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1. Introduction

Urban areas are considered to be the most vulnerable to water-related problems,
which involve a lack or excess of water problems from the perspectives of quantity and
quality. These specific phenomena include flash floods and inundation, droughts and water
shortages, surface and ground water pollution, tsunamis and storm surges, landslides and
mudflows, the degradation of fluvial and aquatic ecosystems, and unsanitary conditions
and epidemics, among others. In urban areas, water-related problems cause immense
human losses and economic damage. Water-related problems frequently reoccur in urban
areas, and are intricately linked with each other, posing major obstacles to the achievement
of human security and the sustainable socio-economic development of cities. Thus, it is
crucial that they are scientifically and comprehensively discussed, so that they can be better
understood, in order to fight against and mitigate these problems.

The special session “Urban Water-Related Problems” has been held in the AOGS (Asia
Oceania Geosciences Society) annual meeting since 2017. Thus far, we have discussed a
very wide range of urban water-related problems. For this Special Issue published in Water,
we intend to invite studies on these broad topics and encourage a collective perspective on
urban water-related problems.

This Special Issue comprises four review papers and nine research articles, with
contributions from 55 authors of six countries. All four of the review papers are related
to the problems associated with flash flood phenomena, among the many broad topics
mentioned above, but they focus on very different aspects of the phenomena, such as
urban runoff modeling in Japan [1], real-time urban flood forecasting systems for Southeast
Asia [2], frequency analysis of urban floods [3], and the reduction of non-point pollution as
well as flood runoff by porous concrete infiltration [4].

On the other hand, among nine research articles, five articles are related to water
quality problems, of which two articles investigate groundwater pollution in Japan and
Sweden [5,6], one article deals with lake contamination by phosphorus in Sweden [7],
another targets lakes or reservoirs from the perspective of the hydrodynamic response by
wind [8], and the last one considers the water pollution problem for a riverbank area in
Bangladesh [9]. Three research articles out of the nine are related to problems of urban flood
phenomena, in which studies on urban flooding area characteristics in Japan [10], water
level forecasting caused by urban floods in Japan [11], and barriers to IFRM (Integrated
Flood Risk Management) adaptation in the Philippines [12] are carried out. The last article
is related to water resource problems, investigating the urban domestic water supply
system from the viewpoint of willingness to pay [13].

Unfortunately, studies dealing with the phenomena related to tsunamis and storm
surges, landslides and mudflows, and the degradation of fluvial and aquatic ecosystems
are not published in this Special Issue.

Water 2023, 15, 3280. https://doi.org/10.3390/w15183280 https://www.mdpi.com/journal/water
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2. Overview of the Contributions of This Special Issue

The review paper “Urban Flood Runoff Modeling in Japan: Recent Developments
and Future Prospects” [1] summarizes, discusses, and shares key outputs from some of the
main research directions in urban flood runoff modeling, significant parts of which have
been uniquely developed in Japan and only published in Japanese. In the paper, after a
general introduction to urban runoff modeling, the authors present key historical works
in Japan, followed by a description of the situation in Japan with respect to observations
of precipitation and water level. Then, the storage function model approach is reviewed,
including an extension to urban basins, as well as recent experiments with AI-based
emulation in Japanese basins. Subsequently, the authors review the prospects of detailed
hydrodynamic modeling involving high-resolution, vector-based Geographical Information
System (GIS) data for the optimal description of the urban environment with applications
in Tokyo. The authors conclude the paper with some future prospects related to urban
flood risk modeling and assessment in Japan.

In the paper “Real-Time Urban Flood Forecasting Systems for Southeast Asia—A
Review of Present Modelling and Its Future Prospects” [2], the authors reviewed state-
of-the-art models of real-time forecasting systems in countries in Southeast Asia, such as
Thailand, for urban flash floods. A real-time system basically consists of rainfall forecasting,
drainage system modeling, and inundation area mapping. The authors summarized the
recent radar data utilization methods for rainfall forecasting, physical-process-based hy-
draulic models for flood inundation prediction, and data-driven artificial intelligence (AI)
models for the real-time forecasting systems. The authors also dealt with available tech-
nologies for modeling digital surface models (DSMs) for the finer urban terrain of drainage
systems. The review indicated that an obstacle to using process-based hydraulic models
was the limited computational resources and shorter lead time for real-time forecasting in
many urban areas of tropical Southeast Asia.

The review paper “Frequency Analysis of Hydrological Data for Urban Floods—
Review of Traditional Methods and Recent Developments, Especially an Introduction of
Japanese Proper Methods” [3] investigates in detail the frequency analysis of hydrological
data for urban floods, targeting the Japanese methods in particular. First, the authors
introduced well-used Japanese frequency analysis methods, because some techniques that
are slightly different from the international standard have been used in Japan for many
years. This review emphasized discussions of the parameter estimation of stochastic models
and the selection of optimal statistical models, which include the evaluation of goodness-
of-fit techniques of statistical models. Based on these results, the authors criticized the
Japanese standard procedures recommended by the central government, and indicated
that consistency between parameter estimation and the evaluation of goodness-of-fit was
necessary. From this perspective, the authors recommended using the maximum likelihood
method and AIC. The authors also recommended, when using SLSC method, to apply not
only SLSC itself but also SLSC’s non-exceedance probability.

In the review paper “Application of Porous Concrete Infiltration Techniques to Street
Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution
and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the
Potential of Discrete and Small-Scale Techniques” [4], first, the literature related to the
expansion of pervious areas was introduced, because the expansion of pervious areas
was an essential and common concept in mitigating nonpoint pollution runoff in urban
areas. Then, the potential application of porous concrete as a medium for constructing the
bottom and side walls of street stormwater inlets was investigated. The effectiveness of the
medium in reducing (i) the stormwater runoff volume and (ii) the heavy metal pollution
runoff loads was assessed. In the paper, sensitivity tests were performed by changing the
exfiltration rates. The results indicate that porous concrete used at only the bottom and
side walls of the street stormwater inlets was suitable for reducing the runoff volume and
removing any heavy metals from stormwater at a catchment scale.
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In the paper “Groundwater Quality and Potential Pollution in the Southern Shimabara
Peninsula, Japan” [5], the authors aimed to assess the groundwater quality in the southern
regions of the Shimabara Peninsula in Nagasaki Prefecture, Japan, for a comprehensive
understanding of the overall situation against the background that the peninsula is known
for serious groundwater contamination caused by nitrate pollution. To achieve this goal,
groundwater samples were collected at 56 locations in Minami-Shimabara City from 28
July to 4 August 2021. The authors showed using a Piper-trilinear diagram that almost
80% of the samples were classified as the alkaline earth carbonate type. From the Stiff
diagrams, they showed that most of the locations exhibited a Ca-HCO3 water type, while
the Na-HCO3 and Mg-HCO3 types were also observed in coastal areas. Finally, from the
principal component analysis, the authors revealed that the first component corresponded
to dissolved constituents and denitrification, and the second component indicated the
effects of ion exchange and low nitrate pollution.

The paper “PFAS in the Drinking Water Source: Analysis of the Contamination Levels,
Origin and Emission Rates” [6] delves into the prevailing groundwater pollution situation
in southern Sweden against the background that waterborne pollution caused by polyflu-
oroalkyl substances (PFAS) has been reported in numerous countries globally, emerging
as a novel concern that is capturing attention. The objective of this study was to enhance
understanding regarding the historical contamination of water sources due to PFAS and to
explore interconnected facets of PFAS-containing aqueous film-forming foam (PFAS-AFFF)
application in fire training exercises and equipment trials. To achieve this goal, the authors
encompassed the analysis of contamination extents and PFAS compositions, the evaluation
of potential PFAS and PFAS-AFFF emission scenarios, and the assessment of contaminant
transport conditions.

The paper “Decision Support for Lake Restoration: A Case Study in Swedish Freshwa-
ter Bodies” [7] presents techniques aimed at providing decision support for lake restoration
through a combination of multi-criteria analysis and decision analysis. The main objective
is to identify effective and efficient measures for restoring lakes. The study focuses on
evaluating six commonly used lake restoration methods for reducing internal phosphorus
loads in two selected lakes, using criteria such as cost, longevity, and effectiveness. The
findings indicate that aluminum treatment emerges as the most favorable option due to its
superior effectiveness and cost efficiency. The authors suggested that these methodologies
could be utilized not only in specific countries but also in the restoration of lakes and ponds
worldwide.

The paper “A Detailed Analysis on Hydrodynamic Response of a Highly Stratified
Lake to Spatio-Temporally Varying Wind Field” [8] explores the hydrodynamic reactions of
a highly stratified lake or reservoir to various inhomogeneous wind conditions through the
application of numerical models and integrated analysis. This approach was taken because
wind was commonly acknowledged as a vital factor driving transport and mixing processes
in stratified, enclosed systems. The authors demonstrated that under the influence of non-
uniform wind conditions, often characterized by weak-to-moderate wind with high spatial
variances, the lake’s hydrodynamic responses differed from those under uniform wind
conditions. On the other hand, low spatial variances, often associated with strong wind,
resulted in hydrodynamic responses identical to those of uniform wind. Thus, the authors
recommended using non-uniform wind in model simulation for achieving realistic results,
improving water management in lakes and reservoirs.

The paper “Spatial Distribution and Source Identification of Water Quality Parameters
of an Industrial Seaport Riverbank Area in Bangladesh” [9] employed a range of water
quality indices, including the Metal Index (MI), Comprehensive Pollution Index (CPI), and
Weighted Arithmetic Water Quality Index (WQI), to enhance understanding of pollution
dispersion and the underlying processes influencing river water quality. Additionally, mul-
tivariate statistical techniques were utilized to assess pollutant loads and sources within
the Pasur River system in Bangladesh. The authors indicated that contaminant origins
encompass both geogenic and anthropogenic factors, involving untreated or inadequately

3
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treated wastewater from industries and the discharge of urban domestic waste. The effec-
tiveness of the water quality assessment and pollution source identification methodologies
introduced by the authors was demonstrated, with potential applicability on a global scale.

In the paper “Topographical Characteristics of Frequent Urban Pluvial Flooding Areas
in Osaka and Nagoya Cities, Japan” [10], frequent urban pluvial flooding areas using
20 years of urban pluvial flooding area records during 1993–2012 were identified and
analyzed using the principal component analysis of their topographical characteristics in
Osaka and Nagoya Cities, Japan. The authors showed that the topographical characteristics
of the frequent urban pluvial flooding areas in both cities were different. In Osaka City, not
only the topographical characteristics, but also the influence of anthropogenic factors and
stormwater drainage improvements were influential. On the other hand, in Nagoya City,
the mere presence of dominant structures dammed up the inundated water and caused
urban pluvial flooding. The authors quantitatively showed the paradigm shift of urban
pluvial flooding factors from topographical characteristics to anthropogenic characteristics
by the statistical analysis of newly defined urban pluvial flooding frequency areas.

The paper “Study on a Water-Level-Forecast Method Based on a Time Series Analysis
of Urban River Basins—A Case Study of Shibuya River Basin in Tokyo” [11] investigated a
vector autoregressive model to develop a water level forecast system that uses observed
rainfall and water level. The model was targeted to ensure information conducive to
evacuation approximately 20 min in advance without the need to build a physical model.
The authors showed that the method based on time series analysis achieved a stable forecast,
and indicated that the method can be applied as a water level forecast method for basins
with an extremely fast flood arrival times and limited observation data.

In the paper “An Expanded Interpretive Structural Modeling Analysis of the Barriers to
Integrated Flood Risk Management Adaptation in Metro Manila” [12], the authors proposed
an expanded ISM (Ex-ISM) method to comprehensively analyze the interrelationships
between the barriers to integrated flood risk management (IFRM) adaptation in Metro
Manila, Philippines. The Ex-ISM enhanced conventional ISM in that the symbolism was
modified to explicitly show the contextual interrelationships; then, the hierarchy assignment
step was simplified, and a diagram was used to show all of the inter-relationships that
allowed a comprehensive analysis. The authors showed that the results obtained using the
Ex-ISM method did not deviate from those yielded by the conventional ISM method, but
the Ex-ISM method allowed an easy assignment of hierarchy. The authors also showed
that the Ex-ISM method was able to draw a diagram incorporating not only the direct but
also the indirect interrelationships to provide a comprehensive analysis of the relationships
between barriers.

The paper “Willingness to Pay for Improved Urban Domestic Water Supply System:
The Case of Hanoi, Vietnam” [13] investigated water users’ willingness to pay (WTP) for the
improvement of Hanoi’s domestic water supply. This was because in Hanoi, the capital of
Vietnam, the municipal government is facing a number of difficulties in providing sufficient
water in a sustainable manner due to not only the increasing urban population and the
serious pollution of water resources, but also a lack of resources to invest in the supply
system. In this paper, a contingent valuation process based on a survey of 402 respondents
was used to explore citizens’ willingness to pay for the improvement of their urban water
supply. The authors revealed that Hanoi’s urban communities were generally satisfied
with the quantity of their water supply, but tended to be dissatisfied with its quality. The
developed WTP regression model based on the survey findings showed that the average
WTP was 1.4% of the average household income, taken as the affordability level of monthly
water payments.

Conflicts of Interest: The authors declare no conflict of interest.

4



Water 2023, 15, 3280

References

1. Kawamura, A.; Amaguchi, H.; Olsson, J.; Tanouch, H. Urban Flood Runoff Modeling in Japan: Recent Developments and Future
Prospects. Water 2023, 15, 2733. [CrossRef]

2. Chitwatkulsiri, D.; Miyamoto, H. Real-Time Urban Flood Forecasting Systems for Southeast Asia—A Review of Present Modelling
and Its Future Prospects. Water 2023, 15, 178. [CrossRef]

3. Mizuki, C.; Kuzuha, Y. Frequency Analysis of Hydrological Data for Urban Floods—Review of Traditional Methods and Recent
Developments, Especially an Introduction of Japanese Proper Methods. Water 2023, 15, 2490. [CrossRef]

4. Harada, S. Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate
against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the
Potential of Discrete and Small-Scale Techniques. Water 2023, 15, 1998. [CrossRef]

5. Nakagawa, K.; Amano, H.; Yu, Z.; Berndtsson, R. Groundwater Quality and Potential Pollution in the Southern Shimabara
Peninsula, Japan. Water 2022, 14, 4106. [CrossRef]

6. Mussabek, D.; Söderman, A.; Imura, T.; Persson, K.M.; Nakagawa, K.; Ahrens, L.; Berndtsson, R. PFAS in the Drinking Water
Source: Analysis of the Contamination Levels, Origin and Emission Rates. Water 2023, 15, 137. [CrossRef]

7. Sellergren, M.; Li, J.; Drakare, S.; Thöns, S. Decision Support for Lake Restoration: A Case Study in Swedish Freshwater Bodies.
Water 2023, 15, 668. [CrossRef]

8. Le, H.N.; Shintani, T.; Nakayama, K. A Detailed Analysis on Hydrodynamic Response of a Highly Stratified Lake to Spatio-
Temporally Varying Wind Field. Water 2023, 15, 565. [CrossRef]

9. Islam, M.S.; Nakagawa, K.; Abdullah-Al-Mamun, M.; Khan, A.S.; Goni, M.A.; Berndtsson, R. Spatial Distribution and Source
Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh. Water 2022, 14, 1356. [CrossRef]

10. Komori, D.; Nakaguchi, K.; Inomata, R.; Oyatsu, Y.; Tachikawa, R.; Kazama, S. Topographical Characteristics of Frequent Urban
Pluvial Flooding Areas in Osaka and Nagoya Cities, Japan. Water 2022, 14, 2795. [CrossRef]

11. Koyama, N.; Sakai, M.; Yamada, T. Study on a Water-Level-Forecast Method Based on a Time Series Analysis of Urban River
Basins—A Case Study of Shibuya River Basin in Tokyo. Water 2023, 15, 161. [CrossRef]

12. Mercado, J.M.R.; Kawamura, A.; Medina, R. An Expanded Interpretive Structural Modeling Analysis of the Barriers to Integrated
Flood Risk Management Adaptation in Metro Manila. Water 2023, 15, 1029. [CrossRef]

13. Bui, N.T.; Darby, S.; Vu, T.Q.; Mercado, J.M.R.; Bui, T.T.P.; Kantamaneni, K.; Nguyen, T.T.H.; Truong, T.N.; Hoang, H.T.; Bui,
D.D. Willingness to Pay for Improved Urban Domestic Water Supply System: The Case of Hanoi, Vietnam. Water 2022, 14, 2161.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

5





Citation: Kawamura, A.; Amaguchi,

H.; Olsson, J.; Tanouchi, H. Urban

Flood Runoff Modeling in Japan:

Recent Developments and Future

Prospects. Water 2023, 15, 2733.

https://doi.org/10.3390/

w15152733

Academic Editor: Fernando António

Leal Pacheco

Received: 25 June 2023

Revised: 26 July 2023

Accepted: 26 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

Urban Flood Runoff Modeling in Japan: Recent Developments
and Future Prospects

Akira Kawamura 1,*, Hideo Amaguchi 1, Jonas Olsson 2 and Hiroto Tanouchi 3

1 Department of Civil and Environmental Engineering, Tokyo Metropolitan University,
Hachioji 192-0397, Japan; amaguchi@tmu.ac.jp

2 Hydrology Research, Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden;
jonas.olsson@smhi.se

3 Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan;
tanouchi@wakayama-u.ac.jp

* Correspondence: kawamura@tmu.ac.jp; Tel.: +81-42-677-1111 (ext. 4573)

Abstract: Since the 20th century, Japan has experienced a period of very rapid urbanization. Cities
have experienced substantial densification and expansion, resulting in gradually elevated flood risk.
Urban flooding has also occurred in most large cities in Japan, particularly in Tokyo. In response
to this growing problem, much effort and resources have been spent on research and development
aimed at understanding, simulating, and managing urban flood risk in Japan. The objective of this
review is to summarize, discuss, and share key outputs from some of the main research directions in
this field, significant parts of which have been uniquely developed in Japan and only published in
Japanese. After a general introduction to urban runoff modeling, in the next section, key historical
works in Japan are summarized, followed by a description of the situation in Japan with respect to
observations of precipitation and water level. Then, the storage function model approach is reviewed,
including an extension to urban basins, as well as recent experiments with AI-based emulation
in Japanese basins. Subsequently, we review the prospects of detailed hydrodynamic modeling
involving high-resolution, vector-based Geographical Information System (GIS) data for the optimal
description of the urban environment with applications in Tokyo. We conclude the paper with some
future prospects related to urban flood risk modeling and assessment in Japan.

Keywords: urban flood risk assessment; USF model; TSR model; urban landscape GIS delineation;
rainfall data

1. Introduction

Development in urban areas greatly increases surface runoff, owing to the increase in
impervious surfaces, as well as the total runoff volume flowing to the receiving watershed.
In addition, the construction of storm sewer systems and the culverting of rivers during
the urbanization process increase the runoff rate. The peak velocity of runoff inevitably
increases as more runoff is discharged at shorter intervals, resulting in an increased risk
of overflow. In conjunction with the concentration of population and property in the
watershed, urbanization thus generally makes flood potential higher [1–4].

Since the latter half of the 20th century, urbanization has progressed rapidly in both
developed and developing countries. Especially in Japan, urbanization has progressed
much more rapidly than in Europe and the United States [5]. Mountains and hills in
watershed areas that had been forests and fields were developed one after another, and
agricultural land, including paddy fields, was simultaneously converted into residential
land [5]. As a result, the watersheds were transformed into urban areas with a high
risk of inundation. In an urban watershed, there is a complex distribution of artificially
developed impervious areas, such as houses, buildings, paved roads, and parking lots,
where rainwater cannot infiltrate. Runoff pathways by storm drainage facilities, such as
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sewers and artificial drainage channels, as well as runoff control and flood control facilities
(e.g., storage and infiltration facilities), form a very complex urban runoff system that is
constantly changing [6]. In Japan, the 1958 Kano River Typhoon Event is considered the
first case of urban flooding [7], which caused extensive inundation damage not only in the
lowlands but also in previously flood-free plateau areas [7,8].

In terms of flood damage in Japan, there has been a decreasing trend in human
losses, although the economic losses have not decreased. The damage per unit area has
exhibited an upward trend since the 2000s. Recent floods in urban areas have become more
complex than past urban floods. One reason is the increasing frequency of unpredictable
localized torrential rains, commonly called “guerrilla downpours” [9–11], which might be
considered to be an effect of urbanization [12]. Seino et al. [13] explored how urbanization
affects precipitation in the Tokyo metropolitan area. The risk of pluvial flooding caused by
surcharge from sewerage facilities has been shown to increase compared to fluvial flooding
caused by overflow from river channels [14].

Urban flooding, especially associated with recent record-breaking rainfall events,
has become one of the most pressing social issues. Thus, flood mitigation is a crucial
water management strategy for reducing destructive damage. For this purpose, rainfall-
runoff models are important tools that play a central role, especially in urban watersheds.
Generally, the purpose of runoff analysis is to clarify the physical mechanism of the
runoff process by applying the amount of precipitation (rainfall, snowfall, etc.) to predict
hydrological impacts, such as floods and droughts, in the target watershed. The results are
used for the planning and management of rivers and watersheds.

In terms of process description, runoff models can be classified into two main types:
lumped and distributed models. The former considers the watershed as a homogeneous
unit without spatial variability, and the runoff process is generally expressed as ordinary
differential equations of time. Distributed models explicitly consider the spatial variability
of watershed characteristics and are usually expressed as partial differential equations of
time and place [15,16]. In addition, semi-distributed models also exist, where a watershed
is divided into sub-watersheds, each of which is represented by a lumped model. Based
on how the response of runoff as output to rainfall (precipitation) as input is described,
models may be classified into “response models”, which simply use a response relation-
ship, “conceptual models”, which conceptualize the response relationship, and “physical
models”, which model the runoff from the basic equations of physics.

The most commonly used lumped conceptual models in Japan today are the tank
model [17] and the storage function (SF) model [18,19]. The tank model was developed
by Sugawara in 1956 [17], and the SF model was proposed by Kimura in 1961 [18,20].
The SF model is a lumped model used to simulate individual flood events and has the
ability to represent nonlinearity in the runoff process with a relatively simple structural
equation and fast calculation. The SF model is commonly used in watersheds with relatively
large catchment areas under the jurisdiction of the Ministry of Land, Infrastructure, and
Transport (MLIT), and has become the standard runoff model for flood control planning in
Japan [21–24].

In contrast to lumped models, distributed models explicitly incorporate the spatial
variability of watershed characteristics. With the widespread use of Geographic Information
System (GIS) technology, distributed physical models have been widely used in small-to-
medium-sized urban watersheds, where the effects of land use change and flood control
facility development on runoff characteristics have been evaluated [25–27]. The main
advantages of commonly used grid-based distributed models are their simple structure and
their use of spatially explicit watershed information, which is generally readily available.
Because of these advantages, grid-based distributed models are widely used not only
in rural areas but also in urban watersheds. In Japan, Sayama et al. [28] proposed the
rainfall-runoff-inundation (RRI) model, which is a 2D model capable of simultaneously
analyzing rainfall runoff and flood inundation. The RRI model has been integrated with
modeling and visualization tools by the International Centre for Water Hazard and Risk
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Management (ICHARM) of the Public Works Research Institute (PWRI) [29] and is used
not only in Japan but also in other countries.

Globally, many different basin-scale hydrological models have been developed, in-
cluding the TOPMODEL [30], Xinanjiang model [31,32], Systeme Hydrologique Europeen
(SHE) [33], and the Institute of Hydrology Distributed model (IHDM) [34], and those
are also commonly used in Japan. The Hydrologiska Byrån Vattenbalans (HBV) model
was developed in Sweden in the 1970s and has been widely used worldwide [35]. More
recently, the hydrological processes for the environment (HYPE) model [36,37] was devel-
oped, which has been set up from the basin to the global scale and is used for operational
forecasting as well as climate change impact assessment. Tanouchi et al. [21] developed the
semi-distributed HYPE model to improve the description of urban runoff.

The accurate characterization of impervious surface type and extent is required for the
prediction of the corresponding impacts on watershed hydrology [38]. However, in general,
the land use information used as watershed characteristics in grid-based models is simply
the impervious area ratio and the runoff coefficient. Therefore, the ability to accurately
represent the impermeable characteristics of urban watersheds in grid-based models is
limited [39]. Many models use raster-type land use data generated from aerial photographs.

With recent technological advances in GIS, digital information has become readily
available for urban watersheds. In addition to grid-shaped raster land use information,
vector-type polygonal (polygon shape) land use data, which can accurately represent
buildings, roads, and other land features, have also been created [40]. However, there are
still only a few cases in which polygon-type land use information is directly used for runoff
analysis. Sample et al. [41] used GIS to facilitate urban stormwater analysis using land use
parcel boundaries. Rodriguez et al. [42] used a vector-based watershed description based
on a so-called urban databank, which includes the categories cadastral parcel, building,
street, sewer system, and river, to calculate an urban unit hydrograph. Lee et al. [43]
developed a model to evaluate low-impact development (LID) by defining a watershed as
a hydrological response unit (HRE), which is a sub-watershed for calculating stormwater
inflow to the sewer system. However, the area of the HRE is very big at several thousand
square meters, and land use information is averaged over the HRE.

In light of this background, we review flood runoff analysis and modeling with a focus
on urban watersheds in Japan. Regarding previous research related to urban flood runoff
modeling in Japan, this has already been reviewed in detail in the authorized Handbook [44]
and Hydroscience Formulary [16,45–47] published by the Japan Society of Hydrology and
Water Resources (JSHWR) and the Japan Society of Civil Engineers (JSCE), respectively.
Therefore, in this review paper, we mainly focus on recent developments in urban flood
runoff modeling. Following this introduction, in Section 2, we briefly describe the history
of urban runoff modeling in Japan. Section 3 is devoted to observations of precipitation and
water levels, which are required for accurate modeling and the current situation in Japan.
Section 4 focuses on lumped modeling, the urban storage function (USF) model is outlined
as an example, and the hydrological data required to build the model for urban areas are
described together with the prediction accuracy obtained using artificial intelligence (AI).
Distributed physical modeling is reviewed in Section 5, including different approaches
to describing the urban structure, as well as the Tokyo storm runoff (TSR) model as an
example of a distributed model using vector-type GIS data. This paper closes with some
future prospects related to urban flood runoff modeling in Japan.

2. Brief History on Urban Runoff Modeling in Japan

In Japan, Morita [48] characterized an urban watershed as a so-called “small- to
medium-sized urban river basin”, where most of the watershed is flat land, such as alluvial
plains, flood plains, alluvial fans, and hills. Normally, the entire upper, middle, and
lower reaches are developed into urban areas, and the watershed area is generally smaller
than 100 km2.
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As for urban runoff research in Japan, Kinoshita [1] was the first to comprehensively
and quantitatively describe and discuss urban flood runoff mechanisms in 1967. This
paper was followed by numerous studies on urban flood runoff mechanisms [2,3], which
were summarized by Kadoya [4] in 1985. There, the urban flood runoff mechanisms are
characterized by (1) an increased runoff rate during floods, (2) a reduced flood concentration
time before rainwater flows into rivers, and (3) extremely large peak runoff rates due to high-
intensity rainfall peaks with a short duration. Generally, most of the flood runoff models
were mainly intended for mountainous and natural watersheds and were not developed
with urban watersheds in mind, as pointed out in the Hydrology and Water Resources
Handbook published by JSHWR in 1997 [49]. In addition, physical runoff processes in
urban watersheds are not fundamentally different from those in natural watersheds. As a
result, when applying a runoff model to an urban watershed, only the model parameters
are usually adjusted [49].

The rational equation [50], which is used in many small-to-medium-sized river and
sewage system plans in Japan, was originally proposed as a model for estimating peak
flows as a basis for stormwater management in urban watersheds. Parameters, such as
the runoff coefficient and flood concentration time, need to be calibrated for the target
urban watershed. For example, in 1976, Kadoya and Fukushima [51] proposed an equation
relating flood concentration time to flood magnitude based on the equivalent roughness
method. The synthesized rational formula [52,53] has also been developed as a model
for urban watersheds in 1998. This method creates a hydrograph by dividing an urban
watershed into sub-watersheds, each characterized by area, runoff coefficient, and flood
concentration time, and combining the peak flows by superimposing the results from the
rational equation. The quasi-linear storage model [54] developed in 1977 and the modified
RRL method [55] developed in 1972 are also used as flood runoff models for urban areas
by setting flood concentration times and runoff coefficients for the urban watershed of
interest [56,57].

In 1954, Iwagaki and Sueishi applied the kinematic wave theory to the analysis of
hillslope runoff [58,59], and soon after, Lighthill and Whitham [60] developed the kinematic
wave theory for river flow tracking. Since then, this theory has been accepted as a standard
tool for modeling surface flows and various other elementary hydrological processes [61,62].
The kinematic wave model, in which the watershed is described in terms of a collection
of rectangular slopes and river channels, and rainwater flow, which is represented by
a hydraulic continuity equation and a kinematic equation, is a widely used distributed
physical model in Japan (see, for example, [24,62]). As an example of applications of the
kinematic wave model to urban watersheds, in 1991, Ando et al. [63] divided an urban
watershed into rectangular sub-watersheds using spatially distributed rainfall and applied
the kinematic wave model to each divided sub-watershed. The reproducibility of the
hydrograph was improved by using the equivalent roughness value of the urban watershed
as an input. In 1995, Fujimura et al. [64] showed that diffusion wave or dynamic wave
models are more accurate than kinematic wave models for nonstationary and unsteady
river channel flow calculations, although kinematic wave models are used for the slope
flow, as well as surface flow, of low-lying watersheds. In 1996, Suzuki et al. [65] developed
the Doken model as a distributed model for real-time flood forecasting. The model has
been incorporated into the Integrated Flood Analysis System (IFAS) for flood forecasting
in watersheds with inadequate water level observations and has been applied in Asian
countries, such as Pakistan [66]. In 1997, Chikamori et al. [67] attempted to obtain model
parameters, such as equivalent roughness, using GIS information when constructing a
kinematic wave model for an urban watershed. In the Technical Standard for River Erosion
Control, Survey Edition by MILT [68], the rational equation [50], the SF model [18], the
kinematic wave model [24], the quasi-linear storage model [54], the tank model [17], and
the Doken model [65] are introduced as runoff models.

Since then, along with the rapid development of computer and IT technology, the
analysis of flood runoff in urban watersheds has been improved in several respects. Data
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collection by, e.g., satellites and radar is a significant advancement, as is the advancement
of GIS technology [69]. Furthermore, a range of new methods based on, e.g., optimization
methods, network theory, and AI, have been applied to flood runoff analysis and modeling.
Shibuo and Furumai [70] recently reviewed urban stormwater management in Japan,
focusing on rainfall observations, numerical modeling, and emerging technologies.

3. Rainfall and Water Level Observation System in Japan

A key component of flood runoff modeling is access to observational data. In Japan,
information on rainfall and river levels is mainly provided by the Water Information
and National Land Data Management Centre established by the Water Management and
Land Conservation Bureau under the MLIT [71]. As of 2023, real-time river observations
(water level and streamflow) and rainfall observations are provided online at 7580 and
10,619 stations, respectively [72]. In particular, the recently developed crisis water level
gauges have improved river level monitoring during heavy rainfall, with approximately
6000 stations installed from 2018 to 2020. For rainfall, in addition to these, approximately
1300 precipitation monitoring stations have been installed by the Japan Meteorological
Agency (JMA) through the Automated Meteorological Data Acquisition System (AMeDAS),
with one station per 289 km2 across the country [73].

The X-band multi-parameter (MP) network of weather radars, known as the eXtended
RAdar Information Network (XRAIN), was developed in 2008 by MLIT. The network uses
16 high-performance C-band MP radars and 39 X-band MP radars that are specialized for
rainfall observation [74]. XRAIN provides high-resolution (250 m), high-frequency (1 min),
and near-real-time rainfall information for almost the entire land area of Japan without the
need for correction by rain gauges at the ground surface. However, owing to its short wave-
length, XRAIN has only a narrow observation area (80 km radius) because of attenuation
caused by rainfall, and in some cases, it cannot fully penetrate heavy rainfall areas.

In urban areas, small-to-medium-sized rivers are at high risk of river overflow and
flood damage due to flooding caused by short periods of high-intensity rainfall. Therefore,
urban runoff analysis requires very high-resolution observations to accurately capture the
spatial and temporal distributions of rainfall. Schilling [75] suggested that rainfall data
of at least 1–5 min and 1 km resolutions should be used for urban drainage modeling.
Fabry et.al. [76] recommended the use of higher-resolution data (1–5 min temporal and
100–500 m spatial) for urban hydrological applications to provide the necessary hydraulic
details. In the case of localized torrential rainfall, there is often a delay of only tens of
minutes from the start of the rainfall to the peak river water level, and flooding damage
associated with such events is frequent in large cities in Japan [77]. For this reason, the
validation of flood runoff analysis models for urban areas requires a time resolution of river
observations similar to that of the rainfall observations.

In Tokyo, for example, the Tokyo Metropolitan Flood Control Integrated Information
System (FCIS) plays a role in flood prevention activities by automatically collecting real-
time observations of rainfall and river water levels in Tokyo and providing them to the
relevant organizations [78]. The FCIS began observing 10 min rainfall in January 1978 and
later increased the resolution to 1 min. Water level observations were initiated to inform
residents of the danger of flooding due to the rapid increase in water levels caused by
heavy rainfall. A total of 124 water level observation stations were established in Tokyo,
and 15 stations (1.67 km2/station) were established in the Kanda River basin. Rainfall
observations were introduced to measure high-intensity rainfall with high resolution in
time and space, as well as high precision. The number of rainfall observation stations
has increased annually, and as of 2022, 93 stations (19 km2/station) have been installed
(Figure 1). This is a very large number, considering that there are only 10 AMeDAS stations
operated by the JMA [73] in Tokyo (178 km2/station). FCIS data are expected to accurately
describe the spatial variability of heavy rainfall.
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Figure 1. Map of FCIS and AMeDAS stations in Tokyo Metropolis (top) and a zoomed-in map of
FCIS stations and XRAIN grid in the upper Kanda River Watershed (bottom).

4. Storage Function Model in Urban Watersheds

4.1. Conventional SF Models

SF models are event-based lumped models that are used for short-term hydrograph
prediction, characterized by a relationship between storage and discharge. Kimura’s origi-
nal SF model in 1961 is a method to divide effective rainfall into storage and runoff processes
by separating the watershed into runoff and infiltration areas [24] and is described as the
“total storage function method” in the 1985 edition of the Hydroscience Formulary [45].
In general, the relationship between storage and discharge in a watershed during a flood
can be described by a two-valued function, where the relationship between storage and
discharge differs between the rising and receding parts of the hydrograph, respectively,
and often forms a loop [79,80]. Kimura’s SF model with two parameters introduced a delay
time to eliminate this loop. In 1967, Prasad [81] presented a three-parameter SF model that
directly expressed the bivalence between storage and discharge by adding a term for the
loop effect. In 1982, Hoshi and Yamaoka [82] developed a four-parameter SF model by
adding another parameter to accurately express the bivalence of the loop effect.
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Flood runoff models, including conventional SF models, generally target the direct
runoff component of the total runoff, except for tank models that incorporate rainwater
loss and storage effects. Thus, general flood runoff models require effective rainfall as their
input for the prediction of direct runoff. Hence, at first, the separation of baseflow from the
total discharge is needed to calculate the effective rainfall when applied to the actual runoff
analysis. There is no definitive method for separating direct runoff, and the calculated
direct runoff will be different because of the subjective nature of the separation process [83].
As a result, the identification of model parameters may change significantly, which may
cause the stability and reliability of the runoff calculations to decrease. Baba et al. [22] and
Hoshi et al. [84] developed an SF model that directly uses the observed rainfall and runoff
to solve the problems associated with the estimation of direct runoff. The proposal of a
model concept that does not require the separation of baseflow is groundbreaking [69].

The four conventional SF models are the Linear, Kimura [18], Prasad [81], and
Hoshi [84] models, and their storage equations are shown in Table 1, where s is the storage
(mm), Q is the observed river discharge (mm/min), t is the time (min), k1, k2 are model
parameters that express the constant of proportionality for Q and the time variation of Q,
respectively, and p1, p2 are model parameters that express the exponent related to Q itself
and the time variation of Q, respectively. The associated continuity equations, in which ql
and qR include parameters k3, z, and α, respectively, are also listed, and they are explained
in the next Section 4.2. Among these models, Hoshi’s model was found to be superior
owing to an additional parameter, p2, which may be quantified by numerical experiments
and can well define the flow characteristics based on kinematic wave theory [85]. Some
simplifications in Hoshi’s storage model can lead to Prasad’s storage model [81]. If we
set p2 = 1 in Hoshi’s model, we obtain Prasad’s storage model. Similarly, if we set k2 = 0
in Prasad’s model, the model can be transformed into Kimura’s model [18]. The simplest
linear model can be obtained by keeping p1 = 1 in Kimura’s model. Kimura’s SF model
with one storage tank, which is widely used as a special case of Kimura’s original model
with a delay time of zero [85].

Table 1. Storage function models with their associated continuity equations (PAR represents a
parameter).

No. Models Storage Equation Continuity Equation

1 Linear
(3-PAR) s = k1Q ds

dt = R + I − E − O − Q − ql

2 Kimura
(4-PAR) s = k1(Q)p1 ds

dt = R + I − E − O − Q − ql

3 Prasad
(5-PAR) s = k1(Q)p1 + k2

dQ
dt

ds
dt = R + I − E − O − Q − ql

4 Hoshi
(6-PAR) s = k1(Q)p1 + k2

d
dt (Q)p2 ds

dt = R + I − E − O − Q − ql

5 USF
(7-PAR) s = k1(Q + qR)

p1 + k2
d
dt (Q + qR)

p2
ds
dt =
R + I − E − O − (Q + qR)− ql

4.2. Urban Storage Function (USF) Model

The runoff characteristics of urban watersheds are significantly different from those
of natural and mountainous watersheds because of the high proportion of impervious
areas and the increasing prevalence of sewerage systems. Therefore, it is difficult to
accurately reproduce the hydrographs of small-to-medium-sized urban rivers with short
flood concentration times by using conventional SF models. Takasaki et al. [86] proposed
an SF model including a two-valued function that considered the runoff characteristics of
combined sewer systems. Later, Takasaki et al. [23] proposed and constructed an urban
storage function (USF) model that does not require the calculation of effective rainfall or
the separation of baseflow but directly uses observed rainfall and runoff.
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Figure 2 shows the schematic diagram of all the possible inflow and outflow compo-
nents of an urban watershed with a combined sewer system. Combined sewers are common
in small-to-medium-sized river watersheds in old cities, such as the Tokyo Metropolitan
District, where sewers have been in place since the 1900s [87]. The inflow components in
Figure 2 are represented by rainfall, R (mm/min), and urban-specific and groundwater
inflows from other watersheds, I (mm/min). Urban-specific inflows include leakage from
water distribution pipes, irrigation flows, etc. The outflow components consist of river dis-
charge, Q (mm/min), evapotranspiration E (mm/min), storm drainage from the watershed
through the combined sewer system qR (mm/min), water extraction from the watershed
for, e.g., water supply, agricultural needs, etc., O (mm/min), and groundwater-related loss
ql (mm/min). In addition, domestic sewage qw is depicted in Figure 2 even though it does
not contribute to watershed storage, s (mm).

Figure 2. Schematic diagram of all inflow and outflow components of an urban watershed with a
combined sewer system.

The USF model is an empirical representation of Hoshi’s SF model (shown in Table 1),
in which the river discharge, Q, is replaced by the discharge, including storm drainage,
Q + qR. The associated continuity equations, which do not require the separation of
baseflow for both the conventional SF models and the USF model, are listed in Table 1.
Here, the groundwater-related loss (ql) was defined by considering the infiltration hole
height (z) by multiplying k3, which are the new parameters in the continuity equations in
Table 1. Furthermore, the qR of the USF is defined by using an additional parameter, α, that
expresses the slope of the linear relationship between the total discharge, Q + qR, and the
drainage, qR (refer to [23,88] for details).

Thus, seven unknown parameters (k1, k2, k3, p1, p2, z, and α) are identified in the
USF model. As an optimization method for parameter identification in lumped concep-
tual models, global search methods using evolutionary computation methods, such as
genetic algorithms, have diversified in recent years [89]. Among them, the effectiveness
of the shuffled complex evolution University of Arizona (SCE-UA) method developed by
Duan et al. [90] has attracted considerable attention [91,92].
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4.3. Application of the USF Model in an Urban Watershed

Takasaki et al. [23] applied the USF model to the upper Kanda River watershed
(Figure 1), a typical small-to-medium-sized urban watershed in Tokyo that is entirely
urbanized and where urban flooding occurs frequently. The small concentration time
implies that river runoff occurs within a short period of time immediately after rainfall,
and the use of hydrological data with very short time intervals for rainfall-runoff analysis
is required. Therefore, FCIS rainfall and water level data at 1-minute intervals (described
in Section 3) were used. They used the SCE-UA method for parameter identification and
verified the effectiveness of the USF model, including the much-improved reproducibility
of the hydrograph [23].

Padiyedath et al. [88] applied the five SF models shown in Table 1 to the upper Kanda
River watershed. They also used the SCE-UA method to identify parameters to verify the
performance of the SF models. As for the results, the USF model showed not only the
highest hydrograph reproducibility among the five SF models, which is not surprising
when considering that the hydrograph reproducibility increases with the number of model
parameters, but also the most effective SF model from an Akaike information criterion
(AIC) [93] perspective. In addition, the uncertainty of the seven parameters of the USF
model was evaluated in detail using a residual-based bootstrap approach [94]. Furthermore,
Padiyedath et al. [95] expanded the USF model by considering the spatial distribution of
rainfall over watersheds and developed a generalized SF model able to directly estimate
the water level [96].

Lumped models, such as the USF model with a relatively small number of model
parameters, are suitable for real-time flood runoff forecasting by changing the model pa-
rameters sequentially. Parameter identification can be almost automated using global
search methods like SCE-UA, and hydrograph reproducibility at the target point is gen-
erally higher than that of a distributed model. Takasaki et al. [97,98] applied both the
particle filter method and the Kalman filter method to real-time flood runoff forecast-
ing using the USF model in the upper Kanda River watershed and obtained accurate
forecasting results.

4.4. Runoff Prediction by USF Using XRAIN Data in an Urban Watershed

For localized torrential rainfall events in the upper Kanda River watershed (Figure 1),
the USF model has also been used to evaluate hydrograph reproducibility using XRAIN
rainfall data and the FCIS rain gauge data [99]. At first, 1-minute XRAIN mesh rainfall data
were compared to 1-minute FCIS rain gauge data of the same mesh to check the precision
of XRAIN [100,101]. The results showed that 1-minute XRAIN values corresponded well
with the 1-minute ground observation rainfall values, but the former were observed 1 to
3 minutes earlier than the ground observation, which was considered mainly due to the
falling time of the raindrops. Spatiotemporal correlation analysis between XRAIN and
FCIS rain gauge data has also been conducted [102,103]. As for the results, for rainfall
during typhoons, where the rainfall area moved clearly along with the typhoon, it was
shown that radar rainfall was highly correlated with ground rainfall with a 2-minute time
delay. For localized torrential rainfall, it has been shown that the spatiotemporal correlation
between XRAIN and ground rainfall is much more complicated than in a typhoon case,
and the peak correlation does not always occur in the same mesh as the rain gauge but in
the surrounding meshes.

Regarding runoff predictability, the best performance was found for FCIS rainfall
observations, whereas the performance was lower for XRAIN [99]. This study also showed
that it was possible to improve runoff prediction using XRAIN by considering spatiotem-
poral correlation characteristics. It should be emphasized that there is a spatial uncertainty
in XRAIN rainfall, as it is measured at some elevation in the atmosphere and not at ground
level. This uncertainty can significantly affect runoff prediction using XRAIN, particu-
larly in the case of localized torrential rainfall occurring near the watershed boundary in
small-to-medium-sized watersheds [99,103].
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4.5. AI-Based Flood Runoff Modeling in Urban Watersheds

Machine learning using AI technology has developed remarkably in recent years.
In order to utilize machine learning for flood forecasting, many AI-based flood runoff
models have been constructed using, e.g., multilayered artificial neural networks (ANN)
or deep learning (DL) [69]. Many of these models have been constructed for large river
watersheds [104,105] using hourly observation data as input, and some DL applications for
small-to-medium-sized mountain river watersheds have used 10-minute data to construct
the models [106]. On the other hand, in small-to-medium-sized urban rivers, such as
in Tokyo, water level and rainfall observations are carried out at 1-minute intervals, as
described in Section 3. It has been concluded that the combination of temporal and volume
resolutions in rainfall observations is critical for successful AI modeling. In particular, the
hyetographs of 1-minute observations are highly intermittent and differ from the 10-minute
and hourly data in large river watersheds.

An attempt was made to emulate the USF model using ANN and DL. Fujizuka et al. [107]
tested the performance of a DL model using a virtual hyetograph and a virtual hydrograph
and examined the impact of the amount of training data. The DL model was compared with
a conventional ANN model on virtual datasets [108]. For both the ANN and DL models, if
the number of nodes in the input layer is sufficient, the Nash–Sutcliffe coefficients of the
hydrograph of both models are greater than 0.98; therefore, even the conventional ANN
model can accurately emulate the USF model. However, when the total number of nodes
in the intermediate layer was the same, the accuracy of the DL model was higher than
that of the ANN model. Fujizuka et al. [109] also performed a comparison using actual
observations and concluded that the DL model was superior when considering the number
of parameters in relation to the number of observations.

Recently, hybrid forecasting models that combine an ANN forecasting model with a
flood runoff model have been proposed [110]. In conventional ANN models, water level
and flow rate are used as the main input data for training and forecasting. In contrast,
the hybrid forecasting model incorporates flow rate forecasts from the runoff model into
the input layer of the deep ANN model. This is expected to improve the forecasting of
unprecedented runoff peaks, which remains a challenge for conventional statistical models.

5. Distributed Physical Models in Urban Watersheds

5.1. Background

In recent years, most of the distributed flood runoff models developed in Japan for
urban watersheds have focused on surface flooding and inundation analysis, and few
have focused on runoff analysis and the generation of runoff volume directly from urban
impervious areas. Since 1980, with significant improvements in numerical techniques
and hydrological models for slope flow, surface flow hydrological models have become
available for predicting inundation, and inundation hazard maps have been prepared as
flood damage reduction countermeasures. Most inundation analysis models are based
on shallow water equations as applied, e.g., by Iwasa et al. [111]. Toda et al. [112] used
a kinematic wave model for runoff from mountainous areas near urban areas and com-
bined it with an inundation model for urban areas that also consider drainage by sewage
systems. Subsequently, a new integrated lowland inundation model was developed and
used for flood inundation forecasting, considering slope runoff processes, sewer flows,
surface inundation, and runoff from manholes. This model configuration has been estab-
lished as a standard model for flood damage prediction by flood inundation analysis in
urban watersheds.

Furthermore, hydraulic models, such as InfoWorks, MOUSE, and the stormwater
management model (SWMM), which are mainly intended for the design and flow analysis
of sewer pipelines, have been integrated with surface inundation models and are used to
analyze flooding due to poor stormwater pipeline drainage, etc. In Japan, although these
models are used in practical applications, they are not widely used for flood runoff analysis
in urban watersheds because, as mentioned above, the development of flooding analysis
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models that take sewer pipeline flow into account has been conducted independently. As
an example of an integrated sewerage and inundation model, Shibuo et al. [113] developed
a comprehensive analysis model for the Tsurumi River watershed using the water energy-
based distributed hydrological model (WEB-DHM) to calculate runoff from the upper
catchment and InfoWorks to analyze the sewers and combined them into an integrated river
channel and sewage model. In addition, many inundation analyses of urban watersheds
have been conducted overseas using the Hydrologic Engineering Center’s river analysis
system (HEC-RAS), an open source 2D hydraulic model integrated into GIS [114,115]; this
model is not widely used in Japan because there is a need to incorporate aspects such as
flow in sewer pipelines and/or flooding processes in subways into the modeling. Detailed
explanations regarding these aspects will be provided in the next section.

5.2. Representation of Urban Structures in Distributed Physical Models

Urban flooding processes can be described by a dual drainage model that combines a
1D hydrodynamic model of the stormwater drainage network model with a 2D hydrody-
namic model of overland flow and flooding [116]. In particular, different representations of
urban structures have significant effects on surface flood processes [117]. Table 2 summa-
rizes the computational grid shapes used in different studies. The TSR model proposed
by the authors modeled direct runoff generation and flood flows from the perspective
of urban formation, whereas the other four models were developed to analyze urban
flood inundation.

Table 2. Characteristics of a distributed urban flood runoff models.

Geometry Image
Characteristics

(a) Objective; (b) Features; (c) Land use; (d) Handling of Buildings; (e) Surface
Flow Equations

Structured Grid
[118–120]

(a) Flood analysis.
(b) Model data can be created and calculated efficiently.
(c) Usually expressed as a percentage of impermeable area. If the resolution is

sufficiently high below 10 m, land use information may be specified in the
calculation grid.

(d) The impact of the building-blockage effect is considered by building
coverage ratio and conveyance reduction factors. If the resolution is fine
enough, the height of the building may be set in the grid.

(e) 2D diffusive wave model.

Curvilinear Grid
[121,122]

(a) Flood analysis.
(b) Capable of creating grids suitable for urban structures along roads. Ideally,

the road network in the targeted catchment should be like a grid. If the road
network is complex, model data preparation becomes more difficult.

(c) Usually expressed as a percentage of impermeable area.
(d) Resistance is calculated separately for bottom friction, resistance due to

plane vortices behind the house, and hydrodynamic forces on the buildings.
(e) 2D diffusive wave model.

Unstructured Grid
[123,124]

(a) Flood analysis.
(b) Represents complex terrain and boundaries on fewer grids. Manual

processing, requires GIS data and mesh generation software.
(c) Usually expressed as a percentage of impermeable area.

If the resolution is fine (less than 20 m), a Digital Surface Model (DSM) may
be set for the elevation of the residential block.

(d) Buildings of the same scale as the computational grid are subjected to a
boundary-fitting process, while smaller buildings are grouped.

(e) 2D full shallow-water equations.
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Table 2. Cont.

Geometry Image
Characteristics

(a) Objective; (b) Features; (c) Land use; (d) Handling of Buildings; (e) Surface
Flow Equations

Road Network
[125,126]

(a) Flood analysis.
(b) Capability to represent complex road networks. The ground surface consists

of roads and Residential grids. Relatively easy in a GIS environment.
(c) Initially developed as a flood inundation model from rivers; rainfall-runoff

processes and infiltration processes are not considered.
Recently developed models set average building area percentages.

(d) Roughness coefficients of large values are set against the flow between the
road and the residential block.

(e) 1D Saint-Venant equations.

Urban Landscape
Delineation

[6]

(a) Flood runoff and inundation analysis.
(b) Unlike other grids, polygon data is created for roads, buildings, permeable

and impermeable ground, etc., classified according to permeability
characteristics, with roads, for example, further divided into segments. It is
possible to give detailed attributes to individually subdivided polygons (e.g.,
building structure, use, number of floors, presence of storage facilities, etc.).

(c) Land use and grid geometry are consistent.
(d) Parameters are set to take into account the building flooding process.
(e) 1D Saint-Venant equations.

5.3. Structured Grid

A structured grid is most commonly used for surface models because of the simplicity
of grid formation when analyzing ground surface flows as two-dimensional unsteady
flows. The surface flow (inundation analysis) model using a structured grid was developed
based on a relatively large computational grid for wide-area inundation. At the beginning
of the model development, the effects of structures, road networks, etc., were considered by
equivalent roughness coefficients based on land use or synthetic roughness coefficients as a
function of building occupancy and inundation depth. This was carried out because it was
difficult to take into account the influence of roads and buildings, which are likely to have
a significant impact on flood flows in urban areas, in the structured grid. Later, building
volume (nonflooded space) and flow disturbance by buildings were considered [118].

Currently, this is the standard method used to prepare municipal flood maps in Japan,
and the National Institute for Land and Infrastructure Management (NILIM) of the MLIT
provides the analysis program NILIM2.0 [119]. The accuracy of inundation analysis can
be improved by using high-resolution elevation data. In recent years, with advances in
computer performance, analyses using 5 and 1 m mesh elevation data have been made.
Inokawa and Kobayashi carried out an inundation analysis on the surface and in an
underground station using a 1 m mesh and concluded that it is important to consider slight
changes in the inundation level at the station [120].

5.4. Curvilinear Grid

Curvilinear grids are widely used in the numerical analysis of open channel flows,
including bends [121]. When this grid model is applied to an urban area, the attributes of
roads and buildings can be classified for each grid if the co-ordinate axes are appropriately
set. When compared to a structured grid, grid construction requires much more effort.
Since there are only two axes, the direction of the road is restricted [121].

Fukuoka et al. focused on structures, such as houses and road networks, in urban
areas and developed a model using a curvilinear grid for the road network, achieving the
highly accurate reproduction of water levels and flow velocities on roads and between
city blocks of houses [122]. However, in recent studies, this co-ordinate system has rarely
been used.
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5.5. Unstructured Grid

Unstructured grids can be created according to the urban structure, for example, by
applying detailed grids in regions with complex boundaries and geometries and coarsening
the grids in the regions that are not computationally important. However, as with a curvi-
linear grid, the time and effort required for grid formation are significant for unstructured
grids [121].

Akiyama et al. developed a two-dimensional numerical model of flood flows based
on the finite volume method (FVM) with an unstructured grid for the floodplain profile to
ensure the proper representation of the road network and houses [123,124]. The flood flow
in the river and the runoff on the ground were simulated simultaneously using a 2D free
surface flow model based on the flux-difference splitting scheme and an unstructured FVM.
For the sewer network, a dynamic network model for free-surface pressure flow based
on the flux-difference splitting scheme combined with a stormwater drainage network
was used. By performing an inundation analysis on Iizuka City and verifying its accuracy
against observations of the waterlogged areas, it was shown that the model could estimate
waterlogged areas with sufficient accuracy and estimate detailed inundation properties,
such as overflow, internal inundation locations, and flood propagation paths.

5.6. Road Network

Inoue et al. proposed representing roads and buildings as different computational
grids and developed an analysis method using a road network model that can represent
flooding in real urban areas more faithfully than the method using a structured grid [125].
Road junctions were used as nodes, and the road segments between junctions as links;
residential areas were specified as areas surrounded by the network; junctions and resi-
dential areas were defined as the analysis grid; and water depths were obtained from the
continuity equation. They showed that the road network model could directly parameterize
the roughness coefficients at the surface by considering the block walls.

Sekine et al. [126] proposed another flood analysis model using a road network,
focusing on flow concentrations on roads and sewers in densely built-up areas. The model
is characterized by its ability to faithfully model rainwater runoff from buildings into
sewers. The average house in a city block, based on its roof area, was treated as a unit
house in the model, and rainwater on the unit house was assumed to flow into the sewers
adjacent to the city block using the kinematic wave approximation. Sekine et al. focused on
three cities neighboring the 23 wards of Tokyo that were damaged by Typhoon No. 19 in
2019 and performed predictive calculations of inundation in the event of hypothetical
maximum rainfall, describing the inundation process in depressed areas and underpasses
with significant inundation [127].

5.7. Urban Landscape GIS Delineation

The authors have developed the Tokyo storm runoff (TSR) model that can simulate
urban storm runoff and flood inundation using a vector-based watershed description [6].
The TSR model employs so-called “urban landscape GIS delineation” that realistically
describes complicated urban land use features in detail. Urban landscape GIS delineation
enables an accurate representation of the infiltration and perviousness of each property,
making it possible to calculate the impervious area of a target watershed with very high
accuracy. In addition, for pervious land, characteristics such as infiltration capacity can be
set specifically for each land use type [40].

In Japan, 10 m resolution grid-based data classified by land use type are generally
used in distributed runoff modeling in urban watersheds. Although there are 17 land use
categories in the classification, including industrial land, commercial/business land, and
general low-rise residential land, the original purpose was to obtain the basic data necessary
for residential land-related policies in urban areas, and these land use categories were not
compiled with differences in infiltration rates in mind. Since estimating the impervious
area ratio (IAR) for each land use category is an important component of accurate runoff

19



Water 2023, 15, 2733

analysis, Koga et al. [40] overlaid this landscape GIS and grid on a typical urban watershed
in Tokyo and calculated the IAR for each grid. The results revealed that the reference value
of the IAR for the land use classification had an error of about 7%.

Since the urban landscape GIS considers individual buildings, roads, parking lots, and
other factors, Araki et al. [128] added stormwater runoff control facilities for individual
buildings and specific permeable paved roads in the upper Kanda River basin as attributes
of their maintenance status and examined their effectiveness in controlling flood runoff. The
simulation results show that the developed model allows for the quantitative estimation of
the efficiency of infiltration facilities.

The construction of urban landscape GIS data currently requires time-consuming
manual work using GIS software (ArcGIS 10) [129]. Therefore, research has been conducted
on automating urban landscape GIS delineation [130,131]. In addition, current GIS data
only represent the planar structure of ground surface objects, and thus cannot represent
the three-dimensional structure of subways, underground road tunnels, and the multilevel
intersections of roads and bridges, as well as buildings, especially high-rise buildings. In
order to more faithfully reproduce rainfall runoff paths physically, it will be necessary to
construct three-dimensional GIS data that also take the height direction into consideration.
The construction of a four-dimensional GIS that includes not only three spatial dimensions
but also time has been pointed out as a challenging issue.

5.8. TSR Model
5.8.1. Outline of Tokyo Storm Runoff (TSR) Model

The Tokyo storm runoff (TSR) model is a distributed physical model that utilizes
urban landscape GIS data (for details, see Amaguchi et al. [6]). Figure 3 shows the rainfall-
runoff process for the TSR model. Rainfall in the watershed is applied to each land use
element, and the rainwater that cannot infiltrate is discharged to nearby roads and further
to manholes and sewer pipes based on the infiltration and imperviousness characteristics
set individually. In a manhole/sewer pipe element, the water level in the manhole section is
first calculated based on the inflow/outflow to/from the road and inflow/outflow to/from
the connecting pipe. The flow rate is then calculated based on the water level in the manhole
section and the cross-sectional characteristics of the pipe. In this calculation process, water
in the manhole overflows onto the road when the water level in the manhole exceeds the
ground level of the road. The overflowing water flows down the road and eventually
returns into a manhole or sewer pipe with sufficient flow capacity. Thus, water entering the
sewer pipes is combined with water in the sewer network and eventually flows out into
the river channel. In the inundation analysis, the amount of runoff from land use elements
and the amount of overflow through manholes in the sewer system is used to calculate
the water flows into residential areas when the road water level is above the surrounding
ground level. The water in the residential areas flows back into the road when the water
level on the road decreases.

Stormwater runoff processes in urban watersheds are highly dependent on local
boundary conditions such as buildings, roads, rivers, and surface flows to sewers. Based on
these boundary conditions, the TSR model calculates the direct runoff from roads, buildings,
and other impervious areas that constitute a city and simulates the transport to the ground
surface, sewerage systems, and rivers. When compared to the other four representations of
urban structure (grid, curvilinear, unstructured, and road networks), and the associated
models, the TSR model is not suitable for analyzing flooding flows with levee failures
from large rivers, but it is intended for inundation phenomena, such as pluvial flooding in
urban areas.
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Figure 3. Schematic of the rainfall-runoff process.

5.8.2. Model Application to Urban Watershed

Amaguchi et al. [132,133] used the building element of urban landscape GIS data
to set individual values for the site elevation and floor elevation of buildings and made
some modifications to the flooding analysis in the TSR model. This made it possible to
simulate inundation conditions both inside and outside buildings. The model was set
up and evaluated for the upper Kanda catchment in the Tokyo Metropolis, Japan. In the
model, the parameters for the foundation height and floor height of each building, as
well as the opening ratio below and above the 1st floor, were set for individual buildings
based on their structure and purpose (Figure 4). The model was applied to the major
flood event of 4 September 2005. There was no flood damage in the target watershed
due to the effect of the underground control basins, so the simulation was performed
assuming that the control basins were not functioning. The validity of the model was
confirmed by comparing the model with river water levels observed at upstream locations
not affected by the underground control basins. The validity was confirmed through its
ability to overall accurately reproduce the observed river water levels [132]. This model
was applied to simulate major flood events and was able to reproduce the differences in
the inundation depth of individual buildings, reflecting the additional input parameters.
The use of the model to evaluate inundation conditions for specific building properties was
also demonstrated. The results show that the suggested approach, which is based on a
detailed reproduction of all the relevant elements in an urban watershed, can simulate the
inundation of individual buildings (Figure 5).

Figure 4. Parameters used for building inundation.
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Figure 5. Example of inundation analysis results in the upper Kanda River watershed (The arrows
indicate north direction).

6. Concluding Remarks and Future Prospects

In this review, approaches to flood runoff analysis and modeling with a focus on
urban rivers in Japan have been reviewed. Relevant essential articles quoted in this paper
concerning urban flood modeling in Japan have been summarized chronologically in
Table A1 in Appendix A.

The USF model and other lumped conceptual models predict runoff at a given point
in a river using rainfall data in the target urban watershed as input. The major advantages
of these methods are that the number of parameters is small, the execution time is short,
and the reproducibility of the observed hydrograph is generally high.

Concerning distributed modeling, in the TSR model with urban landscape GIS delin-
eation, all land surfaces are represented by polygons divided according to their infiltration
characteristics. This concept almost eliminates the problem of the excessive fine graining
required in grid-based models to fully represent heterogeneity. However, current GIS data
only represent the planar structure of ground surface objects and, thus, cannot represent
the three-dimensional structures of subways, underground road tunnels, the multilevel
intersections of roads and bridges, and (high-rise) buildings. In order to more faithfully re-
produce rainfall runoff paths physically, it will be necessary to construct three-dimensional
GIS data that also consider the height direction.

Furthermore, in flood runoff analysis using distributed physical models, it is impor-
tant to improve observation systems for model calibration and the real-time prediction
of flooding and inundation. These observations include spatial real-time rainfall radar
information, the water levels in sewers, and the inundation depth during flooding. For
this purpose, technology to quickly collect and utilize accurate information is needed.
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Additionally, runoff and inundation forecasts need to be transmitted in an easy-to-use
format and be presented in an easy-to-understand manner to different recipients. Recently,
the use of drones to observe early flood damage has been proposed to help local residents
decide about evacuation and efficiently promote self-help. Finally, to enable highly accu-
rate real-time flood forecasting with sufficient lead time using any type of runoff model,
accurate and reliable high-resolution rainfall forecasts are required at least one hour ahead
of an event in the case of urban watersheds.

Especially in lower urban areas, seamless, coupled models will be developed that
incorporate not only runoff, channel, and sewerage models but also tidal models, which
provide boundary conditions for flooding and inundation, and coastal hydraulic models
to simulate storm surges, tidal waves, and tsunamis. In addition, this seamless, coupled
modeling will incorporate atmospheric observations and simulations, such as radar rain-
fall information and land surface schemes. These seamless models, or “Digital Twins”,
will move beyond the scope of a single urban watershed to encompass a wide range of
watersheds, including rural and mountainous watersheds (ultimately, the entire globe).

Finally, it is crucial to recognize that flood runoff models play a significant role in
mitigating the impact of destructive floods through the implementation of appropriate
protection measures, including flood control planning and policy. As there are very dif-
ferent kinds of urban floods worldwide, they require different protection measures [134].
The implementation of integrated flood risk management (IFRM) is also adopted in both
developed and developing countries, yet some countries have encountered barriers to
IFRM adaptation [135]. In Japan, a new policy called ‘River Basin Disaster Resilience and
Sustainability by All’ was recently introduced in response to climate change risks and
social changes [136]. It takes comprehensive measures, mainly consisting of flood preven-
tion, exposure reduction, and appropriate evacuation, response, and recovery, aiming to
strengthen disaster resilience and achieve sustainability through concerted efforts among
all stakeholders [136]. Under the present circumstances, various rainfall-runoff models are
becoming increasingly important tools, especially in urban watersheds.
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Appendix A

Table A1. Chronological list of essential articles relevant to urban flood modeling in Japan. (Paren-
thetical Ref. No. is not developed in Japan).

Year Ref. No. Model/Method Name Remarks

1954 [58] Kinematic Wave Theory Hillslope runoff analysis.

1955 [59] Kinematic Wave Theory Characteristic curve method is used for hillslope runoff analysis.

1955 ([60]) Kinematic Wave Theory River flow tracking analysis.

