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Abstract: Cultivated land resources are important natural resource assets that are related to food
security and sustainable development. Due to the many restrictive factors of the karst landform on
agricultural production, the quantity and quality of cultivated land in the karst mountainous areas in
Southwest China are poor. Reclaiming cultivated land to develop economy or to avoid transitional
reclamation to protect ecology is an important proposition in this area. Analyzing changes in the
physical and monetary value of cropland resources can help us to formulate more reasonable policies
for the development and utilization of cultivated land resources, and to achieve a win-win scenario
for economic development and ecological protection. Using multi-source remote sensing data and
20-year landcover data obtained by the GEE platform, this paper evaluated the cropland resources of
the karst mountain areas of China at the pixel level. It was found that under the apparent outflow of
the physical account of the cultivated land resources, the monetary value still maintained growth,
proving that the current cultivated land-use policy in Guizhou Province has significantly improved
the value of local cultivated land resources.

Keywords: cultivated land resource; value changes; karst mountain area; remote sensing; land
use policy

1. Introduction

Natural resource assets are important means of production that are derived from
nature, and that play a decisive role in economic and social development. The coordinated
relationship between resource consumption, environmental protection, and economic
growth has become a subject that affects human destiny [1]. Therefore, we need to find
a method for tracking changes in nature, and for determining how changes are linked to
economic and other human activities, to reflect the interactions between man and nature.
Considering the increasing demand for statistics on natural capital within analytical policy
frameworks on environmental sustainability, human well-being, and economic growth and
development, advancing this emerging statistical field has become increasingly urgent [2].

Many scholars have performed statistical accounting for various natural resources,
such as land resources and forests. Natural resource asset accounting uses the theories of
statistics, accounting, resource science, and other disciplines to make a reasonable valuation
of natural resources within certain periods of space and time, reflecting quantitative and
structural changes to their physical quantity and value [3,4]. The purpose for this is to
understand the current situation of natural resources, and the reasonable occupation, use,

Land 2022, 11, 765. https://doi.org/10.3390/land11060765 https://www.mdpi.com/journal/land
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benefits, and disposal of natural resource assets, and finally, to solve the contradiction
between resource utilization and environmental protection.

In 1993, the United Nations and the World Bank incorporated natural resources and the
environment into a system of national economic accounting (SNA), and successively issued
SEEA-1993 and SEEA-2003, in which physical value is used to describe interactions between
the economy and the environment in various fields [5,6]. In March 2012, the 2012 System
of Environmental Economic Accounting—Central Framework (SEEA-CF) was adopted
as the international general guide, making it the first international statistical standard for
environmental economic accounting, and it was supplemented by SEEA Experimental
Ecosystem Accounting (SEEA-EEA) and SEEA Applications and Expansion. SEEA applies
the accounting concepts, structures, rules, and principles of environmental information that
are included in the System of National Accounts (SNA), and it uses a single framework to
integrate environmental information (often measured in physical quantity) and economic
information (often measured in value) [5–9]. It mainly covers the measurement of three
areas: the physical flow of material and energy within and between the economy and the
environment, and stocks of environmental assets and changes in these stocks, as well as
environmentally related economic activities and transactions [10].

SNA, SEEA, and SEEA-EEA account research provides a good theoretical basis for
the accounting of natural resource assets, but traditional SNA and SEEA accounting takes
the natural environment as a kind of production material and adopts methods for which it
can be presented to reflect the stock of the means of production and the flow in economic
activities. Experience exists in related areas of assessment, such as land-cover and land-use
statistics, but the integration of different areas of expertise into an accounting framework is
new. In the latest SEEA-EEA specification, the principle of using surveying and mapping
results has also been emphasized. At present, many studies also focus on how to use
remote sensing data to support natural capital accounting [11]. Since natural resources
have inherent location attributes, natural resources of the same quantity or quality will
show great geographical differentiation in different locations; that is, simple presentation
and accounting methods will not include the important spatial characteristics of natural
resources. As a result, using multi-remote sensing data to conduct natural resource value
not only allows the quantity and quality indicators of accounting objects to be obtained
quickly, reducing the workload of manual investigation, but it can also evaluate the ac-
counting results in the spatial dimension, so that the accounting results can better serve the
decision-making processes.

In October 2016, UNSD, UNEP, CBD, and EU initiated NCAVES. The project lasted
3 years and was implemented in China, Brazil, India, Mexico, and South Africa. This project
aimed to assist China in advancing the country’s knowledge agenda for environmental and
ecosystem accounting, and to initiate the pilot testing of SEEA Experimental Ecosystem
Accounting (SEEA-EEA), as well as ecosystem valuation and macro-economic analysis,
with a view toward improving the management of natural biotic resources, ecosystems,
and their services at the national level, and mainstreaming biodiversity and ecosystems in
national level policy planning and implementation [12]. Guizhou Province is one of the
pilots in China, and many scholars have conducted much research into the natural resource
balance sheet, GEP, ESV, and other fields, but the subject, object, and method of accounting
need to be unified [13–15].

Cropland accounts for 10.20% of the global land surface area, which is the most
important resource for agricultural production, and it plays an important role in ensuring
food security, ecological security, and sustainable development [16,17]. The cultivated land
resource is a natural resource that has been domesticated by human beings. Its growth
and decline are not only restricted by natural laws, but are significantly affected by human
activities. Compared to other kinds of natural resource assets, cultivated land resources
can not only provide necessary food for survival, but they also participate in the energy
transformation and material cycle of nature as an ecosystem, which is closely related to
human society. This thus establishes how cropland value contributes to physical and
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monetary changes in long time series, which can assist with the analysis of the change
range, flow characteristics, and reasons for change.

The formation of a karst landform is the result of the long-term dissolution of limestone
and other soluble rocks by groundwater or surface water. The surface water is dissolved
and eroded along the joints and fissures of soluble rocks, forming an uneven and broken
surface shape. As one of the three karst-concentrated distribution areas in the world,
the karst area in southern China has many factors that are not conducive to agricultural
production. These factors, such as bedrock exposure, small soil stock, and discontinuous
distribution [18,19], make agricultural planting difficult, and the cost of cultivated land
management is very high. Additionally, due to the development of karst, the surface water
is difficult to maintain, which means there is a serious water shortage in this region, but
at the same time, the discharge of surface water in the rainy season is too late, causing
water accumulation in some karst depressions. Therefore, karst areas in southern China are
often accompanied by poverty; because both the quality and quantity of cultivated land are
poor, the more cultivated the land is, the poorer the people, and the contradiction between
man and land is very prominent. As the core area of karst in southern China, Guizhou has
serious rocky desertification and a large area of rock exposure. By exploring the impact
of human activities on cultivated land, we can determine the positive policies that can
improve the value of cultivated land resources, something that is of great significance for
ameliorating the current situation of poverty in China’s poor areas within the karst [20–22].

Landcover data provide the most direct feedback when accounting for cultivated
land resource physical quantity, but cropland resource assessment methods will inevitably
require more detailed spatial data. As the development of remote sensing and big-data
technology have already brought a new approach towards accounting, we can obtain
multi-source remote sensing data more quickly to assist with the accounting work, improve
the accuracy of the accounting, and reduce the cost. This research aimed to realize the
dynamic monitoring of the spatial pattern evolution of cropland resources via physical
accounting, using multi-remote sensing data [23]. It can make up for the defects in the
SEEA-CF accounting framework, which only presents data rather than spatial information.
Meanwhile, in order to quantify the change rules of the cultivated land resource value,
and to observe whether effective land management policies have been adopted, this paper
evaluated the changes of cultivated land resource value in Guizhou Province from 2001 to
2020. By analyzing the impact of the economy and other human activities on cropland, it
proved that the current cultivated land use policy in Guizhou has significantly improved
the value of local cultivated land resources. This provides a reference for the rational
utilization of cultivated land resources.

2. Materials and Methods

2.1. Study Area

Guizhou province is located in the inland area of Southwest China, to the east of
Yunnan Guizhou Plateau, and is located between 24◦37′–29◦13′ N and 103◦36′–190◦35′ E,
which is an important ecological barrier in the upper reaches of the Yangtze River and
the Pearl River [24,25]. Meanwhile, as the junction of the Eurasian plate and the Indian
Ocean plate, its terrain is high in the west and low in the east, tilting from the middle to
the north, and from the east and to the south. The landform of the whole province can
be divided into four basic types: plateau, mountain, hill, and basin. Moreover, Guizhou
province is one of the three karst-concentrated distribution areas in the world, the core
area of East Asia, which is also the largest distribution area and the strongest conical
karst development in China. With high mountains, deep valleys, and steep terrain, 92.5%
of the area of the province is mountainous and hilly, and 109,100 square km comprises
exposed karst landform, which means the surface is extremely fragmented and lacks the
cropland resources for agriculture [26–28]. In addition, due to the increasing population,
the cultivated land area continues to reduce, meaning that the percapita cultivated land
area is less than 300 square meters, which is far lower than the average level in China [29].

3
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Moreover, the proportion of cultivated land with a thick soil layer, high fertility, and good
conditions of water conservation is low (Figure 1).

Figure 1. Location of the study area.

2.2. Dataset
2.2.1. Spatial Data

We used Google Earth Engine (GEE) to gather and to calculate the spatial data for
this analysis. GEE is an interactive platform that provides geospatial processing services
that are powered by the Google Cloud Platform [30]. With Earth Engine, we can perform
geospatial processing at a scale that is free of charge, and we can carry out high-impact,
data-driven scientific research involving large geospatial datasets [31,32]. In this research,
we adopted multi-remote sensing time series data from 2000 to 2020, to detect the impact
of land use changes on the value of cropland resources. Landcover data were derived from
images collected by the MODIS sensor (the MCD12Q1 V6 product), which provides global
land cover types at yearly intervals (250 m × 250 m). The digital elevation models (DEMs)
used Shuttle Radar Topography Mission (SRTM) data at a 30 m resolution. Additionally,
we estimated the Landsat net primary production (NPP) using Landsat Surface Reflectance
for CONUS (Landsat net primary production CONUS) [33]. Beyond these, we selected the
GPM data (Monthly Global Precipitation Measurement v6) to revise the existing results of
ecological value. Global Precipitation Measurement (GPM) is an international satellite mis-
sion that provides next-generation observations of rain and snow worldwide, every three
hours. The Integrated Multi-Satellite Retrievals for GPM (IMERG) is a unified algorithm
that provides rainfall estimates by combining data from all passive-microwave instruments
in the GPM Constellation.

2.2.2. Socioeconomic Data

Socioeconomic data, including the yields of major farm crops (YMFC), the gross output
value of farming (GOVF), the gross domestic product (GDP), the permanent resident
population (PRP) and the employment in agriculture were obtained from the Guizhou
statistical yearbook (2001–2021) (http://stjj.guizhou.gov.cn/ accessed on 4 April 2022). In
addition, we derived the grain prices from 2001 to 2020 from the “The National Compilation
of Cost-benefit data of Agricultural Products” as a reference (Table 1).

4
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Table 1. Data sources for assessing cultivated land resources value.

Resource Type Data Sources

Spatial Data

Land cover (MCD12Q1 V6) Google Earth Engine Plateform
(https://developers.google.cn/earth-engine/

datasets) accessed on 4 April 2022

Digital elevation models (DEMs)
Landsat net primary production (NPP)

Global precipitation measurement (GPM)

Socioeconomic Data

Yields of major farm crops (YMFC)

Guizhou statistical yearbook (2001–2021)
(http://stjj.guizhou.gov.cn/) accessed on

4 April 2022

Gross output value of farming (GOVF)
Gross domestic product (GDP)

Permanent resident population (PRP)
Financial expenditure

Employments in agriculture

Grain prices The National Compilation of Cost-benefit data
of Agricultural Products

2.3. Methods
2.3.1. Cropland Resources Value Accounting Framework

To make a scientific evaluation of the value of cropland resources, we established three
accounting accounts [34]: the physical quantity account, the conditional account, and the
monetary account [35–38]. Among them, the physical quantity account was used to reflect
the changes in the number and scope of cultivated land in the study area from 2000 to 2020,
and to provide necessary data for value accounting, while the quality account was used to
record the quality status of cultivated land in the study area. Since it is obvious that the
value of cropland varies along the quality status, there will be significant differences in
crop yield and ecological function. Finally, the monetary account includes two parts. One
is the direct value, also called the use value or the commodity value, which is the value that
is formed by people’s direct harvesting, which is the output value of agricultural products
provided by cropland resources. This part can be calculated by the market price method,
because agricultural products can directly enter circulation as commodities [39]. The other
part is the indirect value, which refers to the ecological service ability of cropland resources
as a part of the natural environment when they exist in a natural way, as well as the value
of natural resource assets that are used to meet human spiritual, cultural, and moral needs,
and social development [40] (Table 2).

Table 2. Indicators for assessing cultivated land resources value.

Account First-Level Indicators Second-Level Indicators

Physical Account Extent Area

Biomass provision Crop Production

Conditional Account

Site conditions
Elevation

Slope

Landscape index

Patch Density (PD)
Edge Density (ED)

Area-Weighted Mean Shape Index (AWMSI)
Fragmentation Index of Patch Numbers (FN)

Fragmentation Shape Index (FS)
Aggregation Index (AI)

Monetary Account

Direct value Crop Market Value

Indirect value

Gas Regulation
Climate Regulation

Environmental Purification
Hydrological Regulation

Soil Conservation
Maintenance of Nutrient Cycles

Biodiversity
Aesthetic Landscape

5
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The direct value is the gross output value of various grains, tubers, oil crops, vegetables,
and other crops in Guizhou Province. The indirect value is the sum of the value equivalent
for each ecological function. The annual cropland resources value is the direct value plus
the indirect value.

VT = VD + VID (1)

VT = ∑n
i=1 VDi (2)

VID = ∑n
i=1 VIDi (3)

In the formula, VT is the total monetary value of cropland resources, VD is the gross
output value, and VID is the total value equivalent of cropland ecological function.

2.3.2. Landscape Index

Cropland fragmentation refers to the fragmentation, dispersion, and size of the culti-
vated land due to natural or human factors, and the area of each cultivated land is relatively
small, showing a decentralized and disorderly pattern, which is a long-term dynamic
process [41–43]. For the karst mountain areas, the high mountains and deep valleys lead
to obvious cutting terrain, and cultivated land can only be distributed on gentle slopes
or small flat land. Therefore, the degree of cultivated land fragmentation is a very typical
quality evaluation index in karst areas and plays a decisive role in the realization of the
value of cultivated land resources [44,45].

Research on the impact of cultivated land fragmentation on the landscape scale of
cultivated land can directly reflect changes in cultivated land fragmentation. In this study,
we used the open-source Python library to compute landscape metrics, and the following
six indicators were selected to measure the cultivated land landscape [46]:

• Patch Density (PD)

This indicator refers to the number of cultivated land patches per unit area in the
study area, and it has an important impact on biological protection, material, and energy
distribution. This index reflects the situation in which the concentrated and contiguous
cultivated land is divided into small patches, which directly reflects upon the connotation
of cultivated land landscape fragmentation [47].

PD = n/A (4)

n is the number of the patches; A is the total area.

• Edge Density (ED)

This is an index that is used to analyze the shape of land patches, revealing the degree
of cropland segmentation, as well as being a direct reflection of the degree of cultivated
land fragmentation. The greater the edge density, the higher the degree of cultivated land
division, and the more scattered the layout [48].

ED = P/A (5)

P is the total perimeter of all cropland patches; A is the total area.

• Fragmentation Index of Patch Numbers (FN)

The patch size is the most basic spatial feature and it directly affects the mechanization
level of agricultural production. As such, this index is used to measure the degree of
fragmentation of the landscapes.

FN = (N − 1)/MPS (6)

MPS is the mean patch size; N is the number of cropland patches.

6
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• Area-Weighted Mean Shape Index (AWMSI)

Since an irregular shape leads to a reduction in the actual planting area within the
total area, the farming production cost per unit area will be increased. However, with an
increase in the patch size, the impact caused by the irregular shape will gradually weaken.
Considering this phenomenon, AWMSI is taken to be one of the indicators to measure the
degree of the cultivated landscape.

AMWSI = ∑n
i=1

[(
0.25Pi√

ai

)
(ai/A)

]
(7)

n is the number of cropland patches; Pi is the perimeter of the patches; ai is the area of
the patches; A is the total area of cropland.

• Fragmentation Shape Index (FS)

This index is used to reflect the internal combination of cultivated land patches. The
distribution of cultivated land patches becomes more scattered as the index increases.
Additionally, the internal combination simultaneously becomes more complex.

FS = 1 − 1/MSI (8)

MSI = ∑n
i=1(0.25Pi/

√
ai)/N (9)

MSI is the mean shape index; ai is the patch area; Pi is the perimeter of the patch; N is
the number of cropland patches.

• Aggregation Index (AI).

This index reflects the degree of patch agglomeration within the landscape type. When
the value is larger, the landscape is composed of a few large patches, and when the value is
smaller, the landscape is composed of many small patches [49].

AI =
ei

max_ei
× 100 (10)

max_ei =

⎧⎨
⎩

2n(n − 1), m = 0
2n(n − 1) + 2m − 1, m ≤ n
2n(n − 1) + 2m − 2, m > n

,
(

m = Ai − n2
)

(11)

ei is the number of edges that the patches have in common; max_ei is the maximum
number of edges that the patches have in common; Pi is the perimeter of the patch; n
is the edge length of the largest integer square that does not exceed the total area of the
cropland area.

2.3.3. Revisions of the Ecological Value Equivalent Factors

Costanza et al. proposed the principle and method of ecosystem service value estima-
tion [50], but their methods were criticized because they resulted in the ecological value of
the cultivated land being significantly low. Therefore, Chinese researchers such as Xie Gaodi
revised Costanza’s assessment framework based on China’s economic situation, land use,
and vegetation types, and developed an assessment method for China’s ecosystem service
value based on the unit area value equivalence factor [51–53] (Appendix A). As the eco-
logical function value consequently varies with the internal structure and external form of
ecosystem, constantly changing within different regions or different periods, we conducted
two revisions to obtain the final ecosystem service value equivalent of Guizhou [54]:

1. Previous studies have shown that the ecosystem function is positively correlated with
NPP and precipitation. As such, we used two temporal and spatial factors (NPP and
precipitation) to modify the ecosystem service value equivalent table of China for
each year.

7
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Fi =

{
Pi × Fn1
Ri × Fn2

(12)

Fi refers to the unit area value equivalent of the ecological service function for each year;
Pi refers to the NPP regulation factor; Ri refers to the precipitation regulation factor; Fn1
represents the value equivalent per unit area of China for gas regulation, climate regulation,
environmental purification, nutrient conservation, and biodiversity maintenance; and Fn2
represents the value equivalent of China’s unit area of hydrological regulation function.

2. According to Costanza’s research, the economic value of ecological service value
equivalent factors is 54 USD/hm2 (1997). Combined with China’s grain production
income, Chinese scholars have calculated that the economic value of an ecological
service value equivalent factor in China is 449 CNY/hm2 (58.5 USD/hm2 in 2007),
using the shadow land rent method. However, the price index and grain yield vary
interannually, and so to reflect the indirect value change of cultivated land resources
more accurately, we revised the economic value by year to form the final economic
value of the ecological function, to make it suitable for the study area [55].

EVi =
1
7 ∑n

i=1
mi piqi

M
(13)

EVi refers to the economic value of an ecological service value for equivalent factors
of cropland resources in each year; mi refers to the area of crops; pi refers to the average
price of crops; qi represents the output of agricultural products; n represents the types of
crop products.

3. Results

3.1. Physical Account Changes
3.1.1. Spatial Changes of Guizhou Province

Through the analysis of the land cover data of the study area from 2001 to 2020, it was
found that the cropland resources in Guizhou Province experienced a small increase from
2001 to 2003, and they have then decreased year-by-year since 2004 (Figure 2). By 2020,
the cropland resources had reduced to 3768.34 km2, which means that the number had
decreased by 55.52% compared to 2001. At the same time, it is easy to see that the cultivated
land resources in Guizhou Province are very scarce. The proportion of cultivated land
resources only accounted for 5.35% at the highest level (2003), while this figure reduced
to 2.14% in 2020 (Table 3). Moreover, with the increase in the population, the percapita
cultivated land resources in Guizhou Province show absolute scarcity, from 223.04 m2 in
2001 to 97.68 m2 in 2020.

Figure 2. Cropland resources area of Guizhou Province.

8
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Table 3. Area changes of cropland resources.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Cropland Area (km2) 8473.22 8968.61 9416.08 9294.78 8980.94 8469.23 7800.17 7286.11 6902.27 6667.85
Croplands Proportion 4.81% 5.09% 5.35% 5.28% 5.10% 4.81% 4.43% 4.14% 3.92% 3.79%

Croplands per capita (m2) 223.04 233.74 243.31 238.08 240.78 229.52 214.76 202.62 195.14 191.66

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Croplands Area (km2) 6047.527 5356.4 4894.82 4683.90 4526.89 4494.66 4236.63 4032.42 3543.72 3768.34
Croplands Proportion 3.43% 3.04% 2.78% 2.66% 2.57% 2.55% 2.41% 2.29% 2.01% 2.14%

Croplands per capita (m2) 174.33 153.74 139.77 133.52 128.24 119.60 111.40 105.51 92.09 97.68

Secondly, each patch of land cover data was calculated, and the time series changes
of each pixel was analyzed for different years, with the finding that the area of cropland
resources experienced both transfer-in and transfer-out in the same year. During this period,
the positive area changes in the cultivated land area are in a “U” shape, while the negative
area changes are represented by a wave form. Moreover, with the transfer proportions of
−9.43% (−798.82 km2), −9.28% (−786.03 km2), and −8.55% (−724.78 km2), 2007, 2012 and
2019 became troughs. The overall distribution of the total change area was similar to that
of the negative area (Figure 3).

Figure 3. Cropland resources transfer area of Guizhou Province.

According to the International Geosphere-Biosphere Programme (IGBP) classification
(Appendix A), there are 15 types of land cover in Guizhou Province. As can be seen
from Figure 4, the cultivated land resources in Guizhou Province are mainly transferred
with grasslands, savannas, and cropland/natural vegetation mosaics. Recent land cover
data over the last 20 years show that the transfer of cropland/natural vegetation mosaics
account for an average of 66% of the total transfer area. The type of cropland/natural
vegetation mosaics are mosaics of small-scale cultivation, with 40–60% of natural tree,
shrub, or herbaceous vegetation in a pixel. The increase in cropland/natural vegetation
mosaics shows that the fragmentation of cultivated land resources in Guizhou Province
increased from 2014 to 2019 (Table 4).

9
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Figure 4. Transfer area of each landcover type in Guizhou Province.

Table 4. Transfer area and proportion of main landcover types.

Woody Savannas Savannas Grasslands
Cropland/Natural

Vegetation Mosaics

2002
Area (km2) −0.32 187.22 135.42 175.06
Proportion 0.06% 37.79% 27.34% 35.34%

2003
Area (km2) 0.45 148.45 105.53 193.05
Proportion 0.10% 33.17% 23.58% 43.14%

2004
Area (km2) −1.23 −4.68 17.78 −133.17
Proportion 0.79% 2.98% 11.34% 84.90%

2005
Area (km2) 0.34 −64.31 −16.98 −232.89
Proportion 0.11% 20.47% 5.40% 74.13%

2006
Area (km2) −0.22 −138.36 −39.78 −333.35
Proportion 0.04% 27.04% 7.77% 65.14%

2007
Area (km2) −0.22 −161.69 −50.45 −456.26
Proportion 0.03% 24.17% 7.54% 68.19%

2008
Area (km2) −0.22 −138.62 −16.06 −359.17
Proportion 0.04% 26.97% 3.12% 69.87%

2009
Area (km2) −0.56 −123.74 −23.01 −236.31
Proportion 0.15% 32.24% 6.00% 61.56%

2010
Area (km2) 0.38 −60.77 2.67 −176.47
Proportion 0.16% 25.27% 1.11% 73.37%

2011
Area (km2) 1.63 −165.25 −26.13 −430.57
Proportion 0.26% 26.50% 4.19% 69.05%

2012
Area (km2) −0.11 −133.43 −17.06 −540.31
Proportion 0.02% 19.31% 2.47% 78.18%

2013
Area (km2) −0.76 −96.93 −11.00 −352.89
Proportion 0.17% 21.00% 2.38% 76.45%

2015
Area (km2) −0.11 −12.31 −24.25 4.43
Proportion 0.35% 25.13% 15.53% 58.99%

2016
Area (km2) −0.11 −12.31 −24.25 4.43
Proportion 0.26% 29.95% 59.01% 10.78%

2017
Area (km2) 0.16 −50.65 −37.40 −170.15
Proportion 0.06% 19.60% 14.48% 65.86%

2018
Area (km2) 0.28 −10.01 −11.73 −182.74
Proportion 0.13% 4.89% 5.73% 89.25%

2019
Area (km2) 0.00 −96.45 −12.99 −379.26
Proportion 0.00% 19.74% 2.66% 77.61%

2020
Area (km2) 0.12 −19.17 −20.16 263.83
Proportion 0.04% 6.32% 6.65% 86.99%
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3.1.2. Crop Production Changes in Guizhou Province

According to the research presented, there are two dimensions of changes in the output
of agricultural products in Guizhou Province. The first is the change in quantity. The total
output of agricultural products increased from 12.67 million tons up to 42.34 million tons,
from 2001 to 2020, with an increase rate of 234.19%. The second is that the planting structure
changed greatly, which is reflected in the changes in the crop types within the same crop
type, and the quantitative changes between the different types.

The main agricultural products in Guizhou Province can be divided into grains,
potatoes, oil crops, and others, of which the output of vegetables far exceeds other products,
reaching 29.9087 million tons in 2020. Rice and corn are the main grain, showing little
interannual change and fluctuating in the range of 605,940. Tubers increased slightly; Irish
potatoes are the main crop and showed obviously changes. The median output from 2001
to 2020 was 1.535 million tons, and the third quarter was 2.335 million tons. Rapeseed is
the main oil plant crop, accounting for more than 70%. As the economy has continued to
develop, ramie has been completely replaced by other types of crops (Figure 5).

The proportion of grain compared to the total agriculture products of Guizhou
Province increased from 72.55% in 2001 and plummeted to 16.34% in 2020; at the same time,
the output of oil crops and tubers has also decreased by nearly half in 20 years, while other
high-value-added crops that increased from 916.1 thousand tons (7.23%) in 2001 surged to
30.73 million tons (72.58%) in 2020 (Table 5).

Figure 5. Crop production distribution in Guizhou Province (2001–2020).

Table 5. Crops production of Guizhou Province (10,000 tons).

Grain Oil Plants Others Tubers Total Yields

2001 919.2 72.55% 71.32 5.63% 91.61 7.23% 184.9 14.59% 1267.03
2002 829.7 68.49% 72.48 5.98% 104.73 8.65% 204.5 16.88% 1211.41
2003 903.5 45.33% 72.31 3.63% 816.72 40.97% 200.8 10.07% 1993.33
2004 939.32 44.69% 82.71 3.94% 869.38 41.37% 210.26 10.00% 2101.67
2005 906.24 41.59% 84.89 3.90% 942.08 43.23% 245.82 11.28% 2179.03
2006 820.07 41.23% 68.24 3.43% 882.59 44.38% 217.93 10.96% 1988.83
2007 869.73 40.53% 69.66 3.25% 975.53 45.46% 231.13 10.77% 2146.05
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Table 5. Cont.

Grain Oil Plants Others Tubers Total Yields

2008 911.67 39.18% 68.39 2.94% 1100.62 47.30% 246.33 10.59% 2327.01
2009 918.76 37.87% 78.68 3.24% 1179 48.60% 249.51 10.29% 2425.95
2010 901.9 36.60% 60.34 2.45% 1291.3 52.41% 210.4 8.54% 2463.94
2011 605.13 26.52% 78.85 3.46% 1326.15 58.12% 271.77 11.91% 2281.9
2012 804.91 29.73% 87.38 3.23% 1540.9 56.91% 274.59 10.14% 2707.78
2013 718.88 25.46% 91.53 3.24% 1701.53 60.27% 311.11 11.02% 2823.05
2014 790.33 25.78% 98.05 3.20% 1829.23 59.67% 348.17 11.36% 3065.78
2015 815.89 25.48% 101.34 3.16% 1920.9 59.99% 364.11 11.37% 3202.24
2016 828.38 24.09% 113.66 3.31% 2132.24 62.01% 364 10.59% 3438.28
2017 808.94 22.11% 109.82 3.00% 2370.18 64.78% 369.6 10.10% 3658.54
2018 732.59 18.93% 112.62 2.91% 2698.65 69.72% 327.11 8.45% 3870.97
2019 707.57 17.81% 103.01 2.59% 2819.22 70.95% 343.67 8.65% 3973.47
2020 692.04 16.34% 103.4 2.44% 3073.27 72.58% 365.59 8.63% 4234.3

3.2. Conditional Account Changes
3.2.1. Changes in Site Conditions

We used the GEE to calculate the DEM data for the cultivated land resources in
Guizhou Province, which showed that the cultivated land resources in Guizhou Province
are mainly distributed near the elevations of 1320 m and 2220 m. The mean elevation
increased by approximately 130 m from 2001 to 2020, but the standard deviation decreased
significantly, implying that the elevation of the cultivated land resources in Guizhou
Province is gradually concentrated to the average value (Table 6). Therefore, it can also be
judged that the elevation of the cultivated land resources in Guizhou Province have shown
an overall increase.

Table 6. Statistical results of the elevation of the cultivated land resources in Guizhou Province.

Mean Median Std-Dev Mix Max

2001 1577.95 1461 526.76 299 2831
2002 1557.5 1440 524.91 229 2831
2003 1540.92 1426 527.19 229 2831
2004 1529.13 1415 534.46 229 2831
2005 1516.96 1403 538.91 229 2831
2006 1521.53 1402 536.46 229 2834
2007 1535.18 1407 531.34 229 2815
2008 1549.44 1418 527.26 229 2815
2009 1571.46 1433 524.21 229 2815
2010 1587.78 1448 517.44 229 2834
2011 1623.42 1483 516.99 229 2834
2012 1648.67 1516 520.09 229 2834
2013 1674.58 1564 516.2 229 2834
2014 1682.55 1576 510.25 261 2834
2015 1689.86 1585 506.38 261 2834
2016 1682.65 1559 500.84 260 2834
2017 1659.46 1508 493.31 260 2811
2018 1661.55 1520 494.06 260 2811
2019 1700.18 1633 492.13 241 2769
2020 1693.96 1587 475.21 262 2757

Meanwhile, through the statistics of the slope of each cultivated land pixel, it was
found that 70–80% of the cultivated land resources in Guizhou Province are distributed
in areas with a slope of less than 10◦. With the evolution of the distribution pattern of the
cultivated land resources, the changes in the slope of the cultivated land resources can
be divided into two stages (Figure 6). First, from 2001 to 2004, the number of cultivated
land pixels with a slope of less than 25◦ continued to increase. In 2004, 46812 pixels
were distributed in areas below 5◦, accounting for 50.68% of the total area of cultivated
land resources. Additionally, there were 28556 pixels with a slope of between 5◦ and 10◦,
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accounting for 29.75% of the total area of cultivated land resources in that year. Secondly,
from 2005 to 2020, the area of cultivated land with a slope of more than 25◦ decreased
significantly, with a maximum change rate of more than 80%, and the cultivated land area
with a slope above 40◦ completely disappeared (Table 7).

Figure 6. Slope changes of cropland resources in Guizhou Province.

Table 7. Pixels counts of the slopes of cropland resources in Guizhou Province.

Year 0–5◦ 5◦–10◦ 10◦–15◦ 15◦–20◦ 20◦–25◦ 25◦–30◦ 30◦–35◦ 35◦–40◦ 40◦–45◦ 45◦–50◦

2001 38,599 26,799 11,162 3935 1391 324 86 32 8 2
2002 42,765 27,879 11,562 4118 1422 338 91 34 8 2
2003 46,059 29,252 12,208 4396 1533 373 106 38 11 2
2004 46,812 28,556 11,993 4438 1553 363 94 31 10 2
2005 46,240 27,146 11,490 4369 1540 340 84 21 6 2
2006 44,636 25,236 10,535 3907 1335 286 74 19 6 2
2007 41,474 22,768 9360 3399 1127 256 64 17 6 2
2008 38,024 21,051 8620 3068 1024 233 59 16 6 2
2009 35,303 20,253 8232 2857 948 220 55 16 6 2
2010 33,253 19,613 7985 2790 936 218 57 16 6 2
2011 29,369 17,972 7294 2559 868 209 57 16 6 2
2012 25,028 15,550 6414 2260 781 187 48 15 8 2
2013 22,197 14,107 5833 2103 720 181 49 12 8 1
2014 20,752 13,127 5398 1925 636 147 38 10 5 1
2015 19,857 12,350 5021 1783 563 133 32 8 4 1
2016 19,717 11,945 4768 1597 496 117 32 7 4 1
2017 19,346 10,659 4098 1380 463 85 31 7 4 1
2018 17,932 9610 3763 1242 406 72 28 2 3 0
2019 15,385 8921 3498 1162 368 68 20 2 0 0
2020 17,405 9697 3497 1056 312 54 19 3 0 0

Max Change rate 62.82% 66.85% 71.35% 76.20% 79.89% 85.11% 82.08% 92.11% 100.00% 100.00%

3.2.2. Landscape Index Changes

By calculating the six dimensions of the landscape index for the cultivated land
resources in Guizhou Province from 2001 to 2020 (Table 8), we found that the patch density
(PD), edge density (ED), and aggregation index (AI) in Guizhou Province increased first,
and then decreased. Meanwhile, the area-weighted mean shape index (AWMSI) showed
a negative trend by year. Additionally, the change trend in the fragmentation index of
the patch numbers (FN) was negatively correlated with the fragmentation shape index
(FS). According to the calculation results, the PD decreased from 0.0117 in 2001 to 0.007 in
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2020, indicating that the fragmentation of cultivated land resources in Guizhou Province
improved, and the ED decreased from 0.9973 in 2001 to 0.5548 in 2020, indicating that the
shape of the cultivated land gradually became more regular [47]. The AWMSI decreased
from 7.954 in 2001 to 6.001 in 2020, indicating that the distribution of cultivated land plots
tends to be centralized. It can be seen that the vulnerability of cultivated land in Guizhou
Province has been reduced.

Table 8. Landscape index changes of cultivated land resources in Guizhou Province.

Year PD ED FN AWMSI FS AI

2001 0.0117 0.9973 14.802622 7.954 0.28310273 79.5801
2002 0.012 1.0353 14.666524 7.9734 0.28356498 79.9096
2003 0.0119 1.0653 13.813862 7.6421 0.29263634 80.2707
2004 0.0113 1.0362 12.507077 7.6585 0.29358576 80.6063
2005 0.0106 0.9917 11.415985 7.6782 0.29088073 80.8496
2006 0.0097 0.9384 10.262608 7.3696 0.29567545 80.878
2007 0.0093 0.8818 10.142569 6.8898 0.29473165 80.5931
2008 0.0089 0.846 9.9882939 6.5778 0.29903267 80.132
2009 0.0088 0.8114 10.413669 6.5818 0.29173454 79.9631
2010 0.0089 0.7977 10.807041 6.3748 0.2917847 79.6394
2011 0.0084 0.7385 10.757928 6.4825 0.28861066 79.3885
2012 0.0081 0.6836 11.313965 6.597 0.28310273 78.6491
2013 0.0078 0.6439 11.563548 6.4575 0.27917538 78.1715
2014 0.0081 0.638 12.935312 6.6323 0.27436325 77.4089
2015 0.0083 0.6324 13.99703 6.729 0.26691592 76.8763
2016 0.0085 0.6407 14.919812 6.7727 0.26524614 76.3702
2017 0.0081 0.6163 14.078087 6.3173 0.27028605 76.0021
2018 0.0083 0.6109 15.651382 6.0193 0.26975318 75.0247
2019 0.0071 0.54 13.104289 5.8462 0.27103076 75.385
2020 0.007 0.5548 11.886296 6.0001 0.274942 76.1123

PD: patch density. ED: edge density. FN: patch numbers. AI: aggregation index. AWMSI: area-weighted mean
shape index. FS: fragmentation shape index.

3.3. Monetary Account Changes

From 2001 to 2020, with the development of the economy, the direct economic value
of cultivated land resources in Guizhou Province increased rapidly. The production value
increased from CNY 27,995 million per year to CNY 180,025 million per year, with an
increase of 543%. It could be evidenced (Table 9) that in the past 20 years, with the adjust-
ment of the industrial structure, the main labor force flowed to the secondary and tertiary
industries with a high added value and high income, reducing the number of agricultural
employees in Guizhou. In 2001, there were 1.36 million agricultural employments, while
in 2020, only 0.634 million people were employed in agriculture. At the same time, the
per capita output value increased from CNY 2046.42/y to CNY 28,395.11/y, an increase of
12.87-fold. However, according to the calculation of the price index of agricultural products
in “The National Compilation of Cost-benefit data of Agricultural Products”, the sales price
of agricultural products in China only increased by 181.96% from 2001 to 2020. In other
words, the direct economic value of cultivated land resources in Guizhou Province still
improved significantly after removing the influence of the interannual differences in prices.

Table 9. Direct economic value of cropland resources in Guizhou Province.

Year
Cross Output Value

(Million Yuan)
Agriculture

Employment (104)
Cross Output Value per

Capita (CNY)

2001 27,995 1368 2046.42
2002 27,888 1354 2059.68
2003 46,672 1322 3530.41
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Table 9. Cont.

Year
Cross Output Value

(Million Yuan)
Agriculture

Employment (104)
Cross Output Value per

Capita (CNY)

2004 52,464 1288 4073.29
2005 33,353 1268 2630.36
2006 34,797 1247 2790.46
2007 39,220 1388 2825.65
2008 30,848 1350 2285.04
2009 33,050 1299 2544.26
2010 38,561 1210 3186.86
2011 43,084 1194 3608.38
2012 56,132 1189 4720.94
2013 64,612 1180 5475.59
2014 85,189 1171 7274.89
2015 109,654 1162 9436.66
2016 119,650 883 13,550.35
2017 130,643 828 15,778.11
2018 143,929 765 18,814.19
2019 156,647 700 22,378.14
2020 180,025 634 28,395.11

As for the indirect value, according to the revised ecological value per unit area of
farmland ecosystems and the equivalent of the ecological service value per unit area in
Guizhou Province (Table 10), we calculated the indirect value of cultivated land resources
(Table 11). Under the dual influence of cultivated land resource area falling and the
grain price index increasing, the indirect economic value of cultivated land resources in
Guizhou Province first increased, and then decreased. Among them, it reached a peak of
CNY 7775.25 million in 2009, but the overall decrease was no more than 3%, indicating
that the ecological function of the cultivated land resources in Guizhou Province is still
well-protected while the economy is developing (Table 12).

Table 10. Ecosystem service equivalent value per unit area of cropland ecosystem in Guizhou.

Regulating Services Supporting Services Cultural Services

Gas
Regulation

Climate
Regulation

Environmental
Purification

Hydrological
Regulation

Soil
Conservation

Maintenance of
Nutrient Cycle

Biodiversity
Aesthetic

Landscape

2001 3.25 1.70 0.49 5.27 1.90 0.57 0.62 0.27
2002 3.01 1.57 0.46 5.36 1.76 0.52 0.57 0.25
2003 2.77 1.45 0.42 4.64 1.62 0.48 0.53 0.23
2004 2.70 1.41 0.41 5.40 1.58 0.47 0.52 0.23
2005 2.91 1.52 0.44 4.44 1.70 0.51 0.56 0.25
2006 2.98 1.56 0.45 5.00 1.74 0.52 0.57 0.25
2007 3.09 1.61 0.47 5.47 1.80 0.54 0.59 0.26
2008 3.00 1.57 0.46 5.51 1.75 0.52 0.57 0.25
2009 3.03 1.58 0.46 4.49 1.77 0.53 0.58 0.26
2010 2.72 1.42 0.41 4.63 1.59 0.47 0.52 0.23
2011 2.84 1.48 0.43 4.17 1.66 0.49 0.54 0.24
2012 2.86 1.50 0.43 4.56 1.67 0.50 0.55 0.24
2013 3.15 1.64 0.48 4.16 1.84 0.55 0.60 0.27
2014 2.95 1.54 0.45 5.99 1.72 0.51 0.56 0.25
2015 3.03 1.58 0.46 5.48 1.77 0.53 0.58 0.26
2016 3.08 1.61 0.47 4.84 1.80 0.54 0.59 0.26
2017 3.07 1.60 0.47 4.97 1.79 0.53 0.59 0.26
2018 2.75 1.44 0.42 4.81 1.61 0.48 0.53 0.23
2019 3.19 1.66 0.48 5.39 1.86 0.55 0.61 0.27
2020 2.86 1.49 0.43 5.83 1.67 0.50 0.55 0.24
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Table 11. Indirect value of cropland resources in Guizhou Province (million CNY).

Regulating Services Supporting Services Cultural Services

Gas
Regulation

Climate
Regulation

Environmental
Purification

Hydrological
Regulation

Soil
Conservation

Maintenance of
Nutrient Cycle

Biodiversity
Aesthetic

Landscape

2001 1042.31 544.58 158.10 1687.38 608.99 181.53 199.09 87.83
2002 1037.58 542.11 157.39 1850.00 606.23 180.70 198.19 87.44
2003 1185.91 619.61 179.89 1989.32 692.89 206.54 226.52 99.94
2004 1353.88 707.36 205.36 2708.69 791.03 235.79 258.61 114.09
2005 1337.41 698.76 202.87 2036.25 781.41 232.92 255.46 112.70
2006 1443.82 754.36 219.01 2424.08 843.58 251.45 275.79 121.67
2007 1735.44 906.72 263.24 3075.90 1013.97 302.24 331.49 146.25
2008 1587.42 829.38 240.79 2913.23 927.48 276.46 303.22 133.77
2009 1699.16 887.76 257.74 2512.78 992.77 295.92 324.56 143.19
2010 1560.85 815.50 236.76 2655.25 911.96 271.83 298.14 131.53
2011 1012.34 528.92 153.56 1486.50 591.48 176.31 193.37 85.31
2012 1321.58 690.49 200.46 2102.56 772.16 230.16 252.44 111.37
2013 1121.78 586.10 170.16 1483.78 655.42 195.37 214.27 94.53
2014 1069.32 558.69 162.20 2173.93 624.77 186.23 204.25 90.11
2015 908.11 474.46 137.75 1645.79 530.58 158.15 173.46 76.53
2016 788.70 412.07 119.63 1239.54 460.81 137.36 150.65 66.46
2017 841.59 439.71 127.66 1364.21 491.72 146.57 160.75 70.92
2018 661.68 345.71 100.37 1157.39 386.60 115.24 126.39 55.76
2019 698.34 364.86 105.93 1181.51 408.02 121.62 133.39 58.85
2020 924.71 483.14 140.27 1885.77 540.28 161.05 176.63 77.93

Table 12. Changes of economic value of cropland resources in Guizhou Province (million CNY).

Year Direct Value Indirect Value Total Value

2001 27,995.00 4509.80 32,504.80
2002 27,888.00 4659.64 32,547.64
2003 46,672.00 5200.60 51,872.60
2004 52,464.00 6374.81 58,838.81
2005 33,353.00 5657.76 39,010.76
2006 34,797.00 6333.76 41,130.76
2007 39,220.00 7775.25 46,995.25
2008 30,848.00 7211.75 38,059.75
2009 33,050.00 7113.88 40,163.88
2010 38,561.00 6881.84 45,442.84
2011 43,084.00 4227.79 47,311.79
2012 56,132.00 5681.21 61,813.21
2013 64,612.00 4521.42 69,133.42
2014 85,189.00 5069.51 90,258.51
2015 109,654.00 4104.83 113,758.83
2016 119,649.56 3375.23 123,024.78
2017 130,642.73 3643.13 134,285.85
2018 143,928.56 2949.13 146,877.69
2019 156,647.00 3072.52 159,719.52
2020 180,025.00 4389.76 184,414.76

4. Discussion

4.1. Analysis of Reasons for the Change in Physical and Conditional Account

Based on the results of this paper, the cultivated land resources in Guizhou Province
declined continually after a short increase, and the reduced area was mainly transformed
into natural vegetation and grassland, especially as the steep slope terraces disappeared
from 2001 to 2020 [56]. These changes are closely related to the continuous implementation
of the policy mandating the return of farmland to forest and grassland land types in
Guizhou Province [57,58]. In particular, the intensity of returning farmland to forest and
grassland in poverty-stricken areas of Guizhou has increased during a critical period
of poverty alleviation, such as farmland with a slope of more than 25 degrees, severely
sandy farmland, sloped farmland of 15–25 degrees in areas with important water sources,
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and steep sloped terraces, the conversion of all of which are examples of remarkable
achievements [44,59]. At the same time, it is worth mentioning that on the premise of
the obvious outflow of the physical account of the cultivated land resources, the output
of agricultural products has still shown a huge increase [60,61]. It is not difficult to find
that the output of grain crops decreased, but that the output of high value-added crops
such as tobacco and vegetables increased. On the one hand, as people’s quality of life
improves, people’s eating habits tend to become more diversified and healthier, leading to
an increase in the demand for more value-added commodities in human society. Namely,
the relationship between supply and demand in the market has guided farmers to the
crop types that they choose to grow. On the other hand, in order to get rid of poverty in
Guizhou Province, the government has implemented relevant policies with regard to the
adjustment of the agricultural planting structure to improve the income of farmers in karst
mountainous areas [62].

Meanwhile, six dimensions of cropland landscape indicators, such as edge density
and the area-weighted means shape index were used as a measure of cultivated land
fragmentation, to analyze the landscape change of cultivated land resources in Guizhou
Province from 2001 to 2020 [63]. These indicators have decreased significantly, indicating
that the fragmentation of cultivated land resources has been alleviated through land
consolidation and ecological restoration projects [64].

4.2. Analysis of Reasons for the Change in Monetary Account

As for the results of the analysis on the monetary account, the monetary value of
cultivated land resources in Guizhou Province has increased greatly over the past 20 years.
It is interesting that, with the obvious outflow of the physical quantity account of cultivated
land resources, the growth rate of the monetary value of agricultural products is still signifi-
cant. More importantly, the settlement of the issue cannot be achieved by simply expanding
the cultivated area or by increasing the employed population. It can be seen from the above
data that agricultural employment and the cultivated land area in Guizhou Province have
decreased by more than 50%, but the value of the agricultural products created per capita
has increased by 12-fold. The improvement of cropland quality and the development of
technology have led to a rise in cropland resource value in Guizhou Province. While the
direct value has increased, the indirect value has not fallen sharply, indicating that the
ecological environment has been protected during economic development [65].

In addition, we collected government expenditure data from the study area over
the past 20 years (Appendix B). In 2001, the local government spent CNY 4.25 billion on
farming, forestry, and water conservation, which has increased to CNY 10.431 billion in
2020, and this investment had increased 23-fold. This included the giving of subsidies
to encourage farmers to adjust their planting structure, increasing the construction of
water conservation facilities to ensure irrigation conditions, and conducting corresponding
education on agricultural technology to improve farmers’ planting skills. These policies
ensure that the adjustment of planting structure can be quickly completed within the study
area [66,67].

At the same time, with high mountains and steep slopes, the construction cost of roads
and bridges is very high, which makes the transportation and sales of agricultural products
inconvenient. The local government increased its investment in transportation and other
infrastructure from CNY 4.31 billion in 2001 to CNY 34.15 billion in 2020, realizing the
County-to-County Expressway and the “village to village” hardened road in Guizhou
Province. From the results of this study, it seems that reasonable policy guidance and
sustained high-level financial investment have led to a significant increase in the value of
cultivated land resources in this area [68,69].

Affected by karst landforms, Guizhou Province has serious soil erosion, serious rocky
desertification, and a lack of cultivated land resources [70]. In order to improve rocky deser-
tification and soil erosion, Guizhou Province has conducted large-scale rocky desertification
prevention and control projects. Meanwhile, the financial investment for environmental
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protection has increased from CNY 2.667 billion in 2006 to CNY 14.615 billion in 2020.
By accounting for the cultivated land resource assets in Guizhou Province over the past
20 years, it has been found that even under relatively bad natural conditions, the asset
value of cultivated land resources can apparently be improved and realized in a win-win
situation of economic development and ecological protection, through the guidance of
reasonable land use methods and scientific land policies [71].

4.3. Shortcomings/Uncertainties of This Research

However, the landcover data selected is of 250 m resolution in this study. For the karst
mountainous areas, some sloped croplands of small areas may not have been identified,
or they could have been identified as cropland/natural vegetation mosaics, which may
lead to deviations in the evaluation results. In addition, only site conditions and landscape
indexes are selected for conditional accounting. For cropland resources, soil quality, soil
physical and chemical properties, and obstacle factors are also important measures. In
future research, multiple measures should be added to the conditional account, so as to
more comprehensively develop knowledge regarding the quality changes in cultivated
land resources.

5. Conclusions

In this paper, multi-remote sensing data were used to calculate the physical and
conditional account changes of the cultivated land resources in Guizhou Province at the
pixel level, which may make up for the deficiency of traditional accounting of natural capital
by presentation. At the same time, according to the characteristics of karst landforms in
the study area, landscape factors were added to the conditional account, which will assist
us with precisely analyzing the reasons for the change of monetary account. Through this
research, we drew the following conclusions.

1. In the physical account, the cultivated land resources in Guizhou Province showed an
obvious downward trend, but the planting structure of agricultural products showed
obvious changes, and the gross output increased significantly. This shows that the
value of the cultivated land is not strongly related to the size of the land area.

2. In the condition account, the quality of the cultivated land resources in Guizhou
Province improved. Specifically, the fragmentation of the cultivated land improved,
and the area of cultivated land on steep slopes decreased. This shows that the local
governance policy on cultivated land is effective.

3. In the monetary account, the monetary value of the cropland resources in Guizhou
Province increased greatly and rapidly. Additionally, an increase in economic value
did not place negative impacts upon the ecological value of the cultivated land. This
shows that reasonable policy and financial investment are of positive significance for
the sustainable utilization of the cultivated land resources.

Based on the above conclusions, we believe that it is very necessary to introduce
additional representative factors into the accounting of cultivated land resource value in
the study area. Evaluation and research into the value of cultivated land resources in the
karst mountainous areas in Southwest China can provide a good reference for scholars of
related fields. Moreover, in this case, reasonable policies, such as returning farmland to
forest and adjusting agricultural planting structure have very positive impacts on the value
of cultivated land resources and the improvement of farmers’ benefits in this area. This
is not only an evaluation of the effect of land policy implementation through quantitative
methods, but it is also is a useful demonstration for leaders in other areas with similar
difficulties; an active exploration of the sustainable utilization of cultivated land resources.

There are still many deficiencies in this study, such as the low accuracy of land use
classification, the factor of the condition account being imperfect, and so on. This is the
direction in which we will continue to study in the future. It is hoped that a more perfect
and universal accounting framework that is suitable for karst areas can be developed in the
future, so that the evaluation results can better guide sustainable land use in the study area.

18



Land 2022, 11, 765

Author Contributions: Conceptualization, Z.Z. and L.Z.; methodology, Q.C.; software, Q.F. and
L.Z.; formal analysis, L.Z. and Q.C.; investigation, L.W., D.L., and T.W.; data curation, Q.F.; writing—
original draft preparation, L.Z.; writing—review and editing, Z.Z., L.Z., and Q.C.; visualization, L.Z.;
supervision, Q.C.; project administration, L.Z.; funding acquisition, Z.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the NSFC regional project, “Research on the coupling mecha-
nism between ecological assets and regional poverty in karst rocky desertification areas (41661088)”,
by “Guizhou Province’s high-level innovative talent training plan ‘hundred’ level talents (Qiankehe
platform talents [2016] 5674)” and a special study of Guizhou Provincial Department of natural
resources on the “Construction of evaluation system of real estate economic operation system in
Guizhou Province” (520000215RSUFG5DLMENO).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. MCD12Q1 International Geosphere-Biosphere Programme (IGBP) legend and class descriptions.

Name Value Description

Evergreen Needleleaf Forests 1 Dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60%.

Evergreen Broadleaf Forests 2 Dominated by evergreen broadleaf and palmate trees (canopy > 2 m).
Tree cover > 60%.

Deciduous Needleleaf Forests 3 Dominated by deciduous needleleaf (larch) trees (canopy > 2 m).
Tree cover > 60%.

Deciduous Broadleaf Forests 4 Dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60%.

Mixed Forests 5 Dominated by neither deciduous nor evergreen (40–60% of each) tree type
(canopy > 2 m). Tree cover > 60%.

Closed Shrublands 6 Dominated by woody perennials (1–2 m height), > 60% cover.
Open Shrublands 7 Dominated by woody perennials (1–2 m height), 10–60% cover.
Woody Savannas 8 Tree cover 30–60% (canopy > 2 m).

Savannas 9 Tree cover 10–30% (canopy > 2 m).
Grasslands 10 Dominated by herbaceous annuals (<2 m)

Permanent Wetlands 11 Permanently inundated lands with 30–60% water cover and >10%
vegetated cover.

Croplands 12 At least 60% of area is cultivated cropland.

Urban and Built-up Lands 13 At least 30% impervious surface area, including building materials, asphalt,
and vehicles.

Cropland/Natural Vegetation Mosaics 14 Mosaics of small-scale cultivation, 40–60% with natural trees, shrubs, or
herbaceous vegetation.

Permanent Snow and Ice 15 At least 60% of area is covered by snow and ice for at least 10 months of
the year.

Barren 16 At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less
than 10% vegetation.

Water Bodies 17 At least 60% of area is covered by permanent water bodies. Unclassified
255 Has not received a map label because of missing inputs.
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Appendix B

Table A3. Statistics of financial expenditure in Guizhou Province (section) (unit: CNY billion).

Unit: Billion CNY
General Public

Budget Expenditure
Farming, Forestry and

Water Conservancy
Transportation

Energy Saving and
Environment Protection

2001 27.52 4.25 4.31 -
2002 31.67 4.86 3.64 -
2003 33.24 4.53 3.16 -
2004 41.84 7.23 3.83 -
2005 52.07 7.66 4.12 -
2006 61.041 6.155 4.193 -
2007 79.54 8.75 4.88 2.67
2008 105.54 12.17 4.94 4.04
2009 137.23 20.41 12.08 5.53
2010 163.15 24.68 10.96 5.43
2011 224.94 27.85 30.52 5.55
2012 275.57 36.19 28.86 6.57
2013 308.266 40.031 29.979 6.644
2014 354.28 44.719 43.201 8.534
2015 393.95 53.426 39.225 9.649
2016 426.236 62.938 28.997 12.709
2017 461.252 61.205 33.691 12.539
2018 502.968 66.484 38.149 13.438
2019 594.874 99.89 34.779 18.853
2020 573.95 102.431 34.15 14.615
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Abstract: The result of a human–land relationship in geographical environment systems is a human–
land coupling system, which is a comprehensive process of interaction and infiltration between
human economic and social systems and the natural ecosystem. Based on the recognition that the
human–land system is a nonlinear system coupled by multiple factors, a time delay fractional order
dynamics model with a Holling-II-type transformation rate was constructed, the stability analysis
of the system was carried out, the transformation times of different land classes were clarified, and
the coupled dynamics model parameters of mountainous areas and basin areas were obtained by
using the land-use change survey data and socio-economic statistical data in Yuxi City, respectively:
the transformation parameter of the production and living land to the unused land in mountainous
areas and basin areas (aM, 0.0486 and aB, 0.0126); the transformation parameter of unused land to
production and living land in mountainous areas and basin areas (bM 0.0062 and bB, 0.0139); the
transformation parameter of unused land to the forest and grass land in mountainous areas and
basin areas (sM, 0.0051 and sB, 0.0028); the land area required to maintain the individual unit in
mountainous areas and basin areas (hM, 0.0335 and hB, 0.0165); the average reclamation capacity in
mountainous areas and basin areas (dM, 0.03 and dB, 0.05); the inherent growth rate of populations
in mountainous areas and basin areas (rM, 0.0563 and rB, 0.151). Through analyzing the coupling
mechanisms of human–land systems, the countermeasures for the difference between mountainous
areas and basin areas in the future development are put forward. The mountainous area should
reduce the conversion of forest and grass land to production and living land by reducing the average
reclamation or development capacity, reducing the excessive interference of human beings on unused
land, and speeding up its natural recovery and succession to forest and grass land. In addition
to reducing the average reclamation or development capacity in basin areas, the reclamation or
development rate of the idle land and degraded land should be increased, and the conversion of idle
land and degraded land into productive and living land should be encouraged by certain scientific
and technological means.

Keywords: mountain–basin human–land system; land-use change; land dynamical model with
Holling-II type; coupling mechanism; Yuxi City

1. Introduction

Human–land relationship research is of great significance in geography, contributing
to the duality of geography and the development of human geography [1]. For a long
time, the study of “humans” and “land” has been carried out separately. However, as a
series of environmental problems and food security problems brought about by human
activities on the earth continue to affect the human system [2–4], the academic circle is
paying more and more attention to the comprehensive research of “people” and “land” [5].
A variety of new comprehensive methods, including statistical methods, GIS and spatial
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analysis methods, simulation methods and hybrid methods have been applied [6–9]. As the
questions raised by researchers increasingly involved the intersection of human activities
and the earth’s environmental system [10,11], the academic circle further recognized that
the modeling of feedback between humans and the natural environment has become an
urgent requirement [12,13]. In the 1980s, the modeling concept of coupled natural systems
and human socio-economic systems was proposed, and the two-way coupling of positive
and negative feedback and the coupling with human activities in the earth system model
became the research object of academic community [14]. Synthetic integrated models
that carried out bidirectional coupling and exchanges of information in certain forms
have increasingly become a research hotspot [15]. Since the 1990s, 11 different Integrated
Assessment Models (IAMs) have been developed worldwide [16]. The Integrated Model to
Assess the Global Environment Framework (IMAGE) model developed by the Netherlands
Environmental Assessment Agency is one of the representative models of comprehensive
integration, in which the impacts of agricultural land expansion and changes in land-use
types on the environment were evaluated by considering population density, resources,
topography, etc. [17]. In addition, there are some models based on multi-agents [18] that
analyze and explain the complex human–land coupling relationship and its coupling
degree. Meanwhile, with the continuous development of computer technology, multi-
source data-model fusion has made new progress, and the uncertainty of the human–land
system coupling relationship has been further quantified [19,20].

With the deepening of studies on the human–land relationship, regional spatiality has
attracted more and more attention [21,22], but most relevant studies on this complex issue
focus on a single factor [23]. Mountainous areas and basin areas, as special geomorphic
spaces in Yunnan Province, have not been strictly subdivided in existing studies, and
the relationship between humans and land is rarely involved. The concept of “coupling”
in geography originated from physics, which refers to the synergy of two or more sys-
tems through various interactions, or the dynamic relationship between the elements of
the system [24]. Mountainous areas and basin areas mainly include flat land between
mountains and surrounding mountains [25]. The two have a close genetic relationship
in topography and geomorphology. Relying on their geographical proximity, they form
a complex coupling system of mutual cooperation and constraints through continuous
material circulation, energy flow and information transmission, including the two coupling
relationships of near-range coupling and remote coupling [11,26,27]. In order to deeply
reveal the interactions and feedback mechanisms between human activities and the natural
environment in the mountain–basin human–land coupled system, it is necessary to conduct
coupling simulations and predictions around the human–land system and build a com-
prehensive integrated human–land system dynamics model. By analyzing the interaction
of element coupling and process coupling between two different geographic spaces, the
complexity and dynamics of human–land systems coupling are revealed, and the mecha-
nism and feedback paths of human activities such as social and economic development
on land-use changes are explored. The human–land coupling system for mountain–basin
has the nonlinear dynamics and chaotic characteristics of complex systems. To obtain a
quantitative expression in the structure and function process, it is necessary to refer to
a mature paradigm of the existing research and actively explore more integrated multi-
variate coupling models to dynamically resolve the interaction coupling relationship and
dynamics mechanisms within the complex system and among subsystems based on an
interdisciplinary perspective. An outstanding feature of human–land system dynamics
models is that it can deal with nonlinear, complex, long-term and dynamic system coupling
problems, and it is one of the main models to simulate human–land systems and other
complex giant systems [28].

In 1997, Dobson published “Hopes for the Future: Restoration Ecology and Conserva-
tion Biology” in the journal Science [29], and proposed a dynamic land model to describe
the transformation and restoration of natural habitats, which can explain the driving mech-
anism of increasing populations’ agricultural demand on natural habitat transformation.
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However, when a mathematical model needs to be established to solve many specific
problems in reality, the time delay cannot be ignored, and it is also one of the essential
characteristics of the evolution and interaction results of the human–land systems’ elements.
From the point of the dynamic system, the existence of a time delay can induce the stability
of the system to switch, resulting in complex dynamic behaviors such as periodic oscillation
and chaos. Therefore, it is quite necessary to consider the dynamic properties of the land
dynamics model with a time delay [30]. In addition, fractional order calculus is an arbitrary
generalization of integer order calculus in order, and calculus is widely used in the study
of complex dynamic systems, such as the regulation of various ecosystems [31,32], secure
communication [33,34], system controls [35,36] and stability issues [37]. Compared with
the classical integer order model, fractional order calculus is more suitable for describing
systems or processes with memory and hereditary characteristics, and can more accurately
describe the physical and ecological phenomena in nature [38,39], which has attracted great
attention from scholars at home and abroad [40–43].

Based on this, according to the relatively closed mountain–basin human–land system
in Yuxi City, this study took advantage of the limitations on population density and in-
troduced an appropriate land-use conversion rate to focus on analyzing the differences
in land-use conversion and population changes over time in two different geographical
spaces. On this basis of the land dynamics model and fractional calculus theory constructed
by Dobson, a fractional human–land coupling dynamics model with a time delay was estab-
lished to analyze the evolution mechanism of regional land-use systems and other issues,
which is helpful and has important theoretical significance and a practical application value
for the in-depth interpretation of the land-use system change mechanism with population
development. It also provides reference for the differential human–land countermeasures
of mountainous areas and basin areas in different development stages.

2. Materials and Methods

2.1. Study Area

Yuxi City is located in the central part of Yunnan Province, on the Yunnan Plateau at
low latitudes. It belongs to the subtropical plateau monsoon climate, ranging from 23◦19’
to 24◦53’ north latitude and 101◦16’ to 103◦09’ east longitude (Figure 1). Yuxi is located
in the core position of Yunnan Province, connecting the east to the west and connecting
the north to the south. It is adjacent to the provincial capital, Kunming, which is to the
northeast; Chuxiong Autonomous Prefecture in the north; Pu’er city in the southwest and
Honghe Autonomous Prefecture in the southeast. The city covers an area of 15,285 km2

and has jurisdiction over 75 townships (towns and streets) in 7 counties and 2 districts [44].
The terrain of Yuxi City is high in the northwest and low in the southeast. The western part
is mainly deep-cut alpine and valley landforms, the central and eastern parts belong to
the mountainous areas of central Yunnan and are dominated by mid-mountain landforms,
and the eastern part is mainly plateau lake basin landforms. The Chengjiang, Jiangchuan
and Tonghai lacustrine basins are formed around three plateau rifted lakes, the Fuxian
Lake, Xingyun Lake and Qilu Lake, with flat and open terrain [45]. According to its special
topography, combined with administrative regions, it can be divided into two types of
geographical spaces: mountainous areas and basin areas [44]. Due to the complex terrain
and large height difference, the mountainous area generally has more rainfall than the
basin area. The cultivated land in the mountainous area is shallow and the soil fertility is
low, but the basin area has fertile soil and more farmland with high and stable yields. From
1995 to 2018, the urban population growth and economic development in the basin area
were significantly higher than those in the mountainous area, and the land-use change and
social and economic development status differed significantly between the mountainous
area and the basin area [27].
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Figure 1. Location and elevation of the study area.

2.2. Data Sources

The land-use survey data in this study are mainly from the annual change survey
data based on the second national land-use survey data (Table 1). The social and economic
data involved are mainly from the statistical yearbook of Yunnan Province (1996–2019), the
statistical yearbook of Yuxi City (1995–2018), the statistical yearbook of all counties and
districts of Yuxi City and the statistical bulletin of national economic and social development
from 1995–2018 (Table 1). The role of these data in the research is mainly to train and fit the
parameters of human–land coupling dynamics models based on long time series data.

Table 1. Land-type area and population changes in mountainous and basin areas of Yuxi City from
1995 to 2018 (unit: hm2, person).

Year

Mountainous Areas Basin Areas

Forest and
Grass Land

Production
and Living

Land

Unused
Land

Population
Forest and

Grass
Land

Production
and Living

Land

Unused
Land

Population

1995 875,820.94 207,305.42 85,826.37 931,088 179,807.93 93,783.09 51,990.05 974,706
1996 874,606.31 208,733.90 85,612.52 937,439 179,726.11 93,889.87 51,965.09 988,002
1997 873,145.48 210,799.69 85,007.56 944,984 179,675.47 93,964.25 51,941.36 1,001,365
1998 871,670.98 212,451.72 84,830.03 953,568 179,675.23 93,969.09 51,936.76 1,017,639
1999 871,436.37 213,042.87 84,473.49 961,434 179,625.42 94,070.12 51,885.53 1,029,912
2000 871,005.39 213,891.79 84,055.56 972,572 179,933.94 93,832.88 51,814.25 1,044,208
2001 872,014.87 212,901.29 84,036.57 979,242 180,761.39 93,006.43 51,813.26 1,054,823
2002 873,424.16 211,633.56 83,895.01 987,818 180,841.31 93,172.41 51,567.35 1,066,139
2003 875,598.05 210,385.32 82,969.37 990,615 181,235.14 92,977.79 51,368.14 1,077,858
2004 876,178.05 210,009.47 82,765.21 994,502 181,505.02 92,855.50 51,220.55 1,091,030
2005 875,941.02 210,234.29 82,777.43 993,708 181,290.67 93,097.38 51,193.02 1,097,941
2006 875,921.89 210,243.63 82,787.22 997,151 181,477.04 93,131.64 50,972.39 1,109,013
2007 876,001.57 209,665.68 83,285.49 1,002,592 182,061.55 92,746.59 50,772.93 1,119,930
2008 876,136.67 209,528.51 83,287.55 1,001,682 181,973.36 92,988.61 50,619.10 1,128,072
2009 876,243.64 209,477.35 83,231.74 1,006,236 180,517.24 95,251.30 49,812.53 1,137,356
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Table 1. Cont.

Year

Mountainous Areas Basin Areas

Forest and
Grass Land

Production
and Living

Land

Unused
Land

Population
Forest and

Grass
Land

Production
and Living

Land

Unused
Land

Population

2010 876,416.81 209,309.41 83,226.51 1,006,097 179,974.29 95,977.57 49,629.21 1,139,411
2011 876,575.39 209,073.85 83,303.49 1,010,814 179,666.23 96,396.98 49,517.86 1,148,713
2012 877,034.45 208,619.57 83,298.71 1,010,315 179,505.91 96,597.58 49,477.58 1,155,451
2013 877,516.46 208,037.60 83,398.67 1,010,294 179,357.88 96,787.15 49,436.04 1,162,075
2014 877,662.39 207,725.11 83,565.23 1,016,317 179,146.49 97,031.90 49,402.68 1,168,698
2015 877,862.18 207,073.35 84,017.20 1,014,409 178,926.28 97,270.57 49,384.22 1,170,915
2016 878,148.01 206,650.20 84,154.52 1,018,955 178,707.29 97,537.97 49,335.81 1,181,352
2017 878,526.13 206,159.85 84,266.75 1,022,613 178,519.97 97,851.60 49,209.50 1,192,978
2018 879,014.29 205,543.20 84,395.24 1,025,623 178,183.32 98,277.02 49,120.73 1,202,647

2.3. Human–Land Coupling Model Construction

When discussing land-type transformation, Dobson only considered the direct trans-
formation from the natural habitat to the agricultural land, but did not consider the direct
transformation from the natural habitat to the construction land. According to the status of
land-use changes in Yuxi City, this study has different definitions of land types based on the
original model. Through the combination of land-use types in Yuxi City, it can be divided
into the following three types: (1) Forest and grass land: they mainly represent the natural
habitat and are set as the original state of land. The forest and grass land in this study are
mainly the combination of forest and grass land. (2) Land for production and living: both
the agricultural land and construction land transformed from the natural habitat under the
current situation are taken into account. Therefore, the farmland, construction land and
other necessary land for production and living are combined and collectively referred to as
the production and living land. (3) Unused land: the land that cannot be used temporarily
due to bad conditions, or after artificial reclamation or productive and living utilization, or
long-term unmanaged and barren land. Let the area of forest and grass land in Yuxi be F,
the production and living land be R, and the unused land be U, and N = F + R + U = 1. At
the same time, the following assumptions are made:

a. The evolution of land use begins with the forest and grass land. The area of the
forest and grass land at time t is F(t). In order to maintain the survival of human
beings, the forest and grass land needs to be reclaimed or developed and converted
into production and living land (farmland or construction land). The area of the
production and living land at time t is R(t), and it is assumed that the land reclamation
or development rate is related to both the individual reclamation or development
capacity d and population density P(t).

b. The unused land area at time t is U(t). Assuming that the transformation rate of
unused land b is only related to humans’ ability to transform the land through
science and technology, then b is controllable, that is, adjustable. Let h be the land
area required to sustain a single individual.

c. Since there will be a time delay in the evolution of land use, the transfer mechanism of
three land types is shown in Figure 2. The area of production and living land at time t
is R(t). Due to the abandoned farmland or construction land, it can be converted into
unused land U(t) within a period of 1/a, and become forest and grass land through
natural succession or ecological restoration after a period of 1/s. The unused land
can also be converted into production and living land after a time interval of 1/b.
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Figure 2. Evolution between different land-use types.

Since the unit of land-use-type area is not consistent with that of the population, the
data are transformed into dimensionless data after normalization in the process of model
construction and analysis. Through analyzing the data in Yuxi City over the years, it can
be seen that the transformation function of population affecting land use is a nonlinear
function, and the following function can be obtained through fitting:

f (t, P, F) =
dPF

1 + P
(1)

where P and F are the population density and forest and grass land area at time t, respec-
tively, and d is the average reclamation or development capacity of the land. This function
is generally interpreted as a Holling-II functional response function in mathematical def-
initions. Assuming that population growth conforms to the Logistic Retarded Growth
model:

dP
dt

= rP
(

1 +
P(t)
Pmax

)
(2)

where r is the inherent growth rate of the population, and Pmax (greater than 0) is the
maximum population that the environment can carry.

Based on the transformation mechanism mentioned above, in the interval (t, t + Δt),
the forest and grass land, production and living land and unused land change with time t,
and with the help of the population retardation growth model, the population also changes
with time t under the constraints of the production and living land. Due to the need for
both survival and population growth, more food is needed during population growth
than during saturation, that is, the inherent growth rate of the population is a function
of a time delay t-τ. Considering the coupling relationship between the population, forest
and grass land, the production and living land, and unused land comprehensively, and
only discussing the impact of population development on the time delay, the following
fractional time delay human–land coupling dynamics model with a Holling-II functional
response function can be obtained [30]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DφF(t) = −dF(t)P(t−τ)
1+P(t−τ)

+ sU(t)

DφR(t) = dF(t)P(t−τ)
1+P(t−τ)

− aR(t) + bU(t)
DφU(t) = aR(t)− sU(t)− bU(t)
DφP(t) = rP(t)

[
1 − h

R(t) P(t − τ)
] (3)
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where φ∈[0, 1] is the fractional order, and r is the inherent growth rate of the population.

3. Results

3.1. Identification of Human–Land Coupling System Equilibrium Point

In order to make the application of the human–land coupling dynamics model mean-
ingful in Yuxi City, it is necessary to find the sufficient conditions for the model’s stability
and discuss the stability of the model’s equilibrium point and the sustainability of the
model. Therefore, the model’s equilibrium point is solved first, and the model’s stability
is further analyzed through the model’s equilibrium point. When solving the fractional
model, the Adama–Bashforth–Moulton predictive correction algorithm is applied [46]. To
facilitate calculation, let the step size Δt = 0.01, φ = 0.9, substitute r = 0.0048 into the model,
and then through data analysis and simulation, parameters a = 0.034, b = 0.012, s = 0.004, h
= 0.05, d = 0.08 can be obtained. After a normalized processing of the data for various types
of areas and the population of Yuxi City in 1995, the initial values are F(0), R(0), U(0), P(0) =
(0.07, 0.02, 0.4, 0.75); substitute them into Equation (3). Then, the equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = −dF(t)P(t−τ)
1+P(t−τ)

+ sU(t)

0 = dF(t)P(t−τ)
1+P(t−τ)

− aR(t) + bU(t)
0 = aR(t)− sU(t)− bU(t)
0 = rP(t)

(
1 − h

R(t) P(t − τ)
)

is obtained, and the solution to this equation is

⎧⎪⎪⎨
⎪⎪⎩

F∗ = 0.075617
R∗ = 0.021169
U∗ = 0.44984
P∗ = 0.423379

.

That is, the equilibrium point of the model is (0.075617, 0.021169, 0.44984, 0.423379),
and the results are all positive. Therefore, it is consistent with the non-negative situation
of land and population, which is systematic and meaningful and reflects the rationality of
the model.

3.2. Visual Output and Expression of Human–Land Coupling Relationship

The basic reproduction number R0 of the human–land coupling dynamics model is a
very important parameter; it is said that in the state of balance, the amount of the increase
in population brought by land-use changes is a sign that decides whether the land-use
type changes or not, namely, only when R0 > 1 does land-use-type transformation occur. If
R0 < 1, the transformation will tend to zero. Therefore, according to the calculation method
of the basic regeneration number [47], the basic regeneration number of the model can be
obtained after solving for the equilibrium point, R0 = bd+ds

ash = 18.8235 > 1, indicating
that the land-use types’ transformation is significant in the model. Through calculation,
ω0 = 0.002358, τ0 = 728.403 [30]. An arbitrary τ value which is less than τ0 was chosen
arbitrarily, and MATLAB software was used for numerical simulation. Let τ = 700, and it
can be seen through numerical simulation that the human–land change trend over time
and the three-dimensional evolution of the human–land relationship can be obtained after
a period of damped oscillation (Figures 3 and 4). As τ = 700 < τ0, both the theoretical
and numerical simulation show that the equilibrium point (0.075617, 0.021169, 0.44984,
0.423379) is locally asymptotically stable, that is, under the influence of the population, the
development and change value of all kinds of land use fluctuates, but eventually tends to
be stable around the equilibrium point of the model.
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Figure 3. Evolution trend of people and land over time in Yuxi City when τ = 700 ((a) change trends of
forest and grass land over time; (b) change trends of production and living land over time; (c) change
trends of unused land over time; (d) change trends of population over time).

 

Figure 4. Three-dimensional map of human–land evolution in Yuxi City when τ = 700 ((a) three-
dimensional evolution of the unused land, forest and grass land and production and living land over
time; (b) three-dimensional evolution of the population, unused land, and forest and grass land over
time; (c) three-dimensional evolution of the population, production and living land and forest and
grass land over time; (d) three-dimensional evolution of the population, unused land and production
and living land over time).
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As long as the time delay τ does not exceed τ0 = 728.403, after a t = 8 × 104 simulation
running time, the land-type area and population in Yuxi City will reach a balance point with
time, and the system tends to be in a dynamic stable state. As can be seen from Figure 3a,
the forest and grass land in the study area keeps changing with time, increasing and
decreasing, but eventually tends to a stable value (0.075617). Similarly, under the system’s
equilibrium state, the production and living land tends to 0.021169 (Figure 3b), and the
unused land tends to 0.44984 (Figure 3c). Under the three land-type transformation and
constraint conditions, the population also changes with time, and the final population tends
to 0.423379 (Figure 3d). Figure 4 shows the human–land three-dimensional evolutionary
relationship at τ = 700, which explains the dynamic characteristics of the human–land
coupling system in a stable state. It can be seen that the system is in a stable state when the
time delay is less than τ0.

Similarly, a value of τ that is larger than τ0 was arbitrarily selected for numerical
simulation with MATLAB software. Let τ = 740, and after a period of oscillation, the trend
of human–land changes over time and the three-dimensional evolution of the human–land
relationship is obtained (Figures 5 and 6). It can be seen that when τ = 740 > τ0 = 728.403,
the equilibrium point (0.075617, 0.021169, 0.44984, 0.423379) is no longer stable, that is,
under the influence of population, the development of different land types fluctuates
greatly at first; however, after the time delay is greater than a certain value, the values of all
land-use types will tend to oscillate within a certain period, that is, Hopf bifurcation occurs.
At this time, the area of the forest and grass land, the area of the production and living land
and the area of the unused land will all show a periodic decline and increase.

Figure 5. Evolution trend of people and land over time in Yuxi City when τ = 740 ((a) change trends of
forest and grass land over time; (b) change trends of production and living land over time; (c) change
trends of unused land over time; (d) change trends of population over time).
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Figure 6. Three-dimensional map of human–land evolution in Yuxi City when τ = 740 ((a) three-
dimensional evolution of the unused land, forest and grass land and production and living land over
time; (b) three-dimensional evolution of the population, unused land, and forest and grass land over
time; (c) three-dimensional evolution of the population, production and living land and forest and
grass land over time; (d) three-dimensional evolution of the population, unused land and production
and living land over time).

When the time delay τ exceeds τ0 = 728.403, after the simulation running time of
t = 8 × 104, the population and land types change from the initial large fluctuations to
periodic changes around the equilibrium points (0.075617, 0.021169, 0.44984, 0.423379)
(Figure 5); that is, in an unstable state, it is significantly different from the situation when
the time delay τ is less than τ0 (Figure 3). When the time delay becomes larger, the area
of forest and grass land F(t), the area of production and living land R(t) and the area of
unused land U(t) will change periodically. The forest and grass land change periodically
around 0.075617 (Figure 5a), the production and living land change periodically around
0.021169 (Figure 5b), and the unused land changes periodically around 0.44984 (Figure 5c),
and will not tend to a stable value. Figure 6 shows the three-dimensional evolution of the
human–land relationship when τ = 740, which explains the dynamic characteristics of the
human–land coupled system in the unstable state. It can be seen that when the time delay
is greater than τ0, the system exhibits an unstable periodic oscillation phenomenon.

Comparing Figure 4 with Figure 6, we could see that when τ > τ0, the human–land
evolution trend is more consistent with the actual situation, that is, with the periodic change
in the population, the area of land types changes periodically. However, in order to tend to
a stable state at τ < τ0, that is, the equilibrium state of the human–land system, relevant
policies can be formulated and implemented by the government, that is, parameters can be
controlled and adjusted.

3.3. Coupling Spatiotemporal Parameters of Mountain–Basin Human–Land Relationship

With the migration of the population from mountainous areas to basin areas, the
agglomeration of the population leads to the occupation of agricultural land and the
expansion of urban land [45,48]. Early on, due to the limited population, the urbanization
level is not high, and coupled with the influence of the policy constrains, the migration
of the population is also rare. The main way of life is farming, and the ecological and
environmental effects caused by population migration are not obvious. However, with the
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rapid improvement in the urbanization level and the acceleration of the migration of the
population from rural to urban areas, land-use changes are accelerating. In mountainous
areas, the arable land and construction land have been abandoned [49] and turned into
a wasteland, that is, unused land. However, the wasteland will naturally recover into
forest and grass land after a certain period of time. In basin areas, with the migration of
the population, the demand for land is increasing, and the unused land will be gradually
transformed into forest and grass land and farmland and construction land.

With the rapid increase in the population of the basin area, the land’s resource-carrying
capacity, industrial-supporting capacity and infrastructure are facing more challenges, driv-
ing the changes in the land-use pattern to meet the needs of population agglomeration. At
the same time, the population in mountainous areas is decreasing, farmland and construc-
tion land will be abandoned, and ecological land has been restored. According to Model (3),
two subsystems of mountainous areas and basin areas are distinguished, and human–land
coupling evolution and development models of mountainous areas and basin areas are
constructed, respectively:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DφFM(t) = −dM FM(t)PM(t−τM)
1+P1(t−τ1)

+ sMUM(t)

DφRM(t) = dM FM(t)PM(t−τM)
1+PM(t−τM)

− aMRM(t) + bMUM(t)
DφUM(t) = aMRM(t)− sMUM(t)− bMUM(t)
DφPM(t) = rMPM(t)

[
1 − hM

RM(t) PM(t − τM)
] (4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DφFB(t) =
−dB FB(t)PB(t−τB)

1+PB(t−τB)
+ sBUB(t)

DφRB(t) =
dB FB(t)PB(t−τB)

1+PB(t−τB)
− aBRB(t) + bBUB(t)

DφUB(t) = aBRB(t)− sBUB(t)− bBUB(t)
DφPB(t) = rBPB(t)

[
1 − hB

RB(t)
PB(t − τB)

] (5)

In the formula, φ∈[0, 1] is the fractional order, and the relevant parameters are as
follows: FM(t), RM(t), UM(t) and FB(t), RB(t), UB(t) respectively represent the forest and
grass land, production and living land, unused land in mountainous areas and basin areas, and
FM(t) + FB(t) = F(t), RM(t) + RB(t) = R(t), UM(t) + UB(t) = U(t), N = F(t) + R(t) + U(t) = 1.
FM(t), RM(t), UM(t) and FB(t), RB(t), UB(t) are the population density of mountainous areas
and basin areas at time t, respectively. The production and living land [RM(t) and RB(t)] will
change into unused land [UM(t) and UB(t)] during the period of 1/aM and 1/aB, and then
become forest and grass land [FM(t) and FB(t)] through natural succession or ecological
restoration after the interval of 1/sM or 1/sB. The unused land can also be reclaimed or
developed into production and living land after an interval 1/bM and 1/bB. The average
reclamation capacity of mountainous areas and basin areas is described by the constants dM
and dB respectively. rM and rB are the natural growth rate of the population in mountainous
areas and basin areas, respectively.

MATLAB software was used to further fit the land-type area and population for differ-
ent periods of mountainous areas and basin areas, and the parameters of the human–land
coupling dynamics model in mountainous areas and the human–land coupling dynamics
model in basin areas were obtained, respectively (Table 2).

According to the existing data analysis, the conversion time parameters for production
and living land to unused land of mountainous areas and basin areas in Yuxi City are
aM = 0.0486 and aB = 0.0126, respectively, indicating that it takes about 20 years for
production and living land in mountainous areas to be abandoned and then converted to
unused land, while it takes about 80 years for basin areas. aM is greater than aB, indicating
that the conversion time of productive and living land to unused land in the basin area is
slower than that in the mountainous area, mainly because the population growth in the
basin area is faster than that in the mountainous area, and the demand for productive and
living land for economic construction is larger. This trend will continue for a long time in
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the future, making the conversion time of productive and living land to unused land much
longer than that in the mountainous area.

Table 2. Fitting parameters of human–land coupling dynamics model in mountainous areas and
basin areas of Yuxi City.

Description
Parameters in Mountainous

Areas
Parameters in Basin Areas

Conversion of production and
living land into unused land aM = 0.0486, 1/aM = 20.5761 aB = 0.0126, 1/aB = 79.3651

Conversion of unused land
into production and living

land
bM = 0.0062, 1/bM = 161.2903 bB = 0.0139, 1/bB = 71.9425

Conversion of unused land
into forest and grass land sM = 0.0051, 1/sB = 196.0784 sB = 0.0028, 1/sB = 357.1429

Land area required to
maintain the unit individual hM = 0.0335 hB = 0.0165

Average reclamation capacity dM = 0.03 dB = 0.05
Natural growth rate of

population rM = 0.0563 rB = 0.151

The time parameters of conversion from unused land to productive and living land
in mountainous areas and basin areas are bM = 0.0062 and bB = 0.0139, respectively,
indicating that unused land in mountainous areas will be reclaimed or developed into
productive and living land again after about 160 years, while the time of conversion in
basin areas is shorter, about 70 years. bM is less than bB, indicating that the conversion
time of unused land to productive and living land in basin areas is faster than that in
mountainous areas. With the rapid development of the society and economy and the
growth of the population in the basin area, the demand for construction land is always on
the rise. Under the background of the policy of vigorously protecting cultivated land, the
demand for construction land is mainly solved by the transformation of forest and grass
land and unused land, which allows the unused land in the basin area to be transformed
quickly and in a shorter time than that in the mountainous area.

The conversion time parameters of unused land to forest and grass land for moun-
tainous areas and basin areas are sM = 0.0051 and sB = 0.0028, respectively, indicating
that it takes about 200 years for unused land to convert to forest and grass land by natural
succession or ecological restoration in the mountainous area, while it takes about 350 years
for the basin area. sM is greater than sB, showing that the conversion time from unused
land to forest and grass land in the basin area is longer than that in the mountainous
area. The main reason is that the social and economic development of the basin area has a
radiation effect on the population and economy in the mountainous area, which makes the
mountainous area gradually decline. The production and living land, such as farmland and
construction land, is transformed into unused land and further transformed into forest and
grass land due to their abandonment and extensive management, and the transformation
speed is fast.

The land area parameters required for individual maintenance are hM = 0.0335 and
hB = 0.0165, respectively. hM is greater than hB, indicating that the land area required for
each unit in basin areas is smaller than that in mountainous areas. The main reason is that
the land-use intensity in mountainous areas is significantly lower than that in basin areas,
and the land yield rate is far lower than that in the basin area, so that the land area required
by each unit is larger than that in the basin area. The average reclamation or development
capacity in mountainous areas and basin areas are dM = 0.03 and dB = 0.05, respectively.
dM is less than dB. This shows that the average reclamation and development capacity of
the basin area is higher than that of the mountainous area, mainly because the economic
development level, investment capacity and natural conditions of the basin area are better
than those of the mountainous area.
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4. Discussion

Under mathematical and geostatistical semantics, the order in a fractional differential
equation can not only affect the dynamic characteristics of the fractional differential model,
but also advance or delay the occurrence of the stability of the fractional differential
model [50,51]. Therefore, the stability of the model can be improved by adjusting the model
parameters. The influence of the time delay on the fractional order model is also dual. On
the one hand, the time delay can make the fractional order model lose stability and lead to
bifurcation. On the other hand, under certain conditions, the stability of the fractional order
model can be improved with an appropriate time delay, and the occurrence of bifurcation
can be further delayed [43]. Under the existing conditions of Yuxi City, τ0 = 728.403 is the
critical point between the stability and instability of a human–land coupling system. The
state of the human–land coupling system includes a stable equilibrium state and periodic
oscillation state. The time delay can be used to determine the two states and how to adjust
from periodic change to a stable state, or how to adjust to a stable state when periodic
change is presented. Then, the time delay can be changed by changing the parameters
a, b, s, h, d and r. The time delay is like an invisible hand, which can not only optimize
the allocation of land resources, but also give a warning signal when the production and
living land area tends to be unstable, reminding people to make the land-use evolution stay
stable by regulating the average reclamation or development capacity of individuals (d)
and the inherent growth rate of population changes (r). The rate by which the unused land
is recultivated or developed (b) and an individual’s average reclamation or development
capacity (d) can be artificially controlled. When the human–land evolutionary system tends
to be stable, b∈[0.012, 1], d∈[0.08, 1] and d is greater than b, indicating that the average
reclamation or development capacity has a greater impact on the evolutionary stability
of land use than the transformation rate of unused land. The optimal state of balancing
a human–land coupling system is the optimal state of sustainable development, which is
an ideal state. By adjusting these parameters, the system can be as close to the ideal state
as possible.

Chen [47] constructed an integer order land dynamics model with a time delay in
2017, simulated the data of population and land-use change over the years in China, and
found that the service life of subsistence land in China is about 25–70 years (a = 0.04), the
time for reclaiming or developing the wasteland into subsistence land is about 100 years
(b = 0.011), and the time for restoring the wasteland to original land is about 1000 years
(s = 0.005). By comparison, there are similarities and differences with the parameters in this
study, which are highlighted by the conversion time parameter s of unused land to forest
and grass land. Theoretically, it will take a long time for the degraded land to be restored
to the original forest and grass land through natural succession, but with the progress of
science and technology, this time will be greatly shortened, especially in the mountainous
area of Yuxi City with its better ecological environment. Of course, these time parameters
are obtained from existing data analysis. The reclamation or development rate of unused
land (b) and the average reclamation or development capacity (d) are both controllable
factors, and the average reclamation or development capacity has a greater impact on the
stability of human–land systems.

This study based on systems integration thought that by analyzing the relationship
between population and land based on coupled differential equations of forest and grass
land, production and living land, unused land and population, it could build a fractional
order human–land coupling dynamics mode with a Holling-II-type land conversion rate
and time delay. The human–land coupling mechanism of the mountain–basin system is
quantitatively described, and a new simulation direction is provided for coordination and
optimization. However, the application of the method still needs to be improved in the
future. First, since the human–land coupling relationship is a long-term process, the accu-
racy of parameter estimations depends on long-term sequence data. However, the existing
collected data are only 24 years old, which is too small compared to the land conversion
cycle. The model built is a high-dimensional and nonlinear differential system, and the
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estimation of its parameters is inherently difficult. In addition, the lack of data makes it
more difficult to achieve accurate model parameters such as for population growth rate and
land conversion rate, etc. Secondly, in the classification process, there are problems such
as the inaccuracy of various land types. For example, forest and grass land are assumed
as primitive land in the model, but in fact, the existing forest and grass land have been
transformed by human beings for a long time and lost their original nature. Finally, the
coupling relationship between humans and land is complex. Although population is the
main influencing factor for land-use changes, there are still more disturbance variables. The
differential effects of special regional policies (such as urbanization in nearby areas, reloca-
tion of poor people from inhospitable areas, rural revitalization, development of plateau
agriculture, ecological protection, etc.), technical means and micro-farmer behaviors on
the coupled evolution of mountain–basin human–land systems should also be considered.
Therefore, how to further build a multi-factor land-use dynamics model for specific regions
and explore the coupled evolution mechanism of mountain–basin human–land systems
should be the future direction of efforts.

