 2022).
2 Read more: http://allcoinpedia.com/russia-ukraine-conflict-and-its-impact-on-global-markets/ (accessed on 20 June 2022).
3 According to The Guardian website, on 24 February 2022, Russia launched a full-scale invasion of Ukraine: https://www.jw.org/

en/library/series/more-topics/russia-invades-ukraine-bible-meaning-hope/ (accessed on 20 June 2022).
4 More details at: https://www.jpmorgan.com/insights/research/russia-ukraine-crisis-market-impact (accessed on 20 June 2022).
5 Read more: https://www.reuters.com/business/energy/is-war-ukraine-impacting-russian-gas-supplies-europe-2022-03-07/

(accessed on 20 June 2022) and https://www.eia.gov/todayinenergy/detail.php?id=51498 (accessed on 20 June 2022).
6 Read more at: https://www.statista.com/topics/1393/bric-countries/#dossierKeyfigures (accessed on 20 June 2022).
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Abstract: Considerable studies have examined the relationship between commodity markets and
stock markets. This paper studies the cyclical relationship between commodity markets and stock
markets with implications for investing based on index relationships. Stock markets are represented
by the U.S. S&P 500 index and aggregate commodity markets by the U.S. producer price index
(PPI). Tradeable market indexes readily available to investors, namely the S&P GSCI Index and
the Bloomberg Commodity Index (BCOM), are also studied. An optimal bandpass filter is used to
estimate the cyclical component using a pricing-performance measure of the S&P 500 relative to the
PPI, based on annual data from 1871 to 2022. The S&P GSCI and the BCOM indexes are also used to
test the robustness of the findings. The impacts of the financial crisis of 2008 and the coronavirus
pandemic are also assessed. The overriding conclusion of the study is that a cyclical relationship exists
between stock markets and commodity markets for both aggregate and tradeable indexes which can
last, from peak to peak, approximately 31 years. Measuring returns and risks in a manner consistent
with these cycles can shed new light on the usefulness of commodity investing via tradeable indexes
in seeking efficient portfolios.

Keywords: commodity; stock; markets; cycles; investing; risk; returns

1. Introduction

Commodity markets go hand in hand with the history of mankind. In the early
part of this history, commodities were used primarily as sources of human food, feed,
and for rudimentary toolmaking. Access to commodity markets, either through cash
transactions (spot) or futures markets (derivatives), has now become widespread, and the
monetary value of commodities in financial markets today is worth trillions of dollars.
Surprisingly, however, it has been only over the past two decades that investment interest in
commodity markets by market observers, institutional investors, and academic researchers
has increased (e.g., Bannister and Forward 2002; Beenen 2005; Rogers 2004; Fabozzi et al.
2008; Zapata et al. 2012; Rouwenhorst and Tang 2012; Bhardwaj et al. 2015; Irwin et al. 2020;
Hernandez et al. 2021; Billah et al. 2023, among many others). One factor contributing to the
paucity of adopting commodities in investor’s portfolios has been driven by misconceptions
surrounding commodities, such as the fact that commodities are riskier than equities, there
is no relationship between equity and commodity returns, and commodity risk premiums
are different from those of equities (facts which the above literature has helped demystify).
While many of the unique aspects of commodity markets continue to be issues of research
interest, one phenomenon of a recurrent nature that has gained interest in the most recent
investment literature is that of the relationship between stock and commodities prices that
in the words of Prescott (1986) can be phrased as a cyclical phenomenon. Zapata et al.,
using an econometric model of cycles, were the first to quantify this relationship following
the work of Banister and Forward using aggregated time series data. Rogers, known as
a commodity investing guru in the business news media, calls commodities “hot” and
“the world’s best market,” Irwin et al. find that the real-time performance of commodity
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futures investing has been disappointing. When considering investing in commodities,
it must be noted that commodity markets have characteristics that separate them from
traditional equities. First, the demand for most commodity products is inelastic (Tomek and
Robinson 1991), and with a growing population, the demand for commodities continues
to increase (Evans and Lewis 2005). Second, commodities are positively correlated with
inflation, particularly unexpected inflation (Gorton and Rouwenhorst 2006), and as a result,
commodities may serve as an inflation hedge. Third, commodities can provide equity-like
returns; Bodie and Rosansky (1980), for instance, found that using commodity and stock
returns from 1950–1976, the mean returns on commodity futures were similar to those
of stocks. Likewise, Greer (2000), after analyzing the returns of stocks and commodities
during the period 1970 to 1999, concluded that the returns in both assets were similar.
Fourth, commodity price behavior is strongly linked to fluctuations in commodity-specific
market fundamentals (supply, demand, biology, and natural factors) which may not affect
traditional equities. These characteristics make commodities worth considering in the
search for efficient portfolios.

While commodity markets are unique, their relationship to broad financial markets
has gained recent interest in the finance literature, and it has been observed that their
relationship tends to fluctuate with the different phases of the business cycle (Bhardwaj
and Dunsby 2013). Naturally, commodity markets have exposure to natural and biological
disasters, geopolitical events, financial crises, etc., that can impact the nature of their
relationship to equity markets and, as such, impact the returns and risks trade-offs resulting
from each asset’s price dynamics.

The purpose of this article is to investigate the historical pricing performance of
commodity markets relative to traditional equities, and consistent with Zapata et al., pricing
performance is used to measure the relative strength (RS) of the relationship between the
S&P 500 index and an aggregate measure of commodity prices, the U.S. producer price
index (PPI), over the 1871–2022 period. Unique to this article, however, is the introduction
of tradeable indexes, in particular, the first major investible commodity index (the S&P
GSCI), and the Bloomberg Commodity Index (BCOM)1, which have data available starting
in 1960 and 1970, respectively, and that later became available to the investment community.
The article further investigates the impact of two major crises, the financial crisis of 2008–
2009 and the COVID-19 pandemic, on the RS relationship and historical cyclical pattern
between commodity markets and the broad equity markets prior to conducting the cyclical
analysis. This is carried out in order to ascertain that the cycles approach presented later
in this paper does not require special modeling adaptations. It turns out that the financial
crisis of 2008–2009 had a longer recessionary impact on the RS performance while the
impact of the COVID-19 pandemic on the RS measure was more transitory. However, both
impacts did not appreciably change the long-term trend in the RS but it took much longer
to return to the trend after the financial crisis. The identified cyclical pattern that emerges
is used to further measure returns and risks to commodity investing in long-investment
horizons that are consistent with the RS pattern. The article focuses strictly on commodity
markets using two tradeable commodity indexes, one of which is the BCOM, is based on
futures markets. The overriding conclusion of our research is that the cyclical relationship
between commodities and traditional equities remains very strong, lasting approximately
31 years from peak to peak, in consistency with published research. Unique to this article
is the conclusion that the aggregate relationship between commodities and equities is
maintained at a much lower level of disaggregation using tradeable indexes that have
been available to investors for the past several decades. The finding is relevant to portfolio
analysis that stocks and commodities alternate in pricing leadership in a synchronized
“bulls” versus “bears” interplay that lasts almost two decades for each market.

2. Review of Literature

The cyclical phenomenon in commodity prices (agriculture-crops and livestock, indus-
trial and precious metals, and energy) in relation to equity markets has been of increasing
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interest to market observers, investors, and academic researchers over the past two decades.
A Web of Science (WoS) search of the literature using the keywords “commodity cycles and
agriculture” and the “All Fields” option in the database, over the period January 2002 to
November 2022, and conducted in early December 2022, revealed an increasing growth in
publications. We added the word “agriculture” to the search to ascertain the inclusion of
agricultural commodities. Traditionally, studies of commodity prices and volatility have
focused on metals and energy, but agricultural commodities (spot and futures markets)
have been of increasing investor interest. The results generated a cross-sectional literature
including energy fuels, metals, environmental sciences, and agriculture multidisciplinary.
The number of publications per year has increased from 4 in 2002 to 34 by November 2022;
similarly, total citations over the same period increased from 4 in 2002 to more than 1100.
Selected and well-cited articles from these results are reviewed.

In addressing the inquiry of whether commodity-serving companies deserve investor
capital, Bannister and Forward (2002) graphically examined the U.S. equity market index
performance relative to the commodity market index and observed that stocks and com-
modities have alternated leadership in a regular cyclical wave averaging 18 years. They
observed that when commodity prices declined, stocks rose 11.6% per year (stock leader-
ship), but stocks increased only 3.4% per year during inflation (commodity leadership),
thus lending support to the existence of a cyclical phenomenon on the relationship between
equity markets and commodity returns. Banister and Forward did not build an econometric
model to estimate an approximate optimal bandpass filter for the relative market index
performance.

Radetzki (2006) identified three major commodity booms since the second world war,
namely 1950–51 (in response to the Korean world), 1973–74 (intensified by harvest failures
and high energy costs), and 2004–onwards (which coincided with the explosive growth
in China and India and their demand for raw materials). Radetzki’s results highlight that
not all commodities responded with the same intensity during these three boom periods.
It was found that the second boom was the most powerful in aggregate terms and was
driven by the strong increase in energy prices in 1973 and 1974. Similarly, agricultural
raw material prices dominated during the first boom while metals and mineral prices
had the sharpest increase in the third boom. Radetzki did not attempt to discuss the
implications of booms in commodity markets relative to equity markets as in Banister
and Forward. However, it is noted from illustrations in Banister and Forward that the
performance of stocks was superior to that of commodities from 1950 to the late 1960s,
with leadership returning to commodities during the 1970s and early 1980s. Radetzki
asserted that demand shocks tend to trigger commodity booms, and increases in global
growth in GDP and industrial production preceded or marked the beginning of the three
commodity booms. How commodity markets respond to macroeconomic performance
differs from responses in traditional equity markets, and such responses can drive equity
and commodity market prices in waves that last several years; this suggests that the use of
the relative-strength performance measure of equity market prices to commodity market
prices is a reasonable indicator of when returns in one market lead the other. An important
consideration in the above two studies is that good economic performance does not always
results in booming commodity market prices. Other factors unique to commodity markets
such as tight production capacity and relatively small inventories emerge after long periods
of low commodity prices which discourage investments in capacity expansion.

Beenen (2005) points out that institutional investor interest in commodities reflects
powerful cyclical and structural forces benefiting commodity markets but also reflecting
the deterioration of equity and fixed income returns of the time (compared to the 1990s).
To satisfy growing investor demand, Deutsche Bank developed an Investor Guide to
Commodities that put commodities into a distinct asset class, and as Rogers (2004) stated
the bull market in commodities that was underway which was noted to last about 30 years
or so. The guide also tried to dispel the myth about commodities that, for most people,
commodities imply an elevated level of risk; yet investing in commodities does imply risks
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that may differ from the risk of investing in stocks and bonds, and that at certain times in
the business cycle commodities have been a much better investment than most alternatives.

One of the first analyses on the returns to investing in commodity futures when
compared to investing in stocks and bonds is Gorton and Rouwenhorst (2006). They
constructed an equally weighted index of commodity futures monthly returns for July
1959 to March 2004 and found that fully-collateralized commodity futures have historically
produced similar returns and Sharpe ratios as equities (this finding is consistent with
that of Bodie and Rosansky (1980)’s data from 1949–1976). One finding in Gorton et al.’s
analysis was that the historical risk premium of commodity futures is about equal to the risk
premium of stocks and is more than double the risk premium of bonds, but also find that
commodity futures returns are negatively correlated with those of equities and bonds. They
emphasize that, to a large extent, the negative correlation is driven by different behavior
over the business cycle and a positive correlation between commodity futures and inflation.
While this paper did not have a large cross-section of commodities, it served to illustrate
the portfolio diversification value of commodities relative to stocks and bonds. While the
behavior over the business cycle is mentioned, no attempt was made to estimate the cycle
in commodities relative to equities.

The correlation of commodities to stocks and bonds using ex-post business cycle
conditions has been explored in the financial literature. Kat and Oomen (2006) reassess the
correlation between commodities and stocks and bonds by arguing that commodities are
fundamentally different from financial assets and that there are at least two reasons for a
negative correlation. First, commodity prices are the result of current market conditions
(rather than long-term prospects) and tie this to the business cycle by suggesting that
commodities are likely to do best during the expansion phase and their worst during the
recession phase. Second, commodities are more exposed to event shocks (e.g., supply
cuts by OPEC, bad weather for crops, or strikes for mining) which can drive commodity
prices up and produce positive returns for investors who are long in such commodities;
the increased cost of raw materials, however, can put pressure on stocks. Using correlation
coefficients and Kendall’s Tau between the daily excess returns on 27 commodity futures
and the daily excess returns on the Dow Jones Industrial Average (DJIA), and using the
whole period as well as different phases of the business cycle, they found that daily
commodity futures returns are only weakly correlated with equity returns, little persistence
in the correlation dynamics, and that the correlation with equity can vary over the different
phases of the business cycles using NBER dating methodology, especially for energy and
metals. Contradicting Gorton and Rouwenhorst, Kat and Oomen did not find that the
diversification benefits of commodity futures tend to be larger at longer horizons. Kat and
Oomen did not estimate the pricing performance of stocks and bonds relative to commodity
markets using cycle methodologies but used business cycles based on NBER dating.

The factors that contribute to an increased interest in commodity markets by financial
investors were studied by Domanski and Heath (2007). Commodity prices of energy, pre-
cious metals, base materials, and agriculture, measured by the Goldman Sachs commodity
index (GSCI), and derivative activity, measured by the number of contracts outstanding
(in millions), experienced an exponential growth in their time period of analysis January
1998–June 2006. Domanski and Heath point to the increasing presence of financial investors
in commodity markets and how this trend has contributed to an increase in commodity
market liquidity. With the increase in commodity prices during the study period, they
observe a greater variety of financial investors and investment strategies in commodity
markets, with passively managed investment and portfolio products being one of the
areas of rapid growth. They document that by mid-2006, about $85 billion of funds were
tracking the GSCI and the Dow Jones/AIG Index (two of the most popular commodity
indexes financial investors follow). Similarly, the presence of hedge funds, which have a
short-term focus, increased; for example, funds that were active in energy markets had
tripled to more than 500 since the end of 2004, with an estimated $60 billion in assets under
management. Other examples of financial investor interest in commodity markets included
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the number of exchange-traded funds (ETF), the introduction of complex trading strategies
(e.g., cross-market arbitrage), managed money traders (MMTs) in oil and natural gas, and
the increased volume of OTC transactions.

The first econometric investigation of the relationship between stocks and commodi-
ties, using a relative strength measure as in Banister and Forward, is found in Zapata et al.
based on annual values of the S&P 500 and the U.S. producer price index (PPI) for the
period 1871–2010. They provide a detailed analysis of the history of commodity markets
and their relationship to economic growth in the U.S., farm policy, the value of the dollar,
inflation, energy markets, farm credit, and bio-energy policy. As in this study, Zapata
et al. used the CF bandpass filter by setting minimum and maximum values of periodicity
consistent with observations made in previous studies (e.g., Banister and Forward) for
commodities (18 and 36, respectively), and minimum and maximum values typical of
business cycles (2 and 8 years). The analysis was carried out on the relationship between
stocks and all commodities, stocks and farm products, stocks and food products, and stocks
and metals. Defining the length of a cycle as the time it takes to move from peak to peak, it
was found that stocks and commodities alternated in price leadership with cycles of length
29–32 years, an average of about 31 years, and this empirical regularity was similar in shape
across the various commodity groups but somewhat changed in frequency and amplitude
across them, thus lending support to the heterogeneity in commodities claimed by previous
studies. Zapata et al. also estimated a risk-return model of commodities and individual
stocks and found that, in consistency with the stock-commodity cycle, there are periods
when investment interest moves with the cycles identified in their paper. While Zapata et al.
analyzed various commodity groups (farm, food, energy, and metal markets), they did
not study whether the estimated cyclical behavior was applicable to tradable commodity
indexes. Nonetheless, the study of the stocks-commodity cyclical phenomenon became of
interest to many other researchers (e.g., Chen et al. 2015; Wang et al. 2017; Galariotis and
Karagiannis 2021; Hernandez et al. 2021; Reboredo et al. 2021; among many others).

3. Materials and Methods

A relative price strength measure (RS) is used to compare the long-run cyclical rela-
tionship between stock and agricultural-commodity prices (Bannister and Forward 2002).
The RS compares the relative price performance of stocks and agricultural-commodity
prices. The RS is computed by dividing a stock market index into a commodity index
for the period 1871–2022. Banister and Forward proposed the use of the S&P 500 index
to represent the broad market index in the U.S. and the Producer Price Index in the U.S.
(PPI) to represent commodity market prices. When the RS moves up, it indicates that stock
returns are outperforming commodity returns (a bull trend in stocks). When the RS is
trending down, RS points to commodity returns outperforming stock returns (a bull trend
in commodities). In this application, and consistent with commodity investment practice,
the Bloomberg Commodity Index (BCOM) and the S&P Goldman Sachs Commodity Index
(SPGSCI) are also used to measure the relationship to broad financial markets of two trade-
able commodity indexes. While many other tradeable commodity indexes are presently
used in commodity investing, we focus on the BCOM and SPGSCI since these indexes
have annual data of sufficient length for comparison to their aggregate counterparts, which
according to the literature, may have cycles that can last for several decades.

3.1. Measuring Cycles

The proposition of this paper is that certain frequency components of the pricing
relationship between stock and commodity markets can be key inputs of investment policy.
In this context, it is best to refer to it as a stock-commodities cycle phenomenon and define
it as the recurrent fluctuations in the relationship between the two asset classes.2 The
Christiano and Fitzgerald (2003) bandpass filter, referred to as CF hereafter, is used in
this research due to its optimality in modeling time series data, which may or may not be
stationary. The CF approximates an ideal bandpass filter for a time series xt and computes
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its cyclical and trend components. A comprehensive treatment of cycles is found in a
special issue of the Journal of Applied Econometrics and particularly in the article by Harding
and Pagan (2005). Briefly, the CF methodology considers a stochastic process xt, t = 1, 2, 3,
. . . , T, which has an orthogonal decomposition given by:

xt = yt +
∼
xt (1)

The process yt has power only in frequencies belonging to an interval I1 in (−π,π) and
∼
xt has power only in the complement of I1 in (−π,π) with subinterval constants a and b
bounded as 0 < a ≤ b ≤ π; defined this way, I1 = {(a,b) U (−b,−a)} with a = 2π/pu and
b = 2π/pl. The period of oscillations (periodicities of yt) falls between pl and pu, with
2≤ pl < pu < ∞; thus, in this decomposition, the time series can be written as in Equation (1).
The filter weights are chosen to minimize a mean squared error function of yt and the
filtered yt. The CF filter is a finite sample approximation to the ideal bandpass filter and is
given by

yt = B̂(L)xt (2)

where the weights B̂t,j of the approximation are a solution to

B̂t,j = arg minE
{
(yt − ŷt)

2
}

. (3)

In this definition the CF filter is a finite data approximation to the ideal bandpass
filter and minimizes the MSE in Equation (3), accommodates unit-root processes for non-
stationary time series, and provides a good approximation in the case of stationary time
series.3 Christiano and Fitzgerald provide a comparison of the performance of the CF filter
relative to other popular filters such as the Baxter-King filter and the Hodrick-Prescott
filter;4 they also make the filter available in various econometric packages (e.g., EVIEWS,
STATA, RATS, R). The bounds for the CF filter in this article were set to coincide with the
empirical regularity found in the literature (Bannister and Forward 2002) that stocks and
commodities alternate in price leadership for an average of 18 years. Following standard
practice, the estimated length of a cycle is defined as the time it takes from peak-to-peak
or through-to-through, and since RS is a measure of relative pricing performance, the
increasing phase of cycles is a measure of the length of time (in years) when stocks perform
better than commodities and vice versa.

3.2. The Data

Annual average data of the Standard and ‘Poor’s (S&P 500) from 1871 to 2022 was
calculated from the monthly observations from Shiller (2022), and the corresponding data
needed for the annual PPI for all commodities was obtained from the Federal Reserve
Bank of Saint Louis (FRED) and the Bureau of Labor Statistics (U.S. Bureau of Labor
Statistics 2022). The impact of the 2008 financial crisis and the financial stress caused by
the COVID-19 pandemic is also analyzed and changes in the relationship between stocks
and commodity markets are summarized; monthly values of the PPI and S&P 500 from
July/2007–June/2010 and January/2019–December/2021 were used for this purpose. The
base year for the PPI used in this study is 1982 = 100.5

In addition to the PPI, the S&P 500 was compared to two other commodity indices: the
Bloomberg Commodity Index (BCOMa futures-based index) from 1960–2022 and the S&P
GSCI (SPGSCI a commodity index used as a benchmark for commodity investments) from
1970–2022. Data for both the BCOM and the SPGSCI were downloaded from Bloomberg.
The S&P 500 was chosen as a benchmark for the aggregate stock market, which encompasses
about 80% of available market capitalization (S&P Dow Jones Indices 2022). Note that
except for Cocoa, all of the commodities included in the S&P GSCI index are also included
in the BCOM. However, the BCOM includes many other commodities such as livestock,
minerals, natural gas, and oil products.
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4. Results
4.1. Impact of Financial and COVID-19 Crises

The effect of the 2008 financial crisis (left chart) and the COVID-19 pandemic (right
chart) on the RS performance of stock and commodity markets is shown in Figure 1, using
monthly values of the PPI and S&P 500 from July/2007–June/2010, and January/2019–
December/2021. The financial crisis of 2008 started when foreclosure rates doubled in
December 2007. While a number of macro-measures were adopted to stop the roller coaster
that was about to unfold, one of the first decisions was U.S. President Bush’s signing of
the Tax Rebate Act in February 2008. As the crisis unfolded with bank failures, bailouts by
the Federal Reserve started in March 2008, and, of course, the bankruptcy of the Lehman
Brothers created global panic, leading to the lowest point in the RS, the time at which
the U.S. Dow Jones Industrial Average had a total decline of 53.4% (Figure 1, left chart).
Naturally, all of these events altered the RS’s short-term trajectory, marking the end of
the bull market in commodities and marking the start of a new period of growth in stock
markets. The recovery phase from the financial crisis was much slower and less steep
than what occurred during the COVID-19 Pandemic (Figure 1, right chart). In fact, both
crises may be characterized by a “V” shape pattern, the major difference being the speed of
recovery (i.e., recovery was faster during the Pandemic).
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Figure 1. Stock market (S&P 500) versus PPI for all commodities during the 2008 financial crisis and
the COVID-19 pandemic.

Although the effects of the crises on unemployment and Gross Domestic Product were
more severe during 2020 than during the 2008 financial crisis (Verick et al. 2022), prompt
health actions and fiscal policies helped the recovery from the COVID-19 crisis at a much
faster pace than that of the 2008 financial crisis (note the differences in the “V shapes”).
The overriding conclusion is that the COVID-19 pandemic did not change the long-term
trend of the RS between stock and commodity markets and was less impacting than the
2008 financial crisis. The extent to which the pandemic disrupted the workings of global
economies, particularly the impact on supply chains, is an issue of continued analysis as of
the writing of this paper. Unquestionably, however, the impact on the stability of global
financial markets has been severe (e.g., Tan et al. 2022). The impacts of the coronavirus
pandemic have depressed market returns for certain U.S. crop farmers and the impacts
have varied depending on specific geographic areas and have worsened with the continued
disputes with China. Nonetheless, ad hoc U.S. federal aid has helped support farm incomes
in areas such as the U.S. Midwestern grain farms (e.g., Schnitkey et al. 2021).
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4.2. Commodity Cycles

Figures 2–4 show the results of the Christiano-Fitzgerald bandpass filter applied to the
relative price strength (RS) of (a) stocks and the producer price index for all commodities
(Figure 2), (b) stocks and the Bloomberg Commodity Index (Figure 3), and (c) and stocks and
Goldman Sachs Commodity Index (Figure 4). Figure 2 shows the RS cycle over the period
1871–2022. Note that variability in the RS cycle began to increase approximately in the 1930s
and continues to the present. The overall upward tendency of the RS cycle observed in
Figure 2, Panel A confirms that on average, stock returns outperformed commodities over
the last 151 years. However, the Christiano-Fitzgerald econometric cycle (Figure 2, Panel B)
demonstrates the cyclical behavior of the relative pricing performance of stock-commodity
markets. Based on Figure 2, Panel B, three cycles (from peak to peak) can be fully identified.
The first cycle lasted 24 years, and the subsequent cycles had a length of 35 and 34 years,
respectively. The average length of the three stock commodity cycles shown in Figure 2 is
31 years. Also, it should be noted that there is a fourth cycle in progress that began 23 years
ago, whose peak is yet to occur but is quickly approaching it.
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The cyclical pattern in RS shown in Figure 2 has important implications for investors
interested in commodity investing. Summary statistics tabulated from the indexes used
in this article show that during the previous 151 years, the average annual returns of the
S&P 500 and the PPI were 4.5% and 1.9%, respectively. But when such measures were
generated by segmenting the data according to the RS cycles, it was found that when stocks
outperformed commodities (uptrend phases of the RS cycle), stock annual returns were
9.25% while commodities annual returns were 0.15%. Inversely, when commodities outper-
form stocks (downtrend phase of the RS cycle), stock returns were −1.6%, and commodity
returns were 4.9% annually. It is evident from Figure 2 that the benefit of commodity
diversification may lie in their “cyclical” nature. The abundant literature promoting com-
modity investing generally concludes with phrases such as adding commodities provides
diversification benefits during “contractions in the stock market”, which is consistent with
what the RS cycle of Figure 2 reveals.

To provide a more investing-related comparison between stocks and commodities, we
compared the linkage between the S&P 500 and the two investable commodity indexes, the
BCOM and the S&P GSCI. Figure 3 displays the relative performance between the S&P 500
and the Bloomberg Commodity Index. The results in Figure 3, Panel B confirm that the
mid-1960s to the early 1980s and during most of the decade from 2000 to 2010, were periods
of high growth in commodity prices. This is consistent with historical data which show
that commodity prices experienced a significant surge during the 1970s due to geopolitical
events such as the oil embargo, and again in the early 2000s due to the strong demand
from emerging markets such as China and India. The length of the cycle shown in Figure 3,
Panel B is 34 years, which is equal to the last full cycle in Figure 2, Panel B. However, the
amplitude of the cycle gets larger when BCOM is used as a proxy for commodities and is
also pointing to an end in the RS expansion for stocks.

Figure 4 (Panel A) shows the price performance of the S&P 500 relative to the S&P GSCI.
Launched on 11 April 1991, the S&P GSCI is a well-known benchmark for representing
global commodity prices. Even though the annual index data available starting in 1970, it
can be seen in Panel B that the results are very similar when using the S&P GSCI and the
BCOM, which is natural given that both indices track many of the same commodities (but
not the same markets).

Overall, Figures 2–4 support previous literature concerning the countercyclical be-
havior of commodities and the stock markets. The returns in the stock market exceed the
returns in the commodity markets on average. However, when investment horizons are
set to the length of the RS cycle, returns from investing in indexes, such as the Bloomberg
Commodity Index and the S&P Goldman Sachs Commodity Index, are higher.

5. Discussion

Applying the bandpass filter proposed by Christiano and Fitzgerald to a measure of
pricing performance (RS), it is found that commodity markets, either at the aggregate level
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(PPI) or at the more disaggregate level (tradeable commodity indexes), follow a strong
cyclical pattern with the broad market, measured by the S&P 500, that lasts about 31 years
from peak to peak. This finding is consistent with the findings in previous research (e.g.,
Zapata et al. 2012; Bannister and Forward 2002). Naturally, the results point to alternating
pricing-performance leadership over which financial markets dominate in pricing perfor-
mance relative to commodities over long periods of time, and as found in other research, the
length of the alternating leadership in the cycle (from peak to trough) can run for around
15 years. More specifically, the uptrend phase of the RS cycle indicates that stock returns are
outperforming commodity returns. Similarly, the downtrend phase of the cycle indicates
that commodity returns outperform stock returns. Data from the past 151 years provide
strong evidence of four occasions on which, on average, commodities have outperformed
stocks: 1907–1920, 1930–1938, 1969–1982, and 2000–2009. In essence, commodity booms
happen when an unanticipated shock increases the demand for certain commodities, while
the supply of those commodities takes time to determine prices. Eventually, as supply
increases in response to higher prices, the cycle goes into a downturn again, which is often
referred to as a “bust” (Büyükşahin et al. 2016). The rise in the price of commodities is
associated with wars, inflationary periods, oil prices, and other factors that in one way or
another favor the increase in prices. Certainly, the increase in the price of commodities can
provide benefits for producers (e.g., farmers and metal producers) and exporting coun-
tries. However, it should not be ignored that it can also have devastating effects on those
countries that depend on commodity imports and on the purchasing power of middle- or
low-income consumers. From a commodity investing perspective, the cyclical interplay
between stocks, as measured by the S&P 500, versus tradeable commodity indexes, merits
portfolio consideration.

6. Conclusions

Since 2009, stock returns have dominated returns of commodities. However, should
the cyclical phenomenon reported here continue, commodity returns will likely outperform
stock returns and will continue to attract investors in the coming years. As discussed in
the review of literature, wars tend to precede commodity booms. The ongoing Russian-
Ukrainian war could lead to a long period of rising commodity prices. Both countries are
very important players in the energy commodities, metals, and grain markets. Even if
this war does not escalate to a major world conflict, its end is still uncertain, therefore a
precautionary buildup of commodity inventories could trigger the next commodity price
boom. Another reason for the next commodity boom could be the increasing food demand
caused by a growing population. According to some estimates, the world population
reached 8 billion in November 2022. This growth in the world population directly increases
the demand for food commodities. A strong China recovery would also have a similar
impact on commodity prices.

Whether commodity markets are “the world’s best market” (Rogers) or a market of
“disappointing return” (Irwin et al. 2020) is a debate that will continue to exist. However,
this article provides strong evidence that the real benefits of investing in commodities may
lie in their cyclical behavior relative to stocks. Not only do commodities move over time
in ups and downs in response to market fundamentals, but their cyclical behavior also
tends to co-move opposite to the cycle in stocks. Therefore, an investor who follows the RS
cycle can choose commodities for diversification as a hedge. To do so effectively, risk and
the phase of the cycle must be accounted for. Similarly, the covariance between the two
asset classes must be dynamically integrated with the cyclical relationship, a topic which is
currently under investigation.

One area for future research6 on this subject is the application of econometric fore-
casting models to predict turning points in the RS between broad financial markets and
commodity investments. Recent developments in the application of machine learning
models to prediction problems in econometrics may offer paradigms for more accurate
measurement of the numerous factors that impact the risk-reward relationships between
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stock and commodity markets and the prediction of turning points (e.g., Giusto and Piger
2017). It should also be noted that the cyclical results in this article suggest commodity
leadership for the near future, and this result is consistent with the current forecast given
by some market analysts. For instance, Goldman Sachs projects that the S&P GSCI, its
commodities tracking index, would increase by up to 43% in 2023. The scarcity of metals
and energy-related commodities would be the reason for this price spike. Stockpiles are
depleting, and markets are constrained as a result of a lack of investment in mining and the
search for new oil sources. Once the US and China’s economies recover from their recent
economic turbulence, Goldman Sachs anticipates that the commodity market will see a
boost in prices (Wallace 2022).

Thinking of commodities as heterogeneous in boom-and-bust periods implies that
adding commodities to traditional portfolios of stocks and bonds must account for the
difference in commodity responses to increased demand, prices, and investments. Goldman
Sachs (Wallace 2022) states that underinvestment in commodity markets precedes a bullish
sentiment in commodities, and that despite broadly depleted working inventories and
sparse capacity nearly exhausted across most markets in commodities such as oil, capital
in 2022 was not responsive to near record prices as market positioning leaned towards a
recession (a point also highlighted in Banister and Forward and Radezki). Underinvestment
in commodity markets, a disorderly reopening of the Chinese economy, and the rising
cost of capital reduce the likelihood of sequential growth in 2023. If commodity markets
remain in a state of long-run shortages with subsequent higher and more volatile prices
as Goldman Sachs claims and given the recent pause in Fed rate hikes in the U.S. and the
impact from the Chinese economy reopening, the leadership in commodity market returns
is likely in the foreseeable future, as suggested by the estimated cycle in this paper, which
at the end of 2022 is getting to close to a peak. Heterogeneity in commodity markets also
implies that, for commodities such as agriculture, the response to, for instance, investments
will naturally be faster than would be the case for oil and metals. In both markets, however,
the nature of the response will be dictated by the cost of capital.

While the study of these research results was in progress, Goldman Sachs reaffirmed
its prediction that commodity markets will be dominated by underinvestment in early
2023. The high cost of capital caused by the rise in interest rates (a deflationary action) has
discouraged investors from holding commodity inventories, which could drive commodity
prices higher. The cost of capital has also been linked to the withdrawal of more than
$100 billion from commodity ETFs, active mutual funds, and the Bloomberg Commodity
Index. What is even more worrisome according to Goldman Sachs is the underinvestment
in production which leads to a reduction of commodity inventories, removing a key buffer
against shocks in commodity prices. Underinvestment alone does not generate a price
shock in commodity markets. Instead, it increases the sensitivity of the commodity markets
to demand shocks. Cycle phenomena tend to be popular with some investors and this
paper has found that using an approximation to an optimal bandpass filter, aggregate
commodity market indexes (PPI) and for tradeable commodity indexes (SPGSCI and
BCOM), the phenomenon repeats on average about every 31 years, in consistency with
previous work on the subject (e.g., Zapata et al. 2012; Gorton and Rouwenhorst 2006). The
indexes used in this study reflect the heterogeneity in commodities that tends to appeal to
investors; nonetheless, the investment merits of commodities require a closer examination
(e.g., Kat et al.), and preliminary work on this for global markets is beginning to emerge
(e.g., Hernandez et al.). Wallace (2022) argues that an underinvestment cycle is at work
in the 2023 commodity outlook. Capital expenditures and their relationship to capital
consumption are drivers of the supply response in commodity markets. The relationship
between these two factors and how they may contribute to the stock-commodity cyclical
phenomenon in investing is an area of future research.
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Notes
1 The U.S. producer price index (PPI) is a measure of the average change over time in selling prices received by domestic producers

of goods and services. PPIs are available for all commodities and for various producing sectors of the U.S. economy (e.g.,
mining, manufacturing, agriculture, fishing, forestry) as well as natural gas, electricity, construction, etc. (https://fred.stlouisfed.
org/series/PPIACO accessed on 20 November 2022). The S&P GSCI index is a benchmark for investment in the commodity
markets and is a tradeable index available to market participants of the CME (it is the first major investible commodity index; the
Bloomberg ticker symbol is SPGCCI—https://www.spglobal.com/spdji/en/indices/commodities/sp-gsci/#overview accessed
on 20 November 2022). The Bloomberg Commodity Index (ticker symbol BCOM—https://www.bloomberg.com/ accessed on
20 November 2022) provides a broad-based exposure to physical commodities via commodity futures contracts, and no single
commodity or commodity sector dominates the index. Components of all the above indexes can be found at the links provided
above.

2 This view is consistent with the theory of business cycles (e.g., Prescott 1986; Lucas 1977). If we knew exactly which theoretical
model best represents the economy of the U.S., then we could derive theoretical findings for cyclical behavior. As discussed
in Prescott, if markets did not display this cyclical phenomenon, it would be puzzling no matter what the true model of the
economy is.

3 Test of unit-roots, using the augmented Dickey-Fuller statistics with a drift, indicated that RSt has a unit-root, and therefore,
the CF filter was specified with a drift and a unit-root. Cointegration tests between the S&P500 and the PPI, resulted in no
cointegration for the study period 1960–2022.

4 Wavelet analysis is an alternative approach to cycle analysis. Cyclical behavior and its components can be analyzed where higher
levels of precision of the wavelet approximations are constructed so that it effectively produces a band pass filter that isolates the
cycle. The Christiano-Fitzgerald bandpass filter used here to isolate the cycle, which covers both stationary and nonstationary
processes, is a similar procedure (e.g., Bowden and Zhu 2008).

5 We use the base 1982 = 100 because this is the measure that is most widely available in the U.S. (see https://fred.stlouisfed.org/
accessed on 20 November 2022 and search for PPI). Most research in the U.S. use this base in their work. See Tomek and Robinson
(1991) for details.

6 Another potential topic of future research is the application of theories that fit long-term cycles such as Long Wave Theories. We
thank an anonymous reviewer for pointing this out.
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Abstract: This paper examines the propagation of oil price uncertainty shocks to real equity prices
using a large-scale Global Vector Autoregressive (GVAR) model of 26 advanced and emerging stock
markets. The GVAR framework allows us to capture the transmission of local and global shocks,
while simultaneously accounting for individual-country peculiarities. Utilising a recently developed
model-free, robust estimate of oil price uncertainty, we document a statistically significant and
negative effect of uncertainty shocks emanating from oil prices on the large majority of global stock
markets, with the adverse effect of oil price uncertainty shocks found to be stronger for emerging
economies as well as net oil-exporting nations. Interestingly, however, global stock markets exhibit
a great deal of heterogeneity in their recovery following oil uncertainty shocks as some experience
rapid corrections in stock valuations while others suffer from extended slumps. While the results
are sensitive to the oil uncertainty measure utilised, they suggest that country diversification in the
face of rising oil market uncertainty can still be beneficial for global investors as global stock markets
exhibit a rather heterogeneous pattern in their recovery rates against oil market shocks.