1961 [18] Storage Function Model The original storage function model was developed.

1967 [1] - The first paper in Japan that quantitatively describe urban flood runoff mechanisms.

1967 ([81]) Storage Function Model The Prasad storage function model was developed.

23



Water 2023, 15, 2733

Table A1. Cont.

Year Ref. No. Model/Method Name Remarks

1972 [17] Tank Model The original tank model was developed.

1972 [55] Modified RRL Method The model was applied to urban watersheds.

1976 [51] Kinematic Wave Theory Concentration time of flood by urbanization was studied.

1977 [54] Quasi-Linear Storage Model The model was applied to urban watersheds.

1979 ([30]) TOPMODEL
A watershed hydrologic model that combines the advantages of a concentrated
constant model with the effects of runoff contribution rate changes and the
dispersion of stormwater due to channel network runoff.

1980 [79] Storage Function Model Explanatory paper of the model.

1980 [111] 2D Diffusive Model
(Structured Grid) Pioneering model for inundation calculations.

1982 [2] - A study of flood runoff changes in hilly basins by urbanization.

1982 [57] Kinematic Wave Theory The effects of urbanization on flood runoff was analyzed.

1982 [50] Rational Method Application of Rational Method to urbanized channels.

1982 [82] Storage Function Model Relationship with kinematic wave model was studies

1985 [3] - The effect of field moisture distribution on runoff was analyzed.

1985 [4] - A review of runoff changes due to urbanization is made.

1985 [85] Storage Function Model Comparison of various SF models

1991 [63] Kinematic Wave Model Application for an urban watershed by dividing it into rectangular sub-watersheds.

1992 ([31]) Xinanjiang Model Rainfall-runoff, distributed, basin model.

1995 ([33]) SHE/SHESED Basin-scale water flow and sediment transport modeling system.

1995 ([34]) Institute of Hydrology
Distributed Model The model uses established flow equations for surface and subsurface.

1995 ([35]) HBV Model Lumped (or semi-distributed) bucket-type (conceptual) catchment model.

1995 [64] Diffusion Wave Model
Dynamic Wave Model

Comparison with kinematic wave model for nonstationary and unsteady river
channel flow.

1995 [91] Tank Model Tank model parameter estimation using global optimization methods,

1996 [65] Doken Model Distributed model for real-time flood forecasting.

1997 [67] Kinematic Wave Model Model parameters were obtained using GIS information.

1998 [52] Rational Model Application for small urban rivers.

1998 [122] 2D Diffusive Wave Model
(Curvilinear Grid)

Pioneer research on flood flow considering the influence of buildings and
road structures.

1999 [22] Storage Function Model Proposal of SF model considering loss mechanisms that directly uses the observed
rainfall and runoff.

1999 [25] Distributed Runoff Model Evaluation of the permeable pavement and the house infiltration system.

1999 [125] 2D Diffusive Wave Model
(Road Network) Proposal of road network model in an urban area.

2000 [84] Storage Function Model
(Hoshi’s Model)

Proposal of four-parameter SF model that directly uses the observed rainfall
and runoff.

2000 [112] 2D Diffusive Model
(Structured Grid)

The model of [112] was extended to include inflows from mountain watersheds and
sewer overflows.

2001 [26] A Distributed Hydrological
Model-WEP Model

WEP model that evaluates the effects of stormwater detention ponds and infiltration
trenches in urban watersheds.

2002 [121]
2D Diffusive Model
(Structured/Curvilinear
/Unstructured Grid)

Proposal of a flood runoff analysis model considering urban area characteristics.

2004 [119] NILIM2.0
2D Diffusive Model A standard method used to prepare municipal flood maps in Japan.

2007 [39] TSR Model
TSR model in the early development stage. The model is a physically based
distributed model, which was applied for an urban catchment using polygon feature
GIS data.
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Year Ref. No. Model/Method Name Remarks

2008 [86] Storage Function Model Proposal of SF model considering outflow through combined sewer system.

2008 [123]
Flood Disaster Deduction System
(Dual Drainage, Unstructured
Grid)

Consideration of sewer flows in surface flooding models that use 2D full
shallow-water equations.

2009 [23] Urban storage function (USF)
Model Proposal of USF Model that directly uses the observed rainfall and runoff.

2010 ([36]) HYPE Model Dynamic and semi-distributed hydrological model integrating fluxes of water,
nutrients, and other substances.

2010 [124]
Flood Disaster Reduction System
(Dual Drainage, Unstructured
Grid)

The numerical simulation for inundation flows with flood control system was
carried out.

2011 [118] 2D Diffusive Model
(Structured Grid) Formulating the impact of buildings on flood flows.

2011 [126] 1D Saint-Venant Equations
(Dual Drainage, Road Network)

Numerical analysis of inundation in the region of downtown Tokyo with residence
area.

2012 [6]
Dual drainage model
TSR model
(Urban Landscape GIS)

TSR model was proposed that is a distributed urban storm runoff event model with
a vector-based catchment.

2012 [28] RRI model RRI model was proposed that is a 2D model capable of simultaneously analyzing
rainfall-runoff and flood inundation.

2012 [38] Urban Landscape GIS Delineation Permeable area ratio of 10m-mesh land use classification was studied.

2012 [53] Synthesized Rational Model Theoretical derivation of the synthesized rational formula.

2012 [97] USF Model Real-time runoff forecasting of the model using particle filter.

2013 [98] USF Model Real-time runoff forecasting of the model using the Kalman filter.

2013 [132] TSR model
(Urban Landscape GIS) TSR model considering the flooding process of buildings.

2015 [92] Distributed Model
SCE-UA Method Parameter identification of a distributed runoff model using SCE-UA method.

2016 [40] Urban Landscape GIS Delineation Impervious area ratios of grid-based land use classifications were assessed.

2016 [100] XRAIN Data Precision evaluation of XRAIN data in a small urban watershed.

2016 [104] Deep Learning (DL) Method Development of the real-time river stage prediction method using DL approach.

2017 [62] Various Numerical Methods Review paper for surface water flow numerical analysis.

2017 [83] Baseflow Estimation Method Baseflow estimation using recursive digital filters.

2017 [102] XRAIN Data Spatiotemporal characteristic analysis of XRAIN data.

2017 [103] XRAIN Data Spatiotemporal correlation analysis of XRAIN data focused on torrential rainfall
events at each ground observation point.

2017 [106] Machine Learning (ML) Method Real-time forecasting of water levels in sewer system by the method.

2017 [110]
Deep Neural Network (DNN)
Model
Distributed Model

Proposal of real-time river stage prediction model by combining DNN and a
distributed model.

2018 ([43]) SWMM Drainage area characterization for evaluating green infrastructure.

2018 ([66]) IFAS (Integrated Flood Analysis
System) Flood forecasting in watersheds with inadequate water level observations.

2018 [88] Storage Function Model An effective storage function model for an urban watershed was investigated.

2018 [99] USF Model
XRAIN Data

Reproducibility of hydrograph by USF model using different rainfall datasets was
studied.

2018 [101] XRAIN Data Precision of 1-minute XRAIN data in a small urban watershed was studied.

2018 [105] DL Method Application of DL method to long-term prediction of dam inflow.

2018 [113] Integrated Model with InfoWorks
and WEB-DHM

A river channel and sewer model were built by integrating InfoWorks into
WEB-DHM.

2019 [21] HYPE Model HYPE model using EEA Urban Atlas.
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Year Ref. No. Model/Method Name Remarks

2019 [94] USF Model Parameter uncertainty of USF model was evaluated.

2019 [95] USF Model Proposal of a generalized USF model considering spatial rainfall distribution.

2019 [107] USF Model
DL Method

Possibility of emulating USF model by DL method was studied for benchmark
virtual hyeto and hydrograph.

2019 [108] Neural Network Method
DL Method Comparison of emulation ability for the USF model by the two methods.

2019 ([114]) HE-C-RAS HEC-RAS was used to generate flood inundation and develop a risk map under the
different rainfall scenarios.

2020 [27] TSR model TSR model, considering green infrastructure.

2020 [96] Generalized Storage Function
Model Proposal of a generalized storage function model for the water level estimation.

2020 [109] DL Method Prediction evaluation of hydrograph by the method using an observed urban
dataset.

2021 ([115]) HEC-RAS Building representation method by HEC-RAS 2-D and evaluation of the influence of
fluid forces on buildings.

2023 [77] Time Series Method Water level forecasting based on time series analysis in an urban watershed.
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Abstract: Many urban areas in tropical Southeast Asia, e.g., Bangkok in Thailand, have recently
been experiencing unprecedentedly intense flash floods due to climate change. The rapid flood
inundation has caused extremely severe damage to urban residents and social infrastructures. In
addition, urban Southeast Asia usually has inadequate capacities in drainage systems, complicated
land use patterns, and a large vulnerable population in limited urban areas. To reduce the urban flood
risk and enhance the resilience of vulnerable urban communities, it has been of essential importance
to develop real-time urban flood forecasting systems for flood disaster prevention authorities and the
urban public. This paper reviewed the state-of-the-art models of real-time forecasting systems for
urban flash floods. The real-time system basically consists of the following subsystems, i.e., rainfall
forecasting, drainage system modelling, and inundation area mapping. This paper summarized
the recent radar data utilization methods for rainfall forecasting, physical-process-based hydraulic
models for flood inundation prediction, and data-driven artificial intelligence (AI) models for the
real-time forecasting system. This paper also dealt with available technologies for modelling, e.g.,
digital surface models (DSMs) for the finer urban terrain of drainage systems. The review indicated
that an obstacle to using process-based hydraulic models was the limited computational resources
and shorter lead time for real-time forecasting in many urban areas in tropical Southeast Asia. The
review further discussed the prospects of data-driven AI models for real-time forecasting systems.

Keywords: urban floods; real-time forecasting; methodology; physical-process-based models;
artificial-intelligence-based models; regional implementation

1. Introduction

Urban areas in Southeast Asia have been expanding and changing more rapidly
than constructing and maintaining their storm drainage systems. If adequate flood risk
management is not carried out, threats from climate change, growing urbanization, and de-
teriorated drainage infrastructure could increase flood disasters. Urban flood management
has significantly benefited from the hydroinformatics tools such as rainfall predictions
and flood modelling. However, data availability is one of the primary limitations of using
hydroinformatics tools. In addition, various variables can affect the choice of rainfall pre-
diction methods and flood modelling tools, resulting in a potential limitation for real-time
flood forecasting. In most urban areas in Southeast Asia, gathering information and creating
weather forecasts could be more feasible than making significant adjustments to drainage
network infrastructures. Consequently, having a real-time flood forecast available with
sound weather forecasts would be a great way to deal with the uncertainties associated
with the increasing frequency of flood disasters under current climate change.

Procedures for simulating urban flood dynamics that can mitigate flood risks have
been well established for urban areas in the Global North [1–3]. However, for urban areas
in the Global South, including Southeast Asia, there are still many obstacles and gaps in
our understanding of urban floods [4–9], although there has been growing expertise in
urban flood modelling and simulation. The Global South differs significantly from the
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Global North, where the modelling technique has been well established, including drainage
systems, data availability, design, maintenance, and land use patterns [10]. Moreover, there
are significant differences in the hydrologic cycle and rainfall/runoff processes between
tropical climates in the Global South and temperate temperatures typical of the Global
North [11–15]. Therefore, it is essential to investigate how well current modelling techniques
can adequately capture urban flood situations in the urban areas of the Global South.

Real-time forecasting of hydro-meteorological systems can improve urban resilience in
two crucial viewpoints, i.e., the issues of real-time control and alert for urban floods [16–20].
Urban drainage systems’ real-time management has been studied during the past few decades,
focusing mainly on combined sewer systems to reduce overflows in wet weather [21]. The
real-time control regulates the discharge, filling, and emptying rate and the available
capacity of the conveyance and storage components in the system based on previously
defined rules for meteorological, hydrologic, and hydraulic conditions [22]. Therefore,
accurate forecasting of meteorological, hydrologic, and hydraulic variables could be a
crucial part of the real-time forecasting system, initiating an automated response for flow
diversion or storage strategies.

As for urban flood simulations, there is a wide range of modelling techniques. In
general, physical-process-based models can simulate accurate flood forecasts, so they
have been giving us useful methodologies for urban flood applications [23]. However,
compared to fluvial flooding with a typical open dendritic structure, urban pluvial flooding
necessitates distinct modelling of small-scale structures in urban environments, e.g., streets
and buildings. In addition, urban drainage systems have intricate matrix architecture and
a wide variety of flood control devices, i.e., pumps, weirs, gates, and retarding storages.
Therefore, a finer spatial resolution is required to represent urban terrain characteristics with
social infrastructure. Moreover, in urban areas of Southeast Asia, a few drainage networks
have been under construction, and their infrastructure data archives and maps have barely
been updated. Under these circumstances, simulating urban pluvial flooding needs a longer
computational time. On the other hand, a shorter computation time for real-time urban
flood forecasting systems is be essential because it gives the system controls and flood
alerts a longer lead time. In this sense, empirical models, including data-driven artificial
intelligence (AI), have an advantage over traditional physical-process-based models [24].

This study tried to provide readers with a state-of-the-art review of current devel-
opment for real-time urban flood forecasting systems. It includes the above-mentioned
hydroinformatics tools, i.e., rainfall forecasting and pluvial flood modelling, as shown in
Figure 1. Currently available approaches used for rainfall forecasting and pluvial flood
modelling were listed and discussed regarding their advantages and limitations for urban
areas in Southeast Asia. Then, their standard architecture was featured for constituting real-
time urban flood forecasting systems. Moreover, this paper also tried to discuss further recent
research trends of data-driven AI approaches for real-time urban flood forecasting systems.

 

Figure 1. Conceptual diagram of the current real-time urban flood forecasting systems.
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2. Rainfall Information for Real-Time Urban Flood Forecasting Systems

2.1. Rainfall Data Sources

Precipitation is the primary input for real-time urban flood forecasting systems. How-
ever, it is challenging to quantify it precisely due to its discontinuous behavior, spatiotem-
poral unpredictability, and susceptibility to climatic variables [25]. Rain gauges are the most
popular in situ tool when measuring precipitation intensity and duration using telemetry.
Rain gauges’ continual recording of rainfall is crucial from a hydrological perspective.
However, the sparse distribution of rain gauges, particularly in areas with high spatial
variability such as mountain ranges, results in poor areal rainfall estimates.

Weather radars are remote sensing devices frequently used in hydrological fields to
estimate areal precipitation with high spatial and temporal resolution. The spatial and
temporal characteristics of a particular storm event—particularly its velocity and temporal
changeability—and the catchment extent reveal the minimal resolutions of rainfall data
for the given storm cell. When radar reflectivity data predict precipitation, it can instantly
deliver the precipitation information with excellent temporal resolution. The highest
temporal resolution for short-range local radars, employed particularly in cities, is one
minute with a streamlined scanning technique constrained to the lowest elevation angles.
The considerable variability of temporal precipitation, particularly for brief rainfall episodes,
is frequently ignored when calculating precipitation intensity from weather radar data
using a standard scan approach (typically with a temporal resolution of roughly 5 min).

As for spatial resolution, weather radars scan the atmosphere over a volume with a
projected area of about 1 km2 for a typical C-band radar. On the other hand, rain gauges
measure rainwater at ground level over a circular region with a diameter of 20 cm. The
spatial scales of the two devices are very different from each other. Consequently, it is not
easy to compare the results of a rain gauge with those of weather radar [26]. Numerous
studies have combined radar precipitation estimates with rain gauge data, either for quality
control of weather radar data or to produce high-resolution merged products with greater
accuracy than either rain gauge data or weather radar data alone [27–30]. However,
the geographical and temporal inconsistency between radar estimations and rain gauge
measurements continues to pose challenges to accurately determining real rainfall [31].

2.2. Nowcasting Techniques in Radar Rainfalls

Flash floods are brought on by intense convective storms and severe precipitation, re-
sulting in considerable economic losses and, in some circumstances, fatalities. Furthermore,
heavy rains are extremely challenging to predict since they change quickly and influence a
small area. Although predictions, in general, are often successful in predicting favorable
atmospheric conditions for severe storms, we are currently unable to accurately predict
their precise positions and occurrence time, as well as the different characteristics of specific
storms, e.g., heavy rains, downbursts, and lightning. As the primary factor could be due to
their rapid development, storms are only detected by weather radar a few tens of minutes
before they have a catastrophic appearance. Convection spots could be detected earlier
when using satellite data. However, it would still be challenging to predict whether the
convection produces a storm with a dangerous impact.

Nowcasting techniques for radar rainfall are categorized into a few groups. Extrapola-
tion techniques are the first group, which calculates motion vectors and their extrapolated
ones along the Lagrangian trajectories based on the current atmospheric conditions. They
use only radar data without numerical weather prediction (NWP) models. The primary
drawback of extrapolation techniques is that they cannot be extrapolated from the exist-
ing atmospheric conditions if any further atmospheric development occurs. The second
group refers to blending techniques, which combine the extrapolation techniques with the
NWP model results. The third group is artificial-intelligence-based models. They do not
explicitly employ extrapolation along Lagrangian trajectories, in contrast to extrapolation
approaches. Examples of nowcasting techniques were thoroughly examined in Sydney and
Beijing [28,29].
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2.3. Forecasting Techniques in Radar Rainfalls

Forecasting techniques for radar rainfalls are classified into several groups, i.e., mo-
tion field predictions, deterministic, ensemble, and probabilistic forecasting methods, and
conceptual methods. The motion field required for forecasting is predicted from the series
of radar reflectivity data. Then, weather radar data forecasts the deterministic, probabilis-
tic, and ensemble predictions of precipitation [32]. Different forecasting techniques have
been developed with variations in the motion field calculations and Lagrangian trajectory
utilization. The evolution of areal echoes in the radar reflectivity yields the motion fields.
The optical flow method (OFM) is most frequently used to calculate the motion fields [33].
In addition, there are prediction techniques, e.g., the Storm Cell Identification and Tracking
(SCIT) algorithms [34] and the Thunderstorm Identification Tracking Analysis and Now-
casting (TITAN), to monitor the development of individual storms [35]. A finer estimate is
required for motion fields to improve the efficiency of algorithms. Currently, the forward-
in-time technique is preferably used when forecasting individual storm movements. Most
motion field predictions employ a regular grid point to calculate the motion fields and
forecast the rainfall.

Quantitative precipitation forecasts attempt to predict the precipitation intensity in a
target location at a time or the accumulated precipitation in a specific time interval. The
abovementioned extrapolation techniques compute the location and time deterministically
by transferring the existing precipitation field along the Lagrangian trajectories. They
assume precipitation does not change along the storm courses [36–42]. This assumption
might be acceptable for forecasts for stratiform precipitation with lead times of several
hours. However, rainfall often changes significantly along the trajectories for convective
precipitation. Moreover, the forecasting improvements are debatable if they have reduced
accurate predictions for longer lead times by filtering smaller storms out from forecasting
due to a radar’s coarse spatial resolution. In general, it is impossible to quantify the precipi-
tation fields ranging from large objects to small features because their spatial dimensions
vary widely depending on meteorological situations and the resolution and quality of
radar data.

Ensemble and probabilistic forecasts are closely related because the ensemble members
can yield a probabilistic forecast. Ensemble forecasts can often assess potential economic
losses due to forecasting uncertainties. At the same time, probabilistic forecasts can provide
the precipitation occurrence likelihood with an arbitrary threshold being exceeded. A
basic technique of probabilistic forecasts considers forecasted values in the vicinity of
a point as a possible future for computation [43]. Precipitation forecasts can also be
performed using conceptual models describing precipitation developments. The automated
forecasting system of convective precipitation GANDOLF [44] is a well-known example of
this approach, attempting to simulate storm developments. GANDOLF includes a process
of convective cloud life cycles. It identifies and forecasts convective cells using satellite and
radar data, and forecasting values with NWP models. Other examples of conceptual model
applications can be found in [45,46], which has been used in AutoNowCaster [47,48].

2.4. Forecasting Application and Its Future Perspective in Southeast Asia

Radar rainfall measurements have already been of great importance in improving
basic knowledge of flash flood occurrence, providing critical information for flood risk
management for social infrastructure and the public. However, pluvial flood risk manage-
ment for urban cities needs finer spatial and temporal resolutions than fluvial flood risk
management, e.g., up to 1 km in spatial resolution with time series of 5 min in temporal
resolution. On the other hand, existing rainfall forecasting research has provided credible
estimates for a lead time of up to 2 h with a 10 min interval. Nowcasting has provided a
reasonable forecast for 10 to 20 min in convective precipitation. Therefore, radar rainfall
data for urban flash flood modelling should be expanded through tactics integrating expert
knowledge with hydrological models. As for real-time forecasting applications, the uti-
lization of weather radar data has a quality constraint. The rainfall forecasting techniques
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should process radar data using statistical and/or artificial intelligence approaches, reduc-
ing the high PC time consumption of sophisticated mathematical models used for usual
weather forecasts.

Most cities in Southeast Asia have a radar rainfall measurement system. It has a
different main purpose for each city using the radar system. For example, in Bangkok, the
Department of Drainage and Sewerage (DDS) of the Bangkok Metropolitan Administration
(BMA) has a radar station operating to monitor and track storms [49]. The rainfall forecast-
ing system provided by the Thai Meteorological Department uses the weather research and
forecasting (WRF) model to forecast hourly and one-day-ahead weather predictions [50].
In Singapore, the Meteorological Service Singapore (MSS), Singapore’s national authority
on the weather and climate, operates a radar rainfall measurement system with 2 h and
one-day weather forecasting [51]. Other countries also provide radar rainfall measurements
and weather forecasting data, e.g., Malaysia [52]. Consequently, most Southeast Asian
countries, especially in urban cities, operate a radar rainfall measurement system and
provide weather and rainfall forecasting data. However, the radar rainfall forecasting data
are still limited to the one-sided purpose of weather monitoring and tracking. Therefore,
their applications to real-time urban flood forecasting systems, based on physical-process-
based/data-driven artificial-intelligence-based models discussed in this paper, have not
yet been fully developed and will be a future challenge for urban cities in Southeast Asia.

3. Physical-Process-Based Hydraulic Models for Real-Time Urban Flood
Forecasting Systems

3.1. Overview

Many urban storm management models, such as SWMM (Storm Water Management
Model), InfoWorks ICM, and MIKE MOUSE, have been developed and applied to urban
areas over the last several decades [53]. Because of its ability to completely simulate the
urban drainage process, the open-source SWMM model is widely used for urban pluvial
flood modelling and urban drainage planning. Commercial software has also been used,
such as InfoSWMM and MIKE MOUSE [54]. These urban storm management models
simulate the rainfall-runoff process, pipe flows in urban drainage networks, and overflow
phenomena over pipe nodes [55]. Computational urban drainage models are beneficial to
direct efforts to reduce disaster risk. They allow for the reproduction of historical events for
which validation data are available, as well as the simulation of expected changes in climate
and land usage while considering possibilities for varying return periods. There are several
reviews of urban flood modeling [10,56,57] that include access to input data (such as sewage
systems, building locations, topography from GIS databases, and precipitation data), data
processing (such as building treatment methods), coupling techniques with overland flow
models (such as sewer pipe systems, groundwater models, and green infrastructure), access
to validation data for historical occurrences (such as in situ measurements, crowdsourcing,
and flow characteristics), and more [58]. Recently, research has emphasized improving the
accuracy of urban flood models, and urban flood models’ computing time is being reduced.
Several techniques are used for improving model accuracy, including topographic data
improvements, 1D–2D model connections, and validation data collection.

3.1.1. Model Improvement—Topographic Data Treatment

Several studies have focused on the use of a 2D shallow water model. Mustafa and
Szydłowski [59] evaluated building resistance models for predicting water level time
series in a diminished experiment with a possible network of buildings in a flood. They
confirmed the superiority of the building resistance for simulating flow fields in an urban
area. Bermúdez et al. [60] conducted a similar comparison on damage estimation at the
micro-scale building level. Arrighi et al. [61] compared flood extents, flow depths, and
building damage estimations for a small urban area in Italy using four DEMs from a LiDAR
survey. Local differences between the DEMs and the field measurements were generally
small, ranging from 0.26 to 2.5 m. Given the great importance of topographic data and its
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uncertainty analyses, these recent studies have emphasized the importance of combining
multiple data sources.

Regarding the topographic data resampling approach, used to shorten the calculation
time, the findings typically showed blurry representations of small-scale urban topography
features, such as narrow paths between buildings. To emulate the flow patterns of a high-
resolution model, Ramsauer et al. [62] solved this problem by implementing virtual surface
linkages between structures. The virtual surface linkages greatly enhanced the model’s
performance when used in a case study including synthetic rainfall. The size, density, and
arrangement of the structures in each floodplain continued to determine the improvement.

One study from De Almeida et al. [63] showed that changes in street elevation on the
decimetre scale might produce striking variation in anticipated flow statistics. In a UK
urban flood, they employed extremely fine-resolution topographical data with a 10 cm
precision. Due to the excessively high computing costs and rarity of such small-scale
topographic data for practical engineering research, this hampers urban flood modelling.
On the other hand, little topographic alterations in carefully selected areas were enough to
guide flows to low-impact zones, such as parks. This might create opportunities for flood
mitigation; however, as suggested by Yalcin et al. [64], who explored results that differed
from those of [63], such conclusions are heavily dependent on the analyzed events and the
morphology of the floodplain.

As for 3D modelling approaches, Rong et al. [63] demonstrate the power of 3D com-
putational fluid dynamics compared to traditional 2Ds. When the 3D flow model and a
regular DEM were merged, especially in the presence of small streets and intricate terrain
features, digital aerial photogrammetry was able to recreate realistic flow patterns in a
coastal flood caused by storm surges. Furthermore, using a building information model
(BIM) in conjunction with 3D computational fluid dynamics allows the flood simulation to
be extended inside buildings.

Using high-resolution GIS terrain data representing finer urban surfaces has enhanced
the usefulness of 2D flood inundation models [65]. The high-resolution raster data in GIS
(Geographic Information System) successfully replicate micro-scale urban flood character-
istics with building and roadway topographic aspects. Therefore, topographic data have
been recognized as one of the key contributors to flood simulation accuracy among the
different sources of uncertainty in model structure and model parameters [66–68]. A flood
inundation region is often defined using topographic data given by a DEM (digital eleva-
tion model). The properties of DEM have significant impacts on model performance [68].
Advances in high-resolution data from LiDAR (Light Detection And Ranging) technology
have expanded the widespread use of DEM products with various resolutions and vertical
precision for numerical flooding modelling [69]. For example, Annis et al. [69] created a
new DEM product used as a geospatial tool to define a floodplain extent.

Furthermore, quantitative comparisons revealed that DEMs obtained from data col-
lected using UAVs (unmanned aerial vehicles) could be a suitable alternative to LiDAR-
derived products for small-scale flood mapping [70]. High-resolution DEM data are thought
to be more accurate in defining the underlying surface and recreating small-scale flow
channels, resulting in lower error and uncertainty in simulation results [66,71,72]. Previous
research that investigated the variation in flood simulation performance between DEM data
products and sources found that the quality and accuracy of the DEM were more important
than the DEM resolution [73,74]. Furthermore, fine-resolution models are susceptible to
vertical inaccuracies in DEM data, although this sensitivity decreases with resolution [73].
Given the financial problems of manufacturing high-resolution DEMs with a broad spatial
extent, particularly in developing countries, e.g., in Southeast Asia, much research has
looked into how to identify the best resolution for a given size and processing cost [75].
Prior research, for example, examined the trade-off connection between DEM resolution,
vertical accuracy, and simulation error in a wide floodplain [76]. Previous research proved
that a 5 m resolution DEM was adequate to offer satisfactory performance for numerical
simulation of urban floods on a modest scale, as shown in Figure 2 [77–80].
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Figure 2. Digital Elevation Model (DEM) of the Ramkhamhaeng polder, Bangkok, Thailand [80].

Previous research on the influence of DEM resolution on surface flood modelling
has mostly focused on two types of flood events and scales: urban flash flooding and
fluvial overbank flood modelling. Several building treatment approaches have been pre-
sented for flood modelling in urban environments, including techniques for increasing
resistance, blocks, holes, and porosity [81–84]. Schubert et al. [85,86] summarize a complete
comparison of the simulation results obtained for each building treatment approach at
different DEM resolutions. As the grid resolution coarsens, the sensitivity of the building
block approach increases, resulting in a more extensive underestimated range. As a result,
the computational cell size and DEM resolution must be lower than the building scale to
effectively describe flood behaviour between buildings and roadways [78]. Chen et al. [87]
proposed a unique building feature layer that uses an area/width-reduction factor ap-
proach to assess the impact of building storage and resistance, which has been proven to
produce an acceptable performance at coarse resolutions.

Surface flooding behaviour has an inverse relationship with DEM resolution, i.e., peak
flow becomes lower with a coarser resolution for larger storms but higher for smaller
storms depending on the DEM resolution in the sub-catchments [88,89]. Even for the same
inundation indicators, studies have found a difference in model performance with coarser
DEM resolution. According to Muthusamy et al. [75], inundation depth rises with DEM
resolution ranging from 1 to 50 m. However, in the field of 0.1–1 m, Ozdemir et al. [90]
discovered that inundation depth decreases with DEM resolution.

The numerical models available to simulate surcharging sewer networks and overland
surface flows are listed in [10,57]. Hossain et al. [91] discovered that whether or not
stormwater infrastructures were included in the modelling for a pluvial flooding event in
the United States changed flood volumes by factors of eight to 20, depending on the return
period. The spatial explicitness of soil input data was also a factor in the flood simulations
(pervious vs. impervious). The scarcity of data on the location and characteristics of
stormwater infrastructures remains a significant challenge for such urban flood simulations.

3.1.2. Accuracy Improvement—Model Validation Data

Another major impediment to flood modelling and management model development
is a lack of data for model elaboration, calibration, and validation [92]. Significant efforts
were made to retrieve valuable data from unusual sources, such as crowdsourced data to
address this issue. Macchione et al. [93] combined amateur videos, photographs, traditional
topographic surveys, and news reports, among other sources, to reconstruct hydraulic
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data from an urban flood event in Italy. They proposed a method of combining various
conventional and unconventional information sources. Scotti et al. [94] presented another
integrated approach for reconstructing temporal and spatial patterns of flood events. They
combined satellite images and markers from social media to effectively calibrate and
validate the outcomes of their hydraulic model in the case of Hurricane Harvey in Houston,
Texas, in 2017. The authors demonstrated that combining multiple data sources could aid
in dealing with the high uncertainties associated with each source of information. Molinari
et al. [92] used existing surveillance cameras to gain insights into flood-level evolution.
Their image-processing method was based on a deep convolutional neural network trained
using over 12,000 flooding images. The method was deemed inexpensive, versatile, scalable,
and portable to other sites.

3.1.3. Computational Time Improvement

Improvement of the computational performance is one of the most important issues
for real-time urban flood modelling [92]. It helps with larger computational domains,
higher spatial resolution, and/or longer time horizons. Moreover, because model outputs
should be in real-time, it is especially important in the planning and the forecasting and
crisis management phases. Several strategies have currently been investigated to accelerate
urban flood calculations. A massive parallelization, an adaptative mesh, a porosity model,
and a machine learning application were all presented in recent research.

One method for speeding up urban flood calculations is to use massive parallelization
techniques. The use of Graphic Processing Units (GPU) is exceptionally efficient because
it allows for the benefit of thousands of processors within a single device. Fernández
et al. [95] presented the first GPU implementation of a coupled dual drainage model that
included the overland and sewer fullwidth, their exchanges, and pollutant transports. In
general, when GPU was introduced to real-world modelling scenarios, it could result in a
speed-up factor of several hundred compared to a standard CPU computation.

An alternative for accelerating urban flood computation is a dynamic adaptive mesh-
ing technique, allowing the mesh’s capacity to adjust flows to evolve in space and time.
Hu et al. [96] used the Gmsh algorithm to adjust the mesh every ten time steps using
the Hessian matrix of the flow depth and velocity [97]. The technique produced accurate
results for a case study while shortening the computation time by a factor of two. Porosity
models employed sub-grid modelling to accelerate overland flow simulations. They are
classified into “single-” or “dual-porosity” based on the porosity parameters considered, as
well as their mathematical representation into “differential” or “integral.” These models
have shown significant advancements in recent years [98]. In addition, many studies have
investigated machine learning approaches to accelerate urban flood computations. A recent
review of machine-learning-based urban drainage models [99] highlights the widespread
use of data-driven models to improve their performance and efficiency. Machine learning
models, in general, are trained using detailed hydrodynamic data, primarily water depths
and velocities. The trained models can then predict large-scale flow patterns for situa-
tions that differ slightly from the configurations used for training. Two machine learning
approaches are based on the origin of the data used to train the model. The first type con-
siders the results of physical-process-based numerical calculations performed for various
input conditions such as topography and boundary settings. The second category focuses
on data collected on-site and from historical events but does not include any hydraulic
calculations [100–102].

3.2. Current Model Applicability and Its Future Perspective

Real-time urban flood forecasting systems can provide lifesaving information to res-
idents and emergency services and are valuable for mitigating the devastation of flash
flood disasters. Understanding high-risk areas allows emergency responders to prioritize
evacuations, being best at the onset of an extreme event [61]. Moreover, climate change
accelerates the demand for modelling suitable for real-time applications with advances in
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high-resolution numerical weather predictions against the increasing frequency of heavy
rainfall events. As mentioned above, several approaches have already been proposed to
improve computational time so that physical-process-based models can simulate real-time
flood forecasting [100]. GPU has also been successfully used to shorten the computation
time for both 1D and 2D models [103,104]. Alternative approaches for real-time flood fore-
casting have been proposed to overcome the difficulties of physical-process-based models,
such as simplifying the 2D shallow water equations by omitting inertia terms [105], using
cellular automata approaches [106], using simplified, non-physical-based methods [3], and
applying empirical/data-driven surrogate models [107]. Furthermore, parallel computing,
including cloud servers and code parallelization, has further been used [100]. Despite
advances in computer capability and computational efficiency of hydrodynamic models,
using these methods for real-time urban flood forecasting remains challenging [3].

Another challenge in developing a real-time urban flood forecasting system is the
high-resolution data requirements and the associated setup costs for 1D–2D physical-
process-based models. Required data, such as detailed sewer drainage system properties,
are frequently unavailable in urban areas in Southeast Asia. A measuring campaign is
required before the models are prepared for development. The expensive cost of modelling
and computation makes it difficult to establish physical-process-based models with fine-
enough spatial and temporal resolutions for real-time urban flood forecasting in many
cities in Southeast Asia.

The recent studies on physical-process-based hydraulic models for a real-time flood
forecasting system are summarized in Table 1. Existing research on urban hydraulic
drainage models may be divided into several categories, including realistic modelling,
accuracy improvement, and computation time. Adding new topographic data improved
the accuracy of small-scale areas in urban hydraulic drainage models. It retained impact
and significance with high-resolution topographic data in 1D and 2D modelling. Exist-
ing research on real-time urban flood forecasting using hydraulic models has indicated
significant efforts for real-time rainfall data from multiple sources, such as rain gauges,
radar, and satellites. The 1D and 2D models are generally connected using the integration
of independent software. The most severe barrier to employing physical-process-based
models for a real-time flood forecasting system is computation time constraints. They
usually give a short lead time, not enough for real-time systems. Several enhancements
resulted in a reduced computation time, increased output frequency, and longer lead time.

Table 1. Recent research on physical-process-based models for real-time urban flood forecasting
systems.

Country Area (km2) Hydraulic Modelling Method References

Germany 1.68 SWMM [108]
France 0.3 SWMM [109]

Australia 45 MIKE urban [110]
USA 696.7 SWMM [111]

Denmark 1.48 MIKE urban [112]
Brazil 0.11 SWMM [113]
China 0.017 SWMM, MIKE 21 [114]
USA 0.11 RBC SWMM [115]

China 141.09 SWMM [116]
UK N/A Shetran [117]

Nepal 51.94 PCSWMM [118]
Thailand 11 PCSWMM [80]

4. Data-Driven Artificial Intelligence (AI) Models for Real-Time Urban Flood
Forecasting Systems

4.1. The Limitation of the Existing Modelling Approach

Flood prediction is critical in decision-making and operational strategies, particularly
when human lives are at stake [119,120]. The biggest obstacle to building up real-time
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urban flood forecasting systems is a lead time duration influenced by the rainfall forecasting
process [120,121]. To describe the probability space of upcoming rainfall events, short-
term and detailed ensemble prediction systems are increasingly being used [122]. The
approaches for predicting the location and timing of floods in urban settings are hampered
by competing goals such as lead time, model accuracy, application of results, and computing
complexity [121]. The application of two-dimensional hydrodynamic models has a critical
bottleneck due to the computational time [123]. This issue becomes important according to
the fine-scale surface of the urban terrain [124]. Different solutions have been proposed,
such as lowering their dimensionality or ignoring the momentum equation’s inertial and
advection elements [125,126]. However, hydrodynamic models are unsuitable for wider
regions since the needed resolution is insufficient for real-time simulations [127], mainly
when linked 1D–2D models are utilized [128].

4.2. Data-Driven AI Models

Several data-driven and operational processing approaches increasingly use machine
learning [129]. Recently, flood prediction research has begun to employ machine learning
algorithms to reduce the computation time required for hydrodynamic calculation [130].
Consequently, machine learning models strive to mimic physical-process-based simulations
by learning the target systems independently with their physical links [131]. Artificial
neural networks (ANNs) have shown considerable promise in simulating flood-related
problems. They demonstrated a decent approximation of non-linear correlations [132].
Also, they provided excellent time series processing utilizing recurrent neural networks
(RNNs) [133]. Fully connected ANNs, in particular, were used to forecast flooding charac-
teristics at single coordinates using statistical and topographic inputs such as slope, aspect,
and curvatures [134,135]. Another strategy for using fully connected ANNs was proposed
by Berkhahn et al. [136]. These algorithms were used to forecast pluvial floods using
uniform rainfall occurrences as training inputs.

The basic drawback of fully connected ANNs is the exponential increase in layers
and parameters on high-resolution input, presenting severe processing challenges when
connecting millions of neighboring raster cells in large 2D simulations [137]. Against this
context, deep learning has been favored in recent years, addressing flood-related challenges.
A deep learning approach concentrating on river flooding prediction is demonstrated by
Zhou et al. [138]. They employed long-short-term memory (LSTM) architectures with a
spatial reduction strategy to model time series and eliminate information redundancy in
flood inundation data. Convolutional neural networks (CNNs) have shown promise in
this application due to their capacity to (i) interpret raw input in picture format and (ii)
minimize the number of parameters through the use of partly connected convolution layers
and weight sharing [139]. Recent research has addressed the application of CNNs for flood
area mapping using aerial or street view images [140] and flood susceptibility mapping
using changeable topographic features obtained from raw elevation data [140,141]. The
CNNs trained on the outputs of 2D hydraulic models were used by Kabir et al. [142] to
forecast the inundation depth induced by river floods.

Existing research on data-driven AI models for real-time urban flood forecasting
systems, as listed in Table 2, demonstrated significant reduction in processing time. Fore-
casting urban floods with a longer lead time offers a practical prediction for a longer time
of forecasting, and it is beneficial for operation and mitigation. In addition, geospatial
information and historical flood records are used to train the AI model, being a comprehen-
sive urban flood forecasting model. Also, the output of hydraulic models is fundamental
for AI model training because they can simulate inundation in very small sub-catchments
in metropolitan areas such as streets, buildings, and social communities. CNNs turn
high-dimensional data into low-dimensional ones, ensuring quick training procedures and
avoiding time-consuming computation modelling.
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Table 2. Recent research on data-driven AI models for real-time urban flood forecasting systems.

Country Area (km2) Hydraulic Modelling Method Data-Driven AI Model References

France 0.3 SWMM ANN [109]
Belgium 0.3 - ANN [143]
Norway 15 - LSTM, GRU [144]

UK N/A - LASSO, ANN [145]
South Korea 6.8 - CNM [146]

Germany N/A - CNM, I-Tree
Canopy method [147]

UK 21.80 - URMOD [148]
Germany 4.0 MIKE 21 GAN [149]

4.3. Future Challenges for Urban Areas in Southeast Asia

The urban cities in Southeast Asia are facing severe flash flood inundation disasters
under climate change and the potential for social infrastructure development. Urbanization
and the future development of social infrastructure in the urban areas of Southeast Asia
require adjusting the real-time urban flood forecasting systems accordingly. However,
the data-driven AI models do not have the flexibility for these changing environments
due mainly to the lack of the physical processes of flash floods. On the other hand, the
physical-process-based hydraulic models can adjust to the changing circumstances with
appropriate topographic and rainfall information from state-of-the-art technologies in
geospatial science. In addition, it should be noted again that intense pluvial flash floods
due to climate change need real-time forecasting systems with shorter computation and
longer lead time. In this sense, the data-driven AI models show an advantage in time
management compared with physical-process-based hydraulic models. Thus, one of the
future challenges is the development of methodology-blending techniques of these two
models for real-time flash flood forecasting systems.

5. Discussion

Weather radar observations offer immense promise in hydrological applications, while
they have been underutilized in hydraulic applications. As reviewed in this paper, the cur-
rent urban real-time flood forecasting systems are implemented through hydroinformatics
input data, rainfall forecasting, physical-process-based hydraulic models, and data-driven
AI models. This paper’s primary focus is making effective use of weather radar’s high
temporal and spatial resolutions. It is assumed that the desired resolution for small urban
catchments should be up to 1 km in space and 5 min in time. Therefore, weather radar now-
casting and forecasting have a high potential capability of providing such high-resolution
rainfall input in time and space for implementing real-time flood forecasting systems.

The physical-process-based hydraulic models are essential for a flow analysis based
on the 1D drainage network. A 1D hydraulic model is an unquestionably valuable tool for
understanding and managing the operations of drainage networks, and its implementation
is quick and stable. However, the 1D model indicates its limit when the drainage network
overflows onto the urban surface. When such overflows occur, a 2D model should repre-
sent inundation flows. The 2D hydraulic models have proved effective and realistic for
representing urban floods. Moreover, a 1D–2D coupling approach is considered the most
realistic to represent the flow interactions between the drainage network and the urban
surface. Nevertheless, the intrinsic peculiarities of urban areas need high-resolution repre-
sentation, resulting in a considerable computation time unacceptable for real-time systems.
Recent research suggests promising advancements in speeding up 2D models [100,103,104],
hoping for real-time 2D model applications shortly.

Recent research shows that the finest topographic data provide high accuracy of
inundation depths and their locations in an urban area. The grid size of input data is also
a significant factor in improving forecasting accuracy. Therefore, real-time urban flood
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forecasting systems mainly recommend using a higher resolution and frequency of rainfall
input data.

The physical-process-based hydraulic models are beneficial in terms of flexibility from
future urban reconstruction, drainage infrastructure development, and land use changes.
In contrast, longer computation time and limited resources restrict the usefulness of the
physical-process-based hydraulic models. Therefore, data-driven AI models could be a
promising approach that provides a shorter computational time and requires fewer PC
resources. Moreover, the infrastructure data in urban areas of Southeast Asia have not
yet been fully available and barely updated. Therefore, data-driven AI models have an
advantage over traditional physical-process-based models.

In Southeast Asia, hydrological measurement has a high potential for rainfall fore-
casting development. On the other hand, the availability of social infrastructure data
in Southeast Asia could be challenging for developing real-time urban flood forecasting
systems. Therefore, a blended approach of a physical-process-based hydraulic model with
a data-driven AI model is recommended for real-time urban flood forecasting systems in
most of the urban cities in Southeast Asia, as shown in Figure 3.

Figure 3. Conceptual diagram of the blended approach of a physical-process-based hydraulic model
with a data-driven AI model for real-time urban flood forecasting systems.

Moreover, the accuracy of the real-time system is influenced by two main factors: the
accuracy of rainfall forecasting and hydraulic modelling. In addition, the primary in situ
records could be beneficial, e.g., the IoT (Internet of Things) water level measurement.
Further developments using these techniques are of fundamental importance as a pivotal
future path, expecting their approaches to be utilized to a greater extent.

6. Conclusions

This study provided an overview of current cutting-edge modelling tools and their
advantages and disadvantages for real-time urban flood forecasting systems. This paper
described a standard design for real-time urban flood forecasting systems in terms of three
main categories, i.e., hydroinformatics for rainfall data and urban topographic information,
physical-process-based hydraulic models for inundation simulations, and data-driven AI
models for real-time systems. As for the input from hydroinformatics, the influence of
geospatial information and temporal rainfall resolution on the accuracy of urban flood
forecasting is highly recognized as an essential study field for urban flood modelling. The
state-of-the-art review for real-time urban flood forecasting systems shows that the model
should be chosen based on the available data, the urban flood environment, and real-time
forecasting demands. Historical statistics and basic black-box models can provide quick
and fascinating results when observational data are insufficient. Moreover, it could lead to
implementing a data-driven AI model for the future development of real-time urban flood
forecasting systems.
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In urban areas in Southeast Asia, the future development of real-time urban flood
forecasting systems is necessary due to the extreme flash flood trends under climate change
and further social infrastructure development. The physical-process-based hydraulic
models require extensive data for monitoring and operation, such as gates and pumps for
the drainage network infrastructure. Moreover, the data-driven AI models significantly
provide a faster output and a shorter computation time. Thus, the hybrid blended approach
of physical-process-based and data-driven models have a high potential for the future best
practice in developing real-time urban flood foresting systems.
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120. René, J.-R.; Djordjević, S.; Butler, D.; Madsen, H.; Mark, O. Assessing the Potential for Real-Time Urban Flood Forecasting Based
on a Worldwide Survey on Data Availability. Urban Water J. 2014, 11, 573–583. [CrossRef]

121. Jasper-Tönnies, A.; Hellmers, S.; Einfalt, T.; Strehz, A.; Fröhle, P. Ensembles of Radar Nowcasts and COSMO-DE-EPS for Urban
Flood Management. Water Sci. Technol. 2018, 2017, 27–35. [CrossRef] [PubMed]

122. Zanchetta, A.D.L.; Coulibaly, P. Recent Advances in Real-Time Pluvial Flash Flood Forecasting. Water 2020, 12, 570. [CrossRef]
123. Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-Time Urban Flood Forecasting and Modelling—A State of the Art. J.

Hydroinform. 2013, 15, 717–736. [CrossRef]
124. Leandro, J.; Schumann, A.; Pfister, A. A Step towards Considering the Spatial Heterogeneity of Urban Key Features in Urban

Hydrology Flood Modelling. J. Hydrol. 2016, 535, 356–365. [CrossRef]
125. Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A Simple Inertial Formulation of the Shallow Water Equations for Efficient Two-Dimensional

Flood Inundation Modelling. J. Hydrol. 2010, 387, 33–45. [CrossRef]
126. de Almeida, G.A.M.; Bates, P.; Freer, J.E.; Souvignet, M. Improving the Stability of a Simple Formulation of the Shallow Water

Equations for 2-D Flood Modeling. Water Resour. Res. 2012, 48, W05528. [CrossRef]
127. Courty, L.G.; Pedrozo-Acuña, A.; Bates, P.D. Itzï (Version 17.1): An Open-Source, Distributed GIS Model for Dynamic Flood

Simulation. Geosci. Model Dev. 2017, 10, 1835–1847. [CrossRef]
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Abstract: Frequency analysis has long been an important theme of hydrology research. Although
meteorological techniques (physical approaches) such as radar nowcasting, remote sensing, and
forecasting heavy rainfall events using meteorological simulation models are quite effective for urban
disaster prevention, statistical and stochastic theories that include frequency analysis, which are
usually used in flood control plans, are also valuable for flood control plans for disaster prevention.
Master plans for flood control projects in urban areas often use the concept of T-year hydrological
values with a T-year return period. A flood control target is a “landside area that is safe against heavy
rainfall or floods with a return period of T years”. This review emphasizes discussions of parameter
estimation of stochastic models and selection of optimal statistical models, which include evaluation of
goodness-of-fit techniques of statistical models. Based on those results, the authors criticize Japanese
standard procedures recommended by the central government. Consistency between parameter
estimation and evaluation of goodness-of-fit is necessary. From this perspective, we recommend
using the maximum likelihood method and AIC, both of which are related to Kullback–Leibler
divergence. If one prefers using SLSC, we recommend not SLSC itself but SLSC’s non-exceedance
probability. One important purpose of this review is the introduction of well-used Japanese methods.
Because some techniques that are slightly different from the international standard have been used
for many years in Japan, we introduce those in the review article.

Keywords: AIC; frequency analysis; goodness-of-fit; maximum likelihood method; parameter estimation;
stochastic model; statistical test

1. Introduction

First, we would like to emphasize that parameter-estimation processes and processes
for selecting the optimal probability distribution are the most important processes in
hydrological frequency analyses. Therefore, we focus on only these techniques in this
review article. Nevertheless, we have used similar techniques for the past three or four
decades. We cannot propose optimal and decisive techniques that numerous researchers
think are the optimal techniques.

For preventing water-related disasters, flood control plans are usually made for large
rivers. In Japan, main rivers are designated as “Class-1 rivers” in principle, managed by
the central government, or as “Class-2 rivers” managed by local governments. A certain
numerical goal is set in a flood control plan, for which the jurisdictional government has a
responsibility to protect people, residences, and other properties in the river basin.

According to Nakamura [1], such numerical goals are set using two methods. Japan,
the Netherlands, the Philippines, and other countries have adopted stochastic goals: T-year
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hydrological values with a return period of T years. The United States, China, and other
nations have adopted historical maximum values. This review specifically examines the
former case. For the former case, the government estimates T-year hydrological values. The
estimation processes are divisible mainly into methods of two kinds: non-parametric and
parametric methods. Takara [2] described that non-parametric methods can be adopted
when the sample size is sufficiently large.

Non-parametric methods are likely to be superior to parametric methods because they
use no specific probability distribution: neither a parameter nor an optimal probability
distribution need to be selected. By contrast, using the parametric methods, one must
estimate parameters and select the optimal probability distribution. Selecting parameters
and probability distribution processes include subjective judgments. If one uses parametric
methods, subjective judgment must be eliminated to the greatest degree possible. The
“Japanese MLIT (Ministry of Land, Infrastructure, Transport and Tourism) flow chart”
described later includes some subjective judgment. Therefore, the authors are critical of the
method. One should not refer to the flow chart by Japanese MLIT.

The next chapter briefly presents international standard procedures used for hydrological
frequency analysis. Because some techniques used in Japan are slightly different from the inter-
national standard, we introduce those in Section 3. Techniques described in Sections 2 and 3
are those which have been used for many years. Section 4 presents other techniques developed
in recent years. Subsequently, we introduce some future perspectives.

2. International Standard Procedure

The World Meteorological Organization (WMO) published its “Guide to Hydrological
Practices (WMO-No. 168 fifth edition)” [3] in 1994. One chapter has the title “Frequency
analysis (Chapter 27)”. The chapter includes the statement that “hydrological phenomena
that are commonly described by frequency analysis are storm precipitation and annual
flood maxima”. They present 16 probability distributions that are commonly used in
hydrology. These include a lognormal distribution, Pearson type three distribution, Gumbel
distribution, general extreme value distribution, and others, which have been used for
hydrologically extreme values. The sixth edition of the guide [4] was published later, and
the Kolmogorov–Smirnov test, the probability plot correlation test, AIC, and BIC were
introduced. Those are related to the goodness-of-fit test. Moreover, the L-moment method
was also mentioned in the guide.

In the “Handbook of Hydrology” [5], one chapter has the title “Frequency Analysis
of Extreme Events”. As a parameter estimation method, the authors first introduced
the method of moments (MOM), the method of L-moments, and maximum likelihood.
They describe that maximum likelihood estimators (MLEs) have very good statistical
properties for large samples. Experience has shown that they generally perform well
with data from records available from hydrology studies, but experience has also shown
that MLEs often cannot be reduced to simple formulas. Regarding the selection of the
optimal probability distribution, the authors described goodness-of-fit tests and L-moment
diagrams. The textbook introduces the Kolmogorov–Smirnov test, the probability plot
correlation coefficient test, L-moment diagrams [6], and ratio tests.

Rao and Hamed [7] explicitly described the selection of distributions. After reviewing
many reports of the literature, including reports by Hazen [8], Markovic [9], Gupta [10],
McCuen and Rawls [11], McCuen [12], Campbell and Sidel [13], Turkman [14], Vogel [15],
Vogel and McMartin [16], Haktanir [17], Bobee et al. [18], and Onoz and Bayazit [19], they
expounded the chi-square test, Kolmogorov–Smirnoff test, and Akaike’s Information Crite-
rion (AIC) [20]. Using these three methods, they described that probability distributions
for flood frequency analysis had been selected.

3. Japanese History of Estimating T-Year Hydrological Value

As described in Section 2, Akaike proposed the information criterion—AIC [20].
Moreover, many researchers developed their own statistical hydrological theories. We have
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an impression that some hydrological procedures used in Japan differ somewhat from
international standard procedures. Some effective theories might not be known worldwide
because they have been published only in Japanese-language journals.

In Japan, the main class-1 rivers are managed by MLIT. An organization related to
MLIT published some manuals [21–23] in which they explained river plan production.

3.1. Iwai Method for Parameter Estimation of a Three-Parameter Lognormal Distribution

Iwai [24] proposed their method, which belongs to the “quantile method” type and
is used for parameter estimation of the three parameters lognormal distribution. The so-
called “Slade type [25] of lognormal distribution” has a bounded probability distribution
function. Iwai used “Slade type II” described below. His method consists of the estimation
of parameters of the three-parameter lognormal distribution. First, one can define a
cumulative distribution function F(x) as explained below. In Equation (1), ξ is designated
as “reduced variate” (Equation (2)).

F(x) =
1√
π

∫ ξ

−∞
exp

(
−t2

)
dt (1)

ξ = α log10
x + b
x0 + b

(2)

This function for the lognormal distribution has three parameters: α, x0, and b. Ad-
ditionally, −b is a lower bound (x > −b). After Kadoya [26] proposed a modification of
the original Iwai method, the modified Iwai method has come to be used in most cases.
Therefore, we intend to present the “modified Iwai method” herein.

Presuming that there are extreme data with sample size n, then they are annual
maxima data. We present these samples as xn (i = 1, 2, 3, . . . , n), which is the ascending
order of statistics.

A. Approximation of x0

First, we use Equation (3) to estimate xg(approximation of x0)

log10 xg =

n
∑

i=1
log10 xi

n
(3)

B. Estimation of b and x0

First, we produce b(s)i (i = 1, 2, 3, . . . m) values (Equation (4)). Integer m is the nearest
integer to n/10.

b(s)i =
xixn−i+1 − xg

2

2xg − (xi + xn−i+1)
(4)

Then, b is estimated using the following equation.

b̂ =
1
m

m

∑
i=1

b(s)i (5)

By defining Xi = log10(xi + b), x̂0 can be estimated by solving the following Equation (6).

log10(x̂0 + b) =
1
n

n

∑
i=1

log10(xi + b) =
1
n

n

∑
i=1

Xi (6)

In this Equation, x̂0 is the estimate of x0; b̂ is obtained using Equation (5), and is
substituted for b in Equation (6).

C. Final process: Estimation of α.
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α is estimated by solving the following equation.

1
α̂
=

√
2n

n − 1

√
X2 − (

X
)2 (7)

In Equation (7), X = 1
n

n
∑

i=1
Xi and X2 = 1

n

n
∑

i=1
Xi

2.

3.2. Ishihara–Takase Method for Parameter Estimation of Three-Parameter Lognormal Distribution

Ishihara and Takase proposed their method [27], which belongs to the “moment
method” type. Their method, similar to the Iwai method, estimates the parameters of the
three-parameter lognormal distribution. Although a natural logarithm can be used instead
of a common logarithm, we use Equation (2) for assigning priority to uniformity with the
Iwai method described above.

First, we calculate the sample average x, standard deviation s, and coefficient of
skewness CS1. These are estimated using Equations (8)–(10) presented below.

x =
1
n

n

∑
i=1

xi (8)

s2 =
1

n − 1

n

∑
i=1

(xi − x)
2

=
n

n − 1

(
x2 − (x)2

)
, s =

√
s2 (9)

CS1 =
n

∑
i=1

(xi − x)3/s3/(n − 1) (10)

The parameters that must be estimated are α, b, and x0. Ishihara and Takase concluded
that α is estimated using the following Equation (11).

k = 1/

⎛⎝√
2

√√√√ln

[
−1 + 21/3(

2+CS
2+
√

4CS
2+CS

4
)1/3 +

(
2+CS

2+
√

4CS
2+CS

4
)1/3

21/3

]⎞⎠
α = k · ln 10

(11)

The reason for using k is that their original paper adopted natural instead of common
logarithms in Equation (2); k is a parameter for the case of using natural logarithms.
Furthermore, CS is not CS1 in Equation (10). Therein, CS1 is biased; CS is corrected when
using correction factor FCS in Equation (12).

CS = CS1(1 + FCS) (12)

As for the correction factor FCS , Ishihara and Takase showed it using a figure. One
can obtain FCS , which is a function of sample size n and CS1, using their figure, which is
well-known as Ishihara–Takase’s figure. However, calculating FCS by PC can be performed
more easily than ever using the following procedure. Therefore, we recommend that
analysts calculate FCS by themselves.

A. Estimating tentative k and α using Equation (11)

First, we estimate k and α. In Equation (11), CS1 is substituted into CS. CS1 is calculated
using Equation (10); sample xi represents observed data.

B. Generating ξi (i = 1, 2, 3, . . . . n)

According to Hazen’s plotting position formula (as for plotting position formula,
see [8,28,29]), Fi(i = 1, 2, 3, . . . . n, which is the probability of non-exceedance) is calculated.
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Additionally, ξi is calculated by the inverse function of Equation (1) as ξ(F). Hazen’s
plotting position formula is the following, where i is the order of ascending-order statistics:

Fi =
2i − 1

2n
(13)

The method for obtaining ξ(F) using the inverse function depends on the software used.
Equation (1) can be written as F(ξ) = {1 + Er f (ξ)}/2, where Er f (·) is the error function.
Therefore, an inverse function of it can be expressed as the following Equation (14).

ξ(F) = Er f−1(2F − 1) (14)

yi is obtained using an inverse function of Equation (2): —Equation (15). Then we can use
x0 = 1, b = 0 for simplicity of calculation.

y(ξ) = 10ξ/α(x0 + b)− b

= eξ/k(x0 + b)− b
(15)

C. Calculating C∗
S1_y and C∗

S_y of samples

We can calculate C∗
S1_y using yi, which is the coefficient of skewness not of xi but of

yi by Equation (10). Then, we obtain the theoretical coefficient of skewness C∗
S_y using

the following Equation (16). When one calculates C∗
S_y, k is the value estimated by using

sample xi first.

C∗
S_y =

exp
(
9/(4k2)

)− 3 exp
(
5/(4k2)

)
+ 2 exp

(
3/(4k2)

)
(exp(1/(k2))− exp(1/(2k2)))

3/2 (16)

As a result, FCS = C∗
S_y/C∗

S1_y − 1 is obtained.

D. Calculating three parameters

Using the corrected coefficient of skewness, k or α is obtained. Then b and x0 are
estimated using the following equations (Iwai and Ishiguro [30]).

λ = exp
(
1/(4k2)

)
b = 1√

λ2−1
σ − x

x0 = x − λ−1
λ
√

λ2−1
σ

(17)

In Equation (17), x and σ, respectively, denote the average and standard deviation of
the observed sample xi.

3.3. Etoh’s Distribution

Etoh et al. proposed the probability distribution for extreme values (Etoh et al. [31]).
The cumulative distribution function of Etoh’s distribution, which has the two parameters
a and b, is the following. This probability density function has a heavy tail.

F(x) =

{
exp

{
−a

(
1 +

√
bx
)

exp
(
−√

bx
)}

(x ≥ 0)
0 (x < 0) (18)

Although the following probability density function (Equation (19)) has been used,
F(0) (left-hand limit) is e−a. It is not zero in accordance with Equation (18). Therefore,
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Hayashi et al. [32] proposed the modified function as Equation (20), where δ(x) represents
Dirac’s delta.

f (x) =
ab
2

exp
{
−
√

bx − a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

(x ≥ 0) (19)

f (x) =

{
ab
2 exp

{
−√

bx − a
(

1 +
√

bx
)

exp
(
−√

bx
)}

+ δ(x) exp(−a) (x ≥ 0)
0 (x < 0)

(20)

Because exp(−a) is usually small, however, the use of Equation (19) is adequate.
As a parameter estimation method, we usually use the maximum likelihood method.

Etoh et al. [31] and Hoshi [33] recommend the following procedure. The log-likelihood of
this probability distribution is presented as Equation (21).

L(a, b) =
N
∑

j=1
ln f

(
xj
)

= N ln a + N ln b − N ln 2 − N
∑

j=1

√
bxj

−a

[
N
∑

j=1
exp

(
−
√

bxj

)
+

N
∑

j=1

√
bxj exp

(
−
√

bxj

)] (21)

By solving ∂L
∂b = 0, we can obtain a, which is a function of b, as the following

Equation (22), which is referred to as a1.

a1 =

N
∑

j=1

√
bxj − 2N

N
∑

j=1
bxj exp

(
−
√

bxj

) (22)

Then, substituting a1, obtained by Equation (22) into Equation (21), L(a, b) is modified
to L(b). Finally, we seek the largest L(b)—the optimal b in some way. Kubota [34] proposed
the following procedure. Solving ∂L

∂a = 0, one can obtain a (designated as “a2”), which is a
function of b, from Equation (23).

a2 =
N

N
∑

j=1
exp

(
−
√

bxj

)
+

N
∑

j=1

√
bxj exp

(
−
√

bxj

) (23)

The solution of a can be obtained by minimizing h(b) = |a1 − a2| [33], which can be
performed easily using software such as Mathematica [34]. In Japan, Etoh’s distribution is
thought to be appropriate for extreme values data. Kuzuha and Mizuki [35] applied several
probability distributions to 42,500 pieces of annual maximum one-hour rainfall data whose
sample size is 60. They reported that Etoh’s distribution was most appropriate for 37% of
the 42,500 data. Two-parameters lognormal distribution was most appropriate for 42%,
and the Gumbel distribution was most appropriate for 14%.

3.4. Approach Proposed by Tsuchiya and Takeuchi

Although Etoh’s distribution is quite an effective probability distribution, the L-moment
solution has not been known. This probability distribution was not described by Hosking and
Wallis [6] because this probability distribution is not well-known internationally.

Tsuchiya et al. [36] (see also Kuzuha [37]) presented the PWM solution of this proba-
bility distribution as follows. Their solution was obtained using numerical procedures, but
the method is simple.
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Specifically, we can estimate the parameters using the following procedure.

βr =
∫ 1

0
x(F)FrdF =

∫ ∞

0
x(F)Fr f (x)dx (24)

M1,0,0 = β0 =
∫ ∞

0 x f (x)dx = ab
2

∫ ∞
0 x exp

{
−√

bx − a
(

1 +
√

bx
)

exp
(
−√

bx
)}

dx
M1,1,0 = β1 =

∫ ∞
0 xF(x) f (x)dx

= ab
2

∫ ∞
0 x exp

{
−√

bx − 2a
(

1 +
√

bx
)

exp
(
−√

bx
)}

dx
(25)

Equations (24) and (25) indicate the first-order and second-order probability weighted
moments. Equation (26) presents the sample probability weighted moments.

M̂1,0,0 = b0 = 1
n

n
∑

i=1
xi

M̂1,1,0 = b1 = 1
n

n
∑

i=1
xi

i−1
n−1

(26)

As Tsuchiya and Takeuchi reported [36], M1,1,0/M1,0,0 is independent of b; it is a function
of only a. Therefore, we can ignore b and can set b = 1 as the following Equation (27).∫ ∞

0 x exp
{−√

x − 2a
(
1 +

√
x
)

exp
(−√

x
)}

dx∫ ∞
0 x exp

{−√
x − a

(
1 +

√
x
)

exp
(−√

x
)}

dx
=

b1

b0
(27)

a is obtained by numerically solving Equation (27).
Finally, estimation of b is obtained by numerical solution of Equation (28) after substi-

tuting the â obtained into a.

M̂1,0,0 =
ab
2

∫ ∞

0
x exp

{
−
√

bx − a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

dx (28)

Furthermore, we would like to mention the following facts. Takeuchi and Tsuchiya
reported the PWM solution of the normal distribution [38], a lognormal distribution, and
Pearson type three distribution [39]. Because their findings were published in a Japanese
journal, they have not become well-known internationally, but they found their solution
ahead of the international hydrological community.