5. Conclusions

A human–land coupling system is a nonlinear system, which is a differential equation
composed of several coupling factors. In this study, the coupling factors of forest and grass
land, production and living land, unused land and population were considered to construct
a fractional order dynamics model with a time delay based on a Holling-II transformation
rate. The stability of the system and its regulation mechanisms are discussed based on
the solution of the equilibrium point of the system. It is known that the coupling state
of human–land systems includes a stable equilibrium state and periodic oscillation state,
and the two states of the system can be determined according to the time delay. How
to adjust from periodic change to a stable state, or how to adjust to a stable state when
periodic change is presented, the time delay can be changed by changing the parameters of
the model.

On the basis of constructing the human–land coupling evolution model of Yuxi City,
the human–land coupling evolution and development models of mountainous areas and
basin areas were respectively constructed based on the internal relationship between
the mountainous area and the basin area. The parameters of the human–land coupling
evolution and development models were obtained by simulation analysis, using the existing
data. According to the analysis of the parameters, the mountainous area and the basin area
playing different roles in the process of human–land evolution systems tend to a stable state,
i.e., an equilibrium state, and there are significant differences in the transformation time
among different land types. Therefore, different land-use regulation strategies should be
selected in different regions. In mountainous areas, the average reclamation or development
capacity should be reduced to lower the conversion of forest and grass land to production
and living land, and at the same time, excessive interference of human beings should be
reduced to speed up the natural recovery and succession of unused land to forest and grass
land. In basin areas, in addition to reducing the average reclamation or the development
capacity, the reclamation or development rate of the idle land and degraded land should
be increased, and the conversion of idle land into productive and living land should be
encouraged with the help of certain scientific and technological means.
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Abstract: Exploring the dynamics of soil erosion and identifying its driving mechanisms is key to
understanding soil erosion processes, particularly in karst areas. In this study, the RUSLE model,
optimized on the basis of rocky desertification factors, was used to estimate soil erosion in a karst
plateau gorge area in SW China. The spatial and temporal dynamics of soil erosion in the region over
the past 20 years were analyzed on the basis of slope units, while the relationship between soil erosion
and elevation, slope, fractional vegetation cover (FVC), karst rocky desertification (KRD), rainfall,
and land use cover/change (LUCC) was identified quantitatively by the geographical detector on the
basis of spatial heterogeneity. The results showed that: (1) The no erosion area decreased from 2000 to
2020, with the highest proportion of light to medium erosion and an increasing trend of soil erosion.
(2) Soil erosion conversion mainly occurred between no erosion, slight erosion, and light erosion.
(3) The hotspots of erosion occurred in high slope–low elevation and high slope–high elevation
units, while the coldspots of erosion occurred in low slope–low elevation units. (4) Soil erosion was
positively correlated with FVC and slope, and negatively correlated with KRD. (5) The dominant
factor of soil erosion changed from KRD-slope to LUCC-slope and finally to elevation-slope, while
the q value of rainfall-elevation had the most significant increase throughout the study period. This
study will help to advance the goal of sustainable development of soil and water conservation in
karst areas.

Keywords: karst soil erosion; topographical units; RUSLE; geographical detector; influencing factors

1. Introduction

Soil erosion is considered to be the greatest threat to land degradation, seriously
affecting terrestrial ecosystem security [1,2]. Soil erosion disrupts the soil agglomeration
structure [3], resulting in the redistribution of soil nutrients [4], which changes soil carbon
transport [5] and affects soil ecological service functions [6]. Soil erosion also reduces
soil resources, exacerbates the scarcity of land resources [3], affects vegetation growth [7]
and food security, and hinders sustainable socio-economic development [8]. To effectively
control soil erosion and its negative socio-environmental impacts, the formation process,
dynamic evolution, and hazards of soil erosion must be robustly assessed [9,10]. China is
one of the countries most severely affected by soil erosion in the world, especially in the
karst region of southwestern China [11]. Soil erosion leading to rock desertification has
become a major environmental disaster limiting people’s production and development [12].
In recent years, numerous studies have focused on soil erosion in karst areas, including
erosion processes, spatial and temporal evolution, driving mechanisms [13], dynamic
modeling [14], sensitivity evaluation [15], and control measures [16]. However, constrained
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by the highly heterogeneous geographical environment and complex erosion patterns [17],
many research methods are difficult to perform and apply in karst areas, and little is known
about soil erosion processes and drivers in karst areas. These analyses are fundamental
requirements for combating soil erosion, and in particular, understanding the long-term
dynamic evolution of soil erosion and its interactive drivers is essential for land managers
to assess soil erosion changes and formulate soil and water conservation policies.

With the increasing abundance of environmental data, scientists have developed sev-
eral mathematical models to emulate soil erosion processes at different spatial and temporal
scales on the basis of topographic, climatic, soil, land use, and vegetation cover data [18,19].
Among the existing erosion models, the RUSLE model [16], the SWAT model [20], and the
WEPP model [21] have been proven to be applicable at different spatial scales. They are
widely used in complex topographic units due to their simple structure and GIS compati-
bility [22], such as in the karst areas of southwest China [23] or Cuba [24]. However, many
studies have not considered the control of soil erosion by karst conditions and the direct
use of the RUSLE model may overestimate soil erosion in karst areas [25]. Karst landscapes
have a double-layer structure of surface and subsurface. Large exposures of carbonate rocks
on the surface alter surface runoff velocity and flow patterns and intercept sediment runoff;
secondary pore spaces are developed underground and contribute to the rapid transport
of runoff sediment. Dai found a correlation coefficient of −0.076 (p < 0.01) between soil
erosion and bedrock exposure on the basis of an artificially designed soil trough device
with a double-layer spatial structure and simulated rock desertification [26]. Gao and Wang
optimized the RUSLE model by introducing the rock desertification factor on this basis [23],
and the results showed that the simulation accuracy of the RUSLE model was significantly
improved after optimization. Therefore, this study used the RUSLE optimized to estimate
soil erosion in karst areas.

Appropriate study units are an important prerequisite for scientific spatial analysis. In
current soil erosion studies, the common study units are administrative units, grid units,
and geographical feature units. However, the assessment results based on these study
units are difficult to meet the requirements for fine-grained soil erosion assessment or
control, which may make it difficult to carry out accurate soil and water conservation
work. The slope cell, proposed by Carrara, is a topographic unit cut by a combination of
ridgelines, valley lines, terrace boundaries, and valley bottom boundaries [27]. Slope units
are constructed according to hydrological processes, ensuring maximum homogeneity
within the unit and maximum heterogeneity between different units [28], and are currently
widely used in the spatial distribution of landslides [29], sensitivity analysis [30], and
prediction studies [31], among others, with the slope unit being a more sophisticated
unit than traditional units. Compared with traditional units, the slope unit has higher
classification performance and more stable estimation coefficients, which better reflect the
actual geographical environment and reduce the uncertainty of control factors [32]. Using
slope units as a basis for analyzing soil erosion can help in the analysis of dominant factors
of soil erosion.

In this study, we aimed to investigate the long-term soil erosion evolution patterns
in karst areas and the interaction of their driving forces. To achieve the objectives, the
following analyses were made: (1) simulation of soil erosion by the RUSLE model optimized
by the rocky desertification factor; (2) analysis of the long-term spatial and temporal
dynamic evolution pattern of soil erosion; (3) identification of the dominant and interacting
factors of soil erosion evolution. The results of the study can provide a scientific reference
for determining suitable soil erosion control schemes in karst areas, and this contribution
will also help to advance the sustainable development goals of soil and water conservation
in karst areas.
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2. Materials and Methods

2.1. Study Area

The karst zone of southwest China, centered on Guizhou, is the largest continuous
zone of karst and has the most typical and complex karst landscape in the world. The
study area (105◦34′59′ ′~105◦43′06′ ′ E, 25◦37′18′ ′~25◦42′37′ ′ N) was selected in southwest
Guizhou, south of Guanling County and north of Zhenfeng County, on both sides of the
Beipanjiang River Gorge, with a total area of 51.6197 km2 (Figure 1). The altitude range
of the area is between 443 and 1366 m a.s.l., which is a typical plateau canyon landform.
The region is under a dry and hot southern subtropical river valley climate, with warm
and dry winters and springs, and high temperatures and rain in summer and autumn [33].
Meteorological data show no significant increase or decrease in temperature or precipitation,
both varied within regular ranges from 2000 to 2020. The average annual temperature is
18.4 ◦C, and the average annual precipitation is 1100 mm, with May to October accounting
for more than 80% of the total annual precipitation. The lithology is mainly Middle Tertiary
limestone and dolomite, and the soil is calcareous [34].

Figure 1. Location and elevation of the study area.

The research region is characterized by a rocky desert landscape, with fragmented and
shallow soils, being prone to soil erosion in the presence of water, and having an extremely
fragile ecological environment. Coupled with extensive deforestation and agricultural
activities, the region has been caught in a vicious cycle of “environmental fragility–resource
shortage-poverty, resource plunder–environmental degradation–further poverty” [35].
Since the beginning of the 21st century, the study area has been designated as a model
area for the integrated management of karstic desertification ecology and environment,
implementing natural restoration measures such as returning farmland to forest and grass.
Therefore, the selected study area is typical, representative, and exemplary in the manage-
ment of karst soil erosion.
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2.2. Data

The data required for this study included remote sensing images, rainfall data, land
use data, topographic and geomorphological data, and soil type data. The consistency and
reliability of all data were strictly checked and controlled by the data production department.

(1) Remote sensing images and topographic data were obtained from the Geospatial
Data Cloud (http://www.gscloud.cn (accessed on 7 October 2020)), with a resolution of
30 m. Remote sensing images without clouds in the study area were selected as the data source.
(2) Rainfall data were obtained from the China Meteorological Data Network (http://data.cma.cn
(accessed on 15 October 2020)), using ArcGIS10.2 to spatially interpolate and rasterize the
rainfall dataset of the meteorological stations. (3) Land use data were obtained in two parts:
The data from 2000 and 2005 were obtained from remote sensing images as the source
data due to the long period and accuracy problems, and the initial land use data were
obtained through supervised classification and manual interpretation at a later stage. The
data from 2010 to 2020 were obtained through remote sensing image interpretation and
correction by the research team through long-term field investigation. (4) Soil type data
were obtained from the Resource and Environment Science and Data Centre of the Chinese
Academy of Sciences (http://www.resdc.cn (accessed on 15 October 2020)) and calibrated
concerning the 1:50,000 soil type map of Guizhou Province and the results of the team’s
field soil sample collection.

2.3. Methods
2.3.1. RUSLE Model

The RUSLE model is a modified version of the Universal Loss Equation (USLE). Due
to its simple structure and ease of operation, scholars worldwide widely use it to estimate
soil erosion. Its equation is as follows:

A = R × K × L × S × C × P (1)

where A is the average annual soil erosion (t·ha−1·a−1), which means the average annual
soil loss from fine gully or inter-gully erosion on slopes caused by rainfall and runoff.
R is the rainfall erosivity factor (MJ·mm·ha−1·h−1·a−1), K is the soil erodibility factor
(t·ha·h·MJ−1·mm−1·ha−1), L is the slope length factor (dimensionless), S is the slope gradi-
ent factor (dimensionless), C is the vegetation cover and management factor (dimension-
less), and P is the soil and water conservation measures factor (dimensionless).

Gao modified the RUSLE model based on the correlation coefficients between exposed
bedrock and surface sediments [23], with the following expressions:

A = (1 − 0.0762 × α) R × K × L × S × C × P (2)

where α is a correction factor whose value is determined by the average of the bedrock ex-
posure rates for the different rocky desertification classes (Table 1). Different equations were
chosen to simulate soil erosion depending on the lithology of the study area. Equation (1)
was selected for non-karst regions, and Equation (2) was selected to simulate soil erosion in
karst regions.

Table 1. α values for different karst rocky desertification classes.

Rocky Desertification None Potential Light Moderate High Severe

Bedrock exposure rate (%) 20< 20–30 30–50 50–70 70–90 >90
α 10 25 40 60 80 90
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The K factor is a measure of soil erosion resistance and reflects the sensitivity of the
soil to erosion. The K factor is calculated using the erosion-productivity impact calculator
(EPIC) model (Equation (3)) developed by Williams [36].

K =
{

0.2 + 0.3 exp
[
0.0256SAN

(
1 − SIL

100

)]}(
SIL

CLA+SIL

)0.3

[
1.0 − 0.25C

C+exp(3.72−2.95)

][
1.0 − 0.7SN1

SN1+exp(−5.51+22.9SN1)

] (3)

where K is the soil erodibility factor in t·hm2·h·MJ−1·mm−1·hm−2. SAN is the sand
content; SIL is the silt content; CLA is the clay content; C is the organic carbon content,
SN1 = 1 − SAN/100.

The R factor is the driving force behind soil erosion and reflects the potential for soil
loss through precipitation. As there are no weather stations in the study area, the nearest
weather station to the study area was selected and the R factor for the study area was
obtained by interpolation using the rainfall erosion equation (Equation (4)) created by
Arnoldus [37]. The equation is as follows:

R = ∑12
i=1 1.735 ∗ 10[1.5∗log (

P2
i
P )−0.8188] (4)

where R is the rainfall erosion factor, Pi is the monthly rainfall (mm), and P is the annual
rainfall (mm).

The L factor and S factor are closely related to topography and accumulated flow, and
L factor and S factor together reflect the influence of topographic features on soil erosion.
LS represents the ratio of soil loss on a given slope length and gradient to soil loss on
a typical slope in a standard runoff plot, all other things being equal, and the LS value
is proportional to soil loss, playing an accelerating role in soil erosion [38]. We chose to
calculate the L factor [39] and S factor [40] by applying the formulae to the soil and rocky
mountainous areas of southwest China as follows:

L =

(
λ

22.13

)m
(5)

m =
β

β + 1
(6)

β = (sinθ/0.0896)/[3 ∗ (sinθ)0.8 + 0.56] (7)

S =

⎧⎪⎪⎨
⎪⎪⎩

10.80 ∗ sinθ + 0.03 (θ < 5◦)
16.80 ∗ sinθ − 0.50 ( 5◦ ≤ θ ≤ 10◦)

20.204 ∗ sinθ − 1.2404 (10◦ ≤ θ > 25◦)
29.585 ∗ sinθ − 5.6079 (θ>25◦)

(8)

where λ is the sum of the slope lengths in the horizontal direction, m is the slope length
factor, β is a factor related to the slope value, and θ is the slope angle extracted on the basis
of the digital elevation.

C factor refers to the ratio of soil loss under a particular crop or vegetation cover to
that of continuous recreational land after cultivation, all other factors being equal, and
this factor measures the inhibitory effect of vegetation cover and management on soil
erosion [41,42]. Currently, there are two forms for obtaining C factor values, equation
calculation and assigning values on the basis of land use type. In this paper, the formula
created by Durigon [43] was chosen to calculate the C value as follows:

C =
−NDVI + 1

2
(9)

where NDVI is the normalized vegetation index, calculated from the near-infrared band
and visible red band in remote sensing imagery.
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P factor refers to the ratio of soil erosion with soil conservation measures to soil erosion
with down-slope planting, and its value is distributed between 0 and 1. When p = 1, it means
that no water conservation measures are taken in the unit area; when p = 0, it means that
no soil erosion will theoretically occur in the unit area, such as water bodies, construction
sites, etc. The p-values were obtained by summarizing the results of previous authors in
the karst region of southern China [23,44,45]. The results are presented in the Table 2.

Table 2. Land use types and p-value.

Land Use
Arable
Land

Garden
Land

Wood
Land

Shrub
Land

Grass
Land

Bare
Land

Construction
Land

Water
Bare
Rock

p-value 0.4 0.7 1 1 1 1 0 0 0

2.3.2. Geographical Detector

The geographical detector is a statistical method that allows for the exploration of
spatial dissimilarity and its drivers [46]. The principle of the geographical detector is
based on the idea that if the independent variable has a significant effect on the dependent
variable, then there should be some similarity in the spatial distribution of the two [47].
It consists of four models, namely, factor detector, interaction detector, risk detector, and
ecological detector. In this paper, we analyzed the spatial heterogeneity with the factor
detector, interaction detector, and risk detector.

The factor detector detects the extent to which the independent variable can explain
the spatial divergence of the dependent variable, and the q value can measure the extent of
explanation with the following expression:

q = 1 − SSW
SST

(10)

SSW = ∑L
h=1 Nhσ2

h , SST = Nσ2 (11)

where h = 1,2,..., L is the partition of the independent and dependent variables; Nh and
N are the number of cells in stratum h and all partitions; σ2

h and σ2 are the variances of
the dependent variables in stratum h and all partitions. SSW and SST are the sum of the
within-stratum variances and the total variance of all partitions, respectively. q has a value
of [0,1], with larger values indicating that the independent variable explains more of the
dependent variable.

The interaction detector can be used to detect the interaction between factors XS, i.e.,
the change in the degree of explanation of the dependent variable Y when X1 and X2 act
together. The principle is to calculate the q values of X1 and X2 separately, then to calculate
the new layer q(X1 ∩ X2) values by superimposing the X1 and X2 layers and comparing
them among the three. The comparison between the two factors can be divided into the
following results: non-linearly diminished, one-factor non-linearly diminished, two-factor
enhanced, independent, and non-linearly enhanced.

The risk detector can be used to count the mean values of attributes between sub-
regions of a single factor and to determine whether the heterogeneity between sub-regions
is significant. The mean attribute results are expressed as numerical data, while whether
the means are significantly different is expressed as ‘N/Y’ binary data.

2.3.3. Slope Units

The slope cell delineation method based on the principle of curvature-based watershed
segmentation [48] proceeds as follows (Figure 2).
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Figure 2. Flow chart of slope unit division.

3. Results

3.1. Spatial and Temporal Dynamics of Soil Erosion

The research region contains both karstic and non-karstic areas. Therefore, the ratio-
nalized RUSLE model was used to estimate soil erosion in karst areas, and the conventional
RUSLE model was used for soil erosion in non-karst areas. Soil erosions in the study area
were 6.11, 9.35, 7.49, and 8.88 t·ha−1·a−1 in 2000, 2005, 2010, 2015, and 2020, respectively.
This result was close to the average soil erosion in the Beipanjiang basin for the last 20 years
published in the Guizhou Water Resources Bulletin (http://mwr.guizhou.gov.cn/ (accessed
on 28 October 2020)) of 5.29 t·ha−1·a−1.

On the basis of the Standards for Classification and Gradation of Soil Erosion (SL190-
2007) issued by the Ministry of Water Resources of the People’s Republic of China, soil
erosion in the study area was classified into seven classes: no erosion (construction land, wa-
ter, and exposed bedrock), slight, light, medium, strong, very strong, and severe (Figure 3).
The no erosion zone was the most widespread, accounting for approximately 50% of the
total area, and was mainly located in the central, western, and north-western parts of the
study area. Starting in 2010, there was a significant decrease in no erosion in the west
and north-west, with no erosion mainly in the central region. This was followed by slight
erosion and light erosion, accounting for about 40% of the total area, which was more
evenly distributed in the study area. Medium erosion and strong erosion were less frequent
and were mainly distributed along the southeastern edge, northwestern edge, and northern
edge of the study area. Very strong and severe erosion accounted for less than 1% of the
study area, with almost no extreme or severe erosion occurring in the research region.
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Figure 3. Spatial and temporal characteristics of soil erosion in 2000–2020.

As shown in Table 3, regional soil erosion fluctuated and increased during the study
period, with the highest percentage of light and medium soil erosion overall, and the most
extensive area with no erosion and light erosion. The ratio of different intensities of erosion
showed an increase in medium, strong, and very strong erosion, with the greatest increase
in intensity and extreme intensity in 2005, with 23.39% and 8.77% increases, respectively,
compared to 2000. The amount of light erosion decreased, especially by 31.2% in 2005,
compared to 2000. The area of no erosion showed the greatest variation in the different
intensities of erosion, with a general trend of increasing and then decreasing; the area of no
erosion increased by 7.26% from 2000 to 2005, while it decreased by 21.28% from 2005 to
2020. Unlike the erosion-free area, the erosion area ratio generally tended to increase at all
other intensities over the study period. In addition, we found that in 2005, the area without
erosion was the most extensive, while the total soil erosion was the highest, with medium
and strong erosion accounting for more than 60% of the total regional erosion, and the area
with strong erosion increased by 3.72% compared to 2000.

Table 3. The proportion of soil erosion characteristics.

2000 2005 2010 2015 2020

Erosion
Ratio

Area
Ratio

Erosion
Ratio

Area
Ratio

Erosion
Ratio

Area
Ratio

Erosion
Ratio

Area
Ratio

Erosion
Ratio

Area
Ratio

No erosion 0% 59.12% 0% 66.38% 0% 46.29% 0% 45.37% 0% 45.10%
Slight 3.39% 8.04% 0.94% 3.58% 4.81% 13.84% 5.06% 14.24% 3.34% 11.29%
Light 54.99% 25.58% 23.79% 15.15% 48.20% 30.18% 50.81% 31.43% 45.61% 31.72%

Medium 36.64% 6.80% 37.36% 9.77% 38.75% 8.71% 36.72% 8.08% 40.16% 10.38%
Strong 3.80% 0.40% 27.19% 4.12% 6.85% 0.90% 6.27% 0.80% 8.93% 1.37%

Very strong 0.86% 0.05% 9.63% 0.96% 0.80% 0.06% 0.92% 0.06% 1.42% 0.13%
Severe 0.32% 0.01% 1.09% 0.04% 0.59% 0.02% 0.22% 0.01% 0.54% 0.02%

Total soil erosion
(t·a−1) 327,735.00 501,600.55 410,090.06 401,732.04 475,961.02

3.2. Regional Differentiation Based on Different Slope Units

The study area was divided into 2491 slope units on the basis of hydrological processes
(Figure 4). The minimum cell size was 1.17 × 102 m2, while the maximum cell size was
9.72 × 104 m2 with an average cell size of 2.07 × 104 m2.
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Figure 4. Division of slope units.

3.2.1. Soil Erosion Class Transfer Based on Slope Units

The mean soil erosion values in terms of slope units are available in six classes:
no erosion, slight, mild, medium, strong, and very strong. To further understand the
quantitative changes in soil erosion in the region, we produced soil erosion grade transfer
maps for four time periods: 2000–2005, 2005–2010, 2010–2015, and 2015–2020 (Figure 5).
The result shows that the transfer in soil erosion levels during the study period occurred
mainly between no erosion, slight erosion, and light erosion, with medium, strong, and
very strong erosion remaining relatively stable. We found that 17.5% and 9.8% of no
erosion changed to slight and light erosion, respectively, during 2000–2005. Slight erosion
converted mainly to no erosion and light erosion by 18.66% and 31.9%, respectively. From
2005 to 2010, 37.87% and 24.56% of no erosion transformed to minor and minor erosion,
respectively. Slight and medium erosion moved mainly to light erosion, with 27.81% and
71.65% transfers, respectively. Soil erosion transferred in a similar direction for both the
2010–2015 and 2015–2020 periods. The soil erosion classes were relatively stable, except for
some of the slight erosion transferring to light erosion, with soil erosion transition occurring
mainly between the same soil erosion grade.

Figure 5. Soil erosion class transfer.

3.2.2. Hotspot Analysis Based on Different Types of Slope Units

We used a slope of 25◦ and an elevation of 896 m as the distinction. If the slope was
less than or equal to 25◦, then it was defined as low slope, and otherwise as high slope.
An elevation less than or equal to 896 m was defined as low elevation, otherwise as high
elevation. The slope units were divided into four unit types: low slope–low elevation,
low slope–high elevation, high slope–low elevation, and high slope–high elevation. The
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four unit types were overlaid with the results of the soil erosion hotspot analysis as shown
in Figure 6. The result shows that the hotspots of erosion remained relatively stable and
the erosion coldspots decreased significantly during the study period. In general, erosion
hotspots were mainly located in the high slope–low elevation and high slope–high elevation
units along the northern, north-western, and south-eastern edges of the study area, with
a few erosion hotspots also located in the high slope–high elevation units in the south.
Coldspot areas of erosion were mainly found in the central and western low slope–low
elevation units. From 2000 to 2020, the erosion coldspots decreased from the central and
western low slope–low elevation units to the central low slope–low elevation units, and the
erosion cold point confidence level decreased from 95% to 90%.

Figure 6. Hotspot analysis under different slope units.

3.3. Quantitative Attribution of Soil Erosion Variability

The mean values of soil erosion and the dominant values of the environmental factors
within each cell were assigned to the corresponding cell. The contribution of each environ-
mental factor to soil erosion (q) was quantified with the help of the geographical detector,
and the results showed significant (p < 0.05) confidence in the q values for all factors.

3.3.1. Soil Erosion Risk Analysis

The risk detector of the geographical detector can detect potential relationships be-
tween factor variation and soil erosion risk by analyzing the mean soil erosion values for
each interval within the factor. As shown in Figure 7, the differences in soil erosion risk
under each factor sub-interval were significant. There was no significant pattern in the
mean soil erosion values within the rainfall intervals, and the differences in soil erosion
risk were not significant. Soil erosion risk increased with increasing vegetation cover, but
the trend of increasing soil erosion risk decreased after the vegetation cover exceeded 80%,
and the maximum soil erosion value did not exceed 15 t·ha−1·a−1. The risk of soil erosion
increased and then decreased with increasing altitude. When the elevation was below
1170 m a.s.l., the risk of soil erosion increased as elevation increased. When the elevation
was higher than 1170 m a.s.l., the risk of soil erosion decreased as the elevation increased.
Soil erosion risk was graded between different land use zones, with soil erosion risk ranked
as grassland > wood land > utilized land > water > arable land > construction land. The
risk of soil erosion gradually changed from high to low from no rocky desertification to
heavy rocky desertification. The average soil erosion was 11.76 t·ha−1·a−1 in areas without
rocky desertification and 6.46 t·ha−1·a−1 in areas with heavy rocky desertification. The soil
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erosion risk increased with slope, and the growth of increase in soil erosion risk increased
when the slope increased, with a maximum value of 38.57 t·ha−1·a−1.

Figure 7. Factor classification and mean soil erosion values.

3.3.2. Single-Factor Analysis

Elevation, rainfall, slope, fractional vegetation cover (FVC), karst rocky desertification
(KRD), and land use cover/change (LUCC) were analyzed by the geographic detector. As
shown in Figure 8, the overall contribution of the six individual factors to soil erosion
results during the study period was slope > LUCC > KRD > FVC > rainfall > elevation,
but there were minor differences between years. The q value of KRD gradually decreased
but also contributed to the spatial diversity of soil erosion only less than slope and LUCC.
In 2000, the q value for KRD was 0.15, which was only lower than the slope. From 2005
onwards, the contribution of KRD to soil erosion results was lower than that of LUCC.
LUCC was the environmental factor that had the greatest influence on soil erosion results
apart from the slope, with a relatively stable q value. From 2000 to 2005, the q value for
FVC decreased from 0.1 to 0.03. Moreover, from 2005 to 2020, the q value for FVC increased
from 0.03 to 0.05. The contribution of rainfall to soil erosion results in the study area was
low, but in individual years, it had an important influence. For example, the q value for
rainfall in 2020 was as high as 0.08, contributing more to the soil erosion results than LUCC,
KRD, and FVC. The effect of elevation alone on soil erosion results was not significant.

Figure 8. Single-factor trends.
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3.3.3. Factor Interaction Analysis

The interaction results showed a decreasing trend in the q values of the interaction of
KRD with the other four factors, except the slope factor. Their contribution to the spatial
divergence of soil erosion gradually decreased. The interaction of rainfall with slope,
elevation, and LUCC, which had a very low q value, increased the q value significantly and
had a weaker and stronger effect on the spatial variation of soil erosion. The interactions
of both LUCC-slope and vegetation-slope also gradually increased. In 2000 and 2005, the
interactions of KRD-slope, elevation-slope, and rainfall-slope were the main influencing
factors on the spatial variation of soil erosion. However, from 2010 to 2020, the interaction of
slope-KRD was not significant and was replaced by slope-LUCC. The factor combinations
with the highest q values in each period and the most significant increase in q values
compared to the sum of the q values of the single factors were selected and are shown in
Figure 9. X1 was the sum of the q values of the two factors and X2 was the q value after the
factor interaction. The dominant factor influencing soil erosion varied between years. The
years 2000 and 2005 were KRD-slope, explaining 60% and 49% of the spatial distribution
of soil erosion, respectively. The year 2010 was for LUCC-slope, with a q value of 0.64.
Meanwhile, the years 2015 and 2020 were for elevation-slope, and the q values after the
interaction were higher than the sum of the single factors. In comparison with the sum of
the q values of the individual factors, the q value of the interaction between elevation and
rainfall increased most significantly throughout the whole period.

Figure 9. Factor interaction variation. X1 is the sum of the two-factor q values. X2 is the q value of the
interaction of the two-factor.

4. Discussion

Soil erosion processes and driving mechanisms in karst areas are not yet understood
due to the special karst structure and complex erosion patterns. Most of the existing
modeling studies do not take into account the grade of rocky desertification, leading to
large errors in results. In addition, the current soil erosion results based on administrative
divisions and raster networks can hardly meet the requirements of refined soil erosion
control. In this study, soil erosion in karst areas was estimated using an optimized RUSLE
model with the karst rocky desertification factor. On this basis, the spatial and temporal
dynamics of soil erosion in the study area in the last two decades were studied on the basis
of slope units, while the soil erosion driving factors were quantitatively identified with the
geographic detector.

4.1. Spatial and Temporal Dynamics of Karst Soil Erosion

Understanding the dynamic evolution of soil erosion is not only the basis and pre-
requisite for the prevention and control of soil erosion but also has great significance in
the conservation of soil resources and ecological restoration. In this study, the erosion
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area of the study area was mainly no erosion or light erosion, while medium erosion and
strong erosion were less. It differs from Guizhou as a whole, which is predominantly
light to medium. This difference may be influenced by the level of rocky desertification
development at different study scales. The limited erodible soil sources in the medium-
intensity rocky desertification area constrain the development of soil erosion. There is
a need for small-scale studies in karst areas with highly heterogeneous geography, and
the results of these studies are important in tailoring soil and water conservation efforts to
local conditions. The no erosion area decreased during the study period, with the highest
proportion of light to medium erosion. The reduction of no erosion area was the ecological
restoration effect of the national implementation of the comprehensive rocky desertifica-
tion management project [49]. The highest percentage of light to medium erosion shows
that controlling light to medium erosion is the key to effectively managing soil erosion
in the region. The high proportion of light erosion is mainly due to the large proportion
of light erosion areas, and it is recommended to reduce unreasonable human actions to
allow the natural ecosystem to repair itself. The small area of moderate erosion or high
erosion required soil and water conservation measures to maintain the stability of the soil
in the area.

Soil erosion fluctuated and increased in the last two decades, unlike the findings of
some karst areas where soil erosion had been decreasing. This difference might reflect
the unreasonable human activities in the early part of the research area and the good
management effect of the later management project. Soil erosion tended to increase, but
the natural ecosystem developed benignly. The area was ecologically fragile and had low
agricultural productivity. In the early years, people plundered land resources, causing
massive soil loss, and eventually there was not even soil left to erode. In the later period,
with the rocky desertification control project, soil resources gradually recovered. The
highest soil erosion in 2005 was related to the high number of heavy rainfall events in
that year. Extreme precipitation is often considered to be an important factor influencing
erosion processes. Soil erosion under extreme precipitation conditions may account for the
majority of annual soil erosion [50]. This is also confirmed on the basis of the proportion of
sediment produced during the 3 and 10 largest erosion events [51].

The conversion in soil erosion classes over the whole period occurred mainly between
no erosion, slight erosion, and light erosion. The conversion from no erosion to slight
erosion and light erosion was related to the decrease in the area of rock desertification and
the increase in eroded soil sources as described above. The reciprocal transfer between
slight and light erosion may have been influenced by long-term rocky desertification
management projects. The high slope unit is a susceptible area for soil erosion, and the local
government should coordinate with multiple departments to implement the following to
restore agricultural land to forest, alleviate the ecological carrying capacity, and reduce soil
erosion. The erosion cold spot areas occurred in the low slope-low elevation unit, mainly
because the soil resources were lost due to unreasonable human activities in the early years,
and it was difficult to restore the soil resources in the short term. The progression of the
erosion cold spot confidence level from 95% to 90% is evidence of the effectiveness of
ecological restoration over time. In the case of meeting human needs, it is appropriate to
convert the low-slope units into terraces; strengthen agroforestry cultivation [52], which
can increase the harvested area of arable land [53]; and meet living needs while enhancing
water and soil conservation measures.

4.2. Soil Erosion Impact Driver Analysis

Determining the driving factors of soil erosion helps to elucidate the driving mech-
anisms behind changes in soil erosion and is a key link for researchers to formulate soil
protection policies scientifically and rationally. In the new form of synergistic economic
and ecological development, the driving mechanism of soil erosion in karst areas has
also changed.
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The risk detector indicates that there is no trend correlation between rainfall intervals
and soil erosion. Rainfall heterogeneity is not significant at small scales, and spatial
heterogeneity of soil erosion is mainly influenced by other factors. Soil erosion in karst
tends to increase with increasing vegetation cover but does not exceed a maximum of
15 t·ha−1-a−1. Erodible soil sources are extremely limited in exposed karst areas and
increase with increasing vegetation cover. With 80% vegetation cover, the erosive power
of rainfall and runoff on the soil is significantly reduced. The risk of soil erosion becomes
less after an altitude of more than 1170 m a.s.l. and is related to the extent of human
activity. Middle- and low-altitude areas are rich in water and heat resources and have
a significant impact on soil erosion due to the concentration of human activities [54].
Higher altitudes have limited hydrothermal conditions and constrained human activities,
which do not have a significant impact on soil erosion. Other studies have found that
soil erosion in cropland > grassland > woodland. However, in this research area, it is
grassland > woodland > cropland [54]. The plant roots formed a root–soil compound with
the surrounding soil, which reduced soil erosion [55]. The low risk of soil erosion on arable
land is due to the significant loss of soil resources caused by early over-farming. Despite
recent efforts to combat soil erosion, soil resources in karst areas are difficult to recover in
the short term [56]. The risk of soil erosion on arable land may appear to be low. However,
once soil erosion has occurred on arable land, it would become a serious threat to the
security of agricultural production. The gradual restoration of arable soil resources and
the reduction of soil erosion from arable land should be the long-term goal of soil and
water conservation work. The intensity of rocky desertification is negatively correlated
with the risk of soil erosion. Similarly, a low risk of soil erosion does not mean a low hazard.
On the contrary, the risk of erosion is much higher than that of light rocky desertification.
Long-term natural restoration measures such as returning farmland to forests and grasses
also aim to control soil erosion in areas of mild rocky desertification and to restore soil
resources in areas of intense rocky desertification. Soil erosion risk is positively correlated
with slope, and the higher the slope, the greater the increase in soil erosion risk. It is
recommended to increase the vegetation cover on steep slopes to improve the stability of
the soil.

The factor detector shows that slope explains 60% of the spatial variation in soil
erosion. Effective measures to control soil erosion for different slopes can solve most
of the soil problems. Some studies have found that sediment is mainly from sloping
land [57], suggesting that sloping land above 25◦ should be converted to woodland. We
recommend that conversion of land use be accompanied by the establishment of soil
erosion protection zones because soils in disturbed soils are highly susceptible to erosion
and soils in karst areas are difficult to recover effectively in the short term. The q value
between LUCC and KRD gradually decreases but still plays a major role in the spatial
differentiation of soil erosion. It can be seen that the impact of KRD and LUCC on soil
erosion is far-reaching and long-lasting. Both karst rock desertification and soil erosion are
closely related to human activities. Effectively improving people’s production and living
standards is also an important means of combating soil erosion. The role of vegetation
cover in soil erosion shows a decreasing and then increasing trend, indicating that the rocky
desertification control project in the last 20 years has achieved remarkable results. With
continued ecological management, we infer that the role of vegetation cover will outweigh
that of rocky desertification and land use in the coming decades. The insignificant effect of
rainfall and elevation alone on regional soil erosion is related to the small scale of the study.

The results of the interaction of the factors show that the q value increases significantly
after the interaction such as slope-rainfall and LUCC-rainfall. Rainfall is a direct driver
of soil erosion occurrence and an important influencing factor for soil erosion [58]. The
weak influence of rainfall alone in this study is mainly restricted by the scale of the study.
The interaction of slope and rainfall increases the flow rate of the slope surface created
by rainfall, intensifying scour and increasing erosion. Land use destroys the natural soil
structure and weakens the soil’s resistance to erosion. Land use also disturbs stable slope
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flow, which in combination with rainfall increases soil erosion. During the study period,
the dominant factor in soil erosion changed from KRD-slope to LUCC-slope, and finally
to elevation-slope. From 2000 to 2005, karst rocky desertification was very serious and
was second only to slope in its impact on soil erosion, so the interaction of KRD and slope
was the dominant factor in soil erosion. As the area of rocky desertification decreased, the
influence of KRD diminished. Therefore, the dominant factor became LUCC-slope. In the
course of long-term natural ecological restoration, the land use structure is optimized and
the dominant factor changes again to elevation-slope. In comparison with the sum of the
q values of the individual factors, the q values of the interaction between elevation-rainfall
increased most significantly throughout the study period. The study area is a typical
plateau valley landscape with a relative elevation difference of 923 m. Differences in
altitude provide a potential energetic base for rainfall runoff and therefore increase the
ability to erode the soil [59].

4.3. Challenges and Perspectives

The RUSLE model, based on the elements of topography, soil, and vegetation, can
simulate regional soil erosion effectively. However, the model should be modified according
to the actual environment. Considering the unique rocky desertification phenomenon in
the karst area, the RUSLE model with the introduction of rocky desertification factors was
chosen for an attempt. However, there are still shortcomings and further research needs
to be strengthened. Factors such as data accuracy, the algorithm of each factor within
the model, and the karst environment all add to the uncertainty of the model simulation
and subsequent analysis. In this paper, the results of RUSLE calculations for the rocky
desertification factors introduced due to data limitations could not be compared with the
results of field surveys. To reduce the uncertainty of RUSLE models in karst areas, the
following aspects should receive attention in future studies. Firstly, the study of soil erosion
should be analyzed dynamically with local economies, national strategies [60], and climate
change [61]. Secondly, there are biases in the results of each factor of the RUSLE model due
to different algorithms, and different sets of equations have been developed by scholars in
different regions [62]. Analysis of equation factor algorithms should be strengthened in
future research to select the most appropriate algorithm for the study area. Finally, there
are both surface loss and subsurface leakage in karst areas, and future research could focus
on subsurface leakage.

5. Conclusions

This paper used a modified RUSLE model to estimate soil erosion in the karst plateau-
gorge area over the past 20 years. The spatial and temporal evolution of soil erosion was
quantified on the basis of slope units, and the influence of single and interactive factors on
soil erosion was investigated using the geographical detector.

Soil erosion determined on the basis of slope units can more accurately reflect soil
erosion in the actual environment and provide better decision support for regional erosion
control and management. In 2000–2020, regional soil erosion showed an increasing trend.
The results of this study further confirm the significant effect of the regional perennial
rocky desertification control project. Soil erosion is serious in the high slope–low elevation
and high slope–high elevation units, and relevant authorities should pay more attention to
these areas to improve soil erosion control.

The contribution of the six factors to soil erosion fluctuates, but in the last 20 years, the
pattern was slope > LUCC > KRD > FVC > rainfall > elevation. Slope played a dominant
role in soil erosion differentiation on the karst plateau, while rock desertification and land
use, which are closely related to human activities, also had a stronger influence on soil
erosion. The influence of multiple factors on soil erosion is significantly stronger than
that of single factors, and the dominant interaction factor varies with changes in rock
desertification and land use. The dominant combination of soil erosion changed from
KRD-slope (2000,2005) to LUCC-slope (2010) and finally to elevation-slope (2015, 2020). On
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the basis of this study, we recommend adjusting unreasonable human activities, insisting
on natural restoration measures such as returning farmland to forest, and at the same time
establishing soil consolidation projects for areas where the soil is gradually recovering.
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Abstract: Many scholars are skeptical about the poverty reduction effect and the ecological effect of
poverty alleviation resettlement (PAR). This study evaluates the spatial and temporal evolution of
the ecological environment quality (EEQ) to analyze the effectiveness of ecological restoration from
PAR. Based on cloud computing using the Google Earth Engine platform, remote-sensing data were
obtained and reconstructed from 2000 to 2020. The remote-sensing ecological index (RSEI) was used
to analyze the spatial and temporal evolution of EEQ. The results show that the RSEI of the study area
increased by 13.07% after the implementation of PAR, and the rate of increase was higher than that in
the period before PAR; the Pu’an and Qinglong areas improved most obviously, in terms of the fragile
ecological environment and the prominent contradiction between peasants and land. The residual
trends method indicated that the contribution rate of improvement in RSEI due to PAR was 70.56%,
88.38%, and 82.96% in 2017, 2018, and 2020, respectively. An increase in RSEI was more obvious in
the area with a greater relocated population and a higher corresponding coupling coordination level.
PAR has a promoting effect on EEQ improvement but does not have ecological restoration benefits in
every region. It is not satisfactory in terms of the degeneration of the LST indicator and the ecological
impact of human wells.

Keywords: poverty alleviation resettlement; ecological environment quality; remote sensing ecological
index; karst ecologically fragile areas

1. Introduction

Climate change and human activities have an overall impact on global ecology [1,2]: on
the one hand, human activities such as urban expansion and deforestation affect ecosystem
degradation in most parts of the world [3,4]; on the other hand, human activities such
as ecological restoration can improve ecosystems to a certain degree [5,6]. Ecological
environment quality (EEQ) is the degree of suitability of the ecological environment for
human survival and sustainable social–economic development within a certain space–time
range [7]. Scientific monitoring and the evaluation of the impact of human activities on
EEQ and temporal and spatial changes have shown important theoretical and practical
significance to coordinate the relationship between human activities and the ecological
environment, and to promote the sustainable development of society.

The United Nations identified poverty eradication as the primary goal of sustain-
able development, having invested 600 billion CNY in PAR from 2016 to 2020, involving
10 million extremely poor farmers; this is one of the flagship projects to eliminate poverty in
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China [8]. The area of PAR is typical of the vicious circle of poverty and ecological environ-
ment deterioration, with a high overlap of ecological fragility and extreme poverty [9,10].
At the same time, the PAR areas also belong to the spatial poverty trap [11], and the task
of eradicating poverty in situ is extremely difficult. The PAR is a better development
opportunity for farmers who live below the poverty line in ecologically fragile areas, by
moving them to cities and towns.

The Chinese government believes that China’s PAR has positive significance for
eradicating poverty and improving the ecological environment [12]. Should we consider
PAR as an effective human activity to improve ecology? However, the existing research
on PAR has basically focused on the social effectiveness of its mechanisms of participation
and poverty reduction [13,14], with few studies being related to ecological restoration.
Similar to the ecological resettlement policy, most scholars are skeptical of the ecological
protection effect of the large-scale implementation of ecological resettlement in ecologically
fragile areas, despite the effectiveness of ecological restoration or the welfare of relocated
farmers [15,16]. However, different from ecologically fragile areas such as Tibet and Inner
Mongolia, the climate conditions in the southwest karst mountainous area where PAR is
mainly implemented are more suitable for plant growth (the annual average rainfall is
approximately 1100–1300 mm, and the average annual temperature is approximately 16 ◦C),
so the dominant biophysical limiting factor is not the climate, but the soil resources [17], and
human interference is the main factor influencing ecological restoration [18,19]. According
to peasants–land coordination theory, in regions with limited resources, human constraints
and natural interference are the best choices to coordinate the relationship between peasants
and land [20]. PAR reduces human disturbance to natural resources (soil resources),
resulting in ecological improvement and the rapid shrinkage of inefficient agricultural
production space in the relocated area, which is in line with the Environmental Kuznets
Curve theory of ecological economics [21,22]. This paper aims to explore whether the PAR
really contributes to the improvement of EEQ as a human activity and actually improves
the living environment for human beings. If the EEQ improves the study area, can we
consider it to be caused by PAR? We need to quantify the effectiveness of PAR-driven
eco-environmental improvements, among which we must distinguish the influence of
human activities from natural factors, which will be the focus of this paper.

Due to remote-sensing data being timely and effective, covering a wide area, and
being objective and sustainable, the application of remote-sensing technology in ecological
environment assessment has increasingly attracted attention from scholars [23]. Using
the normalized difference vegetation index (NDVI) to assess ecological environment is
the most common method [24], and most scholars use land surface temperature (LST) in
evaluating the effect of the urban heat island [25]. Similarly, the wet components form
tasseHed captransform (WET), and the normalized difference impervious surface index
(NDISI) indicators are the most important indicators for the intuitive human perception
of ecological conditions [26,27]. Compared with a single indicator, the ecological status
reflected by the comprehensive indicator is more complex and diverse. RSEI, which is
based on the Ecological Index (EI) from the Ministry of Ecology and Environment of
China, reflects the Technical Criterion for Ecosystem Status Evaluation (HJ 192e2015). EI
is authoritative and extensive in regional EEQ assessment in China [28]. Many scholars
have verified that RSEI and EI are highly comparable in the ecological sense [29]. The
RSEI (Remote Sensing Ecological Index) model integrates intuitive and key influence
factors, including greenness, wetness, dryness, and heat. It has the advantages of real and
effective evaluation data sources, objective and fair evaluation conclusions, and intuitive
and visual evaluation results [30,31]. Additionally, many scholars have evaluated the EEQ
improvement effect by using RSEI as a technical means in projects such as Northwest
Beijing Ecological Containment Area [32], the Northern Sand-Prevention Belt [33], and the
Three-North Shelter Forest Program [34]. Existing research results show that the model
of the trend of normalized residuals enables distinguishing between climatic factors and
ecological effects caused by human activities [35]. It is necessary to clarify the turning point
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where PAR causes obvious changes in RSEI; a regression model was constructed using
weather factors and human-activity factors during the time before the turning point to
predict the RSEI trends during the period of PAR implementation, which was not affected
by PAR, and the residual between the observed RSEI and the predicted RSEI, which was
thought to be caused by PAR. Because the conclusion of the regression model is predictive,
no PAR data are involved, so a correlation analysis model needs to be constructed with
PAR implementation data and period RSEI variables to further explain the EEQ effect of
PAR. The overall objective of this study is to evaluate the effectiveness of PAR on long-term
EEQ dynamics in the study area, by the following means: (1) the analysis of the spatial
and temporal evolution trend of long-series RSEI; (2) the elimination of the impact of
climate factors and ecological restoration projects such as the Karst Rocky Desertification
Restoration Project, to analyze the ecological contribution of the PAR; and, (3) establishing
a coupling model between RSEI changes and the village-level PAR population to determine
the association.

Southwest Guizhou Autonomous Prefecture, located in the Yunnan, Guizhou, Guangxi,
concentrated, contiguous special-hardship area, is one of the most ecologically fragile
regions in China, with few resources, a low environmental carrying capacity, a fragile eco-
logical environment and human–land conflict [36]. From 2016 to 2019, 74,600 households
with 338,600 people were relocated for the purposes of poverty alleviation, accounting for
3.38% of the total relocated population in China. This paper takes Southwest Guizhou
Autonomous Prefecture as the study area, and first applies the Google Earth Engine (GEE)
processing platform and cloud computing to obtain and reconstruct remote sensing data
from 2000 to 2020, then applies the RSEI model to quantitatively evaluate the spatial and
temporal evolution of EEQ in the study area. The ecological contribution of the PAR to
the study area is quantified using the model of the trend of normalized residuals, and the
association between the PAR and RSEI changes is further determined with a coupled model.
Furthermore, we quantitatively reveal the changes in EEQ spatial distribution and the trend
of ecological environment improvement caused by PAR, and provide theoretical support for
coordinating ecological environment protection and social and economic development in
ecologically fragile regions to achieve harmonious development between man and nature.

2. Materials and Methods

2.1. Study Area

The Guangxi, Yunnan, and Guizhou areas are located in the karst mountains of
southwest China, with a combined population of 220 million people. They span across
0.54 million km2 of carbonate rock area, which is one of the most ecologically fragile and
densely populated areas in the world [37]. The Southwest Guizhou Autonomous Prefecture
is located in the southwestern part of Guizhou Province between 104◦35′–106◦32′ E and
24◦38′–26◦11′ N. It has eight counties under its jurisdiction and a land area of
16,800 km2. The area belongs to the subtropical humid monsoon climate and has the
most widely distributed carbonate rock layer containing magnesium in the Triassic marine.
The karst area in the region is spread across 10,200 km2, accounting for 60.28% of the total
land area. Dominant ecological problems in Southwest Guizhou Autonomous Prefecture
are stone desertification and soil erosion. The potential stone desertification is spread
across 0.21 million km2, where the known stone desertification area is 0.50 million km2,
accounting for 42.51% of the land (Figure 1), making it one of the most severely ecologically
compromised areas of China [38]. With a rural-poor population of 432,300 in 2015 and a
poverty incidence rate of 13.75%, the problem of poverty is relatively prominent. Southwest
Guizhou Autonomous Prefecture is a region with high overlap between ecological fragility
and extreme poverty.
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Figure 1. Distribution of degree of stone desertification in the study area.

PAR is the flagship project of the Chinese government’s poverty alleviation project.
For people living in areas where local resources cannot effectively carry them out of poverty,
they relocate to urban areas with better education, medical care, transportation, commu-
nication, employment and other improved conditions. Here, they enjoy the favorable
development resources of the city, which help them to become free of poverty. The Chi-
nese government concluded that PAR has 9 key achievements, including improved living
conditions, broader employment prospects, and the relief of ecological environment pres-
sure [12]. PAR in Southwest Guizhou Autonomous Prefecture involved 1222 villages,
74,600 households and 338,600 people from 2016 to 2019, all of whom were farmers living
below the poverty line. The areas from which people were relocated, from low-resource
areas to high-resource areas, were Xingyi, Xingren, Anlong, Pu’an, Zhenfeng, Wangmo,
Qinglong, and Ceheng, which are concentrated in the north and southeast (Figure 2). The
relocated farmers were resettled in 65 resettlement sites in cities and towns, accounting for
99.74% of the total relocated population (the other 0.26% were resettled in centralized rural
areas, being relatively scattered), and 26 resettlement sites, with more than 5000 people
each, resettled a total of 242,567 people, accounting for 71.66% of the total resettlement.
Southwest Guizhou Autonomous Prefecture is dominated by centralized resettlement in
cities (Figure 2).

 

Figure 2. Density of relocated household and distribution of 65 resettlement sites of PAR.

2.2. Data Resources and Pre-Processing

The remote-sensing data were mainly obtained from Landsat in the GEE platform
database, including Landsat 8 (OLI) data for 2013–2020 and Landsat 5 (TM) data for
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2000–2012, with a spatial resolution of 30m and a temporal resolution of 16 d. In addition,
considering the cloudy climatic attributes of Guizhou Province, effective remote-sensing
images of low cloud cover could not be collected in the summer. Therefore, the study
screened automatic synthetic Landsat images from April to October for the target years. The
GEE official programming algorithm was then used to pre-process data, and to complete
geometric correction, radiation correction and atmospheric correction. We achieved cloud-
removal processing through the cloud-mask algorithm. In addition, the updated mask
was implemented by code to avoid the effect of water area on the load distribution of the
principal components. After using the GEE programming calculus to obtain standardized
remote-sensing data on the study area from April to October, vector data on the admin-
istrative regions at all levels in Southwest Guizhou Autonomous Prefecture State were
obtained from the Resource and Environment Science Data Center of the Chinese Academy
of Sciences (http://www.resdc.cn, 15 December 2021), the Grain to Green Project, the Karst
Rocky Desertification Restoration Project from the Master Plan of National Forestry and
Grassland Administration (http://www.forestry.gov.cn, 12 March 2022), and the National
Development and Reform Commission (http://www.rdrc.gov.cn, 12 March 2022). The
meteorological data were obtained from the China Meteorological Administration Network
(http://www.cma.gov.cn, 12 March 2022), and population data for the PAR were obtained
from the Ecological Migration Bureau of the Guizhou Province (10 September 2021).

2.3. Methodology

The RSEI model first proposed by Xu et al., was related to four indicators—greenness,
wetness, heat, and dryness—which can be visually determined and are widely used to
understand the quality of the ecological environment.

The entire data calculation process was based on the GEE online platform, ArcGIS
software, and ENVI software. GEE is the most critical platform for original data acquisition,
preprocessing, and RSEI calculation. The GEE operation process was as follows: determine
the scope and timeliness; clarify the image type; function cloud mask; function remove
cloud; calibrated radiance; function normalization; use unit scale to normalize the pixel
values; calculate the NDWI; calculate the NDVI, WET, LST, and NDISI (formula 1–9);
collection merge; visualization; map; function PCA model; eigenvalue, eigenvector; return
result; normalize the RSEI; and export image to drive (see attachment for original data).
ArcGIS and ENVI further process the original data in order to meet the research needs.

(1) Calculation of component indexes. Among the four indexes, the greenness index
reflects the regional vegetation coverage, and the normalized difference vegetation index
(NDVI) is closely related to the leaf area index and vegetation coverage. The wetness indi-
cators (WET) reflect the moist conditions of the regional surface objects and are expressed
as the wet components of a tasseHed captransform of the surface vegetation, soil, etc. Here,
the formulae used to calculate EM and OLI were somewhat different. The dryness index
reflected the surface drying condition; the soil index and the index-based built-up index
IBI were expressed as the normalized difference impervious surface index (NDISI). Heat
indicators reflected the surface temperature conditions and were expressed by the land
surface temperature (LST). Based on the existing research results, the four indicators were
calculated as follows:

NDVI =
BNIR − Bred
BNIR + Bred

(1)

WETTM = 0.0315Bblue + 0.2021Bgreen + 0.3102Bred + 0.1594BNIR − 0.6806BSWIR1 − 0.6109BSWIR2 (2)

WETOLI = 0.1511Bblue + 0.1972Bgreen + 0.3283Bred + 0.3407BNIR − 0.7117BSWIR1 − 0.4559BSWIR2 (3)

NDBSI =
SI + IBI

2
(4)

SI =
(BSWIR1 + Bred)− (BNIR + Bblue)

(BSWIR1 + Bred) + (BNIR + Bblue)
(5)
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IBI =
{

2 × BSWIR1/(BSWIR1 + BNIR)− [BNIR/(BNIR + Bred) + Bgreen/
{
(Bgreen + BWIR1)]

}
/2 × BSWIR1/(BSWIR1 + BNIR)

+[BNIR/(BNIR + Bred) + Bgreen/(Bgreen + BWIR1)]
} (6)

LST =
K2

ln(K1/B(TS) + 1)
(7)

B(TS) =
L10 − Lup − τ10(1 − ε10)Ldown

τ10ε10
(8)

L10 = τ10[ε10B(TS) + (1 − ε10)Ldown] + Lup (9)

Here, NDVI indicates greenness, WET indicates humidity, NDISI indicates dryness,
and LST indicates heat. The specific meaning of each variable in the equation is referred to
in reference [29].

(2) Calculation of RSEI. Based on the results of the four indicators, NDVI, WET,
NDSI, and LST, they were first normalized by using positive normalization to standardize
their values. The initial RSEI values were calculated using NEVI software by principal
component analysis of the standardized data from the four indicators for PC1. Indicator
weights that were not dictated by humans were considered in the calculation of the initial
RSEI value. The final RSEI value was obtained using the forward normalization process,
where the value was between 0 and 1. The higher the numerical value, the better the EEQ.

NI =
I − Imin

Imax − Imin
(10)

RSEI0 = PC1[ f (NDVI, WET, NDBSI, LST)] (11)

RSEI =
RSEI0 − RSEI0−min

RSEI0−max − RSEI0−min
(12)

In the above formula, NI denotes the standard index value after processing; I is
the index value; and Imax and Imin are the maximum and minimum values of the index,
respectively. RSEI denotes the final remote sensing ecological index; RSEI0 denotes the
primary remote sensing ecological index. RSEI0-max and RSEI0-min are the maximum and
minimum values of the primary remote-sensing ecological index in the current period,
respectively. PC1 denotes the first principal component.

(3) Residual trends method. RSEI changes are influenced by climatic conditions
and human activities. We used the residual trends method to calculate the extent to
which PAR contributes to RSEI. Based on the mean value of RSEI from 2000 to 2020, the
turning point of RSEI was determined according to linear trend analysis. A multiple linear
regression analysis model was established with RSEI (dependent variable) and four factors
(independent variables). These were the natural factors—mean annual temperature (MAT)
and annual total precipitation (ATP)—and the human activity factors, outlined in the Grain
to Green Project and the Karst Rocky Desertification Restoration Project, that may affect
EEQ changes during the reference period (before the turning point).

VD,T(RSEI) = a × VI,T(MAT) + b × VI,T(ATP) + c × VI,T(funds of the Grain to Green Project) +
d × VI,T(funds of the Karst Rocky Desertification Restoration Project)

(13)

where VD,T denotes the dependent variables at a specific time, VI,T denotes the independent
variables at a specific time, a and b are multivariate regression standardization coefficients
of climate conditions, while c and d are multivariate regression standardization coefficients
of human activities. Formula (13) was used to calculate the predicted RSEI value during
project implementation (only affected by four factors) with a 95% confidence interval; the
residual between the observed RSEI mean value and the predicted RSEI mean value was
calculated. If the residual value was positive, PAR was assumed to have a positive impact
on EEQ over time. If the residual was negative, PAR was assumed to harm the local ecology.
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(4) Analysis of coupling coordination degree. To test the degree of spatial and temporal
correlation between PAR and EEQ, this study used the coupling coordination degree to
analyze and describe the spatial characteristics between PAR and ecological environment
variables. The range of values was [0, 1], where a larger coupling coordination degree
indicated a stronger correlation between the two variables [39].

C =

√
U1 × U2

[(U1 + U2)/2]2
(14)

D =
√

C × T; T = α × U1 + β × U2 (15)

Using formula C in particular, the system coupling degree was calculated. Here, U1
and U2 are the RSEI variables, and the data were normalized for the size (number of people)
of the relocated population. T is the comprehensive evaluation index of U1 and U2; α and
β are the undetermined coefficients, where α = β = 0.5; D is the coupling coordination
degree. The coupling coordination degree is based on SPSS software, which normalizes
and standardizes the analysis data. The conclusion of calculations is between 0 and 1,
which the software automatically divides into 10 levels. According to the trend in the
level distribution and the existing method of dividing the research results, the coupling
coordination level is divided into 4 levels: extreme detuning (0–0.3), general detuning
(0.3–0.5), general coordination (0.5–0.7), and extreme coordination (0.7–1) [40].

3. Results

3.1. Ecological Environment Quality, Spatial and Temporal Evolution, and Driving Forces
3.1.1. Evolution Trend Analysis

According to the statistical analysis of the average EEQ value from 2000 to 2020
(Figure 3), the overall EEQ of the study area showed an increasing trend. The mean value
of RSEI increased from 0.5329 in 2000 to 0.6363 in 2020, i.e., an increase of 0.1034 or 19.40%
in 20 years. The overall trend of EEQ in the research area is still improving steadily. The
overall trend of RSEI from 2000 to 2011 was relatively stable, although there were some
fluctuations. From 2011 to 2016, the RSEI began to improve, although, again, there were
still some fluctuations. The overall trend showed a steady improvement. From 2016 to 2020,
RSEI in the study area began to improve significantly and remained stable. According to
the evolution trend, the turning point of RSEI in the study area was determined to be 2016.
In combination with the human activity in the area, we focused on analyzing the spatial
and temporal distribution of RSEI to achieve the research objectives of this paper. The
Grain to Green Project began in 2000; the Karst Rocky Desertification Restoration Project
was implemented in 2008; and the PAR was implemented in 2016. Considering the time
interval of the study period and that the effect of ecological restoration projects is somewhat
delayed, we focused on data of the spatial and temporal distribution of RSEI for the years
2000, 2005, 2010, 2015, and 2020.

3.1.2. Spatial–Temporal Evolution Analysis of EEQ

For convenient comparison, the average RSEI value was divided into five grades
according to the average value: poor (0–0.2), relatively poor (0.2–0.4), moderate (0.4–0.6),
good (0.6–0.8), and excellent (0.8–1.0) [41]. The spatial distribution of RSEI values in the
study area was characterized by higher EEQ grades in the southeastern part of Ceheng and
Wangmo, and all regions were optimized after 2010 to some extent.

During 2000–2010, the EEQ values of the study areas were generally similar, i.e.,
excellent and good grades accounted for ~44% of the subject areas, particularly in the
southeastern areas of Ceheng and Wangmo (Figure 4).
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Figure 3. Mean RSEI value during 2000–2020.

Figure 4. Eco-environment quality dynamics by classified RSEI of the counties from 2000 to 2020.

During the period 2010–2015, the proportion of EEQ attributable to poor and relatively
poor grades decreased to 26.26%, which originated from areas mainly concentrated in
north-central Xingren, south-central Pu’an, north-central Xinyi, and other regions. The
proportion of excellent and good grades rose to 48.46%, which was attributable to the
areas that were concentrated in the southeastern area of Ceheng and Wangmo. During this
period, the EEQ grade remained the same in an area accounting for 42.48% of the total study
area. The area that saw an EEQ reduction accounted for 24.80% of the study area. This area
with reduced EEQ was mainly distributed in Wangmu, Ceheng, Pu’an, and Qinglong. In
this period, the dominant EEQ grades were excellent and good (Figures 4 and A1, Table 1).
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Table 1. The transition matrix of EEQ levels during 2010–2015.

EEQ Level I II III IV V

I 830.13 1143.01 644.35 209.61 40.58
II 261.50 1038.92 1088.78 408.93 80.93
III 93.70 600.43 1471.60 1013.50 208.03
IV 32.88 185.00 892.54 1777.49 576.91
V 11.96 51.58 294.53 1679.01 1910.32

During the period from 2015 to 2020, the proportion of areas with an EEQ grade
of poor or relatively poor decreased to 17.64%, and the distribution was mainly concen-
trated in the key areas of urban development. The proportion of areas with excellent and
good grades further increased to 63.35%, with the most concentrated contiguous areas
in Ceheng, Wangmo, and southeast of Zhenfeng. The EEQ improvement regions were
most concentrated in Qinglong and Pu’an, which were the areas with the most fragile
ecological environment areas and the most prominent peasants–land conflicts. The area of
reduced EEQ was mainly concentrated in the urban development areas, such as Xingyi,
where the population was further concentrated, and socio-economic development was
more important (Figures 4 and A1, Table 2).

Table 2. The transition matrix of EEQ levels during 2015–2020.

EEQ Level I II III IV V

I 395.94 407.33 303.77 98.76 22.56
II 337.98 830.39 1175.63 566.99 102.63
III 137.48 475.53 1383.03 1892.35 489.99
IV 41.54 127.90 497.46 2215.79 2177.92
V 10.00 29.22 99.47 541.48 2098.71

3.1.3. RSEI Result Test

The Pearson correlation coefficient was used to test the RSEI results. The results are
presented in Table 3, where the average correlation of RSEI and the four indicators reached
a maximum of 0.953, 0.964, −0.739 and −0.945, respectively. The correlation between RSEI
and NDVI, WET, NDISI was significant at the 0.01 level, indicating strong significance, and
the correlation with LST was significant at the 0.1 level, indicating general significance.

Table 3. Correlation matrix of indexes during 2000–2020.

Indicator NDVI WET LST NDISI RSEI

NDVI 1 0.969 −0.869 −0.814 0.953
WET 0.969 1 −0.804 −0.831 0.964
LST −0.869 −0.804 1 0.56 −0.739

NDISI −0.814 −0.831 0.56 1 −0.945
RSEI 0.953 0.964 −0.739 −0.945 1
Sig. 0.012 0.008 0.154 0.015

3.2. Drivers of Change in EEQ

Unlike other karst areas in the world, where the population density is low, the karst
mountains in southwest China are populous and ecologically fragile. There is sparse
coordination between peasant–land conflicts and high ecological pressure [42]. Various
ecological restoration projects have been promoted since 2000, such as the Grain to Green
Project (from 2000) and the Karst Rocky Desertification Restoration Project (from 2008) [43].
According to the mean values of the four indicators presented in Table 4, the overall indexes
were relatively stable, and the average RSEI values were also relatively stable.
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Table 4. Mean indicators of RSEI from 2000 to 2020.

NDVI WET LST NDISI RSEI

2000 0.5555 0.5286 0.5627 0.5073 0.5329
2005 0.5430 0.5266 0.5008 0.5046 0.5294
2010 0.5398 0.5411 0.5518 0.5120 0.5342
2015 0.6689 0.5642 0.4279 0.5095 0.5628
2020 0.7511 0.5952 0.4307 0.4217 0.6363

During 2010–2015, the mean value of NDVI increased by 23.92%, and the WET mean
value also increased significantly. The effectiveness of the ecological restoration project
is also highlighted during this period, having contributed to a significant decrease in the
mean value of LST. The ecological restoration project also contributed to an increase in the
mean value of RSEI in the study area (Table 4).

From 2015 to 2020, PAR was promoted and completed. During this period, NDISI
was reduced significantly, by 17.24%. Relocation to alleviate poverty caused many rural
people to move to towns and cities, while their original home base was reclaimed and
re-greened. In this case, the impact of human activities on rural areas was significantly
reduced, which directly contributed to a significant reduction in the dryness index. The
NDVI was increased, along with the WET, which means that the conflict between humans
and land was fundamentally relaxed, and the effectiveness of various ecological restoration
projects was maintained and further improved. PAR was a key factor in the improvement
of RSEI in the study area (Table 4).

3.3. The Contribution of PAR to EEQ Changes

A multiple linear regression analysis model was used to calculate the residual trends
in PAR implementation, whereby the turning point of RSEI change caused by PAR was
determined to occur in 2016. The variation in RSEI was influenced by natural factors,
including MAT and ATP, as well as human activities, including the Grain to Green
Project and the Karst Rocky Desertification Restoration Project. We took these four fac-
tors as the independent variables, i.e., the influencing factors, and RSEI was adopted
as the dependent variable, i.e., the resulting factor. Standardized coefficients of the
regression models were analyzed by the SPSS with 95% confidence (Table A1). The
results show that the observed cumulative probability and the predicted cumulative
probability were normally distributed in the linear regression analysis model (Figure 5).
Furthermore, the standardized residuals were randomly distributed without outliers
(Figure 6), and the regression model significance was 0.038 at a significance level of
95%. Therefore, the multiple linear regression equation was verified to be stable. The
analysis results show that the RSEI variable could mathematically be represented as
Variable (RSEI) = 0.273 × Variable(MAT) + 0.285 × Variable(ATP) − 0.144 × Variable
(funds of the Grain to Green Project) + 0.520 × Variable (funds of the Karst Rocky Desertifi-
cation Restoration Project). This equation predicted the mean RSEI values in 2017, 2018, and
2020 to be 0.5676, 0.5660, and 0.5701, respectively, under the influence of the four factors.
The observed RSEI values in 2017, 2018, and 2020 were 0.5942, 0.6374 and 0.6363, respec-
tively. The residual difference between the observed and predicted mean values of RSEI
was likely due to the PAR-driven RSEI improvement. The improvements in RSEI caused
by PAR were 0.0266, 0.0715, and 0.0662 in 2017, 2018, and 2020, respectively, according to
the actual increase of 0.0266, 0.0715, and 0.0662. Compared with the turning point of 2016,
the PAR contributed to the RSEI growth contribution rate of 70.56%, 88.38%, and 82.96% in
the three years, respectively. Collectively, after 2016, the RSEI values increased significantly,
and from there on, the average RSEI reached good levels and remained relatively stable.
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Figure 5. P-P plot of regression standardized residuals.

Figure 6. Scatter diagram.

3.4. Correlation between PAR and EEQ Changes

The correlation between relocation and EEQ changes was analyzed by taking the
village area as the basic unit. A map showing the change in RSEI during 2015–2020 is
shown in Figure 7.
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Figure 7. Change map of RSEI during 2015–2020.

There were 1330 administrative village units in the study area. The number of villages
in the area with reduced RSEI was 205, accounting for 15.41% of the total. A total of
1125 villages exhibited improved RSEI. These villages were mostly located in the central
and northern regions of Pu’an and Qinglong. The original EEQ of these regions was
relatively low, and the effect of the upgrade in terms of RESI was obvious. The relocation of
the five counties on the northeast side of the study area of Southwest Guizhou Autonomous
Prefecture, including the counties of Ceheng, Qinglong, Wangmo, Zhenfeng, and Pu’an,
was the most concentrated, whereby 74,600 households were relocated, accounting for
82.47% of the total (Figure 2).

Figure 8 shows the spatial distribution of the coupling coordination between the
relocation population density and RSEI variables in 1222 administrative villages in eight
counties. There were 247 villages with extreme coordination, accounting for 25.33% of
the area, mainly concentrated in Ceheng, Wangmo, Qinglong, and Pu’an, which are the
most densely relocated areas. There were 411 general coordination villages, accounting
for 33.90% of the area, most of which were located in the northeast and southeast of the
study area. There were 403 general detuning villages, accounting for 29.99% of the area,
and 161 extreme detuning villages, accounting for 7.63% of the total villages. These villages
were predominantly located in economically developed areas, such as Xinyi. After the
spatial analysis of the coupling coordination between relocation population density and
RSEI variables, a significant coupling coordination relationship was found between EEQ
enhancement and PAR in the study area.
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Figure 8. Coupling coordination degree of density of relocated population, and change in RSEI.

3.5. Forecast of Future RSEI

The RSEI of the study area was predicted after the implementation of the PAR to
analyze its sustained impact on regional EEQ. The ARIMA model starts from the time-
series itself and forecasts future data based on past behavioral data [44]. The expert modeler
was used for prediction, where the autocorrelation and partial correlation coefficients of
the model were all within the confidence zone of 95%. After prediction, the mean value of
RSEI in the study area was predicted to improve to 0.7355 in 2025, and to 0.8603 in 2030.
Continuous improvement and optimization were maintained from thereon. The spatial
distribution effects are shown in Figure 9.

 

Figure 9. Forecast of the mean values of RSEI.

4. Discussion

The results show that not all areas with a large number of relocated people have
significantly increased RSEI. In northern Pu’an, Qinglong, and other severely rocky deserti-
fication areas (Figure 1) where the population density is relatively large (Figure A2) and the
contradiction between peasants and land is prominent, the RSEI increase is more obvious
in areas with a large number of people involved in PAR (Figure 7). However, in non-rocky
desertification areas such as Ceheng and Wangmo in the southeast, where the population
density is relatively small, the RSEI does not have an obvious increase, although the number
of people relocated is relatively large. This shows that the implementation of PAR is more
effective in areas with relatively poor ecology and a prominent contradiction between
peasants and land, while in areas where the ecology is better, the contradiction between
peasants and land is not prominent, and the ecological effect is not obvious (Table 5).
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Table 5. Summary table of positive and negative effects of PAR.

Indicators Positive Effects Negative Effects Remark

Society
Improved infrastructure,

education, employment and
health care, etc.

Increased cost of living,
changed way of life, blocked

cultural inheritance, etc.
Will not be discussed

Sustainability

The remaining farmers will have
more production resources, and

will obtain more
employment opportunities.

Traditional culture is
destroyed, increasing living
costs, and increased burden

on the government.

Ecology

Spatial features The RSEI of the entire study area
significantly improved.

On the southeast side where
the contradiction between
peasants and land is not

prominent, the RSEI
improvement is not obvious.

Indicator
structure

Increase in NDVI and decrease
in NDISI.

The increase in WET is small,
and the negative indicator

Lst increases.

Unbalanced
RSEI promotion

Biodiversity
Human activity is reduced in

abandoned areas, which is
beneficial to biodiversity.

After PAR, the planting
structure will tend to be

single-species, thus affecting
the biodiversity.

Human
well-being

The overall EEQ of the study
area improved, and the entire

area became greener.

There is a certain distance of
EEQ between the

ecologically improved area
and the gathering area of the

relocated farmers.

Applicability

PAR can promote ecological
improvement in karst

ecologically fragile areas where
the contradiction between

peasants and land is prominent.

PAR may not be effective in
ecological restoration in

areas where climate is the
main limiting factor (such as

water resources in
semi-arid regions).

Other aspects

The relocation area can make
more convenient and intensive

use of land, and more effectively
promote the implementation of

various ecological
restoration projects.

May possibly cause
single-species forest and the
waste of water resources (in

the context of global
warming, extreme dry

weather has already occurred
in 2011).

In terms of the effectiveness of EEQ, the improvement in RSEI in the study area
contributed by PAR is mainly due to the increase in NDVI and the decrease in NDISI.
After relocation, the large-scale management of forestland will become a trend, with
farmers moving away from contracted land, and farmland being transformed to forest,
which contributes to the substantial increase in NDVI. Whether the substantial increase
in NDVI will cause single-species forest and excessive water consumption needs further
consideration [45]. The increase in WET is significantly smaller than the increase in NDVI,
which is further verified. The RSEI of the study area is indeed significantly improved,
while the RSEI of the urban areas to which farmers are moved is reduced. Does such
an increase in RSEI really improve the living environment for local humans? During the
implementation of PAR, the overall increase in RSEI in the study area was partially reduced
(with a decrease in the more concentrated areas of population) and the comprehensive
indicators showed improvement. Whether such improvement is conducive to sustainable
social development is something our follow-up study needs to consider deeply (Table 5).

Biodiversity has an important impact on ecosystem services, and the impact of human
activities on biodiversity is the focus of various scholars and organizations such as the
United Nations Environment Programme (UNEP) [46,47]. After PAR, the number of land
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managers decreased and land-use patterns changed, which shifted the trend towards large-
scale land management. For the purpose of easy management and economic efficiency,
the planting structure of the land tends to be homogeneous after large-scale management,
which leads to an impact on biodiversity and the weakening of symbiosis among plants,
thus further affecting the ecosystem service function [48]. In contrast, some areas become
similar to ecological reserves, where the disturbance of human activities is reduced, and
biological succession proceeds in an orderly manner, which is beneficial to biodiversity.
There are many influencing factors and mechanisms of internal change of biodiversity, such
as human disturbance, environmental factors, management methods, etc. The impact of
PAR on biodiversity needs to be further studied in future work [49,50] (Table 5).

The global trend in terms of helping rural areas is to promote traditional and sustain-
able farming with nature-friendly measures, rather than relocating the rural population
to cities [51]. PAR is the transfer of farmers from rural to urban areas, which destroys
traditional rural culture, increases their cost of living and changes their way of life. The fact
that farmers move to cities to take up jobs they are not good at, and that employment train-
ing is not sufficient to help low-ability farmers relocate successfully, also greatly increases
the burden on the government, in addition to the fact that the minimum cost of living for
relocated households is approximately 70% higher in cities than in rural areas. PAR poses
a great challenge to the sustainability of farmers [17]. The owners of the relocated rural
areas are not those executing PAR, but some of the poorest farmers. The most crucial role
of PAR is to alleviate the contradiction between peasants and land. The remaining farmers
will have more production resources (such as renting the land of the relocated farmers),
and may also obtain more employment opportunities (there will be some vacancies for
forest-protection work and road-cleaning work after the relocation) and development op-
portunities. Relocating farmers to live together in a concentrated area will also facilitate the
establishment of infrastructure such as medical care, education, training, factories, etc., to a
certain extent, and it is easier to accept new knowledge, which will help farmers to achieve
sustainability (Table 5).

The GEE platform was used to address the problem of the difficult acquisition of
effective Landsat images under cloudy and foggy weather in Guizhou. With its powerful
processing capabilities, GEE provided a foundation for the accurate analysis of the temporal
and spatial patterns and evolution of EEQ. The RSEI model allows the objective analysis
of EEQ. The effects of PAR and climatic factors and other ecological restoration projects
on the EEQ changes could be distinguished scientifically using the residual trends. The
results could then be used to establish a high and low series of coupling coordination levels
between the number of relocated populations and EEQ variables, and to clarify the effective
degree of correlation between PAR and EEQ enhancement. Furthermore, based on the
ARIMA model, a prediction of future ecological trends concluded that the relocation of
impoverished residents has a significant and sustainable driving effect on the promotion
of regional EEQ. However, the RSEI model needs to use a water body mask to ensure
the normalization accuracy of RSEI [30]. The Southwest Guizhou Autonomous Prefecture
belongs to the ecological protection barrier in the upper reaches of the Pearl River, and
1.86% of the water area has important ecological services that unfortunately cannot be
effectively reflected [41]. Due to the influence of cloudy weather in Guizhou, it is difficult
to collect remote-sensing data in the same period for different years. The base data used
in this paper were Landsat data from April to October of the target years. The time span
was large, and there may be bias in the measurement of RSEI each year. There are other
shortcomings, which provide a basis for the key research directions of the future.

PAR in karst mountains can improve local EEQ to a certain extent, but there have been
some controversies. In later studies, researchers further broadened their research scope to
investigate the effect of PAR on the regional carbon neutral effect [52] from the direction of
carbon neutrality [53].

73



Land 2022, 11, 1150

5. Conclusions

The residual trends method eliminated the confounding effects of other influencing
factors and clarified the contribution of PAR to RSEI growth. The PAR made a contribution
to RSEI improvement with a 13.07% increase in the study area during 2015–2020; this
RESI was significantly higher than the increase noted during 2000 to 2015. The EEQ of the
most ecologically vulnerable areas, such as Qinglong and Pu’an, was most significantly
improved after the PAR. However, the EEQ of economically developed areas, such as
Xingyi, showed a decreasing trend.

After the implementation of PAR, a large number of rural houses were dismantled
and the land reclaimed as green regions. Additionally, many rural construction projects
did not advance, contributing to an obvious decrease in the mean value of NDISI (to
17.24%). Furthermore, the core population of farmers moved from cultivated land to
urban employment, leaving much farmland abandoned or available for planting trees,
contributing to a sharp increase in the NDVI (to 12.28%). The residual trends model
predicted that the mean values of RSEI in 2017, 2018, and 2020 were 0.5676, 0.5660, and
0.5701, respectively, under the influence of a multitude of factors, except for the PAR.
The observed mean values of RSEI were 0.5942, 0.6374, and 0.6363, respectively. The
improvement in RSEI caused by PAR was 0.0266, 0.0715, and 0.0662 in 2017, 2018, and
2020, respectively.

The spatial distribution of the coupling coordination between the relocation popula-
tion density and RSEI variables showed that there was a significant positive correlation
between the increase in RSEI and the relocation population density. The larger the relocated
population, the greater and more significant the increase in RSEI in the region. This also
led to a higher corresponding level of coupling coordination. As measured by the ARIMA
prediction model, the EEQ of the study area, with many people undergoing PAR and in a
cluster shape, will continue to evolve for the better. Furthermore, the EEQ of the developed
urban areas represented by Xingyi will continue to decrease.
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Appendix A

 

 

 

Figure A1. Distribution of RSEI from 2000 to 2020.

Figure A2. Population density of 8 counties (2016).
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Table A1. Statistical table of changing EEQ image factors.

Year RSEI MAT (◦C) ATP (mm)
Grain to Green

(1010 CNY)

Karst Rocky
Desertification

Restoration (1010 CNY)

2000 0.5329 15.67 1395.22 0.09
2001 16.35 1459.53 0.10
2002 0.5439 16.66 1218.52 1.02
2003 0.537 16.81 1233.95 1.73
2004 0.5326 15.92 1121.14 1.60
2005 0.5294 16.03 1259.33 1.68
2006 0.5499 16.38 1226.83 1.48
2007 0.5582 16.36 1428.46 1.37
2008 0.5322 15.61 1489.99 1.25 0.44
2009 0.5311 16.61 1011.30 1.15 0.63
2010 0.5342 16.66 1291.39 0.78 0.63
2011 0.5322 15.36 811.22 0.39 4.25
2012 15.83 1206.55 0.28 4.25
2013 0.5735 16.53 941.18 0.15 4.25
2014 0.5767 16.43 1540.23 0.88 4.25
2015 0.5628 16.93 1484.35 0.95 4.25
2016 0.5565 16.65 1270.80 0.95 6.25
2017 0.5942 16.46 1359.94 0.95 6.25
2018 0.6374 16.42 1309.58 0.95 6.25
2019 16.80 1438.02 0.95 6.25
2020 0.6363 16.43 1489.82 0.95 6.25
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Abstract: Identifying the impacts of climatic factors on runoff change has become a central topic
in climate and hydrology research. This issue, however, has received minimal attention in karst
watersheds worldwide. Multi-resolution analysis (MRA), continuous wavelet transform (CWT),
cross wavelet transform (XWT) and wavelet transform coherence (WTC) are used to study the
teleconnection in time and frequency between climate change and hydrological processes in a typical
karst watershed at different time scales. The main results are: (1) All climatic factors exhibit a main
cycle at 12-month time scales with runoff changes, but the main periodic bandwidth of rainfall on
runoff changes is much wider than that of temperature and evaporation, indicating that rainfall is the
main factor affecting runoff changes. (2) In other cycles, the impact of rainfall on runoff changes is the
interlacing phenomena with positive and negative, but the impact of temperature and evaporation on
runoff change is mainly negative. (3) The response of runoff to rainfall is in time in the high-energy
region and the low-energy significant-correlation region and has shown a positive correlation with a
smaller phase angle, but it is slightly lagged at 16-month time scales. Moreover, the runoff change
lags behind temperature and evaporation for 1–2 months in those regions. (4) It has been found that
there is a strong effect of rainfall over runoff, but a lesser effect of temperature and evaporation over
runoff. The study sheds light on the main teleconnections between rainfall, evapotranspiration and
surface runoff, which in turn might help to attain the better management of water resources in typical
karst watersheds.

Keywords: karst; watershed; runoff change; climate factors; wavelet analysis

1. Introduction

The changes in hydrology and water resources caused by climate change have stim-
ulated hydrologists to pay attention to and study the impacts in this field, which have
become one of the popular issues at home and abroad [1–3]. Runoff change is mainly
affected by climate change and underlying surface conditions [4–6]. The most important
manifestations of climate change on runoff are the changes in rainfall amount and temporal
and spatial distributions [7]. Climatic and hydrological processes have highly non-linear
and unstable characteristics due to the complex exchange process of the Earth’s atmosphere
system [8–10] and the difference in watersheds’ geographical and human environment
characteristics; these characteristics cause great difficulties in the simulation and predic-
tion of hydrological changes. Therefore, studying the multi-scale evolution law in the
interaction process between meteorology and hydrology has scientific significance for the
management and optimal regulation of water resources in river watersheds.
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Most of the previous studies have focused on the correlation between meteorological
factors and runoff, but limited analysis has been conducted on the multi-temporal charac-
teristics of runoff and major meteorological elements [6,11–17]. In addition, the traditional
hydrological research methods, such as linear correlation, the Pearson correlation coeffi-
cient, the linear trend method and the multiple regression method, can only reveal the
variation characteristics on a single time scale. The evolution relationship and interaction
characteristics of the two hydrometeorological variables on multi-time-scales are impossible
to demonstrate. Spectral analysis and spatial coherency can reveal the scale-dependent
relationships between the variables but are only applicable to stationary systems. Hydrom-
eteorological series behavior belongs to non-stationary systems [18]. Wavelet analysis can
deal with non-stationary data series and thereby provide an opportunity to analyze the
temporal patterns of hydrometeorological series at multiple scales.

The climatic factor is the driving factor of runoff change; therefore, different time scale
correlations must exist between runoff and the climatic factor in its oscillation frequency.
Wavelet analysis, especially cross wavelet analysis, had been gradually applied to the
analysis and study of runoff changes and meteorological factors in river watersheds on
multi-time-scales in recent years [19–21] and had also been used to determine the overall
and scale-dependent similarities of the temporal patterns of soil moisture [22]. Multires-
olution analysis (MRA) can study signals represented at different resolutions [23]. This
method can be used to decompose a signal into a progression of successive approximations
and details in increasing order of resolution [24]. Continuous wavelet transform (CWT) is a
common tool for analyzing localized intermittent oscillations in time series, and it is often
desirable to examine two time series together that may be expected to be linked in some
way. We can show the strength of sequence signals at different time scales by analyzing the
wavelet power spectrum. cross wavelet transform (XWT) will expose their common power
and relative phase in time–frequency space and can reflect that two sequences have the
same energy spectrum region after wavelet transform, thus revealing the significance of
the interaction between the two sequences in different time–frequency domains. Wavelet
transform coherence (WTC) can find significant coherence although the common power
is low [19]. In this field, CWT has been recently used to determine the effect of climatic
phenomena on stream flow regimes [25–28], runoff processes [29–31], surface–groundwater
interactions and the hydrogeological behavior of karst systems [32,33]. Furthermore, XWT,
which has strong signal coupling and resolution ability, can show the common high-energy
region and phase correlation of two time-series data. However, XWT has a great unsolved
shortcoming that cannot find significant coherence when analyzing the low-energy regions
of two time series’ data in the time–frequency domain, and its functional defects in the
low-energy areas must be compensated for by WTC [34]. In view of this, the coupling of
MRA, CWT, XWT and WTC will be generally applied in the field of hydrometeorology.

At present, the implications of climate and anthropic pressures on the short- to long-
term changes in the water resources of a Mediterranean karst were assessed by using
wavelet analysis [23], and the non-stationary relationships of ocean and atmosphere mean
conditions and freshwater discharge, which were integrated at the continental scale, were
studied by using XWT [27]. In addition, the impacts of rainfall, air temperature and
evapotranspiration on the annual runoff in the source region of the Yangtze River were
investigated in the time domain by using wavelet analysis and multiple regression [17].
WTC was used to determine the overall and scale-dependent similarities of the temporal
patterns of soil moisture in the karst catchments of Southwestern China [32]. CWT analysis
was used to detect the trends and periodicity in sediment discharge, whilst WTC was
used to detect the temporal covariance between sediment discharge and water discharge,
rainfall, potential evapotranspiration and vegetation index in two typical karst watersheds
in southwest China [33] and to assess the relative importance of catchment properties in
modulating streamflow and modes of variability in West Africa and Central Africa [35].

Karst landforms are developed in highly heterogeneous carbonate rocks that are easily
eroded by flowing water, widely distributed in Southwest China and generally have differ-
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ent hydrogeological characteristics from non-karst areas [36]. Thus, the karst watersheds
are characterized by broken surfaces, low runoff coefficients, serious underground leakage,
thin surface soil and poor regulation and water conservation capacities [37–40]. The unique
two-dimensional/three-dimensional hydrogeological structure can accelerate the hydrolog-
ical process [41,42]. In particular, rainfall drains rapidly to underground systems through
numerous cracks and fissures [40,43–46]. The soil–epikarst system plays important roles
in runoff generation due to the large storage capacity and high infiltration rate of karst
carbonate fissures and fractures [2]; consequently, runoff changes in karst areas are sensitive
to climatic factors, and small climatic fluctuations will cause large fluctuations in runoff.
The appearance, storage and circulation of water in karst aquifers are apparently different
from those of water in non-karst areas. The special hydrological process in karst areas will
lead to the influence of climate change on runoff with time lag or advance at different time
scales. In addition, the hydrometeorological evolution in karst areas has obvious seasonal
and multi-scale characteristics. Significant differences exist in the evolution and influence
relationships at different scales, especially the intrinsic relationship between monthly and
seasonal rainfall, evaporation, temperature and runoff; their vibration energy distribution
characteristics and correlations in time and frequency domains are extremely complex.
Numerous studies have focused solely on non-karst watersheds. On the contrary, the
impacts of climatic factors on runoff (surface runoff) changes have rarely been identified for
karst watersheds. Specifically, the research on the time-varying characteristics of climate
and runoff and their coupling relationship in karst trough valley watersheds is scarce.
Therefore, the objectives of this study are to (1) analyze the multiscale temporal variability
effects of runoff with climatic factors, (2) characterize the coupling relationship between
runoff and climatic factors in common high- and low-energy regions and high-correlation
regions at different time scales and (3) provide a theoretical basis and technological support
for water resource safety management in karst watersheds.

2. Study Site

The Yinjiang River watershed (108◦21′21′′–108◦47′27′′ E, 27◦53′17′′–28◦13′57′′ N),
which is located in northeast of Guizhou Province (Figure 1a), is a typical karst watershed of
a trough valley, SW China. It covers an area of 691.56 km2, with the karst area of 376.77 km2

and non-carbonate rocks area of 314.79 km2, accounting for 54.68% and 45.32% of the
total watershed area, respectively. Elevation in the study area decreases from southeast to
northwest, ranging in a large scope with an elevation range of 439–2466 m above sea level
and a mean elevation of 1033 m above sea level (Figure 1b).