Keywords: oil price uncertainty shocks; international equity markets; global vector autoregressive model

JEL Classification: C32; G15

1. Introduction

Building on the pioneering works by Bernanke (1983) and Pindyck (1991), the oil-
stock market literature argues that uncertainty and the real options effect associated with
investment decisions driven by high oil price uncertainty create cyclical fluctuations in
investments by lowering firms’ incentives for immediate investment activities. This, in
turn, affects the cash flows generated by firms as well as the discount rates used in firm
valuations, thus, opening a channel in which oil market uncertainty impacts stock prices
and/or returns (Swaray and Salisu 2018; Chen and Demirer 2022). Given the importance of
oil as a major input factor for business operations that drive the real economy, its volatility
may influence both investment and policy decisions. Thus, uncertainty regarding business
profitability, valuations, and investment decisions are all impacted by oil price volatility,
which is a source of uncertainty that affects the cost of this essential input (Henriques and
Sadorsky 2011).

Shocks emanating from the oil market could have serious implications for the real
economy as oil-price-induced uncertainty could force firms to postpone ‘irreversible’ in-
vestment decisions (Elder and Serletis 2009). In other words, uncertainty about the return to
investment at the level of the firm may cause cyclical fluctuations in aggregate investments
(Bernanke 1983). The foregoing suggests that even when an oil price shock is favourable,
the uncertainty about its nature (whether permanent or transitory) may discourage positive
investment decisions. Indeed, in related works, Maghyereh and Abdoh (2020) show that oil
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market uncertainty has a negative and asymmetric effect on corporate investment, while
Yin and Lu (2022) argue that oil uncertainty increases firms’ risk-taking through the channel
of real options related to firms’ growth opportunities. Such a negative effect on investment
activities could also be driven by the impact of oil price shocks on the cost of financing firm
operations as evidenced by Prodromou and Demirer (2022). Finally, since stock prices can
be modelled as the sum of discounted cash flows including dividends, oil price uncertainty
can adversely affect stock prices by decreasing the overall profit that a firm generally uses
to pay dividends, as firms need to bear additional costs to avoid the risks associated with
oil price uncertainty (Demirer et al. 2015).

Accordingly, the literature offers various studies that examine the validity of theoretical
arguments that associate oil price uncertainty with stock prices and or/returns via the
investment and dividend channels for both the developed (see, Sadorsky (1999); Masih et al.
(2011); Alsalman (2016); Diaz et al. (2016); Rahman (2021)) and emerging economies (see,
Jiranyakul (2014); Aye (2015); Bass (2017); Benavides et al. (2019)).1 However, as Chen and
Demirer (2022) note, the literature offers mixed evidence at best regarding the effect of oil
price fluctuations on stock market dynamics with the majority of the studies documenting
a negative oil price effect on stock market returns (e.g., Chen 2009; Basher et al. 2012), while
others find insignificant (Demirer et al. 2015; Hatemi et al. 2017) and, in some cases, positive
(e.g., Zhu et al. 2011; Silvapulle et al. 2017) oil price effects. Against this background, in
contrast with the country-specific/firm-level analyses that are popular in the literature, we
contribute to the extant literature by examining the propagation of oil price uncertainty
shocks to real equity prices using a large-scale Global Vector Autoregressive (GVAR)
model of 26 advanced and emerging stock markets. Among the attractions of the GVAR
framework is its ability to accommodate the transmission of local, regional, and global
shocks to individual countries, while simultaneously accounting for individual-country
peculiarities, thus providing a more comprehensive assessment of the effect of oil market
uncertainty on stock market dynamics.

One must realise, however, that uncertainty is a latent variable, and needs to be
measured. Given this, the large majority of the above-mentioned studies rely on univariate
or bivariate Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models
applied to oil price series to derive metrics of oil price uncertainty. In other words, GARCH-
based oil price uncertainty is fully determined by changes in the level of oil price, and
as a result, it is not possible to disentangle uncertainty about the oil price and changes
in the oil price level (Jo 2014). Given this, Rahman (2021) proposes a new measure of oil
price uncertainty by utilising Stochastic Volatility (SV) in a Structural Vector Autoregressive
(SVAR) model (involving oil and stock prices, and a monetary policy instrument). In this
model, oil price uncertainty is the conditional variance of the oil price change forecast error,
which evolves independently of any change in the oil price level. Using this framework,
Rahman (2021) provides evidence that increased oil price uncertainty has a negative effect
on (real) stock returns of the United States.

Despite the innovativeness of the approach adopted by Rahman (2021) over GARCH-
based models in measuring oil price uncertainty, the metric is not free from the structure of
any specific theoretical model. Given these empirical issues in constructing an appropriate
metric of oil price uncertainty, Nguyen et al. (2021) have proposed a novel construction
of the oil price uncertainty index that is unconditional on a model. The authors develop
a measure of oil price uncertainty as the one-period-ahead forecast error variance of a
forecasting regression with SV in the residual terms. The novelty of this approach lies in
its flexibility in including a large number of additional information that is important in
explaining fluctuations in oil prices namely, exchange rate, oil production, global economic
conditions, and co-movement in the fuel market. In this sense, the index is able to capture
uncertainty in oil price rather than volatility as measured by both GARCH and SV models.
Thus, this feature of the uncertainty metric informs our preference for oil price uncertainty.

Using this more robust metric of oil price uncertainty and building on the mixed
evidence in the literature regarding the effect of oil price fluctuations on financial markets,
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we aim to extend the literature on the nexus between oil price uncertainty and stock markets
by analysing the impact of oil price uncertainty shocks from a global perspective covering
26 developed and developing economies that account for 90% of the global aggregate
Gross Domestic Product (GDP). In our empirical application, we rely on the Global Vector
Autoregressive (GVAR) framework, originally proposed by Pesaran et al. (2004), which
can account for international transmission of shocks (in our case, oil price uncertainty)
based on a large panel of country-level macroeconomic data (i.e., output, inflation, short-
and long-term interest rates, real exchange rate, over and above the real equity prices) and
global exogenous variables (e.g., commodity prices). This framework allows us to analyse
the impact of oil price uncertainty on a wide range of global stock markets in a multivariate,
simultaneous setting by controlling for a wide array of domestic and global macroeconomic
and financial variables, which are known to serve as drivers of international stock market
dynamics (Jordan et al. 2016, 2017; Sousa et al. 2016; Aye et al. 2017). In the process, our
study provides a more accurate assessment regarding the size of the impact of oil price
uncertainty on global equity markets by mitigating the omitted variable bias.

The remainder of the paper is organised as follows: Section 2 presents the data and
summary statistics. Section 3 deals with the methodology, while Section 4 is devoted to the
discussion of results. Section 5 concludes the paper.

2. Data and Summary Statistics

Given the approach adopted in this study, we consider nine variables in total, out
of which six (real gross domestic product, inflation rate, real equity prices, real exchange
rate, nominal short- and long-term interest rate) are peculiar to 26 countries covering both
developed and emerging economies2, while the remaining three (oil price, raw material
price, and metal price) represent global/common variables. We use quarterly frequency
covering 1979Q1 through 2019Q4, based on the availability of data.3 We present the results
of the summary statistics for the domestic (see Table 1) and global variables (see Table 2),
while for want of space, only the mean, standard deviation (s.d), and coefficient of variation
(cv) statistics are reported.

In terms of real output, India, Singapore, Malaysia, Korea, Chile, Thailand, and the
Philippines are found to be the most volatile economies compared to the other countries,
judging by the coefficient of variation. On the rate of change in price levels, all economies
experience on average, an inflation rate of less than 3 percent with the exception of Ar-
gentina, which recorded 14 percent on average during the sample period. For equity
prices, South Africa, the United Kingdom, Italy, Sweden, and France recorded the highest
equity prices along with Argentina, Finland, Spain, and Korea compared to the rest of the
countries. In the commodity market representing all the global variables, oil is found to be
the most volatile during the period under study relative to the other commodities.
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Table 2. Descriptive statistics of global variables.

Variables Mean med s.d cv

OIL PRICE 0.69 0.65 1.18 1.710

AGRICULTURAL
COMMODITY PRICE 4.58 4.61 5.10 1.114

METAL PRICE 4.46 4.29 5.52 1.238
Note: mean, s.d and cv indicate mean, standard deviation and coefficient of variation (computed as the ratio of
s.d and mean) respectively.

3. Methodology

We specify the nexus between oil uncertainty and real stock prices within the GVAR
framework of Chudik and Pesaran (2016) that accommodates the transmission of global
shocks, such as those associated with oil price uncertainty, to domestic variables, while also
accounting for the characteristics of individual economies comprising of both the developed
and emerging countries. Thus, the GVAR framework enables us to capture the intercon-
nectedness among the various markets while tracing the propagation of global shocks,
which is the main attraction of this modelling framework compared to other multivariate
models. The GVAR dataset utilised in our analysis includes quarterly macroeconomic
variables for the 26 developed and emerging economies. The sample period is governed by
data availability in the updated GVAR dataset maintained by Mohaddes and Raissi (2020)
covering 1979Q2 to 2019Q4.4

In setting up the GVAR model for the 26 countries, we consider six domestic (en-
dogenous) variables namely, log real GDP, the rate of inflation, short-term interest rate,
long-term interest rate, the log real exchange rate, and log real equity prices, and three
external (common) factors involving the base metals prices, agricultural commodity prices,
and oil price uncertainty.5 We, however, focus on the results that highlight the impact of
the oil price uncertainty shock on real stock prices by constructing the GVAR model as:

xit = ∑pi
`=1 ηi`xi,t−` +τiox∗it + ∑qi

`=1 τi`x∗i,t−` + σioωit + ∑ri
`=1 σi`ωi,t−` + µit (1)

where xit is a ki × 1 vector of variables specific to cross-section unit i (i = 1, 2, . . . , N) in pe-
riod t (t = 1, 2, . . . , T); x∗it is the corresponding k∗i × 1 vector of foreign variables constructed
as x∗it = ∑N

j=1 wijxjt where ∑N
j=1 wij = 1, and wii = 0; ηi` is a ki × ki matrix of unknown pa-

rameters for domestic variables where ` = 1, 2, . . . , pi; τi` for ` = 0, 1, 2, . . . , qi, is a k∗i × k∗i
matrix of unknown parameters for foreign variables; σi` is a ki × ki matrix of unknown
parameters for external common factors for all the cross-sections as ` = 0, 1, 2, . . . , ri,
and µit is a ki × 1 vector of error terms. Finally, both the foreign and global factors are
treated as weakly exogenous. The GVAR approach to estimating the transmission of shocks
involves two steps. First is the estimation of country models as formulated in Equation (1),
thereafter, the estimated country models are stacked together to form a large GVAR model
from which the impact of oil uncertainty on real stock prices is measured.

4. Empirical Results
4.1. Main Findings

In this section, we present the results of country-specific impulse response functions
to assess the impact of shocks emanating from crude oil price uncertainty on real stock
prices across the considered 26 economies as captured in our GVAR analysis. The impulse
responses of real stock prices to a one standard deviation shock to oil price uncertainty
are presented in Figures 1 and 2, respectively, at the individual country and group levels.
In each plot, the median response is represented in solid lines while the (16–84%) lower
and upper bootstrapped error bands are depicted with dotted lines. In addition, the
impacts are measured in percentage by multiplying the values indicated by the solid
lines by 100. Considering the recent evidence in Maghyereh and Abdoh (2020) and the
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theoretical arguments by Bernanke (1983) and Pindyck (1991), our hypothesis is that higher
oil uncertainty should negatively impact stock prices, either from a risk-taking perspective
(Yin and Lu 2022) or profitability and cash flow perspectives (Demirer et al. 2015).

We observe in Figure 1 that a one-standard-deviation shock prompted by oil uncer-
tainty causes a statistically significant initial decline in real stock prices in the large majority
of the countries in the sample (23 out of the 26). In terms of the magnitude of the impact,
consistent with the recent evidence by Chen and Demirer (2022) on global oil exposures,
we observe rather heterogenous effects in the magnitude of the responses, ranging from
1% to 10% with generally larger effects observed for net oil-exporting countries as well as
those with high economic complexity as will be discussed in our subsequent analysis. The
largest negative impact is observed in the case of S. Korea and Malaysia whereas the effect
is found to be insignificantly negative for several countries including Italy, the Philippines,
and Spain. Interestingly, however, while the impact of the oil uncertainty shock is generally
significantly negative for all economies, the stock market recovery varies across the global
markets, suggesting that global stock markets exhibit heterogeneity in how they respond
to oil uncertainty shocks in the medium to long runs. Our results, thus, align well with
the findings of Chen (2009); Basher et al. (2012); and Alsalman (2016) although none of
these works simultaneously assess different levels of economies as in our case. While Chen
(2009) and Basher et al. (2012) find that a positive shock to oil prices depresses the emerging
market stock prices, Alsalman (2016) reports an insignificant effect of oil price uncertainty
on US stock returns.

Most stock markets seem to experience a positive correction in the intermediate term
after the initial negative response to an oil uncertainty shock, most notably Chile, for which
the market recovers quite steadily over the next several quarters following the shock. In
comparison, countries like Argentina, Canada, Malaysia, and Norway seem to experience
extended slumps due to the oil market shock, understandably because they have largely oil-
dependent economies. The same argument could be made for Japan and especially Korea,
for which the oil shock seems to exert extended downward pressure on real stock prices,
which can be partly attributed to the drag oil uncertainty exerts on industrial activities
with consequences on firm profits and investments. A closer review of some stylised facts
suggests that Japan and Korea rank higher in economic complexity6 compared to their
peers with high oil consumption,7 therefore, any shock to oil, which serves as a major input
to the unique variety of products, would have far-reaching effects on production (see Salisu
et al. 2021) and by extension stock valuations.

Figure 2 presents the impact of a one-standard-deviation shock to oil price uncertainty
on various country groups based on developed/emerging and net oil-exporting/importing
classifications.8 This consideration, particularly for the latter, is motivated by the evidence
in the literature suggesting heterogeneous response of stock markets of net oil-exporters
and net oil-importers to oil price shocks (see, for example, Wang et al. 2013; Salisu and
Isah 2017; among others). The results from country groups in Figure 2 generally confirm
the inferences obtained from individual country-level analyses. We find that the shock to
oil price uncertainty results in an initial reduction in real stock prices across all country
groups, with the impact being felt the most by the net oil-exporting economies. Specifically,
a one standard deviation shock to oil price uncertainty results in about 5.4% and 1.7% fall
in real stock prices of net oil-exporting and net oil-importing groups, respectively (in the
2nd quarter following the shock), while it results in about 1.8% and 2.3% fall, respectively,
for the developed and emerging economies (at the same forecast horizon). While it is
not unexpected to find that emerging stock markets have greater exposure to oil price
uncertainty and thus respond more to oil uncertainty shocks compared to their developed
counterparts, the relatively larger response of net exporters compared to net oil importers
is interesting. Clearly, the stock markets whose economies are more dependent on oil
are more likely to be negatively impacted by oil price uncertainty than those with less
dependence on oil. However, the larger impact on oil exporters could be explained by
the lack of diversification in exports and the reliance of those economies on the so-called
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petrodollars, which in turn, generates a bigger impact on their stock markets. In comparison,
net oil importers exhibit relatively greater resilience to these shocks despite their reliance
on oil imports, which can be explained by the relative strength of their import/export
diversification. Similarly, emerging markets seem to show some level of resilience against
oil uncertainty shocks, as the impact later turns positive, albeit at a long horizon, even
though the initial negative impact is stronger than developed equity markets.

From an investment perspective, the results suggest that country diversification in
the face of rising oil market uncertainty can still be beneficial for global investors as global
stock markets exhibit a rather heterogeneous pattern in their recovery rates to oil market
shocks. Therefore, investors who are concerned about rising oil market uncertainty and
how this might impact stock market returns can find some comfort in the results such that
a dynamic country allocation strategy can not only help to mitigate the negative effects of
such shocks but also help improve portfolio returns as these stock markets recover from
the shock in the intermediate and long term. For policymakers, our findings can be used as
a guide to further examine the role of the economic fundamentals that lead to the observed
heterogeneity in the response of these markets to oil price uncertainty shocks.

4.2. Additional Results
4.2.1. The Role of Global Financial Crisis (GFC)

To better appreciate the effect of oil price uncertainty on the real stock prices under
different economic conditions, we analyse, in this sub-section, the distinct role of the global
financial crisis (GFC) in the oil-stock market nexus. Thus, we partitioned our sample
periods into pre- and post-GFC periods (see Figures 3 and 4 for pre-GFC and Figures 5
and 6 for post-GFC). To further allow for more classifications and generalisation of results,
we also present the results of the IRFs for different regions including Euro and the G7
countries. Our results show that virtually all the markets seem to be resilient to oil price
uncertainty shocks during the pre-GFC as some of them can be used to hedge against the
oil price risk. This is observed from the IRFs where they are largely insignificant over a long
forecast horizon after a standard deviation shock to oil price uncertainty. This is evident for
both the emerging and developed markets including the Euro and G7 countries. However,
this pattern observed during the pre-GFC era appears to have largely disappeared after the
GFC as global stocks markets respond significantly negatively to the oil price uncertainty
shock during this period. Therefore, the negative IRF outcomes reported for the full sample
in Figures 1 and 2 are largely driven by the post-GFC period. In other words, the connection
between oil price uncertainty and stock markets is episodic and ignoring this feature may
lead to biased outcomes.

4.2.2. Robustness Checks with an Alternative Measure for Oil Price Uncertainty

In order to assess the robustness of our findings, we also consider an alternative
measure of oil price uncertainty based on the GARCH specification, and the IRFs are
presented in Figures 7 and 8 for the individual countries and different groups. Unlike the
SV-based oil price uncertainty measure, we find that most of the IRFs are insignificant,
and this behaviour is particularly evident for the country groups when the GARCH-based
measure is used. As previously espoused in Section 1, the results seem to support the
argument raised by Nguyen et al. (2021) that the SV-based oil price uncertainty is a better
measure of oil price uncertainty as it appropriately captures the inherent dynamics in the
crude oil market. This also highlights the importance of the choice of the metric to capture
oil market uncertainty for policymakers as the economic assessment of oil market shocks
on the real economy depends on the metric employed in the analysis.
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5. Conclusions

In this study, we examine the nexus between oil and stock markets from a novel
perspective by utilising a recently proposed, model-free measure of oil price uncertainty
within a Global Vector Autoregressive (GVAR) framework covering 26 global stock markets.
We show that oil price uncertainty shocks dampen real stock prices in the large majority
of the countries in our sample, with the effect found to be more persistent for those with
higher economic complexity and greater reliance on oil in their exports. While the effect of
the uncertainty shock is negative for most countries in the short run, we observe a great deal
of heterogeneity in the recovery of certain countries/regions from the shock. This is in line
with the evidence in the literature that the oil–stock market relationship is not homogeneous
across global markets, which offers useful pointers for possible hedging strategies against
rising oil market uncertainty. One possible strategy is to devise a conditional investment
scheme in which investors hold long positions in emerging market exchange-traded funds
(ETFs) funded by short positions in developed stock market ETFs, conditioned on the state
of the oil price uncertainty, along the lines of Demirer et al. (2020a).

From a policy perspective, considering that stock prices serve as a leading indicator
of macroeconomic variables (Stock and Watson 2003), the impact of oil price uncertainty
on equity markets is likely to prolong the direct effects of the same on economic activities
(Van Eyden et al. 2019). In other words, high oil price uncertainty depresses economic
activities (Salisu et al. 2021), and this could drive firms to delay investment decisions until
the uncertainty is lower (Elder and Serletis 2009; Henriques and Sadorsky 2011). Thus,
the decision to cut investment usually has an overarching effect on firms’ profitability
and their stock prices (Bayrakdaroglu et al. 2017). Hence, authorities in oil-rich, as well
as emerging economies, should be devising policies to make domestic risk management
instruments readily available for firms in the wake of rising oil price uncertainty. This
could be in the form of facilitating the development of national derivatives markets in
which local firms can utilise futures and options contracts to mitigate their exposure to oil
price shocks. For future research, considering the growing evidence that disentangling oil
uncertainty based on the nature and origin of the oil price shock in terms of demand or
supply can improve the inferences regarding the effect of oil price uncertainty on financial
markets (e.g., Demirer et al. 2020b), it would be interesting to implement the disentangled
oil uncertainty series within the GVAR framework, which could offer better insights into
the heterogeneous responses of stock markets to oil price uncertainty shocks. This is an area
we reserve for future research, besides analysing second-moment effects of oil uncertainty
on other financial markets as in Liu et al. (2013).
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Notes
1 Basher and Sadorsky (2006) employ a multi-factor model to show that oil price risk tends to strongly affect a large set of emerging

stock market returns.
2 The developed markets include Australia, Austria, Belgium, Canada, Finland, France, Germany, Italy, Japan, The Netherlands,

Norway, New Zealand, Singapore, Spain, Sweden, Switzerland, United Kingdom and the USA; while the emerging markets are
Argentina, Chile, India, Malaysia, Philippines, South Africa, South Korea and Thailand. Our choice of countries is guided by data
availability, as we consider a more representative classification for all the countries following the Morgan Stanley Classification
Index (MSCI). In other words, countries with fewer number of years as being developed but more years as emerging are classified
as emerging, and same holds for our consideration for the developed countries.

3 https://www.econ.cam.ac.uk/people-files/emeritus/mhp1/GVAR/GVAR.html, accessed on 17 July 2022.
4 Data is available at https://www.econ.cam.ac.uk/people-files/emeritus/mhp1/GVAR/GVAR.html, accessed on 17 July 2022.

However, data for the oil uncertainty index is not captured in the GVAR dataset and can be obtained from https://sites.google.
com/site/nguyenhoaibao/oil-market-uncertainty?authuser=0, accessed on 17 July 2022. Note that, the monthly values of the oil
price uncertainty index is converted to quarterly values by taking three-month averages over a quarter to match the quarterly
frequency of the GVAR dataset.

5 The oil price uncertainty index is based on the conditional volatility of the unpredictable component of the real price of oil
as measured by the Consumer Price Index (CPI)-deflated nominal values of the conventional US refiners’ acquisition cost for
imported crude oil. The reader is referred to Nguyen et al. (2021) for further technical details.

6 See the link for the ranking and discussion of economic complexity https://www.visualcapitalist.com/countries-ranked-by-their-
economic-complexity/, accessed on 17 July 2022. Highly ranked countries in terms of economic complexity imply a high diversity
of exported products and sophisticated and unique exported products (i.e., few other countries produce similar products).

7 See the link for the ranking of countries by oil consumption per capita https://www.eia.gov/tools/faqs/faq.php?id=709&t=6,
accessed on 17 July 2022.

8 The classification of countries into emerging and developed economies is drawn from the market classification by the Morgan
Stanley Capital International (MSCI) (see https://www.msci.com/market-classification, accessed on 17 July 2022), while the
World Fact Book of the Central Intelligence Agency (CIA) is used to group countries into net oil exporting and net oil importing
countries.
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Abstract: This study investigates the relationship between the volatility risk premia (VRP) of stock
and oil returns. Using daily data on VRP from 10 May 2007 to 16 May 2017, VAR analyses on the
stock and oil VRP are conducted, and it is found that the effects of the stock VRP on the oil VRP are
limited and, if any, short-lived. In contrast, the VRP of oil has significantly positive and long-lasting
effects on the stock VRP after the financial crisis. These results suggest that investors’ sentiments
(measured by VRP) are transmitted from the oil to the stock market over time, but not vice versa. This
is unexpected because the financialization of commodities means a massive increase in investment in
commodities by investors in the traditional stock and bond markets; hence, the direction of effects is
thought to be from the stock to the commodity market.

Keywords: volatility risk premium (VRP); implied and realized volatility; oil and stock returns;
financialization

JEL Classification: G11; G12; G13

1. Introduction

The volatility risk premium (VRP), defined as the difference between implied and
realized volatilities, has been found to have predictive power for returns in many different
assets. For example, as pioneering research on this topic, Bollerslev et al. (2009a) revealed
that VRP has predictive power for U.S. monthly aggregated stock returns, and Bollerslev
et al. (2009b) also found the predictive power of the VRP in the monthly stock index returns
of many other developed countries.

The VRP represents the risk premium for future volatility variations. Thus, it may be
regarded as investor sentiment (i.e., aversion to future uncertainty), and the predictability
of VRP is thought to be due to investor sentiment: when investor sentiment worsens (resp.
improves), stock prices are discounted by a higher (resp. lower) premium, resulting in
higher (resp. lower) future returns.

Following this intuition, the scope of the analysis is extended to assets other than
stocks. Indeed, Della Corte et al. (2016) and Londono and Zhou (2016) confirmed the
predictive power of VRP in monthly exchange rates. Furthermore, Ornelas and Mauad
(2019) investigated the predictive power of different assets’ VRP such as commodities
currencies, stocks, bonds, gold, and oil, on the monthly returns.

Given the extant research on VRP’s return predictability of different assets, one simple
but unexplored question is how the VRP of different assets are correlated. This question is
meaningful because the dynamic relation of the VRP between different assets is interpreted
to show how investors’ sentiments on different assets transmit to each other over time.
Moreover, it is especially important between the VRP of stocks and commodities because
the recent financialization of commodities, that is the massive increase in investment in
commodities by investors in the traditional stock and bond markets, is thought to increase
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the influence of the stock market on commodity markets. Thus, this study investigates the
dynamic relationship between the VRP of stocks and oil using their daily returns.

Note that this focus is unique compared to previous studies. Indeed, many extant
studies have investigated the relationship among implied volatilities of stock, oil, gold, and
exchange rate. However, they are not related to VRP. For example, Robe and Wallen (2016)
analyzed the determinants of oil implied volatility using weekly data and investigated the
relationship between oil implied volatility and stock implied volatility. Christoffersen and
Pan (2018) investigated the effect of oil implied volatility on stock returns and analyzed
the relationship between oil implied volatility and stock implied volatility. Liu et al. (2013)
conducted a VECM analysis on the relation among daily implied volatilities of stock,
oil, gold, and exchange rates. Dutta et al. (2019) analyzed co-integration and nonlinear
causality among the implied volatilities of crude oil, gold, silver and goldminers by a non-
linear ARDL model. Bouri et al. (2020) studied the dynamic spillovers among the implied
volatilities of the S&P 500 and five large US stocks based on Diebold and Yilmaz’s (2014)
connectedness model. Iqbal et al. (2022) analyzed spillover among implied volatilities of
international stock and commodity indices by a quantile VAR model. Moreover, Gagnon
et al. (2015), Zhang et al. (2022), and Bouri et al. (2023) analyzed the relationship among
implied higher order moments of stock indices and commodities.

Given those previous studies, the main goal of this study is to investigate the dynamic
relation of daily VRP, not implied volatilities, between stocks and oil, and to show how
investors’ sentiments, represented by VRP, on different assets transmit each other over
time. A paper closely related to this is Hattori et al. (2021), who conducted a VAR analysis
on the relationship among daily stock VRP of advanced and emerging market economies.
Our study differs in that it investigates the dynamic relationship of VRP between stock
and oil and analyzes the spillover of investors’ sentiments, not within stock markets, but
between stock and commodity markets. To the best of our knowledge, this is the first study
to address this issue.

Following the method of Bollerslev et al. (2009a), we calculate the daily VRP of
stock as the difference between the VIX published by the Chicago Board of Trade (CBOE),
which measures the 30-day implied volatility of S&P 500 stock index options, and the
daily realized volatility of the S&P 500 stock index provided by the Oxford-Man Institute
of Quantitative Finance. To obtain the daily VRP of oil, we use the OVX published by
the CBOE, which measures the 30-day implied volatility of crude oil prices by applying
the CBOE Volatility Index methodology to options on the United States Oil Fund (USO).
Because we do not have high-frequency data of the USO prices and hence cannot directly
calculate its daily realized volatility, we estimate the daily realized volatility of oil by
applying a stochastic volatility model to its returns (see Appendix A).

Using the daily VRP of stock and oil returns obtained between 10 May 2007 and 16
May 2017, we conduct a VAR analysis of the VRP and obtain the following results: During
the whole period and all sub-periods, both VRP are stationary and their correlations are
approximately 0.2 to 0.3, except in the pre-crisis period (between 10 May 2007 and 30 May
2008), where the correlation is less than 0.1.

For the whole period, most of the variations in the VRP are explained by their own
shocks, which may seem against what we expect from the financialization of commodities
because financialization is regarded as strengthening the relationship between stock and
oil. Meanwhile, the shocks in both the VRP of stock and oil have small but significant
positive effects on each other for most of the following 20 trading days after the shock. This
is in contrast with the results shown by Liu et al. (2013) on the relationships among the
implied volatilities of stock, oil, gold, and euro/dollar exchange rates, in which all implied
volatilities have significant, but only temporary (i.e., just on the 1st trading day after the
shock) effects on each other.

However, such relationships depend on the economic situation, and the economic
situation surrounding stock and oil has been clearly changing. Thus, we conduct a VAR
analysis on the following sub-periods: Period 1 from 10 May 2007 to 31 May 2008 (pre-crisis
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period), Period 2 from 1 June 2008 to 30 June 2009 (crisis outbreak period), Period 3 from
1 July 2009 to 31 July 2012 (post-crisis recovery period I), Period 4 from 1 August 2012 to
30 September 2014 (post-crisis recovery period II), and Period 5 from 1 October 2014 to
16 May 2017 (plunging oil price period). Interestingly, the analysis of these sub-periods
reveals a different picture of the dynamic relationship between stock and oil VRP from that
of the entire period.

In the pre-crisis period (Period 1), we find that there is little or no relation between the
VRP of stock and oil: a small correlation of less than 0.1, no Granger causality between the
stock and oil VRP, or no significant effects on each other in impulse response functions and
little effect on variance decomposition. Again, this may seem somewhat against the view
of the financialization of commodities because the financialization effect, that is the rise of
correlations among the returns of stock and commodities, emerged after the 2000s (Tang
and Xiong 2012; Silvennoinen and Thorp 2013; Ohashi and Okimoto 2016).

In the crisis outbreak period (Period 2), the correlation between the VRP of stock and
oil is 0.27. The stock VRP does not Granger cause an oil VRP. There are no significant
effects of the stock VRP on the oil VRP in either the impulse response functions or variance
decomposition. In contrast, the oil VRP Granger causes the stock VRP, has significantly
positive, though small, effects on the stock VRP in impulse response and explains 8% of the
variation in the stock VRP.

In post-crisis recovery period I (Period 3), the correlation increases to 0.34. Both the
stock and oil VRP Granger cause each other. Both have small but significantly positive
effects on each other in the impulse response functions and variance decomposition. How-
ever, their effects have quite different patterns: The VRP of oil has significantly positive
and long-lasting effects (after the 2nd trading day of the shock), whereas the VRP of stock
has significantly positive but only temporary effects (just up to the 2nd trading day) on
that of oil.

In post-crisis recovery period II (Period 4), the correlation decreases to 0.21. The
Granger causality from stock to oil disappears, while the VRP of oil Granger causes that of
the stock. The effects of the oil VRP on the stock VRP remain significant and long-lasting,
similar to those in Period 3, but the effects of the stock VRP on the oil VRP disappear.

Finally, in the plunging oil price period (Period 5), the correlation is 0.22. Both Granger
cause one another. The effects of the VRP of stock on that of oil are back to significantly
positive, but only temporarily on the 1st trading day after the shock, while the effects of
the oil VRP on the stock VRP remain significantly positive up to the 8th trading day after
the shock.

In summary, the dynamic relationship between the VRP of stock and oil depends
on the economic situation, and contrary to the results for the whole period, it is revealed
that the VRP of oil has significantly positive and long-lasting effects on that of stock in
all sub-periods after the outbreak of the financial crisis, while the effects of the stock VRP
on the oil VRP are limited and, if any, much more short-lived. That is, although small,
investors’ sentiments are transmitted from the oil market to the stock market over time, but
not vice versa. This relationship between oil and stock VRP is an unexplored point in the
extant literature and is rather unexpected because the financialization of commodities, that
is the massive increase in investment in commodities by investors in the traditional stock
and bond markets, is thought to have effects from the stock to the commodity market.1

The remainder of this paper is organized as follows. Section 2 explains VRP. Section 3
discusses the construction and properties of the data used in the study. Section 4 describes
the model selection. Section 5 presents our main empirical results. Section 6 discusses the
robustness of the analysis. Section 7 provides the conclusion.

2. Volatility Risk Premium (VRP)

Let t denote the current date. Denote by σt+T the volatility of an asset return at date
t + T. A volatility swap that exchanges on date t + T the payoff σt+T and the payment
xt, which is contracted at date t, enables its holder/investor to hedge on date t the risk of
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volatility variation in the future date t + T.2 A simple no-arbitrage argument shows that
xt = EQ

t [σt+T], where Q is the risk-neutral probability. Hence, the amount that the swap
investor receives on date t + T is equal to σt+T − EQ

t [σt+T].
If σt+T is on average less than EQ

t [σt+T], that is, EP
t [σt+T]− EQ

t [σt+T] < 0 where P is
the original probability, it means that the swap holder is willing to pay EQ

t [σt+T], which is
more than the expected payoff EP

t [σt+T], to hedge the volatility risk in the future. In this
sense, EQ

t [σt+T]− EP
t [σt+T] represents the premium the swap investor is willing to pay to

hedge the variation risk of future volatility. Thus, EQ
t [σt+T]− EP

t [σt+T] is the volatility risk
premium (VRP).

As visible, the larger the VRP is, the more averse the investor is about the variation
in future volatility. In this sense, the VRP is sometimes interpreted as indicating investor
sentiment on future asset returns.

3. Data

In the empirical analysis, we estimate the risk-neutral expected future volatility
EQ

t [σt+T] and the expected future volatility EP
t [σt+T] to calculate the VRP. The former

can be estimated from option prices, and hence is called the (option) implied volatility (IV).
However, the latter estimation is not immediate. Hence, following the method of Bollerslev
et al. (2009a), we approximate the expected future volatility by the realized volatility (RV)
and obtain VRP as the difference between IV and RV, that is, VRP ≡ IV− RV.3

More precisely, we calculate the daily VRP of stock (VRPsp) as the difference between
the VIX published by the Chicago Board of Trade (CBOE),4 which measures the 30-day
implied volatility of S&P 500 stock index options, and the daily realized volatility of
the S&P 500 stock index provided by the Oxford-Man Institute of Quantitative Finance,
which is calculated from 5 min returns of the index.5 As noted above, while the former
is risk-neutral expected future volatility, the latter is not expected future volatility, but
daily realized volatility. Thus, by this choice of variable, we assume that the daily realized
volatility of the Oxford-Man Institute approximates the expected future volatility of the
stock well.

To obtain the daily VRP of oil (VRPoil), we use the OVX published by the CBOE,6

which measures the 30-day implied volatility (i.e., the risk-neutral expected future volatility)
of crude oil prices by applying the CBOE Volatility Index methodology to options on the
United States Oil Fund (USO). Because we do not have high-frequency data of the USO
returns to calculate its daily realized volatility, we estimate the daily realized volatility of
oil by applying a stochastic volatility model to its returns.7 Then, we obtain the daily VRP
of oil (VRP_oil) as the difference between the OVX and the daily realized volatility of oil.
Again, by doing so, we assume that the daily realized volatility of oil approximates the
expected future volatility of oil.

As the CBOE publishes OVX data after the middle of 2007, we use the daily VRP of
stock and oil returns from 10 May 2007 to 16 May 2017. In this period, however, global
financial markets and the world economy went through several different phases such as
the global financial crisis around the collapse of Lehman Brothers, the recovery from the
financial crisis, and the plunge of oil prices, all of which may affect the relationship between
stock and oil prices.

For example, this is visible from graphs of the daily indices of stock (S&P 500) and
oil (USO) in Figure 1 where index_sp represents S&P 500 price and index_oil represents
USO price multiplied by 50, the vertical axis is measured in U.S. dollars, and time in the
horizontal axis represents the date where time 1 corresponds to 10 May 2007, time 500 to
13 May 2009, time 1000 to 6 May 2011, time 1500 to 3 May 2013, time 2000 to 29 April 2015,
and time 2500 to 24 April 2017, respectively.
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Figure 1. index_sp (S&P 500) and index_oil (USO multiplied by 50). Notes: Daily oil index (USO)
multiplied by 50 and stock index (S&P 500) from 10 May 2007 to 16 May 2017 where the vertical
axis is measured in U.S. dollars and time in the horizontal axis represents the date where time 1
corresponds to 10 May 2007, time 500 to 13 May 2009, time 1000 to 6 May 2011, time 1500 to 3 May
2013, time 2000 to 29 April 2015, and time 2500 to 24 April 2017, respectively.

Thus, while we use the daily VRP of stock and oil returns between 10 May 2007 and
16 May 2017 to reflect the changes in economic phases, we divide the entire period into five
sub-periods and investigate whether and how the VRP of stock and oil are related in each
period. The sub-periods are listed in Table 1.

Table 1. Periods and corresponding dates/time.

Whole Period 10 May 2007–16 May 2017
(Time = 1–2516)

Period 1 (Pre-crisis period) 10 May 2007–31 May 2008
(time = 1–266)

Period 2 (Crisis outbreak period) 1 June 2008–30 June 2009
(time = 267–533)

Period 3 (Post-crisis recovery period I) 1 July 2009–31 July 2012
(time = 534–1311)

Period 4 (Post-crisis recovery period II) 1 August 2012–30 September 2014
(time = 1312–1855)

Period 5 (Plunging oil price period) 1 October 2014–16 May 2017
(time = 1856–2516)

We select those periods based partly on Liu et al. (2013), who investigated the dynamic
relation among the implied volatilities of stock (VIX), oil (OVX), euro/dollar exchange rate
(EVZ), and gold (GVZ) between 3 June 2008 and 20 July 2012. Indeed, Period 2, which is the
crisis outbreak period centered on the collapse of Lehman Brothers on 15 September 2008,
roughly corresponds to Liu et al.’s (2013) crisis outbreak period, and Period 3, post-crisis
recovery period I, corresponds to their post-crisis recovery period so that we can for those
periods compare the interaction among implied volatilities shown by Liu et al. (2013) with
that of VRP analyzed by this paper. Period 1 is before the outbreak of the global financial
crisis. Period 4 is the post-crisis recovery period beyond Liu et al.’s (2013) post-crisis
recovery period. Finally, Period 5 is the period of the oil price plunge after the summer of
2014, which may change the relationship between stock and oil VRP.