3.5. Ueda–Kawamura’s Criterion for Evaluating Goodness-of-Fit

Ueda and Kawamura [40] proposed a criterion to evaluate the goodness-of-fit of a
probability model. Although many textbooks have recommended the evaluation of the
validity of a probability model based on probability studies, it is difficult to evaluate
their validity quantitatively. They sought to quantitively evaluate the probability model’s
goodness-of-fit, as explained below.

A. Presuming sample data with size n and that have ascending order statistics, then using
the plotting position formula, the non-exceedance probability FP(xi) is estimated.
Several plotting position formulas are expressed as Equation (29).

FP(xi) =
i − α

n + 1 − 2α − β
(29)

For example, for Cunnan’s formula [29], α is 0.4 and β is 0.
B. If the cumulative distribution function of the probability model is F(x), then, of course,

the non-exceedance probability is F(xi).
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C. Ueda and Kawamura plot (F(xi), FP(xi)) on a graph with the normal axis. The
minimum and maximum of both axes are 0 and 1. From the viewpoint of goodness-
of-fit, the data shown are near the line of y = x.

Ueda and Kawamura proposed the use of the χ2 test as a goodness-of-fit test. As a
result, the χ2 value of each probability distribution is a candidate “fair criterion” when
choosing a probability distribution.

3.6. Takasao–Takara’s SLSC for Evaluating Goodness-of-Fit

Takasao et al. [41] proposed the standard least-squares criterion for goodness of fit
(SLSC). This criterion evaluates goodness-of-fit by linearity on a probability plotting paper.
The SLSC is expressed as the following Equation (30).

SLSC =

√
n
∑

i=1
(si − s∗ i)

2/n

|s0.99 − s0.01| (30)

In Equation (30), s is a reduced variate and calculated according to Equation (31),
where ξ and α, respectively, denote the location and scale parameter.

s = (x − ξ)/α (31)

xi
∗ = x(F(xi)) (32)

The value of xi
∗ is calculated using Equation (32); in addition, s∗ i is transformed from

xi
∗ by Equation (31). One can assume a probability plotting paper with a horizontal axis x

and vertical axis s. (xi, si) is on a linear line because of the definition. However, (xi, s∗ i) is
plotted nearly as a straight line but not on the line: SLSC is the mean distance between a
straight line and (xi, s∗ i). That is, SLSC evaluates the mean distance which is the degree of
separation of the probability model from the sample, not by vision but by values.

Takasao et al. used a denominator of the right side of Equation (30) to maintain the
fairness of the criterion. They regarded vertical scales of the probability plotting paper of
each probability distribution as corrected to the same scale, divided by the denominator.
As Kuzuha [42] and Hayashi et al. [43] found and Kuzuha et al. [35] [44–46] later examined
in detail, however, it is not true. That point is explained in the next section.

3.7. Procedure for Parameter Estimation and Choosing the Probability Distribution of the Japan
Ministry of Land, Infrastructure, Transport, and Tourism

For estimating long-term stochastic hydrological values (e.g., 100-year precipitation
whose return period is 100 years), THE MLIT used their own flow chart for parameter
estimation and for choosing an optimal probability distribution [21]. Recently, Kuzuha and
Mizuki criticized the flow chart. The flow chart has several shortcomings, but it is wholly
inappropriate for three main reasons:

(1) The most important process of the MLIT flow chart is THE evaluation of goodness-
of-fit by SLSC and the evaluation of variability by resampling technique for each
probability distribution: some candidates are first chosen for the optimal probability
distribution by SLSC. However, the authors found that SLSC is not valid from the
perspective of fairness among probability distributions. An unfair referee should not
judge the match.

(2) In the MLIT flow chart, the probability distribution with the smallest variability is
thought to be the optimal one among the candidates selected above. They regard the
probability distribution having the least variability of T-year values as optimal. They
use three criteria in the flow chart: “at parameter-estimation process”, “at process of
selecting the optimal”, and “at evaluating variability”.

(3) The criteria of the least likelihood method for parameter estimation and AIC are
related to Kullback–Leibler divergence [47]. If they use the L-moment method (or the
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“conventional” moment method), they assign importance to the coincidence of the
L-moment (moment) between the model and data.

(4) Work by Tanaka and Takara [48] probably affected the MLIT flow chart the most.
Tanaka and Takara mentioned that “if SLSC is less than 0.04, we regard that the
probability distribution’s goodness-of-fit as sufficient. If using 0.03 for the threshold,
most probability distributions are evaluated as inappropriate from the viewpoint of
the goodness-of-fit. Then, we use 0.04 as the threshold”. The authors have criticized
this rationale as it is not scientific. It is for the convenience of administration—the
Japan MLIT.

3.8. Current Best Practice

We think that consistency is extremely important between the processes of parameter
estimation and choosing the probability distribution. In this context, “consistency” means
using the same or similar criterion for parameter-estimation and evaluation of goodness-of-
fit. Moreover, we believe that “evaluating variability in MLIT flow chart” is not necessary.
Let us explain the reason in detail. The most important is that the criterion for evaluating the
goodness-of-fit is a fair criterion from the perspective of comparing probability distributions.
Because we compare a goodness-of-fit-measure of each probability distribution and select
the optimal probability distribution, fairness is most important. From this perspective,
SLSC is not a fair measure at all.

Suppose that an analyst uses the maximum likelihood method for parameter estima-
tion and that they estimate parameters of an A-probability distribution and a B-probability
distribution. Moreover, suppose that the analyst chooses Takasao–Takara’s criterion (SLSC)
for selecting the optimal probability distribution. Parameters are selected to maximize
the likelihood. Then, the A-probability distribution and B-probability distribution are
compared. If the SLSC of the A-probability distribution is smaller than that of the B-
probability distribution, the A-probability is selected as the optimal distribution. This poses
a big problem since there is a possibility that other parameter sets are selected, and the
B-probability distribution is selected as the optimal distribution if parameters are selected
to minimize SLSC. This is the reason why we insist that the consistency of measure for
parameter-estimation and evaluating goodness-of-fit is quite important.

According to the arguments presented above, using the maximum likelihood method
for parameter estimation and using AIC for testing goodness-of-fit are recommended pro-
cedures. The main reason is that both are related to Kullback–Leibler divergence [46]. As
described in Section 3.7, Tanaka and Takara’s explanation [47] for the threshold (=0.04)
is inappropriate. However, one can understand the difficulty of policymakers in govern-
ment agencies in changing their methods quickly to align with an academic perspective.
Therefore, we presented some issues related to the conventional method in earlier re-
ports [35,44,45].

A. We recommend using the maximum likelihood method and AIC (or TIC, etc.).
B. If an analyst prefers using SLSC, then we recommend not using SLSC itself but

SLSC’s non-exceedance probability F(SLSC). For calculating F(SLSC), one must
know SLSC’s probability distribution function. Hayashi et al. [43] and Kuzuha and
Mizuki [35,44] demonstrated how to obtain the SLSC’s probability density function
using Monte Carlo simulation.

C. If an analyst uses the SLSC’s non-exceedance probability, then they can evaluate the
goodness-of-fit of each probability distribution, even if SLSC is not a fair criterion.
That procedure can be applied to any criterion, even if the criterion is not a fair one
from the viewpoint of comparing the degrees of goodness-of-fit.

4. Novel Techniques and Future Perspectives

In 2004, Gelder [49] described some well-known techniques for parameter estimation:
the method of moments (MOM), maximum likelihood estimation (MLE), least squares,
Bayesian estimation, minimum cross-entropy, probability weighted moments (PWMs), and
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L-moments. More recent reports, such as that by Yuan et al. (2018) [50], described the
adoption of the so-called MOM for parameter estimation. Langat et al. (2019) [51] adopted
MLE after reviewing some techniques. Those are MOM, L-moments, LH moments [52], and
the expected moments algorithm (EMA). Anghel and Ilinca (2022) [53] used both MOM
and L-moments for parameter estimation.

Coles [54] and Hayashi et al. [43] considered non-stationary hydrological models.
Hayashi et al. discussed non-stationary hydrological frequency models introducing time-
dependent parameters. Their report recommended the use of MLE for parameter estimation.
Langat et al. commented on the method of Bayesian estimation: “although there are drawbacks
of complexity in its implementation in present time, it might become a useful non-stationarity
flood frequency analysis model in the future, with advancements in technology”.

Yuan et al. (2018) [50] described that “the choice of an appropriate PDF is still one of
the major issues in engineering practice because there is no general agreement as to which
distribution could be used for the frequency analysis of extreme rainfalls”. They adopted
the chi-square test for selecting the optimal probability distribution. Langat et al. [51]
introduced the Kolmogorov–Smirnov, Anderson–Darling, and Cramer–Von Mises tests in
addition to the chi-square test.

Most techniques described above have a long history; quite attractive and novel tech-
niques that have become a new international standard have not been proposed in recent years.
Nevertheless, because hydrological frequency analyses that use non-stationary hydrological
data have become increasingly important in light of drastic climate change, non-stationary
analyses have become ever more necessary. Some techniques are useful for non-stationary
analyses. The maximum likelihood method and AIC, TIC, or BIC, which are related to
Kullback–Leibler divergence [47], are expected to be crucially important in the research area.
In addition, the method of Bayesian estimation might be particularly effective.

5. Conclusions

We reviewed statistical hydrological studies, especially those conducted in Japan.
Many Japanese government analysts often use procedures developed in Japan, which have
been recommended by Japanese MLIT. We criticized the use of those procedures. Some
consistency between parameter estimation and evaluation of goodness-of-fit is necessary.
From this perspective, we recommend using the maximum likelihood method and AIC,
both of which are related to Kullback–Leibler divergence. If one prefers using SLSC, we
recommend not SLSC itself but SLSC’s non-exceedance probability.

Techniques for parameter estimation and selecting the optimal probability distribution
should be discussed from an international viewpoint. Some techniques related to Kullback–
Leibler divergence or Bayesian estimation might be candidates for the solution of non-
stationary flood frequency analyses.
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Application of Porous Concrete Infiltration Techniques to Street
Stormwater Inlets That Simultaneously Mitigate against
Non-Point Heavy Metal Pollution and Stormwater Runoff
Reduction in Urban Areas: Catchment-Scale Evaluation of the
Potential of Discrete and Small-Scale Techniques
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Abstract: The expansion of pervious areas is an essential and common concept in mitigating non-
point pollution runoff in urban areas. In this review, literature related to the expansion of pervious
areas is introduced. In addition, the potential application of porous concrete as a medium for
constructing the bottom and side walls of street stormwater inlets is investigated. The effectiveness
of this medium in reducing (i) the stormwater runoff volume via porous concrete by exfiltrating
from the bottom and the wall, and (ii) the heavy metal pollution runoff loads via infiltration through
the porous concrete is assessed using data obtained by the author and published in the literature.
The urban hydrological model Infoworks ICM (Innovyze) was used to estimate the exfiltration rates
through the porous concrete plates set at the bottom and side walls of the street stormwater inlets.
The exfiltration rates used in the pre-reported literature varied depending on the methods used. In
the present study, sensitivity tests were performed by changing the exfiltration rates. The results
of this study indicated that porous concrete used at only the bottom and side walls of the street
stormwater inlets is suitable for reducing the runoff volume and removing any heavy metals from
stormwater at a catchment scale.

Keywords: non-point pollution; stormwater drainage systems; infiltration technique; storage of
runoff water; quantity and quality of stormwater; porous concrete; heavy metals; urbanized areas

1. Introduction

1.1. Overview and Review Objectives

The potential and realized effects of non-point sources of pollution originating from
runoff from urban areas, such as stormwater drains adjacent to roadways, have received
increased attention in recent years. Comprehensive reviews of state-of-art remediation
techniques and their development have been reported [1,2]. The impacts of non-point
sources of pollution have been demonstrated [3–5] and the runoff characteristics have been
described [6,7]. Major non-point pollutants, including organic materials (chemical oxygen
demand (COD), biochemical oxygen demand (BOD), total organic carbon (TOC)), nutrients
(various forms of nitrogen and phosphorus), heavy metals, suspended solids, PAHs [8],
microplastics [9–11], and water-soluble aerosols [12], have all been found in the runoff from
urbanized areas and their surrounding areas. Of these pollutants, heavy metal pollutions
from urbanized areas [13–24] are the primary focus of this review owing to its high toxic-
ity [25–29]. In this review, studies on heavy metal pollution in road effluents [13–15] will
be cited and the data therein will be compared to the author’s own data.

Since non-point pollutants, including heavy metals, in runoff water can be captured
using infiltration techniques (or infiltration unit processes) [30–35], the author focused on
the application of porous concrete in stormwater drainage systems. The aim of the study
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was the reduction of both non-point source heavy metals in runoff and surface runoff in
urbanized areas. The author focused on the application of porous concrete plates set at the
bottom [36–40] and sides of street stormwater inlets. The author intended to demonstrate
that the placement of relatively small porous concrete plates at the bottom and sides of
street stormwater inlets is sufficient to capture the heavy metals within the runoff and
facilitate the efficient drainage of the stormwater itself in impermeable urban catchment
areas. Specifically, the author examines the following points:

• Heavy metal concentrations in urban road runoff.
• Adsorption of heavy metals by porous concrete.
• Estimating the amount of runoff that can be treated in stormwater drains fitted with

porous concrete filters.

1.2. Features and Definitions of Non-Point Pollution Sources and the Countermeasures Required
for Their Reduction in Runoff

The information provided on the homepage of the Japan Society for Water Environ-
ment (JSWE) and the US Environmental Protection Agency (EPA) is discussed in order to
explore the similarities and differences in the approaches adopted by the two agencies to
expand pervious areas and control non-point sources of pollution.

The JSWE (https://www.jswe.or.jp/eng/index.html (accessed on 10 May 2023)) has
based its description of non-point sources of pollution in urban areas on the features of
these sources and the actions that need to be implemented (http://jswe-nonpoint.com/
1/documents.html (accessed on 10 May 2023)). The definitions employed by the EPA are
based on basic information, such as “non-point vs. point sources” and “what we can do
first, etc.”.

JSWE describes the actions that are required to remediate non-point pollution runoff
by emphasizing the need to understand runoff behavior and develop pollution control
measures.

The US EPA published a fact sheet entitled, “Protecting Water Quality from Urban
Runoff” (https://nepis.epa.gov/Exe/ZyPDF.cgi/20004PP1.PDF?Dockey=20004PP1.PDF
(accessed on 10 May 2023)), which shows “How Urbanized Areas Affect Water Quality”
in terms of increasing runoff and pollutant loads. Of particular interest were the roles of
porous and pervious areas in natural landscapes, such as forests, wetlands, and grasslands,
at trapping rainwater and snowmelt and how they promote water filtration into the ground.
The roles of pervious areas as countermeasures to non-point pollution, and the ways in
which pervious areas can be expanded include the following [41]:

• Infiltration practice
• Infiltration basins
• Infiltration trenches
• Pervious or porous pavements
• Vegetated open channel practices
• Filtering practices
• Detention ponds or vaults
• Retention ponds
• Wetlands
• Other practices, including water quality inlets.

These could be included in the BMPs of water managers [42]. These infiltration mea-
sures are similar to those employed in the experimental sewer system (ESS) in Japan [43].
The system, which is described in [41], could be considered to include the whole catchment
area, while the porous concrete plates at the bottoms and sides of the street stormwater
inlets could be considered as small discrete points.
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2. Runoff Behavior from Non-Point Sources in Urban Areas

2.1. Road Runoff Water Quality Assessments in Sendai City, Miyagi Prefecture, Japan
2.1.1. Materials and Methods

In Wakabayashi ward, Sendai City in Miyagi Prefecture, the author deployed a water
collection device in a street stormwater inlet. The device, which consisted of a glass bottle
with a floating ball, can collect 1 L samples of stormwater runoff. When the ball rises to the
top of the bottle, further inflow is prevented. Therefore, the collected samples correspond
to the initial stormwater runoff from 1.5 mm rainfall events (Figures 1–3). This estimate is
based on the assumption that the area of inflow into the inlet was 5 m by 10 m, the initial
loss was 0.75 mm, the runoff ratio of the area was 0.8, and the proportion of water entering
the sample collecting vessel was 0.05 (Figure 3).

Figure 1. Study site and the street stormwater inlet.

 

Figure 2. Inside the street stormwater inlet.
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Figure 3. Water collection device.

The daily rainfall volumes during the periods 1985–1990 and 2015–2019 in Sendai
obtained from the Japan Meteorological Agency showed daily rainfall events of <1.5 mm,
which accounted for 34.1% and 31.2% of the rainy days during the 1985–1990 and 2015–2019
periods, respectively. The histograms show that daily rainfall events ranged between 0.5
and 10 mm during these two periods (Figures 4 and 5), while daily rainfall events of 0.5 mm
were the highest in frequency. In addition, despite the changes in climatological conditions
over these periods, the shapes of the histograms are generally similar. The figures show
that the sample collecting system employed in this study is well suited to collecting runoff
from the most frequent rainfall events and, also, for collecting samples for some of the
larger rainfall events. Whether collecting runoff for the first <1.5 mm rainfall events can
capture the first flush effects should be clarified by further monitoring [6,44], literature
reviews [2,45,46], and analyses using EMC [47].

Figure 4. Frequency of the daily rainfall volume focusing on 0.5–10 mm events in Sendai (1985–1990).
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Figure 5. Frequency of the daily rainfall volume focusing on 0.5–10 mm events in Sendai (2015–2019).

In 2019, the author collected 1 L samples at intervals of 1–2 weeks (Table 1).

Table 1. Features of the samples collected 18 May to 19 December in 2019 and qualities (SS, particulate
and dissolved heavy metals).

Sampling
Date

Settled
Date

Antecedent Dry
Weather Days

SS GF/B
Filtration

Cr Cu Zn Cd Pb

(mg/L) (ppb) (ppb) (ppb) (ppb) (ppb)

18 May ------- ------------- 0.289
None 29.88 49.27 395.47 0.22 17.35

Done 16.32 6.37 73.47 0.04 0.94

25 May 18 May 3 0.051
None 18.30 16.94 178.23 0.08 3.00

Done 15.17 12.36 109.46 0.04 0.83

7 Jun. 25 May 4 0.414
None 21.60 55.88 578.17 0.30 38.38

Done 14.70 8.38 116.56 0.05 1.36

9 Jun. 7 Jun. 0 0.122
None 19.87 31.03 246.51 0.15 12.78

Done 14.89 16.10 107.69 0.06 2.16

29 Jun. 9 Jun. 2 0.382
None 19.57 23.19 337.92 0.18 11.21

Done 14.53 5.41 92.99 0.05 0.19

6 Jul. 29 Jun. 0 0.187
None 4.07 18.60 169.89 7.02

Done 0.95 8.04 85.29 1.10

19 Jul. 6 Jul. 0 0.162
None 32.93 374.60 0.49 8.92

Done 10.32 162.52 0.32 0.71

28 Jul. 19 Jul. 0 0.837
None 12.05 46.10 914.82 0.79 27.26

Done 0.92 6.99 87.31 0.75 1.29

30 Jul. 28 Jul. 0 0.511
None 20.34 58.15 615.98 0.67 31.01

Done 2.56 4.60 29.34 0.17 1.10
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Table 1. Cont.

Sampling
Date

Settled
Date

Antecedent Dry
Weather Days

SS GF/B
Filtration

Cr Cu Zn Cd Pb

(mg/L) (ppb) (ppb) (ppb) (ppb) (ppb)

10 Aug. 30 Jul. 9 0.151
None 88.85 487.80 1.94 14.50

Done 6.53 240.23 0.17 1.78

23 Aug. 10 Aug. 2 0.128
None 38.47 0.71 13.25

Done 7.92 0.18 0.38

31 Aug. 23 Aug. 4 0.872
None 28.27 131.21 1385.67 2.04 69.69

Done 3.26 7.20 138.00 0.21 0.13

26 Sep. 31 Aug. 1 0.187
None 10.73 40.34 413.30 0.44 20.73

Done 2.22 5.44 84.48 0.07 0.99

10 Oct. 26 Sep. 3 0.731
None 15.97 51.42 806.82 0.65

Done 2.54 5.52 249.62 0.13

6 Dec. 10 Oct. 23 1.097
None 28.68 81.86 833.19 0.57

Done 2.70 8.48 76.93 0.05

19 Dec. 6 Dec. 11 0.334
None 22.36 53.44 632.71 0.50 18.80

Done 14.79 17.99 334.95 0.16 0.44

The collected water samples were initially stored in a cool dark space before being
transferred to a refrigerator (4 ◦C) until filtration.

The collected water was pre-filtered using a 2 mm mesh filter followed by filtration
using a glass fiber filter (Whatman GF/B, 47ϕ, pore size: 1 μm). Suspended solids (SS,
see also Figures 5 and 6) on the glass fiber filters were measured after drying the filter
for two hours at 105 ◦C. The filtrates were used to measure heavy metals (Cr, Cu, Zn, Cd,
and Pb) by ICP–MS. Separately, pre-filtrated waters were used to measure the total heavy
metals (Cr, Cu, Zn, Cd, and Pb) by ICP–MS to determine the proportion of the particulate
heavy metals.

2.1.2. Results

A list of the water samples and their physicochemical parameters is shown in Table 1.
High SS values were often observed, which were consistent with the visual observations
(Figure 6).

SS was observed in the samples, even when the antecedent dry weather days were
zero. The author observed road sediment residual, even after rainfall events, and the
SS values obtained, when antecedent dry weather days were zero, were consistent with
this observation. Table 1 shows similar trends among SS, particulate heavy metals, and
dissolved heavy metals alongside antecedent dry days. However, the correlation factor
between the antecedent dry days and SS was not high (0.475) suggesting that more precise
analyses, which consider the build-up and wash-off mechanisms, are needed to quanti-
tatively characterize the effects of the antecedent dry weather days on the variations in
water quality.

Table 2 shows that the runoff contained high levels of heavy metals, which was
consistent with the visible abundance of SS (Figure 6), and suggests an important potential
role for porous concrete in the removal of particulate heavy metals during the passage of
runoff water via porous concrete because the particles are expected to be trapped.
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Figure 6. Collected water after shaking to resuspend the particulate matter.

Table 2. Proportions of particulate heavy metal to total heavy metal in the samples shown in the
Table 1.

Sampling
Date

Cr Cu Zn Cd Pb

(%) (%) (%) (%) (%)

18 May 45.38 87.07 81.42 81.15 94.60
26 May 17.11 27.02 38.58 44.72 72.40
7 Jun. 31.94 85.01 79.84 81.63 96.45
9 Jun. 25.03 48.11 56.32 58.67 83.11
29 Jun. 25.74 76.67 72.48 71.03 98.28
6 Jul. 76.57 56.81 49.80 84.28

19 Jul. 68.66 56.62 34.18 92.07
28 Jul. 92.36 84.84 90.46 4.39 95.28
30 Jul. 87.42 92.10 95.24 75.02 96.44

10 Aug. 92.65 50.75 91.03 87.70
23 Aug. 79.41 75.07 97.15
31 Aug. 88.46 94.51 90.04 89.58
26 Sep. 79.28 86.50 79.56 83.19 95.20
1 Nov. 84.10 89.26 69.06 79.86
6 Dec. 90.57 89.65 90.77 90.62

19 Dec. 33.86 66.33 47.06 68.60 97.67
Average 59.83 76.54 69.87 68.58 91.59

2.2. Comparison of Dissolved Heavy Metal Concentrations with Previous Studies

Compared to previous studies [13–15], the heavy metal concentrations in the collected
samples, shown in Table 1, were high; the results of the three studies are reviewed in
Murakami [48] (Table 2.11). Specifically, the concentration of Cr was similar to those in
Sansalone and Buchberger [14] and Pitt et al. [15], while it was one to two orders higher
than in Shinya et al. [13]. The concentration of Cu was one order lower than in Shinya
et al. [13] and Sansalone and Buchberger [14] and similar to those found by Pitt et al. [15].
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The concentration of Zn was one to two orders lower than in Shinya et al. [13] and Sansalone
and Buchberger [14] and similar to those found by Pitt et al. [15]. The Cd concentration was
higher than in Shinya et al. [13], one order lower than in Sansalone and Buchberger [14],
and similar to those in Pitt et al. [15]. The Pb concentration was one order lower than those
identified in the three aforementioned studies [13–15].

The results of these comparisons suggest that the heavy metals levels in all four
studies (including this study) varied markedly, presumably reflecting the differences in
the environmental conditions at the four sites. For Zn, the environmental standards in
Japan are set at 0.03 mg/L for rivers and lakes; this level was exceeded only once at the
study site (19 December 2019). The mean heavy metal concentrations reported by Shinya
et al. [13] and Sansalone and Buchberger [14] were one order higher than the environmental
standards, suggesting that there is a need to reduce non-point Zn in Japan, and presumably
the other heavy metals in stormwater runoff in urban areas.

A study by Flores-Rodriguez et al. [49] measured Pb, Zn, and Cd concentrations in
stormwater samples collected at eight sites. The Pb and Cd concentrations were one order
higher than most of the values obtained in this study, while the Zn levels were more varied,
yet tended to be one order lower than the values shown in Table 1. In a study by Mikkelsen
et al. [50], the Pb, Zn, Cd, and Cu concentrations were measured in different types of urban
runoff. They found that the Cd concentrations were higher and Cu concentrations were
lower than the values shown in Table 1, while the concentrations of Pb and Zn were mostly
similar. Numerous factors are considered to affect non-point sources of heavy metals, as
demonstrated in the studies by Ozaki et al. [51,52].

3. Control of Non-Point Sources of Pollution and Sewage Systems

3.1. Non-Point Source Pollution and Sewage Systems

The present study focused on reducing non-point heavy metal runoff. The benefits of
using infiltration techniques to decrease heavy metals in runoff are (i) to avoid constructing
water treatment facilities; (ii) to facilitate multipurpose uses for the surfaces used for
infiltration during fine weather (i.e., these surfaces could be used for other activities); (iii) to
retain the water that can be recycled for uses other than drinking.

Owing to the high ratio of paved (i.e., impervious) to non-paved (i.e., pervious) areas in
urban centers, high runoff volumes and peak discharge rates are observed. Thus, mitigation
measures employing infiltration and storage are very important in urban areas because
they prevent flooding and/or inundation.

Furthermore, infiltration techniques are both indirectly and directly effective for water
quality control, as described below.

Direct methods of control include methods such as those that the author is attempting
to implement. In these cases, the infiltration site (i.e., the bottom and the sides of the
street stormwater inlets) could be said to achieve two aims: water volume control and
quality control. These two aims could be met by water penetration and these sites could be
regarded as high-performance facilities.

3.2. Indirect and Direct Means of Reducing Non-Point Pollution Runoff Loads

Indirect control methods promote penetration of the water at the surface of the in-
filtration stratum and the subsequent retention therein. Percolation of the water in the
infiltration stratum is referred to as temporal retention, which is different from the water
inside the retention ponds because it is exfiltrated into the natural base soil below the
stratum and/or through drainage pipes [53–55]. This method reduces the volume of runoff
and decreases the volume and frequency of combined sewage overflow (CSO), as well
as the sweep flow inside stormwater pipes, gutters, etc. Originally, the idea of runoff
volume reduction developed from the viewpoint of flood control. The frequent occurrence
of heavy rain events around the world in recent years has required catchment managers to
re-evaluate runoff volume reduction, i.e., to consider the mutual benefits of flood control
and runoff load reduction.
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Direct control methods to control non-point pollution runoff aim at controlling (i.e.,
trapping and adsorbing) the pollution in the stormwater inside the infiltration stratum. In
the case of porous concrete, the mechanisms of pollution control were clarified based on
laboratory experiments (see Section 5). The economic aspects of the infiltration technique
have been previously analyzed [36]. We intended to develop direct methods for runoff
reduction into separate sewage systems.

4. Infiltration as a Direct Pollution Control Method in a Separate System

4.1. Porous Concrete as An Infiltration Medium

Porous concrete is produced using large aggregates, which ensures that permeability
is maintained with only a minor decrease in hardness compared to normal cement. The
author used an aggregate called Gmax15, which is composed of gravel measuring less than
15 mm.

Porous concrete columns (Figure 7) and porous concrete cubes (Figure 8) were used in
the laboratory experiments. Columns were prepared using a mixture of cement (0.3 kg),
gravel (Gmax15, 1.55 kg), water (8.05 kg), and admixture (high-range water-reducing
admixture, 0.003 kg) [38].

 

Figure 7. Experimental porous concrete column measuring 10 cm in diameter and 10 cm in depth.

 

Figure 8. Porous concrete cube with each side measuring 4 cm.
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The saturated hydraulic conductivity of the column was measured using the constant
water level method and estimated to be 1800 mm/h.

4.2. Deployment of Porous Concrete Plate at the Bottom of Street Stormwater Inlets

Using porous concrete on the bottom of the street and not at the ground surface of
stormwater inlets (Figure 9) has been proposed by the author’s research group as a means
of reducing heavy metal runoff, via filtration and adsorption, and water runoff reduction,
via exfiltration, into the natural base soil around the bottom of the street stormwater
inlets [36–38]. The reasons why the bottoms of the street stormwater inlets were selected as
sites to deploy the porous concrete plates were because (i) porous concrete has a structural
weakness and cannot bear significant loads, (ii) the inflows of the stormwater during
rainfall events will keep the porous composite unclogged, and (iii) the street stormwater
inlets are located in the stormwater drainage networks.

 

Figure 9. Porous concrete plate at the bottom of the street stormwater inlet.

Figure 10 shows the behavior of the water passing through the permeable bottom
plates in the stormwater inlets, although, in reality, the walls could also be permeable, as
described below. Here, the behavior of the water at the bottom of the inlets is shown to
illustrate the two proposed functions of the stormwater drains, i.e., the reduction of heavy
metals in the runoff via filtration and adsorption reactions, and the overall reduction in
water runoff, via the exfiltration into the natural base soil around the bottom of the street
stormwater inlets [36–38].
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Figure 10. Schematic diagram showing the behavior of water through the porous concrete when
placed only at the bottoms of street stormwater inlets.

5. Laboratory Experiments Examining the Potential Reduction in Heavy Metals in
Porous Concrete Exposed to Runoff

Using artificial rainfall (mixture of Zn, Cu, and Pb), the author conducted experiments
using porous concrete columns (Figure 7; diameter and depth: 10 cm) and porous concrete
cubes (Figure 8; 64 cm3). Specifically, the author investigated the adsorption rates of heavy
metals using concrete columns and cubes under various conditions.

The porous concrete column samples (C series) consisted of a column prepared in
February 2008 at the School of Food, Agricultural and Environmental Sciences at Miyagi
University, alongside the column samples (N series) prepared outside the University in
November 2016. Both columns were prepared using the same mixture, coefficient of
permeability, and size.

We performed 12 experimental runs (Table 3). In each run, a single column was placed
in a Petri dish and a 50 mL solution was added comprising either a mixture of the heavy
metals Zn, Cu, and Pb, or Zn or Cu, or Pb individually. The concentrations used for Pb
were higher than the level of dissolved Pb in Table 1, although Zn and Cu concentrations
were of the same order of magnitude, while each was sprayed onto the top of the sample
column using a 50 mL volumetric pipette (Figure 11). The experiment was left to run
overnight. Then, the leachate that had accumulated in the glass Petri dish was collected,
and the amount of the leachate and the concentrations of Pb, Zn, and Cu were measured.
The runs for each experimental condition were repeated 2–13 times. The amount of leachate
in each run varied from 25 to 45 mL. The adsorption rate was determined based on the
relationship between the volume of leachate, the concentration of each heavy metal, the
initial volume of solution added, and the concentration. In addition, the time taken for the
50 mL of the solution to flow out of the sample (about 25 s) was measured periodically to
confirm that the spray intensity had not changed.
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Table 3. Twelve experimental runs for the leachate experiments.

RUN Column
Experiment

Timing

Heavy Metal Concentration (ppb)

Pb Zn Cu

1-1 C January 2009 1500 ---------------- ----------------

1-2 C January 2009 ---------------- 580 ----------------

1-3 C January 2009 ---------------- ---------------- 4150

2-1 C December 2017 21 ---------------- ----------------

2-2 C December 2017 ---------------- 53 ----------------

2-3 C December 2017 ---------------- ---------------- 42

3-1 C April 2018 55 ---------------- ----------------

3-2 C April 2018 ---------------- 66 ----------------

3-3 C April 2018 ---------------- ---------------- 22

4-1 N April 2018 ---------------- ---------------- 22

5 C April 2018
10 25 7

6 N April 2018

 

Figure 11. Leachate experiments.

The variations in the proportion of Pb, Zn, and Cu adsorbed by the concrete columns
in the indoor artificial rainfall experiments are shown in Table 4. The findings revealed
that (i) similar proportions of Pb, Zn, and Cu were absorbed when the leachates contained
mixed heavy metal solutions and when they contained individual heavy metals (Run 1-1,
Run 2-1 and Run 3-1 and Run 5; Run 1-2, Run 2-2, Run 3-2 and Run 5; Run 1-3, Run 2-3 and
Run 3-3 and Run 5), (ii) similar proportions of the three heavy metals were absorbed by the
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columns, even when the concentration of each heavy metal showed variations (Run 1-1,
Run 2-1 and Run 3-1; Run 1-2, Run 2-2 and 3-2; Run 1-3, Run 2-3 and Run 3-3), (iii) similar
adsorption proportions for Cu (Run 3-3 and Run 4-1) and for Zn and Pb (Run 5 and Run 6)
were shown and (iv), smaller proportions were shown when the concentrations of the
heavy metals were low (less than 10 ppb), such as in Runs 4-1 and 6, where a few ppb Cu
elution from the column N series arose. The elution was confirmed separately by adding
the ultrapure water (Millipore MQW) onto sample columns and again by the subsequent
measurements of Pb, Zn, and Cu in the leachate. The results showed that a few ppb of
each heavy metal leached from the recycled concrete used in the porous concrete columns.
The small amount of heavy metal leaching decreased the apparent adsorption proportions.
To resolve this problem, the author attempted to purify the porous concrete columns by
submerging the columns in ca. 30 L pure water for approximately 2 weeks; this process was
repeated three times after replacing the water with new pure water. Using this procedure,
leaching from the columns decreased by 90% compared to the original concentrations of
heavy metals in leachate and the porous concrete columns could be used to assess actual
stormwater samples.

Table 4. Proportion of heavy metals adsorbed by the columns.

RUN
Adsorption Proportion (%)

Pb Zn Cu

1-1 83.1 ---------------- ----------------

1-2 ---------------- 66.6 ----------------

1-3 ---------------- ---------------- 69.6

2-1 84.9 ---------------- ----------------

2-2 ---------------- 77.1 ----------------

2-3 ---------------- ---------------- 66.6

3-1 87.9 ---------------- ----------------

3-2 ---------------- 63.2 ----------------

3-3 ---------------- ---------------- 69.6

4-1 ---------------- ---------------- 70.2

5 80.5 60.2 73.0

6 85.8 64.4 52.6

6. Effectiveness of the Porous Concrete Plates Placed at the Bottom of the Inlets Based
on Calculations Using Infoworks ICM (Innovyze)

The magnitude of infiltration for a 1 ha catchment at 20 discrete street stormwater
inlets where the porous concrete plates were deployed was estimated using the author’s
own simulation results.

Firstly, the density of the stormwater inlets in the catchment needed to be estimated.
In Japan, the density of the street stormwater inlets is 10–30/ha (20 in Harada and Ko-
muro [37]); therefore, in this study, a value of 20 was used for the inlet density in 1 ha.
Using the maximum adsorption capacity of Zn, by the cube (Figure 8) [37], the duration
that the Zn runoff did not occur was estimated at about 41 years [37]. By obtaining the
EMC values, a more precise duration could be calculated.

Assuming that the bottom plate was circular with a bottom thickness of 10 cm and
side walls that were 10 cm thick with a 10 cm water level, while the average diameter of
all stormwater inlets was set as 1.8 m, the area of the porous concrete at 1 inlet would
correspond to 31,086 cm2. Thus, for the 1100 inlets in the Fukumuro catchment (Figure 12,
the 9 inlets are the ones selected to conduct the passage proportion of water via porous
concrete, as mentioned in Section 8), the area of the permeable media was estimated as
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3419.5 m2. This area corresponds only to 0.04% of the catchment area (ca. 900 ha). Using
Infoworks ICM (Innovyze) [56,57], Harada and Kim [36] showed that mitigation of the
inundation occurrence happened following a 68.5 mm rainfall event in the Fukumuro
catchment.

Figure 12. Fukumuro catchment and the nine sewage traps used in the study.

The analyses described here show that the ability to control stormwater runoff is quite
high when small and discrete infiltration is used in a catchment.

7. Verification of Exfiltration Coefficient Obtained Using Infoworks ICM

The simulation described in Section 6 assumed that the exfiltration rate (i.e., three-
dimensional water seepage into the natural base soil below and around the inlets) of every
street stormwater inlet was 2000 mm/h. The magnitude of the exfiltration coefficient was
quite sensitive in those analyses, thus, the suitability should be examined. This examination
is of the validity of the 3D to 1D conversion coefficient. Here, the author has introduced
four concepts from previous studies to clarify the suitable exfiltration rate.

Firstly, based on the observed infiltration rate in the vicinity of the street stormwater
inlet in the Fukumuro catchment where the natural base soil was exposed at the surface
(3600 mm/h, the 3D to 1D conversion coefficient was 36 because of the saturated hydraulic
conductivity of the natural base soil (sand and silt), which was 100 mm/h) [36].

Next, referring to Herath et al. [58] and Herath and Mushiake [59], the ratio of the
exfiltration rate to the hydraulic conductivity from infiltration trench (q/k0 in the Fig.2 of
Herath and Mushiake [59]) was considered according to the matric and gravity potential
slopes and water pressure (the model domain used for the numerical simulation is shown
in Fig.1 of Herath and Mushiake [59]). The Fig.1 of Herath and Mushiake [59] shows
a symmetric analysis, thus, the width of the trench shown in the Fig.1 of Herath and
Mushiake [59] could be replaced with the average radius of the inlets in the Fukumuro area,
0.9 m. Substituting the width of the trench as 0.9 m, and the water level, 10 cm (obtained
via infoworks ICM calculations) into the Fig.2 of Herath and Mushiake [59], the author
obtained the 3D to 1D conversion coefficient corresponds to ca. 100.

Blazejewski et al. (2018) [60] did not consider the matric potential slope and demon-
strated a 3D to 1D conversion coefficient of 1.0–1.3 [60].
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The author performed the 3D to 1D conversion coefficient sensitivity tests in Infoworks
ICM by changing the coefficient to 0, 5, 10, and 20 [36]. The mitigation mentioned in
Section 6 used a coefficient of 20.

The author assumed that a value of 10–20 was plausible. First, the coefficient should
be larger than in Blazejewski et al. (2018) [60], thereby considering the matric and gravity
potential slopes with the water head. Moreover, the coefficient should be smaller than that
shown by the author’s observed value of 36 (where the soil was dry) because the natural
base soil around the street stormwater inlets should be wet, whereby the design runoff
ratio of the Fukumuro area was 0.40 [36].

8. Proportion of Water Passing through the Porous Concrete Plates at the Bottom of the
Street Stormwater Inlets to the Total Volume of Inflow Based on Estimates Calculated
Using Infoworks ICM (Innovyze)

The author analyzed the proportion of water passage through the porous concrete
at the bottom and the side walls of the street stormwater inlets, using alternative 3D to
1D conversion coefficients of 0, 5, 10, 15, and 20 and simultaneously changing the rainfall
volume to 1, 3, and 5 mm. The proportions of water passage through the porous concrete
column were calculated as the “volume of water exfiltrated into the soil from the street
stormwater inlets” divided by “the volume of water that enters the street stormwater inlets”
multiplied by 100 (%). The proportions at the 9 street stormwater inlets in the Fukumuro
area (Figure 12) during 3 mm of rainfall, when the 3D to 1D conversion coefficient was
10 using Infoworks ICM (Innovyze) [56,57], is shown in Figure 13.

Figure 13. The proportion of the passage of the porous concrete at the bottom of the sewage traps in
case the rainfall volume is 3mm and the exfiltration rate is 1500 mm/h.

Figure 13 shows the passage proportion of the water through the porous concrete at
the bottom and side walls of the inlets. The proportions varied from about 10% to 88%,
excluding the proportion at the inlet of 173, meaning that the calculations there showed
that these numerical analyses were unsuitable. The proportions were inversely related to
the increasing rainfall volume and related to the increasing 3D to 1D conversion coefficient.
However, reaching 100% was uncommon, even though heavy metal removal was expected
as the proportions increased. Thus, the author proposed using a hanging-type porous
concrete plate, shown in Figure 14. This configuration of which has already been deployed
in Sendai.
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Figure 14. Hanging-type placement of the porous concrete at the same inlet as the one shown in
Figure 1. The grating is open. Closing the grating results in the porous concrete board assuming a
horizontal orientation.

9. Conclusions and Future Work

The present study reported the results of the author’s monitoring of heavy metal
concentrations in urban road runoffs. Indoor experiments were conducted to analyze the
adsorption of heavy metals by porous concrete. In addition, the study also examined the
amount of runoff that could be treated in stormwater drains fitted with porous concrete
filters. While Section 2 presented some of the behavior of non-point heavy metals, there
remains a need to explain them in terms of environmental factors using statistical analyses,
as highlighted by Ozaki et al. [51,52]. It is recommended that the EMC values should be
corrected, and improvements be made to the 3D/1D conversion methods.
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Abstract: Nitrate pollution in groundwater is a severe problem in Shimabara Peninsula, Nagasaki
Prefecture, Japan. Previous studies have investigated water quality characteristics in the northern part
of the peninsula and shown serious effects of nitrate pollution in the groundwater. The present study
aimed to investigate the groundwater quality in the southern areas of the peninsula for improved
understanding of the water quality status for the entire peninsula. Groundwater samples were
collected at 56 locations in Minami-Shimabara City from 28 July to 4 August 2021. The spatial
distribution of water quality constituents was assessed by Piper-trilinear and Stiff diagrams for major
ion concentrations. One agricultural area in the western parts exceeded Japanese recommended
standards for water. According to the Piper-trilinear diagram, 44 sampling sites (78.6%) were
classified as alkaline earth carbonate type, nine sites (16.1%) as alkaline earth non-carbonate type,
and three sites (5.3%) as alkaline carbonate type. Stiff diagrams displayed Ca-HCO3 water type for
most of the sites. Na-HCO3 and Mg-HCO3 types were found in coastal areas. Principal component
analyses showed that the first component corresponded to dissolved constituents in groundwater
and denitrification, the second effects of ion exchange and low nitrate pollution, and the third effects
of severe nitrate pollution. Hierarchical cluster analysis was used to classify the groundwater into
five groups. The first group included sites with relatively high nitrate concentration. The second
group had relatively low ion concentration, distributed from center to eastern parts. The third group
included intermediate ion concentration, distributed at lower altitudes along the coastal line. The
fourth and fifth groups had a higher ion concentration, especially characterized by high sodium and
bicarbonate concentration.

Keywords: groundwater; principal component analysis; hierarchical cluster analysis

1. Introduction

Groundwater is a globally important resource used for domestic, industrial, and agri-
cultural purposes. In 2018, groundwater dependency for these uses in Japan was 20.1%,
27.3%, and 5.4%, respectively [1]. In some areas, the dependence on groundwater for
domestic use is 100%. Therefore, groundwater quality assessment is essential to protect
residents’ health and preserve their living environment. In Japan, assessments have con-
tinuously been carried out for 28 water quality parameters (e.g., cadmium, lead, arsenic,
dichloromethane, carbon tetrachloride, benzene, nitrate+nitrite-nitrogen (NO3+NO2-N),
fluoride, and boron) for which environmental standards of groundwater pollution are
established under the Basic Environment Law. In 2020, an investigation was conducted for
3103 wells to assess the overall groundwater quality. In total, 10 parameters were found
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to exceed environmental standards [2]. NO3+NO2-N had the highest exceedance at 3.3%.
This was followed by arsenic at 2.1% and fluoride at 0.8%. NO3+NO2-N has continued to
present the highest exceedance rates since it was added to the criteria in 1999, and this is
typified throughout Japan. Nitrate pollution in groundwater is the most prevalent type
of anthropogenic pollution [3]. In many cases, nitrate pollution in groundwater is caused
by fertilizer and livestock wastewater in agricultural areas [3]. Other pollutants, such
as arsenic and fluoride stem from natural sources originally contained in rocks [3]. The
release and fate of these elements in groundwater are controlled by water-rock interaction
processes in hydrogeological paths of the water [4,5].

The Shimabara Peninsula in Nagasaki Prefecture, Japan, depends on groundwater
for most of its water supply due to the small amounts of surface water [6]. However, the
peninsula is experiencing severe nitrate pollution in groundwater. Water quality monitoring
has shown that the number of tap water source (groundwater) wells above environmental
standards for NO3+NO2-N ranged from 5.1% to 10.0% during 2005 to 2020 [7]. Although
the general pollution level is slowly decreasing, some wells are still showing increasing
concentrations and require continuous monitoring. The Shimabara Peninsula consists of
three cities: Shimabara, Unzen, and Minami-Shimabara. In 2011, we started an investigation
on groundwater quality in Shimabara City, where pollution is particularly severe. We
found concentrations up to 26.6 mg/L NO3-N related to intensive agricultural activities
(fertilizer and livestock production) [8]. Further investigation displayed pollution spread
with depth in groundwater [9] and that there is a strong relationship between pollution
in soil and groundwater [10]. In 2018, the study area was expanded to Unzen City. We
found maximum NO3-N concentrations of 19.9 mg/L and that the pollution is related to
agriculture as in Shimabara City [11]. Although the assessment of groundwater pollution
has been established for Shimabara and Unzen Cities; groundwater chemistry including
nitrate pollution has not been studied in the Minami-Shimabara City. For this reason,
we evaluated spatial characteristics of groundwater chemistry in the Minami-Shimabara
City for improved understanding of the status of nitrate pollution in this area and the
hydrochemical characteristics of groundwater in vulnerable aquifers compared to the
hydrochemistry of the Shimabara and Unzen Cities.

2. Materials and Methods

2.1. Study Area

Minami-Shimabara City is located in the south of Shimabara Peninsula, Nagasaki
Prefecture (Figure 1) with an area of approximately 17,000 ha. In 2017, the population was
44,200 with a water supply coverage of 92.8% [12]. There are 5 surface reservoirs, a main
river, 60 groundwater sources, and 2 springs supplying water to the city [12]. Groundwater
has the highest ratio of water withdrawal, reaching 86.1% [12]. The land use map is shown
in Figure 1a [13]. Forests cover 35.6% of the total area [14]. The agricultural land area is
4730 ha (paddy fields 1650 ha; upland fields 3070 ha) [14], equivalent to 27.8% of the city
area. This ratio is higher than that of Nagasaki Prefecture as a whole and is characterized
by agriculture use in upland fields. Mainly cultivated crops are rice, potatoes, fodder crops,
and leaf tobacco. Nitrogen application by chemical fertilizer and manure for the 10 major
crops is estimated at 1715 kg/day [7]. Livestock production is thriving, with 223 livestock
facilities (49 dairies, 138 beef cattle, 14 pork, 5 egg, and 17 broiler production units) in
2019 [7]. This corresponds to 35,950 cattle, 79,000 pigs, and 2,900,000 chicken [7]. The
resulting nitrogen generation from livestock waste is estimated at 6625 kg/day [7].
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Figure 1. Study area and groundwater sampling locations in the Minami-Shimabara City.

Figure 2b shows the geology of the study area [15]. In the southern part of the area,
the Kuchinotsu formation, which consists mainly of freshwater sediment and shallow-
marine sediment of middle Pliocene to early Pleistocene age [16], is exposed. Pre-Unzen
volcanic rocks (4 Ma–500 ka) are partially distributed above the Kuchinotu formation.
Pre-Unzen volcanic rocks and Kuchinotsu formation are overlain by the Unzen volcanic
rocks (500 ka–present), which are widely distributed in the Shimabara Peninsula [16].
Unzen volcanic rocks are observed near the southern border and in the center of the
peninsula. Alluvial deposits are found at lower elevation areas in the north. Pre-unzen
volcanic rocks are mainly composed of olivine basalt and amphibole andesite, while Unzen
volcanic rocks contain hornblende andesite to dacite rich in plagioclase, hornblende, and
biotite mottling [16]. Figure 2c shows the hydrogeological map of the study area [17].
Groundwater levels are only evident in a part of the study area. There are many faults in
this area, and the groundwater levels differ greatly due to these. Especially, in the south
and east, groundwater levels are complex due to faults.
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Figure 2. Land use and geology, (a) vegetation, (b) geology, (c) hydrogeology; (Pyfl) Pyroclastic flow.
Vegetation map is based on data collected by Biodiversity Center of Japan [13]. Geological map
1/200,000 scale is based on data collected by Geological Survey of Japan [15]. Hydrogeological map
is based on the groundwater investigation by Murakami [17].

The climate is humid subtropical. Mean temperature and mean annual precipitation
are 17.3 ◦C and 1836 mm, respectively (1992 to 2021; data from Kuchinotsu observatory,
32◦36.7′ N, 130◦11.6′ E) [18].

2.2. Sampling and Analyses

Groundwater samples were taken from 56 municipal wells (Figure 1) during July to
August 2021. All samples were stored in pre-washed bottles. Stagnant water in the well
pipes was removed before water sampling. pH, electrical conductivity (EC), oxidant redox
potential (ORP), and dissolved oxygen (DO) were measured on-site by using hand-held
instruments (HORIBA D-51 and D-54, and HACH HQ30d). Bicarbonate ion (HCO3

−) was
determined by the titration method with 0.1 N HCl on-site. All water samples were filtered
by 0.45 μm membrane filter on-site. Major anions (Cl−, NO3

−, SO4
2−) and cations (Na+, K+,

Mg2+, Ca2+) were measured by ion-chromatography (DKK-TOA, IA-300) in the laboratory.
The validity of the analytical results was confirmed by converting ion concentrations from
mg/L to mmolc/L and then calculating the charge balance errors (CBE) using:

CBE =

(
∑ cations − ∑ anions
∑ cations + ∑ anions

)
× 100, (1)

According to Rahman et al. [19], CBE < ±5 is good, and CBE < ±10 is acceptable. In
this study, the CBEs of the samples ranged from −3.6 to 7.3, with <±5 in 41 samples and
<±10 in 15 samples.

Principal component analysis (PCA) and hierarchical cluster analysis (HCA) for the
hydrochemical parameters were used to interpret processes controlling water chemistry
(mineral dissolution, anthropogenic input, sea water intrusion, ion exchange, evapotran-
spiration, etc.) and grouping the water samples e.g., [20–24]. These methods were also
used previously for the Shimabara and Unzen groundwater [8,11]. PCA and HAC were
performed based on major ion concentrations (Cl−, NO3

−, SO4
2−, HCO3

−, Na+, K+, Mg2+,
and Ca2+). The principal components were extracted based on the Kaiser criterion to only
retain components with eigenvalues greater than 1. The HCA was performed based on
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Ward’s method. All analyses were performed by using the statistical software JMP Pro 13
(SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513-2414, USA).

3. Results and Discussion

3.1. Water Chemistry

The analysis results of hydrochemical parameters are shown in Table 1 and Figure 3.
pH ranged from 6.3 to 8.7, indicating that groundwater in the study is weakly acidic to
weakly alkaline. EC ranged from 74 to 563 μS/cm. The range of pH and EC was generally
close to the Shimabara and Unzen groundwater [8,11]. ORPs ranged from −21 to 738 mV,
meaning that groundwater is oxic or anoxic. The latter was observed at two sampling points
(MW51 and MW55). The redox conditions are strong indicators of contaminants that might
be present at elevated concentrations [25]. The nitrate concentration is more likely to exceed
the recommended limits for oxic conditions [25]. On the other hand, microbially driven
reduction of nitrate to nitrogen gas occurs only under anoxic conditions [25]. Gillham and
Cherry [26] reported that denitrification processes can occur when the DO in groundwater
is less than 2 mg/L. In our study, DO ranged from 1.7 to 10.2 mg/L, with two sampling
points (MW44 and MW50) showing less than 2.0 mg/L. Thus, at sampling points (MW44,
MW50, MW51, and MW55) with low DO or ORP, NO3

− concentrations between 0.1 to
1.9 mg/L indicate that denitrification is likely to occur. These conditions were not observed
in Shimabara and Unzen [8,11]. The total dissolved solids (TDS) were estimated from EC
by the following equation [27].

TDS = 640 × EC, (2)

where TDS and EC are in mg/L and dS/m, respectively. TDS ranged from 47.4 to
360.3 mg/L with a mean of 134.4 mg/L. The samples were characterized by HCO3

−
followed by SO4

2−, Cl−, and NO3
− for anions (Figure 3). Cations were characterized by

Ca2+ and Na+ followed by Mg2+ and K+.

Table 1. Descriptive statistics of hydrochemical components of groundwater samples.

Cl− NO3
− SO4

2− HCO3
− Na+ K+ Mg2+ Ca2+ pH EC ORP DO

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L μS/cm mV mg/L

Min 3.3 0.1 1.4 11.4 6.3 3.1 1.6 3.9 6.3 74 −21 1.7
Max 49.2 55.7 43.5 299.7 134.3 7.5 18.2 37.0 8.7 563 738 10.2

Mean 10.0 7.9 12.7 81.5 17.9 4.9 6.3 14.6 7.4 210 235 6.8
S.D. 1 7.7 11.2 11.2 60.3 23.8 1.0 4.0 8.7 0.5 126 106 2.5

Note: 1 S.D. = standard deviation.

Figure 3. Box plots of hydrochemical components of groundwater samples. A circle is a far outlier.
Starred point is a “far out” outlier.
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Groundwater samples were plotted using trilinear Piper diagram for easy visual
understanding the characteristics of water chemistry (Figure 4). Forty-four sampling points
(78.6%) were classified as alkaline earth carbonate type, which is common in shallow
groundwater in Japan. Nine points (16.1%) showed alkaline earth non-carbonate type,
which is classified as groundwater with high nitrate concentration in Shimabara and
Unzen [8,11]. Three samples (5.3%) were classified as alkaline carbonate type. This type
of water is commonly found in deep groundwater with long residence time and was not
identified in Shimabara and Unzen [8,11]. To consider salinity, Total Ionic Salinity (TIS) is
shown in Figure 5 [28]. According to the figure groundwater in Minami-Shimabara has
low TIS (<10 mmolc/L).

Figure 4. Trilinear Piper diagram of groundwater in Minami-Shimabara City.

Figure 5. Total Ionic Salinity of groundwater in Minami-Shimabara City.

The concentration of major dissolved ions is visualized using Stiff diagram in Figure 6.
Most of the samples represent the Ca-HCO3 type. The Ca-(SO4+NO3), Ca-SO4, Na-HCO3,
and Mg-HCO3 types were observed in a small number of wells. Na-HCO3 and Mg-HCO3
were found in the coastal area and thus, have larger arrows than other samples. To de-
cipher mechanisms controlling groundwater chemistry, Gibbs diagram [29–31] is shown
in Figure 7. Gibbs diagram is described by the ratio of cation and anion endmembers
(Na+/(Na+ + Ca2+)) and (Cl−/(Cl− + HCO3

−)), respectively, as a function of TDS. This
indicates the functional sources of dissolved chemical constituents, such as precipitation,
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rock weathering, or evaporation dominance. The diagram shows that most groundwater
samples are affected by rock weathering processes, suggesting that longer residence time,
large contribution of mineral dissolution, and the influence of ion exchange form water
chemistry in the study area. A few samples were influenced by precipitation. The difference
of these factors appears as the difference of ion concentrations and water type. The water
samples in precipitation dominance have lower concentration. Higher concentrations and
water types of Na-HCO3 and Mg-HCO3 are dominated by rock weathering processes.
Influence of seawater was mainly found in the south part of Minami-Shimabara City [17],
but no Na-Cl type samples were identified. Figure 8 shows the distribution of ground-
water samples in the Hydrochemical Facies Evolution (HFE) diagram [32] by using Excel
Macro [33]. HFE-diagram reveals that 70% of the groundwater samples correspond to
freshening phase and 30% correspond to intrusion phase. Since the study area faces to the
sea, it is assumed that groundwater samples, which is characterized by high concentration
and ratio of Na+, such as MW42, MW43, and MW44 in the left upper corner of freshening
phase, are affected by seawater intrusion.

Figure 6. Major ion variation in Minami-Shimabara City groundwater using Stiff diagrams.

Figure 7. Gibbs diagram of groundwater in Minami-Shimabara City.
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Figure 8. Hydrochemical Facies Evolution (HFE) of groundwater in Minami-Shimabara City.

The southern part of the city has little surface water and relies on groundwater for
irrigation. However, as mentioned above, groundwater with high Na+ concentrations were
observed. Therefore, the suitability of groundwater for irrigation was evaluated by plotting
a USSL diagram (Figure 9). The USSL diagram is drawn based on the salinity (EC) and
sodium hazard (Sodium Adsorption Ratio: SAR) [34]. The SAR is calculated by [34]:

SAR =
Na+√(

Ca2++Mg2+
)

/2
, (3)

where the concentrations of Na+, Ca2+, and Mg2+ are all expressed in mmolc/L. Most of the
groundwater samples belong to C1-S1 (low salinity hazard and low sodium hazard) class
or C2-S1 (medium salinity hazard and low sodium hazard). Only two samples (MW42
and MW43) were classified in the C2-S2 (medium salinity hazard and medium sodium
hazard) class. The following is a summary of each class [34]. Low salinity water (C1)
can be used for irrigation with most crops on most soils with little likelihood that soil
salinity will develop. Some leaching is required, but this occurs under normal irrigation
practices except in soils of extremely low permeability. Medium salinity water (C2) can
be used if a moderate amount of leaching occurs. Plants with moderate salt tolerance can
be grown in most cases without species practices for salinity control. Low salinity water
(S1) can be used for irrigation on almost all soils with little danger of the development
of harmful levels of exchangeable sodium. However, sodium sensitive crops, such as
stone-fruit trees and avocados may accumulate harmful concentrations of sodium. Medium
sodium water (S2) will present an appreciable sodium hazard in fine textured soils having
high cation exchange capacity, especially under low leaching conditions, unless gypsum is
present in the soil. Consequently, Figure 9 shows that groundwater in the study area can
be used for irrigation, but attention must be paid to the use of groundwater belonging to
the C2-S2 class. Further evaluation of water quality for irrigation was conducted based
on Food and Agriculture Organization (FAO) guidelines [35] (Table 2). According to the
FAO guidelines, although most of the groundwater samples has no potential irrigation
problem, some samples have elevated EC, SAR, Na, NO3-N, and HCO3 or even potentially
severe problem in view of SAR. In addition, some of the samples have a pH somewhat out
of range. Therefore, caution should be exercised in some places when using groundwater.
Since most tree crops and woody plants are sensitive to sodium [35], groundwater having
high SAR should be avoided. These results are generally consistent with the caution given
from the USSL diagram.
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Figure 9. USSL diagram based on EC and SAR.

Table 2. Guidelines for interpretations of water quality for irrigation.

Unit

Degree of Restriction on Use

None
Slight to
Moderate

Severe

EC dS/m <0.7 0.7–3.0 >3.0
TDS mg/L <450 450–2000 >2000
Na (surface irrigation) SAR <3 3–9 >9
Na (sprinkler irrigation) meq/L <3 >3
Cl (surface irrigation) meq/L <4 4–10 >10
Cl (sprinkler irrigation) meq/L <3 >3
NO3-N mg/L <5 5–30 >30
HCO3 meq/L <1.5 1.5–8.5 >8.5
pH Normal range 6.5–8.4

3.2. Nitrate Pollution

The nitrate (NO3-N) concentration ranged between 0.02 and 12.6 mg/L, with an
average of 1.8 mg/L. The maximum concentration was found at MW39, the only point
where NO3-N concentration exceeded the Japanese drinking water standard (10 mg/L).
The drinking water standard of World Health Organization [36] for NO3

− concentration
(50 mg/L) was exceeded in one point. The maximum nitrate concentration in Shimabara
City was 26.6 mg/L [8] and that in Unzen City 19.9 mg/L [11]. Compared to these
values, the pollution level in Minami-Shimabara City is lower. Only one sampling point
exceeded the standard limits for NO3-N concentration. This is lower than the 38% in
Shimabara City [8] and the 12% in Unzen City [11]. Even if the standard limits were not
exceeded, relatively high NO3-N concentrations were observed, e.g., 8.4 mg/L at MW49,
7.3 mg/L at MW53, and 6.5 mg/L at MW15. Nitrate can occur naturally, but nitrate
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concentrations greater than 1 mg/L are likely to indicate effects of human activities [37].
Under this criterion, 21 sampling points (38%: except for the smallest blue circle in Figure 10)
can be considered polluted by nitrate. As mentioned above, denitrification may occur
in the groundwater in this area, and it is considered that at some sampling points the
nitrate concentration has decreased below 1 mg/L due to denitrification. Sampling points
with nitrate concentration exceeding the criteria of 1.0 mg/L [37] were observed in the
southwestern and eastern parts of the study area (Figure 10), and the land use here is
upland agriculture (Figure 2). This suggests that nitrate pollution of groundwater in this
area is related to agricultural activities.

Figure 10. Distribution of nitrate concentration in groundwater.

Correlation among the eight major dissolved ion components is shown in Table 3. In
the investigation of Shimabara and Unzen [8,11], NO3

− showed a high positive correlation
with Cl−, SO4

2−, and K+, suggesting that nitrate is derived from chemical fertilizers
((NH4)2SO4), manure, and livestock waste. However, in Minami-Shimabara, NO3

− is not
correlated with Cl−, SO4

2−, and K+. Focusing on Cl−, SO4
2−, and K+ concentrations in

MW39, where NO3-N concentration exceeded the Japanese drinking water standard, the
relationship is as follows: Cl− 16.9 mg/L > K+ 5.1 mg/L > SO4

2− 4.2 mg/L. For MW49 with
NO3-N of 8.4 mg/L, which has the next highest NO3-N concentration, a relationship of Cl−
12.3 mg/L > K+ 6.4 mg/L > SO4

2− 2.7 mg/L was observed. The SO4
2− concentration at

these points is similar to or lower than those at other points with low NO3-N concentration
(Figure 6). At the sampling points where such a relationship between ion concentrations is
found, SO4

2− concentration is low, and manure and/or livestock waste are supposed to be
a dominant nitrate source. Analysis of stable nitrogen oxygen isotopes NO3

− is required
for a more valid assessment of the nitrate source.

Table 3. Correlation matrix for eight dissolved ions (n = 56).

Cl− NO3
− SO4

2− HCO3
− Na+ K+ Mg2+ Ca2+

Cl− 1.00 0.15 0.50 0.65 0.74 −0.10 0.52 0.39
NO3

− - 1.00 −0.05 −0.26 −0.13 0.24 0.14 0.10
SO4

2− - - 1.00 0.57 0.38 0.12 0.71 0.72
HCO3

− - - - 1.00 0.84 0.07 0.56 0.52
Na+ - - - - 1.00 −0.10 0.19 0.10
K+ - - - - - 1.00 0.20 0.32

Mg2+ - - - - - - 1.00 0.83
Ca2+ - - - - - - - 1.00
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3.3. Multivariate Analysis

A principal component analysis summarized the 12 hydrochemical parameters into
three principal components based on the Kaiser index (Table 4). The eigenvalues of principal
component 1 (PC1), 2 (PC2), and 3 (PC3) were 5.64, 1.92, and 1.33, respectively. These
explained 46.9%, 16.0%, and 11.1%, respectively, of the total variance. PC1 had positive
loadings for EC and all ions except NO3

− and K+, indicating that it is related to dissolved
constituents controlled by rock weathering and precipitation. The negative loadings of
ORP and DO in PC1 are related to denitrification. PC2 had positive loadings for Ca2+ and
negative loadings for Na+, implying ion exchange. The positive loading of NO3

− in PC2
represents lower nitrate pollution exceeding the criteria of 1.0 mg/L indicating effects of
human activities. PC3 had positive loadings for Cl− and NO3

−, indicating relatively severe
nitrate pollution including the exceedance of standard limits.

Table 4. Relationship between extracted principal components (PCs) and ions.