The southeast part of the watershed is dominated by non-karst areas, and the karst is
widely distributed in the middle and northwest parts of the watershed. A small number of
banded non-karst regions are concentrated in the western, central and northern parts of the
watershed. Six types of lithology are present, namely, homogenous limestone, interbedded
limestone and clastic rock, clastic rock of limestone interlayer, non-carbonatite, homogenous
dolomite, mixture of homogeneous limestone and dolomite (Figure 1c). A karst valley with
a geographical background of a syncline structure in the center of the valley with steep
bedding slopes exists on both sides. The land surface is steep and broken with numerous
underground cracks, causing a severe underground loss of rainfall and runoff. The middle
part of the watershed is a typical deep-cut karst trough valley, and the middle part of the
trough is a karst valley with a synclinal structure as its geological background. Both sides of
the trough are steep beddings or inversion slopes, and the top of the trough is over 1000 m
above sea level; thus, it has a good ecological three-dimensional climate characteristic.
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Figure 1. Location and overview of the study area. Study area location in China (a), topography
(b) and lithology (c) in Yinjiang River watershed.

3. Materials

The monthly rainfall (P) data of 8 rainfall observation stations and the monthly runoff
(Q) data (long data from January 1984 to December 2015) at the hydrological station
were collected from the Guizhou Provincial Hydrology and Water Resources Bureau
(http://www.gzswj.gov.cn/hydrology_gz_new/index.phtml) (accessed on 15 Septem-
ber 2016). The monthly evaporation (E) data (January 1984 to December 2015), which were
also derived from the Guizhou Provincial Hydrology and Water Resources Bureau, were
measured by the evaporation dish of the hydrological observation station and represented
the water evaporation of the water surface or soil. The monthly temperature (T) data
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of the weather station corresponding to the runoff time series were obtained from the
China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/) (accessed on
5 August 2021). The average annual rainfall data for the watershed were interpolated by
the Kriging method with the annual rainfall data of all 8 rainfall stations (both inside and
outside the watershed). The DEM data with a spatial resolution of 30 m were obtained from
the International Scientific and Technical Data Mirror Site, Computer Network Information
Center, Chinese Academy of Sciences, which could be downloaded from the Geospatial
Data Cloud (http://www.gscloud.cn) (accessed on 12 September 2021). The lithology data
were derived from the Karst Scientific Data Center (http://www.karstdata.cn/) (accessed
on 12 September 2021), Institute of Geochemistry, Chinese Academy of Sciences.

4. Methodology

A series of wavelet analysis methods were used to identify the multi-scale impact of
climate factors on runoff change in the Yinjiang River watershed. These wavelet analysis
methods included MRA [47], CWT [19–21,48,49], XWT [19–21], cross wavelet phase angle
(CWPA) [50] and WTC [19]. MRA was carried out using a free MATLAB software package
provided by the WaveLab Development Team and available at http://statweb.stanford.
edu/~wavelab/, (accessed on 12 September 2021). Other methods, including CWT, XWT,
WTC, and CWPA, were carried out using a free MATLAB software package (Mathworks,
Natick, MA, USA) kindly provided by Grinsted et al. [19] at http://noc.ac.uk/using-
science/crosswavelet-wavelet-coherence, (accessed on 12 September 2021). The package
includes code originally written by Torrence and Compo [20] of the University of Alaska,
available at http://paos.colorado.edu/research/wavelets/, (accessed on 12 September
2021). The flowchart for identifying the multi-scale influences of climate factors on runoff
changes is shown in Figure 2.

 

Figure 2. Flowchart for identifying the multi-scale influences of climate factors on runoff changes.
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4.1. MRA

Choosing the particular values of a0 = 2 and s0 = 1 corresponds to the dyadic case
used in MRA. The aim is to reduce/increase the resolution by a factor of 2 between two
scales. Therefore, the approximation of a signal x(t) at a resolution j, denoted by Aj

x, and
the detail of the same function at a resolution j, denoted by Dj

x, are defined by:

Aj
x(t) =

+∞

∑
k=−∞

Cj,kψj,k(t) (1)

Dj
x(t) =

+∞

∑
k=−∞

Dj,kΦj,k(t) (2)

where Φj,k(t) is a scaled and translated basis function called the scaling function [47], which
is determined with ψj,k(t) when a wavelet is selected. Cj,k is the scaling coefficient given
the discrete sampled values of x(t) at resolution j and location k. It is calculated from Φj,k(t)
in a similar way for the wavelet coefficient Dj,k from ψj,k(t) for detailed mathematical
expressions [49].

The signal x(t) can be reconstructed from the approximation and detail components as:

x(t) = Aj
x(t) +

J

∑
j=1

Dj
x (3)

where J is the highest resolution level considered. Since the MRA ensures variance is well
captured in a limited number of resolution levels, the analysis of energy distribution in
the sampling time series across scales gives a good idea of the energy distribution across
frequencies.

4.2. CWT

The wavelet transform can be seen as a bandpass filter of uniform shape and varying
location and width [20]. The continuous wavelet transform (CWT) Wx(a, τ) of a time series
x(t) is given as follows:

Wx(a, τ) =
∫ +∞

−∞
x(t)ψ∗(t; a, τ)dt (4)

ψ(t; a, τ) =
1√
a

ψ(
t − τ

a
) (5)

ψ(t) = 4

√
1
π

cos(kt)e−
t2
2 (6)

where Wx(a, τ) represents a group of wavelet functions, W(a,b), based on a mother wavelet
ψ which can be scaled and translated, modifying the scale parameter a and the translation
parameter τ, respectively. ψ∗(t; a, τ) corresponds to the complex conjugate of ψ(t; a, τ).
ψ(t) is the Morlet wavelet function, k is the non-dimensional frequency, here taken to be 6
to satisfy the admissibility condition, and t is time.

The statistical significance of wavelet power can be assessed relative to the null hy-
pothesis that the signal is generated by a stationary process with a given background power
spectrum (Pη). Many geophysical time series have distinctive red noise characteristics that
can be modeled very well by a first-order autoregressive (AR1) process. The Fourier power
spectrum of an AR1 process with lag-1 autocorrelation α [48] is given by

Pη =
1 − α2∣∣1 − αe−2iπη

∣∣2 (7)
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The probability that the wavelet power of a process with a given power spectrum
(Pη) [19] is greater than p is

D

(∣∣WX
n (s)

∣∣2
σ2

X
< p

)
=

1
2

Pηχ2
v(p) (8)

where η is the Fourier frequency index. ν is equal to 1 for real and 2 for complex wavelets.

4.3. XWT

The XWT of two time series X and Y is defined as

WXY = WXWY∗
(9)

where * denotes complex conjugation. We further define the cross wavelet power as |WXY|.
The complex argument arg(WXY) can be interpreted as the local relative phase between X
and Y in time–frequency space. The theoretical distribution of the cross wavelet power of
two time series with background power spectra PX

k and PY
k is given as

D
(

WX
n (s)WY

n (s)
σXσY

< p
)
=

Zv(p)
v

√
PX

k PY
k (10)

where Zv(p) is the confidence level associated with the probability p defined by the square
root of the product of two X2 distributions [19].

We use the circular mean of the phase over regions with higher than 5% statistical
significance that are outside the cone of influence (COI) to quantify the phase relationship.
This is a useful and general method for calculating the mean phase. The circular mean of a
set of angles (ai, i = 1 . . . n) is defined as

am = arg(X, Y) with X =
n

∑
i=1

cos(ai) and Y =
n

∑
i=1

sin(ai) (11)

It is difficult to calculate the confidence interval of the mean angle reliably since the
phase angles are not independent. The number of angles used in the calculation can be set
arbitrarily high simply by increasing the scale resolution. However, it is interesting to know
the scatter of angles around the mean. For this, we define the circular standard deviation as

S =
√
−2 ln(R/n) (12)

where R =
√

X2 + Y2. The circular standard deviation is analogous to the linear standard
deviation in that it varies from zero to infinity.

4.4. WTC

Cross wavelet power reveals areas with high common power. Another useful measure
is how coherent the cross wavelet transform is in time–frequency space. We define the
wavelet coherence of two time series as

R2
n(s) =

∣∣S(s−1WXY
n (s))

∣∣2
S(s−1|WX

n (s)|2) · S(s−1|WY
n (s)|2)

(13)

where S is a smoothing operator. Notice that this definition closely resembles that of a
traditional correlation coefficient, and it is useful to think of the wavelet coherence as a
localized correlation coefficient in time–frequency space. We write the smoothing operator
S as

S(W) = Sscale(Stime(Wn(s))) (14)
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where S scale denotes smoothing along the wavelet scale axis and S time denotes smoothing
in time. It is natural to design the smoothing operator so that it has a similar footprint
as the wavelet used. For the Morlet wavelet, a suitable smoothing operator is given by
Torrence and Compo [20]:

Stime (W)|s =
(

Wn(s) · c
−t2

2s2
1

)∣∣∣∣∣
s

(15)

Stime (W)|s = (Wn(s) · c2 Π(0.6s))|n (16)

where c1 and c2 are normalization constants and Π is the rectangle function. The factor
of 0.6 is the empirically determined scale decorrelation length for the Morlet wavelet [20].
In practice, both convolutions are conducted discretely and therefore the normalization
coefficients are determined numerically.

In this study, the cross wavelet energy, wavelet correlation agglomeration and phase
spectra were calculated for monthly temperature, evaporation and rainfall and monthly
runoff series to analyze the multi-temporal correlation amongst temperature, evaporation,
rainfall and runoff. The hydrometeorological variables were used as input and output sig-
nals to characterize the responses of runoff changes to climatic factors in the Yinjiang River
watershed. Climatic factors (rainfall, temperature and evaporation) were taken as input
signals, and runoff was taken as an output signal. The correlation between climatic factors
and runoff signals in the frequency and time domains at different energies was analyzed
by using XWT and WTC. We had focused our analysis on the P–Q relationship to assess
the impact of rainfall on runoff changes. Besides that, the E–Q and T–Q relationship were
used to assess the impacts of evaporation and temperature on runoff changes, respectively.

5. Result Analysis

5.1. Annual, Seasonal and Monthly Evolution of Runoff and Climatic Factors on Main Scales
Analyzed by MRA
5.1.1. Monthly Variation

The main aim of this section is to visualize the distribution of energy across scales
(or resolution levels) of the hydrogeological time series. The MRA was performed on
monthly data, and the results for the first 10 MRA levels are shown in Figure 3. Overall,
the energy is distributed variably across levels in the hydrogeological time series and has
significant periodic characteristics in different time scales, especially at a large scale. Runoff
and rainfall show high energy oscillation at all levels, but they fluctuate with time, which
indicates that the high-energy differences in monthly runoff and rainfall explain most of
the differences. The energy vibrations at all time scales have a high consistency, and the
vibration consistency is significant at a large scale, which demonstrates that runoff is signif-
icantly affected by rainfall. Evaporation shows high-energy vibrations at all time scales.
Evaporation oscillation that gradually diminishes at 16-, 32- and 64-month time scales,
however, is consistent with runoff and rainfall at 128- and 256-month time scales. Several
obvious abrupt changes are detected from temperature in the vibration characteristics of
1 month to 4 months with the mutation years of 1990 (70-month) and 2000 (200-month)
according to energy distribution. The oscillation characteristics of temperature are consis-
tent with those of runoff and rainfall at time scales of 16, 64, 128 and 256 months. After
128-month time scales, the oscillation characteristics of runoff, rainfall, evaporation and
temperature all appear to have the same vibration characteristics at 10–20-year time scales.
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Figure 3. Multi-time-scale variations of monthly rainfall (a), temperature (b), evaporation (c) and
runoff (d).

5.1.2. Seasonal Variation

As shown in Figures 4–7, there are some synchronization characteristics on different
time scales for the evolution characteristics of surface runoff and climate factors on the
annual scale and four seasonal scales after scale segmentation by MRA. Except for the small
difference in runoff in autumn and winter, the evolution characteristics of runoff at other
scales are basically synchronous, especially in summer. The amplitude of rainfall oscillation
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at each time scale is larger than that of runoff, but a minimal difference exists between
them in spring, autumn and winter. Evaporation is asynchronous with temperature for the
variation characteristics at 1-year scale in spring and winter and at less than 4-year scale
in summer but relatively synchronous with insignificantly different amplitudes at other
scales. Over 16-year time scales, the time series of each factor has shown the consistent
evolution characteristics in four seasons and the amplitude of each factor increases with
the increase in time scale.

 

Figure 4. Multi-time-scale variations of rainfall (a), temperature (b), evaporation (c) and runoff
(d) in spring.

88



Land 2022, 11, 1284

 

Figure 5. Multi-time-scale variations of rainfall (a), temperature (b), evaporation (c) and runoff
(d) in summer.
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Figure 6. Multi-time-scale variations of rainfall (a), temperature (b), evaporation (c) and runoff
(d) in autumn.
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Figure 7. Multi-time-scale variations of rainfall (a), temperature (b), evaporation (c) and runoff
(d) in winter.

5.1.3. Annual Variation

It has been found that rainfall and runoff show the same oscillation characteristics in
different annual scales and the oscillation is obvious at 1–2- and 16–32-year time scales
(Figure 8). Temperature and evaporation oscillate at 4–32-year sales. Runoff, rainfall,
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temperature and evaporation have the same oscillation characteristics at 4-, 8- and 32-year
time scales. Runoff is mainly affected by rainfall, whereas evaporation is mainly affected
by temperature. As a whole, it has been found that there is a strong effect of rainfall over
runoff but a lesser effect of temperature and evaporation over runoff.

 

Figure 8. Multi-time-scale variations of annual rainfall (a), temperature (b), evaporation (c) and
runoff (d).
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5.2. Multi-Scale Evolution of Runoff and Climatic Factors Analyzed by CWT

As shown in Figure 9, the higher the spectral value (that is, the stronger the oscillation
energy) is, the more significant the periodic oscillation passes the 0.05 confidence level.
Except for the breakpoints at 8–16-month time scales in 1990 in Figure 9—Month Q, a main
cycle always exists at 12-month time scales, which reflects the overall and significant peri-
odic variation characteristics of monthly runoff. Several subcycles appear at approximately
36-month time scales (1990–2000) and 18–24-month time scales (1993–1997 and 2007–2012),
which are related to the significant increase in rainfall in this period. The cycle at 4–6-month
time scales (1984–2015) fluctuates in the time domain.

 

Figure 9. The continuous wavelet power spectra of monthly runoff (Month Q), rainfall (Month P),
evaporation (Month E) and temperature (Month T) in the Yinjiang River watershed. The thick black
contour designates the 5% significance level against red noise and the cone of influence (COI) where
edge effects might distort the picture is shown as a lighter shade.

There are three subperiods with different significant levels of monthly rainfall in the
time domain (Figure 9—Month P). The subperiod at 64-month time scales (1993–2008)
indicates that the runoff has an important characteristic at 5-year time scales and a basi-
cally stable periodic variation. The subperiod at 24-month time scales (2007–2013) and
at 18-month time scales (1993–1997) denotes that rainfall exerts a significant impact on
runoff. Rainfall has similar fluctuation characteristics to runoff at 4–6 month time scales
(1985–2015) and shows large fluctuations in the time domain.

There are three subcycles at 32-month time scales (1988–1992), 24-month time scales
(2007–2013) and 6-month time scales (1984–2015) with different significant levels of monthly
rainfall in the time domain (Figure 9—Month E). The fluctuation characteristics of evapora-
tion are similar to those of runoff and rainfall at 6-month time scales. Obvious differences
are also observed in the energy distribution characteristics in different periods, which
indicates that rainfall and evaporation have obvious local characteristics of subperiodic
variation consistent with those of runoff, but their energy is relatively weakened.
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The monthly temperature is close to the monthly evaporation periodic bandwidth
without interruption (Figure 9—Month T), which reflects the global and significant periodic
variation characteristics of the monthly temperature and evaporation and indicates that
the monthly temperature may affect the runoff mainly by changing the monthly evapo-
ration. The monthly temperature has significant high-energy characteristics in the time
domain around 1990 and 2000. The energy is strong at high frequencies below the scale
of 1–8 months and weak at low frequencies after 8 months, but the periodic bandwidth
increases with the scale.

It has also been found that a main period for runoff and climatic factors appears at
12-month time scales, which indicates that the periodic changes in hydrometeorology are
mainly reflected in the annual scale. The discontinuous period and periodic bandwidth
of climatic factors are basically consistent with the monthly runoff. The monthly runoff is
consistent with the monthly rainfall, and the monthly temperature is consistent with the
monthly evaporation. In addition, it has been found that the monthly runoff, rainfall and
evaporation have the significant global fluctuation characteristics at high-frequency scales
of below 8 months, whereas temperature exhibits only local fluctuation characteristics in
1990 and 2001 but significant impacts over 12-month time scales from 1995 to 2005. It can
be concluded that rainfall is the main factor that affects runoff change in high-frequency
regions and temperature and evaporation are the main factors in low-frequency regions.

As can be shown in Figures 10 and 11, runoff in spring has a main cycle at 4–6 years
(1995–2000) and a subcycle at 1–2-year time scales (1990–1997). Runoff in summer is an
insignificant period on the 4-year time scales (1990–2000). There are global insignificant
characteristics for the main period of runoff in autumn at 1–2-year time scales (2006–2010)
and the subperiod at 7-year time scales (1993–2005).

 

Figure 10. The continuous wavelet power spectra of seasonal runoff in the Yinjiang River watershed.
The thick black contour designates the 5% significance level against red noise and the cone of influence
(COI) where edge effects might distort the picture is shown as a lighter shade.
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Figure 11. The continuous wavelet power spectra of seasonal rainfall, evaporation and temperature
in Yinjiang River watershed. The thick black contour designates the 5% significance level against
red noise and the cone of influence (COI) where edge effects might distort the picture is shown as a
lighter shade.

The evolution characteristics of rainfall, temperature, evaporation and runoff vary
greatly in spring, autumn and winter, but they are relatively stable in summer. They have
great variations in high-frequency scales in spring and in low- and high-frequency scales in
autumn, as well as periodicity in middle- and high-frequency scales in winter. Moreover, no
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obvious periodicity is detected in summer, whereas the significant periodic characteristics
exist in other seasons.

From the annual scale (Figure 12), annual runoff has a main period at 6-year time
scales (1995–2007), and the main period of rainfall is insignificant on this scale in the same
period. However, the high-power spectrum of rainfall at this scale shows that it has an
important impact on runoff change. No significant main period of evaporation is observed
in the entire valid spectrum period, but significant periodic variations in temperature occur
at 1–6-year time scales in 1997–2003. The power spectrum value of annual temperature
at 6–8-year time scales remains high but insignificant. Over the 8-year time scales, the
periodicity is significant, but the period bandwidth is narrowed.

 

Figure 12. The continuous wavelet power spectra of annual rainfall, evaporation and temperature
in Yinjiang River watershed. The thick black contour designates the 5% significance level against
red noise and the cone of influence (COI) where edge effects might distort the picture is shown as a
lighter shade.

5.3. Response Characteristics of Runoff Changes to Climatic Factors at Different Time Scales
5.3.1. Response of Runoff Changes to Climatic Factors on Monthly Scale

The cross wavelet power spectra of monthly rainfall and runoff, as shown in Figure 13,
illustrate that the interaction between monthly rainfall and runoff is mainly concentrated
in the main cycle at 12-month time scales from 1984 to 2015, which indicates a significant
correlation between them at 1-year scale. The interaction between monthly rainfall and
runoff is also shown in two subcycles at approximately 24-month time scales (1993–1996
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and 2007–2013) and 72-month time scales (1993–2008). The energy difference in main
cycles and subcycles in the time domain reflects that rainfall in different years has different
regulating effects on runoff change.

 

Figure 13. Cross wavelet spectra and wavelet coherence spectra of monthly rainfall, temperature
and evaporation with runoff in the Yinjiang River watershed from 1984 to 2015, respectively. The
thick black contour designates the 5% significance level against red noise and the cone of influence
(COI) where edge effects might distort the picture is shown as a lighter shade. Arrows denote relative
phase difference: The arrows from left to right indicate that the influencing factors and runoff are in
the same phase, which implies a positive correlation; the arrows from right to left indicate an inverse
phase, which implies a negative correlation; the downward arrows indicate that the influence factor
is 90◦ ahead of the runoff change and the upward arrows indicate that the influence factor is 90◦

lagging the runoff.

The cross wavelet coherence spectra can compensate for the lack of correlation analysis
of the cross wavelet power spectra in the low-energy region. The cross wavelet condensa-
tion spectra has a larger time–frequency domain space compared with the cross wavelet
power spectra. In addition to the positive correlation at 12-month time scales between
1984 and 2015, a positive correlation is also observed in subperiods between 1991 and 2008
(72-month time scales) and 1984 and 2015 (4–8 months). By contrast, a negative secondary
cycle occurs in 1996–2004 (36-month time scales). The contribution of rainfall to runoff in
the Yinjiang River watershed can also be determined from the phase relationship between
the cross wavelet power spectra and the cross wavelet condensation spectra. The main
periods of 4–8-, 12- and 72-month time scales show a significantly positive correlation. This
result is mainly because soil moisture is easy to be saturated due to the increase in rainfall
on this scale, thus accelerating the formation of slope runoff within the river watershed and
forming an effective replenishment for the river. On the contrary, the phase is negatively
correlated in the subcycle at 36-month time scales, which indicates that the influence of
rainfall fluctuation on runoff changes is negative. On the one hand, runoff will increase
with the increase in rainfall on the river recharge. On the other hand, the increasing rainfall
will increase vegetation coverage, enhance water conservation, increase evaporation and
eventually reduce river recharge. The high-correlation region of the cross wavelet conden-
sation spectra is basically consistent with the high-energy region of the cross wavelet power
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spectra. A strong correlation exists between the monthly rainfall and runoff at 64-month
time scales from 1995 to 2008, and the phase angle is 30◦, which indicates that the rainfall
lags behind the runoff for 1 month.

The monthly evaporation, temperature and runoff have main periods of 12-month time
scales in high-energy areas. In low-energy regions, not only a high correlation at 12-month
time scales but also a local significant correlation between the effects of temperature and
evaporation on runoff changes at 1–8-month time scales are determined. Thus, temperature
is mainly regulated indirectly by controlling evaporation. The influence of evaporation
on runoff will superimpose the influence of temperature due to the indirect regulation of
temperature on runoff because their influence on runoff is generally consistent in different
scales but slightly different in different years.

The effects of monthly rainfall, temperature and evaporation on runoff are positively
correlated in the main cycle at 12-month time scales, which indicates that their effects on
runoff are positive and mainly at the annual scale. The main periodic bandwidth of rainfall
on runoff changes is wider than that of temperature and evaporation, which indicates
that rainfall is the main factor that affects runoff variation. In other cycles, the phases of
rainfall’s impacts on runoff changes are the interlacing phenomena of positive and negative,
whereas the phases of temperature and evaporation that affect runoff changes are mainly
negative. Accordingly, the impact of rainfall fluctuation on runoff changes on this scale
is both positive and negative, whereas that of evaporation is always negative. However,
temperature and evaporation have negative effects on runoff in each subcycle, which may
be because evaporation increases with the increase in temperature, thus reducing runoff
recharge.

The response of runoff to rainfall is timely in the high-energy region and the low-
energy significant-correlation region. There has been shown a positive correlation with
a smaller phase angle, but there is also a slight lag at 16-month time scales. The phase
angles of evaporation, temperature and runoff range from 30◦ to 45◦, which demonstrates
that runoff changes have lagged behind temperature and evaporation for 1–2 months. The
similarities of the effects of monthly temperature and evaporation on runoff changes have
also proved that temperature indirectly affects runoff changes by changing evaporation.

5.3.2. Response of Runoff Changes to Climatic Factors on Seasonal Scale

The effect of rainfall on runoff changes in the four seasons has a significant high-energy
region from the XWT power spectra (Figure 14). There are higher power spectrum values,
stronger influences and wider time domains in spring and autumn. In spring, the related
regions are mainly in the main cycle at 4-year time scales from 1998 to 2012 and the subcycle
at 1-year scale from 1991 to 1995. In autumn, the relevant regions are mainly in the main
cycle at 7-year time scales from 1992 to 2000 and the subcycle at 2-year time scales from
1995 to 2000 and then are invisible.

The effect of evaporation on runoff changes presents some significant high-energy
zones in four seasons. Energy is strongest in autumn and weakest in summer. The
evaporation effect is significant at 6–8-year time scales from 1993 to 2005. In spring,
summer and autumn, the locations of significant high-energy zones on the same scale
are basically the same. The effect of evaporation on runoff in spring and summer differs
on different time scales. In autumn and winter, the energy distribution of the effect of
evaporation on runoff changes is similar to that of rainfall on runoff changes, but the phase
relation is opposite. Accordingly, the regulation of rainfall to runoff changes is positive,
whereas that of evaporation is negative. This phenomenon may be caused by drought, less
rain and strong evaporation, which can directly reduce runoff.
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Figure 14. XWT between runoff and rainfall, evaporation and temperature on monthly scale. The
thick black contour designates the 5% significance level against red noise and the cone of influence
(COI) where edge effects might distort the picture is shown as a lighter shade. Arrows denote relative
phase difference: The arrows from left to right indicate that the influencing factors and runoff are in
the same phase, which implies a positive correlation; the arrows from right to left indicate an inverse
phase, which implies a negative correlation; the downward arrows indicate that the influence factor
is 90◦ ahead of the runoff change and the upward arrows indicate that the influence factor is 90◦

lagging the runoff.
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The effect of temperature on runoff also has significant high-energy regions in the
four seasons. The power spectrum value is high, and the influence is strong in spring and
winter. The influence of temperature in spring mainly concentrates on the main cycle at
4-year time scales from 2000 to 2014, and it is consistent with the influences of rainfall
and evaporation on runoff at more than 6-year time scales. The effect of temperature on
runoff changes mainly concentrates on the main cycles at 1-year time scale in summer and
at 2-year time scales in autumn from 2007 to 2010. However, the effect of temperature
on runoff in autumn has a subcycle at approximately 8-year time scales with high energy
from 1995 to 2005, and it is similar to that of rainfall and evaporation at the same scale
in the same time domain. The changes in temperature and evaporation in summer are
ahead of runoff change, but the lead time of temperature ahead of runoff is greater than
that of evaporation in summer. In addition, the effect of temperature on runoff changes
in winter has a significant high-energy region at 4-year scale from 1990 to 1995, and that
of rainfall and evaporation on runoff is stronger in the same time–frequency domain.
Seasonally, the influence of temperature on runoff is similar to that of rainfall on runoff in
the energy distribution in spring, which indicates that the increase in temperature results
in increased rainfall and thus increases rainfall supply to runoff. In autumn, the influences
of temperature, evaporation and rainfall on runoff have a consistent feature in energy
distribution, which also shows that temperature has an important impact on evaporation
and rainfall and leads to the same effect on runoff.

From the WTC condensation spectra of rainfall, temperature and evaporation with
runoff in the four seasons (Figure 15), the highly correlated area of rainfall impacts runoff
changes with an increase in years and scales, and it changes from 1-year scale in 1990–2000
to 4-year scale in 1995–2005. The main period of the impact of rainfall on runoff in summer
is concentrated on the high-frequency scales, and the bandwidth tends to widen, which
indicates that the period tends to be stable. The effect of rainfall on runoff in autumn is
mainly manifested in the main period at approximately 8-year time scales from 1992 to 2005,
with a wide bandwidth and an extremely stable period. The significant-correlation area of
rainfall on runoff in winter is concentrated at 1-year and 7-year time scales from 1993 to
2003, and the influence is relatively weak. The significant-correlation region of evaporation
in each season is consistent with the high-energy region of the XWT power spectrum, but it
is more significant in autumn over 4-year time scales. Although the bandwidth in autumn
is narrowed from 1990 to 2006, it still has a wide periodic bandwidth, which is similar to
the impact of rainfall on runoff in the same season, indicating that the runoff change is
mainly affected by rainfall and evaporation in autumn. According to phase characteristics,
the phase relation between rainfall and runoff is positive, which implies that the influence
is always positive, whereas the potential correlation between evaporation and runoff is
negative; hence, the influence is negative, and their impact on runoff has a common main
period at 8-year time scales. The influence of temperature in spring, summer and winter on
runoff is relatively significant, and it is concentrated at the 4-year scale from 2000 to 2010
in spring, at the 1–4-year time scales from 2004 to 2010 in summer and at the 4-year time
scales from 1990 to 2000 in winter. This finding indicates that the influence of temperature
on runoff has significant differences in scale and time domain in different seasons, that is, it
has significant local characteristics rather than global characteristics. As a whole, the main
periodic bandwidth of the significant-correlation region in each season tends to widen,
and the time-domain range of the correlation region also increases. The frequency-domain
structure of the significant-correlation region of the WTC is basically consistent with that of
the XWT high-energy region.
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Figure 15. WTC between runoff and rainfall, evaporation and temperature on monthly scale. The
thick black contour designates the 5% significance level against red noise and the cone of influence
(COI) where edge effects might distort the picture is shown as a lighter shade. Arrows denote relative
phase difference: The arrows from left to right indicate that the influencing factors and runoff are in
the same phase, which implies a positive correlation; the arrows from right to left indicate an inverse
phase, which implies a negative correlation; the downward arrows indicate that the influence factor
is 90◦ ahead of the runoff change and the upward arrows indicate that the influence factor is 90◦

lagging the runoff.

In summary, runoff changes are mainly affected by rainfall and temperature in spring,
mainly by direct rainfall recharge. That temperature increases rainfall and evaporation is
the reason why its phase relation presents a positive and negative interlacing phenomenon
in spring. In summer, runoff is mainly affected by direct rainfall recharge, the effect of
evaporation on runoff changes is negative, and the positive effect is mainly reflected at
more than 5-year time scales. In autumn, runoff change is affected by a small amount of
rainfall supply and runoff loss is caused by evaporation. In winter, runoff is mainly affected
by temperature because the rainfall in karst areas cannot form the effective recharge for
runoff due to the drought and minimal rain; however, the temperature can indirectly adjust
runoff changes by changing evaporation.
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5.3.3. Response of Runoff Changes to Climatic Factors on Annual Scale

For XWT P–Q (Figure 16), a strong-influence period occurs in 2005, which indicates
that the intensity of interaction between rainfall and runoff changes after the sudden
variation in runoff in 2003. This phenomenon also implies that climatic factor is the main
driving factor for the recent runoff increase. The high-intensity effects of P–Q present a
significantly positive correlation and occur mainly at approximately 6-year time scales in
the period from 2000 to 2010. The effect of P–Q passes the test of the red noise standard
spectrum at the 0.05 significance level with a phase angle of 60◦, which indicates that runoff
is ahead of rainfall by 2 years on the 6-year time scales. The highly significant correlation
after 2010 occurs on the 1–2-year time scales with consistent characteristics.

 

Figure 16. The XWT and WTC for annual rainfall (P) and runoff (Q), evaporation (E) and runoff (Q)
and temperature (T) and runoff (Q) in the Yinjiang River watershed from 1984 to 2015. The thick
black contour designates the 5% significance level against red noise and the cone of influence (COI)
where edge effects might distort the picture is shown as a lighter shade. Arrows denote relative phase
difference: The arrows from left to right indicate that the influencing factors and runoff are in the
same phase, which implies a positive correlation; the arrows from right to left indicate an inverse
phase, which implies a negative correlation; the downward arrows indicate that the influence factor
is 90◦ ahead of the runoff change and the upward arrows indicate that the influence factor is 90◦

lagging the runoff.
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For WTC P–Q, a significant high-correlation region on 4–7-year time scales exists
during the entire period, which indicates that runoff is strongly affected by rainfall. From
the phase diagram of P–Q, runoff has shown 2–3-year time scales ahead of rainfall in
1990–2000. Thus, the change in runoff is mainly affected by human activities. After the
2000s, the phase angle decreases gradually, indicating that runoff is gradually aggravated
by rainfall. According to the results of the XWT and WTC of P–Q, the high-energy region
and high-correlation region of P–Q are mainly concentrated around the middle of 2010,
and the main cycle is mainly at 6-year time scales.

For XWT E–Q, since 2010, it has a highly significant correlation on the 1–2-year time
scales, which demonstrates that evaporation has a significant impact on runoff at this time
scale. For WTC E–Q, the E–Q cycle mainly concentrates at 1–2-year time scales during the
period from 1990 to 2000 and from 2005 to 2015. The E–Q cycle mainly concentrates on
6–8-year time scales from 1995 to 2005, which indicates that the effect of evaporation on
runoff is small. The E–Q phase correlation also shows that the E–Q phase correlation is
an inverse phase with a phase angle of 45◦ from 1990 to the end of 2010 at 1–2-year time
scales, which implies that evaporation is 1–2 years ahead of runoff. After 2005, evaporation
remains in an inverse phase with runoff, with an initial phase angle of approximately 30
(at 1-year time scale), and then decreases and finally increases. The relationship between
evaporation and runoff changes from lag to consistency to advance, which indicates that
evaporation pays an important role on runoff changes. The results of XWT and WTC show
that the phase angle on 7-year time scales is approximately 45◦ from 1995 to 2005, indicating
that E is approximately 1.5 years ahead of Q.

For XWT T–Q, there is a high-energy region existing at 1–2-year time scales after 2005,
which has passed the test of the standard spectrum of red noise at the 0.05 significant
level. Therefore, the influence of temperature on runoff suddenly strengthens around 2005.
However, the influence is relatively weak on the 4-year time scale and 6–8-year time scales,
and it has not passed the test of red noise standard spectrum at the 0.05 significance level.
The WTC results show two low-energy areas with the greatest impact. One is at the time
of 3–4-year time scales in the period from 1990 to 2002, in phase with the phase angle
between 60◦ and 70◦, showing that temperature is ahead of runoff for more than 2 years.
The other is at 1–2 year time scales after 2005, in which T–Q shows a negative correlation
in the opposite phase with the initial phase angle of 45◦ and then gradually reduces to 0◦.
The above results show that the effect of temperature on runoff gradually changes from lag
to consistency, indicating that the effect of temperature on runoff changes is increasingly
obvious.

Overall, the interaction of rainfall with runoff changes at 6-year time scales across
the entire period. However, the effects of temperature and evaporation on runoff changes
are locally significant. The effect of evaporation on runoff changes is similar to that of
temperature and has obvious local characteristics, mainly on small cycles.

6. Discussion

6.1. Multi-Scale Effects of Rainfall on Runoff Changes

Although the interaction between rainfall and runoff is positively correlated on the
whole, the temporal effects are inconsistent in different time domains and scales. The effect
of rainfall on runoff is ahead, lagging and consistent in time, ahead in high-frequency and
low-frequency scales, lagging at medium-frequency scales (approximately 4 years) and
consistent at 1-year scale and significant main periodic scales. For the leading effect, runoff
may be mainly affected by early rainfall, which mainly occurs in rainy weather in spring
and autumn. The surface and underground areas of karst are filled with soluble rocks
with the main type of carbonate, which is vulnerable to erodible water that contains CO2,
thereby forming a large number of karst pipelines and fissures [51–53] over a long period of
time and two sets of surface and underground hydrological systems [46]. Rainfall requires
first to saturate soil water due to low soil moisture in karst areas [54–56]. Surface runoff
is difficult to form with small rainfall due to the fragmented surface, steep and rugged
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slopes, low runoff coefficients in slope surfaces and small river network density [57–61].
Rainfall is the main factor for runoff formation, and its intensity, duration and areas have
great influences on runoff change. When raining heavier, rainwater may hardly infiltrate
and leak and thus then increase runoff. If the rainfall intensity is smaller, most of the
rainwater infiltrates into the soil and leaks through enormous karst fissure pipelines, which
can reduce the runoff. The longer the duration of rainfall and the larger the area of rainfall,
the easier the soil moisture will be saturated, and the runoff generated on the slope will
inevitably be larger. Runoff monitoring studies on karst slopes show that light rainfall
intensities (15~30 mm/h) generate subsurface lateral flow and underground fissure flow,
whereas great rainfall intensities generate surface runoff in addition to subsurface and
underground flows [62]. However, only a single rainfall of more than 60 mm on a karst
slope can produce stable runoff because once the atmosphere rains [63], it immediately runs
off into the ground through a broken surface and underground fissure, with distribution
ratios of 27.8–78.0%, dominating the total flow yield. Therefore, the loss of rainfall and the
formation of runoff in the slope surfaces of karst areas are much more difficult than those in
non-karst areas. Only the last rainfall may form slope surface runoff under repeated rainfall
because of the recharge of soil moisture first and the loss through fragmented surface
leakage. Pre-rainfall mainly supplements soil moisture or leaks down through the broken
surface to the pipeline and fissure. For all that, it has been found that all climatic factors
exhibit a main cycle at 12-month time scales with runoff changes, which may show that the
hydrometeorological processes in karst watersheds represent the same characteristics as
those in non-karst watersheds at 1-year time scale (12-month time scale) periodic variations.
This may be mainly because the impact of karst characteristics on hydrometeorological
processes is mainly manifested on the slope scale, and all flows in the watershed will
eventually converge to the outlet of watershed [45,46], which leads to the same annual
periodic characteristics as those of non-karst watersheds. If the interval of multiple rainfall
is long and the cumulative rainfall is less than 60 mm, it may lead to rainfall changes ahead
of runoff on a monthly scale. If the cumulative rainfall is large under the condition of
multiple short-term rainfall, the last few small rainfall events will produce obvious runoff
on the slope after the saturation of soil water, and then the rainfall before the saturation
of soil water will produce a leading effect on runoff. The effect of rainfall after soil water
saturation on runoff changes will be synchronous because surface runoff would only occur
when both soil and carbonate fissures and fractures are fully saturated with water [36,39].
Most of the rainfall is transported to the groundwater system through carbonate fractures
and fractures, while the rainfall that can form surface runoff is very small [53,64].

In addtion, some studies have shown that antecedent rainfall and rainfall intensity
are the major factors that control rainfall–runoff and soil erosion processes [65]. Rainfall
intensity, slope angle and groundwater porosity [57] are the influencing factors of runoff
changes mainly because the runoff mechanism caused by rainfall is different in years with
different soil water contents. Different soil moisture contents are present in the early stage
and the runoff generated by rainfall is also different in the year of rainfall approaching
due to the different soil moisture contents in the early stage. In this case, the annual runoff
depth is related to the rainfall year. For some places where recharging soil moisture by
rainfall is difficult, the annual runoff depth is even related to the last rainfall year or even
the previous years.

The process from rainfall to runoff will undergo seepage storage, slope overflow and
channel flow collection. In karst watersheds, each process will be accompanied by under-
ground leakage and the broken surface will affect the time, which greatly lengthens the lag
time of runoff change. The influence of the changes in underlying surface conditions on
runoff is a gradual process, but the influence of human activities on runoff is a catastrophic
process. Therefore, the main reason why rainfall lags behind runoff is that human activities
lead to catastrophic changes in runoff, especially land use changes, which destroy the
original runoff production and confluence conditions. Such human activities as pumping
and storing or introducing water into farmland can also lead to catastrophic changes in
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runoff. Therefore, the effect of rainfall on runoff will be delayed. Due to the large amount of
runoff that will be produced when a heavy rainfall falls, the runoff series will show a great
jump. At this period, obvious runoff will be produced directly on karst slopes because soil
moisture is absorbed and saturated in a short time due to the large amount of rainfall, and
its response to rainfall is timely with the consistent variation relationship. On the contrary,
the runoff series may jump negatively due to the lack of rainfall when the watershed suffers
from years of rare drought, but the positional correlation between the two is positive. The
effect of rainfall on runoff can be influenced by human activities, such as soil and water
conservation, which may play an important role in reducing runoff. However, the role of
soil and water conservation will become small or ineffective when encountering heavy
rain or rainstorm. The effect of rainfall on runoff changes will change the relationship
between rainfall and runoff because of different patterns, intensity or frequency when
raining. Temporary water intake by human activities can also alter runoff, thereby resulting
in different time effects of advance, synchronization and lag.

6.2. Multi-Scale Effects of Evaporation on Runoff Changes

In the process of rainfall, evaporation exerts a minimal effect on runoff but has a
great impact on the water storage capacity of the basin before rainfall. The greater the
evaporation intensity, the smaller the soil water content before the rain, which increases the
infiltration loss of rainfall and reduces the small-diameter flow. This study has supported
the previous conclusion in annual scale that the effect of evaporation on runoff change
was significantly enhanced, showing a great contribution of 10–90% [32], but there were
some new discoveries during the year. The effect of evaporation on runoff was only in
the high-frequency scale in summer and the 6-year scale in winter. In other seasons or
scales, most hysteresis effects with a few synchronous relationships in the time domain
have shown at different time scales, which indicates that runoff changes are affected by
evaporation. The evaporation is larger in summer; hence, short-term evaporation has
a significant impact on runoff changes, which results in the changes in runoff lagging
behind evaporation. The effect of runoff ahead of evaporation has been virtually masked by
rainfall and human activities. The runoff changes are greatly influenced by abrupt rainfall
and human activities, whilst evaporation shows a continuous stable process. Rainfall
burst or human activities will contribute to the changes in the underlying surface of the
watershed, which directly alters the evaporation conditions and volume that will cause the
time dislocation in different time domains. The strong disturbance of human activities on
runoff will directly lead to relatively stable and persistent evaporation lagging behind the
change in runoff.

The essence of changing runoff by evaporation is to reduce the recharge of runoff and
increase the evaporation of the river surface. In addition, evaporation shows a high impact
on runoff change also because of the influence of the subtropical monsoon climate, abundant
light and heat resources in Southwest China. The influence of evaporation on runoff varies
obviously in different periods, which is mainly affected by the light, temperature, heat,
climate and water content of underlying surface. However, runoff changes are affected not
only by evaporation but also by rainfall and human activities, which makes it impossible
for the evolution of runoff and evaporation to be completely consistent.

6.3. Multi-Scale Effects of Temperature on Runoff Changes

The influence of temperature on runoff is consistent with that of evaporation in both
time and frequency domains and has the same multi-time-scale characteristics and time–
frequency relationship. However, a negative correlation exists between temperature and
runoff because an increase in temperature leads to the intensification of evaporation on
slopes and rivers of the watershed and decreases air humidity, thus changing the runoff.

On monthly and annual scales, as well as in summer, the effect of temperature on
runoff is mostly ahead of schedule, whereas it is mainly lagging behind in spring, autumn
and winter. Thus, the regulation of temperature on runoff is mainly reflected on the season
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scale. In summer, the change in runoff is mainly caused by changing evaporation and
increasing rainfall to recharge soil moisture, and hence its impact on runoff shows a longer
lead time than that of rainfall and evaporation. In other seasons, human activities change
runoff intensely because of the relatively minimal rainfall, which leads to the relative lag
of temperature change. On annual scale, the temperature regulation effect before 2000 is
relatively stable, which mainly changes the runoff by changing the roles of evaporation
and rainfall, resulting in a leading effect. Overall, the inter-annual temperature regulation
is gradually lost, and the temperature regulation during the year is relatively prominent,
but this regulation remains affected by human activities.

7. Conclusions

In this study, the multi-scale influences of climate factors on runoff changes in the
Yinjiang River watershed are identified by using wavelet analysis, and the evolution
relationship of time and frequency between runoff changes and climatic factors is further
revealed at different time scales. The main conclusions are as follows:

(1) All climatic factors exhibit a main cycle at 12-month time scales with runoff changes,
but the main periodic bandwidth of rainfall on runoff changes is much wider than that of
temperature and evaporation, indicating that rainfall is the main factor affecting runoff
changes.

(2) In other cycles, the impact of rainfall on runoff changes is the interlacing phenomena
with positive and negative, but the impact of temperature and evaporation on runoff change
is mainly negative.

(3) The response of runoff to rainfall is timely in the high-energy region and the low-
energy significant-correlation region and shows a positive correlation with a smaller phase
angle, but it is slightly lagged at 16-month time scales, in which the runoff changes lag
behind temperature and evaporation for 1–2 months.

(4) It has been found that there is a strong effect of rainfall over runoff but a lesser
effect of temperature and evaporation over runoff.

(5) The interaction of rainfall with runoff changes at 6-year time scales across the entire
period. The effect of evaporation on runoff changes is similar to that of temperature and
exhibited obvious local characteristics, mainly at small cycles.

The study has revealed the evolution process of river runoff in typical karst basins
and the interaction mechanism between river runoff and climatic factors on multiple time
scales, providing theoretical inspiration for fully solving the regional water shortage and
engineering water shortage problems in the karst areas of Guizhou Province.
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Abstract: In recent decades, vegetation coverage and land use/land cover (LULC) have constantly
changed, especially in southwest China. Therefore, it is necessary to conduct in-depth research into
the temporal–spatial variation patterns of vegetation greening, LULC, and gross primary productivity
(GPP). Here, we used remote sensing to analyze the spatial and temporal variation in the normalized
difference vegetation index (NDVI) and GPP in the growing season under different LULCs in
southwest China. Results showed: (1) From 2000–2019, the forest area in southwest China had
increased by 2.1%, while the area of cropland and grassland had decreased by 3.2% and 5.5%,
respectively. Furthermore, there are significant differences in spatial variation patterns. (2) NDVI
and GPP in the growing season showed a general increasing trend (p < 0.01); vegetation coverage is
dominated by high coverage to highest coverage and medium coverage to high coverage transfer.
(3) Under different LULCs, the migration directions of NDVI and GPP were different. The center
of gravity migration of highest and medium coverage shifted to the southeast by 1.69◦ and to the
northwest by 1.81◦, respectively. The results showed the ecosystem evolution and will help to guide
the maintenance measure of ecosystem balance and sustainable development.

Keywords: southwest China; normalized difference vegetation index (NDVI); gross primary produc-
tivity (GPP); land use/land cover (LULC); center of gravity shift model

1. Introduction

The ecological environment of karst landforms in southwest China is fragile and has
been significantly affected by climate and human activities in recent decades [1–3]. Changes
in vegetation, LULC, and GPP affect biogeochemical cycles, and social effects in this region
impact the area range of influence [4–7]. However, the spatial and temporal characteristics
of LULC, vegetation, and carbon storage are not clear. This has a significant impact on
ecological evolution and regional social development [8,9]. Therefore, there is a need to
clarify the temporal change characteristics of LULC, vegetation, and carbon storage in
southwest China.

Southwest China has a large number of karst ecosystems, which are hypersensitive
and fragile. First, this area is one of the largest exposed areas of carbonate rock salts in the
world [10], and in these environments, the soil formation rate is low, and the permeability is
high due to the presence of interstitial fractures. Furthermore, it has unique and fragile ge-
omorphological and hydrogeological features [11]. In recent decades, long-term and severe
climate change and human activities have brought enormous pressure to the ecosystem in
this area [12–14]. Rocky desertification has become one of the most serious environmental
problems in karst areas [15,16]. Terrestrial vegetation types and compositions have changed
due to climatic conditions, carbon dioxide fertilization effects, and LULC [17,18]. Second,
under the background of population pressure and urbanization, the intensity of human ac-
tivities has increased rapidly, and the land cover has undergone drastic changes [19]. Third,
since the end of the 20th century, China has implemented a large number of ecological
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engineering constructions, which have achieved an increase in vegetation coverage and
carbon storage through ecological restoration and improved ecosystem services [20–22]. In
addition, the southwest region is an important ecological barrier and ecologically fragile,
with extensive potential for various ecosystem services, such as soil and water conservation,
climate regulation, and carbon balance [23–25], providing a huge contribution to social
development, ecosystem balance and carbon sequestration [24,26,27].

At present, the spatial and temporal changes in LULC, vegetation cover, and gross
primary productivity (GPP) in southwest China are not clear. Vegetation is an important
factor affecting the ecological balance and is usually considered as a direct and obvious
indicator to analyze the impact of natural seasonal changes and human activities on
the ecological environment [28,29]. Gross primary productivity (GPP) is an important
indicator reflecting vegetation status, ecosystem structure, and function [30] and plays
a key role in carbon cycling in terrestrial ecosystems [31], and is an important factor in
measuring the regional ecological value [32,33]. Therefore, clarifying temporal and spatial
evolution processes is of great significance for understanding the value and sustainable
development of ecosystems. Studies have found that China’s vegetation has shown an
overall greening trend in the past 30 years [24]. However, due to the vast heterogeneity
of climate, topography, and human activities in the southwest, the spatial and temporal
distributions of LULC, vegetation dynamics, and gross primary productivity (GPP) are
significantly different [2,14,34]. Since 2000, the LULC change in southwest China has been
mainly manifested in the expansion of forest land and the reduction in cropland [4,35].
The study found that NDVI increased significantly in low- to mid-altitude areas < 3400 m
due to improved afforestation and agricultural productivity [36]. In the afforestation and
grassland restoration areas, the direct contribution of forest land to the annual growth rate
of GPP is 24.64% [37]. In addition, according to long-term remote sensing vegetation data,
it is found that short-term extreme climate events respond differently to different land-use
types, resulting in differences in regional ecological effects [38,39]. Therefore, it is of great
significance to understand the temporal and spatial pattern characteristics and change
processes of different LULC types, vegetation dynamics, and gross primary productivity in
the region for correctly understanding the temporal dynamic changes and spatial changes
in regional vegetation dynamics and gross primary productivity.

The changes in vegetation and productivity center can reflect the evolution of ecosys-
tems influenced by human activities and climate change. Human activities affect vegetation
and productivity changes, such as ecological engineering, which increases vegetation
growth and carbon storage in southwest China [40,41], and positively contributes to vegeta-
tion productivity [42]. However, the expansion of arable land and the surge in population
has also led to the degradation of vegetation [15]. Deforestation reduced the GPP and leaf
area index in China between 1982 and 2011, and their centers of gravity shifted [43]. The
spatial and temporal changes in vegetation cover and productivity in different regions have
obvious uncertainties [6,44,45]. Natural evolution is also an important factor leading to
the migration of its center of gravity; for example, the northward shift of the climatic zone
makes the ecological center of gravity move northward [46,47]. In summary, combined
with different LULC types, studying the temporal and spatial variation patterns of different
levels of vegetation cover (NDVI) and its gross primary productivity (GPP) in southwest
China can deepen the understanding of vegetation and productivity changes in southwest
China. It has very important ecological value and practical significance for the balance and
sustainable development of the ecosystem.

The purpose of this study is to clarify the temporal and spatial dynamic of LULC,
vegetation cover, and GPP in southwest China and the migration pattern of the center of
gravity. Combined with MODIS remote sensing, we analyzed the temporal and spatial
changes of vegetation cover (NDVI) and gross primary productivity (GPP) under different
LULC types in southwest China. Therefore, our aims in the study are: (1) to clarify the
migratory direction of LULC in southwest China and the spatial and temporal change
patterns of NDVI and GPP in the growing season; (2) to explore the change characteristics of
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GPP under different land use types and different vegetation coverage levels; (3) to analyze
the migration law of vegetation cover and GPP center of gravity.

2. Data and Methods

2.1. Study Area

Southwest China covers a region bounded by 20◦54′–34◦19′ N and 97◦21′–112◦04′ E
(Figure 1). It includes five provinces (municipalities, autonomous regions): Chongqing,
Sichuan, Guizhou, Yunnan, and Guangxi. The area has a total coverage of 1.38 × 106
km2, which is about 14.34% of China. The study area is dominated by the subtropical
monsoon climate, affected by the southeast and the southwest monsoon, with a mean
annual temperature of 14.6 ◦C and an average annual precipitation of 1195 mm, of which
600 mm occurs in the growing season. The terrain is high in the west and low in the east,
with a stepped distribution, diverse landform types, and high landscape heterogeneity [48].
Southwest China is the most concentrated area of karst landforms, accounting for 23.14% of
China’s karst distribution area. The forest has a large area and is widely distributed in the
study area. Grassland is mainly distributed in the western Sichuan Plateau, and cropland
is mainly distributed in the Sichuan Basin, the middle of the Guangxi hills, and the eastern
part of the Yunnan–Guizhou Plateau. The three main LULC types are grassland, forest, and
cropland, accounting for more than 98% of the total area of southwest China.

Figure 1. Study area location in China and land cover types in 2019.

2.2. Data

The normalized difference vegetation index (NDVI) data came from the study de-
rived from the MOD13A2 data product, with a spatial resolution of 1 km and a tem-
poral resolution of 16d (https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 6 Au-
gust 2021)). These data were preprocessed on the Google Earth engine platform (https:
//earthengine.google.com (accessed on 6 August 2021)), and the NDVI data from May to
September 2000–2019 were downloaded. The gross primary productivity (GPP) datasets
were obtained from the MOD17A2HV6 data product with a spatial resolution of 500 m and
a temporal resolution of 8d (https://lpdaac.usgs.gov/products/mod17a2hv006/ (accessed
on 28 August 2021)), and we downloaded the contemporaneous datasets from the Google
Earth engine platform (https://earthengine.google.com (accessed on 28 August 2021)).
The LULC data came from the first Landsat-derived annual China Land Cover Dataset
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(CLCD) from 1990 to 2019, with a spatial resolution of 30 m and an overall accuracy rate of
79.31%, better than MCD12Q1, ESACCI_LC, FROM_GLC, and GlobaLand30. The LULC
types in these data were divided into nine categories: cropland, forest, shrub, grassland,
water, snow/ice, barren, impervious, and wetland. The CLCD dataset introduced in this
article is freely available at http://doi.org/10.5281/zenodo.4417810 (accessed on 10 August
2021) [49].

2.3. Methods

The normalized difference vegetation index (NDVI) can reflect the growth and cov-
erage of surface vegetation [50,51]. Therefore, the NDVI values of different LULC types
were extracted to represent the growth state of this vegetation type. Vegetation has obvious
inter-annual and seasonal variation characteristics, and its NDVI value in the season of
the most active growth stage can more accurately represent the vegetation growth state
in this region [52]. In order to reduce the NDVI error caused by the seasonal changes in
vegetation, this paper used NDVI and GPP values in the growing season (May–October) to
analyze vegetation activities, which accurately reflected the status of vegetation cover and
GPP in southwest China. To minimize the effect of cloud contamination and atmospheric
variability, we calculated the annual growing season NDVI by using the maximum value
composites (MVC) method [53]. The MODIS NDVI and GPP data in the study area were
resampled to the monthly scale using ArcGIS10.4, with a spatial resolution of 1 km. Addi-
tionally, by averaging each pixel, the average values from May to October were obtained as
the growing season NDVI and GPP for each year from 2000 to 2019, which meant in pixels
of 500 × 500, there was, on average, one gC unit of GPP per 1 m2.

Simple linear regression was used to analyze the annual trends of average NDVI
and GPP values in the growing season of different LULC in southwest China from 2000–
2019. All data were analyzed using Python software. Additionally, referring to related
research [54], the vegetation coverage was divided into lowest coverage (0 < NDVI ≤ 0.35),
low coverage (0.35 < NDVI ≤ 0.55), medium coverage (0.55 < NDVI ≤ 0.75), high coverage
(0.75 < NDVI ≤ 0.85), and highest coverage (0.85 < NDVI ≤ 1), five grades. The gravity
center migration can show the change directions in the region’s center of gravity. Therefore,
the change directions in the region’s NDVI and GPP gravity centers were calculated by
gravity center migration. This, in turn, can reflect the import of human activities or climate
change on the migration of vegetation zone. The main LULC types in southwest China
were cropland, forest, and grassland, and other land types (shrub, water, snow/ice, barren,
impervious, and wetland) accounted for only 2% of the total area (Figure 1). Therefore, this
paper mainly analyzed the change characteristics of three LULC types of cropland, forest,
and grassland, the temporal and spatial distribution of NDVI and GPP in the growing
season of different LULC types, as well as the regular change in the center of gravity.

3. Results

3.1. Land Types Changes

During the study period, the composition of LULC types in the study area changed
significantly, with a high spatial heterogeneity between the LULC types (Figure 1). The
conversion of farmland into forests was the major driving force of LULC change. Overall,
the forest area showed increasing trends after 2000, but it showed a decreasing trend first
and then increased (1.04 year−1, p < 0.01). Forest area increased by 16,180.0 km2, accounting
for 58.7% of the regional area from 2000 to 2019 (Figure 2, Table 1). The growing regions
of forest were mainly distributed in northeastern Sichuan and southwestern Yunnan, and
the decreasing regions were mainly distributed in southeastern Guizhou, northwestern
Guangxi, and northwestern Yunnan. The cropland area first increased and then decreased,
showing a significant downward trend overall (−0.707 year−1, p < 0.01). The area of
conversion of farmland into forests was 61,318.48 km2, which was the LULC change type
with the greatest land area transfer, mainly concentrated in the Sichuan Basin, northern
Guizhou, and central and southern Guangxi (Figure 1). The grassland area showed a
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continuously decreasing trend (−0.64 year−1, p < 0.01), of which 10,948.30 km2 of the
grassland area was converted into forest. The change regions were concentrated in the
Hengduan Mountains in the northwest of Yunnan, Kunming–Zhaotong regions in the
northwest, and the western Sichuan plateau region. A grassland area of 4231.28 km2 was
converted into cropland, the change regions were mainly concentrated in the northeast
part of Yunnan, the western part of Guizhou, and there were also sporadic changes in
southern Sichuan.

Figure 2. Changes in area of different LULC types: (a) cropland, (b) forest, (c) grassland. (Note: the
black solid line represents the trend line, and the formula of cropland is y = −0.707x + 1759.78; the
formula of forest is y = 1.04x − 1294.51; the formula of grassland is y = −0.64x + 1469.68).

Table 1. Transformation matrix of land cover types from 2000 to 2019 (km2).

2000–2019 Cropland Forest Grassland

Cropland 264,799.33 61,318.48 3956.10
Forest 55,715.85 719,978.95 4073.26

Grassland 4231.28 10,948.30 166,551.06

3.2. The Characteristics of Inter-Annual Variation in NDVI

From 2000 to 2019, the average NDVI of vegetation in the growing season in the
whole study area showed an overall upward trend with fluctuations (slope = 0.0023 year−1,
p < 0.01). The growing season average NDVI values of different land cover types all showed
an increasing trend, but there were some differences. Among them, forest had the highest
NDVI value, ranging from 0.79 to 0.84; cropland NDVI value ranged from 0.74 to 0.79;
grassland vegetation NDVI varied from 0.70 to 0.73 (Figure 3b). The increase in the NDVI
of forest was 0.0025 year−1, and the trend of NDVI of cropland was 0.0023 year−1, which
was twice the increase in grassland (0.0011 year−1).
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Figure 3. (a) Spatial distribution of NDVI in southwest China and (b) Changing trends in NDVI
values from 2000 to 2019 for different land use types.

The vegetation coverage in southwest China in 2000 was dominated by medium and
high coverage, accounting for 87.05% of the regional area. In 2019, the vegetation coverage
was dominated by highest and high coverage, accounting for 83.66% of the regional area.
In terms of spatial distribution, there was a large heterogeneity in the level of surface
cover (Figure 3a). The coverage situation in the southwest region showed that the area
of lowest coverage, low coverage, medium coverage, and high coverage decreased, but
the area of highest coverage increased. Overall, the degree of the greening of vegetation
was strengthened. From 2000 to 2019, the area of highest coverage (0.85~1.0) increased
from 10.52% to 34.37%, and the main change region was concentrated on the edge of the
Sichuan Basin and the three provinces of Yunnan, Guizhou, and Guangxi, with the land
cover being forest. The area of high coverage (0.75~0.85) decreased from 54.73% to 49.30%,
mainly concentrated in the Sichuan Basin, the eastern Yunnan-Guizhou Plateau, and the
northern hills of Guangxi, with the land cover being mainly cropland and forest. The area
of medium coverage (0.55~0.75) decreased the most from 32.32% to 14.12%. The main
change region was distributed in the Yunnan–Guizhou Plateau, with the cover area being
mainly grassland and cropland. There was little change in the low coverage (0.35~0.55)
and lowest coverage (0~0.35), which decreased from 2.70% to 2.21%, with the main type
of cover being grassland, distributed in the northwest of Sichuan. The vegetation cover
types remained unchanged at 48.66% of the total area, while vegetation cover improved to
45.60%.
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From 2000 to 2019, the vegetation cover in southwest China mainly shifted from
“high coverage to highest coverage” and “medium coverage to high coverage and highest
coverage” (Table A1). The specific transfer amount was as follows: the area from high
coverage to highest coverage was 311,870.61 km2, accounting for 44.17% of the total change,
and the area from medium coverage to high coverage was 259,673.48 km2, accounting for
36.77% of the total change. From the perspective of the final change, the transfer-out area
of high coverage was the largest, which was 357,704.37 km2, 1.26 times the transfer-in area,
accounting for 50.66% of the total transfer-out area; the highest coverage transfer-out area
was 23,192.33 km2, accounting for 3.28% of the total transfer-out area; the medium coverage
transfer-out area was 307,709.17 km2, accounting for 43.58% of the total transfer-out area
and 5.36 times the transfer-in area; the low coverage transfer-out area was 13,993.99 km2,
accounting for 1.98% of the total transfer-out area; and the transfer-out area of lowest
coverage was 3544.33 km2, accounting for 0.5% of the total transfer-out area. The transfer-
in area of highest coverage was the largest, which was 351,279.44 km2, accounting for
49.75% of the total transfer-in area, and 15.15 times the transfer-in area; the high coverage
transfer-in area was 283,127.25 km2, accounting for 40.10% of the total transfer-in area;
the area of medium coverage transfer-in area was 57,361 km2, accounting for 8.12% of the
total transfer-in area; the transfer-in area of low coverage was 12,805.25 km2, accounting
for 1.81% of the total transfer-in area; and the transfer-in area of lowest coverage was
1570.49 km2, accounting for the total transfer-in area of 0.22%. In this period, the vegetation
coverage mainly showed a trend of gradual improvement, and the vegetation coverage
also gradually increased.

3.3. GPP Changes

Since 2000, the overall trend of the annual mean value of GPP in the growing season
in the study area increased significantly, with a change rate of 3.65 gC·m−2year−1 (p < 0.01).
From 2000 to 2019, the average GPP in the growing season increased from 553.77 gC·m−2

to 624.33 gC·m−2, an increase of 12.74% (Figure 4a). Among them, the average value of
GPP in the growing season was the lowest at 553.77 gC·m−2 in 2000, and the average value
was the highest at 728.83 gC·m−2 in 2016. During the study period, the GPP of the three
land cover types showed an increasing trend. Cropland and forest showed a significant
increasing trend (p < 0.01), while grassland showed a slight upward trend (p > 0.05). The
GPP of different land cover types showed a great difference in growing seasons, and the
GPP of forest and cropland had a high coincidence with the overall GPP trend in southwest
China. Forest was the land cover type with the highest gross primary productivity, and the
highest average GPP in the growing season was 654.7 gC·m−2; the second was cropland,
which was 571.63 gC·m−2; and the lowest value of grassland was 420 gC·m−2. Since
forest had the highest average GPP, the transfer of forest to other land cover types led to a
decrease in GPP, and the conversion of cropland and grassland to forest led to an increase
in GPP. In general, the carbon storage of land cover increased, indicating that the ecological
environment in southwest China improved.

The average value of the growing season in southwest China from 2000 to 2019 was
594.61 gC·m−2, which showed a decreasing trend from southeast to northwest, correspond-
ing to the distribution of cropland, forest, and grassland, with significant spatial differences.
The high-value regions of GPP were mainly distributed in northwestern Yunnan, southeast-
ern Guangxi, Sichuan Basin, etc. In addition, the GPP was relatively large in central and
southern Guizhou, which was covered by forest and cropland. However, the concentrated
distribution region of grassland in northwestern Sichuan, the concentrated distribution
region of cropland in the Sichuan Basin, and the GPP value were generally lower than the
average value (Figure 4b).
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Figure 4. (a) Interannual GPP changes in different land use types; the dashed line shows the variation
trend of GPP in different land use types, where the black is GPP mean, the formula is y = 3.65x −
6742.5; the yellow is cropland’s GPP, the formula is y = 4.36x − 8195.02; the cyan is forest’s GPP, the
formula is y = 3.97x − 7322.35; the light green is grassland’s GPP, the formula is y = 0.94x − 1463.16
and (b) spatial distribution pattern of GPP values of different land cover types in Southwest China
from 2000 to 2019.

118



Land 2022, 11, 1331

3.4. Changes in the Center of Gravity of NDVI and GPP

From 2000 to 2019, the migration direction of the NDVI center of gravity of different
land cover types also showed varying differences. The center of gravity of the NDVI value
of cropland moved to the southwest by 0.12◦ in the meridian and 0.12◦ in latitude. Among
them, the center of gravity of cropland moved in the southeast direction, moving 0.037◦
in the meridian and 0.12◦ in latitude from 2000 to 2005; the center of gravity moved in
the west direction, moving 0.16◦ in the meridian and 0.01◦ in latitude from 2005 to 2019;
and the center of gravity of the woodland moved to the northeast, moving 0.03◦ in the
meridian and 0.06◦ in latitude. However, the center of gravity moved to the northwest
from 2000 to 2005 and continued to move to the northeast from 2005 to 2019. The center of
gravity of the grassland continued to move to the northwest from 2000 to 2019 by 0.06◦ in
the meridian and 0.16◦ in latitude. Since 2000–2006 was the main implementation period
of the ecological project, the composition of land cover changed greatly, and the change
direction of the NDVI center of forest, cropland, and grassland changed (Figure 5).

Figure 5. Changes in the center of gravity of NDVI and GPP. (Note: (a–c): Changes in the NDVI
center of gravity of cropland, forest and grassland from 2000 to 2019; (d–f) Change in the GPP center
of gravity of cropland, forest and grassland from 2000 to 2019).

The study found that the migration direction of the GPP gravity center of the same
type of LULC type had been consistent with the gravity center migration direction of its
NDVI (Figure 5). During the study period, the center of GPP of cropland moved to the
southwest. The GPP center of gravity of cropland moved to the southeast from 2000 to 2005,
by 0.03◦ in the meridian and 0.12◦ in latitude, while the GPP center of gravity of cropland
moved to the southwest from 2005 to 2019, and the migration amplitude increased, moving
0.15◦ in the meridian, while there was almost no change in latitude. The GPP center of
gravity of the forest moved to the northeast. From 2000 to 2005, it first moved to the
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northwest, moving 0.03◦ in the meridian and 0.052◦ in latitude, and then it moved to the
northeast, moving 0.063◦ in the meridian and 0.014◦ in latitude. The GPP center of gravity
of the grassland continued to move to the northwest in the study period, by 0.05◦ in the
meridian and 0.15◦ in latitude.

From 2000 to 2019, the center of gravity of the lowest coverage shifted to the southeast,
moving 0.36◦ in the meridian direction and 0.24◦ in the latitudinal direction, with a small
but complex change in the inter-annual migration direction. The center of gravity of low
coverage also moved to the southeast, 0.77◦ in the longitudinal and 0.24◦ in the latitudinal
direction. During 2000–2008, the low coverage center of gravity first shifted back and forth
to the northwest, and then folded to the southeast after 2008. The medium coverage center
of gravity moved to the northwest, with a larger migration range, moving 1.24◦ in the
meridian and 1.14◦ in the latitudinal direction. The center of gravity of the high coverage
migrated to the northwest but migrated to the southeast first from 2000 to 2011, moving
0.157◦ in the meridian and 0.01◦ in latitude. After 2011, it migrated to the northwest,
moving 0.26◦ in the meridian and 0.08◦ in latitude; the center of gravity of the highest
coverage migrated to the southeast as a whole, moving 1.32◦in the meridian and 0.53◦ in
latitude (Figure A1).

Under different vegetation coverage levels, the migration direction of the gravity
center of GPP was basically the same as that of vegetation NDVI (Figure A1). During the
study period, the gravity center of GPP of lowest coverage and low coverage migrated to the
southeast direction, with 0.36◦and 0.77◦in longitude, respectively, with a latitude migration
of 0.24◦ for both. The center of gravity of the GPP with medium coverage moved to the
northwest, moving 1.30◦ in the meridian and 1.19◦ in latitude. The center of gravity of the
high-coverage GPP moved to the southeast from 2000 to 2008, moving 0.21◦ in the meridian
and 0.22◦ in the latitudinal direction, then turned around and moved to the northwest
direction after 2008, moving 0.31◦ in the meridian direction, and 0.30◦ in the latitudinal
direction. The center of gravity of the highest-coverage GPP moved to the southeast
direction, moving 1.37◦ in the meridian direction and 0.61◦ in the latitudinal direction.

4. Discussion

4.1. Spatiotemporal Variation in Land Types and NDVI and GPP

The results revealed that the rate of returning farmland to forest increased significantly
in the study period (2000–2019), and cropland was the main land source for forest expansion.
The area changes of LULC types were as follows: the area of cropland increased first and
then decreased, while the area of forest decreased first and then increased, and the grassland
continued to decrease in southwest China (Figure 2). This trend was consistent with the
trend of land-use change in China [19]. In the study region, cropland was mainly distributed
in the east of Sichuan, the center of Guangxi, the west of Guizhou, and the east of Yunnan
(Figure 1). These regions were suitable for agricultural activities due to their flat terrain.
The increase in agricultural intensification and productivity has led to the expansion of
cropland in these regions, the main source of which was forest and grassland. Due to the
development of ecological engineering, the phenomenon of “returning farmland to forest”
appeared in the margin of Sichuan Basin, northwest and southwest Yunnan, southeast
Guizhou, and south Guangxi, which effectively controlled the expansion of cropland.
This indicates that the ecological restoration project in this region was the main driver
of LULC change in most regions of southwest China and has achieved some results at
this stage [55]. Second, rapid urbanization was also one of the most common causes of
farmland loss [56]. At the beginning of the 21st century, the urban area of the Sichuan Basin
increased by 66,000 hm2, accounting for 68.31% of the decreased area of cultivated land [57].
The grassland was mainly concentrated in the northwestern part of Sichuan, where the
altitude is higher, combined with a cold and dry climate. There are rivers flowing through
this region, and the precipitation is relatively abundant. Under the background of climate
warming, this is conducive to the growth of vegetation, and with the LULC change, in
some regions, grassland has shifted to forest.
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The study found that the NDVI and GPP of vegetation in the growing season had
shown a significant upward trend as a whole, and the growth trends had been different for
different LULC types in southwest China from 2000 to 2019 (Figures 3b and 4a). This is
consistent with the conclusion that the main vegetation types in China show a dynamic
greening trend, which is the result of the combined effects of climate change, LULC types
of distribution, and human activities (such as ecological engineering and agricultural
management), among other factors [58–60]. In general, the increase in the NDVI value in
southwest China was mainly due to ecological restoration caused by ecological projects
such as returning farmland to forest, natural forest protection plans, and closing mountains
for afforestation [55,61]. The average NDVI and GPP of vegetation in the growing season in
southwest China were high in the southeast and low in the northwest (Figures 3a and 4b),
which was mainly related to the spatial distribution of LULC types. In southwest Yunnan,
southeast Guangxi, and Sichuan Basin, high mean NDVI and GPP levels in the growing
season were mainly distributed in forests, while northwest Sichuan and Sichuan Basin were
mainly distributed in grasslands and croplands, which were lower than those of forests
on the whole. Compared with 2000, most regions became greener and more productive in
2019. The conversion of a large amount of cropland or grassland to forest and the ecological
restoration of most regions (low coverage shift to high coverage) resulted in significant
greening of vegetation. However, at the periphery of most cities, vegetation degraded, and
productivity declined, indicating that urbanization has led to the loss of vegetation [62].
In addition, studies have shown that the interaction of temperature, precipitation, and
solar radiation has different effects on vegetation greening [63–65], and sustained warming
and decreased precipitation are key factors in limiting vegetation growth [66]. In the past
20 years, the overall climate has been dry and warm, with a significant upward trend
in temperature (0.42 ◦C/10 year) but no significant change in precipitation in southwest
China [36,48]. The occurrence of extreme weather events and natural disasters hinders
the growth of vegetation, resulting in a decline in regional vegetation coverage [13,67].
In recent decades, severe droughts have occurred frequently in southwest China [68–71],
which have had a significant impact on grassland and cropland. The average NDVI in the
vegetation growing season has shown a decreasing trend (Figure 3b). However, the area
of forest in this study region was about 2.4 times that of cropland, and the increase in the
greening effect on the whole region compensated for the decreasing trend of NDVI.

The productivity levels of different LULC types had different responses to influencing
factors. For example, cropland and grassland were vulnerable to extreme climate disasters,
but the positive effects of human activities on the effective management of cropland
weakened the negative effects of drought. From 2000 to 2019, the area of cropland decreased,
but the average GPP value in the growing season showed an increasing trend in southwest
China (p < 0.01), which may be related to the improvement in the productivity of cropland
by agricultural management measures in recent years [24]. The forest ecosystem was
relatively stable, and human activities, such as deforestation and afforestation, had a
greater impact on the productivity of the forest ecosystem than the impact of extreme
climates [72]. The average GPP of forest in the growing season showed a significant
increasing trend, which was related to the increase in forest area and vegetation restoration
in this region [73]. Studies have shown that vegetation productivity exhibits different
growth patterns at different stages of forest age [74,75]. Due to the conversion of grassland
to other land types, the amount of grassland has been decreasing continuously for 20 years.
However, with the influence of ecosystem protection policies in recent years, the GPP of
grassland still showed a fluctuating growth trend (Figure 4a). These results indicate that
the overall carbon sequestration capacity of the southwest region is gradually increasing,
and the environmental quality of the ecosystem is gradually improving, which corresponds
to the significant increase in the vegetation coverage in southwest China in recent years.
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4.2. Migration Changes in NDVI and GPP Centroid

Our study indicated that the migration direction of the NDVI center of gravity of cropland,
forest, and grassland was the same as that of GPP during 2000–2019 in southwest China
(Figure 5), and the spatial distribution pattern of vegetation cover and productivity gravity
center changed with a change in LULC distribution. In southwest China, the center of gravity
of cropland moved westward, and there were inflection points of the center of gravity in 2001
and 2005. In 2001, the project of returning cropland to forest, ecological protection in the east,
and the natural forest protection plan in the west were fully launched. Therefore, the area of
cropland increased, and the area of forest decreased during 2000–2005. After 2005, ecological
engineering began to achieve results, which showed that the cropland area decreased and the
forest area increased, which was consistent with the results of previous studies [76]. These
results indicated that the LULC change caused by the ecological restoration project was the
direct cause of the change in the vegetation growth and productivity center of gravity in
southwest China over the past 20 years. The inflection point times of the change in the center
of gravity were consistent with the planning and implementation time of the restoration
project. The grassland continued to migrate to the northwest, which may be related to the
conversion of grassland to other land types in the southeast, while the northwest region had a
higher altitude, less human activity, and fewer changes in land cover types [36]. The study
also found that the change in GPP’s gravity centers of different vegetation NDVI grades
was highly similar to the migration direction of NDVI’s gravity center changes of different
grades (Figure A1). This indicated that the increase or decrease in vegetation productivity in
southwest China was related to the restoration or degradation of vegetation; the productivity
increased in the region of vegetation restoration, and the productivity decreased in the region
of vegetation degradation. From 2000 to 2019, the change in the center of gravity of the lowest
coverage was relatively stable, and the direction and distance of the center of gravity were
not large. The center of gravity of low coverage and high coverage mainly shifted to the
southeast, and the center of gravity of medium coverage and high coverage mainly shifted to
the northwest. This was mainly because of the spatial distribution, composition, and climatic
characteristics of LULC types of different vegetation grades at different stages, which affected
the change in vegetation cover and the center of gravity of productivity. Therefore, reasonable
planning of regional cover-type composition is of great significance to effectively improve
regional vegetation NDVI and GPP.

The shift in vegetation types in the direction of the center of gravity indicates that the
expansion of vegetation in the direction of migration or the degradation of vegetation in
the opposite direction, and the long-term shift in the center of gravity in a single direction,
lead to the imbalance of ecosystem structure and function. For example, the southern and
southwestern regions of southwest China are the main regions of returning farmland to
forest. Due to the favorable ecological conditions in this region, the vegetation coverage
has shifted from medium coverage to high coverage. Recent studies have also confirmed
that afforestation measures have achieved good results in improving vegetation cover and
promoting carbon sequestration [58,77]. However, it was also found that the excessive
growth of large regions of forest consumes surface water, resulting in a shortage of regional
water resources [78,79]. In addition, local negative effects have also occurred due to the
planting of unsuitable tree species [80]. To sum up, large-scale afforestation may rapidly
improve the vegetation greening degree in the region in the short term, but it cannot
guarantee the long-term stable development of the ecological environment. In addition,
because of the heterogeneity of the growth of different vegetation types, it is understood
that the composition structure of land cover types will affect the ecosystem balance and
sustainable development in the southwest region of southwest China under different
topographic and landform conditions.

4.3. Implications for Future

Our study found that the LULC change was beneficial to the improvement in re-
gional greening and plant productivity in southwest China. Karst landforms are widely
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distributed in the study area. Due to its unique binary structure, precipitation is rapidly
lost, which leads to low utilization of precipitation by vegetation [81]. Moreover, the karst
regions have thin soil layers and poor water storage capacities, and the climate warming
trend may have an inhibitory effect on the growth of forests [14]. Studies have shown that
ecological restoration and LULC pattern change not only ameliorate land degradation [40]
but also affect local and regional climate [82]. For example, land surface temperature
decreases significantly when forest is converted to cropland [83]. The global warming trend
has a greater impact on ecosystems [84,85], which has led to dramatic changes in land cover
types and plant biomass in the high northern latitudes and promoted the expansion of
woody shrubs and forest areas [86]. Meanwhile, the rise in temperature has removed local
environmental boundaries, allowing alpine plant species to move to higher altitudes [87].
These results indicate that in future implementations of ecological projects, it is necessary
to consider the structural composition and environmental carrying capacity of LULC types
under the background of climate warming so that they can more effectively serve the
maintenance of local, sustainable ecosystem balance.

5. Conclusions

We investigated NDVI and GPP in the growing season and changes in the spatiotem-
poral variation patterns of their centers of gravity in southwest China from 2000 to 2019.
We found that the LULC structure of the study area changed greatly from 2000 to 2019. The
area of forest increased while the area of cropland and grassland decreased, and cropland
was the main contributor to the forest increase. For the entire study region, both NDVI
and GPP in the growing season showed a generally increasing trend. However, there were
differences in the increasing trend of NDVI and GPP among different LULC types. From
the perspective of spatial distribution, NDVI and GPP showed a distribution pattern of
high in the southeast and low in the northwest, corresponding to the fact that forest is
mainly distributed in the southeast and grassland is concentrated in the northwest; the
ecological restoration project has greatly improved the vegetation coverage, 45.6% of the
region showed a greening trend. In 2000, it was dominated by medium coverage and high
coverage (32.32%, 54.73%), while high coverage and highest coverage predominated in
2019 (49.29%, 34.37%). Under the same vegetation coverage, the spatiotemporal variation
distribution of the center of gravity of NDVI and GPP was basically the same. From 2000 to
2019, the spatial variation in the center of gravity of NDVI and GPP at the lowest coverage
was relatively stable; the center of gravity of low coverage shifted to the east, the center
of gravity of medium coverage and the high coverage both shifted to the northwest, and
the center of gravity of the highest coverage moved to the southeast. This indicates that
although the southwest region is greening, there are differences in vegetation growth and
carbon sequestration capacity among different land cover types, resulting in changes in the
vegetation center of gravity. Therefore, the combination structure of vegetation cover and
land cover type should be prioritized in the future to ensure the balance of the ecosystem
in the southwest and maintain sustainable development.

Author Contributions: Conceptualization, L.R. and X.L.; methodology, X.L.; software, M.Z. and
C.Y.; formal analysis, X.L. and W.Y.; investigation, M.Z., Q.W., Z.Z., and C.Y.; data curation, X.L.;
writing—original draft preparation, X.L.; writing—review and editing, L.R. and X.L.; visualization,
X.L.; supervision, X.L.; project administration, X.L.; funding acquisition, L.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the key project of the “14th Five-Year” National Key R&D
Program “Typical Fragile Ecosystem Protection and Restoration”, grant number “2022YFC080900”
and the Karst plateau canyon rocky desertification comprehensive control and scale management
technology and demonstration of ecological industry, grant number “2016YFC0502603”, Project of
National “Thirteenth Five-year” Key Research and Development Programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

123



Land 2022, 11, 1331

Data Availability Statement: Not applicable.

Acknowledgments: We thank the anonymous reviewers for their valuable comments. We gratefully
acknowledge the design of L.R. and the contribution of co-authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Transformation matrix of NDVI grades from 2000 to 2019 (km2).

2000–2019 0~0.35 0.35~0.55 0.55~0.75 0.75~0.85 0.85~1.0

0~0.35 4397.62 2772.06 630.53 95.78 45.96
0.35~0.55 1089.16 11,384.48 11,465.65 1269.25 169.92
0.55~0.75 418.50 8424.23 136,924.63 259,673.48 39,192.96
0.75~0.85 57.80 1560.78 44,215.18 395,140.43 311,870.61
0.85~1.0 5.03 48.18 1050.40 22,088.73 121,421.98

Figure A1. Variation in the center of gravity of different NDVI grades and its GPP. (Note: (a–e):
Changes in the center of gravity of the five NDVI grades from 2000 to 2019; (f–j): Changes in the
center of gravity of GPP for five NDVI grades from 2000 to 2019).
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Abstract: In recent decades, China has exhibited the fastest and most remarkable social-economic
development in the world. As a result of such development, the forest cover of the country has
undergone radical changes. This paper aims to develop a method for analyzing long-term and spatial
changes in forest cover based on historical maps and remote sensing images. Moreover, we will
focus on the reduction or restoration of forests distributed at different altitudes, slopes, soils, and
lithologic types in different periods, to reveal the problems that should be paid attention to in forest
restoration in karst areas. A typical county of China was selected as the study area. A historical
military operation map was considered the principal source of basic data. These data were then
combined with Landsat satellite images to conduct quantitative analysis on changes in the spatial
area and location of forest cover with a long time series. The findings are as follows: in terms of time
series, the forest area in the study area showed a trend of decreasing at first and then increasing, with
the year 1986 as the turning point. In terms of spatial patterns, a considerable difference is observed
in regions with changes in forest cover under different historical periods. Changes are obvious in
limestone areas, rock soil areas, and areas with an elevation of 2000–2500 m and a slope gradient
of 6◦–15◦. Spatial–temporal changes in forest cover reflect the effects of the war, national policy,
and economic development to some extent. All these results indicate that, despite its limitations, a
historical map is a valuable document for studying an ecological environment.

Keywords: forest cover; old maps; spatial–temporal changes; forest landscape; transfer matrix

1. Introduction

Forests play an important role in maintaining the ecological balance of the earth [1,2].
The forest is a significant symbol of the ecological environment [3], and it is the material
base for forestry production [4,5]. Forest can not only regulate atmospheric circulation and
water cycle, but also affect climate change, and play an important role in protecting water
and soil resources and preventing wind and sand [6–8]. The rapid change in forest cover is
causing the loss of habitat, biodiversity, and climate change [9,10]. Social and economic
conditions in different periods have different impacts on land vegetation cover [11]. The
spatial reconstruction of historical forests is helpful for a better understanding of the
changes human beings have made to the surface and their impacts on the environment [12].
Therefore, long-term and spatial dynamic changes in forest cover have been an important
concern for global ecologists, environmentalists, and so on [13–16].

Land 2022, 11, 1349. https://doi.org/10.3390/land11081349 https://www.mdpi.com/journal/land
129



Land 2022, 11, 1349

Remote sensing data can provide the continuous change in surface elements in time
and space, and it plays an irreplaceable role in regional ecological environment moni-
toring [17]. However, during the period when satellites were not yet launched, satellite
images were unavailable, and the surface of the Earth and its features could not be located
accurately [18]. Thus, studies on the spatial framework of an ecological environment are
limited to the years after 1972 [19]. This issue has always been a challenge for some ecolo-
gists [20]. With openness and sharing of data, an increasing number of available historical
maps, especially historical military maps, can be obtained easily on the Internet or in
libraries [21,22]. Thus, historical maps are an important data source for scientists to reveal
the changes in the surface landscape before remote sensing images. Some internationally
well-known scholars have conducted a considerable amount of valuable research with the
use of these maps [23–26].

Because of the important ecological and economic functions of forests, it is very
important to monitor long-term changes by using old maps and written sources, because
this method enables people to monitor trends from different time dimensions and find
the reasons for the current situation [16,27]. For example, Skaloš et al. [28] carried out a
comparison of landscape developments in Sweden and the Czech Republic by using old
maps. Pelorosso et al. [29] used historical maps and recent remote sensing-derived maps
to reduce misleading changes and to assess spatial aggregation errors based on a data
integration procedure using landscape metrics in Italy. Skaloš et al. [16] analyzed long-
term land-cover changes in central Bohemia and contributed to a better understanding
of the dynamics of forest land using old military survey maps and orthophotograph
maps, covering more than 250 years. Furthermore, researchers of some countries have
used military maps to study past land cover changes in Slovenia [30,31], Germany [32],
Sweden [33], Norway [34,35], and the Czech Republic [28,36,37].

On the other hand, many researchers have studied the long-term land cover in China.
He et al. [11] reconstructed the forest cover in China from 1700–2000, and found that the
deforestation mainly occurred in southwest China, the hilly regions of south China, the
southeast of Gansu province, and northeast China from 1700 to the 1960s. Yang et al. [38]
evaluated the reliability of global historical land-use scenarios for forest data in China
and pointed out that these global historical land-use scenarios could not accurately reveal
the spatial and temporal pattern of China’s forests due to differences in data sources,
reconstruction methods and spatial scales. Li et al. [39] used the historical forest area
allocation model to reconstruct forest cover between 1780 and 1940 in Northeast China. Liu
et al. [40] synthesized historical maps and aerial images to describe long-term land-use
change and landscape dynamics for a region near Chancellorsville, USA, from 1867 to
2014. In a word, many researchers use historical maps combined with remote sensing
images to reveal long-term changes in forest/land cover and proved that climate change
and human activities are the main influencing factors, but mainly on the national and
regional scales. Aiming at the change in long-time series forest cover in karst areas, Tanacs
et al. [41] used an integrated GIS of historical data (18th–19th century military maps, old
forest management plans, aerial imagery, etc.) to describe the example of the Haragistya
karst plateau and how the forests of the Aggtelek karst region were used in the last few
centuries and to what extent they were affected by anthropogenic activity. However, there
is still a lack of research on long-time series forest cover in typical karst areas of China.

The southwest China karst area is located in the center of East Asia karst area, and
it is one of the three largest karst areas in the world [42]. Karst ecosystem is a fragile
ecosystem, which is affected and restricted by the special geological background [43,44].
Because of the special geological and climatic conditions, the bedrock in this area is exposed,
which has the basic characteristics of little soil reserves, discontinuous soil distribution,
complex and diverse micro-landforms, etc. [45,46]. These characteristics have caused some
problems in karst areas, such as high rock exposure rate, slow soil formation speed, easy
loss, and weak soil water and fertilizer retention capacity [47,48]. Among them, karst
rocky desertification with a large scale and high frequency of change is the most serious
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ecological disaster in Southwest China [49,50]. In the past, intense human activities have
significantly changed the structure of karst ecosystems, especially the change in land
cover [51–53]. The whole karst ecosystem is more sensitive to changes in environmental
conditions [54]. Taking the vegetation in the karst area as an example, the research shows
that the geochemistry of karst bedrock can affect the growth of vegetation by adjusting the
water-holding capacity of the weathered layer, which makes the vegetation productivity
in the karst area more susceptible to drought [55]. The fragility and stability of karst
ecology and the fragile natural recovery ability have brought challenges to local economic
development and environmental protection [56,57]. It is of great significance for karst
ecosystems to cope with global changes and achieve sustainable development by exploring
the long-time sequence of forest cover changes in karst areas [58].

This study mainly reveals the dynamic changes in forest cover in a long time series
from 1944 to 2013 in typical karst areas of Southwest China through historical maps and
remote sensing image data and analyzes the different spatial distribution patterns of forest
cover from four aspects: altitude, slope, soil type, and lithology. Furthermore, we try to
explore the possible influencing factors of forest cover increase or decrease in different
change periods. It is hoped that our research results can fully understand the dynamics and
temporal and spatial differences in the evolution process and trend of forest cover in recent
decades, provide theoretical reference for comprehensive control of rocky desertification in
karst mountain areas and rural revitalization, and provide the certain theoretical basis for
promoting the sustainable development of karst areas in southwest China.

2. Materials and Methods

2.1. Study Area

Xuanwei County in Yunnan Province, Western China was selected as the study area.
Xuanwei has a land area of 6502 km2, with a low-latitude highland monsoonal climate,
average annual precipitation of 986 mm, and an average annual temperature of 13.3 ◦C.
The area is located in the watershed zone between Yangtze River and Pearl River, which
has a maximum elevation of 2868 m, a minimum elevation of 920 m, a relative altitude
difference of 1948 m, numerous sloping fields, and few mountainous areas, and a relatively
large slope gradient. The karst landform in the area spreads widely, with the outcrop
reaching 3300 km2 and accounting for 52.74% of the entire land area of the county. The
soil in the study area mainly consists of red earth and limestone. Xuanwei County is
located in the “Hump Course” of World War II. The critical section of Yunnan–Burma, and
Yunnan–Guizhou Highway played a significant role in the victory of the Allies during
World War II (Figure 1). To guarantee smooth passage in this important transport corridor
during the war, the U.S. army conducted several detailed works to study the geographical
elements of the forests in this region, and the resulting historical military maps reflect the
actual and ecological landscapes in the area during that period.
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Figure 1. The maps of the location and main natural background of the study area. Note the following:
(a) location; (b) elevation; (c) elevation classification; (d) slope grade; (e) soil type; (f) lithology. (We
constructed this map using ArcGIS9.3 (http://www.esri.com/arcgis/about-arcgis) (accessed on 12
November 2021)).