Figure 2 shows the relationship between VRPsp and VRPoil from 10 May 2007 to 16
May 2017. Here, both stock and oil VRP appear volatile especially during the crisis outbreak
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period (Period 2) and are calming in the post-crisis recovery periods (Periods 3 and 4).
However, the oil VRP then becomes slightly volatile in accordance with the recent plunging
oil prices (in Period 5).
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The descriptive statistics of the daily VRP of stock and oil are given in Table 2. It
confirms our observation about their volatility as the standard deviation of VRPsp is very
high in the crisis outbreak period (10.148 in Period 2), but becomes low after the crisis
(4.168, 2.115, and 2.801 in Periods 3, 4, and 5, respectively). The standard deviation of
VRPoil is high in the crisis outbreak period (9.754 in Period 2), becomes low in the post-crisis
recovering period (4.619 in Period 4), but returns slightly higher in the plunging oil price
period (6.724 in Period 5).

Table 2. Descriptive statistics of VRPsp and VRPoil.

Mean St. Dev. Skew. Kurt. Corr. #Obs.

VRPsp (Whole) 7.785 4.891 −3.141 49.116 0.273 2516
VRPsp (Period 1) 6.509 4.794 −1.502 7.724 0.097 266
VRPsp (Period 2) 9.583 10.148 −2.778 22.344 0.278 267
VRPsp (Period 3) 9.536 4.168 −4.291 49.595 0.344 778
VRPsp (Period 4) 6.441 2.115 −0.722 5.156 0.212 544
VRPsp (Period 5) 6.616 2.801 −2.395 24.814 0.222 661

VRPoil (Whole) 4.202 6.627 −0.230 5.047 0.273 2516
VRPoil (Period 1) 2.529 5.842 0.161 2.596 0.097 266
VRPoil (Period 2) 3.623 9.754 −0.061 3.518 0.278 267
VRPoil (Period 3) 5.846 6.317 0.135 4.315 0.344 778
VRPoil (Period 4) 4.231 4.619 0.491 3.134 0.212 544
VRPoil (Period 5) 3.151 6.724 −0.929 5.407 0.222 661

Notes: The upper (resp. lower) part shows descriptive statistics of volatility risk premium of stock, VRPsp, (resp.
oil, VRPoil) for the whole period and sub-periods 1, 2, 3, 4, and 5.

The means of VRPsp are between 6.4 and 9.6 and high in the crisis outbreak and just
after crisis (9.583 and 9.536 during Periods 2 and 3, respectively), while those of VRPoil
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are between 2.5 and 5.8 and highest just after the crisis (5.846 in Period 3). The stock VRP
is slightly negatively skewed, whereas that the skewness of the oil VRP can be positive or
negative. The kurtosis of the stock VRP is much greater than that of the oil VRP. Finally, the
correlation of VRPsp and VRPoil is stable and between 0.2 and 0.3 in all but the first sub-periods.

4. Model Selection
4.1. Unit Root Tests

To select an appropriate model, we begin with unit root tests for VRPsp and VRPoil.
The results are presented in Table 3. The null hypothesis of augmented Dickey–Fuller
(ADF), Dickey–Fuller–GLS (DF–GLS) and Phillips–Perron (PP) tests is that there is a unit
root in the variable.8

Table 3. Unit root tests of VRPsp and VRPoil.

ADF DF-GLS PP

VRPsp (Whole) −11.991 *** −9.888 *** −1485.051 ***
VRPsp (Period 1) −4.928 *** −4.815 *** −130.293 ***
VRPsp (Period 2) −3.623 *** −3.938 *** −180.399 ***
VRPsp (Period 3) −8.022 *** −7.041 *** −517.148 ***
VRPsp (Period 4) −7.744 *** −7.827 *** −443.083 ***
VRPsp (Period 5) −8.864 *** −8.651 *** −450.466 ***

VRPoil (Whole) −11.445 *** −11.071 *** −370.718 ***
VRPoil (Period 1) −4.447 *** −4.450 *** −43.848 ***
VRPoil (Period 2) −4.476 *** −4.656 *** −62.622 ***
VRPoil (Period 3) −5.895 *** −5.917 *** −111.345 ***
VRPoil (Period 4) −3.628 *** −3.864 *** −32.445 ***
VRPoil (Period 5) −5.982 *** −5.598 *** −92.555 ***

Notes: *** represents significance at 1% level. All tests reject the null hypothesis at the 1% level significance for
all periods.

As Table 3 shows, all tests reject the null hypothesis at the 1% level significance for
all periods. Thus, we regard both VRPsp and VRPoil as stationary in the whole and all
sub-periods. Note that this is in contrast with the unit root test results on implied volatilities
by Liu et al. (2013), where all implied volatilities of stock, oil, gold, and foreign exchange
rate have unit roots. Unlike implied volatilities, the VRP of stocks and oil are stationary.

4.2. VAR Model

Since there is no unit root in the whole and all sub-periods, we apply the following
VAR model to investigate the dynamic relationship between the VRP of stock and oil.

VRPt = α+ ∑P
i=1 AiVRPt + et

where VRPt = (VRPspt, VRPoilt)
′, α =

(
αsp, αoil

)′, Ai is a 2× 2 matrix, P is the lag length,
and et =

(
espt

, eoilt
)′ are jointly normally distributed disturbances.

4.3. Choice of Lag Length

We choose the lag length P by comparing the Akaike information criterion (AIC),
Hannan and Quinn information criterion (HQIC), and Schwartz’s Bayesian information
criterion (SBIC) for each period in the analysis. The results are presented in Table 4.
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Table 4. Optimal lag length by AIC, HQIC, and SBIC.

AIC HQIC SBIC Selected Length

Whole Period 18 5 2 5
Period 1 1 1 1 1
Period 2 2 2 2 2
Period 3 3 3 3 3
Period 4 2 2 2 2
Period 5 7 2 2 2

Notes: The second (resp. third and fourth) column shows the optimal lag length given by AIC (resp. HQIC and
SBIC) for each period/sub-period. The fifth column shows the lag length that is used in the analysis of this paper.

For Periods 1, 2, 3, and 4, all AIC, HQIC, and SBIC criteria have the same results,
which we choose as the lag length in the analysis. In contrast, for the entire period and
Period 5, the optimal lag lengths given by the different criteria do not match. In particular,
AIC tends to provide a larger optimal lag length. Nonetheless, because the values of the
AIC (resp. SBIC) for lag lengths 5 and 18 (resp. 5 and 2) are close and the lag length 5
given by HQIC is in the middle of the three criteria, we select the lag length as 5 for the
entire period. Likewise, because the AIC values for lag lengths 2 and 7 are very close
and HQIC and SBIC give the same length of 2, we set the lag length to 2 in the analysis
of Period 5.9 Consequently, we select the optimal lag lengths given by the HQIC for all
periods in this study.

5. Empirical Results
5.1. Results for the Whole Period

Table 5 reports the results of the Granger causality tests for the entire period. Both test
statistics are significant at the 1% level. Thus, for the entire period, the VRP of stock and oil
dynamically influence each other in the sense of Granger causality.

Table 5. Granger causality test (whole period).

Null Hypothesis Period Chi 2 # of Lags

VRPsp does not GC VRPoil Whole 21.174 *** 5
VRPoil does not GC VRPsp Whole 26.076 *** 5

Notes: VRPoil (resp. VRPsp) represents volatility risk premium of oil (resp. stock). *** indicates significance at
1% level.

Figure 3 shows the orthogonalized impulse response functions of stock and oil VRP
with 95% confidence intervals where we order VRPoil before VRPsp.10 The impulse response
functions of VRPsp to VRPoil shown in the above-right graph are significantly positive until
date 14, as the lower bounds of their 95% confidence intervals are larger than zero, and
gradually decrease toward date 20. Likewise, the impulse response functions of VRPoil
to VRPsp shown in the below-left graph are significantly positive until date 17, except for
dates 3 and 4, and tend to decrease toward date 20. Thus, if we look at the whole period,
shocks in both VRPsp and VRPoil have, though small, significantly positive effects on each
other for most of the 20 trading days (about 1 month) after the shock.

The variance decomposition results are listed in Table 6. Shocks to VRPsp explained
by innovations in VRPoil are shown in the fourth column, which indicates that 5.2% of
the forecast-error variance of VRPsp is explained by innovations in VRPoil on date 20.
Meanwhile, shocks to VRPoil explained by innovations in VRPsp are shown in the third
column, which indicates that 2.7% of the forecast-error variance of VRPoil is explained by
innovations in VRPsp on date 20.
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Table 6. Variance decompositions (whole period).

Impulse VRPoil VRPsp VRPoil VRPsp

Response VRPoil VRPsp

1 1 0 0.005 0.995
5 0.996 0.004 0.020 0.980
10 0.986 0.014 0.037 0.963
15 0.977 0.023 0.048 0.952
20 0.973 0.027 0.052 0.948

Note: The first column shows the length of horizon. The third (resp. second) column shows the variance
decomposition of VRPoil to VRPsp (resp. itself). Also, the fourth (resp. fifth) column shows the variance
decomposition of VRPsp to VRPoil (resp. itself).

Thus, for the whole period, the VRP of stock and oil have similar (i.e., small but
significantly positive) effects on each other. That is, investors’ sentiments in the stock and
oil markets affect each other similarly in the sense that an increase in the premium for
volatility risk in one market propagates to the other market, although the effect is not large.

5.2. Results for the Sub-Periods

If we see the relations between the VRP of stock and oil in the sub-periods, however,
we have rather different pictures. Table 7 shows the results of the Granger causality tests
for the sub-periods.

It is interesting that the stock VRP Granger causes the oil VRP very strongly at the 1%
significance level in the post-crisis recovery period I (i.e., Period 3), but not in the other
sub-periods except for the plunging oil price period (i.e., Period 5) in which VRPsp Granger
causes VRPoil only at 10% significance level. In contrast, the oil VRP Granger causes the
stock VRP strongly at the 1% significance level in the post-crisis recovery periods (i.e.,
periods 3 and 4) and relatively strongly at the 5% significance level in the crisis outbreak
and the plunging oil price periods (i.e., Periods 2 and 5, respectively). Thus, while the
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Granger causality from VRPsp to VRPoil over the entire period is mainly from that in
post-crisis recovery period I (i.e., Period 3), the Granger causality from VRPoil to VRPsp is
persistent after the outbreak of the crisis.

Table 7. Granger causality tests for sub-periods.

Null Hypothesis Period Chi 2 # of Lags

VRPsp does not GC VRPoil

Period 1 1.214 1
Period 2 1.011 2
Period 3 35.073 *** 3
Period 4 1.439 2
Period 5 4.786 * 2

VRPoil does not GC VRPsp

Period 1 0.024 1
Period 2 6.861 ** 2
Period 3 27.029 *** 3
Period 4 18.452 *** 2
Period 5 9.066 ** 2

Notes: VRPoil (resp. VRPsp) represents volatility risk premium of oil (resp. stock). ***, **, and * indicate significance
at 1%, 5%, and 10% levels, respectively.

The results of the Granger causality test suggest that the Granger causality is stronger
and more persistent from oil to stock than from stock to oil. We show only the results for
which VRPoil is ordered before VRPsp in the following analyses of orthogonalized impulse
response functions and variance decomposition.

The impulse response functions for each sub-period are shown in Figures 4–8. As the
graphs at the bottom-left of Figures 4–8 show, in the sub-periods the stock VRP has little
effect on the oil VRP. Indeed, there are no significant effects from VRPsp to VRPoil except in
the post-crisis recovery period I (i.e., Period 3), but even in that period the effects are short-
lived and significant only up to the 2nd trading day after the shock, as the lower-bounds of
the 95% confidence level of the below-left graph in Figure 6 show.
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Figure 8. Impulse Response Function (Period 5). Notes: Vrp_oil (resp. vrp_sp) represents volatility
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of vrp_oil to vrp_sp.

In contrast, as the graphs on the above-right of Figures 5–8 show, the oil VRP has,
though small, significantly positive and long-lasting effects on stock VRP after the outbreak
of the crisis (i.e., in Periods 2, 3, 4, and 5). For example, in the crisis outbreak period (i.e.,
period 2), as the above-right graph of Figure 5 shows, the orthogonalized impulse response
functions from VRPoil to VRPsp are significantly positive from the 1st to the 8th trading
days after the shock. In post-crisis recovery period I (i.e., Period 3), as shown in Figure 6,
they are significantly positive in all but the 1st trading day. In post-crisis recovery period II
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(Period 4), as shown in Figure 7, they are significantly positive in all trading days after the
shock. Finally, in the plunging oil price period (i.e., Period 5), as shown in Figure 8, they
are significantly positive up to the 7th trading day. Consistent with the Granger causality
tests, those results of the impulse response functions in the sub-periods suggest that the oil
VRP dynamically affects the stock VRP, but not vice versa.

Table 8 shows the results of the variance decomposition for the sub-periods. The
shocks to VRPoil explained by innovations in VRPsp are shown in the third column, and
the shocks to VRPsp explained by innovations in VRPoil are shown in the fourth column.
Similar to the results of the Granger causality tests and impulse response functions, the
forecast error variances of the oil VRP explained by innovations in the stock VRP are much
smaller than those of the stock VRP explained by the oil VRP in all sub-periods except the
pre-crisis period (Period 1). For example, on date 20, the forecast-error variances of VRPoil
(VRPsp) explained by innovations in VRPsp (VRPoil) are 0.011 (0.005), 0.009 (0.080), 0.015
(0.114), 0.002 (0.048), and 0.015 (0.040) in periods 1, 2, 3, 4, and 5, respectively. Again, the
oil VRP dynamically affects the stock VRP much more than the stock VRP does, which
dynamically affects the oil VRP after the financial crisis.

Table 8. Variance decompositions (sub-periods).

Impulse VRPoil VRPsp VRPoil VRPsp

Response VRPoil VRPsp

Period 1
1 1 0 0.004 0.996
5 0.992 0.008 0.005 0.995
10 0.989 0.011 0.005 0.995
15 0.989 0.011 0.005 0.995
20 0.989 0.011 0.005 0.995

Period 2
1 1 0 0.004 0.996
5 0.995 0.005 0.044 0.956
10 0.992 0.008 0.070 0.930
15 0.991 0.009 0.078 0.922
20 0.991 0.009 0.080 0.920

Period 3
1 1 0 0.015 0.985113
5 0.981 0.019 0.056 0.944
10 0.985 0.015 0.095 0.905
15 0.985 0.015 0.110 0.890
20 0.985 0.015 0.114 0.886

Period 4
1 1 0 0.001 0.999
5 0.999 0.001 0.027 0.973
10 0.998 0.002 0.037 0.963
15 0.998 0.002 0.044 0.956
20 0.998 0.002 0.048 0.952

Period 5
1 1 0 0.009 0.991
5 0.990 0.010 0.032 0.968
10 0.986 0.014 0.037 0.963
15 0.985 0.015 0.039 0.961
20 0.985 0.015 0.040 0.960

Note: VRPoil (resp. VRPsp) represents volatility risk premium of oil (resp. stock). The first column shows the
length of horizon. The third (resp. second) column shows the variance decomposition of VRPoil to VRPsp (resp.
itself). Also, the fourth (resp. fifth) column shows the variance decomposition of VRPsp to VRPoil (resp. itself).

Thus, the analyses of the sub-periods reveal that the dynamic relationship between the
stock and oil VRP depends on the economic situation and, more importantly, that the VRP
of oil has long-lasting and significantly positive effects on that of stock after the outbreak of
the financial crisis, whereas the effects of the stock VRP on the oil VRP are limited and, if
any, much more short-lived. That is, investors’ sentiments propagate from the oil market to
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the stock market after the global financial crisis, but not from the stock market to the oil
market, except in the first half of the recovery period after the financial crisis.

6. Robustness Analysis

To check the robustness of the results in orthogonalized impulse response functions
and variance decomposition, we repeat the analysis by reversing the order of the VRP to
place VRPsp before VRPoil. The results are quite similar to those above, although the effects
of VRPsp on VRPoil (resp.VRPoil on VRPsp) become slightly stronger (resp. weaker) than
those previously obtained.

For example, Figures 9–13 show the orthogonalized impulse response functions for
the sub-periods. The figures are qualitatively the same as those above.
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Figure 13. Impulse Response Function with Order VRPsp before VRPoil (Period 5). Notes: Vrp_oil
(resp. vrp_sp) represents volatility risk premium of oil (resp. stock). The solid line represents
orthogonalized impulse response functions and the gray area represents their 95% confidence interval.
The above-right graph shows the impulse response functions of vrp_sp to vrp_oil. The below-left
graph shows the impulse response functions of vrp_oil to vrp_sp.

Table 9 shows the results of the variance decomposition focusing on the 20th trading
day after the shocks. This table shows that the forecast-error variances of oil (resp. stock)
VRP explained by the innovation in the stock (resp. oil) VRP are now generally larger
(resp. smaller) than those in the previous case. For example, in Period 3, the forecast error
variance of VRPoil (resp. VRPsp) explained by VRPsp (resp. VRPoil) is 0.039 (resp. 0.084) on
the 20th day after the shock, whereas the corresponding values in the case above are 0.015
(resp. 0.114).

Table 9. Variance decompositions with order VRPsp before VRPoil. (Effects on the 20th trading day
after the shock).

Impulse VRPoil VRPsp VRPoil VRPsp

Response VRPoil VRPsp

Period 1
20 0.975 0.025 0 1

Period 2
20 0.979 0.021 0.065 0.935

Period 3
20 0.961 0.039 0.084 0.916

Period 4
20 0.995 0.005 0.045 0.955

Period 5
20 0.956 0.044 0.023 0.977

Note: VRPoil (resp. VRPsp) represents volatility risk premium of oil (resp. stock). The first column shows the
length of horizon. The third (resp. second) column shows the variance decomposition of VRPoil to VRPsp (resp.
itself). Also, the fourth (resp. fifth) column shows the variance decomposition of VRPsp to VRPoil (resp. itself).
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Similarly, we repeat the analysis using different lag lengths, although not optimal,
to see how the results can change. We choose lag lengths equal to 4 and 9 because the
former corresponds roughly to 1 week (5 trading days) coverage and the latter to 2 weeks
(10 trading days). We do not report the results here, but they are qualitatively the same as
those obtained above while the effects of stock on oil seem to be slightly stronger.

7. Summary and Concluding Remarks

The VRP was found to have predictive power for returns in many different assets.
While most extant studies have analyzed the predictability of VRP on asset returns, this
study investigated how the VRP of different assets, specifically those of stock and oil, are
dynamically related to each other. To this end, we obtained stock VRP as the difference
between the VIX published by the CBOE and the realized volatility of the S&P 500 stock
index provided by the Oxford–Man Institute of Quantitative Finance. In contrast, to
construct the oil VRP, we estimated the realized volatility of the USO by a stochastic
volatility model and subtracted it from the OVX published by the CBOE.

Using daily data from 10 May 2007 to 16 May 2017, we conducted VAR analyses
on the stock and oil VRP for the whole period and five sub-periods that represent the
pre-crisis, crisis outbreak, post-crisis recovery (the first and the second half) and plunging
oil price periods.

The analysis of the whole period shows that the VRP of stock and oil have similar
(i.e., small but significantly positive) effects on each other. However, the analyses of the
five sub-periods revealed a different picture. The dynamic relationship between the stock
and oil VRP depends on the economic situation and, contrary to the results for the whole
period, the effects of the stock and oil VRP on their counterparts are quite different: The
effects of the stock VRP on the oil VRP are limited mainly in the first half of the post-
crisis recovery period and are short-lived. in contrast, the VRP of oil has significantly
positive and long-lasting effects on that of stock in all sub-periods after the outbreak of the
financial crisis.

It is worth pointing out that those results suggest that the investors’ sentiments
(measured by volatility risk premia) are transmitted from the oil market to the stock
market over time, but not the other way around. While Christoffersen and Pan (2018)
find the predictability of oil implied volatility on stock returns and implied volatility, the
relationship between oil and stock VRP is still an unexplored point in the extant literature
and is a rather unexpected finding because the financialization of commodities means a
massive increase in investment in commodities by the investors in the traditional stock and
bond markets; hence, the direction of the effects is thought to be from the stock market to
the commodity market, and not from the commodity market to the stock market.

However, the mechanism of such a transmission of VRP from oil to stock has not yet
been elucidated. One possible channel is the funding constraints of financial intermediaries.
Christoffersen and Pan (2018) found that increases in oil implied volatility predict tightening
funding constraints of financial intermediaries, which can affect stock price and implied
volatility; the oil VRP may affect the stock VRP through institutional investors’ funding
constraints. Hattori et al. (2021) found that increases in the U.S. stock VRP tend to reduce
the fund flow into stocks of emerging economy countries and suggested that this can be the
cause of the spillover of VRP among countries. One may also speculate that the tendency
of declining oil prices after the financial crisis and the emergence of shale oil/gas may
make investments in U.S. stocks by petroleum-exporting countries (i.e., “petrodollars”)
more sensitive to the future uncertainty of oil prices, to which other investors become more
sensitive. Investigating what causes oil VRP to affect stock VRP is an important target for
future research.

In addition, owing to the constraint on data availability, we must estimate the realized
volatility by applying a stochastic volatility model to the daily data of the USO returns. This
makes our estimation of the oil VRP, which is the difference between the OVX published
by the CBOE and the realized volatility calculated, prone to the misspecification of the
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used model. To utilize the same estimation method as the stock VRP, or more specifically
as the stock-realized volatility, it is desirable to estimate the realized volatility of the
USO using intraday 5 min return data. Such a method also enables us to investigate the
relationship among the returns and VRP of stock and oil. This is another important topic
for future research.

Finally, analyzing the relationship among the returns and VRP of stock and oil helps
investors and policy makers understand how the returns and sentiment of one market
affect those of the other market. Indeed, the results of this study show that, after the global
financial crisis, the shock in investor sentiment on oil prices propagates to that on stock
prices, but not vice versa. This means that it is important for investors and policy makers
to pay more attention to the spillover of shocks from oil to stock than from stock to oil in
order to attain better risk management and asset allocation. Therefore, the direction of this
study is fruitful.
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Appendix A. Estimation of Realized Volatility by a Stochastic Volatility Model

We estimate the daily realized volatility of oil by applying the following stochastic
volatility model to its return.

roil t = µoil + βoil

(
e

ht
2 −OVXt

)
+ e

ht
2 εt,

ht = µh + βh(ht−1 − µh) + σhηt,
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√
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where roil t denotes the daily return of the USO, N() denotes the bivariate standard nor-
mal distribution with correlation ρ, and Γ(ν/2,ν/2) denotes the gamma-distribution
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with shape and scale parameters equal to ν/2. Here, realized volatility is estimated as

RVoil t = e
ht
2 .

We estimated the model for the five sub-periods using Bayesian statistical inference
according to the widely applicable information criterion (WAIC). The estimates of mean,
5%, and 95% percentile points (in parentheses) are as follows:

Table A1. Estimates of mean and standard deviation of parameters.

Parameter Period 1 Period 2 Period 3 Period 4 Period 5

µoil
0.305

(0.192, 0.415)
−0.336

(−0.496, −0.178)
−0.017

(−0.03, −0.01)
0.007

(0.003, 0.010)
−0.194

(−0270, −0.122)

βoil
0.041

(−0.039, 0.123)
0.068

(−0.017, 0.151)
0.032

(−0.044, 0.109)
0.028

(−0.046, 0.101)
0.085

(0.004, 0.164)

µh
1.232

(0.936, 1.530)
2.472

(2.084, 2.820)
1.278

(1.134, 1.428)
0.292

(0.095, 0.509)
1.675

(1.413, 1.939)

βh
0.849

(0.774, 0.915)
0.891

(0.835, 0.940)
0.809

(0.733, 0.873)
0.846

(0.771, 0.903)
0.914

(0.876, 0.946)

σh
0.380

(0.336, 0.431)
0.369

(0.325, 0.417)
0.363

(0.325, 0.406)
0.368

(0.328, 0.413)
0.349

(0.311, 0.391)

ρ
−0.488

(−0.630, −0.335)
−0.4649

(−0.608, −0.310)
−0.467

(−0.587, −0.331)
−0.457

(−0.595, −0.308)
−0.413

(−0.550, −0.269)

ν
8.047

(6.455, 9.753)
8.083

(6.520, 9.757)
8.455

(6.972, 10.116)
8.014

(6.476, 9.664)
8.534

(6.994, 10.210)

Notes
1 Results by extant researches about the effects of oil volatility-related variables on stock returns and volatility are mixed. For

example, Ornelas and Mauad (2019) find little predictability of oil VRP on S&P 500 returns, Bams et al. (2017) find that difference
of oil VRP is priced only on returns of oil-related stocks, and Christoffersen and Pan (2018) find predictability of oil implied
volatility on stock returns and implied volatility.

2 Volatility swap and variance swap, where variance is the square of volatility, are traded in over-the-counter derivative markets.
3 Ornelas and Mauad (2019) explain what kind of realized volatility is used in the literature to approximate the expected

future volatility.
4 https://www.cboe.com/us/indices/dashboard/VIX/ (3 March 2022).
5 http://realized.oxford-man.ox.ac.uk/ (3 March 2023).
6 https://www.cboe.com/us/indices/dashboard/OVX/ (3 March 2023).
7 Appendix A explains how we estimate the realized volatility of oil.
8 For Augmented Dickey–Fuller (ADF), Dickey–Fuller–GLS (DF–GLS), and Phillips–Perron (PP) tests, see Dickey and Fuller (1979);

Elliott et al. (1996); and Phillips and Perron (1988), respectively.
9 Analyses with different lag length provide results quite similar to those in this paper.

10 We obtain the similar result if we reverse the order of VRPoil and VRPsp. We select this ordering since the results of Granger
causality tests show more persistent Granger causality from oil to stock than from stock to oil for most of the sub-periods. For
more detail, see next subsection.
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Abstract: This article examines the asymmetric volatility spillover effects between Bitcoin and
alternative coin markets at the disaggregate level. We apply a frequency connectedness approach to
the daily data of 11 major cryptocurrencies for the period from 1 September 2017 to 2 March 2022. We
try to uncover the existence of the “fear of missing out” psychological effect and “pump-and-dump
schemes” in the crypto markets. To do that, we estimate the volatility spillovers from Bitcoin to altcoin
and the cryptos’ own risk spillovers during bull and bear markets. The spillover results from Bitcoin
to altcoin provide mixed results regarding the presence of this theory for major cryptocurrencies.
However, the empirical findings carried out by the cryptos’ own spillover effects fully confirm the
existence of a fear-of-missing-out effect and pump-and-dump schemes in all cryptocurrencies except
for USDT.

Keywords: asymmetric volatility spillover; bitcoin; altcoin; cryptocurrency; frequency connectedness

JEL Classification: C32; E42; E49; G14; G41

1. Introduction

Cryptocurrencies have drawn considerable interest from investors, policymakers, and
regulators since Bitcoin was created by Satoshi Nakamoto (2008). With their widespread
popularity among the public, they have become a popular topic in recent times among
academicians, investors, portfolio managers, and regulators. Corbet et al. (2019) di-
vided academic publications on cryptocurrencies into five main categories: bubble dy-
namics (Corbet et al. 2018b; Vranken 2017), regulation (Böhme et al. 2015; De Filippi 2014;
Fletcher et al. 2021), cybercrime (Bernabe et al. 2019; Pinzón and Rocha 2016;
Wang et al. 2020), diversification (Chemkha et al. 2021; Urquhart and Zhang 2019), and
efficiency (Khuntia and Pattanayak 2018; Nan and Kaizoji 2019; Vidal-Tomás and Ibañez
2018). However, we can extend the list of ranges from return-volume relationships and
tail riskiness (Balcilar et al. 2017; Fousekis and Tzaferi 2021) to speculation (Blau 2018;
Smaniotto and Neto 2020), as well as return-volatility transmissions between cryptocurren-
cies and other conventional financial markets (Bouri et al. 2018; Charfeddine et al. 2020;
Corbet et al. 2018a).

Unlike other financial assets that are not traded on holidays, the crypto market is
open 24 h a day including weekends. Thus, it is important to examine volatility spillover
within crypto markets at multiple frequencies (Mensi et al. 2021). Rather than looking
through the whole directional risk spillovers among crypto assets, as in other studies
(i.e., Brandvold et al. 2015; Ciaian et al. 2018; Fasanya et al. 2021; Katsiampa et al. 2019;
Koutmos 2018; Mensi et al. 2021; Sensoy et al. 2021; Yi et al. 2018), we concentrate on the
accumulated risk spillovers from Bitcoin to other major alternative coins from the first
day to longer periods. Our main motivation for doing so is the fact that price movements
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in the crypto market are largely determined by Bitcoin (Corbet et al. 2018a; Kumar et al.
2022; Yi et al. 2018). In addition, we examine the cryptos’ own risk spillovers at different
frequencies. Indeed, our study is mainly related to two strands of studies in the crypto
markets: studies investigating the relationship among crypto markets (Aslanidis et al.
2021; Fousekis and Tzaferi 2021) and studies examining the behavioral characteristics of
cryptocurrency investors (Baur and Dimpfl 2018; Wang et al. 2021). This study differs
from others in terms of the following aspects: The first aspect is the fact that the main
risk coming from Bitcoin price movements to altcoins is neglected by these studies. When
this fact is ignored, crypto investors cannot take full advantage of the study results. The
second aspect is that we decompose the time domain into various frequencies, but we
report the accumulated volatility spillover from Bitcoin to altcoins from the first trading
day to the long-term investment horizon. In the third aspect, this study indeed provides
different perspectives to test which kinds of investors (informed and uninformed) are
dominant in the crypto market for the various altcoins under consideration. Lastly, we use
a greater number of cryptos and try to select older major cryptocurrencies1 with higher
market capitalization.

Volatility and volatility spillovers have become hot topics of finance research since the
development of the conditional heteroscedasticity models of Engle (1982) and Bollerslev
(1987). Subsequently, various generalized autoregressive conditional heteroscedasticity
(GARCH) models2 have been formulized in the literature after recognizing that volatility
propagates asymmetrically (Ang and Chen 2002; Baruník et al. 2017). Later, Cappiello et al.
(2006) introduced the asymmetric dynamic conditional correlation DCC (ADCC) specifi-
cation to account for both multivariate and asymmetries in the conditional variances and
the conditional correlations. Based on the realized semivariances proposed by Barndorff-
Nielsen et al. (2010), Baruník et al. (2016) propose a way to capture volatility spillovers
that are due to bad and good volatility. As an alternative volatility spillover measurement
approach, Diebold and Yilmaz (2009, 2012) developed a volatility spillover index (the
DY index) based on forecast-error variance decompositions from vector autoregressions
(VAR). This technique, however, assumes that the spillover effects among markets are the
same across different investment horizons. Still, this assumption fails to model market
reality. Baruník and Křehlík (2018) extend the time-domain DY index to the frequency
domain to overcome this deficiency. Rather than focusing on frequency responses, this
approach is interested in assessing shares of uncertainty in one variable due to shocks with
varying persistence levels. In addition, the DY index is better than other ways of measuring
volatility, such as multivariate asymmetric GARCH models, because it can measure the
direction of the spillover effect in short-, medium-, and long-term financial cycles.

Against this background, the main goal of the present paper is to shed light on the
existence of informed traders (or insiders) and uninformed noise traders in the cryp-
tocurrency market. “Fear of missing out” (FOMO) and pump-and-dump schemes have
attracted the attention of researchers in cryptocurrency markets (Baur and Dimpfl 2018;
Delfabbro et al. 2021; Park and Chai 2020; Wang et al. 2021; Xu and Livshits 2019). FOMO
is the fear a trader or investor experiences when they miss out on a potentially profitable
investment or trading opportunity in the context of financial markets and trading. The
FOMO feeling is most apparent when the value of an asset climbs dramatically in a short
period. On the other hand, crypto pump-and-dump schemes occur when conspirators use
misleading information to inflate the value of a currency, then sell it for a profit. In this
respect, it is wise to assume that the greater the number of uninformed noise traders and
fraudsters in a certain altcoin market, the greater the risk of spillovers from bitcoin (or
altcoins’ prices) to related altcoins. The fact that bitcoin price crashes are followed by other
altcoins in the cryptocurrency market confirms this argument.

Our study is strongly related to various studies, such as those by Demir et al. (2021)
and Brik et al. (2022), in the cryptocurrency finance literature. Demir et al. (2021) in-
vestigated the asymmetric effect of Bitcoin on ETH, XRP, and LTC using the nonlinear
autoregressive distributed lag (NARDL) model for the period of July 2015 to March 2019.
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Their results indicated that the price of Bitcoin impacts altcoin prices asymmetrically in
the short run for all altcoins and a decline in Bitcoin price has a higher effect on altcoins
than a rise in Bitcoin price. On the other hand, Brik et al. (2022) examined the return and
volatility transmissions between Bitcoin and ten stable and nonstable major cryptocurren-
cies from 8 October 2018 to 17 August 2020 utilizing the VARMA-BEKK-GARCH model.
They provided evidence that volatility transmission is bidirectional in the short and long
runs for Bitcoin/Ethereum and Bitcoin/Bitcoin Cash but unidirectional in the short run
for Bitcoin/Tether and Bitcoin/TrueUSD. Except for Bitcoin and TrueUSD, there is no
long-term bidirectional volatility transmission. The main motivation for this study is to
use asymmetric spillover measures to bring a different perspective to the issues that are
frequently discussed in the finance literature. It is important for informed investors who
want to invest in the crypto market to know in which altcoin market uninformed investors
and fraudsters trade the most. Consequently, our work may be of interest to investors who
want to recognize the risk coming from uninformed investors and adjust their investment
strategy according to BTC price fluctuations.

We examine bitcoin and a set of 10 major altcoins with the largest market capitalization
and find interesting results about the spillover from Bitcoin to altcoins during different
market conditions. Our data span from 1 September 2017 to 2 March 2022. Our empirical
results show that the short- and long-term risk spillovers sourced by Bitcoin are larger for
BNB, ETH, LTC, and USDT during bullish market conditions. However, the short- and
long-term risk spillovers from Bitcoin to TRON and XRP are greater during bearish market
conditions. For ADA and DOGE, the risk spillover emanating from Bitcoin during a bearish
market exceeds the risk spillover during a bullish market after the tenth day. Moreover,
regarding the risk spread from Bitcoin to BCH and LINK, we do not observe any obvious
difference between the bull and bear markets. In addition to this analysis, we examine
the cryptocurrency’s own risk spillovers at various frequencies and volatility spillovers
from BTC to altcoins during the pre- and post-COVID-19 periods. After COVID-19, the
volatility spillover index from BTC to altcoins differs. For instance, the volatility spillover
from BTC to BCH, DOGE, LINK, and TRX increased after the COVID-19 outbreak. The
empirical findings clearly support FOMO and pump-and-dump schemes for all cryptocur-
rencies under consideration. Overall, we conclude that the FOMO of noise traders and the
deployment of pump-and-dump schemes are inherent features of cryptocurrencies.

The rest of the paper is organized as follows. Section 2 entails the methodology used
in this study. Section 3 gives a brief description of the data and some descriptive statistics
about the data. Section 4 presents the empirical findings and discussion. Section 5 provides
a conclusion.

2. Methodology

This study uses the frequency connectedness approach developed by Baruník and
Křehlík (2018) to examine the risk (volatility) spillover from Bitcoin to eight major cryp-
tocurrencies. This technique is an extension of the time-domain spillover index developed
by Diebold and Yilmaz (2012). We start by defining the VAR(p) model as

xt = ∑p
m=1 Φmxt−m + εt,

where xt = (x1,t, . . . , xN,t)
′ is an N-dimensional covariance stationary stochastic process,

Φm is an N × N coefficient matrix, εt ∼ N(0, Σε) is an N-dimensional white noise or
innovation process, and p is the lag length. Utilizing lag-polynomial approximation (i.e.,
Φ(L) =

[
IN −Φ1L− · · · −ΦpLp]), the VAR model can be written concisely as Φ(L)xt = εt.

The generalized forecast-error variance decomposition (FEVD) proposed by Koop et al.
(1996) and Pesaran and Shin (1998), hereafter KPPS, can be computed using the moving
average (MA) representation,

xt = Ψ(L)εt,
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where Ψ(L) stands for infinite lag polynomials and is calculated recursively from
Ψ(L) = Φ(L)−1. The H-step-ahead error variances in forecasting xj are originated from two
sources. One of them is due to the corresponding variable’s (xj) own variance, and others
are due to the other variable’s (xk) cross variance. Hence, the H-step-ahead generalized
FEVD can be calculated as

θH
j,k =

σ−1
kk ∑H

h=0

(
(ΨhΣ)j,k

)2

∑H
h=0
(
ΨhΣΨ′h

)
j,j

, (1)

where Ψh has N × N-dimensional MA coefficients at lag h and σkk = (Σ)k,k. θH
j,k represents

how much of the future forecast error variance of the variable j is due to innovations in
variable k at horizon h. Since the rows of the variance decomposition matrix θH do not
usually sum to one, we need to normalize each entry of the variance decomposition matrix
by the row sum as

θ̃H
j,k = θH

j,k/
N

∑
j=1

θH
j,k.