PC 1 PC 2 PC 3

Cl− 0.770 −0.213 0.337
NO3

− −0.083 0.421 0.775
SO4

2− 0.793 0.278 −0.093
HCO3

− 0.903 −0.267 0.006
Na+ 0.708 −0.599 0.235
K+ 0.104 0.543 0.286

Mg2+ 0.716 0.548 −0.002
Ca2+ 0.773 0.508 −0.029
pH 0.430 −0.560 0.227
EC 0.969 −0.082 0.182

ORP −0.518 −0.113 0.435
DO −0.755 −0.084 0.447

Eigenvalue 5.64 1.92 1.33
Explained variance % 46.9 16.0 11.1

Cumulative % of variance 46.9 62.9 74.0

Results of the HCA are shown in Table 5 and Figure 11. The 56 groundwater samples
were classified into five groups, with the number of samples in each group ranging from 3
to 26. Figure 12 shows the scatter plot of the principal components related to groups. PC1
effectively separated groups, meaning that dissolved constituents are different for each
group. Group 1 shows relatively low scores for PC1, indicating lower dissolved constituents.
Mainly the sampling points indicated by smaller Stiff diagrams in Figure 6 are contained in
this group. Group 1 is distributed from the center to east in the study area. Group 2 and 3
has similar scores of PC1 and PC2, representing intermediate ion concentrations. However
these groups are be distinguished by PC3, meaning that nitrate pollution level are different
for these groups. As shown in Table 5, water samples having higher NO3

− concentrations
were classified into Group 2. The difference between Group 2 and 3 is characterized by
difference in locality (Figure 13). Group 2 is located in the western part of study area, while
Group 3 is mainly located at lower altitude along the coastal line. PC1 and PC3 of Group 4
is similar to that of Group 5, but these groups are clearly distinguished by PC2. In other
words, Group 4 has relatively high negative scores for PC2, indicating negative effects of
ion exchange, and anthropogenic activities. Group 4 is associated with deep groundwater
with high concentrations of sodium and bicarbonate ions (Table 5). The five groups can
be generally summarized in three categories.PC1 and Figure 11 show that Group 4 and 5,
which are characterized by high ion concentration especially Na+ and HCO3

−, are different
from the other groups. Based on overall ion concentration including nitrate, the remaining
groups can be categorized by either intermediate ion concentration (Group 3) or lower ion
concentration (Group 1 and 2).
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Table 5. Hydrochemical component depending on each group.

Samples
Cl− NO3

− SO4
2− HCO3

− Na+ K+ Mg2+ Ca2+ NO3-N pH EC ORP DO

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L μS/cm mV mg/L

Group 1 26

Min 3.3 0.1 1.4 23.2 6.3 3.1 1.6 4.2 0.0 6.8 74 242 7.2
Max 12.1 26.1 17.9 97.5 15.6 6.1 6.4 14.7 5.9 7.9 190 738 10.1

Mean 5.9 7.4 4.3 44.4 8.7 4.7 3.5 8.2 1.7 7.3 116 287 8.8
S.D. 1.9 7.4 3.2 13.7 2.0 0.8 1.2 2.6 1.7 0.2 29 93 0.7

Group 2 3

Min 10.9 28.6 2.2 41.3 11.6 5.1 5.7 14.2 6.5 7.0 187 201 7.3
Max 16.9 55.7 4.2 65.7 11.7 6.4 7.4 19.9 12.6 7.4 241 287 10.2

Mean 13.4 40.5 3.0 52.5 11.7 5.8 6.8 17.6 9.2 7.3 222 230 8.5
S.D. 3.1 13.8 1.0 12.3 0.1 0.7 1.0 3.0 3.1 0.2 30 49 1.5

Group 3 20

Min 5.0 0.1 6.5 11.4 7.7 3.3 2.5 9.9 0.0 6.3 136 −21 1.9
Max 16.1 28.9 37.3 171.8 34.7 7.5 11.0 33.3 6.5 8.0 383 302 9.0

Mean 9.6 3.8 19.3 90.4 14.1 5.3 7.6 19.3 0.9 7.3 234 204 5.1
S.D. 3.4 6.7 8.0 33.6 5.8 1.3 2.2 6.5 1.5 0.5 52 101 2.2

Group 4 3

Min 13.8 1.9 17.3 231.3 76.3 3.4 2.6 3.9 0.4 8.1 466 74 1.7
Max 49.2 2.5 26.6 299.7 134.3 4.8 8.2 16.5 0.6 8.7 563 231 6.2

Mean 26.2 2.1 21.9 254.3 108.8 4.3 5.5 10.3 0.5 8.4 529 177 3.7
S.D. 19.9 0.3 4.7 39.3 29.6 0.8 2.8 6.3 0.1 0.3 55 89 2.3

Group 5 4

Min 17.5 0.7 22.0 111.2 23.6 3.9 16.6 24.3 0.2 6.9 407 32 2.3
Max 28.9 32.1 43.5 224.2 43.7 5.2 18.2 37.0 7.3 8.3 507 207 6.2

Mean 24.2 11.2 34.5 170.6 33.8 4.6 17.5 33.2 2.5 7.7 453 104 3.9
S.D. 5.4 14.7 9.0 55.5 9.2 0.6 0.7 6.0 3.3 0.6 44 81 1.7

Figure 11. Dendrogram for groundwater samples divided into five groups.
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Figure 12. Scatter plots for PC1, PC2, and PC3.

Figure 13. Spatial location of each group.

4. Conclusions

To improve the understanding of cause and effects of nitrate pollution and hydrochem-
ical characteristics of groundwater in the Shimabara Peninsula, groundwater samples were
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collected from 56 municipal wells in Minami-Shimabara City. Major dissolved ions and pH,
EC, ORP, and DO were analyzed. The ORP and DO values suggested that denitrification
may be responsible for decreasing nitrate concentrations. The major groundwater compo-
sition was Ca-HCO3 type. In addition, Na-HCO3, Mg-HCO3, and Ca-(SO4+NO3) types
were also observed at a few locations. This water chemistry is formed by rock weathering,
precipitation, and mixing with saltwater from seawater intrusion. NO3-N concentrations
exceeded Japanese drinking water standards (10 mg/L) at one location. The pollution is
related to agricultural land use. The high Cl− and low SO4

2+ concentrations at this point
suggest that the pollution source is manure and/or livestock waste. PCA showed that
processes controlling water chemistry are explained by three principal components: PC1
corresponds to dissolved constituents in groundwater and denitrification, PC2 represents
ion exchange and low nitrate pollution, and PC3 represents severe nitrate pollution. HCA
classified the 56 water samples 5 five groups. These can be broadly divided into 3 categories:
the first characterized by high ion concentration especially in Na+ and HCO3

− (Group 4
and 5); the second representing the intermediate ion concentration group (Group 3), and
the third with low ion concentration (Group 1 and 2).

The study revealed that the extent of nitrate pollution in Minami-Shimabara City is
small. In other words, NO3-N concentrations are lower than in Shimabara and Unzen
Cities, and the percentage of NO3-N exceeding the standard limits is also small. The
sampling campaign was between July and August when rainfall amount was large. In
the investigations conducted during this period, a decrease in nitrate concentration was
observed in Shimabara City due to dilution caused by rainfall [8,10]. Therefore, future
surveys are needed at different seasons. It is also necessary to introduce analysis of nitrogen
oxygen stable isotopes of NO3

− to clarify the nitrate source.
Since this study found high Na+ concentrations in some wells, we additionally eval-

uated the suitability of groundwater for agricultural use. Groundwater was evaluated
using the USSL diagram and FAO guideline. In some places, due to high EC, SAR, Na,
NO3-N, HCO3, and pH, caution is necessary when using groundwater for irrigation. In
addition, groundwater with high SAR should not be used for some types of crop species. In
Minami-Shimabara City, agricultural wells have been installed in addition to the municipal
wells that were investigated in this study. Since groundwater is affected by seawater in
some areas [17], it is necessary to collect groundwater samples for agricultural wells to
evaluate their suitability for agricultural production.
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Abstract: Groundwater contamination caused by the use of the aqueous film-forming foam (AFFF)
containing per- and polyfluoroalkyl substances (PFAS) was investigated in southern Sweden. ΣPFAS
concentrations in groundwater ranged between 20 and 20,000 ng L−1; PFAS composition was primar-
ily represented by PFOS and PFHxS. The PFAS chain length was suggested to have an impact on
the contaminant distribution and transport in the groundwater. PFAS profiling showed that the use
of PFSAs- and PFCAs/FTSAs-based PFAS-AFFF can be a contributor to PFAS contamination of the
drinking water source (groundwater). PFAS emission was connected to PFAS-AFFF use during the
fire-training and fire-fighting equipment tests at the studied location. PFAS emission per individual
fire training was (semi-quantitatively) estimated as [1.4 < 11.5 ± 5.7 < 43.7 kg] (n = 20,000). The
annual emission estimates varied as [11 < 401 ± 233 < 1125 kg yr−1] (n = 1005) considering possible
[2 < 35 ± 20 < 96] individual fire-training sessions per year.

Keywords: AFFF; PFAS; groundwater

1. Introduction

PFAS-containing aqueous film-forming foam (PFAS-AFFF) has been used by fire-
fighters for several decades [1]. PFAS-AFFF has a wide application in extinguishing
hydrocarbon-fuel fires (class B fires); which is primarily due to the thermal stability of the
active surfactant [2] and its ability to lower the surface tension at low concentrations [3].
From its early deployment in aircraft rescue in 1978 (Los Angeles International airport (3M
Light Water), PFAS-AFFF has become an effective and perhaps a universal solution in fire
safety (in fuel fires) at airfields worldwide [1,4].

However, PFAS-AFFF use during fire-training activities, firefighting equipment tests, and
emergency events can lead to contamination of the surrounding aquatic environment [5,6].
The ubiquitous occurrence of PFAS in surface water and groundwater in proximity to
firefighting training locations has been reported in various studies worldwide [7–10]; and
is the major historical and current source of PFAS in Sweden [11]. The source water
contamination with PFAS can lead to human exposure via drinking water [12–14]. The
evidence of negative health effects and cases of human exposure stresses the importance
of further investigation on PFAS distribution in the environment [12,14–17]. Nearly 50%
of Sweden’s drinking water originates from groundwater reservoirs situated in highly
permeable glaciofluvial deposits that are susceptible to contamination [11].

PFAS spread and distribution in the aquatic environment are often connected to the
water solubility and persistence of the compounds [18,19]. Far-field transport conditions
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have been studied in surface water [20,21] and groundwater [22,23]. Furthermore, the
PFAS circulation in the urban (and/or industrial) water and waste handling cycles has been
connected to the occurrence in water treatment plants [24,25] and landfills [26]. However,
due to the surfactant nature of the contaminant and complex interaction mechanisms in
the carrier-phase vs. media interface, the interpretation of the PFAS distribution in the
corresponding transport domain requires further investigation [27–30]. Moreover, the PFAS
distribution can be affected by various macroscopic conditions related to the environmental
features of the area and the emission source. This can be connected to a large variation in
the previously reported field-derived distribution predictors [22,31,32]. PFAS sorption and
transport mechanisms in natural systems are yet subject to further investigation.

Assessment and interpretation of the water contamination by PFAS require an under-
standing of a cluster of interconnected processes, including analysis of the contamination
levels, spatial distribution, as well as emission history. Furthermore, in contamination
linked to PFAS-AFFF use, the application scenarios, equipment and purpose of the ap-
plication can play a significant role in PFAS emission, as well as contamination levels
and composition. PFAS-AFFF application can be continuous (historical) or related to an
emergency event, thus affecting the consequent contaminant distribution [8,33]. It is often
not known how and under which conditions or with which chemical speciation PFAS-AFFF
has been practiced. Therefore, detailed analysis and understanding of the processes behind
water contamination by PFAS and related distribution mechanisms are important.

Another important aspect in the assessment of PFAS contamination is the analytical
limitations. Most of the conventional analysis methods are, in large measure, designed for
quantification of the target substances, thus, despite the sufficient resolution, the detected
PFAS composition is often restricted to the method [9,34]. In the contamination cases
related to PFAS-AFFF, it is important to consider the presence of various structural isomers,
as well as the structure of the functional group (e.g., a fraction of the branched isomers
(PFOA and PFOS) can constitute 20–30% of the mass) [3,35,36].

The general purpose of the present study is to improve the knowledge in the analysis of
the historical water source contamination by PFAS and address the related aspects of PFAS-
AFFF application in fire-training activities and equipment tests. The conducted investiga-
tion included: (i) analysis of contamination levels and PFAS composition, (ii) assessment
of the PFAS and PFAS-AFFF emission scenarios and (iii) assessment of the contaminant
transport conditions.

2. Materials and Methods

2.1. Study Site
2.1.1. Area Description

The studied area is located in Ronneby Municipality (Blekinge County) in Sweden
(Figure S1 in Supplementary Materials). The landscape of the area is mainly represented by
hilly terrain with woods surrounding the urbanized areas. There were two main objects
of interest considered in the present study. These included the F17 airfield (Blekinge Air
Force Wing) and Brantafors waterworks (Ronneby Municipality). The F17 (active since
1944) has been used by both military and civil air traffic. The airfield area is restricted and
surrounded by wood in the north and west, and lake Sänksjön in the north. The F17 hosts
both the flight exercise area and an operational wing [37]. The Brantafors waterworks has
been in operation since the 1970s and at later development stages it supplied the Ronneby
Municipality with drinking water. At Brantafors, source water for municipal water supply
was extracted from the groundwater reservoir at four main extraction locations: north
(GW1), south (GW3 and GW4), and east (GW2) (Figure S1 in Supplementary Materials).
The waterworks have been reconstructed and modified during their operation. There
was limited information available for the period prior to the 1990s. Prior to 2010, due to
the water quality (according to former standards), the water treatment process included
aeration, pH adjustment, and UV disinfection. Brantafors was later reconstructed, and the
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treatment was extended with aeration, chemical precipitation, rapid sand filtration and UV
disinfection.

2.1.2. Surface Water and Hydrogeology of the Area

There are several surface water bodies in the studied area, including the Hasselstads-
bäcken creek, the Klintabäcken creek, the Ronnebyån river, and lake Sänksjön (Figure S1
in Supplementary Materials). The study area is located within the larger main catchment
area of “Ronnebyån”. Furthermore, the area is divided into two sub-catchment areas which
are divided straight through the F17 airfield. Hasselstadsbäcken originates in the wetland
area south-west of Lake Sänksjön and eventually discharges into Sörbybäcken creek, a
tributary to Ronnebyån. Klintabäcken originates from the wetland areas in north and east
of Sänksjön and discharges into Ronnebyån. Ronnebyån flows in a south direction and
discharges into the Ronnebyfjärden Bay of the Baltic Sea. Lake Sänksjön is a kettle lake
(formed by the retrieving glacier) and is primarily fed by groundwater and surface runoff
(Figures S1 and S4 in Supplementary Materials).

The study area is located in one of the largest delta formations in South-eastern Sweden
(Bredåkradeltat) which was formed during the withdrawal of the last ice age. The area
is mainly covered by glaciofluvial materials consisting of sand and silt. However, an
esker formation is also present (Bredåkraåsen) and it runs parallel to the Klintabäcken
(Figure S1 in Supplementary Materials). The esker mainly consists of sand, gravel, and
rocks. It is located directly on the bedrock and is partially covered by glaciofluvial material.

The bedrock is primarily represented by Karshamngranit (a granite) consisting of
quarts, feldspar and mica; the bedrock surface is characterized by deep and long fractures
in the direction from north to south (Figures S4 and S5 in Supplementary Materials).

The area contains a groundwater reservoir which is represented by the esker and
coarse-grained glaciofluvial material. It is mainly an unconfined aquifer; however local
confined conditions can occur due to fine glaciofluvial material. The aquifer contains local
subsystems and a transient groundwater divide is formed following the runoff area of
Klintabäcken, which runs along the airfield to the east. To the west, the reservoir runs
towards Ronnebyån where it is confined by the bedrock which is close to the surface at
this area (Figure S4 in Supplementary Materials). The coarse-grained glaciofluvial material
contains a lower groundwater extraction potential of 1–5 L s−1 whereas the esker formation
contains a higher potential of 5–25 L s−1. Close to Ronnebyån the potential is even higher
due to the added infiltration from the river (Figure S4 in Supplementary Materials). The
primary groundwater flow direction is north to south following the flow of Klintabäcken
(Figures S3 and S4 in Supplementary Materials).

2.1.3. PFAS Emission Source

The PFAS emission was primarily related to the use of PFAS-AFFF during fire-training
activities and firefighting equipment tests at F17. The emission sources were connected
to the designated fire-training and equipment test sites on the F17 airfield territory. The
main emission source was identified at the fire-training facility (FTF), located in the east
of the F17 airfield (Figure S1 in Supplementary Materials). However, there are several
potential sources (training and test locations) suggested by former F17 personnel, including
the north-end and south-end of the airstrip and the fire station in the south of the airstrip
(Figure S1 in Supplementary Materials).

At FTF, the AFFF release was primarily connected to the aircraft rescue operation
training (including open fire suppression). The training was mainly performed on a
designated concrete platform (Figure S2 in Supplementary Materials). Prior to 2004, the fire
training was conducted by military personnel. Since 2004, the operation was taken over
by the civil fire rescue services. Due to several reasons, not least confidentiality rules, the
exact training protocol prior to 2004, as well as possible changes in exercise routine and
location at later stages, have not fully been clarified. Therefore, the PFAS-AFFF application
in fire-training and equipment test activities was considered to continue until 2014, when
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the PFAS contamination was detected. Later, PFAS-AFFF applications were consequently
ceased, and training are further conducted with an alternative instead.

According to former military personnel, during the period until 2004, airfield fire
safety was provided by the use of a specialized emergency vehicle (heavy terrain vehicle
type 4112). It was designed for fire safety and rescue missions and is commonly used
in operations across the country. The main training objective included a simulation of
the rapid-fire suppression and a crew rescue in the aircraft crash. The rescue training
(including various activities) was carried out during one week (including several sessions
per day) of the military service period and some occasional training activities throughout
the period. Training with AFFF was conducted on 2 to 4 occasions a year (according to
former personnel).

2.2. PFAS Measurements in Groundwater

PFAS concentration was measured in the groundwater samples collected at the ex-
traction points GW1, GW3, and GW4. Duplicate water samples were collected directly in
the well (from the water surface) in 1 L PP bottles. Samples were stored in dark at 4 ◦C.
Prior to analysis, water samples were placed into the sonication bath for 20 min. Samples
were consequently transferred into a 10 mL glass injection vial and spiked with an internal
standard mix prior to analysis.

Additionally, PFAS measurements in groundwater were taken using Polar Organic
Chemical Integrative Sampler (POCIS) with solid phase sorbent (Oasis HLB). The indi-
vidual POCIS preparation was performed as described by Gobelius et al. [24]. Individual
samplers (without cage) were set in a column configuration (Figure S6 in Supplemen-
tary Materials) and placed into the groundwater well. There were two sampler columns
deployed with eight individual samplers (4 duplicates) and three individual samplers
(1 triplicate), respectively. Sampler columns were deployed in groundwater extraction
wells upstream (POCIS ×8) and downstream (POCIS ×3) of the groundwater aquifer
at approximately 15 and 20 m depth at extraction points GW1 and GW3, respectively
(Figure S4 in Supplementary Materials). For the well at GW3, a single deployment was set
for 4 weeks, and at well GW1, four deployments were set for 1-to-4-week intervals. Indi-
vidual samples were stored frozen prior to extraction and analysis. There were 13 samples
extracted and analyzed (including 2 procedural blank samples). Sample extraction and
analysis were performed according to the methods described by Gobelius et al. [24].

In total, 29 PFAS compounds were analyzed in the present study, including five perflu-
oroalkane sulfonates (C4, 6, 7, 8, 10 PFSAs) (PFBS, PFHxS, PFHpS, PFOS and PFDS), thirteen
perfluoroalkyl carboxylates (C3–13, 15, 17 PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA,
PFNA, PFDA, PFUnDA, PFDoDA, PFTriDA, PFTeDA, PFHxDA and PFOcDA), three per-
fluorooctane sulfonamides (FOSAs) (FOSA, MeFOSA and EtFOSA), two perfluorooctane
sulfonamidoethanols (FOSEs) (MeFOSE and EtFOSE), three perfluorooctane sulfonami-
doacetic acids (FOSAAs) (FOSAA, MeFOSAA and EtFOSAA), and three fluorotelomer
sulfonates FTSAs (6:2 FTSA, 8:2 FTSA and 10:2 FTSA). A mix of 16 mass-labeled inter-
nal standards (IS) (i.e., 13C8-FOSA, d3-MeFOSAA, d5-EtFOSAA, d3-MeFOSA, d5-EtFOSA,
d7-MeFOSE, d9-EtFOSE, 13C4-PFBA, 13C2-PFHxA, 13C4-PFOA, 13C5-PFNA, 13C2-PFDA,
13C2-PFUnDA, 13C2-PFDoDA, 18O2-PFHxS and 13C4-PFOS) was applied for internal cali-
bration (<98% purity, Wellington Laboratories, Guelph, ON, Canada).

Duplicate samples and procedural blanks were analyzed using LC/UPLC system (Thermo
Fisher Scientific, Waltham, MA, USA). A Hypersil GOLD aQ column (20 mm × 2.1 mm i.d.,
12 μm particles, Thermo Fisher Scientific, Waltham, MA, USA) was used as an extraction
column for online solid phase extraction. ACQUITY UPLC BEH-C18 column (100 mm × 2.1
i.d., 1.7 μm particles, Waters Corporation, Wilmslow, UK) was used as the analytical column.
Injection volumes were 1.0 mL for all samples. A triple-stage quadrupole MS/MS TSQ
Quantiva (Thermo Fisher Scientific, Waltham, MA, USA) was used as the detection sensor.
Analysis data evaluation was performed using TraceFinder™ 3.3 software (Thermo Fisher
Scientific, Waltham, MA, USA). The limit of quantification (LOQ) for the PFAS analysis
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was determined as the lowest calibration point in the linear range (from 0.1 ng L−1 to
2000 ng L−1) if the S/N ratio was higher than 3.

2.3. PFAS Emission Estimates

There was limited information available on the AFFF use at the study site, as well as
AFFF type or/and composition utilized in the past. PFAS emissions were estimated using
Monte Carlo simulations and accessible historical records and accounts. The contaminant
release was assessed in connection to suggested fire-training activities, equipment utiliza-
tion, and AFFF release scenarios. PFAS was considered an active AFFF surfactant and its
content in AFFF was estimated based on reported AFFF compositions [38]. The surfactant
(PFAS) and water release per individual training session (fire-training and/or equipment
test activity) were estimated according to the suggested equipment specifications and AFFF
utilization scenarios. The emission scenarios were estimated as a cumulative release by
individual training session scenarios per simulated period. An individual annual emission
scenario was estimated from subsampled individual release scenarios considering a possi-
ble variation of the training sessions per day (k), number of exercises per period (j), and
number of events per year (i):

PFASannual =
i

∑
1

j

∑
1

k

∑
2

m per session (1)

Data evaluation, calculations, and analyses were performed using Microsoft Excel
(Microsoft, proprietary), Argo (Booz Allen Argo, open source), and MATLAB (MathWorks,
proprietary) software. There was limited information available (by the date) on an exact
PFAS composition in related PFAS-AFFF formulations (Table S3 in Supplementary Mate-
rials) [34,39,40]. Although approximation on suspected PFAS composition was possible,
due to the historical nature of the contamination and possible variation in AFFF types, the
PFAS emission estimates were restricted to “blind” PFAS. Thus, simulation estimates are
subject to uncertainty.

3. Results and Discussion

3.1. Groundwater Contamination

In the analyzed groundwater samples corresponding to extraction points GW1, GW3,
and GW4, there were 12 out of 29 analyzed PFAS (PFBS, PFHxS, PFOS, PFDS, PFHpA,
PFHxA, PFOA, PFNA, PFOcDA, 6:2 FTSA, 8:2 FTSA and FOSA) detected (Table S1 in Sup-
plementary Materials). PFAS analysis indicated high groundwater contamination levels at
GW1 and GW3 with ∑PFAS concentrations of 4200 ± 40 ng L−1 and 20,000 ± 1900 ng L−1,
respectively, followed by relatively low levels at GW4 with ∑PFAS of 18 ± 3 ng L−1.

In the groundwater corresponding to GW4, PFAS composition was primarily repre-
sented by PFOS (35%), PFHxS (32%) and FOSA (33%). At GW3, PFAS composition was
dominated by PFOS (48%) and PFHxS (33%); followed by PFHxA (7%), PFOA (6%), PFBS
(5%), and remaining compounds. Similarly, PFAS composition at GW1 was primarily
represented by PFOS (72%) and PFHxS (19%), followed by remaining substances (<9%).

Based on the PFAS contamination levels, the concentration gradient is suggested to
have propagated from GW1 (north) to GW3 (south), which agrees with primary ground-
water flow direction from north to south (Figures S3 and S4 in Supplementary Materials).
PFAS concentrations at GW1 and GW3 are suggested to indicate a unified emission source
affecting the groundwater from the north.

A shift in relative composition was observed for PFSAs and PFCAs (for GW1 vs. GW3)
and suggestively connected to contaminant mobility. For PFCAs (PFHxA-PFHpA-PFOA),
the observed composition shifted from 58-12-30% at GW1 to 46-13-41% at GW3 (down-
stream), whereas composition of PFSAs (PFBS-PFHxS-PFOS) changed from 2-21-77% at
GW1 to 5-39-56% at GW3. Furthermore, the difference in detected levels (GW1 vs. GW3)
for PFDA, PFNA, 6:2 FTSA, 8:2 FTSA and FOSA is attributed to a possible effect of the
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molecular chain length on PFAS transport. However, PFAS distribution in the groundwater
can be affected by different transport processes (including groundwater extraction and
groundwater table variation) and sorption processes related to the characteristics of the
soil [22,27,41]. Therefore, until the contaminant transport conditions are sufficiently estab-
lished, the suggested effect of the PFAS chain length on transport should be considered
with some precaution.

Analysis of the POCIS deployed in groundwater wells at GW1 and GW3 showed
a slightly better method sensitivity (Table S2 in Supplementary Materials). For PFCAs,
detected in the samples corresponding to both GW1 and GW3, the observed PFAS compo-
sition was extended to PFPeA, PFHxA, PFHpA, PFOA, PFNA and PFDA. Furthermore, it
was possible to conduct semi-quantitative measurements for some branched PFAS, thus
extending the inventory to L-PFHxS, B-PFHxS, L-PFOS, B-PFOS, L-FOSA and B-FOSA.
However, since the on-site calibration of POCIS was not possible and PFAS concentrations
were estimated using the previously reported sampling rates [24], the analysis results were
mainly considered for a qualitative assessment.

Overall, PFAS composition in POCIS was identical to previously measured in groundwa-
ter samples and primarily represented by PFSAs (81% (GW1) and 65% (GW3)) and PFCAs
(18% (GW1) and 35% (GW3)). Based on detected PFAS composition (Figure 1) and cross-
evaluation with reported PFAS-AFFF formulations (Table S3 in Supplementary Materials),
there are a few possible PFAS-AFFF types in connection to the PFAS emission.

 
Figure 1. PFAS profile detected in the POCIS deployed at GW1 and GW3 (sorted left to right according
to fluorinated chain length).

The PFSAs based PFAS-AFFF (often referred as Legacy foam) is suggested to be the
major contributor to PFAS emission. This is in connection to the PFSAs (PFBS, PFHxS
and PFOS) profile observed in groundwater samples. The PFCAs composition, on the
other hand, is attributed to PFCAs/FTSAs based PFAS-AFFF and alternatively to FTSAs
based PFAS-AFFF (assuming possible FTSAs to PFCAs transformation) [3,36,39]. Further-
more, traces of perfluoroalkane sulfonamide and sulfonamido substance such as FOSA and
MeFOSA were considered as an indicator of the fluorination method used for the produc-
tion of the corresponding PFAS. FOSA and MeFOSA can be linked to the PFAS synthesis
involving electrochemical fluorination [36]. Thus, the detected FOSA and MeFOSA are
associated with the material used in the production of detected PFSAs (PFBS, PFHxS and
PFOS) and indirectly confirm the PFSAs-based formulation of PFAS-AFFF. PFCAs (PFPeA,
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PFHxA, PFHpA, PFOA, PFNA and PFDA) detected in the groundwater samples can be
attributed to electrochemical fluorination, as well as to fluorotelomer (i.e., telomerization)
processes [36]. FTSAs, on the other hand, can be associated with the fluorotelomer process-
based origin. Assessment of the PFSAs vs. PFCAs and FTSAs traces, as well as analysis
of the perfluoroalkane sulfonamides and sulfonamido substances (PFAS precursor com-
pounds), are useful in the identification of the synthesis processes and related PFAS-AFFF
origins [9,40,42].

PFAS-AFFF identification based on measured PFAS composition in groundwater,
however, neglects possible effects of the transport and retention. Thus, the detected
PFAS composition may not fully represent the actual PFAS composition in PFAS-AFFF.
The assumptions on the PFCAs/FTSAs based PFAS-AFFF should be considered with
precaution. Further investigation is necessary to establish the transport conditions and
secure the connection between PFAS in groundwater and at the emission source.

Furthermore, in the present study, PFAS analysis was conducted considering a group
of target substances (29 PFAS) and, despite the quantification of some branched isomers
(PFHxS, PFOS and FOSA), the detected substances do not fully represent the PFAS com-
position. The analytical representation (of the composition) can be fortified by use in
combination with methods such as total organic fluoride (TOF) and total oxidable precur-
sors (TOP) assay; furthermore, with the use of non-targeted analysis/screening.

3.2. Assessment of the PFAS Emission

The individual fire-training session scenarios were simulated considering possible varia-
tions in the AFFF stock solution composition, surfactant composition (PFAS content), AFFF
solution (used for foam aggregation), and equipment utilization. For the AFFF stock solution
composition, the prior population boundaries were assigned as [0.5 < 0.065 ± 0.21 < 0.9] for
water content, [0.1 < 0.17 ± 0.054 < 0.24] for surfactant content (not restricted to PFAS), and
[0.5–1] as an additional parameter for the surfactant composition (or PFAS content) [34,38].
AFFF (stock solution) dilution scenarios were estimated based on reported and suggested
by F17 former personnel (with a prior population set as [0.01 < 0.03 < 0.04]) [43]. With sug-
gested equipment utilization scenarios, the PFAS emission per individual training session
[kg] was estimated as [1.4 < 11.5 ± 5.7 < 43.7] (n = 20,000, average deviation (adev) = 4.5).
Similarly, the release of water [L] corresponding to content in AFFF, was estimated as
[945 < 1985 ± 594 < 3032] (n = 20,000, adev = 515). Furthermore, with suggested exercise
routine, the annual PFAS emission rate [kg yr−1] was estimated as [6 < 414 ± 436 < 5462]
(note: values above correspond to one individual simulation (n = 20,000)).

The annual release scenarios were evaluated based on samples from the simulated
individual emission scenarios (per fire-training session). Subsampling and calculations
were conducted using suggested fire-training exercise routines (including 2–6 individ-
ual sessions per day, 1–5 training days, with 1–5 occurrences per year). Consequently,
1005 annual release scenarios were evaluated (Figure 2).

The estimated annual emission scenarios varied in the range of [11 < 401 ± 233
< 1125 kg yr−1], corresponding to [2 < 35 ± 20 < 96] individual fire-training sessions per
year (n = 1005) (Figure 2).

With further approximation, the annual PFAS emission can be estimated for the sug-
gested most-likely exercise routine scenario as 3 consequent training days per occurrence
and 2–4 occurrences per year. Thus, for the scenario with 6–60 individual sessions carried
out per year (with 1–5 sessions, 3 training days, and 1–4 occurrences per year), the annual
emission range is approximately 100–700 kg per year. However, since the annual emission
scenarios are based on a rather limited sample, given estimates are strictly relative to the
evaluated population. Further investigation is necessary to validate the estimate’s accuracy.

Due to limited data available on both possible PFAS-AFFF composition and historical
records of AFFF use at the studied site, it was not possible to estimate the individual
PFAS emission. The estimates of PFAS release were conducted with no restriction to
the actual PFAS composition in the PFAS-AFFF stock solution. Furthermore, the overall
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surfactant composition in the PFAS-AFFF was considered to include fluorinated (PFAS)
and non-fluorinated surfactants.

Figure 2. Evaluation the PFAS emission scenarios. (A) black dots represent simulated individual
PFAS emission scenarios (corresponding to an individual fire-training session); blue dots represent
the mean of the subsampled n-scenarios with white area corresponding to ± one standard deviation;
red line at top and bottom represent the maximum and minimum of the subsampled n-scenarios,
respectively, with green lines corresponding to ± one standard error. Vertical axe corresponds the
variation in individual emission scenarios and horizontal axe corresponds to set of individual samples
(n = 20,000 × 1005). (B) blue circles indicate the number of subsampled session scenarios in A; vertical
black lines correspond to suggested most-likely exercise routine with 3 consequent training days
per annual exercise occurrence. (C) comparison of the distribution of the simulated annual release
scenarios (blue dots) vs. fitted Gaussian distribution (cyan); vertical dashed magenta lines correspond
to first and third quantiles of the data. (D) Estimates on annual PFAS emission (blue line) vs. number
of individual training sessions, shown as a linear fit with green line corresponding to ± three standard
deviations; vertical magenta line corresponds to estimated median, vertical black line corresponds
estimated mean, and dashed magenta lines correspond to first and third quantiles of the data.

In the present study, provided PFAS emissions were based on available records/suggestions
and conducted considering a range of both PFAS-AFFF contents and application rates.
However, an accurate assessment of emissions, requires a thorough clarification of the
AFFF application history. This includes the PFAS-AFFF stock solution formulations,
PFAS/surfactant composition in AFFF, and AFFF application routine (frequency and
duration). To the authors’ knowledge, this is the first study attempting to reconstruct the
historical PFAS emission as in connection to PFAS-AFFF release scenarios and fire-training
activities.
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3.3. PFAS Transport Considerations

The PFAS emission was connected to the use of PFAS-AFFF in fire-training and
equipment tests at FTF. The spatial distribution of PFAS and contamination of the aquatic
environment was primarily associated with transport in the dissolved state, including
transport with the surface runoff, transport with groundwater, and further distribution
with raw water extraction (Figure 3).

 

Figure 3. Conceptualization of the PFAS release, transport, and distribution at the studied site.

The initial stage of emission was associated with fire-training activities at FTF (includ-
ing the simulation of the aircraft rescue mission). Primary AFFF application was connected
to the dispatch of the rescue team/vehicle and putdown of an open fuel fire. According to
former personnel, the exercise included an initial blast (on-vehicle) of the rescued aircraft
with AFFF. Consequently, when the simulated aircraft fire is partially contained, a sec-
ondary suppression was conducted (off-vehicle) with a targeted application of AFFF. It was
also suggested, that fire training sessions were possibly followed by clean-up stages where
the aircraft crash simulation area was flushed with water. It is therefore assumed, that
an individual training session could contribute to the generation of a substantial amount
of liquid. Thus, including AFFF release, AFFF dissociation and possible use of water (in
area flushes), the mass generated during the exercise session is considered sufficient for
possible PFAS transport with surface runoff. The transport and distribution with runoff,
however, can be affected by topographical features of the area surrounding the FTF and
soil saturation. Furthermore, the PFAS transport with surface runoff is suggested to have
been affected by the re-direction of surface flows with the drainage system at FTF. However,
limited information was available on the drainage operation period as well as its transport
capacity. It is presumed that the initial PFAS transport with surface runoff is followed by
distribution processes associated with hydrological processes (distribution and retention)
of much longer response time. Further PFAS distribution, associated with infiltration
processes and transport in unsaturated soil, is considered as a primary contributor to
PFAS accumulation and retention in the porous media, as well as to the shift in PFAS
composition, prior to further advective transport. However, due to complex interaction
mechanisms in the porous media, the PFAS transport in unsaturated soil is difficult to
decipher with certainty, not least due to limited data available on the contaminant emis-
sion. The advective stage of the PFAS transport is primarily subject to transport in a
dissolved state (with groundwater). Although the PFAS transport is assumed to primarily
occur in soil of high permeability and mostly connected to free-water mobility, the retar-
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dation/sorption process is relevant to certain soil fractions and compositions. Ultimately,
the PFAS sorption and transport in aqueous-solid, solid-air, and aqueous-air interfaces are
complex and not well-studied processes. The PFAS sorption/interaction can be affected
by the mineral composition of the heterogeneous media as well as porosity and pore-size
distribution [22,28,30,41]. Further investigation is required to better understand the PFAS
distribution in soil and groundwater. Consequent PFAS transport was primarily subjected
to groundwater extraction, processing, and distribution with drinking water. Since water
treatment, prior to plant modification, was restricted to treatment barriers insensitive to
PFAS, the drinking water is assumed to have been contaminated for an extended period.

In the present study, several corresponding transport estimates were introduced, in-
cluding PFAS sorption and transport in soil and far-field transport with groundwater.
However, an accurate estimate was not possible due to data limitations on PFAS sorption
parameters, emission rates and durations, and inconsistency in observed PFAS concen-
tration and composition. Further investigations are necessary for the validation of the
transport estimates.

In cases of historical contamination, as considered in the present study, the observed
contamination levels can be represented by a series of inconsistent AFFF release events.
Thus, representing a series of short-lasting contaminant spikes of different magnitude
(levels) and related PFAS composition. The far-field transport processes, however, are
strongly connected to the hydrogeological features of the area and related response time
variability. It is therefore suggested important to consider the scale-related features of both
PFAS emission and distribution processes.

3.4. Remarks on Regulations

There are currently several regulations on PFAS; these are, however, implemented on
different institutional/industrial levels. The initial attempts on regulating the substances
came from the manufacturers, possibly, as a response to the rising awareness of the environ-
mental and health impacts of PFAS (e.g., a gradual phase-out of PFOS and PFOA) [44–46].
The UN Stockholm Convention on Persistent Organic Pollutants and EU registration, eval-
uation and authorization of chemicals (REACH) was established in the 2000s and remains
as a primary regulatory tool (for listed individual substances) [47]. In the latest amendment
by REACH (EU 2021/1297) the regulations were expanded to include long-chain (C9–C14)
PFCAs, their salts and related substances [48]. To date, there are, however, no regulations
on PFAS as a group/class of chemicals [47].

In the context of PFAS-AFFF, the European Chemicals Agency (ECHA) is aiming for an
EU-wide restriction on PFAS in firefighting foam [49]. However, identification and disposal
of the PFAS-AFFF, as well as a safe transition and replacement, are yet be addressed [50].
On the other hand, as in relation to the public health and risks of human exposure to PFAS,
a revision of the acceptable level in water can be a strong factor, e.g., the EU drinking water
directive (EU 2020/2184) limiting the drinking water levels to 100 ng L−1 (PFAS 10) and
500 ng L−1 (PFAS total) [51]. In Sweden, an additional limit has been set to 4 ng L−1 for
PFOS, PFOA, PFHxS, and PFNA [51,52]. Ultimately, work regulating PFAS is an ongoing
process that evolves with an increase in knowledge, as well as in public awareness. Both
regulatory actions and an actual practical implementation are challenging and demanding
tasks that require international efforts.

4. Conclusions

PFAS emission at the studied site was connected to PFAS-AFFF application during fire-
training and fire-fighting equipment tests. The groundwater contamination was studied
and PFAS contamination levels were established. Measured ΣPFAS concentrations in
groundwater ranged between 20 and 20,000 ng L−1. The PFAS composition in analyzed
samples was dominated by PFOS and PFHxS. The PFAS chain length is suggested to have
an impact on the distribution and transport of groundwater. Based on PFAS profiling,
PFAS contamination of groundwater was primarily connected to the application of PFSA-
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based and PFCA-/FTSA-based PFAS-AFFF. AFFF utilization and PFAS release scenarios
were studied, and PFAS emissions per individual fire-training session were estimated as
[1.4 < 11.5 ± 5.7 < 43.7 kg] (n = 20,000). The PFAS annual emissions were estimated as
[11 < 401 ± 233 < 1125 kg yr−1] (n = 1005, corresponding to [2 < 35 ± 20 < 96] individual
fire-training sessions per year). Further investigation is necessary regarding the PFAS-AFFF
formulations and application routine. Distribution of PFAS in the aquatic environment
is associated with transport in surface runoff, vertical advective-diffusive transport in
unsaturated soil, advective transport with groundwater, and further distribution with
raw water extraction. Further investigation is necessary for the assessment of the PFAS
transport conditions.

Supplementary Materials: The following supporting information (in supplementary materials)
can be downloaded at: https://www.mdpi.com/article/10.3390/w15010137/s1, Figure S1: study
area description, including: airfield territory, PFAS emission sources, surface water bodies and
groundwater extraction locations; Figure S2: topography of the studied area, including: airfield
territory, surface water bodies, PFAS emission sources and spread area; Figure S3: description of the
soil layer depth at the studied area, including: airfield territory, PFAS emission sources and spread
area, surface water bodies and groundwater extraction locations; Figure S4: hydrogeology of the
studied area, including: airfield territory, PFAS emission sources and spread area, surface water bodies
and groundwater extraction locations, groundwater confinement and capacities; Figure S5: bedrock
lithology at the studied area, including: airfield territory, PFAS emission sources and surface water
bodies; Figure S6: photo of the POCIS prior to deployment into the groundwater well; Table S1: PFAS
concentrations measured in triplicate groundwater samples collected from groundwater extraction
wells corresponding to GW1, GW3 and GW4; Table S2: PFAS detected in POCIS and corresponding
PFAS concentrations estimated for groundwater measured at GW3 and GW1; Table S3: example of
analyzed PFAS compositions corresponding to PFAS-AFFF reported for US market and measured
PFAS concentrations and relative composition in PFAS-AFFF reported for on Swedish market.
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Abstract: A considerable number of lakes in Sweden have high phosphorus internal loading from
the sediments which cause cyanobacterial blooms every summer. Due to potential risks with such
blooms for human health, drinking water supply, and ecosystem services, measures need to be taken
to control the phosphorus content. Measures to control the phosphorus input from the surrounding
land has been in focus. However, the measures have not been sufficient. This is because phosphorus
deposited at the bottom of the lakes for many years are finally starting to leak to the water phase
when the decomposition of sediments leads to anoxic conditions. In order to determine effective
and efficient lake restoration measures, methods for lake restoration decision support by a multi-
criteria analysis and the application of a decision analysis are developed. The multi-criteria analysis
includes the determination of costs, longevity, and efficacy of six common lake restoration measures
to reduce internal phosphorous loads in two lakes selected as a case study. The results show that
aluminum treatment combines a highest efficacy with a high-cost efficiency being thus the optimal
identified measure. The method involves adding an aluminum solution to the lakes’ sediment,
which binds phosphorus, preventing it to be released to the water column. The multi-criteria model
is integrated to a decision analytical model. The decision analytical model is used to identify the
monetary socio-economic and environmental boundaries for the implementation of the optimal lake
restoration measure.

Keywords: Bayesian decision analytical model; lake restoration; aluminum treatment; internal
phosphorus load

1. Introduction

In European water policy, the Water Framework Directive (WFD) aims to improve
the chemical and ecological quality of European surface waters to achieve good ecological
status in all rivers, lakes, coastal, and transitional waters [1]. Currently, more than half of
European water bodies are in a degraded condition, and nutrient enrichment [2] is one of
the main problems [3]. Eutrophication in lakes often leads to a negative loop, where high
levels of phosphorus (P) in the water lead to excessive phytoplankton growth. When the
phytoplankton die and fall to the bottom, they are decomposed which requires oxygen
which leads to low oxygen levels of the bottom water of the lake. Low oxygen levels in
turn releases P from the bottom sediment and makes it available to the phytoplankton. In
this way, P added to a lake years ago can cause eutrophication today. This phenomenon is
called internal loading [4], and it is a common problem in lake restoration projects when
preventing nutrients from land from entering a lake will not be enough to prevent blooms
of phytoplankton.
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Phosphorus (P) can be released from sediments via several processes. If there is oxygen
in the bottom water, P is strongly bound to metals in the sediment, such as iron, aluminum,
and calcium. These complexes are difficult to dissolve and make the P unavailable to
phytoplankton and other plants, and it does not contribute to eutrophication [5]. However,
changes in oxygen and pH can dissolve complexes, making the P bioavailable by diffusion
from the sediment to the overlying water column [6]. For example, the binding of P to
iron (Fe), is sensitive to low oxygen conditions which lead to a decrease in the reduction-
oxidation (redox) potential at the sediment-water interface, causing release of Fe bound P
(PFe) from the sediment to the water column via the reduction in ferric Fe (Fe III) to water
soluble ferrous Fe (Fe II) [7]. P release from sediment is also affected by pH because the
solubility of Fe and Al increases at both low and high pH, whereas the solubility of calcium
(Ca) bound P (PCa) decreases at low pH [8]. Elevated P release from Fe and Al complexes
during high pH conditions has been observed in several studies [8,9], which is generally
caused by excessive photosynthetic activity/phytoplankton growth, which increases the
pH by fixation of carbon dioxide during photosynthesis [9].

Many efforts have been done for lake management, such as assessment of external
and internal nutrient loading [10], identifying and analyzing existing lake management
strategies [11], and lake restoration approaches [12].

There are mainly two ways of reducing P loading, either through removing the P
from the lake or lake sediment or through stabilizing P in the sediments. The most studied
methods for such lake restoration are aluminum treatment, Phoslock, oxygenation, mixing
of the water, dredging, and reduction fishing. Each method with different success rate,
longevity, and costs [13,14]. Aluminum treatment, Phoslock, oxygenation, and mixing aim
to bind P in the sediments. Dredging and reduction fishing physically remove P [14].

Stora and Lilla Ullfjärden are two lakes situated close upstream to Lake Mälaren, the
third largest freshwater lake in Sweden. High P concentrations have been a problem for a
long time in this lake system, and it causes phytoplankton blooms every summer. Due to
large volumes of toxin-producing cyanobacteria in Lakes Stora and Lilla Ullfjärden, they
pose great potential threats downstream in Lake Mälaren, which is used for drinking water
for approximately 2 million people [15].

Until now, the external phosphorus load has been reduced by minimizing known
sources of P leakage from land, e.g., by better manure management and fields fallowed only
during growth season in summer [16,17]. Despite these measures, the P concentration in
the lakes remains high due to internal loading of P. The costs for removing P from the lakes
are high and local authorities have been hesitating for many years to use such methods
to improve status of the lakes more drastically. So far, no standards are available for local
decision makers to determine which lake restoration measures to implement in lakes with
internal loading of P.

Based on the outlined challenges, this paper aims to develop methods, and to advance
scientific understanding for lake restoration decision support by the performance of a multi-
criteria analysis and the application of a decision analysis. Both is exemplified through a
case study. The multi-criteria analysis encompasses costs, longevity, and efficacy of six lake
restoration measures determined by a meta-analysis. Additionally, it is examined whether
the cost of the selected treatment can be justified by highlighting the economic values of
the lakes. The ecosystem services of the lakes are identified, and each service is assigned
an estimated economic value. A Bayesian decision analytical model is used to determine
the optimal lake restoration measure and the monetary socio-economic and environmental
boundaries for implementation.

This is, to the knowledge of the authors, the first application of a using multi-criteria
model integrated to a decision analytical model for water resources management. The
study gives answers to the questions: (i) What is the most suitable lake restoration measure
to reduce the internal loading in a specific case regarding costs, longevity, and efficacy?
(ii) Can the cost of the selected treatment be justified by highlighting the economic values
of the lakes?
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2. Materials and Method

2.1. Case Study
2.1.1. Lakes Stora and Lilla Ullfjärden

The two lakes belong to the innermost part of the large, multi-basin Lake Mälaren and
are separated by narrow passages, partly from each other, partly from the next basin which
eventually empties into the Baltic Sea, with the outlet in central Stockholm, Sweden. Stora
and Lilla Ullfjärden can be considered independent lakes, instead of coves to Lake Mälaren,
Figure 1. Lilla Ullfjärden is one of the deepest lakes in the multi basin Lake Mälaren system
with a maximum depth of 53 m and mean depth of 22 m. The lake area is 1.88 km2 and the
drainage area 8.51 km2, dominated by forest (69%), and only a small area of farmland and
urban area. Stora Ullfjärden has a maximum depth of 27 m and a mean depth of 15.2 m. The
lake area is 2.8 km2 and the drainage area 48 km2 including the upstream Lilla Ullfjärden.
Farmland are dominating (39%) followed by forest (36%), farmland (10%) and urban areas
(5%) [16,17]. Both lakes are dimictic and usually covered by ice and snow during winter.
The lakes are interesting in many respects. First, the lakes and their surroundings have a
high nature value with a nature reserve at the lake shore, the Uppland hiking trail passing
by, a public bathing area, and possibilities of fishing. Second, Stora Ullfjärden is home to a
highly threatened underwater plant, and the deep Lilla Ullfjärden harbors glacial relicts,
i.e., cold-water species that have been trapped and remained here since the ice age [18].

(a) (b) (c)

Figure 1. (a) Overview map showing the location of the lakes, shared by Stockholm County
and Uppsala County, Sweden © Lantmäteriet; (b) Lilla Ullfjärden is an innermost cove of Lake
Mälaren entering Stora Ullfjärden which empties into the next basin of Lake Mälaren © Lantmäteriet;
(c) Satellite image from 31 August 2021 showing dark waters north of Stora Ullfjärden, Stora Ullfjär-
den with some cyanobacterial bloom, and Lilla Ullfjärden with a strong bloom. Original images: ESA
Copernicus Sentinel Data, Syke [19].

2.1.2. Need for Lake Restauration

According to the EU Water Framework Directive (WFD), good ecological status must
apply in all lakes [20]. The ecological status based on total P of Stora Ullfjärden is bad
(51 μg P/L), and in Lilla Ullfjärden poor (59 μg P/L) which means that measures need to
be done to reduce the concentration to around 9 μg P/L, which is a P-level that corresponds
to good ecological status based on phytoplankton [5,6,21] and will reduce the problems
with cyanobacterial blooms.
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2.2. Multi-Criteria Analysis of Lake Restoration Measures
2.2.1. Cost, Longevity and Efficacy

A meta-analysis comprising costs, longevity, and efficacy was performed for the six
well-studied measures to reduce internal phosphorous loading. Input data for the analysis
can be found in Appendix A, which is based on a literature review. Many references are
retrieved from the report Internal load of phosphorus in Swedish lakes [13], but several
references were added or removed if they were not considered relevant, such as all lakes
with a lake surface area of less than 10 hectares. Included in the analysis are both results
from completed studies and estimated results from planned measures.

To compare costs based on studies conducted in different years, inflation informa-
tion was used to recalculate the cost to a corresponding monetary value in 2021. In
cases where cost-information came from a study abroad, the cost was first recalculated to
Swedish currency (SEK) using the exchange rate that prevailed in the year the measurement
was conducted.

2.2.2. Cost in Long Term

Lake restauration measures have different longevity and thus costs over a considered
period accumulate according to inflation and discounting rates. To illustrate this, the total
cost was calculated for three different time horizons, 5, 10, and 50 years. A measure that
is implemented far in the future will have a lower cost due to discounting. The discount
rate used was 1.0225 determined with a discount rate for a public decision maker and the
current inflation developments [22].

Since the aluminum treatment has an average longevity of 12 years (Table A1, Appendix A)
the cost after 5 and 10 years will be the same as after 1 year, Equation (1). For reduction
fishing, with an average longevity of 3 years, the start-up cost will have to be paid twice in
5 years (start year and third year), Equation (2), and 4 times in 10 years (start year, third
year, sixth year, and ninth year), Equation (3). For oxygenation and mixing an operating
cost is also added each year. For oxygenation with a longevity of 20 years, the start-up cost
will have to be paid three times in 50 years (start year, 20th year and 40th year), and the
operating cost is paid every year during the 50 years, Equation (4).

Total cost 5 years, Aluminum treatment (longevity 12 years):

Total cost = startup cost (1)

Total cost 5 years, Reduction fishing (longevity 3 years):
Total cost = startup cost + (startup cost/1.02253)

(2)

Total cost 10 years, Reduction fishing (longevity 3 years):
Total cost = startup cost + (startup cost/1.02253) + (startup cost/1.02256) + (startup cost/1.02259)

(3)

Total cost 50 years, Oxygenation (longevity 20 years):
Total cost = startup cost + (startup cost/1.022520) + (startup cost/1.022540) + (operating cost × 50/1.022550)

(4)

2.3. Decision Analysis of Lake Restoration Measures
2.3.1. Bayesian Decision Analysis

Bayesian decision analysis constitutes a comprehensive methodology for decision
support when the outcomes cannot be predicted with certainty [23]. A recent research effort
constitutes connecting the decision theory to environmental impact quantification [24].
Rational decisions are about choosing the option that provides the maximum expected
utility or the minimal risk according to the expected utility theorem [25]. In this study,
Bayesian decision analysis is based on a risk analysis. Each system state is assigned a
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probability of occurrence and consequences. Risks are calculated as the product of the
probability and the consequences:

R(A) = P(A) × c(A) (5)

R is the total risk of system state A, P is the probability that system state A occurs, and
c is the expected consequences of system state A. The system state can be modified, in our
case with lake restoration measures, ri. The measures will influence the probability of the
system state, i.e., P(A|ri) , and will have costs c(ri). The total risks and cost for the measure
ri are then calculated with Equation (6):

R(A|r i) = P(A|r i)× c(A) + c(ri) (6)

The objective function to determine a decision about a restorative measure is then
the minimization of the expected value (operator E) of the costs and consequences overall
system states Aj according to the expected utility theorem, Equation (7). The type of
decision analysis is called a prior decision analysis.

RPrior = min
ri

EAj

[
c
(
Aj, ri

)]
(7)

2.3.2. Probability of Good Ecological Water Status

The probability of good water status in a lake after aluminum treatment is based on
a previous project in Lake Växjö, in the south of Sweden [26]. Lake Växjö was treated
with aluminum in May to August 2018. Before the lake was treated, reduction fishing
was conducted in the lake to stimulate the establishment of underwater vegetation and
improve the possibilities of achieving the intended effect with the aluminum treatment [26].
The target value for good water status in Lake Växjö regarding total phosphorus was
15.2 μg/L [27]. The probabilities of achieving good water status in Stora and Lilla Ullfjärden
were calculated based on the outcome of the aluminum treatment of Lake Växjö assuring
similar success rate (Figure 2). The probability of good ecological water status before
measure is 4%, and 92% after aluminum treatment.

Figure 2. Total phosphorus concentration in Lake Växjö before measures (year 2010–2015), after
reduction fishing (year 2015–May 2018) and after aluminum treatment (May 2018–2020) [28]. The red
dashed line indicates the limit of good status (15.2 μg/L) in the lake with respect to total phosphorus.

2.3.3. Economic Value of the Lakes

Ecosystem services may be valued economically, not least for activation of resources
in society [29]. Listing the services of the specific lakes gives an overview of many aspects

113



Water 2023, 15, 668

that contribute to the value of lakes [30], which is performed based on studies from the
same region of Sweden. The various ecosystem services contributions by lakes have an
economic value that is either comprehensive (has a market value), can be valued (by using
estimates and assumptions), or is not comprehensive (has no market value). In this way, all
aspects and attributes surrounding the lakes can be highlighted [30].

2.3.4. Socio-Economic Profitability Assessment of Aluminum Treatment

Restoration of lakes is costly. However, a lake that does not attain good water status
also imply consequences and costs. Examples of a bad status are, e.g., increased costs
for an adjacent drinking water treatment plant, there may be increased costs for bathing
sites located at the lake or reduced value for nearby houses, etc. Since it is difficult
to calculate the cost of not having a good ecological status, this study examines what
economic consequences need to be surpassed to justify a measure. If the cost of the measure
cannot justify the benefit that the measure implies, it is not socio-economic profitable for the
measure to be conducted. These consequences are determined with the Bayesian decision
analysis. Since there is no value for the cost if good status is not achieved (cost not good
status), the Bayesian decision analysis can be used to determine the minimum consequences
of a not good lake status to compensate for the costs of the measure.

3. Results

3.1. Multi-Criteria Analysis of Lake Restoration Measures
3.1.1. Cost, Longevity and Efficacy

A summary of the scientific literature-based data in Appendix A is presented in Table 1
and shows the average value for start-up cost, operating cost, longevity, and efficacy for six
lake restauration measures focusing on reducing internal phosphorus loading. For more
details and the literature sources, please see Appendix A.

Table 1. Average value for start-up cost, operating cost, longevity, and efficacy for the six lake
restauration measures to decrease internal phosphorous loading. For the start-up and operating cost,
the cost is recalculated to a cost valid in 2021 using an inflation calculator [31].

Measures: Start-Up Cost Operating Cost Longevity Efficacy

[SEK/hectare] [SEK/year/hectare] [years] [%]
Al. treatment: 43,300 - 12 90

Phoslock: 139,200 - 30 1 60
Oxygenation: 58,900 3700 20 2 40

Mixing: 13,600 700 20 3 0
Dredging: 185,800 - 2.5 25

Reduction fishing: 36,700 - 3 5

Notes: 1 As the binding capacity does not decrease with time [32] a service life of 30 years is estimated. 2 This is
the expected longevity of the pump aggregate to provide oxygen (air), which is expected to be 20 years [13]. 3 Just
as for oxygenation, the longevity is assumed to be the expected longevity of the aggregate, which is estimated to
20 years.

3.1.2. Cost in Long Term

Lake restauration measures have different longevity and thus costs accumulate accord-
ing to inflation and discounting rates over the periods of 5, 10, and 50 years. A measure
that is implemented far in the future will have a lower cost due to discounting. In Table 2
the cost of each lake restauration measure of the considered periods are documented.

From Table 2 it is understood that dredging is by far the most expensive option
regardless of time horizon. Mixing remains the least expensive option regardless of time
horizon followed by aluminum treatment as the second least expensive option.
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Table 2. Cost of each lake restauration measure depending on time, based on start-up cost, operating
cost, and longevity. A discounting rate of 2.25% have been used.

Measures: Cost 5 Years Cost 10 Years Cost 50 Years

[SEK/hectare] [SEK/hectare] [SEK/hectare]
Al. treatment: 43,300 43,300 136,200

Phoslock: 139,200 139,200 210,600
Oxygenation: 149,100 162,100 332,600

Mixing: 16,700 19,200 39,400
Dredging: 361,500 690,000 2,305,000

Reduction fishing: 71,000 133,200 385,600

3.1.3. Cost-Effectiveness Comparison

To make a cost-effective comparison of the lake restauration measures, a simplified
multi-criteria analysis is performed. In Table 3 a ranking (0 to 5) for the efficacy and the
costs of a period of 50 years is introduced and the ranks are added.

Table 3. Results of the multi-criteria analysis for possible lake restoration measures to reduce internal
phosphorous loading. By efficacy is meant reduction of internal load, making the option with the
highest efficacy to receive the rank 5 and the lowest the rank 0, based on Table 1. For the category
cost 50 years, a low cost is preferred, making the option with the lowest cost to receive a 5 and the
highest cost a 0, based on Table 3. A high total score is desirable.

Measures: Efficacy Cost 50 Years Total

Aluminum treatment: 5 4 9
Phoslock: 4 3 7

Mixing: 0 5 5
Oxygenation: 3 1 4

Reduction fishing: 1 2 3
Dredging: 2 0 2

Aluminum treatment scores the highest in the multi-criteria analysis. This is because
it is the method that most effectively reduces the internal phosphorus load and is also the
second least expensive method in the long term.

3.2. Decision Analysis of Lake Restoration Measures
3.2.1. Economic Value of the Lakes

To estimate the value of the lakes Stora and Lilla Ullfjärden, all services that contribute
to the value are examined and listed in Table 4.

Table 4. Summary of all services contributing to the value of Stora and Lilla Ullfjärden.

Services: Relevance

Surface water of good quality: Drinking water production downstream.

Capture nutrients and pollutants:
Bottom sediments act as settling basins for
nutrients, metals, and Polycyclic Aromatic

Hydrocarbons (PAHs).
Tourism: Shop at the bathing site Ekillabadet.

Bathing site: Ekillabadet, public bathing site.
Fishing: Extensive recreational fishing in the lakes.
Boat life: Boat club in Lilla Ullfjärden.

Lake view for nearby houses: Increased property value.
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Table 4. Cont.

Services: Relevance

National nature value:

Particularly valuable species occur in the lakes,
such as the underwater plant Baltic water-plantain
(Alisma wahlenbergii), several species of glacial

relicts (Crustacea), and red-listed fish species.

Recreation values: Lake shore with two Natura 2000 areas next to the
lakes. The Uppsala trail passes through the area.

Aesthetic values: The lakes contribute to emotional well-being.

Scientific values:
The lakes have been the subject of limnological and
hydrological research for more than a century (but

are more sparingly investigated since the 70s).

Establishment of the WFD:

It states that lakes, watercourses, and coastal
waters must reach good ecological and good

chemical surface water status. The current water
status must not deteriorate in any respect.

In Table 5, each service is qualitatively assigned an expected value. In this way, all
aspects and attributes surrounding the lakes can be highlighted. Table 5 shows that the
majority of the services do not comprehensibly influence the financial value of Stora and
Lilla Ullfjärden.

Table 5. Summary of qualitative expected values for the services of Stora and Lilla Ullfjärden.

Services: Value 1
Reduced Value if

Good Status Is Not
Achieved 2

Valuing
Possibility

Surface water of good quality: High Minor
ComprehensibleCapture nutrients and pollutants: High High

Tourism: Minor Middle

Bathing site: Middle Middle

Can be valued
Fishing: Minor Middle

Boat life: Minor Minor
Lake view for nearby houses: High Minor

National nature value: High Middle

Not
comprehensible

Recreation values: High Minor
Aesthetic values: High High
Scientific values: Middle Middle

Establishment of the WFD: High High

Notes: 1 The expected Value is presented on the qualitative scale: “High” (millions of SEK), “Middle” (hundred
thousand SEK), “Minor” (less than one hundred thousand SEK). 2 The expected Reduced value if good status is
not achieved is presented on the qualitative scale: “High” (75–100% reduced value), “Middle” (25–75% reduced
value), “Minor” (less than 25% reduced value).

3.2.2. Socio-Economic Profitability Assessment of Aluminum Treatment

With Bayesian decision analysis, it is possible to determine the economic consequences
of a not good lake status by weighting the total risks and expected costs against a good lake
status with restorative measures. Figure 3 illustrates finding the tipping point, when the
expected not good status consequences with and without the measure are balanced. The
balancing is achieved by reducing the probability of a not good status with the measure
according to its efficacy.

The inputs needed for the Bayesian decision model to calculate the cost of not achieving
good status are the probability of good status and measure cost (start-up cost + operating
cost). The lake restauration measure with the lowest total risk is chosen (Equation (7)),
which constitutes aluminum treatment, see also Section 3.1.3. The input to the analysis is
presented in Table 6.
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Figure 3. Illustration of the tipping point for when total risks and expected costs is the same for the
options “no action measure” and “aluminum treatment”.

Table 6. Input data in the Bayesian decision analysis. The cost for aluminum treatment has been
multiplied by 500 because the combined lake surface area of Lilla and Stora Ullfjärden is 500 hectares.

Probabilities and Costs:
Probability of Good

Ecological Water Status
Areal Cost

12 Years
Total Cost
12 Years

Unit: [%] [SEK/hectares] [SEK]
No measure: 4 0 0

Aluminum treatment: 92 43,300 21,650,000

Figure 4 shows how the input data (Table 6) is used in the Bayesian decision analysis
to determine the cost for a not good status, which result in the alternatives “no measure”
and “aluminum treatment” to have an equal risk. If the cost of a not good status increases
further than shown, aluminum treatment will be the option with the lowest risk.

Figure 4. Bayesian decision analysis where the alternative aluminum treatment is compared to the
alternative no measure. R

(
Aj |r i

)
is the total risk of system state Aj (good/not good status), for the

lake restoration measure ri (no measure or aluminum treatment), P is the probability and c is the
consequences (measure cost and cost good/not good status).

From Figure 4, it can be stated that if the cost not good status is higher than SEK
24.6 million over a 12-year period, the lakes should be treated with aluminum.

4. Discussion and Limitations

The measures presented in this study represent six well-studied measures to reduce
internal phosphorus loading. These measures will only have a long-term effect together
with continuous efforts to reduce the external phosphorus supply [14].

The six measures to reduce the internal phosphorus loading have different longevities.
The costs have been calculated, discounted and accumulated to total costs representative
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for different time spans. For 10 years, the aluminum method (with a longevity 12 years)
only needs to be conducted once, while reduction fishing (longevity 3 years) needs to
be conducted four times. Apart from mixing, which according to previous studies does
not show a reduction in internal load, the aluminum method is the least costly method,
on a 1, 5, 10, and 50 year horizon. It is also the measure that reduces the internal load
most effectively.