2.2. Data Collection and Processing
2.2.1. Historical Map

The horizontal axis Mercator projection and the U.S. Hayford ellipsoid were applied
in 1990 to the military topographic map from China drawn by the Army Map Service of
the U.S. Army Corps of Engineers during World War II. The map was drawn based on the
supergraph of the topographic map that was investigated and drawn by Japan during the
height of its military aggression in 1942. This map reflects the situation in 1944. It was
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revised in 1945 and published in 1954. This map can be freely obtained from the website of
the University of Texas libraries (http://www.lib.utexas.edu/maps/ams/) (accessed on 12
November 2021).

2.2.2. Remote Sensing Images

The period was from 1977 to 2013, with a total of five periods. Data from each
period were obtained from the University of Maryland (http://glcf.umiacs.umd.edu/
data/landsat/) (accessed on 18 December 2020), and the data sharing plan for Earth
observation was obtained from the website of the Chinese Academy of Sciences (http:
//ids.ceode.ac.cn/query.html) (accessed on 18 December 2020). The latter included the
following images: Landsat Multispectral Scanner in 1977; Landsat with Thematic Mapper
(TM) in 1986, 2000, and 2007; Landsat with Enhanced TM Plus in 2013. To guarantee data
accuracy, the seasons of the images that are used are consistent.

Other data.
Digital elevation model (DEM) data with a resolution of 90 m were obtained from the

International Scientific Data Service platform (http://datamirror.csdb.cn/) (accessed on 18
December 2020). Lithological spatial distribution and soil type data were gathered from
the preliminary study materials of the project group [8,28].

2.2.3. For the Historical Military Map

The original historical military map was scanned, the boundaries were cut, and a
seamless splice was created using Adobe Photoshop. The resulting map was then combined
with a civilian topographic map to conduct overall scanning or accuracy check of the
original historical military map (Figure 2). The contents for examination include the karst
cave and its size and location, the morphological characteristics of the mountains, the
trend of rivers, and the quantity and form of depressions. If the aforementioned features
on the historical military map correspond with those on the civilian topographic map,
then the historical military map is accurate and the preliminary scanning is acceptable.
The location and distribution of the forest were then examined when the preliminary
scanning was acceptable. If the preliminary scanning was not acceptable, then the causes
of inconsistencies should be examined. If the scanning failed again, then the historical
military map might be inaccurate and should thus be abandoned. During the examination
of forest location and distribution, local chronicles, local history, agricultural literature,
medical materials, military climate graphs, military hydrographs, military environmental
diagrams, military installation diagrams, and analysis diagrams of the combat capacity of
war zones should be used as references to achieve a comprehensive analysis. If the findings
passed the examination, then the historical military map satisfied the research requirements.
The historical military map was then cut according to the size of the study area, and
digitization and vectorization were implemented to generate a preliminary diagram of
forest distribution. In the statistical calculation of the area and sample inspection, an
accuracy rate not lower than 95% should be guaranteed. A diagram of forest distribution
during wartime could then be generated. A vector diagram of the spatial distribution of
forest cover was obtained to establish the spatial and attribute databases of the forest pattern
in the study area in 1944 (Figure 3a). The procedure should be repeated if the accuracy rate
could not be guaranteed because of problems during digitization and vectorization.

133



Land 2022, 11, 1349

 

Figure 2. The technique flowchart showing the study of spatial patterns of forest landscape based
on the military map and remote sensing images. (We constructed this figure using WPS office
(https://platform.wps.cn/) (accessed on 29 November 2021)).
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Figure 3. The military map and remote sensing images in different times. (We constructed this map
using ArcGIS9.3 (http://www.esri.com/arcgis/about-arcgis) (accessed on 19 December 2021)).

2.2.4. For the Remote Sensing Images

All Landsat images applied near-infrared, red light, and green light wave bands to
perform standard false color composition. Radiation correction was performed to achieve
spectrum enhancement, radiation enhancement, and geometric precision correction for five-
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period images under ERDAS IMAGINE environment. The geometric precision correction
was performed to scan and input a 1:50,000 topographic map into the computer to conduct
projection disposal. This map was used as the main control data source to correct remote
sensing images, and the average position error was controlled within a pixel. Field type
samples were selected to perform visual interpretation under man–machine interaction,
and then the supervised classification was applied. The obtained data were combined
with DEM, weather, hydrological, vegetation, soil, land-use change, forest monitoring, and
the corresponding social statistics data of the study area to check and amend the forest
distribution diagram, establish the forest spatial and attribute databases in the study area
beginning in 1977, and generate a vector diagram of spatial distribution information of
the forest cover for the following periods: 1977, 1986, 2000, 2007, and 2013 (Figure 3b–f,
respectively).

2.2.5. Analyzing Spatial–Temporal Evolvement of the Forest Cover

The dissolve tool was used to integrate spatial distribution data of forest cover for six
periods into ArcGIS, which were classified into two codes: forest land and non-forest land.
The intersect tool was used to calculate data intersection between two periods as a group.
The area field was added to the attribute table and calculated. Next, the attribute table
was converted into shapefile attribute format (.dbf) and opened in Microsoft Excel. The
commands “Pivot Table” and “Pivot Diagram” in the data menu were implemented, which
generated a transfer matrix of the forest cover with two periods after appropriate changes
were made. A transfer matrix with different periods was generated when the preceding
process was repeated.

Data on soil type, elevation, soil, and lithology were generated from the distribution
layer of soil type, sea level elevation, slope gradient, and lithology, respectively. Overlay
analysis of the layers of spatial distribution information on forest cover under different
historical periods was performed with the aforementioned layers in OVERLAY EVENTS.
Under different classification conditions, the spatial distribution information of the forest
cover was extracted under various periods concerning different soil types, elevation, gra-
dient, and lithology. The corresponding distribution diagrams were drawn, and the area
calculation function of ARC/INFO was used to establish area statistics. The transfer matrix
method was used to calculate the area and direction of spatial transfer for the forest cover
under different periods and natural backgrounds.

3. Results

3.1. Overall Changed Process and Characteristics in Time

From Figures 4 and 5, it can be seen that the change in forest area and scale showed
a trend of first decreasing and then increasing in the study area from 1944 to 2013, and
an obvious turning point appeared in 1986. These changes can be roughly divided into
two stages: forest degradation before 1986 and forest restoration after 1986. It can be
seen intuitively from Figure 4 that the forest coverage of the six years studied is quite
different. The forest area was at its maximum in 1944 (up to 24.28% of the study area) and
its minimum in 1986 (only 8.5% of the study area), with a difference of 2.84 times. The forest
area decreased annually before 1986 and gradually increased after 1986, reaching 19.97%
of the study area in 2013. However, even though ecological restoration and improvement
were carried out from 2000 to 2013 (Figure 5), the forest coverage rate still did not reach the
scale at the beginning of the research period.
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Figure 4. The spatial distribution information maps of forest landscape in the different historical times.
(We constructed this map using ArcGIS9.3 (http://www.esri.com/arcgis/about-arcgis) (accessed on
25 December 2021)).
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Figure 5. The evolution process of forest landscape and important historical events related to
it. (We constructed this figure using WPS office (https://platform.wps.cn/) (accessed on 30
December 2021)).

3.1.1. Rate of Change in the Forest Cover under Different Historical Periods

In the analysis of the previous part, it has been found that the evolution trend of forest
cover area in the whole study period is first decreasing and then increasing. However, it
remains to be analyzed which period changes more quickly. It can be seen from Table 1
that before 1986, the evolution frequency was negative (referring to the decrease in forest
area), and after 1986, it was positive (the increase in forest area).

Table 1. The annual changing rates of forest landscape in different historical periods. (We constructed
this table using WPS office (https://platform.wps.cn/) (accessed on 19 December 2021)).

Time The Annual Changing Rates Changing Rates

1944–1977 −0.32% −10.43%
1977–1986 −0.48% −5.29%
1986–2000 0.51% 7.61%
2000–2007 0.26% 1.82%
2007–2013 0.33% 1.97%

Specifically, from 1944 to 1977, although the overall change rate was −10.43%, the
average annual change frequency was only −0.32% because the two years were separated
by 33 years. The minimum frequency of change was from 2000 to 2007, with a change rate
of only 1.82%. The difference between the highest and lowest frequency of change is nearly
5.73 times. However, a big change does not necessarily mean a quick change rate. This
variable is also related to the number of years. From 1986 to 2000, the annual average rate
of change was the largest, about 0.52%. Although the overall frequency of change in this
period is 7.61%, which is lower than 10.43% in 1944–1977, the average annual frequency
of change was higher. It shows that in this period from 1986 to 2000, a series of national
ecological protection projects and policies have obvious effects on the restoration of forest
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cover, such as the Yangtze River Shelter-belt Project (1989), Pearl river Shelter-belt Project
(1996), and Reforestation Project (1999) (Figure 5).

3.1.2. Transfer Direction of the Forest Cover under Different Time Series

It can be seen from Figure 6 that there are obvious differences in changes between
forest and other land types in various historical periods. Specifically, from 1944 to 1977,
the conversion of forest to other land types was 1165 km 2, which was significantly larger
than the conversion area of other land types to forest in this period (Figure 6a). From 1977
to 1986, although the changes from forest to other land types and the changes from other
land types to forested land were scattered in space, it was also obvious that the changes
from the forest to other land types were more (Figure 6b). From 1986 to 2000, the change
in other land types to the forests was the most obvious, which was the fastest period of
ecological restoration, mainly in the northwest of the study area (Figure 6c). From 2000
to 2007, other land types still changed to forest (467 km2), which mainly happened in the
southeast of the study area (Figure 6d). From 2007 to 2013, the forest was converted into
other land types (255 km2), mainly occurring in the middle of the study area, which may
be related to the increase in temporary forest in construction land caused by urbanization
during this period [59]. At the same time, during this period, other land types of 366 km2

were also converted into forest (Figure 6e). From the whole research period from 1944 to
2013, the conversion of forests to other land types is higher than that of other land types
(Figure 6f), which is also consistent with the overall analysis results of the previous part of
forest coverage.

3.2. Changes in Forest Cover under Different Influencing Factors

The changes in forest cover under the different elements of factors such as elevation,
slope, soil types and lithology in different time periods are shown in Table 2 and Figure 7.
Table 2 shows the change area of forest under various factor levels in different time periods.
Figure 7 shows the percentage of forest change area in different factor levels in the total
forest area in different historical periods. In Figure 7, the positive and negative values before
the abscissa percentage indicate the changing direction of forest increase and decrease,
respectively. The negative percentage indicates the proportion of decreased area in the
total forest area at the beginning of this period, and the positive percentage indicates the
proportion of increased forest area in the total forest area.

Table 2. The distribution and change information of forest landscape under various natural back-
ground conditions during different historical stages (unit: km2). (We constructed this table using
WPS office (https://platform.wps.cn/) (accessed on 19 December 2021)).

Background
Conditions

Classification
Time Sequence

1944 1977 1986 2000 2007 2013

Elevations

1000–1500 m 2.80 0.09 0.00 1.72 1.88 0.00
1500–2000 m 358.17 119.16 52.02 169.28 114.50 160.79
2000–2500 m 1103.26 712.82 458.77 800.70 951.19 1042.31
2500–3000 m 11.78 14.74 12.49 16.91 31.76 10.27

Slope
≤6◦ 200.60 40.50 29.86 66.50 93.88 105.95

6–15◦ 813.51 467.45 302.35 552.54 616.94 681.42
15–25◦ 356.83 273.19 157.31 281.28 277.53 313.62
>25◦ 96.87 61.11 31.00 82.96 104.82 105.68

Soil Tapes
Other soil 116.01 47.83 22.14 59.29 43.84 58.08
Rock soil 168.49 50.77 22.86 91.01 39.01 59.19
Red soil 966.61 610.70 386.99 677.95 816.22 943.19

Yellow soil 217.27 133.13 88.62 155.32 194.30 146.60

Lithologies
Dolomite Mixed 375.64 200.78 115.28 172.80 270.57 305.81

dolomite-limestone 2.27 1.31 0.34 1.80 4.59 4.99
Limestone 427.23 183.21 86.07 221.99 210.99 239.53
Non-karst 663.23 457.12 318.91 586.97 607.22 656.72
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Figure 6. The space transfer matrix maps of forest landscape in different historical periods. (We
constructed this map using ArcGIS9.3 (http://www.esri.com/arcgis/about-arcgis) (accessed on 27
December 2021)).
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Figure 7. The percentage of forests changing area with different elements grades in the total forest
area in different historical periods. (We constructed this figure using WPS office (https://platform.
wps.cn/) (accessed on 27 December 2021)).

3.2.1. Changes under Different Elevations

Under different levels of elevation, the forest area in three altitude ranges, 1000–1500,
1500–2000 and 2000–2500 m, decreased from 1944 to 2013 (Table 2). Specifically, the forest
distributed in 2000–2500 m reached the highest value of 1103.26 km2 at the beginning of
the study, with the largest decrease of 458.77 km2 in 1986, and then gradually recovered.
Only the forest area in the range of 2500–3000 m above sea level shows an increasing trend,
which may be related to fewer human activities in high altitude areas [60].

The percentage of forest change area in different elevations in the total forest area can
be seen more intuitively from Figure 7a. Among them, the biggest change area percentage
was from 1944 to 1977, and the change area percentage of the forest with 2000–2500 m was
−26.45%. Secondly, from 1986 to 2000, the change area percentage of 2000–2500 m forest
was 23.26%.
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3.2.2. Changes under Different Slopes

Table 2 also shows the forest area under different slopes, from 1944 to 2013, only the
forest area with a slope >25◦ increased, while the other three slopes included a decrease
in the forest areas with a slope ≤6◦, 6–15◦ and 15–25◦. Among them, the reduced area is
mostly distributed in the range of slope 6–15◦, which decreased from 813.51 km2 in 1944
to only 681.41 km2 in 2013, indicating that forests with gentle slope in this range is more
likely to be occupied by cultivated land or other land types. Forests with steep slopes, such
as those with a slope of more than 25◦, are more likely to be preserved, because they are
less damaged [61,62].

The difference in forest changes area percentage between different periods and slope
is shown in Figure 7b. The period 1986 to 2000 presented a relatively large change area
percentage, accounting for 48.26% at 6◦–15◦ and 23.90% at 15◦–25◦, with a total of more
than 72%. This result is significantly associated with the “grain for green” policy during
this period. For the periods of 1944–1977 and 1977–1986, the changes were mainly negative,
and the gradients mainly focused at 6◦–15◦ and 15◦–25◦, respectively. Therefore, the region
with the gradient 6◦–25◦ was frequently interrupted by human activities [63].

3.2.3. Changes under Different Soil Types

The forest area of four different soil types (other soil, rock soil, red soil and yellow soil)
in the study area showed a decreasing trend from 1944 to 2013 (Table 2). Among them, the
biggest decrease in forest was in rock soil, which dropped sharply from 168.49 km2 in 1944
to 22.86 km2 in 1986, and the ecological restoration after that only increased to 59.19 km2

in 2013. The largest forest distribution area is red soil, which was 966.61 km2 in 1944, and
decreased sharply to 386.99 km2 in 1986. After that, the forest coverage gradually recovered
to 943.19 km2 in 2013. Therefore, once the vegetation of karst rock soil type is destroyed, it
is much more difficult to restore it than other soil types [64].

The changes in forests area percentage in different soil types in different periods are
shown in Figure 7c, among which the biggest change area percentage is that the positive
growth rate of forest distributed on red soil was 55.89%, from 1986–2000. However, before
this, the negative percentage of change in this soil type were almost offset. Specifically,
during the periods of 1944–1977 and 1977–1986, the reduction area percentage of forests
distributed on red soil was −24.11% and −26.57%, respectively. However, the change
area percentage of forests distributed in karst soil is −7.40%, which means that forests
distributed in laterite is easier to recover after being destroyed than that in karst.

3.2.4. Changes under Different Lithologies

The distribution and change characteristics of forests under different lithology gen-
erally show that the reduced area of forests in karst lithology (including dolomite mixed
with limestone) is obviously larger than that of non-karst lithology (Table 2). Among them,
limestone is the largest forest decrease, which decreased sharply from 427.23 km2 in 1944
to 86.07 km2 in 1986, and then recovered to only 239.53 km2 in 2013, only recovering to
nearly half of the forest area at the early stage. However, the forests distributed in non-karst
lithology decreased by half from 1944 to 1986, and gradually increased to 656.72 km2 in
2013 in the process of restoration, which is similar to the forest area in 1944.

As shown in Figure 7d, the rapid growth of forest area percentage, that is, from
2000 to 2007, it was about 51.78% in non-karst areas and 26.11% for limestone areas,
which may have a great relationship with the implementation of natural forest protection
projects during this period. On the whole, the limestone area had the biggest negative area
percentage from 1944 to 2013, which was −12.72%, and the dolomite area had −4.73%. It
also shows that vegetation restoration in karst areas is difficult for non-karst areas [65,66].
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4. Discussion

4.1. Comparison with Other Studies

This part of the discussion is mainly aimed at the comparative analysis of other studies
that use historical maps combined with remote sensing images to reveal the temporal and
spatial changes in long-time series forest cover. At the same time, the comparison is mainly
carried out from two aspects: one is to cover all or part of the study period (1944–2013), and
the other is to include or relate to the study area (typical karst area in southwest China).

He et al. [67] revealed the trend and main process of forest dynamics from 1700 to
1998 by using historical documents, modern surveys and statistical data, and the results of
previous studies. Among them, during the rapid decline from 1700 to 1949, the northeast,
southwest and southeast regions suffered the most serious decline, and the coverage rate
of most provinces fell by more than 20%. During the recovery period from 1949 to 1998, the
western provinces (including Yunnan) increased by over 5%. In addition, another article
by the researcher [11] shows that from 1700 to the 1960s, deforestation mainly occurred
in southwest China. Judging from the changing trend and the general turning point, the
trend of first worsening and then recovering is consistent. In addition, other studies using
historical maps and remote sensing images to reveal the long-term changes in forests do
not include or involve the study area of this paper, such as Taiwan Province Province [68],
Hainan Island [69], Heilongjiang Province [70], etc.

Although there is a lack of research on forest evolution in southwest karst area by using
historical maps and remote sensing images, much research that only uses remote sensing
data to reveal forest or vegetation cover changes in karst area can also provide a reference
for the second period of this study (the forest restoration stage after 1986). For example,
Tong et al. [71] used the gimms-3 g Normalized Difference Vegetation Index (NDVI) from
the period 1982–2012 to evaluate the effect of ecological engineering vegetation restoration
in Yunnan, Guizhou and Guangxi. It was found that although the whole vegetation area
was afforested, the restoration rates were different in different areas. On this foundation,
Zhang et al. [72] also used the gimms-3 g NDVI from 1982 to 2016 to study the trend of
vegetation change in Guizhou, Guangxi and Yunnan, and they found that the trend of
vegetation greening in karst areas was strengthened from 1982 to 2016, and ecological
engineering was the main reason for the increase in vegetation in karst areas, while the
climate was the main driving factor for the decrease in vegetation in non-karst areas.
This is consistent with the trend of forest restoration after 1986 in this research. Similarly,
using NDVI data, Xu et al. [73] examined the vegetation mutation in Southwest China
from 1982 to 2015, and found that the mutation point appeared in 2001, and the trend of
NDVI changed from no significant increase to significant increase after the mutation point.
For the above researches on forest or vegetation cover in karst areas of southwest China,
the time scale mainly concentrated after 1982, and the forest cover showed a consistent
increasing trend.

In the last 30 years, there is still a consensus that vegetation will turn green, whether
in China [74–76] or in the region [77,78]. The research at the China national level before
the 1970s shows that southwest China is a region with significant reduction in vegetation
cover [11,67], but the research on forests in southwest karst area before 1970s is very
scarce. It may be limited by the difficulty in obtaining remote sensing image data, and it
also highlights the advantages of this research in combining historical maps with remote
sensing images to deal with this problem.

4.2. Events and Factors That Dominate Forest Cover Changes in Different Periods

Forest deterioration from 1944 to 1986: Many incidents occurred during this period,
including World War II (also called the “Anti-Japanese War” in China), the civil war
between the Chinese Nationalist Party and the Chinese Communist Party from 1945 to
1950 (the Liberation War), the founding of the People’s Republic of China in 1949, the
shifting in the national system from capitalism to socialism, the land reform movement in
1950 (i.e., the transformation from feudal land ownership to private land ownership for
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peasants), the rural cooperative movement in 1953 (i.e., the transformation from private
land ownership for peasants to collectivization and socialization of agricultural land), the
population policy (i.e., “many hands make work easy”) in 1958, the “Great Leap Forward,”
the smelting of steel, and the movement to establish communes for rural residents in 1958.
World War II, the Chinese Civil War, the change in the national system, the change in land
ownership, or the smelting of steel might have resulted in the sharp deterioration and even
the loss of forest vegetation. The policy on family contract business was implemented,
particularly the transfer of the collective operation of lands and forests to families or
individual corporations, the implementation of a “system of fixed output for households,
work contracted to households, and mountain contracted to households,” and the policy
to divide privately farmed hilly lands and forest lands among individuals. Farmers were
afraid of the change in ownership of such lands, Thus, they engaged in large-scale firewood
gathering and logging, which might have damaged forest vegetation.

Forest recovery from 1986 to 2013: Construction projects were conducted to protect the
forest system of the Yangtze River Basin in 1989 and the Pearl River Basin in 1996. A project
to return grain plots to forests was also implemented in 1999. This project involved ecologi-
cal construction engineering with the strongest policy, largest investment, widest coverage,
and the highest extent of public engagement in China. The project was also the largest one
that supports and benefits farmers, with funds of more than CNY4.3 trillion provided by
the central government, thereby becoming the largest ecological construction project in
the world. The implementation of various projects effectively promoted the increase in
forest coverage rate and the reduction in soil erosion incidents. China formally launched
conservation programs for natural forest resources in 2000 to strictly manage and protect
ecological public welfare forests, strongly develop forestation, and adjust and optimize
the ecological structure of forest zones. These programs greatly improved the regional
ecological environment and reduced water and soil erosion areas. The comprehensive
termination of the stony desertification project was implemented in 2006. In this project,
the drainage basin was considered as a unit, the damaged natural ecological system was
gradually recovered by increasing the vegetation land cover and conserving water and soil,
and the extent of karst rocky desertification was effectively reduced.

The change in forest cover is affected by both natural and human factors [79,80], but
the dominant factors are different in different time periods [81]. Although the past forest
destruction has brought about the deterioration of the ecological environment, fortunately,
a series of ecological projects have made great contributions to the restoration of forest
vegetation [82,83].

4.3. Limitations and Future Research Prospects

First of all, due to the limitation of data sources, there was a long period between
1944 and 1977, and only the historical map of 1944 was used, which caused uncertainty of
forest change trend analysis at present. In future research, we can increase the number of
historical maps obtained as reasonably as possible before the 1970s, or update the latest
year to the latest year. Secondly, in the correlation analysis of influencing factors, this study
only considered four factors: elevation, slope, soil types and lithology. Then, on the time
scale of several decades, these four factors will not change much. In future research, climate
factors such as temperature and precipitation can be considered for analysis.

5. Conclusions

Based on the historical map of 1944 and Landsat remote sensing satellite images, this
paper quantitatively analyzed the spatial distribution and change in forests from 1944 to
2013, aiming at the evolution law of long-time series spatial distribution characteristics of
forest cover in karst areas and the events and factors that may affect the forest changes
in the unsustainable stage. The main conclusions are as follows: (1) the forest area in the
study area showed a trend of decreasing at first and then increasing. From 1944 to 1986,
the deterioration phase of forest area decreased, and from 1986 to 2013, the restoration
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phase of forest gradually increased. (2) The forest with an altitude of 2000~2500 m changes
most frequently in the damage recovery stage, and the forest with a slope of 6~15◦ faces
the greatest risk of damage. (3) The changing characteristics of forests with different soil
types and lithology in different stages show that it is more difficult to restore forests in
karst areas after they are destroyed. To sum up, the use of historical maps can better solve
the temporal and spatial evolution of long-time series of forest cover before there is no
remote sensing image due to the limitation of satellite launch time. At the same time, it
is necessary to pay attention to forest protection in the subsequent social and economic
development of karst areas, to avoid damage and increase the cost of rehabilitation.
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Abstract: Rural settlements are the basic spatial units of rural geography research, and it is essential
to explore the dynamic changes in land use on a rural settlement scale to promote the development of
the rural revitalization strategy. The study took different rural settlement types in karst trough valleys
as examples and applied geographic information mapping trajectory models, buffer zone spatial
analysis, the nearest neighbor index, and other research methods. We explored the land use dynamic
change in the buffer zone of different settlement types in the karst trough valley from 1964 to 2021 in
the long time series and micro-spatial dimensions. We analyzed the homogeneity, variability, and
coupling characteristics of land use evolution in typical settlements. The results indicate the following:
(1) From 1964 to 2021, the karst trough valley settlements as a whole showed an aggregation state,
and the settlements could be classified into four categories: expanding settlements (ES), atrophic
settlements (AS), balancing rural settlements (BS), and decreasing settlements (DS) according to the
settlement life cycle theory and settlement development index measurement. (2) Different expansion
and shrinkage of land use buffer changes exist for different settlement types. The closer the ES is
to the location of the settlement center, the richer the land use type; the further the AS from the
settlement center, the richer the land use type; the BS is not affected by the distance; and the DS
settlement shows dynamic changes. (3) Land use dynamic change in settlements is driven by multiple
integrated factors, and there is variability in the driving factors of different settlement types. (4) In this
paper, through a case study, we propose the research idea that land use change (LUCC) reflects land
use transformation (LUT) in different rural settlement types from a settlement-scale perspective, and
land use transformation further causes the development of rural settlement transformation (RUT).
Our study revealed the LUCC—LUT—RUT interaction feedback mechanism of karst trough valley
settlements in Southwest China. This study aims to enrich the theoretical research framework of rural
transformation at the settlement scale, on the one hand, and to provide case studies for developing
countries with karstic mountain valley landscapes, such as China, on the other.

Keywords: rural settlement; land use; land use transition; rural transformation development

1. Introduction

In the context of rapid global industrialization and urbanization, 45% of the world’s
population still lives in rural areas and is affected by globalization [1–3]. Meanwhile,
the disparity and decline of rural development have become global issues in globaliza-
tion [4,5]. Since the end of World War II, differential rural problems have gradually
emerged in both developed and developing countries, with rural areas in the United States,
the United Kingdom, and Canada, as well as developed countries in Europe and the
United States, facing urban–rural disparities, concentrated poverty, cultural conflicts, and
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irrational land use [6–8]. Developing countries, such as Africa and India, face severe land
degradation, widespread poverty, food insecurity, and other problems in rural areas [9,10].
With the prominence of global rural problems, it is easy to see that rural land develop-
ment and land use are among the critical issues of rural development, so it has become a
human consensus to solve rural problems and explore the long-term evolution trend and
sustainable development of rural areas and their land use [11].

China has always been a major agricultural country, and its villages play a vital
role in ensuring its agricultural and food security and sustainable development [12]. In
recent years, along with the continuous promotion of urban–rural integration and rural
revitalization strategy, rural-related research topics have gradually become a major socio-
economic issue of concern to researchers and the Chinese government [13]. As one of the
carriers of rural society, village settlements are widely used in rural studies [14]. A rural
settlement is a production and living place formed by the interaction of rural residents
with the surrounding natural environment, socio-economic environment, and cultural
environment [15]. The integrated development and optimal spatial reorganization of all
elements of rural settlements have become an academic hotspot driven by the urgent need
and strategy for the sustainable development of national rural society [16].

Rural settlements are the basic spatial units of rural geography and an important
part of the study of human–land relations [17]. Academics have conducted many studies
on rural settlements, rural settlement land use, and rural settlement development and
have achieved remarkable results. In studying the evolution of rural settlements, scholars
initially focused on the formation and orientation of rural settlements [18,19]. With the
development of geographic information technology, scholars have paid more attention to
the types of rural settlements [20], spatial distribution, scale [21–24], density [25,26], driving
mechanisms [27], transformational development, spatial reconfiguration, etc. [28,29]. In
the studies related to land use change in rural settlements, scholars have focused on na-
tional [30,31], provincial [32], regional [25,33,34], and basin [35,36] scales of study, and used
research methods such as the landscape pattern index method [37], neighborhood buffer
analysis [38], spatial autocorrelation analysis [39], and sample zone analysis [40] to explore
the core issues [41,42] of the spatial layout of rural settlement land use, driving mechanisms
of land use evolution, and spatial optimization and reorganization. In the study of rural
settlement development, scholars have devoted themselves to the study of rural settlement
development types and patterns [12,17,43], development potential [44], multifunctional-
ity [13,45,46], and sustainable development [47,48]. Several studies have analyzed rural
settlements, land use, and rural settlement development separately. However, previous
studies have only observed single-factor dynamic changes in rural settlements. There is
a lack of in-depth research on the comprehensive development types of different rural
settlements, the evolution of settlement development, and surrounding land use elements
and there is still a lack of research on the dynamic changes in land use at the microscopic
scale of rural settlements in long time series. Few studies have examined the integrated
perspective of human–land interaction and rural development. The inadequacy of these
studies make it difficult for us to accurately judge and grasp the regularity and stages of the
evolution process of rural settlements and to scientifically optimize the planning related
to rural settlements in rural revitalization. Therefore, it is necessary to study the dynamic
changes in land use in rural settlements on a microscopic scale.

The karst trough valley is one of the typical karst landform types in China, as it is a
large area with a flat topography at the bottom of the trough. The region is characterized by
high population pressure, low land carrying capacity, relatively lagging socio-economics,
considerable topographic relief, and significant differences in spatial patterns of land use.
Based on this, clarification of the “people (settlement)—land (land use) relationship and
its evolution” in the trough valley is vital for the territory. In the context of the current
dualistic development of urban–rural territorial systems, the number, scale, and pattern of
land use in and around different rural settlement types in the trough valley varies, and the
differences in land use evolution of different rural settlement types reflect the differences
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in regional rural socio-economic development. Because of this, to explore the land use
evolution pattern at the settlement scale in the karst trough valley, this study grasps the
“type” of settlement with the help of “typical” settlements. The study uses “micro-scale
long time series” to map “large scale short time series.” The study selects different types of
settlements in karst troughs and valleys as research objects and explores the spatial and
temporal evolution characteristics of land use around different types of settlements on
the settlement scale. At the same time, we analyze the land use transfer trajectories of
different types of settlements; explore the land use rise and shrinkage patterns; and reveal
the interactive feedback mechanisms of land use change (LUCC), land use transformation
(LUT), and rural settlement transformation (RST) processes. We aim to explore the driving
factors of the spatial differentiation of rural areas to provide a more scientific and reasonable
reference basis for the land use of rural settlements under different geomorphological
conditions in other karst trough and valley areas, to achieve a balance between the supply
and demand of land use in rural settlements in karst troughs and valleys, to promote
sustainable rural socio-economic development and ecological–environmental protection,
and to provide a reference for enriching the research framework and typical cases of rural
land use evolution and land use transformation in China.

Accordingly, we proposed the following research question: What is the development
type of rural settlements in the karst trough valley of Southwest China? How does land
use change across rural settlement types on the buffer scale? What natural or socio-
economic factors influence land use change in rural settlements? Specifically, we tested
two main hypotheses: (1) Land use change in rural settlements is driven by natural and
socio-economic factors. (2) In the karst trough valley area of Southwest China, there is
an interactive feedback mechanism of land use change–land use transformation–rural
transformation development. To test these hypotheses, we selected the karst trough valley
area in Southwest China as the study area. In Section 1, we briefly describe the study area
and data sources. In Section 2, we list the appropriate research methods and the selection of
typical clusters. Section 3 analyzes the results of different rural settlement types, land use
buffer changes, land use transfer trajectories, and land use coupling states in karst trough
valleys. In Section 4, we analyze the drivers of land use change and feedback mechanisms
for different settlement types and highlight our research uncertainties and future research
directions. Finally, the conclusions of our study are presented in Section 5.

2. Study Area and Data Sources

2.1. Study Area

A typical karst trough valley (LangXi trough valley) in the southwest karst moun-
tainous region was selected as the research object. LangXi trough valley is located in
YinJiang County of Tongren region in northeastern Guizhou Province, and the adminis-
trative area covers several townships in the territory, including BanXi town, TaiShui town,
LangXi town, Eling town, LuoChang township, BaoXi township, and Tinzhai township,
with a total area of 130.34 km2. The geographical position is 108◦24′36.43′′–108◦34′8.62′′ E;
27◦53′59.55′′–28◦6′22.16′′ N. There are 35 administrative villages in LangXi karst trough
valley, including SanCun village, XiBu village, HeXi village, etc. Based on the study’s
purpose and the area’s topographical features, the study area was divided into five trough
valley locations: the top of the trough valley, the trough slope, the dam, and the east and
west slopes (Figure 1).

2.2. Data Sources

Spatial data and non-spatial data were selected for the study, in which spatial remote
sensing image data were selected as the primary data for 1964, 1999, 2004, 2014, and 2021.
Resolutions were in the order of 2.7 m, 2.7 m, 10 m, 2.5 m, and 2.5 m. After the field survey
of the study area, the spatial remote sensing images were interpreted and the land use data
were visually interpreted for each year.; According to the Land Use Status Classification
(GTB-21010-2017) and the actual situation of the trough valley area, The land use types in
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the study area were further divided, where arable land was classified as steep slope, gentle
slope, and flat dam (slope > 15◦, 7◦ < slope < 15◦, slope < 7◦); grassland was classified as
high cover, medium cover, and low cover, and the others were interpreted according to the
images in turn (Table 1). The accuracy of the classified land use types was corrected using
ENVI5.0 and verified by combining field research with sampling, and the accuracy of the
land use vector map for each period reached 87%, meeting the needs of land use analysis.
The non-spatial data were mainly extracted from field research and government statistics.

Figure 1. The study area ((a) Langxi trough location map; (b) Typical settlement distribution map;
(c) Trough and valley elevation map; (d) Slope map of trough and valley).

Table 1. Trough land use classification.

Land Use Properties Level 1 Land Use Grade Level 2 Land Use Grade Code

Production land

Arable land 01
Flat dam arable land 0101

Gentle slope arable land 0102
Steep-slope arable land 0103

Garden 02
Orchards 0201

Tea gardens 0202
Vegetable Garden 0203

Living land Construction Land 03

Industrial Land 0301
Industrial and mining land 0302

Rural residential area 0303
Urban settlements 0304

Road 0305

Ecological land

Forest 04 Forested land 0401
Other lands 05 Abandoned land 0501

Grassland 06

Low cover grassland 0601
Medium cover grass 0602
High cover grassland 0603

Irrigated grassland 0604
Water 07 River, Reservoir 0701
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3. Methods

3.1. Settlement Selection and Classification

The difference in settlement types in the karst valley areas reflects the land-bearing
capacity and the human–land relationship in the karst mountains. The classification of set-
tlement types in the valley areas aims to reveal the characteristics of settlement differences
in karst valley areas, evolution rules, and driving factors. The classification study helps us
grasp the land use changes in different types of settlements. Research on the classification of
settlement types usually follows the principles of wholeness, dominance, and the feasibility
of development and classifies rural settlements into different types based on the geograph-
ical environment, location conditions, economic development, ecological environment,
social culture, and farmers’ wishes, and then formulates the corresponding optimization
strategies [35,49–51]. In this study, based on the avoidance of administrative and large
scattered villages, we selected eight typical settlement units in the trough valley region for
the study and explored the land use buffer scale changes for individual settlements. Com-
bining the previous research results, in order to grasp the land use evolution pattern guided
by human activities in different settlement environments in the trough valley region, con-
sidering the geographical differences in the natural environments in which the settlements
are located and the types of settlement evolution, drawing on the literature [52–54], we
reintegrated the total rate of change and the average annual rate of change with modified
formulas and calculated the total rate of change and the average annual net rate of change
formulas for the analysis of rural settlement change. Finally, we used the settlement change
index for settlement type classification and classified the typical settlement types in the
karst trough valley area as follows (Figure 2): expanding settlements (ES: ZengJia, SanCun,
and ChuanYan), atrophic settlements (AS: Ganlong and XinCao), disappearing settlements
(DS: TaiYangPing), and balancing rural settlements (BS: HeXi and GaoZhai).

3.2. Buffer Analysis

Buffer analysis is used to establish a certain distance of a faceted area around a spatial
object given a spatial object, the extent of which is determined by the radius R of the area
to identify the radiation or influence of the analyzed object on the neighboring objects.
Generally, the buffer area for a spatial object B is defined as follows:

B = {Xi = {Xi|d(X, O)} ≤ R} (1)

B is the target buffer influence range, Xi is the location of any point in the target field
(rural settlement point), O is the analysis object, d is the minimum Euclidean distance, and
R is the buffer radius [55]. Different settlement types in the karst trough valley area have
different levels of settlement development, and the surrounding land use changes show
differences. In this paper, we use the buffer zone analysis method to select different types of
settlements as the center point and establish buffer zones (range 50 m, 100 m, 150 m, 200 m,
250 m, 300 m, 350 m, 400 m) according to the center of the settlement; we perform a study
on the dynamic variation of surrounding land use under different types of settlements. The
buffer zone analysis in this paper was used to establish a polygon land use layer with a
certain radius around the settlement as the center point, overlay the established layer with
the target layer, and then analyze the results to explore further the evolution and coupling
relationship between different types of settlements and their surrounding land use in the
trough region.

3.3. Geographic Information Mapping Trajectory and the Index Model of Comprehensive Land
Use Intensity

ArcGIS10.2 software was used to overlay five phases of land use maps and analyze
the spatial change process of land use using change mapping with the following equation:

Y = G110n−1 + G210n−2 + . . . + Gn100 (2)
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where Y is the n–digit number calculated synthesis of the land use code; n is the number of
periods of land use; Gn is the nth period of land use unit.

Figure 2. Typical settlement division and selection.

The index model of comprehensive land use intensity [56] was constructed to model
the change in land use intensity around each settlement in the study area so that it could be
implemented in the rural settlement spatial unit. The specific equation is as follows:

L =
n

∑
i=1

AiCi =
n

∑
i=1

Ai(Si/S) (3)

where L is the land use intensity of a single sample; Ai and Ci are the graded indices of land
use intensity at level i and the percentage of area occupied in the sample; Si is the area of
land use type at level i in the sample; S is the total land area of the sample.

3.4. Average Nearest Neighbor

The Average Nearest Neighbor Index (ANN) is derived from the average distance
between each rural settlement’s center of mass and its nearest neighbor’s center of mass and
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is one of the most common methods used to determine the spatial distribution pattern of
rural settlements. The average Nearest Neighbor Index value is distributed between [−1, 1],
and the closer the result is to 1, the more discrete the distribution is, and the opposite is the
more clustered [31].

ANN = γαγβ =
∑ dmin

n√
n/A
2

=
2
√

λ

N ∑ dmin (4)

ANN is the average nearest neighbor index. γα is the average distance of nearest neighbors
of village settlement points; γβ is the theoretical average under the random spatial distribu-
tion of village settlement points. dmin is the distance between a village settlement point and
the nearest neighboring village settlement; n is the number of village settlements; A is the
total area of spatial units; λ is the spatial distribution density of village settlements.

3.5. Standard Deviational Ellipse

Standard deviational ellipse (SDE) can accurately reveal the spatial distribution center,
dispersion, and directional trends of geographical elements and is a spatial statistical
method to quantitatively analyze the overall characteristics of the spatial distribution of
geographical elements [56,57]. The rotation angle is the angle formed by clockwise rotation
from due north to the central axis, reflecting the main trend direction of its distribution,
and the long axis characterizes the dispersion of rural settlement sites in the main trend
direction, whose mathematical expression is [56,57]:
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(B) ≈ δx =

√√√√[ n

∑
i=1

(wix′ i cos θ − wiy′ i sin θ)2/
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∑
i=1
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2

]
(6)

(B) ≈ δy =

√√√√[ n

∑
i=1

(wix′ i sin θ − wiy′ i cos θ)2/
n

∑
i=1

wi
2

]
(7)

where (A) and (B), the azimuthal angle is derived from tan θ, δx, and δy are the standard
deviations along the x and y axes, respectively, and xi and yi represent the coordinate
deviations from the mean center, xi, and yi indicate the deviation of coordinates from the
mean center. The center (center of gravity) is the average distribution center of the rural
settlement land space in the trough valley area. The center uses the main trend direction
of rural settlement distribution as the azimuth, the standard deviation in the x–direction
and y–direction as the ellipse axis, and the spatial distribution ellipse of rural settlement
land is constructed to explain the characteristics of centrality, directionality, and spatial
distribution pattern of the evolution of rural settlement type land in the trough valley
area. Meanwhile, the direction, intensity, and spatial dispersion trends of the development
changes of rural settlements in karst trough valleys are identified by the standard deviation
ellipse eigenvalues in different years. This paper calculated the standard deviation ellipse
parameters of rural settlement sites in karst valleys with the help of the ArcGIS software
spatial statistics module and visualized the results.

3.6. Kernel Density Estimation

Kernel density estimation (KDE) is a non–parametric density calculation method,
which reveals the distribution characteristics of points through the spatial variation of the
density of settlement points, and is suitable for measuring the spatial distribution density
of rural settlement sites:

f (x, y) =
1

nh2

n

∑
i=1

k
(

di
n

)
(8)
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where f (x,y) is the density estimate at point (x,y); k() is the kernel function; bandwidth h > 0;
n is the number of observations; di is the distance of (x,y) location from the ith element.
The higher the kernel density value, the higher the density of spatial distribution of rural
settlement sites [58].

4. Results

4.1. Spatial Pattern Analysis of the Evolution of Rural Settlement Types in the Karst Trough

In order to clarify the spatial aggregation characteristics of the evolution of rural settle-
ments in the LangXi trough valley and to classify the types of settlements, the regional rural
settlements were analyzed using the nearest neighbor index. The nearest neighbor index
analysis was conducted on the regional rural settlements, and the results of the analysis
showed that, during the nearly 60 years from 1964 to 2021, the z–value of LangXi trough
valley rural settlement was less than 1 in all four time periods, then the trough valley rural
settlement showed a clustering trend. The significance level was less than 0.01, indicating
that the spatial aggregation of rural settlement types within the trough valley territorial
system rejects the null hypothesis of random distribution. From 1964 to 1999, the average
observed distances in this period were all smaller than the expected average distances,
and the nearest neighbor ratio was approximately 0.4 (0.37–0.39), with a significance level
of p < 0.01, indicating that the karst valley rural settlements showed an overall cluster-
ing trend in this period. The number of rural settlement patches clusters significantly
decreased, the average observed distance slightly increased, and the nearest neighbor ratio
slightly decreased, from 0.396 to 0.372 (Table 2 and Figure 3). This shows that the spatial
agglomeration of settlements tended to weaken with time evolution. From 2004 to 2021,
the cluster z–value decreased sharply from −20.76 to −48.39, indicating that the spatial
agglomeration of the clusters showed a sharp weakening trend over time.

Table 2. The nearest neighbor ratio of rural settlements in 1964 and 2021.

Year
Coverage Observation

Distance(M)
Expected Average

Distance(M)
Nearest Neighbor Ratio Z-Value p-Value

1964 133.9159 358.7075 0.3733 −19.1443 0.0000
1999 152.4767 384.9336 0.3961 −16.6215 0.0000
2004 123.5568 331.7834 0.3724 −20.7609 0.0000
2021 39.8482 185.4402 0.2150 −48.3908 0.0000

Drawing the standard deviation ellipse of the spatial distribution of rural settlement
patches can explain the characteristics of centrality, direction, and spatial distribution pat-
terns of rural settlement types in the karst trough valley area. Meanwhile, the direction and
intensity of rural settlement development changes and their spatial dispersion trends can
be identified by the standard deviation ellipse characteristic values in different periods. The
average length of the x-axis from 1964 to 2021 was 1.4 km, the average length of the y-axis
was 1.6 km, the rotation angle decreased from 25.59◦ to 25.31◦, and the deviation range
of the main parameters of the standard deviation ellipse for each year was approximately
2%, and the basic spatial pattern of the settlement was relatively stable and maintained
its distribution in the W–N direction (Figure 4). This shows that the basic spatial pattern
of the settlement in the study area is controlled by the topography of the trough valley
and trough dam, as well as the topography of the trough dam, which is surrounded by
mountains on both sides, with east-west trough slopes and narrow north-south slopes.
The center of the standard deviation ellipse is the center of gravity of rural settlements in
the corresponding year, and its migration changes can reflect the overall spatial process
of the evolution of rural settlement types in the study area. The center of gravity of the
settlement in 1964 was used as the coordinate origin to measure the rate and direction of
the settlement center of gravity migration in each period and visualize it. The calculation
results show that the average annual rate of gravity migration was 32.12 m/a. In directional
change, the gravity of the settlement shifted southeast from 1964 to 2021 and pointed to
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the trough dam area. The spatial evolution of hotspot areas of rural settlement types in the
trough valley differed in each period, and the spatial directionality was stronger from 2004
to 2021 than from 1964 to 2004. The main reason for this is the accelerated urbanization
and industrialization of the trough valley area since 2004 and the significant changes in the
spatial pattern of settlements.

Figure 3. Distribution of Nearest Neighbor Index of Rural Settlements, 1964–2021.

The study extracted the center of gravity of each settlement patch, used the center
of gravity to represent the settlement, and calculated the spatial distribution density of
the settlement. Using the ArcGIS nuclear density module, a spatial analysis of nuclear
density was conducted to classify the settlement nuclear density in each period into the
background, low density, medium density, and high-density zones (Figure 4). The settle-
ment nucleation density of each period was also classified into the background, low density,
medium density, and high-density zones (Figure 4). The spatial heterogeneity of settlement
density distribution in the trough and valley area is prominent, and the high-value area
of settlement density distribution from 1964 to 2021 tended to be the trough and dam
areas. The background area is mainly located on the slope and top of the valley, part of
the geological environment in this area is not suitable for forming settlements, and the
distribution of settlements is small. The medium and high-density areas are mainly located
in the karst valley trough and dam area with flat terrain, convenient transportation, and
good farming conditions and are primarily distributed in a band. The high-density areas
are distributed along the traffic arteries and the Yinjiang River, while the low-density areas
are scattered in the two wings of the troughs and valleys.

4.2. Analysis of the Buffer Zones in Land Use Change around Typical Rural Settlement Types

From 1964 to 2021, buffer changes, the types, and amounts of land use around the
settlements showed differential change characteristics within the buffer area. The land use
changes in the settlement’s 0 to 400 m buffer zone showed the evolution characteristics
of three buffer interval dimensions. The land use mapping of 0 to 50 m, 50 to 200 m, and
200 to 400 m buffers in four troughs and valleys in typical settlement classes had varying
characteristics (Figure 5).
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Figure 4. (a) Kernel density analysis of rural settlements from1964 to 2021. (b) Gravity shift and
standard deviational ellipse of rural settlement distribution from 1964 to 2021.

Figure 5. Cont.
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Figure 5. Evolution of land use in the typical settlement type’s 0–400 m buffer zone.

In general, the change in land type in the buffer zone of the ES of the dam of karst
trough valley is mainly concentrated in the buffer range of 0 to 50 m, and the land use
types around the settlement are mainly steep-slope arable land, gentle slope arable land,
flat dam arable land, and rural settlement, and the number of land types accounts for
30.84%, 13.21%, 12.67%, and 8.23% of the buffer area, respectively. In the buffer zone, the
overall trend of land use change shows the expansion of forest land and abandoned land,
while rural residential areas and arable land maintain a balance. However, within the 0 to
50m buffer zone, the land use land types around the BS are mainly rural residential areas,
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orchards, flat dam arable land, and steep-slope arable land, with the numbers accounting
for 12.13%, 10.36%, 28.31%, and 21.62%, respectively. The rate of change is mainly based
on the expansion of rural settlements, flat dams of arable land over time, and the increase
in abandoned land and orchards. The changes in the land use buffer zone around the AS
of Xinchao and Ganlong are mainly manifested in four types of land: forest land, arable
land, and abandoned land (Figure 5). Within the 0 to 50 m buffer zone, the overall land use
types are mainly steep slope arable land, gently sloping arable land, rural residential areas,
and abandoned land, accounting for 36.12%, 23.03%, 12.35%, and 9.16% of the buffer zone
area, respectively. The land use around the DS Taiyangping has apparent differences in
land use types, quantity, and structural changes in the buffer zone dimension; the number
of land use types has increased, and the change in land use quantity is mainly in forestland,
cropland, grassland, and abandoned land. In the 0 to 50 m buffer zone range, the buffer
zone land types of rural settlements, low-cover grassland, and flat dam cropland show an
increase and decrease with time.

4.3. Mapping and Trajectory Analysis of Land Use Changes around Typical Rural Settlement Types

The study introduces a geographic information mapping trajectory model to analyze
the spatial and temporal trajectories of land use change around typical settlements in the
LangXi trough valley (Figure 6). From 1964 to 1999, the land use around the trough dam
of ES showed an expansion of steep-slope arable land, flat-dam arable land, grassland,
and rural residential area, and a contraction of forestland and low-cover grassland in the
time-series change characteristics. The trajectory mapping of land use change is as follows:
forestland→steep-slope arable land, forestland→flat dam arable land, forestland→irrigated
grassland, gently sloping arable land→irrigated grassland, low-cover grassland→steep-
slope arable land, low-cover grassland→rural residential areas. The land use at the trough
valley top and the trough slope of the AS is mainly steep-slope arable land, flat dam
arable land, irrigated grassland expansion, and forestland shrinkage. The trajectory of land
use change around the settlement is mainly forestland→steep-slope arable land, forest
land→flat dam arable land, forest land→gently sloping arable land. BS at the top of the
trough valley is dominated by the expansion of steep-slope arable land, flat dam arable
land, grassland, and rural residential area, and the contraction of forestland and low-cover
grassland. The trajectory mapping of land use change is mainly: forestland→steep-slope
arable land, forestland→flat dam arable land, forestland→irrigated grassland; gently slop-
ing arable land→irrigated grassland, low cover grassland→steep-slope arable land, low
cover grassland→rural residential area. The trough slope of the DS is mainly dominated
by the expansion of arable land and the shrinkage of forestland grassland, and the land
use change trajectory is mainly: forestland→steep-slope arable land, forestland→flat dam
arable land, forestland→irrigated grassland, steep-slope arable land→gently sloping arable
land; the intensity of arable land use is higher in the trough slope in this period.

From 2004 to 2014, the land use types of the ES were mainly forestland, abandoned
land, grassland expansion, steep slope arable land, irrigated grassland, flat-dam arable land,
and gently sloping arable land contraction. The land use change trajectory is mainly steep-
slope arable land→abandoned land, gentle slope arable land→abandoned land, flat dam
arable land→abandoned land, low cover grassland, and irrigated grassland→abandoned
land. The land use types of the AS are mainly an expansion of grassland and abandoned
land, and contraction of forestland, irrigation grass, gently sloping arable land, and steep
sloping arable land, and the trajectory mapping of the surrounding land use changes are
mainly forestland→steep sloping arable land, forestland→flat dammed arable land, and
forestland→gently slope arable land. The types of land use around the BS are mainly gently
sloping arable land, abandoned land, irrigated grassland, low cover grassland, high cover
grassland, rural road expansion, steep-slope arable land, forest land, and flat dam arable
land contraction. The trajectory of land use change is as follows: steep-slope arable land to
fallow land, steep-slope arable land to grassland, forest land to irrigated grassland, forest
land to gently sloping arable land, forest land→irrigated grassland, forest land→country
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roads, gently sloping arable land→abandoned land. The land use types around the DS
are mainly arable land, grassland expansion, and forest land contraction, and the land
use change trajectory mainly shows forestland→arable land, forest land→irrigated grass,
forestland→high cover grass, and irrigated grass→high cover grass.

Figure 6. Cont.
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Figure 6. Mapping of land use transfer trajectories in typical rural settlement types.

From 2014 to 2021, the land use types of the ES were forestland, flat dam arable land,
rural road expansion, abandoned land, and steep-slope arable land, and slow slope arable
land contraction was dominant, and the land use change trajectory around the settlement
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is mainly: abandoned land→flat dam arable land, irrigated grass→forestland, low cover
grass→forestland, abandoned land→forestland. The AS mainly focuses on expanding
forestland, abandoned land and grassland, flat dam arable land, gently sloping arable
land, and steep sloping arable land shrink. The BS is dominated by the expansion of forest
land, rural roads, tea gardens, flat dam arable land, and the shrinkage of arable land and
grassland. The land use types of the DS are mainly forestland, abandoned land, grassland
expansion, steep-slope arable land, irrigated grassland, flat dam arable land, and slow
slope arable land contraction. The trajectory of land use change is mainly steep-slope
arable land→abandoned land, gentle slope arable land→abandoned land, flat dam arable
land→abandoned land, low cover grassland, and irrigated grassland→abandoned land;
the overall trend of land types around the settlement showed shrinkage at this stage.

4.4. Coupled Analysis of Land Use Evolution around Typical Rural Settlement Types

The evolution of land use around different settlement types in the karst trough valley
has a mutual influence relationship, and different settlement types in the trough valley
were divided into three time periods according to the land use change patterns around
different settlements: 1964–2004, 2004–2014, and after 2014. There are dynamic evolutionary
coupling processes and dynamic coupling strengths between different settlement types
and their surrounding land use changes in the three time periods (Figure 7). Among
them, the ES at the bottom of the trough, such as ZengJia, SanCun, Chuangyan, and
the surrounding land use coupling process, show a complete coupling situation. The
settlement area showed a local expansion from 1964 to 2004, a balanced expansion from
2004 to 2014, and a significant core expansion after 2014. The land use change around the
settlement showed different trends with the settlement expansion, the land use area of
steep-slope arable land and gentle slope arable land expanded, and the flat dam arable
land decreased. The clusters and their surrounding land use showed an increasing linear
trend in coupling intensity.

Figure 7. Schematic diagram of the coupling evolution of different settlement types and land use.

Regarding the BS of HeXi and GaoZhai in 1964–2021, the coupling process between
the settlement and its surrounding land use showed a remote continuous coupling state,
and the core of the settlement and the land use around the settlement its coupling intensity
showed an inverse linear growth trend. The AS and the surrounding land use changed in
this period, and the coupling process of surrounding land use with the settlement as the
core showed a local coupling, which exhibited a local expansion from 1964 to 2004. From
2004 to 2014, it showed local shrinkage; after 2014, it showed rapid shrinkage. The land use
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changes around shrinking settlements showed a gradual decrease in cultivated land on
gentle slopes, steep slopes, and flat dams; minor changes in the surrounding forest land;
and an increase in the irrigation and grassland areas, and overall, the coupling intensity of
shrinking settlements and their surrounding land use changes showed a trend of increasing
first and then decreasing. The area of DS showed local expansion from 1964 to 2004;
balanced shrinkage from 2004 to 2014; and after 2014, the settlement center transitioned
into a significant extinction phenomenon, the settlement and the surrounding land use
showed a fundamental coupling disorder, and the coupling intensity of the settlement core
and the surrounding land use of the settlement decreased linearly.

5. Discussion

5.1. Analysis of the Homogeneity and Heterogeneity of Land Use Changes around Typical Rural
Settlement Types
5.1.1. Homogeneity Analysis of Land Use Changes around Different Settlement Types

The analysis of land use changes in the buffer zone of the ES, AS, DS, and BS found
that the homogeneity of land use changes around different settlement types in karst trough
valleys mainly manifested in the spatial dimension and the temporal pattern dimension.
Homogeneity was manifested as follows: Firstly, spatially, the increment in trough dam
settlement showed an inverted U-shaped variation with land class (Figure 8), the ES, and
an increase in land types. The number of settlements and land types of DS on the trough
slopes showed a linear change of “\”. A single land type appeared when the settlement on
trough slopes died out. At the top of the trough AS with BS, the number of communities
and land types showed an “L” change; the development of settlements at the top of the
troughs appeared to be flat, and the number of land types decreased. Second, the land
types around the ES at the top and bottom of the trough were more and less influenced by
the settlement within 200 m. At the same time, within the 200 m buffer zone and outside the
200 m buffer zone, the land use around the early and late settlement retained a particular
slope of sloping arable land. Third, the abandonment phenomenon existed inside and
outside different settlement types’ 200 m buffer zone. In addition, the homogeneity of
the land use of settlements in terms of temporal characteristics was shown by the annual
enrichment of land use land types around different settlement types from 1964 to 2021.
Land use structure and function around different settlement types in karst trough valleys
showed dynamic changes.

5.1.2. Analysis of the Variability of Land Use Change around Different Settlements

Different settlement types in karst trough valleys have differences in the buffer zone
and temporal characteristics of land use changes around them. From the analysis of the
overall land use changes of different settlement types, it was found that the ES land use
evolution at the bottom of the trough valley showed that the closer the location to the
center of the settlement, the richer the land use type. Moreover, its land use buffer type and
land type shift showed that it was dominated by arable land, orchards, and tea gardens
(Figure 8). The farther it is away from the settlement center, the more homogeneous the
land use type is, and the land use type showed the ecological restoration type of use, such
as forest land, abandoned land, and grassland. The land use evolution pattern of the BS at
the top of the trough showed that the land use types were richer regardless of the distance
from the settlement, and the land use types in the buffer zone and around the settlement
were mainly arable land. The land use changes in the AS showed a closer distance to the
settlements on the slopes of the troughs and valleys. The primary land use type for more
homogeneous land use type was mainly arable land, abandoned land, and other valuable
methods. The more distant the settlement, the richer the land use type was. The primary
land use type is steep-slope arable land, grassland, irrigation grass, and forestland. The DS
land use changes on the slopes of the trough valley mainly show that the rural residential
areas in the center of the settlement are abandoned, and their buffer zone land class and
the land class transfer around the settlement are mainly abandoned land, grassland, and
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forestland, while in the buffer zone dimension, the closer to the settlement center, the
lower the land class richness, and vice versa. Regarding the characteristics of the temporal
pattern of land use change in the settlement, the abandoned land, grassland, and forestland
around the settlement expanded, and the arable land and residential areas shrank from
1964 to 2021.

Figure 8. Homogeneity and heterogeneity analysis of land use change in buffer zones of settlement types.

5.2. Driving Mechanisms of Land Use Change in Typical Rural Settlement Types

Considering the characteristics of typical settlement types in karst trough valleys, the
analysis of land use changes around settlements revealed that land use changes around
rural settlements in karst trough valleys are driven by multiple factors and are the re-
sult of the interaction between the natural environment and human activities. Natural,
human, socio-economic, and environmental factors influence land use changes around
different settlement types. Among them, topography, climate, hydrology, geology, soil,
and other physical, geographic, and environmental factors directly influence regional dif-
ferences in rural settlements, especially in the driving mechanism of land use change in
rural settlements.

In this study, the influence of regional geological composition and soil texture on the
land type change around rural settlements was relatively weak, so the mechanism driving
factors were not explored here. In the unique environment of regional karst geomorphology,
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in addition to geological features partially influencing factors, the changes in cultivation
conditions and radius caused by the dual factors of elevation and slope become the main
limiting drivers of land use changes around rural settlements. Therefore, land use changes
in rural settlements in the LangXi karst trough valley are driven by natural geographic and
environmental factors (Figure 9). The land use change in the settlement is driven by the
positive double feedback mechanism of topography and slope, with the dynamic change
pattern of “low-low expansion.” The average slope of the typical settlements in SanCun,
Chuangyan, and ZengJia is 5–15◦, the average elevation is 580 to 795 m, and the land use
around the settlements is forest land and arable land expansion (Figure 9). The driving
pattern of land use change in and around a shrinking slotted slope settlement showed
“low-low shrinkage” dynamics. The average slope of typical settlements in Ganlong and
Xinchu is 15–20◦, and the elevation is between 920 and 1170 m. Balanced rural settlements
form “medium-medium average” and “high-high extinction” dynamic change driving
patterns, respectively, with the medium-high slopes and land use changes showing dynamic
equilibrium and extinction.

Figure 9. Driving mechanisms of land use change around typical settlements.

In summary, the ES showed a trend of spatial expansion to lower elevations and
elevation zones over time. The AS showed the trend of atrophy of high elevation and
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high-altitude settlement centers over time, while the BS showed the trend of balanced
rural development in the middle elevation of troughs and valleys. The DS showed the
development trend of high altitude and high elevation to restrict the land use of clusters.

The change of land use in and around rural settlements is a process of selective regional
development under the combined influence of natural resource conditions and human and
socio-economic infrastructure conditions; it can be seen as the result of competition between
rural settlement land and other types of surrounding land. Natural factors determine the
basic structure of rural settlements and their surrounding land pattern and constitute the
substrate for the growth and development of rural settlements. Moreover, they have a
significant influence on the origin, change, and extinction of rural settlements in karst
troughs; human and socio-economic factors directly or indirectly cause the activity state of
rural settlements in the trough and constitute the main drivers of dynamic changes in land
use in and around rural settlements on short and medium time scales. The land use changes
around the rural settlements in typical karst trough valleys are mainly driven by policy
orientation, population change orientation, farmer willingness orientation, farmer liveli-
hood orientation, and economic development regarding human and socio-economic factors,
specifically including returning farmland to forest policy (S-RFF), farmers’ behavior and
willingness (S-FBW), policy (S-POL), economy(S-ECO), Stone Desertification Management
(S-SDM), farmers’ livelihood (S-FL), population loss (S-PL), Precise Poverty Alleviation
and Land Policy Innovation (S-PPAL), and Land Remediation (S-LR) (Figure 9). Under the
policy-driven guidance, land use changes around typical rural settlements in the trough
valley are influenced by the policy of returning farmland to forest, stone desertification
control projects, ecological restoration project construction, and sloping land improvement
policy. Precise poverty alleviation and the policy of stone desertification management
are significant. Driven by population orientation, the population’s age structure in the
trough area is dominated by young children and older adults, and the labor capacity of
rural settlements is weak. The labor capacity determines their labor distance and intensity,
and the labor distance and intensity affect the planting and tending of rural settlement
land, thus affecting the land use pattern of rural settlements in the karst trough area. For
example, the population loss of TaiYangPing in the trough valley slope of DS gradually
increased from 2000 to 2020 (Table 3), and the loss rate reached 50%, and a large number of
young people in the settlement went out or moved out, and the land use pattern around
the settlement changed from comprehensive mixed-use land type to single abandoned
land type, and the settlement gradually showed the extinction trend. The labor force of
Ganlong and XinCao has left, and middle-aged and young people have been lost, among
which the loss of people in Ganlong increased from 21% in 2000 to 46% in 2020. There was
dynamic stability in the rate of human flow loss in the trough dam settlements of HeXi and
GaoZhai from 2000 to 2020, and the land use changes around the settlements showed a
balanced state. The population of the expanding settlement is returning to the land, and the
settlement and land use are expanding. Driven by the livelihood orientation of farmers, typ-
ical settlements in karst trough valleys diversify with agrochemical livelihoods and show
diversity in surrounding land use changes. In general, the evolution of rural settlements at
the top and slopes of trough valleys with higher elevation is dominated by more decisive
geographical factors; rural settlements in trough dam areas show a stronger correlation
with socio-economic factors and are more strongly influenced by population, policies, and
economic development levels; rural settlements and their surrounding land use changes
have obvious clustering effects toward transportation, rivers, and cultural centers.

5.3. Discussion of the LUCC–LUT–RST Interaction Feedback Mechanism for Typical Rural
Settlement Types

Various socio-economic issues mapped out in the development of rural settlements
are reflected in their land use. Generally, drawing from the settlement land use changes can
reflect the trend changes in regional land use patterns and formulate regular summaries.
Land use morphological change is the core element of land use transition research. Land
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use transformation is the external expression of the transformation of rural settlement
development, so the relationship between land use change (LUCC), land use transition
(LUT), and rural settlements transformation (RST) are inseparable.

Table 3. The population loss rate in typical rural settlements, 2000–2020.

Settlement

2000 2010 2020

Typical
Settlement
Population
Loss Rate

The Average
Regional

Population
Loss Rate

Typical
Settlement
Population
Loss Rate

The Average
Regional

Population
Loss Rate

Typical
Settlement
Population
Loss Rate

The Average
Regional

Population
Loss Rate

Ganlong 0.211 0.066 0.402 0.074 0.460 0.074
SanCun 0.211 0.104 0.303 0.123 0.386 0.094

HeXi 0.211 0.201 0.403 0.242 0.409 0.243
ZengJia 0.166 0.224 0.275 0.151 0.225 0.144

ChuanYan 0.166 0.103 0.275 0.065 0.275 0.062
GaoZhai 0.277 0.132 0.474 0.146 0.436 0.150
XinCao 0.276 0.111 0.475 0.133 0.437 0.137

TaiYangPing 0.211 0.329 0.413 0.415 0.492 0.496

Typical settlements and land use changes in karst trough valleys show the characteris-
tics of 0 to 50 m, 50 to 200 m, and 200 to 400 m buffer zone circle changes (Figure 10). The
process, intensity, and pattern of land use changes around different settlement types are
different, thus forming the different processes of settlement land use evolution. From the
analysis of the land use transfer matrix and change mapping of settlements, it was found
that the ES presents the land use transition process of production–life–ecology (LUT-1);
and the AS presents the land use life–production–ecology transition process (LUT-2); the
BS presents the production–ecology–ecology land use transition process (LUT-3), and the
DS forms the ecology–ecology–ecology land use transition process (LUT-4).

Within the karst trough valley territorial system, driven by external factors of urban-
ization and agricultural modernization, the land use and the dynamic change of rural
settlements in the trough valley are reflected in the rural development level (RSD-level:
Ra, Rb, Rc, Rd) and land use (LUD: LUD–a LUD–b, LUD–c, LUD–d) changes and are
driven by both to form a regional RST process curve Ta~Td. Meanwhile, land use change
development LUD-a~LUD-d (land use morphology change) and rural settlement devel-
opment level (RSD-level) change together to promote the typical settlement type of the
buffer area land use for the transformation interaction process (transformation process
formed by ecology–production–life interaction), thus forming the LangXi trough valley
rural settlement development and interaction process curve for land use and dividing the
typical settlement development in the region into four stages. In the first stage, through
the valley settlement subsistence–forest arable land competition stage Ra, the settlement
is in the subsistence stage of maintaining basic livelihoods. Food production is the main
purpose. Agricultural development is in the primary rough expansion stage, including the
land use pattern LUD, which is a manifestation of agricultural land and ecological land
competition; land use change, which is a manifestation of forest land; grassland reduction;
arable land expansion, such as deforestation; trough slope reclamation; grass reclamation;
and other behavioral activities, in the trough valley settlement. In the second stage of the
trough valley settlement production, the agricultural land use development stage Rb, the
trough valley settlement development is in the stage of sizeable agricultural development,
the initial rise of agricultural modernization, and agricultural development from the initial
rough expansion gradually transitioned to intensive production, manifested by agricultural
chemical planting technology to improve crop yields in the trough valley area. Land use
pattern LUD-b shows that the expansion of arable land area is gradually slowing down,
while with the change of ecological and land policies, ecological land such as woodland and
grassland is being restored. In the third stage of settlement labor, the land abandonment
stage Rc, with the continuous promotion of industrialization, urbanization, and agricultural
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modernization, the population of rural settlements in the trough valley migrated to the
cities and towns; the further transformation of settlements occurred, and the development
of settlements shifted to a stage dominated by outworking. Land use changes were mainly
manifested in the expansion of urban construction land, rural settlements, forestland, and
other habited and ecological land, as well as the reduction in arable land and other pro-
ductive land. In the fourth stage, the land use diversification stage Rd, which focuses on
the diversified transformation of the settlement, the development of the trough valley set-
tlement entered the post-industrial stage, the proportion of non-agricultural output value
increased rapidly, and the settlement started to become multifunctional and diversified. In
this stage, the LUD-d land use change was mainly manifested in the further expansion of
habitable and ecological land use and a slight decrease in production land use.

Figure 10. The interactive feedback mechanism of LUCC-LUT-RST valley rural settlements.

LUT and rural settlement development succession will form differentiated RSD ge-
ographical types. Different rural settlement types present different levels of rural devel-

169



Land 2022, 11, 1572

opment. In summary, the land use change analysis of typical rural settlements in karst
trough valleys from 1964 to 2021 under the characteristics of the long time series dimen-
sion revealed that the development of typical rural settlements in trough valleys presents
four development stages: the traditional production function stage, the traditional indus-
trial development stage (life function stage), the ecological restoration stage (ecological
function restoration–development stage), and the ecological function enhancement stage.
Within the karst trough valley, spatial reorganization optimization patterns and promotion
micro-paths under different natural socio-economic conditions are formed through typical
settlement land class changes and shifts, i.e., top-down land use contraction patterns and
bottom-up expansion realization patterns of land use. In general, the transformation of
land use function around the settlements in the trough valley is relatively apparent, with
the land use around the expanded settlements changing from an agricultural production
function to a living production function from 1964 to 2021; and the land use around the
atrophied settlements changing from agricultural production function to ecological produc-
tion function, and the land use around the balanced rural settlements changing from an
agricultural production function to production and living function. The land use around
the disappearing settlements showed changes from production and living functions to
ecological functions.

5.4. Contribution to Research, Limitations, and Future Work

In our study, we revealed the mechanisms of settlement-scale land use change, land use
transformation, and rural settlement transformation and development reciprocal feedbacks
based on settlement micro-scale and case studies in southwest China’s karst trough valley
area. However, for the study data, we used image data with different resolutions (2.7 m,
2.7 m, 10 m, 2.5 m, and 2.5 m), Thus when we performed the spatial transformation of the
settlement data, there were deviations of about 0.01%, and these deviations can lead to
highly slight changes in the rural settlement data.

Based on our analysis of the research on the dynamics of land use buffer zone changes
in different settlement types, we synthesized the results and reflected on the limitations
of this paper, and we believe that future research could also include the following aspects.
(1) To analyze the dynamic changes of land use in the buffer zone of rural settlements
in other geomorphic regions and to reveal the homogeneity and differences in land use
dynamics in the buffer zone of rural settlements in different geomorphic regions. (2) In
other geomorphic areas, the influence of other factors, such as spatial accessibility of the
test settlement and watershed, on the dynamic changes of land use in rural settlements are
fully considered. (3) Based on various big data models, simulate and predict the future
dynamic land use changes in rural settlements. (4) Validate the land use change–land
use transformation–rural transformation development model in other geomorphic areas
through empirical research.

6. Conclusions

The study selected the LangXi trough valley, a typical karst trough valley, as the
research object and analyzed the buffer zone evolution of land use of typical settlement
types within the karst trough valley at the long time series evolutionary sequence and
settlement unit scale and the conclusions of the study showed that:

(1) In the evolution and development of rural settlements in the karst trough valley, there
are differences in the evolution pattern of different settlement types and surrounding
land use. According to the geographical differences between the natural environment
of settlements and the theory of life cycle, the types of rural settlements in the LangXi
trough valley are classified as following: expanding settlements in the trough dam
area, atrophying settlements on trough slopes, disappearing settlements on trough
slopes, and balancing permanent settlements on trough slopes and trough valley tops,
taking into account the increment in and decrement in an offset of land use changes
in rural settlements;
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(2) The homogeneity and heterogeneity of land use changes around different rural settle-
ment types in karst trough valleys are concentrated in spatial and temporal character-
istics. The spatial homogeneity is concentrated in the different settlement types, and
the amount of settlement development and its surrounding land types shows inverted
“U”, “\,” and “L” type change characteristics, respectively. The spatial heterogeneity
is reflected in the different settlement types, different distances from the center of
the settlement, and the different richness of their land types. The homogeneity of
the chronological evolution was shown from 1964 to 2021, with different settlement
types and a year-by-year enrichment of the surrounding land use land types. The
heterogeneity was shown by the different maps of change around the rural settlements
in the trough valley from 1964 to 2021;

(3) The spatial and temporal patterns of socio-economic development of a typical rural
settlement are reflected in its land use change, which is one of the manifestations
of land use transformation. The land use transformation results counteracted the
development of the rural transformation. Therefore, the results of land use evolution
analysis of typical settlement types in karst trough valleys revealed the interactive
feedback process and mechanism of land use change, rural transformation devel-
opment, and land use transformation. This interactive process reflected the spatial
reorganization optimization pattern and promotion micro-path driven by natural
socio-economic conditions in the karst trough valley region, i.e., top-down land use
contraction pattern and bottom-up land use expansion pattern. At the same time,
the LUCC—LUT—RST interactive feedback mechanism aims to enrich the research
framework of land use transformation and rural transformation at the settlement scale
on the one hand and to provide case studies for developing countries with karstic
mountainous trough and valley landscapes such as China in the global rural problem-
solving process on the other hand. Meanwhile, the LUCC—LUT—RST interactive
feedback mechanism aims to enrich the research framework of land use transition and
rural transformation at the settlement scale on the one hand. On the other hand, the
global rural problem-solving process provides case studies for developing countries
with karst mountainous troughs and valley landscapes, such as China.

Author Contributions: Conceptualization, writing original draft preparation, writing review, and
editing, Y.Z.; methodology, project administration, supervision, funding acquisition, Y.L.; supervision,
Validation, Project administration. G.L.; Validation, Projected ministration. X.B.; Validation, Project
administration. J.H.; Visualization, Formal analysis, F.T.; data curation, Visualization, M.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research work was supported jointly by the National Natural Science Foundation of
China (No. 4206010008) and the National Key R&D Program Project (2016YFC0502300).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abegaz, G.; Rahmato, D. Rural land use issues and policy: An overview. In Land Tenure & Land Policy in Ethiopia after the Derg:
Second Workshop of the Land Tenure Project; University of Trondheim: Trondheim, Norway, 1994.

2. Ashley, C.; Maxwell, S. Rethinking Rural Development. Dev. Policy Rev. 2001, 19, 395–425. [CrossRef]
3. Hoggart, K.; Paniagua, A. What rural restructuring? J. Rural Stud. 2001, 17, 41–62. [CrossRef]
4. Mihai, F.; Iatu, C. Sustainable Rural Development under Agenda 2030. HAL 2020, 4, 9–18.
5. Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from

1982 to 2016. Nature 2018, 560, 639–643. [CrossRef]
6. Mawunyo, D.F. Food security in rural sub-Saharan Africa: Exploring the nexus between gender, geography and off-farm

employment. World Dev. 2019, 113, 26–43.
7. Jayne, T.S.; Snapp, S.; Place, F.; Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob.

Food Secur. 2019, 20, 105–113. [CrossRef]

171



Land 2022, 11, 1572

8. Sun, P.-L.; Xu, Y.-Q.; Wang, C. The topographic gradient effect of land use change in the Beijing-Tianjin poverty belt. Trans. Chin.
Soc. Agric. Eng. 2014, 30, 12.

9. Govindan, K.; Loisi, R.V.; Roma, R. Greenways for sustainable rural development: Integrating geographic information systems
and group analytic hierarchy process. Land Use Policy 2016, 50, 429–440.

10. Zhan, Q.; Lu, F. Rural Social Change and Rural Governance; China Agriculture Press: Beijing, China, 2006.
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Abstract: Studying the temporal and spatial evolution pattern and transformation rule of urban–
rural construction land in karst mountainous areas has important guiding significance for urban
development boundary planning, red lines for ecological protection, and cultivated land protection.
The present study took 46 townships (streets) in Qixingguan District of Guizhou Province, southwest
China, as the research area; collected the current status of four-phase land use data in 2009, 2013, 2017,
and 2020; and used GIS spatial analysis models and geographical detectors to analyze the temporal
and spatial evolution pattern characteristics and influencing factors of urban–rural construction.
The results showed the following: (1) Since 2009, the total area of urban–rural construction land
has continued to increase; the largest area is rural residential land, followed by urban land and
transportation land, with relatively little urban industrial and mining land, scenic spots, and special
land. The growth rate of land used for transport increased rapidly, and urban land grew faster
than rural residential land. (2) More than 57.72% of the newly increased urban–rural construction
land came from cultivated land, but the transformation of cultivated land for construction gradually
slowed down; 57.48% of urban–rural construction land was transferred for reclamation as cultivated
land. During the study period, the transformation of cultivated land to construction land was
more intense (the transfer out of cultivated land was greater than the transfer in by 9541.94 hm2).
(3) There are strong spatial differences in the density of urban–rural construction land, showing
scattered agglomeration distribution, and the degree of aggregation in medium-high- and high-
density areas is further strengthened, expanding to the east and southwest. (4) The growth of urban–
rural construction land has been controlled by a variety of complex factors, the most influential of
which are the completion of fixed asset investment in society as a whole and the total fiscal revenue,
with explanatory power (PD) values of 0.819 and 0.607, respectively. Interactions between detection
factors have a greater impact on the spatial differentiation of urban–rural construction land than
single factors. The results of this study can provide basic research data and support the control
and high-quality development of urban–rural construction land in Qixingguan District and karst
mountain areas.

Keywords: karst mountain area; urban–rural construction land; land transformation; temporal and
spatial evolution; geographical detector

1. Introduction

Land use transformation was first proposed by the British geographer Alan Grainger,
inspired by the concept of forest transformation proposed by the Finnish scholar A.S.
Mather [1]. The transforming land types mainly include cultivated land [2–4], forest land,
urban land [5,6], rural land, and other land use types, and they also include the overall
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regional land use type [7,8]. With the acceleration of urbanization and increasing human
activities, the transformation of urban–rural construction land in land use transformation
has become an important socioeconomic phenomenon worldwide [9,10]. Urban–rural
construction land is the core component of the land use system. It is not only an important
indicator to control urban expansion and urban–rural construction, but also the main
component of urban spatial planning and the spatial carrier of human non-agricultural
economic production activities [11–13]. At present, under circumstances in which global
warming is causing glaciers to melt and inundate some coastal areas, forests are sharply
reduced, the environmental carrying capacity is fragile, and human activities affect veg-
etation restoration [14–16], how to realize scientific and sustainable utilization of limited
land resources has become a key issue for the future development of the world. Whether
urban–rural construction land can be reasonably controlled and allocated will directly affect
the protection of cultivated land and the development of urbanization.

In recent years, many scholars have studied the evolution and driving factors of
urban–rural construction land by applying current land use data and using different
methods [17–20]. Weber and Puissant extracted land cover from 1986 to 1996 with time
series satellite images (SPOT XS), used a prediction model to carry out an empirical analysis
of the expansion characteristics of local construction land in Tunisia, and explained the
development trend of the city in the future [21]. Based on Landsat satellite observation data,
Masek et al. used the band reflection of NDVI to distinguish urban and agricultural land,
and dynamically monitored the expansion and evolution process of urban construction
land in Washington, DC, from 1973 to 1996. In conjunction with census data, they found
that urban expansion was strongly correlated with the regional economic development
level [22]. Saizen et al. quantitatively analyzed land use changes in the Osaka metropolitan
area of Japan from 1979 to 1996 through GIS raster data, and the results showed that the
main reason for the continuous increase in idle land in the suburbs was urban sprawl [23].
Ustaoglu and Aydmoglu used an integrated geographic information system (GIS) and
multicriteria decision analysis (MCA) approach to assess the suitability of land use in
the Pendikc area of eastern Istanbul, Turkey, for residential, industrial, commercial, and
recreational development in the city [24].

Mann used a regression analysis model to study the main driving factors of changes
in per capita construction land in rural areas and suggested that the implementation of
incentive measures for construction land management by local governments could limit
the expansion of construction land to a certain extent [25]. Colsaet et al. analyzed the
scientific literature on the occupation of agricultural land by urban construction land and
the determinants of urban expansion from 1990 to 2017, and suggested that population
and income growth, transportation infrastructure, and car use were the main driving
factors [26]. Bittner et al. studied the spatial evolution of land use in peri-urban areas of
Israel based on time-series land use data supplemented by summary statistical analysis,
and indicated that rural reorganization would have an important impact on the economic
society and ecological environment [27]. Diogo and Koomen studied the process of land
use change in Portugal between 1990 and 2006 and analyzed the impact of different driving
forces on the formation of land use patterns during this period. They concluded that land
expansion was positively correlated with economic development, and the driving influence
of economic factors on land use change remained stable in a certain period.

The deployment of new infrastructure and the gradual implementation of territorial
space planning policies will also affect land expansion [28]. However, the results of previous
works illustrate that the main driving factors for the evolution of urban–rural construction
land are the economic and social development level, social living conditions, and the policy
and institutional environment, etc. [29,30]. Overall, most studies on the influencing factors
of spatiotemporal changes of urban–rural construction land are based on linear analysis,
trend analysis, and correlation analysis; however, it is still difficult to quantitatively de-
compose the influencing factors of such land changes.
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The above studies are of great significance for understanding the driving factors of
urban–rural construction land changes, but the disadvantage of the methods used is that
they assume there is a constant and significant linear relationship between the driving forces
and land changes across the entire time series. An idealized linear model or qualitative
description can reveal the complex driving forces; in fact, there is no strict linear rela-
tionship between the transformation of urban–rural construction land and socioeconomic
development, population density [31], or urban residential development [32]. Although
studies have applied algorithms such as K-means [33] for classification and partitioning,
statistical methods for spatial differentiation need to be further developed.

Geographical detector comprises a group of statistical methods that detect spatial
differentiation and reveal driving forces [34]. Therefore, this study applied the geographic
detector model to analyze the characteristics and driving mechanisms of the transformation
of urban–rural construction land in typical karst mountain areas to explain the interactions
between social and economic activities and changes in such land. The results of the
present study are intended to help local governments explore whether any unreasonable,
unsustainable land use resulted from unsustainable human activities and development
practices, and thus adapt to current village planning and urbanization strategies and
optimize the efficiency of land resource allocation. Moreover, this study can also provide
reference for the urban–rural development of other karst areas and promote the integration
of urban and rural transformation and land use transformation.

2. Materials and Methods

2.1. Study Area

The present study area is located within Qixingguan District (27◦03′–27◦46′ N, 104◦51′–
105◦55′ E), Guizhou Province, southwest China, on the slopes of the Yunnan–Guizhou
Plateau, sloping toward the eastern low mountains (Figure 1) and covering an area of
3411.14 km2. The study area is adjacent to Yunnan Province in the west and Sichuan
Province in the north and is the transportation and logistics hub of southwest China [35].
The elevation ranges from 456 to 2210 m. The terrain is high in the west and low in the
east. The landform type is mainly mid-size mountains and hills. The western area has a
concentration of high mountains, mid-size mountains, and valleys, and the terrain is steep,
with ravines and mountains intertwined in the northeast. Most of the central area consists
of river valley flats and middle mountains [36]. The type of soil in this area is mainly yellow
soil (43.27%), which develops from limestone, followed by lime soil, yellow brown soil,
paddy soil, and coarse bone soil [37]. This area is located in the hinterlands of the Wumeng
Mountains. It is a typical karst mountain area with completely developed karst landforms
and severe rocky desertification, resulting in a low ecological environment capacity and
a fragile ecologic system. In terms of economic development, in 2020, the gross regional
product of Qixingguan District was RMB 50.006 billion, a year-over-year increase of 4.4%;
the fixed asset investment of the region increased by 3.7% over the previous year; the total
fiscal revenue of the region was RMB 11.749 billion, an increase of −2.4% over the previous
year; and the general public budget revenue was RMB 2.572 billion, an increase of −9.1%
over the previous year.
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Figure 1. Topographic and location map of study area.

2.2. Data Resources

The data of the present study mainly come from the National Remote Sensing Center,
Guizhou Branch (Guizhou Provincial Remote Sensing Center) and the State Engineering
Technology Institute for Karst Desertification Control, Guiyang, China, including land use
data of 2009, 2013, 2017, and 2020. Administrative division data from Qixingguan District,
road vector data, statistical yearbook data for Qixingguan District from 2009 to 2020, and
Seventh National Census Data were also used. This part of the data takes the 46 townships
or streets as the basic unit for attribute assignment. Digital elevation model (DEM) data with
30 m resolution were acquired from the Geospatial Data Cloud (http://www.gscloud.cn/).
In this study, the first land use included cultivated land, garden land, forest land, grassland,
water area, construction land, and other land types. According to the Land Use Status
Classification System (GB/T21010-2017) [38] and previous research [39], the second class of
construction land included urban land, urban industrial and mining land, rural residential
land, transportation land, scenic spots, and special land.

2.3. Analysis
2.3.1. GIS Spatial Analysis Method

We used ArcGIS software for basic data processing, topological analysis, summary
statistics, spatial display, thematic map production, etc. [40], and the GIS spatial overlay
tool to carry out overlay analysis on land types in two different periods. The final land
use transition matrix was formed through statistical analysis. The land use transfer matrix
can quantitatively describe the quantity and direction of mutual conversion between land
types in a specific area in a certain period of time. By analyzing the transfer matrix of
urban–rural construction land area, the total change between land types in two phases
can be obtained. In this study, the land use transfer matrix [41] was used to describe the
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structural transformation trend between urban–rural construction land and other land
types, and its mathematical expression is as follows:

Sij =

⎡
⎢⎢⎢⎣

S11 S12 · · · S1m
S21 S22 · · · S2m

...
...

...
...

Sm1 Sm2 · · · Smm

⎤
⎥⎥⎥⎦ (1)

where S is the area of land use, m is the type of land use, and i and j are the land use types
used in the initial and final stages, respectively. The land use transfer matrix is mainly used
to study the transfer of land use types between two adjacent periods to clarify variations in
each type at the beginning of the study and the source and composition of each type at the
end of the study [42].

2.3.2. Selection of Influencing Factors

Combined with the actual social economy and natural environment conditions in
Qixingguan District, and based on the principle of data accessibility, the following 3 cate-
gories and 12 detection factors were selected as explanatory variables to explore the driving
factors of urban–rural construction land transformation (Table 1). The influencing factors
mainly include the economic development level [43,44], social living conditions, and
basic natural conditions. The geomorphology of the present study area is of the mid-size
mountain type, and it is located in the sloping zone of the transition from the eastern Yunnan
Plateau to the original hills of the central Guizhou Mountains. The altitudinal variation
is 1754 m. Altitude, terrain slope, and road network density are the natural constraints of
urban spatial layout. Urban–rural construction land is the main spatial carrier in the process
of regional economic and social development. The improvement of the overall economic
development level (total social investment in fixed assets, total fiscal revenue, per capita
GDP, per land GDP, and total industrial output value) continuously promotes the speed of
urban–rural construction land expansion. In addition, the urbanization rate, population
density, year-end resident population, and year-end salary of employees were used to
represent the effects of regional social living conditions on the expansion of urban–rural
construction land.

On the basis of index construction, SPSS 19.0 software was used to conduct the Kai-ser-
Meyer-Olkin (KMO) test to check correlations and partial correlations between variables.
The resulting values are between 0 and 1; the closer the KMO statistic is to 1, the stronger
the correlation between variables, and the weaker the partial correlation, the better the
effect of factor analysis. Bartlett’s sphericity test judges whether the correlation matrix is
a unit matrix, and if the independent factor analysis method of each variable is invalid.
When the test results of the 12 indicators in 4 monitoring periods by SPSS showed a
p-value < 0.05, this meant that the standard was met, the data were spherically distributed,
and the variables had a spherical distribution independent of each other to a certain extent.
The calculated KMO values were 0.665, 0.713, 0.785, and 0.692, which were all greater than
the threshold of 0.5. Bartlett’s test results were all significant at the 0.01 level, indicating a
correlation between the variables of each index, and factor analysis could be carried out.
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Table 1. Detection indicators of influencing factors of urban–rural construction land changes.

Influencing Factor Number Detection Factor Access Definition of Indicator

Basic natural
conditions

X10 Terrain slope Based on DEM, obtained using
ArcGIS slope calculation tool

Basis of natural
conditions

X11 Average elevation
Based on DEM data, using

ArcGIS software
partition statistics

Basis of natural
conditions

X12 Road network density Total road area/total area Degree of traffic
development

Level of economic
development

X1 GDP per capita Total GDP/total population
of region

Level of economic
development

X2 Average GDP Total GDP/total area of region Level of economic
development

X9 Gross industrial output Bijie Seven Star Customs District
Statistical Yearbook

Level of industrial
development

X7 Total fiscal revenue Outline of National Economic
and Social Development Plan

Level of economic
strength

X7 Completed investment in
fixed assets of whole society

Total investment in social fixed
assets/area of urban and rural

construction land

Land use investment
intensity

Social life
conditions

X3 Urbanization rate
Urban permanent

population/total regional
population

Population
agglomeration level

X4 Population density Total population of region/total
area of region

Population
agglomeration level

X5 Population density
Directly obtained from Bijie

Qixingguan District
Statistical Yearbook

Population
agglomeration level

X8
Total salary of employees of

unit at end of year

Directly obtained from Bijie
Qixingguan District
Statistical Yearbook

Social life conditions

2.3.3. Geographical Detector

The spatial distribution patterns of the geography or phenomena in a region are
driven by both natural and human factors. By analyzing the relationship between the de-
pendent and independent variables, the geographic detector can better describe the spatial
heterogeneity of the dependent variable, and it is an effective spatial analysis method for
revealing mechanisms [45]. It has been widely used [46–48]. If the independent variable
has a significant effect on the dependent variable, then the spatial distributions of the two
variables are similar. The formula is as follows:

PD = 1 − 1
nσ2 ∑L

h = 1 nhσ2
h = 1 − SSW

SST
(2)

SSW =
L

∑
h = 1

Nhœ2
h, SST = Nœ2 (3)

In this formula, PD is the explanatory power, with a value ranging from 0 to 1; n and
nh are the numbers of samples in the entire area and in layer h, respectively; σ2 and σh

2

are the dispersion variance of the entire area and layer h, respectively; L is the number of
subareas; and SST and SSW are the total variance of the study area and the sum of the
variance of the subregions, respectively. The larger the PD value, the stronger the driving
effect of the detection factor on the evolution of urban–rural construction land.