Now, ∑N
k=1 θ̃H

j,k = 1 and ∑N
j,k=1 θ̃H

j,k = N by construction. Using θ̃H
j,k, we can construct

several spillover measures (i.e., total, directional, net, and net pairwise). The total spillover
index (SH) can be constructed using the volatility contributions from the KPPS variance
decomposition as

SH = 100.

∑N
j, k = 1
j 6= k

θ̃H
j,k

∑N
j,k=1 θ̃H

j,k

= 100.

∑N
j, k = 1
j 6= k

θ̃H
j,k

N
. (2)

In addition to the total spillover index, it is possible to measure the spillover transmit-
ted from the overall system to variable j as

SH
j←� = 100.

∑N
k = 1
j 6= k

θ̃H
j,k

N
. (3)

Similarly, the spillover transmitted from j to the overall system as

SH
j→� = 100.

∑N
k = 1
j 6= k

θ̃H
k,j

N
. (4)

The net spillover index for element j is the difference

SH = SH
�→j − SH

j←�. (5)

Lastly, the net pairwise spillover between markets j and k is simply the difference
between the gross volatility shocks transmitted from market j to market k and those
transmitted from k to j as

SH
j,k = 100.


 θ̃H

k,j − θ̃H
j,k

N


. (6)

To measure the volatility spillover in the frequency domain, we follow Baruník and
Křehlík (2018) and describe the spectral formulation of the variance decomposition. For
this purpose, we utilize the Fourier transform of the coefficients Ψh (the impulse function
used for the time domain) to obtain a frequency response function at a frequency ω
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(Ψ
(
e−iω) = ∑

h
e−iωhΨh with i =

√
−1). The power spectrum SX(ω) (Fourier transform of

the MA(∞) filtered series) is

SX(ω) = ∑∞
h=−∞ E(xtx′t−h)e

−iωh = Ψ
(

e−iω
)

ΣΨ′
(

e+iω
)

. (7)

Therefore, Equation (7) illustrates how the variance of the N-dimensional stochastic
process is distributed over the frequency componentsω. Using the spectral representation
for covariance, E(xtx′t) =

∫ π
−π SX(ω)eiωhdw, we can define the variance decomposition on

the frequency band d = (α, β) : α, β ∈ (−π, π), α < β as

(Θd)j,k =
1

2π

∫

d
Γj(ω)ζ(ω)j,kdω, (8)

where ζ(ω)j,k is the generalized causation spectrum,

ζ(ω)j,k =
σ−1

kk

∣∣∣
(
Ψ
(
e−iω)Σ

)
j,k

∣∣∣
2

(
Ψ
(
e−iω

)
ΣΨ′

(
e+iω

)
Σ
)

j,j
,

which stands for the portion of the spectrum of the jth variable due to shocks in the kth
variable at frequencyω. On the other hand,

Γj(ω) =

(
Ψ
(
e−iω)ΣΨ′

(
e+iω))

j,j
1

2π

∫ π
−π

(
Ψ
(
e−iλ

)
ΣΨ′

(
e+iλ

))
j,jdλ

,

is a weighting function, and it represents the power of the jth variable at ω, which sums
through frequencies to a constant value of 2π. Baruník and Křehlík (2018) termed (Θd)j,k
as frequency spillover. After normalizing the values of (Θd)j,k and ζ(ω)j,k, one can easily
calculate alternative spillover indices (Equations (2)–(6)) in the frequency domain.

We define “good” or “bad” volatility3 spillover from Bitcoin to alternative cryptocur-
rencies when Bitcoin’s daily return4 is positive or negative, respectively. This is a good
proxy for altcoin investors who observe downside (and upside) risk in the crypto market.
Hence, we can formulate good and bad volatility spillovers at a given frequency as follows:

S+(ω) = rt > 0, S−(ω) = rt < 0,

where S+(ω) and S−(ω) represent good and bad volatility spillover, and rt denotes the
daily log return of Bitcoin.

3. Data and Descriptive Statistics

We employ daily prices for the eleven major cryptocurrencies (Bitcoin, Cardano,
Binance Coin, Bitcoin Cash, Dogecoin, Ethereum, Chainlink, Litecoin, Tron, Tether, and
Ripple). The data have daily frequencies and span from 1 September 2017 to 2 March
2022, with the equivalent of 1613 observations. Among them, 861 observations correspond
to Bitcoin’s bullish periods and 752 to bearish periods. Furthermore, the World Health
Organization (WHO) declared COVID-19 a global epidemic on 11 March 2020. For COVID-
19 analysis, we split the whole dataset into two sub-periods (pre- and post-COVID-19)
based on this declaration. We take the pre-COVID-19 period before the official declaration
and the post-COVID-19 period after that announcement. Moreover, the selection of these
cryptocurrencies is motivated by their large market capitalization and long trading periods
in comparison to other crypto markets. The cryptocurrencies analyzed in this study account
for nearly 75% of total crypto market capitalization.

Figure 1 plots the volatility series of corresponding cryptocurrencies and shows that
the volatility series fluctuates over time. Moreover, all volatility series tend to appear in
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clusters. In other words, high-volatility sub-periods are followed by low-volatility periods
for crypto assets. Moreover, we observe the co-movement of the volatility series, and
this can be easily seen in the correlation heat map (see Figure 2). USDT volatility is the
least correlated asset with other cryptos, and this is followed by DOGE, among other
cryptocurrencies. The volatility of the USDT has also dropped dramatically since the end
of 2020. We may argue that the sharp decrease in USDT volatility near the end of 2020
and its stabilization, as a result, are factors that weaken the link between it and other
cryptocurrencies. On the other hand, BTC and ETH are the most correlated assets with
other cryptos. The descriptive statistics for the crypto volatility series are shown in Table 1.
LINK has the highest average volatility, while USDT has the lowest. Moreover, DOGE
(USDT) has the greatest (lowest) volatility standard deviation. In addition, Jarque-Bera (JB)
reveals that the normality hypothesis is rejected for all volatility series.
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Table 1. Descriptive statistics of volatility series.

Mean Max Min Std. dev. Skewness Kurtosis Jarque-Bera

ADA 102.77 905.00 11.00 83.68 3.74 25.19 36,860.69 ***
BCH 91.20 961.29 11.96 75.46 3.90 30.42 54,594.35 ***
BNB 90.25 748.61 12.50 74.03 3.35 19.90 22,219.43 ***
DOGE 100.28 1484.94 12.54 107.43 4.62 38.64 91,120.25 ***
ETH 75.16 664.39 7.52 55.11 3.38 23.20 30,504.73 ***
LINK 124.77 791.07 17.72 86.49 2.62 13.61 9415.126 ***
LTC 85.19 762.61 10.11 63.62 3.53 24.63 34,783.51 ***
TRX 103.08 952.12 13.95 99.28 3.66 22.07 28,045.39 ***
USDT 17.05 248.74 0.35 17.97 3.41 29.10 48,899.68 ***
XRP 89.22 920.59 9.96 87.52 3.64 22.65 29,525.00 ***
BTC 58.71 459.05 5.85 46.02 2.85 16.54 14,491.33 ***

Note: This table provides the descriptive statistics of the eleven cryptocurrencies over the period of 1 September
2017—2 March 2022. *** These numbers represent the rejection of the null hypothesis of normality at the 1%
significance level.

4. Empirical Results and Discussion

We estimate two VAR models for eleven cryptocurrency volatility series. One is esti-
mated when the Bitcoin return is positive (bullish market), whereas the other is estimated
when the Bitcoin return is negative (bearish market). The lag length of both VAR models is
determined using the Schwarz Information Criterion (SIC), and H has been set equal to
100. Frequency spillovers are assessed at the bands (0, 1], (1, 2], . . . , (10, 20], (20, 100], and
(100, ∞] days. In accordance with Mensi et al. (2021), the short-term ranges between 1 and
5 days, the medium term, 5–20 days, and the long term, more than 20 days. Hence, we
calculate the short-, medium-, and long-term risk spillovers from Bitcoin to other altcoins
by summing up the volatility spillover in each band (Figure 3).
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to altcoins when bitcoin returns are negative (bear market condition) and positive (bull market
condition), respectively.

Figure 3 reveals mixed results regarding asymmetry. The short-, medium-, and long-
term risk spillover from Bitcoin to BNB, ETH, LTC, and USDT is greater during a bull
market than during a bear market. That means BNB, ETH, LTC, and USDT traders are more
likely to encounter uninformed investors5 compared to other cryptocurrencies analyzed.
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Accordingly, these crypto traders should worry more about uninformed investors’ herding
when making trading decisions because it is difficult to predict when the dump process
starts and the overpriced coins will suddenly crash. This means a significant risk of loss
of income for these investors. However, for TRON and XRP, the risk spillover is stronger
in a bear market. In other words, informed investors are more dominant in these altcoin
markets throughout all investment periods. Furthermore, our empirical findings show
that the risk spillover from Bitcoin to ADA and DOGE during a bear market exceeds that
during a bull market in the medium term. Lastly, the risk spillovers from Bitcoin to BCH
and LINK during bull and bear market conditions are very close to each other. Hence, our
empirical findings, except for BCH and LINK, are in line with Mensi et al. (2021), who
found that cryptocurrencies are sensitive to frequencies.

In addition to the analysis carried out above, we report the asymmetric volatility
spillovers of cryptocurrencies (Figure A1, Appendix A) explained by their own shocks.
This can be justified by the following reasonable approach: Crypto investors generally
follow the price of their invested coin rather than the bitcoin price. Similar to the previous
analysis, we consider the period when the bitcoin price increases as a bullish market,
whereas negative bitcoin returns represent a bearish market. Figure A1 shows that the
risk spillovers of cryptos, except for USDT, on themselves are greater during a bull market
than during a bear market. This can be explained by the well-known features of USDT.
USDT is a fiat-collateralized stable coin where the actual US dollar currency backs each
USDT in circulation. These results strongly confirm Baur and Dimpfl (2018), who found
that positive shocks increase volatility more than negative shocks. In other words, the
findings are compatible with uninformed investors’ FOMO and the presence of pump-and-
dump schemes.

The empirical results in Figure 3 also provide evidence about the price formation of
altcoins in the short, medium, and long runs. In fact, nearly 70% of the risk spillover from
Bitcoin to altcoins takes place in the first 10 days, which can be seen as short-term. This
finding concords with the empirical results from earlier studies, such as Ciaian et al. (2018)
and Kumar et al. (2022). Among them, Ciaian et al. (2018) found that the prices of altcoins
are driven by the development of Bitcoin in the short run but not in the long run. Likewise,
Kumar et al. (2022) found that cryptocurrencies are more sensitive to crisis periods over
short time horizons than those over longer ones.

We also investigate the spillover effects from BTC to altcoins before and after COVID-19
(Figure A2, Appendix A). This analysis brings a different perspective to the study because
incredible price volatility has been observed in cryptocurrency prices since COVID-19.
Moreover, during the COVID-19 pandemic, decentralized finance (DeFi) and decentralized
apps (dApps) enjoyed a substantial gain in market share and popularity. This outbreak
crisis also increased interest in cryptocurrency markets among ordinary and institutional
investors, who have access to financial markets from their homes via fintech trading plat-
forms, such as Robinhood (Katsiampa et al. 2022). These facts encourage us to expand this
study to examine the asymmetry, including the COVID-19 health crisis. Our empirical find-
ings show that the volatility spillover from BTC to BCH, DOGE, LINK, and TRX increased
after the COVID-19 outbreak. Interestingly, ADA and XRP are two cryptocurrencies whose
volatility spillover from BTC decreased after the COVID-19 outbreak.

5. Conclusions

In recent years, there has been an increase in empirical research on the fear of missing
out (FOMO) on rewarding experiences. There are several studies in the literature that
address this issue for stock markets. However, this topic has not yet been sufficiently
investigated for cryptocurrencies. This study contributes to filling this gap by analyzing
the asymmetric volatility of cryptocurrencies under different market conditions. This study
examines the risk spillover from Bitcoin to 10 major cryptocurrencies using daily data from
1 September 2017 to 2 March 2022 and the frequency connectedness analysis of Baruník
and Křehlík (2018).
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This study attempts to uncover the behaviors of crypto traders by analyzing the risk
spillover from Bitcoin to altcoins. Our findings show that BNB, ETH, LTC, and USDT
volatility increase more in response to positive shocks than in response to negative shocks
in the short, medium, and long terms. This can be explained by uniformed investors’
herding, fear of missing out on rising Bitcoin prices, and pump-and-dump schemes. In the
short run, this is not the case for ADA and DOGE. For TRON and XRP, we find that the
risk spillover is stronger in a bear market. This can be explained by the contrarian behavior
of informed investors in these altcoin markets. In addition to this analysis, we investigate
the cryptos’ own risk spillovers at different frequencies. These empirical findings strongly
support the FOMO and pump-and-dump schemes for all cryptocurrencies except for USDT.
Moreover, we employ the volatility spillover effects from BTC to altcoins, considering the
COVID-19 crisis. The empirical findings show that the risk from BTC to ADA and XRP
decreases after the post-covid period in comparison to the pre-pandemic period.

The results of this paper suggest that the impact of Bitcoin price movements on altcoin
prices is mixed, meaning that the relationship between the two is not always predictable.
This can make it difficult for investors to use Bitcoin price movements as a reliable indicator
of altcoin performance. However, the presence of FOMO and pump-and-dump activity
in the altcoin market suggests that individual altcoin prices may be more susceptible to
manipulation and volatility spillover. As such, investors may want to be cautious when
considering investments in altcoins and may want to thoroughly research the market
and individual cryptocurrencies before making any investment decisions. It may also
be beneficial for investors to diversify their portfolios by including a mix of Bitcoin and
altcoins rather than putting all their eggs in one basket. Moreover, investors should also
keep track of the latest developments in the cryptocurrency market, including any news
or regulatory changes that could impact the market. This can help them stay informed
and make informed investment decisions. Investors should also be wary of the fear of
missing out and not make impulsive investment decisions based on hype or media coverage.
Investors should also use reputable exchanges because they are less likely to engage in
manipulative behavior or facilitate pump-and-dump schemes.

We point out that the results of this study are based on broad market analysis based
on global data. The evidence we provide for the existence of fear of missing out and
pump-and-dump schemes is limited to the altcoin market. Therefore, the psychological
factors play a lesser role for cryptos with large market capitalization, such as Bitcoin.
Moreover, our analysis results are valid for the broad market and may not apply to all
individual exchanges.

Given that the price movements of altcoins are highly dependent on BTC and their own
price history, future studies may extend our approach to analyze volatility spillover from
other leading cryptocurrencies, such as ETH, ADA, and SOL, to various altcoins related
to these platforms. Polygon, formerly known as Matic Network, for example, is a Layer-2
scaling solution for Ethereum that aims to enhance the network’s transaction processing
speed while lowering transaction costs, often known as “gas prices.” In that respect, one
may investigate the risk spillover from ETH to MATIC when the ETH price is going up and
down. Another extension is to investigate the higher frequency (hour or minute) volatility
connectedness of cryptocurrency to uncover FOMO and pump-and-dump strategies for
the benefit of high-frequency traders.
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Figure A2. Short- and long-term volatility spillover from Bitcoin to altcoins during pre- and post-
COVID-19 period. Note: The horizontal axis denotes the frequency in days, while the vertical axis
denotes cumulative spillover index. The red and blue line shows the volatility spillover from Bitcoin
to altcoins during pre-COVID-19 and post-COVID-19 period, respectively.

Notes
1 Bitcoin (BTC), Cardano (ADA), Binance Coin (BNB), Bitcoin Cash (BCH), Dogecoin (Doge), Ethereum (ETH), Chainlink (LINK),

Litecoin (LTC), Tron (TRX), Tether (USDT), and Ripple (XRP).
2 See, e.g., Nelson (1991) for E-GARCH, Glosten et al. (1993) for leverage effect GARCH, and (Zakoian 1994) for TGARCH.
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3 Following Garman and Klass (1980), we calculate the daily volatility series using the daily opening, closing, high, and low prices.

Firstly, the daily volatility is calculated as σ̃2
it =

1
2 [ln

(
Pmax

it
)
− ln

(
Pmin

it
)
]
2 − [2 ln(2)− 1][ln

(
Pclose

it

)
− ln

(
Popen

it

)
]
2
, where Pmax

it ,

Pmin
it , Pclose

it , and Popen
it show the minimum, the maximum, the close, and the opening price of the market i on day t, respectively.

Second, we annualize the volatility series utilizing the formula σ̂it = 100
√

365× σ̃2
it.

4 We calculate the daily returns of Bitcoin by taking the logarithm of the close price divided by the open price as rt = 100. ln
(

Pclose
t

Popen
t

)
.

The daily observations span from 1 September 2017, to 2 March 2022.
5 The behavior of informed investors is consistent with the basic suggestions of economic theory. They put more emphasis on

investment knowledge and economic-related criteria than uninformed investors, who are more influenced by behavioral elements
such as personality and sentiment (Jalilvand et al. 2018). Based on this fact, it is fair to think that uninformed investors are more
open to market rumors with no economic justification.
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Abstract: The research purpose of this paper is to obtain an algorithm model with high prediction
accuracy for the price of Bitcoin on the next day through random forest regression and LSTM, and
to explain which variables have influence on the price of Bitcoin. There is much prior literature
on Bitcoin price prediction research, and the research methods mainly revolve around the ARMA
model of time series and the LSTM algorithm of deep learning. Although it cannot be proved by
the Diebold–Mariano test that the prediction accuracy of random forest regression is significantly
better than that of LSTM, the prediction errors RMSE and MAPE of random forest regression are
better than those of LSTM. The changes in the variables that determine the price of Bitcoin in each
period are also obtained through random forest regression. From 2015 to 2018, three US stock market
indexes, NASDAQ, DJI, and S&P500 and oil price, and ETH price have impact on Bitcoin prices.
Since 2018, the important variables have become ETH price and Japanese stock market index JP225.
The relationship between accuracy and the number of periods of explanatory variables brought into
the model shows that for predicting the price of Bitcoin for the next day, the model with only one lag
of the explanatory variables has the best prediction accuracy.

Keywords: Bitcoin; machine learning; random forest regression; LSTM

1. Introduction

Bitcoin is a decentralized digital currency that uses cryptography for security and is
not controlled by any government or financial institution. It was created in 2008 by an
individual or group of individuals using the pseudonym Satoshi Nakamoto (2008) with
a paper titled “Bitcoin: A Peer-to-Peer (P2P) Electronic Cash System”. Transactions with
bitcoin are recorded on a public ledger called the blockchain, which allows anyone to view
the history of a specific Bitcoin. The decentralized nature of Bitcoin allows it to operate
independently of central banks and can be transferred instantly across the globe. It has
gained popularity as a means of exchange and a store of value (Baur and Dimpfl 2021). In
the past 10 years, after experiencing several ups and downs, it broke through USD 68,000
per coin in November 2021, and the total current price once exceeded USD 1.2 trillion.

However, as a commodity, Bitcoin has the problem of high volatility. During the seven
years from April 2015 to April 2022, the standard deviation of Bitcoin’s daily return rate was
3.85%, which was 2.68 times the standard deviation of gold’s return rate during the same
period and 3.36 times that of the S&P500. Due to the large price fluctuations, the function
of Bitcoin as a store of value as a commodity and as a transaction payment function as a
currency has been questioned.

While enjoying the advantages of Bitcoin’s security and decentralization, how to grasp
the trend of Bitcoin to minimize the risk of Bitcoin floating has become a difficult problem.
Many researchers try to grasp the trend of Bitcoin through the correlation between the
price of Bitcoin and the price of other commodities. But whether it is gold (Baur and Hoang
2021; Kim et al. 2020b; Blake 2019), which is often used for comparison, stock market index
(Erdas and Caglar 2018), or crude oil price (Selmi et al. 2018), past studies have shown that
the correlation between Bitcoin and them is weak.

In past studies, another type of research direction to grasp the price trend of Bitcoin is
to predict the price of Bitcoin in the future through AI algorithms and powerful computing
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power of computers. With the improvement of hardware performance in the 21st century,
machine learning technology which has become a hot field of research. Primarily, machine
learning has been used across a variety of areas such as that of stock markets (Huang and
Liu 2020; Philip 2020); crude oil markets (Fan et al. 2016); gold markets (Chen et al. 2020b);
and futures markets (Kim et al. 2020a).

Prediction of Bitcoin by AI is mainly divided into two categories. The first category is
the classification research of predicting the rise or fall of Bitcoin in the future. The error
standard is DA and F1. The other category is regression research on predicting Bitcoin
prices, while the corresponding errors are RMSE and MAPE. Due to the sharp fluctuations
in the price of Bitcoin, only grasping the rise or fall of the price of Bitcoin in the future
cannot help investors avoid risks. In contrast, getting the specific bitcoin price as a reference
price is more useful.

1.1. Motivation and Novelties

Based on the necessity of avoiding the price risk of Bitcoin as the background, this
research chooses the random forest regression algorithm of machine learning and the
LSTM model of neural network algorithm to predict the price of Bitcoin. I mainly focus on
the performance of random forest regression in Bitcoin price prediction when using the
prediction results of LSTM as a comparison. Random forest regression is a regression form
of random forest. Different from the black box technology of neural networks, random
forest regression as machine learning can deliver the importance of each explanatory
variable in predicting Bitcoin through the results of its weak-learners.

The prediction effect of random forest in predicting stock price direction has been
proven effective (Basak et al. 2019; Khan et al. 2020). However, unlike random forest
classifier, whose research goal is to classify ups or downs, there are not many papers that
use random forest regression to study the cryptocurrency market in the existing literature.
In the literature using random forest regression, the explanatory variables used by Parvez
(2022) focus on the highly correlated OHLC (Open, High, Low, Close) and transaction
volume of Bitcoin itself as explanatory variables. On this basis, I think it is of great research
value to add explanatory variables in other fields. A total of 47 explanatory variables were
collected for this study in the following 8 categories: (a) Bitcoin price variables, (b) the
specific technical features of Bitcoin, (c) other cryptocurrencies, (d) commodities, (e) market
index, (f) foreign exchange, (g) public attention, and (h) dummy variables of the week to
verify the accuracy of random forest regression for Bitcoin price prediction.

As a comparison of whether the prediction accuracy of random forest regression
is good, this paper chooses the LSTM algorithm of RNN as comparative research. The
experimental results of many studies show that the prediction accuracy of LSTM and GRU
is better when compared with other models, including the traditional time series model
ARMA.

In addition to pursuing a high-precision forecasting model, this study also conducts
(1) an in-depth analysis from the explanatory variables that determine the importance of
Bitcoin prices and (2) the relationship between the prediction accuracy and the lag of the
explanatory variables.

1.2. Contributions

The RMSE of the random forest regression model is smaller than LSTM algorithm.
Although through the DM and Clark–West test, the hypothesis that LSTM is better than
random forest regression cannot be rejected at a significant level of α = 95%. However, the
error results of multiple experiments show the higher prediction accuracy of random forest
regression.

The experimental results of random forest regression also indicate the changes in the
factors that determine the price of Bitcoin around 2018. The OHLC prices of Bitcoin itself
are proven to be most important during the full sample period. In Period 1 from April
2015 to October 2018, the U.S. stock markets NASDAQ, DJI, and S&P500, which have high
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importance, show a sharp decrease in importance in the Period 2 sample from October
2018 to April 2022. The importance of ETH and DOGE, which are both digital currency
markets, increased during Period 2.

As an LSTM model that focuses on the study of time series data, the control experi-
ments by substituting explanatory variables with different lags show that the prediction
accuracy obtained only with the latest period of data is the highest. Random forest regres-
sion also delivered the same conclusion.

1.3. Organization

Rest of the paper is organized as follows. Section 2 discusses the existing method-
ologies and models to predict the cryptocurrency prices. Section 3 discusses the setting
of model parameters and error setting. Section 4 discusses the selection analysis and
pre-processing of explanatory variables. Section 5 discusses the performance evaluation of
the proposed model. Section 6 discusses the limitations of the research and directions for
future attempts. Finally, Section 7 concludes the paper.

2. Related Works

Aggarwal et al. (2019) studied whether gold price can predict Bitcoin price through
three deep learning algorithms of CNN, LSTM, and GRU. The conclusion is that the
predicted price of the model which only uses gold price deviates from the true Bitcoin
price, and the prediction accuracy of the LSTM model is the best of three. Liu et al. (2021)
expanded the range of explanatory variables, based on the cryptocurrency market and
macro market index (stock market index, crude oil price, exchange rate, etc.) and search
index, a total of 40 explanatory variables for Bitcoin price prediction. SDAE algorism shows
better prediction performance than BPNN, PCA-SVR, and SVR.

Regarding the prediction research of Bitcoin price, the methods are divided into time
series and machine learning. Multiple studies have concluded that the prediction accuracy
of ARIMA is not as good as that of machine learning (McNally et al. 2018; Shin et al. 2021;
Chen et al. 2020a; Akyildirim et al. 2021).

LSTM, as a controlled study of random forest regression in this study, has been
studied as a target model many times in the past literature (Shin et al. 2021; Jagannath et al.
2021; Rizwan et al. 2019). Phaladisailoed and Numnonda (2018) used four deep learning
algorithms (Theil–Sen regression, Huber regression, LSTM, and GRU) to predict the price
of Bitcoin. The 52.78% accuracy of the LSTM algorithm is the highest. Based on the same
explanatory variables, Tandon et al. (2019) found that adding 10-fold cross-validation to
the LSTM training process can increase the accuracy of LSTM by 14.7%. However, the
selection of explanatory variables in Phaladisailoed’s and Tandon’s studies is limited to
OHLC, volume from top exchange and market cap. In the research done by Aggarwal
et al. (2019), in addition to the price of Bitcoin itself, gold price was added to explanatory
variables. The experimental results show that the RMSE of the LSTM algorithm is 47.91,
which is better than CNN and GRU. McNally et al. (2018) added the variables difficulty
and hash rate related to Bitcoin attributes in his research, the 52.78% prediction accuracy of
LSTM is also better than the accuracy of RNN and ARIMA. Chen et al. (2020a) used LSTM,
SVR, ANFIS, and ARIMA, four algorithms to predict the Bitcoin price. While Chen added
eight kinds of Bitcoin attribute variables, public attention variables (Google Trends and
Twitter data) and economic category variables. In the four subsample periods, LSTM all
showed better prediction accuracy than the other three. Livieris et al. (2020) introduced a
novel framework by preprocessing, which performed a series of transformations based on
first differences or returns, to make data “suitable” for fitting a deep learning model based
on the stationarity property.

In addition to predicting the price of Bitcoin, there are many studies using LSTM to
predict other digital currencies (Sebastião and Godinho 2021; Saadah and Whafa 2020;
Derbentsev et al. 2020). Politis et al. (2021) used LSTM to predict the price of Ether with
an accuracy of 84.2%. Livieris et al. (2021) used hybrid CNN-LSTM to conduct prediction
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experiments on Bitcoin (BTC), Ethereum (ETH), and Ripple (XRP) with the highest market
value at the time and obtained BTC The prediction accuracy of 55.03% is higher than ETH’s
51.51% and XRP’s 49.61%.

In McNally et al.’s (2018), García-Medina and Duc Huynh’s (2021), and Chen et al.’s
(2020a) studies, it is mentioned that adding Dropout layers between each layer of LSTM
can reduce the effect of overlearning. But there are differences in the choice of dropout
coefficients (0.1, 0.3, 0.5) among the three works of literature above.

Regarding the selection of explanatory variables, in addition to the macroeconomic
variables used in many works of literature, Jagannath et al.’s (2021) research focuses
on the core variables of the Bitcoin blockchain, including users, miners, and exchanges.
Technical indicators have proven useful for predicting Bitcoin prices (Jaquart et al. 2021;
Mudassir et al. 2020). The LSTM based on the self-adaptive technique also gets good
prediction performance, but the article lacks a comparative experiment with the model
added macroeconomic variables. Regarding the explanatory power of variables on Bitcoin
price, García-Medina and Duc Huynh (2021) innovatively studied variables such as social
media (E. Musk and D. Trump’s remarks) and Tesla stock price. During the ups and
downs in the second half of 2020, the conclusion was that the explanatory power of these
variables that were of great interest at the time was not found. Carbó and Gorjón (2022),
in their appendix, compare the effect of adding the previous period’s Bitcoin price to the
explanatory variables based on the LSTM algorithm. The RMSE accuracy of the model that
added the previous Bitcoin price as an explanatory variable improved significantly from
the original 21% to 11%.

The selection of time unit prices is also a point that has been analyzed by many
researchers. Most research use days or minutes as the sample unit. In the quarterly
research of DSVR, DNDT, and DRCNN conducted by Lamothe-Fernández et al. (2020),
each model obtained more than 60% prediction accuracy, but this high accuracy may be
related to Bitcoin’s general uptrend between 2011 and 2019 in the sample, as well as the
long quarterly units. The work of Shin et al. (2021) is based on the LSTM model, with
sample units in a minute, hour, and day. The results show that the prediction accuracy of
the day model and minute model is similar, and both better than the model with an hour
unit.

Bitcoin has a history of 15 years since its birth in 2008, although it is not long compared
to other assets. In previous studies, researchers are more willing to subdivide data samples
into small samples before conducting prediction research (Shin et al. 2021; Chen et al. 2020a;
Carbó and Gorjón 2022). In Jagannath et al.’s (2021) and Awoke et al.’s (2021) experiments,
the longest period of a single sample does not exceed 4 years.

3. Methodology

Machine learning is an important branch of artificial intelligence (AI). According to
whether there is a target variable, it can be divided into supervised learning, unsupervised
learning, and reinforcement learning. The purpose of this study is to predict future Bitcoin
prices, so a regression function with supervised learning is used. The unified execution
logic of machine learning is that after the algorithm is preset, a learner is generated, and a
high-precision learner is obtained by repeated training of the learner through training data
and the process of validation. Finally, the test data is substituted into the trained learner for
evaluation and application.

Both random forest regression and LSTM model training in this paper are implemented
through the open-source library of python’s machine learning. The library used by random
forest regression is sklearn, and LSTM uses keras for research. The pre-processing and
collation of the data are done by pandas.

3.1. Random Forest

Random forest is an ensemble form of multiple regression trees. Its advantage is high
explicability, but the predicted results are limited by the training samples. The principle
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of the regression tree is to divide the parent group into subgroups using an indicator of a
certain variable, and the classification is based on making the average of the sum of squared
residuals of each group the smallest, shown in Equation (1) below.

1
n1

n1

∑
i=1

(
yi − y(1:n1)

)
+

1
n2 − n1

n2

∑
j=n1+1

(
yj − y(n1+1:n2)

)
→ min (1)

Regarding parameter settings, the maximum depth of a single sub-regression tree is
10, and the number of sub-regression trees in the random forest is 500 (Figure 1). I tested
the maximum depth of the interval [min = 3, max = 20] and the number of sub-regression
trees of the interval [min = 200, max = 1000], respectively. My further experiments show
that after the maximum depth is greater than 10 or the number of sub-regression trees is
greater than 500, the training data and the prediction error no longer changes.

J. Risk Financial Manag. 2023, 16, x FOR PEER REVIEW 5 of 26 
 

 

by random forest regression is sklearn, and LSTM uses keras for research. The pre-pro-
cessing and collation of the data are done by pandas. 

3.1. Random Forest 
Random forest is an ensemble form of multiple regression trees. Its advantage is high 

explicability, but the predicted results are limited by the training samples. The principle 
of the regression tree is to divide the parent group into subgroups using an indicator of a 
certain variable, and the classification is based on making the average of the sum of 
squared residuals of each group the smallest, shown in Equation (1) below. 1𝑛ଵ෍൫𝑦௜ − 𝑦(ଵ:௡భ)തതതതതതതത൯௡భ

௜ୀଵ + 1𝑛ଶ − 𝑛ଵ ෍ ൫𝑦௝ − 𝑦(௡భାଵ:௡మ)തതതതതതതതതതതത൯௡మ
௝ୀ௡భାଵ → 𝑚𝑖𝑛 (1)

Regarding parameter settings, the maximum depth of a single sub-regression tree is 
10, and the number of sub-regression trees in the random forest is 500 (Figure 1). I tested 
the maximum depth of the interval [min = 3, max = 20] and the number of sub-regression 
trees of the interval [min = 200, max = 1000], respectively. My further experiments show 
that after the maximum depth is greater than 10 or the number of sub-regression trees is 
greater than 500, the training data and the prediction error no longer changes. 

 
Figure 1. Parameters and framework of random forest regression. 

3.2. LSTM 
The RNN algorism is different from the normal DNN algorism. When data is substi-

tuted into the model, it will not only generate an output value, but also modify the pa-
rameters of the model. RNN algorism has the function of retaining the previous input data 
information in the model. This paper uses the LSTM model that makes up for the short 
memory defect of RNN. Data changes are made to the RNN model and the memory model 
through the paths of the three activation functions of Forget Gate, Input Gate, and Output 
Gate. 

Based on the characteristic that the output value of the LSTM model can be resubsti-
tuted into another layer of the LSTM model, and the application of the dropout layer men-
tioned in the literature, the LSTM model structure of this experiment is as follows. Re-
garding the parameter setting of the dropout layer, I tested [min = 10%, max = 50%] for 

Figure 1. Parameters and framework of random forest regression.

3.2. LSTM

The RNN algorism is different from the normal DNN algorism. When data is sub-
stituted into the model, it will not only generate an output value, but also modify the
parameters of the model. RNN algorism has the function of retaining the previous input
data information in the model. This paper uses the LSTM model that makes up for the
short memory defect of RNN. Data changes are made to the RNN model and the memory
model through the paths of the three activation functions of Forget Gate, Input Gate, and
Output Gate.

Based on the characteristic that the output value of the LSTM model can be resub-
stituted into another layer of the LSTM model, and the application of the dropout layer
mentioned in the literature, the LSTM model structure of this experiment is as follows.
Regarding the parameter setting of the dropout layer, I tested [min = 10%, max = 50%] for
each dropout layer. It turns out that when the overall value of dropout is small, there is an
overlearning phenomenon in which the training data performs well but the prediction error
of validation data is large. When the overall value of dropout is set too large, the errors of
the training data and the validation data are both large. In addition, the experiment also
found that the prediction accuracy of the dropout value with descending order is worse
than ascending order. The number of layers of LSTM [min = 2, max = 6] and the parameter
setting of each layer of units in [32, 64, 128, 256, 512] are tested. After balancing the accuracy
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and the risk of overlearning. The activation function of each layer is set to “ReLU”, which
has better performance than “sigmoid” and “tanh”. The specific value and framework of
LSTM is shown by Table 1 and Figure 2 below. The last 10% of the training data is set as
validation data.

Table 1. Details of the LSTM model.

Layers Parameters

Layer_1 LSTM_1 units: 128
Activation: ReLU

Layer_2 Dropout_1 0.2

Layer_3 LSTM_2 units: 128
Activation: ReLU

Layer_4 Dropout_2 0.3

Layer_5 LSTM_3 units: 256
Activation: ReLU

Layer_6 Dropout_3 0.4

Layer_7 LSTM_4 units: 256
Activation: ReLU

Layer_8 Dropout_4 0.5

Layer_9 Dense units: 1
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In addition to the framework setting of the model, another important hyper parameter
of deep learning is epochs. The value of epochs reflects the number of passes to learn
the train data. The larger the epochs are, the smaller the prediction error of the training
data will be. However, when the epochs are too large, it leads to overlearning problems.
Therefore, through the training and validation loss diagrams of Period 1 and Period 2 in
Figure 3 below, the epochs of Period 1 are set to 250, and the epochs of Period 1 are set
to 75.
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3.3. Errors and Evaluation Criteria

As an important criterion to evaluate the prediction accuracy of machine learning,
this study quantifies the prediction performance of the model by using three errors,
MAPE (mean absolute percentage error, Equation (2)) and RMSE (root mean squared
error, Equation (3)), and DA (decision accuracy, Equation (4)). However, due to the rising
average Bitcoin price, RMSE can only be compared for model results based on the same
sample. There is no meaningful comparison between the experimental results of different
data samples.

MAPE =
1
m

m

∑
t=1

∣∣∣∣
y(t)− ŷ(t)

y(t)

∣∣∣∣ (2)

RMSE =

√
1
m

m

∑
t=1

(y(t)− ŷ(t))2 (3)

DA =
1
m

m

∑
t=1

a(t)× 100% (4)

In addition to comparing the prediction accuracy of various models to obtain the
performance of each model in predicting the future price of Bitcoin, this study also expects
to compare the prediction errors under different lags of explanatory variables to analyze
the memory length characteristics of the Bitcoin market.

In addition to the MAPE, RMSE, and DA errors of each prediction result, this paper
also conducts a hypothesis test on the significant difference between the two different
algorithms through the Diebold–Mariano test and the Clark–West test. The principle of
the DM test can be simply summarized as: given two sets of prediction error sequences
{e′t}T

t=j and {et}T
t=j, then define a loss function dt = L(et)− L(e′t), while L(e) = e2 is MSE

and L(e) = |e| is MAE.

DMt =
dt

se(dt)
(5)

Based on Diebold–Mariano’s loose assumption, DMt (Equation (5)) is asymptotically
distributed in N(0, 1), and finally a one-sided hypothesis test is performed on the statistic
DMt.

The Clark–West test adds the (et − e′t)
2 item in the loss function of the Diebold–

Mariano test of MSE as ft := (et)
2 − (e′t)

2 + (et − e′t)
2, which is also asymptotically dis-

tributed in N(0, 1), and finally performs a one-tailed hypothesis test on the statistic ft.