The probability of good ecological status after a measure is conducted, has been deter-
mined based on a previous lake restoration project in Lake Växjösjön, Sweden [26]. From
this project there are measurement data for the lake’s phosphorus levels before measures,
after reduction fishing, and after aluminum treatment. The fact that reduction fishing was
conducted before the aluminum treatment may affect the good status probability of the
aluminum treatment. Since reduction fishing did not have a high effect and a longevity
of only 3 years, it was concluded that the effect of reduction fishing before aluminum
treatment can be neglected.

The ecologic societal services of Stora and Lilla Ullfjärden are presented in Tables 4
and 5. The expected value of the services and the expected reduced value if good status is
not achieved are based on similar studies. Listing the lake’s services in this way is done to
give an overview of the various services a lake contributes, to give examples of how the
value of different services can be estimated and, above all, to highlight and emphasize the
importance of all the lake’s services, even services that do not have a market value.

With the help of the Bayesian decision analysis, it can be shown that the lakes should
be treated with aluminum if the consequences of poor water status is higher than SEK
24.6 million over a 12-year period. If this cost is compared with Table 5, which shows
expected reduced values for all of Stora and Lilla Ullfjärdens’ services if good status is not
achieved, the decision whether the lakes should be treated with aluminum treatment or
not can be supported. It should further be noted that the value of the lakes lies mainly in
services that do not have a direct monetary value, such as national nature value including
valuable species occurring in the lakes, recreational values, and aesthetic values. However,
if the status does not meet a good condition, then this intangible value reduction can be
very significant.

Regardless of which measure is chosen for the case study lakes, more site-specific
studies need to be conducted to dimension the measure and to confirm the behavior simi-
larities of Lake Växjösjön and the Stora and Lilla Ullfjärden lakes. If aluminum treatment is
chosen as a measure, sediment samples need to be taken to investigate which phosphorus
fractions are dominating in the sediments, as this affects what dose of aluminum is needed.
A dose that is too high can cause aluminum remaining in inorganic form, which is toxic
to plants and animals. However, a dose that is too low instead gives a too short-lived
result causing continuous summers of toxin-producing cyanobacteria, which it is also toxic
to plants and animals. Therefore, a long-term, adequate monitoring program, including
proper determination of external loading, is crucial to document the effect of aluminum
treatment on sediment phosphorus release and water quality in the lake [33].

We have some further limitations of the study. First, our reference data for the deter-
mination of the status probabilities are limited to one lake restoration project in a Swedish
lake. Different type of lakes might have other chemical and biological characteristics that
might influence the effect of treatment methods. Future work may include different types
of lakes. Second, we did not include the external loads effect and how they impact the total
phosphorus load and the water quality dynamics.

5. Summary and Conclusions

According to the WFD, good ecological surface water status must apply in all lakes [20].
However, this is not the case in Stora and Lilla Ullfjärden, two lakes close to Lake Mälaren,
which is of high value for the capital of Sweden and the surrounding areas. Several
measures have already been conducted in the lakes to reduce eutrophication. These
measures had the aim of reducing the external phosphorus load, i.e., the nutrient released
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from surrounding soil. Despite these measures, Stora and Lilla Ullfjärden still suffer
from phytoplankton blooms every year. Because the lakes have a long history of external
phosphorus loading, phosphorus has accumulated in the bottom sediments and causes
internal phosphorus loading. To reach the desired total phosphorus concentration in the
lakes, the internal phosphorus load must be decreased by further measures.

In order to determine effective and efficient lake restoration measures, methods for lake
restoration decision support by a multi-criteria analysis and the application of a decision
analysis are developed and exemplified with a case study. The multi-criteria analysis
is developed to determine costs, longevity, and efficacy of six common lake restoration
measures to reduce internal phosphorous loads. The multi-criteria model is integrated to a
Bayesian decision analytical model. The decision analytical model is used to determine the
optimal lake restoration measure and boundaries for measure implementation.

From the study it can be concluded that aluminum treatment is the most reasonable
choice to reduce the internal load in the case study lakes Lilla and Stora Ullfjärden. This
well-studied method effectively reduces the internal load of phosphorus, and the method
is also cost-effective both in the short and long term compared to other measures. However,
more site-specific studies are required for dose determination and transferability of measure
characteristic underlying this study.

Aluminum treating both lakes, which have a total lake surface area of 500 hectares,
is estimated to cost around SEK 21.7 million. However, not achieving good ecological
status in the lakes may have monetary consequences and may touch intangible nature
values (as discussed). The lakes have a high nature value and contribute to many cultural
ecosystem services, such as bathing, fishing, and recreation. With the help of Bayesian
decision analysis, a lower boundary value for these socio-economic consequences in the
Stora and Lilla Ullfjärden lakes has been established, namely 24.6 million SEK aggregated
over a 12-year period.

Future research efforts can be directed towards accounting for measurements to
support the restoration measure implementation, which would specifically address the
dose determination for aluminum treatment. The performed multi criteria and the decision
analyses may also form the basis for the development of a decision support tool in the
DiCyano project (funded by VINNOVA).
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Appendix A

Table A1. Aluminum treatment: background data for the multi-criteria analysis.

Source Lake Lake Type Method
Treatment

Year
Treated

Area
Start-Up

Cost
Start-Up

Cost

Reduced
Internal
Loading

Longevity

[Year] [Hectare] [SEK] [SEK/Hectare] [%] [Year]

[34] Långsjön Shallow Sediment injection 2006 29 3,530,756 121,750 90 >9
[34] Flaten Deep Sediment injection 2000 40 3,212,260 80,307 95 >15

[35] Calhoun Deep Hypolimnetic water
application 2001 130 1,833,000 14,057 100 >14

[36] Harriet Deep Hypolimnetic water
application 2001 47 1,034,687 22,015 85 5

[35] Cedar Deep Hypolimnetic water
application 1996 60 1,657,000 27,849 95 13

[13] Spring Deep Hypolimnetic water
application 2014 39 3,907,000 23,679 >1

[13] Long Deep Hypolimnetic water
application 2009 102 1,360,000 61,818 >6

[13] Medical
Lake Deep Hypolimnetic water

application 1977 122 934,000 14,594 >40

[13] McCarron Deep Hypolimnetic water
application 2005 77 680,000 30,909 >10

[13] Bryant Deep Hypolimnetic water
application 2008 74 2,120,000 29,444 >7

[37] Hjälmaren Deep Hypolimnetic water
application 20,000 615,000,000 30,750 100

[26] Växjösjön Deep
Hypolimnetic water

application
and sediment injection

2018 65 5,400,000 69,948 60

[38] S.Bergundasjön Shallow
Hypolimnetic water

application
and sediment injection

2019 310 15,500,000 35,880

Average value aluminum
treatment:

43,300
(±31,500)

90
(±14)

>12

Table A2. Phoslock: background data for the multi-criteria analysis.

Source Lake Lake Type
Treatment

Year
Treated

Area
Start-Up

Cost
Start-Up

Cost

Reduced
Internal
Loading

Longevity

[Year] [Hectare] [SEK] [SEK/Hectare] [%] [Year]

[39] Lake
Rauwbraken Shallow 2008 4 517,170 129,292.5

[39] Lake De Kuil Shallow 2009 7 1,461,999 208,857

[13]
The average cost

of some small
lakes

2013 79,565

[13] Summary,
Table 10B 30–90

Average value Phoslock:
139,200
(±6500)

60
(±30)

30 *

Note: * Because the binding capacity does not decrease with time [32] a longevity of 30 years is estimated.
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Table A3. Oxygenation: background data for the multi-criteria analysis.

Source Lake
Treatment

Year
Treated

Area
Start-Up

Cost
Start-Up

Cost
Operating

Cost
Operating

Cost

Reduced
Internal
Loading

Longevity

[Year] [Hectare] [SEK] [SEK/Hectare] [SEK/Year] [SEK/Year/Hectare] [%] [Year]

[13] Pine Lake 1981 36 765,278 21,258 297,608 8267

[40] San Vincent
Reservoir 1975 405 7,834,985 19,346 607,211 1499

[13] Average
15 lakes 2001 113 20,156,230 178,374 1,004,491 8889

[41]
Stubbs Bay

(Lake
Minnetonka)

2004 81 4,336,573 53,538 340,123 4199

[13] Tegel 2002 400 32,916,685 82,292 565,759 1414

[13] JC Boyle
Reservoir 2009 170 3,188,657 18,757 398,582 2345

[13] Marston
Reservoir 2009 251 19,929,104 79,399 117,343 468

[13] Bear Creek
Lake 2002 45 2,994,680 66,548 261,925 5821

[42] Cherry Creek
Reservoir 2002 342 3,492,338 10,212 88,182 258

[13] Summary,
Table 10B 30–50 20 *

Average value
oxygenation:

58,900
(±52,800)

3684
(±3300)

40
(±10)

20 *

Note: * The expected lifetime of the aggregate [13].

Table A4. Mixing: background data for the multi-criteria analysis.

Source Lake Lake Type
Treatment

Year
Treated

Area
Start-Up

Cost
Start-Up

Cost
Operating

Cost
Operating

Cost

Reduced
Internal
Loading

Longevity

[Year] [Hectare] [SEK]
[SEK/

Hectare]
[SEK/Year] [SEK/Year/Hectare] [%] [Year]

[43] Iskmosunden Shallow 2014 30 332,857 11,095 11,095 370
[44,45] Jordan Lake Water tank 2014 4636 10,856,617 2342 6,263,433 1351 0

[44] Lake
Houston Water tank 2006 243 6,680,995 27,494 82,054 338 0

Average value
mixing:

13,644
(±12,800)

686
(±580)

0 20 *

Note: * The expected lifetime of the aggregate [13].

Table A5. Dredging: background data for the multi-criteria analysis.

Source Lake Lake Type
Treatment

Year
Treated Area

Start-Up
Cost

Start-Up
Cost

Reduced
Internal
Loading

Longevity

[Year] [Hectare] [SEK] [SEK/Hectare] [%] [Year]

[46] Finjasjön Shallow 1991 111 95,985,075 864,730 0
[26] Trummen Shallow 1970 99 21,346,647 215,623 0
[26] Växjösjön Deep 1990 87 45,037,065 517,667 0
[26] South Bergundasjön Shallow 1992 430 50,514,179 117,475 0
[47] Lillsesjön alt. 1 2014 55 5,422,886 98,598
[13] Clear Lake Shallow 2009 1468 79,716,418 54,303
[13] Half Moon Lake 1991 53,4 256,159 4797
[13] Lilly Lake 1991 35,6 366,374 10,291
[13] Lenox Lake 1991 13,4 400,959 29,922
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Table A5. Cont.

Source Lake Lake Type
Treatment

Year
Treated Area

Start-Up
Cost

Start-Up
Cost

Reduced
Internal
Loading

Longevity

[13] Nutting Lake 1991 31,6 1,337,916 42,339
[13] Collins Park Lake 1991 24,3 2,137,369 87,958

[13] Summary,
Table 10B 0–50

[48] Dongqian Lake,
China 2

[49] Lake Taihu, China 3

Average value dredging:
185,791

(±268,000)
25 2.5

Table A6. Reduction fishing: background data for the multi-criteria analysis.

Source Lake
Treatment

Year
Treated Area

Start-Up
Cost

Start-Up
Cost

Reduced
Internal
Loading

Longevity

[Year] [Hectare] [SEK] [SEK/Hectare] [%] [Year]

[50] Östhammarfjärden 2011 121.6 1,915,876 15,756
[51] Borringesjön 295 1,409,950 4779
[51] Yddingesjön 213 1,030,348 4837
[51] Havgårdsjön 57 292,836 5137
[46] Finjasjön 1993 111 11,192,836 100,836
[52] Ringsjön 2005 39,5 6,766,026 171,292
[53] Växjösjön 2013 79 5,979,626 75,691
[53] Trummen 2013 76 2,184,338 28,741
[13] Ryssbysjön 2010 6152

[13] Average of four
lakes 1989 263 2,375,224 9018

[13] Nokomis 2014 81 964,189 11,904
[13] Nokomis 2010 81 477,008 5889

[13] Summary,
Table 10B 0–10 2–5

Average value reduction
fishing:

36,669
(±52,700)

5 3
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Abstract: Wind is generally considered an important factor driving the transport and mixing pro-
cesses in stratified enclosed systems such as lakes and reservoirs. Lake Abashiri is one of the instances
of such a system. For these systems, typically, the temporally unsteady but spatially uniform nature
of wind has been assumed for simplicity. However, the spatial non-uniformity of wind could signif-
icantly alter compound hydrodynamic responses. In this study, such responses were investigated
under the continuous imposition of different inhomogeneous wind conditions by applying numerical
models and integrated analysis. The resultant tracer transport in both uniform and non-uniform
wind cases was insignificant for the total study period of 9 days. However, under the short interval of
Ti, where Ti is the internal fundamental period, different behaviors of both surface particle transport
and the internal wave field were identified. Particularly, surface mass transport responses to higher
spatial wind variance were obviously different from those in the uniform case. In addition, internal
wave spectra under strong wind magnitude, which has low spatial variances, became identical to
that of uniform wind; however, there were some discrepancies in the non-uniform case in the wave
spectra under the influence of weak-to-moderate wind of high spatial variances. The results could
provide an in-depth understanding of the lake’s hydrodynamic response to inhomogeneous wind
which could improve water management in lakes and reservoirs.

Keywords: stratified lake hydrodynamics; inhomogeneous wind quantification; numerical simulation

1. Introduction

Water quality in lakes and reservoirs has implications for its beneficial applications,
such as fisheries’ management, water supply quality, phytoplankton population, and con-
trol of the manganese level [1–3]. Such conditions are controlled by both nutrient loadings
and physical factors such as mixing, and transport processes driven by winds [4]. As a
major source of energy in lakes, coastal waters, and some estuaries, wind forcing plays
an important role in the formulation of lake mixing, circulation, and internal seiche exci-
tation [5–7]. Wind blowing over a lake rapidly distributes its momentum to water and
consequently induces surface current and transport of floating objects such as phytoplank-
ton along the wind direction. In addition, turbulent mixing induced by wind can affect the
structure of the stratification, leading to changes in hydrodynamics and, in turn, species
composition, proliferation of toxic algae, and dwindling of drinking water supplies [8,9].

Information on wind-induced transport, mixing, and internal waves is typically ex-
plained by numerical approaches, whereby the source of wind input is frequently retrieved
from a point-based stationary wind field to spatially represent the phenomenon [5,7,10,11].
However, such an assumption is often oversimplified, although its dependency on the
surrounding orography is crucial, resulting in a lack of spatial representation of the inhomo-
geneity of actual meteorological conditions [12]. Moreover, spatial wind fields often vary
across large lakes due to pressure gradients over the water surface [13], and across small
lakes due to sheltering effects [14,15]. Consequently, wind-induced lake hydrodynamics
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are insufficiently explained with the inaccurate surface boundary condition. Therefore,
the coupling effects of the horizontally non-uniform wind and the real bathymetry of the
concerned study sites are needed to realistically simulate the phenomena [16,17]. This
could be achieved through a stand-alone uncoupled hydrodynamic model interacting
with spatially interpolated wind [18,19], climate products [20], and numerical downscaling
methods [12,21].

Generating the spatial variability of wind either by observation or by numerical simu-
lation illustrated improvements in hydrodynamic simulations that were underpinned in a
number of studies. For example, the simulation in Lake Kinneret in Israel improved the
wave amplitudes and reduced the overall phase error after the spatially inhomogeneous
wind stress was appropriately estimated [22]. The flow structure in Lake Belau changed
drastically under the induction of spatial variation in the wind [23]. In Lake Ledro, TKE and
its dissipation rate were reduced because of the representation of spatially inhomogeneous
wind, as they are sensitive to the wind intensity [14]. The assumption of wind uniformity
may often fail to reproduce the natural circulation condition and its characteristics in
Spermberg Reservoir [24]. The spatial variations in the wind field separated the natural
internal seiche excitation into different modes, as well as acting as a controller for higher
horizontal modes in Lake Iseo [15]. Furthermore, the spatial variations in wind-generated
wind curl, formulating seasonal regimes of Ekman layers resulting from the accumulation
of particulate organic matter (POM) at the Tokyo Bay head, are driven by the pumping
velocity [25]. Normally, comparisons of the response of lake hydrodynamics to spatial
uniform and non-uniform wind fields are done with visualization, without being quanti-
fied. Quantification of these phenomena based on wind inhomogeneity levels is therefore
necessary to elucidate their in-depth features.

To understand the complicated response of hydrodynamics to spatial and temporal
variations in wind, meteorological wind-induced lake hydrodynamics were numerically
simulated in Lake Abashiri from 21 November to 29 November 2011. To the best of our
knowledge, this study is the first to quantify the interactions between spatial variations
in wind forcing and lake hydrodynamics in Lake Abashiri. Therefore, under different
spatial and temporal wind conditions, there are three main objectives in this study: (1) to
quantify and understand the effects of wind forcing on surface mass transport and water
current; (2) to quantify the effects of wind forcing on tracer movement; and (3) to estimate
the potential mixing and to quantify the effects of wind forcing on internal seiches. The
overall aim is to elucidate and quantify the differences in lake hydrodynamics between
spatially uniform and spatially non-uniform wind.

2. Materials and Methods

2.1. Site Background

Lake Abashiri in Hokkaido (Figure 1a) is a small lake with a surface area of 32.87 km2,
a shoreline of 42 km, a maximum depth of 16.1 m, a mean depth of 7.2 m, and an altitude
of 0.4 m. Lake Abashiri connects Abashiri River at the southernmost part of the catchment
area and estuary at the northeast end (Figure 1b). Seawater frequently flows backward from
the sea to the Abashiri River, so that the lake is stratified mainly with salinity. Lake Abashiri
is an example of a highly stratified system linked by upstream freshwater intrusion and
downstream seawater intrusion. This complex system forms a strong halocline, distinguish-
ing the lake’s layers. The lower layer of saline water is deoxidized up to <0.1%Sat due to a
long residence time [26]. The lake provides important recreational activities, such as fishing
and sports, throughout the season. However, eutrophication has recently become a concern
due to the nutrient loading [27]. Lake Abashiri can emit 11% of the total methane in Lake
Hokkaido and produce dissolved methane (DM) concentrations five times higher than the
estimated one-dimensional methane model (DM concentrations were estimated by surface
area) [27]. Such an issue could be problematic if the lower-layer gas was released from the
lake. As an important factor of such a system, continuous wind exceeding 10 m/s could
upwell the lake, releasing CH4 to the environment [7].
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Figure 1. Maps of (a) Lake Abashiri with four nesting domains, (b) the station location, and (c) Lake
Abashiri bathymetry.

2.2. Observation Data

Hourly values of wind speed and direction taken from Tokoro station (Figure 1b) from
21 November 2007, to 30 November 2007 were obtained from the Automated Meteorological
Data Acquisition System (AMeDAS) which was then used to validate the WRF model.
AMeDAS is a collection of Automatic Weather Stations (AWS) and is monitored by the
Japan Meteorological Agency (JMA) [28].

2.3. Weather Research and Forecasting Model (WRF)

This study employed WRF for numerically downscaling and simulating wind in-
homogeneities [29] with four nested domains (Figure 1a), with 200 × 200, 190 × 190,
178 × 178, and 166 × 166 cells and horizontal resolutions of 10 km, 3.3 km, 1.1 km, and
333 m, respectively. The temporal resolution was set for every 20 min. Table 1 illustrates
WRF configurations and the domain setup for the simulation. In the resolution from the
outermost to the innermost domain, the former covers almost the entire country of Japan
to capture overall atmospheric phenomena, while the latter includes Lake Abashiri sur-
rounded by a relatively flat area. In this context, hourly ERA5 [30] reanalysis data were
dynamically downscaled from 0.25◦ spatial resolution. ERA5 is the most recent global
reanalysis product that has benefited from a decade of advancing model forecasting and
assimilation methods [31]. In addition, studies have reported that ERA5 is good at im-
proving simulation in complex terrains and outperforms several other global reanalysis
products in terms of surface wind [32–34]. We used the rapid radiative transfer model
(RRTM) scheme for longwave radiation and the Dudhia scheme for shortwave radiation.
Furthermore, we applied the Monin–Obukhov scheme [35], the Noah-MP land-surface
model, and the Mellor–Yamada–Janjic TKE scheme for the surface layer, land surface,

127



Water 2023, 15, 565

and planetary boundary layer, respectively. In addition, substitution of higher land-use
resolution taken from Global Map Japan [36] and observation-based dynamical nudging to
the initial conditions were implemented to further improve model performance. Each run
began at 00:00 UTC and generated outputs every 20 min.

Table 1. Weather research and forecasting model configurations.

Domains Domain 1 Domain 2 Domain 3 Domain 4

Resolution 10 km × 10 km 3.3 km × 3.3 km 1.1 km × 1.1 km 333 m × 333 m

No. of grid points 200 × 200 190 × 190 178 × 178 166 × 166

Microphysics WSM3 WSM3 WSM3 WSM3

Longwave
radiation RRTM RRTM RRTM RRTM

Shortwave
radiation Dudhia Dudhia Dudhia Dudhia

Cumulus
parameterization Kain–Fritsch Kain–Fritsch Kain–Fritsch None

Land-surface
option Noah-MP Noah-MP Noah-MP Noah-MP

Surface layer
option Monin–Obukhov Monin–Obukhov Monin–Obukhov Monin–Obukhov

Planetary
boundary layer

Mellor–Yamada–
Janjic

Mellor–Yamada–
Janjic

Mellor–Yamada–
Janjic

Mellor–Yamada–
Janjic

2.4. Fantom-Refined Hydrodynamic Model

The Fantom-Refined [37,38] model was developed following equations of continuity
and 3-D Navier–Stokes with incompressible and Boussinesq approximation together with
thermal flux (details of the model can be found in Appendix A). The model is further
improved with a local mesh refinement (LMR) technique based on a structured grid
which uses rectangular grids similar to a tree-based grid. This method uses two different
perspectives of a horizontal grid, macro, and micro views. The macro view determines the
refining unit (hereafter the “container”), and each container is discretized in a structured
manner with arbitrary horizontal resolution (hereafter the “micro view”). This method
introduced the concept of a container that defines local groups with constant grid resolution
in each direction. With this container, we may specify any computational cell in the domain
with a simple, modifiable LMR and straightforward indexing. The study, however, applied
only the macro view for simplification and for computational efficiency.

The horizontal resolution for the hydrodynamic model was set at 200 m in each
direction (Figure 2a). In terms of vertical resolution, finer grids (0.1 m) were set at the
middle of the lake’s depth to represent the halocline fluctuations visibly and accurately,
while coarser grids were used at the remaining depths (Figure 2b). Vertical temperatures
were distributed evenly along the depth, and salinity was initialized with measured data,
in which the halocline existed at a depth of approximately 5 m below the water surface.

Complexity exists when a clear understanding of lake hydrodynamics is challenged
by both spatially varying drivers (wind and bathymetry), whereby lake hydrodynamics
potentially react differently under the spatial distribution of the former, which is controlled
by the surrounding orography. Meanwhile, variations in depth and geometry of the latter
are of great concern in further alternating the mechanism. A deep comprehension of
how a specific main driver affects hydrodynamics is the key to gaining a step-by-step
understanding of the complex physical behavior of lake hydrodynamics. Therefore, flat
bathymetry of 16 m was assumed to separate the complex effects of the real bathymetry.
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Figure 2. Fantom-Refined 3D configurations; (a) (square boxes) horizontal LMR mesh resolution, and
(b) (black dashed line) vertical resolution along the fetch length. Blue dashed line is the water surface
and the red connected dotted line is the side view bathymetry of the red line drawn in (a).

To investigate the effect of spatial and temporal variations in wind on hydrodynamics
in the lake, a comparative study was conducted between unsteady but spatially uniform
wind, and unsteady and spatially non-uniform wind (Table 2). By a simple interpolation
technique, the horizontal and temporal resolutions of the wind field extracted from the
fourth domain of the WRF model were refined to 200 m and 10 s, respectively, to match
those of the hydrodynamic model. The uniform wind field was created by taking wind
data at the center grid of the lake. Wind shear stress applied over the water surface was
computed explicitly with the function of (U10) [38].

τs = ρaCD|Uw|Uw (1)

where ρa is the air density, CD is the drag coefficient, and Uw is the wind magnitude at
10 m above the water surface, i.e., U10. The model applied a bulk formula [39] to estimate
sensible and latent heat fluxes, and short and long wave radiations from meteorological
weather conditions.

Table 2. Fantom simulation durations setup. For every hour of time increment, the simulations of
surface particle transports and internal seiches were reset every 8 h (Ti) for the entire 9 days of the
simulation. Tracer transport and another case of internal seiche were simulated with no reset for the
entire 9 days of the simulation.

Duration of Simulation
Time Steps

Spatial Uniformity Spatial Variations

Surface particle transports Ti (8 h) Ti (8 h) 10 s

Tracer transport 9 days (tracer was placed at
the 21st)

9 days (tracer was placed at
the 27th) 10 s

Internal seiche 9 days and Ti (8 h) 9 days and Ti (8 h) 10 s

2.5. Indicators for Spatial Variations in Wind Heterogeneity

Quantification of wind inhomogeneities is challenging due to the complex distinction
between wind direction and wind speed. Recently, several studies have attempted to
quantify the spatial variations in wind. For example, smaller root mean squared errors of
vectors u and v indicated uniformly spatial variations and vice versa [14]. This technique,
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however, using the vectors u and v, cannot quantify the invariance of wind speed or wind
direction, which could be directly addressed using 2D mean filter analysis [40].

The spatial consistency of the wind was determined based on the integrated coefficient
of variance and a 2D mean filter [40].

f (x, y)n =
1

(2n + 1)2 ∑
(s,t)∈Sxy

g(s, z)n−1 (2)

where f (x, y)n is the filtered image, n is an integer and can be selective with incremental
size (e.g., 1, 2, 3, . . . , m), m is arbitrarily chosen for grid size, g(s, z)n−1 is the value in
each pixel of the grid of the previous filtered image; and s and z are the corresponding
coordinates of the grid itself. As noise reduction comes at the expense of blurring the image
(a 2D visual representation of any pixel), if the resulting image ( f (x, y)n) has features in
common with all the previous filtered image ( f (x, y)0, . . . , f (x, y)n−1), the wind field will
be considered to be spatially homogeneous. Details of the computation procedures are
described in Appendix B.

2.6. Indicators for Temporal Variations in Wind Heterogeneity

The metric Pearson correlation was applied to measure the linear relationship be-
tween two sets of data. It is the ratio of two variables’ covariance to the sum of their
standard deviations.

rxy =
∑o

i=1(xi − x)(yi − y)√
∑o

i=1(xi − x)2
√

∑o
i=1(yi − y)2

(3)

where overbar x and y are the average value of the sample population, and o is the sample
size. To analyze the homogeneity of temporal wind field, a correlation map constructed
between the center grid (the 2D time series data at the center of the chosen dataset) and the
surrounding ones was calculated during the simulation period.

2.7. Wedderburn Number

The Wedderburn number, a non-dimensional and systematic relationship between the
wind-induced shear stress and the baroclinic pressure gradient, was computed to identify
the mixing condition in the reservoirs and lakes [41].

W =
g′h2

e
u2∗L

(4)

in which he is the epilimnion depth, L is the wind fetch length, u∗ is the friction of wind
velocity, and g′ is the reduced gravity.

2.8. Surface Particle Transport, Tracer Simulation, and Internal Seiche

In principle, wind triggers two main important physical phenomena, lake circulation
and surface and internal waves, both of which control the mass transport in lakes. To
investigate the movement of the former, virtual particles are often placed and numeri-
cally simulated together with the atmospheric forcing interaction. This approach can be
visually quantified by the Lagrangian tracking method, whereby the simulated particles
often representing phytoplankton, fish eggs or larvae, are released, and the dynamics of
the particle trajectories are recorded in time and space over the lake [12,19,21]. In this
study, surface particles were placed uniformly on the water body to elucidate the effect of
spatial and temporal variations of the wind field. In addition to the Lagrangian tracking
method, tracer tracking is frequently adopted for its representation of either two- or three-
dimensional transport of fluid containing pollutant [10,20]. To this aim, a normalized tracer
concentration of 1.0 was set at the northern part of the lake.

Investigation on the development of the two-layer model of the temperature pro-
file [42] was the key to further intensive empirical studies in an effort to classify the
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mixed-layer dynamics in lakes [43] and to readily determine the first vertical internal wave
mode V1H1 [44]. To get a better insight into the internal waves that are generated by both
homogeneous and inhomogeneous wind, a temporal variation of density interface for each
simulation period was extracted. After that, spectral analysis was applied to evaluate and
highlight the periodic evolution of internal seiches in both uniform and non-uniform cases.
This technique can easily reveal hidden oscillatory motions in a time series structure or
can detect the dominant frequencies of a periodic time series in terms of both spatial and
temporal resolution [45]. Welch’s method was used to estimate power spectral density
(PSD), where the Hanning window function was adopted to weight the time series dataset.

Standing internal waves in confined basins can be categorized by nodal points on
the vertical (V) and horizontal (H) components, VaHb, where a and b are the fundamental
vertical and horizontal mode components, respectively [46]. Finally, we computed analyt-
ical internal waves based on the calculation described in [6] to theoretically identify the
period of each mode. We also compared the performance of the numerical model forced
by different simulation periods with the analytical model in a variety of wind conditions.
Based on the procedure described in [6], the periods of internal seiches were estimated by a
1D multi-layer hydrostatic linear model as

Ta,b =
2L

b
√

gβa
(5)

where a and b are the fundamental vertical and horizontal modes, respectively, g is the
gravitational acceleration, and βa is the eigenvalues assuming a two-layer model system
(a = 1). The fundamental period can also be calculated following the Merian formula:

Ti =
2L√

g′ h1h2
h1+h2

(6)

where g′ = g ρ2−ρ1
ρ2

is the reduced gravity of the two-layer system, ρ1 and ρ2 are the densities
of the two layers, respectively, h1 is the thickness of the upper and h2 is the thickness of the
lower layer. Additionally, the fundamental period Ti can also be estimated as Ta=1,b=1.

3. Results

3.1. WRF Model Validation

Wind data taken from AMeDAS (Figure 3a) illustrated a strong north-easterly wind
with a clear diurnal-cyclical alteration during the simulation period. Strong winds evolved
during the early morning and weakened from the beginning of the afternoon until noc-
turnality, with a high frequency of maximum and minimum intensities of approximately
10 m/s and around 2 m/s, respectively. These periods with strong magnitudes and clear
periodicity could potentially influence the synoptic-scale occurrences related to the lake’s
hydrodynamics. From the 24th to the 26th, low to moderate magnitudes were noted, with
a tendency toward mild fluctuations. Validation between the model and observed data
showed the general overestimation of model data, with RMSE and MBE values of 6.46 m/s
and 0.17 m/s, respectively. There was also an overestimation of wind magnitudes on the
first half of the 21st and the night before the 22nd. WRF showed minor phase differences
from the 23rd, from the early morning to the late afternoon. A relatively consistent trend
between the two datasets was seen from the 24th onward. In addition to wind magnitude,
wind direction showed an overall consistent distribution between model and observation
data (Figure 3b,c). Fortunately, the disagreement between numerical and observed data did
not impose significant effects on the study, since the aim of this study was to distinguish
uniform and non-uniform wind-induced lake hydrodynamics instead of perfectly achieved
modelled data.
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Figure 3. Validation in wind speed and wind direction between WRF and station data (Tokoro).
(a) Validation in wind speed, (b) WRF model wind direction, and (c) Station wind direction.

3.2. Spatio-Temporal Wind Quantification

The spatial inhomogeneity levels of wind speed and direction were calculated with
nine levels of the 2D mean filter (m = 9). The overall results are presented in (Figure 4a).
The study period indicated general homogeneous wind direction in accordance with
strong wind speed. Moreover, strong, and weak winds corresponded to low and high
averaged coefficient of variance (Appendix B), Cv scores, revealing an inverse relationship
between the wind magnitude and the quantification score. According to a rough wind
inhomogeneity estimation [40], values of Cv_dir less than 0.01 and Cv_spd less than 0.66
are considered spatially homogeneous, while values of Cv_dir higher than 0.01 and Cv_spd
higher than 0.76 demonstrate spatial inhomogeneity. In addition to the inverse relationship
mentioned above, moderate wind (3–5 m/s) illustrated an ambiguous pattern in spatial
distribution. As a result, the complexity of spatial distribution could potentially signify
the difference in the lake’s hydrodynamics. Based on the wind magnitude and the spatial
inhomogeneity indicator, Figure 4b–d represent the spatial variations or spatial uniformity
in wind. On the last day of the simulation (29 November 2007 23:50), very weak spatial
wind (~1 m/s) produced insufficient momentum, disturbing the direction of the wind
over the surface water body. Additionally, light air (~2 m/s) combined with moderate
breeze (~4 m/s) (24 November 2007 15:00) formed a wind curl as a result of the shear
stress differences in space. Figure 4c,d illustrated light (~4 m/s) to fresh breeze (~10 m/s),
respectively. As we can see, near-spatial uniformity was noted in the wind over the lake’s
surface. Therefore, we can assume a spatially uniform wind field during the strong wind
periods, while the moderate wind-induced periods can alter the lake’s hydrodynamics due
to the spatial variation of winds.
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Figure 4. Maps of (a) Wind speed and direction inhomogeneity, (b) weak wind with high Cv_dir = 0.1,
Cv_spd = 0.615 (29 November 2007 23:50), (c) moderate wind with high Cv_dir = 0.0014, Cv_spd = 0.863
(25 November 2007 04:00), (d) strong wind with low Cv_dir = 0.001, Cv_spd = 0.624 (21 November
2007 01:30).

Pearson correlation coefficients were estimated in the 2D time series wind data be-
tween the central grid and its surrounding grids over the simulation period (Figure 5).
Correlation coefficients were calculated using Equation (3). For the wind direction, tempo-
ral inhomogeneity exhibited an overall positively moderate correlation from the middle
point to its nearby grids, while weaker relationships were located farther from the center
grid (Figure 5a). Therefore, insignificant spatial wind similarity covered the entirety of
Lake Abashiri. This could be explained by the spatially disturbed wind direction during
weak-to-moderate wind periods. On the other hand, surprisingly, wind speed illustrated
relatively spatially homogeneous correlation coefficients all over the area, with moderate
correlation coefficients. In conclusion, wind speed represented acceptable similarity (~0.5)
but wind direction illustrated higher spatial disturbance over the simulation period.
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Figure 5. Maps of (a) correlation of wind direction between the center grid and the surrounding
grids, (b) correlation of wind speed between the center grid and the surrounding grids.

3.3. Surface Particle Transport and Tracer Transport

Figure 6 shows the numerical simulations of wind-induced surface particle transport.
Theoretically, particles traveled unidirectionally following the wind direction under spa-
tially uniform wind. This is consistent under strong and moderate wind speeds, which
inversely correlate to the low Cv. Figure 6c,f display a constant movement of particles
following the water currents driven by the strong and moderate winds, respectively. There-
fore, low Cv generated translational motions in surface particles along the wind directions.
In contrast to the strong wind, weak breezes generated the distinguishable motions of
the water currents during a short time scale of the fundamental period, Ti (8 h), because
of the large Cv_spd and Cv_dir, showing the tendency of dispersing particles (Figure 6k).
Compared to the spatial uniform wind, spatially distorted weak wind (~1 m/s) initiates
a short distance of movement after the Ti period. However, particles started to travel
omnidirectionally after providing sufficient drag force, causing the particles to scatter in
different directions (Figure 6k). This means that after a long period (>Ti) of spatial vari-
ations in winds (large Cv_spd and Cv_dir), the movement of surface particles would be far
more different from that of spatially uniform wind.

Tracer mass transport was initially placed at the small estuary where the substances
from the seaside were first provided in this lake. Figure 7 shows the concentration and
distribution of the tracer under different wind conditions. Although the effects were
relatively similar in both cases due to the prevailing wind direction, there were some
discrepancies noted in the first few days of the simulation. For the first two days of strong
prevailing NE wind, the tracer dispersion was mainly transferred to the estuary mount. As
a result, the mass transport was blocked by the right-hand side boundary. The tracer was
stirred up by the vertical circulation, which resulted in the tracer spreading over half of
the water surface. Under uniform wind, the stable and homogeneous wind increased the
concentration of tracer further south, while a lower concentration level was observed in
the case of non-uniform wind (Figure 7b). The results of the inhomogeneous wind, which
generated spatially disturbing water currents compared to that of spatially uniform wind,
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illustrated changes with less concentration in the southernmost part of the lake. By the end
of the simulation, tracer mass transport was seen to be completely mixed up in the two
wind cases, leaving no traits of a dominantly concentrated area.

Figure 6. Every twenty minutes of surface particle movement and current vectors of eight hours’
simulation, starting from 21 November 2007 00:00 (a); 25 November 2007 00:00 (d); and 29 November
2007 23:00 (g) to 21 November 2007 01:30 (b); 25 November 2007 00:00 (e); and 29 November 2007
23:50 (h), respectively. (c,f,k) are the zoom in of (b,e,h).
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Figure 7. Simulations of (a) (21 November 2007 00:00) and (b) (23 November 2007 23:00) in which
tracer mass transport was placed at the beginning of the simulation, (c) (30 November 2007 00:00)
where tracer was placed after the 27th onward.

3.4. Internal Seiche

In general, the uniform and non-uniform wind shared similarities in inducing internal
waves under the strongly stratified lake system (Figure 8). The depth of halocline com-
puted under both wind cases did not present any complete upwelling under strong wind
imposition. This was further confirmed by accessing the relationship between wind and
the response of stratification (Figure 8c). There were roughly 96% of the total periods that
are classified as “regime three” [43]. This indicated that the most prominent feature is
internal seiching. Under this regime, strong wind durations are less than the entrainment
time, illustrating the rare event of complete vertical mixing [43]. Regime four accounted
for the remaining periods, showing the overall domination of buoyancy force. However,
the complete dominance of regime three during the simulation period emphasized the
importance of internal waves in this lake system.

A Wedderburn (W) (Figure 8a) number of 4 to 10 was often observed during the first
period of strong prevailing NE wind force which gradually transferred energy and induced
internal waves for approximately 5 days (Figure 8b). Strong oscillation was shown after
the 26th and continued to highly fluctuate for roughly two days. This pattern was similar
from the 28th onward. During this period, there was some time when W < 1 indicating
potential mixing. This could explain why the resuspension events eventually happened
under high wind speed [47]. However, the short periods of strong wind induced could not
entirely mix up the strongly stratified lake system. After that, the imposition of weak-to-
moderate wind did not generate enough energy, indicating the domination of buoyancy
and damping effects.
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Figure 8. Mixing condition (a) wind speed and Wedderburn number, (b) depth of density differ-
ence excited by uniform wind, (c) depth of density difference excited by non-uniform wind, and
(d) normalized percentage of the four regimes.

The depth of the halocline in both wind cases under strong wind illustrated noteworthy
features. On the first few days of the simulation period, both spatially uniform and non-
uniform wind exhibited their similar features because of the strong wind speed and low
Cv_spd and Cv_dir (Figure 4a). The minor discrepancies started to exhibit on the next few
days under the effects of weak-to-moderate wind speeds. Between the 26th and 28th,
strong wind imposed on lake displayed similarities in the high fluctuations following the
notable Wedderburn numbers. According to Figure 8b,c, after the 28th, the buoyancy
and damping effects were much higher than those produced by low wind speeds. It is
also noted that more mixings were seen under the imposition of spatially uniform wind
(Figure 8b). Therefore, the effects of low-to-moderate wind speed accompanied by high
fluctuation in wind direction must not be neglected.

4. Discussion

4.1. The Differences in Surface Mass Transport and Water Current between Spatially Uniform
Wind and Spatially Non-Uniform Wind

The weak and spatially inhomogeneous wind forcing generated the uneven water
current and could explain the significant differences in the particle distributions (Figure 6)
among three cases during the short time scale of Ti, as shown in Figure 9.

Low Cv_spd and Cv_dir in the case of moderate to strong wind induced the water current
to flow unidirectionally over the water surface. In addition to the high wind magnitudes,
the wind direction did not change rapidly as it did in the weak wind condition (Figure 9a,b),
which induced enough energy to push almost all the surface particles unidirectionally. This
is consistent with the numerical simulation in [12]; the study illustrated that the horizontal
transport of particles was stronger in winter Föhn due to the high and persistent magnitude
of wind speed. As mentioned earlier, low values of Cv_spd and Cv_dir wind fields can
indicate uniform wind fields. This can further reaffirm why wind speed is important and
highly correlated with the wind direction as well as the water current.
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Figure 9. Vectors of water currents; (a) spatially uniform wind with strong wind magnitudes,
(b) spatially non-uniform wind with strong wind magnitudes, (c) spatially uniform wind with low
magnitudes, and (d) spatially non-uniform wind with low wind magnitudes. All pairs of simulation
are at the same time.

On the other hand, in spatially non-uniform wind (Figure 9d), wind speeds were
mostly below 2 m/s, and the low wind speed was often accompanied by omnidirectional
wind direction [48], resulting in a disturbance of the movement of water current omni-
directionally across the lake. In contrast, spatially uniform wind (Figure 9c) produced a
unidirectional water current in most parts of the lake, revealing the major differences in
water current directions in both wind cases. Therefore, scattering effects would occur in
the former wind case.

The assumptions of the flat bathymetry and the enclosed system, additionally, affirm
that water-current curl (Figure 9d) can be formed under the imposition of spatial variations
in wind due to the shear stress gradients where sheltering effects can be neglected in
this lake [20]. A two-gyre circulation developed in Figure 9d, in which the clockwise
gyre in the southern part coexisted with the counterclockwise gyre; meanwhile there
was no such circulation under the strong wind condition. Depending on the lake size,
this phenomenon is often observed when applying wind inhomogeneities as a governing
factor [24]. Additionally, because Lake Abashiri is located in a flat and simple orography,
the sheltering effects are minor, thus confirming the major effects of wind inhomogeneity.
Based on the spatial distribution of water current (Figure 9), although the geometry of Lake
Abashiri is simple, littoral zones in the south and at the middle generated clockwise flow,
thus increasing the horizontal circulation (Figure 9d); meanwhile, this cannot be seen in
spatially uniform wind conditions under the period of Ti (Figure 9c). As mentioned earlier,
based on the calculated Cv_spd and Cv_dir scores, the high values when moderate winds
were observed would create wind curls due to the gradient. The uneven distribution of
wind shear stress can be sufficiently important for understanding the movements of water
currents as well as particulate organic matter (POM).

4.2. Correlation between Spatio-Temporal Indicators and Tracer Mass Transport

A strong and prevailing north-easterly wind (NE) was the main factor controlling the
similar movement of the tracer down to the south of the lake on the first few days; the
tracer was finally mixed up entirely at the end of simulation period (Figure 7). As the tracer
was completely mixed up after nine days of simulation, the complex alteration in hydrody-
namics might be difficult to observe. To overcome that issue, a tracer placed on the 27th
of November revealed the noteworthiness of spatially varied wind imposition (Figure 7c).
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After one day, the tracer started reducing its concentration at the north boundary, while
a higher concentration accumulated under non-uniform conditions and remained at the
north of the lake. At the end of the simulation, concentrations remained higher in the
case of spatial variations in wind, while the tracer concentration was fully mixed up with
uniform wind.

Interestingly, the result obtained from the spatial variations in wind (Figure 7c) in-
dicated that the movement of POM would transport it to the center of the lake, which is
similar to the transportation of POM gathering at the center of the Tokyo Bay [25]. High
moisture POM tends to accumulate at the center of the bay head [49,50]. Although the
effects of wind curls and the assumptions of flat bathymetry in this study can be the factor
producing the high concentrations at the lake center, real bathymetry can also increase the
effect because it increases the water current velocity at the littoral zones. Further study
is needed to understand the formation of positive and negative wind curl, and its effects
on upwelling and downwelling under spatial variations in wind in combination with the
real bathymetry.

4.3. Effects of Temporal and Spatial Frequencies of Winds to Internal Seiche

Overall, Figure 8 illustrates that the differences in internal waves of both wind cases
were minor after nine days of the simulation. Noticeably, under strong wind during the
first days of simulation (Figure 8), the height of the halocline responded comparably under
both wind scenarios, wherein the differences as well as the major component causing the
difference cannot be distinguished. To differentiate, the weak to strong wind-induced
internal wave should be tested over a brief period. Simulations of internal waves within Ti
were conducted to understand the differences under both wind conditions.

Figure 10 shows that the uneven distribution of wind direction was highlighted, with
inverse correlation existing at southern part of the lake and a gradient from the center to
the lake boundary in magnitude. Consequently, upwelling points were scattered, reducing
the similar features of wind-induced internal wave. Considering the differences in spatial
and temporal wind features, the results of spectral analysis generated a huge difference in
PSD as well as frequency. While uniform wind coincides with V1H3 mode, non-uniform
wind appeared to match to V1H2 mode. These alterations were obviously the main factors
changing the behaviors of internal seiche in this system.

An eight-hour simulation of moderate wind (25 November 2007 00:00) indicated the
overall stability of the lake’s system. The temporal correlation of wind speed and direction
showed a reasonable similarity of both spatial uniformity and non-uniformity (Figure 10).
The moderate wind featured North-East (NE) as the general prevailing wind, resulting in
most of the upwelling locations being located at the south end of the lake. This feature
indicated a similar internal seiche in V1H2 mode, whereas both wind-induced internal
wave cases disagreed in V1H3 mode, with a lower PSD in non-uniform wind compared to
that of uniform wind. In addition, lower wind speed correlated to the PSD generated by
the internal waves.

Finally, for the strong wind (~10 m/s), winds were predominantly easterly (E) during
the period of (Ti). This could be seen from the upwelling locations accumulated at the
western end of the lake boundary. Spectral analysis revealed that the prevailing wind (E)
of spatially uniform and non-uniform wind excited internal waves with relatively similar
power spectral densities at modes V1H1, V1H2, and V1H3. However, the numerical model
did not match the mode V1H4. Moreover, both wind cases excited a similar PSD of internal
waves, which reaffirms the similarity in both spatial uniformity and nonuniformity under
strong wind fields.
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Figure 10. Statistical analysis of wind-induced internal seiche at a certain time of interest; yellow
dash line is the fetch length, yellow dots on upwelling locations scaled with Wedderburn numbers
are the point taken for calculating internal waves.

140



Water 2023, 15, 565

5. Conclusions

The study aimed to investigate the responses of the hydrodynamics of a lake under
both spatially uniform and spatially non-uniform wind fields. Lake Abashiri was selected
as the field, and the flat bottom of the lake was assumed for the analysis in order to focus
on the effect of wind nonuniformity on the lake response. The realistic nonuniform weather
was generated by the weather research and forecasting model with four level nesting grids
over the area. To quantify the level of inhomogeneity of wind speed and wind direction,
the wind products from WRF were then analyzed based on a 2D mean filter. Three of the
lake’s physical responses, including surface particle transport, tracer tracking, and internal
waves, were examined under the different wind conditions. The analysis highlighted the
key factors that effect changes when applying different wind scenarios.

Firstly, strong wind corresponding to a low level of variances both for wind speed
and direction, Cv_spd and Cv_dir, provided sufficient momentum to unidirectionally push
the surface particles horizontally to the shoreline within the fundamental period of this
stratified lake, Ti. On the other hand, wind curl was formed under the imposition of a
weak-to-moderate wind field of high values of variance both in speed and direction. The
surface particles moved only short distances but not unidirectionally, so they would be
transported differently for the succeeding phase in the case of the uniform wind.

Secondly, when appropriately placing the tracer mass transport under wind of high
variances, the possible effects of wind non-uniformity could be observed in the transport
process in the POM concentration at the bay head of Lake Abashiri. Particularly, in the
present study, a much higher concentration was seen in the more realistic wind condition,
while a smaller concentration was seen in the case of spatially uniform wind.

Finally, the internal wave spectral analysis in both wind cases showed comparably
similar patterns when considering the whole simulated period. Furthermore, the potential
mixing, as defined by the Wedderburn number, showed that strong wind provided enough
energy to fluctuate and potentially upwell the downwind along the fetch length. However,
the system could not be mixed; this was probably due to the short duration of the strong
wind and the assumption of uniform bathymetry. The analysis under the shorter time
scale (Ti), revealed that the weaker the wind, the larger difference in power spectral
density. This further elucidated the importance of weak-to-moderate wind effects on
lake hydrodynamics.

This study emphasized the significant differences between spatially uniform and spa-
tially non-uniform winds when comparing their interactions with surface mass transport,
tracer tracking, and internal waves, excluding the effects of the bathymetry. Although it
is important to consider the effects of bathymetry, they can, together with spatially non-
uniform wind, alter and contribute to the complexity of lake hydrodynamics. As a result,
future studies will include bathymetry effects to further analyze the sensitivity of lake
hydrodynamics, coupled with spatial and temporal variations in wind.
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Appendix A. Fantom-Refined Model Description

The Fantom-Refined model applies 3-D Navier–Stokes equations with incompressible
and Boussinesq approximation
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subject to incompressibility,
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (A4)

where u, v, and w are the velocities in the x, y, and z directions, respectively. p is the
pressure, ρ0 is the reference density, (ρ0 + ρ) is the density, f = 2Ω sin φ is the Coriolis
coefficient, φ is the latitude, Ω is the angular velocity of the earth, νH and νV are the
horizontal and vertical eddy viscosity coefficients. The depth-averaged continuity equation,
which is given hereafter, governs the evolution of the free surface.
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where h is the free-surface height and d is the bathymetric depth. The transport equations
for temperature and salinity are given by
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where T is the temperature, S is the salinity, KH and KV are the horizontal and vertical
eddy diffusion coefficients.

A collocated finite-volume approach was used to discretize the governing equa-
tions [51,52]. For explicit terms such as advection of momentum, horizontal diffusion, and
Coriolis force, the second-order Adams–Bashforth technique was used to discretize tempo-
ral derivatives [53]. Surface elevation and vertical momentum and scalar diffusion were
estimated semi-implicitly using the TRIM technique, a second-order theta approach [54].
The advection terms were spatially discretized for the momentum and scalars using the
third-order ULTIMATE-QUICKEST scheme [55], while the horizontal diffusion terms were
discretized using the second-order central differencing scheme.

Appendix B. Spatial Variations in Wind Quantification

To observe the spatial consistency of the two-dimension dataset, the discrepancies
in subsequent increments in size selection for both wind speed and direction were calcu-
lated as:

Δ fn = f (x, y)n+1 − f (x, y)n (A8)

where f (x, y)n+1 and f (x, y)n are the filtered images with size n+1 and n, respectively. This
filtering technique will reduce the horizontal resolution of the array size. However, no
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padding is applied to fill the surrounding array to prevent the model from being biased.
Next, the spatial variation in wind speed is described as follows:
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)2
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where Cvspd ,n is the coefficient of variance of spatial wind speed, p is the population size,
Δ fn,spdi is the value of the difference between each filter of the wind speed in each grid,
Δ f n,spd is the mean wind speed. For the complexity in the wind direction, Cvdir ,n is estimated
based on Yamartino [56].

Cvdir ,n =
sin−1(ε)

(
1.0 + 0.1547ε3)
θa + 1

(A10)

where ε =
√

1 − (S2
a + C2

a), θa = tan−1
(

Sa
Ca

)
, Sa = j−1 ∑

j
i=1 sin(Δ fn,dir)i, and Ca =
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i=1 cos(Δ fn,dir)i, Δ fn,diri is the value of the difference between each filter of the wind

direction in each grid. Values of Cvspd ,n and Cvdir ,n are then averaged based on the number
of layers (n) being filtered, based on the proposed method of [40].
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Abstract: The Pasur River is a vital reservoir of surface water in the Sundarbon area in Bangladesh.
Mongla seaport is located on the bank of this river. Many industries and other commercial sectors
situated in this port area are discharging waste into the river without proper treatment. For this
reason, geospatial analysis and mapping of water pollutant distribution were performed to assess
the physicochemical and toxicological situation in the study area. We used different water quality
indices such as Metal Index (MI), Comprehensive Pollution Index (CPI), and Weighted Arithmetic
Water Quality Index Method (WQI) to improve the understanding of pollution distribution and
processes determining the quality of river water. Multivariate statistical methods were used to
evaluate loads and sources of pollutants in the Pasur River system. The results indicate that the
sources of contaminants are both geogenic and anthropogenic, including untreated or poorly treated
wastewater from industries and urban domestic waste discharge. The concentration range of total
suspended solid (TSS), chloride, iron (Fe), and manganese (Mn) were from 363.2 to 1482.7, 108.2
to 708.93, 1.13 to 2.75, and 0.19 to 1.41 mg/L, respectively, significantly exceeding the health-based
guideline of WHO and Bangladeshi standards. The high Fe and Mn contents are contributions from
geogenic and anthropogenic sources such as industrial waste and construction activities. The average
pH value was 8.73, higher than the WHO and Bangladeshi standard limit. WQI (ranging from 391 to
1336), CPI (6.71 to 23.1), and MI (7.23 to 23.3) were very high and greatly exceeded standard limits
indicating that the Pasur River water is highly polluted. The results of this study can be used as a first
reference work for developing a surface water quality monitoring system and guide decisionmakers
for priorities regarding wastewater treatment.

Keywords: industrial riverbank; surface water; pollution status; Pasur River; Bangladesh

1. Introduction

According to the United Nations, about one-third of the world’s population drinks
contaminated water [1]. Clean water is essential for human health, aquatic and terrestrial
ecosystems, and life-supporting activities. However, industrial, urban, and agricultural
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activities release untreated effluents into surface water, creating an alarming water pol-
lution situation in Bangladesh [2]. Pathogenic bacteria (total coliform and fecal coliform)
gradually degrade water quality. In the oil refinery industry, conventional oil, gas, and coal
bed methane are often accompanied by large volumes of contaminated water [3]. These
industries give a high load of organic pollutants such as phenols, which are potentially
dangerous for the environment and human health. Industrial wastewater also contains
nitrogen, phosphorus, and heavy metals such as Fe, Cr, Ni, Cd, Zn, and Mn [4]. Geogenic
sources may also contribute to the pollution load in river water systems. These sources
include rock–water weathering, biological activity, sediment erosion, benthic distress, and
riverine system flow regime changes [5,6]. Iron and manganese exist naturally in rivers;
they may also be released to water from natural geologic deposits. The Earth’s crust is a
major source of Mn to the atmosphere, soil, and water.

Exposure to heavy metal pollution is a significant threat to the environment and public
health worldwide [7] and especially in the developing world. Heavy metals enter the food
chain through biomagnification and eventually affect human health [8]. The discharge
of heavy metal waste into receiving waters may result in many physical, chemical, and
biological disorders such as damaged DNA and gene expression changes [9]. Heavy metals
in effluents are moderately soluble in water depending on pH and may affect the total
and effective exposure to humans and accumulation in soils and plants [10]. Fly ash from
thermal power plants and the cement industry is either discarded of as dry disposal in
landfills or discharged into natural drainage systems such as rivers. These disposal methods
result in metal contamination of surface and groundwater resources that eventually will
turn up in the food chain [11]. Polluted water is the main reason that several diseases
such as cancer; congenital disabilities; and skin, lung, brain, kidney, and liver conditions
are several times more prevalent in the investigated area than elsewhere in the country.
Waterborne diseases, such as hepatitis (A, B, and C), cholera, typhoid, dysentery, and
diarrhea, are also caused by polluted water [12]. To control geogenic and anthropogenic
sources of pollution and prevent them from growing to levels detrimental to human beings,
programs to monitor pollutants in the river water and sediments are necessary [13].

The Pasur River is one of the most important waterways for economic growth in
Bangladesh. It passes through the Mongla Seaport and the Mongla shantytown of the
Bagerhat district in Bangladesh. Mongla is the second largest seaport in Bangladesh. It
consists of the Pasur channel beside the Sundarban mangrove forest [14]. The Sundarban
mangrove forest is the largest remaining tract of mangrove in the world. Beside the river
lies the coal-based Rampal power plant station.

This study was carried out on the Pasur River in the Mongla port area. A signif-
icant site of oil refinery (petroleum and vegetable oil), cement, dye and paint, leather,
and shipbreaking industries is established near the Pasur River. The industry directly
discharges poorly or untreated toxic effluent into the Pasur River that becomes increasingly
polluted [15]. The river water is used for different functions such as industrial purposes,
household activities, bathing, irrigation of fields, and cooking foods by the adjacent rural
populations. In some cases, in the dry season, when the drinking water is at crisis level, lo-
cal rural people use the river water for drinking purposes after boiling. The river was once
an important freshwater source for drinking and domestic uses, fisheries, and agricultural
irrigation. The river is still used for fishing, and fishermen use smaller or larger boats for
fishing. Polluted fish is another crucial reason to assess and monitor the surface water of
this river.

Given the above, this study focused on assessing the Pasur River water quality by using
water quality evaluation indices such as Water Quality Index (WQI) [16,17], Comprehensive
Pollution Index (CPI) [18,19], and the Metal Index (MI) [20,21]. Though some research has
been conducted for this river [22], there are still no systematic studies focusing on both
physicochemical parameters and toxic metal pollution and pollution source determination
in the concerned area. Assessment of pollution status is, thus, insufficient in this area. It
is also essential to identify the pollution sources. For this purpose, we used multivariate
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analysis to indicate sources of water pollutants, including metals [23,24]. Therefore, the
objectives of this study were (i) to determine the water quality parameters of the Pasur
River by using physicochemical and toxicological parameters, (ii) to use water quality
indices such as WQI, CPI, and MI for assessing the physicochemical and toxicological
properties with spatial distribution for the Pasur River, and (iii) to identify the source of
pollutants including metal contamination in water by using multivariate analysis methods.

2. Materials and Methods

2.1. Study Area

The Pasur is the largest river in the Sundarban (Mangrove Forest) region, located
at 89◦30′0′′ E and 21◦45′0′′ N. This river is known as Rupsha in Khulna. To the north
of Khulna in the Jashore region, the river is known as Bhairab River, and to the south
of Khulna, from the Chalna area, it is named Pasur River, and this location is known as
Mongla Upazila. Mongla Port Municipality is the second largest seaport of the country,
export processing zone, and fishing industry area on the shore of the Pasur River. The study
was conducted in the Pasur River at Mongla Port Municipality area in Mongla Upazila
of Bagherhat District in Khulna, Bangladesh. It is located about 55 km south of Khulna
City and 131 km north of the Bay of Bengal. Land use is concentrated to manufacturing
industries, forest, upland fields, and urban areas. The geology is mainly constituted by
tidal deltaic deposits but the northern and western area by marsh clay and peat deposits.
The southern region also contains mangrove swamp deposits and north-eastern area
deltaic silt deposits. The western and central parts of the eastern region of the study area
are constituted by agricultural areas and the eastern and northern area is constituted by
industry mixed with urban areas (Figure 1).

Mongla Port was established in 1954 on the Pasur and Mongla River junction bank,
where 1280 cargo ships were handled in the fiscal year 2019–2020. According to Bangladesh
2011 census, the municipality area is 19.4 km2 with a population of about 40,000 [25].

The location of the present study was 22◦47′ N and 22◦60′ N and 89◦60′ E and 89◦52′ E.
The river passes through the right side of the Trikona and Dubla islands and discharges
into the Bay of Bengal. The river is deep, so big ships can enter the Mongla Port year-round.
The river width varies. It is about 460 m wide at Rupsha, 790 m at Bajuyan, and 2.44 km at
Pasur-Shibsha. The river is about 142 km long. The Pasur River and all its tributaries are
tidal channels. The river is now also an effluent channel as it receives more than 80% of the
wastewater generated from urban areas and industrial sites.

More than 49 small and large manufacturing and processing industries are located in
the study area that discharge waste and wastewater into the river without proper treatment.
Jute processing, cement manufacturing, fertilizer manufacturing, oil refinery industry,
construction materials, and automobile oil storage activities are included in this area [22].
The sampling points were selected based on assumed representative connections between
the river and pollution sources. The study area location and samplings points are shown in
Figure 1.

2.2. Methods

The surface water quality varies with rainfall. During the rainy season, due to in-
creased rain, the concentration of pollutants in surface water can either be decreased by
dilution or increase due to surface runoff due to first flush [27]. The present research
collected water samples during the rainy season at 20 sampling points. Sampling sites
were selected based on functional area, including industry, urban, and agricultural areas,
as shown in Figure 1.
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Figure 1. Location of (a) study area; (b,c) sampling points; (d) geological map of the study area [26].

Collection, storage, and transportation of water samples were performed according to
standard guidelines [28]. Three water samples were randomly collected from each sampling
site and then thoroughly mixed into a 1.0–1.5 L sample and transferred to clean 500 and
100 mL polyethylene bottles, respectively. This was undertaken to guarantee representative
samples from each sampling point. At the same time, survey work was conducted at every
sampling station to collect background information of the sampling area. The 500 mL
samples were preserved with 5 mL of 55% HNO3 per liter of water and maintained at 4 ◦C
in the refrigerator for physical and chemical parameter analysis. The 100 mL samples were
preserved with 2 mL of 6 N nitric acid for metal analysis. Before sample collection, all bottles
were washed with 10% nitric acid and de-ionized water. The 100 mL samples were put in a
beaker, and 5 mL concentrated HNO3 was added and boiled at 130 ◦C on a hot plate until
the volume was reduced to about 25 to 30 mL. HNO3 addition was continued and repeated
until the solution became clear. Then, the solution was cooled and filtered with deionized
water passing through a Whatman no. 41 filter [29,30]. Ultra-pure HNO3 was used for
sample digestion. Temperature, pH, and total dissolved solids (TDS) were measured on
site by a calibrated apparatus. The pH was determined by a portable calibrated pH Meter
(HI 2211, HANNA Romania, Romania) and TDS was determined by calibrated multimeter
(CT-676, BOECO Germany, Hamburg, Germany). Chloride, total alkalinity, total suspended
solids (TSS), total hardness, iron, and manganese were measured by Mohr’s titration,
acid-base titration, filtration, EDTA complexometric titration, and flame-AAS method,
respectively. Before analysis, all laboratory equipment was immersed in 10% nitric acid for
48 h, rinsed with distilled water, and dried in an oven. All chemicals and reagents used
were of analytical grade. Deionized water with electrical conductivity less than 0.5 μS cm−1

and resistivity ~18 MΩ cm at 25 ◦C was used for the preparation of all solutions. A blank
sample was prepared and analyzed for water samples to ensure that the chemicals used
in the preparation did not contaminate the samples. By employing approved standard
solutions (HACK, Love Land, Colorado, USA), calibration curves (linearity ≥ 0.995) were
created to check the quality of measurements. To prepare spiked calibration standards, 2, 5,
10, and 15 mg/L of mixed standard and known concentration solution was added. The
spiked calibration standard was added after every ten samples. Recovery rates of metals
spiked in water fluctuated from 93 to 100%. The detection limits were 0.006 and 0.004 mg/L
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for Fe and Mn, respectively. Replicate analysis (RSD less than 5%) of the traceable Certified
Reference Materials (CRM) and randomly selected samples were measured to check the
analyses’ precision and accuracy. All samples were measured in triplicate (RSD less than
5%), and the mean was used. Maps of the study area, spatial distribution of water quality
indices, and cluster groups were produced using GIS software (QGIS, version 2.18.2).

2.3. Water Quality Index (WQI)

The Water Quality Index (WQI) is used for the assessment of both groundwater and
surface water pollution levels [31,32]. The WQI is calculated using the weighted arithmetic
method, initially proposed by Horton [33] and developed by Brown et al. [34,35]:

WQI = ∑ QnWn

∑ Wn
, (1)

where Qn = quality rating of n-th water quality parameter; W = unit weight of n-th water
quality parameter. Qn is calculated by:

Qn =

[
Vn

Vs

]
× 100, (2)

For the pH, this becomes:

QpH =

[
Vn − Vi
Vs − Vi

]
× 100, (3)

where Vn = actual amount of n-th parameter present; Vi = ideal value of the parameter
(Vi = 0, except for pH (Vi = 7)); Vs = standard permissible value for the n-th water quality
parameter.

The unit weight (Wn) of the various water quality parameters is inversely proportional
to the recommended standards for the corresponding parameters.

Wn =
k

Vs
, (4)

where k = constant of proportionality calculated by:

k =
1

∑ Vs
, (5)

The WQI value falls into five categories such as WQI: < 50 → Excellent, grade 1;
51–100 → Good, grade 2; 101–200 → Poor, grade 3; 201–300 → Very poor, grade 4;
and > 300 → Likely not suitable for drinking, grade 5 [36].