The steps of the geographical detection operation are as follows:
(1) Extract information. In ArcGIS 10.5, villages and towns or streets are taken as the

basic research units, and then the data of urban–rural construction land and influencing
factors of each town or street are correlated according to the spatial location to generate
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an attribute table and obtain the quantitative relationship between the corresponding
urban–rural construction land and each selected indicator.

(2) Classify impact factors. Using the Reclassify tool in ArcGIS, each impact factor is
classified according to the natural breakpoint method [49], and the classification value of
each variable is extracted. Then, the per capita GDP, land average GDP, urbanization rate,
total industrial output value, completion of fixed asset investment in the whole society, and
total salary of employees at the end of the year are divided into 5 grades, and the average
slope, average elevation, year-end total population, and population density are divided
into 6 grades. In addition, total fiscal revenue and road network density are divided into 7
and 9 categories, respectively.

(3) Input the dependent variable Y (statistical value of urban–rural construction land
area) and the independent variable X (gradual value of each influencing factor) into Excel
Geodetector software (http://www.geodetector.cn) to detect the influence of factors and
their interactions.

3. Results and Discussion

3.1. Spatiotemporal Pattern Analysis of Urban–Rural Construction Land
3.1.1. Structure and Spatial Pattern of Urban–Rural Construction Land

As seen from the change in the time-series law of scale structure, the area of urban–
rural construction land in Qixingguan District increased from 10,034.97 hm2 in 2009 to
22,879.86 hm2 in 2020, thus more than doubling in those 10 years (Table 2). Using the natural
breakpoint method, the quantity change of urban–rural construction land was divided
into five zones: low, medium low, medium, medium high, and high density (Figure 2).
The spatial distribution of urban–rural construction land changes in Qixingguan District
during the four monitoring periods had similar uniformity, expanding outward from the
central urban area and gradually increasing. Overall, the rural residential land in the study
area is mainly characterized by the largest amount of land and broken map spots, which is
consistent with the surface features of a broken karst mountainous area. In terms of map
spots, in 2020, the number of map spots for urban use was 8155, while the number for rural
residential land was up to 75,178. The medium-high-density and high-density areas of
urban–rural construction land are mainly distributed in non-central urban areas and towns,
indicating that rural residential land in the study area has the characteristics of large land
occupation, scattered layout, and low land use efficiency. During the monitoring period,
the area of urban land continued to increase, and its proportion reached a maximum of
28.86% in 2017.

As shown in Figure 2, the central urban area has always been in a low-density area,
while the conclusions of previous works were mostly related to urban expansion and
showed higher exponential growth than other regions [50]. A previous study suggested
that high-density construction land areas, such as industry and transportation, should be
mainly distributed in relatively good township areas, which disagrees with our study. There
are two possible reasons for this: (1) The present study area is located in a karst mountain
area, where the ecological environment is relatively fragile, the location is relatively remote,
there is insufficient motivation for urban development motivation, economic and social
development are seriously lagging behind, the planned urban expansion area is limited,
and the administrative division of several streets in the central urban area is small. (2) The
flow of farmers to more developed cities to work and the return of funds will increase the
rural residential land area or improve the residential functions, resulting in a spreading of
rural space, which will continue to increase the rural residential land use.
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Table 2. Quantity of change in urban–rural construction land in Qixingguan District (2009–2020)
(hm2, %).

Classification of Land Use Statistical Indicator 2009 2013 2017 2020

Urban land
Number of polygons 606 1060 2570 8155

Area 2193.14 3234.55 4177.09 5587.29
Proportion 21.85 25.34 28.86 24.42

Rural residential land
Number of polygons 22,648 22,863 24,382 75,178

Area 7536.82 7614.13 7793.91 9552.45
Proportion 75.11 59.65 53.85 41.75

Urban industrial and mining
land

Number of polygons 436 655 679 1974
area 195.82 668.46 671.82 2086.95

proportion 1.95 5.24 4.64 9.12

Traffic land
Number of polygons 6 740 1569 18,251

Area 7.53 1144.65 1721.40 5467.53
Proportion 0.08 8.97 11.89 23.90

Scenic spots and special land
Number of polygons 256 256 262 888

Area 101.66 103.83 108.36 185.64
Proportion 1.01 0.81 0.75 0.81

Aggregate statistics Total area 10,034.97 12,765.62 14,472.59 22,879.86

Note: In land use classification, proportion refers to the proportion of each land use type in urban–rural construc-
tion land.

Figure 2. Spatial distribution of urban–rural construction land characteristics in Qixingguan District
from 2009 to 2020.

It is worth noting that, during the study period, the quantity and scale of transportation
land changed the most significantly; its area increased by 5460.00 hm2, and the average
annual growth rate in each monitoring period was higher than that of other land types,
with an average annual increase of 546 hm2 (Table 2). During the study period, the average
annual growth rate was 82.01%. The reason for this is that, during the research period,
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Guizhou Province achieved high-speed access between counties, highways to villages, and
hardened roads between groups, establishing a main transportation network extending all
over the study area. At the same time, with the development of urbanization, road facilities
also continuously increased. The quantity and scale of urban industrial and mining land,
scenic spots, and special land had little variation during the study period.

3.1.2. Sources and Trends of Urban–Rural Construction Land

1. Sources of urban–rural construction land transformation
A land use transfer matrix can show the transformation law of urban–rural construc-

tion land. As shown in Figure 3, the sources of urban–rural construction land in Qixingguan
District greatly increased from 2009 to 2020, with the newly increased area being the most
significant when comparing rural residential land, urban land, and transportation land.
During that period, 89.36% of the newly increased area of urban–rural construction land
came from three areas: urban, industrial, and mining land. The size of the newly added
area encompassing scenic spots and special land is small. It was found that most of the
newly increased urban–rural construction land (more than 89%) consists of agricultural
land types, including arable land and forest land, with proportions larger than 57.72%
and not less than 18.92%, respectively. Among the newly increased area of urban–rural
construction land, 42.25% is rural residential land, mostly cultivated land (71.54%), and
forest land (26%). A total of 94.43% of newly increased urban land consists of agricultural
land types, including cultivated land (75.51%) and forest land (18.92%). The areas of newly
increased urban industrial and mining land, transportation land, scenic spots, and special
land differ slightly, with areas of 1240.65, 3127.94, and 89.65 hm2, accounting for 64.91,
60.3, and 57.72%, respectively. During the study period, the proportions of grassland,
gardens, water, and other areas occupied by various types of urban–rural construction
land were small. Garden land had the largest area occupied by urban land (72.82 hm2).
This was mainly due to the large proportion of agricultural land in Qixingguan District
(agricultural land accounted for more than 88.22% of the total area and cultivated land
was approximately 44.46% during the monitoring period) and its wide distribution. It
is inevitable that it will be occupied to a large extent during the rapid development of
urbanization and industrialization.

2. Trend of urban–rural construction land trans formation
With regard to the direction of the reduction in urban–rural construction land in

Qixingguan District during the monitoring period, as shown in Figure 4, in terms of absolute
quantity, the main reason for the reduction in land from 2009 to 2020 was the reclamation
of rural residential land. This represented an area of 5828.00 hm2, accounting for 88.46%
of the reduced urban–rural construction land area. A total of 92.19% of the transferred
rural residential land was reclaimed as farmland and woodland, which accounted for
57.86% of the total. The second largest proportion was urban land, which had a reduced
area of 544.80 hm2, accounting for 8.27% of the reduced area of urban–rural construction
land. This reduction was mainly due to conversion to arable land and forest land (together
accounting for 82.17%). The reduction in area of urban industrial and mining land, scenic
spots, and special land were relatively small: 141.73 and 71.84 hm2, respectively. A total
of 3.3% of the transferred urban industrial and mining land was reclaimed as arable land,
and more than 52.67% was reclaimed as forest land and other nonarable agricultural land
types. However, the transformation of transportation land showed a trend of continuous
increase and did not decrease during the monitoring period. During the study period,
transportation land only decreased by 1.90 hm2, which again confirmed the remarkable
results of road construction in Qixingguan District during the study period, changing it into
an important land transportation hub from a regressive area in southwest China. In terms
of absolute area, land converted from urban–rural construction land to grassland, garden,
water, and other land types was far smaller than the land converted to cultivated land and
woodland, which in recent years has been closely related to the many land consolidation
works aimed at replenishing cultivated land.
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Figure 3. New sources of urban–rural construction land in Qixingguan District from 2009 to 2020
(hm2, %).

 

Figure 4. End points for the reduction in urban–rural construction land in Qixingguan District from
2009 to 2020 (hm2,%).
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3.2. Analysis of Driving Factors of Urban–Rural Construction Land Transformation
3.2.1. Analysis of Detection Factor Influence

By testing the driving factors of urban–rural construction land, the influence of testing
factor on driving factors was revealed. The PD value of each driving factor was calculated
by the geographic detector (Table 3), and the influence of each factor on urban–rural
construction land was determined. Table 3 shows the order of impact of various driving
factors on urban–rural construction land (from high to low): total fixed asset investment in
society as a whole > total fiscal revenue > road network density > total population at the
end of the year > urbanization rate > per capita GDP > total annual wages of employees
per unit > average GDP > total industrial output > population density > average slope
> average elevation. According to the detection results for the driving factors, the total
fixed assets investment for the whole society had the greatest impact on the growth of
urban–rural land with an explanatory power of 0.819, which is similar to the results of
studies conducted in China and internationally [46,47]. It is believed that total fixed assets
investment improves people’s living standards, stimulates the development of urban real
estate, and promotes the expansion of urban construction land.

Figure 5 shows that the PD values of population density and total industrial output
from 2009 to 2020 generally show increasing trends, and the PD values of other driving
factors have increases and decreases during the monitoring period. From 2009 to 2013,
except for increased PD values, average slope, average elevation, road network density,
population density, and total industrial output value, the PD values of other driving
factors showed decreasing trends to varying degrees. From 2013 to 2017, the PD values
of total fixed asset investment of the whole society, average slope, average elevation, road
network density, etc., showed a decreasing trend. From 2017 to 2020, the PD values of
other driving factors showed an increasing trend, except for values for per capita GDP,
total population at the end of the year, total fiscal revenue, and road network density.
To summarize, the explanatory power of the driving factors during each monitoring
period for Qixingguan District regarding the expansion of urban–rural construction land
varies. Therefore, time series monitoring of driving factors would have important guiding
significance for predicting the expansion of urban–rural construction land.

 

Figure 5. Change in PD value of detection factor in Seven Star Pass area from 2009 to 2020. X1, per
capita GDP; X2, average GDP; X3, urbanization rate; X4, population density; X5, total population
at end of year; X6, total industrial output; X7, total fixed assets investment of whole society; X8,
total annual wages of employees per unit; X9, total fiscal revenue; X10, average slope; X11, average
elevation; X12, road network density.
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Table 3. PD values of detection factors.

Detection Factor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

PD value 0.325 0.291 0.328 0.189 0.351 0.205 0.819 0.304 0.607 0.139 0.134 0.440
p value 0.073 0.414 0.251 0.553 0.096 0.434 0.000 0.148 0.000 0.386 0.566 0.193

3.2.2. Interaction Analysis of Detection Factors

The interaction detection in the geographic detector mainly identifies the degree of
influence of interactions between driving factors on changes in urban–rural construction
land in Qixingguan District. On this basis, interaction detection evaluates whether the
influence of factors is independent or if it increases or decreases the explanatory power of
the evolution of urban–rural construction land due to the interaction. Table 4 shows the
relationships between driving factors affecting the evolution of urban–rural construction
land by using the interaction detector. The results indicate that there are no factors that
independently affect urban–rural construction land, and the interaction effect between
driving factors is mainly manifested in the relationship of nonlinear enhancement and
mutual enhancement, and the explanatory power of the interaction between all factors
increases significantly: X9∩X3 (0.915) > X5∩X3 (0.891) > X7∩X3 (0.882) > X12∩X3 (0.794) >
X10∩X3 (0.707) > X6∩X3 (0.642) > X4∩X3 (0.591) > X11∩X3 (0.544). In particular, a significant
interaction exists between other factors and the completion of fixed assets and total fiscal
revenue in the whole society, and the interaction between total fiscal revenue and total
industrial output has the strongest explanatory power. Overall, the influences of the driving
factors on the evolution of urban–rural construction land are not independent, nor do they
represent a simple superposition process. Rather, a mutual or nonlinear enhancement effect
is shown, and the influence of the interactions between detecting factors on the spatial
differentiation of urban–rural construction land is greater than that of a single factor.

Table 4. Interaction of detection factors.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0.303
X2 0.870 0.185
X3 0.868 0.840 0.474
X4 0.863 0.840 0.591 0.339
X5 0.342 0.903 0.891 0.892 0.302
X6 0.868 0.814 0.642 0.410 0.891 0.268
X7 0.947 0.941 0.882 0.937 0.957 0.936 0.860
X8 0.868 0.817 0.542 0.646 0.896 0.557 0.878 0.386
X9 0.753 0.906 0.915 0.912 0.751 0.970 0.931 0.925 0.540
X10 0.717 0.720 0.707 0.513 0.724 0.514 0.902 0.538 0.721 0.120
X11 0.338 0.482 0.544 0.491 0.360 0.484 0.881 0.599 0.623 0.273 0.099
X12 0.819 0.529 0.794 0.851 0.848 0.829 0.916 0.764 0.913 0.625 0.676 0.225

3.3. Discussion
3.3.1. Unreasonable Structure of Urban and Rural Construction Land

Although the average annual growth rate of urban land in the study area (8.87%)
is higher than that of rural residential land (2.18%), the total rural residential land area
exceeds that of urban construction land. With regard to the proportion of urban–rural
construction land in the study area, the proportion of rural residential land is the largest,
and the map plot is broken. Although the proportion of the area has decreased since 2009,
the proportion of rural residential land was still as high as 41.75% by 2020. Moreover, the
number of map spots was almost twice that of urban construction land. For urban land,
the area continued to increase in the four monitoring periods of the study; the area ratio
increased from 21.85% in 2009 to 28.86% in 2017, it but decreased by 4.44% during the
period 2017–2020. During the 13th Five-Year Plan period in China, the urbanization rate of
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the resident population in the study area increased to 54%, indicating that the proportion
of land and population in rural areas is seriously imbalanced as a result of less population
occupying more land. China’s special long-term dual urban–rural structure is mainly
manifested in a continuous increase in the demand for construction land in cities, and the
continuously supply still occasioned an increasing shortage of construction land. However,
in the countryside, it is manifested in the continuous increase in the population moving to
cities, and the construction land does not decrease but increases. A large amount of rural
construction land is thus idle [51].

The present study area is located in an underdeveloped area of karst mountains
in southwest China, and the problem of unbalanced and insufficient urban and rural
development is particularly prominent. Compared with China’s economically developed
regions (e.g., Yangtze River Delta) [52], the main features are that the structure of urban–
rural construction land is unreasonable, the area of rural residential land is larger than
the area of urban land, the population and residential areas are obviously scattered, and
the driving forces of urban and rural development and urbanization are mainly external
(e.g., state investment, project-driven development, administrative promotion), thus the
development of urban–rural integration is limited by economic development, difficulty
integrating urban and rural resources, etc. In other countries, such as the United States [53],
Japan [54], the United Kingdom [55], and France [56], urban–rural integration has basically
been achieved because it was developed earlier and their economies are more developed,
resulting in fewer significant differences between urban and rural areas. However, China
is still in the early stage of urban–rural integration; especially in the karst mountain area
with fragile ecological environment, the promotion of urban–rural development is costly,
difficult, and slow.

To address the problems in urban and rural land planning, Qixingguan District should
formulate policies to control the expansion of urban construction land and the consolidation
of rural land based on the experience of developed countries to deal with the relationship
between urban and rural land to a certain extent. It is necessary to pay closer attention to
the management of rural construction land, and to optimize the allocation of rural land
and agricultural development through rural land consolidation, sorting out more land
that can free up more land targets for the expansion of the central urban area. Moreover,
urban land should be controlled within a certain range, in order to realize rational urban
development and adjust the structure and layout of rural residential and urban land.
This would satisfy the common development of urbanization and industrialization and
improve rural development and urban–rural relations, which would improve the efficiency
and effectiveness of land use, and at the same time avoid the continuous spread of the
“hollowing out” phenomenon in rural areas.

3.3.2. Transformation of Cultivated Land into Construction Land

From 2009 to 2020, the main source of new urban–rural construction land in the study
area was agricultural land (more than 89%, of which the minimum occupied cultivated land
was 57.72%). Cultivated land converted to new urban–rural construction land amounted to
13,328.91 hm2, but construction occupying cultivated land slowed down to a certain extent.
From 2009 to 2020, the urban–rural construction land mainly transformed into reclaimed
construction land. The area of reclaimed land transformed into cultivated land was 3786.97
hm2; 61.20% of the transferred urban land was reclaimed as cultivated land, while 57.86%
of the transferred rural residential land was reclaimed as cultivated land.

In terms of stages, the proportion of urban–rural construction land reclaimed as
cultivated land shows a fluctuating trend, but the area of cultivated land transformed
to urban–rural construction land continues to increase. In terms of area, the reduction
of urban–rural construction land to grassland, garden, water, and other types of land is
much smaller than the area of cultivated land and forest land, indicating that, in recent
years, a large number of supplementary cultivated land projects were carried out in the
study area, which will contribute to the protection of cultivated land to a certain extent. It
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is worth noting that under the condition that the land area remains stable, if the current
growth trend is maintained and the cultivated land is recklessly constructed, it will lead
to expanded urban development and the unreasonable and disorderly growth of rural
residential land. The “red line” of cultivated land will be broken. At the same time, it will
inevitably lead to wasted land resources and increased carrying capacity of land. Therefore,
in the process of land development in the study area, more attention should be given to
excavating the existing rural residential land, reforming and improving the countryside
homestead management, and promoting the efficient and intensive use of urban–rural
construction land by the use of clearing property rights, compensation systems for the use of
resources, and standardized circulation. At the same time, it is also necessary to strengthen
the supervision of the red line of cultivated land protection, resolutely implement the
policy of linkage between urban land taking and rural land giving (LUTRG), and prohibit
construction and development in non-construction areas, especially in karst areas with a
fragile ecological environment.

3.3.3. Regular Evaluation of Planning and Dynamic Revision

From the detection results of driving factors (Section 3.3), the completion of fixed
assets in the whole society has the greatest impact on the growth of urban and rural land
use, and the PD value is 0.819, which agrees with previous works in other regions [57,58].
The completion of fixed asset investment in the whole society improved people’s living
standards, stimulated the development of urban real estate, and promoted the expansion
of urban construction land. At the same time, our results imply that the PD value of each
driving factor and the interaction between factors of urban and rural construction land are
not constant in different monitoring periods and show dynamic changes with fluctuation.
For example, the PD value of road network density as a single factor of urban–rural
construction land was lower than 23% in 2009 and 2020, but it was greater than 70% in 2013
and 2017. However, China’s current laws and regulations, such as those regarding land
use planning or urban and rural planning, focus on vision planning, in an effort to develop
an ideal planning scheme to achieve the “ultimate goal” throughout the planning period,
while ignoring the suitability between the processes of “static” planning and “dynamic”
implementation. In addition, there is limited ability to quickly and synchronously adjust
the planning scheme when identifying changing factors, resulting in a greatly reduced
implementation effect.

According to the changes in the influence of driving factors and the actual situation
in the study area, the present study suggests that formulating land-related laws and
regulations does not mean planning an ultimate blueprint, but a strategic and structural
type of flexible and dynamic planning. Based on this, this study suggests that detecting
the driving factors of urban–rural construction land in the study area should be included
in the city-level urban physical examination category of “territorial space safety”. The
formation of the annual urban physical examination index system should be optimized,
the key driving factors of urban–rural construction land in each monitoring period in the
study area should be identified, and the implementation of the plan should be regularly
scheduled, evaluated, and adjusted during planning. This not only could improve the
utilization of urban–rural construction land resources and the efficiency of land resource
utilization, but also more accurately predict the reasonable demand and spatial expansion
direction of urban–rural construction land in the future.

3.3.4. Research Prospects

The following aspects should receive more attention in future work: (1) Research on
the transformation of urban–rural construction land only considers the transfer between
construction land and non-construction land, and mainly focuses on its dominant char-
acteristics (quantity structure, source destination, spatial differentiation, etc.). Thus, it
is necessary to consider urban–rural construction land in the next step in terms of the
transformation between types and the analysis of the interaction mechanism of strength-
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ening the hidden characteristics (input–output, utilization efficiency, economic density,
function, etc.), to gain an in-depth understanding of the transformation characteristics and
driving mechanism of urban–rural construction land. (2) The acquisition of basic data and
indicators was limited to only four periods of land use data (2009, 2013, 2017 and 2020),
which was not able to fully reflect the long-term and continuous process of urban–rural
construction land transformation, resulting in insufficient research depth. It is extremely
important for research to obtain multitemporal land use data and make comparisons with
the natural environmental conditions, economic and social levels, policy and institutional
environment, and other data in the same period. (3) The spatial distribution law, evolution
process, and driving mechanism of urban–rural construction land reflect the interactive
human–land relationship. Based on the limited availability and accessibility of data in this
study, the selection of driving indicators of urban–rural construction land transformation
needs to be further improved, and in the selection of indicators, the categories can be further
increased, such as forest cover [59], technological progress, food security [60], karst basin
water re-sources [61], etc., to clarify the mechanism of the driving factors of urban–rural
construction land transformation more clearly. (4) Research results on carbon peaking
and carbon neutralization surge since the double carbon target was proposed [62,63], the
carbon emissions of urban–rural construction have attracted more attention [64]. In order
to optimize carbon neutrality in new urbanization construction, more studies should be
conducted that combine the processes of carbon emission reduction and carbon trading,
relying on this huge carbon sink [65] to achieve the goal of carbon neutrality [66].

4. Conclusions

Using spatial analysis and geographical detectors, this study conducted a detailed
analysis of the spatial and temporal evolution characteristics of urban–rural construction
land in the study area and explored the effects of their driving factors. The main research
conclusions are as follows:

(1) With regard to time series, the urban–rural construction land increased in Qix-
ingguan District from 2009 to 2020, and most of it came from agricultural land. The
proportion of cultivated land among the various land use types is not less than 57.72%.
The fastest growing land types are rural residential, urban, and transportation land. The
expansion of rural residential land is greater than that of urban land, and it continues to
grow. With regard to the spatial distribution pattern, the spatial distribution expands from
the surrounding area of the central city; until 2020, the distribution was medium high and
high density in the northern, eastern, and southwestern townships of the study area, and
medium low density in the central urban area.

(2) From 2009 to 2020, the ranking of various driving factors on urban and rural
construction land in terms of impact was as follows (from high to low): total fixed asset
investment in society as a whole > total fiscal revenue > road network density > total
population at the end of the year > urbanization rate > per capita GDP > total annual wages
of employees per unit > average GDP > total industrial output > population density >
average slope > average elevation. The PD value of total fixed asset investment in the whole
society and total fiscal revenue is above 60%; thus, they have become the main driving
factors affecting the change of urban–rural construction land.

(3) The driving factors have interactive effects in terms of their impact on urban–
rural construction land, and these effects show mutual and nonlinear enhancement. The
present study reveals that the PD value of the driving factors in Qixingguan District in each
monitoring period has changed. This study reveals the impact of these driving factors on
urban–rural construction land and provides a foundation for studying the dynamics of the
transformation of such land.

Author Contributions: Y.S.: Conceptualization, Methodology, Software, Writing—original draft.
Z.Z.: Resources, Data curation, Formal analysis, Project administration, Funding acquisition. D.H.:
Visualization. Q.C.: Supervision. M.F.: Investigation. All authors have read and agreed to the
published version of the manuscript.

189



Land 2022, 11, 1734

Funding: This research was funded by the State’s Key Project of Research and Development Plan
of China (2018YFB0505400), the National Natural Science Foundation of China (41661088), and the
Guizhou Province High-level Innovative Talent Training Plan “Hundred” Level Talents (Qiankehe
Platform Talents [2016]5674).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This study was supported financially by the State’s Key Project of Research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grainger, A. National land use morphology: Patterns and possibilities. Geography 1995, 80, 235–245.
2. Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy

2018, 70, 94–105. [CrossRef]
3. Jiang, G.; Zhang, R.; Ma, W.; Zhou, D.; Wang, X.; He, X. Cultivated land productivity potential improvement in land consolidation

schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [CrossRef]
4. Njoh, A.J. Municipal councils, international NGOs and citizen participation in public infrastructure development in rural

settlements in Cameroon. Habitat Int. 2011, 35, 101–110. [CrossRef]
5. Gu, C.; Li, Y.; Han, S.S. Development and transition of small towns in rural China. Habitat Int. 2015, 50, 110–119. [CrossRef]
6. Li, T.; Long, H.; Liu, Y.; Tu, S. Multi-scale analysis of rural housing land transition under China’s rapid urbanization: The case of

Bohai Rim. Habitat Int. 2015, 48, 227–238. [CrossRef]
7. Song, X. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487, (In Chinese with English

Abstract).
8. Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010,

27, 108–118. [CrossRef]
9. Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [CrossRef]
10. Tu, S.; Long, H. Rural restructuring in China: Theory, approaches and research prospect. J. Geogr. Sci. 2017, 27, 1169–1184, (In

Chinese with English abstract). [CrossRef]
11. Ventura, S.J.; Niemann, B.J.; Moyer, D.D. A multipurpose land information system for rural resource planning. J. Soil Water

Conserv. 1988, 43, 226–229.
12. Wasilewski, A.; Krukowski, K. Land conversion for suburban housing: A study of urbanization around Warsaw and Olsztyn,

Poland. Environ. Manag. 2004, 34, 291–303. [CrossRef] [PubMed]
13. Pijanowski, B.C.; Robinson, K.D. Rates and patterns of land use change in the Upper Great Lakes States, USA: A framework for

spatial temporal analysis. Landsc. Urban Plan. 2011, 102, 102–116. [CrossRef]
14. Livingstone, S.J.; Li, Y.; Rutishauser, A.; Sanderson, R.J.; Winter, K.; Mikucki, J.A.; Björnsson, H.; Bowling, J.S.; Chu, W.; Dow, C.F.;

et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 2022, 3, 106–124. [CrossRef]
15. Marsh, S. Plummeting morale in the forest service: Why it should matter to Americans who love nature. Mt. J. 2018, 20, 2020.
16. Liu, M.; Bai, X.; Tan, Q.; Luo, G.; Zhao, C.; Wu, L.; Luo, X.; Ran, C.; Zhang, S. Climate Change Enhances the Positive Contribution

of Human Activities to Vegetation restoration in China. Geocarto Int. 2022, 1–24. [CrossRef]
17. Bourne, L.S. Reurbanization, uneven urban development, and the debate on new urban forms. Urban Geogr. 1996, 17, 690–713.

[CrossRef]
18. Jensen, J.R.; Toll, D.L. Detecting residential land-use development at the urban fringe. Photogramm. Eng. Remote Sens. 1982, 48,

629–643.
19. López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia

city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [CrossRef]
20. Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy 2007, 24, 502–515.

[CrossRef]
21. Weber, C.; Puissant, A. Urbanization pressure and modeling of urban growth: Example of the Tunis Metropolitan Area. Remote

Sens. Environ. 2003, 86, 341–352. [CrossRef]
22. Masek, J.G.; Lindsay, F.E.; Goward, S.N. Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996, from

Landsat observations. Int. J. Remote Sens. 2000, 21, 3473–3486. [CrossRef]
23. Saizen, I.; Mizuno, K.; Kobayashi, S. Effects of land-use master plans in the metropolitan fringe of Japan. Landsc. Urban Plan. 2006,

78, 411–421. [CrossRef]
24. Ustaoglu, E.; Aydınoglu, A.C. Suitability evaluation of urban construction land in Pendik district of Istanbul, Turkey. Land Use

Policy 2020, 99, 104783. [CrossRef]
25. Mann, S. Institutional causes of urban and rural sprawl in Switzerland. Land Use Policy 2009, 26, 919–924. [CrossRef]

190



Land 2022, 11, 1734

26. Colsaet, A.; Laurans, Y.; Levrel, H. What drives land take and urban land expansion? A systematic review. Land Use Policy 2018,
79, 339–349. [CrossRef]

27. Bittner, C.; Sofer, M. Land use changes in the rural-urban fringe: An Israeli case study. Land Use Policy 2013, 33, 11–19. [CrossRef]
28. Diogo, V.; Koomen, E. Land-use change in Portugal, 1990–2006: Main processes and underlying factors. Cartogr. Int. J. Geogr. Inf.

Geovis. 2012, 47, 237–249. [CrossRef]
29. Duram, L.A. A pragmatic study of conventional and alternative farmers in Colorado. Prof. Geogr. 1997, 49, 202–213. [CrossRef]
30. Luo, P.; Du, Q.; Lei, Y.; Wang, T. Cellular Automata Based on Geographic Feature and Urban Land Use Evolvement. Geomat. Inf.

Sci. Wuhan Univ. 2004, 29, 504–507, (In Chinese with English Abstract).
31. Thamodaran, R.; English, B.; Heady, E.O. A Statewide Projection of Agricultural Land Losses to Non-Agricultural Land Uses; Working

Paper; Center for Agricultural and Rural Development, Iowa State University: Ames, IA, USA, 1981.
32. Dewi, D.I.K.; Ratnasari, R.A. Land use change in sub district Mranggen because of residential development. Procedia-Soc. Behav.

Sci. 2016, 227, 210–215. [CrossRef]
33. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment

and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127.
[CrossRef]

34. Bai, H.; Li, D.; Ge, Y.; Wang, J.; Cao, F. Spatial rough set-based geographical detectors for nominal target variables. Inf. Sci. 2022,
586, 525–539. [CrossRef]

35. Wu, D.; Yang, L. Evaluation of Coordinated Development between Urbanization and Eco- environment in Wumeng Mountainous
Areas of Guizhou—A Case Study of Qixingguan Region. Anhui Agric. Sci. Bull. 2016, 22, 97–102, (In Chinese with English
Abstract).

36. Zhou, D.B.; Huang, T.L.; Xiang, T.G.; Xie, G.; Huang, X.Y. Current Situation Analysis and Suggestions of Forest Ecological
Industry in Qixingguan District of Bijie City. Mod. Agric. Sci. Technol. 2020, 759, 144–146, (In Chinese with English Abstract).

37. Wang, X.H.; Zhang, Z.H.; Wang, H.B.; Xiao, B.; Liu, H.; Wang, T.; Wu, P.; Pan, Y.L. Geochemical Evaluation Results and significance
of Cultivated Land Quality in Qixingguan District, Guizhou Province. Guizhou Geol. 2020, 37, 251–257, (In Chinese with English
Abstract).

38. GB/T 21010-2017; Current Land Use Classification. Standardization Administration of China: Beijing, China, 2017. (In Chinese)
39. Zeng, Y.J. Coupling and Coordination between Urban-Rural Construction Land Transition and Economic and Social Development in Banan

District Land Resource Management; Southwest University: Chongqing, China, 2019; (In Chinese with English Abstract).
40. Unwin, D.J. GIS, spatial analysis and spatial statistics. Prog. Hum. Geogr. 1996, 20, 540–551. [CrossRef]
41. Du, W.; Zhao, X.; Zhao, Z.; Chen, C.; Qian, D. Assessment and dynamic mechanisms of the land-use dominant morphology

transition: A case study of Hainan Province, China. Environ. Monit. Assess. 2022, 194, 419. [CrossRef]
42. Liu, F.; Qin, T.; Girma, A.; Wang, H.; Weng, B.; Yu, Z.; Wang, Z. Dynamics of land-use and vegetation change using NDVI and

transfer matrix: A case study of the Huaihe River Basin. Pol. J. Environ. Stud. 2018, 28, 213–223. [CrossRef]
43. Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Economic growth and the expansion of urban land in China. Urban Stud. 2010, 47,

813–843. [CrossRef]
44. Wu, K.; Zhang, H. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing

Hangzhou metropolitan area, eastern China (1978–2008). Appl. Geogr. 2012, 34, 137–145. [CrossRef]
45. Wang, Y.; Wang, S.; Li, G.; Zhang, H.; Jin, L.; Su, Y.; Wu, K. Identifying the determinants of housing prices in China using spatial

regression and the geographical detector technique. Appl. Geogr. 2017, 79, 26–36. [CrossRef]
46. Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
47. Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion

based on the geographical detector–a case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [CrossRef]
48. Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. J. Geogr. 2017, 72, 116–134, (In Chinese with English Abstract).
49. Wu, Z.H.; Li, T. The comprehensive performance evaluation of the high-tech development zone: Analysis based on the natural

breakpoint method. Stat. Inf. Forum 2013, 28, 82–88, (In Chinese with English Abstract).
50. García-Ayllón, S. Predictive diagnosis of agricultural periurban areas based on territorial indicators: Comparative landscape

trends of the so-called “Orchard of Europe”. Sustainability 2018, 10, 1820. [CrossRef]
51. Li, Y.; Li, Y.; Westlund, H.; Liu, Y. Urban–rural transformation in relation to cultivated land conversion in China: Implications for

optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [CrossRef]
52. Niu, X.; Liao, F.; Liu, Z.; Wu, G. Spatial-Temporal Characteristics and Driving Mechanisms of Land-Use Transition from the

Perspective of Urban–Rural Transformation Development: A Case Study of the Yangtze River Delta. Land 2022, 11, 631. [CrossRef]
53. García-Ayllón, S. Rapid development as a factor of imbalance in urban growth of cities in Latin America: A perspective based on

territorial indicators. Habitat Int. 2016, 58, 127–142. [CrossRef]
54. Hebbert, M. Urban sprawl and urban planning in Japan. Town Plan. Rev. 1986, 57, 141–158. [CrossRef]
55. Alcock, I.; White, M.P.; Lovell, R.; Higgins, S.L.; Osborne, N.J.; Husk, K.; Wheeler, B.W. What accounts for ‘England’s green and

pleasant land’? A panel data analysis of mental health and land cover types in rural England. Landsc. Urban Plan. 2015, 142,
38–46. [CrossRef]

56. Newsome, W.B. French Urban Planning, 1940–1968: The Construction and Deconstruction of an Authoritarian System; Peter Lang:
Bern, Switzerland, 2009.

191



Land 2022, 11, 1734

57. Zhang, T. Community features and urban sprawl: The case of the Chicago metropolitan region. Land Use Policy 2001, 18, 221–232.
[CrossRef]

58. Schumacher, M.; Durán-Díaz, P.; Kurjenoja, A.K.; Gutiérrez-Juárez, E.; González-Rivas, D.A. Evolution and Collapse of Ejidos in
Mexico—To What Extent Is Communal Land Used for Urban Development? Land 2019, 8, 146. [CrossRef]

59. Chen, F.; Bai, X.; Liu, F.; Luo, G.; Tian, Y.; Qin, L.; Li, Y.; Xu, Y.; Wang, J.; Wu, L.; et al. Analysis Long-Term and Spatial Changes of
Forest Cover in Typical Karst Areas of China. Land 2022, 11, 1349. [CrossRef]

60. Song, F.; Wang, S.; Bai, X.; Wu, L.; Wang, J.; Li, C.; Chen, H.; Luo, X.; Xi, H.; Zhang, S.; et al. A new indicator for global food
security assessment: Harvested area rather than cropland area. Chin. Geogr. Sci. 2022, 32, 204–217. [CrossRef]

61. Wu, L.; Wang, S.; Bai, X.; Chen, F.; Li, C.; Ran, C.; Zhang, S. Identifying the Multi-Scale Influences of Climate Factors on Runoff
Changes in a Typical Karst Watershed Using Wavelet Analysis. Land 2022, 11, 1284. [CrossRef]

62. Du, C.; Bai, X.; Li, Y.; Tan, Q.; Zhao, C.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Inventory of China’s Net Biome Productivity
since the 21st Century. Land 2022, 11, 1244. [CrossRef]

63. Xiong, L.; Bai, X.; Zhao, C.; Li, Y.; Tan, Q.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. High-Resolution Data Sets for
Global Carbonate and Silicate Rock Weathering Carbon Sinks and Their Change Trends. Earth’s Future 2022, 10, e2022EF002746.
[CrossRef]

64. Hu, S.; Zhang, Y.; Yang, Z.; Yan, D.; Jiang, Y. Challenges and opportunities for carbon neutrality in China’s building sector—
Modelling and data. Build. Simul. 2022, 15, 1899–1921. [CrossRef]

65. Li, C.; Bai, X.; Tan, Q.; Luo, G.; Wu, L.; Chen, F.; Xi, H.; Luo, X.; Ran, C.; Chen, H.; et al. High-resolution mapping of the global
silicate weathering carbon sink and its long-term changes. Glob. Chang. Biol. 2022, 28, 4377–4394. [CrossRef] [PubMed]

66. Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Wu, L.; Xi, H.; Li, C.; Chen, F.; Ran, C.; et al. China’s carbon budget inventory from
1997 to 2017 and its challenges to achieving carbon neutral strategies. J. Clean. Prod. 2022, 347, 130966. [CrossRef]

192



Citation: Wu, Y.; Gu, L.; Li, S.; Guo,

C.; Yang, X.; Xu, Y.; Yue, F.; Peng, H.;

Chen, Y.; Yang, J.; et al. Responses of

NDVI to Climate Change and LUCC

along Large-Scale Transportation

Projects in Fragile Karst Areas, SW

China. Land 2022, 11, 1771. https://

doi.org/10.3390/land11101771

Academic Editor: Xiaoyong Bai

Received: 31 August 2022

Accepted: 9 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Responses of NDVI to Climate Change and LUCC along
Large-Scale Transportation Projects in Fragile Karst Areas,
SW China

Yangyang Wu 1,2,3, Lei Gu 4, Siliang Li 2, Chunzi Guo 2,5, Xiaodong Yang 6,7, Yue Xu 8, Fujun Yue 2, Haijun Peng 8,

Yinchuan Chen 9, Jinli Yang 7, Zhenghua Shi 7 and Guangjie Luo 1,3,*

1 School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
2 School of Earth System Science, Tianjin University, Tianjin 300072, China
3 Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed,

Guizhou Education University, Guiyang 550018, China
4 College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
5 Administration of Ecology and Environment of Haihe River Basin and Beihai Sea Area, Ministry of Ecology

and Environment of People’s Republic of China, Tianjin 300061, China
6 Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial

Utilization and Governance Research, Ningbo University, Ningbo 315211, China
7 College of Ecological and Environmental Sciences, Xinjiang University, Urumqi 830017, China
8 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of

Sciences, Guiyang 550081, China
9 Shanghai Ecology and Environment Scientific Research Center, Yangtze River Basin Ecological Environment

Supervision and Administration Bureau, Ministry of Ecology and Environment of People’s Republic of China,
Shanghai 200120, China

* Correspondence: luoguangjie@gznc.edu.cn

Abstract: The fragile karst habitat is extremely sensitive to human activities such as large-scale
engineering construction. To explore the influence of the construction and operation of the GH
(Guiyang-Huangguoshu) highway on the vegetation within a certain range and the response of NDVI
to climate factors, Landsat data were used to synthesize annual NDVI maps using the maximum
value compositing method. Trend, correlation, and coefficient of variation analyses were performed.
The results demonstrate that: (1) During the construction and operation periods, NDVI showed an
overall upward trend, and the NDVI value and growth rate in the contrast area were greater than
those in the core area; (2) the correlation between temperature and vegetation cover along the GH
highway was stronger than that between precipitation and vegetation; (3) construction of the GH
highway has had a significant impact on the surrounding vegetation, with the impact on vegetation
ecology along the road mainly concentrated within the 2 km range. The increase of artificial surfaces
along the road has had a great impact on the NDVI, and the vegetation cover change in the core area
is more significant than that in the contrast area; and (4) the overall disturbance of the GH highway
project to the surrounding ecology was mainly observed in the form of low and medium fluctuations.
This study aims to provide a reference for environmental assessment and management in karst areas.

Keywords: vegetation dynamics; road construction; influencing factors

1. Introduction

The environment is the basis of human survival and development, comprising the
sum of various natural factors within and around human society [1]. At present, China is
committed to conserving natural ecosystems, focusing on strengthening the protection of
the environment in large river basins [2]. Guizhou Province is located in the southwest
karst area of China—the largest continuous karst landform region in the world [3]—which
spans the Yangtze River and the Pearl River. It is an important ecological barrier in the
upper reaches of the “two rivers”. The entire ecological quality of this region is in good
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condition [4]; however, its ecosystems are vulnerable due to their significant sensitivity to
external disturbances (including human activities and climate change) in this zone [5]. The
Chinese government completed built numerous transportation infrastructure projects in
Southwest China in recent years. As a consequence, the depth of highway access, road qual-
ity and network level in Guizhou been significantly improved. However, road construction
projects are often in conflict with ecological protection. The rapid expansion of road traffic
has brought unprecedented challenges to the local environment, and the construction or
expansion of various types of roads may (directly or indirectly) leads to serious degradation
of the natural environment, as well as increased local plant mortality. Therefore, a primary
ecological problem to be addressed is to determine the current situation and change trend
of vegetation along highways in karst region.

Highway construction and other large-scale construction activities can directly affect
the environment by changing the surface vegetation cover. A construction project may
greatly change the topography of the original slope conditions, geological conditions
and natural stability, leading to increased vulnerability of the surrounding environment.
Furthermore, with the promotion of large-scale projects, economic activities along the
project will be activated, potentially including unreasonable human cultivation, excessive
reclamation, overgrazing and urban expansion, all of which can lead to a decrease in
vegetation coverage [6–8]. Therefore, large-scale artificial engineering activities have a
significant impact on the growth and distribution of land surface vegetation [9,10], and
can even change the distribution of vegetation coverage at the regional scale [11]. In
contrast, reasonable project construction planning and ecological protection measures,
such as afforestation, mountain closure afforestation and the improvement of agricultural
technology, can facilitate the recovery vegetation [12,13].

Vegetation is one of the key components of the terrestrial ecosystem playing a fun-
damental role in regulating energy exchange and material cycling [14], especially in the
process of karst rocky desertification control and ecological restoration [15,16]. Evidence
has shown that, climate change is an important environmental factor having a significant
impact on vegetation dynamics [17,18]. It influences the function and structure of the
ecosystem by acting on the growth and adaptation characteristics of plants [19]. Tempera-
ture and precipitation are the most direct and important factors for vegetation growth and
phenology [20,21]. At present, the normalized vegetation index (NDVI) is widely used to
monitor vegetation and explore its response to climate change [22]. NDVI is an effective
indicator of vegetation growth status and vegetation coverage, and it has a good linear
relationship with surface vegetation. In a study on the correlation between global climate
factors and NDVI changes, it has been found that NDVI presented an increasing trend with
the increase in temperature in the middle high latitudes of the Northern Hemisphere [23].
In a regional study, it has been found that the seasonal variation of NDVI in different years
were also responsive to land processes [24]. A spatial–temporal variation trend has been
observed to vegetation degradation along with its response to climate change and anthro-
pogenic stress [25]. Temperature may be an important driving force limiting forest greening
in mountainous areas due to recent climate warming [26]. The NDVI of Guizhou karst
area has been found to be more affected by temperature than precipitation and was one of
the provinces with the most obvious environmental improvement [27,28]. In karst areas, a
significant increase in vegetation NDVI is has been closely related to climate warming, but
weakly related to precipitation [27,29]. Climate change in karst regions typically presents a
cold-dry trend, while vegetation NDVI presents a recovery trend [30].

Although many scholars have studied the response of vegetation to human activities
and climate factors, few have studied the impact of large engineering construction on
the environment in karst areas. Relevant studies have revealed the spatial and temporal
response relationship between NDVI and climate factors along the Qinghai–Tibet (QT)
railway, as well as human activities, indicating that the influence of construction and
operation of the QT railway on NDVI tended to weaken outward from the QT railway,
while temperature and precipitation were positively correlated with NDVI [31,32]. Human
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activities have contributed to the response relationship between regional vegetation change
and climate change [33,34]. In karst areas, human activities tend to have a stronger role in
vegetation improvement and degradation than climate change [35].

The Guiyang–Huangguoshu highway (GH highway) is the first highway built in
the karst area. Over a long times scale (35 a), the construction and operation activities
of this large project and the subsequent enhancement of human activities along the line
were sufficient to change the original land-cover and affect the surrounding environment,
resulting in the destruction of habitats along the line. Therefore, GH highway is an ideal
research area. In this study, we take the earliest GH highway in the karst region as the
research object. High-resolution NDVI data from 1986 to 2020 are used. The trend of NDVI
in the area within 8 km of the GH highway route is analyzed. The impacts of temperature,
climate, land use and land-cover change (LUCC) on the vegetation along the highway are
comprehensively considered. We explored the long-term impact of road traffic engineering
on vegetation, in order to provide guidance for future road traffic route planning and
industrial layout in fragile karst regions.

2. Materials and Methods

2.1. Study Area

The GH highway is the first high-grade highway in the karst region [36]. It started
construction in August 1986 and opened to traffic in May 1991. GH highway starts from
Guiyang and finally reaches Huangguoshu, with a total length of 137 km (Figure 1). The
average elevation of the road is about 1200 to 1300 m, low in the middle and high around
the ends. The climate is subtropical monsoon with a mean annual temperature (MAT) of
15.3 ◦C. The mean annual precipitation (MAP) is about 1100 mm. The GH highway is
located in a typical karst landform area, within karst landforms accounting for 76.5% [37].

Figure 1. Location and elevation of the study area.

2.2. Data Collection and Processing
2.2.1. NDVI Data

Landsat 5, Landsat 7, Landsat 8 TM image data has been collected by the Google Earth
Engine. The time resolution is 16 days and the spatial resolution is 30 m. The Maximum
Value Composite (MSV) method [38] was used to generate the annual Maximum NDVI
Value from 1986 to 2020. This study taken NDVI as an indicator and used the current
situation vector data of GH highway to generate a 4 km buffer zone (hereafter referred
to as the core area) in ArcGIS to evaluate the direct impact of human activities on the

195



Land 2022, 11, 1771

environment of GH highway. To evaluate the indirect effects of human activities on the
environment of GH highway. We generated a 4 km buffer zone (hereafter referred to as the
contrast area) in the periphery of the core area. The NDVI of the core area was divided into
four buffer zones according to 1 km, and the direct impact of GH highway on the NDVI of
human activities along the highway was evaluated.

2.2.2. Meteorological Data

Raster data of temperature and precipitation at 1 km resolution were used. The
temperature and precipitation from 1986 to 2015 were collected from the Data Center
of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy
of Sciences (https://www.resdc.cn/, accessed on 1 October 2022). The data of annual
precipitation and annual temperature from 2016 to 2020 are from the monthly scale data
provided by China Meteorological Administration (http://data.cma.cn/, accessed on
1 October 2022). The meteorological interpolation software ANUSPLIN was used to
interpolate the temperature and precipitation data with a spatial resolution of 30 m. The
digital elevation map (DEM) was introduced in the interpolation process to reduce the effect
of topography on climate, thus minimizing the interpolation error and greatly improving
the accuracy compared with other interpolation methods [39], which is more suitable for
the analysis of meteorological elements of time series [40]. The above monthly synthesized
temperature and precipitation data are extracted by ArcGIS to synthesize the annual
average precipitation and annual average temperature data, and resampling into 30 m
in ArcGIS.

2.2.3. Terrestrial Surface Data

The DEM digital elevation model is derived from the Geospatial Data Cloud (http://
www.gscloud.cn/, accessed on 1 October 2022) with a spatial resolution of 30 m. LUCC data
from 2000 to 2020 are obtained from the Globalland30 (http://www.globallandcover.com/,
accessed on 1 October 2022), the spatial resolution is 30 m, the dataset includes ten types
of land cover [41]. Wetlands are reclassified as water bodies due to its small area in the
study region.

2.3. Methods
2.3.1. Trend Analysis Method

Trend analysis is a linear regression analysis of the changes of variables over timescales.
It can not only track and analyze the change trend of variables, but also predict the change
trend of variables. In the analysis of the change trend of inter-annual NDVI, the slope is the
minimum power of the raster value of the time series, and the change value of spatial pixel
on the time scale can be calculated by traversing pixel by pixel, and the change trend can
be obtained [42]. The calculation method is as follows:

∅Slope =
n × ∑n

i=1(i × NDVIi)− ∑n
i=1 i ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where, ∅Slope is pixel regression Slope, NDVIi is NDV value in the n year, and n is time
length. When ∅Slope > 0, it indicates an increasing NDVIi trend, and when ∅Slope < 0, it
indicates a decreasing NDVI trend.

2.3.2. Analysis of Correlation

Correlation analysis is a statistical method to study the correlation between two or
more variables. In data analysis, it is often used to analyze the relationship between
continuous independent variables and continuous dependent variables. When there are
many features, Pearson correlation analysis is used. Pearson’s correlation coefficient is a
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statistic reflecting the degree of linear correlation between two variables. The calculation
formula goes as follows:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(2)

where, rxy is the correlation coefficient of NDVI precipitation or temperature, which is
between −1 and 1. The larger the value, the greater the correlation, and the smaller
the value, the smaller the correlation. x, y are the mean values of multi-year NDVI and
precipitation or temperature, xi, yi are the NDVI values of the ith year and the temperature
and precipitation values of the i year.

R12,3 =
r12 − r13r23√(

1 − r2
13
)(

1 − r2
23
) (3)

where R12,3, R13,2, R23,1 is the partial correlation coefficients among variables; R12,3 is the
partial correlation coefficient between r1 and r2 after fixing the variable r3. R12,3 > 0 indicates
positive correlation, that is, the two factors are correlated in the same direction; R12,3 < 0
indicate negative correlation, that is, the two elements of heterotrophy correlation; the
larger the partial correlation coefficient is, the stronger the correlation between the two
elements at the pixel is.

2.3.3. Coefficient of Variation

The coefficient of variation, also known as the “coefficient of dispersion”, is a nor-
malized measure of the degree of dispersion of a probability distribution. The calculation
formula is shown below.

Cv =
1
x

√
∑n

i=1(xi − x)2

n − 1
(4)

Cv stands for the coefficient of variation of NDVI; xi stands for the NDVI value in the
i-th year; x stands for the mean NDVI value in the n years. The higher the Cv value, the
more discrete the data, the higher the variation degree of the corresponding NDVI value,
and the greater the inter-annual variation. The smaller the Cv value is, the more the data is
aggregated, the lower the variation degree of the corresponding NDVI value and the lower
the inter-annual variation.

3. Results

3.1. Trends in Time Scale and Spatial Change of NDVI

In order to explore the influence of the construction and operation activities along the
GH highway, the NDVI obtained along the GH highway was divided into the construction
period (1986–1991) and the operation period (1992–2020) in the time scale. By piecewise
fitting of time-series NDVI, the trend of NDVI change in each time period was obtained.

Within the construction period, the NDVI in both the core and contrast areas showed
a clear upward trend (Figure 2a). The NDVI increased more significantly in the contrast
area at 0.0170/a, while it increased in the core area at 0.0149/a (Figure 2a). The results
revealed that the construction of the GH highway caused some damage to the surround-
ing vegetation, and the NDVI values decreased most significantly in the early stage of
construction (1987).

During the operation period, the vegetation cover in the core and contrast areas of
GH highway gradually improved and the NDVI showed a generally increasing trend.
The growth rates in the core and contrast areas were 0.0024/a and 0.0027/a, respectively
(Figure 2b). However, the change trend of NDVI obviously differed before and after 2000.
The NDVI increased at a faster rate in the core area (0.0137/a) than in the contrast area
(0.0130/a) during 1992 to 2000. After this period of growth, the NDVI reaching a relatively
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stable state, with little fluctuation around 2000. However, after this, the NDVI in both the
core and the contrast areas decreased (at rate of −0.0030/a and −0.0002/a, respectively),
showing two significant decreases (in 2010 and 2018) and one significant increase (2012)
between 2001 and 2020.

Figure 2. Inter annual dynamic change of average NDVI within construction (a) and operation
(b) periods in the study area.

The overall NDVI level in the operation period was higher than that in the construction
period, while the fluctuation of NDVI was smaller than that in the construction period.
Within the construction period, the MAT decreased slightly, while the MAP and NDVI
increased significantly (Figure 3a). The MAP increased at a rate of 12.04 mm/a, while the
MAT decreased at a rate of −0.0180 ◦C/a.

The trend of MAT generally increased, while the MAP decreased (Figure 3b). In the
fitting of temperature and precipitation from 1992 to 2020, the temperature increased at a
rate of 0.0288 ◦C/a, while the precipitation decreased at a rate of −16.44 mm/a.

Considering that there are many other traffic routes, cities, towns and villages along
the GH highway. The core area was divided into four buffer zones with a distance of 1 km
in order to measure the spatial impact level of GH highway. In the temporal dimension,
the NDVI showed an overall increase due to self-healing of the environment. In the
spatial dimension, the construction and operation of the GH road negatively affected the
vegetation within 2 km of the route. This impact was inversely proportional to the distance
from the GH highway route. The NDVI values were higher within the 1 km buffer than the
2 km buffer, but did not increase outward at the 3 km and 4 km ranges (Figure 4a,b).
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Figure 3. Trend fitting of MAT (a), MAP (b) and NDVI within the construction and operation periods.

 

Figure 4. NDVI values at different distances within construction (a) and operation (b) periods.
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Within the construction and operation period, the slopes of the regression equations
in the core and contrast areas are concentrated between −0.05–0.15 and 0.002–0.015, respec-
tively (Table 1).

Table 1. Classification statistics of different trends in core and contrast areas within construction and
operation periods.

Period Classification Slope

Core Area Contrast Area

Pixels
Area
(km2)

Percent Pixels
Area
(km2)

Percent

Construction
Period

Significantly Decrease <−0.05 17526 14.08 0.17% 16562 13.31 0.13%
Slightly Decrease −0.05–0 219687 176.55 2.10% 204681 164.49 1.65%
Slightly Increase 0–0.05 9691449 7788.51 92.42% 11551849 9283.62 92.99%

Significant Increase 0.05–0.1 429426 345.11 4.10% 498663 400.75 4.01%
More Significantly Increase >0.1 127995 102.86 1.22% 151227 121.53 1.22%

Operation
Period

Significantly Decrease <−0.01 9413 7.56 0.09% 4997 4.02 0.04%
Slightly Decrease −0.01–0 140109 112.60 1.34% 85721 68.89 0.69%
Slightly Increase 0–0.01 9867593 7930.07 94.10% 11781944 9468.54 94.84%

Significant Increase 0.01–0.02 464370 373.19 4.43% 544514 437.60 4.38%
More Significantly Increase <0.02 4622 3.71 0.04% 5796 4.66 0.05%

Within the construction period, the extent of NDVI damage in the core area was
greater than that in the contrast area. However, the total trend of NDVI change was
still overall slightly increasing, with the proportion accounting for 92.42% and 92.99% in
core and contrast areas, respectively. Within the operating period, the NDVI showed an
increasing trend as before. However, the proportion showing a slight increase became
larger, accounting for 94.10% and 94.84% in the core and contrast areas, respectively.

Spatial differences in the increase or decrease in NDVI were observed along the GH
road. Slight and significant decreases were dominant near the road and in urban areas
(Figure 5a), while slight increases were dominant elsewhere. In particular, the increase was
more significant in the mountain forest area (Figure 5b).

 

Figure 5. Spatial distribution of the trend of NDVI from 1986–2020. Trends were separated into
the following classification: significantly decrease (<−0.005), slightly decrease (−0.005–0), slightly
increase (0–0.005), non-significant increase (0.005–0.010), significantly increase (0.010–0.015), more
significantly increase (>0.015).
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3.2. Coefficient of Variation Analysis

The construction and operation of the GH freeway has had a negative impact on the
stability of vegetation along the route. The fluctuations of NDVI in the construction period
were greater than those in the operation period, and all fluctuations in the core area were
greater than those in the contrast area. The NDVI, in terms of both periods and area were
dominated by lower fluctuations, with lower fluctuations in the construction and operation
periods of 845.12 km2 and 993.80 km2, respectively, and lower fluctuations in the core
and contrast areas of 793.49 km2 and 968.78 km2, respectively. The high fluctuation of
NDVI in the construction period were larger than those in the operation period, as well
as were larger in the core than in the contrast area. The high fluctuation areas for the
construction and operation periods were 280.64 km2 and 121.98 km2, respectively, while
the high fluctuation sizes in the core and contrast areas were 225.54 km2 and 177.08 km2

respectively (Figure 6).

 
Figure 6. CV for the core (a) and contrast (b) areas within the construction period divided into five
levels; namely, low fluctuation (0–0.2), lower fluctuation (0.2–0.4), medium fluctuation (0.4–0.6),
higher fluctuation (0.6–0.8) and high fluctuation (0.8–1). CV in the core (c) and contrast (d) areas
within the operating period was divided into five levels, namely, low fluctuation (0–0.1), lower
fluctuation (0.1–0.2), medium fluctuation (0.2–0.3), higher fluctuation (0.3–0.4) and high fluctuation
(0.4–1).

3.3. Correlation Analysis of NDVI with Temperature and Precipitation

The correlation coefficient between NDVI and precipitation from 1986 to 2020 was
mainly concentrated between −0.45 and 0 (mean = −0.03), showing a low negative cor-
relation, while, its correlation coefficient with air temperature mainly ranged from 0–0.5
(mean = 0.08), showing a low positive correlation. The mean partial correlation coefficients
of NDVI with precipitation and temperature were 0.05 and 0.17, respectively, which were
both less than 0.5 (Figure 7).
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Figure 7. Correlation between temperature (a), precipitation (b), and NDVI from 1986 to 2020. The
distribution range of correlation coefficients were divided into high negative correlation (<−0.6),
lower negative correlation (−0.6–−0.4), low negative correlation (−0.4–−0.2), pianissimo negative
correlation (−0.2–0), pianissimo positive correlation (0–0.2), lower positive correlation (0.2–0.4), low
positive correlation (0.4–0.6) and high positive correlation (>0.6).

The correlation of NDVI with temperature was mainly low positive, while the corre-
lation with precipitation is mainly low negative; however, the correlation between NDVI
and precipitation was positive, while the correlation between NDVI and temperature was
negative in where the underlying surface was artificial, especially in urban areas and along
roads (Figure 7).

3.4. Analysis of Study Area LUCC

Wetlands were re-classified as water bodies before the calculations, due to their small
size. The LUCC decreased by 0.39% for forest, 6.04% for cultivated land, 0.97% for water,
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0.48% for shrub, and 0.97% for grass from 2000 to 2020, while the artificial cover increased
by 8.67% (Table 2).

Table 2. LUCC Classification statistics from 2000 to 2020.

Classification
2000 LUCC 2020 LUCC

Area (km2) Percentage Area (km2) Percentage

Cultivated Land 1070.71 45.82% 929.61 39.78%
Forest 510.85 21.86% 501.75 21.47%
Grass 338.67 14.49% 316.02 13.52%
Shrub 225.15 9.64% 214.16 9.16%
Water 64.46 2.76% 46.10 1.97%

Artificial Cover 126.94 5.43% 329.41 14.10%

The trend of NDVI decreased significantly along the GH highway (Figure 8), especially
in urban areas along the route (Figure 8). The construction and operation of the GH
highway and other later roads drove the development of towns along the route, leading to
an expansion of artificial cover along the route and exacerbating the decline of NDVI (see
Figure 5).

 
Figure 8. 2000 LUCC classification (a) and 2020 LUCC classification (b).

4. Discussion

4.1. Characteristics and Reasons for Change in NDVI during the Construction Period

Within the construction period, the annual average value and growth rate of the NDVI
in the core area along the GH highway were smaller than those in the contrast area, and the
coefficient of variation was larger than that in the contrast area, due to by the destruction
of the original land-cover caused by the construction of the GH highway. The closer to
the road, the greater the damage to the vegetation. This slowed the NDVI growth rate in
the surrounding 4 km from the road, and breaks the environment for a certain distance
along the line, thus increasing the variation in fluctuation of vegetation along the line. The
fluctuation caused by highway construction activities on vegetation along the road were
also larger closer to the road, indicating that the construction activities of GH highway had
a negative effect on the stability of the surrounding environment. The construction and
operation of the GH highway have increased the intensity of human activities in towns
along the route, resulting in higher ecological fluctuations around the towns than other
areas. The influence of the GH highway is mainly within 2 km, as the highway along the
road are mainly within 2 km, making this the area with the strongest human activities. In
the area far from the GH highway, the vegetation was weakly affected by the highway,
and the heterogeneity of the surface was observed to have a greater impact on NDVI than
the highway and human activities. In the early stage of construction (1987), the NDVI
in both the area and the contrast areas declined sharply. This was due to the large-scale
destruction of the surface vegetation in the early stage of the project construction, which led
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to a sharp decline in NDVI in this year. In addition, the rocky desertification was serious in
this period, and there was a lack of relevant control work, leading to damage of the fragile
environment [43]. The engineering construction in the core area can easily affect involve
the vegetation cover in the contrast area, causing further damages.

4.2. Characteristics and Reasons for Change in NDVI during the Operation Period

Within the operation period, the overall NDVI in the core and contrast areas showed
an upward trend, where the growth rate in the contrast area was greater than that in the
core area; however the increase was small. Due to the implementation of environmental
protection policy [44], the vegetation being slowly restored by regeneration, afforestation,
and returning farmland to forest. The NDVI along the GH highway rose to a high value and
the change is relatively stable in 2000. However, after 2000, the NDVI showed a downward
trend. During the nearly 30 years of the operation period, human activities along the GH
highway have substantially enhanced, as is reflected by an increase in artificial surfaces
along the highway and the construction and widening of other roads along the highway.
In addition, the NDVI showed an obvious downward trend in 2008 and 2009, related to the
severe snow disaster in southwest China in the winter of 2008. A certain range of vegetation
died due to freezing, which affected the maximum NDVI in the following year. The same
significant decrease also occurred from 2010 to 2012, which was related to the destruction
of vegetation on the original surface due to the construction of the Shanghai-Kunming
highway in this section in 2010, and the severe drought in Guizhou in 2012, which resulted
in a decline in and reduced growth of NDVI from 2010 to 2012. Furthermore, the NDVI
decreased significantly in 2019–2020. Meteorological bureau data (http://gz.cma.gov.cn/
access on 1 October 2022) indicated that a spring drought occurred in the spring in Central
Guizhou during 2019–2020. This spring drought caused the vegetation to be short of water
during the growth period, leading to inhibition of vegetative growth throughout the year,
thus significantly reducing the NDVI value over this period.

The construction and operation of GH highway has increased the intensity of human
activities in towns along the line, these activities Include change of cropland area along
the GH highway will also affect the vegetation [45], causing the fluctuation of NDVI along
the GH highway to be higher than that in other regions. The construction and operation of
the GH highway mainly affected the area within 2 km, where a large number of villages,
towns, cities, and trunk roads are concentrated. These areas are characterized by strong
human activities. In the area far from the GH highway, the vegetation is less affected by
the highway, and the heterogeneity of the karst surface becomes the main factor affecting
the NDVI. Although the impact of human engineering construction on the environment
is not unique to karst, the heterogeneity, vulnerability, and sensitivity of the karst surface
are strong [46]. Therefore, the impact of human activities tends to cause greater damage in
karst areas. In recent decades, the frequency and intensity of extreme climate events have
increased, and the impact of high temperatures and drought on the productivity of the mid-
latitude ecosystem in the Northern Hemisphere has become greater and greater, leading
to a more sensitively responsive of NDVI [47]. Over the past three decades, the reduction
of precipitation and the increase in temperature have led to increased evaporation. The
soil moisture in many areas has decreased [48], while the sensitivity of vegetation to soil
moisture has generally increased [49]. In particular, soil moisture restricts karst ecological
restoration [50]. The study area is a typical karst area, with thin soil layer, weak soil water
holding capacity, many underground rivers, strong surface water infiltration, and easy
soil water loss. Under the trend of long-term temperature rise and precipitation decrease,
soil moisture evaporation will inevitably be intensified, leading to soil moisture reduction,
which will further affect the growth and development of vegetation along the line. The
enhancement of human activities along the GH highway will also lead to intensification
of soil erosion, especially with expansion of cities along the highway. The construction
of other highways will increase the sensitivity of vegetation in artificial surface areas to
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drought, resulting in water shortages during the peak growth season, ultimately leading to
declining annual biomass.

4.3. Correlation between Climatic Factors and NDVI

Consistent with previous research, the correlation coefficient between NDVI and
precipitation along the GH highway showed an insignificant negative correlation. During
the nearly 30 years of the operation period, the slight decrease in total precipitation did
not cause major a catastrophe for vegetation growth in the Southwest China; instead, the
change in precipitation frequency made local rain recruitment more frequent, which partly
compensated for the growth of southwestern vegetation being limited by the alternating
time of dry and wet periods, rather than total precipitation [51]. At the same time, the
partial correlation coefficients of NDVI with precipitation and temperature were 0.05 and
0.17, respectively; both were less than 0.5, which is basically consistent with previous
research [29]. The proportion of karst landform in the study area is high (76.5%); together
with the large change of karst underlying surface and the high degree of topographic relief,
the spatial heterogeneity of temperature within a small range may be high. This results
in temperature being a major factor controlling vegetative growth over a small range. A
previous study has shown that terrain is generally a covariate of temperature, which is
highly consistent with temperature change. Therefore, we did not consider terrain factors
as covariates to participating in the partial correlation analysis [29].

Similar to previous studies, the correlation between NDVI and precipitation was
weakly positive on the artificial surface, while the correlation between NDVI and tem-
perature was low and negative on artificial surfaces [30]. Human activities are strong in
artificial surface areas, and the environment is more fragile than in other areas. The low
precipitation infiltration of hardened surface exacerbates water shortages and temperature
increases, which may force the growth of vegetation to be slow. The surrounding ecology
is fragile. The increase of precipitation makes the water supply needed for the growth
of regional vegetation sufficient, thus reducing the vulnerability, while artificial surface
vegetation is more sensitive to drought.

5. Conclusions

In this paper, NDVI and climate data were used to analyze the influence of the GH
highway on the area within 8 km of the route. It was found that the annual mean and
growth rate of NDVI in the core area within the construction and operation periods of
the GH highway were smaller than those in the contrast area, the inter-annual variation
fluctuated greatly, and the influence on the area was mainly within 2 km of the GH
highway. Within the operation period, the NDVI reached a peak and then decreased
slightly. Within the construction and operation period, the NDVI along the route increased
overall, precipitation showed a downward trend, and temperature showed an upward
trend. The correlation between NDVI and climate factors indicated that the correlation
between NDVI and temperature is stronger than that between NDVI and precipitation.
The influence of LUCC on NDVI was mainly manifested as an increase in artificial cover
surface and the decline of other land-use types, resulting in the change of NDVI.

6. Limitations and Prospects

In this study, only the inter-annual variability of climate variables in response to NDVI
was considered, seasonal variation of climate indicators was not considered; furthermore,
only the annual maximum value of Landsat was used to synthesize the NDVI images,
and multi-source remote sensing data fusion methods were not considered. In the future,
multi-source remote sensing can be used to explore the corresponding relationship between
NDVI and other climatic factors (e.g., surface soil humidity, evaporation, seasonal drought,
and so on). Remote sensing data under nighttime lighting can also be adopted, in order to
explore the correlation between vegetation cover and human activities.
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Abstract: Landscape ecological safety is of great significance in maintaining ecological balance,
ecological protection, economic development, and promoting the sustainable use of regional land
resources. This study collects three-phase remote sensing (RS) image data of 2000, 2010, and 2020
to elucidate the spatial and temporal changes in land use of the Guizhou Plateau Karst Watershed.
We construct a landscape ecological security index using the ArcGIS and landscape pattern index
method. With the spatial autocorrelation theory, we analyze the evolution of watershed landscape
patterns and changes in characteristics of ecological security. The results show that the cultivated
land is being converted to construction land in the watershed from 2000 to 2020. The percentage of
the patch area of the constructed land is increasing. However, the patch cohesion of the cultivated
land, grassland, and watershed is decreasing. The ecological safety of the Nanming River Basin
landscape is in a positive trend, clustering in the central urban areas. The growth rate of the landscape
ecological safety index increased by 5.80% from 2000 to 2020, and the aggregation of the ecological
safety index was dominated by high–high aggregation and low–low aggregation, which was spatially
positively correlated with the spatial aggregation effect. The findings provide a scientific reference
for managing ecological balance and optimizing the land resource allocation in karst watersheds.

Keywords: karst; land use; landscape patterns; ecological safety

1. Introduction

Landscape patterns are the spatial characteristics and structural composition of land-
scape elements that determine the environment, distribution, and composition of re-
sources [1]. Landscape patterns play a vital role in understanding the ecological processes
of a region and in evaluating and optimizing ecological security [2,3]. For decades, a direct
influence has been observed between the landscape pattern’s evolution and the ecosys-
tem [4], bringing significant changes to the quality of the landscape ecosystem and land use
patterns of natural and anthropogenic activities [5,6]. Landscape ecological security is a sub-
system of land resource security [7], which is crucial to national and regional development
and construction. Landscape ecological safety has been a new issue facing human society’s
long-term development since 2001. The Southwest Karst Region, in the central part of the
Guizhou Plateau, is the largest and most populous continuous karst ecologically vulnerable
area in the world [8]. This region is a hotspot and a key area for global climate change
research. It also serves as a scientific research paradigm in the world and enhances an
understanding of the comprehensive governance of degraded ecosystems [9,10]. However,
the non-agricultural population is increasingly being concentrated in the region owing to
recent large-scale urbanization, the expansion of industrial and commercial space, rapid
changes in urban land use, and the consequent evolution of landscape patterns. Thus, a
change in the landscape pattern can improve the urban green landscape layout [11], since
the landscape structure is gradually showing strong rapid urbanization [12,13]. Moreover,
the anthropogenic pressure and the transformation of regional ecosystems are increasing.
Unreasonable human activities are also causing serious ecological and environmental prob-
lems [14,15], making ecological security face great challenges [16,17]. Thus, adopting a
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scientific and reasonable research method is critical in conducting an in-depth analysis of
the ecological safety of the karst landscape.

Presently, ecological safety has become a research hot spot globally [18–24]. Studies
have evaluated domestic and international landscape ecological safety, the ecological risk
of the hotspot regional landscape, and the safety of urban clusters [25], coastal zones [26],
and plateau mountains [27]. Ghosh et al. used the DEMATHE-ANP model to evaluate
the ecological safety of the Kolkata Metropolitan Area in India [28]. Jiang et al. developed
landscape classification on remote sensing (RS) images of the core region of Lijiang City
and calculated the landscape pattern index as a driving factor [29]. From the perspectives
of landscape patterns at the domestic and international levels, previous studies have estab-
lished a solid conceptual base and methodological reference for exploring the evolutionary
characteristics of regional landscape patterns and changes in ecological security patterns.
Moreover, studies have explored landscape patterns and ecological security at a large scale,
focusing on lakes [30], cultivated lands [31], and wetlands [32] in karst areas. Ren et al. used
geographic information systems (GIS) and RS technology to analyze the spatial granularity
effect of landscape patterns and identify the suitable spatial granularity of karst mountain-
ous urban landscapes. However, these authors only explored a single landscape pattern
index, which could not detect the regional ecological security status [33]. Liu et al. used the
InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model to explore the
spatial and temporal variation characteristics of habitat quality in the Chishui River Basin
and its coupling relationship with the landscape pattern [34]. Wang et al. constructed a
landscape security index using the ArcGIS software and a landscape pattern index to study
the evolution of landscape patterns in trough valley areas. These authors also used this
software to explore the spatial and temporal divergence patterns in ecological security [35].
Peng et al. used the landscape ecological security theory to develop an evaluation model
and understand the ecological security of cultivated landscapes in the karst mountains.
These authors also used this theory to understand the direction of ecological security trans-
fer and driving factors of cultivated lands in the karst mountains [36]. However, most of
these studies only based their investigation on short-term time series data, with a lag in
data updating. Studies that used long time-series data to evaluate ecological safety are
scanty. Furthermore, non-karst places have been the primary focus of research on patterns
of landscape ecological safety at large-scale levels, such as regions, watersheds, and munic-
ipal territories. As a significant ecologically sensitive territory in China, Guizhou is also
one of the most extensive karst landscapes in China, and overcoming its ecological and
environmental problems is the key to solving earth system science, which can assist in the
promotion of the construction of ecological civilization in China and even worldwide. The
Nanming River basin is a tributary of the Wu River in the Yangtze River system, and more
than 90% of the basin’s total area is comprised of karst landscapes; it is a crucial ecological
barrier in the upper reaches of the Yangtze River and an essential cornerstone of ecological
civilization development. However, due to the relative fragility of the watershed ecosys-
tem, it is vulnerable to the effects of urbanization. With the expansion of urbanization,
high-density human activities, land development, water quality degradation, and other
issues are altering the land use type, landscape pattern, and ecological mechanism of the
watershed, posing a significant threat to the ecological security of the watershed landscape,
and coordinating the relationship between ecological preservation and utilization in the
study area is a significant issue at now. Therefore, to effectively sustain a well-functioning
ecosystem in the study region in the future, a scientific evaluation of the evolution of the
land use landscape pattern and its ecological safety is essential.

Based on 2000, 2010, and 2020 RS image data, this study used the theory of spatial
autocorrelation, GIS spatial analysis, and landscape pattern index to elucidate the character-
istics of spatial and temporal changes in land use in the watershed. The study also reveals
the evolution in landscape pattern in the watershed since 2001, analyzes the spatial and
temporal changes of ecological security, and makes a scientific evaluation and diagnosis of
ecological security. It aims to realize quantitative analysis and visualization of the dynamic
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evaluation of landscape patterns and ecological security in the study area from the spatial
and temporal scales, disclose the evolution characteristics of the landscape pattern and
the logic of ecological security pattern in the karst watershed under the human–land rela-
tionship, and provide scientific basis and advice for the sustainable development, proper
development planning, scientific ecological planning and construction of the karst water-
shed. It also provides data references for maintaining ecological balance and optimizing
land resource allocation and control in other karst areas of the same resource type in China
as well as scientific and practical references for expanding international research on karst
landscapes and ecological security.

2. Materials and Methods

2.1. Study Area

The Nanming River Basin is a tributary of the Wu River in the Yangtze River system.
This Nanming River Basin is an important part of the Yangtze River Economic Belt, which is
located at the social, economic, and cultural center of Guizhou Province of 26◦15′–26◦54′ N
and 106◦26′–107◦15′ E. The watershed covers approximately 2158 km2, and it is charac-
terized by a subtropical monsoonal humid climate with an annual mean precipitation of
1200 mm. Meanwhile, its topographic is high in the southwest and low in the northeast,
with an average slope drop of approximately 3.44. The karst landscape in the watershed is
extremely developed; its soil is dominated by rice soil, limestone soil, and loam. The karst
landscape comprises 93.17% of the study area (Figure 1).

 
Figure 1. The basic information of the study area. Note: (a) shows location of Guizhou in China.
(b) shows location of the study area in Guizhou. (c) shows the elevation of the study area. (d) shows
the lithologic background.
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2.2. Methods and Data Sources
2.2.1. Landscape Pattern Index Selection

The study combined previous studies that explored landscape characteristics of the
basin [37–39], Patch Density (PD), and Patch Cohesion Index (COHESION) from the patch
type level to reflect the degree of patch fragmentation in different landscape types. We also
selected the Largest Patch Index (LPI) and Percentage of Landscape (PLAND) to identify
dominant landscapes. The Patch Density (PD) and Contagion (CONTAG) were selected
from the landscape level to reflect the degree of landscape fragmentation in the study
area. Then, the Shannon Evenness Index (SHEI) and Shannon Diversity Index (SHDI) were
selected to reflect the degree of landscape type diversification. The calculation formula and
ecological significance of each index are detailed in the literature [40,41].

2.2.2. Moving Window Method

The moving window method in Fragstats 4.2 software was used to generate the
landscape index raster map, and 1500 m was selected as the moving window radius after
several calculations and comparisons [42].

2.2.3. Determination of Evaluation Unit

Considering the scope of the Nanming River watershed and sampling workload,
referring to existing studies [43], the watershed was divided into 2 km × 2 km evaluation
units as ecological safety evaluation plots, with a total of 640 sampling areas. Based on this,
the landscape ecological safety index of each plot was calculated separately (Figure 2).

 
Figure 2. Sampling areas for ecological security assessment of landscape pattern in the study area.
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2.2.4. Construction of the Landscape Ecological Security Index

The ecological safety index (ESIk) of the land use landscape was calculated based on
the landscape disturbance index and vulnerability index [44]. The equations are as follows:

ESIk = ∑n
i=1

Aki
Ak

× (1 − 10 × LDII × LVIi) (1)

LDIi = aCi + bHi + cFi (2)

where ESIk in (1) is the landscape ecological safety index of the k-th evaluation unit, and a
larger ESIk indicates a higher degree of ecological safety in the landscape and vice versa;
LDIi is the index of landscape disturbance; and LVIi is the fragility index, based on the
results of a previous study [45]. Each land use landscape fragility is specifically set to
5 levels: the value of constructed land is 1; a forest is 2; grassland is 3; cultivated land is 4,
and water is 5. In this case, n is the number of landscape types; k is the number of evaluation
units; Aki is the area of the class i landscape of the k-th evaluated cell; and Ak is the total
area of the k-th evaluation cell. In (2), Ci is landscape fragmentation, and Hi indicates the
diversity index. Fi denotes the number of watershed landscape sub-dimensions; a, b, and
c are the weights of Ci, Hi, and Fi, respectively, which are assigned to 0.5, 0.3, and 0.2,
following the existing research results and the conditions in the study area [46].

2.2.5. Spatial Autocorrelation Analysis

We used spatial autocorrelation analysis to detect the spatial agglomeration of regional
geographical phenomena [47]. Global Moran’s I index was used to measure the overall
spatial agglomeration characteristics of landscape ecological safety. The local spatial extent
between regions was measured using the local Moran’s I index [48,49]. The equations are
as follows:

Global Moran’s I =
n ∑n

i=1 ∑m
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑m
j=1 Wij ∑n

i=1(xi − x)2 (3)

Local Moran’s Ii =
(n − 1)(xi − x)∑n

j=1 Wij
(
xj − x

)
∑n

j=1 Wij
(
xj − x

)2 (4)

where n is the number of grids; x is the average vulnerability in the study area; xi and xj
are the attribute values of the i-th, j-th raster, respectively (i �= j), where i = 1, 2, 3, . . . , n;
j = 1, 2, 3, . . . , m; Wij is the weight value; Wij = 1 when i and j are adjacent, and Wij = 0
when they are far apart.

2.3. Data Sources

Landsat TM satellite 2000 images, 2010 images, and Landsat 8 satellite images of 2020
were used as the base data, which were obtained from the Geospatial Data Cloud platform
(http://www.gscloud.cn/ accessed on 10 September 2022) with a spatial resolution of
30 m. First, the ENVI 5.3 software is used to pre-process the remote sensing images, such
as geometric correction [50], atmospheric correction [51], and image enhancement [52],
to complete the preparation and processing of fundamental geographic data. Second, a
combination of supervised classification and human–computer interaction [53] was used
to interpret and decipher the land use data into the waters, cultivated land, grassland,
forest land, and constructed land according to the actual state of the watershed, which
was not accounted for in the land use classification due to the tiny amount of unused
land in the Nanming River watershed. Finally, the confusion matrix was utilized to rectify
and validate the correctness of the results after land use classification [54], and the overall
classification accuracy surpassed 85%, indicating that it could meet the analysis goals of
this study. Furthermore, we obtained land use status maps for the study region in 2000,
2010, and 2020.
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3. Analysis and Results

3.1. Research Framework

The changes in the characteristics of land use landscape were analyzed from 2000 to
2020 using GIS and RS technology. We also analyzed changes in the land use landscape
pattern index from landscape patch scale and landscape scale. ArcGIS and landscape
pattern index methods were used to construct the landscape ecological security index and
to analyze the spatial and temporal variation mode of landscape pattern evolution and its
ecological security (Figure 3).

Figure 3. Research framework.

3.2. Analysis of the Characteristics of Land Use Landscape Area Change

Land use changes were influenced by the expansion of constructed land and loss of
cultivated land in 2000–2020 (Figure 4) because of the influence of strong urban devel-
opment activities. During this period, the cultivated land flowing to constructed land
accounts for 36.48% of the landscape in the watershed. By 2020, constructed land accounted
for approximately 20% of the watershed area, which was 2.31 times the shared area in 2000.
After analyzing the changes in the land landscape in each period with the help of the land
use transfer matrix, constructed land recorded the largest growth rate of 130.72% from 2000
to 2020. However, the proportion of grassland and cultivated land was decreasing, and
the proportion of forest showed an increasing trend at first but later showed a decreasing
trend. With the growth in urbanization, the Nanming River Basin has undergone a dynamic
process of changing from natural to unnatural landscapes, indicating that the impact of
human activities on the ecosystem of the watershed is more intense. This shows that
the Nanming River Basin has undergone continuous economic development in the past
20 years since 2001.
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Figure 4. Land use status map of the study area in 2000 (a), 2010 (b), 2020 (c), and land use transfer
map from 2000 to 2020 (d). Note: 1 indicates grassland; 2 indicates cultivated land; 3 indicates
constructed land; 4 indicates forest; and 5 indicates waters.

3.3. Analysis of Spatial and Temporal Changes of Landscape Pattern Index
3.3.1. Analysis of Landscape Pattern Index Change on Patch Type Scale

As shown in Figure 5, the PD of the cultivated land is the largest among all land types,
with a mean value of 0.24. This shows that the cultivated land has a profound influence on
the landscape pattern of the Nanming River Basin. From 2000 to 2010, the PD of the forest,
cultivated land, and constructed land increased. However, the PD of grassland showed a
decreasing trend from 2010 to 2020. Except for the constructed land, the PD of the forest,
constructed land, grassland, and water showed an increasing trend. The human ecological
footprint has had a greater impact on the forest and cultivated landscapes over the past
20 years. Moreover, their ecological processes were more active, in which the expansion of
the constructed landscapes was reasonably restrained during 2010–2020.

Among the landscapes in the watershed, the mean of the PLAND of the forest is the
maximum of approximately 45.08%, which is about 28 times that of the smallest PLAND
(waters), indicating that the forest offers more advantages in the landscape. This result
agrees with the results of the spatial characterization of land use described above. From
2000 to 2010, the forest area and constructed land patches showed an increasing trend.
From 2010 to 2020, the PLAND of the constructed land increased by 19.53%, which was
12% more than that of 2000. Nevertheless, the constructed land patches experienced
continuously increasing trends during the study period. Since 2001, Nanming River
Basin experienced comprehensive environmental improvement, which includes increasing
projects on cultivated land, forest, and the construction of a comprehensive landscape on
both sides of the river. With a rise in urbanization, a large construction continues to expand
to the periphery of the city. However, patches of cultivated land and grassland continue
to decline.
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Figure 5. Change of landscape pattern index on patch type scale from 2000 to 2020.

From the LPI, the LPI of the forest land far exceeds that of other land types, indicating
that forest is the major land substrate in the watershed. From 2000 to 2020, the LPI of
constructed land continues to increase.

From the COHESION, the patch cohesiveness of the forest and constructed land is
higher, indicating that the natural connectivity of these two types of land is efficient, and
the distributions are patchy in spatial distribution. From 2000 to 2020, the COHESION
of cultivated land, grassland, and waters generally declined, whereas the COHESION of
constructed land continued to increase, reaching 35% from 2000 to 2010, which was three
times that of 2010–2020. With large-scale land exploitation, the distribution of patches of
cultivated land, grassland, and water fragments go through aggregation to fragmentation,
with a decrease in the natural connectivity of the landscapes. However, the patches of
constructed land gradually turn into aggregated blocks of spatial distribution.

3.3.2. Analysis of the Landscape Pattern Index Change on Landscape Scale

As shown in Figure 6, the PD and CONTAG have a more pronounced geographical
variability. The CONTAG increased significantly in the southwestern part of the basin,
and the PD was high in most of the northeastern part of the basin. Moreover, the spatial
distribution of the CONTAG in these areas showed the opposite PD characteristics. We
found that the high-value areas of CONTAG are concentrated in the urban center of
Guiyang City, owing to its simple landscape structure, its constructed land as the matrix
land, and a high degree of agglomeration, which greatly reduces the fragmentation of the
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landscape patches. Moreover, the low-value areas comprise the interspersed distribution
of cultivated land, constructed land, and grassland, consisting of an intricate landscape
structure with a high degree of landscape fragmentation in the watershed. The lower stream
of the basin, at Wudang and Longli, has a lower level of landscape diversity, indicating that
human activities in this area are infrequent, and the development is low. The SHEI and
SHDI in the basin have similar spatial variations. In the southern part of Nanming District
and the eastern part of Guanshan Lake District and Yunyan District upstream, the SHEI
and SHDI have decreased significantly with a rise in urbanization and an increase in the
project construction, which have become the main advantages of the landscape.

Figure 6. Spatial distribution of landscape pattern index at landscape level in the Nanming River
Basin from 2000 to 2020. Note: (A1) PD in 2000; (A2) PD in 2010; (A3) PD in 2020; (B1) CONTAG in
2000; (B2) CONTAG in 2010; (B3) CONTAG in 2020; (C1) SHEI in 2000; (C2) SHEI in 2010; (C3) SHEI
in 2020; (D1) SHDI in 2000; (D2) SHDI in 2010; (D3) SHDI in 2020.
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3.4. Landscape Ecological Safety Evaluation
3.4.1. Landscape Ecological Safety Changes of Nanming River Watershed

The ecological safety index of the Nanming River Basin was divided into five classes
(refer to related studies regarding each grade [55]). As shown in Figure 7 and Table 1, the
overall landscape ecological safety shows a continuous positive trend in the last 20 years.
The medium ecological safety zone is the largest area. The low-security area is concentrated
in the southwest part of the watershed, which is characterized by a farming economy,
underdeveloped economy, extensively cultivated land, and interspersed distribution of
grassland, forest, and waters, which destroys the stability of the landscape. Driven by
urbanization, a large patch of arable land is used for infrastructure construction to improve
the standard of living. The construction of residential housing is increasing on the large
arable land, leading to a rise in the landscape ecological risk. However, the low-security
areas decline by about 25% in 2020. The shrinkage rate in the lower security zone was
11.13%. Spatially, the constructed land is connected to patches. The patches also converge
and shift to the middle-security zone, revealing a gradual increase in ecological security.
The higher security zone is increasing yearly, which is mainly concentrated in the northern
part of the watershed, showing that the forest offers advantages to the landscape. Despite
the recent government’s policy of encouraging people to return to cultivated land, the forest
has not yet been encroached upon by other landscape types, providing policy support to
maintain a higher security-level state. The trend of a high-security zone is increasing, which
is distributed in the center of Guiyang City and at a lower elevation at the watershed. With
the obvious landscape advantages and contiguous urban housing, this area has become a
stable landscape structure and has low landscape fragmentation.

Figure 7. (a) Spatial distribution of landscape ecological security in 2000; (b) Spatial distribution of
landscape ecological security in 2010; (c) Spatial distribution of landscape ecological security in 2020.

Table 1. Statistics of landscape ecological security area in the study area.

Ecological Security Level
2000 2010 2020

Area/km2 Proportion Area/km2 Proportion Area/km2 Proportion

Low—safety zone 242 11.21% 219 8.14% 182 8.43%
Lower—safety zone 494 22.89% 467 28.76% 439 20.34%

Medium—safety zone 633 29.33% 463 34.93% 650 30.12%
Higher—safety zone 540 25.02% 693 32.11% 602 27.90%
High—safety zone 249 11.54% 256 7.63% 286 13.25%
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3.4.2. Spatial Autocorrelation Analysis of Landscape Ecological Security Index

As shown in Figure 8, the Moran’s I values of the landscape ecological safety index of
the Nanming River Basin were 0.394, 0.464, and 0.488, greater than 0 for the study periods
2000, 2010, and 2020 at a significance level of p < 0.05. This indicates that the landscape
ecological safety index in the study zone is correlated, and the spatial convergence is
gradually increasing.

Figure 8. Scatter map of ecological security index of landscape pattern in the study area from 2000
to 2020.