4. Data and Preprocessing

The sample data are the daily data from 31 March 2015 to 1 April 2022. The data of
the study were collected from yahoo finance, Coinmarketcap.com, investing.com, bitin-
focharts.com, and coinmatrics.io.
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The target variable in the experiment is the price of Bitcoin in USD. A total of 47
variables are used as explanatory variables to predict the price of Bitcoin in the future,
which are divided into eight categories: (a) Bitcoin price variables, (b) the specific technical
features of Bitcoin, (c) other cryptocurrencies, (d) commodities, (e) market index, (f) foreign
exchange, (g) public attention, and (h) dummy variables of the week.

Each explanatory variable and its corresponding definition are in Appendix A.

4.1. Explanatory Variables Analysis

Table 2 shows the statistical features for each explanatory variable used to predict
Bitcoin’s future price. It is worth noting that the standard deviations of the variables related
to the cryptocurrency market (five for Bitcoin, five for other cryptocurrencies, and Google
search volume for Bitcoin) are all large. Among them, the ratio of the standard deviation
to the mean value, except for the LTC of 0.99, all the others exceed 1. It reflects the high
volatility of the cryptocurrency market since 2015. Except for the variables mentioned
above, which are related to cryptocurrency, the value of standard deviation/mean ratio of
the traditional market is not greater than 0.4.

Table 2. Statistical features of explanatory variables.

Count Mean Std Min Max

BTC_Open 2559 12,628.14 16,689.78 210.068 67,549.73

BTC_High 2559 12,965.49 17,133.74 223.833 68,789.63

BTC_Low 2559 12,259.05 16,184.48 199.567 66,382.06

BTC_Close 2559 12,644.27 16,697.06 210.495 67,566.83

BTC_Volume 2559 1.6 × 1010 2.02 × 1010 10,600,900 3.51 × 1011

Active addr cnt 2559 715,123 235,979.6 222,628 1,366,494

Xfer cnt 2559 646,493.3 183,825.9 234,806 2,041,653

Mean Tx size (native
units) 2559 2.092273 3.50753 0.307039 126.7199

Total fees (USD) 2559 936,734.4 1,971,955 2850.355 21,397,763

Mean hash rate 2559 60,571,448 61,550,129 271,738.1 2.48 × 108

Difficulty 2559 8.37 × 1012 8.5 × 1012 4.67 × 1010 2.86 × 1013

Mean block size (in bytes) 2559 968,516.6 258,456.1 292,929.3 1,523,656

Sum block weight 2559 4.82 × 108 1.05 × 108 1.91 × 108 7.58 × 108

LTC 2559 71.87075 70.81633 1.32117 386.4508

XRP 2559 0.354487 0.38141 0.00356 2.78

DASH 2559 142.1313 182.4392 2.06 1550.85

DOGE 2559 0.035873 0.087754 8.73 × 10−5 0.6848

ETH 2430 708.8693 1107.578 0.4348 4812.09

Gold 1854 1489.887 245.8335 1070.8 2117.1

Silver 2182 19.18016 3.750716 11.978 30.135

Copper 1811 3.00615 0.697527 1.994 4.9375

Oil 1848 54.88971 14.53394 −37.63 123.7

Treasury yield 10 years 1763 1.950953 0.657184 0.499 3.234

S&P500 1766 2907.096 779.8341 1829.08 4796.56

DJI 1766 24,828.27 5703.945 15,660.18 36,799.65
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Table 2. Cont.

Count Mean Std Min Max

CBOE 1765 94.984 21.60072 55.5 137.16

NASDAQ 1765 8336.731 3308.791 4266.84 16,057.44

JP225 1740 21,972.35 3738.272 14,952.02 30,670.1

CSI300 1708 3982.53 668.6175 2853.76 5807.72

DXY 1764 95.63923 2.961022 88.59 103.29

EUR 1826 1.343444 0.088168 1.149439 1.588512

GBP 1826 0.747414 0.046768 0.62952 0.86999

JPY 1826 111.051 5.136474 99.906 125.629

CAD 1826 1.303631 0.04442 1.1954 1.4578

AUD 1826 1.367315 0.07251 1.232 1.741281

SGD 1826 1.367216 0.029435 1.30659 1.4563

CNY 1826 0.733329 0.037271 0.57429 0.811688

RUB 1826 66.58596 8.731132 0.7162 138.9651

Tweets 2559 50,500.83 43,438.57 13,294 363,566

Google 2559 495.8206 519.2102 64 6064.504

In addition, differences between the explanatory variables of the cryptocurrency
market and the traditional market were observed in terms of the ratio of the minimum
and maximum values. Except for 194 times the Russian ruble in traditional markets, the
max/min ratio is not greater than 7 (Regardless of the extremely negative price of −37.63
for crude oil on 20 April 2020). However, in the cryptocurrency market, the ratios are all
greater than 300, and the highest is 11,067 times that of ETH. Both the Bitcoin market and
the Russian ruble in the traditional market have shown high volatility.

The correlation heat map (Figure 4) shows the correlation between Bitcoin and other
explanatory variables except for the week dummy variables. Bitcoin has a positive corre-
lation with other cryptocurrencies, commodity prices, stock market indexes, and public
attention variables. The only exception is that the price of Bitcoin is inversely correlated
with the 10-year U.S. Treasury yield in the commodities category. The price of Bitcoin
and the exchange rate generally show a negative correlation. It seems understandable
that the stronger the US dollar, the lower the price of Bitcoin. Interestingly, the Russian
ruble exchange rate has a positive correlation with the Bitcoin price, and the correlation
coefficient is high.

There is a brief explanation of the relationship between Bitcoin price and weekday
variables. The extreme floats are mostly found on Wednesdays. The largest yield variance
was seen on Wednesday and the largest daily gains and daily losses over the 7 years both
occurred on Wednesday. The variance of yields is smaller on weekends than on weekdays,
and yield fluctuations are more stable. The average daily return for Bitcoin is 0.28% with
a 95% confidence interval of [0.13%, 0.43%]. The average return is highest on Mondays
and smallest on Sundays. Monday’s return is statistically greater than Sunday’s (α = 95%).
The daily probability of rising is 54.57% with a 95% confidence interval of [52.64%, 56.50%].
Saturday and Friday have the highest probability of rising. The probability of rising on
Saturday is statistically greater than on Sunday (α = 90%).

Regarding the two public attention variables (Figure 5), two conclusions can be drawn
from the comparison with the Bitcoin price. First, the spike in Google Trends and daily
Tweets came during a time when Bitcoin broke its all-time high price. Secondly, the highest
Google Trend occurred at the end of 2017. After that, even with over USD 60,000 in 2021,
the search volume did not surpass what it was at the end of 2017.
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4.2. Preprocessing

The data research sample collected data from a total of 7 natural years from 31 March
2015 to 1 April 2022. However, due to the particularity of Bitcoin having two price bubbles at
the end of 2017 and 2021, and the longest span of a single sample in past studies is no longer
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than 4 years. Based on the above two reasons, to improve the price prediction accuracy of
the model, the total sample is divided into Period 1 (from 31 March 2015 to 30 September
2018) and Period 2 (1 October 2018 with 1 October 2018). Conduct independent research
on two sub-samples, train models for their respective periods and predict respectively.
Machine learning is the process of training initial samples through training samples and
then substituting them into test samples for evaluation. Usually, training samples occupy
75% to 90% of the samples. The specific division of training and testing samples in this
study is shown in Table 3 and Figure 6. The last 10% of the training data is set as validation
data.

Table 3. Interval division of training samples and test samples.

Train Data Test Data Percentage of Train Data

Period 1 31 March 2015–31 March 2018 1 April 2018–30 September 2018 85.70%

Period 2 1 October 2018–30 September 2021 1 October 2021–1 April 2022 85.69%
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Among all the explanatory samples, only ETH has the problem of missing sample
data because it came out (7 August 2015) later than April 2015, so the training samples
used for ETH in the Period 1 model all start from 7 August 2015, not 31 March 2015.

Bitcoin is available for trading 24 h a day and 365 days a year, while the variables such
as stock market indices, exchange rates, and commodity price indices are not traded during
weekends and holidays, so there is missing data. There are two ways to deal with samples
with these missing data, one is to delete the data with missing data before training, and
the second method is to fill in the missing data. Considering that the research object of
this study is time-series in nature, direct deletion of the samples affects the analysis of the
period relationship. Therefore, filling in the missing data is chosen by replacing the value
of the missing data with the value of the previous period. For example, in the case of gold
prices, there is no price data for the weekend, and the value of the Friday gold price from
the previous day is used to define the price for both days of the weekend.

The min/max preprocessing (Equation (6)) is important for LSTM because the activa-
tion function is not sensitive to values above 1. All variables are unified to [0, 1], eliminating
the effect of metric units.

xscaled =
x− xmin

xmax − xmin
(6)

The flow of the whole experiment is shown in Figure 7.
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5. Results
5.1. Results of Random Forest Regression

The trained learner is used to predict the test samples of Period 1 and Period 2, and the
results shown in Table 4 and Figure 8 below are obtained. The red line is the Bitcoin price,
and the green dashed line is the price predicted by the random forest regression learner.

Table 4. Error results for random forest regression.

Period 1 Period 2

RMSE 321.61 2096.24

MAPE 3.39% 3.29%

DA 51.93% 52.49%

Although the RMSE of Period 1 is much smaller than that of Period 2, since the average
price of Bitcoin in Period 1 is also much smaller than that of Period 2, it is meaningless to
compare the RMSE results of different periods. The MAPE and DA indicators in the two
periods are quite close, and the prediction accuracy of Period 2 is slightly better than that
of Period 1. It is worth noting that in the early stage of the test interval of Period 2, the
random forest regression algorithm has a bad prediction on the Bitcoin price when the price
is greater than 60,000 US dollars because there are very few samples with a Bitcoin price
greater than USD 60,000 in the training samples of Period 2. This result accurately reflects
the disability of the random forest algorithm to predict results outside the training samples.
However, whether it is Period 1 or Period 2, the random forest regression algorithm shows
excellent performance in predicting prices below USD 60,000, and the trend of the predicted
price is consistent with the real price trend.

In addition to predictive analysis, the random forest algorithm also provides the
importance of each explanatory variable when predicting the price of Bitcoin, through the
statistics of the number of occurrences of boundary variables in all 500 sub-regression trees.
The result is shown in Figure 9.
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Whether it is Period 1 or Period 2, the importance of OHLC price of Bitcoin in the
previous period is ranked high. However, what is interesting is that the relative order of
open, high, low, and close in the two periods is not the same. According to the random walk
theory of sequential prices, the price at each time point reflects the market’s expectation of
the future price now, so the closing price closest in time should be the most important item
among the four prices. The variable importance results for Period 1 accurately reflect this.
However, in the ranking of Period 2, the lowest price of the previous period is considered
the most important explanatory variable, and the closing price of the previous period is the
last of these four prices. I think the possible reason that the lowest price in the previous
period in Period 2 is important is related to the fact that there are more days of Bitcoin price
decline in the later period of the Period 2 training sample, and the closing price is not at
the highest level also implies that random forest regression delivers different results from
random walk theory.

In addition to the variables of Bitcoin’s price, there are several other variables that are
evaluated to be important when determining the price of Bitcoin. In Period 1, the NASDAQ
index and crude oil prices in the United States are of high importance, even more important
than the opening price of Bitcoin. From 7th to 10th places of importance are the American
stock market index DJI, S&P500, ETH price, and the difficulty index of mining BTC. Among
the top six explanatory variables other than Bitcoin price, the U.S. stock market index
accounts for half of the three seats, which reflects the relationship between the U.S. stock
market index and Bitcoin price from April 2015 to October 2018.

In Period 2, as shown in the Figure 9, since the importance of GBP in the 7th place is
almost negligible, only the first six explanatory variables are considered. Except for the first
four Bitcoin price variables, the remaining two are ETH, which is also a cryptocurrency,
and Japan’s stock market index JP225.

Regarding the explanatory variables that determine the importance of Bitcoin prices,
it can be summarized that the OHLC prices of Bitcoin itself in the previous period are the
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most important. The importance of the remaining variables changes over time. The stock
market index has the highest importance among all major categories. The feature of the
high importance of the US stock market index in Period 1 has not been continued in Period
2. The importance of the Japanese stock market increased in Period 2. ETH is the only
non-Bitcoin price variable that is considered important for Bitcoin price predictions in both
Period 1 and Period 2.

In addition to obtaining the order of importance, to further study the impact of the
presence or absence of explanatory variables on the prediction error, two additional tests
were performed, which took turns taking out the least important and most important
explanatory variable sets, respectively. The results are shown in Tables 5 and 6 below.
The normal column is the importance ranking of all explanatory variables in Figure 9.
The ascending column is to extract the most important explanatory variables and repeat
the experiment. The descending column is to extract the least important explanatory
variables and repeat the experiment. The results show that among the top variables in
Period 1, except for BTC_Close, BTC_High, NASDAQ, and BTC_Low, all other variables
have changed by more than two ranks. In contrast, the ranking of Period 2 is more stable,
and the variables from 1 to 6 have not changed except for BTC_Open and BTC_Close.

Table 5. Summary of explanatory variables importance of Period 1.

Ranking
(Period 1) Normal Ascending Descending

1 BTC_Close BTC_Close BTC_Close
2 BTC_High BTC_High BTC_High
3 NASDAQ NASDAQ NASDAQ
4 Oil BTC_Low BTC_Low
5 BTC_Low BTC_Open BTC_Open
6 S&P500 Oil DJI
7 BTC_Open Difficulty Oil
8 DJI S&P500 S&P500
9 ETH DJI ETH
10 Difficulty JP225 Difficulty

Table 6. Summary of explanatory variables importance of Period 2.

Ranking
(Period 2) Normal Ascending Descending

1 BTC_Low BTC_Low BTC_Low
2 BTC_High BTC_High BTC_High
3 BTC_Close BTC_Close BTC_Open
4 BTC_Open BTC_Open BTC_Close
5 ETH ETH ETH
6 JP225 JP225 JP225
7 S&P500 S&P500 CSI300
8 DOGE DOGE AUD
9 CSI300 GBP NASDAQ
10 DXY EUR DXY

In addition to the ranking results, I analyzed the change in RMSE after taking out the
most important variables in turn. The RMSE corresponding to the variable name on the
abscissa refers to the RMSE error after removing it and the upper variables in Figure 10.
Therefore, a large range of RMSE changes can show the importance of this variable relative
to the remaining variables.
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The significant increase in RMSE in Period 1 occurs when BTC_Open is removed.
Removing BTC_Open corresponds to removing all OHLC from the previous day data,
which shows that when predicting the next Bitcoin price, at least one of the current OHLC
Bitcoin price needed. In Period 2, three large changes in RMSE occurred when BTC_Open,
ETH, and DOGE were removed separately. Although the result of random forest shows that
DOGE appears less often than JP225 and S&P500 in the nodes of all sub- regression trees, the
sharp rise in RMSE after removing DOGE shows the effect of DOGE on prediction accuracy.
The three large changes in Period 2 are all related to the price variables of cryptocurrency,
indicating that the correlation between Bitcoin price and the cryptocurrency market has
increased after 2018.

Based on the results about the importance of predicting the price of Bitcoin, I compared
the prediction performance between the model with all variables and the model only
with important variables (BTC_Close, BTC_High, NASDAQ, and BTC_Low for Period 1;
BTC_Close, BTC_High, BTC_Low, BTC_Open, ETH, and JP225 for Period 2). The results
show that the prediction accuracy of the model with all explanatory variables is better
while the RMSE is 3% smaller than the results using only important variables (Figure 11).
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5.2. Results of LSTM

I found that bringing redundant explanatory variables into the model for training leads
to a decrease in model accuracy. The accuracy of the model obtained after all 47 explanatory
variables are brought in is lower than that of the model using part of the variables, such
as the lightweight model using only four Bitcoin price variables. On the contrary, if too
few explanatory variables are used, the prediction accuracy of the model also reduces. For
example, after adding some other variables to the lightweight model with four Bitcoin price
OHLC variables, the prediction accuracy becomes better. Therefore, I have conducted a lot
of experiments and attempts on what set of explanatory variables should be substituted
in each period. Since there is no such problem in random forest due to it is ensemble
algorithm, there is no need to discuss it in random forest regression.

Since the combination of explanatory variables brought in directly affects the predic-
tion accuracy of the model, by referring to the importance rank of the explanatory variables
using random forest regression, the respective explanatory variable sets of Period 1 and
Period 2 are set in Table 7.

As the learning results of deep learning are related to the combination of randomly
selected learning samples from the sample, randomness was present in the experimental
results. Therefore, when comparing the model results, instead of comparing the accuracy of
a single model, the average of the results of 30 experiments for various models is compared.
The method of comparing the average of multiple experimental results was also applied in
the experiments done by Liu et al. (2021).
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Table 7. Explanatory variables used in Period 1 and Period 2.

Period 1 Period 2

Variables

BTC_Open BTC_Open
BTC_High BTC_High
BTC_Low BTC_Low
BTC_Close BTC_Close

ETH ETH
Oil JP225

S&P500
NASDAQ

DJI
Difficulty

The one-lagged accuracies of the models for two periods are shown in Table 8 and
Figure 12.

Table 8. Errors of the LSTM models.

Period 1 Period 2

RMSE 330.26 3045.87

MAPE 3.57% 4.68%
Note: the results are the average of 30 runs.
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When the Bitcoin price is greater than USD 60,000 in the early period of Period 2, the
prediction results of the LSTM algorithm met the same problem of underrating as that
in random forest regression. By comparing the MAPE of the two periods, the prediction
accuracy of Bitcoin price in Period 1 is better than that in Period 2. This reflects that the
correlation between Bitcoin and traditional markets has decreased in recent years, and the
randomness of prices has increased. This result also echoes the conclusion that the price
correlation is more and more determined by the previous period’s own price, as reflected
in the importance ranking of random forest regression in Period 2.

5.3. Relationship between Precision and Number of Variable Periods

Regarding the relationship between model accuracy and the number of lags of ex-
planatory variables, I compared the results of five models with lags from 1 to 5. Whether
it is Period 1 or Period 2, the conclusion is that the MAPE of random forest regression
increase with the number of periods added as shown in Figure 13. Models trained by only
explanatory variable data from the previous period had the best accuracy. This feature of
the lagged relationship supports the efficient market hypothesis.
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LSTM is a deep learning algorithm with good predictive performance for time series
data. The conclusion on whether it is necessary to refer to the data of multiple periods
before when predicting the price of Bitcoin is that the prediction accuracy of the model that
only needs the previous period is the best. As shown in the results of Period 1 (ten-variable
model) and Period 2 (six-variable model) in Figure 14 below, although the price trends of
each model are close to real price, the more periods of data substituted into the model, the
smoother and smoother the curve of the forecast data becomes, deviating from the real
price.

The conclusion on the number of data periods required when training the model is
that only using the most recent period of data is sufficient. This conclusion is close to the
efficient market hypothesis. The current price reflects the market’s expectation of the future
price of the asset, and the price of the previous period has no reference value.

According to summary Table 9, it can be found that whether it is Period 1 or Period 2,
the price prediction accuracy of the random forest regression model with a lag of 1 is better
than that of the LSTM algorithm.
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Table 9. Model evaluation using the accuracy and error.

RMSE MAPE DA

Period 1

Random forest
regression

321.61
(1.67%) 3.39% 51.93%

LSTM 330.26
(1.71%) 3.57% 49.98%

Period 2

Random forest
regression

2096.24
(3.48%) 3.29% 52.49%

LSTM 3045.87
(5.05%) 4.68% 48.09%

Note: 1. The results are an average of 30 runs. 2. The model of LSTM is the Period 1 ten-variable model and the
Period 2 six-variable model. 3. The brackets in the RMSE column are the values that have not been post-processed
(min/max).

Except for the MAPE index of random forest regression, the other three groups (RMSE
of random forest regression, RMSE and MAPE of LSTM) all showed that the prediction
error of Period 2 is greater than that of Period 1. This result reflects that the Bitcoin price
after October 2018 has become less predictable for the same algorithm. I think this result
is related to the fact that the test data of Period 2 is in the bubble period, since machine
learning is mainly based on the data of the training model when making predictions.
Because the price of the bubble period is too high, the data of historical training are slightly
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similar, causing the final accuracy declines. This phenomenon is obvious when random
forest regression predicts the price of Bitcoin over USD 60,000.

Moreover, the comparison of error values does not reflect the results of hypothesis
testing. I used the Diebold–Mariano test and the Clark–West test to further compare the
significance of the prediction errors of the random forest regression and LSTM algorithms.
The result is that no matter Period 1 or Period 2, the value is not greater than 1.64 required
in the case of α = 95%. Thus, it cannot be denied that the prediction accuracy of LSTM is
better than that of random forest regression.

Although random forest regression is not significantly better than LSTM, as an algo-
rithm that has not been widely mentioned in the past literature, random forest regression
has proven to be equivalent to or even better than LSTM in predicting the price of Bitcoin,
as shown in Table 10.

Table 10. D–M test and C–W test results on the significant difference between random forest regres-
sion and LSTM.

DM Test (MSE) DM Test (MAE) Clark and West Test

Period_1 0.36 0.52 0.84

Period_2 0.47 0.47 0.63
Note: when α = 95%, the statistical value of one-tailed test is 1.64.

6. Discussion

As a derivative comparison of experimental accuracy, Table 11 shows the DM Test and
Clark–West test of random forest regression and LSTM relative to the prediction results of
random walk. The results of the test show that the prediction accuracy of random walk is
worse than that of random forest regression or LSTM and cannot be denied.

Table 11. D–M test and C–W test results on the significant difference between random walk and
random forest regression or LSTM.

RFR/Random Walk DM Test (MSE) DM Test (MAE) Clark and West Test

Period_1 0.33 0.39 0.58

Period_2 0.55 0.68 0.93

LSTM/random walk DM test (MSE) DM test (MAE) Clark and West test

Period_1 0.34 0.41 0.47

Period_2 0.84 1.15 1.00
Note: when α = 95%, the statistical value of one-tailed test is 1.64.

There are two directions about future research, shortening the time interval of sam-
ples and automation. First, subject to the acquisition of historical data, the unit of the
experimental sample this time is daily data, which leads to the prediction of the price
has a problem of long interval. Moreover, within 24 h, the possibility of price forecast
deviation due to unpredictable problems increases. To avoid the problems caused by the
time units discussed above, in the future, I am going to collect the date with intervals of 1 h
or 5 min only for the variables with high importance indicators in this experiment. Then,
predictive analysis is performed on the new data through random forest regression and
LSTM. The second direction of expansion is automation, which can be subdivided into
automation of data acquisition and automation of prediction. Regarding the feasibility of
Bitcoin predictions, Guarino et al. (2022) have conducted many experiments and believed
that the high performance of neural networks in cryptocurrency prediction can be used
for transactions. To obtain the predicted price provided by the model at any time, it is
necessary to provide the latest data of explanatory variables to the model. A server can be
set up on AWS (Amazon Web Services) to collect data prices of various trading websites
in real time, and at the same time provide users with the future predicted price of Bitcoin
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processed by LSTM and random forest regression in the form of an API interface. Moreover,
the increase in the number of data collections can also solve the problem of long-time
interval.

7. Conclusions

In this paper, to predict the price of Bitcoin on the next day, (a) Bitcoin price variables,
(b) the specific technical features of Bitcoin, (c) other cryptocurrencies, (d) commodities,
(e) market index, (f) foreign exchange, (g) public attention, and (h) dummy variables of
the week, a total of eight categories (47 variables) were used as explanatory variables.
Random forest regression has the better price prediction accuracy than LSTM. In previous
research, LSTM was widely used and recognized as an algorithm with high accuracy when
predicting Bitcoin prices. This paper uses the random forest regression machine learning
algorithm, which has not been widely used by other researchers in the previous literature
and obtains a result with higher prediction accuracy than LSTM. Although random forest
regression has the disadvantage of being unable to predict the results that did not appear in
the training samples. For example, when the price of Bitcoin broke the record high, random
forest regression could not provide a higher price result than the previous historical high.
But with the increase in Bitcoin transaction history, I think random forest regression will
perform better when Bitcoin price stabilizes.

As a horizontal comparison with the research that also used daily as the time unit
to predict Bitcoin, the RMSE error of random forest regression in this experiment (0.017
in Period 1 and 0.035 in Period 2) is better than is better than 0.045 of LSTM and 0.051 of
GRU in Awoke et al.’s (2021) experiment, but worse than 0.009 for SDAE in Liu et al.’s
(2021) experiment. I think it is difficult to compare prediction accuracy between different
Bitcoin price prediction experiments. First, Bitcoin has many prices bubble periods, and
whether the test data is in a bubble period has a great impact. For example, the RMSE error
of random forest regression in Period 2 of this study is twice that of Period 1. Secondly, the
samples of different unit time cannot be judged by the size of the test error. Interestingly,
the models with the best accuracy in Awoke et al.’s (2021) experiments are the models with
a lag of seven periods. This result is different from the conclusion in this paper that the
optimal model only needs the latest explanatory variables.

The results of random forest regression also show the explanatory variables that
determine the price of Bitcoin in various periods. In the first price bubble interval from
April 2015 to October 2018, when predicting price on the next day, in addition to the price of
the previous period of Bitcoin, the US stock market index (NASDAQ, DJI, and S&P500), the
price of oil, ETH price, and the difficulty of finding blocks of Bitcoin, these six variables of
mining difficulty also play an important role. During the second price bubble from October
2018 to April 2022, in addition to the OHLC prices of Bitcoin in the previous day, the price
of ETH and Japan’s JP225 index act a big role. When predicting the price of Bitcoin greater
than USD 60,000 per coin at the end of 2021, random forest regression exposed the problem
that it cannot predict values which is not in the training samples. However, the prediction
accuracy for the price range below USD 60,000 is good.

In addition to the accuracy conclusion of a single model, the research results also
found that whether it is random forest regression or LSTM algorithm, as the number of
past periods of the substituted explanatory variables increases, the prediction accuracy of
the model decreases. The model with the highest accuracy is the one that only substitutes
explanatory variables in the past period. This conclusion is close to the classic efficient
market hypothesis.
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Appendix A

Table A1. Definition of explanatory variables.

Variables Description Variables Description

(a) Bitcoin Oil WTI crude oil price

BTC_Open Bitcoin’s opening price Treasury Yield 10 years Treasury Yield 10 years

BTC_Close Bitcoin’s closing price (e) Market Index

BTC_High Bitcoin’s highest price of the day S&P500 The Standard and Poor’s 500

BTC_Low Bitcoin’s lowest price of the day DJI Dow Jones Industrial Average

BTC_Volume Bitcoin transaction volume CBOE Chicago Board Options
Exchange

(b) The specific
technology features of

Bitcoin
NASDAQ

National Association of
Securities Dealers Automated

Quotations

Active addr cnt

The sum count of unique addresses
that were active in the network

(either as a recipient or originator of a
ledger change) on a given day.

JP225 The Nikkei 225

Xfer cnt

The sum count of transfers on a given
day. Transfers represent movements
of native units from one ledger entity
to another distinct ledger entity. Only
transfers that are the result of result

from a transaction and(non-zero)
value are counted.

CSI300 China Securities Index 300

Mean Tx size (native
units)

The sum value of native units
transferred is divided by the count of

transfers (i.e., the mean size of a
transfer) between distinct addresses

at that interval.

(f) Foreign Exchange

Total fees (USD)

The sum USD value of all fees paid by
the user that makes the transactions
on a given day. Fees do not include

new issuance.

DXY U.S. Dollar Index

Mean hash rate

The mean rate at which miners are
solving hashes at a given rate. Hash

rate is the speed at which
computations are being completed
across all miners in the network.

EUR The number of Euros it takes
to buy one dollar

Difficulty

The mean difficulty on a given day of
finding a hash that meets the

protocol-designated requirement (i.e.,
the difficulty of finding a new block).

GBP The number of British pounds
it takes to buy one dollar

Mean block size (in bytes) The mean size (in bytes) of all blocks
created on a given day. JYP The number of Japanese yen it

takes to buy one dollar

Sum block weight
The sum count of blocks created that

interval that was included in the
main (base) chain on a given day.

CAD
The number of Canadian
dollars it takes to buy one

dollar
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Table A1. Cont.

Variables Description Variables Description

(c) Other
cryptocurrencies AUD

The number of Australian
dollars it takes to buy one

dollar

LTC Price of one Litecoin in USD SGD
The number of Singapore
dollars it takes to buy one

dollar

XRP Price of one Ripple in USD CNY The number of Chinese yuan
it takes to buy one dollar

DASH Price of one Dash in USD RUB The number of Russian rubles
it takes to buy one dollar

DOGE Price of one Dogecoin in USD (g) Public Attention

ETH Price of one Ethereum in USD Google Google Trend

(d) Commodities Tweets Number of daily Tweets

Gold Gold price per ounce (h) Week

Silver Silver price per ounce Monday–Sunday Dummy variable

Copper Copper price per ounce
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Abstract: With the continuous advancement of machine learning and the increasing availability of
internet-based information, there is a belief that these approaches and datasets enhance the accuracy
of price prediction. However, this study aims to investigate the validity of this claim. The study
examines the effectiveness of a large dataset and sophisticated methodologies in forecasting foreign
exchange rates (FX) and commodity prices. Specifically, we employ sentiment analysis to construct a
robust sentiment index and explore whether combining sentiment analysis with machine learning
surpasses the performance of a large dataset when predicting FX and commodity prices. Additionally,
we apply machine learning methodologies such as random forest (RF), eXtreme gradient boosting
(XGB), and long short-term memory (LSTM), alongside the classical statistical model autoregressive
integrated moving average (ARIMA), to forecast these prices and compare the models’ performance.
Based on the results, we propose novel methodologies that integrate wavelet transformation with
classical ARIMA and machine learning techniques (seasonal-decomposition-ARIMA-LSTM, wavelet-
ARIMA-LSTM, wavelet-ARIMA-RF, wavelet-ARIMA-XGB). We apply this analysis procedure to the
commodity gold futures prices and the euro foreign exchange rates against the US dollar.

Keywords: hybrid forecasting approaches; two-step forecasting approaches; gold; euro; sentiment
analysis; machine learning; ARIMA; wavelet transformation; seasonal decomposition; long short-term
memory; random forest; eXtreme gradient boosting

1. Introduction

The increasing utilization of sentiment analysis (SA) for obtaining a sentiment index
holds promise as an approach for predicting commodity prices and foreign exchange rates.
By analyzing unstructured data such as social media posts, news articles, and other textual
data, SA provides insights into public opinions and market sentiment, enabling price
prediction (Smailović et al. 2013). Utilizing a sentiment index, rather than relying on a
large dataset of indicators, offers several advantages, including simplifying the modeling
process and reducing the risk of overfitting. SA also offers a more up-to-date perspective
on market sentiment, as it captures real-time changes in public opinion and market sen-
timent (Philander and Zhong 2016). However, while a sentiment index proves valuable
in predicting short-term fluctuations (Qiu et al. 2022) in commodity and foreign exchange
markets, long-term trends in these markets are more significantly influenced by factors such
as macroeconomic indicators and political events. Hence, while SA presents a promising
approach to prediction, we must also consider its limitations and potential biases and
supplement SA with other relevant data sources and indicators.

Meanwhile, research has demonstrated that advancements in machine learning and
the availability of more data enhance the accuracy of price prediction in certain cases (Bakay
and Ağbulut 2021; Bouktif et al. 2018; Wang and Wang 2016; Amat et al. 2018; Chatzis et al.
2018; Farsi et al. 2021; Zhang and Hamori 2020; Plakandaras et al. 2015; Luo et al. 2019;
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McNally et al. 2018; Phyo et al. 2022; Nguyen and Ślepaczuk 2022). These technologies aid
in identifying patterns and correlations within large and complex datasets that may prove
challenging for human analysts to discern. However, employing large datasets and machine
learning algorithms does not guarantee accuracy as these techniques are susceptible to
biases, overfitting, and the appropriateness of the model design. In certain scenarios, simple
models may outperform more sophisticated ones (He 2018), particularly when limited data
are available or the underlying relationships are straightforward. Decision making and risk
management may, at times, derive greater benefit from simple models based on relevant
facts and hypotheses.

Recent research has garnered significant interest from academics and practitioners due
to the emergence of hybrid techniques that combine classical models with machine learning
models. Hybrid prediction models have been utilized in various research fields, including
meteorology, hydraulics, and exhaust emissions, for forecasting purposes (Chang et al.
2019; Liu et al. 2018; de O. Santos Júnior et al. 2019; McNally et al. 2018; Sadefo Kamdem
et al. 2020; Selvin et al. 2017; Xue et al. 2022; Sun et al. 2022; Wu et al. 2021; Wu and Wang
2022; Yu et al. 2020; Zhang et al. 2018, 2022; Zolfaghari and Gholami 2021; Ma et al. 2019;
Dave et al. 2021; Zhao et al. 2022; Moustafa and Khodairy 2023; Zolfaghari and Gholami
2021). This study proposes several approaches that integrate machine and deep learning
models with conventional statistical models, based on the assumption that time series can
be decomposed into linear and nonlinear components or into time-dependent sums of
frequency components and noise.

Hence, the primary objectives of this research are as follows: First, to analyze whether
sentiment indicators derived from sentiment analysis techniques can outperform a large
dataset of indicators when employing machine learning and deep learning methods for
prediction. Second, to verify whether machine learning models, which have gained con-
siderable attention, genuinely exhibit better prediction capabilities than classical ARIMA
models. Third, to apply our proposed hybrid model to commodity gold futures prices and
foreign exchange rates, evaluate their prediction performance, and compare them with the
aforementioned machine learning and classical statistical approaches.

This study is divided into three steps. In the first step, we perform sentiment analysis
on the collected unstructured news headlines to obtain a sentiment index (referred to as
the SI dataset). Then, we calculate technical indicators and collect other relevant indicators
from stock markets, bond markets, commodity markets, and foreign exchange markets
to create a multivariate dataset (referred to as the large dataset). In the second step, we
apply moving window machine learning approaches (RF, XGB, and LSTM) and a classical
statistical model (ARIMA) to these two datasets to evaluate their prediction performance
using the root mean squared error (RMSE), mean absolute percentage error (MAPE), and
mean absolute error (MAE). In the third step, we propose several decompositions and
transformations integrated with statistical and machine learning approaches, such as
seasonal-decomposition-ARIMA-LSTM, wavelet-ARIMA-LSTM, wavelet-ARIMA-RF, and
wavelet-ARIMA-XGB. Specifically, we first transform and decompose the time series into
linear and nonlinear parts or dynamic levels and noise parts. Then, we apply classical
ARIMA to predict the linear and dynamic levels and use RF, XGB, and LSTM machine/deep
learning approaches to predict the nonlinear and noise parts. We evaluate our proposed
approaches using RMSE, MAPE, and MAE and compare the prediction results with the
aforementioned forecasting. Additionally, we perform walk-forward testing to validate the
effectiveness of the triple-combination approaches. To assess any statistically significant
differences between our proposed approach and the ARIMA model, we utilize the modified
Diebold–Mariano test statistic. This comprehensive testing methodology provides further
insights into the performance and comparative analysis of the proposed approaches.

The main findings of this study are as follows: First, the combination of the sentiment
indicator with the moving window LSTM machine learning model demonstrates outstand-
ing forecasting performance. Second, the sentiment indicator dataset used in conjunction
with the moving window machine learning and deep learning models does not surpass
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the performance of the traditional ARIMA model. Third, our proposed triple-combination
approaches exhibit superior prediction performance compared to either the machine learn-
ing models or the ARIMA model when forecasting commodity gold futures prices and
euro foreign exchange rates. Lastly, although the sentiment indicator dataset does not
outperform the prediction accuracy of the ARIMA model, our empirical results indicate
that the sentiment dataset is more accurate in predicting commodity prices and foreign
exchange rates than the large dataset, which comprises various indicators.

To the best of our knowledge, this study is the first to investigate whether sentiment
indicators can replace a large dataset of indicators in forecasting commodity prices and
foreign exchange rates. Moreover, this study introduces a novel approach by combining
data decomposition with machine learning models and classical statistical models to predict
prices in commodity and foreign exchange markets. Additionally, the proposed triple-
combination approaches demonstrate higher accuracy compared to the individual models.
These findings offer new insights and potential predictors for investors and policymakers.

The rest of this paper is organized as follows: Section 2 reviews the literature. Section 3
provides a detailed description of the study’s data, methodologies, and evaluation measures.
Section 4 presents and analyzes the empirical results. Finally, Section 5 concludes the study.

2. Literature Review

A wide range of valuable Internet data, particularly textual data such as news press
releases, are being evaluated for forecasting purposes in various fields, thanks to the
rapid expansion of the Internet and advancements in big data technologies. Consequently,
researchers are actively working on improving sentiment analysis (SA) predictions and
exploring the potential of SA to enhance time series forecasting performance in different
markets (Bollen et al. 2011; Naeem et al. 2021; Deeney et al. 2015; Li et al. 2016; Das et al.
2018; Pai and Liu 2018; Razzaq et al. 2019; Bedi and Khurana 2019; Ito et al. 2019, 2020; Sivri
et al. 2022; Seals and Price 2020; Xiang et al. 2021; Guo et al. 2020; Sharma et al. 2020; Mukta
et al. 2022).