2.4. Comprehensive Pollution Index (CPI)

The Comprehensive Pollution Index (CPI) assesses the overall water quality status [37,38]:

PI =
Ci
Si

, (6)

CPI =
1
n

n

∑
i=1

PI, (7)

where PI is the pollution index of the i-th parameter; Ci is the measured concentration of
the i-th parameter; Si is the standard permissible concentration of the i-th parameter in
the water, and n is the total number of parameters. We used health-based guidelines from
the WHO and the Department of Environment (DoE), Bangladesh, standard for maximum
permissible concentrations. According to Mekuria et al. [39], the PI is a Single Factor
Evaluation Index (SFEI) for each water quality parameter. When the value of PI < 1, the
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water quality meets surface water quality standards. PI > 1, indicates that the water quality
exceeds the standards, hence, the water is polluted.

The water quality can be classified into five categories based on the calculated value of
CPI such as CPI: 0–0.20, Category 1, Clean; 0.21–0.40, Category 2, Sub clean; 0.41–1.00, Cat-
egory 3, Slightly polluted; 1.01–2.00, Category 4, Medium polluted, and ≥2.01, Category 5,
Heavily polluted [40].

2.5. Metal Index (MI)

The MI assesses the overall quality of surface and drinking water by [41,42]:

MI = ∑
Ci

(MAC)i
, (8)

where Ci is the mean concentration of i-th metal and MAC is the maximum allowable
concentration of each metal. The maximum limit of MI is 1, and MI > 1 is a threshold of
warning. The classification of water quality based on MI is < 0.3, class-I very pure; 0.3–1.0,
class-II pure; 1.0–2.0, class-III, slightly affected; 2.0–4.0, class-IV, moderately affected; 4.0–6.0,
class-V, strongly affected; and >6.0, class-VI, seriously affected [43].

2.6. Statistical Analysis

Pearson correlation, principal component analysis (PCA), and hierarchical cluster
analysis (HCA) were performed to identify relationships among the examined water qual-
ity parameters in the studied area to infer sources (geogenic or anthropogenic). Pearson
correlation analysis represents the strength of the relationship between different parame-
ters. PCA and HCA are the most common multivariate statistical methods for classifying
and interpreting large datasets from environmental monitoring programs that reduce the
dimensionality of the data. Data were processed using SPSS 17.0 for Windows; IBM, USA,
and JMP Pro 15.

3. Results and Discussion

3.1. Water Quality Guidelines

A summary of the analyses results is shown in Table 1. Concentrations were compared
to standard health-based guidelines by the WHO [44,45] and the Department of Environ-
ment (DoE), Bangladesh [46]. Temperature is an essential physical water quality parameter.
The photosynthesis activity of green plants, physicochemical processes, and microbial
biodegradation rate are greatly influenced by temperature. According to DoE guidelines
for water in Bangladesh, the temperature should be maintained between 20–30 ◦C. The
average and median temperature in the river water of the study area were 28.7 and 29.2 ◦C,
respectively. The maximum and minimum temperature were 31.2 and 18.3 ◦C at the sam-
pling location PS-16 and PS-9, respectively. The minimum temperature is caused by tidal
flows of the river, excessive rainfall (128.7–321.9 mm), or sometimes discharging cooling
water from industrial sites. Samples at PS-12, PS-13, PS-14, PS-15, PS-16, PS-17, PS-18,
PS-19, and PS-20 occasionally exceeded the standard limit (Table 1). In previous studies, the
temperature range of the Buriganga River in Bangladesh varied from 22.8 to 31.4 ◦C [47].

pH is a physical water quality parameter that is crucial for aquatic life. The toxicity
of metals to aquatic life, different chemical and biochemical reactions, and the suitability
of water for different uses are associated with water pH [39]. The recommended pH by
WHO and DoE health-based guidelines varies from 6.50 to 8.50. In the study area, the
median pH was 8.72 (Figure 2a), slightly higher than the recommendations. Maximum
and minimum pH was 8.97 and 8.43 at PS-11, PS-13, and PS-18, respectively (Table 1).
All sampling sites showed pH higher than the WHO and Bangladesh standards except
PS-18 and PS-19. The low pH value at sampling locations PS-18 and PS-19 is attributed
to relatively low anthropogenic influence. The higher pH may have been influenced by
dissolving alkaline waste materials from Mongla municipal domestic area and poor or
untreated industrial effluents from industry near the study area.
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Table 1. Comparative study of physicochemical parameters of Pasur River water with WHO and
DoE Standards.

Sample ID
Temperature

(◦C)
pH

TH
(mg/L)

TDS
(mg/L)

TSS
(mg/L)

Chloride
(mg/L)

Alkalinity
(mg/L)

Fe
(mg/L)

Mn
(mg/L)

PS-1 27.00 8.57 75.23 144.44 643.96 215.07 100.61 1.48 0.40
PS-2 27.33 8.57 153.80 278.12 791.58 213.13 92.85 2.25 0.68
PS-3 27.33 8.60 71.91 136.68 1482.71 250.94 88.33 1.84 0.51
PS-4 27.67 8.67 64.72 127.74 426.64 224.59 91.67 1.13 0.46
PS-5 28.00 8.80 72.97 147.77 728.27 206.48 94.67 2.10 0.70
PS-6 27.00 8.53 85.12 142.28 567.09 221.13 92.67 1.41 0.38
PS-7 27.57 8.53 78.97 146.52 988.60 241.09 94.00 2.06 0.79
PS-8 28.67 8.73 163.67 354.58 852.60 108.15 106.00 1.97 0.71
PS-9 18.33 8.93 34.80 135.18 582.34 148.61 91.00 1.15 0.34
PS-10 28.33 8.70 56.70 134.78 1004.90 170.47 91.33 2.23 0.19
PS-11 29.67 8.97 173.47 326.18 926.84 708.93 67.67 2.75 1.41
PS-12 30.57 8.87 67.28 163.81 657.54 271.51 92.00 2.32 0.86
PS-13 30.33 8.97 207.51 455.24 763.97 212.30 93.33 2.49 1.01
PS-14 31.00 8.87 79.74 153.15 363.21 233.06 87.33 1.14 0.44
PS-15 30.50 8.93 276.55 524.60 666.32 214.06 98.67 1.86 0.68
PS-16 31.17 8.93 57.69 151.67 807.87 261.32 88.67 2.32 0.97
PS-17 30.33 8.70 77.52 142.53 582.32 205.03 98.00 2.19 0.79
PS-18 31.00 8.43 76.89 144.64 674.90 191.70 93.00 2.22 0.78
PS-19 30.33 8.47 65.16 133.58 572.16 211.11 97.67 1.62 0.55
PS-20 31.00 8.80 472.64 893.27 652.45 368.87 165.33 1.72 0.61

Maximum 31.17 8.97 472.64 893.27 1482.71 708.93 165.33 2.75 1.41
Minimum 18.33 8.43 34.80 127.74 363.21 108.15 67.67 1.13 0.19
Average 28.66 8.73 120.62 241.84 736.81 243.88 96.24 1.91 0.66

STD. Dev. ±2.88 ±0.18 ±102.89 ±193.09 ±242.82 ±120.8 ±17.85 ±0.47 ±0.28
WHO STD. a,b 6.5–8.5 500 1000 - 250 - 0.3 0.1

DoE STD.c 20–30 6.5–8.5 200–500 1000 10 150–600 - 0.3–1.0 0.1
a, b World Health Organization (WHO) [44,45]. c Department of Environment (DoE), Bangladesh [46].

Figure 2. Boxplots for (a) descriptive statistics and (b) water quality indices.

Total hardness (TH) is influenced by contents of carbonate, bicarbonate, sulfate, and
chloride salt of calcium and magnesium that decrease the water softness for cleaning,
heating, and boiler systems. The WHO and national guideline for the total hardness of
water is 500 mg/L, and the average observed concentration of 120.6 mg/L is lower (Table 1).
The maximum and minimum concentration of total hardness was 472.6 and 34.8 mg/L at
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sampling station PS-20 and PS-9, respectively (Table 1). BNS Mongla (PS-20) was affected
by the discharge of calcium and magnesium from household and industrial waste.

Total dissolved solids (TDS) consist of dissolved inorganic ions and suspended matter,
and Bangladesh has recommended a maximum concentration of 1000 mg/L. The average
concentration of TDS in the study area was 241.8 mg/L (Table 1) and the median was
147.2 mg/L (Figure 2a). The maximum and minimum concentration of TDS were 893.3 and
127.7 mg/L at sampling sites PS-20 and PS-4, respectively. TDS in the study area comes from
domestic and industrial waste such as detergents, chloride, bicarbonate, fluorides, sulfate,
and other ions. The chloride concentration range in samples was 108.2 to 708.9 mg/L
with an average of 243.9 mg/L. The average is within the WHO and national standards
(Table 1). The median value of chloride (214.6 mg/L) was also within the WHO standard
limit (Figure 2a). The concentration of chloride in sampling locations PS-3, PS-12, PS-16,
and PS-20 exceeded the WHO standard limit, whereas the chloride concentration of PS-11
exceeded the WHO and national guidelines of Bangladesh. Thus, the concentration of TDS
and chloride at some locations did not exceed the permissible limits. A possible reason
for this is the significant runoff of stormwater during the rainy season in the study area
(129–322 mm) that can dilute the polluted water.

Total suspended solids (TSS) were calculated from dissolved suspended and colloidal
materials that increase surface water’s turbidity. TSS can affect surface water quality.
Excess concentration of TSS affects light transmission and aquatic life. The standard limit
of TSS should be maintained below 10.0 mg/L, which is recommended by the Bangladeshi
standard (DoE). However, the average TSS concentration was 737 mg/L (Table 1). The
median concentration of TSS was 671 mg/L and much higher than national standard value
(Figure 2a). Maximum and minimum concentration of TSS in the river water was 1482 and
363 mg/L at the Omera Petroleum Industrial area (PS-3) and Laudobe ghat area (PS-14),
respectively. All sampling sites displayed a higher TSS than permissible levels (Table 1).
This is probably due to the discharge of large volumes of industrial waste and wastewater
from nearby industry and local urban bazaars to the river without any treatment.

Total alkalinity is related to the contents of carbonate, bicarbonate, and hydroxyl ions
in the water. The average concentration of total alkalinity in the samples was 96.2 mg/L.
Maximum and minimum concentrations were 165.3 and 67.7 mg/L at sampling points
PS-20 and PS-11 (Table 1), respectively. At PS-20, the total alkalinity concentration was
higher than other sampling points due to alkaline household and industrial waste dis-
charged into the river without treatment.

Iron is a common metal in surface water that may dissolve from surface sediments
and suspended matter. Dissolved iron in the surface water is usually not a health hazard,
but it may create a bitter taste, stain, and discolor laundry. In addition, high iron contents
are not suitable for heating systems and boilers. According to the WHO standard, iron
concentrations should be below 0.30 mg/L. However, the average concentration of iron in
the samples was 1.91 mg/L (Table 1). The median value of Fe was 2.0 mg/L, and much
higher than the standard limit (Figure 2a). The maximum and minimum concentration of
iron in river water was 2.75 and 1.13 mg/L at sampling sites PS-11 and PS-4, respectively.
High iron concentrations probably stem from suspended matter and industrial waste
(Table 1). Thus, it can be concluded that the river water is not fit for use in household
activities and industrial purposes without treatment. Iron forms several sulfides in nature,
such as pyrite (FeS2), marcasite (FeS2), pyrrhotite (Fe11S12), troilite (FeS), and numerous
other more complex compounds. Iron exists naturally in rivers; it may also be released to
water from natural geologic deposits. Iron at average temperature is usually deposited from
solutions such as hydrous sesquioxide, carbonates, sulfides or hydrous silicates of iron and
potash known as glauconite. Anthropogenic sources such as untreated industrial effluents,
improper disposal of domestic waste, and agricultural runoff are the main contributors to
iron pollution in the Pasur River.

Manganese is an essential natural element in surface water but may adversely affect
aquatic ecosystems [48]. The manganese concentration should be below about 0.1 mg/L
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according to the WHO and Bangladeshi standards for water. The average manganese
concentration in the study area was 0.66 mg/L. The median value was 0.68 mg/L, and
consequently much higher than recommended standards (Figure 2a). The maximum and
minimum manganese concentration in the study area was 1.41 and 0.19 mg/L at sampling
points PS-11 and PS-10, respectively (Table 1). The concentration of metals in the water
of the Pasur River is compatible with that of surface water of other aquatic systems in
Bangladesh and worldwide [29,49–51]. The manganese concentration in the Pasur River
is alarming for aquatic environments, most likely caused by dissolved, suspended solids
and industrial waste. Manganese sources can be geogenic or anthropogenic. Manganese
forms two sulfides, alabandite (MnS) and hauerite (MnS2). Both minerals are scarce and
so unstable that they rapidly oxidize on exposure. Alabandite is the less rare form and
usually occurs as a subordinate constituent of metalliferous veins or allied deposits. The
anthropogenic sources of Mn are industrial effluents, runoff from agricultural activities,
and uncontrolled release or leakage from landfill sites. The Sela River at Sundarbans
area, an ecologically important river like the Pasur River, has drawn global attention after
an oil spill accident in December 2014, when about 94,000 gallons of heavy fuel were
released into the river, causing instant damage to the mangrove habitat and wildlife. Thus,
chemical accidents or disasters in adjacent rivers are also sources of physicochemical and
toxicological pollution.

3.2. Water Quality Indices

The water quality indices in the analyzed water were expressed by box plots. The
three water quality indices are shown in Figure 2b. The WQI was within the range of
391–1336. The median was 725 (Figure 2b) and greatly exceeded the maximum limit of
300, which indicates the pollution status of grade 5. Thus, water in all locations falls under
the “very poor water” and “likely not suitable for drinking purposes” categories. The
highest WQI was found at PS-11 (Table 2). The metal contamination in this location is very
high, which is a major concern. The high WQI in the study area is due to both geogenic
sources of pollutants and discharge of municipal wastewater and industrial effluents,
fishing boats, agricultural runoff, loading–unloading, and construction activities in the
Mongla seaport area.

The CPI was applied to understand the overall status of Pasur River water pollution.
This varied between 6.7–23.1, with an average of 12.8 (Table 2), and a median of 12.1
(Figure 2b). The median CPI (12.1) indicates high pollution levels. All sampling locations
exceeded the maximum limit of ≥2.0, indicating Category 5 and heavy pollution. The
highest CPI was recorded at PS-3. The reason is discharge of domestic waste, sewerage,
and septic waste. At the same time, metals are generated from garages, vehicle battery
maintenance shops, and other adjacent industries.

To assess and evaluate the combined effects of metals, MI was used. The MI ranged
from 7.2–23 with a median of 13 (Figure 2b). The median exceeded the maximum limit of 1
(MI > 1 is a threshold of warning). All sampling locations were clearly above the maximum
limit of >6.0 (class-VI, seriously affected). Highest MI was found at PS-11 (Table 2).

The source of metals may be anthropogenic or geogenic. Anthropogenic sources of
metal contamination are probably due to industrial wastewater from workshops and garages,
vehicle batteries, paints and pigment, fishing boats, fuel stations, and agrochemicals.

3.3. Spatial Distribution of Water Quality Indices

GIS analysis was applied to improve the understanding of the spatial distribution of
the different water quality indices (WQI, CPI, and MI) (Table 2). The QGIS (version 2.18.2)
was used for this purpose [52]. The distribution maps, thus, show the concentration
variation of water quality parameters within the region. Lower values of quality indices
are represented by light red color while deep red indicates a polluted area (Figures 3–5).
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Table 2. Water quality index (WQI), Comprehensive Pollution Index (CPI), Metal Index (MI), and
pollution status.

Sample ID WQI CPI MI Pollution Level

PS-1 466.4 10.80 8.93 High
PS-2 746.6 13.72 14.30 High
PS-3 638.8 23.13 11.23 High
PS-4 466.1 7.62 8.37 High
PS-5 744.8 12.73 14.00 High
PS-6 440.2 9.65 8.50 High
PS-7 826.5 16.58 14.77 High
PS-8 750.6 14.46 13.67 High
PS-9 391.3 9.64 7.23 High

PS-10 399.9 15.99 9.33 High
PS-11 1336.1 17.24 23.27 High
PS-12 875.6 12.09 16.33 High
PS-13 1008.1 13.96 18.40 High
PS-14 447.9 6.71 8.20 High
PS-15 706.1 11.82 13.00 High
PS-16 967.9 14.39 17.43 High
PS-17 807.5 10.82 15.20 High
PS-18 808.9 12.13 15.20 High
PS-19 582.9 10.05 10.90 High
PS-20 641.9 11.65 11.83 High

Average 702.7 12.76 13.0 High

Figure 3. Spatial distribution of Water Quality Index (WQI).

The spatial variation of WQI is shown in Figure 3. The WQI ranged from 391 to 1336,
calculated using pH, TDS, chloride, total hardness, TSS, Fe, and Mn. It can be concluded
that the southeast part of the study area had the highest values. The sampling points were
close to the Mongla Seaport associated with intense urban activities, including trunk roads
with many landfills, garbage dumps, and municipal waste. Probably these are the primary
pollution sources responsible for increasing the pollution and hence WQI. The lowest WQI
was at the center of the area and decreasing when moving from south to north. High WQI is
probably related to domestic waste, effluents from industry and nearby local markets, and
agricultural runoff. Tidal processes and rainy period stormwater runoff are likely important
for the transport characteristics of WQI pollutants. Runoff can also wash away topsoil
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particles and contribute to riverbank erosion. As the flow rate increases, resuspension can
mobilize bottom sediments, further raising TSS concentrations.

Figure 4. Spatial distribution of Comprehensive Pollution Index (CPI).

Figure 5. Spatial distribution of Metal Index (MI).

The spatial distribution of CPI is shown in Figure 4. The trend of CPI distribution is
somewhat similar to the distribution for WQI. The CPI gradually decreases from south
to north in the study area. Highest CPI was found in the south and south-eastern parts,
whereas the north region is associated with low CPI (Figure 4). The sites with high pollution
load are densely populated urban areas including a trunk road, bazaars, shops, car washing
garages, and many small and heavy industries situated beside the bank of Pasur River. The
pollution from industrial effluents, urban and agricultural waste, municipal and household
waste in some rivers in Bangladesh has reached alarming levels. High water temperature
and hardness increase the heavy metal toxicity.
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The spatial variation of MI is shown in Figure 5. The spatial distribution indicates a
trend with increasing concentrations from north to south. The southern study area thus
indicates higher pollution pressure (Figure 5). The southern region is close to Mongla
Seaport and urban areas with heavy industries. The highest value of MI was found in
sampling location PS-11, which is closely associated with the Mongla seaport area. Many
ships gather here for extensive loading and unloading activities. This may be the probable
reason for higher metal pollution at this site. The MI index exceeded the standard limit
(MI > 1) for all sampling points. Thus, it can be concluded that the entire study area
is seriously threatened by metal pollution. Rivers transport large amounts of domestic
sewage, industrial wastewater, and seasonal runoff from agricultural fields. The high
MI is probably due to industrial, seaport, and construction activities, fishing boats, and
domestic waste.

3.4. Multivariate Analysis
3.4.1. Pearson’s Correlation Matrix

Pearson correlation was used to study relationships between surface water contami-
nants with significance levels at p < 0.01 and p < 0.05 [53–55]. Table 3 presents the Pearson
correlation for physicochemical parameters. Parameters that correlated positively with
one another included Mn with Fe (r = 0.757), p < 0.01); total hardness (TH) with alkalinity
(r = 0.739, p < 0.01) and TDS (r = 0.992, p < 0.01), and TDS with alkalinity (r = 0.735, p < 0.01).
TSS was moderately correlated with Fe (r = 0.483) and chloride was moderately related
to Fe (r = 0.641, p < 0.05). Higher correlation between variables may indicate common
sources, mutual dependence, and similar or nearly identical metal accumulation properties
in surface water.

Table 3. Pearson’s correlation matrix.

Parameter Temp. pH TH TDS TSS Chloride Alkalinity Fe Mn

Temp. 1
pH 0.344 1
TH 0.104 0.292 1
TDS 0.137 0.365 0.992 ** 1
TSS −0.259 −0.097 −0.022 −0.021 1

Chloride 0.068 0.328 0.32 0.287 0.165 1
Alkalinity 0.015 −0.062 0.739 ** 0.735 ** −0.159 −0.123 1

Fe 0.127 0.2 0.133 0.146 0.483 * 0.391 −0.205 1
Mn 0.239 0.391 0.226 0.236 0.17 0.641 ** −0.227 0.757 ** 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

The strong correlation between total hardness with alkalinity indicates a common
source of contamination. Hardness is mainly caused by calcium and magnesium salts.
These salts are dissolved from geologic deposits through which water travels. Most alka-
linity in surface water comes from calcium carbonate, CaCO3, being leached from rocks
and soil. The anthropogenic sources for both are industrial effluents, municipal wastewater
discharge, or excessive application of lime to the soil in agricultural areas. The strong
correlation between TDS and alkalinity indicates a similar source. TDS in surface water
may come from agricultural and residential (urban) runoff, leaching of soil contamination,
and point source water pollution discharge from industrial or sewage treatment plants.

Fe and Mn were strongly correlated. Both have a similar geogenic source. Carbonates
of Fe and Mn are isomorphous with each other, hence a possible cause of their association,
such as is seen in almost all manganiferous spathic iron ores, whether these ores are formed
by direct precipitation or by replacement of carbonate of lime. The oxidation of such a
mixture would give a combined iron and manganese ore of the common form. Common
anthropogenic sources of Fe and Mn are industrial effluents and local urban wastewater
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discharge. TSS did not show a strong correlation with any variable. Thus, the source is
probably different as compared to other pollutants.

3.4.2. Principal Component Analyses

The sources of pollutants were further investigated using PCA and HCA. The results
of the PCA are shown in Table 4. The total number of components (common factors) in
the PCA was determined based on the Kaiser criterion [56]. Under this criterion, the only
component with eigenvalues ≥ 1 should be accepted as a possible source of variance in
the data, with the highest priority ascribed to components with the highest eigenvector
sum. Scree plots were used to identify the number of PCs to be retained to comprehend the
underlying data structure [57]. This indicated that the first three components capture the
most significant variation in the data. Thus, three PCs were extracted. The eigenvalues for
these PCs ranged from 1.16 to 3.29, explaining 76.1% of the total variance. PC 1, PC 2, and
PC 3 explained 36.6, 26.6, and 12.8% of the total variance, respectively (Table 4).

Table 4. Results of principal component analysis.

PC 1 PC 2 PC 3

Temperature 0.57 0.10 0.24
pH 0.48 0.10 −0.70
TH 0.81 −0.54 0.06
TDS 0.81 −0.54 0.02
TSS 0.14 0.43 0.63
Chloride 0.63 0.38 −0.22
Alkalinity 0.38 −0.83 0.25
Fe 0.59 0.63 0.30
Mn 0.70 0.59 −0.12
Eigen values 3.29 2.40 1.16
% of variance 36.59 26.65 12.84
Cumulative % 36.59 63.23 76.07

PC 1, accounting for 36.6% of the total variance, had positive loadings for all parame-
ters but especially high loading for total hardness, TDS, Mn, and chloride (r = 0.63–0.81),
and moderately associated with pH, alkalinity, temperature, and Fe. The Pearson correla-
tion matrix showed that total hardness was strongly correlated with TDS. These pollutants
have similar geogenic and anthropogenic sources such as untreated industrial effluents,
agricultural runoff, municipal waste, and landfills from nearby urban areas. PC 2 was
strongly associated with Fe, Mn, and TSS also confirmed from the correlation matrix. The
strong association between Fe and Mn indicates that similar sources are at hand. PC 3 had
high association with TSS and pH (Table 4).

3.4.3. Hierarchical Cluster Analysis (HCA)

The HCA was based on Ward’s method with squared Euclidean distance [58,59]
and performed on standardized data based on the three PC scores outlined above. The
20 samples were classified into four distinct groups, clusters A, B, C, and D. The average
concentration of each cluster group is shown in Table 5. The table shows that cluster A
was not strongly related with any parameters. Cluster B was related to high TSS, Fe, and
Mn. Cluster B contained higher indices values (WQI, CPI, and MI) than cluster A and D.
Cluster C and D, in which only one sample was classified of each. High TSS, pH, chloride,
Fe, and Mn were classified in cluster C. Cluster C was ranked as the most polluted area
among the four clusters with respect to WQI, CPI, and MI. Cluster D was related to pH,
TDS, and chloride. This cluster’s WQI, CPI, and MI values were lower than cluster B and
C but higher than cluster A. The decreasing order of indices was cluster C > cluster B >
cluster D > cluster A (Table 5). Thus, cluster C was most polluted, and cluster A the least.
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Table 5. Average concentration of water quality parameters in each cluster group.

Cluster A Cluster B Cluster C Cluster D

No. of samples 5 13 1 1
Temperature

(◦C) 26.2 29.34 29.67 31.0

pH 8.71 8.71 8.97 8.8
TH (mg/L) 67.92 109.74 173.47 472.64
TDS (mg/L) 140.56 224.19 326.18 892.27
TSS (mg/L) 516.65 813.36 926.84 652.45

Chloride (mg/L) 208.49 212.10 708.93 368.87
Alkalinity

(mg/L) 92.66 94.5 67.67 165.33

Fe (mg/L) 1.26 2.11 2.75 1.72
Mn (mg/L) 0.40 0.71 1.41 0.61

WQI 442.4 758.8 1336.1 641.9
CPI 8.88 14.0 17.2 11.7
MI 8.25 14.14 23.3 11.8

The scatter plot of the 20 samples described by principal components (A: PCs 1 and 2;
B: PCs 1 and 3; C: PCs 2 and 3) and classified into four clusters is shown in Figure 6. If a PC
score is greater than 0, the water quality parameter characteristics influence the component
at the site. Conversely, if a PC score is less than 0, it means that the component was not
significantly affected by the water chemistry at the site [60,61]. In PC 1, cluster C and
D are separated from cluster A, and B. PC 1 has smaller scores for cluster A indicating
that it had less concentration of the quality parameters than cluster B, C, and D. Thus,
it can be confirmed that samples of cluster A were less polluted than others. Cluster B
contained higher PC 1 scores than cluster A. In addition, due to positive PC 2 scores of
cluster B compared to cluster A, samples of this cluster had a higher concentration of water
quality parameters than cluster A. The higher concentrations are due to geogenic and
anthropogenic sources such as untreated industrial wastewater, domestic and municipal
wastewater discharge from the urban areas, and agricultural runoff. Both cluster C and
the majority sample of cluster B showed a positive score for PC 1 and 2, indicating that
both clusters contained high concentration pollutants from industrial, agricultural, and
urban areas. This is also confirmed from the average WQI, CPI, and MI value of Table 5.
Both cluster C and cluster B showed positive scores for PCs 1 and 2, but cluster C was
more affected than cluster B (Figure 5). PC 3 revealed that cluster B is significantly more
influenced than cluster D. Thus, the sample of cluster B was more affected and polluted
than cluster D.

The spatial distribution of each cluster can be observed in Figure 7. Cluster C is
generally located nearer the Sundarban mangrove forest in the west part of the study area
and the southeast region in the urban area. Cluster C is the study area’s most contaminated
sampling point containing the highest metal contamination and water quality indices (WQI,
CPI, MI). The location of cluster C is associated with Mongla Seaport. Many ships and
vessels are taking part in loading and unloading activities for different types of goods.
Sometimes they discharge waste, including used oil and oily substances, coal, asbestos,
and chemicals directly into the river. The high TSS may come from local bazaars in urban
areas and municipal wastewater and landfills.

Cluster B is located south to north at different study area sites (Figure 7). The samples
of this cluster contained high metal concentrations and high water quality indices (WQI,
CPI, MI), indicating a metal contamination area. The contamination of this area is higher
than for cluster D and cluster A. Sample of cluster D is in the southeast region and near
the residential area. The sample of these points contained high calcium and magnesium
carbonates, bicarbonates and sulfates, and combined content of all inorganic and organic
substances present in a liquid in molecular, ionized, or micro-granular (colloidal sol)
suspended form. For this reason, it contains the highest value of total hardness and TDS.
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The source of these pollutants is agricultural runoff and residential (urban) runoff. This
area had high metal contents and TSS.

Figure 6. Scatter plots for two principal components with respect to clusters; (A) PCs 1 and 2, (B) PCs
1 and 3, and (C) PCs 2 and 3.

Figure 7. Distribution of each cluster in the study area.

All cluster A samples are in the southeast area but far from cluster C. Samples of
cluster A contain the lowest value of metals and other physicochemical parameters. Thus,
these samples were less polluted than other clusters. To conclude, this study shows that
the pollution level of the study area is divided into four main areas.
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4. Conclusions

Rivers are essential sources of water supply for humans and environment with critical
conditions for water quality. This study concluded that iron, manganese, total suspended
solids, chloride at some locations, and pH had much higher concentrations in the river
water than recommended by WHO and Bangladesh Environmental standards (DoE) and
thus are not safe for household use or aquatic ecosystems. We used water quality indices,
spatial distribution, and multivariate statistical analyses to evaluate the pollution level
and source determination. Multivariate analysis was used to improve the knowledge
regarding the source of pollution. Based on the PCA results, four distinct groups were
obtained by HCA. The concentration of different water quality parameters was different
regarding land use and the importance of the three PC scores. The cluster groups revealed
that the sample of cluster C was most polluted, and the samples of cluster A were the
least polluted in the study area. The severe enrichment of pollutants in this area is pri-
marily due to anthropogenic sources related to industrial, agricultural, urbanization, and
fishing activities.

Mongla Seaport Authority, Mongla Export Processing Authority, Mongla Municipal
Corporation, District Administration, and the Department of Environment can take the
initiative to protect the river water from pollution and untreated industrial and municipal
waste. Monitoring of coastal activities is essential to save the coastal ecosystems. This
monitoring system can give policymakers and stakeholders an interest in the coastal
environment and resources. A systematic and periodic inspection of each industry located
beside the river should be performed before certificates of compliances are issued by the
Department of Environment (DoE), Bangladesh. Short- and long-term scientific studies
should be immediately started to assess the impacts of industrial activities on coastal
water, soil, and fishery resources, as well as human health. Thus, this study recommends
that continuous monitoring of the pollution level of the Pasur River as well as adjoining
agricultural areas should be assessed regarding the risk for human health and ecosystems
in the vicinity of the river. To avoid and alleviate environmental contamination, effective
approaches for extracting harmful heavy metals from sewage and industrial effluents are
urgently needed before the effluent is released into the environment. As well, traditional
treatment techniques are necessary for water used for domestic purposes. Finally, public
awareness of the impacts and remedies of pollution should be raised so that they can play
a key role in pollution reduction.
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Abstract: Flooding area records have been available since 1993 in Japan; however, there have been no
studies that have utilised these records to elucidate urban pluvial flooding formation mechanisms.
Therefore, frequent urban pluvial flooding areas using 20 years of urban pluvial flooding area
records during 1993–2012 were identified and analysed using the principal component analysis of
their topographical characteristics in Osaka and Nagoya Cities, Japan. The results showed that
the topographical characteristics of the frequent urban pluvial flooding areas in both cities were
different, with particularly conflicting trends in principal component 1. Furthermore, the urban
pluvial flooding in Osaka City could not be described solely by topographical characteristics, and the
influence of anthropogenic factors such as dominant structures that may influence inundated water
flows in and around frequent urban pluvial flooding areas and stormwater drainage improvements
on the occurrence of urban pluvial flooding were shown to be influential. In addition, most of the
frequent urban pluvial flooding areas in Nagoya City were located on almost no gradient with a
slope of less than 1 degree, and thus, the mere presence of dominant structures around it would dam
up the inundated water and cause urban pluvial flooding. The results of this study quantitatively
showed the paradigm shift of urban pluvial flooding factors from topographical characteristics to
anthropogenic characteristics by the statistical analysis of newly defined urban pluvial flooding
frequency areas.

Keywords: frequent urban pluvial flooding; topographical characteristics; anthropogenic characteristics;
urbanisation; GIS; principal component analysis

1. Introduction

Urban flooding has had a strong negative impact on many cities around the world
for most of human history and certainly in recent decades [1–3]. More than half of the
global population lives in urbanised areas, and the frequency as well as the intensity of
hydro-meteorological extremes are on the rise [4,5]. Urban flooding is therefore likely
to cause greater losses in the coming decades. For example, urban flooding and associ-
ated property damage accounted for 73% of the total damage caused by flooding in the
USA from 1960 to 2016, amounting to USD 107.8 billion [6]. Of the total damage caused
by flooding in Japan’s three largest cities, namely Tokyo’s 23 wards, Osaka City, and
Nagoya City, from 2006 to 2013, 82% of the total damage was caused by urban pluvial
flooding [7]. Urban pluvial flooding is one of the typical urban floodings and flood damage
that occurs when rainwater is not discharged to mainstream or tributary rivers because rain-
fall exceeds the design capacity of a drainage facility. In recent years, severe urban pluvial
flooding has been caused by the reduction of rainwater soil penetration amounts because
of changes in land use and increased strong downpour occurrence frequency. Furthermore,
according to the IPCC assessment report [8], the risk of urban pluvial flooding in urban
areas will increase in the future as a result of increased strong downpours due to climate
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change. Therefore, it is important to clarify the characteristics of past urban pluvial flooding
areas in large cities and urbanising cities, where damage from urban pluvial flooding will
become more apparent in the future, and take efficient countermeasures against urban
pluvial flooding.

Managing urban flood risk is a high priority worldwide, as suggested by a large
number of cities, from all continents, taken as case studies in recent research papers
dedicated to urban flood modelling [9]. In Japan, it has become mandatory for local
authorities to publish urban pluvial flooding hazard maps as a measure against urban
pluvial flooding. On the other hand, the spatial and temporal characteristics of flooding
in urban areas are complex due to extensive changes to land use [10] that introduce
micro-urban features such as buildings, roads, and drainage networks [11,12], and most
inundation simulations cannot accurately simulate flooding in urban areas [13]. Thus,
flooding simulations using physical models represent the flooding mechanism through
known physical analyses. Therefore, if the unknown factors are mainly important for the
inundation mechanism, the accuracy will be low. On the other hand, the statistical analytical
approach is considered to be able to elucidate the distribution of areas where urban pluvial
flooding frequently occurs (hereafter referred to as frequent urban pluvial areas) based on
past flooding area records and to quantitatively evaluate their characteristics, including
unknown factors that cannot be considered in flooding simulations [14].

A statistical analytical approach has been greatly developed by utilising several ap-
propriate factors, such as bedrock geology, soil properties, land use, drainage networks,
road networks, building, and precipitation. Some previous studies have identified flood
mechanisms. For example, Fariza et al. (2019) used fuzzy multi-criteria decision making
(FMCDM) to assess urban flood risk levels in Sidoarjo, Indonesia [15]. Sato and Hayashi
(2014) used principal component analysis (PCA) to analyse the main topographic charac-
teristics of inundation in the Musashino Plateau of Tokyo and Saitama [16]. However, no
report of an earlier study describes the quantitative assessment of the universal character-
istics of flood-prone areas because they analysed areas where inundation has occurred at
least once [14], and most of the earlier studies were limited to case studies of one city or
one case study.

Djamres et al. (2021) identified the frequent urban pluvial flooding areas using seven
years of urban pluvial flooding area records during 2008–2015 and analysed, using the
PCA, their topographical characteristics in Tangerang, Indonesia [14]. Results showed
that frequent urban pluvial flooding areas in Tangerang emerged because of a slope in the
upstream condition, the correlation between concave and flow length conditions, the corre-
lation of the slope condition and distance to a river, and relationships among flow length
in upstream characteristics and distance to a pond. Furthermore, 29% of frequent urban
pluvial flooding areas had low topographical similarity because of anthropogenic factors
such as changes in overland flow directions due to the change of a slope in the upstream
condition by land-use change and trapping of flood water by “dominant structures” that
may influence inundated water flows in and around frequent urban pluvial flooding areas.
Mignot and Dewals (2022) argued that a particular impediment to progress in urban flood
modelling science is that the conclusions of most studies remain genuinely site-specific
formulations and that significant progress could be made by attempting to extract general
knowledge from the collection of existing case studies [9]. They also suggested that this
may be achieved by designing appropriate metrics for classifying and standardizing the
definition of flooding scenarios, investigated processes, and effects of analysed factors [9].
As the newly defined urban pluvial flooding frequency areas contain primary factors re-
lated to flooding mechanisms, statistical analysis of frequent urban pluvial flooding areas
may reveal previously unknown factors such as anthropogenic factors and their relative
influence on the flooding mechanism.

In Japan, flooding area records have been available since 1993, and
Kakehashi et al. (2014) [17] used these records to identify frequent river flooding ar-
eas throughout Japan and to elucidate their formation mechanisms. However, there have
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been no studies that have utilised these records for urban pluvial flooding. Therefore, the
objectives of this study were to identify the frequent urban pluvial flooding area using
these records for 20 years during 1993–2012 in Osaka and Nagoya Cities, the two cities
with the largest proportion of urban pluvial flooding damage from 2006 to 2013 [7], and
to analyse the topographical characteristics of frequent urban pluvial flooding areas and
their distribution at both cities by applying methods reported by Djamres et al. (2021) [14].
This study also aimed to elucidate anthropogenic characteristics of urban pluvial flood-
ing from the views of the location of “dominant structures” and the impact of drainage
system improvement.

2. Materials and Methods

2.1. Study Area

In this study, two cities, namely Osaka and Nagoya Cities in Japan, were selected as
the study area. The location and detailed information of the target cities in Japan are shown
in Figure 1 and Table 1. These cities were selected because their urbanised areas cover
more than 90% of the city area, while they have differences in urban population, urban area
population, and other factors related to the urban scale of the cities, and therefore, they
are suitable for this study to compare characteristics of urban pluvial flooding areas due
to differences in an urban scale. Furthermore, there were relatively more urban pluvial
flooding area records than in other cities, and it was thought that more reliable analysis
results could be obtained (in detail, see Section 2.2). In addition, the amount of capital
expenditure on sewerage projects in each city was large, and it was considered that cities
with larger investments in sewerage projects were more likely to have experienced more
urban pluvial flooding in the past (Table 1).

Figure 1. Location of the target cities in Japan and low-lying areas in the target cities. Low-lying
areas are classified by the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) as areas
where the elevation is lower than the surrounding [18].

Table 1. Detailed information on Osaka and Nagoya Cities.

Osaka City Nagoya City

Population (person) 2,717,000 2,311,000
Population density (person/km2) 12,000 7000

Urbanised area ratio (%) 93.9 92.6
Gross domestic product (trillion yen) 20.0 14.4
Urban pluvial flooding area records 155 1 302 1

Note: 1 In detail, see Section 2.2.
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The annual maximum one-hour rainfall data as short-time extreme rainfall causing
urban pluvial flooding in the study area for 20 years during 1993–2012 in Osaka and
Nagoya Cities are shown in Table 2. One-hour precipitation data from JMA AMeDAS
stations (Osaka: 34◦40.9′ N, 135◦31.1′ E; Nagoya: 35◦10.0′ N, 136◦57.9′ E) were used [19].
The average annual maximum one-hour rainfall was 33.2 mm in Osaka City and 39.4 mm
in Nagoya City, respectively. Above-average annual maximum one-hour rainfalls were
recorded seven times in Osaka and nine times in Nagoya, with no bias towards increased
annual maximum one-hour rainfall through the 20-year period 1993–2012.

Table 2. Annual maximum one-hour rainfall during 1993–2012 in Osaka and Nagoya Cities. The
shaded values are greater than the average for each city.

Rank

Osaka City Nagoya City

Date
Annual Maximum

One-Hour Rainfall (mm)
Date

Annual Maximum
One-Hour Rainfall (mm)

1 16:00 27 Aug. 2011 73 19:00 18 Sep. 2000 93
2 15:00 18 Aug. 2012 52 6:00 08 Oct. 2009 67
3 1:00 29 Aug. 1996 49.5 0:00 29 Aug. 2008 55
4 11:00 03 July 1995 45.5 0:00 28 July 1998 49.5
5 15:00 05 Aug. 1977 45.5 15:00 05 Sep. 2004 49.5
6 18:00 20 Oct. 2004 38 23:00 21 Aug. 1999 49
7 2:00 11 Aug. 1999 36 21:00 17 Sep. 1994 46.5
8 15:00 24 Sep. 2003 31 16:00 20 Sep. 2011 43.5
9 15:00 28 July 2008 30.5 18:00 25 July 1993 40.5
10 2:00 16 June 2010 29.5 14:00 20 July 2012 37
11 3:00 05 July 1993 28.5 5:00 23 Aug. 2007 33.5
12 15:00 30 Aug. 2005 27 5:00 11 July 1997 33
13 8:00 08 Sep. 1994 26.5 9:00 21 July 1995 28.5
14 5:00 13 July 2002 26.5 18:00 26 Aug. 2003 27
15 0:00 17 July 2007 26 9:00 06 Sep. 2002 26
16 22:00 16 May 1998 23 9:00 20 Aug. 2005 24.5
17 18:00 11 Sep. 2000 22 20:00 30 Aug. 2001 23.5
18 8:00 01 Oct. 2001 21 1:00 16 June 2006 23.5
19 6:00 19 July 2006 19 11:00 08 Sep. 2010 21.5
20 1:00 30 July 2009 13.5 6:00 09 May 1996 17

2.2. Identification of Frequent Urban Pluvial Flooding Areas

An example of a flooding area record in the case of urban pluvial flooding (urban
pluvial flooding area records) is shown in Figure 2. Flooding area records are produced
by each municipality as part of flood damage statistical surveys. Flooding area records
since 1993 are stored as image data (pdf format) by MLIT. In this study, a total of 457 urban
pluvial flooding area records for 20 years from 1993 to 2012 in Osaka and Nagoya Cities
were obtained from MLIT, and frequent urban pluvial flooding areas were identified.

To confirm the reliability of urban pluvial flooding area records in the study area, these
records were compared with the presence or absence of flood damage caused by urban
pluvial flooding in the flood damage statistics. It was confirmed that 89.5% of urban pluvial
flooding in Osaka City and 97.4% in Nagoya City were correctly recorded as the urban
pluvial flooding area records. Here, these ratios were calculated by dividing the number
of urban pluvial flooding area records by the number of urban pluvial flooding events
recorded in the flood statistics. The reason why the flood pluvial flooding area record did
not reach 100% might be that the flooding area record has been allowed not to record cases
where the flooded area was less than 1000 m2, and the number of flooded houses was less
than 10 [17]. Namely, it was possible that although urban pluvial flooding damage was
recorded in the flood damage statistics, flooding area was not recorded in the urban pluvial
flooding area record.
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Figure 2. An example urban pluvial flooding area record (in Japanese). The seven shaded areas
indicate the area where urban pluvial flooding occurred by Typhoon No. 17 on 22 September 1996.
The scale of the map is 1/2500.

These urban pluvial flooding area records for the 20 years from 1993 to 2012 in Osaka
and Nagoya Cities were input into GIS, and vector data were created for each year for
the identification of frequent urban pluvial flooding areas. The areas where urban pluvial
flooding occurred in Osaka and Nagoya Cities each year were converted into raster data of
10 m, 30 m, 50 m, 100 m, 200 m, and 400 m meshes. If even a small amount of urban pluvial
flooding occurred within a mesh, that mesh was regarded as having been subject to urban
pluvial flooding. The total years of urban pluvial flooding that occurred in each mesh over
the 20 years from 1993 to 2012 were calculated by adding up the raster data for each year.

2.3. Topographical Characteristics of Frequent Urban Pluvial Flooding Area
2.3.1. Topographical Factors

Referring to Djamres et al. (2021) [14], the topographical factors of each mesh in the
target city were quantified. The topographical factors used were “Elevation”, “Slope”,
“Depth of concave”, “Capacity of concave”, “Catchment area”, “Slope of upstream”, “Slope
of downstream”, “Difference of slope”, “Flow length of upstream”, “Flow length of down-
stream”, and “Difference of flow length”. The method used to create each topographical
factor is shown in Table 3. In this study, the 5 m mesh digital elevation model (DEM)
provided by the Geospatial Information Authority of Japan (2013) [20] was used as the
elevation data. This digital elevation model is produced based on Lidar data.

2.3.2. Visualisation of the Topographical Characteristics of Urban Pluvial Flooding

Based on Djamres et al. (2021) [14], it was attempted to identify areas with similar
topographical characteristics to those of frequent urban pluvial flooding areas as areas that
are strongly influenced by topographical factors of urban pluvial flooding, based on the
results of the PCA. First, from the principal component loadings evaluated in the PCA,
each principal component score for the whole area mesh of each city was calculated using
the following formula:

Pn(i,j) =
12

∑
m=1

(
am(i,j)·lm

)
(1)
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where Pn(i,j) is the principal component score of number n at mesh (i,j); am(i,j) is the
standardised value of factor m at mesh (i,j); and lm is the factor loading of factor m. To
assess similarity rates of topographical characteristics in frequent urban pluvial flooding
areas and other areas in the city, we computed the deviation value of the averaged principal
component score of urban pluvial flooding areas and scores of every mesh in the targeted
areas using the following formula:

H(i,j) =
4

∑
n=1

(∣∣∣Pn(i,j) − P′
n

∣∣∣·wn

)
(2)

where H(i,j) is the indicator of how similar topographical characteristics with frequent urban
pluvial flooding areas at mesh (x,y); Pn(i,j) is the principal component score of number n at

mesh (i,j); P′
n is the mean principal component score of number n in the frequent urban

pluvial flooding area; wn is the contribution rate of the principal component of number
n. In other words, the smaller H(i,j) is, the more the location has similar topographical
characteristics to the frequent urban pluvial flooding area, and the greater the influence of
topographical factors on urban pluvial flooding.

Table 3. The method used to create each topographical factor.

Topographical Factor Unit Methodology for Creating Dataset

Elevation m DEM is converted to raster data.
Slope % The slope at each mesh is calculated from “Elevation”.

Depth of concave m The area where the elevation is lower than the surrounding area and the contour lines
are closed is extracted as a concave area, and the depth and volume of the concave
area are calculated.Capacity of concave m3

Catchment area m2 Flow direction data are created from “Elevation”, and the area is calculated from the
number of meshes upstream of each mesh.

Slope of upstream % The average of the slope in the catchment area of each mesh is calculated.
Slope of downstream % The average of the slopes in the downstream channel of each mesh is calculated.

Difference of slope %
The difference between “Slope of upstream” and “Slope of downstream” at each mesh
is calculated.

Flow length of upstream m The length of longest upstream channel in each mesh is extracted from the flow
direction data.

Flow length of downstream m The length of the downstream channel to a sink or outlet of the catchment area in each
mesh is extracted from the flow direction data.

Difference of flow length m The difference between “Flow length of upstream” and “Flow length of downstream”
at each mesh is calculated.

3. Results

3.1. Identification of Frequent Urban Pluvial Flooding Areas

There are two points to consider in identifying frequent urban pluvial flooding areas:
the frequency and extent of urban pluvial flooding. First, the frequency of urban pluvial
flooding was examined. The relationship between the total years of urban pluvial flooding
and the number of urban pluvial flooding areas in the raster data for each mesh size is
shown in Table 4. The maximum total years of urban pluvial flooding in Osaka City and
Nagoya City was 5–7 years. It is natural that when the criterion for the total years of urban
pluvial flooding is small, areas that are not suitable for frequent urban pluvial flooding
areas are selected. However, when the criterion is too large, the number of identified urban
pluvial flooding areas becomes small, and it is not possible to obtain sufficient areas for
analysis. In this study, urban pluvial flooding areas were identified as areas where urban
pluvial flooding occurred more than four years (more than once every five years) in the
20 years from 1993 to 2012, considering more than half of the maximum total number of
years in Osaka and Nagoya Cities.
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Table 4. (a) The relationship between the total years of urban pluvial flooding and the number of
urban pluvial flooding areas in the raster data for each mesh size in Osaka City. (b) The relationship
between the total years of urban pluvial flooding and the number of urban pluvial flooding areas in
the raster data for each mesh size in Nagoya City.

(a)

Osaka City

Total Years of Urban Pluvial
Flooding (Year)

Mesh Size

10 m 30 m 50 m 100 m 200 m 400 m

1 38,687 7648 4089 1879 898 337
2 3820 1082 692 462 323 210
3 645 261 189 138 116 99
4 70 36 45 49 42 45
5 4 8 10 20 23 18
6 1 1 4 5
7 2

More than 4 74 45 55 70 69 70

(b)

Nagoya City

Total Years of Urban Pluvial
Flooding (Year)

Mesh Size

10 m 30 m 50 m 100 m 200 m 400 m

1 632,915 73,366 27,436 7406 2093 542
2 102,193 13,330 5540 1920 743 303
3 11,737 1931 929 435 261 161
4 1243 256 153 83 54 51
5 172 35 22 16 17 19
6 39 16 12 9 5 6
7 1 2

More than 4 1454 307 187 108 77 78

Next, the mesh size of frequent urban pluvial flooding areas was examined. In Table 4b,
the number of frequent urban pluvial flooding areas in Nagoya City decreased as the mesh
size increased in terms of the reference total years (more than four years) of frequent urban
pluvial flooding. This could be since large urban pluvial flooding areas that were duplicated
and over-accounted for in smaller meshes were accounted for as a single area when the
mesh size increased. Furthermore, this was also considered to be since some urban pluvial
flooding areas that were closely located were accounted as one area with increasing the
mesh size. On the other hand, in Osaka City, the number of identified frequent urban
pluvial flooding areas increased when the mesh size was larger than 30 m and was almost
the same when the mesh size was larger than 100 m (Table 4a). This suggested that the
urban pluvial flooding areas in Osaka City were smaller and less closely located than in
Nagoya City and that a mesh size of 100 m or larger would enable the frequent urban
pluvial flooding areas to be identified.

Since the objective of this study is to elucidate the specific distribution of frequent
urban pluvial flooding areas and their topographical characteristics, the smaller the mesh
size to be identified, the better. It is considered that the applicable mesh size to be identified
was about 30 m mesh because the flooding area record has been allowed not to record cases
where the flooded area was less than 1000 m2, and the number of flooded houses was less
than 10 [17], as mentioned above. However, the urban pluvial flooding area record has been
produced manually, and some errors may be included between the actual urban pluvial
flooding area and its record. For example, a discrepancy of about 1 m to 50 m between
them was recognised in the field survey, and if the mesh size was too small, the frequent
urban pluvial flooding area could not be identified properly because flooded areas that
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occurred at the same location might be accounted for separately. Therefore, the mesh size
was set to 100 m × 100 m in this study.

The frequent urban pluvial flooding areas in Osaka and Nagoya Cities identified
according to the above-mentioned identifications are shown in Figure 3. In total, 70 frequent
urban pluvial flooding areas were identified in Osaka City and 108 in Nagoya City. The
proportion of frequent urban pluvial flooding areas in the area of each city was 0.34% in
Osaka City and 0.33% in Nagoya City.

Figure 3. The distribution of frequent urban pluvial flooding areas (red circle) in (a) Osaka City and
(b) Nagoya City.

3.2. Topographical Characteristics of Frequent Urban Pluvial Flooding Areas
Principle Component Analysis (PCA) of Topographical Characteristics

The PCA of frequent urban pluvial flooding areas on topographical characteristics
was performed using the topographical factors quantified in the previous chapter. Detailed
results are shown in Table 5. The principal components with eigenvalues exceeding 1 were
up to the fourth principal component (PCs) in both cities, with cumulative contribution
rates of 85.7% for Osaka City and 88.6% for Nagoya City. This indicated that the topo-
graphical factors used in this study were appropriate for describing frequent urban pluvial
flooding areas.

In Osaka City, the first principal component (PC1) accounted for 34.3% of the total vari-
ance. The factors that correlated the most with the PC1 were “Slope upstream” (0.404) and
the difference of slope (0.390) in positive values. One can infer that frequent urban pluvial
flooding areas had an upstream slope that was higher than the downstream slope. Principal
component 2 (PC2) was negatively correlated with “Slope of downstream” and “Difference
of flow length” and positively correlated with “Flow length of downstream”. Therefore,
PC2 was considered to be the component that aggregates the downstream situation, and
one can conclude that frequent urban pluvial flooding areas had a downstream slope
gentler than upstream, downstream flow length longer than upstream, and the location at
a low elevation. In contrast, the third component (PC3) showed strong positive correlations
with “Flow length of upstream” and “Catchment area”. Therefore, PC3 was considered
to be the component that aggregates the upstream situation. Principal component 4 (PC4)
had negative correlations with “Depth of concave” and “Capacity of concave” and a pos-
itive correlation with “Slope of downstream”. Therefore, PC4 was considered to be the
component that aggregates the concave situation.

174



Water 2022, 14, 2795

Table 5. (a) The PCA result for Osaka City. The shaded values are the factors that correlated the
most in each PC. “-” indicates that no topographical factors in the principal components satisfied the
95% confidence interval. (b) The PCA result for Nagoya City. The shaded values are the factors that
correlated the most in each PC.

(a)

Factor Loading PC1 PC2 PC3 PC4

Standard deviation (eigenvalue) 1.94 1.63 1.39 1.04
Contribution ratio 0.343 0.241 0.176 0.098

Cumulative contribution ratio 0.343 0.584 0.759 0.857

Elevation 0.373 −0.017 −0.016 0.162
Slope 0.354 −0.387 - 0.008

Depth of concave −0.278 −0.311 −0.051 −0.539
Capacity of concave −0.308 −0.331 −0.049 −0.401

Catchment area −0.027 0.060 0.683 0.018
Slope of upstream 0.404 −0.295 0.102 −0.212

Slope of downstream 0.213 −0.435 −0.043 0.391
Difference of slope 0.390 −0.210 0.125 −0.337

Flow length of upstream −0.070 0.014 0.687 −0.018
Flow length of downstream 0.310 0.409 0.045 −0.333

Difference of flow length −0.319 −0.389 0.163 0.315
(b)

Factor Loading PC1 PC2 PC3 PC4

Standard deviation (eigenvalue) 1.93 1.77 1.34 1.05
Contribution ratio 0.338 0.285 0.164 0.100

Cumulative contribution ratio 0.338 0.623 0.786 0.886

Elevation −0.387 0.193 0.078 −0.249
Slope −0.366 0.195 −0.297 −0.322

Depth of concave 0.352 −0.172 −0.126 −0.581
Capacity of concave 0.383 −0.120 −0.131 −0.547

Catchment area −0.147 −0.463 0.201 −0.073
Slope of upstream −0.434 −0.217 −0.025 −0.172

Slope of downstream −0.317 0.200 −0.416 −0.180
Difference of slope −0.349 −0.309 0.128 −0.118

Flow length of upstream −0.104 −0.495 0.212 −0.040
Flow length of downstream −0.054 0.206 0.647 −0.271

Difference of flow length −0.012 −0.443 −0.422 0.204

In Nagoya City, PC1 had negative correlations for all factors except “Depth of concave”
and “Capacity of concave”, showing the opposite trend to that of Osaka City. PC2 was
negatively correlated with three factors: “Flow length of upstream”, “Catchment area”, and
“Difference of flow length”. Therefore, PC2 was considered to be the component that aggre-
gates the upstream situation and the factors related to the flow channel. PC3 had a strong
positive correlation with “Flow length of downstream” and negative correlations with
“Slope of downstream” and “Difference of flow length”. Therefore, PC3 was considered to
be the component that aggregates the downstream situation. PC4 had negative correlations
with “Depth of concave” and “Capacity of concave”, as did Osaka City. The results of
the PCA for Osaka and Nagoya Cities showed that the topographical characteristics of
the frequent urban pluvial flooding areas in both cities were different, with particularly
conflicting trends in PC1.

The distribution of H(i,j) and the urban pluvial flooding areas of each city is shown
in Figure 4. Many urban pluvial flooding areas were located in areas with small H(i,j),
which has similar topographical characteristics to the frequent urban pluvial flooding areas.
On the other hand, especially in Osaka City, the urban pluvial flooding areas were also
distributed in areas with relatively large H(i,j), which do not have similar topographical
characteristics to the frequent urban pluvial flooding areas. This suggested that factors
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other than topographical characteristics that caused urban pluvial flooding were largely
responsible for such areas in many parts of Osaka City and some parts of Nagoya City.

Figure 4. The distribution of H(i,j) and the urban pluvial flooding areas (light blue dot) in
(a) Osaka City and (b) Nagoya City.

In addition, the average H(i,j) in the inundated areas by urban pluvial flooding from
1993 to 2012 (areas shown in the light blue dot in Figure 4) was calculated to be 3.26 in
Osaka City and 2.81 in Nagoya City. This suggested that the distribution of urban pluvial
flooding areas in Nagoya was better described by topographical characteristics than in
Osaka City. Furthermore, the average H(i,j) for the whole area of each city, which was 2.64
in Osaka City and 3.18 in Nagoya City, was smaller in Osaka City than the average H(i,j)
for the inundated area. This indicated that the urban pluvial flooding in Osaka City could
not be described solely by topographical characteristics.

3.3. Other Characteristics of Frequent Urban Pluvial Flooding Areas
3.3.1. Impact of Structures in Frequent Urban Pluvial Flooding Areas

Referring to Djamres et al. (2021) [14], the location of “dominant structures” was
examined as another characteristic of these areas. Here, “dominant structures” are roads
that divide sewers, railway lines (excluding subways and elevated lines), embankments,
and structures with a site of more than 100 m per side. In addition, a road dividing a sewer
is not a road with a sewer pipe buried directly under the centre of the road but a road with
a sewer pipe buried under each side of the road. These are roads with a median strip or
large road widths, such as dual carriageways in one direction, which were included in the
analysis in this section because they influenced the flow of water.

Frequent urban pluvial flooding areas were classified according to the relationship
between the location of “dominant structures” and the direction of inclination to “dominant
structures”. A conceptual diagram of the classification conditions and the proportions
of the classified frequent urban pluvial flooding areas are shown in Figure 5 and Table 6.
Figure 5a,d,g,h (the red line enclosure in Figure 5) show areas where “dominant structures”
were located in the direction of inclination (direction of inundated water flow). In Osaka
City, there were 90% of the total frequent urban pluvial flooding areas in which one or more
“dominant structures” existed within 8 mesh around the area. Of the frequent urban pluvial
flooding areas with “dominant structures” within 8 mesh of the perimeter, 74% of the areas
had “dominant structures” in the direction of inundated water flow (Figure 5a,d,g,h).
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Figure 5. A conceptual diagram of the classification conditions of the classified frequent urban pluvial
flooding areas. (a–h) are areas where “dominant structures” were located within 8 mesh around
the urban pluvial flooding area, while (i,j) are areas where “dominant structures” were not located
within 8 mesh around the urban pluvial flooding area. (h) is the area where “dominant structures”
were located in three directions around the frequent urban pluvial flooding area, and “dominant
structures” were located in the front of the slope direction. The red line enclosure are areas where
“dominant structures” was located in the direction of inclination (direction of inundated water flow).

Table 6. The proportions of the classified frequent urban pluvial flooding areas in Figure 5. The grey
values are areas where “dominant structures” were located in the direction of inundated water flow.

Classified Frequent Urban Pluvial
Flooding Areas in Figure 5

Osaka City Nagoya City

(a) 29% 14%
(b) 7% 21%
(c) 3% 19%
(d) 20% 4%
(e) 9% 6%
(f) 4% 2%
(g) 1% 1%
(h) 17% 0%
(i) 9% 22%
(j) 1% 11%

Total 100% 100%

In Nagoya City, there were 67% of the all-frequent urban pluvial flooding areas in
which one or more “dominant structures” existed within 8 mesh around the area. Of the
frequent urban pluvial flooding areas where “dominant structures” existed within 8 mesh
of the perimeter, 28% of the areas had “dominant structures” in the direction of inundated
water flow (Figure 5a,d,g,h).

A comparison of the results for Osaka and Nagoya Cities showed that the proportion
of frequent urban pluvial flooding areas with “dominant structures” in Nagoya City was
smaller than that in Osaka City, and in particular, the proportion of frequent urban pluvial
flooding areas with “dominant structures” in the direction of the inundated water was
much smaller. Therefore, the distribution of elevation and slope in frequent urban pluvial
flooding areas in Osaka and Nagoya Cities was calculated based on the assumption that
the topographical differences in frequent urban pluvial flooding areas might influence
the characteristics of frequent urban pluvial flooding areas in both cities. The average
elevation of the frequent urban pluvial flooding areas was 3.30 m in Osaka City and
3.61 m in Nagoya City, respectively. Although the elevation was higher in Nagoya City,
there was no significant difference. On the other hand, the average slopes of all frequent
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urban pluvial flooding areas in Osaka City and Nagoya City were 2.20% and 0.33%, respec-
tively, indicating that the slopes of the frequent urban pluvial flooding areas in Nagoya
City were much smaller than those in Osaka City. The frequency distribution of slopes at
the frequent urban pluvial flooding areas in Osaka and Nagoya Cities is shown in Figure 6.
Most of the frequent urban pluvial flooding areas in Nagoya City were located on almost no
gradient with a slope of less than 1 degree. It was inferred that in such areas, regardless of
the location of “dominant structures”, the mere presence of “dominant structures” around
it would dam up the inundated water and cause urban pluvial flooding. In addition, this
was considered to be one of the reasons why “Slope” and “Slope of upstream” were not
correlated as PCs in the PCA as the topographical characteristics of the frequent urban
pluvial flooding area in Nagoya City described in the previous section.

3.3.2. Impact of Drainage System Improvements in Frequent Urban Pluvial Flooding Areas

To examine the impact of the improvement of drainage systems as another characteris-
tic of frequent urban pluvial flooding areas, the occurrence trends of urban pluvial flooding
in the urban pluvial flooding areas of Osaka and Nagoya Cities were investigated. The
difference in urban pluvial floodings between the first 10 years (1993–2002) and the second
10 years (2003–2012) of the 20 years (1993–2012) is shown in Figure 7. Of the areas classified
as green (1993–2002), 64 (91%) were in Osaka City compared with 8 (7%) in Nagoya City.
On the other hand, red areas (2003–2012) were only 1 (1%) in Osaka City compared with
56 (52%) in Nagoya City. In addition, blue areas (1993–2012) were also only 5 (7%) in
Osaka City compared with 44 (41%) in Nagoya City.

Figure 6. The frequency distribution of slopes at the frequent urban pluvial flooding areas in Osaka
and Nagoya Cities.
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Figure 7. The difference in urban pluvial floodings between the first 10 years (1993–2002) and the
second 10 years (2003–2012) of the 20 years (1993–2012) in (a) Osaka City and (b) Nagoya City. The
differences of 2 or more are shown in red, −1 to 1 in blue, and −2 or less in green. Red indicates areas
where urban pluvial flooding occurred more frequently in the second 10 years, blue indicates areas
where urban pluvial flooding occurred continuously throughout the 20 years, and green indicates
areas where urban pluvial flooding occurred more frequently in the first 10 years.

Regarding the improvement of drainage systems, in Osaka City, the Naniwa Under-
ground Discharge Channel (total length of 12.2 km), a large-scale drainage system to drain
rainwater from the south-eastern area of Osaka City into the Sumiyoshi River, began to
be constructed in 1984 and was completed in 2000, following the large-scale urban pluvial
flooding caused by Typhoon No. 19 in September 1979 and Typhoon No. 10 in August 1982.
As a result of such progress made in countermeasures against urban flooding, it can be
inferred that urban pluvial flooding ceased to occur in frequent urban pluvial flooding
areas during 2003–2012. On the other hand, Nagoya City, which is on a smaller urban
scale than Osaka City, has been implementing emergency drainage system improvements
in response to the large-scale urban pluvial flooding caused by the torrential rains of
September 2002 and September 2006. However, it was found that most of the frequent ur-
ban pluvial flooding areas during 2003–2012 were located in areas where the improvement
had not yet been completed (Figure 8). These results indicated that anthropogenic factors
such as “dominant structures” and drainage system improvements influence the occurrence
of urban pluvial flooding as characteristics other than topographical characteristics.
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Figure 8. Urban flood management plan in Nagoya City (Progress as at the end of 2015) [21].

4. Discussion and Summary

This study clarified the distribution of frequent urban pluvial flooding areas in Osaka
and Nagoya Cities by using urban pluvial flooding area records. The identified frequent
urban pluvial flooding areas were 70 in Osaka City and 108 in Nagoya City, and their
proportion to the area of each city was 0.34% in Osaka City and 0.33% in Nagoya City.
Analyses of their characteristics revealed the following:

• The PCA of frequent urban pluvial flooding areas using the eleven topographical
factors showed high cumulative contribution rates for Osaka and Nagoya Cities,
which indicated that the topographical factors used in this study were appropriate for
describing frequent urban pluvial flooding areas. The results of the PCA quantitively
showed that the topographical characteristics of the frequent urban pluvial flooding
areas in both cities were different.