As shown in Figure 9, the spatial clustering pattern of landscape ecological safety
values in the Nanming River basin is characterized by high–high clustering and low–low
clustering. The percentage of high–high concentration sample areas gradually increased
over the three periods, ranging from 7.66% to 12.66%. From the local autocorrelation of
the study area, the cluster structure of “high–high” values of the landscape ecosystem
security index continues to extend outward from 2000. However, the range of “low–low”
values continues to shrink. In terms of spatial distribution, the ecological safety high-value
catchment area of the watershed is concentrated in the center of Guiyang City, with little
distribution in the eastern part of the downstream Wuzhong. In this area, the terrain is
relatively flat, and the topographic conditions are simple, with a single land-use landscape
type as the main feature. Low-value ecological security catchment areas are focused on the
central Huaxi and southern Pingba in the upper part of the watershed. At the same time,
we found that the internal structure of the landscape in the adjacent areas of the region
is finely fragmented. Additionally, each land use landscape type is disturbed by human
activities and interspersed with each other; so the ecological safety is in a low-value state,
and its stability may be difficult to maintain.

 

Figure 9. (a) LISA Map of Landscape Ecological Security in 2000; (b) LISA Map of Landscape
Ecological Security in 2010; (c) LISA Map of Landscape Ecological Security in 2020.
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4. Discussion

4.1. Landscape Ecological Safety Evolution Rules

(1) Change in the Landscape Ecological Safety Index

From 2000 to 2020, the landscape ecological security index showed an increasing trend,
indicating that the ecological security of the Nanming River Basin gradually increased.
Driven by the market economy, crop cultivation has increased in the upper watershed,
making a certain amount of forest and grassland reclaimed as cropland. Moreover, a huge
number of cultivated land has been converted to forest and constructed land, which was
driven by the policy of returning farmland to forest and the construction of land expansion.
This policy has increased the fragmentation of forest and cropland landscapes, decreased
connectivity, and decreased the ecological security index. With urbanization and rapid
economic development, the non-farm population has increased, and the disturbance to
the watershed landscape from human activities has risen. This development enhances the
distribution of the construction of landscapes favoring human ecological and living needs.
Moreover, the contiguous distribution of constructed land decreases the fragmentation of
landscape patches and increases the degree of stability because of the low vulnerability
in the flat topography. Thus, the ecological safety index of the constructed land has
maintained its maximum value in the last 20 years. Additionally, the implementation of
artificial landscaping projects in the watershed has rationalized the layout of the grassland
landscape and increased the landscape ecological safety index.

(2) Spatial Distribution of Landscape Ecological Safety Index

Table 2 shows a comparative analysis of the relevant literature [56–68]. In karst areas,
the regional characteristics above the higher ecological safety level are manifested as fol-
lows: 1© They are located at lower elevations and in urban centers with faster economic
development. 2© These areas are also the most concentrated belt of forest or the constructed
land and forest of the landscape. Low-security and lower-security areas are characterized
by cultivated land, grassland, and water. In non-karst areas, areas above medium secu-
rity level are dominated by natural ecosystems such as forest and grassland, which are
concentrated in agricultural areas or natural landscape protection zones far from urban
centers. However, low-security level areas are distributed on constructed land, and natural
landscape structures are fragmented by human interference.

Thus, the higher safety-level areas of the watershed are distributed in the central urban
areas, whereas the constructed land is concentrated and contiguous. Moreover, the low
and lower ecological safety areas are characterized by a distribution of interspersed and
scattered forest, grassland, and cultivated land.

These results contradict results presented by previous studies conducted in non-karst
areas. Compared with related studies in karst areas, the Panlong River Basin located in
Kunming [60] has a social and geomorphic environment comparable to the study area.
Lin et al. found that the ecological safety index of the constructed land within the Panlong
River Basin was higher than that of other landscape types. Moreover, the landscape types
formed by human behavioral activities have the characteristics of being the most resistant
and stable to external disturbances. Taking the Dianchi watershed as a case study, Wu et al.
analyzed ecological security and found that the high-security areas were located in the
urban areas because urban housing was distributed in a row, with almost no other land use
landscape. Moreover, the patches are highly connected and less fragmented, making them
capable of resisting external disturbances [61]. These findings are in line with the results of
this study.

From the above comparison of the landscape ecological security research in non-karst
and karst areas, it is recommended to give more attention to the fallibility and fragility of
natural ecosystems during the process of karst ecosystem restoration and reconstruction,
such as forests and grassland. In non-karst areas, we should pay more attention to the
uncontrolled expansion of constructed land and the quality of the surrounding natural
ecosystem. In addition, in the follow-up study, the factors influencing the spatial distri-
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bution difference of ecological security of landscape patterns in non-karst and karst areas
should be discussed in depth.

Table 2. Relevant study on ecological security of landscape pattern.

High Security Higher Security
Middle-Grade

Security
Lower Security Low Security

Karst area

Panlong River
Basin, Kunming

City [60]

construction land,
forest land

Unused land,
water area / Grassland,

cultivated land /

Dianchi
Watershed [61]

Most of the main
urban area and

part of
Chenggong

District

The main urban
area of Kunming

Around Dianchi
Lake,

Most areas in
Chenggong

The shore of
Dianchi Lake

The water surface
of Dianchi Lake

Chishui River
Basin [62]

Xishui County, Chishui City, and
Tongzi County in Zunyi City / /

The junction of
Guizhou and

Sichuan where the
Chishui River flows

Wanzhou District,
Chongqing [63]

Town center, suburb, and mountainous
area with high altitude /

Mainly low
mountains and

hills

Distributed along
the Yangtze
River basin

Caohai Wetland,
Guizhou [45]

Forest land in the
northeast and

southwest
mountains

The central region is dominated by
cultivated land Around Caohai Lake District

This paper
Provincial capital
city center with

low altitude

North of the
study area

(mainly forest
land)

Southeast of the
study area

(mainly forest
land)

Southwest of the
study area

(mainly
cultivated land)

In the southwest of
the study area,

mainly cultivated
land, grassland,
forest land, and
water area are

interlaced

Non-karst area

Yinchuan
City [64] / / Forestland and grassland

Cultivated land,
construction land,
and unused land

Xinjiang Uygur
Autonomous
Region [65]

Oasis agricultural area /
Taklimakan Desert, Turpan Basin Desert

and the hinterland of
Gurbantunggut Desert

State-operated
Friendship Farm
in Shuangyashan
City, Heilongjiang

Province [66]

Natural wetlands and woodlands in the
north and east of the study area (1984) /

Cultivated land or degraded grassland in
the north and east of the study area

(originally a natural wetland in 1984)

Huailai County,
Zhangjiakou City,

Hebei
Province [67]

Mountains in the north and south of the study area and near
Miyun Reservoir

Plain area and
around the
county seat

County town

Haitan Island,
Pingtan County,

Fujian
Province [44]

Hilly forest area and coastal protection forest Sea reclamation area

4.2. Limitations and Shortcomings

In interpreting land use type data through RS images and analyzing land use changes
and landscape patterns in the Nanming River Basin, this study evaluated the spatiotemporal
variation characteristics of ecological security in the basin. However, some shortcomings
are found that require improvement. The results inevitably have certain errors when
interpreting images through RS technology because the results have been influenced by
objective factors and human subjective factors, thereby affecting the accuracy verification.
Thus, the ground-based field data surveys and historical record data must be rectified to
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improve the accuracy of the interpretation results. The dynamic and landscape indicators
of land use types only reflect the macro-structural changes influenced by topographic
factors [68]. However, it is difficult to reveal the microstructural changes in the landscape.
Thus, the microstructural changes in the landscape should be explored in future studies.

As a natural geographical unit, a watershed is the unification of multiple catchment
areas within a natural environment [69]. However, watershed boundaries and administra-
tive boundaries cannot completely overlap [70]. Thus, when exploring the influence of the
natural environment and anthropogenic activities on watershed landscape patterns and
ecological security, these influences cannot be fully quantified because of some constraints
on the analysis of watershed change.

5. Conclusions

This study used 3S technology, the landscape pattern index method, and spatial auto-
correlation theory to systematically analyze the landscape pattern evolution characteristics
of the Nanming River watershed and evaluate the ecological security of the karst watershed
in the Guizhou plateau. Several conclusions were obtained as follows. Forest was the
leading landscape and mainland substrate in the watershed from 2000 to 2020. The cohe-
siveness of constructed land patches continues to increase. Moreover, the fragmentation
and diversity of landscape pattern in the patchy distribution of forest and constructed land
have declined. The growth rate of the Nanming River Basin Landscape Ecological Safety
Index has increased by 5.80%, and the overall ecological safety has shown a continuous
positive trend. The high-value ecological safety clusters are distributed in the central
urban areas, where the constructed land is concentrated and contiguous. Moreover, the
low-value clusters show the scattered distribution characteristics of forest, grassland, and
cultivated land. Thus, the spatial clustering effect of the ecological security index is obvious,
which is dominated by high–high clustering and low–low clustering types. The study
reveals the landscape pattern evolution rules of the typical karst watershed in the Guizhou
plateau since 2001 by systematically evaluating the spatiotemporal distribution charac-
teristics of ecological security in the watershed. The findings provide scientific reference
for maintaining the ecological balance in the watershed, optimizing land resource alloca-
tion and regulation, and improving the ecological environment of typical karst watershed
geomorphic units.
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Abstract: Remote sensing image with high spatial and temporal resolution is very important for
rational planning and scientific management of land resources. However, due to the influence
of satellite resolution, revisit period, and cloud pollution, it is difficult to obtain high spatial and
temporal resolution images. In order to effectively solve the “space–time contradiction” problem in
remote sensing application, based on GF-2PMS (GF-2) and PlanetSope (PS) data, this paper compares
and analyzes the applicability of FSDAF (flexible spatiotemporal data fusion), STDFA (the spatial
temporal data fusion approach), and Fit_FC (regression model fitting, spatial filtering, and residual
compensation) in different terrain conditions in karst area. The results show the following. (1) For
the boundary area of water and land, the FSDAF model has the best fusion effect in land boundary
recognition, and provides rich ground object information. The Fit_FC model is less effective, and
the image is blurry. (2) For areas such as mountains, with large changes in vegetation coverage, the
spatial resolution of the images fused by the three models is significantly improved. Among them,
the STDFA model has the clearest and richest spatial structure information. The fused image of the
Fit_FC model has the highest similarity with the verification image, which can better restore the
coverage changes of crops and other vegetation, but the actual spatial resolution of the fused image is
relatively poor, the image quality is fuzzy, and the land boundary area cannot be clearly identified.
(3) For areas with dense buildings, such as cities, the fusion image of the FSDAF and STDFA models
is clearer and the Fit_FC model can better reflect the changes in land use. In summary, compared with
the Fit_FC model, the FSDAF model and the STDFA model have higher image prediction accuracy,
especially in the recognition of building contours and other surface features, but they are not suitable
for the dynamic monitoring of vegetation such as crops. At the same time, the image resolution
of the Fit_FC model after fusion is slightly lower than that of the other two models. In particular,
in the water–land boundary area, the fusion accuracy is poor, but the model of Fit_FC has unique
advantages in vegetation dynamic monitoring. In this paper, three spatiotemporal fusion models are
used to fuse GF-2 and PS images, which improves the recognition accuracy of surface objects and
provides a new idea for fine classification of land use in karst areas.

Keywords: spatiotemporal fusion; land use; high resolution; FSDAF; STDFA; Fit_FC

1. Introduction

Karst land landscape accounts for about 12% of the global land area, and the envi-
ronment is very fragile [1,2]. Karst landform accounts for more than 1/3 of China’s land
area [3], with strong karstification, which has always been a research focus [4–6]. In view
of the increasingly prominent ecological problems in karst areas, the pressure of land use
change on ecology gradually emerged. Therefore, it is of great significance to obtain more
efficient and accurate land use classification methods for optimizing the allocation of land
resources and realizing ecological restoration in fragile karst mountainous areas.
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High-spatial-resolution data can provide rich spatial information, geometric structure,
and texture information of ground objects and other details. High-temporal-resolution
data can provide continuous changes of surface elements in time and space and play an
irreplaceable role in regional ecological environment monitoring [7]. However, due to the
limitations of satellite launch cost, technical conditions, and satellite revisit cycle, the remote
sensing image of a single satellite has the problem of mutual restriction between spatial
resolution and temporal resolution [8–12]. As a result, the accuracy of land use classification
is not high, which limits the practical application of remote sensing data [9,13,14]. At the
same time, optical remote sensing images are easily affected by atmospheric conditions
such as clouds, which reduces the availability of data and further hinders the acquisition
of time-continuous high-spatial-resolution images [15]. A cost-effective way to solve this
problem is to develop a data fusion model. High-temporal and low-resolution data are
combined with high-resolution and low-temporal data to obtain remote sensing images
with high spatial resolution and high temporal resolution [16–18].

There are five main categories of spatiotemporal fusion algorithms: decomposition-
based methods, weight-function-based methods, Bayesian-based methods, learning-based
methods, and hybrid-based methods [19]. Decomposition-based methods employ linear
spectral mixing theory in analyzing the composition of coarse pixels and decomposing
them to estimate the value of fine pixels, including algorithms such as STDFA. This type of
algorithm is simple in principle and easy to operate, but it cannot obtain good decompo-
sition results in mixed areas with many land cover types [20]. The method based on the
weight function estimates the fine pixel value by combining the information of all input
images with the weight function, mainly including STARFM, STAARCH, ESTARFM, and
other algorithms. Most of these methods involve empirical functions, and the fusion accu-
racy is poor when there are too many types of land cover or when abnormal changes such
as land cover mutation occur [21]. The Bayesian-based data fusion method combines the
time-related information in the image time series to transform the fusion problem into an
estimation problem, mainly including BME, unified, and other algorithms. These methods
lead to lower prediction accuracy when the land cover type changes [22,23]. Learning-
based methods use machine learning to model the relationships between observed image
pairs and predict unobserved images, mainly including algorithms such as SPSTFM and
EBSPTM. This type of method can capture the main features in the prediction, including
land cover type changes, etc., but cannot accurately preserve the shape of the predicted
objects, especially irregular-shaped ground objects [24]. There are also some spatiotemporal
fusion methods that combine the advantages of decomposition methods, Bayesian theory,
weight functions, and learning methods to pursue better fusion effects, such as FSDAF
algorithms. This type of method can deal with different land cover type change problems
through the combination of multiple methods, which improves the prediction accuracy of
the model, but also increases the complexity of the algorithm [25]. In addition, Wang et al.
proposed a method by combining regression model fitting, spatial filtering, and residual
compensation [26]. This method has some shortcomings in capturing image structure
and texture, but it has a good fusion effect when the terrain changes greatly. It has great
application value for remote monitoring of environment, agriculture, and ecology [27].

At present, most of the spatiotemporal fusion algorithms use Landsat data and MODIS,
MERIS, and other medium- and low-spatial-resolution data for fusion, meaning that the
fused data are far from fulfilling the actual needs. With the development of satellite tech-
nology and the improvements in sensor technology, the demand for high spatial resolution
is increasing. However, research on spatiotemporal fusion using high-resolution images is
scarce; in particular, the accuracy of the high-resolution fusion images is unknown [28–32].
At the same time, there is no research on the fusion accuracy of different models in different
land use types in the current spatiotemporal fusion research. Therefore, this study will
fill the gap in the current field of spatiotemporal fusion to facilitate better use of satellite
remote sensing data.
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As the images of PS satellite constellation have high temporal resolution and high
spatial resolution, GF-2 has the highest resolution among Chinese civil land observation
satellites. Therefore, in this paper, FSDAF, STDFA, and Fit_FC models are used to fuse
high-spatial-resolution GF-2 and high-temporal-resolution PS data, and the fusion accuracy
of each model is analyzed at the same time. This provides a new idea for fine classification
of land use in karst areas, and analyzes the applicability of GF-2 and PS data for feature
recognition in the Karst region. This can provide a scientific basis for further application
research based on high-spatial-resolution satellites such as time series GF-2.

2. Materials and Methods

2.1. Study Area

Caohai (104◦10′–104◦20′ E, 26◦47′–27◦52′ N), in Guizhou Province, is a typical karst
plateau wetland lake. It is located on the south side of the county seat of Yi, Hui, and Miao
Autonomous County, Weining County, northwest Guizhou Province, and it provides a
habitat for rare birds such as Grus nigricollis, unique to China (Figure 1). It is a complete
and typical karst plateau small watershed, which requires frequent monitoring using
remote sensing images. The terrain of the study area is the highest in the east, higher
in the southwest, and the lake area is situated in the middle. The water outlet of the
watershed is in the northwest, with an average elevation of 2171.7 m and a watershed area
of approximately 96 km2 [33,34]. The land use types in the region are complex and diverse,
mainly including construction land, forest land, cultivated land, rivers, and lakes. As it is
located in the karst plateau area of Southwest China and belongs to the humid subtropical
plateau monsoon climate, the study area has poor light conditions, heavy rainfall, and cloud
cover all year round. These factors lead to a serious lack of optical remote sensing image
data, especially high-resolution data, and there is an urgent need for high-spatiotemporal-
resolution images in daily production and scientific research activities [35–37].

Figure 1. Location of the study region. (1) Land–water boundary area, (2) mountainous area,
(3) urban area.

2.2. Data Sources

PS is the world’s largest micro satellite group, consisting of hundreds of Dove
(10 cm × 10 cm × 30 cm) satellites. PS data (https://www.planet.com/markets/education-
and-research/, 15 March 2022) have a spatial resolution of 3 to 5 m, and the satellite can
acquire data every day, with a short coverage period and fast update speed [38,39]. GF-2 is
the first civil optical remote sensing satellite successfully launched by China in 2014, with a
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spatial resolution better than 1 m. It is the civil land observation satellite with the highest
resolution in China. The GF-2 data come from the China Resources Satellite Application
Center (http://www.cresda.com/CN/, 17 March 2022), the revisit period is 5 days, and
the coverage period is 69 days [40–42].

This study selected the PS data of 2 scenes imaged on 15 April 2021 and 10 July 2021,
and the GF-2 data of 2 scenes imaged on 15 April 2021 and 13 July 2021. Due to the
limitation of revisit cycle, GF-2 does not have the image of 10 July 2021, so the scene with
the closest time (13 July 2021) was selected. Among them, the GF-2 data for 15 April were
used as the input known high-resolution low-temporal data. PS data for 15 April served as
input known high-temporal low-resolution data. The PS data for 10 July were used as the
high-temporal low-resolution data in the prediction period to simulate the high-resolution
data in the corresponding period, and the GF-2 data for 13 July were used as the verification
data for accuracy evaluation.

The data were radiometrically corrected using ENVI 5.3 software, and atmospheric
correction was performed with the FLAASH Atmospheric correction module. Second,
the PS data were converted to a UTM 50N/WGS84 projection and coordinate system and
resampled to 1 m resolution using the nearest neighbor method. Finally, rectification was
performed via the RPC Orthorectification Workflow tool to make the two images perfectly
match. Finally, they were cropped to the same experimental area as the GF-2 data. In this
study, four multispectral bands of GF-2 data and the corresponding PS band were selected
as experimental bands. The specific band ranges are shown in Table 1.

Table 1. GF-2 PMS and PS image spectral ranges.

Band Band Range of GF-2 (μm) Band Range of PS (μm)

Blue 0.450~0.520 0.420~0.530
Green 0.520~0.590 0.500~0.590
Red 0.630~0.690 0.610~0.700
NIR 0.770~0.890 0.760~0.860

2.3. Methods
2.3.1. FSDAF Model

FSDAF integrates the method of mixed pixel decomposition and a weighting function,
and provides better prediction results for changes in regional ground object types. The
main steps are as follows: (1) classify the high-spatial-resolution images at time tb; (2) use
the reflectivity change of the PS image to estimate the time change of the corresponding
ground object type from tb to tp; (3) use the category temporal change obtained in the
previous step to predict the high-resolution image located in the tp period and calculate
the residual error of each pixel prediction of the PS image; (4) use the thin plate spline
(TPS) function to predict the high-resolution image at time tp; (5) calculate the residual
distribution based on the thin-plate spline function; (6) use the neighborhood information
to obtain the final prediction of the GF-2 image [25,27].

Phigh
(
xij, yij

)
= Bhigh

(
xij, yij

)
+ ∑n

k=1[wk × ΔR(xk, yk)] (1)

ΔPhigh
(
xij, yij

)
= εhigh

(
xij, yij

)
+ ΔRhigh(a) (2)

In the formula, ΔPhigh
(
xij, yij

)
is the pixel change value at time tb and time tp;

εhigh
(
xij, yij

)
is the residual of the high-spatial-resolution image assigned to the j-th pixel

by the i-th pixel of high temporal resolution; ΔRhigh(a) is the change value of surface cover
type a of the high-spatial-resolution data between time tb and time tp; Phigh

(
xij, yij

)
is the

pixel value of the high-temporal-resolution image at time tp; Bhigh
(
xij, yij

)
is the pixel value

of the high-temporal-resolution image at time tb; wk is the weight value of the k-th similar
pixel; ΔR(xk, yk) is the change value of pixel resolution at time tb and time tp. The residual
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value between the cell value of the base date and the cell value of the forecast date is
calculated as follows:

εhigh
(
xij, yij

)
= m × ε(xi, yi)× W

(
xij, yij

)
(3)

ε(xi, yi) = ΔPlow
(
xij, yij

)− 1
m

[
∑m

j=1 PTP
tp

(
xij, yij

)− ∑m
j=1 Bhigh

(
xij, yij

)]
(4)

W
(
xij, yij

)
= CW

(
xij, yij

)
/ ∑n

k=1 CW
(
xij, yij

)
(5)

CW
(
xij, yij

)
= PSP

tp

(
xij, yij

)− PTP
tp

(
xij, yij

)
+ ε(xi, yi)× [1 − HI × ε(xi, yi)] (6)

In the formula, m is the total number of high-spatial-resolution image pixels cor-
responding to the high-temporal-resolution image pixels (xi, yi); ε(xi, yi) is the residual
between the i-th pixel value predicted due to the time difference between the high spa-
tial resolution at time tb and time tp; CW

(
xij, yij

)
is the weight of the assigned residual;

W
(
xij, yij

)
is the weight of CW

(
xij, yij

)
normalized; ΔPlow

(
xij, yij

)
is the pixel change value

of the high-temporal-resolution image between time tb and time tp; PTP
tp

(
xij, yij

)
is the

pixel value of the high-spatial-resolution image at time tp predicted by the time difference;
PSP

tp

(
xij, yij

)
is the pixel value of the high-spatial-resolution image at time tp predicted

after TPS optimization parameters; HI is the homogeneity coefficient, i.e., in the moving
window, when the k-th high-spatial-resolution pixel (with a high temporal resolution) and
the moving center pixel

(
xij, yij

)
have the same land cover type, HI is taken as 1; otherwise,

HI takes a value of 0.

2.3.2. STDFA Model

The STDFA algorithm is a class of spectral unmixing methods. The algorithm first
classifies high-resolution low-temporal images of known periods based on K-means, which
is set to 5 categories in this paper, and uses Equation (7) to calculate the richness of each
category in each high-temporal and low-resolution pixel. The corresponding subregion is
determined by taking a high-temporal low-resolution pixel as the center and calculating
the average reflectance value of each category in the subregion by Formula (8). Then, we
assign this value to the corresponding class of high-resolution low-temporal pixels within
the center pixel [36,37,43].

f (X, c) = N(X, c)/m (7)

In the formula, f (X, c) is the richness of category c in the high-temporal and low-
resolution pixel X in the known period; N(X, c) is the number of high-resolution and
low-temporal pixels belonging to category c in pixel X; m is the number of high-temporal
and low-temporal pixels contained in the high-temporal and low-temporal pixels X. We
select the D high-temporal and low-resolution pixels with the highest abundance in each
category, find the difference between these high-temporal and low-resolution pixels in
the known period and the predicted period, and then use the least squares method to fit
the high-resolution pixels of each category. Thus, we obtain the change in reflectivity of
low-temporal pixels.

X(t) = ∑k
c=0 f (X, c)× x(c, t) (8)

Limitation factor:
∑k

c=0 f (X, c) = 1, f (X, c) ≥ 0 (9)

In the formula, t represents the prediction period and the known period t0 and tk; x(c, t)
represents the average reflectance of category c in the high-temporal and low-resolution
pixel X; k is the total number of categories. We calculate the average reflectivity of category
c in the known period and the predicted period, respectively, and through an SRCM
(surface reflectance calculation model), based on Equation (10) [19], the high-resolution
low-temporal data of the final forecast period can be obtained.
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x(c, t0) = x(c, t0)− x(c, tk) + x(c, tk) (10)

In the formula, x(c, t0) and x(c, tk) represent the reflectivity of high-resolution
low-temporal pixels belonging to category c in the prediction period and the known
period, respectively.

2.3.3. Fit_FC Model

The Fit_FC algorithm is based on a linear model for data spatiotemporal fusion. It
uses low-spatial-resolution and high-temporal-resolution data in the known period and
the predicted period to fit linear coefficients, and then applies the coefficient to the known
period of high-spatial-resolution and low-temporal-resolution data [36,44,45]. Taking the
high-temporal-resolution pixel X as the center, we determine the neighborhood subregion,
where the size of the subregion is 5 high-temporal and low-resolution pixels, and fit
Formula (11) to the coefficients a and b.

X(t0) = a × X(tk) + b (11)

The predicted initial high-resolution low-temporal data can be obtained by applying
the coefficients a and b to the high-resolution low-temporal pixels corresponding to the
central pixel X in the known period. In addition, the residual value R can be obtained by
Equation (12).

R = X(t0)− (a × X(tk) + b) (12)

In order to eliminate the “block effect” caused by the fusion of high- and low-resolution
data, Formula (13) [13] is used to determine the similar neighborhood pixels centered on a
high-resolution low-temporal pixel.√

∑nb
b=1(x(tk)− xneigh(tk))2/nb (13)

In the formula, nb represents the number of bands involved in the calculation; x(tk)
and xneigh(tk) represent the high-resolution low-temporal center pixel and its neighbors
in the known period. The smallest D high-resolution low-temporal pixels are selected
as similar pixels, and the corresponding weights are given according to the normalized
distance from the central pixel. For the initially predicted high-resolution low-temporal
data, firstly, based on similar pixels and their weight values, the initial correction of
the central high-resolution and low-temporal pixels is obtained by means of weighted
summation. The residual R is then linearly interpolated to ensure that it has the same
resolution as the high-resolution low-temporal data, and, based on the obtained similar
pixels and weights, the reflectance value of the central high-resolution low-temporal pixel
is corrected again to obtain the final result.

2.3.4. Accuracy Evaluation

Using the real GF-2 band image acquired on 13 July 2021 as the verification image,
visual interpretation and correlation analysis methods were used to evaluate the accuracy
of the fusion image from both qualitative and quantitative aspects. The visual interpretation
method can directly analyze the similarity between the fused image and the real image and
yield a preliminary judgment on the fusion accuracy of each model. The correlation analysis
method mainly uses four evaluation metrics: average absolute deviation (AAD), root mean
square error (RMSE), correlation coefficient (CC), and structural similarity (SSIM) [26,46,47].
These indexes are used to quantitatively evaluate the similarity between the fused image
and the real image.

AAD is used to measure deviation. The closer AAD is to 0, the smaller the deviation
between the predicted value and the standard value.

232



Land 2023, 12, 33

AAD =
1
N ∑N

i=1|Pi − Oi| (14)

RMSE is used to measure the difference between images, and its value ranges from 0
to 1. The smaller the RMSE, the higher the accuracy.

RMSE =

√
∑N

i=1(Pi − Oi)
2

N
(15)

CC can reflect the spectral similarity between images, and the closer CC is to 1, the
higher the spectral similarity.

CC =
∑N

i=1
(

Pi − P
)(

Oi − O
)

√
∑N

i=1
(

Pi − P
)2

∑N
i=1
(
Oi − O

)2
(16)

SSIM can evaluate the structural similarity between images. The closer the SSIM is to
1, the greater the structural similarity between images.

SSIM =

(
2PO + C1

)(
2σpo + C2

)
(P2

+ O2
+ C1)

(
σ2

P + σ2
O + C2

) (17)

In the Formulae (14)–(17), N is the total number of image pixels; Pi and Oi represent the
i-th pixel of the predicted image and the observed image, respectively. P and O represent
the mean of the fusion result and the observed image, respectively. P2 and O2 represent the
variance between the fusion result and the observed image, respectively. σpo represents the
covariance between the fusion result and the observed image; C1 and C2 are two constants
close to 0 used to stabilize the result, generally, C1 = (K1L)2, C2 = (K2L)2, generally K1 = 0.01,
K2 = 0.03, L = 255 (dynamic range of pixel value, generally 255).

3. Results

In order to better evaluate the accuracy of the spatiotemporal fusion model under
different landform types, this study mainly selected three experimental areas for algorithm
comparison. The first test area belongs to the land and water boundary, and the main land-
form types are land and water. The second experimental region belongs to the mountainous
area, and the main landform types are roads, buildings, and farmland. The third experi-
mental region belongs to the urban area, and the landform types are mainly construction
and roads. By studying the three types of terrain, we can provide more accurate support
for the application of spatiotemporal fusion algorithms in different types of landforms.

3.1. The Accuracy of Land–Water Boundary

The original PS low-resolution images (Figure 2a,b) are blurry and can only roughly
identify water and land—they cannot provide more detailed information. However, the
results of the spatiotemporal fusion of the FSDAF, STDFA, and Fit_FC models show that
FSDAF can clearly identify the water surface, land, shoal, etc., and the contours of ground
objects are clear (Figure 2c). Compared with the FSDAF model, the fusion results of the
STDFA model can also distinguish the water surface and the land, but there are large color
spots in the results, which have a certain impact on the identification of the water–land
boundary (Figure 2d). In addition, the fusion result of the Fit_FC model is very poor.
Compared with the original image, it loses a large amount of detail and cannot effectively
identify the land and water boundary (Figure 2e). Therefore, for the land–water boundary
area, the FSDAF model has the best fusion effect, followed by the STDFA model, and the
Fit_FC model has the worst effect.
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Figure 2. (a) PS image on 15 April; (b) PS image on 10 July; (c) fusion image by FSDAF on 10 July;
(d) fusion image by STDFA on 10 July; (e) fusion image by Fit_FC on 10 July; (f) GF-2 verification
image on 13 July.

As can be seen from Table 2, for all four bands, the images fused by the FSDAF
model have a good correlation with the validation images, and the correlation coefficients
are all higher than 0.6. Compared with the STDFA and Fit_FC models, the mean value
of CC increased by 0.0889 and 0.3055, respectively, indicating that the fused image of
FSDAF has higher spectral similarity with the validation image. At the same time, the
SSIM values of the FSDAF and STDFA models are both greater than 0.7, indicating that
the fusion images of the two models have good structural similarity with the predicted
images. Among them, except for the near-infrared band, the FSDAF model has the highest
SSIM, and its average is 0.0077 and 0.0637 higher than those of the FSDAF and STDFA
models, respectively, indicating that the model has the best structural similarity. For the
Fit_FC model, the RMSE of the four bands and the AAD values of the blue, green, and
red bands are higher than those of the FSDAF and STDFA models, with an average of
0.1347 and 0.1028, respectively. Compared with the other two models, the average value
of RMSE is increased by 0.037 and 0.036, and the average value of AAD is increased by
0.0155 and 0.0148, respectively, indicating that the fusion image of the Fit_FC model has a
large deviation from the predicted image. The statistical results show that the fusion image
results of the FSDAF algorithm and the STDFA algorithm in study area 3 are much better
than those of the Fit_FC algorithm, which is consistent with the direct visual effect.

Table 2. The fusion accuracy evaluation of different bands for different models.

CJ5 Method CC SSIM RMSE AAD

Blue
FSDAF 0.7134 0.7449 0.0987 0.0730
STDFA 0.6127 0.7351 0.0995 0.0733
Fit_FC 0.2397 0.6283 0.1190 0.0941

Green
FSDAF 0.6240 0.7937 0.1123 0.0834
STDFA 0.5258 0.7770 0.1148 0.0848
Fit_FC 0.1247 0.6853 0.1376 0.1102

Red
FSDAF 0.6387 0.7328 0.1232 0.0970
STDFA 0.4887 0.7135 0.1241 0.0969
Fit_FC 0.3968 0.6609 0.1384 0.1144

NIR
FSDAF 0.6036 0.7070 0.1427 0.0939
STDFA 0.5969 0.7221 0.1411 0.0937
Fit_FC 0.5965 0.7185 0.1438 0.0924

Mean
FSDAF 0.6449 0.7446 0.1192 0.0868
STDFA 0.5560 0.7369 0.1199 0.0872
Fit_FC 0.3394 0.6733 0.1347 0.1028
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3.2. The Accuracy of Mountains

Study area 2 is mainly a mountainous area. The ground objects in the basic image
obtained on 15 April 2021 are mainly cultivated land, buildings, and roads. In the image
obtained on 10 July 2021, the original cultivated land has undergone the process of crop
coverage changes (Figure 3a,b). The original PS image can roughly identify the ground
object information, but its resolution is still somewhat insufficient for the identification of
more detailed information. According to the effect of the spatiotemporal fusion algorithm,
the three models have better fusion effects on ground objects, and the identification of
ground object information is obviously more accurate. The FSDAF algorithm and STDFA
algorithm have higher fusion image accuracy, but the fusion image displays a poor response
to changes in crop coverage (Figure 3c,d). Generally speaking, the fusion image and the
verification image should have the similar spectral, but the color of the two models in
the crop coverage area is quite different from that of the verification image. Fortunately,
we were still able to distinguish vegetation cover areas by color comparisons. In terms of
resolution, both models can clearly display the spatial structure information of ground ob-
jects; in particular, the land structure in the vegetation-covered area can be better observed.
Compared with the original PS image, the spatial resolution of the fusion image is also
improved to a certain extent, the contours of different types of objects are also clearer, and
the changes in the coverage areas of crops can be better displayed (Figure 3e). However, its
resolution in specific spatial details is slightly lower than that of the other two algorithms.

Figure 3. (a) PS image on 15 April; (b) PS image on 10 July; (c) fusion image by FSDAF on 10 July;
(d) fusion image by STDFA on 10 July; (e) fusion image by Fit_FC on 10 July; (f) GF-2 verification
image on 13 July.

From the statistical analysis results (Table 3), the fusion image of the Fit_FC model
has a good correlation with the verification image. With the exception of the red band, the
CC value of the Fit_FC model is higher than that of the FSDAF and STDFA models. The
average value of CC is 0.7138, which is 0.0605 and 0.0166 higher than that of the FSDAF
and STDFA models, respectively, indicating that the spectral similarity between the fusion
image and the verification effect is higher. At the same time, the SSIM of the Fit_FC model
in the blue, green, and red bands is also higher than that of the FSDAF and STDFA models,
with an average of 0.6641, which is 0.0434 and 0.0287 higher than that of the other two
models, respectively, indicating that its structural similarity is also higher than that of the
other two models. In all four bands, the RMSE value of the FSDAF model is the highest,
that of the Fit_FC model is the lowest, and the average values of the three models are 0.0791,
0.0052, and 0.0038 in descending order, indicating that the difference between the fusion
image of the FSDAF model and the validation image is greater than others. Regarding the
AAD value, the AAD of the FSDAF and STDFA models in the blue, green, and red bands
is significantly higher than that of the Fit_FC model, but slightly lower than that of the
Fit_FC model in the near-infrared band. The average AAD values of the FSDAF, STDFA,
and Fit_FC models were 0.0382, 0.0381, and 0.0291, respectively, indicating that the Fit_FC
model had less biased fusion images. The statistical results show that the Fit_FC model
has the best fusion effect in mountainous areas, and the FSDAF algorithm has the worst
fusion effect.
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Table 3. The fusion accuracy evaluation of different bands for different models.

Band Method CC SSIM RMSE AAD

Blue
FSDAF 0.6437 0.4863 0.2899 0.0653
STDFA 0.7335 0.5013 0.0787 0.0652
Fit_FC 0.7588 0.5590 0.0605 0.0445

Green
FSDAF 0.6563 0.6621 0.2817 0.0473
STDFA 0.7107 0.6763 0.0720 0.0469
Fit_FC 0.7648 0.7171 0.0607 0.0320

Red
FSDAF 0.6920 0.6478 0.2791 0.0288
STDFA 0.7437 0.6680 0.0688 0.0290
Fit_FC 0.6658 0.7041 0.0614 0.0230

NIR
FSDAF 0.6214 0.6866 0.2744 0.0115
STDFA 0.6009 0.6961 0.0672 0.0114
Fit_FC 0.6658 0.6760 0.0641 0.0171

Mean
FSDAF 0.6534 0.6207 0.2813 0.0382
STDFA 0.6972 0.6354 0.0717 0.0381
Fit_FC 0.7138 0.6641 0.0617 0.0292

3.3. The Accuracy of Urban

Study area 3 is mainly an urban area, and the types of ground objects in the area are
mainly urban buildings, building land, roads, and vegetation greening. In the images
from April and July in this area, with the exception of some areas where the land use
changed (marked in yellow), the rest of the features changed little (Figure 4a,b). The
original PS image can identify different types of objects, but the outlines between buildings
are relatively blurred. Through direct observation of the fused image, compared to the
PS image, all three models have improved spatial resolution to a certain extent, and can
restore the area partially covered by shadows (red border) (Figure 4c–e). Among them,
the fusion images of the STDFA and FSDAF models have a higher resolution. Fit_FC is
relatively blurry on the outline of the building, and there is a more obvious block effect. For
the two land use changes in the image, the fusion results of the STDFA algorithm cannot
clearly reflect these. FSDAF is also extremely blurry, mainly following the original base
image, making it difficult to effectively identify changes. Relatively speaking, the fusion
image of the Fit_FC algorithm can better reflect the difference between the base image and
the predicted image, and is more similar to the verification image. However, it does not
achieve excellent result for the recognition of building outlines.

 
Figure 4. (a) PS image on 15 April; (b) PS image on 10 July; (c) fusion image by FSDAF on 10 July;
(d) fusion image by STDFA on 10 July; (e) fusion image by Fit_FC on 10 July; (f) GF-2 verification
image on 13 July.

According to the statistical analysis results (Table 4), the CC values of the three models
are generally distributed in the range of 0.5–0.6, and the difference between each band
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is small; the FSDAF model has the highest CC values in the blue, green, and red bands,
and the Fit_FC model has the highest in the near-infrared band. The mean values of CC
for the FSDAF, STDFA, and Fit_FC algorithms are 0.5434, 0.5067, and 0.5362, respectively,
indicating that the spectral similarity between the fused image and the validation impact is
the highest for FSDAF and the lowest for the STDFA model. The SSIM gaps of the FSDAF,
STDFA, and Fit_FC models are small, with average values of 0.7257, 0.7072, and 0.7323,
respectively, and the Fit_FC model has the highest SSIM values in the green, red, and
near-infrared bands, indicating that the structural similarity between the fusion image and
the verification image is better. The RMSE value of the STDFA model is higher than that of
the FSDAF and Fit_FC models in the green, red, and near-infrared bands, and the average
values of the three models are 0.0040, 0.0036, and 0.0036, respectively, indicating that the
STDFA model has a larger error in fused images. At the same time, the average AAD
values of the three models of FSDAF, STDFA, and Fit_FC are 0.0075, 0.0058, and 0.0038,
respectively, indicating that the fusion image deviation of the FSDAF model is large. In
general, although the FSDAF model has the highest AAD, its fusion image still has a good
prediction effect.

Table 4. The fusion accuracy evaluation of different bands for different models.

Band Method CC SSIM RMSE AAD

Blue
FSDAF 0.5880 0.7839 0.0449 0.0091
STDFA 0.5711 0.7835 0.0455 0.0091
Fit_FC 0.5447 0.7775 0.0467 0.0057

Green
FSDAF 0.5092 0.7382 0.0568 0.0079
STDFA 0.4850 0.7313 0.0581 0.0079
Fit_FC 0.4797 0.7451 0.0578 0.0010

Red
FSDAF 0.5775 0.7238 0.0604 0.0073
STDFA 0.5467 0.7098 0.0626 0.0005
Fit_FC 0.5768 0.7334 0.0608 0.0030

NIR
FSDAF 0.4989 0.6570 0.0754 0.0057
STDFA 0.4240 0.6044 0.0806 0.0057
Fit_FC 0.5436 0.6733 0.0727 0.0053

Mean
FSDAF 0.5434 0.7257 0.0594 0.0075
STDFA 0.5067 0.7073 0.0617 0.0058
Fit_FC 0.5362 0.7323 0.0595 0.0038

4. Discussion

Different spatiotemporal fusion models have different fusion effects in karst areas.
In order to select a more appropriate high-resolution data fusion model under different
scenarios and needs, in this paper, the fusion results of the three models in different karst
landforms are directly observed and statistically analyzed, and the application effects of
the three models in karst areas are discussed.

4.1. FSDAF in Different Regions

The fusion image of the FSDAF model can improve the resolution of the original image
and the classification accuracy of surface land use in three geomorphic types (water land
border, mountain area, and urban area). Among them, the FSDAF model has a good fusion
effect in the land water border area. It can not only clearly identify the water boundary,
but it can also effectively identify information such as shoals. Therefore, the FSDAF model
can be used for spatiotemporal fusion of target lakes, oceans, rivers, and other waters, and
can accurately extract the water boundary. This advantage has important value in flood
relief, remote danger monitoring of dammed lakes, and other practical applications. The
FSDAF model has a large color difference between the fusion image and the verification
image in mountainous areas and other areas with large seasonal changes in vegetation
cover. The vegetation coverage cannot be restored well. The FSDAF model can effectively
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improve the resolution of urban areas. It can more effectively identify the building outline,
and more effectively display the part of the original image that is blocked by shadows.
However, similar to the integration performance of mountain areas, the model cannot well
show the land type change in the building area. This may be because the FSDAF model
mainly uses spatial prediction to retrieve pixel changes. Theoretically, spatial prediction
can truly describe the surface information of the predicted date. In addition, the signals of
land cover type change and local variation are retained in the fusion results [26]. However,
in the actual process, the error of FSDAF mainly depends on the residual distribution under
the assumption of surface uniformity. Therefore, the FSDAF model can save more detailed
information through this strategy, but it limits its ability to retrieve land cover changes.

4.2. STDFA in Different Regions

The STDFA model also has a good fusion effect on the images of different landforms
in karst areas, which can effectively improve the image resolution. The STDFA model has
a good recognition ability in the interface area between water and land, but the accuracy
of fusion results is not high due to the appearance of “patches” in the predicted image.
Different from this, the fusion image resolution of the STDFA model in mountainous areas
is very high, which can better identify the structural information between ground objects.
However, the fusion accuracy of the STDFA model is lower than that of the Fit_FC model
in areas with large changes in vegetation cover such as crops. However, based on the
statistical data, the CC and SSIM of each band of the STDFA model are lower than that
of the FSDAF model, while RMSE is higher than that of the FSDAF model. This indicates
that in urban areas, the fusion accuracy of the STDFA model is lower than that of the
FSDAF model. In addition, the STDFA model is a spatiotemporal fusion model based
on the unmixing method, and its data fusion accuracy is related to two aspects: On the
one hand, the STDFA model needs to classify high-resolution data in the basic period,
but the classification accuracy of unsupervised classification methods (such as K-means
method) will cause the fusion accuracy to decrease. On the other hand, when the resolution
difference between high-resolution low-temporal data and high-temporal low-resolution
data is large, the area represented by each high-resolution pixel will be more refined. For
example, in the pixels of high-temporal and low-resolution data, when the richness of a
certain category is very low, the fitting error will increase [48,49].

4.3. Fit_FC in Different Regions

The fusion accuracy of the Fit_FC model in different geomorphic types in karst area
is quite different. The fusion effect of the Fit_FC model is poor at the interface between
land and water. Compared with the original low-spatial-resolution measurement data
on 10 July 2021, the spatial resolution is not significantly improved, and it is difficult to
identify the boundary between water surface and land. Meanwhile, the statistical results of
the Fit_FC model also show that the fusion accuracy is extremely low, and the correlation
coefficient of the green band is as low as 0.12466. Therefore, the Fit_FC model is not suitable
for image fusion at the interface between land and water. The Fit_FC model has a good
fusion result in the mountainous area. The spatial resolution of the image is improved, and
the changes of vegetation cover such as crops can be better presented. It is very suitable for
spatiotemporal fusion in areas with large vegetation changes and increases the accuracy
of ground class classification. Therefore, the Fit_FC model can be given priority when
studying the requirements of vegetation dynamic monitoring and land use change. The
fusion results of the Fit_FC model have lower resolution than the FSDAF and STDFA
models in the contour of ground objects such as roads and buildings. Especially in densely
built areas, the resolution gap is larger. In addition, the Fit_FC model fits the high-temporal
and low-resolution data of the known and predicted periods at pixel scale, and directly
applies the fitting coefficients to the high-resolution and low-temporal data. When the
difference between high-resolution data and low-resolution data is large, the results of the
Fit_FC model show obvious “block effect” [28,50].
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4.4. Statistical Precision Analysis

For the fusion effect of the three models in different regions, it is found that the
resolution is generally good in direct observation, but the statistical data of the related
accuracy are obviously not high, being clearly lower than that of the related low-resolution
data. This is due to the high resolution of the two sets of data that we use, which can
accurately identify small changes in ground objects. Especially when the prediction data
and the verification data are separated by three days, the information on the ground objects,
such as vehicles, will be slightly different, and some land types will also change. At the
same time, in the process of the spatiotemporal fusion of high-resolution variable images,
the effect of sunlight will also have a great impact on the accuracy. Differences in shooting
time, different satellite shooting angles, and changes in the incident angle of sunlight will
cause the shadow areas of the basic image and the verification image to differ, which will
have a certain impact on the analysis of statistical data. Under the combined effect of these
factors, the fusion accuracy of the three algorithms for high-resolution data is lower than
the fusion of the same model for medium- and low-resolution data. However, in general, in
most cases, the resolution of the fused image becomes higher, the recognizability is greatly
enhanced, and the practical application value is higher.

4.5. Classification Accuracy Verification

In order to verify the application accuracy of the fusion results in land use classifica-
tion, we selected an area containing mountains, buildings, and waters for research. First,
the three methods are applied to different land use types for spatiotemporal integration.
Secondly, the fusion results are divided into forest land, dry land, construction land, and
water through the supervised classification method. Finally, through the comparison with
the data of the Third National Land Survey of China (TNLS), it can be seen from Figure 5
and Table 5 that the classification results of the fused images (Figure 5a) are highly consis-
tent with the data of the TNLS of China (Figure 5b). However, compared with the data of
TNLS, the classification results did not effectively divide the small area of water around the
construction land region, which made the water area in the classification results smaller.
For forest land and dry land, the classification results are scattered. At the same time,
due to the time difference between the fusion image and TNLS, the original dry land is
distributed with crops, which makes the classification result of the fusion image become
forest land. This may result in the increase of forest land area and the decrease of dry
land area. For construction land, the area may be increased due to construction activities.
However, the classification results are basically consistent with the data of TNLS. In general,
the classification result of the fusion image is good, and the difference of land area of each
type is within 15%. Therefore, images fused by spatiotemporal fusion model can be used
for land use classification.

 
(a)              (b) 

Figure 5. (a) Supervise classification results; (b) Data of China’s Third National Land Survey.
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Table 5. Comparison between classification results and TNLS data.

Land Use Classification (km2) TNLS (km2) D-Value (km2) Ratio

Dry land 1.1301 1.3901 −0.2600 81.29%

Water 2.7325 2.6749 0.0576 102.15%

Forest land 1.0585 0.937 0.1215 112.96%

Construction land 3.1611 3.0801 0.0810 102.63%

5. Conclusions

In this study, three simple and easy-to-promote spatiotemporal fusion models, FSDAF,
STDFA, and Fit_FC, are selected to fuse GF-2 and PS high-resolution satellite data. Four
classical evaluation indexes, SSIM, CC, RMSE, and AAD, and visual analysis are adopted.
The applicability of the three models for land use classification in karst areas is discussed
comprehensively. The results show that the three models can improve the accuracy of
land surface recognition, but the accuracy is different in different land use types. Among
them, the fusion results of the FSDAF model can improve the recognition accuracy of
land and water interface. Different from the FSDAF model, the STDFA model has the
highest resolution of fusion image in mountain region, with significant improvement of
fusion image resolution and rich details. The fusion effect of the Fit_FC model is poor
in the boundary region of water and land. The image is blurred, and the ground feature
information cannot be restored clearly, which is not conducive to the classification of
land and water boundary land use. However, the Fit_FC model can clearly show land
use change in vegetation covered areas. Therefore, this paper adopts a high-resolution
spatiotemporal fusion algorithm to effectively improve the classification of land use in
karst areas. It is of great significance to optimize the allocation of land resources and realize
ecological restoration in fragile karst mountainous areas.
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Abstract: The hydrochemical analysis method was used to reveal the sources and spatiotemporal
variations of carbon and nitrogen elements in the Pingzhai Reservoir, and the C–N coupling cycle
and its influence on the karst carbon sink are discussed. The results show the following: (1) The
hydrochemical type of the study area is HCO3-Ca. (2) From the river to the reservoir and then to the
reservoir outlet, the values of HCO3

− and δ13CDIC showed an opposite trend. The values of NO3
−,

δ15N-NO3
−, and δ18O-NO3

− were different in each stage of the river. (3) HCO3
− mainly comes from

the weathering of carbonate rocks and the oxidative decomposition of organic matter. Nitrate mainly
comes from chemical fertilizers, soil organic nitrogen, sewage, and livestock manure. (4) The average
proportion of HCO3

− produced by HNO3 dissolving carbonate rock is 8.38%, but this part does
not constitute a carbon sink. Compared with rivers, the proportion of HCO3

− and (Ca2+ + Mg2+)
produced by HNO3 dissolving carbonate rock in reservoir water is relatively large. The input of
nitrate not only pollutes the water body with NO3

− but also changes the carbon source/sink pattern
of the water–rock interaction.

Keywords: karst carbon sink; carbon and nitrogen sources; dissolved inorganic carbon isotopes;
nitrogen and oxygen isotopes; karst area reservoir

1. Introduction

Rivers connect terrestrial and marine ecosystems and are important channels for
the transfer and transformation of nutrient elements. The transport of particulate and
dissolved matter from rivers to the ocean is of great significance for the material cycle of the
ecosystem, and it is estimated that the total amount of particulate sediment and dissolved
matter transported into the ocean by rivers worldwide is 15.5 × 109 t/a and 4 × 109 t/a,
respectively [1]. At the same time, to make full use of water energy resources, water
conservation has been pursued around the world in recent decades. The construction of
dams transforms a single river ecosystem into a river–reservoir ecosystem, river continuity
is forced to change, and the pattern of material transport from the source to the estuary also
changes. Reservoirs are usually characterized by poor flow, water temperature stratification,
and large depth, and the retention and transformation of various substances in reservoirs
are relatively considerable. Many studies have also been carried out on the biogeochemical
cycle of river–reservoir ecosystems [2–5].

As essential elements for the growth of life, carbon, and nitrogen play an important
role in ecosystems. Related studies have shown that carbon and nitrogen can reflect the
construction of aquatic food chains and the division of trophic levels in aquatic ecosys-
tems [6] and can also be used for carbon and nitrogen isotope analysis in aquatic plants
and plankton [7,8]. Water bodies in karst areas are generally rich in calcium and somewhat
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alkaline. In terms of the impact of nutrients on water quality, even if the concentrations
of nitrogen and phosphorus are low, aquatic plants (blue-green algae) and plankton can
develop through the carbon fertilization effect. The input of exogenous nitrogen will
contribute to the growth of living organisms such as microorganisms and plants in water,
which will affect the absorption and decomposition of carbon [3,4].

However, increasing human activities such as land-use change, fossil fuel burning, and
agricultural production have altered the natural state of the carbon and nitrogen cycle [9,10].
For example, the use of nitrogen fertilizer in agriculture can promote photosynthesis by
increasing the net primary productivity of vegetation and microbial activities and increase
the decomposition of organic matter by microorganisms, but this will produce more CO2,
part of which is re-discharged into the atmosphere as a carbon source, and the other part
infiltrates into the karst surface zone and vadose zone with rainfall to form carbonic acid,
increasing the dissolution of carbonate rocks [11,12]. Relevant studies also show that
nitric acid produced by agricultural and urban activities interferes with the karst carbon
cycle [13–15]. In contrast to carbonate rocks dissolved by carbonic acid, carbonate rocks
dissolved by nitric acid do not consume CO2 in the atmosphere/soil, leading to an increase
in HCO3

− and (Ca2+ + Mg2+) concentrations in water, playing the opposite role in CO2
emission reduction [16,17]. Baker et al. (2008) showed that a river flowing through the city
had the highest dissolved inorganic carbon (DIC) concentration in the carbonate rock area
of Britain [18]. Barnes et al. (2009) found that DIC was higher in watersheds dominated
by urban land than in watersheds dominated by forestland [13]. It is estimated through
laboratory simulation that fertilization of cultivated land in karst regions will lead to an
additional increase in the (Ca2+ + Mg2+) concentration in rivers by 5.7 × 1012 mmol/a and
will release CO2 to the atmosphere [19]. A study in a karst basin in southwest France found
that the application of chemical fertilizers increased the concentration of nitric acid in river
water and estimated that the amount of atmospheric CO2 absorbed by the weathering of
carbonate rocks in the basin decreased by 7–11%, and the karst carbon sink decreased by
5.7–13.4% in the whole region of France [20]. According to Brunet et al. (2011), the nitric acid
formed by nitrification of nitrogen fertilizer can cause soil and water acidification, increase
the concentration of alkaline cations, change the carbon budget, and actively participate
in the weathering of carbonate rocks [21]. A study in the typical karst agricultural area
of Southwest China shows that H+ released from the nitrification of nitrogen fertilizer
accelerates the weathering of carbonate rocks, which not only reduces the consumption of
atmospheric CO2 but also increases the HCO3

− flux by approximately 20% [22].
Southwest China has the largest contiguous distribution of carbonate rocks in the

world, with an exposed area of carbonate rocks of 54 × 104 km2 [23]. Southwest China has
also become a key area for studying carbon and nitrogen cycling. The Pingzhai Reservoir
is located in Southwest China, and its water transfer scope involves the Yangtze River
basin and the Pearl River basin [24]. Its carbon and nitrogen concentrations are of great
significance for the water quality security of the Yangtze and Pearl Rivers. In terms of
geological background, the Pingzhai Reservoir is located in a deep river canyon, with
very thick carbonate rock strata distributed on both sides of the canyon. Affected by
karstification, a multilayered karst hydrogeological structure has been formed. The karst
morphology mainly includes peak-cluster depressions, dissolving gullies and troughs,
falling caves, funnels, karst caves, and karst pipeline systems. In the region, in recent years,
with the increase in population, frequent industrial and agricultural activities in the basin,
and the large amount of agricultural fertilizers used with low utilization efficiency [24,25],
nutrients have entered rivers and reservoirs through cracks in the karst and underground
rivers along with the runoff and pore water generated by precipitation, leading to the
accumulation of nitrogen nutrients and participating in water-rock interactions. Previous
studies on carbon and nitrogen in the Pingzhai Reservoir and its inflow river were relatively
isolated [25–27], but with the progress of research, it has been found that it is very important
to explore the coupling of carbon and nitrogen and its environmental effects. The objectives
of this study were to explore the water hydrochemical types and the spatial and temporal
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distribution characteristics of nitrate nitrogen and oxygen isotopes and dissolved inorganic
carbon isotopes in a karst reservoir basin, determine the sources of DIC and nitrate in water,
explore the carbon and nitrogen coupling cycle in different periods, and quantitatively
evaluate the impact of the carbon and nitrogen coupling cycle and nitric acid from external
sources on carbonate dissolution in the basin. This study can provide a reference for the
study of the effect of C–N coupling and karst carbon sinks on the river–reservoir continuum
in karst regions.

2. Materials and Methods

2.1. Overview of the Study Area

The Pingzhai Reservoir (105◦17′3′′ E–105◦26′44′′ E, 26◦29′33′′ N–26◦35′38′′ N) is the
source reservoir of Guizhou’s Central Water Control Project and undertakes the functions
of irrigation, drinking water supply, and power generation in the region (Figure 1). The
reservoir is formed by the convergence of five rivers (Nayong River, Shuigong River,
Zhangwei River, Baishui River, and Hujia River) in the upper reaches of the reservoir, and
the drainage area is 833.77 km2. The construction of the reservoir was completed in 2015,
the maximum dam height is 157.5 m, the maximum water level is 1331 m, the regulated
storage capacity is 448 million m3, and the total storage capacity is 1.089 billion m3. The
study area is located in the subtropical monsoon climate zone, summer is hot and rainy,
winter is mild and slightly rainy, the annual average temperature is 14 ◦C, the annual
average rainfall is between 1200 and 1500 mm, and the rainfall has seasonal differences
under the influence of the monsoon climate. The wet season is from May to August, the dry
season is from November to February, and the normal season is March, April, September,
and October.

 

Figure 1. Overview map of the study area ((a) is the chronostratigraphic diagram and sampling
points distribution of the study area; (b) is the DEM of the study area; (c) is the reservoir and dam;
(d) is the land use types map).
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The terrain and geomorphology of the study area are complex and belong to the
middle-low mountain valley landform of tectonic dissolution and erosion. The geological
structure pattern is controlled by the Yanshan movement, and anticlines, synclines, and
compressive faults are formed. As shown in Figure 1, the main outcrops are the Permian
Dalong Formation (P3d), Longtan Formation (P3l), Maokou Formation (P2m), Triassic
Yongningzhen Formation (T1yn), Yelang Formation (T1y), and Guanling Formation (T2g).
The stratigraphic lithology is carbonate rocks such as limestone and dolomite and clastic
rocks such as sandy mudstone, shale intercalated marl, and coal. The main land-use types
in the study area were cultivated land and forestland, followed by grassland, construction
land, and unused land. Affected by regional lithology and crop cultivation habits, the main
soil types are yellow-brown soil, lime soil, and yellow soil, in addition to a small amount
of paddy soil. The main crops are rice, corn, and potato. The main fertilizers used in the
region are ammonium-based N fertilizer (urea), nitrogen–phosphorus compound fertilizer,
and animal manure; the applied pesticides mainly include insecticides and rust removers,
which pose the risk of agricultural nonpoint source pollution.

2.2. Sample Collection and Analysis

In accordance with the sampling conditions of the study area and Technical Provisions
for the Design of Water Quality Sampling Schemes (HJ495-2009), sampling points NYR,
SGR, ZWR, BSR, and HJR were set up in the upper reaches of the five rivers, and sampling
points S1, S2, S3, S4, and S5 were set up at the intersection of the rivers and reservoir areas.
Three sampling points (S6, S7, and S8) were set up in the reservoir area, and one sampling
point was set up at the outlet of the dam (BQ) (Figure 1), for a total of 14 sampling points.
Water samples were collected from the study area in November 2020 and January and
July 2021, representing the normal, dry, and wet periods, respectively. Water pH, water
temperature (WT), electrical conductivity (EC), and dissolved oxygen (DO) were measured
in the field by a WTW Multi3430 portable multiparameter water quality analyzer with an
accuracy of 0.001 pH unit, 0.01 ◦C, 1 μs/cm, and 0.01 mg/L, respectively. The concentrations
of HCO3

− and Ca2+ were titrated onsite using an alkalinity kit and calcium kit (Merck,
Germany) with accuracies of 0.1 mmol/L and 2 mg/L, respectively. The collected water
samples were filtered through a 0.45-μm filter membrane and loaded into polyethylene
sampling bottles that had been precleaned with deionized water. Concentrated nitric
acid was added to the water samples to pH < 2 for determination of cation concentration,
and 2 drops of HgCl2 were added to the water sample to inhibit microbial activity for
determination of dissolved inorganic carbon isotope (δ13CDIC).

Anions, cations, and δ13CDIC were measured at the State Key Laboratory of Envi-
ronmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, and
δ15N-NO3

− and δ18O-NO3
− were measured at the Analysis and Testing Center of the Third

Institute of Oceanography, Ministry of Natural Resources. The concentration of cations
(K+, Na+, Mg2+) was determined by Inductively Coupled Plasma-Emission Spectrometer
(VISTA MPX, Varian, USA), and the concentration of anions (NO3

−, Cl−, SO4
2−) was

determined by ion chromatography (ICS90, Dionex, Sunnyvale, CA, USA). The limit of
detection was 0.01 mmol/L. The method for the determination of water body δ13CDIC
was to add 100% pure phosphoric acid into the injection bottle (vacuumized) and injec-
tion high purity helium gas, then inject 20 mL water sample into the injection bottle with
a syringe, and heat it in a 60 ◦C water bath beaker. The CO2 produced by the reaction was
separated by a cold trap and then loaded with helium into a Finnigan MAT253 gas isotope
mass spectrometer for determination. The bacterial denitrification method was used for the
determination of δ15N-NO3

− and δ18O-NO3
−. Denitrifying bacteria (ATCC 13985, DSM

6698) without nitrous oxide reductase activity were used to terminate the reaction after
reducing NO3

− to N2O, thus obtaining nitrogen and oxygen in N2O from the NO3
− in the

sample [28,29]. A GasBench continuous flow gas introduction instrument and MAT 253
stable isotope ratio mass spectrometer were used to determine the δ15N and δ18O contents
in N2O. To ensure the accuracy of the obtained measurements, reference materials USGS34
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(δ15N = −1.8%, δ18O = −27.9%), USGS32 (δ15N = +180%, δ18O = +25.7%), and IAEA-NO3
were used. The test accuracy of δ13CDIC was 0.2%, and the result is reported as parts pel
mil (%) relative to the Vienna PDB reference standard. The test accuracy of δ15N-NO3

−
and δ18O-NO3

− was 0.3%. Atmospheric nitrogen (N2) and Vienna standard mean seawater
(V-SMOW) were used as references for the δ15N and δ18O results, respectively.

2.3. Flux Calculation

HCO3
− and NO3

− flux was calculated from the total water flow multiplied by the
concentration of HCO3

− and NO3
− [30]. Flux is calculated using the equation:

f luxC/N = conC/N × Q (1)

where fluxC/N refers to annual HCO3
− and NO3

− flux (t·a−1), conC/N is the concentration of
HCO3

− and NO3
− (mg/L), and Q refers to the water discharge in unit time (m3·a−1).

3. Results

3.1. Physicochemical Indices and Hydrochemical Characteristics of Water

The physicochemical indices of the water body of Pingzhai Reservoir and its inflow
river showed seasonal changes (Table 1). The water temperature ranged from 9.15 ◦C to
26.65 ◦C, with an average temperature of 16.92 ◦C. The pH value of water ranged from
7.89 to 10.67, with an average value of 8.69, generally showing the characteristics of weakly
alkaline water. The EC of the water body varied greatly (196–578 μs/cm) and showed
the temporal pattern dry season > normal season > wet season. In terms of the water DO
concentration, the annual variation ranged from 6.39 to 11.51 mg/L, with an average of
8.5 mg/L. The water body was generally in an aerobic state, which was conducive to the
occurrence of nitrification, and temporally, DO was the highest in the wet season and the
lowest in the dry season.

Table 1. Main hydrochemical parameters of water bodies in different seasons.

Index
Normal Season Dry Season Wet Season

River Reservoir Dam River Reservoir Dam River Reservoir Dam

WT (◦C) 15.3 ± 0.9 17 ± 0.3 16.9 11.3 ± 0.9 11.4 ± 0.7 12.9 19.7 ± 0.3 25.1 ± 0.7 21.7
pH 8.3 ± 0.2 8.8 ± 0.1 8.1 8.4 ± 0.3 8.5 ± 0.1 8.6 9.6 ± 0.9 8.9 ± 0.1 7.9

EC (μs/cm) 392.6 ± 2.1 328.9 ± 1.5 390 335.2 ± 2.1 421.1 ± 1.5 434 316.6 ± 0.7 312.6 ± 0.6 421
DO (mg/L) 8.4 ± 0.2 8.7 ± 0.3 7.3 9.2 ± 0.5 6.7 ± 0.2 8.5 7.8 ± 0.2 10.4 ± 0.8 7.8

Ca2+ (mg/L) 48.6 ± 0.9 49.1 ± 0.6 55.2 61.1 ± 0.9 61.3 ± 0.8 69.9 52.1 ± 0.5 36.8 ± 0.3 78.3
Na+ (mg/L) 23.9 ± 0.8 10.7 ± 0.3 12.1 34.4 ± 1.3 13.9 ± 0.3 19.6 5.6 ± 0.5 13.6 ± 0.1 3.3

Mg2+ (mg/L) 5.2 ± 0.9 5.7 ± 0.7 6.9 6.2 ± 0.5 6.6 ± 0.3 7.4 4.1 ± 0.4 6.9 ± 0.1 6.4
K+ (mg/L) 2.2 ± 0.6 2.0 ± 0.2 2.4 2.1 ± 0.8 2.2 ± 0.7 2.1 3.2 ± 0.6 3.4 ± 0.4 3.0

HCO3− (mg/L) 165.3 ± 3.3 133.8 ± 0.8 186.1 169.6 ± 1.7 160.1 ± 0.6 164.7 126.3 ± 1.3 91.5 ± 0.9 192.1
NO3− (mg/L) 9.6 ± 0.8 11.6 ± 0.7 13.6 10.6 ± 0.4 12.6 ± 0.1 15.2 12.4 ± 0.8 9.8 ± 0.7 17.5
Cl− (mg/L) 5.4 ± 0.7 4.5 ± 0.5 5.8 8.9 ± 0.9 6.1 ± 0.5 10.9 3.9 ± 1.1 9.1 ± 0.9 5.6

SO4
2− (mg/L) 70.5 ± 0.8 49.5 ± 0.3 60.8 75.9 ± 0.7 59.1 ± 0.3 70.6 39.6 ± 1.8 57.9 ± 0.9 27.7

δ13CDIC (%) −12.3 ± 0.8 −9.8 ± 0.6 −11.5 −10.9 ± 0.5 −9.9 ± 0.3 −12.7 −12.7 ± 0.6 −5.3 ± 0.4 −13.0
δ15N-NO3

− (%) 2.2 ± 0.5 1.4 ± 0.7 2.3 14.4 ± 0.7 15.9 ± 0.6 14.0 5.4 ± 0.8 7.3 ± 0.6 4.3
δ18O-NO3

− (%) 5.1 ± 0.6 3.0 ± 0.9 4.1 0.9 ± 0.7 2.5 ± 0.1 0.5 20.8 ± 0.3 21.8 ± 0.2 22.0

Note: mean ± standard deviation (SD).

The total cationic equivalent concentration (TZ+ = 2Ca2+ + 2Mg2+ + K+ + Na+)
in the Pingzhai Reservoir and its inflow rivers ranged from 1.92 to 14.40 meq/L, with
an average value of 8.16 meq/L. The total anion equivalent concentration
(TZ− = HCO3

− + NO3
− + Cl− + 2SO4

2−) ranged from 1.97 to 10.24 meq/L, with an av-
erage value of 6.10 meq/L. Taking the river and reservoir area together, the total cationic
equivalent concentration of river water ranged from 3.41 to 14.39 meq/L, with an average
of 8.91 meq/L. The total anion equivalent concentration ranged from 2.37 to 10.57 meq/L,
with an average of 6.47 meq/L. The total equivalent concentrations of cations and anions
in the reservoir were 1.97–9.45 meq/L and 3.24–6.01 meq/L, with averages of 5.71 meq/L
and 4.63 meq/L, respectively. The Piper diagram can directly reflect the composition char-
acteristics of the main ions in water (Figure 2). The predominant cations in the Pingzhai
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Reservoir were Ca2+ and Na+, whose contents accounted for 68% and 21% of the total
cations, respectively. The dominant anions were HCO3

− and SO4
2−, which accounted for

65% and 27% of the total anions, respectively. According to the Shukalev classification, the
hydrochemical type in the study area was the HCO3-Ca type.

Figure 2. Piper diagram of hydrochemical types in the Pingzhai Reservoir basin.

3.2. Characteristics of DIC and δ13CDIC in the Pingzhai Reservoir

Influenced by the dissolution of carbonate rocks, the water in the study area is weakly
alkaline, under which condition HCO3

− is the main form of DIC [31]. In this study,
HCO3

− is used to represent the concentration of DIC in the water. The variation in
HCO3

− concentration in the Pingzhai Reservoir and inflow rivers ranged from 1.30 to
3.45 mmol/L, with an average of 2.32 mmol/L. The average concentrations of HCO3

− in
river, reservoir, and outlet water were 2.52 mmol/L, 2.11 mmol/L, and 2.97 mmol/L, respec-
tively. The seasonal variation was as follows: dry season (2.69 mmol/L) > normal season
(2.44 mmol/L) > wet season (1.82 mmol/L). The average annual flows of the NYR, SGR,
and ZWR were 1.35 × 109 m3·a−1, 5.89 × 108 m3·a−1, and 5.22 × 108 m3·a−1, respectively.
Flow data from BSR and HJR are lacking. According to Equation (1), combined with the
HCO3

− concentration at the monitoring section, it can be calculated that the HCO3
− fluxes

of NYR, SGR, and ZWR were 2580.25 t·a−1, 700.62 t·a−1, and 722.52 t·a−1, respectively.
The δ13CDIC value ranged from −3.1 to −18.4%, with an average value of −9.9%, and
the average δ13CDIC values in river, reservoir, and outlet water were −12.0%, −8.3%, and
−12.4%, respectively. In terms of time, the δ13CDIC value was negative in the wet season
and positive in the dry season. There was no correlation between HCO3

− and δ13CDIC in
the normal and dry periods except for a negative correlation between HCO3

− and δ13CDIC
in the wet season (r = −0.692, p < 0.01). This is due to the strong photosynthesis during
the wet season. Phytoplankton absorb the DIC in water and fractionate δ13CDIC, resulting
in a decrease in HCO3

− concentration and an increase in the δ13CDIC value. Due to the
influence of the dam, stable stratification is formed in the water body due to temperature
differences in summer, which blocks the material exchange between the surface water body
and the deep-water body. However, with the disappearance of stable stratification of water
temperature in the normal and dry periods, the high concentration of HCO3

− at the bottom
diffuses to the surface water with water turnover and internal circulation, resulting in
a high concentration of HCO3

− in the surface water.
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3.3. Characteristics of NO3
−, δ15N-NO3

−, and δ18O-NO3
− in the Pingzhai Reservoir

The variation in the NO3
− concentration in the Pingzhai Reservoir ranged from

1.92 to 17.47 mg/L, with an average of 11.46 mg/L, and the time variation was wet season
(12.68 mg/L) > dry season (12.09 mg/L) > normal season (11.02 mg/L). The average
NO3

− concentrations in the river, reservoir area, and outlet were 11.33 mg/L, 10.68 mg/L,
and 15.4 mg/L, respectively. According to the average annual flow and concentration of
NO3

−, the NO3
− fluxes of the NYR, SGR, and ZWR points were calculated as 210.74 t·a−1,

25.33 t·a−1, and 54.76 t·a−1, respectively. The δ15N-NO3
− values in the dry season ranged

from 13.0 to 17.1%, and the δ15N-NO3
− values in the wet and normal seasons ranged from

3.4 to 8.3% and 0.4 to 2.9%, respectively. This seasonal variation indicates different nitrate
sources. The δ18O-NO3

− value was the highest in the wet season, intermediate in the
normal season, and the lowest in the dry season.

4. Discussion

4.1. Spatial Variation and Influencing Factors of Dissolved Inorganic Carbon and Nitrate

Subject to different environmental factors, carbon and nitrogen elements and isotopes
will show different spatial and temporal changes (Figure 3). Compared with the reservoir
area, the δ13CDIC value of the river is more negative, and the DIC concentration is higher,
which is due to the large proportion of farmland and woodland in the river flow area. The
proportion of cultivated land area in the Baishui and Hujia River Basins is more than 50%,
and the proportion of woodland area in the Shuigong River Basin is nearly half [24]. The
δ13CDIC value of the water body inherits the δ13CDIC value of vegetation and soil CO2.
The amount of soil CO2 produced by plant root respiration into the water body increased,
which led to a negative δ13CDIC value and an increase in DIC concentration. In addition,
the Narong and Zhangwei Rivers flow through cities and towns, and human activities
(industrial production and agricultural cultivation) discharge sewage with negative δ13CDIC
values into the river, which will also cause a negative δ13CDIC value in river water [32].

Compared with the reservoir area, the δ13CDIC value at the outlet of the reservoir was
negative, and the DIC concentration was higher. The spatial variation in δ13CDIC values
was negative in the river, positive in the reservoir area, and negative in the outlet. The DIC
concentration first increased, then decreased, and then increased again. Yuan et al. (2021)
studied DIC concentration and δ13CDIC in cascade reservoirs of the Yunnan section of the
Lancang River and found that the DIC concentration was high in the river, low in the
reservoir, and high at the outlet during the wet and dry seasons, and the δ13CDIC value
first showed an increasing and then decreasing trend [4]. In the karst area of Southwest
China, the DIC concentration of the Hongjiadu Reservoir in the Wujiang River Basin is
higher at the outlet than in the river and reservoir area, and the δ13CDIC value is negative
in the river, positive in the reservoir area, and negative at the outlet. The DIC concentration
in the rainy season is lower than that in the dry season, and the δ13CDIC value in the
rainy season is higher than that in the dry season [33]. All of these parameters showed
the same change trend in the Pingzhai Reservoir basin, which was due to the following:
Under the influence of the subtropical monsoon climate, the rainfall in the study area is
mostly concentrated in spring and summer, the increase in rainfall leads to an increase in
runoff into the reservoir, and the DIC concentration decreases due to the influence of water
dilution. Generally, photosynthesis on the water surface is relatively active, and aquatic
phytoplankton will produce approximately 18–20% isotope fractionation while absorbing
CO2 through photosynthesis [34]. Therefore, the DIC concentration of surface water in
the reservoir area is low, and the δ13CDIC value is positive, while the photosynthesis of
the bottom water is weak, and the degradation of organic matter at the water–sediment
interface produces CO2 with poor 13C, which increases the DIC concentration and causes
the δ13CDIC value to be negative. As a result, the DIC value of the lower water is higher
than that of the upper water, and the δ13CDIC value of the lower water is lower than that
of the upper water. The discharge mode of the Pingzhai Reservoir is bottom discharge, so
bottom water with high DIC concentrations and low δ13CDIC values is injected downstream.
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There are also relevant studies that show that the DIC concentration in the water body is
lower in the rainy season than in the dry season, and the δ13CDIC value in the rainy season
is also lower than that in the dry season, which may be related to the water nutrient level,
reservoir operation mode, vegetation cover conditions, and tributary inflow [4,35,36].

Figure 3. Variations of δ13CDIC and DIC, δ15N-NO3
−, δ18O-NO3

−, and NO3
− along the course of

water bodies in different seasons ((a) is the variation characteristic of δ13CDIC; (b) is the variation
characteristic of DIC; (c) is the variation characteristic of δ15N, δ18O; (d) is the variation characteristic
of NO3

−).

The concentration of NO3
− has a more direct impact on the deterioration of water

quality. In the river section, the concentration of nitrate in the Nayong and Hujia Rivers was
higher, which is a consequence of the discharge of domestic sewage and livestock breed-
ing wastewater increasing the concentration of nitrate in the water body. The Shuigong
River sampling site, which was not surrounded by residential and cultivated land, was
minimally affected by anthropogenic activities and therefore had the lowest nitrate con-
centration. In the reservoir area, the water was fully mixed, and the nitrate concentration
differed little among the sampling points in different seasons. Similar to the distribution
of the NO3

− concentration, the δ15N-NO3
− and δ18O-NO3

− values also showed large
differences in the river section and small differences in the reservoir section. It is mainly
affected by crop cultivation and fertilization, domestic sewage discharge, and other fac-
tors. Fadhullah et al. (2020) used nitrate nitrogen and oxygen isotopes to study the source
of nitrate in the Bukit Merah Reservoir in Southeast Asia and found that industrial and
mining production and agricultural expansion in the upstream river disturbed the value of
nitrate nitrogen and oxygen isotopes in the river water. The nitrogen and oxygen isotopes
in the reservoir area indicated that the nitrate concentration is affected by atmospheric
deposition [37]. Studies on nitrate isotopes in Chaohu Lake and its rivers showed that
nitrification of soil organic nitrogen and soil erosion caused changes in nitrate isotopes [38].

4.2. Sources of Dissolved Inorganic Carbon and Nitrate

The DIC concentration and δ13CDIC value in water record and reflect the geochemical
behavior and cycling characteristics of carbon. Because carbon is affected by many factors
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in the cycling process and different sources of carbon have different isotopic values, the
δ13CDIC value can be used to trace the source of DIC. Related studies have shown that
DIC in natural water mainly comes from atmospheric CO2 (including CO2 in atmospheric
precipitation), dissolution of carbonate rock, and biogenic CO2 (plant root respiration and
organic matter decomposition) dissolution in water [38,39]. The study area is located in
the acid rain region of Southwest China, the pH value of rainwater is weakly acidic, the
DIC concentration is low [40], and the partial pressure of water CO2 (pCO2) in the region is
higher than that of atmospheric CO2 [23,35]. The influence of atmospheric precipitation
and atmospheric CO2 on DIC and δ13CDIC values is not considerable. Therefore, the DIC
in water is mainly derived from the weathering of carbonate rocks and the oxidative
decomposition of organic matter.

The sources of nitrate in aquatic ecosystems mainly include atmospheric deposition,
soil organic nitrogen, chemical fertilizer, domestic sewage, and livestock manure. Atmo-
spheric deposition of δ15N-NO3

− ranges from −8% to +15%, and of δ18O-NO3
− ranges

from +60% to +95%. The nitrogen and oxygen isotope values of nitrate fertilizer range from
−5% to +5% and +17% to +25%, respectively. The nitrogen and oxygen isotopes of nitrate
produced by fertilizer and deposition of NH4

+, soil organic nitrogen, sewage, and livestock
manure range from −10% to +25% and −10% to +10%, respectively [41–44]. Combined
with the δ15N-NO3

− and δ18O-NO3
− values of the water body in the study area, various

nitrate sources could be determined (Figure 4). During the normal season, δ15N-NO3
−

and δ18O-NO3
− were distributed in soil organic nitrogen and ammonium fertilizer end-

members, indicating that nitrification of soil organic nitrogen and ammonium fertilizer
was the main source of nitrate in water. In the dry season, δ15N-NO3

− and δ18O-NO3
−

are distributed in domestic sewage endmembers and livestock manure, and δ15N-NO3
−

is higher. Ren et al. (2021) found that the δ15N value of some points was higher in
a study of groundwater in the Zhaotong Basin, Yunnan Province [8]. Lin et al. (2019) also
found a similar phenomenon in a study of the Illinois River in Chicago, USA [45]. This is
because the volatilization of NH4

+ in sewage releases a large amount of lighter isotopes,
making the remaining NO3

− enriched in heavy δ15N. The δ15N-NO3
− and δ18O-NO3

−
were distributed in the nitrate fertilizer endmembers during the wet season. It may be that
inorganic nitrogen from the oxidation and decomposition of nitrate fertilizer enters the
water with surface runoff. In general, agricultural activities (ammonium fertilizer, nitrate
fertilizer, soil organic nitrogen, livestock manure, and sewage) were important sources
of nitrate in the Pingzhai Reservoir. Chemical fertilizers (ammonium fertilizer, nitrate
fertilizer) can improve soil fertility and increase crop yield. From 1997 to 2005, the amount
of chemical fertilizer applied in China increased from 7.07 million tons to 26.21 million
tons [46]. However, the irrational use of chemical fertilizers and the lack of farmland
management often lead to nitrogen loss and nitrate pollution. Due to the periodic storage
and discharge of the reservoir, a water-level fluctuation zone will form around the reservoir,
and the water-level fluctuation zone is also the area where agricultural nonpoint source
pollution and soil erosion often occur [47]. According to Han et al. (2016), the amount of
soil erosion in the Yangtze River basin and Wujiang River basin reached 1.4 × 1010 t/a
and 1.2 × 109 t/a in 2014, respectively [48]. Soil erosion in the water-level fluctuation
zone will transport a large amount of nutrients and soil organic nitrogen to rivers and
reservoirs. This part of the lost N will be converted into nitric acid through nitrification
and will participate in the geochemical cycle, which will affect the chemical composition of
rivers and reservoirs, especially the concentrations of Ca2+ and HCO3

− [16]. Nitric acid
participates in the dissolution of carbonate rocks and directly or indirectly releases CO2
into the atmosphere, and these anthropogenic carbon source emissions offset part of the
natural carbon sink in the natural process [20]. Therefore, it is necessary to consider the
impact of external acid input on the weathering of carbonate rocks in the basin.
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Figure 4. Distribution characteristics of δ15N-NO3
− and δ18O-NO3

− in water. The isotopic values of
various nitrate sources are based on Kendall et al. (2007) [44].

4.3. Weathering of Carbonate Rocks and C–N Coupling Relationship in the Pingzhai
Reservoir Basin

The average δ13CDIC of CO2 produced by root respiration of C3 vegetation is −27%
because the migration and diffusion of CO2 in the soil layer will produce approximately 4%
isotope fractionation, so the δ13CDIC value of soil CO2 produced by plant respiration and
organic matter oxidation decomposition is approximately −23%, and the δ13CDIC value
of marine carbonate rocks in karst areas is 0% [49–51]. According to the stoichiometric
relationships of carbonate rock dissolution, with the participation of carbonic acid (H2CO3),
2 mol HCO3

− will be produced in the process of carbonate rock dissolution, of which 1 mol
is derived from atmospheric/soil CO2 in the watershed and 1 mol from carbonate rocks
(Equation (2)) [52].

Ca(1−x)MgxCO3 + CO2 + H2O = (1 − x)Ca2+ + xMg2+ + 2HCO−
3 (2)

In the process of carbonate rock dissolution by carbonic acid, carbon isotopes will
produce +9% fractionation, so the water body δ13CDIC theoretical value is approximately
−14% [53]. The variation in δ13CDIC in the Pingzhai Reservoir water ranges from −3.13%
to −18.42%, with an average of −9.92%. Compared with the theoretical value, the δ13CDIC
actual value of the water body is more positive, which indicates that in addition to carbonic
acid, there are other sources of acid, such as nitric acid from human activities, which
contribute to the dissolution of carbonate rocks in the basin (Equation (3)). In addition, the
[Ca2+ + Mg2+]/[HCO3

−] equivalent ratios in the water samples in the study area were all
greater than 1 (1.37 on average), and the results indicate that Ca2+ and Mg2+ in the water
sample are surplus relative to HCO3

−, that is, Ca2+ and Mg2+ have additional sources [54].
In addition to the carbonate rocks dissolved by H2CO3 and HNO3, the weathering and
dissolution of silicate rocks in the watershed can also produce Ca2+, Mg2+, and HCO3

−
ions (Equations (4) and (5)).

Ca(1−x)MgxCO3 + HNO3 = (1 − x)Ca2+ + xMg2+ + NO−
3 + HCO−

3 (3)

CaxMg(1−x)Al2Si2O8 + 2H2CO3 + 2H2O = xCa2+ + (1 − x)Mg2+ + 2HCO−
3 + 2SiO2 + 2Al(OH)3 (4)

NaxK(1−x)Al2Si2O8 + H2CO3 + H2O = xNa+ + (1 − x)K+ + HCO−
3 + 3SiO2 + Al(OH)3 (5)
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According to the dissolution equation of silicate rock, the Ca2+, Mg2+, and HCO3
−

produced by the dissolution of silicate rock by carbonic acid are calculated according to one-
fifth and one-half of the molar concentration of SiO4, respectively [11]. The contributions of
silicate weathering to Ca2+, Mg2+, and HCO3

− in the Pingzhai Reservoir basin ranged from
0.97% to 2.79% and 2.43% to 6.98%, with average values of 1.23% and 3.07%, respectively,
accounting for a small proportion. This indicates that the weathering of carbonate rocks
is the main process controlling the material composition and geochemical cycle of water
bodies in the basin.

To show that nitric acid is indeed involved in the weathering of carbonate rocks
in the basin, the ratio relationship between [Ca2+ + Mg2+]/[HCO3

−] and δ13CDIC was
established based on the ion and carbon isotope data in water samples. According to
Figure 5, most of the sampled data fall between the endmembers of H2CO3 and HNO3
dissolved carbonate rocks. This shows that H2CO3 and HNO3 are jointly involved in the
dissolution of carbonate rocks in the basin and have an impact on the value of carbon and
nitrogen elements and ion concentration in the water body [51].

Figure 5. The relationship between [Ca2+ + Mg2+]/[HCO3
−] and δ13CDIC in different seasons.

In addition to carbonate rock dissolution by carbonic acid, nitric acid produced by
nitrification in agricultural activities also participates in carbonate rock dissolution. As-
suming that carbonic acid and nitric acid participate in the dissolution process with equal
molar ratios, the C–N coupling formula of carbonate rock dissolution can be obtained from
Equation (6):

(a + b)CaxMg(1−x)CO3 + aH2CO3 + bHNO3 = (a + b)xCa2+ + (a + b)(1 − x)Mg2+ + bNO−
3 + (2a + b)HCO−

3 (6)

where a and b represent the coefficients of H2CO3 and HNO3 involved in the dissolution of
carbonate rocks, respectively.

According to Equation (6), the molar ratio of (Ca2+ + Mg2+)/HCO3
− in water should

be 2/3 (0.67), and the molar ratio of (Ca2+ + Mg2+)/HCO3
− in the water sample of the

Pingzhai Reservoir basin was 0.17–0.98, with an average of 0.60. This indicates that the
dissolution of carbonate rocks in the study area is controlled by C–N coupling, but H2CO3
and HNO3 dissolve carbonate rocks according to the molar ratio of 1:1. Therefore, the
amount of (Ca2+ + Mg2+) and HCO3

− released by HNO3 dissolved carbonate rocks can
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be calculated according to the C–N coupling equation. The calculation results show that
the proportion of HCO3

− produced by HNO3 dissolving carbonate rocks ranges from
1.50% to 13.35%, with an average of 8.38% (Table 2). The proportion of (Ca2+ + Mg2+)
ranges from 4.04% to 12.06%, with an average of 7.84%. Among the different periods,
the proportion of HCO3

− and (Ca2+ + Mg2+) produced by HNO3 dissolution during the
wet season is the highest, with average values of 10.32% and 9.90%, respectively. The
proportion in the dry season is the lowest, with averages of 7.29% and 5.21%, respectively.
The average values in the normal season are 7.54% and 8.42%, respectively. This is because
dam construction slows down or even stops the water flow, and the abundant water
volume and appropriate temperature in the wet season make the water-rock interaction
more complete. In addition, the amount of NO3

− fertilizer from agricultural activities
increased during the wet season, which combined with H+ to generate HNO3 to participate
in the dissolution of carbonate rocks.

Table 2. The ratio of HCO3
− and (Ca2+ + Mg2+) produced by HNO3 dissolution of carbonate rocks

and the measured and theoretical values of δ13CDIC.

Indexes
HCO3

−-HNO3

(%)
(Ca2+ + Mg2+)-HNO3

(%)
δ13CDIC% (Measured Value) δ13CDIC% (Theoretical Value)

Normal season
River 5.82 ± 0.5 7.78 ± 0.4 −12.31 ± 0.4 −13.46 ± 0.2

Reservoir 8.64 ± 0.3 8.87 ± 0.2 −9.77 ± 0.2 −13.06 ± 0.1
Dam 7.31 8.02 −11.48 −13.25

Dry season
River 6.00 ± 0.7 5.02 ± 0.6 −10.95 ± 0.5 −13.43 ± 0.4

Reservoir 7.85 ± 0.5 5.26 ± 0.5 −9.85 ± 0.3 −13.17 ± 0.1
Dam 9.18 5.83 −12.74 −12.98

Wet season
River 9.66 ± 1.3 9.16 ± 0.5 −12.73 ± 0.5 −12.92 ± 0.3

Reservoir 10.89 ± 0.6 10.88 ± 0.3 −5.32 ± 0.3 −12.75 ± 0.2
Dam 9.03 5.74 −13.02 −13.01

Note: mean ± standard deviation (SD).

The δ13CDIC produced by carbonate rocks dissolved by carbonic acid is approximately
−14%, and the HCO3

− produced by carbonic acid-dissolved silicate rocks is all from soil
CO2, so the δ13CDIC is approximately −23%. Carbonate rocks dissolved by nitric acid do
not consume soil or atmospheric CO2, and all the HCO3

− produced comes from carbonate
rocks, so the δ13CDIC is approximately −0% [23,40,55]. The theoretical value of δ13CDIC in
the Pingzhai Reservoir basin can be estimated by Equation (7):

δ13CDIC−T = fccδ13Ccc + fcsδ13Ccs + fncδ13Cnc (7)

where δ13CDIC-T represents the theoretical value of δ13CDIC in water; fcc, fcs, and fnc represent
the contribution proportions of carbonate rock dissolved by carbonic acid, silicate rock
dissolved by carbonic acid, and carbonate rock dissolved by nitric acid to HCO3

− in
water, respectively; δ13Ccc, δ13Ccs, and δ13Cnc represent the values of δ13CDIC generated
by carbonate rock dissolved by carbonic acid, silicate rock dissolved by carbonic acid,
and carbonate rock dissolved by nitric acid, respectively. The calculated results show
that δ13CDIC-T ranges from −14.06% to −12.72%, with an average value of −13.10%. The
measured δ13CDIC ranges from −3.13% to −18.42%, with an average value of −9.32%. The
measured δ13CDIC values in river and reservoir areas are more positive than the theoretical
values in different periods, and the reservoir area is the most positive during the wet season.
This is because the water flow in the reservoir area is slow and receives more light, and the
photosynthesis of aquatic organisms absorbs DIC and causes isotope fractionation, making
the water body δ13CDIC value positive [56]. Compared with the river, the proportion of
HCO3

− and (Ca2+ + Mg2+) produced by the dissolution of carbonate rocks by nitric acid in
the reservoir water is larger, which reflects that dam construction promotes the water-rock
interaction and the retention of ionic substances.