The contribution of Bedi and Khurana (2019) is focused on improving SA prediction
for textual data by incorporating fuzziness with deep learning. Ito et al. (2019) and
Ito et al. (2020) propose a novel neural network model called the contextual sentiment
neural network (CSNN) model, which offers insights into the SA prediction process and
utilizes an initialization propagation (IP) learning strategy. Leveraging SA on Twitter
tweets, Naeem et al. (2021) suggest a machine learning-based strategy for forecasting
exchange rates. Their findings demonstrate that SA can facilitate the prediction of foreign
exchange rates, particularly the US dollar against the Pakistani rupee. Li et al. (2016)
acknowledge the usefulness of online data, including news releases and social media
networks such as Twitter, in forecasting price changes. Xiang et al. (2021) propose a Chinese
Weibo SA algorithm that combines the BERT (Bidirectional Encoder Representations from
Transformers) model and the Hawkes process to effectively monitor changes in users’
emotional states and perform SA on Weibo. However, limited studies have examined
whether sentiment indicators can replace large sets of index data for forex prediction.
If sentiment indicators can effectively replace a substantial amount of index datasets
and achieve comparable or better forecasting performance, it could significantly enhance
forecasting efficiency and provide valuable insights to investors and decision-makers.

Moreover, in recently published research, the use of rapidly developing machine and
deep learning modeling techniques for forecasting time series is one of the most extensively
researched topics in the academic literature (Bakay and Ağbulut 2021; Bouktif et al. 2018;
Wang and Wang 2016; Amat et al. 2018; Chatzis et al. 2018; Farsi et al. 2021; Zhang and
Hamori 2020; Plakandaras et al. 2015; Luo et al. 2019; McNally et al. 2018; Phyo et al. 2022).
Specifically, Amat et al. (2018) demonstrate that fundamentals from simple exchange rate
models (such as purchasing power parity (PPP) or uncovered interest rate parity (UIRP)) or
Taylor-rule-based models improve exchange rate forecasts for major currencies when using
machine learning models. Similarly, Zhang and Hamori (2020) find that integrating machine
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learning models with traditional foreign exchange rate models and Taylor’s rule foreign
exchange rate models effectively predict foreign exchange rates. Phyo et al. (2022) train five
of the best ML algorithms, including the extra trees regressor (ETR), random forest regressor
(RFR), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), and K
neighbors regressor (KNN), to build the proposed voting regressor (VR) model. Li et al.
(2020) propose a new dynamic ensemble forecasting system based on a multi-objective
intelligent optimization algorithm to forecast the air quality index, which includes time-
varying parameter weights and three main modules: a data preprocessing module, a
dynamic integration forecasting module, and a system evaluation module. Plakandaras
et al. (2015) predict daily and monthly exchange rates using machine learning techniques.
Building on these empirical results, this paper considers the application of machine learning
and deep learning methodologies to investigate whether sentiment indicator datasets can
substitute for large datasets.

On the other hand, as a classical statistical model, ARIMA is used for long-term
prediction (Darley et al. 2021). Many studies compare ARIMA and machine learning in
forecasting time series (Shih and Rajendran 2019; Siami-Namini et al. 2018, 2019; He 2018;
Yamak et al. 2019; Ribeiro et al. 2020; Liu et al. 2021). Siami-Namini et al. (2018) compare
the ARIMA model with the LSTM model in forecasting time series and demonstrate that
deep learning approaches such as LSTM outperform traditional models such as ARIMA. In
contrast, He (2018) explores weekly crude oil price data from the U.S. Energy Information
Administration between 2009 and 2017 to test the forecasting accuracy of time series models
(simple exponential smoothing (SES), moving average (MA), and autoregressive integrated
moving average (ARIMA)) against machine learning support vector regression (SVR)
models. The main contribution of this study is to determine whether ARIMA provides more
accurate forecasting results for crude oil prices than SVR models. Siami-Namini et al. (2019)
conduct a behavioral analysis and comparison of BiLSTM and LSTM models and compare
the two models with the ARIMA model. The results demonstrate that BiLSTM models
provide better predictions compared to ARIMA and LSTM models. Yamak et al. (2019)
conduct a comparison analysis between ARIMA, LSTM, and gated recurrent unit (GRU)
for time series forecasting. Ribeiro et al. (2020) compare two benchmarks (autoregressive
integrated moving average (ARIMA) and an existing manual technique used at the case site)
against three deep learning models (simple recurrent neural networks (RNN), long short-
term memory (LSTM), and gated recurrent unit (GRU)) and two machine learning models
(support vector regression (SVR) and random forest (RF)) for short-term load forecasting
(STLF) using data from a Brazilian thermoplastic resin manufacturing plant. Their empirical
results show that the GRU model outperforms all other models. Liu et al. (2021) propose
a seasonal autoregressive integrated moving average (SARIMA) model to predict hourly
measured wind speeds in the coastal and offshore areas of Scotland. Motivated by the
results of the prior literature and considering the limited literature comparing ARIMA
models with machine learning and deep learning models for predicting gold prices and
Euro FX prices, this study aims to fill this gap in the literature.

Since we are unable to demonstrate that machine learning and deep learning tech-
niques outperform the traditional ARIMA model, we aim to enhance the accuracy of
commodity price and foreign exchange rate predictions. In our literature research, we dis-
cover numerous studies in various fields, such as astronomy, hydraulics, exhaust emissions,
and meteorology, that employ a combination of traditional models and other techniques
such as machine learning, deep learning methodologies, and two-step models, which
involve preprocessing the data before predicting time series. Some relevant studies include
Chang et al. (2019), Liu et al. (2018), de O. Santos Júnior et al. (2019), McNally et al. (2018),
Sadefo Sadefo Kamdem et al. (2020), Selvin et al. (2017), Xue et al. (2022), Sun et al. (2022),
Wu et al. (2021), Wu and Wang (2022), Yu et al. (2020), Zhang et al. (2018, 2022), Zolfaghari
and Gholami (2021), Ma et al. (2019), Dave et al. (2021), Zhao et al. (2022), Moustafa and
Khodairy (2023), and Zolfaghari and Gholami (2021).
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To enhance prognostic accuracy, Ma et al. (2019) propose a data-fusion approach
that combines long short-term memory (LSTM), recurrent neural network (RNN), and
the autoregressive integrated moving average (ARIMA) method to forecast fuel cell per-
formance. Chang et al. (2019) present an electricity price-prediction model based on a
hybrid of the LSTM neural network and wavelet transform. Liu et al. (2018) attempt to
forecast wind speed using a deep learning strategy with wavelet transform. Dave et al.
(2021) aim to provide accurate predictions of Indonesia’s future exports by developing an
integrated machine learning model with ARIMA. Zhou et al. (2022) propose a combined
model based on complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), four deep learning (DL) models, and the autoregressive integrated moving
average (ARIMA) model. Zhao et al. (2022) address the lack of using coupled models
to separately model different frequency subseries of precipitation series for prediction
and propose a coupled model based on ensemble empirical mode decomposition (EEMD),
long short-term memory neural network (LSTM), and autoregressive integrated moving
average (ARIMA) for month-by-month precipitation prediction. Moustafa and Khodairy
(2023) implement four models, including long short-term memory (LSTM), autoregressive
integrated moving average (ARIMA), seasonal autoregressive integrated moving average
(SARIMA), and a hybrid model, to forecast the maximum sunspot number of cycles 25
and 26. Zolfaghari and Gholami (2021) employ a hybrid model that combines adaptive
wavelet transform (AWT), long short-term memory (LSTM), and models from the ARIMAX-
GARCH family to forecast stock indices for the Dow Jones Industrial Average (DJIA) and
the Nasdaq Composite (IXIC). Chen and Wang (2019) integrate the LSTM and ARIMA
models for predicting satellite time series data. Inspired by these studies, this investigation
aims to propose hybrid approaches applicable to time series forecasting in commodity
markets and foreign exchange markets.

To summarize, researchers have dedicated significant efforts to enhancing the accuracy
of price prediction by utilizing machine learning techniques and internet-based information.
The increasing availability of data sources, particularly textual data such as news articles,
and advancements in big data technologies have led to the evaluation of various datasets
for forecasting in different domains. However, in the context of time series forecasting
in commodity and foreign exchange markets, there is a lack of literature that thoroughly
compares the effectiveness of sentiment indicator datasets with large datasets containing
diverse variables. Additionally, the recent academic literature extensively explores the
application of rapidly evolving machine learning and deep learning modeling techniques
for time series forecasting. Nevertheless, further investigation is required to determine
whether machine learning and deep learning models outperform classical statistical meth-
ods, such as the ARIMA model, which have long been used for forecasting purposes in the
commodity and foreign exchange markets. Therefore, in our study, we focus on improving
forecasting accuracy by combining traditional models with other methods, including ma-
chine learning, deep learning techniques, and two-step models. We draw inspiration from
previous studies conducted in fields such as astronomy, hydraulics, exhaust emissions, and
meteorology, which have employed time series forecasting in their respective domains.

3. Data and Methodology
3.1. Data
3.1.1. Data Collection

Gold prices are widely regarded as a leading indicator of economic conditions, par-
ticularly inflation and market volatility, making it an extremely important commodity
(Blose 2010; Livieris et al. 2020). As a result, gold is a popular investment asset (Ratner and
Klein 2008) and is commonly used as a hedge against inflation and market volatility (Chua
and Woodward 1982). Predicting gold prices can provide valuable insights for economic
forecasts and assist policymakers and investors in making informed decisions (Raza et al.
2018). Additionally, many central banks maintain gold reserves as a means of preserving
value and protecting against currency fluctuations (Aizenman and Inoue 2013).
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On the other hand, foreign exchange rates have been utilized as leading indicators
of economic growth and inflation (Razzaque et al. 2017). The foreign exchange market
plays a crucial role in international trade (Latief and Lefen 2018), financial instrument
settlement, inflation control, and overall economic development and currency stability.
Accurate predictions of foreign exchange rates are essential for businesses and investors
to develop effective hedging strategies that mitigate risks associated with currency fluctu-
ations. Moreover, such predictions inform government policy decisions related to trade,
monetary policy, and capital flows (Amato et al. 2005; Mussa 1976). Governments can use
exchange rate predictions to anticipate the impacts of policy decisions on the economy and
make necessary adjustments. It is also worth noting that the euro is the second-most traded
currency globally, following the US dollar, and is extensively used by numerous European
Union members. Given the widespread usage of the euro in international trade and its
status as a major reserve currency, exchange rate fluctuations can significantly influence
the costs and risks associated with international transactions. Therefore, forecasting euro
exchange rates is vital for financial stability and effective hedging strategies. Consequently,
this study selected gold futures prices from the commodity market and the EUR foreign
exchange rate as the objects of forecasting.

Based on the concept of proposing a powerful alternative sentiment indicator to replace
large datasets, this study applies sentiment analysis to unstructured data extracted from
news headlines. The prediction objects selected for this study are gold futures prices and
the euro exchange rate against the US dollar, sourced from invest.com. After preprocessing
the dataset, a total of 3957 daily data points were obtained, covering the period from 3
February 2004 to December 2019. The prediction conducted in this study is one-day-ahead
forecasting.

The large dataset used in this study consists of 22 different financial indicators obtained
from various sources such as Bloomberg, Thomson Reuters Datastream, the Federal Reserve
Bank, Investing.com, Yahoo! Finance, and Macrotrends. Specifically, the large dataset
includes the stock market index, 10-year government bond yields, volatility indices, and
significant commodity market indices such as oil, gas, corn, and wheat. Additionally,
it incorporates 10 calculated technical indices, including moving averages, exponential
weighted moving averages, Bollinger bands, moving average convergence divergence, and
the relative strength index.

3.1.2. Sentiment Analysis and Sentiment Indicator

In this study, we conduct sentiment analysis to obtain a sentiment indicator as an
input variable.

First, we utilize unstructured daily news headline text data from 19 February 2003 to
31 December 2020. The data consist of 1,226,258 news headlines collected from a reputable
news source, the Australian Broadcasting Corporation (ABC). The news headline data are
sourced from Harvard Dataverse, which was created by Kulkarni (2018). According to
the authors’ notes, “with a volume of two hundred articles each day and a good focus
on international news, we can be fairly certain that every event of significance has been
captured here”.

For sentiment analysis on daily news headlines, we employ a Python natural language
processing library called TextBlob. TextBlob is chosen for its ability to provide rules-
based sentiment scores and assign polarity and subjectivity to words and phrases. These
scores are derived from a pre-defined set of categorized words readily available from the
Natural Language Toolkit (NLTK) database (Vijayarani and Janani 2016). The input data for
sentiment analysis typically consist of a corpus, such as a collection of text documents. The
output of sentiment analysis includes a sentiment polarity score (indicating positivity or
negativity) and a subjectivity score (measuring opinionated-ness). The polarity score ranges
from −1.0 to 1.0, where −1.0 represents strong negativity and 1.0 represents high positivity.
The subjectivity score ranges from 0.0 to 1.0, where 0.0 denotes extreme objectivity or
factual content, while 1.0 signifies high subjectivity.
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The sentiment analysis procedure is described as follows:

• Firstly, the NLTK is used to clean the unstructured text data.
• Secondly, TextBlob is applied to classify the polarity and subjectivity of each news

headline.
• Thirdly, the total number of subjective, objective, negative, positive, and neutral news

headlines is counted for each day, and then divided by the total number of news
headlines on that day.

• Fourthly, the sentiment analysis output data are obtained, which includes the percent-
age values for subjectivity, objectivity, negativity, neutrality, and positivity for each
day.

• Finally, following Henry’s finance-specific dictionary (Henry and Leone 2016), the
sentiment can be evaluated using the formula below:

SIt =
Np(Ht)− Nn(Ht)

Np(Ht) + Nn(Ht)
(1)

where Ht represents the collected news article headlines at time t, Np represents
the total number of positive news headlines in Ht, Nn represents the total number
of negative news headlines in Ht, and SIt represents the corresponding sentiment
indicator.

The sentiment indicator represents the percentage difference between the number of
positive and negative news articles.

3.1.3. Sentiment Indicator Dataset and Large Indicator Dataset

After data processing, we obtain 3957 daily data points that contain 32 explanatory
variables, covering a 15-year period from 3 February 2004 to 16 December 2019. The
descriptions and sources of the data are elaborated in Table A1 of the Appendix A.

In this study, we use 85% of the daily data (3363 days) to train various models based
on RF, XGBoost, and LSTM models. We then validate the remaining data (594 days) to
conduct out-of-sample forecasting. Figure 1 illustrates the raw data of the gold futures
prices, Figure 2 presents the prices of the euro rates multiplied by 100, and Figure 3 presents
the calculated sentiment index based on the results of sentiment analysis. The dashed
vertical line (14 July 2017) denotes the separation between the training and test data.
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To test the hypothesis that the sentiment indicator can be a substitute for the large
datasets of indicators in exchange rate prediction, we construct two datasets to evaluate
the effectiveness of the sentiment indicator and compare their predictive performance.
Detailed information regarding these variables is provided in Table 1.

Table 1. Datasets used to predict gold futures prices and the euro exchange rates.

Containing Variables Number of Variables

SI dataset Today’s price + Sentiment Indicator 2

Large dataset Today’s price + Collected/Calculated
Indicators + Sentiment Indicator 33

Note: SI dataset represents the dataset comprising of today’s price and sentiment indicator. Large dataset
represents the dataset comprising of today’s price, sentiment indicator, and collected/calculated indicators.
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3.2. Prediction Models and Proposed Approaches

This study applies the RF, XGB, and LSTM approaches in combination with the
expanding moving window (EMW), and fixed moving window (FMW) methods to predict
gold futures commodity prices and the euro foreign exchange rate. The initial parameters
(Wysocki and Ślepaczuk 2022) are selected using the grid search method. Specifically,
trained models with time-varying parameters are used to predict one-period-ahead prices,
and the prediction performance of these models is evaluated using the remaining test
datasets. The moving window technique proceeds iteratively with the prediction, where
the size of the expanding moving window or fixed moving window is extended or shifted
by one-time step in each iteration. Furthermore, the study employs the widely applied
time series forecasting model ARIMA to validate the superiority of the sentiment indicator
dataset. Additionally, triple-combination approaches are proposed, including wavelet-
ARIMA-LSTM (wavelet-ARIMA-RF/wavelet-ARIMA-XGB) and seasonal-decomposition-
ARIMA-LSTM.

3.2.1. Expanding Moving Window (EMW) and Fixed Moving Window (FMW)

This study employs two patterns of moving window techniques to predict one-period-
ahead, aiming to investigate whether there is a difference in prediction performance when
excluding historical data. One pattern is the fixed-length moving window (FMW) technique,
and the other is the expanding-length moving window (EMW) technique.

The moving window statistics proceed iteratively with the prediction, extending or
shifting the size of EMW or FMW by one time step in each iteration. Figure 4 illustrates the
mechanism of EMW, while Figure 5 depicts the mechanism of FMW.
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when adopting an initial window size of three periods for one-period-ahead forecasting.

In terms of the expanding-length window, the initial window size is set to 3363, which
is the same as the length of the validation data (there are 3957 observations from 3 February
2003 to 16 December 2020). When iterating the model fitting, the window size increases by
one period. For example, the first window spans from 3 February 2003 to 16 July 2017, and
is used to estimate 17 July 2017. The framework utilizes the dataset from period 1 to 3363 to
train the model, then uses the trained model to forecast period 3364, and incorporates the
extended training dataset from period 1 to 3364 to retrain the model. The updated model is
then used to predict period 3365. This process is iterated until the last period of the time
series. The expanding moving window technique is also employed in the model evaluation
as walk-forward testing (Baranochnikov and Ślepaczuk 2022).
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Figure 5. Mechanism of the FMW. Note: The figure illustrates the iterative mechanism of the FMW
when adopting an initial window size of three periods for one-period-ahead forecasting.

In terms of the fixed-length window, the window size is determined to be 3363. For
instance, the first window spans from 3 February 2003 to 16 July 2017, and is used to
estimate 17 July 2017. The model uses the dataset from period 1 to 3363 to train the model
and utilizes this trained model to forecast period 3364. Then, the dataset from period 2 to
3364 is used to train the model, and the updated model is used to predict period 3365. This
process is iterated until the last period of the time series.

3.2.2. Random Forest (RF)

The RF approach, introduced by Breiman (2001), is an ensemble machine learning
method that incorporates multiple decision trees to improve prediction performance. By
extending each tree from randomly selected features and building them from the primal
sample, the RF method addresses the overfitting problem that can arise when adding more
trees to the forest. This approach enhances prediction accuracy.

To maximize the forecasting performance of our model, we conducted a meticulous
parameter-tuning process. We optimized several variables to achieve optimal results in our
forecasting endeavor. The variables that underwent optimization included n_estimators
(with values of 100, 200, 300, 400, and 500), max_depth (with values of 1, 3, 10, 20, 30, 40, and
50), bootstrap (with options of True and False), and min_samples_leaf (ranging from 1 to 10).
After a thorough evaluation based on error metrics, we selected the following parameter
values: n_estimators (300), max_depth (20), bootstrap (True), and min_samples_leaf (3).
These parameter values were found to yield the best performance in our model, ensuring
accurate and reliable forecasting outcomes.

3.2.3. Extreme Gradient Boosting (XGBoost)

XGBoost, an algorithm proposed by Chen and Guestrin (2016), is an ensemble machine
learning model that enhances gradient boosting techniques (Friedman 2001). It employs
an optimized platform for gradient boosting, leveraging parallel processing, tree pruning,
and hardware optimization. XGBoost offers a variety of objective functions, including
classification and regression, and combines weaker and simpler learner estimates (such as
regression trees) to improve prediction accuracy. The model minimizes a subjective loss
function through a penalty term for model complexity (i.e., regression tree functions) and a
convex loss function. Iterative learning involves creating new trees and merging them with
existing trees.

To enhance the predictive performance of our model, we conducted a meticulous
parameter-tuning process. We optimized several variables to achieve optimal results in our
forecasting endeavor. The variables that underwent optimization included n_estimators
(ranging from 100 to 1000 in increments of 100), max_depth (with values of 1, 3, 5, and 10),
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learning_rate (with values of 0.001 and 0.01), and gamma (with values of 0, 0.001, and 0.01).
Subsequently, based on the performance evaluation using error metrics, we selected the
following parameter values: n_estimators (1000), max_depth (3), learning_rate (0.01), and
gamma (0.01).

3.2.4. Long Short-Term Memory (LSTM)

The LSTM algorithm was first introduced by Hochreiter and Schmidhuber (1997). As a
prominent model in deep learning, LSTM exhibits an external loop structure similar to that
of RNN and an internal recurrent structure consisting of memory cells. Each memory cell
possesses self-connected recurrent weights that interact with three types of gates, ensuring
the preservation of signals over multiple time steps without suffering from exploding
or vanishing gradients. Similar to RNN, LSTM can utilize more data at each time step,
resembling the memory capacity of the LSTM unit. The network utilizes these gates to
effectively manage the retention and forgetting of information for subsequent iterations.

To achieve optimal forecasting outcomes, we meticulously tuned the hyperparameters
of our model. Various variables underwent optimization, including batch size (ranging
from 10 to 200), number of epochs (ranging from 10 to 300), optimization technique (SGD,
Adam, RMSprop), learning rate (0.001, 0.01, 0.1), dropout rate (ranging from 0.0 to 0.9),
neuron activation function (relu, sigmoid), number of layers (ranging from 1 to 5), and
number of neurons (16, 32, 46, 64, 128). During the training of the neural networks, we
employed the traditional mean squared error (MSE) loss function, as utilized by Cao et al.
(2019), Chimmula and Zhang (2020), and Livieris et al. (2020). This loss function is widely
recognized and commonly used in the field. Following a comprehensive evaluation process,
we selected the following parameter values that exhibited superior performance: a batch
size of 15, 150 epochs, the Adam optimization technique, a learning rate of 0.001, no dropout
(dropout rate of 0.0), relu activation function, 3 layers, and 46 neurons. These parameter
values were determined to produce the most accurate and reliable forecasting results in
our model.

3.2.5. AutoRegressive Integrated Moving Average (ARIMA)

ARIMA was developed in the 1970s by Box and Jenkins (1968) with the aim of mathe-
matically characterizing variations in time series. Non-stationary data need to be differ-
enced until stationarity is achieved, as ARIMA specifically works with stationary data. In
ARIMA (p, d, q), where p represents the autoregressive terms, d represents the differencing
order, and q represents the lagged errors, the best values for p, d, and q are determined
using the Akaike information criterion to fit the data.

In this study, the selection of optimal (p, d, q) values for time series analysis is per-
formed using the auto_arima function in Python. The auto_arima function employs a
stepwise search method to minimize the Akaike Information Criteria (AIC). To ensure
model parsimony, the maximum values for p and q are set to be less than 5. The determina-
tion of the optimal differencing parameter, d, is achieved through the application of the
Augmented Dickey-Fuller test.

3.2.6. Wavelet-ARIMA-LSTM (Wavelet-ARIMA-RF/Wavelet-ARIMA-XGB)

The wavelet transform was first introduced by French scientist J. Morlet in 1974
(Morlet et al. 1982). Wavelet decomposition has been widely utilized as a preprocessing
approach in various fields such as engineering, time series analysis, and medicine. By
applying wavelet decomposition, time series data can be separated into approximation and
detail components. In this study, we employ discrete wavelet decomposition (DWD) to
decompose the gold futures prices and the euro exchange rate into multiple approximation
and detail component series. Unlike previous research, we simplify the analysis by using
the decomposed approximation series for forecasting one-period-ahead values using the
ARIMA model. We then calculate the residuals and apply the LSTM model to predict the
one-period-ahead residuals, and finally combine them.
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In summary, the DWD technique is employed to decompose the price time series
into linear approximation components and nonlinear residual components. The linear
components are predicted using the ARIMA model, while the nonlinear parts are indepen-
dently forecasted using the LSTM model, taking into account the intrinsic characteristics of
these models.

Similarly, in the case of wavelet-ARIMA-RF and wavelet-ARIMA-XGB, the random
forest model and extreme gradient boosting are applied, respectively, to predict the nonlin-
ear components.

3.2.7. Seasonal-Decomposition-ARIMA-LSTM

Furthermore, we employed another preprocessing technique, known as traditional
seasonal decomposition, for the time series models of gold futures prices and the euro
exchange rate. According to the traditional concept of time series decomposition, a series
is considered as a composite of level, trend, seasonality, and noise components. In this
study, we regard the level, trend, and seasonality components as systematic components
since they exhibit consistency or recurrence and can be described and modeled. Conversely,
we classify the noise component as non-systematic due to its random variation nature.
Diverging from previous research, we utilize the decomposed systematic components,
including the trend series and seasonality series, to apply the ARIMA model for forecast-
ing one-period-ahead values. Subsequently, we employ the decomposed non-systematic
noise components to apply the LSTM model for predicting one-period-ahead noise, and
ultimately aggregate these predicted values.

In summary, the traditional seasonal decomposition method is utilized to decompose
the price time series into linear systematic components and nonlinear non-systematic
components. The linear components are then forecasted using the ARIMA model, while
the nonlinear components are separately predicted using the LSTM model.

3.3. Model Evaluation Measures
3.3.1. Root Mean Squared Error (RMSE)

The discrepancy between the expected and actual values is typically measured using
the RMSE. The RMSE is typically computed as follows:

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
(2)

where N is the number of non-missing data points, xi is the actual observation time series,
and x̂i is the estimated time series.

3.3.2. Mean Absolute Percentage Error (MAPE)

The accuracy of forecasting models is frequently assessed statistically using the mean
absolute percentage error (MAPE). MAPE can be calculated as the average absolute percent
error for each time period minus actual values divided by actual values. Generally speaking,
the following equation defines MAPE:

MAPE =
1
n ∑N

i=1

∣∣∣∣
xi − x̂i

xi

∣∣∣∣ (3)

where i = variable, N = number of non-missing data points, xi = actual observation time
series, x̂i = estimated time series.

This paper defined the MAPE accuracy (%) by MAPE (%) = 100 ∗MAPE.

3.3.3. Mean Absolute Error (MAE)

The mean absolute error (MAE) is frequently used as a statistical measure of the
average magnitude of the errors in a predicted dataset without considering their direction.
It is the average over the test sample of the absolute differences between prediction and
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actual observation, where all individual differences have equal weight. Generally, MAE is
defined by the following equation:

MAE =
1
n ∑N

i=1|xi − x̂i| (4)

where i = variable, N = number of non-missing data points, xi = actual observation time
series, x̂i = estimated time series.

3.3.4. Modified Diebold–Mariano Test

The DM test was originally introduced by Diebold and Mariano (1995). In empirical
analyses, when there are two or more time series forecasting models, it is often a challenge
to predict which model is more accurate or whether they are equally suitable. This test
identifies whether the null hypothesis (i.e., that the competing model holds equivalent
forecasting power as the base model) is statistically true. Assuming that the actual values
{yt; t = 1, . . . T] , two forecasts {ŷ1t; t = 1, . . . T] , {ŷ2t; t = 1, . . . T] , and forecast error εit are
as follows:

εit = ŷit − yt, i = 1, 2 (5)

where εit denotes the forecast error and the loss function, g(εit), which is defined by the
following function:

g(εit) = (εit)
2 (6)

Then, the loss differential dt is expressed as follows:

dt = g(ε1t)− g(ε2t) (7)

Correspondingly, the statistic for the DM test is expressed using the following formula:

DM =
d√

s
N

(8)

where d, s, and N denote the mean loss differential, the variation of dt, and the number of
data points, respectively.

The null hypothesis is H0 : E[dt] = 0, ∀t, meaning that the two forecast models hold
equivalent forecasting performance. Meanwhile, the alternative hypothesis is
H1 : E[dt] 6= 0, ∀t, which represents the difference in accuracy between these two fore-
casts. Under the null hypothesis, the statistics for the DM test are asymptotically N(0, 1)
normally distributed. The null hypothesis would be rejected when DM > 1.96.

Harvey et al. (1997) proposed a modified DM test. They suggested that the modified
DM test is more suitable when using a small sample. The statistic for the modified DM test
is expressed as follows:

DM∗ =
√
[n + 1− 2h + h(h− 1)]n−1DM (9)

where h represents the horizon and DM refers to the original DM statistic. Here, we
predicted one-period-ahead; hence, h = 1; hence,

DM∗ =
√
(n− 1)n−1DM (10)

Concerning how to interpret the DM test statistic results, since we set g(ε1t) as the
target model, g(ε2t) as the base model, the numerator is (target-base), therefore, if the DM
test statistic is negative, that means the target model has a smaller variance than the base
model; hence, the prediction performance of the target model is better than the base model.
The p-value denotes the significance of this statistic.
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4. Results
4.1. Empirical Results
4.1.1. Prediction Results of SI Dataset and Large Dataset

Firstly, this subsection presents the prediction performance results of the sentiment
dataset and the large dataset to verify whether the sentiment dataset could replace the large
dataset when predicting commodity gold prices and the euro foreign exchange rate.

Table 2 displays the prediction outcomes for gold futures prices utilizing the senti-
ment indicator dataset, while Table 3 presents the prediction results for gold futures prices
employing the large dataset. Likewise, Table 4 lists the prediction results for the euro
foreign exchange rate based on the sentiment indicator dataset, and Table 5 showcases the
prediction results for the euro foreign exchange rate utilizing the large dataset. Overall,
the prediction results indicate that the sentiment indicator dataset generally exhibits better
forecasting performance than the large dataset. When comparing the performance metrics,
namely RMSE, MAPE, and MSE, between the two datasets, it becomes evident that the fixed
moving window LSTM approach using the SI dataset outperforms the alternative dataset
and models considered. This finding suggests that combining the sentiment indicator with
the moving window LSTM machine learning model yields the best results for predicting
gold futures prices and euro exchange rates. These results align with the outcomes of previ-
ous studies by Plakandaras et al. (2015), Nwosu et al. (2021), and Dunis and Williams (2002),
which suggest that neural network models or their proposed approaches, particularly when
combined with neural networks, offer more accurate forecasts compared to other models.
Furthermore, these results provide additional evidence supporting the superiority of the
LSTM model’s complex loop structure. Turning to the forecasting results using the large
dataset, the moving window RF results demonstrate the best performance. This may be
attributed to the use of a large indicator dataset, which allows the RF classifier to effectively
enhance the predictive power. Although our study employs a different data source for
sentiment analysis compared to previous research (Naeem et al. 2021), our empirical results
broadly align with the findings of Li et al. (2016) and Naeem et al. (2021) in terms of
predicting gold futures and euro exchange rates, thus indicating that the sentiment dataset
can serve as a viable substitute for the large dataset.

Table 2. Results of the SI dataset for gold futures prices.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

SI dataset
RMSE 10.3122 10.4261 9.9711 9.9852 11.1461 9.3283
MAPE 0.5810 0.5832 0.5480 0.5480 0.6160 0.5130
MSE 7.7159 7.7159 7.3015 7.3056 8.2074 6.8072

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.

Table 3. Results of the large dataset for gold futures prices.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

Large
dataset

RMSE 9.8462 9.8752 10.6259 10.6373 14.0267 11.1016
MAPE 0.5450 0.5470 0.5910 0.5930 0.8230 0.6340
MSE 7.2544 7.2544 7.9100 7.9534 10.8288 8.3960

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.
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Table 4. Results of the SI dataset for euro foreign exchange rate.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

SI dataset
RMSE 0.550 0.553 0.596 0.603 0.479 0.47384
MAPE 0.370 0.372 0.396 0.400 0.322 0.3180
MSE 0.430 0.430 0.460 0.465 0.374 0.3693

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.

Table 5. Results of the large dataset for euro foreign exchange rate.

Dataset Evaluation RF_EMW RF_FMW XGBoost_EMW XGBoost_FMW LSTM_EMW LSTM_FMW

Large
dataset

RMSE 0.518 0.521 0.775 0.870 0.677 0.583
MAPE 0.343 0.346 0.484 0.546 0.412 0.395
MSE 0.399 0.399 0.563 0.636 0.476 0.458

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-term
memory. The underline followed by EMW denotes the expanding moving window technique, while the underline
followed by FMW denotes the fixed moving window technique. RMSE denotes the root mean squared error.
MAPE denotes the mean absolute percentage error. MAE denotes the mean absolute error. The best performance
in this set of prediction results is shown in bold.

4.1.2. Prediction Results of ARIMA Model

However, when comparing with the classical statistical model, ARIMA, whether the
conclusion holds robustness needs to be investigated. Therefore, we conducted the simple
prediction by ARIMA, and the lags were chosen using the Akaike Information Criteria
(AIC). The forecasting results are presented in Table 6.

Table 6. Results of the ARIMA for gold futures prices and the euro foreign exchange rate.

Evaluation Gold Euro

RMSE 9.2658 0.47388
MAPE 0.5090 0.3170
MSE 6.7591 0.3687

Note: RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error. MAE
denotes the mean absolute error.

Based on the above results, we are pleasantly surprised by the effectiveness of the
powerful yet simple statistical model, ARIMA, in predicting time series. This finding aligns
with the research reported by He (2018). However, it contradicts the studies conducted
by Siami-Namini et al. (2018) and Siami-Namini et al. (2019). These results suggest that
simplicity may be the key when it comes to designing prediction models for time series,
despite the prevalence of complex models and fancy datasets. In contrast to the findings
of Nwosu et al. (2021) and Dunis and Williams (2002), our results indicate that it is worth
considering the use of simple traditional models in the design of prediction models.

4.1.3. Prediction Results of Proposed Approaches

However, it is worth noting that machine learning and deep learning models have
been extensively validated in numerous studies for their superior effectiveness and ac-
curacy in predicting time series compared to ARIMA models. Therefore, it is neces-
sary to further verify the robustness of the simple statistical model, ARIMA. Inspired by
Abdulrahman et al. (2021) and others, we propose a triple combination of wavelet-ARIMA-
LSTM, wavelet-ARIMA-RF, and wavelet-ARIMA-XGB models, as well as the seasonal-
decomposition-ARIMA-LSTM approach, to investigate this objective. The prediction results
are summarized in Tables 7 and 8.
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Table 7. Results of the proposed approaches for gold futures prices.

Evaluation SeasonalDecomposition_
ARIMA_LSTM

Wavelet_
ARIMA_LSTM

Wavelet_
ARIMA_XGB

Wavelet_
ARIMA_RF ARIMA LSTM XGB RF

RMSE 3.3916 8.4439 5.4610 5.4610 9.2658 12.2605 10.0311 10.8282
MAPE 0.0020 0.4840 0.3060 0.3060 0.5090 0.7670 0.5420 0.6140
MSE 2.6869 6.4376 4.0516 4.0516 6.7591 9.9841 7.2283 8.1704

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error. The best performance in this set of prediction results is shown in bold.
SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet decomposition.

Table 8. Results of the proposed approaches for euro foreign exchange rate.

Evaluation SeasonalDecomposition_
ARIMA_LSTM

Wavelet_
ARIMA_LSTM

Wavelet_
ARIMA_XGB

Wavelet_
ARIMA_RF ARIMA LSTM XGB RF

RMSE 0.1632 0.4083 0.1813 0.3443 0.4739 0.5578 0.5952 0.6526
MAPE 0.1120 0.2687 0.1200 0.2400 0.3170 0.3960 0.3950 0.4410
MSE 0.1298 0.3122 0.1389 0.2784 0.3687 0.4573 0.4595 0.5122

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error. The best performance in this set of prediction results is shown in bold.
SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet decomposition.

Based on the results presented in Tables 7 and 8, Figures 6 and 7, our proposed triple-
combination approach demonstrates superior prediction accuracy compared to individual
ARIMA, machine learning, and deep learning approaches. This suggests that by decom-
posing time series into linear and nonlinear components and combining classical statistical
models with machine learning approaches, we achieve more precise predictions. However,
the best performing approach for both object time series, namely gold futures prices and
the euro foreign exchange rate, is the SeasonalDecomposition_ARIMA_LSTM model. It is
followed by Wavelet_ARIMA_XGB and Wavelet_ARIMA_RF. This finding suggests that
the systematic and non-systematic decomposition combined with the ARIMA and LSTM
models for predicting commodity prices and foreign exchange rates is preferable. These
results align with previous studies (Chang et al. 2019; Chen and Wang 2019; Liu et al.
2018; Ma et al. 2019; Moustafa and Khodairy 2023), further supporting the effectiveness of
the integrated multiple-model approach in prediction. Our empirical forecasting results
provide additional evidence that the multiple-model integrated approach performs better
in prediction.
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In summary, first, the combination of the sentiment indicator with the fixed moving
window LSTM machine learning model produces the best prediction results compared
to the large dataset. This result demonstrates that sentiment indicators obtained through
sentiment analysis outperform the large dataset in terms of prediction ability and can be
utilized as a better alternative independent predictor. Second, based on the prediction
results, the traditional and classical ARIMA model surprisingly outperforms both the
sentiment indicator dataset and the large dataset combined with machine learning tech-
niques. Finally, our proposed triple-combination techniques are superior to both machine
learning models and the traditional statistical ARIMA model in terms of commodity price
and foreign exchange rate prediction performance. The top three performing forecasting
methods are the seasonal-decomposition_ARIMA_LSTM, the wavelet_ARIMA_XGB, and
the wavelet_ARIMA_RF. In the first step, these approaches decompose the data into linear
and nonlinear components by adopting seasonal decomposition or wavelet transformation.
In the second step, they use the ARIMA model to predict the linear part and machine
learning or deep learning models to predict the nonlinear part.

4.2. Model Evaluation Results
4.2.1. Walk-Forward Testing Results

In this study, we employ the walk-forward testing method as the chosen back-testing
technique to validate the effectiveness of the proposed triple-combination approaches.
To evaluate the performance of these models, we adopt an expanding moving window
approach, focusing on the last 50 observations. The testing procedure involves conducting
separate walk-forward tests on each decomposition component, followed by aggregating
the results and comparing the error metrics against those obtained from the ARIMA model.