• Using the results of PCA of topographical characteristics in the frequent urban pluvial
flooding area, the similarity with these topographical characteristics at a 100 m mesh
scale in both cities was quantified. Although many urban pluvial flooding areas
were located in areas with similar topographical characteristics, especially in Osaka
City, the urban pluvial flooding areas were also distributed in areas without similar
topographical characteristics. This suggested that factors other than topographical
characteristics that caused urban pluvial flooding were largely responsible for such
areas in many parts of Osaka City and some parts of Nagoya City.

• Anthropogenic factors such as “dominant structures” and drainage system improve-
ments as characteristics other than topographical characteristics on the occurrence of
urban pluvial flooding were shown to be influential. The results also showed that the
impact of anthropogenic factors was greater in Osaka City, which is on a larger urban
scale than Nagoya City.

In general, urbanisation increases the accumulation of assets in topographically flood-
prone areas, and the risk of urban pluvial flooding increases. On the other hand, urban
pluvial flood risk has been reduced through the improvement of drainage systems in such
areas; however, urban pluvial flooding has also been observed in topographically less-flood-
prone areas due to changes in land use and land cover. In other words, as urbanisation
progresses, the main cause of urban pluvial flooding is likely to shift from topographical
factors to anthropogenic factors. The results of this study quantitatively showed this
paradigm shift of urban pluvial flooding factors by the statistical analysis of newly defined
urban pluvial flooding frequency areas. This is demonstrated as one of the methods for
a major advance in urban flood modelling science proposed by Mignot and Dewals [9].
Furthermore, this study showed that it is difficult to describe past urban pluvial flooding
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areas in Osaka and Nagoya Cities solely based on topographical characteristics. This was
consistent with the findings of the numerical experiment [22] and statistical analyses [14]
and showed that in some cases that artificial structures formed areas vulnerable to urban
pluvial flooding even outside topographically flood-prone areas.

In addition, it is particularly difficult to collect flow velocity and depth observations
during urban floods, as they are usually of short duration. The recent proliferation of
mobile phones and online video-sharing platforms gives access to countless amateur
videos [23–25], which are being used in most geophysical sciences, but difficulties with
retrieving the location and time of the scenes impair the use of these data for detailed model
validation [9]. The urban pluvial flooding area record used in this study and the newly
defined frequent urban pluvial flooding area could be important sources for this validation.

On the other hand, although this study succeeded in quantitatively assessing the
differences in the impact of topographical characteristics on the formation of frequent
urban pluvial flooding areas due to urban scale by comparative analyses in Osaka and
Nagoya Cities, this study only compared two cities, and the relationship between urban
scale and frequent urban pluvial flooding areas has not been quantitively clarified. Further
quantitative comparison with the characteristics of frequent urban pluvial flooding areas
in other cities of different urban scales would help to understand the characteristics of
urban pluvial flooding and their transition from topographical factors to anthropogenic
factors, which is associated with urbanisation. Furthermore, socio-hydrology [26,27], which
deals with the interaction between water systems and human activities, has been recently
applied worldwide for flooding and water resources management [28]. Further quantitative
comparative analysis of the characteristics of frequent urban pluvial flooding areas among
different urban scale cities would provide a quantitative understanding of the system
dynamics of urban pluvial flooding interacting with urbanisation, namely human activities.
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Abstract: Access to a reliable and safe domestic water supply is a serious challenge for many
developing countries worldwide. In the capital of Vietnam, Hanoi, the municipal government is
facing a number of difficulties in providing sufficient water in a sustainable manner due to the
increasing urban population and the serious pollution of both surface and groundwater resources,
but this is also due to a lack of resources to invest in the supply system. This study aimed to
investigate water users’ willingness to pay for the improvement of Hanoi’s domestic water supply
system. A contingent valuation process based on a survey of 402 respondents was used to explore
citizens’ willingness to pay (WTP) for the improvement of their urban water supply. The results
show that Hanoi’s urban communities (more than 90%) were generally satisfied with the quantity of
their water supply, but tended to be dissatisfied with its quality, with 80% of the respondents using
advanced water purifiers before drinking and cooking. Respondents were also concerned about the
overall reliability of the service, with 40% of respondents indicating that they received no check and
maintenance service. A WTP regression model was developed based on the survey findings. The
average WTP is 281,000 dong/household/month (approximately 12.2 USD at the exchange rate of
1 USD to about 23,000 VND), equivalent to 1.4% of the average household income at the end of 2019,
indicating the level of affordability of monthly water payments among Hanoi citizens.

Keywords: urban domestic water supply; willingness to pay; CVM-based process; theoretical
regression framework; Hanoi; Vietnam

1. Introduction

A shortage of clean water is one of the world’s most pressing concerns. According
to United Nations Water, in 2014 water scarcity affected approximately 700 million peo-
ple worldwide, with this figure likely to increase to approximately 1.8 billion people by
2025 [1]. Furthermore, two-thirds of the world’s population live in areas with severe water
scarcity [1], particularly those living in urban areas [2,3]. Aside from physical water scarcity,
there is also economic water scarcity, which means that water supply is inadequate due to
the lack of, or poor water infrastructure, management, and policy [4]. There is, therefore,
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a strong imperative to improve domestic water supplies in many urban areas around the
world [5]. Several studies have demonstrated that investment in the domestic water supply
can deliver a range of direct and indirect economic co-benefits, including lower healthcare
expenditure, time-saving non-health-related benefits (e.g., no queuing at shared water
facilities or walking a distance to a water collection site), and water resource protection,
among others [6]. According to the definition of the Joint Monitoring Programme, im-
proved water sources include piped water into dwellings, plots or yards, public taps or
standpipes, boreholed, a protected dug well, a protected spring, or rainwater collection,
all of which are likely to provide safe drinking-water for communities. Thus, improved
domestic water supplies in urban areas should seek to deliver three basic goals, namely:
sufficiency in quantity, safe quality of water, and reliable management and service.

Although many households in developing countries lack access to improved domestic
water supplies, governments in these countries often cannot afford to offer substantially
subsidized improved domestic water to all, or even to the majority of their populations [7].
As a result, improvements in the domestic water supply in these countries frequently relies
mainly on financial contributions (payment of water bills) from households. However,
such contributions depend not only on each household’s willingness to pay (WTP), i.e.,
the maximum amount that households are able to pay for their water supply [8], but also
on each household’s capacity to pay, i.e., the total household income minus the amount to
cover basic needs [9,10]. WTP information may be used by planners at all levels (national,
provincial, city, and rural) to evaluate a project’s economic feasibility, set affordable tariffs,
evaluate policy alternatives, assess financial sustainability, and design socially equitable
subsidies. Moreover, a cost–benefit analysis would be inadequate without such WTP data;
the net economic benefits of an improved domestic water supply are calculated as the
difference between the consumers’ maximum WTP for better services and the actual cost of
the services [11]. To estimate the WTP, the Contingent Valuation Method (CVM) is often
used. CVM is an economic, non-market valuation method which is particularly useful
for determining human preferences for public goods that have no monetary value in the
market. CVM is an established method and has found many applications in water-related
fields, such as assessing the social value of increasing water quality, reducing risks from
drinking water and groundwater contamination, and the provision of drinking water
services in developing countries [12]. In CVM applications to water supply services [13–19]
the main objectives are to estimate the WTP to improve current water supply services and
to explore the factors controlling WTP values via empirical statistical modelling. Mostly,
the WTP regression models in these CVM applications are similar in terms of their selection
of the WTP as a dependent variable and typically employ demographic factors (usually
age, gender, education, income, family size, etc.) as independent variables.

Similar to other developing countries, Vietnam has limited improved domestic water
supply, especially in urban areas [20]. According to the National Environment Report [21],
it is estimated that only about 70% of the population has access to potable water. Hanoi,
Vietnam’s capital city, is now facing several water scarcity issues connected to its urban
water supply. The fast rate of urbanization and rapid increase in the city’s population
(~3.4%/year) are significantly inflating the demand for clean water [22]. Meanwhile, the
quality of the water resources that are being used to supply Hanoi is decreasing. Domestic
and industrial effluents have polluted surface water sources in river basins of many major
rivers, such as the Red, Nhue, and Day Rivers located in the Red River Delta. It is estimated
that between 100,000 and 150,000 m3/day of untreated industrial wastewater flows directly
into the rivers in Hanoi alone [23]. Furthermore, upstream of the administrative area of
Hanoi, the quality and quantity of water resources are significantly affected, affecting
abstraction possibilities. Hanoi’s water issues are exacerbated further by high water loss
rates, averaging 23% [24]. As a result, it is critical to improve the water supply system in
Hanoi by investing in the necessary supporting infrastructure, adjusting water allocations
to fulfill residents’ demands reasonably, and by improving the quality of water supplied so
that it meets the Vietnam Ministry of Health Quality Standard QCVN 02-BYT. Thus, the
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socialization of investment capital is critical to offer financial support for these activities,
especially in developing countries [25].

This study explores these issues within the context of the case study of Hanoi by
developing a CVM-based process that focuses on three important points: (1) a naturally
exploring WTP technique aligning with the way in which humans think, (2) determining
whether the results of the CVM’s social investigation are consistent and reliable, and
(3) finding the appropriate variables to include in the WTP regression model based on the
groups of key factors that significantly affect WTP and the current circumstances of Hanoi’s
urban domestic water supply system’s (HUDWSS) performance. With the application of
the developed CVM-based process to Hanoi, it is possible to examine the factors affecting
residents’ WTP, thus providing an essential first step in the improvement of the domestic
water supply and community expectations in Hanoi.

2. Study Area

Figure 1 displays the study location, consisting of ten urban districts, and the main
rivers and lakes of Hanoi. As the economic, political, and social center of the country,
Hanoi’s population and its density are very high compared to other developed cities in
Vietnam. In 2020, the total population of Hanoi was approximately eight million people;
female and male residents accounted for a similar proportion, and almost half of the total
population was comprised of urban residents, according to the General Statistics Office of
Vietnam. Average monthly income per capita in Hanoi was an estimated 6.3 million dong
(about 280 US dollars).

Figure 1. Study area and main rivers in Hanoi.

Hanoi’s Urban Domestic Water Supply System (HUDWSS) faces a number of signifi-
cant challenges in delivering its plans to supply improved water to all residents before 2030.
Currently, the per capita average urban water demand is approximately 200 L/day [26]
However, the municipal government is facing several challenges in providing sufficient
water sustainably due to: (i) the ever-increasing urban population and density; (ii) serious
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pollution of both the surface and groundwater resources that serve as the main input water
sources for HUDWSS‘s operation, and especially; (iii) the large losses of water (due to
leakage) that can then not be used to generate any revenue.

Regarding the first challenge, the rapid urban growth places great pressure on natural
resources and the environment, putting particular stress on HUDWSS to meet the growing
water demand of customers, causing the fragmentation of Hanoi’s urban water infrastruc-
ture [27]. In recent years, Hanoi’s population has increased rapidly; the density of the nine
urban districts has increased up to 11,759 people/km2, while the urbanization rate reached
40.5% in 2013 [26]. In recent years, the population grew by approximately 3.4% per year.
In just two years, from 2015 to 2017 the population grew from 7.2 to 7.7 million people,
and the population density rose from 2000 to 2209 people/km2 [28]. The city’s water
distribution system, including new and old networks, has a long history of construction
and rehabilitation. Hanoi Water Limited Company (HAWACO) is the city’s largest water
distribution enterprise and has legal status under the Hanoi Transportation Department.
The company was established under Decision No. 546/QDUB dated 4 April 1994 of the
People’s Committee of Hanoi, with a history that can be traced back to the nineteenth
century. Currently, Hanoi has 12 main water plants and, (including the district of Ha Dong)
eight water supply zones managed by HAWACO, Vietnam’s Freshwater Business and
Construction Investment Joint Stock Company (VIWACO), and Ha Dong Waterworks [29].
As reported by HAWACO, the average water supply capacity is 1,462,000 m3/month,
of which 35% is distributed to the old network, which mainly serves the Old Quarter’s
communities; and 65% is distributed to the new network, which covers the inner, the west,
and the southeast regions of Hanoi, see Figure 1 [30]. HAWACO is failing to meet current
water needs. With the per capita water demand in the urban districts at approximately
130 L/person/day, the public water utilities failed to supply urban districts approximately
every two days per month in 2016 [30]. Consequently, as mentioned by HAWACO [31], just
55% of the city’s population has access to HUDWSS even though the public distribution
network fully covers all of the urban districts. However, around 30% of urban households
use freely accessible well water sources [32].

Regarding the second challenge, both surface and groundwater resources for HUD-
WSS are seriously degraded and polluted. This critical situation challenges the water
enterprises in terms of how to provide a high-quality water supply for local communities.
The majority of input water sources for HUDWSS consist of groundwater harvested from
Pleistocene aquifers. Groundwater resources are distributed unevenly, with the largest
recharge of 700,000 m3/day in the south and the smallest of 66,000 m3/day in the Soc Son
district (Figure 1). The disastrous situation of seriously degraded groundwater quantity
and quality as a consequence of inappropriate usage and management has been compre-
hensively presented in a number of previous studies [33–35]. In addition, the surface water
sources in rivers and lakes are also seriously contaminated due to solid waste dumping,
and domestic and industrial wastewater flowing directly into the water bodies without
treatment. The total domestic and industrial wastewater volume in the central area of
Hanoi is approximately 600,000–700,000 m3/day; the combined capacity of all the water
treatment plants in Hanoi, however, is only around 245,000 m3/day. Hence, two-thirds of
the generated wastewater is not treated before being discharged into rivers and lakes [12].
Consequently, water quality parameters are far below the national water quality standards.
For instance, as reported by HAWACO in 2016, the observed values of an important water
quality parameter of chemical oxygen demand of Quynh lake, which is located in our
targeted urban district Hai Ba Trung, is extremely high at 136 mg/L, compared to the
recommended value of 10 mg/L, which is the national standard for good surface water
quality. Moreover, major rivers such as the Red River, Da River, and Day River are inter-
provincial water resources, and they have a great impact on the quality and reserves from
the watersheds; thus, it is difficult to use these water resources.

Regarding the third challenge, according to HAWACO [30], the most pressing issue
for the Hanoi water supply sector is the large volume of non-revenue water, which is
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approximately 23%. In fact, considering around 600,000 customers and the total capacity
of plants of 534,500 m3/day, it is estimated that the quantity of per day non-revenue
water is approximately 2.8 times the existing supply capacity. The rate of non-revenue
water loss was substantially reduced from 38% in 2007 to 23% in 2015 as a result of the
efforts of HAWACO’s management. The average water price as of 2020 is 7000 dong/m3

(~USD 0.31/m3) in urban districts; thus, this massive wasted budget could be estimated
as more than 1 billion dong per day (~USD 43,700/day), while the residents still lack a
water supply. The main reasons for this huge loss include the poor maintenance of water
pipelines, inaccurate water meters leading to the incorrect recording of water use, or even
water theft or illegal water tapping, as observed in other developing countries [36]. This
critical circumstance threatens the sustainability of the financial situation of HUDWSS and
thus challenges the ability of HUDWSS to meet the goal of achieving a sufficient water
supply for all, as mentioned in the global sustainable development goals.

3. Contingent Valuation Method-Based Process for Exploring the Factors Affecting the
WTP of Hanoi’s Urban Domestic Water System

The CVM used here employed a survey of Hanoi water supply service customers (see
Appendix A) that consisted of five main sections: (1) a section asking questions concerning
respondents’ public awareness of the water supply service situation, with the aim to
understand the community’s response to the service; (2) the presentation of the CVM
scenario; (3) several questions for those who do not use HUDWSS; (4) a question asking
about the respondent’s WTP for the improvement of the water supply service, and; (5) a
series of demographic questions. This survey outline follows the general process of the
application of CVM to elicit WTP based on a range of previous studies [37–39]. We further
developed these general sections to apply them to the specific situation of HUDWSS.
The main objectives addressed in the questionnaire were (i) to understand the current
situation, public perception, and satisfaction regarding the domestic water supply among
local communities; (ii) to explore the WTP of local residents for water supply improvement;
and (iii) to enable the subsequent analysis of the key factors affecting the WTP. Conducting
a comprehensive investigation, we finally had 402 respondents, which as discussed in
Section 3.3, is sufficient to give adequate statistical power.

In the application of the CVM developed in this study, we developed three method-
ological innovations. First, we improved the technique of determining the respondents’
WTP values step by step, logically and naturally, in line with natural thinking patterns;
the so-called ‘naturally exploring’ WTP technique. Secondly, we checked whether the ob-
tained responses from the CVM social investigation were acceptably consistent and reliable,
and this step is essential since the social investigation is usually carried out in diverse
situations. Thus, its reliability and consistency are uncertain, depending on awareness,
the convenience of the interview process, and even the personalities of both interview-
ers and respondents. We then clarified the groups of main factors affecting WTP, which
have not been mentioned in the previous literature. This step is also crucial because it
provides us with the background to propose a list of appropriate variables that should be
included in the WTP regression model. The details of these three points are explained in
the following subsections.

3.1. Questionnaire Design

In order to gain a better understanding of the current domestic water use situation
in urban communities in Hanoi, this study conducted a social investigation based on
a questionnaire survey and a face-to-face interview. The questionnaire was set up and
completed in two phases. The first phase was a pilot survey, in which 10 samples were
collected to test how the respondents understood the primary list of questions and how
much information the interviewers could collect from the face-to-face interviews. After
the pilot survey, a few questions were changed, making them easier to understand for the
respondents and thereby increasing the effectiveness in approaching the problem.
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The final questionnaire consisted of five parts, as we needed to deal with respondents
with and without a water supply from HUDWSS. The first part sought to understand which
water sources were used for domestic purposes; the second part aimed to provide a list of
questions for those who used water from HUDWSS. Here, we attempted to measure the
satisfaction of the communities in terms of the quantity, quality, and management of the
current domestic water supply; the third part addressed communities that did not use water
from HUDWSS; the fourth part enquired about which aspects the communities wished to
improve regarding the performance of HUDWSS and the amount that the communities
were willing to pay for this improvement in the future; and the final part focused on
the residential demographic variables such as age, gender, education level, and monthly
income. The demographic information provided the basis for understanding the factors
affecting the respondents’ WTP for the HUDWSS improvement.

3.2. The Naturally Exploring WTP Technique

To determine respondents’ WTP, one of the most widely used WTP questioning tech-
niques is open-ended questions [37,39–44]. In an open-ended question, the respondents
are asked to state the maximum amount they could pay for water-targeted improvement.
The advantage of this technique is that the question is easy to understand and gives the
respondents freedom in giving their WTP values. However, as highlighted in a previous
study [38], the open-ended question technique can result in several “zero bids”, i.e., re-
spondents indicating a WTP of zero. Therefore, to avoid this zero-WTP situation in our
investigation, before asking about the residents’ WTP, we provided them with information
about the price they are currently paying for 1 m3 of water supplied by HUDWSS. By doing
this, their WTP values were at least equal to their current price for water use, the so-called
WTP0. Thus, in practice, we used three consecutive questions to determine WTP values
as the maximum amount that they were willing to contribute. The first question was “To
improve the current HUDWSS to the level of your expectations, are you willing to support
the water price?”. Upon answering YES to this question, they were asked the second
question, “The current price of water supply is 7000 dong/m3, how much do you think
that this current price could be increased to have a better budget for HUDWSS improve-
ment?”. When answering the second question, respondents were offered several levels
by which the current water price WTP0 could be increased, resulting in pre-WTP values.
The third question, “What is the maximum amount which you are willing to support to
improve HUDWSS’s performance?”, was used to determine the maximum amount that the
respondents were willing to pay, which is referred as their actual WTP values.

3.3. Sampling

The minimum sample size was determined according to Krejcie and Morgan [45]; for
large areas, the number of participants required for the survey was calculated as follows:

s =
X2NP(1 − P)

d2(N − 1) + X2P(1 − P)
(1)

in which S: minimum sample size; X2: the table value of Chi-square for 1 degree of freedom
at the desired confidence level (3.841); N: the population size; P: the population proportion
(assumed to be 0.5 since this would provide the maximum sample size); d: the degree of
accuracy expressed as a proportion (0.05).

The estimated population in these Hanoi urban communities was 3,962,310 in 2019.
Thus, the minimum sample size was calculated as 384 samples. In this study, we first
conducted a pre-test survey of ten samples of several staff working at the Hanoi University
of Natural Resources and Environment and the residents living near this university in order
to determine whether our questionnaire was understandable and appropriate. We then
finalized the questionnaire and started conducting the comprehensive social investigation
in the three most urbanized district representatives in Hanoi urban communities, including
the newly urbanized Ha Dong and two old inner-city districts of Thanh Xuan and Hai
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Ba Trung (Figure 1). After three months of surveying from November and December
of 2019 to January of 2020, we had randomly collected 454 samples. Among these, we
could not use 52 samples, mainly due to missing information for more than 30% of the
questions. Hence, the final data set comprised 402 samples, of which 91 samples were from
the Ha Dong district (353,200 residents in 2019), 155 samples were from the Thanh Xuan
district (286,700 residents in 2019), and 156 samples were from the Hai Ba Trung district
(311,800 residents in 2019).

3.4. The Theoretical WTP Regression Model

In the literature, we found that 21 main factors/variables that could be considered
to affect the WTP for water supply and water-related service improvement. These fac-
tors/variables could be divided into four groups: demographic factors, water supply
quantity, quality, and service, as shown in Table 1. Therefore, the theoretical WTP regres-
sion model could be formulated as in Equation (2).

WTP = f(De; Quan; Qual; Ser) = CDe × De + CQuan × Quan + CQual × Qual + CSer × Ser + e (2)

in which WTP is the dependent variable; De are demographic variables; Quan, Qual, and
Ser are variables regarding water supply quantity, quality, and service, respectively; CDe,
CQuan, CQual, CSer are coefficients; and e is the random error. The IBM Statistical Package for
the Social Sciences (SPSS) was used to generate the WTP regression model and perform
data analysis.

Table 1. Classification of 21 factors/variables considered to affect WTP according to the literature.

Classification Factors/Variables Publications

Demographic Factors (8)

Gender [13–19] *
Age [46–50] *

Education level [25,39,51,52] *
Family size [19,53–55] *, [56]

Children [57], [58–60] *
Occupation [48,54], [61,62] *

Income [36,37,56,58,63] *
Wealth of the household [14] *, [64]

Water Supply Quantity (3)
Water source [51], [65–67] *

Water reliability [50,68–70] *
Water use quantity [13,47,48,55] *, [71]

Water Supply Quality (4)

Clean water awareness [43] *, [71], [72,73] *
Water quality care [37], [39,44,49] *, [74]

Water-borne diseases [38,66,75] *
Water treatment measures [39,68,76–78]

Water Supply Service (6)

Bid value [15,50] *, [65], [70] *
Monthly water bill [55], [61] *, [77]
Household location [48] *, [51], [67] *, [71]

Distance to water source [16] *, [25]*, [77]
Time for water connection [41,47,53], [55] *
Water connection charges [54,57,68] *, [78]

Note: The studies with “*” are the ones in which the corresponding factors/variables are significant at a 0.05 con-
fidence level.

Selection of factors/variables in each group: Depending on the targeted water supply
issues and the public preferences in a specific study area, the factors/variables of water
supply quantity, quality, and service groups could be selected. In terms of demographic fac-
tors, this selection depended on the characteristics of the communities that the researchers
wished to test for their correlations with the WTP.
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3.5. Reliability Check

To validate the reliability of the responses in the questionnaire, we used a statistical
measure of confidence consistency, namely Cronbach’s alpha coefficient, for a given sample.
The coefficient formula is according to Equation (3), as indicated in [79].

α =
K

K − 1

[
1 − ∑K

i=1 σ2
Yi

σ2
X

]
(3)

in which K is the number of components (usual questions); σ2
X is the variance of the

observed total test scores, and σ2
Yi

is the variance of component i for the sample.
Reliability scale: As mentioned in [79], the coefficient values in the range of (0.9; 1.0),

(0.8; 0.9), (0.7; 0.8), (0.6; 0.7), (0.5; 0.6), and (0; 0.5) indicate respectively excellent, good,
acceptable, questionable, poor, and unacceptable internal consistency.

3.6. Application for HUDWSS

Applying our CVM-based process, we obtained 402 useable samples from the three
urban districts. Using Equation (3), we find a value for α of 0.879 for the responses to the
group of questions regarding the type of water used daily; 0.863 for the responses to the
questions regarding the residential satisfaction towards HUDWSS‘s water consumption;
0.943 for the responses to the questions regarding the residential satisfaction towards
HUDWSS’s water quality; and 0.865 for the responses to the questions regarding the
residential satisfaction towards HUDWSS’s service and management. These coefficients are
all higher than a threshold value of 0.8, indicating that the obtained responses are internally
consistent and reliable. Therefore, the data set obtained from these 402 reliable responses
was used for further analysis.

Table 2 provides further details about the characteristics and status of the survey
sample. From the total of 402 people interviewed, 208 (51.7%) were female, and 194 (48.3%)
were male. The majority of the respondents’ ages were in the range of 24 to 55 years (66.9%),
and only one respondent was under 18 years old (0.2%). Of the five occupation groups
mentioned in the questionnaire, business was the most common, accounting for 46.3%
of all occupations. The level of education of the surveyed subjects was partly reflected
through their occupation. The more educated subjects were aware of the importance of
clean water and the impact of inadequate water quality on their health. It was observed
during the pilot survey that interviewees did not wish to disclose their actual incomes due
to various personal reasons. Consequently, dividing the total family income into ranges of
values in this study made the respondents more comfortable in indicating their relative
income. The number of respondents with a total family income of between 10 to 30 million
VND (approximately between 434 to 1304 USD) accounted for half (51.7%) of the sample.

Table 2. Basic characteristics of the sample (N = 402).

Characteristics In Number (Persons) In Percentage (%)

Age

Less than 18 years old 1 0.2%
From 18 to 24 years old 50 12.4%
From 24 to 55 years old 269 66.9%

Over 55 years old 82 20.4%

Gender
Female 208 51.7%
Male 194 48.3%

Occupation

Student 29 7.2%
Employees and officers 64 15.9%

Business 186 46.3%
Worker 52 12.9%

Work at home 71 17.7%
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Table 2. Cont.

Characteristics In Number (Persons) In Percentage (%)

Total income

Less than 3 million VND 1 0.2%
3–5 million VND 9 2.2%

5–10 million VND 77 19.2%
10–30 million VND 208 51.7%

Over 30 million VND 107 26.6%

4. Results and Discussion

Here we first present the current public awareness, satisfaction, and expectations of
HUDWSS quantity, quality, and service that are described to allow for a better understand-
ing of the urban community perceptions and to evaluate the use of the naturally exploring
WTP technique on Hanoi’s dataset. This is followed by a comparison of the usual statistic
variation in both Pre-WTP and WTP values. Finally, we describe the establishment of the
WTP regression model based on the theoretical regression framework presented in the
methodology to assess how the community’s maximum willingness to pay was affected by
demographic and domestic water-related factors.

4.1. Social Satisfaction of the HUDWSS’s Quantity, Quality, and Service

We divided the sample into two groups: households using water from HUDWSS,
comprising 331 respondents (82.3%), and households not using water from HUDWSS,
comprising 71 respondents (17.7%). Hence, water from HUDWSS, or “tap water”, is most
widely used in the inner city of Hanoi (Figure 2). The percentage of those using tap water
for cooking and eating purposes accounted for 81.8%, while some households still used
well water (12.4%) and rainwater (5.7%). For other purposes, such as bathing, sanitation,
gardening, and car washing, the percentage of water usage remained at the highest levels,
at 78.4% and 72.6%, respectively. The reason for this was that there were 35 households
(approximately 8.7% of the total 331 households using water from HUDWSS) using two
or more water sources along with water from HUDWSS. Using alternative water sources
is considered to be more advantageous because of their convenience and the low cost of
installation. Around 17.7% of households did not have access to tap water for various
reasons. There were three subjective reasons discovered through the survey: (i) unstable,
dripping, and limited water supply; (ii) no water quality guarantee; and (iii) the limited
maintenance service of the supply system.

Figure 2. The main water sources used for basic purposes among the studied households.
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4.2. Residential Satisfaction of Domestic Water Quantity

The ability to provide a sufficient amount of water by HUDWSS to consumers depends
on many factors and was examined objectively through direct interviews with the residents.
The survey results show that monthly water consumption and water cut-off status directly
influenced the extent to which residents’ consumption needs were met. Most (55%) of
the surveyed households usually used 20 to 30 m3 daily, and water consumption was
gradually reduced with the number of members in the household and the use purpose.
However, there were still a small number (7.9%) of households with a high water demand
of over 30 m3 per day, usually for business and production purposes. In general, the
amount of water consumption was relatively high, and this is expected to rise in the future.
Therefore, a calculation based on the number of days and monthly times of water cut-off
was performed to evaluate whether the water supply was adequate. The amount of water
supplied by the city water supply companies was considered to be relatively sufficient. In
particular, 77.3% of the surveyed respondents said that the water was sufficiently supplied.
In addition, the households with a water cut-off of 1 day, 2 days, and 3 days per month
accounted for 15.4%, 6.6%, and 0.6%, respectively (Table 3).

Table 3. Household responses regarding domestic water quantity.

In Terms of Number of Responses Percentage (%)

Monthly water consumption

Less than 10 m3 33 10.0%
From 10 to 20 m3 90 27.2%
From 20 to 30 m3 182 55.0%
More than 30 m3 26 7.9%

Domestic water cut-off frequency

1 day/month 51 15.4%
2 day/month 22 6.6%

>3 day/month 2 0.6%
No water cut-off 256 77.3%

Domestic water use quantity satisfaction

<50% 0 0.0%
50–60% 6 1.8%
60–80% 18 5.4%
80–100% 245 74.0%
>100% 62 18.7%

Total 331 100%

Most of the subjects were relatively satisfied with the amount of water provided. The
ability to meet from 80% to 100% of the demand for users accounted for 74% of the total
population surveyed. In addition, the amount of water meeting more than 100% of the
water consumption demand accounted for 18.7% of the total population surveyed. The
remaining residents considered that the supplied water was insufficient for use. The survey
results show that households that used less water had enough water to use. As for some
cases where households required large amounts of water (>30 m3) or had frequent water
cut-offs, respondents were not satisfied and underestimated the water supply capacity of
HUDWSS (Table 3).

4.3. Residential Satisfaction of Domestic Water Quality

According to the survey results, the households using water from HUDWSS responded
that they used clean water. Approximately 9.4% of the households mentioned that the
water sometimes had a different color or taste, and others commented that the water
was cloudy (3.9%). Besides the general public response regarding domestic water supply
quality, the water quality nevertheless still could not meet the residents’ standards because,
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according to our results, 80.4% of households use advanced water purifiers before cooking
and drinking. For the rest, depending on the household income and also the perceptions of
the household decision-makers, households boiling their water before use accounted for
15.4%, and households that did not use any kind of treatment accounted for only 4.2%. The
results reveal that there is a need to improve HUDWSS to meet the standards of the local
communities. For further information on health impacts related to water supply quality,
we also considered waterborne diseases such as diarrhea, skin diseases, gynecological
diseases, dengue fever, Japanese encephalopathy, and helminthic infection in the three
urban districts. As shown in Table 4, the proportion of residents who had not suffered from
any waterborne disease accounted for 90%, but 10% of the respondents had been affected
by the aforementioned water-borne diseases.

Table 4. Household responses regarding domestic water quality.

In Terms of Number of Responses Percentage (%)

Public awareness of domestic water quality

Clean 279 84.3%
Color/smell/taste sometimes 31 9.4%

Cloudy 13 3.9%
Strange color/smell/taste 8 2.4%

Water treatment used

Advanced water purifiers 266 80.4%
Just boiling 51 15.4%

None 14 4.2%

Water-borne diseases affected

Not yet 297 89.7%
Slightly 9 2.7%

Skin disease 12 3.6%
Diarrhea/Gynecological diseases/Dengue fever/Japanese

encephalopathy/Helminthic infection 13 3.9%

Total 331 100%

4.4. Residential Satisfaction of Domestic Water Service

The questionnaire survey for households using the water supply from HUDWSS
showed that the service is relatively acceptable. In terms of the water bills, approximately
60% of respondents’ monthly payments ranged from 200,000 to 500,000 dong/month
(approximately 9 to 22 USD at the exchange rate of 1 USD to about 23,000 VND on the first
day of 2020); 35% had to pay less than 200,000 dong/month (mostly households with few
members and households who used water from alternative water sources, such as private
wells, rivers, and lakes); and approximately 5% were mainly business-based households
and paid more than 500,000 dong/month.

Convenient and multiple payment methods are crucial in increasing residents’ sat-
isfaction with HUDWSS’ service quality. As investigated in our study, there were three
main payment methods, with those utilizing smartphone apps and computers accounting
for 38.1%, those using home-visiting staff accounting for 35%, and those using super-
markets/post offices accounting for 26.9% (Table 5). This shows that modern payment
methods via apps and third-party stakeholders have taken a strong foothold over the
traditional home-visiting payment method. The transition is quite important for busy
urban households in Hanoi, where modern residents spend most of their time away from
their houses.
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Table 5. Household responses regarding domestic water management and service.

In Terms of Number of Responses Percentage (%)

Payment method

Via apps on smartphone/computer 126 38.1%
Via home-visiting staff 116 35.0%

Via Supermarket/Post office 89 26.9%

Receiving water cut-off notifications

From HAWACO website 5 1.5%
From HAWACO document 2 0.6%

From the community’s radio 8 2.4%
From the community’s bulletin 38 11.5%

No notification 22 6.6%
No water cut-off 256 77.3%

How long has the local water supply system been installed?

Less than 5 years 38 11.5%
5–10 years 94 28.4%
10–15 years 154 46.5%

Over 15 years 38 11.5%
Don’t know 7 2.1%

Maintenance service

Don’t know 23 6.9%
Regularly checked and maintained 176 53.2%

No maintenance service 132 39.9%

Total 331 100%

Regarding water scarcity in urban districts and the limitation of the water supply
system’s capacity, especially during the summer season, urban districts in Hanoi sometimes
face several days without water supply. We found that the urban communities in Hanoi
wish to receive water cut-off notifications from the suppliers. In this study, water cut-off
notification refers to the interruption announcement of water supply. Most households
(77.3%) did not experience days without a water supply. However, around 11.5% of
households received water cut-off notifications from the community’s bulletin and only
0.6% of them received written notices from the water companies. Among the residents who
experienced days without a water supply, around 6.6% of households said that they did
not receive any notification before this happened (Table 5).

Furthermore, we found a lack of regular checks and maintenance for HUDWSS even
though these services are essential to ensure that the system is still working well. As
observed in our study, almost two-thirds of the respondents (58%) confirmed that the local
water system had existed for more than ten years, and 11.5% relied on a system that had
even been installed more than fifteen years ago. New systems, which had been installed
less than five years ago, accounted for only about 10% of the respondents. However, almost
40% of the respondents complained that there was no maintenance service. Only half of the
local systems were regularly checked and maintained (Table 5). The lack of maintenance
service explains why the non-revenue water proportion in Hanoi remains high, despite
recent efforts to reduce it, as shown in Section 2.

4.5. Social Needs Priorities for HUDWSS Improvement

Given the current state of HUDWSS, with its many shortcomings, an important issue
is how residents’ would like the quality of the water supply services to be improved.
We examined the work needed to improve the HUDWSS in the questionnaire, which
the respondents evaluated based on the priority of the tasks to be carried out (Figure 3).
According to the community’s assessment, “improving the quality of water supply” should
be prioritized first, followed by “the amount of water needs to be stabilized regularly”.
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Other issues related to the management and service quality were not a priority but still
need to be dealt with in the future. Therefore, to realize these improvements, the question
is as follows: Are residents willing to pay higher water prices to obtain more funding in
order to improve the quality and quantity of the water supply?

Figure 3. Prioritizing the tasks needed in order to improve HUDWSS.

4.6. Household Positive Pre-WTP and WTP for Improved HUDWSS

Among the 402 survey respondents corresponding to 402 households, 331 used water
from HUDWSS and the remaining 71 did not. Therefore, resulting from the naturally
exploring WTP technique, both the Pre-WTP values—resulting from the answer to the ques-
tion on how many of the respondents think the current price could be increased—and WTP
values—resulting from the question on the maximum willingness to pay—were evaluated
based on the interview results of the 331 households that used water from HUDWSS. The
changes in the respondents’ willingness from Pre-WTP to WTP are shown in Table 6 and
Figure 4. When answering the question about Pre-WTP, around 71% of households stated
that their willingness was equal to the current water supply price of WTP0 = 7000 dong/m3

(approximately 0.3 USD). Around half of these households increased their willingness
to pay higher values when stating their maximum levels of WTP. This change indicates
that 35.6% of households were willing to pay 14,000 dong/m3 (approximately 0.6 USD).
The highest pre-WTP value of 13,000 dong/m3 was replaced by 20,000 dong/m3 as the
highest value of WTP. By multiplying the obtained pre-WTP and WTP values per m3

of water supply with the corresponding average monthly water use of the households,
the pre-WTP and WTP values per month could be evaluated. Thus, as seen in Figure 4,
the pre-WTP mean also increased from 164,000 dong/household/month (approximately
7 USD) to a mean WTP of 281,000 dong/household/month (about 12.2 USD). A substantial
proportion (22.1%) of households were willing to pay the highest amount, equivalent to
350,000 dong/household/month (about 15 USD). For each targeted district, the mean WTP
in the Thanh Xuan district was approximately 278,000 dong/household/month (about
12.1 USD), equivalent to 1.4% of the total average income of households; in Hai Ba Trung
district, the mean WTP was the highest, approximately 286,000 dong/household/month
(about 12.4 USD), equivalent to 1.5%; and the mean WTP in Ha Dong district was the
lowest, at approximately 270,000 dong/household/month (about 11.7 USD), equivalent to
1.4% of the total average household income. Overall, the mean WTP of all three districts
was equivalent to approximately 281,000 dong/household/month (about 12.2 USD), which
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is equivalent to 1.4% of the total average income of households. In this case, our proposed
WTP exploring technique helped the respondents to determine their maximum willingness
values, offering them the freedom to provide their figures rather than selecting from a set
of proposed values. This allowed the respondents to carefully consider their needs in order
to obtain water at their recommended rates. The average estimated WTP value of the three
districts in general, and the value of each district, in particular, did not exceed 2.5%, as
established by the United States Environmental Protection Agency (US EPA) as an indicator
of the affordability of monthly water payments among citizens.

Table 6. Pre-WTP and WTP of the respondents.

Pre-WTP Value
(dong/m3/Household)

Number
of Responses

Percentage (%)
WTP Value

(dong/m3/Household)
Number

of Responses
Percentage (%)

7000 234 70.7 7000 118 35.6
8000 2 0.6 14,000 118 35.6
9000 5 1.5 15,000 2 0.6

10,000 19 5.7 16,000 3 0.9
12,000 16 4.8 17,000 19 5.7
13,000 55 16.6 19,000 16 4.8

20,000 55 16.6

Total 331 100 Total 331 100

Figure 4. Pre-WTP and WTP histograms.

4.7. Determining and Analyzing the Factors Affecting the WTP Values of the Respondents

Determining the variables included in the WTP regression model is important to
understand the factors that affect WTP. In this study, the variables were determined and
selected based on two criteria. First, based on the synthesis of 21 common factors grouped
into four categories, as shown in Table 1, this study also clarified the main factors from these
four common groups. In the first group of demographics, we considered the five variables
of gender, age, income, family size, and occupation, as these variables are usually measured
in the literature regarding CVM applications. Second, based on the actual situation of
HUDWSS’ performance, the variables of water supply quantity, quality, and service were
selected and proposed in this study. For the group of water supply quantity, the water
use variable referred to the average monthly amount of water consumption in households;
regarding the quantity variable, this measured how satisfied the respondents were with
the water supply quantity. The water supply quality group included the quality variable,
which measured whether the water met the quality standards of the communities, and the
treatment variable, which referred to the water purification methods that the households
usually used before cooking and drinking. The water supply service here consisted of three
variables measuring how well and conveniently the HUDWSS’ service could assist their
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customers in using the water supply. The payment method variable considered the way in
which the households paid their monthly water bills. The maintenance variable evaluated
how often the household’s water supply equipment was checked and maintained to prevent
non-revenue water. The notification variable measured whether the communities were
informed before the water supply was cut off. As a result, 12 independent variables were
selected and proposed to affect the WTP for improving the quality of the HUDWSS service.
The descriptions of these variables are also given in Table 7. Moreover, the dataset obtained
from any social questionnaire survey is usually complex, causing skewing problems. In
this study, we thus applied the log transformation method for the values obtained for the
income and WTP variables in order to reduce the data complexity. The transformation
rules for all the dependent and independent variables of the WTP regression model are
described in detail in Table 7.

Table 7. Description of variables used in regression analysis.

Variable Description

Dependent variable

Log_WTP Continuous variable denoting the natural log value of each respondent WTP

Independent variables

Demographic variable

Gender Dummy variable equal to 1 for male and 0 for female

Age Dummy variable equal to 1 if age of respondent is in the range of 24 to 55 years
old and 0 otherwise

Log_Income Continuous variable denoting the natural log value of each household’s
monthly income

Family Size Dummy variable equal to 1 if household has more than normal size of
four members and 0 otherwise

Occupation Discrete variable denoting the respondent’s occupation type

Water supply quantity

Water use Dummy variable equal to 1 if the monthly household water consumption is in
the range of 20 to 30 m3 and 0 otherwise

Quantity Dummy variable equal to 1 if the water supply meets more than 80% of the
household’s water needs and 0 otherwise

Water supply quality

Quality Dummy variable equal to 1 for clean water response and 0 otherwise

Treatment Dummy variable equal to 1 if household uses water treatment and 0 if
household uses no water treatment

Water supply service

Payment Method Discrete variable denoting the household’s water payment method

Maintenance Dummy variable equal to 1 if household’s water supply system is regularly
maintained and 0 otherwise

Notification Dummy variable equal to 1 if household receives a notification before water
cut-off day and 0 otherwise

Regression analysis for 331 households using water from HUDWSS was conducted.
The results of the regression model are shown in Table 8. The specified regression function
fit the estimated mean WTP of individual respondents, as indicated by an R2 estimated at
0.314, and the standard error of this estimation is approximately 0.208. The results show
that age significantly (at 0.1 significance level) affects the mean WTP of respondents. More
specifically, the older the respondent, the higher their mean WTP. As expected, similar
to the situation in many other developing countries [19,36,37,56,58,63], income affects the
mean WTP of respondents significantly (at 0.05 significance level); the higher the household
income, the higher the mean WTP of the respondent. The results also confirm economic
theory, which states that an individual/household’s demand for a particular commodity
depends on his/her income [38]. The effects of gender are significant (at 0.05) and negative,
implying that men are willing to pay more for improved HUDWSS than women. This is
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contrary to the assumption that women are more likely to pay more because they invest
more time in household activities and have a greater need for water for domestic purposes,
as suggested by the findings of Ayanshola et al. [80]. The effect of water use is significant (at
0.01 level) and positive, and the greater the amount of water used by a household influences
the WTP for the improvement of the HUDWSS service. It is interesting to note that the
payment methods and maintenance variables, which were proposed for the first time in
this study for the targeted HUDWSS, appear to positively affect the respondents’ WTP and
are also respectively significant, at 0.1 and 0.01 levels. This implies that households that
used modern payment methods were willing to pay more to improve the water supply
service, and households that have regular water supply system maintenance checks by staff
are also willing to pay more to improve the water supply service than other households
whose water supply systems are not maintained.

Table 8. WTP regression results for HUDWSS improvement.

Independent Variable Estimated Coefficient p-Value Standard Error

(Constant) 0.000 0.376
Gender −0.101 0.032 ** 0.023

Age 0.089 0.079 * 0.027
Log_Income 0.126 0.013 ** 0.052
Family Size −0.054 0.259 0.024
Occupation 0.009 0.855 0.011
Water_use 0.319 0.000 *** 0.027
Quantity 0.044 0.391 0.049
Quality 0.046 0.376 0.035

Treatment −0.011 0.819 0.058
Payment Method 0.092 0.053 * 0.015

Maintainance 0.228 0.000 *** 0.028
Notification 0.003 0.953 0.034

Dependent variable: Log_WTP; R2 = 0.314; Adjusted R2 = 0.288; Standard error of the estimate: 0.208; *** statisti-
cally significant at 0.01, ** statistically significant at 0.05, and * statistically significant at 0.1.

The other variables seem to be insignificant in the level of p = 0.1 influencing respon-
dents’ WTP. Specifically, the occupation of respondents does not seem to have a significant
impact. This finding is similar to other related studies conducted using CVM for the im-
provement of the domestic water supply system in Nigeria [38] and in Palestine [49]. The
number of people in each household (family size) usually appears to positively affect WTP,
as found by Byambadorj and Han [54]; Akeju et al. [38] and Fujita et al. [55]. However,
in our study, this variable negatively affected the respondents’ WTP and is statistically
insignificant at (p-value = 0.1). The water quantity and water quality satisfaction seem
to positively affect the respondents’ WTP but are also not significant at (p-value = 0.1).
Moreover, the effect of the treatment variable was negative and is statistically insignificant
at (p-value = 0.1), as similarly found by Rodríguez-Tapia et al. [39]; Guilfoos et al. [75];
Orgill et al. [76] and Odwori [68]. The effects of the water cut-off notifications were positive
and do not seem to be significant at the level of p-value = 0.1.

5. Conclusions

This study successfully proposes a CVM-based process and tests its effectiveness in an
investigation of Hanoi urban communities WTP regarding the improvement of HUDWSS.
Our results show that Hanoi urban communities were essentially satisfied with the water
supply quantity, as our investigation found that more than 90% of surveyed respondents
considered their water supply to be mostly sufficient. The water quality was still lower
than the quality expectations of the urban residents since most households (80.4%) used
advanced purifiers to treat the tap water before drinking and cooking. Almost half of
the respondents complained about the lack of maintenance services. From the regression
model results, we found that significant factors (at p-value = 0.1, 0.05, and even 0.01)
affecting the WTP are gender, age, income, water use, payment method, and maintenance;
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meanwhile, occupation, family size, quantity and quality satisfaction, treatment, and
notification were found to be insignificant factors (at p-value = 0.1). These findings reveal
the crucial role of understanding the target problems in selecting and proposing appropriate
variables to increase the effectiveness of the WTP regression model. Our results also
show that the naturally exploring WTP technique proposed in this study makes it easier
for both respondents and interview conductors in determining the WTP values. The
average WTP is approximately 1.4% of the average household income, well below the
2.5% threshold established by the US EPA as an indicator of the affordability of monthly
water payments among citizens. However, the implementation of policies will take several
years, especially in developing countries such as Vietnam, where the average household
income is considered low compared to other developed countries, and should take into
account the varying income levels among households. This shows the practicality of a
future social investment fund contributed to by the communities that is used for upgrading
and improving the quality of Hanoi’s urban water supply services. The willingness to pay
(WTP) technique offered genuine results that helped to make realistic recommendations
to the policy- and decision-makers without any complications. The methodology that we
developed for this study can be applied to any similar area, without any geographical
limitations, in several STEM and social science subjects and multidisciplinary fields. These
characteristics make this model unique and easy to use in all circumstances.

Following are several remarks about how to get highly reliable data in such CVM
applications. One thing was asking the cooperative residents who were willing to spend
more than 15 min to finish the questionnaire. This thing mainly depended on how the
interview conductors started asking the questions. Another factor involved about the
investigation approach, which significantly affected the reliability of the collected data.
Using email and Google Forms i could reduce the survey time and make it more convenient
to complete, but the reliability of the obtained data is usually low in comparison to the
face-to-face interviewing approach. In this study, the face-to-face interviewing approach
was employed to maximize the possibility of obtaining highly reliable data. The reason is
that the respondents usually do not fully understand all the questions, thus the interview
process should be like a friendly discussion. Particularly in the CVM investigation, the
respondents should imagine the unreal market and give the most proper payment for the
goods (domestic water supply, in this case). The friendly face-to-face discussion was thus
crucial to help the respondents in finding their appropriate WTPs. Moreover, as experienced
from our investigation, mentioning the current water price of WTP0 = 7000 dong when
asking about the WTP really affected the respondent’s opinions. All of the obtained Pre-
WTPs and WTPs were higher than WTP0. That means that the respondents thought of the
WTP0 as their acceptable minimum payment for 1 m3 of water. In addition, the WTP0 could
also give us the possible variation range of respondent WTPs. In our case, no respondents
gave a WTP of more than three times the WTP0 (i.e., about 21,000 dong). Therefore, in
order to obtain a highly reliable data set, it is possible to eliminate the response where the
WTPs are higher than 3*WTP0. Regarding future research, we would like to apply the same
methodology by combining physical (water quality and quantity) and social science (people
income, employment, gender) components in other similar areas in Vietnam. Moreover,
we would like to expand our study area to other South Asian countries, such as India, the
Philippines, Sri Lanka, and China. Our collaborators have also shown interest in applying
this unique method to the countries mentioned above.
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Appendix A

HANOI UNIVERSITY OF

NATURAL RESOURCES &

ENVIRONMENT

SOCIALIST REPUBLIC OF VIETNAM

Independence—Freedom—Happiness

QUESTIONNAIRE FOR HANOI URBAN COMMUNITIES TO IMPROVE
THE DOMESTIC WATER SUPPLY SERVICE
(Translated from the Vietnamese version)

Safe drinking water in both quantity and quality is an essential need of all communities.
With a densely populated population like the capital Hanoi, ensuring a high quality source
of drinking water for the communities becomes more urgent than ever. In order to improve
the domestic water supply service for the capital, we are a research team from Hanoi
University of Natural Resources and Environment. We would like to conduct a survey to
have a better understanding of the current situation of Hanoi urban domestic water supply
service. Filling out this survey will take about 15 min from Sirs/Madams. The research
team commits that all information Sirs/Madams provide by filling this questionnaire will
be treated as confidential and will be used for scientific purposes only.

Thank you very much for your kind cooperation!
(Please put an X mark in the bank square in front of your choices)

Appendix A.1. Questions about Water Resources Used for Domestic Purposes

Appendix A.1.1. What Is the Main Source of Water You Use for Cooking and Eating?

Water supply from city water company
Well water
River and lake water
Rain water

Appendix A.1.2. What Is the Main Source of Water That You Use for Washing
and Sanitation?

Water supply from city water company
Well water
River and lake water
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Rain water

Appendix A.1.3. What Is the Main Source of Water You Use for Gardening and
Car Washing?

Water supply from city water company
Well water
River and lake water
Rain water

Appendix A.2. Questions for Those Who Use the Hanoi Urban Domestic Water Supply

Appendix A.2.1. Could You Please Tell Me, How Much in % the Amount of Supply Water
Meets Your Family’s Water Need?

Less than 50% 50–60% 60–80% 80–100% Over 100%

Appendix A.2.2. How Much Is Your Family’s Monthly Water Consumption?

Less than 10 m3 10–20 m3 20–30 m3 Over 30 m3

Appendix A.2.3. How Much Is Your Monthly Water Bill?

Less than 200,000 dong 200,000–500,000 dong
500,000–1,000,000 dong Over 1,000,000 dong

Appendix A.2.4. How Many Days Does Your Family Have No Domestic Water Supply in
a Month?

No water cut-off
1 day/month

2 day/month Over
3 day/month

Appendix A.2.5. During the Water Cut Off Day, How Long Is the Period of Water Cut-Off?

Within 6 h
Within 12 h

Appendix A.2.6. Did You Receive Notice before Water Cut-Off Day? If Yes, What Is the
Method of Notification?

No notification
Receive from water supply company (HAWACO) website
Receive from the community’s radio
Receive from the community’s bulletin
Receive from HAWACO documents

Appendix A.2.7. How Do You Feel about the Current Water Quality?

Clean water (colorless, odorless, and tasteless)
Water is cloudy, scum
Water sometimes has color/smell/taste
Water often has a strange color/smell/taste

Appendix A.2.8. How Do You Treat Water before Drinking/Cooking?

Advanced water purifiers
Just boiling
No treatment, just use directly

201



Water 2022, 14, 2162

Appendix A.2.9. The Following Are 06 Water Borne Diseases. Have You or Anyone in Your
Family Suffered from Any of the Water Borne Diseases?

Not yet
Slightly
Diarrhea
Skin disease
Gynecological diseases
Dengue fever, Japanese encephalopathy
Helminthic infection

Appendix A.2.10. For How Long the Water Supply System You Are Using Has
Been Installed?

Less than 5 years 5–10 years 10–15 years Over 15 years

Appendix A.2.11. Has Your Water Supply System Been Regularly Maintained?

Don’t know
No maintenance service
Regularly checked and maintained

Appendix A.2.12. What Is Your Family’s Water Monthly Payment Method?

Via home-visiting staff
Via supermarket/Post office
Via apps on smart- phone/computer

Appendix A.3. Questions for Those Who Do Not Use Hanoi Water Supply

Appendix A.3.1. What Are Your Main Reasons for Not Using The Water Supply?

Expensive installation cost
Too high water price compared to our water affordability
The water quality is not high enough
Unstable and dripping water
Unreliable water payment methods

Appendix A.3.2. Under the Difficulty of the Current Polluted Natural Water Sources in and
nearby Hanoi, Do You Use One of the Following Treatment Methods before Using Water
for Drinking Purposes?

Advanced water purifiers
A sand gravel filter
Just boiling

Appendix A.3.3. Do You Plan to Use the Water Supply for Domestic Purpose in the
Near Future?

No
Yes, we will

Appendix A.4. Questions of Which Aspects of Hanoi Water Supply System the Communities
Expect to Be Improved

Appendix A.4.1. Please Number in Descending Order of Priority (3—The Highest Priority;
2—Igh Priority; 1—No Priority) the Things to Do to Improve Hanoi Water Supply
System Service?

Supporting the system installment costs
Reducing the water price
Improving the water supply quality
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Improving the stable water supply quantity
Providing the reliable water payment methods
Training the professional water payment collection staffs

Appendix A.4.2. To Improve the Performance of Hanoi Urban Domestic Water Supply
System as You Expected, Are You Willing to Support the Water Price?

Yes
No, my family’s income is low
No, I’m afraid our support will not be used properly

Appendix A.4.3. The Current Price of Water Supply Is 7000 dong/m3, How Much Do You
Think That This Current Price Could Be Increased to Have a Better Budget for
HUDWSS Improvement?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
What is the maximum amount which you are willing to support to improve HUD-

WSS’s performance?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Appendix A.5. Questions of Personal Information

a. Living area (District): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b. Gender: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
c. Age:

Less than 18 years old 18–24 years old
24–55 years old Over 55 years old

d. Current job:
Student Worker

Employees and officer Work at home
Business

e. Number of people in your family: . . . . . . . . . . . . . . . people
f. Total family income:

Less than 3 million dong 3–5 million dong
5–10 million dong 10–30 million dong

Over 30 million dong
Thank you very much for your kind assistance!
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Abstract: The implementation of integrated flood risk management (IFRM) is still in its infancy in
both developed and developing countries, yet some countries have already encountered barriers to
IFRM adaptation. The interrelationships between these barriers need to be determined and analyzed
systematically, as such an analysis is the groundwork for decision-making when devising solutions
to overcome the barriers. Interpretive Structural Modeling (ISM) is a popular and systematic method
for analyzing the interrelationship between variables in broad study areas. This study applies the pro-
posed expanded ISM (Ex-ISM) approach to comprehensively analyze the interrelationships between
the barriers to IFRM in Metro Manila. Ex-ISM enhances conventional ISM in that the symbolism is
modified to explicitly show the contextual interrelationships, the step for hierarchy assignment is
simplified, and the diagram shows all of the interrelationships that allow a comprehensive analysis.
The results obtained using the Ex-ISM method do not deviate from those yielded by the conventional
ISM method, but the Ex-ISM method allows an easy assignment of hierarchy, and it shows not
only the direct but also the indirect interrelationships to provide a comprehensive analysis of the
relationships between the barriers.

Keywords: barriers; integrated flood risk management; interrelationships; interpretive structural
modeling; expanded ISM; Metro Manila

1. Introduction

Integrated flood risk management (IFRM) has been increasingly implemented in many
developed and developing countries because the traditional approach to flood control
and prevention using structural measures or hard engineering interventions fails to cope
with the residual risks brought on by extreme weather events [1]. IFRM is a relatively
modern approach that includes non-structural measures, not only structural measures, the
non-structural measures being those that do not require any physical construction but use
policy, knowledge, and practice to reduce flood risks and impacts, in particular through
policies and laws, public awareness-raising, training, and education [2]. IFRM prioritizes
more non-structural measures as it aims to proactively manage flood risks by “keeping
people away from water” rather than “keeping water away from people” [3]. So far, most
research on IFRM heavily concentrates on the hydrological and hydraulic processes.

Among the megacities in Asia, Metro Manila, the Philippines’ center of political and
economic activities, is considered to be the most at risk of climate impacts, mainly due to
its exposure to tropical cyclones [4]. Flooding has been the most frequent natural disaster
and a major cause of destruction in Metro Manila, in which the most disastrous flooding in
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the last decades was brought by Typhoon Ketsana in September 2009 [5]. In the Philippines,
an IFRM Master Plan was established in 2012 after the onslaught of Typhoon Ketsana. The
transition to IFRM from traditional flood protection, however, had been difficult due to the
critical issues or obstacles identified as “barriers” that hindered a smooth adaption to this
approach. Therefore, identifying the barriers to IFRM adaptation is an essential task so that
decision-makers and practitioners can devise an appropriate, realistic course of action and
propose the required policy changes to overcome them.

In developed countries, the identified barriers are mostly related to governance and
include issues such as political opposition, economic tensions, fragmented governance
structures, and weak enforcement of building restrictions [1,6–10]. Meanwhile, the research
on barriers to IFRM adaptation in developing countries remains limited to almost no studies
except for authors’ previous study [5]. We have identified barriers to IFRM in Metro Manila,
and it is found that they are multifaceted and numerous, and some are unique and are
expected to be more severe and alarming than those found in developed countries [5].

After identifying the barriers to IFRM adaptation, understanding their interrelation-
ships is also crucial, since barriers are often interrelated with one another as they can
alleviate, augment, reinforce, or trigger one another [11]. A systematic analysis of barrier
interrelationships is imperative so that decision-makers can make a rational assessment
rather than an intuitive judgment when devising a plan to overcome the barriers. However,
the interrelationships between the barriers to IFRM adaptation have not been analyzed yet,
and there is no universally accepted framework within which such barriers are analyzed,
as far as the authors know.

One systematic approach that can be used for barrier analysis is the Interpretive
Structural Modeling (ISM) method. The ISM method is popular for analyzing the in-
terrelationships among issues, concerns, or variables in a complex problem. It offers to
translate ill-articulated variables in a problem into a structural diagram that shows the
contextual, direct interrelationships and the hierarchy among the variables. The advan-
tages of this method compared to other methods such as structural equation modeling
(SEM), the Delphi method, or the Analytic Hierarchy Process (AHP) include to following:
(1) no requirement for large or statistical datasets, whereas SEM requires a priori statistical
data [12], (2) fewer required experts, as even an individual can apply this method, whereas
SEM and the Delphi method gather data from a large number of experts/respondents [13],
and (3) the display of both the interrelation and the hierarchy (ranking) of the variables,
whereas the Delphi Method and AHP only shows the ranking [14,15]. These advantages
have contributed to its popularity in broad areas of study, such as systems engineering [16],
waste management [11,17], supplier selection [18,19], supply chain flexibility [20,21], and
knowledge management [22], among others. However, the ISM method has not yet been
applied to the barriers related to natural hazards and disaster risk reduction management,
such as IFRM. Consequently, we tried to apply the ISM method in order to analyze the
interrelationships between the barriers to IFRM adaptation in Metro Manila for the first
time, using the conventional ISM method with some modifications [5].

Since the development of ISM in the 1970s, there have been only minor modifications
or improvements to this method, and most studies have only applied the original ISM
method. Sushil [23,24] proposed three modifications in ISM, and the first two modifications
led to the modified approach called Total ISM (TISM). Sushil [23,24] proposed (1) the
interpretation of the links (arrows) in the ISM diagram using an interpretative matrix to
explain “why” or “how” the interrelationship exists, (2) the inclusion of significant indirect
interrelationships in the ISM diagram, and (3) the use of a simultaneous pairwise com-
parison and transitivity check to lessen the efforts for these repetitive tasks. Despite these
modifications, the numerical representations of the four types of contextual relationships
in ISM do not explicitly represent the active and passive interrelations because of the use of
binary values (0 and 1), which may intuitively indicate the non-existence or existence of a
relationship. In addition, identifying the hierarchy among the variables is a very tedious
task, especially when the number of variables considered becomes higher due to repetitive
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tasks in a step. For these reasons, we believe there is a need to modify some of the steps in
ISM so that analyzing the results of the interrelationships between the barriers to IFRM
adaptation, especially for developing countries, can become intuitive, straightforward, and
comprehensive. Hence, this study proposes an expanded ISM (Ex-ISM) approach that
enhances some of the steps in conventional ISM.

The primary objective of this study is to intuitively and easily determine the com-
prehensive interrelationships among the barriers to IFRM adaptation in Metro Manila
using the proposed Ex-ISM method. The following sections describe the barriers to IFRM
adaptation in Metro Manila and the proposed Ex-ISM method; elaborate on the application
of the proposed method to the barriers to IFRM adaptation in Metro Manila; present the
results and compare them with the results given by the conventional method; and give
the conclusions.

2. Materials and Methods

2.1. Barriers to IFRM Adaptation in Metro Manila

We conducted a literature review to identify the barriers to IFRM adaptation in Metro
Manila. Journal articles, books, and reports published in the last two decades that discuss
issues in flood management in Metro Manila were used to identify the barriers to IFRM
adaptation in Metro Manila. The reviewed articles related to Metro Manila’s flood problem
include 15 internationally published papers; 2 locally published papers in the Philippines;
3 project reports from the Department of Public Works and Highways (DPWH) completed
in 2000, 2004, and 2013; and 2 books that feature case studies from Metro Manila. The
barriers to IFRM adaptation in Metro Manila were noted if they are recurring issues
concerning flood management or are cited at least once in the literature.

As for the investigation’s results, 12 barriers to IFRM adaptation in Metro Manila were
identified and are shown in Table 1 with their descriptions, and these were categorized into
three categories: governance, social, and technological resources. The barriers identified
are relatively numerous, and some are unique to developed countries because of the
socio-economic conditions of a developing country.

The barriers presented in Table 1 are time-dependent and may vary for each location.
However, in this study, the identified barriers in Table 1 are given condition as materials for
both conventional and expanded ISM. Both approaches only deal with the interrelationships
among the given barriers, so they do not deal with the temporal and spatial issues among
them. The temporal and spatial issues will be considered in detail before applying in the
ISM methods. In this study, under the same given condition for both conventional and
expanded ISM, we attempted to compare how Ex-ISM is different from conventional ISM.

Table 1. Barriers to IFRM adaptation in Metro Manila, Philippines. (See Reference [5] for Details).

Category Barrier Description

Governance

G1 Lack of a sole organizing body

Fragmented governance in flood
management in Metro Manila because the current
institutional framework does not have a clear demarcation
of tasks among government agencies

G2 Lack of communication
Weak inter-agency communication and the lack of
information exchange and communication on the
local level

G3 Lack of funding Low funding for flood mitigation and control projects
G4 Lack of flood control measures Inadequate existing flood control infrastructures

Social
S1 Informal settlers Encroachment of marginalized communities in

flood-prone areas where they can live cheaply

S2 Poor solid waste
management Clogged waterways and drainages due to solid wastes

S3 Poor social planning Services provided by the government of the Philippines
are inadequate to address issues related to the community
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Table 1. Cont.

Category Barrier Description

Technological
Resources

T1 Lack of technological
capabilities

Absence of real-time flood forecasts, water level, and
rainfall depth updates

T2 Sparse data and limited access
Available hydro-meteorological information is thinly
distributed, is not automated, and is measured on a large
time interval only

T3 Lack of experts Lack of experts from government agencies and local
government units

T4 Lack of data processing
systems

No data processing systems, which resulted in
hydro-meteorological information just being stored and
not used for analysis

T5 Deterioration of flood control
structures

Deterioration of existing flood control structures (e.g.,
pumping stations, drainage systems, hydraulic control
structures) due to poor maintenance and poor solid waste
management

2.2. Expanded Interpretive Structural Modeling (Ex-ISM)

Warfield developed ISM in the 1970s [25,26]. ISM is a structural modeling method
that determines the interrelations between variables in complex issues or systems. ISM
transforms unclear and poorly articulated variables into a structural model or diagram by
employing discrete mathematics and elementary graph theory so that theoretical, concep-
tual, and computational leverage is efficiently exploited [20]. This method’s output is a
diagram showing interrelationships through directed links or arrows and the hierarchy
between variables. This ISM diagram aids users, decision-makers, or practitioners in visual-
izing, interpreting, and understanding the variables, which can help them devise solutions
to the problem [27,28].