As mentioned above, carbonate rock dissolved by carbonic acid in karst systems
consumes atmospheric/soil CO2 to form HCO3

−, one part of which is used by aquatic
organisms [26,57], and the other part enters the ocean with rivers for sedimentation. In
addition to carbonic acid, nitric acid is also involved in the dissolution of carbonate rocks
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in the Pingzhai Reservoir. Nitrogen from chemical fertilizers (ammonium fertilizer and
nitrate fertilizer), soil organic nitrogen, sewage, and livestock manure is lost and converted
to HNO3 (Figure 6). As a result, the concentration of HNO3 in the water increases, and the
carbonate rocks are dissolved by both carbonic and nitric acids. In this study, the average
proportions of HCO3

− and (Ca2+ + Mg2+) produced by HNO3-dissolved carbonate rocks
were 8.38% and 7.84%, respectively. However, this part of HCO3

− does not come from
atmospheric/soil CO2 but rather from carbonate rocks and does not constitute a carbon
sink. Therefore, the environmental effect of C–N coupling not only causes water nitrate
pollution but also reduces carbon sinks.

 

Figure 6. The C-N coupling cycle in the karst zone (adapted from Hu et al., 2017 [58]).

5. Conclusions

By monitoring the hydrochemistry and δ13CDIC, δ15N-NO3
−, and δ18O-NO3

− in the
Pingzhai Reservoir and its inflow rivers, we analyzed the temporal and spatial variation
in water chemistry and carbon and nitrogen isotopes, explored the source of carbon and
nitrogen elements in water, and analyzed the C–N coupling in water. The results show that
the dominant cation in the water of the Pingzhai Reservoir is Ca2+, which accounts for 68%
of the total cations. The dominant anion is HCO3

−, accounting for 65% of the total anions.
The hydrochemical type was HCO3-Ca. Dissolved inorganic carbon, nitrate, and their
isotopes have different spatial and temporal variations. From the river to the reservoir area
and then to the outlet, the concentration of HCO3

− increased first, then decreased, and then
increased again, while the δ13CDIC value was negative first, then positive, and then negative
again. The values of NO3

−, δ15N-NO3
−, and δ18O-NO3

− were different in each stage of
the river, which were mainly affected by dam construction and water storage, surrounding
land-use mode, crop cultivation and fertilization, domestic sewage discharge, and other
factors. According to the characteristics of carbon and nitrogen isotopes, the HCO3

− in
the water of the study area is mainly derived from the weathering of carbonate rocks and
the oxidative decomposition of organic matter. Nitrate mainly comes from agricultural
activities, including chemical fertilizer (ammonium fertilizer and nitrate fertilizer), soil
organic nitrogen, sewage, and livestock manure in the normal season, dry season, and wet
season. The input of nitrate caused the C–N coupling cycle of hydrogeochemistry in the
Pingzhai Reservoir basin and disturbed the water-rock interaction. The average proportions
of HCO3

− and (Ca2+ + Mg2+) produced by HNO3 dissolved carbonate rocks were 8.38%
and 7.84%, respectively, but this part does not constitute a carbon sink. The proportion of
HCO3

− and (Ca2+ + Mg2+) produced by the dissolution of carbonate rocks by HNO3 in
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reservoir water was relatively large. This reflects the full water-rock interaction and reten-
tion effect due to the construction of the dam. Therefore, successful fertilizer application
experience and farmland management practice should be learned, controlling nitrogen
input from agricultural activities. Using new technologies can increase the capacity of
domestic wastewater treatment and limit the discharge of sewage into rivers and reservoirs
and prevents soil organic nitrogen loss. In addition, a limitation of the study is that it is
lacking an analysis of the impact of geological conditions on the geochemical characteristics
of carbon and nitrogen elements. This will be addressed in subsequent studies.
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Abstract: Taking Yuxi City, a typical mountain-flatland in the southwestern karst mountainous area,
as an example, we used six remote sensing images from 1995 to 2018 as the main data sources, and the
grid scale was used to calculate the landscape pattern index in order to analyze the temporal-spatial
evolution characteristics of the landscape pattern. The results are shown as follows: (1) At the class
level, most landscape indices and fragmentation degrees of landscape units in the flatland area
are significantly higher than those in the mountainous area. The layout of construction land and
cultivated land is also more concentrated than that in the mountainous area, but the central tendency
of forest and grass in the mountainous area is more eye-catching. (2) At the landscape level, although
the landscape diversity index and landscape shape index of both the mountainous areas and the
flatland areas decrease in the low-value area and increase in the high-value area, the proportion of
high-value areas in the flatland area is noticeably greater. The proportion of the high-value areas
of the largest patch index in the mountainous area is significantly greater, and in the flatland area,
the low-value area continues to expand while the middle and high value areas continue to shrink.
(3) The landscape shape of the flatland area is becoming more complex, and the landscape units in
the mountainous area tend to be single. The natural landscape of forest and grass in the mountainous
area continues to expand and tends to be contiguous, while the man-made landscape in the flatland
area continually increases and shows fragmentation, reflecting the pattern characteristics formed by
the coupling evolution of land use between two regions. The urban expansion and the increase in the
construction land in the flatland area are mutually causal with the decrease in cultivated land and the
increase in forest and grass in the mountainous area.

Keywords: mountainous areas; flatland areas; grid scale; landscape pattern evolution; Yuxi City

1. Introduction

Due to the imbalance between social and economic development and the natural
ecological process [1], as well as the instability, sensitivity and complexity of the natural
system of the mountainous area itself, the mountainous area has become the most intense
region of global environmental change and ecological degradation in recent years [2], and
the conflicts between human and land have become more prominent and complex. In the
southwest of China, the terrain is fragmented and sensitive, and the generalized moun-
tain landscape is an important and unique natural—human geography unit composed of
“mountain” and “flatland” as the core elements [3,4], which is an important content of the
scientific research of human—land systems in mountainous areas. To fully guarantee the
ecological security and sustainable development of mountainous areas, it is necessary to
take land resources as the main constraint condition [5], coordinate the linkage relationship
between “mountain” and “flatland” in the whole region, and study the changes and correla-
tion of “mountain” and “flatland” elements in mountainous landscapes, in order to provide
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more scientific and accurate strategies for rural revitalization, mountain development,
spatial governance, as well as the maintenance and improvement of ecosystem services.

A landscape pattern mainly refers to the shape, proportion and spatial configuration of
the elements that constitute landscape units [6]. It is not only the comprehensive expression
of landscape heterogeneity in space [7,8], but also the result of various ecological processes
driven by natural and social factors at different scales [9,10]. Landscape pattern change
is the change in the landscape’s spatial structure on the basis of the changes in various
landscape elements, which are closely related to climate change, land use/land cover
change and change in biodiversity [11,12]. Understanding the evolutionary characteristics
of the landscape pattern is the premise and basis for landscape pattern analysis. The evolu-
tion of landscape pattern is a comprehensive reflection of the interaction and influence of
natural elements and human factors in a certain region, as well as the different external
characteristics and spatial combinations of various factors, which constantly affect the
ecological process and marginal effect [13]. Exploring the evolution process of a landscape
pattern is helpful for grasping the evolutionary characteristics and rules of the regional
landscape, and to provide basic data for the assessment of the sensitivity, vulnerability and
ecological risk of ecological degradation [14], which is the basis and important support for
decision-makers to formulate reasonable and scientific urban planning [15]. At present, the
analysis methods of landscape pattern evolution mainly include spatial statistical analysis,
landscape index analysis and pattern dynamic model simulation [16,17]. From the perspec-
tive of landscape ecology, landscape index analysis regards the study area as a whole and
reveals the changes in the landscape’s spatial pattern characteristics in time series through
various landscape indices [18]. Landscape indices include a patch level index, a patch type
level index and a landscape level index. As a scale of landscape pattern characteristics, the
landscape index has been widely used to analyze regional landscape patterns and dynamic
evolution [19,20], including urban [21], rural [22], urban fringe areas [23] and econom-
ically developed areas [24]. However, the landscape pattern evolution of two different
geographical units of “mountain” and “flatland” in the generalized mountain landscape is
rarely involved. There are great differences between the physical geographical conditions
and human and social activities in the mountainous area and flatland area. What are the
evolutionary differences in the landscape pattern on the spatial and temporal scale? Is there
a certain correlation between the evolution of the two on the space—time scale? All these
need to be explained by landscape pattern analysis.

In addition, the scaling effect of a landscape pattern is also a major feature of landscape
pattern analysis [25]. The results of landscape pattern evolution at different scales often
vary vigorously, and the landscape index will change with the scale and have a scale effect
at a finer scale [26]. Landscape pattern characteristics at different spatial scales are often
different, and at the same spatial scale, a landscape pattern at different time scales will also
be different [27]. The dynamic landscape characteristics of urban and rural construction
land show great differences in scale [28], and the landscape pattern of cultivated land in
the middle reaches of the Yangtze River has great differences in quantity, area, aggregation
degree and diversity at different scales [29]. Therefore, the small-scale and refined studies
on land use dynamic change and landscape pattern evolution at and below the county level
have attracted ever increasing attention [30,31]. Some scholars have used the grid scale
to carry out their research, and obtained more refined results compared with the scale of
watershed and administrative regions [32,33].

In addition to the low level intermountain basins, valleys and depressions, “flatlands”
in this study also include lacustrine plains which occupy a certain area in central Yun-
nan [4]. Yuxi City, with typical mountain—flatland landform features [34], is located in the
mountainous area of southwest China. The flatland area is flat, suitable for farming and
construction, and is an important carrier of human economic activities, while the natural
conditions in the mountainous area are complex and difficult to use [35–37]. Due to the
geographical connectivity of “mountains” and “flatlands”, the intercrossing of human
activities in different time and space has brought about the differences in the evolution of
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the landscape pattern on the spatial and temporal scale. Therefore, based on the grid scale
and with the help of a landscape pattern index, this paper analyzes the temporal—spatial
variation in mountain—flatland landscape patterns in Yuxi City, and discusses the correla-
tion between mountains and flatlands in the evolution process of landscape patterns, so as
to provide certain references for regional coordinated and sustainable development.

2. Materials and Methods

2.1. Study Area

Yuxi City is in the center of Yunnan Province on the southwest border of China,
between latitude 23◦19′~24◦53′ north and longitude 101◦16′~103◦09′ east (Figure 1a). It is a
prefecture-level city under the jurisdiction of Yunnan Province, bordering the provincial
capital Kunming City in the north, Honghe Prefecture in the southeast, Pu’er City in the
southwest and Chuxiong Prefecture in the northwest (Figure 1b). The terrain is high
in the northwest and low in the southeast, with staggered distribution of mountains,
canyons, plateaus, and basins. The west is mainly a deep-cut alpine valley landform. The
central and eastern regions belong to the mountains of central Yunnan Province, which
is dominated by a middle mountain; the terrain of most areas is undulating in the shape
of waves, and there are many intermountain basins of different sizes scattered among the
mountains. The eastern region is mainly dominated by plateau lake-basin landforms, with
three plateau faulted lakes, Fuxian Lake, Xingyun Lake and Qilu Lake. Around three lakes,
Chengjiang, Jiangchuan and Tonghai, lacustrine basins are formed, with flat and open
terrain in the basins.

Figure 1. Overview of study area. (a) the location of Yuxi City in China; (b) the elevation of Yuxi City;
(c) the landscape grid of mountainous areas and flatland areas.
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Yuxi City is located in the low-latitude Yunnan Plateau, with long hours of sunshine
and abundant heat. It belongs to the subtropical plateau monsoon climate. Due to the
great difference in elevation of the terrain, the three-dimensional climate is clear. Under
the comprehensive influence of the Indian Ocean and the Gulf of Tonkin, the climate in
most areas is mild, with distinct dry and wet seasons, no severe cold in winter and no
severe heat in summer. The annual average temperature is 15.4–24.2 ◦C, and the annual
precipitation is 787.8–1000 mm, which mostly occurs from June to October, with heavy rain
mainly from June to August. Due to the complex terrain and the great elevation difference,
the rainfall is heavier, and the temperature is lower in the mountainous area than in the
flatland area. From the top of the mountain to the bottom of the valley, the temperature
difference is significant throughout the year and between day and night.

2.2. Data Source and Processing

In this study, six Landsat satellite remote sensing images in 1995, 2000, 2005, 2010,
2015 and 2018 were downloaded from the geospatial Data Cloud website (www.gscloud.cn,
accessed on 10 June 2019), mainly including Landsat 5 TM images, Landsat 7 ETM+ images
and Landsat 8 OLI images. The selection of remote sensing images was based on the
premise of little cloud and good quality. Winter and spring were selected as the image
months, and the imaging times of the remote sensing images were all in January, February,
and March of each year. The cloud content (CC) of all images was less than 10%, and the
cloud content of most images was less than 1%. Based on the ArcGIS 10.8 software, the
maximum likelihood classification method was used to classify landscape units. Referring
to the standard of “Classification of Land Use Status” and combining with the research
needs of landscape patterns in Yuxi City, the landscape units were divided into five types:
cultivated land, forest and grass, construction land, water area and unused land (Figure 2).
Kappa coefficients are all above 80%, and the accuracy meets the research requirements.

Figure 2. Interpretation of landscape types in Yuxi City from 1995 to 2018. (a) 1995; (b) 2000; (c) 2005;
(d) 2010; (e) 2015; (f) 2018.
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Based on the terrain characteristics, area size and elevation of Yuxi City, 500 m ×
500 m, 1.5 km × 1.5 km and 3 km × 3 km grids were constructed as preselected evaluation
units. With the help of analysis tools such as ArcGIS 10.8 software Create Fishnet, Dissolve,
Clip and Merge, a total of 7570 grids with a size of 1.5 km × 1.5 km were finally determined.
Therefore, the equal space system sampling method was used to divide the study area
into 1.5 km × 1.5 km landscape plots, which were used as the basic unit for the study
of landscape pattern evolution. There were 1775 landscape plots in the flatland area and
5795 landscape plots in the mountainous area (Figure 1c). The raster maps of land use in
mountainous areas and flatland areas from 1995 to 2018 were cropped to obtain the raster
data of landscape units over the years at the grid scale for the subsequent calculation of the
landscape index. Based on the data of landscape units in each grid, the landscape index of
each grid was calculated by Fragstats 4.2 software (Oregon, USA).

2.3. Index Calculation

By referring to the relevant literature [38] and combining with the unique characteris-
tics of the mountain–flatland, landscape indices were selected respectively from the class
level and landscape level to characterize and analyze the landscape pattern of Yuxi City.
Plaque Density (PD), Edge Density (ED), Largest Plaque Index (LPI), and Mean Plaque
Area (Area_MN) were selected at the class level. At the landscape level, Landscape Shape
Index (LSI), Largest Patch Index (LPI) and Shannon Diversity Index (SHDI) were selected.
The calculation formula and ecological significance of each landscape index are shown in
the reference [23,39].

The Fragstats 4.2 software was used to calculate the landscape pattern index at the
class level first, and excel software was used for statistics and mapping analysis. The
landscape indices of each landscape plots in the mountainous area and the flatland area
in six periods was then calculated by using the processed raster data of landscape units
over the past years, and the spatial distribution maps of landscape indices were obtained.
Finally, this study divides each landscape index into five levels according to the natural
breakpoint method, which are represented by I, II, III, IV and V, respectively.

3. Measurement and Comparison of Landscape Pattern Change at Class Level

3.1. Variation Characteristics of Landscape Pattern at Class Level in Mountainous Areas

During the study period, at class level, the variation in the landscape index in the
mountainous area was significantly different (Figure 3). The PD and ED of cultivated
land increased first and then decreased at the turning point of 2000, and the trend of the
Area_MN was in an “S” shape, while the LPI continued to decline. The PD and ED of forest
and grass, water area and construction land increased first and then decreased, while the
Area_MN first decreased and then increased. The patches number and density of forest and
grass decreased and the Area_MN of construction land changed only slightly. The ED of
cultivated land, forest and grass was higher than that of the water area, construction land
and unused land. The LPI and the Area_MN of forest and grass were the largest, which
had a great influence on other landscape types.

3.2. Variation Characteristics of Landscape Pattern at Class Level in Flatland Areas

During the study period, the PD of cultivated land in the flatland area increased
continuously, the Area_MN decreased significantly, and the ED first increased and then
continued to decrease, but it always ranked in first place among all regions, while the LPI
continued to decline (Figure 4). As the first dominant type, forest and grass, the Area_MN
first decreased and then increased, the PD and ED first increased and then decreased, and
the LPI continued to decrease, indicating that the dominant position of large patches in
the landscape gradually decreased. The PD and ED of the water area first increased and
then decreased, and the degree of fragmentation gradually increased; the LPI changed little
during the study period, but the Area_MN showed a downward trend. The Area_MN of
construction land reached its lowest level in 2005, and then continued to rise with significant
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changes, while the LPI also increased significantly. However, the PD and ED first increased
and then decreased with 2005 as the turning point, suggesting that the distribution of
construction land was relatively scattered before 2005, but that after 2005, the construction
land patches gradually concentrated with contiguous distribution.

  

  

Figure 3. Landscape index at class level in mountainous areas of Yuxi City from 1995 to 2018. (a) Patch
Density (PD); (b) Edge Density (ED); (c) Mean plaque Area (Area_MN); (d) Largest Patch Index (LPI).

Combined with the implementation time of regional land management policies, the
changes in the landscape indices of cultivated land and forest and grass in mountainous
and flatland areas were mainly affected by the policy of returning cultivated land to forest
and grass during the study period. The overall fragmentation degree of construction land
and forest and grass in the flatland area is clearly higher than that in the mountainous area,
and the layout of the construction land is more concentrated. This is mainly because the
social and economic development level of the flatland area has improved rapidly since
2005, and the urban land has expanded significantly. However, due to the migration of
populations to the flatland area and for other reasons, the farmland in the mountainous
area was abandoned, while the forest and grass became more concentrated and contiguous.
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Figure 4. Landscape index at class level in flatland areas of Yuxi City from 1995 to 2018. (a) Patch
Density (PD); (b) Edge Density (ED); (c) Mean plaque Area (Area_MN); (d) Largest Patch Index (LPI).

4. Measurement and Comparison of Landscape Pattern Change at Landscape Level

4.1. Variation Characteristics of Landscape Pattern at Landscape Level in Mountainous Areas
4.1.1. Landscape Diversity

During the study period, the landscape diversity in the mountainous area showed ob-
vious phased characteristics, and the change during the period 1995–2005 was significantly
higher than that during the years 2005–2018. The proportion of the SHDI was the highest
in class II and III, the proportion of the low value area decreased, while the proportion of
the high value area increased (Figure 5a). The area where the SHDI increased was greater
than the area where the SHDI decreased in each period. From 1995 to 2018, the area where
the index increased accounted for 26.74% of the total, while the index reduction areas
accounted for 5.48%, indicating that the landscape diversity showed an increasing trend
year by year. The high value area of the landscape diversity index mainly concentrated in
the relatively low flat areas of the east and the north, where the main landscape units are
cultivated land, forest and grass, while the low value area is mainly located in the central
and northwest Ailao mountain area, where the main landscape unit is forest and grass
(Figure 6).
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Figure 5. Graded area proportion of landscape index. (a) graded area proportion of SHDI in
mountainous areas; (b) graded area proportion of SHDI in flatland areas; (c) graded area proportion
of LSI in mountainous areas; (d) graded area proportion of LSI in flatland areas; (e) graded area
proportion of LPI in mountainous areas; (f) graded area proportion of LPI in flatland areas.

4.1.2. Landscape Shape

Over the years, in the mountainous area, the LSI of grade I and II accounts for a
relatively high proportion, and the combined proportion of the two is as high as over 70%,
while the proportion of grade IV and V is about 14%, indicating that the landscape shape is
relatively simple (Figure 5c). In terms of time change, the proportion of grade I showed a
downward trend, while the proportion of other levels showed an upward trend. The area
where the LSI increased accounted for 23.85% of the total, while the index reduction area
accounted for 3.14%, indicating that from 1995 to 2018, the LSI continued to increase, and
the landscape shape tended from simple to complex. However, from 2005 to 2010 and 2010
to 2015, the index increased area was smaller than the index decreased area, indicating
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that the landscape in these two periods was clearly contiguous, and the shape tended to
be simple (Figure 7). During the study period, the areas with increased LSI were mainly
distributed in the northern and southwestern regions, while the areas with decreased LSI
were mainly concentrated in the eastern regions.

Figure 6. Spatial distribution of SHDI in mountainous areas of Yuxi City from 1995 to 2018. (a) 1995;
(b) 2000; (c) 2005; (d) 2010; (e) 2015; (f) 2018.

Figure 7. Spatial distribution of LSI in mountainous areas of Yuxi City from 1995 to 2018. (a) 1995;
(b) 2000; (c) 2005; (d) 2010; (e) 2015; (f) 2018.
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4.1.3. Largest Patch

From 1995 to 2018, the LPI levels in mountainous areas were mainly II, III and IV,
but the proportion of I, II and III level increased, while the proportion of IV and V level
decreased (Figure 5e). In each period, the area of the LPI that increased was much less than
the decreasing area; the area of the increased LPI accounted for 7%, and the area of the
index decreased accounted for 24%. The high value area of the LPI and the change in the
LPI mainly occurred in the northern, central and western regions, with large topographic
relief and high altitude. The low value area of the LPI with little change was mainly
distributed in the eastern region, mainly in the relatively low and flat terrain area (Figure 8).
From 1995 to 2018, the LPI decreased significantly in the central and western regions,
especially in the northern part of the country, mainly because the forest and grass cover in
the northern Yimen County was cut by a large amount of arable land, which resulted in
serious fragmentation and rapid decline of the LPI.

Figure 8. Spatial distribution of LPI in mountainous areas of Yuxi City from 1995 to 2018. (a) 1995;
(b) 2000; (c) 2005; (d) 2010; (e) 2015; (f) 2018.

4.2. Variation Characteristics of Landscape Pattern at Landscape Level in Flatland Areas
4.2.1. Landscape Diversity

From 1995 to 2018, the SHDI in the flatland area was mainly grade II, III and IV,
accounting for 78%–80% of the total, while grade I and V were relatively small, with a
total proportion between 20% and 22% over the years (Figure 5b). With the construction
of roads and the expansion of residential areas, the concentrated contiguity of cultivated
land was divided, and the SHDI clearly increased, with the low value area decreasing and
the middle and high value areas increasing. The proportion of landscape diversity level
I decreased from 11.46% to 7.25%, the proportion of grade II decreased from 24.14% to
19.72%, and the proportion of grade III decreased from 29.36% to 27.46%. It can be seen that
although the landscape diversity is on a downward trend, the decline rate becomes ever
smaller from grade I to III, indicating that the decrease is mainly caused by the decrease in
the low value area. The proportion of class IV increased from 25.52% to 29.50%, and the
proportion of class V increased from 9.52% to 15.17%, with the highest increase rate of class
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V. In the study period, the periodic changes were obvious, and the changes in the periods
1995–2000 and 2000–2005 were significantly higher than those in the other three periods
(Figure 9). In the first four periods, the area with increased SHDI was smaller than that
with decreased SHDI. However, a reversal occurred from 2015 to 2018; that is, the area with
decreased SHDI was larger than that with increased SHDI, indicating that the landscape
complexity began to decline at this stage and the complexity degree decreased.

 
Figure 9. Spatial distribution of SHDI in flatland areas of Yuxi City from 1995 to 2018. (a) 1995;
(b) 2000; (c) 2005; (d) 2010; (e) 2015; (f) 2018.

4.2.2. Landscape Shape

The LSI of the flatland area is mainly graded as II, III and IV. The proportion of grade I
and II showed a downward trend, and the phased changes were first decreasing and then
increasing (Figure 5d). The proportion of class III, IV and V showed an overall upward
trend, and the phased changes were first increasing and then decreasing. Taking 2000
or 2005 as the boundary, the proportion of class I decreased rapidly from 1995 to 2000
and then increased and the proportion of class II decreased continuously in the period
1995–2005, then increased, while the proportion of class IV and V both peaked in 2005 and
subsequently decreased. During the study period, the phased changes were clear, and the
first two periods were completely the opposite to the last three periods. During the periods
1995–2000 and 2000–2005, the area of the LSI that increased was larger than that of the
decreased. However, during the periods 2005–2010, 2010–2015 and 2015–2018, the area of
the LSI that decreased was greater than that of the increased (Figure 10).

4.2.3. Largest Patch

From 1995 to 2018, the proportion of class I increased from 15.36% to 21.21%, and class
II increased from 25.46% to 27.33%, indicating that the low value area of the LPI in the
flatland area continued to expand (Figure 5f). However, the proportion of class III decreased
from 27.45% to 25.01%, class IV decreased from 19.64% to 17.46%, and class V decreased
from 12.09% to 9.06%. This indicated that the medium and high value area continued to
shrink and that the landscape fragmentation degree clearly increased. During the study
period, the overall change in the LPI decreased, mainly during the periods 1995–2000 and
2000–2005 (Figure 11). During the period 1995–2000, the area of the LPI that decreased was
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45,946.49 hm2, which was 4.01 times that of the index increased. From 2000 to 2005, the area
of the LPI that decreased reached 41,649.45 hm2, which was 1.51 times the increased area. In
the first four time periods, the index decreased areas were greater than the increasing areas,
but the index increased area was greater than the decreasing area in the period 2015–2018.

Figure 10. Spatial distribution of LSI in flatland areas of Yuxi City from 1995 to 2018. (a) 1995; (b) 2000;
(c) 2005; (d) 2010; (e) 2015; (f) 2018.

 
Figure 11. Spatial distribution of LPI in flatland areas of Yuxi City from 1995 to 2018. (a) 1995; (b) 2000;
(c) 2005; (d) 2010; (e) 2015; (f) 2018.
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5. Discussion

This study showed that the spatial and temporal trends in landscape pattern evolution
in mountainous areas and flatland areas were the same: both showed an increased frag-
mentation degree and decreased connectivity degree, but there were also clear differences
between them. At the class level, the fragmentation degree of construction land in the
flatland area was significantly higher than that in the mountainous area, but its patch
area was larger and the layout was more concentrated than that in the mountainous area,
while the construction land in the mountainous area was more dispersed, mainly because
the human activity intensity in the flatland area was significantly higher than that in the
mountainous area due to the superiority of natural and socio-economic conditions [40].
Similar to the construction land, the landscape index of cultivated land in the flatland
area was higher, but the Area_MN continued to decline, showing clear fragmentation but
also a concentrated layout, mainly because the flatland area had flat terrain and sufficient
hydrothermal conditions, which were conducive to cultivation [36]. Over time, however,
human interference in the cultivated land has intensified [41]. The PD and ED of forest
and grass in the flatland area were significantly higher but the Area_MN and LPI were
significantly lower than those in the mountainous area, in fact only about a third of those in
the mountainous area. Combined with the implementation time of regional land manage-
ment policies, mainly affected by the policy of returning cultivated land to forest and grass
during the study period, the degree of fragmentation of forest and grass in the flatland
area was significantly higher than that in the mountainous area, while the forest and grass
in the mountainous area showed an obvious trend of concentration and contiguity. At
the landscape level, landscape diversity in the flatland area was significantly higher than
that in the mountainous area. In the relatively low-lying area for urban construction, the
urban construction and development interspersed the urban patches with the patches of
cultivated land, forest and grass, with the consequence that the SHDI continued to rise, and
the landscape fragmentation degree also continued to increase. The landscape shape in the
mountainous area was simpler than that in the flatland area. Due to the implementation
effect of the policy of returning farmland to forest and the rapid improvement of the level
of social and economic development, the LPI in the flatland area continued to increase, and
the landscape units in the mountainous area dominated by forest and grass tended to be
more concentrated and contiguous [42].

Topography plays a key role in the formation of landscape patterns, determining the
basic landscape pattern [43], and the differentiated development of the social economy
will further affect the change in the landscape pattern. With the increase in topographic
relief, the man-made landscape gradually gives way to the natural landscape. In terms of
influencing landscape unit distribution, human factors usually dominate in flatland areas,
while natural factors usually dominate in mountainous areas. The mountainous area is
high in elevation and slope, and the topography is undulating, with the consequence that
the accessibility is worse than in the flatland area. At the same time, it can be difficult to
meet the demand for high-quality land brought by population growth and the pursuit of
a prosperous life, which makes most of the population migrate to the flatland area [44],
bringing about the transformation of cultivated land landscapes to forest and grass land-
scapes. It has been found that the landscape pattern of mountainous areas in southwest
China is affected by the landforms of high mountains and river valleys, mainly forest and
grass [45], while high-quality arable land mainly continues to be distributed in basins,
trough valleys and low mountain valleys [46]. Before 2000, with the increase in population,
in order to meet the needs of survival, the mountainous area was blindly reclaimed and the
forest was destroyed [47], while the landscape diversity was higher than that of the flatland
area [48]. After 2000, due to road construction and settlement expansion, concentrated and
contiguous cultivated land was divided, and the landscape diversity of the flatland area
increased significantly. However, due to ecological restoration or vegetation degradation,
the landscape types in mountainous areas gradually became single, and the landscape
diversity declined [37].
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The comparison and analysis of landscape spatial patterns between mountainous areas
and flatland areas based on a grid method and further microscopization and refinement
from the scale [49] are of great importance for clarifying the difference in landscape patterns
between mountainous areas and flatland areas on the micro scale. The difference in the
spatial and temporal evolution of landscape patterns in the mountainous area and flatland
area leads to the consideration of coordinated and sustainable development of mountains
and flatlands. Appropriate human intervention appears to help enhance the diversity
of the landscape, while inappropriate human intervention will exacerbate the problem
of landscape fragmentation [50–52]. It is the differentiated characteristics of the social
and economic development that form the differentiation in landscape pattern evolution
between mountainous areas and flatland areas. The level of “landscape diversity” is
inversely correlated with that of “biological diversity”. Broken “landscape diversity”
is not conducive to “biological diversity” [53], because the contact surface between the
landscape system and the environment is large, and the “hinterland” is not deep, which
is not conducive to the recovery of some species in the “biological chain”. The decline in
the landscape diversity in mountainous areas is the result of the connectivity of forest and
grass. The enhancement in the connectivity of forest and grass in the mountainous area
further enriches biodiversity and is conducive to the restoration of the ecosystem (animal
habitat and reproduction) [54]. The landscape diversity of the flatland area is a response
to the development of the society and economy. The expansion of urban construction
land is conducive to population agglomeration and job creation [55]. The development
of the transportation industry, although it has brought about an increase in landscape
fragmentation, has facilitated the circulation of people and materials [41]. The in-depth
intersection of arable land patches and urban construction land patches further expands the
rural and urban interface, making it more conducive to the connection between the sales
and consumption chains of agricultural products. All in all, the mountainous area provides
an ecological barrier to the social and economic development of the flatland area. While the
social and economic development level of the flatland area is constantly improved, it feeds
the mountainous area and provides the economic foundation for the further optimization
of the mountainous area and the construction of an ecological environment.

6. Conclusions

Despite the uncertainties in the interpretation accuracy of the landscape units, as well
as the small extent of the study area used, some meaningful conclusions can be drawn from
this research. Preliminary results show that the analysis of mountain–flatland landscape
pattern evolution based on the grid scale can effectively reveal the variation difference and
coupling law.

In the past 24 years, the landscape pattern of the mountainous area and the flatland
area in Yuxi City has shown periodic changes, and the trend of its evolution is consistent
with the laws of human social and economic development. With the further development
of the social economy, the landscape fragmentation and landscape diversity in the flatland
area are clearly higher than those in the mountainous area, and the degree of landscape
fragmentation is further intensified, while the landscape shape in the mountainous area is
simpler than that in the flatland area, and the trend in landscape concentration and conti-
guity is obvious. The natural landscape of forest and grass in mountainous areas continues
to expand and tends to be contiguous, while the man-made landscape in flatland areas
constantly increases and shows fragmentation, which reflects the pattern characteristics
formed by the coupling evolution of land use between the mountain and flatland. There is a
coupling linkage relationship between the landscape pattern evolution of the mountainous
area and the flatland area. The urban expansion and the increase in construction land in
the flatland area are mutually causal with the decrease in cultivated land and the increase
in forest and grass in the mountainous area.

In future studies, we can further improve the interpretation accuracy of the landscape
units and carry out further studies by taking the whole southwest mountainous area as
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the research area, in order to find the general coupling laws of landscape pattern evolution
between mountainous areas and flatland areas. The rationality and universality of the law
will be verified by statistical inspection and analysis, based on which the coordinated and
sustainable development countermeasures of mountainous areas and flatland areas in the
southwest karst region will be formulated.
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Abstract: Permafrost areas pose a threat to the safe operation of linear projects such as the
Qinghai–Tibet railway due to the repeated alternating effects of frost heaving and thawing set-
tlement of frozen soil in permafrost area. Time series InSAR technology can effectively obtain ground
deformation information with an accuracy of up to millimeters. Therefore, it is of great significance
to use time series InSAR technology to monitor the deformation of the permafrost section of the
Qinghai–Tibet railway. This study uses multi-time InSAR (MT-InSAR) technology to monitor the
deformation of the whole section of the Qinghai–Tibet railway, detect the uneven settlement of the
railway roadbed in space, and detect the seasonal changes in the roadbed in the time domain. At
the same time, the local deformation sections over the years are compared and discussed. The time
series deformation monitoring results of the permafrost section Sentinel-1 data in 2020 show that
the length of the railway roadbed from Tanggula station to Za’gya Zangbo station (TZ) section is
approximately 620 m, the deformation of the east and west sides is uneven, and the average annual
deformation difference is 60.68 mm/a. The impact of frozen soil in WangKun station to Budongquan
station (WB) section on railway roadbed shows the distribution characteristics of high in the middle
and low at both ends, and the maximum annual average settlement can reach −158.46 mm/a. This
study shows that the deformation of permafrost varies with different ground layers. The impact
of human activities on frozen soil deformation is less than that of topography and hydrothermal
conditions. At the same time, the study determined that compared with other sections, the roadbed
deformation of TZ and WB sections is more obvious.

Keywords: MT-InSAR; frozen soil deformation; Qinghai–Tibet corridor; roadbed deformation;
climate response

1. Introduction

The repeated alternating action of frost heaving and thawing settlement of frozen
soil in permafrost area will cause damage to the local geological environment, and then
easily lead to geological disasters such as landslide, debris flow, foundation rupture, and
collapse [1,2], especially linear engineering such as railway and highway [3–5]. Uneven
deformation of the roadbed is a common and serious disaster in linear engineering, which
seriously affects the operation of linear engineering such as high-speed railways and
highways. The Qinghai–Tibet Plateau (QTP) is the largest permafrost region except polar
regions [6]. Approximately 610 km of Qinghai–Tibet railway is laid in the permafrost area,
crossing national nature reserves such as Hoh Xil, Sanjiangyuan, Qiangtang. In view of
the particularity and importance of the location of the Qinghai–Tibet railway, it is of great
practical significance to monitor the surface deformation of the Qinghai–Tibet corridor in
permafrost area [7–17].

Traditional geodetic methods, such as leveling and global positioning system (GPS)
measurement, can achieve high-precision measurement of surface deformation. However,
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due to the special location and harsh environmental conditions of the Qinghai–Tibet plateau,
both traditional leveling and GPS measurement require a lot of human and material costs,
which is difficult and inefficient. Although it will not cause this problem to predict the
stability of Qinghai–Tibet line foundation in combination with historical disaster data, field
survey data [18], settlement index or allowable bearing capacity index [19], the accuracy is
rough and low, and the prediction of influence factors cannot be better applicable to the
existing situation under the external human intervention.

The wide application of synthetic aperture radar interferometry (InSAR) makes up for
the shortcomings of the above method. InSAR monitors ground deformation by analyzing
the phase information of two aperture radar images [20]. It has been widely used in the
ground deformation caused by earthquakes, volcanoes, glaciers, landslides, and land subsi-
dence [21–24]. With the launch of new SAR satellites such as Sentinel-1A/B, researchers
can more easily obtain SAR images. Rich SAR data sources and accessibility promote the
application of InSAR technology in the field of permafrost deformation monitoring. Due to
its large coverage of SAR images and the relatively short return visit time, the interference
coherence has been greatly improved, which better meets the accuracy requirements of
deformation monitoring such as linear engineering in permafrost area, and it is used to
monitor frozen soil deformation. Researchers have already demonstrated the ability to
use InSAR technique to detect to this freeze/thaw-related ground motion over permafrost
regions. As shown in Table 1, current researches using InSAR technology to monitor frozen
soil mainly focus on the Arctic, Qinghai–Tibet Plateau and other regions of the world. It
can be seen that the application of InSAR technology to permafrost monitoring has broad
prospects.

Table 1. Research on monitoring frozen soil with InSAR technology.

Arctic Qinghai–Tibet Plateau Other Regions

Zwieback et al. [25],
Bartsch et al. [26],
Strozzi et al. [27],
Rudy et al. [28],
Liu et al. [29–33]

Zhou et al. [34],
Xu et al. [35], Zou et al. [36],

Xiang et al. [37],
Zhang et al. [38–44],
Wang et al. [45,46],
Reinosch et al. [47],

Lu et al. [48],
Chen et al. [49],
Daout et al. [50]

Chen et al. [51],
Rouyet et al. [52],

Antonova et al. [53],
Li et al. [54], Liu et al. [29]

As can be seen from the above table, the research on permafrost in the Qinghai–Tibet
plateau in recent years has been fruitful. However, over the years, most research on the
frozen soil deformation along the Qinghai–Tibet railway has focused on the section from
Wudaoliang to Tuotuohe, especially the Beiluhe area, and less so on the Chaerhan Salt
Lake section in the north and the section from Yangbajing to Dangxiong in the south. The
scope of the existing research has been very limited, and the overall deformation of the
permafrost section of the Qinghai–Tibet railway has not been monitored. In addition,
the existing research only involves local disaster characteristics, and there is a lack of
systematic investigation and analysis of the overall disaster characteristics and laws. Most
of the deformation research on the frozen soil section of the Qinghai–Tibet railway is
limited to the results of more than a decade. Due to the long time, it is difficult to reflect
the current situation of roadbed deformation, which is not conductive to the discovery
of the existence and potential risk of deformation of railway roadbed. At the same time,
the previous research results have not been compared and discussed, and the methods
and effects of the measures have not been qualitatively and quantitatively evaluated. The
relevant research only stays at the level of producing deformation results. Therefore, many
years after the completion of the Qinghai–Tibet railway project, it is very necessary to
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compare the deformation monitoring results in recent years with the previous monitoring
results to understand whether the deformation disaster has changed.

Most of the studies have only used permanent scatterers to obtain the deformation
characteristics of ground objects along the Qinghai–Tibet railway. The scattering characteris-
tics are directly affected by external environmental factors such as soil moisture and surface
water, and almost no ground objects can maintain stable backscattering characteristics for
a long time. At the same time, the vegetation coverage in the study area is low, mostly
exposed sandy or mucus saline soil, and the interference coherence is high in the short term.
This phenomenon makes it more difficult to obtain persistent scattering points. Therefore, it
is difficult to obtain high-density stable scattering points only by obtaining traditional per-
sistent scatterer (PS) points. Distributed scatterers (DS) refers to ground objects, mostly bare
ground and sparse vegetation that resolve the backscattering coefficients of all scatterers in
a unit roughly the same. The spatial density of the measurement points is increased on the
region characterized by DS while retaining the high-quality information obtained using
the PS technique on deterministic targets. PS and DS were properly combined to increase
the density of measurement points and further improve the coherence point density and
parameter estimation accuracy [55]. Considering the limitations of traditional persistent
scattering points, we obtain a high-quality and high-density time series deformation point
set by combining PS points and distributed scattering points (DS) with limited time base-
lines, which greatly improves the defects of the above methods so as to obtain the existing
deformation of railway roadbed and potential risks along the route.

In this study, we used the free obtained Sentinel-1A Radar image to monitor the overall
deformation of the permafrost section of the Qinghai–Tibet railway by combining PS points
and DS points, compared and discussed the deformation of local areas for many years to
monitor the uneven settlement of railway roadbed in space and the seasonal changes in the
time domain.

2. Materials and Methods

2.1. Study Area

The repeated alternating action of frost heaving and thawing settlement of frozen
soil in permafrost area will have a serious impact on linear projects such as Qinghai–Tibet
railway. Approximately 610 km of Qinghai–Tibet railway is paved in permafrost area,
from Nachitai to Ando station. The study area covers 32◦20′–35◦94′, 91◦42′–94◦62′, with an
altitude of 3514–5544 m.

The thickness of frozen soil is approximately 60~120 m, and the thickness of active
layer (ALT) is between 0.8 and 4 m, with an average of approximately 2 m It is a typical
continental climate. It is cold in winter (to −20.7 ◦C), warm in summer (to +22.7 ◦C),
and the annual average temperature is −0.98–1.03 ◦C. The ground is generally frozen for
7 months (October to April of the next year) [56]. The annual precipitation is between
191 and 485 mm, mainly concentrated in summer (May to October). The elevation fluctuates
from north to south [57], and its topographic characteristics are shown in Figure 1. There are
four monitoring stations close to this section, namely Golmud, Wudaoliang, Tuotuohe and
Anduo meteorological stations. Land types mainly include glaciers, snow, exposed rocks
and other land types [58]. Due to the melting and freezing of frozen soil, the maximum
seasonal deformation of the surface can reach 10 cm. The distribution of frozen soil is
shown in the upper left corner of Figure 1. The landslide within 1 km and debris flow
within 5 km caused by frost heaving and thawing settlement of frozen soil will pose a
threat to the railway. This study will take the permafrost section of a 5 km buffer zone as
the research object.
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Figure 1. The green diamond is the meteorological station. The station name is marked in green
font. The white mark is the altitude of each meteorological station. The red pentagram is the railway
station along the way, and the name is marked in red font. The terrain distribution has been marked
in black font in the Figure. The Qinghai–Tibet line passes through mountain permafrost, plateau
discontinuous permafrost and island permafrost from north to south. The study area is a permafrost
section passing through the blue area, which has higher risk than other sections. The black rectangular
box indicates the coverage of the Sentinel-1 image, the red rectangular box is the swath of each scene
used in the study, and the black arrow indicates the navigation direction and line of sight direction.

2.2. Data

In this paper, the descending image of Sentinel-1 satellite in 2020 is selected to obtain
the risk situation of the section of Qinghai–Tibet line, involving 122 images in four maps,
as shown in Table 2.

Table 2. Relevant parameters of four scenes of radar image.

Sequence Start Time End Time Path/Frame Image Swath

1 12 January 2020 25 December 2020 77/475 29 7
2 5 January 2020 30 December 2020 150/475 31 7
3 5 January 2020 30 December 2020 150/480 31 6
4 5 January 2020 30 December 2020 150/485 31 3

The pixel sizes in the central azimuth and range directions of the image are 2.32 m and
13.98 m, respectively, and VV polarization mode is selected. The central incidence angle is
between 33 and 34◦, and the spatial range covered by each SAR image is approximately
252 × 190 km2. The digital elevation model (DEM) of the study area adopts SRTM-1 with a
resolution of 30 m. In addition, the Precision Orbit Data (POD) of Sentinel-1A is provided
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by European Space Agency (ESA). The data of glacier and frozen soil distribution originate
from the “Heihe project data management center” [59].

2.3. Methods

In this study, permanent scatterers and distributed scatterers (PS, DS) were combined
to select highly coherent targets and increase the coverage of coherent points. Compared
with PS method, this method has a better effect and higher efficiency in the analysis of
foundation deformation along the Qinghai–Tibet corridor. The processing flow chart is
demonstrated in Figure 2. The deformation results largely depend on the error correction
during interference processing, the selection of coherent points and phase unwrapping.
Therefore, this section is expanded with the principles and methods of each part to finally
obtain the desired results.

Figure 2. Process of joint point selection of PS and DS to obtain high-density point targets and
roadbed time series deformation.

2.3.1. Error Correction

High coherence of target means high coherence in space domain and stable phase
in time domain. For MT-InSAR, the image will be registered, and the terrain and orbit
have generated phase compensation. The residual phase ϕn of unwrapped interferogram
obtained after differential interference is usually composed of residual terrain, deformation,
atmosphere and noise phases [60], which are wound between deformation phases.

ϕn = ϕn
topo +ϕn

defo +ϕn
aps +ϕn

noise + k·2π, (1)

where ϕn
topo is the residual topographic phase; ϕn

defo is the deformation phase; ϕn
aps is the

atmospheric phase screen, indicating the signal delay caused by weather conditions; k is
the integer fuzzy number; ϕn

noise is the phase noise caused by time decorrelation, error
registration, uncompensated spectral offset decorrelation, orbit error, soil moisture and
thermal noise.

The residual topographic phase of point p is as follows:

ϕn
p,topo = kz

p·εz
p, (2)
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where kz
p = 4πbn

λsinθRn
is height-phase coefficient and εz

p is elevation error; bn is the baseline
of the nth image relative to the reference (main) image; θ is the local angle of incidence; λ is
the carrier wavelength; Rn is the (zero Doppler) distance between the target and the nth
orbit acquisition.

The deformation phase generated by the displacement at point p can be effectively
divided into two components:

ϕn
p,defo = ktvp + μNL, (3)

where v is constant speed (line of sight); kt = 4πtn
λ is the time phase factor; tn is the time

baseline; μNL is the phase term due to possible nonlinear motion.
Atmospheric phase screen (APS) can greatly reduce the influence by considering the

phase difference between two nearby points. Therefore, APS calibration can also be carried
out by establishing Delaunay triangulation network.

For the two PS candidate points connected, the measured tomography signals y1(m)
and y2(m) can be expressed as [61]

{
y1(m) = g1(m, s1)exp[j∅APS1(m)]
y2(m) = g2(m, s2)exp[j∅APS2(m)]

, (4)

where ∅APS1(m) and ∅APS2(m) represent APS present in y1(m) and y2(m), respectively;
s1 and s2 are the inclined elevations of the two PS points connected, respectively; g1(m, s1)
and g2(m, s2) represent the math ideal measurement value of the two connection points
without APS interference.

Because the spatial frequency of APS is low, the candidate points with long spatial
distance usually have great differences in APS. At this time, it is difficult to deal with
connection points with large APS differences. Therefore, the long connection arc is rejected
by setting the distance threshold. When the arc length is short, two adjacent scatterer
candidate points have similar APS:

∅APS1(m) ≈ ∅APS2(m). (5)

Therefore, the APS can be easily calibrated by subtracting the phase of the reference
point, and the relative tomographic signal Δy (m) of the connecting arc is as follows:

Δy(m) = y2(m)exp(−j·�y1(m) �) = g2(m, s2)·exp(−j·�g1(m, s1) �), (6)

where � � is the operation of phase retention.

2.3.2. Selection of Coherent Points

Permanent and distributed scatterers are combined to increase the coverage of coherent
points. Ferretti et al. proposed the Dispersion of Amplitude (DA) based on the definition
of PS [62]. When the main scatterer exists in the pixel, its phase is mainly determined by
the phase of the main scatterer, which is less affected by noise, and the phase standard
deviation has the following relationship with the amplitude:

σϕ ≈ σA

mA
≡ DA, (7)

where σϕ is the standard deviation of phase; σA is the standard deviation of amplitude A;
mA is the mean amplitude of N SAR images in time dimension; DA is the dispersion index.

When extracting DS, considering its statistical distribution characteristics [63], the
extracted DS is transformed into extracting several pixels subject to the same statistical
distribution, which can be called homogeneous pixels. Then, the recognition of planar
targets is transformed into identifying homogeneous pixels first, and then estimating their
phase. The Kolmogorov–Smirnov algorithm is used to identify homogeneous pixels. By
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determining whether their cumulative distribution function (CDF) is the same, we can
judge whether they are homogeneous pixels. K–S algorithm defines DN as the maximum
absolute value of the difference between the two cumulative distribution functions:

DN = max−∞<x<∞
|SN(x)− PN(x)|, (8)

where SN and PN are the cumulative distribution functions of two different SAR image
pixels, respectively. By setting a certain threshold (Dthr), when DN ≤ Dthr, it is considered
that the two samples obey the same statistical distribution, that is, they are judged to
be homogeneous pixels so as to ensure that the identified homogeneous pixel is directly
or indirectly connected with the central pixel P, and there is no independent region. In
addition, the algorithm takes the identified homogeneous pixel as DS, which makes the
subsequent phase estimation more accurate, so the results are more reliable.

2.3.3. Phase Unwrapping

The accuracy of surface deformation information acquisition mainly depends on phase
unwrapping. The main idea of phase unwrapping algorithm based on network flow is to
minimize the difference between the derivative of unwrapping phase and the derivative of
winding phase. This method can not only greatly reduce the time and space complexity of
phase unwrapping algorithm and improve the calculation speed, but also limit the whole
error to a small range and prevent the retransmission of error, so as to improve the accuracy
of unwrapping results. In this study, the minimum cost flow algorithm is based on irregular
networks: first, the phase with high coherence coefficient is extracted as a high-quality
phase data set. Next, a Delaunay triangulation is established according to the position of
these phase points. Then, the residual points in the triangulation are identified, and the
minimum cost flow algorithm is used to connect the positive and negative residual point
pairs to establish the branch tangent. Finally, the unwrapping phase value is obtained by
the method of adding and subtracting 2nπ around or through the branch tangent.

The phase difference between two adjacent phase points (such as targets p and q) can
be written as [64]

Δϕn
pq = W

{
kz

pΔεz
pq + ktΔvpq + Δwn

pq

}
, (9)

where W is the winding operator, Δεz
pq is the relative elevation error, Δvpq is the relatively

constant velocity, and Δwn
pq = μn

pq,NL +ϕn
pq,aps +ϕn

pq,noise is the phase difference between
the model and measured values between p and q points in the nth interferogram.

Therefore, the Delaunay triangulation connection network is constructed in the spatial
domain as follows. Assuming that the largest connected network is searched after K
iterations, and there are P(n) arcs and Q(n) PS points (n = 1, · · · , K) in the nth search result
of the connected network, then the maximum connected network contains P(k) connected
arcs and Q(k) points. The integration of the nth search connection network can be modeled
as

ΔS(n) = G(n)·S(n), (10)

where ΔS(n) is the relative height of the P(n) point arc of the nth search connection net-
work; G(n) is the transformation matrix from point arc to point, which is composed of
0, − 1, 1; S(n) is the absolute height of the Q(n) point in the nth search connection network:
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ΔS(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ΔŜ(n)
1

ΔŜ(n)
2
...

ΔŜ(n)
p

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(n)

p

× 1, G(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · −1 · · · 0 · · ·
...
· · · 1 0 · · · −1 · · ·

...
· · · 0 · · · 1 −1 · · ·

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p(n) × Q(n)

, S(n) =

⎡
⎢⎢⎢⎢⎢⎣

ΔS(n)
1

ΔS(n)
2
...

ΔS(n)
Q(n)

⎤
⎥⎥⎥⎥⎥⎦

Q(n)×1

. (11)

3. Results

In order to improve the phase solution accuracy, it is necessary to check whether the
spatio-temporal baseline meets the requirements, and reduce the impact on the deformation
phase. In the study area, 21 swaths were analyzed by MT-InSAR, and a total of 118 pairs
of interference pairs were generated. The temporal and spatial baseline distribution and
combination mode are shown in Figure 3. The re-entry period of SAR satellite is 12 days,
the vertical baseline is less than 130 m, and the coherence is relatively high. The finally
obtained surface time series deformation information along the Qinghai–Tibet line is shown
in Figure 4. The areas with serious deformation are mainly distributed from WangKun
station to Budongquan station (WB) in the north section of permafrost area and from
Tanggula station to Za’gya Zangbo station (TZ) in the south section.

Figure 3. The center point is the reference main image, each line represents an interference pair, and
the X and Y axes represent its spatio-temporal baseline distribution.

284



Land 2023, 12, 474

 
Figure 4. Overall deformation results obtained by time series InSAR processing. The surface defor-
mation of frozen soil section of Qinghai–Tibet corridor is mainly distributed in WB in the north and
TZ in the south, which is represented by red rectangular box in the Figure. The black arrow indicates
the Los direction.

4. Discussion

4.1. Risk Section and Deformation Law

Affected by the thermal thawing and frost heaving of the active layer of permafrost,
there are roadbed deformation and frozen soil collapse in WB and TZ of the two sections,
as shown in Figures 5a and 5a’, respectively, representing the original amplitude map and
annual average deformation of WB section in 2020. The deformation is mostly concen-
trated in the valley area in the north and appears to be lesser in the flat area in the south.
Figure 5b,b’ is the original amplitude map and annual average deformation map of TZ
section. As it passes through the inland river, it is greatly affected by runoff and thermal
melting, resulting in melting collapse in many places in the southern section of the area.

4.1.1. Deformation from WangKun Station to Budongquan Station

The deformation section between WangKun station and Budongquan station is located
in the valley area, and its terrain, deformation and geological structure, is shown in Figure 6.

Affected by global warming and human activities, the phenomenon of frost heaving
and thawing settlement of permafrost active layer in this area is obvious. Because the terrain
of this section is high on both sides and low in the middle, when the shear force reaches a
certain threshold due to the thawing settlement of frozen soil, a shallow landslide will occur
at the front of the mountains on both sides. At the same time, because this section is located
in the valley, there is a large amount of glacier melt water and precipitation, and the surface
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and underground runoff is more abundant. The hydrothermal effect will continuously
thicken the frozen soil active layer, aggravate the frost heave and thaw settlement, and
further promote the collapse on both sides of this section. It can also be clearly seen in
Figure 6d that melting collapse occurs in R1 and R2 areas along both sides of the railway
section. The center latitude and longitude of R1 is 35.66984◦ N, 94.05412◦ E; the average
annual deformation rate is −62.91 mm/a; and the collapse area reaches 0.36 km2. The
deformation on both sides of the railway at R2 is uneven, with roadbed lifting on the left
and thawing collapse of frozen soil on the right. The annual deformation is 48.13 mm/a
and −158.46 mm/a, respectively. The existence of large-scale melt collapse body and the
difference in roadbed deformation affect the normal operation of railway. In addition, since
the railway section in flat areas is basically free of deformation, it can be inferred that the
influence of human activities of railway operation on frozen soil deformation is smaller
than that of topography and hydrothermal. In other words, topography and hydrothermal
action are the main causes of railway deformation in this section.

Considering that geological factors may also affect it, we compared the geological
distribution Figure 6c with the deformation distribution Figure 6d. It was determined that
the surface deformation of this section is mainly concentrated between the two faults, and
the deformation is weak in the north of the North fault. At the same time, there are Qp2gl,
Qp3gl, TB3, P1QQ3 and other strata between the two fault layers. The severely deformed
strata are mainly middle Pleistocene ice deposit Qp2gl and late Pleistocene ice deposit
Qp3gl, which are mainly ice water accumulation. The moraine is composed of boulders,
gravel, sand and clay. The soil is soft, sensitive to hydrothermal changes, and prone to hot
melting and frost heaving. Therefore, the roadbed deformation in frozen soil section may
be affected by thawing settlement of frozen soil, fault, and lithology.

Due to the complex physical movement along the slope of this section, more in-
formation (movement rate, direction, and trend) about terrain (gradient and direction),
geology (mantle composition and surface coverage), hydrology (surface and underground
runoff and ice melting of permafrost) is needed to monitor the evolution of active layer of
permafrost so as to better grasp the deformation inducement and law of this area.

4.1.2. Deformation from Tanggula Station to Za’gya Zangbo Station

The section with serious roadbed deformation from Tanggula station to Zajiazangbu
station is selected. The whole section shows a downward trend, with uneven deformation
on both east and west sides. The total length of the section is approximately 620 m, and the
central latitude and longitude are 32.90665◦ N, 91.52807◦ E. This section passes through
Za’gya Zangbo, the longest inland river in Tibet. The runoff is supplemented by the
water melted by ice and snow. As many sections of runoff pass through this section, the
river has a great impact on the thermal thawing of permafrost, resulting in changes in
the hydrothermal status of the active layer above the permafrost [65]. Coupled with the
joint impact of railway operation activities, the phenomenon of frost heaving and thawing
settlement of the frozen soil layer is obvious.

The red arrow shows the connection between the north and south sections. It can be
observed that the deformation of the south section is larger than that of the north section
as a whole. In Figure 7a, the annual average deformation phase at P3 is smaller than
that of P1 and P2. The water activity and temperature distribution of railway roadbed in
frozen soil area are the key factors affecting roadbed frost heaving and thawing settlement.
In unsaturated state, the higher the water content, the greater the frost heaving amount
of soil with the same density, the greater the corresponding frost heaving and thawing
settlement rate; that is, water supply is the fundamental reason for frost heaving and
thawing settlement of frozen soil [6,66]. There are two branches of runoff in the south,
which have a connecting trend, and the runoff at the arrow is expanding, which has a great
impact on the frozen soil. The frost heaving and thawing settlement process of frozen soil
active layer is more intense, resulting in uneven roadbed deformation on the north and
south sides.
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Figure 5. (a,a’) are the original amplitude map and annual average deformation map of WB deforma-
tion section, respectively (the annual average deformation of the surface after being affected by the
thermal thawing and frost heaving of permafrost active layer), (b,b’) are the original amplitude map
and annual average deformation map of TZ deformation section, respectively, In the Figure, the red
solid dot indicates the roadbed deformation or serious deformation area threatening the roadbed,
and the white box indicates the deformation risk section.

In the south section, the deformation on the left and right sides is uneven and the
difference is obvious, which poses a threat to the railway operation. As shown in P1 and
P2 in Figure 7c, the cumulative deformation is 113.54 mm and 54.76 mm, respectively,
and the annual average deformation is −112.768 mm/a and −52.084 mm/a, respectively.
The uneven deformation may be affected by the thickness difference in the active layer
of permafrost. The thermal melting of frozen soil in summer leads to different collapse
degrees on both sides of the railway, and it cannot be completely frozen in winter, resulting
in greater and greater differences on both sides of the roadbed and affecting the stability of
the roadbed.
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Figure 6. (a) shows the DEM of the railway section; (b) is the optical image of Google Earth; (c) is the
distribution of surface deformation at unfrozen spring station; (d) is a geological distribution map,
and the fault zone is shown in red dotted line.

4.2. Comparison and Discussion on Deformation Law of Road Section
4.2.1. Comparison of Different Deformation of Roadbed Frozen Soil

In order to compare the different time series deformation laws of WB and TZ deforma-
tion sections and understand their differences in climate response, we obtain the surface
time series deformation information from the deformation risk area, as shown in Figure 8.
At the same time, in order to more accurately judge the response of time series deformation
and climate change, we take the actual distance from each risk area to the meteorological
station as the weight factor to obtain the weighted average temperature and precipitation.

In addition to the thawing and collapse of frozen soil in WB section, at the west side
of the railway passing through Kunlun Mountain, the central latitude and longitude are
35.67944◦ N and 94.04924◦ E. The roadbed has been raised due to frost heaving of some
frozen soil, with cumulative deformation of 50.507 mm and annual average deformation of
20.09 mm/a. From January to early March, the ground surface is constantly lifted due to the
frost heaving of frozen soil. In summer, the frost heaving slows down due to the increase
in temperature and precipitation, which is basically in a constant trend. In autumn and
winter, when the temperature decreases, the surface temperature also decreases. The water
in the active layer of frozen soil under the surface solidifies, and the frozen soil heaves. The
maximum value of frozen soil heave is rising, as shown in Figure 8c. This shows that the
active layer thickens, and because it is located on the shady slope, the frozen soil layer has
good development conditions, which belongs to the developing permafrost.

The settlement area of TZ section is rapidly affected by the climate. From the end of
April, the precipitation and temperature began to rise, the frozen soil active layer gradually
began to melt, and the surface settlement is serious. Its trend line is shown in Figure 8d.
The annual average time series deformation rate is 38.47 mm/a, the cumulative deforma-
tion variable is 86.39 mm, and the latitude and longitude of the deformation center are
32.8847◦ N and 91.5283◦ E. The seasonality of the climate is seriously affected by the
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southeast monsoon. Most of the precipitation occurs from June to August in the form of
rainstorm, which leads to flash floods and extensive surface erosion. At the same time, it
also leads to the intensification of the melting of frozen soil active layer. The remaining
precipitation occurs in the form of snow or hail. Sometimes snow will be generated during
the ice period (usually 7–8 months, from September to April of the next year), which is
consistent with the deformation. From September to April of the next year, the deformation
will obviously slow down, while from June to August, the frozen soil will continue to
melt under the influence of temperature and precipitation, resulting in intensified surface
settlement. As the settlement area is located in the roadbed section of Qinghai–Tibet railway,
it poses a threat to railway operation.

 

Figure 7. (a–c), respectively show the annual average deformation, topographic and temporal
deformation of railway roadbed. The red arrows in (a,b) show the runoff formed by the thermal
melting of frozen soil and the boundary of different deformation mechanisms at the north and south
ends. The red box indicates the roadbed range of the railway section. The abscissa in (c) represents
the distance of p3–p1 point from north to south, and the ordinate is the deformation.
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Figure 8. (a,b) depict the distribution of roadbed deformation in WB and TZ sections, respectively,
(c,d) depict the time series deformation of railway roadbed in WB and TZ sections under the influence
of climate factors, respectively. The green box in the optical diagram is the selection point of time
series deformation, and the red dotted line in the broken line diagram is the deformation subsection
fitting line.

4.2.2. Comparison of the Latest Available Results with Previous Results

Because Beilu River and Tuotuo River are located in the basin area, the river system has
a great impact on the frozen soil, and the frozen soil section often becomes a research hotspot.
This paper compares the deformation of the reach from Wudaoliang to Tuotuo with the
study of Zhang et al. from 2009 to 2018, as shown in Figure 9. The three places C1, C2 and
C3 pass through Beiluhe basin, Fenghuoshan area and Tuotuohe basin, respectively. C1 and
C3 are located in the valley basin, rich in water resources and geographical environment,
and there is no high mountain shelter. The frozen soil is greatly affected by thermal melting
and forms a large number of thermal melting lakes, as shown in Figure 10a,b. Therefore,
these two areas are scattered point deformation areas in InSAR detection results. There is
no obvious frozen soil collapse at the railway roadbed. However, under the global warming
environment and the expansion of inland rivers and thermal melting lakes, the frozen soil
under the railway roadbed will also be affected, and there is still a certain risk of thawing
collapse. The deformation at C2 is small, and it has been significantly improved compared
with the results in 2018. This area not only takes heat dissipation measures for frozen soil,
as shown in Figure 10c, but is also located in high mountain and valley area (Figure 10d),
with an altitude of 5000–5200 m and a height drop of 400–600 m with the railway section.
The risk of frozen soil collapse is further reduced. In short, although there is no serious
deformation of railway roadbed at C1, C2 and C3, considering that there are still many
thermal melting lakes near C1 and C3, it is still necessary to monitor the frozen soil section.
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Figure 9. (a) shows the annual average time series deformation of the railway corridor from Beilu
River to Tuotuo River in 2020, and (b) shows the deformation detection results of Zhang et al. in 2018.
The three deformations detected by Zhang are marked with circles in the Figure, namely C1, C2 and
C3. The deformation area obviously decreases, especially at C2. No obvious deformation is detected
at C1 and C3 railway roadbed.

4.3. Uncertainty Analysis of Results

Due to the destructive effects of atmospheric precipitation (especially snowfall), the
formal application of InSAR technique to monitor structures generating scattering may
provide incorrect results. The corrupting impact of atmospheric precipitation on the phase
of reference targets has been mentioned in many studies. In winter, the main source of
alteration for the propagating signal properties is the growth in snow depth between the
SAR observations [67].

As shown in Figure 10, part of our study area is covered by snow because it is located in
the Qinghai–Tibet plateau. Snow can affect radar interference and skew results. Therefore,
in addition to removing atmospheric phase, terrain phase and noise, we also need to
remove the influence of snow removal. As the influence of snow in the main deformation
area is small, this study does not deal with the influence of snow temporarily. However,
the impact of snow removal will be the focus of our next study.
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Figure 10. In (a,b), there are widely distributed hot melt lakes formed by ground collapse after
frozen soil melting. (c,d) are the topographic distribution and solutions of Fenghuo Mountain section,
respectively. It can be seen that hot rods are arranged on the left and right sides of the road to
dissipate heat and reduce the impact of frozen soil hot melt and frost heaving on the roadbed.

5. Conclusions

In this study, four Sentinel-1 satellite maps are selected to fully cover the study area,
with a total of 122 images. The MT-InSAR technology is carried out for the 610 km-long
Qinghai–Tibet railway section (from Naij Tal railway station to Anduo railway station) in
the permafrost area so as to obtain the time series deformation information of the surface
along the Qinghai–Tibet railway and compare its deformation with climate factors. The
main conclusions are as follows:

(1) The areas with serious deformation of the Qinghai–Tibet corridor are mainly
distributed in the railway section from WangKun station to Budongquan station and the
section from Tanggula station to Za’gya Zangbo station, and there are many areas of railway
roadbed subsidence and mountain collapse.

(2) The influence of the frozen soil section from WangKun station to Budongquan
station on the railway roadbed is high in the middle and low at both ends. The influence of
human activities of railway operation on the frozen soil deformation is smaller than that
of topography and hydrothermal. At the same time, the geological strata and fault zone
of this section also have a certain impact on the roadbed deformation. D2S, OS, and S3Q
frozen soil layers are more stable than Qp2gl and Qp3gl strata.

(3) Between the Tanggula and Za’gya Zangbo station, there was a 620 m-long railway
roadbed with uneven deformation on the east and west sides, with an average annual
difference of 60.68 mm/a. At the same time, uneven deformation also exists in the railway
roadbed on the north and south sides.

(4) Through comparison, it is determined that the roadbed deformation does not exist
in the area from Beilu River to Tuotuo River, and the permafrost has no great impact on the
railway roadbed.

(5) Under the situation of global warming, the frozen soil will continue to undergo
thermal thawing and frost heaving. At the same time, the permafrost will continue to
decrease and the active layer will continue to thicken. In order to ensure the stable operation
of the Qinghai–Tibet railway in the permafrost section, it is necessary to regularly monitor
the deformation of the permafrost area up to 610 km by MT-InSAR.
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At the same time, our research has some shortcomings. The impact of snow cover on
InSAR interference in the study area needs further treatment. This is the focus of our next
research work.
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Abstract: The karst of the horsts of the Bakony Region belonging to horst types of different develop-
ment is described. Horsts elevated to the summit position are characterised by the most widespread
and diverse karstification (with covered karst, cave-ins and shafts). Cryptopeneplains affect the
karstification of horsts elevated to the summit position, but karst features also occur in their areas. On
threshold surfaces of marginal position, the hypogene branches of regional flow systems influenced
the development of spring caves. The karstification of basaltic mountains has been mainly governed
by the properties of the basalt caprock (the major features being ponors with blind valleys and
caprock dolines).

Keywords: horst type; epigene karst system; hypogene branch; cave-in; subsidence doline; ponor
with blind valley; spring cave

1. Introduction

In this study, the karst of the horsts of the Bakony Region belonging to horst types
of different development is described. Horsts belonging to different types have different
elevations, expansions and coveredness (the expansion and quality of the cover), degrees
and methods of its exposure, environments and positions as compared to karstwater
level, bedrock morphologies and the presence of the aquifuge that is intercalated into the
bedrock. Therefore, the reason for the different karstification of horst types is found in
one (or even several) of the above factors and thus, the karstification of the horsts is traced
back to such properties. The karstifications of the horst types differ from each other to
a larger and smaller degree, which can also be interpreted by the consideration of the
above-mentioned factors.

Modern karst research focuses on the detailed study (hydrology, geomorphology) of
different karst areas [1–6]. This will be followed in the case of the description of the karst
of the Bakony Region. The flow systems of the karst of the Bakony Region are classified
based on the work of Klimchouk [7] and Goldscheider et al. [8], its karst features and their
characteristics are described considering the work of Sweeting [9], White [10], Waltham
et al. [11], Ford and Williams [12], Gutierrez [13] and Veress [14].

Basic features of karsts are features that can be found nearly on all karst types, but
in different densities. The karst features are the following: karren, dolines and uvalas
(they may have different varieties on different karst types), ponors with blind valleys,
poljes, concretions, karstic gorges, inselberg karst and subsurface karst features [11]. Their
common characteristic feature is that they develop by dissolution (caves are partly formed
by erosion) and, with the exception of gorges and some karren features, surface features
are closed.

Karren may develop on bare surfaces (rillenkarren, rinnenkarren, grikes) or below
the soil (kamenitza, grike, rootkarren). Some of them may develop on both bare surfaces
and soil-covered surfaces, or on karst covered with sediment too. Among dolines, solution
dolines (mainly drawdown dolines) are distinguished, which are widespread on soil-
covered karst. Caprock dolines are formed on the caprock, on consolidated rock, while
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the several varieties of subsidence dolines develop on permeable, unconsolidated rock.
Collapse dolines develop by collapse processes. Poljes are large features with independent
hydrography (with springs, surface streams and ponors). Concretions are accumulation
features that develop at karst springs and in the channels of streams. Ponors are formed
along rock boundaries where the water of the streams from non-karstic areas flows into the
karst. Inselberg karst is a complex landform assemblage and is constituted by residuals
(inselbergs) of various shapes that developed by dissolution.

There are caves that develop by dissolution (spring caves, shafts), while others are of
both dissolution and erosion origin (inflow cave, through cave, spring cave).

Among karst types, evaporate karsts and carbonate karsts are distinguished. Carbon-
ate karsts include temperate karsts, tropical karsts, glaciokarsts, mixed allogenic-autogenic
karsts and covered karsts. Their features are partly different. On temperate karsts, solution
dolines are specific, while on mixed autogenic–allogenic karsts, there are ponors with
blind valleys, on glaciokarsts, karren and shafts, on covered karsts, caprock dolines and
subsidence dolines, on tropical karsts, inselberg karst, and on Mediterranean karst and
tropical karsts, poljes are common.

A variety of temperate karsts have a horst structure, such as the Bakony Region.
Since this karst is constituted by horsts of different structures and development, there
occur features that are characteristic of covered karst, partly of soil-covered karst and
of mixed allogenic–autogenic karst. However, it has to be noted that some features as
epigenetic-antecedent gorges and cave-ins related to them are particularly specific to the
Bakony Region.

2. Study Area

The description below is based on Veress’s work [15]. The parts of the Bakony Region
and the names of the features that are mentioned in this study are described in Figure 1. The
Bakony Region is the southwestern part of the Transdanubian Mountains. It is surrounded
by the Little Hungarian Plain in the NW, by Lake Balaton in the SE and the micro-regions
of the Balaton Basin (Balaton Riviera, Tapolca Basin), the Great Hungarian Plain (Mezőföld)
and the Vértes Mountains in the NE (and Mór Graben with graben structure). Its elevation
is 150–700 m and its area is 4300 km2. Its largest area is the Bakony Mountains (2200 km2).
Parts of the Bakony Region are the Keszthely Mountains, Northern Bakony, Southern
Bakony, Balaton Uplands and Bakonyalja (Figure 1).

The mountains are of horst structure, where more elevated horsts are mountains,
while less elevated horsts are basins. They are mainly built up of Triassic dolomite which is
significantly widespread on the surface too [16]. However, Triassic, Dachstein and Jurassic
limestones frequently occur in great extension on the horsts of higher elevation. Cretaceous
and Eocene limestones of smaller thickness can mainly be found in larger and smaller areas
on horsts with medium elevation, mostly covered with loess. Horsts of lower elevation
(basins) are mostly covered by non-karstic rocks (Middle Oligocene–Lower Miocene gravels,
Figure 2).
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Figure 1. Parts of the Bakony Region. Legend: 1. boundary of mountains, 2. boundary of micro-
region group, 3. stream, 4. horst, 5. basaltic horst, 6. plateau, 7. basin, 8. karst spring, 9. karst lake,
10. doline group, 11. cave, 12. settlement, 13. Northern Bakony, 14. Southern Bakony, 15. Balaton
Uplands, 16. Keszthely Mountains, 17. Kőris Mountain, 18. Som Mountain, 19. Mester-Hajag, 20. Kab
Mountain, 21. Sűrű mountain group, 22. Porva basin, 23. Lókút basin, 24. Hárskút basin, 25. Tapolca
basin, 26. Dudar basin, 27. Cuha valley, 28. Gerence valley, 29. Ördög valley, 30. Ördög-lik of Kőris
Mountain, 31. Alba-Regia cave, 32. Lóczy cave, 33. Öreg-köves inflow cave, 34. Cserszegtomaj caves,
35. Devecser, 36. Szentbékálla, 37. Tapolca, 38. Márkó, 39. Hajmáskér, 40. Balatonfüred, 41. Hévíz,
42. Eleven-Förtés doline group, 43. Lake Hévíz and its spring cave, 44. Tihany Peninsula, 45. Tapolca
cave system.
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Figure 2. Geological map of the Bakony Region [17]. Legend: 1. fluvial sediment, 2. Holocene peat,
3. Holocene wind-blown sand, 4. Pleistocene loess, 5. Pliocene basalt, 6. Upper-Miocene freshwater
limestone, 7. Middle Miocene limestone, 8. Oligocene gravel, 9. Eocene limestone, 10. Upper
Cretaceous limestone, 11. Lower Cretaceous limestone, 12. Jurassic limestone, 13. Triassic limestone,
dolomite, 14. Permian sandstone, 15. old Paleozoic phyllite.

The uniformly developed karstwater reserves of the mountains (regional groundwa-
ter, Figure 3), mostly stored in the main dolomite and preceding karstwater; pumping
it resurged not only in karst springs, but also fed karstic swamps and lakes (Lake Bala-
ton) [18,19]. However, it is also transmitted into the basin sediments of the environs [20,21]
(Figure 3).
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Figure 3. Karstwater map of the Bakony Mountains [21]. Regional groundwater of the mountains
according to the state of January 2006. Legend: 1. infiltration area, 2. boundary of groundwater
storage, 3. altitude of the isoline of groundwater level, 4. hypogene branch, 5. former hypogene
branch, 6. termination boundary is not known.

In the Bakony Region, where impermeable intercalations are mainly in the Middle-
Eocene limestone (Szőc Limestone Formation) and in Cretaceous limestones, perched water
tables developed in some horsts and horst groups [22,23]. Particularly, the percolating
water of the gorges of the Bakony Mountains [22] may significantly feed the perched water
tables, however, at sites where the aquifuge is absent or already removed by erosion, it
feeds the regional groundwater [24].

As the horsts of the mountains performed oscillating movements since the Late Creta-
ceous period, Pécsi [25] put them into different genetic types (Figure 4). He distinguished
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cryptopeneplain (up to 300 m elevation, it is covered with non-karstic impermeable rocks,
morphologically basin), low-threshold surface (up to 300 m, its surface is built up of Triassic
carbonates), horst elevated to summit position (surface elevation is 400–550 m, constituting
rocks are Cretaceous and Eocene limestones, on which mainly permeable loess accumula-
tions are found, morphologically mountain), horst in summit position (surface elevation is
600–700 m, Triassic and Jurassic carbonates are widespread at its surface, cover only occurs
in patches) and horst type with basalt cover (basalt caprock and widespread loess cover).

 

Figure 4. Horst types of the mountains [26]. 1. non-karstic rock, 2. Triassic carbonates, 3. Jurassic,
Cretaceous and Eocene limestones, 4. impermeable intercalation, clay, marly limestone, silica, etc.,
5. basalt, 6. gravel, 7. loess, 8. karst water table, 9. fault, 10. karst water storey, 11. main karst water,
12. basin, graben, 13. mount, 14a. horst in summit position, 14b. horst elevated to summit position,
14c. threshold surface, 14d. cryptopeneplain, 14e. horst covered with basalt.

3. Factors Influencing Its Karstification

In the Bakony Region, two flow systems are present, a regional and a local. At the
ascending branches of regional flows, hypogene karst systems are present, while at the
descending branches of regional flows and at local flows, epigene karst systems are present.
The main constituent of regional flow is the regional groundwater, which is not exclusively
fed by descending waters, but also by the water of the perched water table, which percolates
along fractures and faults. The regional flow with a NW–SE direction partly resurges in the
karst springs of mountain margins, and, to a larger extent, it arrives at the sediment and at
carbonate rocks on the floor of surrounding basins. In the SW, the former hypogene branch
extended from the Keszthely Mountains nearly to the NE termination of Lake Balaton
(Figure 3). Members of this branch are the Cserszegtomaj Caves [27,28] and the Lóczy
Cave [29,30]. The hypogene branch still exists at Lake Hévíz, which is represented by the
water of the spring cave of Lake Hévíz with a temperature of 40 ◦C [31].

Local flow occurs at sites where the limestones constituting the horsts are interbedded
with impermeable or partly impermeable intercalations (marl, chert, clay). Such local flow
is particularly characteristic of the Cretaceous limestone horsts of Northern Bakony (for
example on Mester-Hajag Figure 5).

302



Land 2023, 12, 682

 

Figure 5. Water flow system of Mester-Hajag: Legend: 1. limestone, 2. impermeable intercalation,
3. permeable cover, 4. fault, 5. karstwater level, 6. infiltration, 7. local water inflow, 8. water motion
above aquifuge, 9. water drainage along fault, 10. linear seepage, 11. spring, 12. epigenetic valley.

As has already been mentioned, the mountains are separated into horsts of different
elevations, expansions and evolutions [21]. The distribution of horst types in the mountains
is described in Figure 6.

Figure 6. Distribution of horst types in the Bakony Region. Legend: 1. boundary of the mountains,
2. boundary of micro-region group, 3. stream, 4. horst, 5. basaltic horst, 6. plateau, 7. basin,
8. karst spring, 9. karst lake, 10. boundary of horst type, 11. Northern Bakony, 12. Southern Bakony,
13. Balaton Uplands, 14. Keszthely Mountains, 15. horst in summit position, 16. horst elevated to
summit position, 17. cryptopeneplain, 18. threshold surface, 19. horst with basalt cap, 20. buttes with
basalt cap in karstic and non-karstic environments, 21. hilly country covered with superficial deposit
(fluvial sediment, dune sand).
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The majority of the mountains are covered by impermeable or permeable non-karstic
sediment (mainly loess). The caprock thins out in some places (at the mounds of the
bedrock or at creeks) as compared to its environment. On horsts covered with impermeable
beds, epigenetic valleys of different stages of maturity emerged. These valleys may also
have permanent streams at sites where a horst is surrounded by terrains covered with
impermeable beds. As a result of the elevated position of the horst relative to its environ-
ment of covered terrain, some parts of these valleys are of epigenetic-antecedent origin and
constitute gorges. On terrains covered with impermeable beds (for example on Kab Hill
which is covered with basalt), mixed allogenic–autogenic karst developed.

The bedrock, therefore, became karstified and dissected into mounds and depressions.
The mounds of Cretaceous limestones are partly exhumed. On the terrains between them,
the caprock thinned out (Mester-Hajag). However, some parts of threshold surfaces that
are uncovered and have a low elevation (below 300 m) are also dissected by mounds.

4. Materials and Methods

Based on geological maps, topographic maps and literary data, the areas of the moun-
tains were classified as horst development types. Field studies and karstmorphological
mappings were made in different areas of the mountains and types were determined with
the help of their results, features and feature assemblages belonging to different karst types.
Thus, there was an opportunity to describe the karst of certain horst types as well as to
compare the different karstifications of horst types.

5. Discussion

The karst features are subsoil karren (these are grike and rootkarren on sandstone
pseudokarren), subsidence dolines or sinkholes (mainly suffosion dolines), drawdown
dolines, collapse dolines, caprock dolines, ponors with blind valleys, cave-ins, spring caves
reflecting a thermal effect of various degrees, shafts, caves with wreathing, pseudokarst
caves, freshwater limestones (in brook channels) and spring cones.

Among karst features, subsidence dolines are the most widespread. They occur in
patches (altogether, in 22 patches, out of which, 19 patches are in the Northern Bakony)
and in small numbers (there are about 700 subsidence dolines). Their size and density
is small and a lot of them are inactive filled dolines. They occur at sites where the horst
is covered with permeable sediment and where the caprock thinned out or was thin in
the first place. These sites are the floors of creeks, terrains between exposed mounds, the
covered mounds of the bedrock and limestone sites veneered with loess at which a larger
quantity of water arrives from the surrounding impermeable rock or from the impermeable
and wedging caprock [26] (Figure 7). On its soil-covered karst, some drawdown dolines
and collapse dolines also occur (Tapolca Karst and the environs of Devecser). On the mixed
allogenic–autogenic karst, ponors with blind valleys occur at the termination of the basalt
cap (Figure 8). Caprock dolines also developed on the basalt by the collapse of the rock [32].
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Figure 7. Development of subsidence dolines [33]. Legend: Development of subsidence dolines
at various development environments: (a) above the mound of the bedrock at low accumulation
cover thickness, (b,c) at cover that thinned out in an erosional way, (d) at the termination of covered
impermeable cover, (e) at the margin of covered, intercalated non-karstic rock, 1. limestone, 2. non-
karstic rock, 3. permeable cover, 4. impermeable cover, 5. reworked, partly impermeable cover,
6. fault, 7. water flow, 8. infiltration, 9. subsidence doline, 10. shaft.

 

Figure 8. Ponor of Macskalik cave (Kab Mountain).
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Shaft caves are common and of relatively great dimension in the mountains (102 shaft
caves) (Figure 9). Among them, there occur caves with significant length, for example, the
Alba-Regia Cave which is on the Tés Plateau is 3.6 km long. Shafts open out of subsidence
dolines and are of dissolution origin.

Figure 9. Öregköves ponor shaft cave [34].

Among their caves, cave-ins are widespread (about 225 caves), which mostly occur
in epigenetic-antecedent valley sides (about 212 caves); there are few spring caves (about
10 caves), and they were affected by thermal effects of various degrees. They are situated
at the hypogene branch of the regional flow. The pseudokarren of the sandstone are
also related to a former hypogene branch (Szentbékálla, Figure 10). Here, the silica that
precipitated from warm water solution cemented Pannonian sand [35]. Amorphous silica
that developed by precipitation is dissolved much more intensively than crystallised
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silica [9,36,37]. Karren (mainly kamenitzas) resulted from the dissolution of amorphous
silica [32].

 

Figure 10. Karren near Szentbékkálla. Legend: 1. sandstone polygon, 2. kamenitza, 3. rinnenkarren.

Pseudokarst caves are most widespread on basaltic terrains. From the ascending
waters of the early hypogene branch, spring cones were built on the Tihany Peninsula
(Figure 10) during the precipitation of dissolved limestone and from the diatom skeletons
of lakes [38]. Materials of spring cones grew round and round space and thus, cavities
developed (Figure 10).

The karst and karstification of the individual horst types are different, which can be
traced back to the variations in geology, elevation, expansion, coveredness and hydrology
of the horsts.

At the surface of horsts in the summit position (for example Kőris Mountain, Som
Mountain), there are no local flows due to the distribution of Triassic Main Dolomite
without impermeable intercalations, but descending branches of regional flows are present.
Surface karstification is of low intensity; disregarding karren formation (on Dachstein
limestones), it is only present at sites where sediment patches occur on the surface of
such horsts.

The complete lack of surface karst features (drawdown dolines) can be traced back to
the fact that in their area, the presence of low-inclined terrains is insignificant or they are
completely absent. On steep terrains, no drawdown dolines develop. Based on literary data,
according to Zámbó [39], at a surface with an inclination larger than 20◦, no solution dolines
occur. According to other data, doline development is the most intensive on surfaces with
an inclination of 2–7◦ and there are no dolines on surfaces steeper than 13◦ in the Mecsek
Mountains [40]. Telbisz et al. [41] state that in the Serbian Miroč Mountains, only 23% of
surfaces with an inclination of 12◦ have dolines. All this can be traced back to the fact that
on steep surfaces, the ratio of surface runoff increases and infiltration decreases. To our
knowledge, there is only one subsidence doline group on this horst type (the Eleven-Förtés
doline group on Kőris Mountain) where dolines developed on a terrain of low inclination,
on a superficial deposit patch [42]. The infiltration and the survival of the superficial
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deposit was promoted by the fact that it is situated in a depression of the bedrock. Here,
the Keszthely Mountains can also be mentioned, which are a lower elevated variety of
these horst types (some mounds are at an altitude of 400–500 m), where 20 subsidence
dolines occur [26]. There are also some inactive shafts on this horst type (for example, the
Ördög-lik of Kőris Mountain). These were formed below subsidence dolines, but they
became truncated after the denudation of the superficial deposit.

The epigenetic valleys of horsts deepened into the rock below the former regional
groundwater level and exposed inactive, presently dry cavities (cave-ins, the medium
section of Cuha Valley and the northern section of Gerence Valley).

In the mountains, the number and expansion of their horsts, which are horsts elevated
to the summit position, is large. On these horsts, perched water tables overlie impermeable
intercalations. Local flows developed at them, their descending branches are fed by the
water of brooks percolating on valley floors, the water flowing into subsidence dolines
that occur on the horst surface and by the infiltrating meteoric water. Waters of the outlet
branch emerge in karst springs situated high above the regional groundwater level or they
get into the regional groundwater along the fractures or faults that dissect the aquifuge
(Figure 5). The subsidence dolines and cave-ins of the horst belong to the karst systems
of local flows. Permeable superficial deposits are widespread on them and locally thin at
several places for the already mentioned reasons.

The majority of subsidence dolines occur on horsts belonging to this type. As regards
the horsts of Northern Bakony, subsidence dolines occur on 30% of horsts elevated to
the summit position, while they can be found only on 9.1% of the horsts in the summit
position and on 12.5% of cryptopeneplains [26]. These features developed at places where
the cover is thin or thinned out (Figure 7). Since the shafts of the mountains occur below
subsidence dolines, 90–95% of shafts can also be found on this horst type. Tés Plateau is a
good example of the distribution of subsidence dolines and shafts, with 137 dolines and
46 shafts. However, the majority of cave-ins (estimated 80–90%) can also be found on the
horsts of this type.

Cave-ins and cavities also occur subordinately in the sides of some epigenetic-regression
valleys, but their majority and those longer than 1–2 m are exclusively in the walls of
epigenetic-antecedent valley sections without exception. These valleys are formed on uplift-
ing horsts which are surrounded by cryptopeneplain. The streams of the cryptopeneplain
carve an antecedent valley section in the uplifting area of the horst. With their percolating
water, streams generate a perched water table and trigger its cavity formation, then they
deepen and open up the cavities at the top (inactive part) of the perched water table (cave-
in). However, the perched water table can continue to accumulate if there is an aquifuge
below the antecedent valley section. The Dudar Basin (cryptopeneplain) and the Sűrű hill
group (horst elevated to summit position) constitute such a system where, for example, in
the Ördög-árok there are more than 40 cave-ins of various sizes.

With their streams, cryptopeneplains have an important role in the hydrological and
karstic development of the horsts in their environs. However, in the area of some cryp-
topeneplains (Hárskút Basin, Lókút Basin, Porva Basin), the material of the impermeable
beds (Csatka Gravel Formation) has been partially eroded and the limestone outcrops
became partially covered with loess. At these sites, for example, on the floor of epigenetic
valleys, subsidence dolines, shafts and inactive shafts are common.

On the basaltic horst such as the Kab Hill, mixed allogenic–autogenic karst developed
with ponors with blind valleys (Figure 8) and with inflow cave-like shafts (Figure 9). With
the lack of erosion, they are of dissolution origin [32,43]. These features may have formed
at the margin of the basalt cap or at the limestone outcrops within the basalt cap. On the
basalt cover caprock, dolines are also common, which may develop into ponors with blind
valleys [26], but on terrains with loess, subsidence dolines also occur.

On threshold surfaces, drawdown doline groups (Tapolca Karst, the environs of
Devecser) are typical. The dolomite terrains of this horst type are dissected into mounds, but
some dolines of small depth also occur on these surfaces (between Márkó and Hajmáskér).
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Some spring caves can also be mentioned from this horst type. These are connected
to a former (Lóczy Cave) or present (the spring cave of Lake Hévíz) hypogene branch,
but cavities opened up due to anthropogenic activity can also be found (Cserszegtomaj
Caves). In case of the latter case, as well as the spring cave of Hévíz and the Lóczy Cave in
Balatonfüred, a hot water effect is dominant, but in the development of the Tapolca cave
system, lukewarm waters and cold waters also played a role. The landscape of threshold
surfaces also includes the spring cones (Tihany Peninsula, Figure 10) and pseudokarren
(Szentbékkálla, Figure 11).

 

Figure 11. (A) spring cone, (B) exposed cavity (Tihany Peninsula).