As we present in Tables 9 and 10, the walk-forward testing results for gold futures
prices and euro foreign exchange provide robust estimations for evaluating the effectiveness
of our proposed triple-combination approaches. These results offer valuable insights into
the performance and reliability of the models in predicting the respective market dynamics.
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Table 9. Results of Walk-Forward Testing for gold futures prices.

Evaluation SeasonalDecomposition_
ARIMA_LSTM Wavelet_ARIMA_LSTM Wavelet_ARIMA_XGB Wavelet_ARIMA_RF ARIMA

RMSE 2.8765 3.1308 3.5565 5.0426 9.2658
MAPE 0.1445 0.1638 0.1868 0.2642 0.5090
MSE 2.1304 2.4265 2.7682 3.9170 6.7591

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet
decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error.

Table 10. Results of Walk-Forward Testing for euro foreign exchange rate.

Evaluation SeasonalDecomposition_
ARIMA_LSTM Wavelet_ARIMA_LSTM Wavelet_ARIMA_XGB Wavelet_ARIMA_RF ARIMA

RMSE 0.1263 0.1028 0.1206 0.3142 0.4739
MAPE 0.0937 0.0762 0.0886 0.2226 0.3172
MSE 0.1037 0.0844 0.0980 0.2466 0.3687

Note: RF represents random forest. XGBoost denotes eXtreme gradient boosting. LSTM denotes long short-
term memory. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the wavelet
decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage error.
MAE denotes the mean absolute error.

4.2.2. Diebold–Mariano Test Results

The Diebold–Mariano test is conducted to assess the predictive superiority of the
triple-combination approaches compared to the ARIMA models. We present the results of
this test in Tables 10 and 11, offering insights into the relative performance of the proposed
approaches. The DM test results for both gold futures prices and euro foreign exchange
rates are analyzed.

Table 11. DM test results of gold futures prices.

Target Approach Base Model (ARIMA)

DM Test p-Value

SeasonalDecomposition_ARIMA_LSTM −9.9779 0.000
Wavelet_ARIMA_LSTM −9.4216 0.000
Wavelet_ARIMA_XGB −9.9468 0.000
Wavelet_ARIMA_RF −7.1182 0.000

Note: DM test indicates the modified Diebold–Mariano test statistic. RF represents random forest. XGBoost
denotes eXtreme gradient boosting. LSTM denotes long short-term memory. SeasonalDecomposition denotes the
seasonal decomposition. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the
wavelet decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage
error. MAE denotes the mean absolute error.

From the results presented in Tables 11 and 12, it is noteworthy that the proposed
triple-combination approaches demonstrate a significant outperformance over the classical
statistical model, the ARIMA model.

Table 12. DM test results of euro foreign exchange rate.

Target Approach Base Model (ARIMA)

DM Test p-Value

SeasonalDecomposition_ARIMA_LSTM −12.9469 0.000
Wavelet_ARIMA_LSTM −4.5330 0.000
Wavelet_ARIMA_XGB −12.6462 0.000
Wavelet_ARIMA_RF −6.3385 0.000

Note: DM test indicates the modified Diebold–Mariano test statistic. RF represents random forest. XGBoost
denotes eXtreme gradient boosting. LSTM denotes long short-term memory. SeasonalDecomposition denotes the
seasonal decomposition. SeasonalDecomposition denotes the seasonal decomposition. Wavelet represents the
wavelet decomposition. RMSE denotes the root mean squared error. MAPE denotes the mean absolute percentage
error. MAE denotes the mean absolute error.
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5. Conclusions and Policy Implications

As highlighted by Naeem et al. (2021) and Li et al. (2016), the rapid advancement of the
Internet and big data technology has led to an abundance of online data, including textual
data from sources such as Twitter and news releases, which can help to identify influential
factors in specific markets. Motivated by this, our study aims to examine whether the
sentiment indicator dataset obtained through sentiment analysis of unstructured online
news headlines can serve as a substitute for the large dataset comprising various indicators
in predicting commodity prices and foreign exchange rates.

In our empirical analysis, we employ sentiment analysis using the Python natu-
ral language processing library to process news headlines from ABC, which consists of
1,226,258 news headlines, to derive a sentiment indicator. Additionally, we collect 30 ad-
ditional indicators to construct the large dataset. Subsequently, we utilize this sentiment
indicator in conjunction with moving window machine learning and deep learning models,
namely RF, XGBoost, and LSTM, to forecast commodity gold futures prices and the euro
exchange rate. Alongside comparing the prediction performance of the datasets, we also
conduct a prediction comparison between the classical statistical model, ARIMA, and
time-varying parameter machine learning models.

Based on the results of the model comparisons, we cannot conclude that sentiment
indicators combined with machine learning outperform the ARIMA model. However,
from an alternative perspective, we propose triple-combination approaches that involve
decomposing the time series data into linear and nonlinear components and subsequently
forecasting the linear component using the robust statistical model, ARIMA, and the nonlin-
ear component using machine learning models such as LSTM, XGB, and RF. This research
sheds light on the issue of comparing the out-of-sample superiority of our proposed triple-
combination approaches for foreign exchange rate prediction with the traditional powerful
statistical model, ARIMA. Furthermore, we conduct walk-forward testing to validate the
triple-combination approaches and employ the modified Diebold–Mariano test statistic
to investigate statistically significant differences between the proposed approach and the
ARIMA model.

The study’s primary conclusions are as follows: Firstly, the combination of the sen-
timent indicator with the moving window LSTM machine learning model demonstrates
the best forecasting performance. These findings align with previous studies conducted by
Plakandaras et al. (2015), Nwosu et al. (2021), and Dunis and Williams (2002). Secondly, the
sentiment indicator dataset used by deep learning and moving window machine learning
models does not surpass the classical ARIMA model, consistent with the findings reported
by He (2018). This result contradicts the studies conducted by Siami-Namini et al. (2018)
and Siami-Namini et al. (2019). Thirdly, the proposed triple-combination methods, which
expand upon and derive from the approaches of Chang et al. (2019), Chen and Wang
(2019), Liu et al. (2018), Ma et al. (2019), and Moustafa and Khodairy (2023), exhibit supe-
rior performance in predicting commodity prices and foreign exchange rates compared
to both machine learning models and the ARIMA model. The seasonal-decomposition
ARIMA-LSTM, wavelet-ARIMA-XGB, and wavelet-ARIMA-RF demonstrate the top three
forecasting performances based on error metrics, walk-forward testing results, and Diebold–
Mariano test results. In the first step, the data are decomposed into linear and non-linear
components using wavelet transformation or seasonal decomposition. In the second
step, the linear component is predicted using ARIMA, while the non-linear component
is predicted using machine learning or deep learning models. Lastly, in addition to the
aforementioned findings, the comparison of results between the sentiment indicator dataset
and the large dataset indicate that sentiment indicators obtained through sentiment anal-
ysis possess superior forecasting capabilities compared to the large dataset consisting of
various indicators. Consequently, they can be utilized as better alternative predictors. Our
empirical results generally align with the findings of Li et al. (2016) and Naeem et al.
(2021) in terms of predicting gold futures and euro exchange rates, further highlighting the
potential of the sentiment dataset to enhance forecasting in time series prediction.
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To the best of our knowledge, this study presents a pioneering investigation into the
potential of sentiment indicators as a substitute for extensive datasets in forecasting com-
modity prices and foreign exchange rates. The novelty lies in proposing a novel integration
of machine learning models, statistical models, and data decomposition techniques to
enhance price predictions in these markets. Importantly, the results validate the superior
accuracy of the proposed triple-combination approach compared to individual models. Fur-
thermore, these findings offer valuable insights for investors and policymakers, providing
them with fresh perspectives, predictive tools, and alternative forecasting approaches.

For investors, the research offers fresh perspectives on forecasting commodity prices
and foreign exchange rates. It introduces new predictive tools and alternative approaches
that enhance their decision-making processes and potentially lead to more accurate fore-
casts. Additionally, precise prediction of gold prices and euro exchange rates is crucial for
informing hedging strategies aimed at mitigating risks arising from currency fluctuations.

For policymakers, these findings play a vital role in making informed investment deci-
sions. Gold is widely utilized as a means to hedge against inflation and market volatility,
and fluctuations in the euro exchange rate have a substantial impact on the costs and risks
associated with international transactions as the second most traded currency globally.
Moreover, improving the accuracy of gold price predictions is crucial for central banks
that maintain gold reserves as a safeguard against currency fluctuations and as a store of
value. Given that the euro is a major reserve currency used in international transactions
and investments, precise prediction of euro exchange rates can bolster financial stability.
Furthermore, gold prices and euro exchange rates are closely intertwined with the interna-
tional economy and play a pivotal role in informing government policy decisions regarding
trade, monetary policy, and capital flows. Therefore, our findings contribute to economic
forecasting, empowering policymakers and investors to leverage these predictions for
informed decision making, ensuring they are well-prepared to navigate and respond to
evolving economic conditions.

Despite these findings, this study has its limitations. Since we only employ RF, XGB,
and LSTM methods to compare forecasts with the ARIMA model, we cannot conclusively
determine that ARIMA is superior to other machine learning and deep learning models.
Further verification is necessary to address this point. Additionally, there are numerous
other data decomposition methods that require testing to validate the conclusions.

In future research, it is recommended to explore alternative data decomposition meth-
ods, as well as additional machine learning and deep learning techniques, to expand the
investigation to major commodity prices and currency exchange rates. This will help vali-
date the rationality and robustness of the proposed approaches’ superiority. Furthermore,
considering the potential of the sentiment indicator as a promising alternative dataset,
empirical testing is planned to assess whether incorporating the proposed approaches
with the additional sentiment indicator can further enhance the forecasting accuracy for
commodity prices and foreign exchange rates.
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Appendix A

The descriptions of and sources of the data are presented in Table A1.
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Table A1. Descriptions and sources of the indicators used in this study.

Variable Description Source

EUR Euro against the US dollar Investing.com

CAD Canadian dollar against the US dollar Investing.com

JPY Japanese yen against the US dollar Investing.com

WTIf WTI Crude Oil futures prices Bloomberg

Brent_oil Brent Crude Oil futures prices Investing.com

Henryhub_gas Henry Hub Natural Gas futures prices Bloomberg

SP500 Standard & Poor’s 500 Stock Index FRB 1

FTSE100 The Financial Times Stock Exchange Group:London
Stock Exchange FRB 1

NASDAQ NASDAQ Composite Index FRB 1

HangSeng Hong Kong Hang Seng Composite stock market index Macrotrends

CAC40 France’s CAC 40 stock market index Macrotrends

GSPTSE Canadian S&P/TSX Composite Index Investing.com

US10_Bond US 10-Year Treasury Constant Maturity Rate Yahoo! Finance

UK10_Bond United Kingdom 10-Year Bond Yield Investing.com

Germany10_Bond Germany 10-Year Bond Yield Investing.com

DAX Germany’s DAX 30 stock market index Macrotrends

NIKKEI Tokyo Stock Exchange:Nikkei index FRB 1

Gold Gold futures prices Bloomberg

TWUSDI Trade Weighted U.S. Dollar Index FRB 1

FederalFunds Federal Funds Rate Macrotrends

CORN Corn futures prices Datastream 2

WHEAT Wheat futures prices Datastream 2

RSI Relative Strength Index Calculated

ma7 7-days Moving Average Calculated

ma21 21-days Moving Average Calculated

26ema 26-days Exponential Weighted Moving Average Calculated

12ema 12-days Exponential Weighted Moving Average Calculated

MACD Moving Average Convergence/Divergence oscillator Calculated

20sd 20-days Standard Deviation Calculated

upper_band Bollinger Bands Calculated

lower_band Bollinger Bands Calculated

ema Exponential Moving Average Calculated

Note: 1 Federal Reserve Bank. 2 Thomson Reuters Datastream.
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Nguyen, Thi Thu Giang, and Robert Ślepaczuk. 2022. The Efficiency of Various Types of Input Layers of LSTM Model in Investment Strategies
on S&P500 Index. (No. 2022-29). St. Louis: Research Papers in Economics.

Nwosu, Ugochinyere Ihuoma, Chukwudi Paul Obite, Prince Henry Osuagwu, and Obioma Gertrude Onukwube. 2021. Modeling the
British Pound Sterling to Nigerian Naira Exchange Rate During the COVID-19 Pandemic. Journal of Mathematics and Statistics
Studies 2: 25–35. [CrossRef]

Pai, Ping-Feng, and Chia-Hsin Liu. 2018. Predicting Vehicle Sales by Sentiment Analysis of Twitter Data and Stock Market Values.
IEEE Access 6: 57655–62. [CrossRef]

Philander, Kahlil, and YunYing Zhong. 2016. Twitter Sentiment Analysis: Capturing Sentiment from Integrated Resort Tweets.
International Journal of Hospitality Management 55: 16–24. [CrossRef]

Phyo, Pyae-Pyae, Yung-Cheol Byun, and Namje Park. 2022. Short-Term Energy Forecasting Using Machine-Learning-Based Ensemble
Voting Regression. Symmetry 14: 160. [CrossRef]

Plakandaras, Vasilios, Theophilos Papadimitriou, and Periklis Gogas. 2015. Forecasting Daily and Monthly Exchange Rates with
Machine Learning Techniques. Journal of Forecasting 34: 560–73. [CrossRef]

Qiu, Yue, Zhewei Song, and Zhensong Chen. 2022. Short-Term Stock Trends Prediction Based on Sentiment Analysis and Machine
Learning. Soft Computing 26: 2209–24. [CrossRef]

Ratner, Mitchell, and Steven Klein. 2008. The Portfolio Implications of Gold Investment. The Journal of Investing 17: 77–87. [CrossRef]
Raza, Syed Ali, Nida Shah, and Muhammad Shahbaz. 2018. Does Economic Policy Uncertainty Influence Gold Prices? Evidence from a

Nonparametric Causality-In-Quantiles Approach. Resources Policy 57: 61–68. [CrossRef]
Razzaq, Abdul, Muhammad Asim, Zulqrnain Ali, Salman Qadri, Imran Mumtaz, Dost Muhammad Khan, and Qasim Niaz. 2019. Text

Sentiment Analysis Using Frequency-Based Vigorous Features. China Communications 16: 145–53. [CrossRef]

197



J. Risk Financial Manag. 2023, 16, 298

Razzaque, Mohammad A., Sayema Haque Bidisha, and Bazlul Haque Khondker. 2017. Exchange Rate and Economic Growth. Journal
of South Asian Development 12: 42–64. [CrossRef]

Ribeiro, Andrea Maria N. C., Pedro Rafael X. do Carmo, Iago Richard Rodrigues, Djamel Sadok, Theo Lynn, and Patricia Takako Endo.
2020. Short-Term Firm-Level Energy-Consumption Forecasting for Energy-Intensive Manufacturing: A Comparison of Machine
Learning and Deep Learning Models. Algorithms 13: 274. [CrossRef]

Sadefo Kamdem, Jules, Rose Bandolo Essomba, and James Njong Berinyuy. 2020. Deep Learning Models for Forecasting and Analyzing
the Implications of COVID-19 Spread on Some Commodities Markets Volatilities. Chaos, Solitons & Fractals 140: 110215. [CrossRef]

Seals, Ethan, and Steven R. Price. 2020. Preliminary Investigation in the Use of Sentiment Analysis in Prediction of Stock Forecasting
Using Machine Learning. Paper presented at 2020 SoutheastCon, Raleigh, NC, USA, March 28–29.

Selvin, Sreelekshmy, R. Vinayakumar, E. A. Gopalakrishnan, Vijay Krishna Menon, and K. P. Soman. 2017. Stock Price Prediction
Using LSTM, RNN and CNN-Sliding Window Model. Paper presented at the 2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), Manipal, India, September 13–16.

Sharma, Urvashi, Rattan K. Datta, and Kavita Pabreja. 2020. Sentiment Analysis and Prediction of Election Results 2018. In Social
Networking and Computational Intelligence. Berlin: Springer, pp. 727–39. [CrossRef]

Shih, Han, and Suchithra Rajendran. 2019. Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting
Taiwan Blood Services Foundation’s Blood Supply. Journal of Healthcare Engineering 2019: 6123745. [CrossRef]

Siami-Namini, Sima, Neda Tavakoli, and Akbar Siami Namin. 2018. A Comparison of ARIMA and LSTM in Forecasting Time Series.
Paper presented at 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA,
December 17–18.

Siami-Namini, Sima, Neda Tavakoli, and Akbar Siami Namin. 2019. The Performance of LSTM and BiLSTM in Forecasting Time Series.
Paper presented at the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, December 9–12.

Sivri, Mahmut Sami, Alp Ustundag, and Buse Sibel Korkmaz. 2022. Ensemble Learning Based Stock Market Prediction Enhanced with
Sentiment Analysis. Paper presented at the INFUS 2021 Conference, Intelligent and Fuzzy Techniques for Emerging Conditions
and Digital Transformation, Izmir, Turkey, August 24–26; vol. 2, pp. 446–54.
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Abstract: It has been recognized that volatility in commodity markets fluctuates significantly depend-
ing on the demand–supply relationship and geopolitical risk, and that risk and financial management
using multivariate derivatives are becoming more important. This study illustrates an applica-
tion of multi-layered neural networks for multi-dimensional Bermudan option pricing problems
assuming a multi-asset stochastic volatility model in commodity markets. In addition, we aim to
identify continuation value functions for these option pricing problems by implementing smooth
activation functions in the neural networks and evaluating their accuracy compared with other
activation functions or regression techniques. First, we express the underlying asset dynamics using
the multi-asset stochastic volatility model with mean reversion properties in the commodity market
and formulate the multivariate Bermudan commodity option pricing problem. Subsequently, we
apply multi-layer perceptrons in the neural network to represent the continuation value functions of
Bermudan commodity options, wherein the entire neural network is trained using the least-squares
Monte Carlo simulation method. Finally, we perform numerical experiments and demonstrate that
applications of neural networks for Bermudan options in a multi-dimensional commodity market
achieve sufficient accuracy with regard to various aspects, including changing the exercise dates, the
number of layers/neurons, and the dimension of the problem.

Keywords: Bermudan commodity options; multi-layer perceptron; multi-asset stochastic volatility
model

1. Introduction

In commodity markets, typical products include directional trades such as futures and
forwards, which establish an obligation to purchase or sell an underlying commodity in
the future (Clark 2014). As essential tools for managing risks from these contracts, which
may consist of multiple underlying assets, there are various options contracts that provide
a right to trade the underlying commodity under a specified condition. In this study, we
focus on early-exercisable options on multiple underlying assets in commodity markets,
i.e., multivariate Bermudan commodity options.

Solving Bermudan commodity option pricing problems with multiple underlying
assets and factors is challenging because computational efforts grow exponentially in tan-
dem with the problem dimension in general, which is determined by the number of assets
and factors. However, the improvement of algorithms and the rapid growth of computa-
tional power have led to a remarkable surge of interest in computational science in recent
years. Currently, a wide variety of machine learning algorithms, such as deep learning
and neural networks, are successfully employed for classification, regression, clustering, or
dimensionality reduction tasks and are applied for large-sized and high-dimensional data
in various areas. In this study, we develop a new Bermudan commodity option algorithm
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via multi-layered neural networks and show its efficiency and effectiveness based on the
multi-asset commodity market model with stochastic volatility, wherein significant changes
in volatility may be observed according to the demand–supply relationship and geopolitical
conditions in commodity markets.

An important feature of Bermudan options is that they can be exercised early, with
their value being determined by whether or not they are exercised before maturity. In
other words, the option holder must decide whether to continue holding the option or
immediately exercise it at a prespecified period. In this situation, it is crucial to determine
the continuation value, i.e., the value of holding the option until the next exercise window.
Such a continuation value may be given as the discounted conditional expectation of the
remaining option value on one step ahead under a risk-neutral probability measure, which
generally has no explicit boundary conditions. Moreover, the conditional expectation pro-
viding the continuation value is an unknown (possibly nonlinear and complex) multivariate
function whose dimensions depend on the number of underlying factors; hence, an exact
(yet still approximate) computation involves high-dimensional discrete grids concerning
state variables and is quite difficult to solve.

To price early-exercisable options with estimations of continuation value functions,
Longstaff and Schwartz (2001) proposed a simple yet powerful numerical method involv-
ing a regression-based functional estimation using simulated sample paths known as the
least-squares Monte Carlo (LSMC) method. Since then, several studies have examined the
application of neural networks (or machine learning methods) for estimating continuation
value functions in option pricing based on the LSMC method. For American options’ pric-
ing, Haugh and Kogan (2004) applied a neural network with one hidden layer for valuation,
whereas Kohler et al. (2010) proved price consistency and convergence with multiple payoff
types. Lapeyre and Lelong (2021) gave several numerical examples of Bermudan options
and proved convergence. There are additional examples, e.g., the 5000 assets rainbow
option (Becker et al. 2021) and expected exposures (Andersson and Oosterlee 2021). Fur-
thermore, other machine learning algorithms have been used for early-exercisable options,
e.g., radial basis functions (Ballestra and Pacelli 2013), nearest-neighbor (Feng et al. 2013),
deep learning (Becker et al. 2020; Liang et al. 2021), unsupervised learning (Salvador et al.
2020), and reinforcement learning (Li 2022), as well as the support vector machine (Lin and
Almeida 2021). Moreover, numerical approaches have also been used, including stochastic
kriging metamodels (Ludkovski 2018), high-dimensional partial differential equations
(Sirignano and Spiliopoulos 2018), and backward stochastic differential equations (Chen
and Wan 2021). Furthermore, there are other applications of neural networks in the finance
field, e.g., extending the feature set (Montesdeoca and Niranjan 2016), the calculation of im-
plied volatilities (Liu et al. 2019), and decision-making (Puka et al. 2021). A comprehensive
review of these methods was conducted by Ruf and Wang (2020).

Although this study shares the same ideas as the aforementioned studies—in particular,
as in Lapeyre and Lelong (2021), given that a multi-layer perceptron (MLP) is applied in
the neural network—it is worthwhile to mention that our study may be considered novel
in several aspects: We illustrate an algorithm for estimating the continuation values of
multi-asset Bermudan commodity options with stochastic volatility features, whereby a
smooth activation function, such as the sigmoid function, is applied in the MLP to reflect
the smoothness of conditional expectations regarding state variables. The smoothness of
functions to represent conditional expectations is key in this study. In the Markovian setting,
the conditional probability density functions are usually smooth given state variables; thus,
conditional expectations are smooth functions. Therefore, the target continuation value
function is smooth, and we can expect a better fit to the target function by using a smooth
activation function in the MLP. This is in contrast with more commonly used piecewise
linear functions such as the leaky ReLU function applied in the numerical experiments
by Lapeyre and Lelong (2021), wherein the fitting function may not be smooth but only
piecewise smooth. (Note that, in a similar context with the smoothness of estimated
functions, Yamada (2012, 2017) applied the generalized additive model to calculate smooth
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functions for conditional expectations in multivariate hedging problems with European
and Bermudan options.) Additionally, we applied more sophisticated techniques such as
the resampling procedure and early stopping to improve the computational efficiency and
avoid possible biases in pricing or overfitting for optimal learning (see Section 3.2 and the
numerical experiments).

While several neural network/machine learning models for option pricing exist, we
believe that, for this type of research, the current methodologies, along with developed
computational algorithms, need to be combined with existing techniques using the cur-
rently available computational environment. In this context, the choice of problem and
methodology choice is important, as is the approach to the problem and how to perform the
numerical experiments. The combination of multi-asset commodity options with stochastic
volatility and recently developed neural network techniques (including the computational
environment and software) is meaningful since commodity markets are largely volatile,
and this volatility may change over time. Moreover, the multi-asset Bermudan commodity
options with stochastic volatility, to the best of our knowledge, have not been previously
considered despite the problem’s importance. It should become more challenging in nu-
merical calculations to configure multiple underlying assets that recognize mean-reverting
dynamics and solve boundary conditions with stochastic factors (see, e.g., Hahn and Dyer
2008 and Ball and Roma 1994).

The present study implements a multi-layered neural network and examines its
efficiency and effectiveness for multi-asset Bermudan commodity option pricing problems
with stochastic volatility. First, we formulate the multi-asset commodity market with
stochastic volatility, wherein individual asset price dynamics are expressed as a two-factor
model by combining a well-known commodity model by Schwartz (1997) with Heston’s
stochastic volatility model (Heston 1993). Next, we apply MLPs in the neural network to
represent the continuation value functions in Bermudan option pricing, whereby the entire
neural network is trained using LSMC simulations. We perform numerical experiments
to compare the continuation value function accuracy in response to changing the exercise
dates, the number of layers/neurons, and the dimension of the problem. We also compare
the relationship between the continuation values and network configurations.

The outline of this article is as follows. Section 2 gives an introduction to the commod-
ity option structure adopted in this study and the formulation of the multi-dimensional
Bermudan option problem. Section 3 describes the configuration of neural networks, a
multi-dimensional asset model with stochastic volatility, and a Bermudan options pricing
procedure for learning and valuation via Monte Carlo sample paths. Section 4 presents
the numerical results of the Bermudan option prices and compares the accuracy of the
continuation value surfaces. Section 5 summarizes the analysis results and discussions.
Lastly, Section 6 concludes this study.

2. Pricing Multi-Asset Bermudan Commodity Options with Stochastic Volatility

In this section, we introduce early-exercisable commodity options and formulate the
problem of pricing multi-asset Bermudan commodity options with stochastic volatility.

2.1. Early-Exercisable Commodity Options

As stated earlier, in commodity markets, typical products include plain directional
trades such as future and forward contracts, which establish an obligation to buy or sell a
particular commodity asset at a specified price in the future (Clark 2014). Depending on the
terminal values of commodity assets, holding these contracts may lead to a loss or profit
for the contractor, while a large loss is particularly undesirable for the holder; furthermore,
the possibility of a large profit may be pursued. Such opportunities are realized using
options contracts, giving a right to purchase or sell an underlying commodity asset with a
prespecified strike price in the future.

Among the many types of options used as hedging tools in commodity markets,
early-exercisable options provide additional flexibility regarding exercise timing and are
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considered useful for hedgers, in practice. Traditionally, such options are characterized
as American options; however, in the context of exotic options, Bermudan options have
similar flexibility. These options allow holders to exercise them early, although only on
specific dates before maturity; thus, the option holder must decide whether to continue
holding the option or immediately exercise it during the exercisable period. However, such
continuation value is usually unknown because it depends on future option values on
specific exercisable dates. Therefore, it is paramount to determine the continuation values
for Bermudan options. The objective of this study is to evaluate computational performance
(including the accuracy of continuation value estimation) for pricing multi-asset Bermudan
commodity options via multi-layered neural networks.

2.2. Multi-Dimensional Bermudan Option Pricing Problem

In this subsection, we describe the multi-dimensional Bermudan option pricing prob-
lem, following Lapeyre and Lelong (2021). Given a complete filtered probability space (Ω,
F , (Ft)0≤t≤T , P) with a finite time horizon T > 0, we assume that a set of underlying assets
is modeled via a multifactored process (Xt)0≤t≤T adapted to the filtration, (Ft)0≤t≤T , and
that P is an associated risk-neutral measure. We consider a Bermudan option with exercise
dates 0 = T0 ≤ T1 < T2 < . . . < TN = T and a discrete-time payoff process PTn if exercised
at times (Tn)0≤n≤N , where PTn is specified as a function of XTn . Then, Bermudan option
prices ZTn are computed using the following recursive equation:

{
ZTN = PTN

ZTn = max
(

PTn , e−rδTnE
[
ZTn+1 |FTn

])
, 0 ≤ n ≤ N − 1

(1)

where E denotes the expectation under the risk-neutral probability measure P with the
risk-free interest rate r and the interval between Tn−1 and Tn as δTn . Furthermore, assuming
that (Xt)0≤t≤T is a multi-dimensional Markov process, there exists a measurable function
Φn : Rdx → R , such that:

e−rδTnE
[
ZTn+1 |FTn

]
= e−rδTnE

[
ZTn+1 |XTn

]
= Φn(XTn) , 0 ≤ n ≤ N − 1. (2)

Herein, we refer to Φn as a continuation value function in this paper.
Note that finding the exact Φn is difficult; alternatively, one may identify a function fn

to minimize the following quantity,

E
[∣∣∣e−rδTn ZTn+1 − fn(XTn)

∣∣∣
2
]

, (3)

over a parametrized set of functions B. If all (real-valued) square-integrable measurable
functions are searched to minimize Equation (3), it turns out that the function Φn providing
the conditional expectation in Equation (2) is achieved via an optimizer. However, there
is a trade-off between the generality of a set of functions and the efficiency of computa-
tion. Additionally, computational tractability depends on the methodology to solve the
optimization problem.

2.3. Multi-Asset Commodity Market Model with Stochastic Volatility

This study employs a multivariate commodity market model consisting of multiple
underlying assets with stochastic volatility for the Bermudan option problem. To this
end, we adopt a stochastic volatility model for the mean-reverting commodity dynamics
(Schwartz 1997) and expand it to the multi-asset case.

Consider the Bermudan option problem with n underlying assets at time t, Si,t, i =
1, . . . , l, the i-th price dynamics of which are governed by the following two-dimensional
stochastic differential equations (SDEs):

dSi,t = κSi (µi − ln Si,t)Si,tdt +√vi,tSi,t dWSi ,t,
dvi,t = κvi (θi − vi,t)dt + ξi

√vi,tdWvi ,t.
(4)
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Herein, WSi ,t and Wvi ,t are correlated Brownian motions with appropriate correlation
parameters, while the magnitude of the speed coefficient κSi measures the degree of mean
reversion to the long-run mean µi, including the market price of risk in the underlying
asset price processes. The second term characterizes the i-th volatility process, σi,t ≡ √vi,t,
where κvi indicates a degree of mean reversion toward long-term volatility θi, and ξi is the
volatility of volatility.

Since each of the underlying asset price dynamics in (4) follows a two-dimensional
Markov process, the state variables at time t, denoted by Xt, corresponding to the input
features X of the MLP in the previous subsection, may be described as

Xt := [S1,t, σ1,t, S2,t, σ2,t, . . . , Sl,t, σl,t]
> ∈ Rdl . (5)

The dimension dl in (5) depends on the number of state variables and is given by
dl := 2l. Note that the SDEs of the underlying assets are used to generate sample paths of
the LSMC method in the Bermudan option pricing problem.

3. Application of Neural Networks with MLP

When pricing Bermudan commodity options using a model with multi-dimensional
factors—including the multi-asset stochastic volatility model introduced in the previous
section—it is crucial to determine continuation values at each exercisable date. In order to
identify a continuation value function in the multi-asset Bermudan option pricing problem
with stochastic volatility, this study takes a neural network approach with MLP, similar to
Lapeyre and Lelong (2021). First, we introduce the neural network architecture considered
in this study, which generates a continuation value in Bermudan commodity options
pricing. Second, we present the underlying assets model with multi-dimensional factors,
which has multi-asset and stochastic volatility. Finally, we provide algorithms for learning
the entire network and option pricing procedure.

3.1. Continuation Value Functions via MLPs

First, we explain the configuration of an MLP to express a general multi-dimensional
function and to approximate the continuation value function in the multi-dimensional
Bermudan option problem.

The basic configuration of the MLP is shown in Figure 1, where X ∈ Rd is an input
vector and Z ∈ R is an output of the entire neural network. Each neuron is called a
“perceptron” that defines a mapping of input/output signals with appropriate dimensions,
being dependent on the number of neurons at input/output layers. For example, if x ∈ Rdx

denotes an input signal of a perceptron with a weight matrix W ∈ Rdx×dy and a bias vector
b ∈ Rdy , then, an output signal y ∈ Rdy from the perceptron is given by

y = h
(

WTx + b
)

, (6)

where h : Rdy → Rdy is a component-wise activation function. Typical choices of activa-
tion functions in neurons are as follows:

Sigmoid : x 7→ 1
1+e−x

ReLU : x 7→ max(x, 0)
. (7)

In the case where the MLP is applied for a regression, all the weight matrices and bias
vectors in the MLP are computed to minimize the sum of squared errors between the actual
dependent variable, denoted by Z ∈ R, and the predicted dependent variable Ẑ ∈ R given
the training datasets of X ∈ Rdx and Z ∈ R (expressed using the MLP in Figure 1).

Note that the MLP can express a continuous and complex nonlinear surface in entire
networks by sequentially performing a linear and nonlinear transformation on inputs X ∈
Rdx to the compiled layer output Ẑ ∈ R. The properties of the MLP function derive from
the universal approximation theorem proposed by Cybenko (1989) and the Kolmogorov–
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Arnold representation theorem put forward by Kolmogorov (1957) and Arnold (2009), in
which any function can be approximated if the input size and network are infinite. In this
sense, functions expressed by the MLP are generally considered suitable for a problem with
complicated interactions because of the adjustable basis functions (see Choon et al. 2008).
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For the randomly generated sample paths of (Xt)0≤t≤T , we can apply the LSMC
method (see Appendices A and B) combined with the MLP, whereby the continuation value
function is modeled at each step using a function given by the MLP. Let X(1)

t , X(2)
t , . . . , X(M)

t
and 0 ≤ t ≤ T be the simulated M sample paths of (Xt)0≤t≤T . Since the discrete-time
payoff process PTn (if exercised at times (Tn)0≤n≤N) is specified as a function of XTn for a
Bermudan option and ZTN = PTN , the training data of the output variable, Z ≡ ZTN ∈ R,

in the first step of the LSMC method, are computed as P(1)
TN

, P(2)
TN

, . . . , P(M)
TN

, corresponding
to the payoffs of the Bermudan option at maturity along the sample path of XTN . The
MLP in the first step is constructed for the training data of X ≡ XTN−1 ∈ Rdx , given

as X(1)
TN−1

, X(2)
TN−1

, . . . , X(M)
TN−1

, together with those of Z ≡ ZTN ∈ R. Then, we obtain an

approximation of the continuation value function, denoted by Φ̂N−1, and the continuation
values along the sample path, Φ̂N−1

(
X(m)

TN−1

)
, m = 1, . . . , M.

In the second step, the training data of the output variable, Z ≡ ZTN−1 ∈ R, are
computed using (1), as

Z(m)
TN−1

= max
(

P(m)
TN−1

, Φ̂N−1

(
X(m)

TN−1

))
, m = 1, . . . , M, (8)

as well as the training data of X ≡ XTN−2 ∈ Rdx , given as X(1)
TN−2

, X(2)
TN−2

, . . . , X(M)
TN−2

. Using
these training datasets, the MLP is constructed to find an approximation of the continuation
value function, denoted by Φ̂N−2, and the continuation values along the sample paths,
Φ̂N−2

(
X(m)

TN−2

)
. We then repeat the same procedure until T0.

3.2. Learning Networks and Option Pricing

For learning neural networks, we generate Monte Carlo sample paths using the SDEs
in Section 3.2 based on a similar idea to that of the ordinary LSMC method introduced by
Longstaff and Schwartz (2001). Herein, we apply nonlinear functions of the MLPs instead
of polynomial functions for the basis of the continuation value functions. Additionally, we
introduce techniques such as early stopping to improve the fitted continuation functions
and avoid possible overfitting or biases in learning and pricing. We also introduce the
resampling procedure to avoid a possible bias caused by using the same random samples
between learning and valuation, and we regenerate Monte Carlo sample paths for the
valuation of Bermudan option prices (see Appendix A for pricing details).
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Herein, we summarize a learning procedure, as described in Algorithm 1 below, where
the underlying price and the volatility vector are denoted by St := [S1,t, S2,t, . . . , Sl,t]

> and
σt := [σ1,t, σ2,t, . . . , σl,t]

>, while g denotes a payoff function of St. Given simulation the
sample paths generated by the multi-asset stochastic volatility models in (4), we provide a
Bermudan option pricing procedure involving the algorithm for estimating the continuation
values using neural networks. This algorithm operates to find MLP Φ as a continuation
value function satisfying Equation (8) in the previous section and gives the Bermudan
option price.

Algorithm 1. Bermudan option pricing with learning networks.

Require: Initiate paths S(j)
t , σ(j)

t , t = T0, T1, · · · , TN , j = 1, 2, · · · , M
1:Let p be the patience and Maxiter be the maximum number of epochs

2:Put V(j) ← g
(

S(j)
TN

)
for all j

3:for t from TN−1 to T1 do

4: Let X(j) ← S(j)
t ,σ(j)

t and V(j) ← e−rδt ·V(j) for all j
5: if t on exercisable periods then
6: Perform learning on X to obtain network Φt with Z to be V
7: i← 0
8: k← 0
9: while i < Maxiter do
10: Train Φt on X and V
11: if improved then
12: k← 0
13: else
14: k← k + 1
15: end if
16: if k == p then
17: Break
18: end if
19: i← i + 1
20: end while
21: Calculate the continuation value Φt

(
X(j)

)
for all j

22: for j from 1 to M do

23: if g
(

S(j)
t

)
> Φt

(
X(j)

)
then

24: V(j) ← g
(

S(j)
t

)

25: end if
26: end for
27: end if
28:end for
29:return mean of e−rδt ·V

Note This study does not use the selection technique, which performs regression using only the in-the-money

paths proposed by Longstaff and Schwartz (2001), for the purpose of constructing a versatile algorithm.