This study proposes an expanded ISM (Ex-ISM) method, which enhances the numeri-
cal representation of the four contextual relations by expanding them from binary to trinary
values (0, 1, and −1). The trinary values can express active and passive interrelations
using 1 and −1, respectively. Expanded Boolean multiplication and addition operations are
introduced so that ISM can accommodate the calculation of trinary values. The proposed
Ex-ISM method further simplifies the tedious, repetitive tasks involved in assigning the
hierarchy (levels), and it aims to present comprehensive interrelationships among the
barriers by showing the indirect interrelationships, not only the direct ones, in the ISM
diagram. Indirect interrelationships indicates that, between two barriers with a direct
interrelationship, there may be another barrier that can be influenced by the two.

Fundamentally, conventional ISM has five steps [29], as shown in Figure 1. In the
proposed Ex-ISM approach, Step 1 and Step 2 are expanded, and Step 3 is simplified,
as depicted in Figure 1. The succeeding paragraphs discuss in detail the expansion and
simplification proposed in this study.
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Figure 1. Flow chart of the ISM method with the simplified approach.

2.2.1. Step 1—Developing a Structural Self-Interaction Matrix (SSIM)

Pairwise comparisons between the identified variables are conducted first to develop
the SSIM. The pairwise comparisons can be conducted individually or in a group, so ISM
is often considered a group learning tool [30]. A contextual relationship of the “leads
to” or “influences” type must be chosen for the pairwise comparison [29]. In this study,
only five experts were asked to establish the SSIM because it is extremely difficult to find
experts with overarching experience in flood control and management in Metro Manila. The
5 identified experts have more than 20 years of experience and are members of the mandated
national government agency in charge of flood control planning and implementation in
the Philippines.

There are four types of interrelations based on the chosen contextual relationship
for the pairwise comparison, and four symbols represent these interrelations. In the
conventional ISM approach, the four symbols are V, A, X, and O, and these symbols are
used to fill up only the upper triangular half of the SSIM.

In this study, we changed the conventional symbolisms to provide meaningful repre-
sentations in the SSIM, and we also propose to fill up all of the cells of the SSIM (except
the diagonal, which is kept blank) with the new symbols in the Ex-ISM method. The
following are the new symbols used in Ex-ISM, which are based on the “influencing” type
of contextual relation:

1. The letter “V” is replaced with the symbol “+”, which denotes that variable i influences
variable j and j does not influence i.

2. The letter “A” is replaced with “-”, which denotes that variable i is influenced by
variable j and j is not influenced by i.

3. The letter “X” is replaced with the symbol “±” or “∓”, which means that variable i
and variable j influence each other.

4. The letter “O” is replaced with the symbol “0”, which means that variable i and
variable j are independent of one another.
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5. To fill up the lower triangular half of the SSIM, the corresponding passive pairwise
comparison SSIM(j, i) of the active SSIM(i, j) is filled with the corresponding passive
symbolism, i.e., if SSIM(i, j) = + or −, then SSIM(j, i)= − or +.

After eliciting the input of the five experts, an original SSIM is established and checked
for consistency, wherein consistency is considered a tally with a majority (three of the
more common responses in this study). For any inconsistent tally in the original SSIM, we
asked the experts to reconsider the relation in the pairwise comparison. After checking
the consistency, the resulting SSIM is referred to as the refined SSIM. The refined SSIM is
further summarized as the final SSIM by considering the majority response. This approach
addresses the handling of inconsistent data due to the experts’ inference. The final SSIM is
the only input for the following ISM method.

2.2.2. Step 2—Developing a Reachability Matrix (RM)

In this step, the final SSIM in Step 1 is transformed into an initial reachability matrix
(RMinit). The RMinit in conventional ISM is a binary-valued matrix in which the values
consist only of “1” and “0” to represent “an influence” and “no influence” relations between
variables i and j, respectively. The rules to convert the SSIM to the RMinit in the conventional
approach are as follows:

1. If SSIM(i, j) = V, then RMinit(i, j) = 1 and RMinit(j, i) = 0.
2. If SSIM(i, j) = A, then RMinit(i, j) = 0 and RMinit(j, i) = 1.
3. If SSIM(i, j) = X, then RMinit(i, j) = 1 and RMinit(j, i) = 1.
4. If SSIM(i, j) = O, then RMinit(i, j) = 0 and RMinit(j, i) = 0.
5. For the diagonal element SSIM(i, i), RMinit(i, i) = 1.

On the other hand, the proposed Ex-ISM method utilizes a trinary-valued matrix
(1, −1, and 0) to explicitly represent the four types of interrelations between variables i and
j. The following rules are introduced to convert the SSIM to RMinit:

1. If the SSIM(i, j) is “+”, then RMinit(i, j) is 1 and RMinit(j, i) is −1.
2. If the SSIM(i, j) is “−”, then RMinit(i, j) is −1 and RMinit(j, i) is 1.
3. If the SSIM(i, j) is “±” or “∓”, then RMinit(i, j) is ±1 or ∓1.
4. If the SSIM(i, j) is “0”, then RMinit(i, j) is 0.
5. For the blank diagonal element SSIM(i, i), RMinit(i, i) = ±1.

This new rule not only simplifies the transformation of the SSIM to RMinit but also
retains the interrelations from the SSIM and explicitly represents the active and passive
interrelations between variables i and j using 1 and −1 values, respectively. Subsequently,
a transitivity check is conducted iteratively in the RMinit to derive the final RM (RMfin).
The transitive relations in the RMfin suggest an indirect relation between variables i and
j. The conventional way to conduct the transitivity check is expressed by the following
equation [31]:

RMfin = RMinit
k = RMinit

k+1, k > 1 (1)

where k denotes the powers. Equation (1) is calculated using matrix Boolean multiplication
and addition operations. All transitive relations, i.e., 0 in RMinit(i, j) that changed into 1 in
RMfin(i, j), are conventionally denoted by one “*” in the RMfin.

On the other hand, the RMinit in the Ex-ISM approach is a trinary-valued matrix, so
the conventional approach to the transitivity check is not applicable. To cope with this, we
propose an expanded Boolean multiplication and addition for Ex-ISM, shown in Table 2, to
calculate the −1 values. Firstly, the RMinit is deconstructed into two matrices, +RMinit and
−RMinit. The following are the rules to derive these matrices:
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Table 2. Expanded Boolean multiplication and addition for Ex-ISM.

Multiplication Addition

× 0 1 −1 + 0 1 −1

0 0 0 0 0 0 1 −1
1 0 1 B 1 1 1 ±1/∓1 a

−1 0 B −1 −1 −1 ±1/∓1 a −1

B—blank; a—upper sign corresponds to the original relation in RMinit while the bottom sign corresponds to
transitive or indirect relation in RMfin.

1. If RMinit(i, j) has a positive sign, then +RMinit(i, j) = 1; otherwise +RMinit(i, j) = 0.
2. If RMinit(i, j) has a negative sign, then −RMinit(i, j) = −1; otherwise −RMinit(i, j) = 0.

Then, the transitivity check for +RMinit and −RMinit is expressed using the
following equations:

+RMfin = +RMinit
k = +RMinit

k+1, k > 1 (2)

− RMfin = −RMinit
k = −RMinit

k+1, k > 1 (3)

These two matrices are calculated using the expanded Boolean multiplication and
addition in Table 2. The matrix operation for +RMinit in Equation (2) is the same as that in
Equation 1, because it is a binary matrix. Thus, +RMfin is the same RMfin as the conventional
approach. In the Ex-ISM approach, the transitive or indirect relations are represented by
multiple “*” to distinctly indicate the number of iterations for the transitive relations,
whereas only one “*” is indicated in the conventional approach. Finally, in this step, the
obtained +RMfin and −RMfin are combined using the expanded Boolean addition operation
in Table 2 to derive the RMfin. For multi-signed 1 (±1 or ∓1) in Table 2, the upper sign
corresponds to the original relation in the RMinit, while the lower sign corresponds to a
transitive or indirect relation in the RMfin.

2.2.3. Step 3—Assigning Levels for Each Variable

The conventional approach to assigning levels to each variable is one of the most te-
dious steps in ISM, and it is incredibly taxing when the number of variables becomes larger.
The shaded part of Figure 1 shows the conventional ISM flowchart for Step 3. Following is
the description of the flowchart. Three sets for each variable i are first determined using the
RMfin: the “reachability set”, which consists of those variables that it influences and itself
(when variable j = 1 within its row i); the “antecedent set”, which consists of those variables
that influence it and itself (when variable i = 1 within its column j); and the “intersection
set”, which consists of the intersection between the reachability and antecedent sets. To
assign the levels, variables with the same reachability and intersection sets are assigned
to level I, and these level I variables are eliminated from the three sets to result in new
reachability, antecedent, and intersection sets. Then, this process is carried out recursively
until all variables are assigned to a corresponding level.

In the Ex-ISM method, we propose to simplify this step. Using the RMfin given by the
Ex-ISM method, the positive values, i.e., 1, are counted at each row of the variable i. The
counted value responds to the level for variable i. The highest level assigned to variable i is
the total number of variables considered for the analysis, while the lowest is 1. The levels
derived from the proposed Ex-ISM method have the same order as in the conventional ISM
method, but the magnitude of the levels is also considered.

2.2.4. Step 4—Developing a Conical Matrix (CM)

Using the RMfin and the assigned levels, a CM is derived by rearranging RMfin
according to the levels across the rows and columns. The CM is conventionally arranged
in an ascending order of the levels across the rows and columns, but we changed the
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arrangement into a descending order in the Ex-ISM method so that the ISM diagram can be
constructed according to the modified schematic described in the next step.

2.2.5. Step 5—Developing the ISM Diagram

The ISM diagram is drawn using the CM. The ISM diagram is a kind of directed graph
(or digraph) that shows a set of interconnected variables representing an interrelation while
also showing its hierarchy. In the conventional approach, only the direct interrelations
between the variables are shown in the ISM diagram, while indirect interrelations are
disregarded. The direct interrelations are represented by 1 in CM(i, j), while the indirect
ones have “*” attached to the 1. To construct the ISM diagram conventionally, an arrow is
drawn from variable i to j if CM(i, j) = 1, and the variables are arranged in ascending levels
from top to bottom.

By contrast, we also show the indirect interrelations in the ISM diagram of the Ex-ISM
method, because indirect interrelations may cause an underlying ripple effect or chains of
reactions to other variables [32]. A separate diagram for this is constructed similarly to the
diagram for the direct relations. In addition, descending levels are adopted to arrange the
ISM diagram in the Ex-ISM approach. This rearrangement depicts the ISM diagram in a
pyramid schematic, where the highest-level variables (most influential) are placed at the
top, while the lowest-level variables (least influential) are placed at the bottom. In this way,
the hierarchy among the variables is consistently depicted in the ISM diagram.

The ISM diagram in the Ex-ISM method shows the direct interrelationships as those
having a solid line arrow drawn from variable i to variable j if CM(i, j) has a positive sign.
As for the ISM diagram that shows the indirect interrelationships, an arrow is drawn from
variable i to variable j if CM(i, j) has a positive sign with “*”. The arrows are formatted into
varying broken lines or line types for “*”, “**”, “***”, and so on to distinguish them, which
was not done in the conventional approach.

3. Results and Discussion

The direct and indirect interrelationships between identified barriers to IFRM adapta-
tion in Metro Manila were established using the Ex-ISM method. The results given by the
Ex-ISM method are presented in the succeeding paragraphs, while the conventional ISM
results are shown in Appendix A.

For Step 1, the pairwise comparison between the 12 barriers was derived from the
5 experts engaged, and this is shown in Table 3 and called the refined SSIM. There are
five symbols in the refined SSIM, which correspond to each expert’s inference regarding
the pairwise comparison. For example, in refined SSIM(1, 2), there are four “+” symbols,
indicating that four experts inferred that barrier G1 influences barrier G2, while only a
single “-“ symbol indicates that one expert inferred that G1 is influenced by G2. This
refined SSIM was already checked for any inconsistency, so a majority response from the
five experts can be derived to come up with the final SSIM shown in Table 4. Contrary to
the conventional SSIM in Appendix A, Table A1, the final SSIM of the Ex-ISM method in
Table 4 is completely filled with the new symbols (+, −, ±, and ∓) that show the active and
passive interrelations explicitly. For example, the SSIM(1,2) in Table 4 is “+”, so SSIM(2, 1)
is “−”, which means that barrier G1 influences barrier G2 and barrier G2 is influenced by
barrier G1, respectively.
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Table 3. Refined Structural Self-Interaction Matrix (refined SSIM).

j 1 2 3 4 5 6 7 8 9 10 11 12

i
Category Governance Social Technological Resources

Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1

Governance

G1
+++
+-

+++
++

+++
+0

+00
00

++0
00

++0
00

+++
00

+++
++

+++
+0

+++
+±

+++
+±

2 G2
- - -
-∓

+++
+±

++0
00

+++
+0

++0
0+

+++
0±

+00
0±

+++
±±

-00
00

-00
00

+00
00

3 G3
- - -
- -

—
-∓

+++
-±

-00
0±

000
±±

+00
0±

+++
-±

+++
0±

+++
0±

+++
± ±

+++
±±

4 G4
- - -
-0

–0
00

—
+∓

+00
0±

+00
00

+++
00

+++
+±

+++
+±

++±
±±

+0±
±±

+++
++

5

Social

S1
-00
00

—
-0

+00
0∓

-00
0∓

+++
+±

+–
-±

000
00

000
00

000
00

000
00

000
0±

6 S2
–0
00

–0
0-

000
∓∓

-00
00

—
-∓

—
00

-00
00

000
00

-00
00

000
00

000
0±

7 S3
–0
00

—
0∓

-00
0∓

—
00

-++
+∓

+++
00

-00
00

-00
0±

—
00

000
±±

000
0±

8

Technological
Resources

T1
—
00

-00
0∓

—
+∓

—
-∓

000
00

+00
00

+00
00

+++
+±

++-
–

+±±
±±

+++
0±

9 T2
—
–

—
∓∓

—
0∓

—
-∓

000
00

000
00

+00
0∓

—
-∓

+–
–

+–
-±

+00
0±

10 T3
—
-0

+00
00

—
0∓

–∓
∓∓

000
00

+00
00

+++
00

–+
++

-++
++

+++
00

+++
00

11 T4
—

-∓
+00
00

—
∓∓

-0∓
∓∓

000
00

000
00

000
∓∓

-∓∓
∓∓

-++
+∓

—
00

0+0
++

12 T5
—

-∓
-00
00

—
∓∓

—
–

000
0∓

000
0∓

000
0∓

—
0∓

-00
0∓

—
∓∓

0-0
–

Table 4. Final Structural Self-Interaction Matrix (final SSIM).

i
j 1 2 3 4 5 6 7 8 9 10 11 12

Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 + + + 0 0 0 + + + + +
2 G2 − + 0 + + + 0 + 0 0 0
3 G3 − − + 0 0 0 + + + + +
4 G4 − 0 − 0 0 + + + ± ± +

5 S1 0 − 0 0 + − 0 0 0 0 0
6 S2 0 − 0 0 − − 0 0 0 0 0
7 S3 0 − 0 − + + 0 0 - 0 0

8 T1 − 0 − − 0 0 0 + − ± +
9 T2 − − − − 0 0 0 − − − 0
10 T3 − 0 − ∓ 0 0 + + + + +
11 T4 − 0 − ∓ 0 0 0 ∓ + − +
12 T5 − 0 − - 0 0 0 − 0 − −

For Step 2, the final SSIM is transformed to RMinit, as shown in Table 5. The transforma-
tion of the final SSIM to RMinit was more effortless with Ex-ISM than with the conventional
ISM method, because the SSIM of Ex-ISM is already filled with the new symbols. The
trinary values in Table 5 also retain the active and passive relations from the SSIM, e.g.,
RMinit(1, 2) = 1 indicates that barrier G1 influences barrier G2, while RMinit(2, 1) = −1
indicates that barrier G2 is influenced by barrier G1. In contrast, the binary values used
in the conventional RMinit, shown in Appendix A, Table A2, represent RMinit(2, 1) as “0”,
which does not distinguish whether there is an “influenced by” or a “no” relation. Then,
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the RMinit of the Ex-ISM method is first deconstructed into positive and negative initial
reachability matrices (+RMinit and −RMinit) before the transitivity check.

Table 5. Initial Reachability Matrix (RMinit).

i
j 1 2 3 4 5 6 7 8 9 10 11 12

Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 ±1 1 1 1 0 0 0 1 1 1 1 1
2 G2 −1 ±1 1 0 1 1 1 0 1 0 0 0
3 G3 −1 −1 ±1 1 0 0 0 1 1 1 1 1
4 G4 −1 0 −1 ±1 0 0 1 1 1 ±1 ±1 1

5 S1 0 −1 0 0 ±1 1 −1 0 0 0 0 0
6 S2 0 −1 0 0 −1 ±1 −1 0 0 0 0 0
7 S3 0 −1 0 −1 1 1 ±1 0 0 −1 0 0

8 T1 −1 0 −1 −1 0 0 0 ±1 1 −1 ±1 1
9 T2 −1 −1 −1 −1 0 0 0 −1 ±1 −1 −1 0

10 T3 −1 0 −1 ∓1 0 0 1 1 1 ±1 1 1
11 T4 −1 0 −1 ∓1 0 0 0 ∓1 1 −1 ±1 1
12 T5 −1 0 −1 −1 0 0 0 −1 0 −1 −1 ±1

The +RMinit and −RMinit are just the same as the positive and negative parts in
Table 5 when deconstructed, and these are operated on using the proposed expanded
Boolean multiplication operation for the Ex-ISM method in Table 2 to check the transitivity
and derive the final positive and negative reachability matrices (+RMfin and −RMfin) in
Tables 6 and 7, respectively. The +RMfin (Table 6) and −RMfin (Table 7) were combined
according to the proposed expanded Boolean addition in Table 2, which resulted in the
RMfin shown in Table 8. The number of “*” indicates the iterations for the transitive or
indirect relations, whereas only one “*” is indicated in the conventional approach, as shown
in Table A3.

Table 6. Final Positive Reachability Matrix (+RMfin).

j 1 2 3 4 5 6 7 8 9 10 11 12

i Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 1 1 1 1 1 * 1 * 1 * 1 1 1 1 1
2 G2 0 1 1 1 * 1 1 1 1 * 1 1 * 1 * 1 *
3 G3 0 0 1 1 1 ** 1 ** 1 * 1 1 1 1 1
4 G4 0 0 0 1 1 * 1 * 1 1 1 1 1 1

5 S1 0 0 0 0 1 1 0 0 0 0 0 0
6 S2 0 0 0 0 0 1 0 0 0 0 0 0
7 S3 0 0 0 0 1 1 1 0 0 0 0 0

8 T1 0 0 0 1 * 1 *** 1 *** 1 ** 1 1 1 ** 1 1
9 T2 0 0 0 0 0 0 0 0 1 0 0 0

10 T3 0 0 0 1 1 * 1 * 1 1 1 1 1 1
11 T4 0 0 0 1 1 ** 1 ** 1 * 1 1 1 * 1 1
12 T5 0 0 0 0 0 0 0 0 0 0 0 1
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Table 7. Final Negative Reachability Matrix (−RMfin).

j 1 2 3 4 5 6 7 8 9 10 11 12

i Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 −1 0 0 0 0 0 0 0 0 0 0 0
2 G2 −1 −1 0 0 0 0 0 0 0 0 0 0
3 G3 −1 −1 −1 0 0 0 0 0 0 0 0 0
4 G4 −1 −1 * −1 −1 0 0 0 −1 * 0 −1 −1 0

5 S1 −1 * −1 −1 ** −1 * −1 0 −1 −1 *** 0 −1 * −1 ** 0
6 S2 −1 * −1 −1 ** −1 * −1 −1 −1 −1 *** 0 −1 * −1 ** 0
7 S3 −1 * −1 −1 * −1 0 0 −1 −1 ** 0 −1 −1 * 0

8 T1 −1 −1 * −1 −1 0 0 0 −1 0 −1 −1 0
9 T2 −1 −1 −1 −1 0 0 0 −1 −1 −1 −1 0

10 T3 −1 −1 * −1 −1 0 0 0 −1 ** 0 −1 −1 * 0
11 T4 −1 −1 * −1 −1 0 0 0 −1 0 −1 −1 0
12 T5 −1 −1 * −1 −1 0 0 0 −1 0 −1 −1 −1

Table 8. Final Reachability Matrix (RMfin) and Levels of each barrier.

j 1 2 3 4 5 6 7 8 9 10 11 12
Level

i Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 ±1 1 1 1 1 * 1 * 1 * 1 1 1 1 1 12
2 G2 −1 ±1 1 1 * 1 1 1 1 * 1 1 * 1 * 1 * 11
3 G3 −1 −1 ±1 1 1 ** 1 ** 1 * 1 1 1 1 1 10
4 G4 −1 −1 * −1 ±1 1 * 1 * 1 ±1 * 1 ±1 ±1 1 9

5 S1 −1 * −1 −1 ** −1 * ±1 1 −1 −1
*** 0 −1 * −1 ** 0 2

6 S2 −1 * −1 −1 ** −1 * −1 ±1 −1 −1
*** 0 −1 * −1 ** 0 1

7 S3 −1 * −1 −1 * −1 1 1 ±1 −1 ** 0 −1 −1 * 0 3

8 T1 −1 −1 * −1 ∓1 * 1 *** 1 *** 1 ** ±1 1 ∓1 ** ±1 1 9
9 T2 −1 −1 −1 −1 0 0 0 −1 ±1 −1 −1 0 1
10 T3 −1 −1 * −1 ∓1 1 * 1 * 1 ±1 ** 1 ±1 ±1 * 1 9
11 T4 −1 −1 * −1 ∓1 1 ** 1 ** 1 * ∓1 1 ∓1 * ±1 1 9
12 T5 −1 −1 * −1 −1 0 0 0 −1 0 −1 −1 ±1 1

The results show that some barriers to IFRM adaptation have indirect interrelations
up to the third degree. Those values in Table 8 with “*”, “**”, and “***” signifies indirect
relations to the first, second, and third degree for barriers i and j, respectively. For multi-
signed (±1 or ∓1) indirect relations, the upper sign signifies the original sign in the RMinit,
while the lower sign signifies a transitive or indirect interrelation in the RMfin. In addition,
there are three barrier interrelations (RMfin = (4, 8), (8, 10) (10, 11) in Table 8) that become
multi-signed after the transitivity check. Such details are not specified in the conventional
ISM shown in Appendix A, Table A3.

For Step 3, the assignment of the levels for each barrier is much simpler in the Ex-ISM
method than in the conventional one, where a recursive process is necessary. We used the
RMfin in Table 8 to determine the levels by just counting the positive 1s in the rows for
each barrier. The counted values are assigned as the levels in the Ex-ISM method, which
are shown in the last column of Table 8. The tedious conventional process, in which nine
iterations were performed to assign a level for each barrier, is presented in Appendix A,
Tables A4–A8.

For Step 4, the levels and RMfin in Table 8 are rearranged in descending order across
the columns and rows to derive the CM in Table 9, whereas an ascending order is adopted
in the conventional approach shown in Appendix A, Table A9.
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Table 9. Conical matrix (CM).

Level 12 11 10 9 9 9 9 3 2 1 1 1

Barrier G1 G2 G3 G4 T1 T3 T4 S3 S1 S2 T2 T5

12 G1 ±1 1 1 1 1 1 1 1 * 1 * 1 * 1 1
11 G2 −1 ±1 1 1 * 1 * 1 * 1 * 1 1 1 1 1 *
10 G3 −1 −1 ±1 1 1 1 1 1 * 1 ** 1 ** 1 1
9 G4 −1 −1 * −1 ±1 ±1 * ±1 ±1 1 1 * 1 * 1 1

9 T1 −1 −1 * −1 ∓1 * ±1 ∓1 ** ±1 1 ** 1 *** 1 *** 1 1
9 T3 −1 −1 * −1 ∓1 ±1 ±1 ±1 1 1 * 1 * 1 1
9 T4 −1 −1 * −1 ∓1 ∓1 ∓1 * ±1 1 * 1 ** 1 ** 1 1

3 S3 −1 * −1 −1 * −1 −1 ** −1 −1 * ±1 1 1 0 0
2 S1 −1 * −1 −1 ** −1 * −1 *** −1 * −1 ** −1 ±1 1 0 0
1 S2 −1 * −1 −1 ** −1 * −1 *** −1 * −1 ** −1 −1 ±1 0 0
1 T2 −1 −1 −1 −1 −1 −1 −1 0 0 0 ±1 0
1 T5 −1 −1 * −1 −1 −1 −1 −1 0 0 0 0 ±1

Finally, for Step 5, the CM in Table 9 is used to draw the ISM diagram. Figure 2
shows two ISM diagrams, i.e., Figure 2a,b shows the direct and indirect interrelationships,
respectively. The conventional ISM diagram disregards the indirect interrelationships,
but showing indirect relations may provide a comprehensive analysis of the variables’
underlying chains of influence. The pyramid schematic in the Ex-ISM method is the
opposite of the conventional one. The ISM diagrams in Figure 2 show a noticeable gap
between the upper (Level 9~12) and lower (Level 1~3) level barriers, which is not possible
in the conventional ISM diagram because it only shows the order of the levels, not the
magnitude. The gap in the hierarchy shown by the redefined magnitude of the levels in the
Ex-ISM method may imply that the barriers at the upper level have an unforeseen impact
or influence on the lower-level barriers.

Figure 2. ISM diagram for the (a) direct and (b) indirect influence interrelationships between the
barriers to IFRM adaptation in Metro Manila.
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From Figure 2, the most influential barrier to IFRM adaptation in Metro Manila is G1
(Lack of sole organizing body). This may imply that the establishment or assignment of a
lead agency in IFRM that supports planning, implementation, operations, and maintenance
has to be carried out, since there are currently too many key players in flood risk manage-
ment in Metro Manila. The second most influential barrier is G2 (Lack of coordination),
which directly influences G4 (Lack of flood control measures) and all of the social barriers.
The ISM diagrams in Figure 2 also reveal that G4 (Lack of flood control measures), T1
(Lack of data processing systems), T3 (Lack of experts), and T4 (Lack of data processing
system) are directly influencing each other, and that these are directly influenced by G3
(Lack of funding) and G1. On the other hand, the least influential barriers are those related
to the social category (S2—poor solid waste management) and the technological category
(T2—Sparse data and limited access and T5—Deterioration of flood control structures).

In Figure 2a, we recognize that the social barriers (S1~S3) are mainly influenced by
barrier G2, which we have regarded as the key to overcoming the social barriers. However,
the indirect interrelationships in Figure 2b show that the barriers in the social category are
further influenced indirectly to the first and second degrees by the other barriers in the
governance (G1, G3, and G4) category, and to the first–third degrees by level 9 technological
resource issues (T1, T3, and T4).

Studies in developed countries [33–35] have suggested that collaborative governance
and technology-based tools can help enhance social learning by understanding people’s
interests and values in regard to IFRM. However, overcoming the social barriers in Metro
Manila may be more complicated due to several interrelations of indirect influence. Over-
coming them will require strong political will, a large amount of financial support, and
science-based evidence and technological capabilities, which are inherently lacking in many
developing countries. These indirect interrelations may imply that overcoming the social
barriers necessitates improving other barriers in the governance and technological resource
categories, not only barrier G2.

In the same way, barriers in the technological category are mainly influenced by G1
and G3. The barriers in this category are also indirectly influenced in the first degree by
barrier G2. The results suggest that barrier G2 also plays a significant role in overcoming
the technological resource barriers in Metro Manila, but the context may differ in developed
countries. Effective risk communication in many developed countries emphasizes the trans-
lation of risks from scientists to practitioners, decision-makers, and laypeople to articulate
risks, forecasts, warnings, or even uncertainties that can aid decision-making and social
learning [36–38]. However, Metro Manila’s technological capabilities are far behind those of
developed countries, as is the case in many developing countries, so there is no operational
flood forecasting and warning system in Metro Manila [39]. The role of communication in
overcoming the technological barriers in Metro Manila may suggest that solutions must
come from the practitioners, the decision-makers, or those who hold government positions,
since they can stimulate an increase in funding for technological improvement in flood
management. Thus, overcoming technological barriers necessitates political will, communi-
cation, and funding, as expressed by the direct and indirect interrelationships of barriers
G1, G2, and G3 in Figure 2.

Uncertainty is a crucial issue, and this is inherent in the data and modeling techniques
in flood risk management [40], flood defense engineering [41], and decision-making [41,42].
However, the ISM approach (including both the conventional and the expanded ISM
methods) does not deal with any uncertainty once the input matrix, i.e., the final SSIM that
is automatically constructed from the Refined SSIM, is determined. In other words, once
the Refined SSIM is constructed, ISM is a deterministic and systematic method that can
only show the interrelationships between the barriers. In this paper, the Refined SSIM is
treated as the given condition for both conventional and expanded ISM, and we focus on
showing the usefulness of the Ex-ISM approach compared to conventional ISM.

On the other hand, we agree that the data gathered for both the Ex-ISM and conven-
tional ISM approaches, i.e., the identified barriers to IFRM adaptation and the contextual
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interrelationships in the SSIM based on the experts’ judgment, are inherently uncertain.
The experts’ judgments in the SSIM has inherent uncertainties because they are based on
how experts perceive flood risk, so, in this paper, the experts’ judgments in the SSIM were
iteratively checked in order to construct a Refined SSIM with less uncertainty. Neverthe-
less, if data inputs with less uncertainty are available, the Ex-ISM method can be used to
systematically determine the barriers’ interrelationships and their hierarchy through the
ISM diagrams for the direct and indirect relationships.

The Ex-ISM and the conventional ISM approach do not deal with systems failure and
temporal variability among the barriers, as they only show the interrelationships between
variables. Nevertheless, the results of the Ex-ISM method provide a comprehensive analysis
by showing both the direct and indirect interrelationships between the barriers in the
ISM diagrams. Those barriers recognized as being most influential have been further
emphasized through the redefined magnitudes of the hierarchical levels. This may give
additional direction to the decision-makers regarding which barriers must be eliminated
first and foremost. The diagram showing the direct and indirect interrelationships can help
decision-makers and stakeholders visualize and understand the complex interrelationships
among the barriers, since the barriers are only abstract concepts. Thus, the ISM diagram
can be used as a tool when devising a plan to overcome the barriers. This analysis of
the barriers’ interrelationships may lead to an effective plan for transitioning to IFRM,
especially for Metro Manila, since the identified barriers have impeded the transition [43].

4. Conclusions

Identifying and analyzing the interrelationships between the barriers to IFRM adaption
is crucial before and during the implementation of IFRM in both developed and developing
countries. These tasks are necessary but are not widely performed. Therefore, this study
attempts to conduct a comprehensive analysis of the barriers to IFRM adaptation in Metro
Manila, Philippines, by applying a proposed Ex-ISM method for barrier interpretation.

The proposed Ex-ISM method is an enhancement of conventional ISM, and it aims to
(1) utilize trinary values to explicitly represent the active and passive interrelations between
the variables by introducing both 1 and −1 in the reachability matrices; (2) introduce
an expanded Boolean multiplication and addition to accommodate the calculation of the
trinary values; (3) simplify the repetitive and tedious task of assigning the levels for each
variable; and (4) provide comprehensive interrelations in the ISM diagram by showing not
only the direct interrelations but also the indirect interrelations.

Because Ex-ISM contains conventional ISM, the limitations of conventional ISM are
still inherent in Ex-ISM. Both methods heavily depend on experts’ judgment to create the
final SSIM as the input for any ISM approach. The handling of experts’ inferences that may
have inconsistencies has still not been standardized for the ISM approach. In this study,
however, inconsistencies were dealt with by having multiple pairwise comparison iterations
with the experts engaged. Once the final SSIM is created, the following procedures are
systematically and automatically calculated according to the ISM methods of interest.

The Ex-ISM method was applied to 12 identified barriers to IFRM adaptation in
Metro Manila. The results from the Ex-ISM method did not deviate from the results
obtained using the conventional ISM approach, but the proposed Ex-ISM method provided
enhanced results through the trinary values in the reachability matrices. Furthermore, the
ISM diagrams that show both the direct and indirect influence interrelationships provided
a deeper understanding of the barriers. Therefore, the Ex-ISM method, which shows the
indirect interrelationships, presents a comprehensive analysis of the interrelationships
between the barriers to IFRM. The hierarchy is also emphasized by the magnitude of the
levels, not only the order, which may imply the underlying impacts of upper-level barriers
on the lower-level barriers.

The most influential barriers to IFRM that were identified belong to the governance
category, and their interrelations with the other barriers were comprehensively analyzed in
this study. The indirect relationships are also interpreted, emphasizing that their influence
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on the other barriers needs to be considered as well when devising a strategic plan to
overcome said barriers and implement IFRM. Indirect relations are equally important as
direct relations, as the former are the ripple effect of the latter.

Overall, the study’s results presented comprehensive interrelations between the barri-
ers to IFRM. Also, the proposed Ex-ISM application is less tedious, and the results were
enhanced and were more comprehensive compared to the conventional ISM method.
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Appendix A

The results obtained using conventional ISM for the SSIM, Initial RM, and Final RM,
the level partitioning iterations, and the CM are presented in the succeeding tables.

Table A1. Structural Self-Interaction Matrix (SSIM) (Conventional Method).

i
j 1 2 3 4 5 6 7 8 9 10 11 12

Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 V V V O O O V V V V V
2 G2 V O V V V O V O O O
3 G3 V O O O V V V V V
4 G4 O O V V V X X V

5 S1 V A O O O O O
6 S2 A O O O O O
7 S3 O O A O O

8 T1 V A X V
9 T2 A A O
10 T3 V V
11 T4 V
12 T5
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Table A2. Initial Reachability Matrix (RMinit) (Conventional Method).

i
j 1 2 3 4 5 6 7 8 9 10 11 12

Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 1 1 1 1 0 0 0 1 1 1 1 1
2 G2 0 1 1 0 1 1 1 0 1 0 0 0
3 G3 0 0 1 1 0 0 0 1 1 1 1 1
4 G4 0 0 0 1 0 0 1 1 1 1 1 1

5 S1 0 0 0 0 1 1 0 0 0 0 0 0
6 S2 0 0 0 0 0 1 0 0 0 0 0 0
7 S3 0 0 0 0 1 1 1 0 0 0 0 0

8 T1 0 0 0 0 0 0 0 1 1 0 1 1
9 T2 0 0 0 0 0 0 0 0 1 0 0 0

10 T3 0 0 0 1 0 0 1 1 1 1 1 1
11 T4 0 0 0 1 0 0 0 1 1 0 1 1
12 T5 0 0 0 0 0 0 0 0 0 0 0 1

Table A3. Final Reachability Matrix (RMfin) (Conventional Method).

i
j 1 2 3 4 5 6 7 8 9 10 11 12

Barrier G1 G2 G3 G4 S1 S2 S3 T1 T2 T3 T4 T5

1 G1 1 1 1 1 1 * 1 * 1 * 1 1 1 1 1
2 G2 0 1 1 1 * 1 1 1 1 * 1 1 * 1 * 1 *
3 G3 0 0 1 1 1 * 1 * 1 * 1 1 1 1 1
4 G4 0 0 0 1 1 * 1 * 1 1 1 1 1 1

5 S1 0 0 0 0 1 1 0 0 0 0 0 0
6 S2 0 0 0 0 0 1 0 0 0 0 0 0
7 S3 0 0 0 0 1 1 1 0 0 0 0 0

8 T1 0 0 0 1 * 1 * 1 * 1 * 1 1 1 * 1 1
9 T2 0 0 0 0 0 0 0 0 1 0 0 0

10 T3 0 0 0 1 1 * 1 * 1 1 1 1 1 1
11 T4 0 0 0 1 1 * 1 * 1 * 1 1 1 * 1 1
12 T5 0 0 0 0 0 0 0 0 0 0 0 1

Table A4. Level Partitioning (Conventional Method)—1st Iteration.

Barrier
Reachability

Set
Antecedent Set Intersection Set Level

1 1.2.3.4.5.6.7.8.9.10.11.12 1 1

2 2.3.4.5.6.7.8.9.10.11.12 1.2 2

3 3.4.5.6.7.8.9.10.11.12 1.2.3 3

4 4.5.6.7.8.9.10.11.12 1.2.3.4.8.10.11 4.8.10.11

5 5.6 1.2.3.4.5.7.8.10.11 5

6 6 1.2.3.4.5.6.7.8.10.11 6 I

7 5.6.7 1.2.3.4.7.8.10.11 7

8 4.5.6.7.8.9.10.11.12 1.2.3.4.8.10.11 4.8.10.11

9 9 1.2.3.4.8.9.10.11 9 I

10 4.5.6.7.8.9.10.11.12 1.2.3.4.8.10.11 4.8.10.11

11 4.5.6.7.8.9.10.11.12 1.2.3.4.8.10.11 4.8.10.11

12 12 1.2.3.4.8.10.11.12 12 I
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Table A5. Level Partitioning (Conventional Method)—2nd Iteration.

Barrier
Reachability

Set
Antecedent Set Intersection Set Level

1 1.2.3.4.5.7.8.10.11 1 1

2 2.3.4.5.7.8.10.11 1.2 2

3 3.4.5.7.8.10.11 1.2.3 3

4 4.5.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

5 5 1.2.3.4.5.7.8.10.11 5 II

7 5.7 1.2.3.4.7.8.10.11 7

8 4.5.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

10 4.5.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

11 4.5.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

Table A6. Level Partitioning—3rd Iteration.

Barrier
Reachability

Set
Antecedent Set Intersection Set Level

1 1.2.3.4.7.8.10.11 1 1

2 2.3.4.7.8.10.11 1.2 2

3 3.4.7.8.10.11 1.2.3 3

4 4.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

7 7 1.2.3.4.7.8.10.11 7 III

8 4.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

10 4.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

11 4.7.8.10.11 1.2.3.4.8.10.11 4.8.10.11

Table A7. Level Partitioning (Conventional Method)—4th Iteration.

Barrier
Reachability

Set
Antecedent Set Intersection Level

1 1.2.3.4.8.10.11 1 1

2 2.3.4.8.10.11 1.2 2

3 3.4.8.10.11 1.2.3 3

4 4.8.10.11 1.2.3.4.8.10.11 4.8.10.11 IV

8 4.8.10.11 1.2.3.4.8.10.11 4.8.10.11 IV

10 4.8.10.11 1.2.3.4.8.10.11 4.8.10.11 IV

11 4.8.10.11 1.2.3.4.8.10.11 4.8.10.11 IV

Table A8. Level Partitioning (Conventional Method)—5th and 6th Iteration.

Barrier
Reachability

Set
Antecedent Set Intersection Set Level

1 1.2.3. 1 1 VII

2 2.3. 1.2 2 VI

3 3. 1.2.3 3 V
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Table A9. Conical Matrix.

Level VII VI V IV IV IV IV III II I I I
Level

Barrier G1 G2 G3 G4 T1 T3 T4 S3 S1 S2 T2 T5

G1 1 1 1 1 1 1 1 1 * 1 * 1 * 1 1 VII
G2 0 1 1 1 * 1 * 1 * 1 * 1 1 1 1 1 * VI
G3 0 0 1 1 1 1 1 1 * 1 * 1 * 1 1 V
G4 0 0 0 1 1 1 1 1 1 * 1 * 1 1 IV
T1 0 0 0 1 * 1 1 * 1 1 * 1 * 1 * 1 1 IV
T3 0 0 0 1 1 1 1 1 1 * 1 * 1 1 IV
T4 0 0 0 1 1 1 * 1 1 * 1 * 1 * 1 1 IV
S3 0 0 0 0 0 0 0 1 1 1 0 0 III
S1 0 0 0 0 0 0 0 0 1 1 0 0 II
S2 0 0 0 0 0 0 0 0 0 1 0 0 I
T2 0 0 0 0 0 0 0 0 0 0 1 0 I
T5 0 0 0 0 0 0 0 0 0 0 0 1 I
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Abstract: In urban basins, localized torrential rain increases the water level of rivers in an extremely
short time, thereby leading to flooding within an hour. Therefore, to achieve early evacuation, the
water level should be accurately forecasted. The outflow process in urban areas employs the sewer
system to discharge the water back to rivers. However, the data for the sewer system are not freely
available, and it requires much work and time to design a physical model based on such data. Thus,
a vector autoregressive model to develop a water level forecast system that uses observed rainfall
and water level is being used. Additionally, this model was used to ensure information conducive
to evacuation approximately 20 min in advance and to assess its forecast accuracy, despite the very
limited data—water levels at one point and average rainfall at another—without the need to build
a physical model such as that which is used in sewer pipe calculations. Compared to the observed
water level, the calculated water level increased faster; and thus, the forecast leaned toward safety in
evacuation. Furthermore, the data from past five torrential rainfall events to achieve a stable forecast;
this method can be applied to basins with limited observation data. Therefore, these results indicate
that this method can be applied as a water level forecast method for basins with an extremely fast
flood arrival time.

Keywords: urban floods; forecast method; water level; vector auto regressive model; time series anal-
ysis

1. Introduction

Floods are the most frequently occurring natural disaster, causing damage every year
worldwide. Specifically, the damage from “urban floods,” which target cities, is substan-
tial [1,2], and rapid urbanization is changing the scale and frequency of urban floods [3–7].
Rainwater that used to infiltrate the ground or was stored on the ground surface is now
discharged into rivers as surface water due to urbanization, thereby increasing the flood
damage in urban areas. Rainwater in urban areas is usually discharged through the sewer
system, but when its discharge capacity is exceeded, rainwater that cannot be discharged
to the sewer system remains on the ground surface, or it flows out of manholes, leading to
inland floods. Furthermore, the increasingly extreme nature of weather phenomena due
to climate change is a global issue, putting cities at risk [6–9]. In Japan, localized bursts
of short torrential rain called “guerrilla rainstorms” are becoming more frequent in urban
areas, and not only rainfall of 50 mm or more per hour, but also rainfall of 80 mm or more
per hour has been observed an increasing number of times [8].

To manage these urban floods and protect urban functions, flood measures that con-
sider an increase in external forces must be shifted due to climate change. Flood measures
are generally divided as “structure measures” and “non-structure measures”. According
to Itsukushima et al. [10], structure measures against urban floods can be classified into
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three types: “rivers”, “the sewer system”, and “basins”. Measures for “rivers” include em-
bankment, channel excavation, and setting back of levees [11]. However, in Japanese cities,
dense structures such as buildings and homes have been built along urban rivers, thereby
complicating the construction of embankments and channel excavation. Furthermore, it
is difficult to secure the land for constructing levees, while the project costs are massive,
which also makes the measure difficult to implement. Measures for “the sewer system”
include larger diameters for sewer pipes, underground storage facilities for sewage water,
and so on, but enlarging the pipes in massive sewer systems is expensive and time con-
suming. Measures for “basins” could include the installation of a rainwater storage facility
in each home to control discharge, the installation of a dry well or water storage facility
for each city block, and so on. Kenji Kawaike et al. [12] assessed the flood control effect
of these discharge control facilities, showing that they reduce flood damage. In addition,
there are many studies that showed that green infrastructure measures, such as permeable
pavements, rooftop greening, and green gardens are useful in flood mitigation [13–15].
However, in the case of mitigation measures where the unit is a building, such as discharge
control facilities and the green infrastructure measures mentioned above, the flood control
effect of each measure is limited; and thus, to achieve success in minimizing urban floods,
measures at a scale of the entire basin are necessary. Thus, to achieve structure measures to
reduce flood damage in urban areas, a massive amount of money and time is necessary.
Therefore, measures at the level of each home that are easier to incorporate cannot truly
solve the problems.

However, non-structure measures could include the provision of information during
floods for rapid evacuation, and the provision of flood risk information to guide planned
town building. As a manner of providing flood risk information, some institutions and
countries provide a “hazard map” for each city [16–19]. However, while this “hazard map”
is useful in informing individuals about the flood risk of the areas in which they live, it
does not provide real-time information to determine evacuation. To that end, water level
forecast information for urban rivers is necessary [20]. In Japan, the river water level is
used to determine the issuance of evacuation information during floods. If the water level
for rivers can be accurately forecast with a several-hour lead or for cities with a lead of less
than an hour, evacuation can be appropriately guided. With accurate and fast forecasting of
water levels, lead time can be ensured for evacuation, minimizing the damage from floods.

Water level forecast methods can be broadly divided into physical models and statisti-
cal models [21]. In this study, we focused on a statistical model, a vector autoregressive
model of time series analysis, and hypothesized that applying this model to water level
forecasts would lead to more accurate and fast forecasts.

Among statistical models, time series analysis and machine learning are the common
flood forecast methods. Generally, flood forecast methods based on machine learning
can consider nonlinearity of phenomena and have enjoyed rapid development in recent
years [22–24]. However, statistical models, represented by autoregressive model of time
series analysis, attempt to establish the relationship between multiple phenomena without
internally describing physical process related to the past; and thus, it is called system
theoretical transfer function models. Since the vector autoregressive model, a time series
analysis method, employed in this study is a linear model, some might point out that it
is unable to consider nonlinearity. However, urban river basins in this study are mostly
paved by concrete, where the outflow process is relatively simple compared to mountain
basins. Therefore, the effect of nonlinearity is likely minimal. Furthermore, multivariate
autoregressive models have been used in various fields in the past and are being studied
with the aim of applying them to water level forecasts in the field of hydrology [25–29]. For
example, Niedzielski et al. forecasted the water level of Oder River in southern Poland
using a multivariate autoregressive model [28,29]. However, many past studies on water
level forecast focused on the time axis of hours, days, and months. There is no study that
focused on urban rivers with an extremely short flood arrival time of less than an hour, and
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the validity of each forecast method remains unclear, the objective is to assess the accuracy
of water level forecasts using this method.

Meanwhile, the outflow process of urban basins discharges rain to rivers through the
sewer system; and thus, physical models that consider this outflow process and calculation
methods that follow the flow of water through the sewer system have been extensively
studied [30]. Specifically, commercial software is often used to forecast floods including
the sewer system in urban areas, such as MIKE URBAN [31], Infoworks CS [32], and
SWMM [33]. Many studies used these software programs to study flood forecast [34–36].
However, the sewer system pipe data and water level data are not easy to observe since
these structures are underground, where the data on the network of pipes are not freely
accessible, often being difficult to obtain [37,38]. In addition, the amount of data for pipes
and manholes is massive even for a small urban basin of several 10 s of km2. It takes
massive work and time to design a water level forecast system based on physical models
that include pipe calculations. In contrast, in the case of multivariate autoregressive model
employed for this study, data required for the forecast are limited to observation data of
rainfall and water levels. Thus, it is highly suited as a water level forecast system for urban
rivers.

Therefore, in this study, a water level forecast method is developed which conductive
to accommodates floods caused by localized torrential rains in order to reduce casualty
loss of urban floods, which have become more frequent in recent years, with an aim of
supporting more rapid issuance of evacuation information.

2. Study Area and Data

The target basin was Shibuya River Basin, which flows through Shibuya Ward, Tokyo
Metropolis (Figure 1). Shibuya River is an urban river that flows along the site of the Tokyo
Olympics. The basin area is approximately 12.5 km2 with a length of approximately 2.6 km.
Figure 1a shows Shibuya River Basin, where the red line shows the sewer system network,
and the blue line shows Shibuya River. Other than the green areas that indicate Meiji Jingu
Grand Shrine and Shinjuku Gyoen, a park, Shibuya River Basin is covered by structures.
Rainwater passes through the sewer system and flows into Shibuya River. Figure 1b shows
the sewer system pipeline network prepared from the sewer system ledger data managed
by Bureau of Sewerage Tokyo Metropolitan Government [39]. The total length of the sewer
system pipes is 243 km, with 8800 manholes. These numbers show how difficult it is to
forecast the water level for the 2.6 km along the river upon plotting the entire pipeline
network and manholes.

Next, the focal point is on torrential rainfall events caused by localized torrential rain.
Figure 2 shows the localized torrential rain in Shibuya River Basin that occurred on May 18,
2017. Figure 2a shows Shibuya River under normal conditions. These photographs show
that the river carries little water under normal conditions, and the buildings fill the area
along the river right up to the embankment. Figure 2b shows the river during a flood. At the
bottom of Figure 2 are the hyetograph and hydrograph at that time. These diagrams show
that the time between the rainfall peak and the water level peak was ~30 min, showing the
extremely fast flood arrival time. Therefore, urban basins with a small area have a short
flood arrival time, resulting in an extremely short lead time for residents to evacuate.
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Figure 1. Location of the Study Area (a): Shibuya River Basin and (b): Pipeline Network.

Figure 2. An example of localized torrential rain in Shibuya River Basin (18 May 2017). (a) State of
the river during low conditions. (b) State of the river during of flooding.
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There were nine torrential rainfall events were pinpointed. Figure 3 shows the rainfall
and water level during each torrential event as a graph. Meanwhile, Figure 4 shows the
difference in the rainfall peak and water level peak for each torrential rainfall event. Then,
Table 1 shows the data figures used in Figure 3, with the maximum rainfall and maximum
water level for each event. In most torrential rainfall events, the difference between the
rainfall peak and water level peak was extremely short: 10–20 min. Next, the explanation
about the observation data of rainfall and water level will be broken down. In Shibuya
River Basin, there is one water level observation station [40] managed by Tokyo Metropolis
(Figure 1b, orange circle), where observations are made every 10 min. As for the rainfall
data, the rainfall observed data by the Xband-MP radar which installed by the Ministry of
Land, Infrastructure, Transport and Tourism [41] were applied. Observations were taken
every minute, and the 10 min average was taken to match the time resolution of the water
level meter.

Figure 3. Localized torrential rainfall events since 2015 (9 Events).

 
Figure 4. Difference in the time of the rainfall peak and water level peak for each torrential rainfall
event.
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3. Analytical Method for Water Level Forecast with Time Series Analysis

3.1. About Vsector Autoregressive Model

The time series analysis is a statistical model, which is used to relate phenomena
with past data and forecast/control phenomena [42]. First, let us show the univariate
autoregressive model equation used for the most basic time series analysis in Equation (1).

hn =
N

∑
i=1

aihn−i + εn (1)

where h is an datum (water level), n is an time, a is a parameter, N is a degree, and ε is white
noise.

Equation (1) expresses the water level at an arbitrary time hn as a product of the past
water level time series hn−i and parameter ai in a linear sum with white noise εi. N is a
degree, which is the amount of past data considered. Since the parameter ai is the weight
of the past observation values hn−I, the size of ai expresses the impact of past observations
made for hn.

When considering real rivers, the flow rate of rivers gathers from distributaries up-
stream to downstream, and flow rate at each point interacts. Thus, the autoregressive
model were expanded and expressed in Equation (2) the impact of each tributary included.⎡⎢⎢⎢⎣
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Equation (2) is a generalization of Equation (1), which is called multivariate autore-
gressive model or vector autoregressive model, where N is the degree of the model, P is the
number of water levels used, l is the order of the water level, hp

n is the water level at the
point p at time n, and ai

pl is the impact of the water level at the point l on the water level at
the point p before the time i.

Furthermore, in the rainfall outflow process, rain falls on a basin, which infiltrates and
outflows from the ground surface, flows into rivers and the sewer system, and becomes
a water level at a certain point. Water level information at an arbitrary observation point
is the final information in the rainfall outflow process, and the first start is the rainfall
information. Thus, instead of only using the water level information, by adding the rainfall
information, we can add the information prior to the water level information to the model,
thereby considering the rapid rise in water levels in urban basins. Therefore, rainfall data
were added into Equation (2) and hence Equation (3) is obtained.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(3)

where r is rainfall data and s is the number of rainfall data, m is the order of the rainfall,
and bi

sm is the impact of the rainfall at the point m on the rainfall at the point s before the
time i. With this Equation, we can see that water level and rainfall are used to obtain the
water level at an arbitrary point. Next, let us explain the forecast method for water level.
With Equation (3), the current water level and rainfall data are obtained from the past data;
thus, by including the current data in this Equation, we can forecast one step ahead, which
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is expressed in Equation (4). Here, for simplification, we will only examine the water level
in this Equation.

ĥ
p
n+1 =

N

∑
i=1

P

∑
l=1

ai
plh

l
n+1−i + ε

p
n (4)

where ĥ
p
n+1 is the water level forecast. The forecast result is used recursively to forecast

the next step, and when the forecast is performed after the time x, it can be expressed with
Equation (5).

ĥ
p
n+x =

x−1

∑
j=1

P

∑
l=1

ai
plĥ

l
n+x−j +

N−x

∑
i=1

P

∑
l=1

ai
plh

l
n+1−i + ε

p
n (5)

With the same line of thinking, a forecast can be made with Equation (5) that includes
rainfall.

In this study, rainfall and water level were used to forecast the water level. In the
case of the Shibuya River basin, the water level data used were limited to one point. For
rainfall, since the area of the basin is small at 10 s of km2, the fact that spatial distribution
of rainfall is limited, hence the average rainfall for the basin. Since our goal was to provide
information for evacuation during floods, forecasts up to 30 min ahead were calculated.
The reason for predicting up to 30 min is that the flood arrival time in the target basin is
several tens of minutes and the time from the start of the hydrograph to the peak can be
predicted.

The characteristic of this model Is that forecasts can be made from the observation
data up to the present point, which makes it applicable for areas without forecast rainfall
data.

3.2. Methods to Design Water Level Forecast Model and Verify Its Accuracy

When designing the water level forecast model of Equation (5) used in this study, the
number of water level data P and the number of rainfall data S will be selected, while
determining the degree N. As for the number of water level data, since there was only one
water level observation station in the target basin, P = 1. For rainfall, assuming that the
impact of the spatial distribution of rainfall was limited due to the small size of the basin
(10 s of km2). Thus, the model used the average rainfall for the basin with s = 1.

Next, for the degree N, Akaike Information Criterion (AIC) proposed by Akaike [43]
is applied. AIC is expressed with Equation (6).

AIC = −2 log(L) + 2K (6)

where L is the maximum log-likelihood and K is the number of model parameters. Figure 5
shows the relationship between AIC and the degree in this calculation. The smallest value
in the AIC, N = 5, was selected.

Figure 5. Relation of Lagged time and AIC.

236



Water 2023, 15, 161

The data were used to estimate parameters targeted nine localized torrential rainfalls
since 2015 (Figure 3). Since the amount of data used to estimate the parameters for the
water level forecast model was limited, we performed fold cross-validation that uses all
limited data [44]. The steps of the fold cross-validation are as follows.

1. Target torrential rainfall event is divided into nine data sets as shown in Figure 3.
2. Data from one torrential rainfall event are used as the verification data.
3. Data from the remaining seven torrential rainfall events are used as the data set for

parameter estimates.
4. With the set data, parameters are estimated and the accuracy is verified.
5. Steps 2, 3, and 4 are repeated to assess the accuracy of the forecast.

4. Results and Discussions

4.1. Verifying the Accuracy of the Forecast

The perspective important to verify the accuracy of the water level forecast model
is whether the accuracy of the rising flood is ensured. This is especially important for
urban basins with a short flood arrival time as in the present study since the time used to
evacuate is also short. In the case of urban rivers, basically, embankments are not soil but
concrete. Thus, it is rare for the embankment to be breached, and most floods are caused by
overtopping. Thus, the judgment criterion in such cases is whether the water would top the
height of the embankment or not; thus, the accuracy of peak water level forecast is crucial.

We present the water level forecast results of the vector autoregressive model which
uses rainfall and water level data. Figure 6 is the water level forecast result for all nine
torrential rainfall events. First, let us look at the torrential rainfall event 5 with the highest
peak water level. Figure shows that the during the water level rise, its increase is captured,
but it is underestimated compared to the measured water level. This trend was observed in
all 10 min, 20 min, and 30 min forecasts. Specifically, at the start of the event when only
weak rainfall was observed, the water level forecast was extremely low. On the other hand,
when strong rainfall of over 50 mm/h was observed, the difference with the observed water
level became small.

Next, let us look at the torrential rainfall event 2. With this torrential rainfall event,
compared to the other torrential rainfall events, it takes ≥10 min to reach the peak water
level. However, the flood arrival time for this torrential rainfall event 2 was the shortest at
10 min. In the case of such flood, the sign for the water level rise cannot be detected; and
thus, it is considered the most dangerous urban flood. Figure 6 (event 2) shows that the
rising trend of water level was forecast 20 min before the peak water level. The forecast was
possible despite the fact that the observed water level had not risen at all. Therefore, using
the proposed water level forecast model, forecasts are on the safe side from the viewpoint
of evacuation.

In other flood events, forecast water levels were generally underestimated compared
to the observed values; however, a rise in water level can be captured. Therefore, this
method contributes to the decision to issue the evacuation information.

Next, Figure 7 shows the result of verifying the accuracy of peak water level forecast.
This figure shows that generally, peak water level is underestimated in the forecast. How-
ever, other than the event 2, 10 min forecasts had an accuracy of 1 m or less compared to
the observed values.
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Figure 6. Forecasted water level results up to 30 min ahead for all events.
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Figure 7. Difference in the observed water level and water level at the peak for each forecast time.

The overall accuracy of the 20 min forecast was lower, where the difference in the
water level is approximatery1.5 m lower except for the torrential rainfall event 3.

The accuracy of the forecast for each torrential rainfall event, in the case of the above-
mentioned event 2, was about 2 m lower in the 10 min forecast. This was likely since
the heavy rain exceeding 50 mm/h already ended by the time for the 10 min forecast.
In contrast, 20 min forecast had the peak difference with the observed value of less than
1 m. This was likely since heavy rainfall exceeding 50 mm/h was falling at the time of
forecast. In the case of torrential rainfall event 3, the forecast was highly accurate for all 10
min, 20 min, and 30 min forecasts. Figure 6 shows that the time difference in the rainfall
peak and the water level peak of torrential rainfall event 3 was longer than other torrential
rainfall events. These results show that though the accuracy of the water level forecast is
not favorable at the rise of the water level, the forecast was adequate once the water level
rises close to the peak. This means that the peak water level can be forecast even when
strong rainfall continues.

Figure 8 superimposes 10 min, 20 min, and 30 min forecasts with the observed water
levels for all time periods from the rise to the fall of water level in the hydrograph for each
torrential rainfall event. The red solid line is 45◦, while the red dashed line is ±1 m of the
red solid line. Figure 8a assesses observed and forecast values for 10 min ahead, which
shows that most forecasts are within 1 m. In some cases, the forecast water levels rose
during the normal condition (0.15 to 0.2 m) before the observed water levels rose. This
shows that, as mentioned earlier, when heavy rain exceeding 50 mm/h was observed in
each torrential rainfall event, the forecast was on the safe side. In the falling period of the
hydrograph, the forecast was highly accurate. In addition, Figure 8 shows that 20 min and
30 min forecasts had lower water levels compared to the observed level as the forecast time
increased.
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Figure 8. Comparison of the calculated and forecast values for the entire period in the hydrograph.
(a): 10 min forecast, (b): 20 min forecast, and (c): 30 min forecast. Circles in figure are values during
the rising period in the hydrograph, while cross are values during the falling period.

4.2. The Number of Torrential Rainfall Events Necessary for Stable Water Level Forecast

To verify the accuracy of water level forecasts by the present water level forecast
method, it was calculated using all torrential rainfall events since 2015 that could be used in
the target basin. However, in the basin of urban rivers, to which we want to introduce this
method, the amount of data at the time of flood at the observation points is likely limited.
Thus, we assessed the stability of forecast values when the number of torrential rainfall
events used for parameter estimate was changed. For the assessment, the variations in the
forecast values were examined by comparing them to the results of changing the number
of torrential rainfall events used for parameter estimates between 1 and 7.

Table 2 shows the number of torrential rainfall events that can be prepared with the
number of torrential events used to estimate parameters. The number of data sets that
can be prepared varies based on the number of torrential rainfall events used to estimate
parameters. The average of the dataset was taken for each forecast time of each torrential
rainfall event and assessed the stability. RMSE was also used to validate the accuracy of
the forecast. For the verification, the result of the hydrograph from the rise of the water
level to the peak water level were applied, which is crucial during evacuation. RMSE is
shown in Equation (7).

RMSE =

√√√√Npeak

∑
n=1

(hi
ob − hi

pre)
2/Npeak (7)

where hi
ob is the observed values, hi

pre is the forecast values, and Npeak is the amount of data.

Table 2. Number of events used for parameter estimation.

Number of Flood Events Used Number of Datasets
1 8C1 = 8
2 8C2 = 28
3 8C3 = 56
4 8C4 = 70
5 8C5 = 56
6 8C6 = 28
7 8C1 = 8

The torrential rainfall event that was the target of forecast in this verification was
torrential rainfall event 5, where the water level rose the most (Figure 3). The result is
shown in Figure 9. Frames 1 to 7 in Figure 9 show the number of torrential rainfall events
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used to estimate parameters (the number of torrential rainfall events used was changed
between 1 and 7).

Figure 9. Differences in forecast accuracy for different numbers of flood events.

This result shows that the variations in the forecast values decreased when the number
of torrential rainfall events used to estimate parameters was higher. Specifically, for the 10
min forecast (black bar), the range of variations in forecast values became notable based on
the number of events. However, when we look at the average values, even for 10, 20, and
30 min forecasts, there was little difference in the average as long as at least two torrential
rainfall events were used to estimate parameters. If there were about six torrential rainfall
events, variations became small. Therefore, we assume that as long as there are data from
about six large flood events, parameters become stable along with forecast values.

Data used for the water level forecast in this study included one of water level and
one of rainfall. Since the water level data comprised the observation data from the sta-
tion installed at the downstream side of the target, Shibuya River Basin, this is the final
information in the rainfall outflow process, not allowing the use of upstream information
(observation data). Therefore, the rainfall data at the start of the rainfall outflow process,
and the information at the end of the process was limited to the water level information.
Therefore, there was no information on the tributaries, which is the middle of the outflow
process (in the case of this study, this would be the sewer system pipeline network). Thus, it
was difficult to ensure the accuracy of the present forecast. If we could use the information
from the upstream of the forecast point (water level observation station), we could design a
forecast model with higher precision.

5. Conclusions

In this study, we designed a water level forecast method with the goal of providing
early evacuation information in the basin of an urban river where the flood arrival time
was extremely short at much less than one hour. Assessment of its accuracy is performed.
For the water level forecast method, the vector autoregressive model was applied. For
forecasting, the model only applied using real-time data of rainfall and water level.

The result showed that in the rising period of the hydrograph, forecast values were
lower, but its difference was 1 m or less. Thus, it was sufficient information to encourage
evacuation. In the case of localized torrential rainfall, it has been reported that evacuation
times of a few minutes can be fatal [45]. The model’s ability to forecast these tens of minutes
is extremely important because the reality of localized torrential rainfall is that the time
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from the start of the rainfall to the peak water level is only a few tens of minutes, and these
localized torrential rains frequently cause flooding damage in major cities in Japan. By
incorporating the rainfall data into the forecast method, the rise in the water level was
forecasted from the point when there was no rise in the real-time water level yet. Therefore,
the present method can be used as a method to forecast water levels in basins without
forecast rainfall data by only using observation data. The analysis did not take into account
physical factors such as drainage systems by sewers, which means that the results obtained
by using very limited data show that the method could be applied to many basins.

By changing the number of torrential rainfall events used to estimate the parameters of
the water level forecast model, the numbers of torrential rainfall events were examined to
calculate stable forecast values. The result showed that since five or more torrential rainfall
events reduced the variations in the forecast values, as long as there are flood data from
about five events, this model can be applied to urban river basins with limited observation
data.

Finally, water level data from one point and rainfall data from one point to design this
method was used. This was because there was only one water level observation station in
the present target basin, but by using the upstream information, the accuracy of forecasts
can be improved dramatically. However, there is hardly any location in Japan where the
water level within the sewer system is being observed. To make more accurate forecasts to
reduce the flood damage from short urban rivers, many rivers present similar challenges.
The present method that allows forecasting of water levels even with a limited amount of
data is useful in forecasting the water levels of urban rivers. Thus, to improve the accuracy
of the present forecast method, it is necessary to increase the number of cases in other urban
rivers for further verification.
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