In Hungarian karst literature, both the Transdanubian Mountains with the Bakony
Region (which it is a part of) together are regarded as an independent karst type [44,45]. The
Transdanubian Mountains are called Transdanubian type, while the other karst areas are
called Aggtelek type. A more appropriate term is character instead of type. (Characteristics
of karsts of Aggtelek character coincide with those of temperate soil-covered karst.) The
difference may be traced back to the fact that the Transdanubian Mountains are poor in
karst features, but hypogene caves are characteristic [46] and erosion caves and solution
dolines are subordinate (they are absent). In contrast to the karsts of Transdanubian
character, erosion caves, rootkarren and solution dolines are typical of the karsts of Aggtelek
character [44]. However, morphological characteristics have become more accurate as
compared to an earlier classification (for example rootkarren can also be found in the
Transdanubian Mountains); basically, this differentiation is substantial.

The karst features of the Bakony Region are not widespread uniformly, but in patches
of variable size. Although it is the most intensively karstified part of the Transdanubian
Mountains, the frequency and size of their karst features is limited. The above characteristic
feature can be traced back to its separation into horsts and to recent uplift. As a result of the
former, karstification sites are localised (and thus, for example no ponors with significant
catchment area developed), while, as a result of the latter karstification being young, there
was little time for the development of karst features.

Karstic patches are constituted by subsidence dolines because this doline type is related
to permeable superficial deposit patches, and the water infiltrated into the caprock ensures
abundant (the water does not flow down low-inclined surfaces), permanent and uniform
water supply to the epikarst (the already mentioned low resistances are evidence for this).
This favours cavity formation and thus, shaft development in the epikarst. Abundant
infiltration ensures favourable conditions for the transportation of superficial deposits
into the karst. At sites where impermeable beds occur, neither subsidence dolines, nor
other karst features occur. However, the small size of the horsts also results in a patchy
appearance. On the other hand, the occurrence of solution dolines, a dominant variety
of temperate soil-covered karst, is subordinate. All this results from the fact that, as has
already been mentioned, the extension of low-inclined terrains is restricted in its uncovered
terrain. In spite of the position of threshold surfaces at low elevation, this doline type
occurs on them since their surface is low-inclined and hardly dissected.
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Impermeable caprock is widespread in the mountain region. If it is the material of
the Csatka Gravel Formation, a stream network develops on it because it is of clayey
composition (cryptopeneplain). Their stream and valleys stretch across the surrounding
horsts as epigenetic-regression valleys, on the floor of which, significant percolation may
take place. However, percolation sites are not ponors. It may occur that the gravel cover
already terminates in the area of the horst and its flowing water arrives at the margin of
the cover. However, since the cover is of small extension, not even valleys develop on its
surface. Waters arriving at the termination of the gravel cover form subsidence dolines on
the loess surface that interacts with the cover. Ponors with blind valleys only developed at
the termination of the basalt cover of the Kab Hill. Therefore, ponors with blind valleys are
subordinate and inflow caves that constitute the continuation of such features are absent
in the mountains. Concretions are subordinate either in the caves or on the surface, while
they are missing from the poljes.

As mentioned above, the most widespread cave type in the mountain region is the
cave-in. These are widespread in the sides of epigenetic-antecedent gorges. Their evolution
contributed to the erosion of the impermeable beds (along which phreatic cavity formation
took place) and of the stream since the area of the surrounding cryptopeneplain ensured
abundant water supply to this.

Shafts are also characteristic; their frequency is comparable to that on other temperate
karsts. The reason for this is the relatively high number of subsidence dolines. Subsidence
doline development and shaft development interact. Shafts enable the local transportation
of superficial deposits into the karst and thus, the development of indentations, while the
developing subsidence dolines collect surface waters and transmit them into the epikarst.
This favours the transformation of epikarst cavities into shafts.

There are no erosional inflow caves in the mountain region. The development of such
caves can only be expected on Kab Hill, but the low inclination of the basaltic terrain and
the lack of gravel do not favour erosion. Spring caves are also absent except for some
which were transformed by a warm water effect. The reason for this is that there are only
some karst springs in the mountains since their karst water, as mentioned above, flows in
the surrounding basins [20], and the water emerged gallery-like and not point-like before
karstwater extractions [18]

The stability of the surface karst of the mountains is also promoted by the fact that
there has been a land use change and return to forestry and grazing in the past decades.
These cultivation methods decrease the transport of superficial deposits into karst features.
Thus, these features become filled to a lesser degree, or, if they do become filled, it takes
place by natural processes.

Intensive mining activity took place in the mountains which could only be practiced
safely by artificially sinking the karstwater level. In the past decades, the karstwater level
has been rising and gradually reaching its former elevation. Thus, the operation of springs
and spas (including medicinal waters), which are fed by the karstwater of the mountains,
is ensured in the long term.

6. Conclusions

The karst of the mountains can primarily be related to various local flows, at which
epikarst systems developed.

The karstification of horst types and thus their karst features are different. The karstifi-
cation of horsts in the summit position is not significant since the water leaves the area of
these horsts, and there is no permeable cover, or it hardly ever occurs in their area. The
karstification of horsts elevated to the summit position is diverse where subsidence dolines
are predominant because the permeable cover is widespread. The development of cave-ins
was enabled by the impermeable intercalations of the horst and intensive valley deepening.

Cryptopeneplains only karstify at sites where their impermeable cover was denuded.
Streams starting from these terrains cause gorge development on horsts elevated to the
summit position and their cavity formation. Low-inclined surfaces of mountain marginal
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threshold surfaces favoured the development of some solution dolines and spring caves.
Features reflecting a hot water effect (spring caves, sandstone karren, spring cones) also
occur on this horst type. On the basaltic Kab Hill, ponor with blind valleys also developed.

Predominant karst features of the mountains are subsidence dolines, cave-ins and
shafts. One of the important directions of future research may be the study of the epikarst,
which helps obtain a better understanding of the development or lack of some karst features
on different horst types.
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Abstract: Globally, the loss of forest vegetation is a significant concern due to the crucial roles that
forests play in the Earth’s system, including the provision of ecosystem services, participation in
biogeochemical cycles, and support for human well-being. Forests are especially critical in mountains
environments, where deforestation can lead to accelerated biodiversity loss, soil erosion, flooding,
and reduced agricultural productivity, as well as increased poverty rates. In response to these
problems, China has implemented a series of ecological restoration programs aimed at restoring
forests. However, there is a lack of knowledge as to whether the forest cover is increasing or
decreasing, as well as the relative roles played by natural and human factors in forest change. Here,
we aim to address these issues by analyzing the pattern and process of the forest changes in Guizhou
province, a typical mountainous karst area with a fragile environment in southwestern China,
between 1980 and 2018, and evaluating the extent to which these forest changes were influenced
by natural and anthropogenic driving forces. Using a temporal sequence of satellite images and
a Markov model, we found that the forest cover increased by 468 km2, and that over 33% of the
cropland in Guizhou province was converted into forest between 1980 and 2018, with the most
significant increases in the forest cover occurring in Qiandongnan. Through correlation analyses
and generalized linear model (GLM) regression, we demonstrate that management factors exerted
a more significant positive impact on the forest cover than climate change. While the mean annual
precipitation and temperature were mostly stable during the period studied, the effects of population
and gross domestic product (GDP) on the forest changes weakened, and the influence of land-use
change markedly increased. These findings provide valuable information for resource managers
engaging in forest protection, deforestation prevention, and ecological restoration in similar regions.

Keywords: factors; forest change; Guizhou

1. Introduction

Globally, forest loss due to plantation forestry, agriculture, mining-related wildfires,
and urbanization has enormous implications, particularly for climate change and biodiver-
sity. As a result, governments, conservationists, and even private corporations are engaged
in efforts to curb these losses and promote forest recovery [1–4]. In China, a series of
ecological restoration programs have been implemented at the national, regional, and local
scales over the past several decades, including the Grain for Green Program (1999–2020)
and the Rocky Desertification Treatment Program (2008–2020) [5]. These interventions have
greatly improved the sustainability of China’s land systems, with the rate of forest cover
increasing from 8.6% in 1949 to 23.04% in 2020 [6]. Substantial forest recovery has been
detected through remote-sensing imagery, revealing an overall increase in greening since
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2000, most notably in China and India [7]. This trend is particularly prominent in certain
provinces, including Guizhou province, where the forest cover increased from 11.98% in
1949 to 61.5% in 2020 [8]. Ecological restoration interventions have significantly increased
the vegetation growth and carbon stock in China more generally [9,10]. It is clear that
continuous and long-term ecological restoration projects can, among other benefits, help
forests accumulate nutrients [11], and that embracing the implications of restoration inter-
ventions can contribute to the United Nation’s Sustainable Development Goals. It is the
interaction between the natural environmental and socio-economic factors that determines
forest dynamics, including recovery. Natural factors include those related to soil [12] and
climate, especially the mean annual temperature and rainfall [13–15]. However, the spatial
and temporal aspects of forest change in remote and environmentally fragile regions are
not fully understood, and the trajectory of the forest changes in China as a whole is still
subject to debate. While some locations have undergone ‘greening,’ others remain subject
to forest clearance [16–18]. Therefore, it is important to establish the details of recent trends
in forest cover, and their driving forces, especially in environmentally vulnerable regions,
such as the karst area of southwestern China, which has historically endured significant
levels of rocky desertification [19].

Guizhou province has a total area of 176,167 km2, of which 92.5% is hilly and 61.9% is
karst [20], and it is considered to be among the most environmentally vulnerable regions in
China. Karst topsoil is typically shallow, so if the forest vegetation is cleared, it is highly
susceptible to erosion [21] and produces a particular form of land degradation, known as
rocky desertification, which, in turn affects regional socioeconomic development. This has
led Guizhou to become the least developed province in China [22]. China has responded
to this land-degradation crisis in the karst region of its southwestern area, including
Guizhou province, through an integrated portfolio of ecosystem-restoration programs since
the 1980s. A number of previous studies described rocky desertification and associated
spatio-temporal variations in land-use change, the mechanisms underlying these processes,
and restoration responses [23–25]. Accelerated soil erosion and its underlying causes
have been a particular focus [26–28]. However, relatively little attention has been paid to
forest loss, which is an important element in land degradation and rocky desertification,
particularly in Guizhou province. The forests of Guizhou Province, lying in the central
part of southwestern China’s karst area, play a crucial role in the ecological security and
ecosystem services of a region that forms a part of an ecological safety barrier between
the Pearl River and the Yangtze River catchments, which makes it ecologically critical, but
highly vulnerable [29]. Understanding forest change is central to achieving sustainability
and providing support for decisions regarding land-use management in the region.

Land-use and land-cover change (LULCC) is the alteration of natural or semi-natural
landscapes due to human activities, such as urbanization, agricultural expansion, and
deforestation [30]. In previous research, developed numerous models were developed
to explore LULCC, in order to detect the changes in land use at specific locations and
analyze its drivers [31,32]. From the perspective of landscape ecology, these models can
be classified into three types: whole-landscape models, distributional models, and spatial-
landscape models [33]. However, these focus mainly on ecological processes while tending
to underplay or even ignore the role of human decision-making [34]. By the end of the
1990s, a considerable amount of tropical-deforestation-modeling work, represented by
Lambin [35] and Kaimowitz and Angels [36] emerged that considered the role of human
decision-making. Models of LULCC, including empirical–statistical models, stochastic
models, optimization models, dynamic simulation models, and integrated models [37],
can be categorized according to different criteria. Agarwal et al. [38] listed 19 models,
including Markov models, spatial-simulation models, and regression models, based on
their space, time, and decision-making characteristics. Among these, the Markov chain
(MC) model is widely used in the spatiotemporal evaluation of LULC changes [39]. The
choice of the model depends, to a large extent, on the particular scientific questions to be
answered, along with data availability. Although LULCC modeling has made significant
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progress in understanding the dynamics and effects of land-use change [40], there remains
a pressing need for more interdisciplinary research that integrates multiple drivers and
factors affecting land-use decisions. This includes the development of more advanced
modeling techniques that combine multiple methods [41]. The understanding of the
interaction between scales and across scales is likely to remain the research frontier of the
modeling of land-use/cover changes in the future.

The aim of this paper is to evaluate the change in forest cover and the relative impor-
tance of selected contributing factors in Guizhou province over four decades (1980–2018),
with a view to determining the relative influence of human and natural factors. Using a
remote-sensing monitoring dataset of multi-period land use and land cover from Landsat,
we employed a Markov model to analyze the forest change in the study area. Additionally,
we considered a range of environmental (e.g., soil erosion, karstification intensity, drought
index) and socio-economic (e.g., population, gross domestic product (GDP), and acces-
sibility) data to investigate the factors that influence forest change through a correlation
analysis and a generalized linear model (GLM) regression. The systematic understanding
of the forest change in Guizhou province in this paper has the potential to be used more
widely to develop ecological restoration strategies and promote more sustainable land-use
management in the future.

2. Materials and Methods

2.1. Study Area

Guizhou (24◦37′–29◦13′ N, 103◦36′–109◦35′ E) is representative of China’s southwest-
ern karst region, with over 60% of its land area consisting of the karst landform [42]
(Figure 1). The region encompasses a variety of landforms, including mountains, hilly
areas, plateaus, basins, and river valleys. Unlike other karst provinces, there are no exten-
sive plain areas, and the mean elevation is approximately 1100 m. The climate is classified
as subtropical humid monsoon, with an average annual temperature of around 15 ◦C
and an annual precipitation of approximately 1200 mm [43]. The environment is highly
susceptible to degradation, and it is particularly prone to accelerated soil erosion, resulting
in rocky desertification [44]. By 2016, karst-rock desertification in Guizhou was reported to
extend across almost 250,000 km2 of the province, making it was the most degraded karst
province in the country [45]. The region’s economy has experienced significant growth in
recent years. Agriculture, particularly cash crops such as oranges, peaches, and dragon
fruit, contributes greatly to rural livelihoods, although, due to the area’s ecological vul-
nerability, this focus on agriculture has led to environmental problems, such as ecosystem
fragmentation, a decline in biodiversity, soil erosion, and reduced surface runoff [46]. With
a population of 360 million in 2018, including a rural population of 189 million, the pressure
on the land has become unbearable, exacerbating land degradation in the study area [47].
Furthermore, national policies have led to the improvement and proliferation of highways
and high-speed railways, which have contributed to economic development, but they have
also led to the removal of vegetation and loss of ecosystem services [44].
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.
Figure 1. The geographical location of Guizhou province.

2.2. Data
2.2.1. Land-Use Data

Land use (1-km-resolution raster) data, based on visual interpretation of Landsat
TM/ETM imagery, were obtained for the years 1980, 1990, 2000, 2010, and 2018 from the
Resource and Environment Data Cloud Platform (China’s multi-period land-use–land-
cover remote-sensing data-monitoring set (CNLUCC); Resource and Environment Data
Registration and Publishing System) [48]. The dataset is the most freely available dataset in
China and has been widely used for detecting land-use change and analyzing ecosystem
services from local to national scale. Its accuracy in identifying cropland and built-up areas
is over 85%; its average accuracy for other land-use types exceeds 75%. Primary land-use
categories identified were cropland, forest, grassland, water, built-up, and ‘others’ (Table 1);
secondary categories included 25 sub-types of land use.

Table 1. Land-use–land-cover classification in Guizhou, China.

Class l Class 2/25 Land Use Sub-Types

Cropland Paddy field, dryland
Forest Forest land, shrubland, sparse woods, other forest areas

Grassland Highly covered grassland, middle-covered grassland, low-covered grass land
Water Canals, lakes, reservoirs and ponds, permanent ice and snow, intertidal zone, shoals

Built-up area Urban land, rural residential land, other built-up areas
Others Sand, Gobi, saline–alkali land, marshland, bare land, bare rocky land, others

2.2.2. Forest-Change Drivers

In addition to the mapping of land-use changes, several other drivers were considered
in developing the model. Given the vulnerability of the region to rocky desertification,
karstification intensity (KI) was included as a potentially important factor. The KI was
obtained from the Guizhou Institute of Mountain Resources. Slopes were also considered
important, as these influence the spread of forests that affect forest growth [49]. We derived
the slope factor from a digital elevation model (DEM) (2009) at a 30-m resolution from
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Geospatial Data Cloud (https://www.gscloud.cn/ (accessed on 30 January 2020)). Climate
characteristics, particularly drought frequency and intensity, also have a significant impact
on vegetation cover [50], and Guizhou is frequently affected by drought, which restricts
forest growth. As a result, both the drought index (the ratio of annual evaporation capacity
to annual precipitation) and mean annual precipitation were included as potential drivers.
The drought index was provided by the Guizhou Institute of Mountainous Climate and
Environment. Other factors relating to human activities, including urbanization, are known
to play significant roles in forest change [51]. Land-use change and ecological restoration
projects are considered direct human-activity factors [52,53] and, given that Guizhou has
been at the forefront of China’s economic growth since 2000, with the highest growth rate
in the country for the last three consecutive years, balancing economic development with
environmental protection is highly challenging [54]. Accordingly, we also included factors
associated the anthropogenic influence: GDP, population, and accessibility for analyzing
forest dynamics. The mean annual temperature/precipitation, accessibility, population
(people/km2), and GDP of nine municipalities in Guizhou were obtained from the Resource
and Environment Data Cloud Platform (REDCP) [48].

2.3. Methods
2.3.1. Data Preprocessing

Primary data were obtained and processed according to the methods presented in
Table 2, while a flow chart illustrating the methodology employed in this study is presented
as Figure 2:

Table 2. Data and methods of potential factors.

Drivers Original Data Source Processing Method Period

LUC Landsat TM/ETM
Resource and

Environment Data
Cloud Platform

Markov model and R 1980, 1990, 2000,
2010, 2018

P Land use, night light,
settlement density

Resource and
Environment Data

Cloud Platform
Spatial analysis 1995, 2000, 2010, 2015

GDP GDP, land use, night
light, settlement density

Resource and
Environment Data

Cloud Platform
Spatial analysis 1995, 2000, 2010, 2015

A State, county, and
township roads

Guizhou Institute of
Mountainous Resources Spatial analysis 2010

KI Lithological data Guizhou Institute of
Mountainous Resources Spatial analysis 2010

DI, MAP, MAT Precipitation,
evaporation

Guizhou Institute of
Mountainous Climate

and Environment,
Resource and

Environment Data
Cloud Platform

Spatial analysis 1980–2015

S DEM Geospatial Data Cloud Spatial analysis 2009

Notes that LUC, P, GDP, A, KI, DI, MAP, MAT, and S represent land-use change, population, gross domestic
product, accessibility, karstification intensity, drought index, mean annual precipitation, mean annual temperature,
and slope, respectively.
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Figure 2. Flow chart of methodology employed.

Forest change: Based on a Markov transition matrix [55] and spatial analysis function
of ArcGIS, a transfer matrix of different land types was obtained, and on this basis, land-use
changes, including forest cover, were estimated. Chord diagrams of land transformation
were constructed for Guizhou province and each of its nine major municipalities using R.

Land-use transition involves the changes in regional land-use patterns, and they are
significant components of land-use-transition studies [56]. Markov modeling is commonly
used to consider the processes and mechanisms of landscape-dynamics changes over the
longer term [55,57]. We adopted a transition matrix as the core part of the Markov model
(see Formula (1)), which is generally applied in estimations of land-cover changes [58,59].
While different types of conversion may occur, more attention was paid to those that
account for most of the forest change. In addition, we calculated the conversion ratio of the
main converted types through Formula (2). All analyses were conducted by ArcGIS and R.

T =

⎡
⎢⎢⎣

D11 D12 . . . D1n
D21 D22 . . . D2n
. . . . . . . . . . . .
Dn1 Dn2 . . . Dnn

⎤
⎥⎥⎦ (1)

where T refers to the conversion matrix of different types of land-use change from 1980 to
2018, Dnn refers to the change in the area (unit: km2) from one land-use type to another
during the study period, and n refers to the area of a certain type of land that was involved
in the computation.

Rij = Aij/Bi (2)

where Rij refers to the rate of the i type of land use converted to j type, Aij represents the
area of i type of land use converted to j grade, and Bi is the total area of i type of land in
1980 (unit: km2).

Population and Gross Domestic Product (GDP): These data were analyzed spatially in
ArcGIS 10.3. According to REDCP, population data were processed as follows:

POPij = POP ×
(

Qij/Q
)

(3)
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where POPij is the population-spatial-distribution data in a 1 km × 1 km grid, Qij is the
total weighting of land-use type, night light, and settlement density in a grid, POP is the
population of the county-level administrative unit in which the grid is located, and Q is the
total weighting of land-use type, night light, and settlement density for the county-level
administrative unit in which the grid is located.

According to REDCP, GDP data were processed as follows:

GDPij = GDP ×
(

Qij/Q
)

(4)

where GDPij is the GDP-spatial-distribution data in a 1 km × 1 km grid, Qij is the total
weighting of land-use type, night light, and settlement density in a grid, GDP is the
GDP of the county-level administrative unit in which the grid is located, and Q is the
total weighting of land-use type, night light, and settlement density for the county-level
administrative unit in which the grid is located.

Accessibility (A): This parameter refers to the accessibility of a location in terms of
transportation, including national, provincial, county, and township roads. The Euclidean
distance was calculated for each of the different levels of road, weighted according to
ranking of their importance (national > provincial > county > township), and then ana-
lyzed spatially.

Karstification intensity (KI): The degree of karstification was classified as follows, accord-
ing to the purity of carbonate: detrital carbonate-reservoir rock (DCRR), carbonate-reservoir
rock with detrital reservoir rock (CRR-DRR), and non-carbonate rock (NCR). Weights were
assigned according to karstification intensity, whereby DCRR > CRR-DRR > NCR.

Drought index and mean annual precipitation/temperature: A drought index [60]
was obtained from Formulae (5)–(7). Next, based on Kriging interpolation in ArcGIS10.3,
the map of drought index was made.

K = E′/P′ (5)

P′ = P/PP (6)

E′ = E/EP (7)

where K denotes the drought index of any period, P′ describes the relative rate of change in
precipitation during the period (1980–2015), P represents annual total precipitation for 2015,
PP is the mean annual precipitation during the period (1980–2015), E′ describes the relative
rate of change in evaporation during the period (1980–2015), E represents the evaporation
in 2015, and EP is the mean annual evaporation during the period (1980–2015).

Slope: Following image cutting and splicing, DEM was used to classify slopes, as
follows: 0–6◦, 6–15◦, 15–25◦, 25–35◦, and >35◦.

2.3.2. Analysis of Drivers

Firstly, we explored the relationship between forest area in 2018 and its drivers. Data
for the most recent available year were used to consider potential drivers as indicated: land
use change (2018), population (2015), gross domestic product (GDP, 2015), accessibility
(2010), karstification intensity (2010), drought index (2015), mean annual precipitation
(2015), and slope (2009). Using them as baseline values, we then determined the influence
of these factors on forest change over time.

To assess the influence of these factors on forest change over time, we conducted a
correlation analysis between forest changes and the various drivers and then applied gener-
alized linear model (GLM) regression to quantify the relative contribution of each variable.
The GLM regression extends linear model regressions by expanding the distribution range
of dependent variables and introducing a continuous function, and it is generally applicable
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to non-normally distributed data [61]. As Formulae (8)–(10) show, the model is a function
of mean μ with a linear combination xβ formed from regressor x and coefficient vector β.

μi = E(YI |X1, X2, . . . , Xk), i = 1, . . . , n (8)

ηi = g(μi) (9)

g(μi) = ηi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + . . . + βkXik (10)

where X is explanatory variables (factors driving forest change), YI is dependent variables
(the area of forest), μi is n independent samples subject to exponential distribution; ηi
represents k linear combinations of explanatory variables; g(μi) refers to a function linking
μi and ηi, and k is the number of explanatory variables.

3. Results

3.1. Spatio-Temporal Patterns of Forest Change in Guizhou Province
3.1.1. Forest Transition

Forest transition describes the range of forest change, from shrinking to expansion [62,63].
According to Table 3, forests were the largest land-use type (53%) from 1980 to 2018 and,
while their distribution remained relatively stable, some increases over time were evident
(Figure 3a: Forest change in Guizhou Province). Notably, the forest cover reached its
lowest value in 2000. In terms of the forest subtypes, Table 4 shows that the greatest
increase was in the category ‘forest land’ (i.e., forests with greater biomass and substantial
tree-canopy cover).

 
Figure 3. (a) Forest changes in Guizhou Province. (b) Average forest cover in nine municipalities.
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Table 3. Guizhou land-use changes from 1980 to 2018.

Year

Cropland Forest Grassland Water Built-Up Area Others Total Area

Area
(km2)

(%)
Area
(km2)

(%)
Area
(km2)

(%)
Area
(km2)

(%)
Area
(km2)

(%)
Area
(km2)

(%) Area (km2)

1980 49,037 27.92 94,304 53.69 31,423 17.89 363 0.21 484 0.28 36 0.02 175,647
1990 48,926 27.85 94,413 53.75 31,366 17.86 380 0.22 517 0.29 44 0.03 175,646
2000 49,318 28.08 93,378 53.16 31,951 18.19 395 0.22 561 0.32 44 0.03 175,647
2010 49,184 28.01 94,540 53.84 30,718 17.49 467 0.27 641 0.37 37 0.02 175,587
2018 48,552 27.64 94,772 53.95 29,382 16.72 721 0.41 2225 1.27 30 0.02 175,682

Table 4. Forest subtypes in Guizhou from 1980 to 2018 (km2).

Forest Subtypes 1980 1990 2000 2010 2018 Changes

Forest land 24,038 24,048 23,673 23,818 24,392 354
Shrubland 43,617 43,675 43,163 43,339 43,469 −148

Sparse woods 26,364 26,403 26,238 27,073 26,615 251
Other forest areas 285 287 304 310 296 11

3.1.2. Spatial Changes

The distribution of the forest area in Guizhou is uneven, decreasing from east to west.
Figure 3b shows the mean annual proportion of total forest cover in the province’s nine
major municipalities from 1980 to 2018. Qiandongnan, in the southeast, and Zunyi, in the
north, have the greatest forest cover, accounting for 40% of the overall total, followed by
Qiannan (south), Bijie (northwest), Tongren (northeast), and Qianxinan (southwest) with
15%, 12%, 11%, and 9%, respectively. Liupanshui (west), Anshun (next to Liupanshui), and
Guiyang (central) have the lowest forest cover.

Based on temporal changes over the last 40 years, Figure 4 and Table 5 suggest that the
forest cover was either maintained or increased, with the exception of Tongren, Qiannan,
Qianxinan, and Anshun, all of which experienced some degree of forest loss. Qiandongnan
experienced the greatest degree of forest increase, with 478 km2 (2.6%), followed by Bijie
and Guiyang, with increases of 202 km2 (2.5%) and 138 km2 (3.6%), respectively. Zunyi
and Liupanshui both experienced only very limited increases in forest area (34 km2 and
14 km2, respectively).

Table 5. Forest changes from 1980 to 2018 in nine municipalities (km2).

Year 1980 1990 2000 2010 2018 Changes

Anshun 4442 4447 4417 4457 4432 −10
Bijie 11,388 11,397 11,380 11,548 11,590 202

Guiyang 3872 3874 3869 3883 4010 138
Liupanshui 3947 3959 3970 4021 3961 14
Qiandongnan 18,563 18,587 18,458 18,773 19,041 478

Qiannan 14,640 14,651 14,279 14,422 14,515 −125
Qianxinan 8010 8017 7948 8067 7980 −30
Tongren 10,155 10,156 9846 9972 9922 −233
Zunyi 19,287 19,325 19,211 19,397 19,321 34
Total 94,304 94,413 93,378 94,540 94,772 468
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Figure 4. Spatial pattern of forest changes in nine municipalities.

3.2. Possible Drivers of Forest Change
3.2.1. Land-Use Change

Although the overall forest increase during the study period was relatively small
across the province as a whole, in very substantial areas, forests replaced agriculture.
Figure 5 demonstrates that forests replacing cropland happened in all nine municipalities
in Guizhou Province, which is attributable largely to the implementation of the Grain for
Green (GFG) project. Indeed, 36% of the cropland was converted into forests, which is
significantly higher than the equivalent values for the grassland and construction land.
With respect to individual municipalities, 47% of the farmland was converted into forests
in Qiandongnan, followed by Zunyi, Qiannan, and Tongren, where 40%, 39%, and 37% of
the land, respectively, was converted from agricultural land. Bijie had the smallest portion
of cropland converted into forest land (29%).

The implementation of the Grain for Green program accounts for a considerable, and
indeed increasing, proportion of the total forest changes in Guizhou (Figure 6). Prior to the
implementation of this policy in Guizhou in 2000, the forest cover was largely unchanged.
For instance, the forest area increased by only 109 km2 from 1980 to 1990, which was
much less than the change during the periods of 1990–2000, 2000–2010, and 2010–2018
(see Figure 3a) and, indeed, the forest cover actually decreased across the province in
2000. In Figure 6, it can be seen that, in 2018, 17% of the cropland was converted into
forests in Guizhou. Given that Guizhou is located in the upper and middle reaches of
the Yangtze and Pearl Rivers, the forest-cover change has also been brought about by the
implementation of two of China’s eight major shelterbelt projects (the Shelterbelt Program
for Upper and Middle Reaches of the Yangtze River, 1989 and the Shelterbelt Program for
the Pearl River, 1996).
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Figure 5. Percentages of other land-use types converted into forests in Guizhou and its nine major
municipalities 1980–2018. Ei (i = 1, 2, 3, 4) denotes the area of the i category of land in 2018, which
transformed from the j category of land in 1980; Vj (j = 1, 2, 3, 4) represents the area of the j class of
land in 1980, which converted into the i class of land in 2018; 1 = grassland, 2 = construction land,
3 = cropland, 4 = forest. Red arrows indicate percentages of i-type land in 1980 converted into forests
by 2018.

 

Figure 6. Percentages of four major land use types converting into forests in Guizhou: 1980 to 2018.
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3.2.2. Population Effects

Figure 7a indicates that the population densities are generally higher in the western
part of the province and this, in effect, reflects the forest distribution. At a very basic level,
therefore, population density influences forest disturbance or clearance, a relationship that
is further illustrated through the correlation analysis in Table 6.

 

Figure 7. Drivers of forest change. (a) Population density in 2015 (people per km2). (b) Distribution
of GDP in 2015 (RMB 10,000/km2). (c) Accessibility and forest area. (d) Karstification intensity.
(e) Spatial distribution of drought index. (f) Slope in 2009.
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Table 6. Correlations between and multiple GLM analyses of the relationships between forest areas
and factors.

Method Correlation Analysis Multiple-GLM Regression

Variable r p SS, %
Drought index 0.084 0.460 0.64

Karstification intensity −0.097 0.394 0.85
Mean annual precipitation −0.296 ** 0.008 0.97

GDP −0.255 * 0.024 1.88
Population −0.281 * 0.012 2.23

Land-use change (LUC) 0.580 ** 0.000 2.27
Accessibility 0.388 ** 0.000 2.29

Slope of 15–25◦ 0.882 ** 0.000 88.87
* p < 0.05, ** p < 0.01; SS, proportion of variances explained by the variable.

3.2.3. GDP

Figure 7b illustrates the GDP per km2, which also takes land use, night light, and
settlement density into account (for more details, see sections on methods and data). In
parallel with the population density, the western parts of Guizhou province also have high
GDP values and lower forest cover, so there is an inverse relationship between GDP and
forest area (Table 5). The areas with higher GDP exhibit forest loss as a consequence of
economic development and urban expansion.

3.2.4. Accessibility

Figure 7c indicates that access to local transport routes negatively influences forest
cover. The road and railway density are greatest in the western and southwestern parts
of the province, and the effect of this on forest change is clearly evident. Qiandongnan is
characterized by lower accessibility levels and is richer in forest resources, while Guiyang,
Anshun, and Liupanshui have greater densities of both road and railway routes, which
negatively affect forest recovery.

3.2.5. Karstification Intensity

The substantial karst area in Guizhou province is an important factor because the
lack of surface water and relatively thin soils constrain forest development. Indeed, the
distribution of karst (Figure 7d) has a negative influence on the forest cover (Table 6).

3.2.6. Drought Index (DI)

The balance between moisture inputs, in the form of precipitation, and outputs, in the
form of evaporation, is a key determinant of the vegetation type, and the drought index
is used here to account for this balance. Figure 7e illustrates marked spatial patterns in
the occurrence of drought in Guizhou province, and suggests that the lower values in
Qiandongnan are associated with greater forest cover. Statistically, however, the effect of
moisture stress is less marked than may have been expected (Table 6).

3.2.7. Slope

In this study, the slope angle was classified into five categories: 0–6◦, 6–15◦,15–25◦,
25–35◦, and >35◦ (Figure 7f). Specifically, the forests are distributed preferentially on slopes
of 15–25◦ and occur less frequently on lands with lower slope angles, presumably because
these lands are more suited to agriculture and urban development. Table 6 illustrates a
very strongly positive correlation between slopes of 15–25◦ and forest area.

From the correlation analysis and multiple general linear models, it can be seen
(Table 6) that 15–25◦ slopes play a dominant role in the forest areas, explaining 88.87% of the
variation, while accessibility and land-use change account for 2.29% and 2.27%, respectively,
followed by population effects (2.23%), GDP (1.88%), mean annual precipitation (0.97%),
karstification intensity (0.85%), and drought index (0.64%).
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Table 6 further reveals that the mean annual precipitation, GDP, population effects,
land-use changes, accessibility, and slopes of 15–25◦ all play a role in forest change. Due to
data-availability constraints, we ultimately selected mean annual precipitation, GDP, popu-
lation, and land-use change (LUC) for further analysis as drivers of forest-cover changes.

3.3. Relative Importance of Drivers Changes over Time

To determine the relative importance of the drivers for forest change over time, we
conducted a correlation analysis and multiple-GLM regression for the different periods
(Table 7), taking the mean annual precipitation (MAP), annual mean temperature (MAT),
population, GDP, and cropland conversion into forest as key drivers of forest changes over
time, although, given the data limitations, the analysis was conducted only from 1990 to
2018, and the data for GDP and population in 1995 were used for 1990.

Table 7. Changes in drivers of forest variation over time.

Year Variable MAP MAT Population GDP LUC

1990
Correlation analysis r 0.095 0.064 −0.379 ** −0.150 –

sig 0.391 0.565 0.000 0.174 –
Multiple-GLM regression SS, % 3.34% 3.59% 74.44% 18.62% –

2000
Correlation analysis r −0.013 0.095 −0.283 ** −0.261 * –

sig 0.908 0.391 0.009 0.016 –
Multiple-GLM regression SS, % 25.63% 11.12% 63.08% 0.18% –

2010
Correlation analysis r 0.111 0.006 −0.317 ** −0.310 ** 0.236 *

sig 0.345 0.960 0.006 0.007 0.042
Multiple-GLM regression SS, % 9.77% 13.70% 9.28% 0.07% 67.18%

2018
Correlation analysis r −0.064 0.012 −0.312 ** −0.282 * 0.784 **

sig 0.583 0.921 0.006 0.014 0.000
Multiple-GLM regression SS, % 0.34% 2.78% 3.04% 2.04% 91.81%

Notes: Annual precipitation (AP, mm), annual mean temperature (AMT, ◦C), population (per person/km2), GDP
(RMB 10,000/km2), LCU (km2); * p < 0.05, ** p < 0.01; SS, proportion of variances explained by the variable.

In Table 8, it can be seen that, prior to 2000, the population exerted the most significant
impact on the forests but, after 2000, its influence was reduced to 3.04%. This may be
attributed to the type of economic development in Guizhou before 2000 [64], whereby the
inhabitants exploited forests for firewood [65] or settled on unused land [46]. Currently,
the substitution of gas and hydropower for firewood helps to reduce the pressures of the
population on the forests [65]. The negative effect of GDP on forest change diminished over
the years, probably due to the transformations associated with economic development,
which has reduced dependence on the direct consumption of natural resources, including
forests [66]. The impact of the land-use change, mainly the conversion of cropland into
forests, increased to 91.81% by 2018, probably as a consequence of the implementation of
GFG [67]. While some fluctuations were observed during dry periods, the influence of
MAP and MAT on the forest cover did not vary substantially in recent years.

Table 8. Comparison of results of this study with other products (areas in km2).

Data Resolution 1980 1990 2000 2010 2018
Changes

2000–2018
Changes

1980–2018

CNLUCC (this study) 1 km 94,304 94,413 93,378 994,540 94,772 1394 468
GlobeLand30 30 m – – 83,079 84,472 83,329 250 –
GLASS-GLC 5 km 4868 6110 6270 6969 7018 748 2150

MODIS/006/MCD12Q1 500 m – – 10,696 12,707 22,762 12,066 –
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4. Discussion

4.1. Validation of Forest Change in Guizhou through Comparison with Other Data Sources

We compared the results of our study with those of other land-use products to verify
the trends in the forest changes (Tables 8 and 9). We used ArcGIS spatial analysis to
determine the forest change according to MODIS/006/MCD12Q1, GlobeLand30, and
GLASS-GLC. It can be seen in Table 6 that all the products show an increasing trend
in forest cover during recent decades, albeit with some interannual differences. Table 8
reveals that the data sources, definition/classification criteria, classification technique, and
spatial resolution of the land-use data underlie the differences in the estimation of different
annual forest areas and forest changes [68,69]. For example, the differences in spatial
resolution between GLASS-GLC and CNLUCC may affect the land-cover classification
and explain the minor differences in forest-change estimation. Moreover, shrubland is a
single class in Global Land 30, and it is not classified as forest land, which may explain
why the forest-change increase in Global Land 30 is lower than that in this study. Some
grasslands are misclassified as shrublands in MODIS/006/MCD12Q1 and, since shrublands
are components of ‘forest’ [70], the forest change from 2000 to 2018 in that product is
much greater than in the results presented by CNLUCC, in which grassland is a single
category, independent of forest cover. Moreover, CNLUCC is obtained through detailed
field data [71], and it has been widely applied in many major projects, such as the Western
Development of China and the second national soil-erosion survey of China, among
others (http://www.resdc.cn/data.aspx?DATAID=95 (accessed on 30 January 2020)), which
indicates its reliability. It is noteworthy that in CNLUCC, the forest area decreased in 2000,
while in GLASS-GLC, it marginally increased. This difference has two possible causes, viz.
the two products differ in terms of spatial resolution and classification technique. Notably,
the spring and summer droughts in 1989 and the serious drought in southwestern China in
2000 may have interrupted the otherwise consistent increase in forest cover over time [72].

Table 9. Parameters of data products relating to forest-cover estimation.

Data Spatial Resolution Data Source
Classification

Technique
Accuracy Subclass or Description

CNLUCC 1 km HJ-1A/B, Landsat
TM/ETM+/OLI Visual interpretation Above 75% Forest land, shrubland, sparse

woods, other forest areas

GlobeLand30 30 m Landsat TM/ETM+ POK-based method

2000/2010:
80.33 ± 0.2%

2020:
85.72%

Over 30% of land covered with
trees and vegetation, including

deciduous broad-leaved
forests, evergreen broad-leaved
forests, deciduous coniferous
forests, evergreen coniferous

forests, mixed forests, and
sparse forests with crown

coverage of 10–30%

GLASS-GLC 5 km Landsat TM/ETM+

Conventional
maximum-likelihood

classifier, J4.8
decision-tree classifier,

Random Forest
classifier, and

support-vector-machine
classifier

82.81%

Broad leaf, leaf on; broad leaf,
leaf-off; needle leaf, leaf on;

needle leaf, leaf off; mixed leaf
type, leaf on; mixed leaf type,

leaf off.

MODIS/006/MCD12Q1 500 m MODIS Decision-tree
classification algorithm 66.42%

Evergreen needleleaf forests;
evergreen broadleaf forests;

deciduous needleleaf forests;
deciduous broadleaf forests;

mixed forests; closed
shrublands; open shrublands

Notes: sources of the table are from [67,68].

4.2. The Effects of Ecological Restoration Policy on Forest Change

Guizhou has the largest karst area in the world [73]. Since the release of the “Decision
on Basic Greening of Guizhou in Ten Years” in 1990, China has implemented a batch
of key projects to protect and restore the fragile ecological environment. These include
the Shelterbelt Program for Upper and Middle Reaches of the Yangtze River (1989), the
Natural Forest Protection Project (1998), and the Grain for Green program (1999), all
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of which were applied in Guizhou and contribute to greening [74,75]. In 2008, China
imposed the “Outline of Comprehensive Control Plan for Rocky Desertification in Karst
Areas,” which included 55 counties in Guizhou Province among China’s 100 pilot counties
for the comprehensive control of rocky desertification, with the aim of further restoring
the ecological environment. In subsequent years, Guizhou vigorously supported the
development and protection of forest resources through various initiatives, such as the
Afforestation Planning across County and Township and Village in Guizhou Province
(2014–2017), the Three Year Action Plan for Green Guizhou Construction (2015–2017), the
Guizhou Forestry Industry Three Year Multiplication Plan (2015–2017), the Implementation
Plan on Promoting the Development of Forestry Industry in Guizhou Province, and the Ten
Forestry Industry Bases Construction Plan of Guizhou Province (2018–2020). Additionally,
to strengthen the protection of forest resources, Guizhou strictly implemented a forest-
cutting quota system to ensure that the total growth of trees was far greater than the total
consumption. It also carried out forest-ecological-benefit compensation (2004) and enforced
a special law enforcement campaign to protect forest (2014). Guizhou has also reviewed
and approved the use of forest land and defined the forestry ecological red line to strictly
protect and rationally use forest land resources [76].

In short, China as a whole, and Guizhou in particular, have implemented various
targeted policies to hasten vegetation restoration and protect their forests, all of which have
contributed to the increase in forest cover (Figure 8). With the implementation of ecological-
restoration and protection programs, this trend seems set to continue [16]. According
to the Guizhou Statistical Yearbook, forest cover is defined as the ratio of the forest area
to the total land area, expressed as a percentage. According to national regulations, this
also includes shrublands and farmland–forest mosaic areas. Therefore, the level of forest
resources and greening is even greater than that recorded in our study.

Figure 8. Changes in forest cover (%) in Guizhou province (source: Guizhou Statistical Yearbook).

4.3. Limitations and Prospects

Although forest changes may be driven by multiple factors, not all of which are
addressed in this study, our analysis, based on the conditions of the study area, considers
the factors that are most likely to be significant. The findings offer important support for
the government in identifying key areas for forest conservation and restoration.

Nevertheless, there are some limitations. For example, the data relating to some of the
explanatory variables were not available for the entire period, meaning that in some cases,
we used data from the closest suitable year in the analysis. Other relevant driving factors
should be the subject of future research and analysis, such as the choice of afforestation
species, the method of production of seedlings, and specific planting-environment condi-
tions. Species selection, in particular, is a key challenge in afforestation [77,78], and the
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selection of the correct species mixtures can markedly increase the success of the restoration.
In addition, the choice of appropriate species for specific environments, which can adapt to
current and future environmental conditions, is crucial [79]. In degraded ecosystems, plant-
ing species that can withstand particular environmental constraints should be used. Other
factors, such as the occurrence of vegetation fires, also need to be considered [80], as these
may affect the rate of tree recruitment, forest-age structure, and species composition [81,82].
The effects of soil humidity on forest recovery are complex and may be important in seed
germination [83], while soil moisture is a further constraint on successful regeneration [84].

5. Conclusions

In Guizhou province, forests are a prominent land type due to the favorable hydrother-
mal conditions, and the results of this study show that the forest cover has increased over
the last few decades. In terms of area, Qiandongnan holds the largest share of forest, and
experienced the most substantial increase of all the nine municipalities during the study
period. On the other hand, Liupanshui, in the west of Guizhou, has the lowest forest
cover and exhibited very little change overall. While forest changes are the result of both
natural and artificial factors, the relative influence of these factors shifted over time. Prior
to 2000, the population exerted a much stronger influence on the forests but, since then,
the function of other factors has increased, particularly land-use changes. The nine major
municipalities in Guizhou experienced different outcomes as a result, with Qiandongnan
exhibiting the highest percentage of farmland converted into forest, at 47%, followed by
Zunyi, with 40%, Qiannan, with 39%, and Tongren, with 37%. Bijie has the smallest portion
of cropland converted into forest (29%). These results emphasize the dynamic nature of
driving forces in determining forest cover and demonstrate the value of geospatial analysis
in understanding their emerging influence. The methodology and modeling approach
adopted here are used to illustrate the relative roles of natural and management factors
and may be applied in other similar regions to reduce forest degradation and increase
forest restoration.
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Abstract: Understanding spatiotemporal shifts in vegetation and their climatic and anthropogenic
regulatory factors can offer a crucial theoretical basis for environmental conservation and restoration.
In this article, the normalized difference vegetation index (NDVI) of the Miaoling area from 2000
to 2020 is studied using a trend analysis and the Mann–Kendall mutation test (MK test) to review
the vegetation’s dynamic changes. Our study uses the Hurst index, a partial correlation analysis,
and a geographic detector to investigate the contributions of climate change and human activities
to regional vegetation changes and their drivers. We found that Miaoling’s annual average NDVI
was between 0.66 and 0.83 in 2000–2020, with a mean of 0.766. The overall trend was slow upward
(0.0009/year), and 53.82% of the region continued to grow and gradually increased from west to
east in the spatial domain, among which the karst regional NDVI distribution area and its growth
rate were higher than those of non-karst sites. Based on correlations between climatic factors and
NDVI, precipitation seasonality (coefficient of variation, CV) had the strongest correlation (positive
correlation) with NDVI, while vapor pressure deficit (VPD) had a negative correlation with NDVI. In
the interaction, human activities played a dominant role in the influence of NDVI on the vegetation
of Miaoling. The night light index had the most explanatory power on the NDVI (q = 0.422), and
the interaction between anthropogenic factors and other factors dominated its explanatory power.
This study has academic and practical importance for the management, protection, and sustainable
development of karst basins.

Keywords: vegetation dynamics; Miaoling; karst plateau; trend analysis; geographic detector

1. Introduction

Since the Anthropocene, human-induced global climate change has had a significant
impact on terrestrial ecosystems [1]. As carbon, water, and energy exchangers between land
and air, plants can provide people with oxygen, food, fiber, fuel, carbon sinks, and other
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valuable ecosystem services [2–4]. Accordingly, significant changes in the global climate
and their impacts on vegetation growth over recent decades have received increasing
attention [5]. These include changes in climate and environmental conditions as well as
human activities, such as land use change. Environmental factors include a wider range of
chemical, physical, and biological elements that can affect ecosystems, including distur-
bances such as droughts, fires, and floods [6]. The normalized difference vegetation index
(NDVI) is becoming a significant indicator in studying the spatial vegetation dynamics of
regional ecological changes [7–9]. Thus, the role of climate and human factors in vegetation
dynamics is one of the hottest topics in global change science [10,11].

The impact of climate change and human activity on vegetation change has been studied
by many scientists. Research shows that climate change mainly impacts vegetation by chang-
ing climate, temperature, precipitation, soil moisture, and seasonal variations [7,10,12,13].
Amongst these, temperature controls the growth and distribution of vegetation by prevent-
ing the onset, termination, and distribution of the photosynthetic process [14,15], which is
considered the main cause of the greening trend in northern latitudinal and elevated regions
(Qinghai–Tibetan Plateau) [16–18]. However, in the middle and lower latitudes, tempera-
ture does not have an important impact on plant growth. However, precipitation has a clear
role in boosting vegetation growth in arid and semi-arid regions [19,20]. For example, in
southwest Chinese karsts [21,22] and Xinjiang [23], precipitation seasonality and variability
significantly affect vegetation change. Precipitation, rather than temperature, has become
the key factor controlling vegetation growth [20,24]. Soil moisture, which is strongly related
to temperature and precipitation, has become an important limiting factor in arid and semi-
arid areas. Furthermore, with high temperatures and heatwaves, the atmospheric vapor
pressure deficit (VPD) is becoming an increasingly important driver of plant community
function. High VPD can induce plant stomatal closure to prevent high water loss [25,26],
which has been identified as a major factor in extreme drought-induced plant death [25].
Clearly, the impacts of climate change on vegetation cover are diverse and complex because
of regional variations in climate change and ecological environmental conditions.

At present, vegetation changes and their spatial patterns are strongly affected by
human activities. With the rapid development of the world’s population and economy,
the impact of anthropogenic activities on changes in surface vegetation cover is increasing,
affecting the balance of terrestrial ecosystems on a large scale [8]. Among these, land use
change is a significant and strongly spatially changing factor in vegetation change. On
the one hand, unreasonable agricultural activities, excessive reclamation, grazing, and
urban expansion significantly reduce vegetation cover [27,28]. On the other hand, human
activities can increase vegetation cover by planting trees, closing hills to reforestation,
and improving agricultural technology [29,30]. Besides land use change, many studies
have used the night light index (NLI) to characterize regional economic development or
urbanization and the intensity of surface human activities [29–31]. Therefore, the NLI was
included as one of the factors influencing vegetation in the NDVI.

There are few studies on the connection between vegetation changes and their drivers
in important watersheds in the karst region, although there have been many studies on the
impact of climate variation and human behaviors on vegetation change [3,7,10,15,19,20].
Miaoling Mountain is an important watershed ecological security barrier in the karst
region of southwest China. It is located in the center of the core area of southwest China’s
karst plateau. The contradiction between man and land is pronounced due to the high
ecological sensitivity and vulnerability of karst areas, plus climatic factors. Biomass above
ground [32,33] and biomass below ground [34,35] are significantly lower in karstic forests
than in non-karstic forests. Therefore, vegetation plays an important role in managing karst
desertification and restoring ecosystems [36]. However, to our knowledge, the driving
mechanism of human activities on NDVI changes in vegetation in the Miaoling’s karst
watershed is still unclear; there is no research to quantify how climatic and human factors
affect vegetation in the area. Additionally, the impact of each driver on vegetation change
has not been quantified.
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Based on this deficiency, this article aims to study the vegetation dynamics of important
watersheds (Miaoling) in karst areas from the following four perspectives: climate, human
activity, topography, and soil. The aims of this article are as follows: (1) to analyze the
variation characteristics and trends of the NDVI’s spatial distribution in Miaoling from
2000 to 2020; (2) to explore the correlation between climate factors and NDVI; and (3) to
explore the key driving factors affecting the NDVI of Miaoling vegetation. The results of
this study have far-reaching significance for the sustainable ecological development of karst
areas in southwest China and the realization of China’s strategic goal of “carbon peaking
and carbon neutrality”. At the same time, it provides a reference value for the vegetation’s
dynamic driving factors in the important karst watershed and theoretical guidance for
ecological environment management and sustainable development of the watershed.

2. Materials and Methods

2.1. Study Area

Mt. Miaoling, the research site, is located in the center of the core region of the Karst
Plateau in southwest China. It is an important watershed for the ecological security barrier
of the watershed in the karst region of southwest China. Its main range (25.73◦–27.16◦ N,
103.82◦–109.48◦ E) takes the watershed of the Pearl River system and the Yangtze River
system as the main axis and then extracts the Miaoling study area from the small watershed
in the north and south of the main axis and divides it into east, central, and west sections
(Figure 1). From east to west, Miaoling is the watershed of the Yuanjiang River Basin,
the Liujiang River Basin, the Wujiang River Basin, the Hongshui River Basin, the Niulan-
Jiang-Heng He River Basin, and the Beipanjiang River Basin. The altitude in the area is
146–2877 m, and the peaks are often above 1500–2000 m. The main peak of the eastern
section is Leigong Mountain, at up to 2179 m. The middle section of Doupeng Mountain
is 1961 m high, and the western section with Laowang Mountain is 2127 m above sea
level. The eastern, central, and western parts reach an altitude of 2179 m. Miaoling is a
humid, mountainous area with a sub-tropical monsoon climate. The main vegetation in
the Miaoling Mountain area consists of mixed evergreen and mixed broadleaf forests as
the primary forest type and shrubs, grass, and forbs as the vegetation degradation type,
which differs significantly from the zonal non-karst vegetation of evergreen broadleaved
forests in subtropical China (ECVC 1980) [37,38]. It is one of the important forest areas in
Guizhou Province. Miaoling has no tectonic veins, and the geology and topography of the
sections are very different. Additionally, it is formed by a number of north–south anticlines
composed of hard rock formations and a combination of uplifted and high regions. The
layered landforms composed of planes and large karst basins are the most prominent
regional landforms, thus forming unique landscapes such as planes with concentrated
arable, basin areas, and terraced fields located high on the hillsides.

2.2. Data

The NDVI is based on the Google Earth Engine cloud computing platform and selects
US remote sensing imagery from the Landsat 5, Landsat 7, and Landsat 8 satellites with
16-day temporal resolution and 30 m spatial resolution. At the same time, the dataset was
referenced by the Land Use and Global Change Remote Sensing Team of the Institute of
Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences,
with a spatial resolution of 30 m and a temporal resolution of each year [39]. Through
methods such as series data preprocessing and data smoothing, the maximum NDVI value
of each pixel in a year from 2000 to 2020 was obtained. The annual mean NDVI values
from 2000 to 2020 were generated using the maximum synthesis method (MSV). When
generating long-time series NDVIs, the maximum value synthesis method can decrease
the effect of cloud cover, shadows, suspended particles in the atmosphere, etc., so that the
error is reduced and the accuracy is improved [39].
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Figure 1. Location of the Miaoling Mountain area.

The DEM data involved in this study are derived from the geospatial data cloud,
which is downloaded using a rectangular frame clipping area and then transformed into
raster data through an ArcGIS overlay, which is the basis for the calculation of the total
height, slope, and aspect of the research region. The land use change data are sourced
from Zenodo (https://zenodo.org/, accessed on 15 June 2020) and published by Huang
Xin et al. from Wuhan University in China [40]. The biggest advantage of this dataset is
its continuous 30 m land use classification results. The NLI can be used to describe the
intensity of human activity and is closely linked to economic development. This study
selected it as a factor in human activity and conducted a related driving analysis.

The meteorological data use raster data for precipitation and air temperature with a
resolution of 1 km. This dataset introduces the influence of terrain on the climate in the
temperature and precipitation data generated by the ANUSPLIN interpolation tool. The
interpolation error is the smallest, and the accuracy is greatly improved compared with
other interpolation methods [41]. The analysis of meteorological elements is more suitable.
The meteorological interpolation software ANUSPLIN is used to interpolate the data into
monthly synthetic precipitation multi-band data with a spatial resolution of 1 km. It is
highly accurate, has high resolution, is a long-time series, and has better scientific research
and application potential [42]. The above-mentioned monthly synthetic temperature and
precipitation data are extracted by ArcGIS and then resampled to 30 m.
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Soil moisture is an important link between the atmosphere and the terrestrial ecosys-
tem. The soil moisture data included a set of neural nets using a data fusion of up to
11 microwave remote sensing-based soil moisture products. These data were obtained by
satellite for the global surface soil moisture for the period 2003–2018 with a spatial resolu-
tion of 0.1◦ [43]. The bioclimatic variable data are available at a spatial resolution of 1 km,
with historical monthly weather data for 1960–2018 [44]. The range of data downloaded for
this study was 2000–2018. The VPD dataset mixes the high spatial resolution climate normal
of the Worldclim dataset with the less accurate but time-varying data from CRU Ts4.0 and
Japan’s 55-year reanalysis (JRA55) with climate-assisted interpolation. Conceptually, the
interpolation time variation from CRU Ts4.0/JRA55 is often applied to Worldclim high
spatial resolution climatology to create a high spatial resolution dataset covering a wider
range of time records. The above data and the data sources involved in the study are as
follows (Table 1):

Table 1. Data and sources.

Data Type Factors Time URL

Vegetation NDVI 2000–2020 https://code.earthengine.google.com

Climate

Precipitation seasonality(Coefficient of
variation) 2000–2018

https://www.worldclim.org/data/
Precipitation of wettest quarter 2000–2018

Mean annual precipitation 2000–2020
http://www.rescdc.cn

Mean annual temperature 2000–2020

Vapor pressure deficit 2000–2020 https://climate.northwestknowledge.net/

Soil Soil moisture 2003–2018 https://doi.org/10.1594/PANGAEA.912597

Landform Elevation 2020 http://www.gscloud.cn/

Topography
Karst 2010

http://www.csdata.org/
Non-karst 2010

Human
activity

Land use change 2000–2020 https://zenodo.org/

Night light index 2000–2020 https://ngdc.noaa.gov/

2.3. Methods

In this study, in order to explore the characteristics, trends, and driving factors of
vegetation change in Miaoling, we used the following methods to analyze the relevant
data in sequence and with specific applications: We first conducted trend analysis and a
Mann–Kendall (MK) trend test on NDVI changes in Miaoling’s vegetation. Additionally,
we used the Hurst index to perform a continuous analysis of the change trends of the
NDVI to explore the continuity of the Miaoling NDVI trends in the spatial distribution and
change trend. The correlation study of the regional distribution and variation trends of
NDVI in Miaoling with climatic conditions was completed by using a partial correlation
analysis. The association characteristics of the climatic elements, human activities, terrain,
and vegetation changes in Miaoling were also studied using a geographic detector.

2.3.1. Theil–Sen Median Trend Analysis

We conducted a trend analysis on the NDVI of Miaoling’s vegetation using the
Theil–Sen median method, which is referenced in this literature [45] and is expressed
in Equation (1) as follows:

β = median(
xj − xi

j − i
), ∀j > i (1)

where j and i are the time series data. A value greater than 0 means that the time series
shows an upward trend. A value less than 0 means that the time series shows a downward
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trend, and a value closer to 0 means that the time series changes are not significant. The
Theil–Sen median trend analysis and MK test significance test results were superimposed
and analyzed. As Table 2 shows, the results are grouped into six categories. Based on the
above results, we also conducted breakpoint detection on the dynamic trend of vegetation
in Miaoling.

Table 2. Type of change trend of DNVI.

Slope p Trend Slope p Trend

Slope < 0 p < 0.01 significant decrease Slope > 0 p < 0.01 significant increase
Slope < 0 0.01 < p < 0.05 minimal decrease Slope > 0 0.01 < p < 0.05 moderate increase
Slope < 0 p > 0.05 non-significant decrease Slope > 0 p > 0.05 non-significant increase

2.3.2. Mann–Kendall Test

The Mann–Kendall trend test is a nonparametric statistical test used to test significant
trends of change. The samples do not need to have a specific distribution, nor are they
affected by a few outliers [46]. Equation (3) is as follows:

Sk =
k

∑
i=1

i

∑
j=1

sgn
(
Xi − Xj

)
UFk = [Sk − E(Sk)]/

√
Var(Sk)

(2)

where Xi and Xj represent the NDVI values of time i and j, respectively. Sk is the cumulative
count of Xi > Xj. E(Sk) and Var(Sk) are the mean and variance of Sk, respectively. UFk > 0
indicates an upward trend of the NDVI sequence, while UFk < 0 indicates a downward
trend of the NDVI sequence. Combining the NDVI trend classification results (Table 2), the
non-significant decrease and non-significant increase are classified into one category (i.e.,
no change). The results are divided into the following five levels [47]: significant decrease,
moderate decrease, no change, moderate decrease, and significant decrease.

2.3.3. Hurst Index

The Hurst index is an effective method to describe the information dependence of long
time series [48]. For the NDVI time series, NDVI (τ), = 1, 2, 3, 4, . . . , n. For any positive
integer ≥ 1, the mean series of the time series is defined as follows:

NDVI(τ) =
1
τ

τ

∑
t=1

NDVI(τ) τ = 1, 2, · · · , n (3)

The Hurst index is calculated as follows:

R(τ)

S(τ)
= (cτ)H (4)

The relevant values involved in the calculation of the Hurst index are calculated
as follows:

(1) The cumulative deviation is as follows:

X(t,τ) =
t

∑
t=1

(NDVI(t) − NDVI(τ)), 1 � t � τ (5)

(2) The range sequence is as follows:

R(τ) = max
1�t�τ

X(t,τ) − min
1�t�τ

X(t,τ), τ = 1, 2, · · · , n (6)
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(3) The standard difference order is as follows:

S(τ) = [
1
τ

τ

∑
t=1

(NDVI(t) − NDVIτ)
2]

1
2 , τ = 1, 2, · · · , n (7)

The Hurst index (value) may reflect the persistent nature of the NDVI time series. In
the Hurst exponent (value), when 0 < H < 0.5, this indicates that the change is continuing
to decline, meaning that the future change trend is opposite to the past change trend.
When = 0.5, this indicates that the NDVI time series is a random series and there is no
long-term correlation. When 0.5 < H < 1, the time series are characterized by long-term
dependence and persistence, meaning that the future change is consistent with the past
trend. In other words, areas that have tended to increase in past years are likely to increase
in years to come, and vice versa. The closer it is to 1, the stronger the persistence.

2.3.4. Analysis of Correlation

To explore the response of vegetation dynamic changes in Miaoling to climate change
factors, we conducted a partial correlation analysis between NDVI and climate factors
(Table 3) to reveal the main driving forces controlling the interannual changes of NDVI
from 2000 to 2020.

R12,3 =
r12 − r13r23√

(1 − r2
13)(1 − r2

23)
(8)

where R12,3, R13,2, R23,1 are the correlation coefficients among the variables; R12,3 is the
partial correlation coefficient between r1 and r2 after fixing the variable r3. The value range
of the partial correlation coefficient ranges from −1 to 1. When R12,3 > 0, the correlation
is positive, meaning that both factors correlate in the same direction. When R12,3 < 0,
the correlation is negative. The higher the partial correlation coefficient, the stronger the
correlation between the two elements at the pixel.

Table 3. Statistics of the partial correlation coefficient and significance reveal the intricate relationship
between climate factors and NDVI.

Factors Mean
Correlation
Coefficient

Range

Extremely
Significant

Positive
Correlation (%)

Significant
Positive

Correlation
(%)

Non-
Significant
Correlation

(%)

Significant
Negative

Correlation
(%)

Extremely
Significant
Negative

Correlation (%)

X1 0.32 −0.63~0.82 64.5 13 10.1 8.7 3.7
X2 −0.26 −0.68~0.76 11.4 7.5 9.2 17.2 54.7
X3 0.23 −0.57~0.66 23.6 34.6 16.9 18.7 6.2
X4 0.21 −0.67~0.79 49.2 5 17.7 19.1 9.1
X5 0.17 −0.58~0.66 40.2 13.5 15.1 14.2 17
X6 0.15 −0.59~0.65 15.3 32.2 25.4 12.5 15.3

Note: X1, precipitation seasonality (CV); X2, VPD; X3, precipitation of wettest quarter; X4, MAP; X5, soil moisture;
X6, MAT.

2.3.5. Geographic Detector

Geographic detection is a new spatial statistical method to detect spatial differentiation
and reveal driving factors [49]. It contains the following four detectors: factor detection,
interaction detection, risk detection, and ecological detection. The first two parts apply
here. The model is shown below:

(1) Factor detector
A factor detector could determine the effect of detecting the spatial heterogeneity of

vegetation change. The spatial heterogeneity of X to Y could be expressed as q × 100%,
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and the greater the number, the greater the influence of the detection factors on vegetation
change [50], which is as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (9)

where h is the vegetation change or detection factor hierarchy; N is the number of class h
or total region units; and Y is the change in class h or total region Y value.

(2) Interaction detector
The interaction detector is appropriate to identify the impact of the combination of the

detection drivers Xa and Xb on the heterogeneity of the spatial variation of vegetation. The
five interaction results are as follows: [50].

Miaoling’s vegetation change trend from 2000 to 2020 was regarded as the dependent
variable Y. The selected driving factors mainly include the key factors selected by partial
correlation analysis as the detection factor X, as shown in Table 4.

Table 4. The q value of each driving factors.

Factors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

q
value 0.355 0.322 0.243 0.21 0.17 0.155 0.272 0.173 0.125 0.331 0.401 0.397 0.422

p
value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: X1, precipitation seasonality (CV); X2, VPD; X3, precipitation of wettest quarter; X4, MAP; X5, soil moisture;
X6, MAT; X7, elevation; X8, slope; X9, aspect; X10, karst; X11, non-karst; X12, land use change; X13, NLI.

3. Results

3.1. Spatial Distribution and Trend Change of NDVI

This article uses a combination of the Theil–Sen test and the MK method, as well as
breakpoint detection, to count pixels of vegetation coverage from 2000 to 2020. Research
results show that Miaoling has a mean NDVI of 0.766 (Figure 2c). In addition, the average
NDVI variation range of Miaoling over the years is 0.659–0.827, with a rising trend with an
increase of 0.9 × 10−3/year (R2 = 0.053, p > 0.05) (Figure 2a). In addition, the breakpoint
detection results indicate that there is a breakpoint in the Miaoling study time series
(Figure 2b). As shown in Figure 2c, the change trend before and after 2011 was opposite.
Before 2011, the NDVI in Miaoling showed an increasing trend, while it tended to decline
after 2011. For the period 2000–2020, the overall NDVI in the Miaoling region slowly
increased. However, there are significant fluctuations, mainly reflected in the sharp decline
after 2010 and 2017 and the sharp growth in 2013. Especially after 2011 and 2018, the NDVI
values tended to decrease, with a decrease rate of over 10% compared to the previous year’s
NDVI value in 2019.

The characteristics of the spatial distribution of the NDVI in Miaoling are shown in
Figure 3. The eastern section is mainly characterized by a significant growth distribution of
NDVI, accounting for 40.6% of the area. The NDVI in the middle segment mainly shows
moderate growth, with an area ratio of 30.5%. The northern and western sections of the
middle section are mainly characterized by a decrease and no change, with area proportions
of 12.9% and 16%, respectively.
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Figure 2. The variation characteristics of NDVI values in Miaoling from 2000 to 2020. (a) The
interannual variation and trend fitting of NDVI values in Miaoling; (b) Breakpoint detection results;
(c) Trend fitting of NDVI before and after breakpoints.

Figure 3. Distribution of the inter-annual NDVI in the Miaoling region from 2000 to 2020.
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The annual average NDVI change can reflect the dynamic characteristics of vegetation
and serve as an important indicator of vegetation health and ecosystem stability. Thus, the
Theil–Sen median trend analysis was used to analyze the NDVI trend over the last 21 years
at the pixel scale. We found that the spatial distribution of NDVI is highly heterogeneous
(Figure 4a). The NDVI in Miaoling increased in most areas and decreased in some local
areas. The change trend of NDVI in most areas is an increasing trend (accounting for
68.73%). Among them, the highest growth is concentrated in the east, accounting for about
half of the total growth. In addition, the slightly degraded and significantly degraded areas
account for 32.61%. The significantly degraded areas are mainly distributed in the western
part of the study area. The remaining 8.66% did not show a significant change.

Figure 4. The trend of NDVI distribution (a) and MK test results (b) in the Miaoling area from
2000 to 2020. The results divide the change trend into five grades: significant degradation, p < 0.01;
mild degradation, p < 0.05; no significant change, p > 0.05; mild improvement, p < 0.01; significant
improvement, p < 0.05.

The MK test results indicate that from 2000–2020 (Figure 4b), the change in the NDVI
in most areas of Miaoling is relatively strong, with a mainly strong distribution in the
eastern, central–southern, and a small part of the western areas, while the area with an
insignificant change is mainly distributed across the majority of the western Miaoling area.

We also tested the persistence of NDVI changes in Miaoling through the Hurst index,
and the mean Hurst index of NDVI in Miaoling was found to be 0.56 (Figure 5). Addition-
ally, the region with continuous growth (0.5 < H < 1) has the widest distribution (53.82%),
mainly in the eastern and central parts of the study area. However, most of the west area
is still trending down. As can be seen, the Hurst index of the NDVI has similar spatial
heterogeneity to the distribution of the NDVI in the study area.

3.2. Impact Factor of Land Use Change on the NDVI

The karst area is mainly concentrated in the eastern and middle sections of the Miaol-
ing area (Figure 6a), dominated by woodland and followed by grass. The non-karst area
is mainly distributed in the western section and is mostly arable land, followed by grass
(Figure 6b). The NDVI of the karst area is higher than that of the non-karst area in the
Miaoling area.
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Figure 5. The Hurst index distribution of NDVI in Miaoling. 0 < H < 0.5; continuous decline; H = 0.5,
no significant change; 0.5 < H < 1, continuous growth.

Figure 6. Karst distribution in Miaoling area of Guizhou Province (a) and spatial distribution
characteristics of land use types (b) in 2000 to 2020.

The overall average proportion of land use types in the Miaoling area (Figure 7) is as
follows: wood land (50%) > arable land (31.60%) > grass (14%) > artificial surface (1.93%)
> shrub (1.45%) > waters (0.93%) > wetlands (0.09%). The total proportion of forest and
arable land fluctuates, and the proportion of artificial surface continues to increase; grass,
water, wetlands, and shrubs fluctuate slightly. Comparing the spatial distribution of NDVI
in Miaoling (Figure 3) with land use types, it can be roughly divided into the following
characteristics: The land use types corresponding to NDVI reduction areas are mainly
concentrated in areas such as artificial surfaces, cultivated land, and wetlands. The NDVI
of forested areas mainly manifests as growth.

The most immediate effect of land use change on NDVI is change. The most notable
changes in NDVI are specifically in arable land and woods. Figure 8 shows that the
Miaoling region’s degraded regions of wood land, arable land, and grass are primarily
located in the center region. As a result, it is clear from Figure 6b that the primary land use
categories (wood land, grass, and arable land) in the Miaoling region are spread in regions
with high concentrations of human activity (artificial surface areas).
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Figure 7. Total area ratio of each land use type in Miaoling, Guizhou, from 2000 to 2020.

Figure 8. Woodland (a), grass (b), and arable land (c) change distribution characteristics in Miaoling.

3.3. Impact Climate Factors of the NDVI

Climatic factors are as important as human activities (land use change) in influencing
vegetation dynamics. Our analysis of the partial correlation between NDVI and climate
factors was calculated at the image metric scale for the studied region from the year 2000
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to 2020. The findings of the partial correlation study make it clear that the NDVI and
precipitation seasonality (CV) have the strongest association, whose mean correlation coef-
ficient was 0.32. As shown in Table 3, their correlation strength is in order of precipitation
seasonality (CV) (0.32) > VPD (−0.26) > precipitation in the wettest quarter (0.23) > MAP
(0.21) > soil moisture (0.17) > MAT (0.15). The other five factors, with the exception of VPD,
have an overall positive correlation with the NDVI.

The results showed significant spatial heterogeneity in the NDVI vegetation–climate
correlation in the Miaoling region. In combination with Figure 9 and Table 3, 77.8% of the
precipitation seasonality (CV) area was positively correlated with the NDVI (Figure 9a),
which was widely distributed in the study area. A total of 71.9% of the VPD was signif-
icantly negatively correlated with the NDVI, and only 18.9% of the area was positively
correlated with the NDVI, which was mainly distributed in the western and central parts
of the study area (Figure 9b). A total of 58.2% of Precipitation of wettest quarter was
significantly positively correlated with NDVI over the total area, and the areas with a
significant negative correlation were mainly concentrated in the western part of the study
area (Figure 9c). Precipitation was significantly positively correlated with NDVI in 54.2% of
the spatial area and distributed in the westernmost, easternmost, and northernmost parts
of the study area (Figure 9d). A total of 53.7% of the soil moisture area was significantly
positively correlated with NDVI, while the easternmost area was significantly negatively
correlated (Figure 9e). The least correlated climatic factor with NDVI in Miaoling was
temperature, which was significantly positively correlated with NDVI in 47.5% of the study
area, while MAT was significantly negatively correlated with NDVI in the far west and
north (Figure 9f).

 

Figure 9. Cont.
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Figure 9. Spatial distribution characteristics of partial correlation between NDVI in Miaoling and pre-
cipitation seasonality (CV) (a), VPD (b), precipitation of wettest quarter (c), MAP (d), soil moisture (e),
and MAT (f).

In summary, precipitation seasonality (CV) and VPD in climate factors showed positive
and negative related relationships with NDVI distribution and were all widely distributed
across the study area, but the spatial heterogeneity of other climatic factors with NDVI was
significantly complicated with them.

On the time scale, the average annual value of NDVI shows significant fluctuations in
the study time series, but overall, it shows a slow growth trend (Figure 2a). The linear fitting
trend of precipitation seasonality (CV) and the NDVI is upward (Figure 10a). Figure 10b
shows that the NDVI value and precipitation seasonality (CV) have basically similar
dynamic changes, and the NDVI increases and decreases with the increase and decrease in
precipitation seasonality (CV). This result shows that precipitation seasonality (CV) has
a positive effect on the increase and decrease in NDVI. On the contrary, the fitting trend
of VPD and NDVI is decreasing (Figure 10c) because the general feature of VPD change
is a significant upward trend, while the change of NDVI is contrary to the fluctuation of
VPD. Therefore, it can also be concluded that there is a negative correlation between VPD
and NDVI.
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(a) (b) 

  
(c) (d) 

Figure 10. Variation trends and correlations of precipitation seasonality (CV), VPD, and NDVI.
(a) Linear fitting of NDVI and precipitation seasonality (CV) trend; (b) Annual average change of
NDVI and precipitation seasonality (CV); (c) Linear fitting of NDVI and VPD trend; (d) Annual
average change of NDVI and VPD.

3.4. Detection of the Impact of Key Factors on NDVI
3.4.1. Detection Factor Influence

In order to further explore the driving characteristics of various influencing factors
on the dynamic changes of Miaoling’s vegetation, this section used 13 factors (Table 2)
covering climate, soil, terrain, geomorphology, and human activities to conduct factor
driving force and factor interaction detection on the NDVI of Miaoling’s vegetation. To
explore the contribution rate and interaction of climate factors and human activities to
vegetation change in the Miao Mountains and further verify the differences in the main
impact factors of NDVI in the Miao Mountains. The q value of the factor detection results
reflects the influence of each factor on the NDVI of Miaoling’s vegetation (explanatory
power). The factor detection results show that the explanatory power of each factor on
the NDVI is in the following order: NLI > non-karst > land use change > precipitation
seasonality (CV) > karst > VPD > elevation > precipitation of the wettest quarter > MAP >
slope > soil moisture > MAT > aspect. Specifically, NLI (X13) has the strongest explanatory
power for NDVI (q = 0.422), and aspect (X9) has the smallest explanatory power for NDVI
(q = 0.125).
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The explanatory power of the above factors passed the 0.05 test with a confidence
level of 95%. Overall, the explanatory power of human activities on vegetation NDVI is
greater than the climactic factors in Miaoling. Additionally, the order of partial correlation
and explanatory power of each factor for NDVI is consistent.

3.4.2. Detection Factor Interaction Analysis

The change in vegetation and the existence of spatial heterogeneity are driven by
many factors. The interaction detection results of various influencing factors in Miaoling
(Figure 11) show that their interaction is manifested as dual factor enhancement and non-
linear enhancement, and all interaction factors have obvious enhancement characteristics
on the driving force of NDVI compared to a single influencing factor. Among them, the
interaction between land use change and NLI [q (X12∩X13) = 0.459] has the strongest
explanatory power for the spatial distribution of NDVI, showing a driving feature of dual
factor enhancement. On the contrary, the interaction between soil moisture and aspect
orientation [q (X5∩X9) = 0.112] has the least explanatory power on NDVI. In addition,
the research results also indicate that the interaction between human activity factors and
other factors is significantly greater than that between other factors. It can be seen that the
explanatory power of the interaction between human activities and other factors in the
Miaoling area is dominant and that it is a key driving factor affecting the vegetation change
in the Miaoling area.

Figure 11. Explanatory power of interaction between key factors. X1, precipitation seasonality (CV);
X2, VPD; X3, precipitation of wettest quarter; X4, MAP; X5, soil moisture; X6, MAT; X7, elevation;
X8, slope; X9, aspect; X10, karst; X11, non-karst; X12, land use change; X13, NLI.

4. Discussion

4.1. Analysis of the Spatial Distribution Trend of NDVI

Previous research has confirmed that the ecological environment of karst regions has
greatly improved [32–34,38,51–53]. Our research findings indicate that the Miaoling region
has exhibited sluggish growth in NDVI over time compared to non-karst areas, indicating
an improvement in their ecological environment [53,54]. This positive ecological change
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is attributed to the residents’ strong awareness of environmental protection as well as the
preservation of subtropical evergreen broad-leaved forests, evergreen and deciduous broad-
leaved mixed forests, and evergreen shrubs in the area [34,38]. Furthermore, the vegetation
coverage exhibited a distribution pattern of “gradually increasing from west to east”, as
confirmed by an average Hurst index of 0.56. The slow and incremental increase in NDVI
observed in our study area is consistent with the continuous improvement in vegetation
coverage seen in other study areas across China [20–22,55]. The spatial heterogeneity of
the impact of all climate factors on vegetation cover change is evident. Nevertheless, as
demonstrated by Figures 6 and 7, the utilization of arable land and the increase in artificial
surfaces have resulted in a consistent decline in NDVI values in the related areas.

As mentioned above, the NDVI variation in Miaoling not only shows a slow upward
trend over the whole period, but there are also strong downward processes. As shown in
Figure 2, NDVI declined considerably after 2010 and 2018. Notably, a considerable decrease
occurred in 2012, and this phenomenon can be primarily attributed to the backdrop of
global climate change, paralleling the NDVI changes seen in other karst regions of China.
Investigations of this phenomenon reveal that the most severe drought and extreme weather
in 50 years occurred in the karst region of southwest China in 2010 [56], leading to a
sharp decline in Miaoling’s NDVI that continued through 2012 and culminated in the
lowest NDVI value of the entire research period. Furthermore, it is likely that the natural
disasters that occurred in 2017 have had a negative impact on vegetation dynamics, thereby
comprehensively influencing the overall NDVI trend in the Miaoling Mountains during
the past 21 years.

4.2. NDVI Variation and Land Use Change

Human activity is widely recognized as an important driver of vegetation cover.
Land use change, representing human activity, has been shown to be highly correlated
with vegetation change [24,26,49,57]. Previous research studies have demonstrated the
importance of land use change as a key factor in the spatial distribution of the NDVI, which
significantly influences vegetation change, regional ecological security [58], and ecosystem
services [59]. Our study, depicted in Figure 6b, reveals that forests in the Miaoling area
have the highest NDVI value, followed by grass, shrub areas, arable land, wetland, water
areas, and artificial surfaces. The changes in NDVI’s distribution across different spatial
and temporal scales are driven by both climatic factors and human activities [1,12,15].
The explanatory power of human activities on NDVI changes is much higher than that
of climate factors, as shown in Table 4, indicating that NLI, land use change, and human
activities play significant roles in the ecosystem. Land use change represent ongoing
challenges for vegetation variation and the effects of anthropogenic activity [19].

The land use change characteristics of human activities in Miaoling reveal that vegeta-
tion coverage has been significantly impacted by land use change over the past 21 years.
Human activities such as returning farmland to forests and grass, traditional farming prac-
tices, and the combination of human activities and climate change have played a significant
role in improving or degrading the vegetation [53]. Changes in forest, arable land, and
artificial land surfaces have had a considerable impact on regional vegetation coverage,
primarily due to the tradeoff between forests and arable land. The distribution of land use
change and changes significantly influence the NDVI’s spatial distribution in the region.

4.3. Impact Climatic Factors of NDVI Variation

Understanding the relationship between regional NDVI changes and climatic factors
is critical for predicting regional vegetation changes and for effective ecological restoration
management [56]. Climate change affects vegetation growth and change through dynamic
changes and interactions between different weather factors. Miaoling’s spatial heterogene-
ity is evident from its correlation distributions between NDVIs and six climate factors. This
is due, in part, to the spatial variability of climate change. The strongest correlation among
the climatic factors is precipitation seasonality (CV), as shown in Table 3. Compared with
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results from other regions, vegetation cover (0.0009/year) in the Miaoling’s karst region
is more sensitive to changes in climatic factors, including precipitation seasonality (CV)
and VPD.

Seasonal changes in precipitation have a significant effect on NDVI, as shown by
research [60]. Precipitation is the main driver of vegetation change [61]. Seasonal changes
in precipitation can also influence vegetative phenology and cover [20]. In areas of high
humidity, the risk of drought is lower, making the growing season of vegetation more
sensitive to precipitation seasonality (CV) in order to maximize water benefits [53,55].
The results of this study show that the regularity of the temporal change of NDVI in
Miaoling is similar to that of precipitation seasonality (CV) (Figure 10b). Obviously, in
the period of precipitation seasonality (CV) and precipitation of the wettest quarter (i.e.,
plant growth season) (Figure 12a), when precipitation is abundant, with an increase in
temperature to a certain extent, the photosynthesis, respiration, and transpiration processes
of plants can be increased, and plant growth can be promoted. This is based on the strong
precipitation seasonality in Miaoling, in the subtropical monsoon region. The rate of change
of precipitation and the precipitation in the wettest season strongly promote the growing
season of plants in Miaoling, and the trend of change is consistent, so it has a significant
regulating effect on NDVI. NDVI is also highly positively correlated with precipitation
seasonality (CV) and precipitation in the wettest season in terms of spatial heterogeneity
(Figure 9a,c).

  
(a) (b) 

  
(c) (d) 

Figure 12. Time variation and trend of NDVI and precipitation of wettest quarter (a); MAP (b);
MAT (c); soil moisture (d).
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Furthermore, there is a significant negative correlation between VPD and NDVI, which
is second only to precipitation seasonality (CV) in explaining NDVI changes. VPD also
plays an important role in the interannual variability of NDVI, as an increase in VPD causes
a decrease in NDVI (Figure 10c). However, current Earth system models underestimate
VPD’s interannual variability and its effect on GPP and NEP [50] by ignoring VPD’s indirect
influence on NDVI. Due to global warming, VPD is increasing, and vegetation is severely
affected [55,62]. In addition, previous research has found that the vegetative landscape
is “browning”, i.e., plant growth is decreasing [7,63]. Above a certain threshold, plant
photosynthesis and growth in most species are limited, which leads to a higher risk of
hydraulic failure and a decrease in NDVI.

Temperature and precipitation are the most significant climatic drivers of vegetation
growth, as per previous studies [9,11,16,20]. The change in vegetation phenology, structure,
and coverage has been observed to be significant from tropical to northern regions and
from coastal to inland areas [7,12,19]. However, the karst landscape, which is complex
and heterogeneous, has also contributed to vegetation change, including drought and
land degradation, due to rocky desertification [64,65]. The results of this study show that
NDVI increases with the increase in temperature in the study time sequence (Figure 12c).
The increase in temperature can increase the photosynthetic efficiency of vegetation and
prolong its growth period, thereby improving the status of NDVI [6]. However, the partial
correlation is slightly smaller than that of precipitation (Table 3). Contrary to the results of
other studies, “temperature has a stronger impact on NDVI than precipitation” [55,64].

A study conducted on the interaction between NDVI and the climate of karst veg-
etation in Guizhou revealed that the effect of MAT on NDVI is stronger than that of
MAP [53,60]. The study concluded that the explanatory power of MAT on NDVI in the
Miaoling area is lower than that of MAP. The binary hydrological structure commonly
found in karst regions leads to a substantial loss of precipitation [23], suggesting that water
resources are not efficiently utilized for the thriving of vegetation. The study’s findings
are consistent with the fact that precipitation has a lower positive correlation with NDVI
changes. This is particularly relevant in karst areas that are prone to drought, where pre-
cipitation changes have a significant impact on vegetation [34,62,66]. It is confirmed that
NDVI is more sensitive to precipitation than temperature in Miaoling.

Soil moisture mainly comes from precipitation and affects vegetation growth [8,17].
Therefore, it is also one of the important factors limiting vegetation growth in karst areas.
Due to the relatively thin nature of the karst soil layer, soil water is easy to lose, which limits
plant growth and ecological recovery in karst areas [50,67]. In this study, the explanatory
power of soil moisture is relatively weak, which also proves that the characteristics of soil
moisture loss under the dual structure in karst areas are easy and the positive effect on
NDVI is not significant. As shown in Figures 9e and 12d, the soil moisture of Miaoling’s
arable areas (mainly in non-karst areas) is highly positively correlated with NDVI, which
accounts for 43.7% of Miaoling.

4.4. Influence of Factor Interaction on NDVI

Changes in vegetation growth are inextricably linked to climate variation and human
activities. Based on the detection of geographical detectors, we further analyzed the
interaction of 13 factors on NDVI. We found that NLI between 2000 and 2020 is the strongest
driving factor for explaining the changes in vegetation in Miaoling. Additionally, the results
showed that the interaction between various factors has significantly higher explanatory
power for the changes in the NDVI than itself (Figure 11), which is consistent with other
research results [13,16,66].

In the study, NLI has the greatest explanatory power for the trend of vegetation cover
change (q = 0.422, Table 4). There are a few studies that combine NLI with NDVI, indicating
that urbanization has a negative impact on vegetation coverage or the ecological envi-
ronment by increasing NLI [30,68,69]. There is a significant negative correlation between
vegetation coverage and NLI values. From Figures 5 and 13, it can be seen that there is
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a significant overlap between the areas where NDVI continues to degrade and the areas
where NLI significantly increases. The areas where NDVI improves mostly correspond to
areas with a low or no nighttime light index.

Figure 13. Characteristics and spatial distribution of NLI changes from 2000 to 2020.

Studies have shown that the interaction between precipitation seasonality (CV) (q = 0.355),
land use change (q = 0.0.397), non-karst areas (q = 0.401), and NLI (q = 0.422) has the most
obvious effect on the NDVI of vegetation (Table 4). Unlike other studies [5,7,43], we found
that two factors of human activity and their interaction with other factors have a high
explanatory power for the changes in NDVI, and it mainly shows a bifactor enhancement;
the contribution rate is very large. This also shows that human activity can significantly
influence the NDVI in the karst region [37,39,55]. Among them, the interaction between
NLI and land use change (q (X13∩X12) = 0.459) has the largest impact on NDVI, and it
mainly shows a bifactor enhancement. Therefore, human activities can be identified as the
dominant factor in vegetation dynamics, while other factors only serve as constraints in
karst basins. Relevant studies on the Loess Plateau have also shown this [15,20,58].

Temperature and precipitation are considered the foremost drivers of vegetation
growth with regards to climatic factors, as cited by previous research [8,10,13,19]. Al-
though the influence of mean annual temperature (MAT) (q = 0.155) and mean annual
precipitation (MAP) (q = 0.21) on vegetation in Miaoling does not differ significantly, their
interactions (q (X4∩X6) = 0.428) exhibit a significantly higher impact on NDVI compared
to their individual effects. Furthermore, soil moisture and VPD are strongly linked to
temperature and precipitation [69,70]. A few researchers have reported a direct or indirect
dependence of VPD’s impact on NDVI on the prevailing temperature and soil moisture
conditions [25,71,72]. Hence, when the response of plants in an ecosystem decreases the
evaporation capacity due to atmospheric drying, the conservation of soil moisture improves,
along with some evidence of NDVI growth. This suggests that hydrothermal conditions
in subtropical regions significantly influence vegetation growth and change. Moreover,
the impact of factors such as altitude, slope, and aspect interaction are relatively minor in
driving vegetation trends in Miaoling, but this impact increases significantly under the
influence of human activities, reinforcing the crucial role of human activities in vegetation
change in the Miaoling (karst area) region. In other words, the varying responses of vegeta-
tion NDVI to climate factors and human activities may be explained by the interaction of
various factors in terms of temporal and spatial scale differences.

4.5. Limitations of This Study

In this study, we explored the dynamic change characteristics and trends of the regional
vegetation’s NDVI in Miaoling and conducted a driving analysis using climate factors,
human activities, and topography. However, there are still some limitations. Firstly, we
did not analyze the seasonal characteristics of vegetation growth in Miaoling, such as
growing season and non-growing season. In future research, we should pay attention to
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the differences between these vegetation changes and their comprehensive relationship.
Secondly, due to the limitation of spatial resolution differences in NDVI and climate factors,
the NDVI variation trend of some pixels may be overestimated or underestimated, as may
also be found in correlation analyses. Despite these shortcomings, this work is helpful to
comprehensively understand the spatiotemporal characteristics of Miaoling’s vegetation
and the driving factors of vegetation dynamics. At the same time, it provides a reference
value for the dynamic driving factors of vegetation in important karst basins.

5. Conclusions

Based on NDVI data, the present study examines the alterations in vegetation cov-
erage within a karst basin watershed from 2000 to 2020. Furthermore, the research also
investigates the impact exerted by climate factors, topography, and human activities on
Miaoling’s vegetation and how they interact with each other. The key results of this study
are as follows:

(1) Under the pixel scale and spatial distribution in Miaoling, the vegetation coverage
gradually increases from west to east. During the study period, the NDVI of Miaoling’s
vegetation showed an overall upward trend (0.0009/year), with an average value of 0.766,
53.82% of the region continuing to grow, and a distribution pattern of “gradually increasing
from west to east”. The vegetation in NDVI showing an upward trend is much larger than
the area showing a downward trend, and the site with a downward trend is mainly in the
western and central parts of Miaoling.

(2) The correlation between the vegetation’s NDVI and meteorological factors presents
significant spatial heterogeneity. Climate change has a two-sided impact on NDVI changes
in vegetation in the study area because there is a positive promoting effect and a relatively
inhibitory effect for the NDVI. The NDVI and VPD of the vegetation in the study area show
a negative correlation and a positive correlation with the other five climate factors as a
whole, with the greatest correlation being with precipitation seasonality (CV).

(3) Compared with climate change and landform factors, human activity factors have
a greater driving force on the NDVI of Miaoling’s vegetation, and their interaction with
other factors is also significantly higher, which also shows that the dynamic change and
development trend of the NDVI of Miaoling’s vegetation are strongly affected by human
activities. Therefore, human activities can be considered the dominant factor driving NDVI
changes in the Miaoling area.
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