It is noted that one cycle of training with the complete training data is known as
an epoch and is repeated for learning purposes for each continuation value function in
Algorithm 1. In general, the larger the number of epochs, the better learning of the training
data. However, a large number of epochs usually requires a long computational time, even
with large computer resources, and sometimes leads to overfitting of the training data. To
prevent such situations, we introduce an early stopping rule for the learning procedure
given a specified integer p in Algorithm 1. Under the early stopping rule, the objective
function (3) is monitored for improvement, and the number of iterations (i.e., the number
of epochs) without improvement (compared with the previous epoch), denoted by k, are
counted. If this number reaches p, the iteration stops and the learning procedure of the
continuation value function terminates; otherwise, the iteration continues as long as the
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iteration index i is less than Maxiter, where Maxiter is the maximum number of epochs
specified at the beginning of Algorithm 1. Note that the introduction of the early stopping
rule not only decreases the computational time but also prevents overfitting/underfitting
for the MLP.

Based on the network configuration of the neural networks, the computational com-
plexity of Algorithm 1 is given by the number of iterations for parameter estimation of
the MLP. This number of iterations depends on the maximum number of epochs and
the number of exercisable dates, Maxiter and N − 1. Once these values are specified, the
maximum number of iterations is Maxiter × (N − 1), which is the total number of epochs
applied in Algorithm 1. In addition, the computational complexity of each epoch in the
MLP depends on the network configuration (see Serpen and Gao 2014).

To price the Bermudan commodity options using the continuation functions estimated
in Algorithm 1, we regenerate different sample paths from those used in the learning
procedure for computing the continuation values and Bermudan commodity option prices,
given the neural networks in Algorithm 1, i.e., we separate the learning and the valuation
procedures, and Algorithm 1 may be applied without learning (i.e., given the estimated
neural networks) for the valuation procedure. The merit of this resampling is that it avoids
a price bias, which results from overfitting using the same sample paths. Accordingly, this
study adopts the following procedure:

1. Generate the sample paths of the underlying assets for the MLP learning of Algorithm 1.
2. Find the MLP network parameters via learning in Algorithm 1 using the sample paths

in Step 1.
3. Given the estimated neural networks, regenerate a different set of sample paths and

apply Algorithm 1 (without learning) to compute the continuation values and the
initial prices of the Bermudan options.

4. Repeat Step 2 and calculate statistical values such as the mean and the standard
deviation of the Bermudan option prices.

In the above, it is key that learning and pricing (i.e., valuation) utilize the different
simulation sample paths set in Steps 1 and 3. Figure 2 shows a flowchart of the entire
procedure for learning and valuation.
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4. Numerical Experiments

The objective of this section is to execute numerical experiments based on the learning
and valuation procedure explained in the previous section and make comparisons of the
Bermudan option pricing between the MLP and the benchmark polynomial regression (i.e.,
the standard (naïve) LSMC method by Longstaff and Schwartz 2001).
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4.1. Problem Setting and Preliminary Experiment

Herein, we consider Bermudan commodity options with early-exercisable dates in
discretized periods until maturity T, i.e., 0 = T0 < T1 < . . . < TN = T, the payoffs of which
are given by g(St) when exercised. We define several settings for different dimensions
of Bermudan options, dl (i.e., the number of state variables in (5)), exercisable dates, and
payoff functions. We also introduce a constant volatility model as a one-dimensional
problem to perform a preliminary experiment.

For the exercisable dates of the Bermudan commodity options, we consider two cases
as depicted in Figure 3. One is a two-period problem, wherein the Bermudan commodity
option is issued at time T0 and can be exercised at T1 and maturity T2. The other is a
case with multiple exercisable dates, wherein we choose ten exercisable timings before
maturity. In both cases, the options can be exercised after a half-year period to compare the
continuation value surfaces at time T1 between different methodologies, and the values of
the options are evaluated at the initial time period, T0.
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Moreover, the payoff functions for Bermudan basket put options are given as

g(St) = max

(
K− 1

l ∑
i

Si,t, 0

)
. (9)

Then, an upper limit price D is introduced to the payoff function as

g(St) = min

(
max

(
K− 1

l ∑
i

Si,t, 0

)
, D

)
(10)

for Bermudan capped put options. Note that the upper limit, D, provides an additional
complexity of the payoff functions.

The parameters of the underlying assets and neural networks are set as shown in
Tables 1 and 2 below.

4.2. Low-Dimensional Case: Single-Asset Bermudan Options with Stochastic Volatility and
Constant Volatility

We begin with the simplest valuation based on Schwartz’s (1997) single-asset and
constant volatility model in, compared with the standard LSMC method using polynomial
regression and the finite difference method (FDM) detailed by Tavella and Randall (2000).
In the MLP, we applied Algorithm 1 for learning neural networks with Monte Carlo simu-
lations and then repeated the valuation procedure (using Algorithm 1 without learning)
100 times. The MLP in this experiment contains two hidden layers with sixty-four neurons
of sigmoid activate functions. In the standard LSMC method, we use a quintic function for
one-dimensional problems (i.e., dl = 1) and a multi-dimensional quadratic function for two
or more higher-dimensional problems (i.e., dl ≥ 2) and apply the same procedure (i.e., the
learning and valuation procedure). The FDM is based on the Crank–Nicolson scheme with
discretized 2000/200/50 grids in the time/asset/volatility directions.
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Table 1. Parameters of the underlying asset model with constant and stochastic volatility.

Parameter Constant Vol. (dl=1) Stochastic Vol. (dl≥2) 1

Spot rate (S0) 100.0
Strike rate (K) 105.0

Capped rate (D) 10.0
Time to maturity (T) [years] 1.0
Risk-free interest rate (r) [%] 6.0

Initial volatility ( σi,0) [%] 30.0
Long-run mean (µ) 4.8
Kappa of asset (κSi ) 0.3

Long-term volatility (
√

ϑi) [%] - 30.0
Correlation (ρSi , vi ) - −0.1

Corr. among assets (ρSi , Sj ) - 0.7 (1.0 i f i = j)
Corr. assets and vol. (ρSi , vj ) - −0.07

Corr. among vols. (ρvi , vj ) - 0.007 (1.0 i f i = j)
Kappa of vol. (κvi ) - 1.5

Vol. of vol. (ξi) - 0.2
Num. of paths (learning) 100,000

Num. of paths (valuation) 10,000
Sim. path timesteps (per yr.) 20

1 We applied Euler’s method as a discretized method.

Table 2. Neural networks’ learning parameters.

Learning Parameters Value

Num. of sim. paths (M) 100,000
Batch size 4096

Max. num. of epochs (Maxiter) 200
Train paths percentage 80%

Evaluation paths percentage 20%
Optimizer Adam 1

1 Learning optimizer Adam (Kingma and Ba 2014) hyperparameters are set to 0.01 for the learning rate, 0.9 for
beta1, 0.999 for beta2, and 1 × 10−7 for epsilon; training is completed when the loss does not improve even after
20 epochs, as early stopping. Randomized 20% of input paths are used in evaluations to avoid over-learning.

Table 3 compares the means and standard deviations of the option prices obtained
with the MLP and the standard LSMC methods. Considering the option price of the FDM
as a proxy for the value of the Bermudan commodity option price, we see that both the
MLP and the standard LSMC method almost achieve the Bermudan option price value,
i.e., the gap between the three prices is sufficiently small for this one-dimensional problem.
We implemented Algorithm 1 using the MLP and the standard LSMC on Python, using
a machine learning package based on TensorFlow (Abadi et al. 2015) and the Polynomi-
alFeatures toolbox of the scikit-learn library (Pedregosa et al. 2011). All our numerical
experiments were run using Google Colaboratory (Google 2022) with 36 GB of RAM and a
dual-core CPU of 2.3 GHz.

Table 3. Bermudan (capped) put option prices in single-asset constant volatility (dl = 1).

Bermudan Put Option (dn=1) Bermudan Capped Put Option (dn=1)

# of Ex. N = 2 N = 11 # of Ex. N = 2 N = 11

LSMC price Mean 11.474 11.786 LSMC price Mean 5.731 6.244
(St. dev.) (0.071) (0.069) (St. dev.) (0.027) (0.029)

MLP price Mean 11.471 11.812 MLP price Mean 5.729 6.320
(St. dev.) (0.069) (0.061) (St. dev.) (0.027) (0.031)

FDM price 11.415 11.808 FDM price 5.752 6.350
note FDM = finite difference method; LSMC = least-squares Monte Carlo; MLP = multi-layer perceptron.
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When considering a single-asset stochastic model, the corresponding Bermudan com-
modity option problem becomes two-dimensional, i.e., dl = 2, we can observe a slight
difference between the MLP and the LSMC methods, compared with the approximate
solution of the FDM, as shown in Table 4. First, we see that there is no significant difference
between the 3 cases for the Bermudan put option with exercisable dates N = 2. However,
the gap between the LSMC and FDM prices becomes slightly wider, compared with that
between the MLP and FDM prices with exercisable dates N = 11. For the Bermudan
capped put option, there is a slightly larger difference vis-à-vis the FDM price for both the
MLP and LSMC prices, whereas a slight improvement was achieved by using the MLP in
terms of the gap from the FDM price, as illustrated in the box plots in Figure 4.

Table 4. Bermudan (capped) put option prices in single-asset stochastic volatility (dl = 2).

Bermudan Put Option (dl=2) Bermudan Capped Put Option (dl=2)

# of Ex. N = 2 N = 11 # of Ex. N = 2 N = 11

LSMC price Mean 11.114 11.170 LSMC price Mean 5.489 5.985
(St. dev.) (0.139) (0.137) (St. dev.) (0.047) (0.043)

MLP price Mean 11.113 11.417 MLP price Mean 5.504 6.015
(St. dev.) (0.140) (0.133) (St. dev.) (0.047) (0.045)

FDM price 11.090 11.460 FDM price 5.541 6.070
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4.3. Higher-Dimensional Case: Multi-Asset Bermudan Options with Stochastic Volatility

In the case of higher-dimensional Bermudan commodity options with multi-asset
stochastic volatility (e.g., two asset problems with dl = 4), it is difficult (or unrealistic) to
obtain an approximate Bermudan option price with high accuracy using the FDM. Thus,
we compare option prices obtained with the MLP with the benchmark polynomials (i.e., the
standard LSMC method) only, where we set dl = 10, i.e., five-asset stochastic volatility, in
the numerical experiments. Then, we will discuss the source of the difference in view of the
continuation value functions for both methods in the next section. Additionally, we will
compare the accuracy of estimated continuation values by considering a two-asset problem
with dl = 4 and two exercisable dates N = 2.

Table 5 shows our numerical results, which compare the mean and standard deviation
between the LSMC and the MLP prices for N = 2 and N = 11, obtained via the learning
and valuation procedure described in Section 3. In the case of the Bermudan put option for
N = 2, we see that there is no significant difference between the two methods, as with the
case with a low-dimensional problem, dl = 2. However, the gap between the two increased
for the Bermudan capped put options and the case with N = 11, as shown in the box plots
in Figure 5. In other words, we see that the differences between the MLP and the LSMC are
emphasized by introducing additional complexity to the payoff function or by increasing
exercisable dates.
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Table 5. Bermudan (capped) put option prices in the five-asset (dl = 10) stochastic volatility model.

Bermudan Put Option (dl=10) Bermudan Capped Put Option (dl=10)

# of Ex. N = 2 N = 11 # of Ex. N = 2 N = 11

LSMC price Mean 9.712 9.803 LSMC price Mean 5.406 5.884
(St. dev.) (0.108) (0.105) (St. dev.) (0.043) (0.039)

MLP price Mean 9.712 9.888 MLP price Mean 5.414 5.904
(St. dev.) (0.103) (0.098) (St. dev.) (0.043) (0.040)
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Additionally, we demonstrated the same numerical experiments above but increased
the number of assets in the stochastic volatility model to 10 and 20 assets, respectively
(i.e., dl = 20 and dl = 40) and compared the estimated Bermudan commodity option
prices between the MLP and the LSMC. To observe the effects of increasing the number
of exercisable dates more clearly, we added N = 6 between N = 2 and N = 11 to obtain
the estimation values shown in Tables 6 and 7 (corresponding to the cases of dl = 20 and
dl = 40, respectively). Table 6 shows the means, the standard deviations, and the gaps
between the estimated prices for the Bermudan put options and Bermudan capped put
options with dl = 20, and Table 7 shows those with dl = 40.

Table 6. Bermudan (capped) put option prices in the 10-asset (dl = 20) stochastic volatility model.

Bermudan Put Option (dl=20) Bermudan Capped Put Option (dl=20)

# of Ex. N = 2 N = 6 N = 11 # of Ex. N = 2 N = 6 N = 11

LSMC price Mean 9.539 9.595 9.571 LSMC price Mean 5.359 5.747 5.848
(St. dev.) (0.120) (0.098) (0.097) (St. dev.) (0.036) (0.042) (0.041)

MLP price Mean 9.548 9.681 9.684 MLP price mean 5.376 5.765 5.851
(St. dev.) (0.112) (0.091) (0.095) (St. dev.) (0.035) (0.041) (0.041)

Difference
(MLP—LSMC) Mean 0.009 0.087 0.113 Difference

(MLP—LSMC) Mean 0.016 0.018 0.003

Table 7. Bermudan (capped) put option prices in the 20-asset (dl = 40) stochastic volatility model.

Bermudan Put Option (dl=40) Bermudan Capped Put Option (dl=40)

# of Ex. N = 2 N = 6 N = 11 # of Ex. N = 2 N = 6 N = 11

LSMC price Mean 9.338 9.4855 9.453 LSMC price Mean 5.362 5.728 5.828
(St. dev.) (0.112) (0.111) (0.111) (St. dev.) (0.048) (0.042) (0.037)

MLP price Mean 9.369 9.596 9.600 MLP price Mean 5.382 5.750 5.833
(St. dev.) (0.111) (0.105) (0.104) (St. dev.) (0.048) (0.040) (0.037)

Difference
(MLP—LSMC) Mean 0.031 0.111 0.147 Difference

(MLP—LSMC) Mean 0.020 0.022 0.005
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Similar to the previous cases, the gap between the MLP and LMSC increases for the
Bermudan put prices given a larger number of exercisable dates but decreases for the
Bermudan capped put options when N = 11 for both dl = 20 and dl = 40. It is possible
that the choice of regression function has a weaker effect for higher dimensional Bermudan
capped put options with a larger number of exercisable dates, i.e., the continuation value
functions of the capped put options may become flatter or smoother when the number
of exercisable dates increases and can be fitted with less sophisticated functions. This
phenomenon should be investigated in more detail in a future study.

4.4. Comparison of Continuation Value Surfaces

In the previous subsection, we observed that there are some differences between the
MLP and the LSMC regarding the estimated prices and that these differences were more
notable for Bermudan capped put options and/or increased exercisable dates. Herein, we
discuss the possible reason for this price difference by visualizing the continuation value
surfaces for both the MLP and the LSMC methods. For visualization purposes, we consider
single-asset Bermudan capped put options with stochastic volatility and constant volatility,
i.e., the low-dimensional cases with dl = 1 and dl = 2 introduced in Section 4.2.

The left-hand plot of Figure 6 illustrates the continuation value function estimated at
T1 in the one-dimensional Bermudan capped-put option problem (corresponding to the
single-asset constant volatility model) using the LSMC, whereas the right-hand plot shows
the problem using the MLP. We first observe that the continuation value function of the
MLP monotonically decreases with the underlying price, whereas the one obtained from
the LSMC method is a nonmonotonic function. Since the payoff function of the Bermudan
capped put option is piecewise linear and it monotonically decreases with the underlying
price, the monotonicity of the continuation value function is more consistent with the payoff
structure of the Bermudan capped-put option. In this sense, we see that the continuation
value function of the MLP reflects the monotonic property more appropriately than that of
the LSMC method in the one-dimensional single-asset problem.
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For the two-dimensional case with single-asset stochastic volatility for Bermudan
capped put options, the continuation value functions have three-dimensional surfaces, as
shown in Figure 7, wherein the left-hand and right-hand plots depict the continuation
values with respect to volatility and underlying asset price directions for the LSMC method
and the MLP, respectively. As in the one-dimensional problem, the payoff function is
piecewise linear with respect to the underlying asset price direction and is flat when the
underlying asset price exceeds the strike price K = 105 or is less than a certain value related
to the capped rate D = 10. Since continuation value functions are supposed to approximate
the payoff function at the maturity T2, given the information up to time T1, their surfaces
are expected to have similar shapes, i.e., continuation values are approximately zero or
close to the capped rate for larger or smaller values of the underlyings, respectively. In
view of this payoff structure for the Bermudan capped put options, the continuation value
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surface of the MLP seems to approximate the payoff function more accurately than that of
the LSMC.
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Figure 7. Continuation value surfaces at T1 of the two-dimensional problem (single-asset stochastic
volatility) for Bermudan capped put options.

Remark 1. In general, the visualization of nonparametric methods provides an intuitive interpreta-
tion of the estimated functions. We have observed that “the continuation value function of the MLP
monotonically decreases with the underlying price, whereas the one obtained from the LSMC method
is a non-monotonic function,” and that “since the payoff function of the Bermudan capped-put
option is piecewise linear and it monotonically decreases with the underlying price, the monotonicity
of the continuation value function is more consistent with the payoff structure of the Bermudan
capped-put option,” as stated earlier in this section. Such a visualization helps in understanding
the valuation structure for the applied method in the middle of the process for Bermudan option
pricing, but the effect of the approximation error may be weakened in the total procedure. However,
we should be able to understand the approximation errors of estimated continuation value functions
intuitively in the middle of the process from such a visualization.

4.5. Comparison of Accuracy in Continuation Values

In the previous subsection, we observed that the continuation value surfaces of the
MLP may approximate the payoff functions more accurately than those of the LSMC by
visualizing the continuation value surfaces. To further investigate the estimated contin-
uation value surfaces in higher-dimension problems, we next measure the accuracy of
the continuation values using a four-dimensional problem of the Bermudan capped put
basket option with two exercisable dates (i.e., dl = 4 and N = 2) for both the MLP and the
LSMC method.

Consider a problem of estimating the continuation values at T1, as shown in Figure 8.
Since Bermudan options with exercisable dates N = 2 become simple European options if
not exercised at T1, the continuation values at T1 may be estimated via European option
prices expiring at T2, given the state variables at T1, i.e., XT1 =

[
S1,T1 , σ1,T1 , S2,T1 , σ2,T2

]>.
Therefore, we can calculate the accuracy of the estimated continuation values at T1 by mea-
suring the differences between the estimated continuation values and the European option
prices at T1 by specifying different state variables as input values of the European options.
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We first solved the Bermudan option problem with dl = 4 and N = 2 using the
same parameter settings as those in the previous subsections by applying the MLP and the
LSMC methods; subsequently, we calculated the continuation values at T1, given the state
variables specified in Table 8. Note that Table 8 defines the discretized domain of the state
variables, wherein each state variable is discretized in the interval between the minimum
and maximum values so that the number of grid points in 1 dimension becomes 24 + 1.
Then, the total number of grid points is given by 83,521 (= 174). Similarly, we applied the
standard Monte Carlo simulation to compute the European option price on each grid and
repeated this procedure 83,521 times to estimate the surface of the European option prices.
This surface of the European option prices may be considered to provide an approximation
of the theoretical continuation value (see notes in Table 8), and we can measure the accuracy
of the continuation values using the difference between the estimated continuation values
with the MLP and the LSMC methods and the simulation-based (theoretical) surface.

Table 8. State variables at T1. Each state variable is equally discretized into the number of points
from minimum up to maximum value.

Variable Minimum Maximum # of Points 1 Interval

S1,T1 25.0 175.0 24 + 1 9.375
σ1,T1 0.05 0.55 24 + 1 0.03125
S2,T1 25.0 175.0 24 + 1 9.375
σ2,T1 0.05 0.55 24 + 1 0.03125

1 The number of grid points with state variables at T1 are 83,521 (= 174) in total. The number of sample paths
generated for evaluating each European option in the standard Monte Carlo simulation is 10,000. The average
values of estimated European prices and standard errors are 4.997 and 0.027, respectively, indicating that the 95%
confidence interval is given by 4.997± 0.053 on average for the Monte Carlo simulations.

Additionally, we can change the number of hidden layers/neurons and the type of
activation function in the MLP to verify their effects on its accuracy. In this study, we
evaluate the size of accuracy in terms of the following normalized root-mean-squared error
(NRMSE) for each methodology:

NRMSE =
1√

I

√
∑I

i=1(pi − p̂i)
2

p̂max − p̂min
, (11)

where I is the total number of grid points (i.e., I = 83, 521), and pi and p̂i are the ith-
continuation value and the corresponding European option price on the same grid point.
In Equation (11), the root-mean-squared error is normalized by the difference between p̂min
and p̂max, which are the minimum and maximum values of European option prices over
the entire grid.

We computed the NRMSEs for different settings of neural networks in the case of
the MLP, as shown in Table 9, wherein we changed the number of hidden layers/neurons
and applied two types of activation functions, i.e., the ReLU and sigmoid functions. Note
that the NRMSE with the LSMC method is also computed, as shown in the bottom row of
the table, while Figure 9 compares the same NRMSE with respect to a different number
of neurons for 16, 32, and 128 using bar graphs. In Table 9, we first observe that the
MLP almost always provided better accuracy in terms of NRMSEs compared with the
LSMC. Second, when comparing the types of activation functions, the MLP with the
sigmoid function was always better than the MLP with the ReLU function for estimating
continuation value surfaces when the number of hidden layers/neurons was fixed. This
may be explained by the smoothness of the sigmoid function; the continuation value
functions are expected to be smooth with respect to the state variables and can be fitted via
smooth functions (e.g., the sigmoid function) better than non-smooth functions, such as
the ReLU function. Third, an increase in the number of hidden layers is effective for a few
hidden layers but does not necessarily improve the NRMSE when the number of hidden
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layers is three or larger for both MLPs with the ReLU and sigmoid functions. However, in
any case, we obtained better NRMSEs by using the MLP with the sigmoid function.

Table 9. NRMSE comparisons with continuation values at T1 by network settings of the MLP. It
differs by activation functions and the number of hidden layers/neurons.

NRMSE

# of Neurons 16 32 64 128 256

# of Hidden
Layers ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid

1 0.266 0.075 0.262 0.099 0.198 0.160 0.244 0.162 0.160 0.211
2 0.176 0.101 0.145 0.078 0.161 0.081 0.154 0.073 0.311 0.100
3 0.215 0.083 0.246 0.072 0.126 0.097 0.157 0.083 0.271 0.085
4 0.128 0.115 0.225 0.098 0.172 0.079 0.124 0.059 0.184 0.082
5 0.137 0.097 0.132 0.100 0.169 0.090 0.132 0.127 0.154 0.076

LSMC 0.244
note NRMSE = normalized root-mean-squared error.
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5. Discussion of Robustness and Computational Costs

In this section, we discuss the robustness and computational costs of our experiment
for the pricing algorithm of multi-asset Bermudan commodity options using the MLP.

First, we discuss the learning adaptability of the MLP applied to our multi-asset
Bermudan commodity option problems with stochastic volatility. Figure 10 depicts changes
in the mean and standard deviation of learning rates with respect to the number of epochs
in the MLP. In this figure, we see that training and validation losses remain close, which
indicates no overfitting. Furthermore, the learning rate decreases rapidly until the number
of epochs is 10 and stays at sufficiently good levels thereafter.

Next, we estimated the computational costs of the learning and valuation procedure
when the problem dimension is increased. Table 10 compares the computational costs
with respect to the dimensions of dl = 2, 4, 8, 16, 32, 64, wherein the same numerical
experiment as that of the previous section was repeated 100 times and computed the mean
and standard deviation of the computational time for each algorithm. Furthermore, the
average numbers of epochs in learning are also computed in the MLP. Although the LSMC
generally performs much better in terms of computational costs when the dimension is
particularly low, its computational time grows exponentially in tandem with the size of the
dimension. This is because when using a polynomial regression in the LSMC, the number
of terms in the polynomial function increases combinatorially with the number of variables,
even though its maximum order is fixed.
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Figure 10. Learning rate by epochs. The learning of the MLP was repeated 100 times and computed
the mean (line) and standard deviation (bar) of learning losses in the Bermudan capped put option
with the exercise dates N = 2 and two underlying assets with stochastic volatility (i.e., dn = 4).

Table 10. Computational cost comparisons. Each algorithm’s computational time periods (seconds)
and their statistics by dimensions were calculated 100 times in the same option condition, as shown
in Figure 10. In the MLP, the average numbers of epochs in learning are also listed.

LSMC [Sec.] MLP [Sec.] 2

Dimensions Learning 1 Valuation Learning Valuation

(dl) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) # of Epochs Mean (St. Dev.)

2 0.025 (0.002) 0.003 (0.003) 20.038 (3.599) 186.19 0.006 (0.002)
4 0.076 (0.019) 0.003 (0.001) 17.637 (4.403) 156.56 0.006 (0.002)
8 0.257 (0.064) 0.005 (0.001) 17.382 (5.089) 157.43 0.006 (0.001)
16 0.861 (0.083) 0.020 (0.004) 9.773 (7.707) 81.99 0.007 (0.002)
32 3.708 (0.334) 0.068 (0.020) 5.114 (2.829) 38.53 0.008 (0.002)
64 19.887 (2.842) 0.210 (0.018) 5.367 (1.468) 36.58 0.009 (0.002)

1 LSMC with a multi-dimensional quadratic function. 2 MLP with 2 hidden layers with 64 neurons of sigmoid
activation functions.

In contrast with the LSMC, the computational cost in the MLP is mostly unaffected
by the size of the dimension but is directly proportional to the average number of epochs
in learning. The computational cost of learning depends on how often the networks are
updated during training, but the computation cost per one cycle of training data (i.e., epoch)
remains the same when the size of the network is fixed. In the numerical experiments,
we applied two hidden layers with sixty-four neurons using sigmoid activation functions,
whereby the computational cost per epoch remained almost the same regardless of dimen-
sions; the computational time in learning is determined by the total number of epochs.
Although the computational cost per epoch slightly increases as the number of features
in the input layer increases by dimension, the average computational time decreases even
for large dimensions with the reduction in the average number of epochs due to the early
stopping rule. This is the benefit of introducing the early stopping rule in Algorithm 1,
which is particularly effective for higher-dimensional problems to avoid unnecessarily
increasing training iterations (and overfitting). Note that the average computational time
for both learning and valuation became smaller for the MLP than the LSMC when dl = 64.

6. Conclusions

In this study, we detailed the use of a neural network for pricing multi-asset Bermudan
option problems with stochastic volatility in commodity markets and illustrated its effective-
ness. First, we employed the MLP to estimate continuation values in the multi-dimensional
Bermudan commodity option problem, whereby we formulated the multi-asset stochastic
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volatility model and generated Monte Carlo simulation sample paths for learning con-
tinuation value functions using the MLP. Then, in the applied algorithm, we introduced
early stopping into the learning of the MLP to avoid unnecessarily increasing training
iterations and overfitting. The early stopping rule was activated by counting the number
of epochs without improvement compared with the previous epoch. We also introduced
a resampling process, and a valuation procedure was applied for the estimated neural
networks by generating a different set of simulation sample paths. We executed numerical
experiments to evaluate the accuracy of the continuation values and the initial price of
the option using different settings of networks, problem dimension, and exercisable dates,
whereby two types of payoff functions for Bermudan commodity options were considered,
namely Bermudan put options and Bermudan capped put options. From our numerical
analysis, we clarified the following observations:

1. No significant difference was observed between the MLP and the standard LSMC
method when solving Bermudan put option problems with a few exercisable dates.
However, there was a slight difference for the Bermudan capped put options; this
difference was emphasized when the number of excisable dates increased. A similar
tendency was observed for higher-dimensional cases, but the gap narrowed between
the mean values of the two methods for Bermudan capped put options, as shown in
our additional numerical experiments.

2. While it turned out that the MLP was not much better than the standard LSMC from
the numerical experiments in Section 4.3 for high-dimensional cases, it is meaningful
to show how the accuracy and computational time can be achieved using the current
computational resources. In addition, we expect that the MLP has the potential
to achieve much better accuracy due to its generality and flexibility. Moreover, if
computational power is increased, the MLP should become more efficient since
computational effort grows slower than that of polynomial regressions in the standard
LSMC for higher-dimensional problems, as illustrated in the numerical experiments
in Section 5.

3. From the perspective that the continuation value function is expected to approximate
the payoff function (given state variables) one step before maturity, the shape of the
continuation values from the MLP reflected the structure of payoff functions more
accurately than the LSMC method.

4. Based on the fact that the continuation values of Bermudan options one step before
maturity can be computed as European option prices, we measured the accuracy
of the estimated continuation values and examined the effects of different network
configurations in the MLP, changing the number of hidden layers/neurons and the
choice of activation functions. We observed that the MLP almost always provided
better accuracy in terms of NRMSEs compared with the LSMC; furthermore, when
comparing the types of activation functions, the MLP with the sigmoid function was
always better than the MLP with the ReLU function for estimating continuation value
surfaces. An increase in the number of hidden layers was effective for a few network
layers but did not necessarily improve the accuracy when the number of hidden layers
was three or larger.

5. We computed the learning rate by epochs to show the learning adaptability of our
proposed algorithm using the MLP, which indicated no overfitting and achieved
sufficiently good levels of learning rates at approximately 10 epochs. Additionally,
we showed that although the LSMC generally performs significantly better in terms
of computational costs when the dimension is particularly low, its computational
time grows exponentially with the size of the dimension due to the combinatorial
characterization with respect to the number of terms in the polynomial functions.
Conversely, the computational costs of the MLP were mostly unaffected by the size of
the dimension or even decreased for large dimensions due to the introduction of the
early stopping rule.
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Essentially, the use of neural networks for option pricing has the advantage of recog-
nizing sizable input features and generating flexible output features in a unified framework.
Nevertheless, there are some drawbacks: high computational effort and resources are
required for learning networks, especially for exotic options, including the Bermudan com-
modity options considered in this study. Additionally, it is necessary to frequently re-learn
the networks in response to market conditions. However, we observed that the neural
network approach using the MLP reached an appropriate level of learning rates at around
10 epochs, even in high-dimensional cases, as illustrated in our numerical experiments.
Therefore, this approach is expected to reduce learning costs if network configurations are
developed appropriately.

Although this study chose a relatively simple structure of multi-layered networks,
there are other types of network structures such as a recursive structure and unsupervised
learning, as discussed in various fields, including pattern recognition and time-series
prediction. In finance, although some examples of recursive neural networks for time-series
analyses exist, to the best of our knowledge, their use for option pricing has not been
considered sufficiently. Moreover, it is important to use empirical data and demonstrate
the practicability and applications for risk management in actual commodity market
businesses. Such further investigation is interesting and could be considered potential
topics for future study.
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Appendix A. Recursive Formulation for a Bermudan Option Pricing Problem

Given a complete filtered probability space (Ω, F , (Ft)0≤t≤T , P) with a finite time
horizon T > 0, we assume that a set of underlying assets is modeled using a multifactored
process (Xt)0≤t≤T adapted to the filtration, (Ft)0≤t≤T , and that P is an associated risk-
neutral measure. We consider a Bermudan option with exercise dates 0 = T0 ≤ T1 < T2 <
. . . < TN = T and discrete-time payoff process PTn if exercised at times (Tn)0≤n≤N , where
PTn is specified as a function of XTn .

In the Bermudan option, the continuation and exercise values are compared at each
exercisable period, while the option is exercised if the exercise value is higher. Therefore,
Bermudan option value VTn is computed using the following recursive equation:

{
VTN = PTN

VTn−1 = max
(

PTn−1 , e−rδTnE
[
VTn

∣∣FTn−1

])
, 1 ≤ n ≤ N

. (A1)

In the risk-neutral measure, the conditional expected value of the risk-neutral probability
measure P̃ with the risk-free interest rate r and the interval between Tn−1 and Tn as δTn ,
based on the filtration FTn−1 up to time Tn−1, indicates the continuation value UTn−1 as

UTn−1 = e−rδTn Ẽ
[
VTn

∣∣FTn−1

]
. (A2)
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Bermudan option value VTn−1 at time Tn−1 is sequentially calculated backward when the
continuation value UTn−1 is identified. The key is estimating the continuation value as
a function that consists of underlying multivariate risk factors. Since underlying assets
consist of a multi-dimensional Markov process, the continuation value function can be
expressed as the multi-dimensional nonlinear function with the Markov process state
variables XTn−1 ,

Ẽ
[
VTn

∣∣FTn−1

]
= Ẽ

[
VTn

∣∣XTn−1

]
. (A3)

Furthermore, from the definition of the conditional expectation, there is a measurable
function hTn−1 that satisfies the following equation:

hTn−1

(
XTn−1

)
= e−rδTn Ẽ

[
VTn

∣∣XTn−1

]
. (A4)

For the approximation of a function hTn−1

(
XTn−1

)
, we can consider ΦTn−1

(
xTn−1

)
as

the approximation function at time Tn−1,

hTn−1

(
XTn−1

)
≈ ΦTn−1

(
XTn−1

)
. (A5)

After that, the price at time t = 0 is calculated by following recursive backward
procedures using the relationship VTn and VTn−1 . At maturity TN(= T), the continuation
value of the Bermudan option is UT ≡ 0. Therefore, the Bermudan option’s value at
maturity TN is:

VTN = PTN . (A6)

By (A4), the continuation value UTN−1 at time TN−1 is expressed as

UTN−1 = hTN−1

(
XTN−1

)
≈ ΦTN−1

(
XTN−1

)
. (A7)

The Bermudan option value at time TN−1 is expressed as

VTN−1 := max
(

PTN−1 , ΦTN−1

(
XTN−1

))
. (A8)

We can obtain Bermudan option value VT0 by adapting (A7) and (A8) backward,
recursively, each time step to n = 1. In multi-asset Bermudan option pricing, Monte Carlo
simulations are generally used because other numerical methods become exponentially
more difficult in higher-dimensional cases. By simulating a large number of paths, we can
use the average of the prices obtained from each path as an estimator of the price as

VT0 =
1
M

M

∑
j=1

V(j)
T0

, (A9)

where M is the number of simulated paths.
From the above, the prices of the Bermudan options can be obtained by finding the

approximate functions of the continuation value functions at each exercisable period.

Appendix B. Least-Squares Monte Carlo Method

The least-squares Monte Carlo (LSMC) method, proposed by Longstaff and Schwartz
(2001), is a method of early-exercisable option pricing in which regression calculation uses
simulation sample paths. In the LSMC method, a polynomial function of the Markov
process state variables is applied to identify the continuation values. The following is an
algorithm for Bermudan option pricing using the LSMC method.

Step 0. Generate Monte Carlo sample paths of the underlying asset prices and state vari-

ables. We denote the underlying asset prices at time t in the j-th sample path as S(j)
t
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and the Markov process state variables as x(j)
t . Subsequently, we obtain the series

of paths as

S(1)
T1

, S(1)
T2

, . . . , S(1)
TN

S(2)
T1

, S(2)
T2

, . . . , S(2)
TN

...
...

...
...

S(M)
T1

, S(M)
T2

, . . . , S(M)
TN

,

x(1)T1
, x(1)T2

, . . . , x(1)TN

x(2)T1
, x(2)T2

, . . . , x(2)TN
...

...
...

...
x(M)

T1
, x(M)

T2
, . . . , x(M)

TN

. (A10)

Step 1. Calculate the series of Bermudan option values at maturity TN(= T), as follows:

VTN :=
[

g
(

S(1)
TN

)
, g
(

S(2)
TN

)
, . . . , g

(
S(M)

TN

)]>
, (A11)

where g denotes a payoff function of St.
Step 2. Find a polynomial function that approximates the continuation values. Herein, we

denote a polynomial function as ĥTN−1 and a measurable function in (A4) as hTN−1 .
Then,

hTN−1

(
xTN−1

)
≈ ĥTN−1

(
xTN−1

)
. (A12)

Additionally, ĥT−1 is sought to minimize the following equation:

1
M

M

∑
i=1

(
ĥTN−1

(
xTN−1

)
− e−rδTN VTN

)2
. (A13)

Step 3. Calculate the approximated continuation values. Let hTN−1 ≡ ĥTN−1 and set the
series of approximated continuation values at TN−1 as

[
ĥTN−1

(
x(1)TN−1

)
, ĥTN−1

(
x(2)TN−1

)
, . . . , . . . , ĥTN−1

(
x(M)

TN−1

)]>
. (A14)

Step 4. Calculate the exercised values and Bermudan option values. The series of exercise
values at TN−1 using underlying asset prices (A10) is

[
g
(

S(1)
TN−1

)
, g
(

S(2)
TN−1

)
, . . . , g

(
S(M)

TN−1

)]>
. (A15)

Then, the series of Bermudan option values VTN−1 at time TN−1 is obtained as

[
VTN−1

(
S(1)

TN−1
, x(1)TN−1

)
, VTN−1

(
S(2)

TN−1
, x(2)TN−1

)
, . . . , . . . , VTN−1

(
S(M)

TN−1
, x(M)

TN−1

)]>
, (A16)

where

VTN−1

(
S(j)

TN−1
, x(j)

TN−1

)
:= max

(
g
(

S(j)
TN−1

)
, hTN−1

(
x(j)

TN−1

))
, j = 1, . . . , M, (A17)

Step 5. Repeat Step 2 to Step 4 for possible exercise times TN−1, TN−2, . . . , until time T0. A
series of Bermudan option values VT0 at time T0 are obtained by repeating Step 2
to Step 4 backward to time T0.

Step 6. Calculate the Bermudan option price VT0 . Equation (A9) gives the Bermudan option
price VT0 at time T0.

Using this approach, we calculated the Bermudan option price using the continuation
values from the polynomial function at each exercisable time. The main point of the pricing
procedure in the LSMC method is that the polynomial function is defined to approximate
the continuation values at each exercisable time point.
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